
HAL Id: tel-00978732
https://theses.hal.science/tel-00978732v1

Submitted on 14 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Refinement based methodology for software process
modeling

Fahad Rafique Golra

To cite this version:
Fahad Rafique Golra. A Refinement based methodology for software process modeling. Software
Engineering [cs.SE]. Télécom Bretagne, Université de Rennes 1, 2014. English. �NNT : �. �tel-00978732�

https://theses.hal.science/tel-00978732v1
https://hal.archives-ouvertes.fr

N° d’ordre : 2014telb0304

Sous le sceau de lSous le sceau de l ’’UUniversitniversitéé européenne de Beuropéenne de Bretagneretagne

Télécom Bretagne

En habilitation conjointe avec l’Université de Rennes 1

Ecole Doctorale – MATISSE

A REFINEMENT BASED METHODOLOGY FOR
SOFTWARE PROCESS MODELING

Thèse de Doctorat

Mention : Informatique

Présentée par Fahad Rafique – GOLRA

Département : Informatique

Laboratoire : IRISA

Directeur de thèse : Antoine Beugnard

Soutenue le 08 janvier 2014

Jury :

M. Bernard Coulette + Professeur à l’université de Toulouse (Rapporteur)
Mme Sophie Dupuy-Chessa Maître de conférence à UPMF-Grenoble 2 (Rapporteur)
M. Christophe Dony + Professeur à Université Montpellier II (Examinateur)
M. Reda Bendraou + Maître de conférence l’université Pierre & Marie Curie (Examinateur)
M. Fabien Dagnat + Maître de conférence à Télécom Bretagne (Encadrant)
M. Antoine Beugnard + Professeur à Télécom Bretagne (Directeur de thèse)

Essentially, all models are wrong, but some are useful.

George E. P. Box

Acknowledgments

I would like to gratefully and sincerely thank Fabien Dagnat for his guidance,
understanding, patience, and most importantly, his friendship during my graduate
studies at Telecom Bretagne. His mentorship was paramount in providing a well-
rounded experience consistent to my long-term career goals. He encouraged me to not
only grow my expertise in my research domain but also as an independent thinker.
Not only did he ignite my imaginations, he also stimulated the thirst and the desire
to know. I would like to thank Antoine Beugnard for his constant guidance and
the liberty to explore the domain with his constant support. I am not sure many
graduate students are given the opportunity to develop their own individuality and
self-sufficiency by being allowed to work with such independence.

I would also like to thank all of the members of PASS research team at Tele-
com Bretagne, especially Maria-Teresa Segarra and Julien Mallet and all other fellow
doctoral/post-doctoral researchers for giving me the opportunity to discuss and evolve
this research project. Additionally, I am very grateful for the friendship of all of the
members of his research group, especially Aladin, Jean Baptiste, Thang, Ali and An
Phung, with whom I worked closely and puzzled over many similar problems. I would
also like to thank my colleagues in office and Serge Garlatti who provided for some
much needed humor and entertainment in what could have otherwise been a somew-
hat stressful laboratory environment. I specially want to thank Armelle Lannuzel,
who has helped me through all administrative procedures during my stay. I would
like to thank the members of my defense jury for their input, valuable discussions and
proposed corrections, that shall guide me further to improve my professional skills.

Finally, and most importantly, I would like to thank my wife Asfia Firduas. Her
support, encouragement, quiet patience and unwavering love were undeniably the
foundations upon which the past six years of my life have been built. I thank my
parents, Rafique Golra and Nusrat Shaheen, for their faith in me and allowing me to
be as ambitious as I wanted. It was under their watchful eye that I gained so much
drive and an ability to tackle challenges head on. Also, I thank my brothers Asad and
Shoaib who provided me with unending encouragement and support.

Abstract

There is an increasing trend to consider the processes of an organization as one of
its highly valuable assets. Processes are the reusable assets of an organization which
define the procedures of routine working for accomplishing its goals. The software in-
dustry has the potential to become one of the most internationally dispersed high-tech
industry. With growing importance of software and services sector, standardization
of processes is also becoming crucial to maintain credibility in the market. Software
development processes follow a lifecycle that is very similar to the software develop-
ment lifecycle. Similarly, multiple phases of a process development lifecycle follow an
iterative/incremental approach that leads to continuous process improvement. This
incremental approach calls for a refinement based strategy to develop, execute and
maintain software development processes.

This thesis develops a conceptual foundation for refinement based development of
software processes keeping in view the precise requirements for each individual phase
of process development lifecycle. It exploits model driven engineering to present a
multi-metamodel framework for the development of software processes, where each
metamodel corresponds to a different phase of a process. A process undergoes a series
of refinements till it is enriched with execution capabilities. Keeping in view the
need to comply with the adopted standards, the architecture of process modeling
approach exploits the concept of abstraction. This mechanism also caters for special
circumstances where a software enterprise needs to follow multiple process standards
for the same project.

On the basis of the insights gained from the examination of contemporary offe-
rings in this domain, the proposed process modeling framework tends to foster an
architecture that is developed around the concepts of “design by contract" and “de-
sign for reuse". This allows to develop a process model that is modular in structure
and guarantees the correctness of interactions between the constituent activities. Se-
paration of concerns being the motivation, data-flow within a process is handled at
a different abstraction level than the control-flow. Conformance between these levels
allows to offer a bi-layered architecture that handles the flow of data through an un-
derlying event management system. An assessment of the capabilities of the proposed
approach is provided through a comprehensive patterns-based analysis, which allows
a direct comparison of its functionality with other process modeling approaches.

Keywords : Process Modeling, Software Development, Metamodels, Model Driven
Architecture, Process Refinement, Component-oriented Process Modeling Framework
(CPMF)

Résumé

Il y a une tendance croissante à considérer les processus d’une organisation comme
l’une de ses grandes forces. Les processus sont des ressources réutilisables d’une orga-
nisation qui définissent les procédures de travail pour la réalisation de ses objectifs.
Avec l’importance croissante du secteur des logiciels et des services, la standardisation
des processus devient indispensable pour maintenir sa crédibilité. Le développement
de processus suit un cycle de vie très similaire à celui du développement logiciel. Par
exemple, il se compose de plusieurs phases et suit une approche incrémentale qui
mène à son amélioration continue. Cette approche incrémentale peut être complétée
par une stratégie basée sur le raffinement pour développer, exécuter et maintenir les
processus de développement de logiciels.

Cette thèse propose une base conceptuelle pour le développement de processus
logiciels par raffinement, sans perdre de vue les exigences spécifiques de chaque phase
du cycle de vie d’un tel processus. Elle utilise l’ingénierie dirigée par les modèles pour
présenter un ensemble de méta-modèles pour le développement de processus logiciels
où chaque méta-modèle correspond à une phase différente d’un processus (spécifica-
tion, implémentation et instanciation). Le modèle d’un processus traverse une série
de raffinement jusqu’à ce qu’elle soit enrichie par des capacités d’exécution. Le dé-
veloppement d’un interpréteur permet d’exécuter ce modèle. Il donne la possibilité
de relier les modèles des differentes phases par des liens de traçabilité. Les inter-
venants peuvent interagir avec le processus en exécution à l’aide d’une interface de
supervision. Un niveau de variabilité incluse dans les modèles de processus permet
leur adaptation pendant l’exécution. Tout en prenant en compte la nécessité de se
conformer aux standards adoptés par l’organisation, l’architecture de l’approche de
modélisation proposée exploite le concept d’abstraction en s’inspirant de la notion de
composant logiciel pour aider à la réutilisation de modèles de processus. Notre mé-
thode est également prévue pour les entreprises qui veulent suivre plusieurs standards
pour le même projet.

Sur la base des connaissances acquises grâce à l’étude des langages de modélisation
actuels du domaine, le cadre proposé pour la modélisation de processus présente une
architecture qui se développe autour des concepts de «conception par contrat» et
«conception pour et par la réutilisation». Ceci permet de construire un modèle de
processus qui a une structure modulaire et garantit la correction des interactions
entre des activités constituantes. Afin de favoriser la séparation des préoccupations, les
flux de données au sein d’un processus sont gérés à un niveau d’abstraction différent
de celui des flux de contrôle. La conformité entre ces deux niveaux permet d’offrir

une architecture bicouche. Le flux de données lors de l’exécution est assuré par un
système de gestion d’événements. Une évaluation des capacités de l’approche proposée
est fournie par une analyse basée sur l’ensemble des «workflow patterns». Cela permet
une comparaison directe de ses capacités avec d’autres approches de modélisation de
processus.

Mots-clés : Processus de développement logiciel, Modélisation de processus, Ac-
tivité, Ingénierie Dirigée par les Modèles, Raffinement

Contents

Résumé en français 1

1 État de l’art . 2

2 Une approche multi-métamodèle pour la modélisation des processus . . 4

3 Les méta-modèles pour le développement du processus 5

3.1 Le méta-modèle de spécification du processus 5

3.2 Le méta-modèle d’implémentation du processus 6

3.3 Le méta-modèle d’instanciation du processus 8

4 L’implémentation de l’outil de prototype 9

5 La méthode de développement de processus 10

6 L’évaluation de l’approche . 11

1 Introduction 1

1.1 Context . 1

1.2 Problem Statement and Research Questions 4

1.3 Solution Criteria . 7

1.3.1 Completeness . 7

1.3.2 Team Development . 8

1.3.3 Reusability . 9

1.3.4 Abstraction . 9

1.3.5 Modularity . 10

1.3.6 Tailorability . 10

1.3.7 Enactability . 10

1.4 Approach . 11

1.4.1 Phase-wise identification of the core process constructs 11

1.4.2 Synthesis of process constructs into respective metamodels . . . 12

i

ii CONTENTS

1.4.3 Development of the tooling support 12

1.4.4 Evaluation of the process modeling framework 12

1.5 Scope & Contributions of this Thesis 13

1.6 List of Publications . 14

1.7 Outline of the thesis . 14

I State of the Art 16

2 Software Process Modeling Context 17

2.1 Process Modeling . 17

2.1.1 What is a Process? . 18

2.1.2 Process Modeling Languages and Notations 19

2.1.3 Process-Centered Software Engineering Environments 20

2.2 Process Reuse . 20

2.2.1 Design by Contract . 22

2.2.2 Interaction between the contracts 23

2.3 Process Architecture . 24

2.3.1 Architectures for process modeling 26

2.3.2 Declarative vs Imperative Process Modeling 26

2.3.3 Service oriented architectures in process 27

2.4 Process Execution . 29

2.4.1 Workflow Management Systems 29

2.4.2 Business Process Management 30

2.4.3 Process-driven Applications . 31

2.4.4 Process Execution Concerns . 32

2.5 Shortcomings of the process methodologies 32

3 Process Modeling Frameworks 35

3.1 Introduction . 35

3.2 Flow based Approaches . 36

3.2.1 Software Process Engineering Metamodel (SPEM 2.0) 36

3.2.1.1 xSPEM . 42

3.2.1.2 SPEM4MDE . 44

CONTENTS iii

3.2.1.3 MODAL . 46

3.2.2 Business Process Model and Notation (BPMN) 48

3.2.3 Business Process Execution Language (WS-BPEL) 52

3.3 Event based Approaches . 55

3.3.1 Event-driven Process Chains (EPC) 55

3.3.2 Yet Another Workflow Language (YAWL) 58

3.3.3 Little-JIL . 61

3.4 Software Process Standards . 64

3.4.1 International Organization for Standardization & IEEE 64

3.4.2 European Cooperation for Space Standardization (ECSS) . . . 66

3.5 Critical summary of approaches . 68

3.6 Discussion . 71

II Process Modeling Framework 74

4 Structure of Metamodels 75

4.1 Multi-metamodel Process Framework 75

4.1.1 Component-oriented Process Modeling Framework 75

4.1.2 Process modeling scenario . 79

4.2 Metamodels for Process Development Phases 81

4.2.1 Specification Phase . 81

4.2.2 Implementation phase . 86

4.2.3 Instantiation phase . 96

4.3 Contractual Interactions . 104

4.3.1 Design by Contract . 104

4.3.2 Contract refinement . 105

4.4 Methodological Summary . 112

5 Implementation of the Framework 115

5.1 Prototype Architecture . 115

5.2 Process Development . 118

5.2.1 Process Editors . 118

5.2.2 Transformations in Process Models 119

iv CONTENTS

5.3 Process Execution . 120

5.3.1 Process Enactment . 120

5.3.2 Execution dynamics . 122

5.3.2.1 Dynamic Creation . 123

5.3.2.2 Dynamic Adaptation 124

5.4 Implementation Summary . 128

III Evaluation of the Framework 130

6 Case Study 131

6.1 Case Study Scenario . 131

6.1.1 Background . 132

6.1.2 Scenario . 133

6.1.3 Questions & propositions . 135

6.2 Case Study Implementation . 136

6.2.1 Compliance to multiple standards 136

6.2.2 Design by Contract . 141

6.2.3 Bi-layered implementation of processes 142

6.2.4 Reusing process elements . 144

6.2.5 Process refinement . 145

6.2.6 Execution of scenario processes 146

6.2.7 Runtime adaptation . 149

6.3 Findings & Discussion . 150

7 Pattern Support in CPMF 153

7.1 Workflow Patterns . 153

7.2 Workflow Data Patterns . 154

7.3 Workflow Control-flow Patterns . 158

7.4 Workflow Resource Patterns . 165

7.5 Discussion . 170

CONTENTS v

IV Epilogue 174

8 Conclusion and Perspectives 175

8.1 Contributions and Achievements . 175

8.2 Limitations and Prospects . 180

V Bibliography and appendices 183

Bibliography 185

Figures 201

Tables 205

Appendices 207

A Further discussion on individual Workflow Patterns 208

1.1 Data-flow Patterns . 208

1.2 Control-flow Patterns . 221

1.3 Workflow Resource Patterns . 237

B Process Model Constructs 249

vi CONTENTS

Résumé en français

Sommaire

1 État de l’art . 2

2 Une approche multi-métamodèle pour la modélisation
des processus . 4

3 Les méta-modèles pour le développement du processus . 5

4 L’implémentation de l’outil de prototype 9

5 La méthode de développement de processus 10

6 L’évaluation de l’approche 11

Tout comme les systèmes logiciels, les processus logiciels sont basés sur la no-
tion de cycle de vie, où chaque étape du développement des concepts différents à
abordé. Chaque phase d’un processus logiciel organise différentes questions liées à
son degré de maturité. Fuggetta définit un processus logiciel comme un ensemble co-
hérent de politiques, de structures organisationnelles, de technologies, de procédures
et d’artefacts qui sont nécessaires pour concevoir, développer, déployer et mainte-
nir un logiciel [Fuggetta 00]. Mais nous avons tendance à penser comme Osterweil,
les processus partagent la nature et la complexité des systèmes logiciels et doivent
être traités de la même manière [Osterweil 87]. Ainsi, nous pensons que les processus
logiciels doivent être conçus (spécifications), développés (implémentation), déployés
(instanciation) et maintenus (surveillance). Pendant que le cycle de vie d’un proces-
sus logiciel avance, l’accent sur les questions liées au processus changent également.
Par exemple, en phase de spécification l’accent est mis sur la définition des artefacts
qui seraient traités / développés au cours de l’activité. D’autre part, pour l’exécution
d’un processus le focus se déplace sur les échéances temporelles qu’un artefact doit
respecter. Pendant la phase d’exécution, la mise au point de l’activité ne correspond
pas au choix de ses entrées et sorties, il est plutôt lié au «comment» et au «quand».

Les modèles sont utilisés pour différentes raisons : prédire les propriétés d’un
système, raisonner sur son comportement, communiquer entre les différents espaces
techniques, etc. Dans le domaine d’informatique, ils sont actuellement utilisés pour
automatiser le développement du système d’informatique [Kent 02]. Différents aspects
d’un système peuvent être considérés comme pertinents à différents moments, et cha-
cun de ces aspects peu être modélisé en utilisant des éléments de modèles différents.
Dans de tels cas, certaines règles peuvent raffiner ces modèles pour les transformer
en une autre perspective. Ces règles peuvent également être utilisés pour enrichir ces

1

2 Résumé en français

Design Modeling Execution Monitoring Optimization
BPMN

BPEL
EPC

SPEM xSPEM, SEPM4MDE
LITTLE-JIL

YAWL

Business Process Management Software Process Engineering Workflow Management

Business Process Management Lifecycle

Figure 1 – La couverture du cycle de vie des processus

modèles avec des informations afin de les raffiner. Les modèles et les transformations
de modèles forment le noyau de l’ingénierie dirigée par les modèles (IDM). Les récents
progrès dans le domaine de l’IDM ont permis la construction d’outils, qui peuvent
être utilisés par des architectes système et des développeurs pour modéliser les diffé-
rentes perspectives d’une système et les relier directement au code dans un langage de
programmation d’une plate-forme particulière [Jouault 06]. L’utilisation de modèles
en génie des processus offre les mêmes avantages. Les processus peuvent être déve-
loppés en utilisant des approches de modélisation et affinés au fil du temps, selon les
cycles de vie de développement de processus. Les techniques d’ingénierie dirigée par
les modèles peuvent être utilisés pour le raffinement des modèles de processus.

1 État de l’art

Les langages de modélisation de processus présentent deux problèmes. Tout d’abord,
ils semblent ignorer l’importance d’une approche cohérente qui gère le processus à
toutes les étapes de son cycle de vie. Soit un modèle de processus unique représente
un processus dans toutes les phases (par exemple lors de la phase de spécification
et la phase d’implémentation) ou alors il doit être transformé en une approche com-
plètement différente pour l’exécution. Par exemple BPMN [OMG 11] représente des
processus à toutes les étapes de développement en utilisant une seule notation, mais
il n’offre pas la possibilité de les exécuter. Par conséquent, les développeurs de proces-
sus sont obligés de transformer ces modèles en BPEL [OASIS 07] pour les exécuter.
La couverture du cycle de vie des processus de développement pour les approches
différentes dans l’état de l’art est illustrée à la figure 1.

Deuxièmement, la plupart des approches se concentrent sur le flux des activités
pour définir l’ordre de l’exécution (présumé). Certaines approches utilisent des méca-
nismes basée sur des événements pour induire une réactivité, mais leur attention reste
sur le flux des activités [Adams 05]. Des approches telles que l’Event Process Chains
(EPC) utilisent les deux types d’entrées pour les activités (événements et artefacts),

1. État de l’art 3

qui encombrent le modèle de processus [van der Aalst 99]. Avec le flux de données et
les flux de contrôle dans un processus en même temps, il est difficile de conceptualiser
les interactions d’une activité à son contexte.

Un désavantage général de l’utilisation des langages de modélisation de processus
basés sur les flux est le manque de dynamisme et de réactivité dans le modèle de
processus. Cependant, en utilisant la notion d’événements et la gestion des exceptions,
BPMN propose de développer des modèles de processus réactifs. D’autre part, SPEM
ne prend pas en compte les événements limitant ainsi les concepteurs à une approche
proactive. Certaines des extensions de SPEM, comme xSPEM, ajoutent cette capacité
et les modèles de processus sont enrichis avec des contrôles réactifs [OMG 08]. D’autre
part, les événements sont une notion centrale pour les interactions entre les activités
dans les approches basées sur les événements. Si deux activités EPC doivent interagir,
elles doivent utiliser des événements. Les Workflow Management Systems (WfMS)
placent également la notion d’événements au ceur du modèle d’interaction, qui se
traduit par la réactivité d’ensemble des modèles de processus [Hollingsworth 04].

La nature même d’un processus est hiérarchique. Il est composé de sous-processus
ou activités. Les modèles de processus actuels utilisent des architectures de proces-
sus qui modélisent ces processus de la même manière. Cependant, la modularité de
ces processus n’est pas le concept central pour bon nombre de ces approches. SPEM
propose la notion de composant de processus, mais les interfaces sont limités à repré-
senter des produits. La notion de processus est très proche au un service, où chaque
composante de processus fournit un service si certaines conditions préalables sont
remplies. Une encapsulation appropriée du processus devrait limiter les interactions,
y compris les flux de contrôle et la chorégraphie à travers des interfaces spécifiées.
MODAL améliore le concept de composant de processus offert par SPEM en utilisant
la notion de ports qui offrent des services [Pillain 11]. EPC et WfMS n’offrent pas
une approche spécifique pour l’encapsulation des processus.

L’absence d’une approche modulaire dans les méthodologies de modélisation des
processus limite la réutilisation des processus modélisés. Une réutilisation opportu-
niste des processus dans une approche de modélisation de processus n’est pas une
solution très élégante pour traiter la réutilisation. La réutilisation systématique des
modèles de processus n’est possible que lorsque les processus sont conçus pour être
réutilisés. De nombreuses applications de modélisation de processus actuelles, offrent
la possibilité de stocker les processus dans des dépôts [Elias 12]. Ces solutions offrent
des fonctionnalités différentes pour le stockage, la récupération et la gestion des ver-
sions. Le Process mining peut également être utilisé pour sélectionner le meilleur
candidat pour la réutilisation [van der Aalst 07]. Mais trouver un procédé approprié
pour la réutilisation est une partie de l’effort et intégrer dans un modèle de processus
est une autre. Les approches de modélisation des processus n’offrent pas de moyens
appropriés pour intégrer un processus réutilisables dans un modèle de processus. Une
approche modulaire conçue pour la réutilisation peut aider à résoudre ces problèmes
d’intégration.

Une méthodologie qui surmonte les lacunes des approches actuelles permettrait
aux processus d’exploiter le raffinement pour le développement de processus par phase

4 Résumé en français

Raffinement

Modèle de processus
en cours d'exécution

Processus
de la vie

réelle

Transformation Transformation

Raffinement
Méta-modèle

de Spécification
des processus

Méta-modèle
d'instanciation
des processus

Méta-modèle
d'impémentation

des processus

Modèle
de Spécification
des processus

Modèle
d'impémentation

des processus
Modèle

d'instanciation
des processus

représent

l'exécution de
processus

conforme àconforme àconforme à

Figure 2 – Méta-modèles multiples pour la modélisation de processus

et la modélisation à plusieurs niveaux d’abstraction au sein d’une phase. Une telle ap-
proche permettrait de mieux comprendre le développement progressif des processus et
favoriserait également la réutilisation des processus d’une manière plus systématique.
Cette thèse présente un cadre de modélisation de processus et un outillage prototype
associé qui répond à ces défauts.

2 Une approche multi-métamodèle pour la modélisation
des processus

Pour un support de modélisation précis d’un processus dans une phase spécifique
du développement, nous proposons d’utiliser un méta-modèle spécifique. Cela signifie
que pour chaque phase du développement d’un processus, nous avons développé un
méta-modèle distinct. Cela conduirait à une famille de méta-modèles de processus
qui traitent la modélisation du même processus dans ses différentes phases de déve-
loppement. Le nombre de méta-modèles dépend du cycle de vie de développement de
processus choisi. Nous ne limitons pas l’utilisation d’un cycle de vie de développe-
ment de processus spécifique. L’idée de développement multi-métamodèle est basée
sur une règle simple, « méta-modèle spécifique des processus pour la phase spécifique
de développement de processus ». Pour illustrer notre approche, nous avons choisi
quatre phases : la spécification, l’implémentation, l’instanciation et la surveillance de
processus, comme le montre la figure 2. La phase de surveillance n’est pas une phase
de développement, donc nous n’avons pas besoin d’un méta-modèle pour cette phase.
Les utilisateurs de cette approche peuvent choisir d’autre phases et développer les
méta-modèles nécessaires. Pour l’instant, nous présentons notre approche en utilisant
trois méta-modèles, chacun pour la phase spécifique de développement de processus
i.e. un méta-modèle de spécification des processus, un méta-modèle d’implémentation
des processus et un méta-modèle d’instanciation des processus. Un modèle d’exécu-
tion est généré une fois que le modèle d’instanciation du processus est interprété par
l’interpréteur de processus. Ceci permet d’exécuter les processus et, éventuellement,
de les surveiller.

La figure 2 montre l’approche à deux niveaux de hiérarchie de modélisation. Dans
la couche de méta-modélisation, nous voyons les trois méta-modèles et les relations
de raffinement entre eux. Nous croyons que chaque phase du développement raffine

3. Les méta-modèles pour le développement du processus 5

le processus en ajoutant plus de détails. Dans la couche de modélisation, les modèles
de processus respectifs sont illustrés en passant par une chaîne de transformation de
modèles. Chaque transformation raffine le modèle de processus et ajoute de nouveaux
créneaux dans le modèle, injecte plus de détails et des choix de conception.

Le modèle de spécification du processus est développé en conformité au méta-
modèle de spécification du processus. Un tel modèle est basé sur la phase de spéci-
fication d’exigences de développement de processus. Un processus de développement
logiciel est spécifié à l’aide de ce modèle, et donc n’est pas surchargé par des dé-
tails d’implémentation. Il peut être utilisé pour documenter les bonnes pratiques des
processus en fonction de leur structure. Cela favorise la réutilisation des modèles de
processus au niveau abstrait. Les standards de processus et les bonnes pratiques sont
documentés de manière réutilisable, où ils peuvent être appliqués à n’importe quel
projet ou d’une entreprise spécifique. Le modèle d’implémentation de processus est
conforme au méta-modèle d’implémentation de processus. Ce modèle décrit les dé-
tails spécifiques à un projet, qui sont intégrés dans le modèle en ajoutant les détails
d’implémentation du modèle de processus. La méta-modèle d’implémentation est sé-
mantiquement plus riche pour exprimer les détails fins du modèle de processus dans
la phase d’implémentation. De cette façon, un modèle de spécification de processus
unique peut être utilisé pour plusieurs implémentations, dans différents projets sur
plusieurs entreprises. Enfin, le modèle d’instanciation de processus est développé et
établit les processus en les reliant à des outils de développement, des documents, des
dépôts, des personnes, etc.

3 Les méta-modèles pour le développement du processus

Nous avons défini trois méta-modèles pour montrer l’applicabilité de l’approche
sur un cycle de vie simple de développement de processus. Chaque méta-modèle est
expliqué ci-dessous en fonction de sa pertinence pour la phase spécifique du cycle de
vie de processus.

3.1 Le méta-modèle de spécification du processus

Le méta-modèle de spécification du processus est utilisé pour définir la structure
de base du modèle de processus à l’étape de spécification. Un processus à l’étape de
spécification est décomposé en différents composants de processus, ce qui crée une
hiérarchie. Nous définissons un processus comme « une architecture d’activités inter-
connectés tels qu’elles visent collectivement à atteindre un objectif commun ». Une
activité est une unité d’action dans un modèle de processus. Les activités peuvent
soit être décomposées encore ou peuvent représenter le niveau primitif. Pour une
hiérarchie de processus significatif dans CPMF, chaque activité composite contient un
processus, ce qui revient à contenir une collection d’activités interconnectées. En plus
d’offrir une hiérarchie de processus simple, CPMF permet le partage d’activité entre
différents processus. Une activité peut être contenue dans deux processus différents,
qui partagent certaines actions communes de traitement.

6 Résumé en français

Spécification

d’conceptioin

Spécification

 d’conceptioin
Conception Revue

Processus ISPW

Le document de conception

doit mettre en évidence les

modifications

Le document de conception

doit être signé par l'ingénieur

de conception

•  Les responsabilités
•  1 Responsable
•  1 Signataire

•  Les rôles
•  l'ingénieur de conception

Figure 3 – L’exemple du modèle de spécification du processus

Inspiré de la conception par contrat (DbC), toutes les interactions de / vers le
composant sont traitées par des interfaces spécifiées. Un contrat en CPMF peut être
soit requis soit fourni. Un contrat est une spécification d’interface d’une activité pour
les artefacts d’entrée / sortie. Chaque contrat d’une activité définit une spécification
de l’artefact. Les contrats de deux activités sont reliés par des liaisons. Une liaison
relie le contrat fourni d’une activité au contrat requis d’une autre activité. L’artefact
fourni par la première activité doit remplir les pré-conditions de la deuxième activité.
Ceci définit un flux d’activités sur la base de leurs artefacts. Chaque activité définit
des responsabilités pour son traitement. Chaque responsabilité est attribuée à un rôle
ou à une équipe. Le modèle de spécification de processus de CPMF peut être traduit
de / vers les autres approches de modélisation de processus existants. Cependant,
cette traduction provoque une perte conceptuelle.

Nous pouvons voir un exemple simple composé de deux activités Conception et
Revue composent le processus ISPW dans la figure 3. Conception a un contrat fourni
et Revue a un contrat requis. La spécification du document de conception est présent
à la fois dans les contrats fourni et requis. Les rôles et responsabilités sont asso-
ciés à chaque activité. Conception a un rôle associé d’ingénieur de conception avec
deux responsabilités : signataire et responsable. Les interactions entre les activités
sont représentées par l’utilisation des flots. Les post-conditions sont présentes dans
le contrat fourni, par exemple Conception doit produire le document de conception
avec la mise en évidence des modifications. Les pré-conditions sont présentes dans le
contrat requis.

3.2 Le méta-modèle d’implémentation du processus

Le méta-modèle d’implémentation du processus est sémantiquement plus riche
que le méta-modèle de spécification du processus. Il met l’accent sur la séparation des
préoccupations, l’utilisation de mécanismes basés sur les événements et le dynamisme
introduit par la modélisation multi-niveaux. Il y a deux hiérarchies parallèles définis
par ce méta-modèle : une au niveau abstrait et l’autre au niveau concret. Au niveau
abstrait, il y a une hiérarchie de processus abstrait qui contient les définitions des
activités. Une activité de spécification méta-modèle devient une définition de l’acti-
vité dans ce modèle, ActivityDefinition. Cependant, il n’y a pas de spécialisation de

3. Les méta-modèles pour le développement du processus 7

ActivityDefinition comme primitive ou composite. L’implémentation d’un ActivityDe-
finition est donnée par des ActivityImplementations au niveau concret. Il indique, si
une ActivityDefinition est réalisée par la composition d’autres activités (composite ou
primitive) ou est une ActivityImplementation primitive elle-même. Une ActivityDefi-
nition se comporte comme un type d’activité (plus une conformité à une relation de
type) et elle peut être réalisée par plusieurs ActivityImplementations. Ces implémen-
tations de l’activité servent comme un ensemble d’implémentations alternatives pour
la définition de l’activité. Chaque implémentation de l’activité comporte ses propres
propriétés. Ces propriétés sont internes à une implémentation de l’activité et ne sont
pas accessibles à l’extérieur, sauf à travers les contrats spécifiés.

Le contrat dans un modèle de processus est spécialisé par un contrat abstrait
et un contrat concret. Chaque définition de l’activité spécifie un contrat abstrait,
alors que chaque implémentation de l’activité spécifie un contrat concret. La relation
implements entre l’implémentation de l’activité et la définition de l’activité est établie
par une relation de conformité entre les contrats concret et les contrats abstraits. Un
contrat abstrait d’une définition de l’activité porte principalement sur les artefacts,
alors qu’un contrat concret traite des événements. Le contrat abstrait est spécialisé
en trois contrats différents : le contrat d’artefact, le contrat de communication et le
contrat de cycle de vie. Le contrat d’artefact présente la spécification d’artefact, qui
est utilisé pour décrire les entrées et sorties de l’activité au niveau abstrait. En plus
de préciser l’artefact, il présente également le méta-modèle de l’artefact. Le contrat
de cycle de vie est un contrat abstrait qui définit un automate qui décrit le cycle
de vie de l’activité. Le contact de communication définit les messages entre les rôles
associés aux activités. Un événement de message dans le niveau concret est lié à ces
messages, et est responsable de la chorégraphie réelle entre les activités / rôles. Tous les
événements de contrôle appartenant au contrat concret sont liés aux artefacts spécifiés
par la spécification d’artefact au niveau abstrait. Cette séparation des ressources
contractuelles, permet la séparation du flux de données des activités de leur flux de
contrôle. La définition du flux de données à un niveau abstrait (à part le contrôle de
flux) permet de bénéficier de dépôts de données et de la gestion de la configuration.
Alors que le flux de contrôle dans les activités utilisant des événements de contrats
concrets peut être géré efficacement par le système de gestion des événements sous-
jacent.

Le modèle d’implémentation du processus de l’exemple précédent est représenté
sur la figure 4. Conception est une définition d’activité qui est placé au niveau abstrait.
Conception-Agile est l’un de ses implémentations qui est placé au niveau concret. Donc
on sépare les définitions de l’implémentation grâce à une architecture bicouches. Une
seule définition de l’activité peut avoir plusieurs implémentations d’activité comme
Conception-Agile et Conception-RAD pour Conception dans cet exemple. Le flot entre
les définitions de l’activité est le flot de données du processus, comme entre Conception
et Revue. Le flot entre implémentations de l’activité est le flot de contrôle du pro-
cessus, comme entre Conception-Agile et Revue-Stratégique. Le flot de données utilise
les spécifications d’artefacts, et le flot de contrôle utilise des événements pour l’in-
teraction. Les rôles sont associés avec chaque implémentation de l’activité au niveau
concret.

8 Résumé en français

Conception
RAD

Conception Revue

Conception
Agile

Revue
Stratégique

Niveau abstrait

Niveau concret

Implémentation – Définition

Evénement– Spécification d’artefact

Rôle – Responsabilité

Liaisons:

Figure 4 – L’exemple du modèle d’implémentation du processus

3.3 Le méta-modèle d’instanciation du processus

Les processus sont déjà conçus et implémentés avant la phase de l’instanciation. Le
méta-modèle d’instanciation du processus se concentre sur la sémantique d’exécution
du modèle de processus. Comme avec les méta-modèles précédents, la structure s’arti-
cule aussi autour de la notion d’abstraction. Cette abstraction permet à une activité
de préciser sa dépendance sur les spécifications contractuelles des autres activités,
plutôt que sur des instances concrètes spécifiques. Cette abstraction est exprimée à
nouveau par une structure bicouche, où la couche supérieure est le niveau abstrait et
la couche inférieure est le niveau concret. Un processus abstrait contient l’ensemble
des définitions d’activité, où chaque définition de l’activité se comporte comme un
type pour un ensemble d’activités d’instanciation. Une activité d’instanciation com-
posite contient à la fois des activités d’instanciation et les définitions de l’activité. Une
différence structurelle très importante entre le méta-modèle d’implémentation et celui
d’instanciation est le contenu d’une activité composite de niveau concret. Une implé-
mentation de l’activité composite dans le méta-modèle d’implémentation ne contient
que le processus concret avec les implémentations de l’activité qui sont liés aux défi-
nitions d’activité. Il ne contient pas les définitions d’activité. A l’opposé, une activité
d’instanciation composite à partir du méta-modèle d’instanciation contient à la fois
le processus abstrait et le processus concret, ce qui signifie qu’elle contient un modèle
de processus complet. Ainsi aucune activité d’instanciation n’est liée à une définition
de l’activité hors de son contexte. Cela permet à une activité d’instanciation d’être
complète pour l’exécution.

En plus des détails d’implémentation, les activités d’instanciation définissent éga-
lement les détails de l’instanciation de l’activité comme la durée, la date de commen-
cement, l’état d’exécution actuel, les itérations et l’itération courante etc. Une activité
d’instanciation définit les contrats concrets pour les interactions avec d’autres activi-
tés. Les spécifications d’artefacts dans les contrats abstraits sont liées à des artefacts.
Ces artefacts sont conservés dans un dépôt d’artefacts. Un artefact peut être soit une

4. L’implémentation de l’outil de prototype 9

Conception
RAD

Conception Revue

Conception
Agile

Revue
Stratégique

Etat

Etat

Etat

Début: 08/01/14
Fin:18/02/14

Début: 19/02/14
Fin: 19/02/14

Document de

Conception

Figure 5 – L’exemple du modèle d’instanciation du processus

copie papier ou un document numérique. Chaque artefact numérique dispose d’un
URL de dépôt unique, qui est utilisé pour l’accéder dans le référentiel d’artefacts. Le
dépôt d’artefact supporte la gestion des versions, donc un artefact peut être verrouillé
par une activité, en fonction de la nature de l’activité.

Nous continuons avec l’exemple précédent, présentant son modèle d’instancia-
tion dans la figure 5. Les implémentations actives sont choisies pour chaque défi-
nition d’activité dans cette phase. Dans cet exemple, nous avons choisi d’utiliser
Conception-Agile comme implémentation active pour l’exécution. Le flot de données
lors de l’exécution entre les activités veux dire le transfert de l’artefact réel entre eux.
Un dépôt d’artefact est utilisé pour le transfert d’artefacts entre les activités. Donc,
Conception-Agile peut produire le document de conception et le placer dans le dé-
pôt. Revue-Stratégique peut ensuite y accéder depuis le dépôt. Les états sont ajoutés
aux activités et aux artefacts en fonction de leur cycle de vie. Les propriétés pour la
planification et l’organisation temporelle sont ajoutées au processus pour l’exécution.
Par exemple, les dates de début et de fin pour chaque activité. Enfin, les acteurs sont
ajoutés aux implémentations d’activité qui jouent les rôles spécifiques. Par exemple,
Fabien peut jouer le rôle d’ingénieur de conception pour Conception-Agile.

4 L’implémentation de l’outil de prototype

Un des problèmes avec les approches de modélisation de processus existants, c’est
qu’ils ont une couverture limitée du cycle de vie de développement de processus.
Les concepteurs de processus ont besoin d’une approche pour la spécification de pro-
cessus, de les transformer en des approches d’implémentation et de les transformer
encore en des approches d’instanciation pour rendre le modèle de processus exécu-
table. Certaines de ces approches couvrent à la fois les phases d’implémentation et
instanciation, mais une transformation est nécessaire pour une couverture complète
du cycle de vie du développement de processus. Ces transformations d’une approche
à une autre provoque des pertes sémantiques, en raison de plates-formes de modélisa-
tion de processus incohérentes. CPMF fournit un prototype qui peut être utilisé pour

10 Résumé en français

développer des modèles de processus pour le niveau de spécification. Ces modèles de
processus sont développés en utilisant un éditeur de processus graphique fourni avec
le prototype ou à travers un langage de domaine spécifique textuel. Les modèles de
spécification d’un ou plusieurs processus sont ensuite transformés en des modèles de
processus d’implémentation en utilisant un moteur de transformation, fourni avec le
prototype. Ce moteur de transformation transforme les spécifications de processus en
des implémentations et de ces implémentations à des instanciations.

Une fois que les modèles de processus sont raffinés pour la phase d’instanciation,
ils deviennent exécutables. Ces modèles de processus exécutables peuvent être chargés
dans l’interpréteur de procédé fourni dans le prototype. L’interpréteur de processus
développe les instances de modèle de processus et les exécute. Une interface web
permet d’interagir avec les processus en cours d’exécution. Cette interface web est
appelée tableau de bord de gestion de projet. Le propriétaire d’un processus peut
accéder à toutes les activités d’un processus qu’il / elle possède. Les acteurs jouant
des rôles spécifiques liés aux activités peuvent accéder à ces activités seulement. Une
fois que les artefacts requis par une activité sont disponibles, l’acteur associé peut té-
lécharger les artefacts requis, faire le traitement et télé-verser les artefacts développés
à travers cette interface web. Le propriétaire d’un processus peut adapter les activi-
tés en changeant son implémentation active en une des implémentations alternatives
déjà développées dans la phase d’implémentation. L’adaptation des activités dans un
modèle de processus d’exécution doit s’occuper du transfert de l’état entre l’ancienne
et la nouvelle implémentation de l’activité. Ceci est géré par l’interpréteur en utili-
sant des liens en dur, soit par les constructeurs d’implémentation d’activités ou en
présentant les propriétés des deux implémentations au propriétaire du processus qui
peut réaliser le transfert de l’état.

5 La méthode de développement de processus

Les modèles de processus de spécification sont utilisés pour développer des stan-
dards de processus. Plusieurs standards peuvent être développées dans cette phase.
Ils peuvent être stockés dans le dépôt pour une utilisation future. Ces standards sont
ensuite transformés en modèles de processus de l’implémentation. L’implémentation
des modèles de processus assure la conception détaillée de chaque activité. Plusieurs
implémentations d’une activité aide pour le développement d’une base de connais-
sances des implémentations. Plusieurs modèles de processus de spécification peuvent
être utilisés pour développer un seul modèle d’implémentation. Ceci est utile pour les
cas où la conformité à des multiples normes est nécessaire.

Les modèles d’instanciation sont utilisés pour ajouter des détails spécifiques du
projet. Ces modèles de processus sont exécutables. Les liens de traçabilité entre les
trois niveaux permettent de remonter jusqu’aux spécifications. Finalement, le modèle
de processus est exécuté. L’interaction avec le modèle de processus permet la gestion
des processus. Leur état peut être contrôlé. Les modèles de processus peuvent être
adaptés à l’exécution.

6. L’évaluation de l’approche 11

Flot de données
Flot de contrôle
Ressource

Support complet
Support partiel17

1

25

5

6

16

6

24

9

8
12

7

17

3

24

5

21

5

19

2

24

6

21

16

28

9

30

6

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

UML BPMN BPEL COSA CPMF
Figure 6 – Évaluation basée sur Workflow Patterns

6 L’évaluation de l’approche

Pour valider notre proposition de recherche, nous avons utilisé un cas d’étude
et une évaluation basée sur des Workflow Patterns. Le cas d’étude porte sur une
entreprise fictive, TB-Enterprise. Il présente l’application de CPMF sur un scénario
pseudo-réel pour élaborer et justifier l’hypothèse faite dans cette thèse. Le scénario
choisi pour cette étude de cas est pseudo-réel car le processus original est modifié pour
illustrer les concepts clés de cette approche. TB-entreprise développe le processus de
test de AlphaSystem par un ensemble de modèles, correspondant chacun à une phase
spécifique du cycle de vie de développement de processus. Il montre comment ces
modèles sont raffinés. Il a également porté sur le conformité à plusieurs standards de
processus. Ce cas d’étude démontre également la façon dont les acteurs interagissent
avec l’exécution des modèles de processus à travers le tableau de bord de gestion de
projet. Comment leurs droits d’accès à certaines activités et certaines actions liées à
une activité spécifique sont gérés par le tableau de bord.

Il existe trois axes principaux d’un modèle de processus, son flot de contrôle,
son flot de données et ses ressources. Le Workflow Patterns Initiative présente une
collection de patterns pour tous ces axes. Les résultats de l’implémentation d’autres
approches sont fournis par l’initiative pour l’étude comparative. Nous avons mis en
place ces patterns dans notre méthode et utilisé les résultats pour la comparaison avec
d’autres approches. Les résultats sont illustrés par le graphique de la figure 6. Nos
résultats sont comparés avec les approches traditionnelles en utilisant des diagrammes
UML d’activité, les approches de business process management, BPMN et BPEL et un
approche de workflow management, COSA. Les résultats de la comparaison avec les
autres approches sont très encourageants dans les trois axes. Nous sommes en mesure
de supporter complètement et partiellement plus de 80% des patterns dans les trois
catégories. Les patterns qui sont pas pris en charge par notre approche ne le sont pas
en raison de défauts de la méthode. Les raisons de l’absence de support sont le choix
de l’implémentation ou les limitations du prototype. Par exemple, l’un des workflow

12 Résumé en français

data patterns requiert le transfert d’artefacts par valeur entre les activités. Nous avons
choisi d’implémenter l’interpréteur en utilisant le transfert par référence et un dépôt
d’artefacts. Cela ne peut pas être considéré comme un défaut de la méthode.

Chapter 1

Introduction

Contents

1.1 Context . 1

1.2 Problem Statement and Research Questions 4

1.3 Solution Criteria . 7

1.4 Approach . 11

1.5 Scope & Contributions of this Thesis 13

1.6 List of Publications . 14

1.7 Outline of the thesis . 14

1.1 Context

Software Engineering, a term coined by Professor Fritz Bauer in 1969 [Naur 69],
is an approach that encompasses all the activities of design, development and main-
tenance of software, and the systematic and organized procedures to streamline these
activities. This application of engineering to software domain is focused on dealing
with growing software complexity and scaling the solution to the problems in a quan-
tifiable fashion. Until 1980’s the classical lifecycle process models were dealing fine
with the development of software systems. But the advances in software technology
made it evident that those traditional methods of conducting the software develop-
ment process were not adequate enough to deal with the growing complexity of the
software systems. Under the umbrella of lifecycle models, the core methods to deal
with the control of development processes were ad-hoc in nature. With increasing ex-
pectations of more features, those ad-hoc methods were becoming incapable to keep
up with the growing need of quantity and quality of software. In order to respond to
this demand, a consistent methodology of software development process was required.

When the quality of these methods was put into question, the research commu-
nity responded with some process centric approaches. This led to the emergence of
software process modeling methodologies that focus on the definition and analysis of
the software development processes. The first step towards a coherent and consis-

1

2 1. Introduction

tent methodology to integrate individual activities contributing to a larger goal was
targeted towards their coordination. An initial coordination language was proposed
as soon as 1983, which was specifically targeted towards the software development
activities [Holt 83]. This coordination language evolved in Diplans [Holt 88] and then
further into the Role Activity Diagram (RAD) notation [Ould 95]. Even though, this
notation did not meet the needs of software industry, it was highly welcomed by the
more general business process community for the description of organizational pro-
cesses. Another important notation, UML Sequence Diagram [Booch 97] was also
proposed at that time to model organization processes. This notation focused on the
description of interactions between objects within a system through a set of message
exchanges to achieve the desired result [Li 99]. Gradually, this notation was also used
to represent the interactions between business processes and actors, and thus served
as a basic process modeling notation for quite some time [Hruby 98].

Around the same time when these graphic-based process notations were evolving,
Osterweil introduced a notion of a process program in his key paper published in
1987 [Osterweil 87]. He described the nature of a process as "a systematic approach
to the creation of a product or the accomplishment of some task". He emphasized on
their systematic nature argued that they should be dealt with in the same manner as
other software, and highlighted the concept of process programs. This gave birth to
the term process modeling language, which was software programming like language
composed of process objects created by a development process. These objects are
themselves the description of the process. This enabled the execution of these process
programs on computers and thus allowed them to interact with the real-life process
that they model, while being enacted. This allowed an enacted process (executing)
to be in a suggestive or controlling position with respect to the real-life process that
it models. Shortly after this, Process Support System (PSS) [Bruynooghe 91] was
introduced by the Alvey APSE 2.5 Project [Snowdon 90]. An important part of
Process Support System was the Process Modeling Language (PML), which modeled
process as a network of loosely coupled asynchronous sub-processes.

As the importance of modeling a process and benefiting from the amount of au-
tomation that it can provide was coming to light, more approaches were proposed
both by academia and industry [Chung 89, Curtis 92]. As described earlier these
approaches could be categorized into two distinct categories: text-based and graphic-
based. These techniques are now mostly referred as process programs and process
modeling notations. Process programs at that time were offering the added advan-
tage of execution. Apart from enacting the process, these execution mechanisms
allowed to build tools that could analyze these processes and their effectiveness while
being enacted and possibly in real-time. On the other hand, execution of the process
modeling notation was not possible until the recent developments of the Model Driven
Engineering.

All forms of engineering rely on models in order to understand the complexities
of the real world systems. They allow an engineer to abstract out the non-necessary
details of a physical system in order to focus and reason about the relevant concepts.
They can be developed before developing the physical system or can be derived from

1.1. Context 3

the existing system to understand it [Selic 03]. Models are used for different reasons:
predicting the properties of the system, reasoning about its behavior, communicating
across different technical spaces, etc. But in software domain, they are currently being
used to automate the development of the software system [Kent 02]. Different aspects
of a system can be considered relevant at different points in time, and each of these
aspects can be modeled (as a perspective) using different model elements. In such
cases some hints or rules can augment these models in order to transform them to
the other perspective. These rules can also be used to enrich these models with more
information in order to refine them. These models and model transformations form
the core of the Model Driven Engineering (MDE). Recent advancements in MDE offer
the tooling support that can be used by system architects and developers to model
the system perspectives and maps them directly to the programming language code
for a particular platform [Jouault 06].

Software processes just like software systems are based on the notion of lifecycle,
where each stage of development has different concepts to frame. Each phase of a
software process organizes different factors and issues related to the degree of its matu-
rity in terms of completeness. Fuggetta defined a software process as, the coherent set
of policies, organizational structures, technologies, procedures, and artifacts that are
needed to conceive, develop, deploy, and maintain a software product [Fuggetta 00].
But we tend to think more like the Osterweil’s analogy of a software process, where
he advocates that processes share the same nature and complexity as the software
system and should be treated the same way [Osterweil 87]. Thus we are of the view
that software processes themselves need to be conceived (specification), developed
(implementation), deployed (enactment) and maintained (monitoring). As the life-
cycle phase of a software process advances, the focus on issues related to the process
also changes. For example, in specification phase the focus remains on which artifacts
would be handed over by the activity. On the other hand, for enacting a process the
focus shifts to when should an artifact be handed over by this activity. During the
enactment phase, the reasoning about the activity is not targeted towards the choice
of its inputs and outputs, rather its directed towards the related hows and whens.

The current process modeling languages appear to have two distinctive problems.
First, they seem to ignore the importance of a consistent approach that handles pro-
cess in all the stages of its lifecycle. Either a single process model seems to represent a
process in all phases (e.g. at specification phase and the implementation phase) or it
has to be transformed to a completely different approach for enactment. For example
BPMN [OMG 11] models processes in all stages of development through a single no-
tation, however it does not offer the possibility to enact them. Consequently, process
developers are bound to transform the models to BPEL [OASIS 07] for enactment.
Second, most of the approaches focus on the flow of activities defining the order of
(presumable) execution. Some approaches use event based mechanisms to induce re-
activity, but still their focus remains on the flow of activities [Adams 05]. Approaches
like Event-driven Process Chains (EPCs) use both types of inputs for the activities
(events and artifacts) together, which clutters the process model [van der Aalst 99].
Dataflow and control flow in a process, at the same time, makes it hard to conceptu-
alize the interactions of an activity to its context.

4 1. Introduction

A methodology that overcomes these shortcomings of the current approaches
would allow the processes to exploit refinement in terms of phase-wise process de-
velopment and multi-abstraction modeling within a phase. Such an approach would
make it easier to understand the development of processes over time and would also
promote reusability of processes in a more systematic manner. This thesis presents
a process modeling framework and associated tool support that responds to these
shortcomings.

1.2 Problem Statement and Research Questions

The following scenario illustrates the problems to be addressed in this thesis. An
aerospace company needs to develop a mission critical software for their new project
under a tight deadline. This company would like to reuse the past experiences of
developing software and plans to comply with some organizational and international
standards. Their past business process knowledge is documented in the form of pro-
cess models, implemented in the current approaches. Their organizational standard
is also well documented and this time they have to follow the ECSS standard as well.
They are looking forward to the possibility of following NASA standard along with
the ECSS standard, so that their software can be sold to a greater market beyond
Europe. One of the key considerations is to be able to evolve their process models to
follow the iterative approaches and support process improvement. When an enterprise
has to deal with mission critical software, it has to make sure that it has contingency
plans to reduce the risks. These contingency plans are the redundant processes that
might be used if the things do not advance as expected. This means that the running
process can be adapted anytime, using these alternative contingency processes. Last
but not least, it is highly desired to be able to reuse the processes that they develop.
The following problems may arise in this scenario:

— Reused model contains a lot of noise: The processes that this company
wants to reuse are detailed with a lot of implementation noise, which makes
it difficult to separate the conceptual and the implementation details. For ex-
ample, the previous process model was built in BPMN [OMG 11] and enacted
in BPEL [OASIS 07]. From BPMN, it seems very difficult to find out that a
sub-process was itself part of a standard or it was an implementation of the
super-process to achieve the goals as described in the standard. Besides this,
the demarcation between requirements and design becomes confusing. For ex-
ample the notion of state concerns the implementation and enactment phase
of the processes, it is a noise for the requirements phase. This enterprise would
encounter same problems if the past process models were built using SPEM,
Activity Diagrams or Workflows.

— Conceptual loss across platforms: Let us assume that past processes were
enacted in BPEL. Because of the transformations and/or manual development
from BPMN, many of the conceptual details are worked around to comply
with BPEL. For example end events are transformed into invoke activities,
throw activities or reply activities. And the type of activity depends on the

1.2. Problem Statement and Research Questions 5

output artifact type; if there is no output, no activity is generated in BPEL.
Swimlanes are not mapped. Sub-processes are also mapped to invoke activity.
(See the mapping provided in the BPMN specification [OMG 11]). And a
much bigger problem is lack of standard transformations, thus every tool can
produce a different result. The same problems occur if the original process
model was built in SPEM [OMG 08]. Lack of standardized transformations
between implementation and instantiation processes alone can jeopardize the
overall standardization of mission critical system processes.

— Insufficient support for adaptation: In this scenario we want the process
to be evolving, which means that the activities can be replaced, amended or
improved frequently. If the process model is developed using BPMN, SPEM,
Workflow nets [van der Aalst 97] or any other approach that focused on the
static flow of activities [Chang 01], one needs to re-plan the flow, each time a
process optimization in terms of flow is suggested. As the focus remains on
flow so every activity expects some data/event from a precedent activity and
gives out to the subsequent activity. It means that dependency of an activity
is expressed on other activities rather than the required artifacts. If an activity
is replaced with another, the new activity needs to be reconnected with the
pre and post flows. The focus of an activity should remain on the inputs and
outputs, in a way that if the input of an activity (no matter where from it
comes) is legitimate, the activity should work.

— Compliance with standards not assured: When activities in a process
model are expected to replace or amend frequently, it is highly recommended to
ensure that somehow this change does not breach the standards being followed.
This is particularly important when the replacement activities are developed
at runtime. Current techniques like BPMN, SPEM, Worklets [Adams 06],
Yawl [van der Aalst 05c], do not allow any mechanism to ensure this compat-
ibility of the process model to the adopted standard.

— Loss of integrity: Because the focus of the process does not remain on the
input and output contracts of the activities, it is not guaranteed that two
old processes despite have resembling provided workproducts and required
workproducts could be assembled.

— Inefficient support for teamwork: With new software development lifecyle
models like XP and pair programming, it is not possible to constrain that one
workproduct can only be a responsibility of one role. With growing notions of
teamwork, it is not possible in BPMN [OMG 11] to share things in swimlanes
or even have multiple responsibles for a workproduct in SPEM [OMG 08].

— Lack of process and development environment integration: With the
current advancements in the domain of modeling, this company would like to
use a fair amount of automation that can facilitate the development of soft-
ware process models. Apart from facilitating the development of processes, the
integration between the software development tools and the software process
modeling tools could be used to automate different activities, while the enact-
ment of the process model. Many of the current process modeling frameworks

6 1. Introduction

do not allow this level of support. A very recent initiative of WfMC (Work-
flow Management Coalition) presented a tool support for WfMC reference
model [Hollingsworth 95, Hollingsworth 04]. This tool, Stardust [Eclipse 13]
has recently offered this possibility for the users of eclipse.

— Multi-standard compliance not supported: As stated earlier, this com-
pany has some well documented organizational standards that they follow.
Thus the process being developed will have to comply with this internal stan-
dard. But the problem arises when they are looking forward to comply with
two other standards at the same time along with this internal standard. They
are planning to develop the process in a way that their development procedures
should be considered standard beyond Europe, so they are planning to follow
ECSS and NASA both the standards. Now the current approaches either do
not support compliance with standards and if they do they do not support
compliance with multiple standards. By the lack of support for compliance
with standard, we do not say that it is not possible to do that, it is just that
manual workarounds are used in practice to achieve that. The technologies
themselves give no support in this regard.

— Dynamic process creation/destruction not supported: Many of the
popular approaches used today are not very dynamic in nature, where the
process models show little or no reactivity. Even the process models that
are considered dynamic, either propose alternative process routing or support
exception handling. Both these approaches are integral to a well developed
process modeling approach, but they do not exploit process dynamics to its
limits. For a mission critical system a predefined process compensation can
help in many situations, but it is desirable to be able to manipulate the process
in a more dynamic way, where a process can create and destroy new sub-
processes at runtime. This can be achieved through the use of process factories,
that are accessible to the running processes.

— Lack of structure for artifacts: Let us assume that the process under devel-
opment is itself guided by the input artifacts that it takes along the execution.
For example our process has an activity that takes an automatically generated
report as its input. Based on the contents of that report, the execution path
of process is defined. Many of the current approaches allow the possibility
to receive accepted or declined events or to have preconditions based on the
properties of the input artifacts. When it comes to taking the decisions based
on the contents of the artifact, manual activities (where humans are the per-
formers) can easily handle such situations. But for automatic activities to be
able to read the contents of the inputs, it is highly desirable that the artifacts
are themselves taken as models that conform to their respective metamodels.

In order to cope with the problems related to separation of concerns regarding
to different phases of process development, a refinement-based approach is proposed,
where the details should be added to the process incrementally. Component oriented
paradigm provides a good inspiration to study the impacts of contractual interactions
between the processes to eliminate the focus on dataflow only. It can further help in

1.3. Solution Criteria 7

issues related to process manipulations where componentization can ensure process
integrity. This inspiration also takes advantage of the refinements where component
types, component implementations and component instances serve as an example to
guide the processes in the same fashion. The key to solving these problems is to look
into the depths of refinement-based approach and benefit from what it offers.

Hence the main research question that the thesis attempts to answer is: How can
a process modeling approach be optimized for automation using constructs that are
refined for each specific phase of process development? More specifically,

— RQ-1: In an approach where activities are defined by their contracts, how
can software development processes benefit from the contractual interactions
between the activities?

— RQ-2: How can process reuse be fostered, while focusing on the process de-
velopment lifecycle?

— RQ-3: Some techniques rely on data-flow while others on control-flow. What
benefits could be achieved by merging them at different levels of abstraction?

— RQ-4: How can processes benefit from compliance of standards and further
from multiple standards?

— RQ-5: If a standard methodology is used to model the process from specifi-
cation to implementation till enactment offering backward traceability. What
would be the gains?

— RQ-6: How can automation be exploited for the development of processes and
then used by these processes to develop the artifacts?

1.3 Solution Criteria

In order to ensure that we have a clear definition of the qualities that a suitable
solution to the problems identified in the preceding section should demonstrate, we
nominate the following criteria as a means of assessment.

1.3.1 Completeness

The definition of processes where the levels of abstraction are refined fully is
referred as complete or fit for enactment [Feiler 93]. Boehm suggests that a good
approach to verify the completeness of a process is to follow the WWWWHH prin-
ciple [Boehm 96]. Following questions need to be answered in order to follow this
principle:

— Why: Why is the system being developed? (objectives)

— What/When: What will be done and when? (milestones and schedules)

— Who/Where: Who is going to do and where? (responsibility and organiza-
tional structure)

8 1. Introduction

— How: How would the activities be carried out (in terms of technique and
management)? (approach)

— How much: How much of the resources would be needed to carry out the
process? (resource)

However the completeness of a process definition depends on the context, e.g. it
may be complete for one stakeholder and may not be, for another. But the complete-
ness of a process modeling approach should allow all necessary constructs, at the right
time, to synthesize the process. We believe that a process modeling approach should
be able to allow the refinement of abstract constructs to a level that the system can
be modeled without any loss of information. This is the prime aspect that we have fo-
cused in this thesis, while presenting our process modeling framework. An important
aspect regarding the completeness of a process modeling approach is to offer the con-
structs that show the intent for each activity. Such constructs can be used to analyze
the objectivity of the processes with respect to the business goals [Cortes-Cornax 12].
Finally, a process modeling approach should be considered complete, if it defines the
process behavior. Many approaches do not offer formal semantics, but if they specify
the behavior even informally, we consider it to be complete.

1.3.2 Team Development

A process model that supports team development needs to go beyond simple
allocation of tasks. A comprehensive methodology that enables the process designer
to define the privileges of each role in a specific activity needs to be incorporated.
Responsibility assignment matrices are one of the approaches that can be integrated
within the process models for the detailed definition of the privileges associated with
each role. In order to support team development, a process modeling approach needs
to provide some support for team communication as well. It serves for the exchange
of messages between the actors associated to the activities.

In order to support team development, a process modeling framework should allow
distributed access of the process models. The process components can be assembled
by a different person than the one who developed them and it may happen much long
after they were built. For this to work seamlessly, activities should be separated and
developed with clear dependencies, and their interfaces should be specified unambigu-
ously. The architectural conventions and rules must be explicitly specified. One of
the benefits of using contract based process architecture is the explicit specification of
interfaces. This allows the process designer to assemble the activities developed from
different process developers, even from different organizations. As contract based
architecture for process modeling promotes the decoupling of activities, their devel-
opment can be easily managed for distributed teams.

1.3. Solution Criteria 9

1.3.3 Reusability

Reuse is the usage of previously developed or acquired concepts and objects in a
new context, which may be classified as the reuse of knowledge and the reuse of arti-
facts and components [Prieto-Diaz 87]. It can be of two types: opportunistic, where
the design was not made to support reuse and systematic, where the system is designed
for reuse. During the development of a process model, process components are the
artifacts being produced. These components should be developed in a manner that
supports systematic reuse. Contract based architecture for process modeling allows
these components to have specified interfaces and dependencies [Crnkovic 06]. This
means that a process component can be a feasible candidate of a process requirement
in a different context, if it complies with those requirement specifications.

The goal of reusability is to minimize the effort of re-development of a compo-
nent and promote standardization in an enterprise. In order to support reusability
in an efficient way, we believe that adaptations of a required process component to
fit in the new context should be minimized. These adaptations can be minimized if
a process component can be acquired from a variety of process development phases.
For example, a test activity component can be reused either from specification phase
or implementation phase, as per requirement. This promotes the reuse of process
component at a desired level of abstraction. Use of refinement based approach for
process development allows developing a process in multiple phases, where each phase
corresponds to a different level of abstraction. We consider reusability as a solution
criterion, that can be achieved in process modeling approaches in ways: 1) approach
based, where the core process modeling approach is design for reuse 2)implementation
based, where the implementation tools for the approach allow the reuse of process
fragments, despite a lack of support from the core approach. Implementation based
reuse is less efficient because reuse across multiple implementation tools become dif-
ficult.

1.3.4 Abstraction

Any approach that uses modeling is fundamentally based on abstraction, as models
are themselves an abstraction of the concerned system. However, the use of abstrac-
tion does not end by modeling a system. It can be further exploited to develop the
models in multiple levels. Each high level model, in this case, is a smaller model ob-
tained by abstracting away some information from the lower level models. A process
modeling approach can use this kind of abstraction to develop multiple models, where
each low level model is a refinement of a high level process model. Abstraction can
also be exploited by the use of typing mechanisms in a process modeling approach.
Typing mechanisms allow to develop different types of processes, which can be spe-
cialized within the same process model. This allows to structure the process models,
based on the concepts commonly used in object oriented paradigm. A process model
itself can be built using multiple abstraction layers having conformance relationship
between them. In such scenarios, each layer is a refinement of the higher level layer.

10 1. Introduction

1.3.5 Modularity

A logical partitioning of a complex system into smaller parts that are easy to
implement, manage and maintain is the key idea behind modularity. We consider
two kinds of modularity for the purpose of this thesis: hierarchical and contextual.
Hierarchical modularity refers to the tree like structure of a system, where one node
contains other nodes. Processes are hierarchical by nature. A process might be made
up of some sub-processes which might in turn be composed of other sub-processes.
This composition of processes continues till a very fine level, where they can not
be decomposed any further. Such processes are normally termed as tasks, primitive
activities, etc.

Contextual modularity is the partitioning of a parent process into sub-processes,
but the focus is on multiple sub-processes that can be composed together to develop
the parent process. This means how effectively, a parent process is decomposed into
sub-processes. What design is chosen for the interaction of sub-processes, such that
they can collectively form the parent process. Each sub-processes should define some
interfaces so as to interact with other sub-processes in the same context. Definition
of interfaces allow contractual interactions between the sub-processes.

1.3.6 Tailorability

For the reuse of process components, ideally, the previously developed process
should match with the requirements of the new context and it should fit in as it is. But
we assume that the available activities do not completely match the requirements of
the new situation perfectly; this brings us to the problem of adaptation, more precisely
process tailoring. There are scenarios, other than process reuse, where process tailor-
ing can be of high interest as well, e.g. process improvement [Johnson 99, Hurtado 12].

Process tailoring is a characteristic that can be provided by the process model-
ing methodology if it is flexible enough to support process changes. But allowing
for process tailoring is not the only issue to be considered when a standard has to
be followed. In such cases, one has to make sure that the new changes still comply
with the standard [Sadiq 07]. A mechanism that allows enough flexibility to change
the process without interfering with the core process objectives should ensure that
process offers the standard interfaces required from it. A certain level of flexibility
can be provided by the use of process tailoring, when the process framework pro-
vides multiple variants of the process. All these variants are pre-tailored to different
implementations, where the feasible candidates for enacting the process can be cho-
sen, based on the runtime context. Runtime adaptations to executing process models
is also an important aspect of process tailoring. Having multiple variants allows to
replace them on the fly.

1.4. Approach 11

1.3.7 Enactability

The first solution criterion described in this section was the completeness of pro-
cesses, which is fundamental to carry out the routine tasks for process automation.
If a process has a sufficient level of precision, many of the routine tasks can be au-
tomated through the use of process enactment tools and their integration with the
software development tools. Software engineering being a creative science has many
processes that can not be automated completely. However for manual activities, a
certain level of automation can be achieved to help the actors in designing, planning,
controlling and monitoring the process.

A process instance should have all the required elements of implementation details
to make it enactable. These implementation details consist of the required inputs
for the process, the assigned roles (specially the initiating role), resources, initial
enactable state and continuation and termination capabilities [Feiler 93]. A process
that does not have any of these elements can not be enacted. Once a process is
enacted, it is capable of interacting with the real life process that it is modeling.
Processes vary in terms of their capabilities to be automated, where they can be
manual, semi-automatic or automatic. An enacted process may take a suggestive
position for manual and semi-automatic processes. It can be in a controlling position
for semi-automatic and automatic real life processes, even though a human role is
always necessary as a responsible role.

1.4 Approach

In the light of the current context in process modeling, its difficulties and limita-
tions, we propose a method that guides organizations to perform a phase-wise software
process modeling where each phase refines the previous one. In order to achieve this
vision, four distinct research activities are undertaken.

1.4.1 Phase-wise identification of the core process constructs

In order to develop a comprehensive approach for software process modeling that
covers each phase of process development, it is first necessary to identify the core con-
structs of the processes at each phase. We believe that a process modeling approach
that is based on refinement, should be able to model the processes in different phases
on a need basis. A process model of a specific phase should not be polluted with
the constructs that are not used in the current phase. We do not enforce a process
lifecycle to have only three phases of development, but for the sake of explanation,
we have chosen to remain within three phases i.e. specification, implementation, in-
stantiation. For each of these phases, an empirical survey of existing approaches,
modeling formalisms and standards is undertaken, so as to enable the identification
of generic constructs used in them. As we compare these constructs to the existing
approaches that do not place them according to the lifecycle phases, we reason about

12 1. Introduction

their placement within different phases and provide examples and motivations for it.
[Research questions addressed: RQ-1, RQ-2]

1.4.2 Synthesis of process constructs into respective metamodels

The generic constructs of a process model identified in the previous research ac-
tivity provides a basis to model a complete process in each phase of development.
Based on these constructs a metamodel (process modeling language) has been devel-
oped for each phase of process lifecycle. Each process metamodel in this framework
has sufficient details about a process to carry out the tasks related to that phase. As
the process lifecycle advances, it is modeled using a different metamodel that refines
it further with more details pertaining to the current development stage. The broad
range of concepts embodied by the process framework are injected in process model
on a need basis, as it gets refined over time. As a process model advances from its
specification phase to implementation phase, it is transformed into a bi-layered model,
where process definitions are separated from their implementations. Both these layers
co-exist in the subsequent model(s), where one guides the sequence of activities based
on data-flow and the other on control-flow. To provide unambiguous interpretations
for each of these bi-layered metamodels, the motivations are discussed alongside a
running example. [Research questions addressed: RQ-2, RQ-3, RQ-4]

1.4.3 Development of the tooling support

As the process modeling approach presented in this thesis deals with the modeling
of software development processes that can be modeled till the enactment phase, its
capability can not be guaranteed unless a platform is provided to enact the processes.
As we model processes from the specification till enactment, so the first tooling sup-
port comes from the designing phase, where a model editor is developed to model the
specification models. The model editor can be used to develop the subsequent phase
process models as well. This process editor is based on Openflexo [Openflexo 13], an
open source collaborative modeling framework that allows to generate model editors
based on viewpoints. A process interpreter is developed to enact the process mod-
els. Once the process is being enacted, a web interface allows to interact with the
executing activities. The enacted process is controlled and monitored through an ad-
ministrative panel on the web interface. Artifact repositories are created where each
artifact is versioned and is made available to other activities based on their access
rights. Process repositories are created to store the process knowledge that can be
reused to develop new processes. [Research questions addressed: RQ-5, RQ-6]

1.4.4 Evaluation of the process modeling framework

In order to explore the applicability of the proposed process modeling framework
and to uncover improvement opportunities for the methodology, we evaluate this the-
sis in two manners. Initially, a pseudo-realistic process model is used to validate

1.5. Scope & Contributions of this Thesis 13

the proposed process modeling framework. The implementation and enactment of
this model is used to reason about the syntax and semantics of the approach. Fi-
nally, the approach is evaluated against the established workflow patterns, so as to
place our framework in the existing state of the art. Workflow control-flow pat-
terns [Russell 06a, van der Aalst 03b], data patterns [Russell 05a] and resource pat-
terns [Russell 05b] are implemented by the proposed framework so as to identify the
strengths and weaknesses of the framework. The aim of this evaluation phase was
twofold. First, to demonstrate that the proposed approach could successfully enact
a process model which covers the software development processes of an enterprise.
Second, to identify loopholes in the proposed framework, that should be worked upon
to optimize this approach.

1.5 Scope & Contributions of this Thesis

The problems (identified in the beginning of this chapter) associated with current
process modeling approaches affect their applicability under varying circumstances.
The process modeling approaches are either too generic and are normally targeting the
business world, or are focused to the procedural style of workflow. On the other hand
Software process languages are very complicated and are difficult to understand for the
process designers with minimal backgrounds from programming domain. Furthermore
different process modeling approaches target a specific designing or execution phase
of process development. A consistent approach that can handle every phase of process
development is long past due. The overall scope of this thesis is to fill this gap.

The main contributions of this research work are:

— FUNDAMENTAL: To develop a set of process metamodels (three meta-
models for demonstration purpose only) that can define languages to model
the software development processes in different process lifecycle phases.

— FUNDAMENTAL: To foster a consistent refinement approach that keeps on
enriching the process models in parallel with the advancing process lifecycle
phases. With a consistent approach, we mean that no transformations are
needed between two different languages e.g. BPMN to BPEL for execution.

— FUNDAMENTAL: To present a bi-layered methodology of modeling soft-
ware processes, where data-flow and control-flow are separated. A mapping
between events and artifacts ensures the coherence between the two levels of
flow.

— FUNDAMENTAL: To demonstrate that a bi-layered refinement based ap-
proach can be exploited to comply with single or multiple process standards,
throughout the process lifecycle. Backward traceability allows to reason about
each activity and relates it to the standard being followed even in previous
lifecycle phases.

— EXPERIMENTAL: To develop a prototype implementation of the proposed
software process modeling framework that can be used to develop the process

14 1. Introduction

models and enact them. A project management dashboard to interact with
the enacting processes is also presented.

— EXPERIMENTAL: To validate the process modeling methodology and pro-
totype by developing a pseudo-realistic process model that covers different
kinds of activities one can confront in a real life software development project.

— EXPERIMENTAL: To evaluate the process modeling framework against
the established workflow patterns to place our framework in the right place
amongst other related approaches.

1.6 List of Publications

— F. R. Golra, Fabien Dagnat The Lazy Initialization Multilayered Modeling
framework: NIER track. In Proceedings of the International Conference on
Software and System Process (ICSE 2011). ACM/IEEE, Hawaii, USA, 2011.

— F. R. Golra, Fabien Dagnat. Using component-oriented process models for
multi-metamodel applications. In Proceedings of the 9th International Con-
ference on Frontiers of Information Technology (FIT’11). IEEE, Islamabad,
Pakistan, 2011.

— F. R. Golra, Fabien Dagnat. Generation of Dynamic Process Models for Multi-
metamodel Applications. In Proceedings of the International Conference on
Software and System Process (ICSSP’12). IEEE, Zurich, Switzerland, 2012.

— F. R. Golra, Fabien Dagnat. Specifying the Interaction Control Behavior
of a Process Model using Hierarchical Petri Net. In Proceedings of the 2nd
Workshop on Process-based approaches for Model-Driven Engineering (PMDE
2012). Copenhagen, Denmark, 2012.

1.7 Outline of the thesis

This thesis is organized in three parts. Part I explains the context of the approach
and presents the state of the art in process modeling approaches and standards.
Part II identifies the core constructs in different metamodels of the proposed process
modeling approach. It also explains the implementation of our approach and discusses
how the identified problems are resolved by using this approach. Part III evaluates
our approach by modeling a pseudo-realistic case study for software development and
identifies the process patterns that are supported by this approach. Finally, this thesis
is concluded by presenting the contributions of this research project and discussing
the future perspectives.

1.7. Outline of the thesis 15

Part I

Chapter 2 discusses some main principals of software engineering that need to
be considered for the evaluation of the context. It presents a discussion on the current
standing of software process modeling approaches relative to these notions and their
shortcomings. Apart from evaluating the context, this chapter focuses on the targets
that are kept in mind while working on this thesis.

Chapter 3 presents most of the common process modeling approaches both from
academia and industry. It compares their strengths and weakness keeping in view the
characteristic discussed in the previous chapter. It also explains some international
standards pertaining to process modeling. A critical analysis of all these approaches
backs the motivation of this thesis.

Part II

Chapter 4 illustrates the principle constructs of the process metamodels in each
phase of development. It focuses on the refinement approach which enriches these
metamodels as the process lifecycle phase advances.

Chapter 5 describes the implementation choices made for this approach. It
reasons about different perspectives of the approach regarding the control flow of the
framework. It also presents the architecture of the prototype that accompanies this
thesis to model the real life processes.

Part III

Chapter 6 presents a pseudo-realistic process for software development by an
organization. It describes the modeling methodologies for this process and discusses
the strengths and weakness of our approach based on this case study.

Chapter 7 evaluates our process modeling approach against the process patterns
to categorize our approach in the context. It presents the results regarding the sup-
port of control-flow patterns, resource patterns and data patterns. These results are
presented against other approaches for comparison.

Part IV

Chapter 8 presents the contributions of this research work, using the solution
criteria defined in the first chapter. This chapter is concluded with the limitations of
the current work and the possible future prospects.

Part I

State of the Art

16

Chapter 2

Software Process Modeling

Context

Contents

2.1 Process Modeling . 17

2.2 Process Reuse . 20

2.3 Process Architecture . 24

2.4 Process Execution . 29

2.5 Shortcomings of the process methodologies 32

Abstract - This chapter discusses the context of software process modeling. Ini-
tially, the concept of process is discussed to explain its associated structure and be-
havior. Then the notion of process modeling and process-centric environments are
discussed to explain the different phases of process development lifecycle. Later in
this chapter, different aspects of process development are discussed, which are of prime
importance for software process modeling. Process reuse, process architecture and pro-
cess execution are the notions that are highlighted. These notions play an important
role in understanding the context of our proposal.

2.1 Process Modeling

The term ’engineering’ in software engineering focuses on the systematic and or-
ganized procedures to carry out the activities for software development domain. As
opposed to ad-hoc methods, the target of a procedure in engineering is not only to
achieve goals, but to accomplish it by following precise and well-ordered tasks. The
greater goal of following such methodology is to ensure quality customer value. These
well ordered tasks need to be defined before their actual execution. Process models
are used to define these tasks and the order in which these tasks needs to be per-
formed in a process. Various languages have been developed to support the modeling
of these processes in different contexts. We will not be focusing on the specifics of

17

18 2. Software Process Modeling Context

each process modeling approach in this chapter, instead we would discuss the main
concepts of the domain.

2.1.1 What is a Process?

’Process’ is a general term that has been used in many fields like business process
management (BPM), workflow management (WfM), business process improvement
(BPI), etc. These fields focus on process as the core controlling methodologies, where
the implementations of the business domains are developed around it. They normally
term it as ’business process ’ and it is defined by Davenport as, "A structured, mea-
sured set of activities designed to produce a specific output for a particular customer
or market. It implies a strong emphasis on how work is done within an organization,
in contrast to a product focus’s emphasis on what. A process is thus a specific order-
ing of work activities across time and space, with a beginning and an end, and clearly
defined inputs and outputs: a structure for action. Taking a process approach implies
adopting the customer’s point of view. Processes are the structure by which an orga-
nization does what is necessary to produce value for its customers" [Davenport 93].
This definition of process focuses on a general structure and motivation of a business
process. A ’software process ’ in our view is also a business process that is targeted
towards the development of software systems. Specifically, software process is defined
as, " A set of partially ordered process steps, with sets of related artifacts, human and
computerized resources, organizational structures and constraints, intended to produce
and maintain the requested software deliverables" [Lonchamp 93]. So the term busi-
ness process can be used for software processes in this thesis for two reasons. First, it
is a more general term that can explain the concepts. Second, to define software pro-
cess, the software industry uses BPM technologies, where business processes represent
the software processes.

Longchamps’s definition can be viewed as an extension to the Davenport’s defi-
nition of process, where he focuses on a clear process boundary, well-defined inputs
and outputs and a structure of action, that transforms the inputs to outputs. Nu-
merous definitions of process can be found in the research domain, but they all focus
on related groups of activities, common goals, and the use of people, information and
resources [Lindsay 03, Curtis 92]. Level of granularity in the definition of process may
vary, but the key concepts are fundamental for the completeness of a process. Pro-
cesses are defined in detail because adhering to them may be critical for a project’s
success, specially for the large scale projects [Lehman 91].

Initially, the software engineering community had put a lot of stress on the linear
structure of a process, which does not fit well with the software development prac-
tices [Lindsay 03]. There has been an argument that workflow view of processes with
definable inputs and outputs of discrete tasks, having dependencies on one another
in a clear succession is limiting [Keen 97]. So a more flexible definition of a process is
"any work that meets the following four criteria: it is recurrent; it affects some aspect
of organizational capabilities; it can be accomplished in different ways that make a
difference to the contribution it generates in terms of cost, value, service, or quality;

2.1. Process Modeling 19

and it involves coordination" [Keen 97]. This definition does not explain the structure
of a process, neither does it constrain the ordering of activities, it rather focuses on
the significant characteristics of a process.

2.1.2 Process Modeling Languages and Notations

Software process programming started to evolve as soon as the software com-
munity started to give software processes the same importance as that of software
programs [Osterweil 87]. As software enterprise realized that they need to develop
their unique processes for each software project, they needed a well defined approach
to describe their processes. These processes were later on reused for multiple projects
and tailored according to the specific needs of the projects. These process models were
required to capture all the details of the product and the organization for developing
that product. To respond to this need, Osterweil suggested a notion of ’process pro-
gram’, that would take into account the process elements needed to describe the work
routines of a software enterprise relating to a specific project [Osterweil 87]. These
process programs gradually evolved into full fledged languages for formal specification
of processes, called Process Modeling Languages (PMLs). Curtis et al. [Curtis 92]
presented four distinct views to describe these elements modeled by the process pro-
grams/models: 1)Functional View, that covers the functional dependencies between
the processes. These functional dependencies can be input and output dependency,
where the output of one process is an input to the other. 2)Dynamic View, that covers
the control sequencing of the process elements. The control flow and the sequence
of processes describe the overall behavior. 3)Informational View, that provides the
description of work products used or produced by the process. 4)Organizational view,
that includes the description of the performer of processes and the organizational
hierarchy regarding the responsibilities.

The problem with PMLs is the level of detail and formal specification that makes
it quite difficult to use in the industry. For this reason, PMLs are mainly used
by academia to formally prove various assumptions and characteristics of process
modeling. However the research carried out on PMLs gives a formal foundation for
high level process modeling notations. The term ’high level’ is to demonstrate that
other languages use a higher level of abstraction, thus hiding the fine details from
the end user. These high level languages can be divided in two categories. First, the
Business process modeling languages, that provide the possibility to graphically draw
the process flows [OMG 11]. These process flows are used for discussions between
stakeholders and for keeping the documentations. Originally they were not meant
to be executed, but now with growing influence of IT in business, languages have
been presented to execute them [OASIS 07]. The second category is the workflow
models, which also allowed to graphically draw the process flows, but were intended
to be executed through a workflow management system. Workflow notations are
developed for enactment, so they need a well-defined execution semantics. For the
development of information systems, the target of the system analysis phase is to
understand the process in which the intended system would be deployed. In some

20 2. Software Process Modeling Context

recent endeavors, process models are used to describe these processes, which are
embedded in the information systems and control their execution [Weigold 12].

2.1.3 Process-Centered Software Engineering Environments

Process Modeling Languages became one of the key research areas of software
engineering research and since then new dimensions on process modeling approaches
are being explored. The development of Process-Centered Software Engineering Envi-
ronments (PSEE) are based around the concepts of process modeling. PSEEs are the
information systems that provide the notations and mechanisms for the development
of process models. These systems also foster the possibility to maintain and enact a
process model. PSEE offers support for process management in one or more phases of
process lifecycle ranging from requirements specification, assessment and problem elic-
itation, (re)design, implementation to monitoring and data collection [Ambriola 97].
The PSEE is designed to guide/enforce the user in the development process. The role
of PSEEs in guiding a user is classified into four levels from least active to most active
as: 1) Passive role, that operates on user requests 2) Active guidance, where PSEE
guides the user 3) Enforcement, where user is forced to act as per the direction of
PSEE 4) Automation, where system does not require user intervention [Dowson 94].

A PSEE offers a PML to support the definition of process models, which are
then analyzed and enacted by the environment [Türetken 07]. The analysis of these
process models is based on different properties like consistency, redundancy and circu-
larity. The enactment of the process model is handled by the environment according
to the degree of guidance provided by the PSEE, where it can demand the user
to execute some processes or perform them itself by invoking the related applica-
tion and IT tools. The focus of PSEE remains on the analysis and enactment of
the processes, so they rely on formal languages (PMLs) that are very close to soft-
ware programs [Taylor 88, Belkhatir 91, Bandinelli 94, Sutton Jr. 97]. Some recent
research endeavors targeted the use of process models in PSEE by exploiting MDE
[Montoni 06, Maciel 13]. A classification of PMLs based on the support that they
provide for a specific phase of process lifecycle and the level of abstraction is provided
by Ambriola et al. [Ambriola 97] as:

— Process Specification Languages (PSL), that are used for the requirement
specification and assessment of processes.

— Process Design Languages (PDL), that support the design phase of the process
development.

— Process Implementation Languages (PIL), that are used for the implementa-
tion and monitoring of the processes.

2.2. Process Reuse 21

2.2 Process Reuse

Reuse is not a new concept, by any definition. It has been previously used to
repeat mathematical models and algorithms across problems to ensure correct calcu-
lations [Prieto-Díaz 93]. The origins of software reuse trace back to computer pro-
gramming languages, where the development effort of software was reduced by the
use of libraries containing functions and other reusable units. With the evolution of
software engineering, software reuse is no more restricted to code only. Today a wide
variety of software development artifacts are reused which range from requirements
to design patterns. With increasing competition in information technology, the focus
has been diverted to fastest time to market in launching the software, releasing new
versions and providing updates. In order to compete with the market, as the business
models of the software enterprises changed over time, the methodologies offered by
software engineering also evolved. Software development lifecycles evolved from the
traditional waterfall model to spiral models, then to iterative models and now agile
models. Besides the use of these evolving lifecycle models, software enterprises have
been focusing to reduce the engineering effort for developing the software systems.

The efforts and achievements of the past can be reused in software engineering
like any other engineering domain, provided the outcomes offer the possibility to
do so. Different types of artifacts created during the software development process
(e.g. requirements, designs, code, tests, documentation, etc.) can be reused if they
were originally designed for it. Building software from the existing software that has
already been developed rather than building it from scratch is termed as software
reuse in the domain of software engineering. Software reuse is considered to be one of
the foundation principles of software engineering which targets at reducing costs and
and minimizing time to market [Estublier 05]. Apart from time and cost, software
reuse also aims at improving productivity and quality of the software development
process by making it easier to manage the risks, schedule and cost of the project.
Designing a software artifact for reuse may increase the cost of development in some
cases, but offers a greater pay back in the longer run.

The overall concept behind software reuse is fairly simple. It emphasizes on the
techniques and principles that allow the software developers to develop a new system
by composing the already developed components that can either be accessed from
repositories or purchased. The techniques to reuse an artifact for software develop-
ment depends upon the type of the artifact i.e. reusing a software component is
different from reusing a design concept. In terms of abstraction, reuse is classified in
two kinds: black box or white box. In black box reuse, the internal implementation
of the artifact is unknown to the developer who wants to reuse the artifact. Whereas
in white box reuse, the implementation details of the artifact are available to the
developer. In terms of planning, reuse is again divided into two types: opportunistic
and systematic. An opportunistic reuse of the system artifact is unplanned, where
the original artifact was not designed to be reused. On the contrary, for a systematic
reuse of the artifact, it needs to be designed for reuse deliberately.

22 2. Software Process Modeling Context

Reuse is not specific to the software artifacts only; other knowledge gained from
the experiences and the processes themselves can also be reused. Reuse is defined as
"the use of systems artifacts and processes in the development of solutions to simi-
lar problems" [Whittle 96]. Another more precise definition states, "In the design of
systems, repeated use or application in different places of the design of parts, manu-
facturing tools and processes, analysis, and particularly knowledge gained from expe-
rience; using the same object in different systems or at different times in the same
system [Committee 02]. The motivations for process reuse are the same as software
reuse. IEEE Standard 1517 [Society 10] outlines the following benefits of systematic
process reuse

— Increase software productivity

— Shorten software development and maintenance time

— Reduce duplication of effort

— Move personnel, tools, and methods more easily among projects

— Reduce software development and maintenance costs

— Produce higher quality software products

— Increase software and system dependability

— Improve software interoperability and reliability

— Provide a competitive advantage to an organization that practices reuse

Some process modeling approaches favor process variability with the intention
of promoting process reusability [Estublier 05, Hollenbach 95, Armbrust 09]. One of
these approaches presents three types of methodologies for defining and organizing
process variations for reuse: enumeration, parametrization and abstraction/inheri-
tance [Hollenbach 95]. Process enumeration is to define multiple processes; one at a
time. The process engineer who wants to reuse such a process has to choose manually
the process that suits his problem. Process parametrization is used when enough
details are known about different process variants and the process engineer can select
the desired variant by naming it as a parameter to a given process. For example
to estimate the size of a software, different process can be used amongst the estab-
lished processes: Cocomo, Revic or delphi methods. A process using the estimation
process can call it using any of the parameters. Process abstraction focuses of devel-
oping generic processes that compose the common features of a set of specific process
implementations.

2.2.1 Design by Contract

Design by contract (DbC) is a software construction approach that is based on
contracts between the clients (callers) and suppliers (routines) [Meyer 92a]. These
contracts rely on mutual obligations and benefits, which are explicitly specified. This
approach uses the concepts of Abstract Data Types (ADT) and contracts to bind
together the interacting components. ADT ensures the encapsulation of the data and

2.2. Process Reuse 23

methods behind well-defined interfaces. Contracts binds the client to demand "valid
requests" only and the supplier to respond with "valid response" only. This approach
exploits assertions to explicitly specify the interfaces for the components through
pre-conditions, post-conditions and invariants. This design style was developed in
the context of a programming language, Eiffel [Meyer 92b], to create reliable object
oriented software. Assertions allow the programmers to make explicit assumptions
about the software elements based on their interface specifications. These assertions
provides the basic rules which govern the specification of contracts between the in-
teracting components.

The core idea of design by contract is to hold responsible the software elements
that are developed to carry out that task. This means that between two interacting
software components, it is the responsibility of the client to request the desired ser-
vice according to the specified contract. Same way, the supplier gives the guarantee
(and takes responsibility) to provide the desired output, if the proper conditions are
met. These conditions are formally specified in the contract. In case the client or the
supplier violates the contract, an exception is raised. The interfaces of these software
elements are specified before their actual implementation, and eventually their imple-
mentation is guided by the specified interfaces. This guarantees reliable interactions
with the implemented components.

Recent research endeavors in process modeling approaches have considered the
implementation of processes using design by contract. But their focus is to achieve
different targets. A recent approach has targeted to improve interoperability amongst
cross organizational business process modeling using design by contract approach
[Khalfallah 13]. Another approach focused on the reliability of interactions between
multiple parties for a distributed process by presenting a formal definition of inter-
faces using design by contract [Bocchi 10]. Apart from interoperability, reliability,
decomposition and encapsulation, DbC provides two important benefits which sup-
port reuse. The first benefit is that the interfaces of a component can be extended
in a systematic manner without affecting the existing components. Second, new im-
plementations of the ADTs can be transparently added to the system. In process
modeling, a process can benefit from both these advantages to foster process reuse.
It can exploit these interfaces to support process variants, that are implementations
of the abstract process definitions (process ADTs). And it can also guarantee the
reliable interactions between the process elements. In order to support reusability
for process models, the process definitions should explicitly specify their interfaces.
A reusable process definition should specify its entrance criteria, inputs, outputs and
exit criteria through these interfaces [Hollenbach 95].

2.2.2 Interaction between the contracts

Design by Contract ensures reliability of interaction amongst interacting compo-
nents by explicitly defining the interfaces and the contracts that bind them. The
benefit of constraining all the interactions through specified contracts depends on the
level of contractual implementation [Beugnard 99]. Beugnard et al. have classified

24 2. Software Process Modeling Context

t1

t1

Figure 2.1 – Callback in asynchronous activity components

contracts in four levels: 1) Basic contracts, that focus on structure and makes the
system work; 2) Behavioral contracts, that improves the level of confidence in sequen-
tial context by exploiting pre-conditions, post-condition and invariants from Design
by Contract; 3) Synchronization contracts, that focus on synchronizing the requests
in distributed environments; 4) Quality-of-service contracts, that ensure a negotiable
level of quality of service.

Software processes are concurrent by nature and may be distributed. In such a
situation, only following the Design by Contract is not sufficient to guarantee reliable
interactions between the activities. And for making the process components reusable
a precise interface specification is of high value. Reusing a process component in
an environment where processes are executed simultaneously can cause a deadlock.
Szyperski identifies this problem as a call back problem where two components are
waiting for a service from each other at the same time [Szyperski 97]. Figure 2.1
explains this problem in the context of a process, where both the activity compo-
nents are not sequential and are requesting for the service at the same time t1 and
thus result in a cyclic dependency. A technique to solve such an issue is to exploit
the notion of global assertions to specify constraints on the overall interaction sce-
nario [Bocchi 10]. Szyperski solves this problem by demanding re-entrance conditions
for such components, but this solves only a special case [Szyperski 97].

This problem is just one of the problems that can be faced in concurrent con-
text with asynchronous components. In classic layered hierarchical system, the call-
back face much more problems with hierarchical up-calls [Giese 00]. For interactions
amongst components in arbitrary structured systems, synchronization is of crucial
importance [Giese 00]. Use of synchronized contracts (Level-3) can help solve such
issues [Beugnard 99]. A precise definition of contracts which specifies the behavior
and allows to detect the synchronization issues is of vital importance to guarantee
the interaction based on contracts in a concurrent context. Reuse of a component is
not effective if reliable interaction through the interfaces is not guaranteed. Hence,
to foster reusability in process components, their interfaces should be specified with
fine details.

2.3 Process Architecture

Various researchers have focused on the similarities between software programs
and process models [Osterweil 87, Vanderfeesten 08]. The reason for this is the struc-
tural similarity in them. Both of them can be partitioned into smaller modules, where

2.3. Process Architecture 25

ADL
Architecture Modeling Features

Components
Interface
Types
Semantics
Constraints
Evolution
Non-functional properties

Connectors
Interface
Types
Semantics
Constraints
Evolution
Non-functional properties

Architectural Configurations
Understandability
Compositionality
Heterogeneity
Constraints
Refinement and traceability
Scalability
Evolution
Dynamism
Non-functional properties

Tool Support
Active Specification
Multiple Views
Analysis
Refinement
Code Generation
Dynamism

Figure 2.2 – Taxonomy of ADLs. Courtesy: [Medvidovic 00]

each module takes some input, processes it and gives out the output. Software pro-
gram uses the concepts of functions or methods, whereas processes have activities.
Similarly modules in software programs are made up of operations, whereas activi-
ties are made up of tasks. Furthermore there are a lot of resemblances in terms of
interactions, execution order, updating the values of data objects, etc.

The similarities between software programs and process models have led to process
architectures, that are inspired from software architecture. Software architecture
languages focus on the description of the building blocks (components) of the system,
their assembly and the interactions between these components. Software architecture
in itself is a very diverse domain with diverse terminologies. Figure 1 presents a
taxonomy used for comparative analysis of different software architecture languages
for holistic picture of the domain [Medvidovic 00]. The essential modeling elements
of software architecture are components with their interfaces, connectors and the
architectural configurations.

The notion of component in software engineering is very general but there is a com-
mon agreement that it is a unit of computation or data store [Medvidovic 00]. Even
in the domain of component based development, a design time component is different
from the implementation time component and then it has entirely different semantics
during instantiation. In software architecture, a component is a module that has a

26 2. Software Process Modeling Context

defined boundary and specified interface, which is a set of interaction points between
it and its external or internal context. Connectors are the units of coordination be-
tween the components. They model the interactions between the components and the
rules that govern these interactions. Finally, the architectural configurations are the
structural ’connection’ arrangements of components and connectors to form a system.
These configurations are responsible to make sure that appropriate components are
connected, their interfaces match properly, connectors are coordinating the interac-
tions properly and the their combined semantics result in the expected behavior of
the system [Medvidovic 00].

2.3.1 Architectures for process modeling

Inspirations from the software architecture lead to the notions of components (pro-
cess elements) and configurations in process architecture. A component in process
architecture may represent an activity or a primitive task. Interfaces of the activities
are generally described as inputs or outputs of an activity. These inputs and outputs
of activities are the work products. Configurations for the process in general can de-
scribe a variety of notions from sequential flow of activities to contractual interactions
between them. Processes are made up of other processes which in turn might be a
collection of processes. Thus process are inherently hierarchical in nature.

CMMI specification [Team 10] defines process architecture as, "A ’standard pro-
cess’ is composed of other processes (i.e., subprocesses) or process elements. A ’pro-
cess element’ is the fundamental (i.e., atomic) unit of process definition that describes
activities and tasks to consistently perform work. The process architecture provides
rules for connecting the process elements of a standard process". And then further
in the specification they specify different kinds of rules that are used for defining
relationships amongst the process elements as:

— Order of the process elements

— Interfaces among process elements

— Interfaces with external processes

— Interdependencies among process elements

It should be noted here that the first rule, that emphasizes the ordering of process
elements in CMMI specification, does not restrict to use either explicit or implicit
ordering. How much focus should be given to the sequential information of process
elements? This question brings us to a choice between imperative or declarative
process modeling language.

2.3.2 Declarative vs Imperative Process Modeling

An important architectural choice is to place the process modeling languages in
the spectrum of imperative versus declarative languages. Empirical studies classify
the existing process modeling approaches in this spectrum based on the extent to

2.3. Process Architecture 27

which a process modeling language relies on sequential or circumstantial informa-
tion [Fahland 09, Pichler 12]. Another distinction between the both paradigms for
process modeling is described as, "Procedural [Imperative] models take an ’inside-to-
outside’ approach: all execution alternatives are explicitly specified in the model and
new alternatives must be explicitly added to the model. Declarative models take an
’outside-to-inside’ approach: constraints implicitly specify execution alternatives as
all alternatives that satisfy the constraints and adding new constraints usually means
discarding some execution alternatives" [Pesić 08].

The possibility to follow a continuous forward (or backward) trajectory from a
place (state) or transiton in a Petri Net to see the process behavior places it in
imperative process modeling languages [Fahland 09]. Same way different flow based
languages are imperative, whereas the event based languages, where the focus remains
on ’what’ rather than ’how’ are declarative. The choice of imperative vs declarative
in a process modeling language does not hinder its usage, however they do effect the
understandability of the process. Tasks that contain sequential information are better
represented using an imperative style whereas declarative style is more understandable
for tasks that contain circumstantial information [Pichler 12].

2.3.3 Service oriented architectures in process

The problems faced by the software enterprises are heterogeneity in terms of sys-
tems, application and technologies. Integration of these technologies is of high value,
when complex processes are to be dealt with. Efficient business decisions in compet-
itive environments are based on instant information access and data integrity. An
integrated information system helps in reducing the time for information access and
provides data integrity across the complete system, hence supports decision mak-
ing [Papazoglou 07]. In order to integrate these heterogeneous sub-systems, the de-
velopment of the overall architecture has to be based on interfaces for communication.
A service-oriented architecture (SOA) that is based on interfaces allows developers to
overcome many distributed computing challenges like application integration, trans-
action management, management of security policies, management of legacy systems
and all this by using different platforms and protocols.

Conventional software architectures tend to structure the organization of the sys-
tem in its sub-systems (components) and the relationships between them. On the
contrary, SOA designs the software system around services, which are provided ei-
ther to the end user applications or other services distributed in the network. These
services are propagated through the network using published and discoverable inter-
faces [Huhns 05]. So the service oriented architecture is basically based on the web
services architecture model, shown in figure 2.3.

Services in SOA are packaged software resources that are well-defined and self-
contained modules that provide standard business functionality. They promote loose
coupling by being independent of the state and context of other services. They are de-
scribed using web services standard e.g. Web Services Description Language (WSDL),
Simple Object Access Protocol (SOAP), Universal Description Discovery and Inte-

28 2. Software Process Modeling Context

Bind

(SOAP/HTTP)

Publish

(WSDL)

Find

(UDDI)

Service

registry and

broker

Service

provider

Service

requestor

Figure 2.3 – Web Services architecture model [Huhns 05]

gration registry (UDDI), etc. Web service definitions are based on published interface
through which they communicate with each other and request the execution of their
operations. Multiple web services operate together to collectively support a common
business process. "The purpose of this architecture is to address the requirements
of loosely coupled, standards-based, and protocol-independent distributed computing,
mapping enterprise information systems (EIS) appropriately to the overall business
process flow" [Papazoglou 07]. Besides the architecture of a SOA, its lifecyle is also
very different from the traditional systems. In other software systems once the sys-
tem is modeled, CASE tools are used for code generation, whereas for SOA this code
generation is replaced by service discovery, selection and engagement [Huhns 05]. A
workflow of web service development and execution in service oriented architecture is
illustrated in figure 2.4.

Software processes in large enterprises are not developed to cover a whole spec-
trum of activities, which may or may not be performed within the enterprise. Software
sub-contracting is a very common activity in the current business models. The na-
ture of software development allows its implementation in a distributed environment.
Cross-enterprise interactions or even the distributed development of software within
an enterprise requires the capability to enact software processes at geographically sep-
arated locations. Hepp et al. position web services and business processes together
as the future of software application structures [Hepp 05]. The business process man-
agement and web services communities have already presented a number of languages
and standards that describe business processes from the perspective of web services
orchestration. The most prominent language in this context is WS-BPEL [OASIS 07],
which serves for the enactment of business processes in distributed environments.

2.4 Process Execution

There is an increasing trend for adopting process driven methodologies in software
development enterprises. Ideally, all the different tasks performed in a software enter-

2.4. Process Execution 29

Discovery

Selection

Enactment

Authentication Engagement

Figure 2.4 – Web Service development and execution workflow [Huhns 05]

prise are explicitly defined so as to promote standardization and improve their control,
flexibility and effectiveness. In order to deliver quality customer value, these processes
are often supported or at times fully implemented by software systems [Rossi 07]. A
process execution typically involves various applications, services and humans. Spe-
cialized process management systems are developed to integrate and control these
processes to achieve the desired business goal. These process management systems
rely on the inherent behavior of the process modeling languages. For industrial use,
typically two types of process management systems are in use: Workflow Management
Systems and Business Process Management.

2.4.1 Workflow Management Systems

Workflow management coalition defines a workflow as, "The automation of a busi-
ness process, in whole or part, during which documents, information or tasks are
passed from one participant to another for action, according to a set of procedural
rules" [Coalition 99]. A workflow is a process model that is used to describe process
definitions by modeling the contained activities, procedural rules and associated con-
trol data to manage its execution. Each process instance in a workflow has its own
specific set of data associated to that individual process instance. In order to execute
these processes, a workflow management system is required. Workflow management
coalition defines a workflow management system (WfMS) as, "A system that defines,
creates and manages the execution of workflows through the use of software, running
on one or more workflow engines, which is able to interpret the process definition,

30 2. Software Process Modeling Context

interact with workflow participants and, where required, invoke the use of IT tools
and applications" [Coalition 99]. WfMS offers a number of functions that are used
to define and graphically monitor workflows. Basically three types of functions are
defined by WfMS [Hollingsworth 95]: 1) built-time functions, that are used to define
the workflow through processes and activities; 2) run-time control functions, that
are used to manage the workflows during execution; 3) run-time interaction func-
tions, that are used as an interface between workflow activities and human users or
IT tools. Based on the wide adoption by the community, different vendors like Mi-
crosoft 1 and IBM 2 and open source projects like Eclipse Stardust 3[Eclipse 13] are
offering Workflow Management Systems.

Implementation of the workflow coordination primitives is realized by a workflow
engine. Workflow engine interprets the (graphical) workflow representations using a
computations form, known as workflow description language. From an architectural
perspective for deployment, there are two types of settings that can be used for
the workflow management and coordination: the centralized architecture and the
decentralized architecture. For a centralized workflow, a single workflow engine serves
as a dedicated coordinator that is responsible for routing the messages between the
business partners. This routing is based on the patterns of data flow between the
activities, as described by the workflow. On the contrary, for a decentralized workflow
management, each business partner implements a local workflow engine that manages
the workflow for that partner locally. The overall workflow management and control
tasks are distributed between these business partners. The interactions between the
business partners are based on the data flow patterns of the workflow, and is managed
between the local workflow engines.

2.4.2 Business Process Management

Service oriented architecture provides a standard, loosely coupled and interop-
erable structure for mapping the enterprise information systems through the use of
application services, as explained in section 2.3.3. Web services offer a suitable tech-
nical foundation for the business process community to develop their process models
in a fashion that they can be accessed in a distributed environment, within and
across multiple enterprises. This also allows the process models to access operations
of information systems that are geographically separated. Business processes are im-
plemented as web services. Processes are designed with reusability in mind, having
start and end points. Reusability in this context is the ability to execute a process
repeatedly. Web service composition is exploited in a way that business processes use
other web services to carry out a task [Tan 09].

Business process management is a holistic approach that covers all the phases re-
lated to a process in the business process management lifecycle. For business process
execution phase, Web Services Business Process Execution Language (WS-BPEL,

1. http://msdn.microsoft.com/en-us/vstudio/jj684582.aspx

2. http://www-03.ibm.com/systems/power/software/i/workflow/

3. http://www.eclipse.org/stardust/

http://msdn.microsoft.com/en-us/vstudio/jj684582.aspx
http://www-03.ibm.com/systems/power/software/i/workflow/
http://www.eclipse.org/stardust/

2.4. Process Execution 31

BPEL for short) has played the most significant role [OASIS 07]. BPEL is a lan-
guage for defining and executing business processes. It is based on web services and
it exploits the web services composition, orchestration, and coordination for realizing
SOA. It offers the possibility to standardize the business processes for interoperability.
Apart from this, it helps in business process optimizations and offers the capability
to select the appropriate process at runtime. As BPEL has become a de facto stan-
dard for executing processes as services, multiple vendors like Microsoft 1, IBM 2 and
Oracle 3 have developed their own BPEL engines to support process driven software
development. We also find open source suits that provide BPEL engines for process
execution like jBPM 4.

2.4.3 Process-driven Applications

Processes are developed and executed to automate the software development
methodologies. In order to do so, the process engines are connected with the applica-
tion tools and services. This way, the complete Information system can be integrated
and controlled around the process engine. In such situations, there are two methods
to empower the process engine to control/help in controlling the rest of the develop-
ment environment. One of the ways to automate software development is to embed
the process engine within the software application as a component. This component
is then bound to other components of the system that provide the actual functional
code, as shown in figure 2.5-A. This way process definitions represent the main con-
trol logic of the application and process engine is responsible for triggering other
components. Applications developed with this architecture are called process-driven
applications[Weigold 10].

Figure 2.5-B depicts the architecture followed by the process management systems
(BPMS/WfMS), where the business process engine is implemented as a standalone
software system that interacts with other software applications, services and humans
to achieve the business goal. This architecture is not very domain specific and allows a
generic process engine that can be used with different types of applications in multiple
domains.

2.4.4 Process Execution Concerns

When we discuss software process modeling approaches in the context of in-
dustrial development, the most commonly used approaches are BPMN[OMG 11],
workflows[Coalition 99] and SPEM[OMG 08]. Process models developed through
workflows can directly be interpreted by the Workflow management systems, using
the workflow definition language. On the contrary, if BPMN and SPEM are used,
they do not allow a direct interpretation for the executions engines. An intermediate

1. http://www.microsoft.com/en-us/biztalk/default.aspx

2. http://www-01.ibm.com/software/integration/wps/

3. http://www.oracle.com/technetwork/middleware/bpel/overview/index.html

4. http://www.jboss.org/jbpm/

http://www.microsoft.com/en-us/biztalk/default.aspx
http://www-01.ibm.com/software/integration/wps/
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
http://www.jboss.org/jbpm/

32 2. Software Process Modeling Context

Figure 2.5 – Process-driven applications vs. BPMS/WfMS [Weigold 10]

transformation is required to map the process elements of these languages to BPEL.
There is no standard interchange language to map BPMN constructs to BPEL, how-
ever academic research proposes a transformation between them [Ouyang 06]. BPMN
is a collection of multiple diagrams associated to process modeling, but lacks a stan-
dard interchange between them. This makes the mapping of BPMN to BPEL even
more complex. A recent standardization effort from OMG targets this problem, and
they have formed a BPMN Model Interchange Working Group 1 to develop a standard
interchange language. Same way, SPEM standard leaves out on mapping it to any
process execution language, rather suggest a mapping to any project management
suite[OMG 08]. However, another effort from academia, xSPEM extends the origi-
nal SPEM metamodel and enriches it with the operational semantics and adds the
possibility to map it to BPEL, using WSDL [Bendraou 07].

Another important concern related to the execution of software processes is to
manage the deviations. Real life processes in software development projects may not
follow the exact plan. In such cases, the Process-centered Software Engineering En-
vironment (PSEE) observes inconsistency between the software process model and
its actual execution, which is termed as deviation. Multiple approaches have been
presented to detect and handle these deviations [Kabbaj 07, Almeida da Silva 11].
On the part of process modeling approaches, they offer mechanisms for process tai-
loring [Hurtado Alegría 11] and run time process adaptability [Kabbaj 07].

2.5 Shortcomings of the process methodologies

Let us clearly distinguish between two different concepts: process models and pro-
cess modeling methodologies. The methodologies are used to develop process models.

1. http://www.omgwiki.org/bpmn-miwg/doku.php

http://www.omgwiki.org/bpmn-miwg/doku.php

2.5. Shortcomings of the process methodologies 33

When we do a comparison between different approaches we need to compare the
methodologies themselves and what those methodologies produce. So two questions
can be posed in this regard: How effective and systematic are the process modeling
approaches? and, How simple and complete is a process model? When we argue that
BPMN lacks a consistent methodology to offer transformations of its implementation
process models to the current enactment methodologies like BPEL, it is a shortcoming
of the methods that it offers. This reduces the scope of a BPMN model for process
automation, but it offers what it has to offer within its scope. On the other hand,
BPMN process models has their own limitations. For example it is not possible to
associate multiple roles with an activity in a BPMN model i.e. an activity can not
reside in two swim-lanes.

Understandability of process models is of prime importance for software enter-
prises [Indulska 09]. As process designers are different from process performers, they
may develop the processes much before they are actually used. Software practitioners
suggest to have as few number of elements to model the processes as possible, for
their understandability [Mendling 10]. One of the reasons for the lack of adoptions
of Process Modeling Languages (Process Programs) in industry was the level of de-
tail and formalism that they required. This is why the software practitioners moved
toward the graphical representations of the process models. Abundance of process
modeling concepts in a graphical notation can clutter the model and can effect the
understandability to a much higher degree than that of PMLs. Excess of modeling
notations should not be confused with the completeness of the process models, which
can be achieved even through a minimum number of concepts.

Model should be independent of the person who is modeling it [Rosemann 06b].
Specific expertise of software practitioners influence the way they visualize a problem
and then further model it. We believe it to be one of the reasons that business process
modeling focus on the flow based ordering of activities. A process modeler should
develop a model in a way that it is complete enough to model that process, otherwise
he/she can end up with developing a view of the process model rather than a complete
model. It should be noted here that a process modeler is not obliged to develop a
complete process model, because the focus on relevance is of much more importance
than completeness. However, depending of the situation a complete process model can
be relevant and thus a process modeling approach should always offer methodologies
that can ensure completeness. Another important issue related to completeness is the
ability of the process enactment environment to enact the process models even if they
are not complete. This may be important for some situations where early simulation
is required or the process details are expected late and can be added to the process
model during enactment [Sutton Jr. 97].

As the process model should offer the capability of adaptations and evolution, so
should the methodology [Rosemann 06b]. A software process modeling methodology
targets at defining the processes of software development in an enterprise. But for
an enterprise, their may be other points of interest that can be linked with process
models. For example if an enterprise wants to model risks associated with certain
processes along with the process models, they should have the capability to customize

34 2. Software Process Modeling Context

the approach and the associated tools. A software enterprise may be interested in
modeling other issues like cost and knowledge management as well. Extensibility of
the approach is possible if the architecture of the approach implemented in the tool
support is accessible and offers extension points. Even for the open source tools, the
architecture of the process management system is hardly available.

The most important motivation for a software development enterprise to model
its processes is process improvement [Indulska 09]. In fact, following a process mod-
eling approach that does not allow (or does not provide means to support) process
evolution can be quite harmful for a software enterprise in the sense that it can de-
motivate for innovation [Andersen 01]. Process evolutions mechanisms are also of
prime importance to handle runtime process deviations [Kabbaj 07]. Process evolu-
tion (adaptation) mechanisms provided by the standard process modeling approaches
both in business process management and workflow management are not sufficient
enough to deal with the needs of industry [Rosemann 06b]. However some aca-
demic proposals have targeted this deficiency to enrich the software process mod-
els [Kabbaj 07, Almeida da Silva 11].

When we talk about the reuse of process models, it means that the process model
should allow the possibility to be used in some other iteration (having same or different
context) within the same project or in another project. This means that maintenance
of this process model is also an important issue, related to its (re)use. Current mod-
eling methodologies offer the possibility to define associated roles with the processes,
but do not offer the roles associated to the process element of the model. For example
a role of test engineer is assigned to perform the activities defined in a process model
for software testing. This process model does not offer any role of a process designer
who could be the possible owner of this process, and is responsible for its design and
implementation. Another associated role is of the process engineer that is responsible
for enacting and maintaining the process model. Lack of governance (process owner-
ship) is one of the reasons that limit the applicability of process models in real life
situations [Rosemann 06a].

Chapter 3

Process Modeling Frameworks

Contents

3.1 Introduction . 35

3.2 Flow based Approaches . 36

3.3 Event based Approaches . 55

3.4 Software Process Standards 64

3.5 Critical summary of approaches 68

3.6 Discussion . 71

Abstract - This chapter presents the state of the art in software process modeling.
Process modeling approaches are categorized in two groups, where flow based languages
are the process languages where the flow of work products is the prime focus and event
based languages are the languages that keep the notion of events as the main concept
for process component interactions. These process modeling languages are described
individually and are evaluated against the solution criteria defined in section 1.3.
Industrial standards relating to process modeling are also discussed.

3.1 Introduction

The term ’process modeling’, as we use nowadays, emerged from the concepts of
office automation, that led to the definition of ’workflows’. Business process man-
agement became popular as late as in 90’s, which established the ground for process
modeling. Different approaches have been proposed since then to model processes ei-
ther before or after their execution. Software process management approaches target
to streamline the information systems development and facilitate the automation of
process flow. One of the common perspectives to see process modeling is as "step-by-
step rules specific to the resolution of some business problem" [Havey 09]. Approaches
following this perspective focus on the flow of activities in a process model. Some of
these techniques are outlined in section 3.2. Instead of focusing on model readability
and modeling human activities, Havey argues that the quality of a process modeling

35

36 3. Process Modeling Frameworks

language is measured by the level of its contribution to the information system de-
sign and model execution potential. For these reasons we have chosen some of the
prominent existing process modeling approaches that are directly executable or can
be mapped to some other execution language.

We do not discuss the software lifecycle models like Rapid Application Develop-
ment (RAD) [Martin 91], the Spiral Model [Boehm 86] and XP [Beck 99] in this state
of the art. We have instead restricted our focus to the Process modeling approaches
that focus on the structure, semantics and lifecycle of individual processes rather
than on software lifecycle. Approaches for evaluating software lifecycle models (de-
sign process models) present a taxonomy to classify them according to their salient
characteristics [Céret 13]. This taxonomy can also be used to evaluate the software
process models described in this chapter. However, we have evaluated them against
the solution criteria identified at the beginning of this thesis.

Out of the various process modeling approaches, we chose some of the approaches
that are prominent and are adopted by the industry. We also present some academic
approaches that extend the functionality of some prominent approaches. The reason
for not covering other approaches in this evaluation might be either of the two; their
approach somewhat resembles to one of the approaches we are already discussing or
they are focusing on entirely different axes. ADEPT2 process management system and
Kinesthetics Extreme present executable process models that allow runtime deviations
[Göser 07, Valetto 01]. They focus on the reactivity of the process models and offer
exception handling capabilities. They use some of the exception patterns to jump
backwards or forwards in the control flow in order to deal with exceptions. In order
to discuss the reactive aspects of process modeling, we discuss EPCs, YAWL and
Little-JIL. However, the proposed approach does not offer exception handling, so we
did not discuss these approaches in detail. One of the examples of the approaches
that focus on a different axis is presented by Cortes-Cornax et al., where they focus
on the development of a mapping between process models and goal models, in order
to use goal-oriented requirements engineering techniques to analyze goal satisfactions
[Cortes-Cornax 12].

3.2 Flow based Approaches

We have categorized the process modeling languages that focus on the flow of
data from one activity to another in order to model the complete process, as flow
based approaches. These languages may present the notion of events, but it is not
the central notion for interaction between the activities.

3.2.1 Software Process Engineering Metamodel (SPEM 2.0)

SPEM 2.0 is presented by OMG with the vision to provide a process model-
ing approach that can deal with projects that are specific to software development.
SPEM specification defines itself as , "a process engineering meta-model as well as

3.2. Flow based Approaches 37

Figure 6.1 - SPEM 2.0's conceptual usage framework

Enactable project

plan templates

Process for

Custom Application

Development with J2EE

Content on

managing

iterative development

Corporate

guidelines

on compliance

Content on agile

development

JUnit user

guidance

Content

on J2EE

Configure a cohesive process framework

customized for my project needs

Create project plan templates for

Enactment of process in the context of my project

Standardize representation and

manage libraries of reusable
Method Content

Develop and manage Processes

for performing projects

Process assets

patterns

Standard or

reference processes

Guidance on

serialized java beans

Configuration

mgmt

guidelines

Process for

Embedded System

Development

Process for

SOA Governance

Figure 3.1 – SPEM 2.0’s conceptual usage framework [OMG 08]

conceptual framework, which can provide the necessary concepts for modeling, doc-
umenting, presenting, managing, interchanging, and enacting development methods
and processes. An implementation of this meta-model would be targeted at process
engineers, project leads, project and program managers who are responsible for main-
taining and implementing processes for their development organizations or individual
projects"[OMG 08]. SPEM specification presents itself in two flavors: MOF 2.0 com-
pliant metamodel that reuses parts of UML2.0 and as a UML profile.

The SPEM 2.0 (hereafter called SPEM) replaces its earlier version SPEM1.1, by
providing some important notions. The most important of them is to separate process
contents and materials from their usage in a specific project. This philosophy is
explained in the conceptual framework of SPEM that presents the overall methodology
in four steps (illustrated in figure 3.1). This framework divides a process model in two
parts (step 1 & 2). First, the method contents are defined i.e. activities, artifacts,
roles, tools etc. And then in a second step, instances (or references) of these method
contents are used to assemble a process definition. Last two steps are for configuration
and enactment of the process model.

SPEM metamodel is presented using seven packages. Each package merges in
the package below it till the final Core package (figure 3.2). Core package presents
the abstract classes that define work (e.g. WorkDefinition) and the classes that
allow use to define user-defined qualifications of SPEM classes. Process Structure

package defines the core hierarchy of activities that form process models. Each activity
has its own lists of references to Roles and input/output WorkProducts (as Role
Uses, WorkProduct Uses). These Roles and WorkProducts themselves are defined
in the Method Content package, along with other content elements that are used to
assemble process models. For assembling a process model, structures from Process

Structure package are linked with the Method Content package, using the notions

38 3. Process Modeling Frameworks

Figure 3.2 – Structure of the SPEM 2.0 Meta-Model [OMG 08]

defined in Process with Methods package. Process Behavior package allows the
possibility of extending the structures presented in Process Structure package with
(externally-defined) behavioral models. Textual documentation of the process models
is made possible through the concepts defined in Managed Content package. Finally,
Method Plugin package offers the mechanisms for managing configurable repositories
of method contents and processes.

As discussed earlier, SPEM aims at separating the method contents from the
process activities. The method contents in this regard are the Role Definition, Task
Definition, WorkProduct Definiton, etc. The method contents are defined to build
a development knowledge base. To use them in an activity of a particular process,
they are referenced through the concepts of Role Use, Task Use, WorkProduct Use,
etc. A Role Use is defined as "a special Breakdown Element that either represents
a performer of an Activity or a participant of the Activity" and a Role Definition
as "a Method Content Element that defines a set of related skills, competencies, and
responsibilities" [OMG 08]. So in order to develop a process model, initially the Role
Definition has to be defined and is placed in the knowledge base. Later on, to define
the activity in a particular process model, a Role Use is used as a reference to the
Role Definition. The notion of x-Definition and x-Use should not be confused with
any type-instance relationship or any conformance relationship. x-Definition is a
definition of a modeling element stored in the knowledge based, whereas x-Use is a
reference/pointer to it.

3.2. Flow based Approaches 39

Guidance is a Model Element associated with the major Model Elements, which
contains additional descriptions for practitioners such as techniques, guidelines, pro-
cedures, standards, templates of work products and so on. A Discipline is a Process
Package organized from the perspective of one of the software engineering disciplines:
configuration management, analysis and design, test, and so forth.

SPEM does not offer any reactive control and the ordering of activity is based on
the dataflow between the activities. The flow of data between two activities creates
a dependency in them. This dependency is defined through the notion of WorkSe-
quenceKind, which can be either of start-start, start-finish, finish-start or finish-finish.
A notion of Process Component is also presented by the SPEM specification, which
ensures encapsulation of a single activity. Each process component defines its in-
put/output WorkProduct Ports as its interfaces. These process components are once
again bound together through the WorkSequenceKind. The notion of component in
SPEM is primarily used for exploiting encapsulation. It serves when the process
model does not define the implementation of an activity, hence uses a (blank) black-
box process component, which can be replaced later on during execution by another
process component that defines its implementation. A SPEM process model defined
by process components does not follow the design by contract approach [Meyer 92a]
as it does not focus on the interfaces for the purpose of interactions. SPEM specifica-
tion proposes two methods for enacting a process model, either with project planning
systems or with workflow engines, but it does not provide a standard mapping to
either of the two.

SPEM framework has been adopted by many tool vendors for software process
modeling for three main reasons. First, by separating the method content and pro-
cess structure it allows the software enterprises to develop their knowledge base of
intellectual capital. Second, it allows to create catalogs of pre-defined processes.
Third, it does not constrain the tool vendors with predefined constraints on the be-
havior of process model, which makes it easy for them to support SPEM along with
other process modeling approaches within the same tool. Several tools implement the
SPEM framework. Eclipse Process Framework (EPF) Composer 1 is a SPEM com-
pliant process modeling tool. StarUML 2 is another open source UML modeling tool
that supports the development of SPEM models in its new version. IRIS Process Au-
thor 3 is a visual process management system supporting SPEM, that offers software
process development, improvement and automation.

Solution criteria based evaluation

The conceptual framework of SPEM gives an overall idea of the approach, where
abstraction between definition and usage of process elements are at its core. It de-
scribes the necessary concepts for defining a process model, that is based on the flow
of WorkProducts between the activities. Breakdown element is an abstract general-

1. http://www.eclipse.org/epf/

2. http://staruml.sourceforge.net/en/

3. http://www.osellus.com/IRIS-PA

http://www.eclipse.org/epf/
http://staruml.sourceforge.net/en/
http://www.osellus.com/IRIS-PA

40 3. Process Modeling Frameworks

ization for any type of process element that is a part of breakdown structure. This
notion of breakdown structure is used to describe hierarchies in process elements.

Completeness: SPEM specification allows the definition of the basic constructs
of what (WorkProduct Definition), who (Role Definition) and how (Task Definition)
in a very interesting manner. However the constructs related to why (goals, intentions,
etc.) and when (scheduling, planning, etc.) are not addressed in the specification. The
notion of pre-condition serves well to describe the completion criteria for individual
tasks or activities, but does not guide the overall intent of the system. No specific
behavior is defined for SPEM metamodel (with the intent to keep it flexible), which
might be the reason to avoid focus on these aspects. For example, no constructs are
defined for managing the control of activities in terms of loops or conditions, etc. and
it is left for the tool implementer to choose any control flow for the coordination of
activities. Same way, it completely misses out on any mechanism for communications
(choreography) between the agents.

Team Development: The notion of Team Profile is used as a breakdown struc-
ture for Role Uses and Composite Roles, which are important to structure teams.
Each Role Definition is described as a collection of qualifications to define its compe-
tencies and skills. However, a Role Use can be either responsible for a task/activity
or its participant (responsible of a sub-activity). There is no classification of respon-
sibilities associated to a task. For example, a task can be associated to three roles
with different responsibilities, at the same time: performer, approver, consultant.
Apart from the definition of a well structured team, a process modeling approach
should also focus on the distributed environments, specially in software development
scenarios where outsourcing is a common practice. Well defined interfaces for activi-
ties supports the possibility to integrate/distribute sub-processes to multiple process
owners (organizations). These aspects are not addressed in SPEM specifications.

Reusability: The main focus of SPEM lies on the separation of method content
from the process structure. This allows to define the method contents for once and
then (re)use them in assembling different specific process models. The notions of
’element definition’ and ’element use’ are interesting, but it could offer more if the
semantics of the relation between the both would be of conformance. An approach
with a conformance relationship between process elements can induce variability in
addition to reusability [Golra 12a]. Another approach for process reusability described
by the specification is to reuse process patterns either through "sophisticated copy and
modify operation", the details of which are very implementation specific. This method
of process reuse is more opportunistic than systematic.

The reuse of process elements is also targeted with the notion of process compo-
nents in SPEM. Process components are taken as black box entities that encapsulate
the Activity Use / Task Use in way that inputs and outputs are possible only through
the specified interfaces. WorkProduct Port as an interface to a process component
only provides the dataflow capabilities to the process component. It adds modularity
to the process model, but it is not guaranteed as the behavior defined by the imple-
menter can break its interfacing for tool invocations, interactions, control flow, etc.
So the reusability of process components in SPEM implementations relies on the tool

3.2. Flow based Approaches 41

implementations of SPEM. This means that reusability is not part of the framework
in this regard but more of an implementers choice.

Abstraction: The SPEM metamodel itself is built on the principle of abstraction
where seven different packages, each describing a different logical unit, are merged in
the core package. Tool vendors can choose amongst three of the compliance points
given by it to implement all or part of the given packages. SPEM specification allows
the extension of process models through the notion of Activity Use Kind property.
This property allows an Activity Use to use the Activity Definition as it is, or to extend
it. SPEM does not exploit the notion of abstraction to a greater depth. For exam-
ple, one is not able to develop multi-level process models like in Situational Method
Engineering [Gonzalez-Perez 07] or evolution-based process models[Jaccheri 93].

Modularity: Modularity of process models developed using SPEM specification
is discussed by presenting the notion of process components. As discussed earlier,
this concept is far from the notion of software components, however it serves well to
modularize the process models. SPEM metamodel does not elaborate on the interac-
tions between process elements or the Role Uses associated to these process elements,
neither does it explain the interactions with system (e.g. tool invocations). It remains
the responsibility of the third party implementer to keep the modularity intact, which
is not guaranteed by any constraint provided by the specification. Hierarchical mod-
ularity is well defined in SPEM where all key process elements are generalizations of
Breakdown Element. Roles Uses and WorkProduct Uses are also breakdown elements.
Processes, activities and tasks are WorkBreakdown Elements, which allows to create
hierarchies of these elements.

Tailorability: The conceptual framework of SPEM, illustrated in figure 3.1,
shows that the third step in developing a process model is to configure it according
to the project specification. This configuration allows a controlled process tailoring
because the method contents already developed in the knowledge base can be reused
in process models. Multiple process element definitions of the same kind can be
developed and stored in the knowledge base, which can be replaced with the current
ones. However, the specification does not take into account any details related to
runtime process adaptations.

Enactability: The specification does not offer any concepts for enactment. It
does not even describe the notion of states for activities or the transitions between
these states. Even the notion of actor, a person performing a role, is not defined.
However it suggests two examples of enacting a process model. First, it suggests
that it can "be systematically mapped to a project plan by instantiating the differ-
ent Process’ breakdown structure views" [OMG 08]. Second, it suggests to use the
enactment machines of different behavior model approaches after mapping the pro-
cess elements to the specific behavior model elements. No formalisms are provided
for mapping SPEM process models to any behavioral model. Thus different ap-
proaches have been proposed to extend SPEM metamodel to add execution semantics
[Bendraou 07, Koudri 10a, Portela 12]. As a consequence, there is no standard mech-
anism for process enactment under SPEM specifications. Two SPEM metamodel

42 3. Process Modeling Frameworks

extensions (xSPEM and MODAL) that add the execution semantics to it through
different mechanisms are presented in the following sections.

3.2.1.1 xSPEM

xSPEM metamodel is an extension to SPEM and is presented through four meta-
models: Domain Definition, State Definition, Events Definition and a generic Trace
Management metamodel [Bendraou 07]. The complete architecture of xSPEM is il-
lustrated in figure 3.3. The Domain Definition metamodel is presented through two
packages: 1) xSPEM_Core package, that reuses a minimal set of process elements
from the Core and Process Structure packages of SPEM2.0 metamodel like Activity,
Role Use, WorkProduct Use etc. 2) ProjectCharacteristics package, that introduces
properties to process elements relating to activity scheduling and resource allocation
[OMG 08]. These properties include a time interval for activity, role occurrences
and workload for a role. States Definition metamodel presents ProcessObservability
package, which enriches the process elements with the notion of state and defines
the behavioral semantics for process execution. Events Description metamodel is de-
scribed by the EventDescriptions package, which defines the events that can trigger
activity state changes. Finally, the Trace Management metamodel keeps track of the
sequence of events during execution.

The behavioral semantics defined for xSPEM is validated through transitional se-
mantics. The target technical space chosen for the transitional semantics validation is
timed Petri nets. The semantics of xSPEM is defined as a mapping to Petri nets. The
properties of SPEM2.0 are evaluated by translating them into linear temporal logic,
LTL properties on a corresponding Petri net process model for validation. Instead
of developing a process engine for the xSPEM metamodel, they chose to enact their
process model through a mapping into BPEL [OASIS 07]. The inability of BPEL to
model human activities is well known [Schall 08]. For these reasons, they also propose
to use a mapping towards BPEL4PEOPLE [Kloppmann 05].

Solution criteria based evaluation

xSPEM is presented as an extension to SPEM2.0, where the main structural core
is reused. For these reasons, adoption of xSPEM does not offer any improvement
in terms of abstraction, modularity and reusability. We focus our evaluation on the
criteria targeted for improvement by this approach.

Completeness:

SPEM specification did not take into account the notions relating to the resource
allocation and activity scheduling for process models. xSPEM_ProjectCharacteristics
package of xSPEM extends the xSPEM_Core package, which in turn extends the Core
package of SPEM. xSPEM then uses the concepts of Role Use and WorkProduct use
as resources which are allocated to the activities. The process activities are enriched
with properties that help in scheduling and workload management. A significant

3.2. Flow based Approaches 43

xSPEM_Core

WorkDefinition

Activity

WorkDefinitionParameter
direction: ParameterDirectionKind

WorkDefinitionPerformerMap

ProcessParameterProcessPerformerMap

WorkBreakdownElementRoleUse WorkProductUse

BreakdownElement

WorkSequence
linkKind: WorkSequenceKind

<<enumeration>>
ParameterDirectionKind

in

out

inout

<<enumeration>>
WorkSequenceKind

finishToStart

finishToFinish

startToStart

startToFinish

1
mappedWorkDefinition

0..*
ownedParameter

0..1
parameterType

1..*
mappedRoleUse

0..* nestedBreakdownElement

predecessor
1

0..*
linkToSuccessor

successor
1

 0..*
linkToPredecessor

xSPEM_EventDescriptions

xSPEM_ProjectCharacteristics

Activity
min_time: Int
max_time: Int

RoleUse
occurenceNb: Int

ProcessPerformerMap
charge: Int

<<merge>>

xSPEM_ProcessObservability

<<enumeration>>
ActivityState

notStarted

started

suspended

finished

<<enumeration>>
ActivityTime

ok

tooLate

tooEarly

Activity
state: ActivityState
time: Activitytime

<<merge>>

<<merge>>

<<merge>>

DSL_Trace

<<import>>

Activity

Event

Event

Scenario Trace

Endogenous

Event

* {ordered}
*

{ordered}

1

1 *

ActivityEvent
1

StartActivity FinishActivity
Exogenous

Event
SuspendActivity ResumeActivity

Figure 3.3 – The xSPEM metamodel [Bendraou 07]

improvement over SPEM is to provide the behavioral semantics with the possibility
of model checking process models. However the control flow operators for defining
logical flows (like join or merge) and loops (iterations) are still missing.

Team Development: One of the benefits of choosing BPEL for process enact-
ment is the possibility to take advantage of the distributed access provided by service
oriented architecture. This significantly improves the possibilities for enacting the
process in a distributed environment. For a process modeling approach, interactions
between the human agents is very important for team development. However, this
approach does not take care of this requirement. Addition of properties like number
of role occurrences to perform an activity and workload calculation for each role are
an improvement step in this direction.

Tailorability: This technique has targeted the execution of SPEM based process
models. SPEM itself offers the basic capabilities of process tailoring. However one
of the things missing from the SPEM specification was the runtime adaptation of

44 3. Process Modeling Frameworks

the process models, due to the lack of support for execution. xSPEM does add the
execution support, but does not offer any possibility to adapt the processes at runtime.

Enactability: Definition of the behavioral semantics for process execution is the
key focus of xSPEM. A mapping towards BPEL is presented for process enactment.
The constructs of states and events provide the basis for the execution semantics of the
approach. States are defined for the activities in a very rigid four-states automata,
without offering any possibility to extend it. The human aspects of the process
execution like actors are not very elaborated. Interactions between these roles is also
not taken care of.

3.2.1.2 SPEM4MDE

SPEM4MDE is an endeavor to extend SPEM2.0 metamodel for MDE domain
[Diaw 11]. SPEM describes the design concepts of a process but does not focus on
the MDE concepts for a process. These concepts are added to the language through
SPEM4MDE. It also allows the possibility to execute the processes, an important
consideration that is not addressed by SPEM. SPEM4MDE attempts to define the
execution semantics for the process models using QVT.

It reuses the concepts defined by three different OMG standards: SPEM2.0,
UML2.2 and QVT, as shown in figure 3.4. The metamodel is structured using three
packages: MDE Process Structure, Model Relationship and MDE Process Behavior.
MDE Process Structure package use the SPEM structures to define activities and
model transformations (as particular activities). The Model Relationship package ex-
plains the relationships between the models like composition and refinement. The
MDE Process Behavior package describes the behavior of MDE process elements us-
ing UML state-machines. It also describes the execution semantics of transformations
using QVT Base package. An important concept covered by this language is to de-
fine TransformationDefinition as an activity. It is described through informal rules,
input & output models, and source & target metamodels. The relationship between
the constructs of the source and the target metamodels is described through infor-
mal rules. As other SPEM activities, roles are specifies through RoleUse, which are
performed by ProcessPerformer.

Solution criteria based evaluation

SPEM4MDE is presented as an extension to SPEM2.0, where the main structural
core is reused. For this reason, adoption of SPEM4MDE does not offer any im-
provement in terms of abstraction, modularity and reusability of the process models.
However, the use of MDE concepts allow to use abstraction and reusability for the
models that are treated as inputs and outputs of the process. Thus these concepts
add help in the execution of the processes in MDE domain, but do not effect the
development of process models themselves. We focus our evaluation on the criteria
targeted for improvement by this approach.

3.2. Flow based Approaches 45

M 2.0
most

Indeed,
are model

ment

ocess
MDE
k the
s and
s. So
ns in

.0

s not

transformations, their rules, and their input and output models.

Figure 1. SPEM4MDE packages hierarchy
Figure 3.4 – SPEM4MDE packages [Diaw 11]

Completeness:

SPEM specification describes a general concept of activity that is not very spe-
cific to the activities used in MDE domain. The core of MDE domain is based on the
concept of model transformations. This is taken as one of the most used activities
when following the MDE paradigm. Its definition in SPEM supports the input models
and the output models but fails to associate it to the deeper concepts like tranforma-
tion rules that connect the constructs of the associated metamodels. In this regard,
SPEM4MDE completes the SPEM specifications for defining model transformations.
Concepts like InitialActivity and FinalActivity (pseudo-activities) add to the execu-
tion semantics of a process where start and end points of a process in execution are
defined. However the control flow operators for defining logical flows (like join or
merge) and loops (iterations) are still missing.

Team Development: This approach does not improve any of the team devel-
opment aspects of process modeling of SPEM. However, it defines the model trans-
formation activities in the same manner as SPEM, thus associating Roles, RoleUse
and ProcessPerformer to them. A restriction for automatic execution of such ac-
tivities limits to use a single ProcessPerformer for each transformation definition.
Each ProcessPerformer can only be linked to a single RoleUse. Other RoleUses of
tranformation activity that could have served for transformation definition testing,
acceptance, etc. are not considered. The same research team has worked on an-
other extension of SPEM, that caters the problems of collaborative development, not
originally addressed by the SPEM specifications [Kedji 12].

Tailorability: This technique has targeted the execution of SPEM based process
models. SPEM itself offers the basic capabilities of process tailoring. However one
of the things missing from the SPEM specification was the runtime adaptation of
the process models, due to the lack of support for execution. SPEM4MDE does add
the execution support, but does not offer any possibility to adapt the processes at
runtime.

46 3. Process Modeling Frameworks

Enactability: A prototype accompanied with the approach, SPEM4MDE-PSEE
serves for the development and enactment of the process models. SPEM4MDE process
editor allows to develop the process models. These process models are developed with
well specified behavior. This editor may also be used for adapting the process models.
SPEM4MDE Process Enactment Engine allows to enact these process models. It
can be used to keep track of the states of each process element. This enactment
engine is integrated with other eclipse-based tools to allow the execution of model
transformations. The outcomes of the model transformations are stored in a project
repository.

3.2.1.3 MODAL

The inability of SPEM2.0 to provide sufficient executable semantics has been a
motivation for various research teams to add this capability to the original metamodel
[Bendraou 07, Portela 12]. These approaches offer a mapping of SPEM metamodel el-
ements towards a standard project management suite or an executable process frame-
work like one offered by BPEL [OASIS 07]. Instead of providing a mapping, Model
Oriented Develoment Application Language (MODAL) presents a metamodel exten-
sion to SPEM metamodel by enriching it with behavioral semantics and using model
transformations to generate executable process models [Koudri 10a]. MODAL intro-
duces/refines some concepts of SPEM so as add some rigor in the process models to
reinforce their semantics.

The core metamodel of MODAL is an extension to the Method Contents package
of SPEM reusing the concepts of Task Definition, Role Definition, WorkProduct Def-
inition, etc. [Pillain 11]. It adds the concepts of Tool Definition for the specification
of tools and their integration with the process models for their possible invocations to
support process execution. The Process Component in SPEM metamodel has a very
vague definition, which does not allow its direct mapping to any component execu-
tion platform. MODAL refines the process components by replacing the WorkProduct
ports with more refined ports that offer services to other components. MODAL allows
concurrent execution of process components that are bound together through Service
Bindings. The notion of lifecycle has been added to the meta-classes related to work
products that gives them a state, which is defined through a state machine. This also
helps in managing models as work products during execution.

A concept of intention is introduced in MODAL to keeps track of the set of
methodological objectives set by different stakeholders for some activity [Koudri 10a].
These intentions are linked together through satisfaction links to create intention
maps. Intention maps can be refined from coarse-grain to fine-grain through the
use of strategies. A strategy helps in choosing a particular intention map for the
realization of the process in a particular technical space. Constraints of the SPEM
model are refined with formalisms that can guard the execution of the process models.
These constraints specify their level of severity, based on which they can be relaxed.

3.2. Flow based Approaches 47

Solution criteria based evaluation

MODAL is an approach that extends SPEM for enriching it with mechanisms
to generate executable process models. The extensions to SPEM mostly cover the
key notions like activities, process components and constraints. Some new concepts
are also added like intentions and strategies. Overall these refinements and the new
concepts effect different aspects of the language that we are going to discuss. But
we would leave the aspects that have not been affected by this extension like team
development.

Completeness: MODAL has reused the key process elements from the Method
Content package of SPEM as Role Definition and Task Definition. It adds a new
notion of Tool Definition, which was missing from the original SPEM specification.
SPEM specification defined Tool in its Process Structure package for tool usage, but
did not offer the possibility to specify tools in detail. It was also not possible to
perform tool invocations, a concept related to process enactment. SPEM does not
propose any behavior for its process models and offers a package of proxy behavioral
classes, that can be extended to add behavior. MODAL did not follow SPEM speci-
fications in this regard and added the behavior in two parts 1) by adding constraints
to guard the execution of process models that are equipped with state machines for
activities and 2) by proposing an action language that describes the internal behavior
of process components. The notion of lifecycle in MODAL is more inclined towards
the state transitions, and the planning and scheduling aspects of process models are
not elaborated. Notions of actors and their organization that will be performing the
roles while enactment are also not discussed. A notion of connector is defined for
process components, but the simple control logic for workflow (like AND, OR, etc)
still remain missing. Finally, no mechanism for Role-interactions or communication
between actors is offered.

Reusability: The extension to SPEM metamodel has been carried out in a very
systematic manner, where the separation of Method Contents and Process Structure
(as describe by SPEM) are considered. New concepts for tool specifications are added
as Tool Definition, which keep the original idea of reusability offered by SPEM. The
most interesting improvement in terms of reusability is the concrete definition of
process components. Process components defined by SPEM offered their interfaces
but only for work products, which reduced the scope of their reusability. On the
other hand, MODAL proposes a concrete concept of interfaces apart from the notion
of ports. All interactions to and from the process components are constrained to be
through these interfaces, which improves the reusability of process components.

Abstraction: The process models developed under the MODAL approach utilize
the concepts of abstraction in two manners. First, the concept of intention associated
with every activity and the satisfaction links that connect them together form an
intention map. These intention maps are linked to the specific technological spaces
through strategies. Thus two levels of abstractions in terms of process plans are used,
which are refined through the use of particular strategies. Second, the definition of
process models is carried out in three levels. Abstract level process components are

48 3. Process Modeling Frameworks

defined in Abstract Modeling Level. Then the topology of the execution platform of
the application is added in Execution Modeling Level. Finally, detailed descriptions for
a fine grained analysis of the execution platform are added in the Detailed Modeling
Level.

Modularity: Modularity of SPEM process components has been effectively im-
proved by MODAL. The definition of detailed specification of process interfaces allows
to decouple process components. SPEM process components only allow workproduct
ports, and the rest of the interactions of process component are not defined through
the interfaces. The use of Services offered through ports ensure proper encapsulation
and a better modular approach.

Tailorability: The level of tailorability offered by the SPEM specification is kept
intact in this approach. MODAL keeps the separation between method contents and
process structure, thus allowing to update the x-use element’s reference with some
other x-definition’s element. Support for runtime adaptation of process elements is
not considered in this approach. No mechanisms to transfer the state between the
runtime replacements is devised.

Enactability: Process model instances in MODAL framework are simulated us-
ing COMETA [Koudri 10b], a language defining model of computations for the simu-
lation of hierarchical concurrent component communications [Pillain 11]. This virtual
platform allows the definition of execution semantics for the process model. COMETA
models are then transformed into executable Java programs. An action language is
presented to model the internal behavior of process components through a flow of
executable actions. Three main actions are used Send Action, Receive Action and
Execute. The tooling support for the process model presents three main components:
1) a MODAL editor to define process models, 2) an instantiation editor to add process
behavior and instantiation properties and then transform the model to a COMETA
program, and 3) a simulator to simulate COMETA process instances on a Java Vir-
tual Machine. This approach does not elaborate on the instantiation properties and
how to manage the issues of resource management, human resource management, tool
invocations, etc.

3.2.2 Business Process Model and Notation (BPMN)

BPMN is developed by BPMI 1 and chosen as a standardized notation for business
process modeling by OMG after the merger of both organizations [OMG 11]. Its
development is based on some former modeling approaches like UML, IDEF, ebXML,
RosettaNet, LOVeM and EPCs [Recker 06a]. The author of the first specification
of BPMN explains two main considerations for the development of BPMN. First, to
provide a notation that is easy to use and understand by business users of different
level of technical competence, ranging from business analysts to technical developers.
Second, to offer an expressiveness to model complex business processes that can be
mapped to business execution languages like BPML, which was later replaced by

1. www.bpmi.org

www.bpmi.org

3.2. Flow based Approaches 49

BPEL [White 08]. Since then, the vision of BPMN2.0 (hereafter called BPMN) has
remained the same as to "provide a standard visualization mechanism for Business
Processes defined in an execution optimized business process language" [OMG 11].
Keeping in view the simplicity of notation, BPMN specification marks the following
aspects as out of the scope.

— Definition of organizational models and resources

— Modeling of functional breakdowns

— Data and information models

— Modeling of strategy

— Business rules models

BPMN was originally developed as a graphical grammar to complement (initially
BPML, and then) BPEL standard so that it can bridge the gap between business
design and execution. Due to this reason, the constructs defined in BPMN had to cope
with business process design and their execution as well, which is normally handled
by technically advanced users. To be able to present such a language for users with
different level of technical background, the specification divides the BPMN constructs
into two sets of graphical elements. The first set targets at providing a very basic
notation that can be used to model abstract business processes easily. The second set
is an extended set for detailed process modeling that covers complex process scenarios
and formal requirements.

The complete BPMN specification defines forty-three distinct grammar constructs
along with their attributes. The elements are categorized in five basic groups i.e. Flow
Objects, Data, Connecting Objects, Swimlanes and Artifacts. All other groups except
Connecting Objects are nodes. These nodes are linked together through Connecting
Objects. The most basic elements are the flow objects like events, activities and
gateways. They offer the basic structural nodes of the process models. An activity
is a work performed within a process and is the central notion of a BPMN process,
as shown in figure 3.5. Activity types are sub processes, tasks and call activities.
Tasks are the primitive activities of BPMN that can not be refined to a more finer
level of detail. Sub processes are the activities that are further modeled using other
tasks, events and flows etc. that account to a complete process. Each Call activity
serves as a reference to a global process and its activation transfers the control to the
referenced global process. Event is defined as an occurrence that has an impact on
the flow and are distinguished as start, intermediate and end events. Gateways are
used to converge or diverge the flows.

Data group is represented by four constructs: Data Objects, Data Inputs, Data
Outputs and Data Stores. Data inputs/outputs are the data objects that serve as work
products. They can be created, manipulated and used during the execution of the
process. Each data item has an associated state. Connecting Objects are represented
by sequence flows, message flows, associations and data associations. Sequence flows
depict the order of flow elements in a process whereas message flows show the flow of
messages between the participants. Associations link flow elements to the artifacts

50 3. Process Modeling Frameworks

Figure 3.5 – Activity Class Diagram of BPMN [OMG 11]

and data association to the data objects. Swimlanes represent pools and lanes, where
pool is a graphical representation of a participant or organization and lanes are used
to sub-partition them. Finally, Artifacts are used to provide additional information
regarding the process. BPMN specification provides two artifact types: groups that
are used to categorize graphical objects and text annotations that are used to provide
additional textual information for graphical objects.

Because of the wide scope of business processes, an effective business process
modeling approach has to cover different point of views related to the same busi-
ness process. BPMN describes these different points of view using 3 main diagrams:
Process Orchestrations, Choreographies and Collaborations. Processes (orchestrations
in SOA context) can be categorized in two groups, private and public. A private
process definition depicts the business processes that are internal to an organization,
which may or may not be executable. Executable processes can be executed through
a formal definition of semantics, whereas the non executable processes are developed
for documentation purposes. Private business processes are developed in a single
pool of swimlane, where they are not authorized to cross its boundaries. However,
public processes depict the interaction of processes to the context (other processes or
participants). These interactions are modeled through the Collaboration diagram. A
collaboration diagram uses two or more pools representing multiple public processes,
where message exchanges are depicted through Message Flows. A choreography is also
a depiction of interaction between two participants, where no pools are described. A
choreography describes the interaction behavior amongst the participants in a proce-

3.2. Flow based Approaches 51

dural way. BPMN 2.0 added another view of choreography, conversation, which is an
informal description of a particular usage of collaboration diagram.

Solution criteria based evaluation

BPMN specification is defined to bridge the gap between the design and execution
of process modeling. It defines the necessary concepts for modeling a business process.
Even though it is more inclined towards the business aspects of a process, it provides
sufficient details for the technical aspects of a software process model. We evaluate
this approach with respect to the needs of the software development domain.

Completeness: Even though BPMN is a business process modeling notation
that does not specifically target software development projects, it presents a lot of
concepts that are sufficient for the basic need of a software process modeler for defining
the structural aspects of the process. However, some specific modeling concepts of
software development need to be modeled as a work around e.g. the notion of pre/post
conditions of an activity need to be worked around through the used of conditional
sequence flows. A post-condition of an activity ensures the proper completion of
an activity rather than the invocation of the next activity. The human resource
management aspect of BPMN is also lacking the necessary details to manage the
actors that play the roles. PartnerRoles and PartnerEntities describe the current
role played by the participant or organization, but do not provide the possibility to
assign some specific responsibility to a role. The specification defines the execution
semantics of BPMN and has also added a mapping towards WS-BPEL in its latest
version.

Team Development: Collaboration diagrams and conversation diagrams focus
on the message flow between the participants of a process. They help solve many issues
relating to team development of process models. However the notion of swimlanes
for describing the roles and teams is not flexible. For example, it is not possible
to associate multiple roles with an activity unless they are all members of the same
team. It is not advisable to make separate teams for every activity that use multiple
roles. Because of the lack of standard interfaces between processes, we argue that it
is hard to integrate the sub-processes that are not built for the current process. For
example the public process of two separate enterprises have no common contract to
follow, which makes it difficult to adapt them for collaboration.

Reusability: Keeping opportunistic reuse aside, BPMN does not focus on any
design principles that can offer a systematic reuse i.e. design for reuse capability.
An activity in BPMN model is associated with sequence flows, message flows, events,
artifacts, data objects without any formal interface specification. This results in a
tight coupling of activities, which reduces the possibilities of reuse.

Abstraction: The abstraction mechanisms used in BPMN allow to hide the de-
tails of a process by collapsing it. BPMN specification allows to collapse the sub
processes and activities in a process model, which can be expanded for its concrete
implementation. The notion of call activity provides a reference activity which trans-

52 3. Process Modeling Frameworks

fers the control to a global process upon invocation. This is another mechanism to
abstract the fine details of a process. However, abstractions in terms of conformance
relationships between process elements are not presented.

Modularity: BPMN specification allows to modularize the processes in terms
of hierarchy. The use of sub processes, activities and tasks ensures this hierarchy.
However we feel that it is very constraining for a modeler to develop one block with
exactly one entry and one exit. No activity or process in BPMN process orchestration
is allowed to have multiple entry ’ports’ and multiple ’exit’ ports. On one hand,
it makes it easier to specify the formal semantics to avoid deadlocks and lack of
synchronization. But it restrains the process modeler to build flexible process models
without using extensive hierarchies. Lack of standard interfaces for activities does
not allow to modularize a system in a loosely coupled architecture.

Tailorability: We did not find any specific notion that supports process tailoring
in BPMN specification. BPMN does not provide its own process engine to execute
the process models directly. They need to be transformed to BPEL models, so the
dynamic adaptations of the processes is out of the scope of BPMN. However, due to
the semantic differences of BPMN and BPEL, traceability of BPEL elements back to
BPMN is not effective [Ouyang 06]. This makes it quite hard to tailor a process once
it is transformed to BPEL.

Enactability: One of the extensions provided by BPMN 2.0 over BPMN 1.2 was
to define the execution semantics of its process elements. This execution semantics
helps in realizing the mapping towards BPEL. The specification provides a mapping
of BPMN model to BPEL model. BPMN specification does not provide a mapping
of complete BPMN diagrams to BPEL, rather it provides a mapping between BPMN
orchestrations and individual WS-BPEL processes, where each BPMN orchestration
concerns only one pool. BPMN presents a much richer semantics than BPEL so the
mapping between them is not always trivial. "Not all BPMN orchestration Processes
can be mapped to WS-BPEL in a straight-forward way. That is because BPMN allows
the modeler to draw almost arbitrary graphs to model control flow, whereas in WS-
BPEL, there are certain restrictions such as control-flow being either block-structured
or not containing cycles" [OMG 11].

3.2.3 Business Process Execution Language (WS-BPEL)

WS-BPEL is an XML-based language for specifying business processes and the
model governing their operation in the web service environment. BPEL is a collective
term used for both BPEL4WS Version 1.1 and WS-BPEL Version 2.0 [OASIS 07].
It uses several XML specifications like WSDL1.1, XML Schema 1.0, XPath 1.0 and
XSLT 1.0. The data model used by BPEL is provided by WSDL and XML Schema,
whereas the data manipulation is handled by XPath and XLST. External resources
and partners are represented through WSDL services. Each partner (process) exposes
a WSDL interface with at least one port type for being eligible to be included in the
overall composition. The relationship between a partner service and a WS-BPEL
business process is realized through a mandatory Partner Link. Each partner link has

3.2. Flow based Approaches 53

Process

purchaseOrderProcess

computePricePT
PartnerLink

invoicing
invoiceCallbackPT

shippingPT
PartnerLink

shipping
shippingCallbackPT

schedulingPT
PartnerLink

scheduling

purchaseOrder PT
PartnerLink

purchasing

Process

purchaseOrderProcess

computePricePT
PartnerLink

invoicing
invoiceCallbackPT

shippingPT
PartnerLink

shipping
shippingCallbackPT

schedulingPT
PartnerLink

scheduling

purchaseOrder PT
PartnerLink

purchasing

Figure 3.6 – BPEL process structure [OASIS 07]

up to two roles and declares which port type each role requires for the interaction to be
carried out successfully. The structure of a BPEL process with partner links and port
types is shown in figure 3.6. For a complete understanding of the example presented
in this figure, readers are suggested to read the BPEL specification [OASIS 07].

BPEL is defined around the idea of building business processes from the invoca-
tions of existing web services and their interactions with external partners. Business
processes model the actual details and behavior of a participant in an interaction.
This internal behavior of the process is kept hidden in interactions. Process de-
scriptions (abstract processes) specify the business protocols that only describe the
mutually visible message exchange behavior of the involved partners [Havey 09]. A
BPEL business process is defined using two files: 1) A BPEL file, that presents the
’stateful’ definition of the process through its activities, partner links, variables and
event handlers, and 2) WSDL documents that specify the ’stateless’ web service in-
terfaces (required and provided services) for the business process defined in the BPEL
file. A BPEL document is structured in XML and is influenced by the concepts of
web services [Ko 09]. The core elements of the BPEL document are:

— roles of process participants

— port types for interactions between participants

— orchestration, that defines the flow of the process

— correlation information, that defines the manner in which the messages are
routed to the correct composition instances.

Process logic is described in the process definition through activities (XML el-
ements), which are of two kinds: basic and structured. Basic activities represent
the actual ‘functional components’ of the process and include <invoke>, the <re-
ceive>/<reply> pair, <assign> and <wait>. These constructs are used to describe
the elemental steps of process behavior through web service interactions. On the other

54 3. Process Modeling Frameworks

hand, structured activities describe the control structures like other conventional pro-
gramming languages. They include constructs like <if>, <while>, <repeatUntil>,
<pick>, and <foreach>. Parallel execution is supported through the <flow> element,
where the order of execution can be controlled using <link> elements. In addition to
the activities, BPEL specifies handlers for events and faults. Every handler has an
associated event, scope and a corresponding activity to handle the event [Ko 09]. The
state of a process is represented through BPEL variables, which are of three types:
WSDL message type, XML-Schema type and XML-Schema element.

Solution criteria based evaluation

BPEL is a language that targets the execution of business processes through the
use of web services. Being an XML-based language it is already very verbose. So
as to be human understandable, it needs to describe the executable processes with
minimal concepts. We evaluate BPEL as a process execution framework, not as a
process modeling framework.

Completeness: BPEL specification offers the basic constructs to develop a pro-
cess model through the use of basic and structured activities. The idea of using struc-
tured activities gives it a block-like nature, which is very close to the conventional
programming languages. The use of if structures, switch structures and looping con-
structs makes it far away from the high level modeling languages [van der Aalst 05b].
BPEL is acyclic in nature, whereas the real life processes may contain cycles of activ-
ities like a review cycle of some activity until its acceptance [van der Aalst 05b]. The
same author also advocates that BPEL’s abstract process only depicts the perspective
of one side of the collaboration. One of the issues with BPEL is the lack of expression
due to the lack of constructs. For example, if a BPMN process model is transformed
into BPEL, it undergoes a considerable semantic loss [Recker 06b].

Team Development: The inability of BPEL process models to deal with the
human aspects of process execution is a known issue [Kloppmann 05]. BPEL processes
are well supported to deal with automatic activities presented as web services. These
services can be invoked by a process and a composition of multiple services makes
up the process. On the other hand, human processes can not be invoked in the
same fashion. Extensions to BPEL like BPEL4PEOPLE provide support to deal
with human processes in an effective manner [Kloppmann 05]. Besides this, as BPEL
focuses on single perspective of the collaboration [van der Aalst 05b], it is hard to
depict a two way choreography between the participants.

Abstraction: Abstract process in BPEL is a process description meant to de-
scribe the message exchange behavior of the participants. It should not be confused
with an abstraction of the process model. A process model is defined as a business
process, which describes the internal behavior of the process. These two concepts deal
with the ’private’ and ’public’ behavior of a process. However, web services provide
abstraction inherently through the use of service compositions. A web service may
provide its functionality by invoking (abstracting) many other web services. Thus a

3.2. Flow based Approaches 55

BPEL process is made up of process hierarchies, where one process invokes another
process to contain it.

Modularity: Web services are designed in a fashion that they expose their inter-
faces for interactions between heterogeneous systems. BPEL uses the same method-
ology and exposes its WSDL interfaces for communicating with other processes. This
ensures the decoupling of business processes and thus the overall process description
offers a sufficient level of granularity for distributed environments. However, for the
development of a single web service that does not compose other web services, the
concept of modularity is not exploited well. For example, there is no concept of BPEL
fragments that can be invoked from within the same or from different BPEL processes
[Ma 09].

Reusability: The essence of using a web service is to ’build of reuse’. Different
BPEL processes can reuse (by composition) another process. This reuse of services is
valid for the coarse level of web services (processes). However, apart from this level,
when we talk about the development of a single web service that does not compose
other web services, we explained earlier that it does not exploit modularity. As a
consequence, the reuse of BPEL processes is also restricted to the web service level
and code fragments (scope or BPEL fragments) within a single BPEL process are not
reusable.

Tailorability: Web services provide a very modularized architecture to BPEL.
This architecture is exploited well by BPEL to offer tailorability. A process contains
many other processes/activities to offer its services. Any of the sub-processes of a
BPEL process can be replaced by any other process that conforms to the required
interface specification. This helps in adapting the process even at runtime, by replac-
ing its building blocks. However for a primitive service that does not use any other
service, no specific mechanisms for tailoring its interfaces is provided.

Enactability: BPEL uses service oriented architecture to enact business pro-
cesses. Each business process is taken as a web service that might invoke other busi-
ness processes (services). The choreography between the processes is handled through
the defined interfaces. BPEL is considered to be a suitable process enactment for the
automatic processes, however it has its limitations for dealing with human processes.
As human processes can not be invoked in the same manner as other services, they
need to have a separate mechanism. Some extensions to BPEL like BPEL4PEOPLE
have been proposed to deal with such issues [Kloppmann 05]. The acyclic nature of
BPEL makes it hard to model the processes that rely on multiple iterations. Real life
processes may contain cycles of activities like a cycle of review that continues till the
acceptance of its precedent activity.

56 3. Process Modeling Frameworks

3.3 Event based Approaches

3.3.1 Event-driven Process Chains (EPC)

The most commonly used event driven process modeling approach is Event-driven
Process Chains (EPC). It was developed as business process modeling language within
the framework of Architecture of Integrated Information Systems (ARIS) at the In-
stitute for Information systems (IWi) of the University of Saarland, Germany, in
collaboration with SAP AG [Scheer 00]. ARIS framework divides complex business
process into four descriptive views and then these views are integrated to form a com-
plete view of the whole business process through EPC. These views are data view,
function view, organization view and resource view. The transformation to a com-
plete business process is carried out in five phases, called descriptive levels, which
are characterized by different update cycles. These cycles update the descriptive lev-
els from business problem analysis, requirements specification, design specification,
implementation description to information technology realization [Scheer 09].

EPC offers a sequential flow of events and functions to represent the logical depen-
dencies of activities in business process. A metamodel of EPC, presented in figure 3.7,
illustrates different process elements used in EPCs [Turan 12]. Functions are the ac-
tive elements of EPCs that model activities and tasks. Events serve as the pre and
post-conditions for these functions. They describe the circumstances under which a
function works and the resulting state of the function. Thus a function can trigger an
event. Process paths are used to abstract sub processes in a process model. Control
flow is depicted through arcs that connect events with functions and process paths.
A control flow can be split or merged through the use of logical connectors of three
types: AND, XOR and OR. Resource unit models the information/material of the
real world. Functions are connected to their input/output data through information
flows. Organization units represent the persons or organizations responsible for a
function and are linked to them through organization unit assignments.

Once the main constructs of EPC are known, some rules are specified on how to
connect these constructs [Scheer 05]. The authors present these rules as:

— Each EPC starts and ends with one or more events.

— An EPC contains at least one activity.

— An EPC can be composed of several EPCs.

— Edges are directed and always connect two elements corresponding to the
sequence of activation.

— An event cannot be the predecessor or the successor of another event.

— An activity cannot be the predecessor or the successor of another activity.

— Each event and each activity have only one incoming and/or one outgoing
edge.

3.3. Event based Approaches 57

23

2.5.2 Meta-Model of EPC and Construct Definitions

In previous section, EPC is defined with an illustrated online banking example. In this
section, EPC and its Meta-Model will be defined. Moreover, construct definitions will be
given.

Metamodeling is the construction of a collection of concepts within a certain domain. A
model is an abstraction of phenomena in the real world and a metamodel is yet another
abstraction, highlighting properties of the model itself. A model conforms to its metamodel
in the way that a computer program conforms to the grammar of the programming
language in which it is written.

The Event-Driven Process Chain (EPC) was developed in 1992 at the Institute for
Information Systems in Saarbruecken in cooperation with SAP AG. EPC-models are
central elements of BPM last but not least due to its use in the SAP R/3 reference model of
SAP AG and the ARIS Toolset of IDS Scheer AG. Enterprises model their process data as
EPC-models in order to plan, design, simulate and control private enterprise processes. The
EPC is a core part of the ARIS-framework and has a big role in combining the different
views towards the description of enterprises and information systems in the control view
on the conceptual level [24] [25].

One of the main steps of the alignment process of EPC and ISSRM will be the notation of
the Meta-Model of EPC in UML Class Diagram model since the domain model of ISSRM
is defined as a UML Class Diagram model. ISSRM domain model will be shown and
explained in Chapter 4. Figure 2.6 shows the Meta-Model of EPC. This UML Class
Diagram based Meta-Model is exactly structured by the constructs of EPC.

Figure 2.6 – EPC Meta-Model.

In Figure 2.6, if we consider the “Process Element” class, every process element is part of
exactly one process and each process consists of one or more process elements. The class
process element can be used to create hierarchies of process models. Therefore a function

Figure 3.7 – EPC metamodel [Turan 12]

Because of the informal semantics of EPCs, several attempts have been made
to present some formal semantics. Formalization of EPCs reduce ambiguity, allow
completeness checks and offer model consistency across different vendors. Mendling
presents formal syntax and semantics after analyzing different formalizms of EPCs
[Mendling 09]. EPCs have been used for defining reference models in the SAP Refer-
ence Model, which is one of reasons for it popularity. Apart from this, its simplicity
has gained attention from many tool vendors to build its tooling support like SAP
R/3 (from SAP AG), ARIS (from Prof. Scheer), LiveModel/Analyst (from Intellicorp
Inc.), etc.

Solution criteria based evaluation

EPC is an approach widely used for process modeling in Business Process Reengi-
neering (BPR) tools, Enterprise Resource Planning (ERP) systems, and Workflow
Management (WfM) systems. It is a reactive approach, based on events. We evalu-
ate this language based on the chosen solution criteria.

Completeness: EPC offers a minimal set of constructs to develop a process
that is simple to understand. These nine basic constructs are further extended by
the extended Event Process-driven Chains (eEPC). However one feels the deficiency
of constructs like goals, intentions, and other constructs related to scheduling and
planning. Furthermore the use of events as pre and post conditions for functions is
good, but it leaves no room to define further constraints regarding the input and
output artifacts of a function. The notion of state for artifacts is not explained. A
function can have only one input and output event, which can then be split using
control flow. But there is no possibility to model multiple events related to a single
functional unit.

58 3. Process Modeling Frameworks

Team Development: The notions of roles, actors and organizations are all cov-
ered under a single construct of organization unit. No support is provided to specify
the capabilities of roles. If all these concepts are modeled with the same construct,
the model becomes very verbose and difficult to understand both by humans and
machines. Apart from this, the choreography of messages between the roles is also
not focused in the approach.

Abstraction: Process paths are used as a mechanism to abstract sub-processes
in an EPC. There is only one entry and exit point for this process path which is very
constraining. The use of five different levels of description allows to define the process
model at a very coarse level. Then by using update cycles, this level of description is
raised to further levels. This helps in refining the process model over time.

Modularity: The concept of modularity is not very well incorporated in the
approach, apart from the use of process paths, that enable to abstract an EPC within
an EPC. Only one event can be used as an entry/exit from it. There is no notion for
specification of modules or their interfaces.

Reusability: Reuse of process patterns can be done through multiple usage of
process paths in EPCs. However, lack of a concrete modular approach with specified
interfaces reduces the possibilities of process reuse.

Tailorability: Functions in an EPC can be replaced with other functions. But a
lack of interface specification does not allow to tailor the process in an effective man-
ner. However, event based systems allow a certain level of reactivity. This reactivity
allows to create a complex process that can handle various different situations and
thus be tailored accordingly by omitting the non relevant parts. ARIS uses multiple
descriptive levels for its process models. An EPC can be tailored using the mapping
to its abstract descriptive level.

3.3.2 Yet Another Workflow Language (YAWL)

YAWL is a process modeling language that is based on the analysis of existing
workflow management systems and workflow languages [van der Aalst 04]. It was de-
veloped by Wil van der Aalst (Eindhoven University of Technology, the Netherlands)
and Arthur ter Hofstede (Queensland University of Technology, Australia) in 2002.
It is developed as an extension to the workflow nets, which are in turn based on
Petri nets, a well-established concurrency theory with graphical representation. The
execution semantics was originally defined using state machines, but later on a set of
Colored Petri Nets (CPN) was used for this purpose [Russel 07].

YAWL allows the development of extended workflow nets (EWF-net) that are
hierarchical. The tasks can either be atomic or composite. Composite tasks refer
to a unique EWF-net at lower level. A root net is a EWF-net that has not been
referenced by any composite task. YAWL allows only one root net in a workflow
specification, which is the starting point of the workflow. Each EWF-net consists
of tasks (interpreted as transitions) and conditions (interpreted as places). Each
net starts with a unique input condition and ends with a unique output condition.

3.3. Event based Approaches 59

Task and conditions are placed between the input condition and the output condition.
They are connected through the edges, thus forming a directed graph. A condition is a
waiting state between two or more tasks. An implicit definition of a condition allows to
connect two transitions directly. In such a situation, no graphical notation is depicted
in the model. A task can have only one entry and exit edge. However a condition
can have multiple entries/exits. YAWL uses the logical connector to split or merge
the control flow of a model. These logical connectors are: AND, XOR and OR. The
semantics of these connectors are the same as in Workflow Nets [van der Aalst 04],
except for the OR-join. The semantics of OR-join is defined through a formalism
based on Reset nets [Russell 09]. OR-joins impose no restriction on the use of cycles
or preceding OR-joins.

YAWL supports tasks with multiple concurrent instances. The number of these
instances can be specified at design time and can be dynamically updated during
runtime. Tasks can specify four parameters: lower bound and upper bound for spec-
ifying the number of instances, threshold to indicate that the task terminates when
this threshold of instances has completed, and static/dynamic to specify if additional
instances can be added after creation. A static task does not allow the addition of
new instances during execution of a task. On the other hand, if the task is dynamic,
it is possible to add instances while there are some instances currently executing. A
task when executed may remove tokens (irrespective of their numbers) from other el-
ements by defining a cancellation region. This adds the possibility to support cancel
patterns of workflow. The concept of cancellation region is adapted from the Reset
nets [Russell 09]. Reset nets are Petri Nets that offer reset arcs. A reset arc with
source place p and target transition t removes all tokens from p upon firing t.

YAWL is implemented in a system consisting of three major components apart
from the web servers: YAWL editor, YAWL engine and YAWL custom services
[Foundation 10]. The YAWL editor is used to develop the process models. The
YAWL engine is responsible for executing these process models. YAWL engine is
implemented using three packages: Elements package that contains the elements of
the YAWL process model, State package that is responsible for storing and processing
the state of the process control flow, and Engine package that is responsible for run-
ning the processes as per the defined control flow of the process models. This engine
schedules the tasks and determines the order of task execution. It is also responsible
for the data input and output from the tasks. However this engine is not responsible
for the execution of atomic tasks. The execution of these tasks is delegated to the
third major component of the system, YAWL custom services. YAWL custom service
is a web based service that receives the tasks from YAWL engine then performs the
task activities and finally notifies the engine about task completion, so that the engine
can continue its execution for other tasks. Each and every task in a YAWL process
model is associated with a custom service at design time.

60 3. Process Modeling Frameworks

Solution criteria based evaluation

YAWL is a comprehensive approach based on the analysis of workflow patterns.
Workflow patterns for control-flow, resource and exception handling are the main
patterns that inspired its development. Our evaluation is based on both the YAWL
language and its implementation system, that complements it. A general drawback
of distributing the constructs between the core language and tooling system is that
the semantics become implementation specific, which is the case with YAWL.

Completeness: Our evaluation for the completeness of YAWL is based on Boehm’s
WWWWHH principle [Boehm 96]. YAWL lacks a focus on Why aspects as goals, ob-
jectives or intentions for each task or the complete EWF-net are not defined. What,
who, how and how much aspects are not part of the defined process model, however
they are dealt by the implementation system through resource and data require-
ments modeling. The notion of condition between task is explained as a waiting
state between the tasks. There is no formal manner to describe the pre and post
conditions for the tasks, neither can they be defined for the input and output ar-
tifacts. The semantics of YAWL is defined through Petri Nets, which has raised
some questions by academia [Börger 12]. These reservations are responded by the
founders of YAWL [van der Aalst 12]. For a detailed debate, we refer to the sources
[Börger 12, van der Aalst 12].

Team Development: Team development is supported when a process model
can be partitioned and integrated easily to be worked upon by different teams. Roles
associated to the tasks are responsible for the actual execution of tasks. But for pro-
cess designers, their ability to develop large process models in teams is affected when
the approach is not modular, as in case of YAWL [Börger 12]. The implementation
approach does not focus the choreography between the roles as well. This makes the
adoption of the approach difficult for Business2Business(B2B) environments.

Reusability: The declarative nature of process models in YAWL allows for their
opportunistic reuse through process patterns. However, a systematic reuse of process
models achieved by following a modular approach and explicit specifications of in-
terfaces is not supported by YAWL. Limited support for refinement in YAWL does
not offer the possibilities of reusing process models at different levels of abstraction.
The responsibility of execution of tasks in YAWL process models is delegated to the
YAWL custom services, which are web services. The use of these web services allows
the reuse of executable process models in different service compositions.

Abstraction: YAWL offers a hierarchical process modeling approach, where a
composite task refers to a EWF-net. Thus a process contains sub-processes which are
abstracted through the composite tasks. Apart from the compositional abstraction,
YAWL does not support abstraction of process modeling concepts for the development
of process models. It does not offer the possibility to develop multi-level process
models like Situational Method Engineering [Gonzalez-Perez 07] or evolution-based
process models[Jaccheri 93].

Modularity: YAWL process model has one root EWF-net and can have further
EWF-nets if the root net has composite tasks. An EWF-net which is not root net

3.3. Event based Approaches 61

is a module that can be referenced by composite tasks. This composite task has a
unique start and end conditions. An EWF-net does not specify its interfaces. It does
not encapsulate the process anymore than specifying the start and end conditions.
The overall architecture of the process model does not fit into the design by contract
approach. However, tasks are executed through web services for their enactment.
Use of web services for execution allows modularity but restricts it to the execution
phase. This level of modularity is not even supported for all the tasks, because only
the atomic tasks can be delegated to web services for execution. Thus execution
of the composite tasks as web services that can compose other atomic tasks is not
supported.

Tailorability: Each task in YAWL offers a variable to declare it either static or
dynamic. In case of a dynamic task, further instances of the tasks can be added to
the system during execution. This allows a certain level of tailorability for the process
model. Apart from this, YAWL supports exception handling and token cancellations
for the process models, which allow the process model to be flexible and support
runtime adaptability. But as far as the evolution of process model is concerned, the
architecture of the process model lacks modularity and support for abstraction, thus
it is hard to evolve the process model.

Enactability: Workflows are supposedly best suited for the enactment, as the
process models are handled by process engines that are responsible for enacting the
processes. YAWL is inherently based on workflow system and thus offers a concrete
process enactment support. It offers a process engine that is responsible for task
scheduling. For executing individual atomic tasks, it delegates the responsibility to
web services. Thus the tasks are performed by the web services and then reported
back to the process engine for the continuation of execution of the process model.
Only atomic tasks are mapped to the web services, and no possibility is offered to
compose these web services for composite tasks.

3.3.3 Little-JIL

Little-JIL is a visual process modeling language developed by LASER (Labora-
tory for Advanced Software Engineering Research) of University of Massachusetts
[Wise 11]. It has formally defined semantics. It has an associated interpretation
framework, Juliette, that supports specification, execution and analysis of processes.
It represents processes as a hierarchy of steps carried out by agents. These agents can
be humans, software systems or hardware devices. A Little-JIL process model con-
sists of three main aspects: 1) Activity coordination specification using hierarchical
decomposition of steps 2) Artifact flow (& control-flow) specification that connects
the sub-steps to their parent steps through edges and 3) Resource and agent collection
specification needed to perform these steps [Cass 00].

A step (represented as a black bar) is a unit of work assigned to an agent in a
Little-JIL process, as depicted in figure 3.8. A step be decomposed into sub-steps,
where leaf-steps are the steps that can not be decomposed any further. Each step
in the process has a number of badges associated to it. These badges provide the

62 3. Process Modeling Frameworks

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

SubStep HandlerStep

Exception

Continuation Badge

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

Step Name

Interface Badge
Exception Handler Badge

Postrequisite Badge

Control Flow Badge

Prerequisite Badge

Parameter

Figure 3.8 – Little-JIL process model legend [Cass 00]

semantic for the step. A circle on top of each step is the interface badge that is used
to connect the step to its parent step. This interface badge holds the information
about the input/output artifacts and the required resources by the step. Artifact-
flow is depicted through the blue edges connected a step (from its interface badge)
to the parent step. These edges are also used to represent control-flow of the steps.
Pre-conditions and post-conditions of a step are specified through the pre-requisite
and post-requisite badges.

Three other badges are associated with a step that are depicted inside the step
representation: Control-flow badge, Message badge and Exception handler badge.
Control-flow badge specifies the order of execution for the sub-steps of a step. Little-
JIL offers four different kinds of control-flow badges: 1) Sequential, where sub-steps
execute one after the other from left to right. 2) Parallel, where sub-steps can be
executed in any order. 3) Try, where alternative sub-steps are executed from left to
right until one of them succeeds. 4) Choice, where agents can choose of the sub-steps
to be executed. Other sub-steps are retracted in this case. The leaf-step does not
have any control-flow badge and its execution is performed by the assigned agent.
Message badge (not shown in figure figure 3.8 is represented by a lightening sign in
the middle of the step bar. Message handling edges link this badge to other steps or to
the environment outside the process to represent the message handling capabilities.
Exception handler badge is represented by an X sign on the right side of the step
bar. Red-colored edges in the model depict the exception edges connect a step to the
handlers. These handlers deal with exceptions that may occur during the execution
of any of the sub-steps of this activity. An exception thrown by a step is passed up
the tree until a matching handler is found to deal with it. Four different continuation
semantics are defined by Little-JIL to continue the execution after the exception has
been received by the handler: 1) continuing the execution of the step, 2) completing

3.3. Event based Approaches 63

the step, 3) re-throwing the exception and 4) restarting the step. When sub-steps,
message handlers or exception handlers are not present, their corresponding badges
are not depicted in the step bar. The behavior of a leaf-step depends entirely on
its assigned agents, whereas for a non-leaf step, it consists of the behavior of the
sub-steps and their order of execution.

Solution criteria based evaluation

Little-JIL is a process modeling language that focuses on the coordination of
agents for the execution of business processes. An implementation framework, Juliette
is developed alongside Little-JIL, which allows the modeling of the business processes.
We evaluate Little-JIL and accompanying implementation framework, based on the
identified solution criteria.

Completeness: Little-JIL targets a fair balance of constructs to maintain sim-
plicity and expressiveness at the same time. However, we believe that the process
models developed with Little-JIL are a little hard to understand and are verbose.
Verbosity in the process model comes from he fact that the control-flow of all the
sub-steps are defined through a single control-flow badge in the parent step. Thus all
the sub-steps can either follow a sequential or parallel (or any other control-flow), but
not a combination of them. This forces the process modeler to introduce more steps
to adjust the control-flow of the process model. The constructs related to the intents
(goals, objectives & intentions) of the steps are not focused. However, these details
can be associated to each step through the use of documentations and annotations.
The semantics of the process modeling language is precisely defined, which allows
process analysis for desirable properties like safety, correctness & reliability etc.

Team Development: A message badge can be used in each step of Little-JIL to
model the choreography between the steps. Each step specifies the messages that the
associated agent can send. However, these messages can only be sent when the step is
in started state. These messages correspond to the triggering of (pre-defined) events
and the reactions correspond to the mechanism for responding to these messages.
Support for real-life messages (as in human-human communication) for supporting
team development are missing. Steps are allocated to agents, which may be humans,
software applications or hardware devices. The concepts of roles or responsibilities
associated to the agents is not specified in the Little-JIL model. The distributed
development of processes is available through the architectural approach followed by
Juliette [Cass 99].

Abstraction: Little-JIL has its roots in a process programming language, JIL
[Sutton Jr. 97]. For the development of Little-JIL, the concepts of type declaration
mechanisms have been omitted from it. This leaves Little-JIL with a process mod-
eling language that does not take advantage of the typing mechanisms for processes.
Little-JIL does not take into account the use of abstractions in its process modeling
approach. A single process model has been proposed for all the development phases
of the processes. However, use of java in Juliette can be exploited to take advantage

64 3. Process Modeling Frameworks

of abstraction mechanisms. But, this does not mean that it is part of the proposed
language.

Modularity: A notion of module is used in Little-JIL for packaging and reusing
the processes. A Little-JIL module may contain steps that are exported (specified
through an export arrow in step bar). These exported steps are then available to other
modules that can reuse these steps by the notion of imported steps. Imported steps
are not defined inside a module and are reused from other modules that export them.
This kind of modularity is good for step sharing between multiple processes. However,
a module in Little-JIL does not specify the interfaces for the required and provided
services/artifacts. This kind of modularization does not guarantee the replacement
of one module with another through the use of standard interfaces. The notion of
hierarchy is focused in Little-JIL. Similarly the lack of interfaces does not permit to
visualize the inputs/outputs of a high level step without analyzing each of its sub-step
individually.

Reusability: The concept of modules in Little-JIL is supposed to support pro-
cess reuse [Wise 98]. This mechanism is suited well to support reuse of steps within a
process model by sharing them through export/import steps. But reusing a step/pro-
cess between different process models is not that trivial. The approach itself does not
offer the use of interfaces or encapsulation. So reusing processes between multiple
process models mostly follows an opportunistic style. The process architecture itself
is not built around the concept of ‘design for reuse’.

Tailorability: The use of events (messages & reactions) and exception handlers
allows to develop a reactive process model. However, the concept of reaction is not
central to the approach i.e. all the interactions between the steps is not carried out
through the use of reactions. Exception handling capabilities of Little-JIL allow to
choose appropriate behavior of the process model in exceptional situations. Little-
JIL does not provide any support for tailoring a process model for its customizations.
Tailoring a process model that is not executing is more or less opportunistic and no
support is provided for guaranteeing the compliance to a specific standard. Tailoring
a leaf-step changes the behavior of the complete process, as lack of encapsulation does
not allow to separate internal/external behavior. Runtime adaptations of process are
not focused in Little-JIL, apart from the inherent reactivity of the process model.

Enactability: Execution support provided for the Little-JIL process models is the
key focus area, where it shines. The implementation framework developed along with
it, Juliette, is a java-based runtime environment that is responsible for executing the
process models. Little-JIL processes are assigned to autonomous agents (human and
non-human) that required to report back the success and failure of each step assigned
to them during execution. The runtime environment is responsible to coordinate
between the agents for performing the assigned work. The use of channels allows
the communication between the potentially parallel threads of execution. A default
lifecycle is associated to each instance of a step with five states: posted, retracted,
started, completed and terminated. Optional steps have a sixth state, opted-out. This
approach does not allow to developed custom life-cycles for the steps involved in a
process. Similarly, there is no support for defining the lifecycle of an artifact.

3.4. Software Process Standards 65

3.4 Software Process Standards

Different standards are presented in this section to analyze the take of industry
for the definition of software development processes. We have focused on the interna-
tional standards by ISO and IEEE for generic cases. Software development standards
from ECSS present a specific software development approach for the development
of critical software systems. Most of the standards discussed in this section do not
focus on the ’process’ of developing software development processes, rather they of-
fer a standard reference process model for engineering a software. Conformance to
such a reference process model ensures agreement between different enterprises for
BusinessToBusiness (B2B) processes. Conformance to such standards are also re-
quired for acquiring various certifications for the software enterprises. The intent of
presenting these software process standards is to highlight the generic requirements
of a software process model. Development of a software process modeling approach
should take into account the architecture, structure and a generic behavior of software
development processes. IEEE-1074 [IEEE 06] is the only standard discussed in this
section that focuses on the development of processes for engineering a software.

3.4.1 International Organization for Standardization & IEEE

In order to standardize the lifecycle processes for both systems and software, two
international standards were conceived by International Organization for Standard-
ization(ISO): ISO-12207 [ISO/IEC 08a] and ISO-15288 [ISO/IEC 08b]. ISO-15288
focuses on the lifecycle processes for management and engineering of systems that
are made up of hardware, software and humans combined. On the other hand ISO-
12207 covers the system aspects, but focuses mainly on the software implementation
processes. The important concepts covered by both these standards regarding the sys-
tem aspects are hierarchical composition of systems, defined system boundaries and
interactions between system components generating properties at the boundaries.
They categorize the system lifecycle processes in four main categories: agreement
processes, organizational project-enabling processes, project processes and technical
processes. The three later kinds of processes are internal to enterprises, whereas the
agreement processes standardize the interactions between different enterprises. ISO-
12207 further categorizes the software specific processes in three kind: 1) software
implementation processes that define the core activities of software development like
requirements specification, analysis, design, construction, integration etc., 2) software
support processes that define supporting activities like documentation, configuration
management, quality assurance, verification, auditing etc. and 3) software reuse pro-
cesses that focus on reuse asset management and program management.

IEEE-1517 [IEEE 10] is a software standard presented by IEEE that is based on
ISO-12207 to describe the system and software reuse processes. It draws a relation-
ship between the systems processes and the software specific processes described in
ISO-12207. It promotes the software development process, referred by standard as ap-
plication engineering, to be based upon the usage of assets. These assets are designed
to be used in multiple contexts. Reuse assets include the domain architecture and

66 3. Process Modeling Frameworks

other assets developed for the domain of the software product. The reuse assets may
be obtained from other domain engineering processes, organization’s reuse libraries,
suppliers etc. IEEE-1517 presents the standardized definitions for integrating reuse
assets in system lifecycle processes and software-specific lifecycle processes.

Previously described ISO and IEEE standards focus on providing a standard set
of processes involved in system and software management and development, which
might serve as a reference process models. Whereas IEEE-1074 focuses on the process
of creating such process models [IEEE 06]. It aims at providing “a process for creating
a software project life cycle process (SPLCP). It is primarily directed at the process
architect for a given software project" [IEEE 06]. It offers a systematic approach
for the development of software project lifecycle processes in five distinct phases.
The first phase focuses on establishing the requirements for the processes. Once the
requirements are established, a software lifecycle model is to be selected. IEEE-1074
does not enforce the use of any specific lifecycle model. The third phase is to develop
the software project lifecycle processes. Development of these processes means to
arrange their activities in executable sequence based on scheduling constraints. This
ordering of activities also takes into account the entry and exit criteria of each activity
of these processes. These processes need to be mapped to the software lifecycle model.
The fourth phase establishes the software project lifecycle processes by linking them
to organizational process assets. The output information of the activities is assigned
to the associated documents. Finally the last phase validates these processes.

This study of ISO & IEEE standards for the development of software project
lifecycle processes shows that they develop these processes in different phases. Each
phase is a refinement of the previous phase, that refines the processes from their initial
requirements specification to their validation. These standards do not take into ac-
count the enactment of the processes. Besides stepwise development of the processes,
they also focus on the hierarchical composition of the processes. They promote the
definition of a clear boundary for the processes, where inputs and outputs are clearly
specified. For example IEEE-1074 presents an activity having clear boundaries and
specified inputs and output, where the input of the current activity can be traced back
to the output of the source activity (as shown in figure 3.9). Although these stan-
dards do not impose any specific process architecture, a contract based design seems
to be an appropriate choice for clear boundary definitions and dependable process
component interactions.

3.4.2 European Cooperation for Space Standardization (ECSS)

European Cooperation for Space Standardization (ECSS) is working to provide
standardization for the European space sector activities. It targets the cooperation
between the space agencies and industry to achieve a consensus over process under-
standings. Out of the standards produced by ECSS, we are particularly interested
in the ECSS-E-ST-40C [ESA-ESTEC 09], which standardizes the processes and ac-
tivities related to software development for space engineering projects. Many other

3.4. Software Process Standards 67

Figure 2 —Information flow Figure 3.9 – Information flow [IEEE 06]

ECSS standards are referred from this standard targeting standardized vocabulary,
product assurance and project management etc.

This standard promotes the idea of ’standard for making standards’, in a way that
permits a supplier to develop his own standard that complies to the requirements of
ECSS-E-40 [Jones 02]. It follows a customer-supplier concept, where ESA is typically
a top level customer. The suppliers of ESA can further become customers and follow
the same standard for subcontracting the software development projects. This creates
a chain of customer-supplier relationships extending downwards to the lower levels of
subcontractors. Reviews serve as the main interaction points between the customers
and the suppliers. This standard can be used to guide the agreement between the
stakeholders. This customer - supplier perspective of the standard is depicted in
figure 3.10, where the sub-processes are depicted as a choreography between them.
Here a source is represented as a supplier and the current organization as the client,
which change role in the next interaction, where the destination becomes the client.
An organization can establish its processes according to this standard as a dedicated
organizational standard. These processes can be supported by a set of methods,
techniques, tools and personnel. In such cases organizational standard can be used to
establish such environment and ECSS-E-40 to assess its conformity. ECSS-E-40 offers
two levels of conformity: full conformance, for which all requirements of the declared
set of processes need to be satisfied and tailored conformance, where a subset of the
tailored requirements of the set of declared processes are satisfied and the outcomes
are presented as evidence.

ECSS standards do not offer a methodology of software process modeling, so they
should not be taken as an approach that can guide the process development approach
in terms of technique. Instead, they can be taken as specific software standards
which standardize the software development activities. The intention of explaining
this standard in state of the art is to explain the general requirements of a process
modeling approach. In order to develop a software process modeling approach, it
is worthwhile to understand the current requirements of the software industry in

68 3. Process Modeling Frameworks

F
ig
u
re
4
2
:O
v
e
rv
ie
w
o
f
th
e
so
ftw

a
re
life

cy
cle

p
ro
cess

Figure 3.10 – Software life cycle processes [ESA-ESTEC 09]

a generic way. For example the hierarchical definition of processes defined in this
standard, requires a process modeling approach to be able to model the processes
accordingly.

ECSS-E-40C is based on ISO 12207 [ISO/IEC 08a] and defines a set of processes.
The requirements on these processes are described as individual requirements for each
component activity contained within them. Expected inputs and outputs of each
activity is also described. The software development process standardized through
ECSS-E-ST-40C has 9 main sub processes. Each of these processes has multiple
sub-processes. Figure 3.10 presents the main processes, that are:

— 5.2 - Software related system requirement

— 5.3 - Software management process

— 5.4 - Software requirements and architecture engineering process

— 5.5 - Software design and implementation engineering process

— 5.6 - Software validation process

— 5.7 - Software delivery and acceptance process

— 5.8 - Software verification

— 5.9 - Software operation process

3.5. Critical summary of approaches 69

— 5.10 - Software maintenance process

This ECSS standard defines the sequencing and dependencies of the processes,
where no particular life-cycle model is imposed, but its selection is an essential man-
agement activity. This choice needs to be documented in the Software Development
Management Plan. ECSS-E-40C organizes the processes and their activities and tasks
in a sequential manner. However it is explicitly stated that, "this positional sequence
does not prescribe or dictate any time-dependent sequence" [ESA-ESTEC 09]. It
even encourages the use of iteration within activities to offset the effects of the im-
plied sequences.

3.5 Critical summary of approaches

This chapter presents the state of the art in software process modeling languages.
As software industry relies a lot on the generic business process modeling, we have
discussed those approaches as well. Some researchers categorize these software process
modeling approaches in three groups: Process-centric Software Engineering Environ-
ments, Business Process Modeling and Workflow Management. However in order to
present our thesis, we have grouped them into two categories: flow based languages
and event based languages. Languages like BPMN do offer the notion of events, but
it is not its central notion for process interactions, so they are placed under flow based
languages. Activities in BPMN are arranged in a flow based manner, where they can
choose to use the notion of event.

Table 3.1 summarizes the evaluation of state of the art based on the solution
criteria identified at the beginning of this thesis. The first criterion is regarding the
completeness of a process modeling language. Generally, all the approaches provide
enough constructs to model the process. Due to the limited scope of most of the
approaches in terms of support for process lifecycle phases, they provide the con-
structs related to the supported phases only. For example, SPEM does not provide
the concept of state for an activity, because it does not support the execution of the
processes. Constructs for describing the intentions, goals and objectives of the activ-
ities is fairly provided by most of the approaches. Finally, most of the approaches
except SPEM have a formal semantics, provided either by the approach itself or by
other researchers in academia.

Team development is the resource view of the process model that also takes into
consideration the distributed development. All the approaches provide a basic level
of task allocations, except BPEL that has issues with allocating tasks to human
resources. Responsibility assignment is the definition of privileges associated to the
roles for carrying out the tasks. None of these approaches provides a mechanism
where responsibilities, roles, actors and their capabilities are all described separately
and in detail. For distributed development of process models (including distributed
executions) most of approaches provide some mechanisms, except for SPEM and its
extensions.

Criteria SPEM xSPEM MODAL BPMN BPEL EPCs YAWL Little-JIL

Completeness
Architectural constructs +/- + + +/- +/- +/- + +

Process intents +/- +/- + + +/- - +/- +/-

Process behavior - + + +/- + +/- + +

Team Development
Team communications - - - + + - - -

Task allocation + + + + +/- + + +

Responsibility assignment - - - - - - - -

Distributed process development - - - +/- + + + +

Reusability
Approach-based systematic +/- +/- + - +/- - - +/-

Implementation-based systematic +/- +/- +/- +/- + +/- +/- +/-

Opportunistic + + + + + + + +

Abstraction
Phase-wise refinement - - - - - +/- - -

Typing/conformance mechanisms - - - - +/- - - -

Modularity
Hierarchical modularity + + + + +/- + + +/-

Contextual modularity +/- +/- + +/- + - - +/-

Tailorability
Static process tailoring + + + + +/- +/- +/- +/-

Dynamic adaptations - - - - + +/- +/- -

Enactability
Execution support - + + +/- + - + +

Activity lifecycle - +/- +/- +/- +/- - +/- +/-

Artifact lifecycle - - +/- - - - - -

Table 3.1 – Evaluation of existing approaches based on the solution criteria

3.6. Discussion 71

Reusability is an important aspect in process modeling. An opportunistic reuse of
process models is inherently available in all approaches that have digital models for
processes. However, a systematic reuse of the process is not well-supported by these
approaches. Many of these approaches provide an implementation based reusability
where the implementation tools have some provisions to reuse the process components.
But the inherent support for reuse, through a process architecture that follows “design
for reuse" is not present in most of these approaches. Other mechanisms of reuse like
activity sharing (like export/import step in Little-JIL), or activity pointers (like x-
Use concepts in SPEM) are used to support activity reuse. These concepts allow for
the process reuse capabilities to a certain level.

The use of abstraction in process models is generally not supported by most of
the process modeling languages. This concept is present in PSEE as an implemen-
tation support, but again it is not a methodological part of the modeling approach.
Abstraction in process modeling approaches can be exploited in two ways. First,
by using the refinement concepts over the process development phases. Second, by
introducing the typing or conformance mechanisms in process modeling approaches.
Typing mechanisms may allow to create process types, process sub-types and then
process instances. The use of modularity is present in these process modeling ap-
proaches for the representing process hierarchy. Processes are hierarchical in nature
and thus every approach has to offer support for hierarchical modeling to a certain
level. For contextual modularity, where multiple modules are present in the same
context, no approach other than MODAL & BPEL present the concept of interfaces
and encapsulation.

Tailorability of process models is mostly supported for the process models when
they are not in execution state. However, support for runtime adaptations in scarce
in these approaches. Only BPEL provides a concrete support through the use of web-
services where individual web-services can be replaced during the execution of the
process model. Support for process execution is not provided by SPEM, EPCs and
partially provided by BPMN through transformations. All other approaches provide
a support for process executions. However, these approaches either do not provide the
possibility to define activity life-cycles or offer a hard-coded lifecycle that can not be
customized. None of the given approaches allow the possibility to define a life-cycle
for the artifacts, except MODAL that provides a very basic, non-modifiable lifecycle.

3.6 Discussion

A general drawback of using flow based process modeling language is the lack of
dynamism and reactivity in the process model. However, using the notion of events
and exception handling, BPMN offers to develop reactive process models. On the
other hand, SPEM does not take this notion in account thus leaving behind the
modelers with proactive approach. Some of the extensions to SPEM, like xSPEM,
add this capability and the process models are enriched with reactive controls. On
the contrary, events are a central notion for interactions between the activities in
event based approaches. Two activities in EPCs need to interact through the use of

72 3. Process Modeling Frameworks

events. Workflow management systems also place the notion of events at the core of
the interaction model, which results in the overall reactivity of the process models.

The inherent nature of a process is hierarchical i.e. a process is made up of
sub-processes or activities. Current process models use the process architectures
that model these processes accordingly. However, the modularity of these processes
is not the focal concept for many of these approaches. SPEM offers the notion of
process component, but the interfaces are restricted to Workproducts. The notion of
a process is very close to a service, where each process component provides a service if
certain pre-conditions are met. A proper encapsulation of the process, should restrict
all interactions including control flow and choreography through specified interfaces.
MODAL improves the concept of process component offered by SPEM through the
notion of ports that offer services. EPCs and workflow systems do not offer any
specific approach for process encapsulation.

Lack of a modular approach in process modeling methodologies limits the reuse
of modeled processes. An opportunistic reuse of processes in a process modeling ap-
proach is not a very elegant solution to process reuse. Systematic reuse of process
models is only possible when the processes are designed for reuse. Many process
modeling applications that follow the current approaches, offer the possibility of stor-
ing the processes in process repositories [Elias 12]. These solutions offer different
functionalities for storing, searching and managing versions. Some of the researchers
have even gone as far as process mining to extract information from the processes
[van der Aalst 07]. But finding an appropriate process for reuse is one part of the ef-
fort and integrating it into a process model is another. Process modeling approaches
do not offer appropriate means to integrate a reusable process in a process model.
A modular approach that is designed for reuse can help in solving these integration
issues. An interesting approach for effective reuse of the processes is presented by
the PBOOL+ process modeling language, which models each process as a compo-
nent [Thu 05]. This language is presented in the RHODES software process modeling
environment. One of the choices made by this approach is to use the specification
and implementation of elementary components within the complex component. We
believe that specification and implementation of a process component are temporal
phenomenons, which are introduced to a process model after refinement. This ap-
proach takes activities, roles, products and strategies as components. Having four
different types of components with different semantics in a single model complicates
it as well. We think that a process modeling approach should focus on the com-
ponentization of activities, where roles and products should be dealt through the
interfaces.

IEEE-1074 [IEEE 06] is a standard that focuses on the process of developing
software development processes. It presents the approach in different phases of devel-
opment from requirements specification till validation. Software process lifecycles are
very close to the software development lifecycles. The development of software pro-
cesses follows the same phases of development like software. Process-centric software
engineering environments take these notions into account and offer the possibility to
manage the ’step-wise’ development of software processes. However, due to the com-

3.6. Discussion 73

plexity of process programs, they are not adopted by the industry. Other software
modeling approaches do not target the use of abstraction in this context. Software
process modeling methodologies either focus on a specific phase of development (like
BPEL for execution) or tend to model multiple phases in a single model (like BPMN
for process specification, analysis, development, validation, etc.). An interesting ap-
proach is to take advantage of abstraction to model the processes. Similar methodol-
ogy is also adopted by a process patterns approach [Tran 07]. This approach presents
a MOF-based process metamodel inspired by SPEM, that distinguishes between three
process patterns: AbstractProcessPattern, GeneralProcessPattern and ConcretePro-
cessPattern. These patterns capture generic recurring structures for modeling pro-
cesses, then refine them to partially specified patterns and finally, capture a completly
specified solution. We believe that this approach advances in the right direction for
taking advantage of refinement, for process modeling. This approach is further com-
plemented by automatic reuse operators that enable automatic applications of process
patterns for the generation of process models [Tran 11]. We believe that inspirations
from these approaches can result in a process modeling methodology that focuses on
the reuse of process elements from different abstraction levels.

A process model developed using any of the current process modeling approaches
can comply with a process standard. But the process modeling approaches them-
selves do not offer any possibility to verify the compliance or offer support for process
assessment. For example, an enterprise can develop a process using BPMN where it
follows the ECSS standard. BPMN does not offer any support for tracing the process
elements back to the standard. The possibility of mapping process elements to one or
multiple process standards is of vital importance for software enterprises. Software en-
terprises go for continuous process improvements. Tailoring the processes for specific
projects is a common practice. Verification of process conformance against adopted
standards is important in such scenarios. Workflow management systems offer the
possibility to verify the conformance of executing processes against process models
[van der Aalst 05a]. Other mechanisms offer the possibility to verify the compliance
of the executing software processes to initially declared process objectives [Sadiq 07].
These notions are different from verifying the conformance of a process model to a
process standard. Possibility to model the compliance to process standards is impor-
tant for processes in different phases of development, even dynamic adaptations of
processes during execution should not breach the standard, especially in a domain
where certifications are crucial.

Some current software meta-modeling approaches like power type based modeling
[Gonzalez-Perez 06], deep instantiation [Atkinson 02] and lazy initialization (LIMM)
[Golra 11] are offering the support for multi-level modeling. A recent international
standard for development methodologies, ISO-24744 [ISO/IEC 08c] is based on the
power type based modeling concepts. These trends in the domain need to be tackled
by the process modeling approaches by offering the possibilities of multi-level model-
ing. Current process modeling approaches do not offer any mechanism to model the
processes in multi-level environments.

Part II

Process Modeling Framework

74

Chapter 4

Structure of Metamodels

Contents

4.1 Multi-metamodel Process Framework 75

4.2 Metamodels for Process Development Phases 81

4.3 Contractual Interactions . 104

4.4 Methodological Summary 112

Abstract - This chapter presents the structure of the proposed process modeling
approach, Component-oriented Process Modeling Framework (CPMF). It starts with
giving a holistic view of the approach and then presents each metamodel used in this
approach separately. Each metamodel is described using a common scenario, as an
example. The interaction mechanisms within the process architecture of the proposed
modeling framework is outlined. Finally, the refinement of contracts for each activity
as it passes from one model to another is described.

4.1 Multi-metamodel Process Framework

4.1.1 Component-oriented Process Modeling Framework

Modeling has become a central part of software development lifecycle. It not only
guides the development but also becomes a part of the system. The design decisions
taken for the development of the software are carried out till the realization of the final
system. These design decisions collectively take the form of various models in different
phases of development, till the concrete code. Each step in this progression is modeled
using constructs, whose definition is sought in given metamodels. This remains a
designer choice to move from one model to another manually or using semi-automatic
transformations. Having a concrete family of metamodels is very important, so as
to realize the objective of Model Driven Engineering. Software development through
the evolution of models from requirements till deployment passing through a series
of transformations is the hallmark of MDE. These transformations are responsible
for creating, modifying, translating or refining models, as the software development

75

76 4. Structure of Metamodels

project advances. A family of metamodels gives a sound base upon which the multi
metamodel application development can be realized.

As far as the current process modeling approaches are concerned, they rely on a
unique metamodel for the development of process models. SPEM [OMG 08], xSPEM
[Bendraou 07], BPMN [OMG 11], BPEL [OASIS 07] and YAWL [van der Aalst 04]
are all based on fairly complete metamodels spanning over multiple packages. Each
of these approaches models the process either in a single phase of development (e.g.
BPEL for enactment phase only) or in multiple phases (e.g. BPMN for requirements
specification, analysis, development, validation etc.). We argue that capturing the
semantics of the processes at different development phases is difficult using a unique
process model. For example, the focus of an enterprise on a process is different in
requirements definition phase than in implementation phase. Each phase of process
development, just like software development, needs specific level of details, tool sup-
port, management decisions, etc.

Contribution I: Specific language for modeling the processes in a partic-
ular phase of process development lifecycle, that refines with each passing
phase.

For a clear and precise modeling support of a process in a specific phase of de-
velopment, we propose to use a specific metamodel. This means that for each phase
of process development we have a distinct metamodel. This would result in a fam-
ily of process metamodels that deal with modeling the same process in its different
phases of development. The number of metamodels depends on the chosen process
development lifecycle. We do not enforce to use any specific process development life-
cycle. The idea of multi-metamodel development is based on a simple rule, "particular
process metamodels for particular process development phases". For the purpose of
illustration of our approach, we have chosen four phases: process specification, process
implementation, process instantiation, process monitoring, as shown in figure 4.1. The
monitoring phase is not a development phase, so we do not need a metamodel for that
phase. The users of this approach may choose more phases and develop the respective
metamodels. For now, we present our approach through three metamodels, each for
the specified phase of process development i.e. Process Specification Metamodel, Pro-
cess Implementation Metamodel and Process Instantiation Metamodel. An execution
model is generated once the process instantiation model is interpreted by the process
interpreter. This allows to execute the processes and eventually monitor them.

Contribution II: Offering a set of metamodels that defines the process
modeling language for three different phases: specification, implementation
and instantiation.

Figure 4.2 shows the approach in two levels of modeling hierarchy. In the meta-
modeling layer, we see the three metamodels and the refinement relationships between
them. We believe that each phase of development refines the process by adding more
detail to it. In the lower level, respective process models are depicted going through
a chain of model transformations. Each transformation refines the process model and

4.1. Multi-metamodel Process Framework 77

Process
Specification

Process
Implementation

Process
Instantiation

Process
Monitoring

Figure 4.1 – Process Metamodels for Multi-metamodel Development

Process
Specification
Metamodel

Process
Implementation

Metamodel

Process
Implementation

Model
Process

Specification
Model

Refinement

Transformation

Conforms to Conforms to

Multiple Abstraction Levels

Mu
ltil

ay
ere

d M
od

elin
gProcess

Instantiation
Metamodel

Process
Instantiation

Model

Refinement

Transformation

Conforms to

Figure 4.2 – Process Metamodels for Multi-metamodel Development

adds new slots in the model, to inject further details and design choices. This is an
abstract level diagram, which does not show the injection of details. We will discuss
that later with refinement of each level in section 4.2.

The process specification model (PSpec) is developed in conformance to the Pro-
cess Specification Metamodel. Such a model is based on the requirements specification
phase of process development. A software process is specified using this model and
therefore is not overloaded with implementation level information. It may be used to
document the process best practices in terms of their structure. It is not specific to
any organization or project. This added level of abstraction in terms of specification
promotes re-usability of the process models. Process standards and best practices are
documented in a reusable manner, where they can further be applied to any specific
project or organization in multiple ways. The process implementation model (PImp)
conforms to the Process Implementation Metamodel. Such a model documents the
specific project details, which are incorporated in the model by adding the imple-

78 4. Structure of Metamodels

mentation details of the process model. The Process Implementation Metamodel is
semantically richer, so as to express all the fine details of the process model in terms
of implementation. This way a single process specification model can be used for mul-
tiple implementations, in different projects within or across multiple organizations.
Finally, Process Instantiation Model (PIns) is developed which establishes the pro-
cesses by connecting them to the development tools, documents, repositories, people,
etc.

Let us take an example of an organization that develops its models in conformance
to the European Cooperation for Space Standardization (ECSS) standards. If their
process model is conforming to the ECSS-E-ST-40C Standard [ESA-ESTEC 09], then
this information should be evident from the process model. In such a case, this or-
ganization can develop a PSpec based entirely on this standard. Or it can choose to
tailor the reference process metamodel offered by the standard, and model that as
its PSpec. In process implementation phase, this organization would need to refine
this model to carry the implementation specific details as well. Thus a specific imple-
mentation model for a project conforming to this standard, can be modeled as PImp.
Finally, this organization would want to enact these processes. Instantiation level
details for the process model are added in the third phase when a PIns is developed.
PSpec and PIns could be developed manually, but in the favor of process model au-
tomation, we use transformations in between these process metamodels. Adding the
transformation in between these metamodels surely does not automate the process,
but helps take the first initiative towards a better automation of process modeling.

For this organization in process specification phase, its focus remains on the spec-
ification of interfaces based on the artifacts and their types. The designer level de-
cisions for implementing the process are taken in the implementation phase. The
decoupling of the activities which had no importance in the first phase, might be
beneficial for this phase, if activities are performed by different roles in varying envi-
ronments. Finally, the enactment of this process demands further support for project
management like project planning, risk handling, scheduling, costing etc, which is of-
fered in the instantiation phase. As we believe that the semantics of a process model
is different at each phase of development and that these differences in semantics (and
syntax) should be incorporated semi-automatically in the model, when the phase re-
quires so. We achieve this through the use of distinct process models and the use of
model transformations between them. This approach models the processes from spec-
ification till their execution in a consistent manner. No mapping to external execution
languages is required like in SPEM or BPMN for enacting the processes. Similarly the
approach itself provides the facility to specify the processes. Hence, no translations
are required between specification languages and process implementation/execution
languages like YAWL or Little-JIL.

Contribution III: Providing a much wider coverage of process lifecycle
phases without translation to other languages (to cover the non-supported
phases) resulting in semantic consistence.

4.1. Multi-metamodel Process Framework 79

4.1.2 Process modeling scenario

Comparison of different approaches for solving a particular problem is of high
value in the research domain. Keeping this vision in mind, a standard benchmark
software process modeling problem was developed in the 6th International Software
Process Workshop (ISPW-6) [Kellner 90]. This benchmark presents a software change
process, which focuses on the designing, coding, testing and overall management of
this process. It is assumed that a Configuration Control Board (CCB) authorizes this
process which aims to change a single code unit. The complete process is encapsulated
in a single higher level abstract activity, named as Develop Change and Test Unit,
here after referred as DCTU. This activity is composed of other sub-activities, each
of which has a separate objective. These activities are:

— SAT - Schedule and Assign Tasks

— MP - Monitor Progress

— MD - Modify Design

— RD - Review Design

— MC - Modify Code

— MTP - Modify Test Plans

— MUTP - Modify Unit Test Package

— TU - Test Unit

The first sub-activity in this benchmark is the SAT activity, which is responsible
for developing a schedule and assigning tasks to the concerned roles of other sub-
activities. This activity is carried out by the project manager. SAT is the first activity
that is executed with the execution of DCTU activity and it starts as soon as it gets
the authorization from the Configuration Control Board (CCB). Its input contract
for RequirementsChange and ProjectPlan are delegated from the parent activity i.e.
the RequirementsChange document is handed over to this activity directly from CCB
in a hand carried transaction at runtime. However it accesses the ProjectPlan from
a file (computer I/O). The task assignment is emailed to the roles of other activities
rather than the activities themselves, which means that those activities are still not
executed but their resource allocation has been done, through this activity. It delivers
the RequirementsChange document to all the assigned personnel for other activities.
Finally, the updated project plans is written to the file. This activity ends, once all
the outputs have been provided.

The second activity in this process is the MP activity, which is executed in parallel
with all other activities till the termination of DCTU. It is performed by the project
manager. This activity is responsible for gathering the completionNotifications from
all other activities. It starts as soon as the SAT activity ends. It has access to
the ProjectPlans and can alter them if the project is not advancing as planned. In
case, the ProjectPlans are changed, it notifies it to all the assigned personnel of other
activities. The CancellationRecommendation for DCTU is verbally initiated by this
activity. This activity is also responsible for aborting the DCTU if the Cancellation-

80 4. Structure of Metamodels

Recommendation is approved by the CCB. This means that as parent activity can
trigger lifecycle events for child activities, child activities can also trigger the lifecycle
events for the parent activities. These events are then propagated upwards/down-
wards to the desired level. This activity ends once the DCTU is canceled or the TU
activity is successfully completed.

MD activity is responsible for modifying the current design, based on the require-
ments change document handed over to it by SAT activity. A design engineer is
responsible for carrying out this activity. It has access to the software design docu-
ment file to get the current design. Once the design is modified, it is hand carried to
RD, MC and MUTP activities and this activity ends. However subsequent iterations
can begin if RD activity does not approve the design. This activity is followed by
the RD activity, that reviews the modified design and provides a feedback to MD
activity. A feedback loop between MD and RD illustrates an iteration in a part of
the sub-assembly of the process. This iteration continues till the modified design is
approved by the RD activity, which notifies the review decision for each iteration to
the MP activity. Approved modified design is handed over to the MC and MUTP
activities by MD and documented in the software design document file by the RD
activity.

A quality assurance engineer performs the MTP activity, as soon as the tasks are
assigned by the SAT activity. This activity receives the hand carried, currentTest-
Plans and modified it according to the RequirementsChange document. Once the
modifiedTestPlans are ready, they are hand carried to MUTP activity. MTP activity
terminates once the output is ready. MUTP activity is also performed by a quality
assurance engineer, when the MTP activity is terminated. MUTP activity receives
the approved modified design from the MD activity and (if needed) can access the
modified source code from the software development files. It is responsible for the
actual modification of the testUnitPackage (from test package file) for the associated
code unit. The modifications result in a new version of testUnitPackage, which is
kept under automated configuration management. This activity ends once the out-
puts have been produced. However subsequent iterations may start, based on the
(verbal) recommendations of the TU activity.

In parallel to the MTP activity, MC activity modifies the code according to the
approved modified design. It is performed by the design engineer. It can access
the existing code from the software development files. Once the code is modified,
and a clear compilation is achieved without errors, the code (source and object) is
documented in the software development files and the activity ends. Subsequent
iterations begin as soon as the TU activity notifies some problems with the code.
Finally TU activity tests the modified code and emails a notification to the MP
activity. This activity is jointly performed by the design engineer and the quality
assurance engineers. It accesses the objectCode from the software development files
and the testUnitPackage from the test package file. Test results are documented in
the Test history file. A verbal feedback is provided to the MC activity regarding the
code and MTP activity regarding the testUnitPackage. This feedback may initiate
subsequent iterations of MC or MUTP activities. The feedback loop between TU

4.2. Metamodels for Process Development Phases 81

and MC activity continues till all tests are successful. It terminates after sending a
successful testing notification to the MP activity.

4.2 Metamodels for Process Development Phases

CPMF defines three metamodels to demonstrate the applicability of the approach
on a minimal process development lifecycle. Each metamodel is explained below
according to its relevance to the specific phase of process lifecycle.

4.2.1 Specification Phase

The first phase of process development lifecycle is to specify the processes. The
development of a process model like any other model can be either prior to the system
or after its development. The process models that are built prior to the system are
developed to guide the actual real life processes that need to be executed. On the
other hand, process models are also built to evaluate existing processes, and for that
they are developed by abstracting the executing processes. As we are focusing on the
software development processes, thus we take into consideration the process models
that are developed to guide the development and management of the future processes.
In the specification phase of process development, the key interests are as follows:

— Review customer requirements and objectives If the organization is
developing the process for its own need, then it would be considering its own
requirements.

— Define the scope of the project The scope of the project defines the project
boundaries. This gives an overall objective to the process model, that needs
to be limited.

— Review the business strategy An initial process model serves as a basis
to review the business strategy. A business strategy does not contain the
implementation logic of the processes, rather it is based on the objectives and
how these objectives are broken down into sub-objectives to achieve it.

— Identify process components Once the business strategy is defined, the
identified sub-objectives are associated to different process components. These
process components are responsible to execute the primitive level steps (di-
rectly or indirectly by delegating the responsibility to sub-process components)
to achieve these objective.

— Identify the artifacts The objectives of a software development project in-
volve the development of software programs, documentations, standards, mod-
els, use cases etc. These artifacts need to be identified and specified in the
specification phase of software process development.

— Define the responsibilities The process activities/tasks are carried out man-
ually, automatically or semi-automatically. In all these cases, responsibilities
need to be defined for each task.

82 4. Structure of Metamodels

— Preliminary analysis and evaluation of the process A process model in
a specification phase should allow for a preliminary analysis and evaluation to
assess if it can meet the customer requirements.

— Comparison with industry and international standards If the customer
has already defined its own standard or follows some international standard,
the compliance of the process model should be checked against them.

Process Specification Metamodel

Process Specification Metamodel (PSpec) is used to define the basic structure of
the process model at the specification phase. A process in its specification phase is
decomposed into different process components, which creates a hierarchy. Different
process modeling approaches adopt different architectures to incorporate hierarchy in
the process model. The definition of process hierarchy in CPMF is a little different
than others, for the reasons that they usually offer a direct hierarchy of activities in
a process e.g. in SPEM. On the other hand, EPC’s use a concept of process path
in an EPC that refers to another EPC, thus creating a hierarchy. CPMF is very
strict in the definition of a process and an activity. We define a process as , "an
architecture of interconnected activities such that they collectively aim to achieve a
common goal". An activity is a unit of processing action in a process model. Thus a
simple hierarchy of activities only would be a structural breakdown of activities with
no interconnection. Activities can either be decomposed further or can represent the
primitive level of processing. For a meaningful process hierarchy in CPMF, each
composite activity contains a process, which amounts to containing a collection of
interconnected activities. Activities that are not decomposed in a process specification
model do not represent the fact that they can not be decomposed any further, it just
specifies the smallest unit of breakdown, which is a designers choice.

Contribution IV: Offering the constructs related to a specific phase
of process development only, without polluting the model with additional
noise.

Apart from offering a simple process hierarchy, CPMF offers activity sharing
amongst different processes. An activity can be contained by two different processes,
which share some common processing actions. A shared activity may get its inputs
from any or both of these containing processes, its output being accessible to both
the processes.

Inspired from Design by Contract (DbC), all the interactions to and from the
component are handled through specified interfaces. An activity behaves as a black
box component, where the interface to its context and content (in case of composite
activity) is through its contract. The term ’contract’ is an inspiration from DbC, which
uses it to describe the conceptual metaphor with the conditions and obligations of
business contracts. A contract in CPMF can either be required or provided, which is
called its direction. A required contract is an interface specification of an activity for
the input artifacts. A provided contract is an interface specification for the artifact

4.2.
M

etam
odels

for
P

rocess
D

evelopm
ent

P
hases

83

Process
name : EString
description : EString

Activity
name : EString
description : EString

Contract
name : EString
kind : ContractKind
position : PositionKind

ArtifactSpecification
name : EString
description : EString

Binding

RequiredContract

ProvidedContract PostCondition

Precondition Condition

Properties
name : EString

Team
nbMember : EInt

Role
name : EString
description : EString

Responsibility
name : EString
description : EString

<<enumeration>>
PositionKind

external
internal

<<enumeration>>
ContractKind

communicationContract
artifactContract

Message

Guidance
name : EString

interface
1..*

has
0..1

uses 0..*

source
1

target
1

0..*

playedBy0..1

assignedTo
1..*

containedBy
1..*

has
0..1

0..*

0..*

0..*

1..*

0..1

1..*

1..*

has
0..*

responsibility assignment

hierarchy contracts

activity sharing
conditions

Figure 4.3 – Process Specification Metamodel

84 4. Structure of Metamodels

that it offers. Besides being required or provided, a contract is either external or
internal. External contracts are used to interact with the context of the activity. The
context of an activity is the set of parents activities and all other activities composed
by the processes that contain it. Internal contracts are used to interact with its
content by a composite activity. The content of an activity is the set of all activities
contained by the process that it contains. In case of composite activities, for each
external contract there is a corresponding internal contract of the opposite direction.
Thus for a required external contract, there exists a provided internal contract and
vice versa.

Contribution V: Contractual interactions between the activities guaran-
tee its correctness. Focus on composition and information hiding.

Each contract of an activity defines an artifact specification. This artifact speci-
fication specifies the artifact that an activity needs as an input through its required
contract or offers as an output through its provided contract. Because the process
model is at specification level, the process model is not executable. Thus no actual
artifact is passed between the activities, at this level. An artifact specification defines
the properties of an artifact. An artifact specification can be optional or mandatory
for an activity. This is expressed through the contract, which can either be optional
or mandatory. Unavailability of an optional required contract does not create any
hindrance for the processing of the activity, whereas a mandatory required contract is
obligatory for the processing of an activity. Same ways, a mandatory output contract
has to be offered by an activity before its completion, however the optional output
contract does not stop the completion of an activity.

In order to guarantee the correct processing of an activity, the contracts of the
activity are enriched with conditions. These conditions are based on the properties
defined by the artifact specifications. Pre-conditions are defined in the required con-
tract of an activity. They are used to evaluate the properties, that need to be met in
order to guarantee the correct inputs for the proper processing of an activity. Post
conditions on the other hand are defined in the provided contract of an activity and
record the conditions created by the processing of an activity. They guarantee an
accurate output of an activity. The contracts of two activities are interconnected
through bindings. A binding connects the provided contract of an activity to the re-
quired contract of another activity, such that the artifact provided by the first activity
can meet the preconditions of the second activity. This defines a flow of activities
based on their artifacts. This flow of activities is sequential and proactive.

Each activity defines some responsibilities for their processing. Each responsibility
is assigned to a role or a team. There are different mechanisms for representing role
assignments. For example RACI method proposes the RACI matrices for describing
the responsibilities assigned to different roles and teams [Hallows 02]. RACI stands
for (R)esponsible, (A)ccountable, (C)onsulted and (I)nformed. SPEM 2.0 uses the
RACI-VS method to construct the responsibility assignment map that can be attached
to the activities, processes and work products [OMG 08]. CPMF does not restrict the
use of any specific responsibility assignment approaches, but offers the mechanism to
assign responsibilities to the roles. A role defines the function assumed by a person

4.2. Metamodels for Process Development Phases 85

or tool for executing a process. A team is a collection of roles that assume a collective
function.

Process specification model of CPMF can be translated to the other existing
process modeling approaches. However, this translation would result in a conceptual
loss. There is no mechanism to differentiate between an artifact and an artifact
specification, both in BPMN, SPEM or other approaches discussed in the state of
the art. Similarly a concept of responsibility assignment to an extent of defining the
privileges associated with each role is also missing. A translation in the opposite
direction, from BPMN or SPEM would also result in considerable loss of data. The
reason for this loss is that those approaches mostly target the implementation phase of
process development, whereas this process model is used to capture the specification
details only.

ISPW-Scenario in Specification phase

We present an implementation of the ISPW process modeling scenario presented
in section 4.1.2, as shown in figure 4.4. The scenario presents a DevelopChange-
AndTestUnit (DCTU) activity, which is a composite activity. DCTU contains an
internal process, which further composes eight sub-activities. DCTU has the required
and provided contracts for handling the inputs and outputs through the activity. As
it is a composite activity, for each external contract, it has a corresponding internal
contract of different direction. Each of the sub-activities of DCTU have their respec-
tive external required and provided contracts. The binding between these contracts
is explicitly drawn through the edges that connect these contracts. These edges are
connected and represent the direction of data-flow. For example, the ModifyDesign
(MD) activity offers a provided contract for modifiedDesign and the ReviewDesign
(RD) activity has a required contract for modifiedDesign. A binding between the two
contracts shows that RD activity is expecting the modifiedDesign from MD activity.
This binding is depicted by the directed edge connecting the two contracts.

The graphical model of this scenario only depicts the activities, their contracts
and the bindings between their contracts to show dependencies among the activities.
Other information regarding the guidelines, conditions, responsibilities and roles is
not shown in the graphical model. These details are entered into the model through
the activity inspector provided in the model editor. Other views of the model can
be generated to present other information held in the model, but not shown in this
graphical notation. Generation of these views is out of the scope of this thesis. The
model contains this information for the development of these views but no views are
generated by the tool support as yet.

Specification level model is not polluted with the implementation details of this
scenario. Thus, the activities shown in the model are definitions which do not have
any associated implementation yet. Logical connectors for the data-flow between the
activities are not shown explicitly in the model. They are encoded within the contracts
of the activities. All the required contracts are of OR-type and all the provided
contracts are of AND-type. Pre-conditions are used to express any AND-type input

86 4. Structure of Metamodels

SoftwareChange Process

DevelopChangeTest Process
DesignReviewFeedback

CP-Plans

ModifiedDesign

CodeFeedback

SourceCode

TP-Feedback

ObjectCode

CUT-Package

ST-Notification

O-Notification
ModifiedTestPlans

TaskAssignment

C-Recommendation

P-Plans

TestResults

AM-Design

Authorization
R-Change
ProjectPlans

CurrentDesign

CS-Code CT-Plan

CU-Test

Cancellation

DevelopChangeAndTestUnit

MonitorProgress

ModifyTestPlanScheduleAndAssignTasksModifyCode

ReviewDesign

TestUnit

ModifyDesign

ModifyUnitTestPackage

Figure 4.4 – ISPW Scenario - Specification Phase

to an activity at this level. ISPW-scenario describes the artifacts as the inputs and the
outputs of the activities. However, the required and provided contracts of this model
offer the artifact specifications for respective artifacts. For example, the ModifyCode
(MC) activity has two required contracts: modifiedDesign and currentSourceCode. In
this case, these required contracts specify what sort of artifact is expected by the
MC activity to continue its processing, through presenting the artifact specification.
For its provided contracts, it owns two interfaces: sourceCode and objectCode. These
contracts offer the artifact specifications for their respective artifacts.

4.2.2 Implementation phase

Once the processes are specified they provide an initial structure upon which the
implementations can be built. Goals and objectives of the processes are already set,
but they need further refinement for being project specific. Process specifications
are very general in nature and do not take into account any details regarding the
specific organization or project. They also do not give the implementation details
of the processes. These details are added in the implementation phase of process
development lifecycle. The key interests in process implementation phase are:

— Assess project level conditions The constraints and conditions specific to a
software development project need to be taken care of in this phase of software
development. The conditions like the overall duration in which the project
needs to be completed, the level of resources available for a specific project are
examples of concerns which are specific to a particular development project.

4.2. Metamodels for Process Development Phases 87

— Evaluate technical environment The technical environment for the devel-
opment of a particular software development project is the level of capability
available for its development. Analysis of the kind of infrastructure available
to develop a particular process is also done in this phase.

— Define operational constraints Once the project level conditions and the
technical environment is analyzed, the process can be developed taking into
account the external (contextual) constraints. These constraints need to be
defined, so as to assist in process development.

— Analyze & quantify business process Already available specification level
process gives a general analysis capability, but for a particular project it needs
to be analyzed for the process fine tuning. For example to analyze a process,
we have to identify the requirement of (possible) iterations of an activity. The
quantification of process properties sets a limit for process properties that an
activity can implement.

— Identify (alternative) solutions A specification level process model is com-
parable to a problem rather than a solution. This problem identifies the inputs
and outputs of an activity without precising the solution for implementation.
Different solutions for these process ’problems’ need to be identified in this
phase.

— Identify & define primitive level work units Processes are designed down
to the primitive level, where the primitive tasks need to be identified. These
primitive tasks make up the higher level activities. Implementations need to
be defined for the processing of these tasks.

— Identify process implementation candidates Once different solutions are
at hand, the possible implementation candidates can be chosen, taking into
consideration the contextual constraints and the operational constraints. Im-
plementations for the chosen solutions are developed which might result in
multiple implementations for a single activity.

— Define people and system intervention A software development process
needs the intervention of people and system for its implementation. Roles are
already associated to activities in the specification level model, but they need
to be associated to the process implementations in a way that each role is
associated to the task level.

— Document & store the process implementations Finally, the implemen-
tations of the processes need to be documented and stored in the process
repositories. The documentation of these activities allows to (re)use them in
the subsequent phases. They are stored in the process repositories for possible
retrieval.

88 4. Structure of Metamodels

Process Implementation Metamodel

Process Implementation Metamodel (PImp) is semantically richer than the Process
Specification Metamodel. PImp focuses on the separation of concerns, the usage of
event based mechanisms and the dynamism introduced through multi-level modeling.
Process Implementation Metamodel defines the overall structure of the implementa-
tion level processes. The metamodel is built using two packages: Core package and
the Contract package. The later package is merged in the former to get the complete
metamodel, which is presented using UML syntax.

The Core package of PImp defines the core entities of the process model except
the details of the contracts, as illustrated in figure 4.5. A process in our framework
is a collection of activities that are ’interlinked’ to achieve a common goal. This
metamodel presents the process model in two levels: abstract and concrete. The ab-
stract level defines the data-flow within a process and the concrete level defines the
control-flow. Activities at both levels define their contracts. These contracts allow
them to interact with other activities (within their context or through a containment
relationship). These activities are not sequenced in terms of a workflow. In fact,
their contracts define if they depend on some other activity for their execution. The
’inter-linkage’ of activities is explicit on the abstract level, whereas on the concrete
level, there is a dependency between the activities that is not explicitly represented.
Thus, instead of focusing on a proactive control for the process, we stress to focus on
the completeness of definition for each individual activity. Inspirations from the com-
ponent based paradigm have led us to define an activity as a black box component,
where the only interface of an activity to its context or content (in case of composite
activity) is through the defined contracts. This gives a nature of pipe & filter archi-
tecture to the process, where the activities serve as filters and the dependencies serve
as pipes.

Contribution VI: A bi-layered approach for process modeling that offers
separation of concerns for data-flow and control-flow.

An activity, being the basic building block of the process model, expresses its
interactive requirements for operation through contracts. A process containing both
activities and their associated dependencies represents an architecture with activities
as basic entities and dependencies to define the flow between them. The activities
only express their dependencies, and thus the absence of ’hard coded’ control-flow
introduces a fair amount of dynamism in terms of activity sequencing. This dynamic
sequence of flow equips the process model with a reactive control that has the ca-
pability of restructuring the control-flow for the activities at runtime. For example,
two independent sub-activities planned to be performed one after the other, may be
performed in parallel, if the project gets late from the initially planned schedule.

Activities of the process Implementation metamodel follow the same hierarchical
structure as followed in the process specification metamodel. There are two parallel
hierarchies defined by this metamodel: one at abstract level and the other at the
concrete level. At the abstract level, there is a hierarchy of AbstractProcess that
contains ActivityDefinition. However, there is no specialization of primitive or com-

4.2.
M

etam
odels

for
P

rocess
D

evelopm
ent

P
hases

89

Process
name : EString
description : EString

AbstractProcess

ConcreteProcess

ActivityDefinition
name : EString
description : EString

ActivityImplementation
name : EString
description : EString

Responsibility
name : EString
description : EString

AbstractContract

Contract
direction : DirectionKind

Binding

Property
name : EString

CompositeActivity PrimitiveActivity Role
name : EString
description : EString

Team
leader
nbMembers

<<enumeration>>
PositionKind

internal
external

<<enumeration>>
DirectionKind

provided
required

ConcreteContract
position : PositionKind

Milestone

Objective

Capability

Guideline

target0..1source
0..1

1..*

has 0..*

playedBy0..*

playedBy 0..*

refersTo 0..1

owns
1..*

owns
1..*

implements 0..1

0..*
1..*

1

has
1

refersTo 1

acheivedBy0..*

has 1..*

1..*
has
1..*

has0..*

has0..*

0..*

Abstract level
Concrete level

Figure 4.5 – Process Implementation Metamodel - Core Package

90 4. Structure of Metamodels

posite activityDefinition. The implementation of an activityDefinition (at concrete
level) specifies, if it is implemented through the composition of some other primitive
activities or is a primitive activity itself. ActivityDefinitions at the abstract level of
this model are carried forward from the Actvities in specification metamodel.

Considering the importance of separation of concerns, SPEM2.0 keeps the usage
of activities apart from their contents. It separates method content from its usage,
where the usage is a reference towards the method content. Thus method content
stays in the knowledge base and it is used in the process model through its reference.
Contrary to SPEM’s approach for realizing separation of concerns, we separate data-
flow from control-flow in two distinct levels. We have taken inspiration from the
object oriented paradigm and use the strength of typing concepts, so as to add both
variability and conformance to our activity structure. An ActivityDefinition behaves
like an activity type (more of a conformance than a type-instance relationship) and
multiple ActivityImplementations can implement it. These activity implementations
serve as a set of different alternative implementations for the activity definition. Each
activity implementation carries its own properties. These properties are internal to
an activity implementation and can not be accessed outside it, except through the
specified contracts.

Contribution VII: ‘Type-instance’ like conformance relationship between
activity implementations and activity definitions to foster variability in the
process model.

The restriction on interactions through the specified contracts only, adds the flex-
ibility to choose any of the conforming alternative activity implementations for an
activity definition. The choice of the right alternative may be deferred till execution
(in the next phase) and the chosen alternative may be added on the fly. A new activ-
ity implementation must implement all the interfaces of the activity definition, thus
avoiding any issues of compatibility. The modifications in an activity implementation
do not affect other activities in the same context having dependence on it (as far as
it conforms to the activity definition). Likewise, any modification to the context of
an activity implementation does not effect its content. An activity definition defines
the contracts of the activity at the type level. Conforming to this activity definition,
multiple activity implementations can be developed. An alternative activity imple-
mentation can be developed for a team or an individual, or it may be outsourced,
changing the activity implementation to a different perspective altogether. All these
activity implementations remain valid and can be replaced with any other activity im-
plementation that conforms to the activity definition. The use of multiple abstraction
levels induces a process variability in the process models.

The contract in a process model is specialized to abstract and concrete contracts
as shown in the core package in figure 4.5. Each activity definition specifies an ab-
stract contract, whereas each activity implementation specifies a concrete contract.
As there exists a conformance relationship, ’hidden’ within the ’implements’ rela-
tionship between activity implementation and activity definition, similarly there is
a conformance relationship between the concrete contract and the abstract contract.
This conformance relationship between concrete contract and abstract contract is pre-

4.2.
M

etam
odels

for
P

rocess
D

evelopm
ent

P
hases

91

ActivityDefinition
name : EString
description : EString

ActivityImplementation
name : EString
description : EString

AbstractContract

ConcreteContract
position : PositionKind

Contract
name : EString
direction : DirectionKind

Condition

Precondition

Postcondition

ControlEvent

MessageEvent

ArtifactSpecification
name : EString

Artifact
name : EString
description : EString

ArtifactStateChartActivityStateChart

Metamodel
name : EString

ArtifactContractLifecycleContract CommunicationContract

Message

Properties
name : EString

Event
name : EString

<<enumeration>>
DirectionKind
required
provided

<<enumeration>>
PositionKind

internal
external

MessageContract

ControlContract

1..*

implements0..1

1..*

has
0..*

0..*

0..1

0..1

specifies 0..1

conforms to 0..1
0..1

0..1

has
0..1

0..1 1..*

0..*

0..*

0..*

Abstract level

Concrete level

Figure 4.6 – Process Implementation Metamodel - Contract Package

92 4. Structure of Metamodels

sented through a mapping between the contents of the two entities, discussed in the
Contract Package of the metamodel.

The responsibility assignment for a process is a very important aspect for process
modeling. Responsibility, role and team entities are used to express these assign-
ments for each activity. Each activity definition is played by a responsibility, whereas
each activity implementation is played by a role. A responsibility of an activity def-
inition specifies the level of authority for carrying out a task, for example approver
or accountable. Whereas a role for the activity implementation specifies the precise
function of a resource for the possible execution of the activity, in later phases of pro-
cess lifecycle. A role enjoys the level of responsibility that it refers. Thus a project
manager can be the approving authority for an activity and a software engineer may
be responsible for performing it. A team is a composite role that has multiple roles
as participants.

Contribution VIII: Allows to integrate different kinds of responsibility
assignment matrices, supported by Project Management Institute (PMI)
standards, in the process model.

The second package of the PImp is the contract package which merges in the core
package for the complete Process Implementation Metamodel. Contract package is
presented in Figure 4.6. All the interactions to/from activity definitions or activity
implementations are carried out through their specified contracts. These contracts
can either be internal or external to the activity definition or activity implementation,
which is defined through the position of the contract. The direction of the contract
defines whether it is used for inward communication (required) or outward commu-
nication (provided). It should be clear that the interaction from sub-activities to a
super activity is also inward for the super activity. In case of composite activities,
for every external contract, there is a corresponding internal contract of the oppo-
site direction. Thus for a provided external contract, there exists a required internal
contract and vice versa.

An activity, being the basic unit of processing, takes work products as inputs,
modifies or works on them and produces them as outputs. The input and output
work products of an activity are called artifacts and they specify the data-flow within
the process. An abstract contract of an activity definition deals mainly with the
artifacts, whereas a concrete contract deals with the events. Abstract contract is spe-
cialized into three different contracts: Artifact Contract, Communication Contract
and Lifecycle Contract. Artifact contract presents the artifact specification, which
is used to describe the inputs and outputs of the activity at abstract level. Apart
from specifying the artifact, it also presents the metamodel for the artifact. This
separation of contractual resources, allows to separate the data-flow of the activities
from their control-flow. Dealing with the data-flow at an abstract level (apart from
the control-flow) allows the data-flow mechanisms to benefit from effective means like
data repositories and configuration management. Whereas the control-flow within the
activities through the use of events in concrete contracts can be effectively managed
by an underlying event management system. One of the major reasons to choose

4.2. Metamodels for Process Development Phases 93

event based mechanisms is to allow the decoupling of the activities for the control-
flow. By decoupling these activities using events, the focus is brought back to the
completeness of the definition of each individual activity. It also supports manipu-
lations to the activities at runtime, as long as the contract is not broken. All the
control events owned by the concrete contract map to the artifacts specified through
artifact specification at the abstract level. Having two separate levels, a link is kept
between the control-flow and the data-flow, so that the data-flow should be able to
guide the control-flow among the activities, as and when necessary.

One of the key features of our framework concerning artifacts is the exploitation
of structure. Artifacts are not taken as black box entities and their structure is kept
comprehensible to the activity. This is enforced by the fact that each artifact con-
forms to a metamodel. This allows an activity to take an input artifact and even
dynamically reconfigure itself (if needed) through the use of that artifact. The syntax
and semantics encoded within the artifact is explicitly made accessible to the process
that can exploit this information. This further allows us to define semi-automatic and
automatic processes in our framework, for example model transformations. Artifact
specifications also contain the artifact statechart that defines an automaton for the
artifact states. Contracts at both levels define conditions: pre-conditions for required
contracts and post-conditions for provided contracts. Using pre-conditions on the
structured artifacts helps in managing semi-automatic processes with model manip-
ulations. For example, a transformation activity takes a model as an input, and has
the capability to verify its conformance to the respective metamodel. In case, the
process modeling approach does not accept the artifact as a structured entity, an
activity can not evaluate the input artifact based on its structure or the associated
properties. The concept of using a structured artifact may not be of prime focus for
manual activities, but is of high value for modeling the automatic and semi-automatic
activities.

Contribution IX: Use of structured artifacts in the process model so that
activities can access the properties of the input artifacts.

Lifecycle Contract is an abstract contract that defines the activity state chart. Ac-
tivity statechart defines the activity lifecycle. Events defined at the concrete level of
the process model conform to ActivityStateChart or ArtifactStateChart. Two kinds of
concrete contracts for PImp model are MessageContract and ControlContract. Con-
trolContract owns ControlEvents, which map to artifact specifications. Control events
conform to ArtifactStateChart. MessageContract owns MessageEvents that map to
the messages defined at abstract level. Message events conform to the ActivityState-
Chart. A detailed discussion about the contractual interaction is presented in section
4.3. Communication Contract is another absract contract that defines messages be-
tween the activity roles. A message event in the concrete level maps to these messages,
and is responsible for the actual choreography between the activities/roles.

94 4. Structure of Metamodels

ISPW-Scenario in Implementation phase

ISPW process modeling scenario presented in section 4.1.2 is implemented using
the PImp metamodel, as shown in figure 4.7. The specification model of the same
scenario presents the activities only at the definition level. However, a process imple-
mentation model of this scenario presents both the abstract and the concrete level.
The graphical notation for this model only presents the concrete level of the model
with one implementation for each activity definition. However, an implementation
phase process model can have multiple implementations for each activity definition.
This model presents the SoftwareChange (SC) process, that composed only one activ-
ity, the DevelopChangeAndTestUnit (DCTU) activity. DCTU is a composite activity
implementation, which composes a DevelopChangeTest (DCT)process. Both SC and
DCT shown in the graphical notation are the concrete processes.

An interesting point to consider in this scenario is that the internal architecture
of DCTU activity (which is composed of 8 sub-activities) was part of the (abstract)
process in specification model. However, in the implementation model this becomes
a single implementation of the DCTU activity. This allows to add other implemen-
tations of DCTU activity, which might compose less or more sub-activities or might
even be a primitive activity. At the abstract level DCTU activity specifies its con-
tracts and other details regarding objectives, guidelines and responsibilities etc. The
abstract level process specifies the binding between the activities. For example the
sub-activities of the DCT_Df process are connected together through directed edges
between them. These directed edges depict a binding between the provided contract
of the source activity and the required contract of the target activity. DCT_Df pro-
cess with its sub-activities, connected together through bindings, presents a workflow
at the abstract level. The implementation of the DCTU activity by the composition
of DCT process is defined at the concrete level.

In the concrete level of the model, there is no binding between the contracts (the
edges between the contracts in the graphical model are for the ease of understandabil-
ity only). The required contracts express their dependency over the events related to
the required artifact. Similarly the provided contract expresses its ability to trigger
the events related to the provided artifact. Events are prepared to be broadcasted in
the context or content of the activity implementation depending upon the position
of the contract. For example, the internal provided contract currentDesign of the
DCTU activity can broadcast any corresponding event to the content of the activity
and the external provided contract of the ReviewDesign (RD) activity can broadcast
the designReviewFeedback event in its context. The presence of events in the required
contract of an activity specifies that it is listening for this event through this contract.
For example, the designReviewFeedback contract of the RD activity is an external re-
quired contract. This contract specifies that RD activity is listening to the events
corresponding to designReviewFeedback.

4.2.
M

etam
odels

for
P

rocess
D

evelopm
ent

P
hases

95

DevelopChangeAndTestUnit

ScheduleAndAssignTasks

ModifyDesign ReviewDesign

ModifyCode

ModifyUnitTestPackage
TestUnit

MonitorProgress

ModifyTestPlan

SoftwareChange Process

DevelopChangeTest Process

DesignReviewFeedback

CurrentProjectPlans

ModifiedDesignReview

ModifiedDesignCode

CodeFeedback

Mo
dif

ied
Tes

tPl
an

s

SourceCode

TestPackageFeedback

ObjectCode

CurrentUnitTestPackage

SuccessfulTestingNotification

OutcomeNotification
ModifiedTestPlans

TaskAssignment

TaskAssignment TaskAssignment

TaskAssignment TaskAssignment TaskAssignment

TaskAssignment

CancellationRecommendation

ProjectPlans

TestResults

ApprovedModifiedDesign

Authorization
RequirementsChange

ProjectPlans

CurrentDesign

CurrentSourceCode CurrentTestPlan

CurrentUnitTest

Cancellation

DevelopChangeTest Process

DesignReviewFeedback

CP-Plans

ModifiedDesignReview

CodeFeedback

SourceCode

TP-Feedback

ObjectCode

CUT-Package

ST-Notification

O-Notification
ModifiedTestPlans

TaskAssignment

C-Recommendation
P-Plans

TestResults

AM-Design

Authorization R-Change
ProjectPlans

CurrentDesign

CS-Code
CT-Plan

CU-Test

Cancellation

MonitorProgress

ModifyTestPlanScheduleAndAssignTasksModifyCode

ReviewDesign

TestUnit

ModifyDesign

ModifyUnitTestPackage

SoftwareChange Process
DevelopChange

AndTestUnit
CurrentDesign

Authorization

ProjectPlans
R-Change AM-Design

CP-Plans
CT-Plan

P-Plans
C-Recommendation
TestResultsCancellation

CS-Code
CU-Test

Abstract Level Process

Concrete Level Process

ConreteContract -to- AbstractContract
ActivityImplementation -to- ActivityDefinition

Mappings

Figure 4.7 – ISPW Scenario - Implementation Phase

96 4. Structure of Metamodels

4.2.3 Instantiation phase

By the start of instantiation phase of process development lifecycle, processes are
already built with multiple solutions. Multiple solutions are the alternative process
implementations, where all of them conform to the activity definitions. Out of these
multiple activity implementations, a subset of implementations is chosen to develop an
executable process. These processes are not yet ready to be executed as they lack the
link to real-life data. This linkage with real-life data, their scheduling and connections
with the IT solutions give them the capability to be executed. Once they are ready
to be executed, they can be enacted through the enactment/execution engines. The
main objectives of process instantiation phase in software process development lifecyle
are as follows:

— Select the most feasible solutions Multiple solutions for implementing each
process may be developed in the implementation phase. These solutions are
available in the process repository. Process engineers need to select the exe-
cuting implementations based on different criteria like performance, contextual
constraints, resource availability, etc. in this phase.

— Link inputs/outputs to real data The processes in this phase should be
made executable and (where applicable) must be connected to the databases,
document files, configuration management systems for work products, etc.

— Review plan scheduling Time duration of each activity is part of its im-
plementation. But for developing an executable process model, activities need
to be assembled according to the scheduling plan of the project. This plan
needs to be developed at this phase, which affects the selection of appropriate
process components.

— Review cost scheduling Apart from time scheduling, cost scheduling needs
to be carried out at this level. Each process component implementation might
require different level of resources and duration. Based on these properties, a
cost analysis can be carried out for the project. This cost analysis is also one
of the deciding factors for choosing appropriate implementations.

— Linking processes to IT applications Software development processes tar-
get the development of software systems. For carrying out these processing
multiple tools are used. These tools can be invoked by the processes them-
selves. Linking the process components with their respective IT applications
for the purpose of their execution is handled in this phase of process develop-
ment.

— Perform process testing Each process component is already developed in
the previous phase, where its unit testing is the responsibility of the previous
phase. However, the integration of these process components into a complete
executable process is carried out in this phase. Integration testing of the
processes is also carried out in this phase so as to verify the correctness of the
processes.

4.2. Metamodels for Process Development Phases 97

— Roll out processes Once the process components are integrated to develop
an executable process, they are made available for execution. Process roll out
is the release of executable process components which may be reused from the
process repository.

Process Instantiation Metamodel

Processes are already designed and implemented before the Instantiation phase.
Process Instantiation Metamodel (PIns) focuses on the execution semantics of the
process model. As with the previous metamodels, its structure also revolves around
the concept of abstraction. This abstraction allows the activities to depend on the
contractual specifications of other activities, rather than on some specific concrete
instances. This abstraction is expressed in terms of a bi-layered structure, where the
upper layer is the abstract level and the lower layer is the concrete level. This ab-
straction boundary is crossed by a type-instance-like relationship (implementation)
between instantiation activities and activity definitions. Other relationships initi-
ating from concrete level that cross this boundary also pertain to conformance or
realization of some abstract notions. For example, the materializes relationship is
responsible for the realization of artifact, based on the specifications described in
artifact specifications, at abstract level.

PIns is also developed using two packages, where the Instance-contract package
merges with the Instance-core package for the complete metamodel. A process in
Instance-core package is defined as an assembly of activity definitions or activity in-
stantiations depending upon its level of abstraction, as shown in figure 4.8. This figure
highlights the concepts that are different (updated or added) in PIns metamodel from
the PImp metamodel. Hierarchies are managed in PIns metamodel in the same way
as in PImp metamodel, using primitive and composite activities. An abstract process
contains the assembly of activity definitions, where each activity definition behaves
as a type for a set of instantiation activities. Activity Definitions do not compose any
other process or activity definitions directly. The are implemented by the instantia-
tion activities, which decide whether this activity is composite or primitive. Thus an
activity definition can be implemented by either a primitive instantiation activity or
a composite instantiation activity. A composite instantiation activity in turn contains
the instance process. An instance process in turn contains both instantiation activities
and the activity definitions. A very important structural difference between the PImp
and PIns is the content of a concrete level composite activity. A composite activity
implementation in PImp only contains concrete process with activity implementations
mapping to activity definitions. It does not contain the activity definitions. On the
other hand, a composite instantiation activity from PIns contains both the abstract
and the concrete process, which means that it contains a complete process model in
itself, where no instantiation activity maps to an activity definition out of its context.
It allows an instantiation activity to be complete for execution.

Similar to PImp metamodel, activity sharing is support in PIns metamodel as
well. The concrete level of the instance process model defines the concrete processes

98
4
.
S
tru

c
tu

re
o
f
M

e
ta

m
o
d
e
ls

Process
name : EString
description : EString

AbstractProcess

ConcreteProcess

ActivityDefinition
name : EString
description : EString

InstantiationActivity
name : EString
description : EString
start : EDate
end : EDate
currentState
isAutomatic : EBoolean

Responsibility
name : EString
description : EString

AbstractContract

Contract
direction : DirectionKind

Binding

Property
name : EString

CompositeActivity PrimitiveActivity
Role

name : EString
description : EString

Team
leader: Role
nbMembers : EInt

<<enumeration>>
PositionKind

internal
external

<<enumeration>>
DirectionKind

provided
required

ConcreteContract
position : PositionKind

Milestone
isAcheived : EBoolean
name : EString

Objective
name : EString

Capability
name : EString

GuidelineInstanceProcess

target0..1source
0..1

1..*

has
0..*

playedBy0..*

playedBy 0..*

refersTo 0..1

owns
1..*

owns
1..*

implements 0..1

0..*
1..*

1

has1
refersTo 1

acheivedBy
0..*

has 1..*

1..*
has
1..*

has0..*

has0..*

0..*1

1

Abstract level

Concrete level

Figure 4.8 – Process Instantiation Metamodel - Instance-core Package

4.2. Metamodels for Process Development Phases 99

within a model. These concrete processes follow the hierarchical structure of compos-
ite and primitive activities. Besides implementation details, instantiation activities
also define the instantiation details of the activity like duration, start date, current
execution status, iterations and current iteration etc. An instantiation activity defines
the concrete contracts for interactions with other activities. These concrete contracts
like abstract contracts can either be required or provided. Activity definitions do not
compose any other process, so all the contracts are external. However, instantiation
activities may implement an activity definition as primitive or composite activity, so
their contracts may be positioned internally or externally. Internal contracts are only
present in the composite instantiation activities. For every contract of a composite
instantiation activity, there exists another contract with opposite direction and op-
posite position. This allows for the delegation of contracts from external context to
the internal content or vice versa.

A notion of responsibility is specified for performing each activity definition at
the abstract level. It specifies various kinds of responsibilities that need to be taken
by the roles i.e. responsible, accountable, signatory, etc. The responsibilities are
assigned to the roles that play the instantiation activities. Each role is a collection
of capabilities needed to carry out the activities. These roles can be composed to
form teams. Each role is enacted by an actor or tool. An actor is an human resource
(i.e. employee/working for the organization) that performs the manual activities or
the manual part of the activities. The automatic part or the automatic activities are
performed by tools. These tools are the IT applications which are used to perform
various tasks related to the software development processes. Roles are linked to the
provided contracts through milestones. A milestone links the objective of an activity
and its role to the concrete level provided contract. Milestones are used to monitor
the progress of the executing process and the work performed by the actors.

Instance-contract package of PIns defines the contracts of activities both at ab-
stract and concrete level, as shown in figure 4.9. Similar to PImp metamodel, abstract
contracts are specialized as Artifact contract, Lifecycle contract and Communication
contract. Each artifact specification specifies a metamodel for the artifact, which
means that each artifact is considered as a model. Each artifact conforms to its
respective metamodel. Thus an activity has access to different components and prop-
erties of an artifact, because each artifact is structured. The concept of metamodel
is depicted through a single class in PIns for reasons of brevity. For the development
of an instance process model, it is the responsibility of the process designer to pro-
vide the associated metamodels for each artifact. Artifact contracts also contain the
ArtifactStateChart, which gives the automaton for the different states of an artifact.
These artifacts are kept in the artifact repository, so each artifact specifies its repos-
itory address. An artifact can either be a hard copy or a digital document. Each
digital artifact in PIns has a unique repository URL, which is used for access it in
the artifact repository. Artifact repository supports versioning, thus an artifact can
be locked by an activity, depending upon the nature of the activity.

Contribution X: Allows the flexibility to define a custom lifecycle for an
artifact.

100
4
.
S
tru

c
tu

re
o
f
M

e
ta

m
o
d
e
ls

ActivityDefinition
name : EString
description : EString

InstantiationActivity
name : EString
description : EString
start : EDate
end : EDate
isAutomatic : EBoolean

AbstractContract

ConcreteContract
position : PositionKind

Contract
name : EString
direction : DirectionKind

Condition

Precondition

Postcondition

ControlEvent

MessageEvent

ArtifactSpecification
name : EString

Artifact
name : EString
description : EString
repositoryURL: URL
isHardcopy : EBoolean
isLocked : EBoolean

ArtifactStateChart
artifactState
artifactEvent

ActivityStateChart
activityState
activityEvent

Metamodel
name : EString

ArtifactContract
currentState

LifecycleContract
currentState

CommunicationContract

Message
to: Role
from: Role
content : EString

Properties
name : EString

Event
name : EString

<<enumeration>>
DirectionKind
required
provided

<<enumeration>>
PositionKind

internal
external

MessageContract

ControlContract

1..*

implements0..1

1..*

has
0..*

0..*

mapsTo0..1

0..1

specifies 0..1

conforms to 0..1

0..1

0..1

has
0..1

0..1

1..*

0..*

0..*

mapsTo 0..1

0..*

Abstract level

Concrete level

Figure 4.9 – Process Instantiation Metamodel - Instance-contract Package

4.2. Metamodels for Process Development Phases 101

Abstract level of the process model defines two State machines, one for activities
through Lifecycle contract and the other for the artifacts through Artifact contract.
These state machines are public to other processes in the context of implementation
phase of process development lifecycle. Their validation is carried out at the imple-
mentation phase. In process instantiation metamodel, these state machines are kept
private and only a list of events is made public. Communication contract defines the
messages that can be sent between the roles of different activities. These messages
are defined in the abstract level, however they are triggered from the concrete level
through message events. This way, messages can be predefined and sent when they
are required.

Mapping of control events in the concrete level to the artifacts aligns the control
flow of the process with its data-flow. The event management system implemented
in the process interpreter handles the execution of processes at runtime. Using event
driven execution for the processes allows reactivity for the process model at one hand
and dynamic process reconfigurations at the other. Specification of the data-flow and
control flow in two separate levels and then mapping them together results in a process
framework which is proactive for data-flow, yet reactive for the control flow. Though
artifact specifications are defined at the abstract level, the concrete artifacts that
materialize those specifications are defined at the concrete level. Thus the data-flow
remains at abstract level but the exchange of real life artifacts between the activities
is handled using events at concrete level.

The motivation of using such a bi-layered structure for the process framework is
manifold. First, it allows to deal with the process variations where addition/manipu-
lation/ improvement of activity implementations is possible, even at runtime. Second,
it supports a correct by construction approach for the executable activities. Third,
it helps in separating the concerns in respect of data and control for an executable
activity. Fourth, it supports re-usability of process at varying levels of abstraction e.g.
we can reuse either an activity definition or an activity implementation. Finally the
use of abstraction allows better means to organize and synthesize existing processes
in a formal process model.

ISPW-Scenario in Instantiation phase

We have presented the ISPW process modeling scenario of section 4.1.2 in con-
tinuity from specification model to implementation model. This section presents it
in the instantiation phase, as shown in the figure 4.10. Composite activity Imple-
mentations from the PImp metamodel, contain the concrete process, whereas the
instantiation activities of the PIns metamodel contain both the abstract process and
the concrete process. This results in a self sufficient, complete activity that is ready
for execution. The graphical notation for this model takes one instantiation activity
for each activity definition, however other alternative instantiation activities are also
present in the model. These activities can be replaced with each other through a
proper mechanism of runtime adaptation, that will be discussed in the next chap-
ter. DevelopChangeTestProcess is an abstract process contained within the Devel-

102 4. Structure of Metamodels

opChangeAndTestUnit (DCTU) activity and the corresponding concrete process is
also contained in the same activity. The activity definition for DCTU activity at the
abstract level is the only activity definition present in the SoftwareChange process.

The concrete level and the abstract level activities are both present in the parent
instantiation activity. DCTU activity contains the abstract level activity definitions
for all the activities that it contains. The abstract level of the process remains the
same as in the PImp model. There is a mapping between each entity of the PIns
model to each entity of the PImp model. This is used to trace back the origins of
each entity, till the specification model. This is crucial when a process model is refined
over multiple phases and one wants to know which activity is following which specific
specification model. In this example we took one specification model and refined it
till the instantiation model, but it is possible to take two specification models and
develop a single implementation model from the two. In such situations, tracing back
to the original entity in a particular specification model is important.

The concrete level shown in this graphical notation does not link the contracts
together. The reason for this notation is to show that there is no explicit specification
of the dependency between the activities. An instantiation activity expresses its
dependency on specific events that might map to a particular artifact. For example
the ReviewDesign (RD) activity is expecting to receive a modifiedDesign document for
review. RD activity is not depending on a specific instantiation activity that provides
this document. Any activity that produces this modifiedDesign document can provide
this document. This creates a decoupling between the instantiation activities, where
the focus remains on the complete definition of each activity in a process model.

Events within the DCTU activity are managed by the event broker provided by
it. This event broker takes care of the routing of events between the instantiation
activities in a manner that AND, OR and XOR connectors can be simulated. Mod-
ifyDesign (MD) activity provides the design document to three instantiation activ-
ities: ReviewDesign (RD), ModifyCode (MC) and ModifyUnitTestPackage(MUTP).
MC and MUTP activities need this design document only when it has been approved
by the RD activity. Even if the document availability notifying event is received, the
pre-conditions of the MC and MUTP activity do not let the document pass through
the required contract. It is only possible to access this document when it is approved.
The input contracts of the RD activity require currentDesign and DesignReviewFeed-
back. There is an OR-type logic specified within these required contracts, such that
the activity can start its processing from any of these events (when the availability of
currentDesign is notified by artifact event).

A mapping is shown in the graphical notation for only one sub-activity, TestUnit.
These mappings between the concrete level process and the abstract level process
are implicit in the CPMF model. So they are not shown in the model explicitly.
In the figure 4.10, this mapping is shown for discussion purpose only. The ’circle-
shaped’ contracts in the concrete level of this model represent the provided contracts
of the activity, whereas the ’square-shaped’ contracts represent the required contracts.
There is a mapping between the concrete contracts of the TestUnit instantiation
activity and its associated activity definition. Control contracts are specified using

4.2. Metamodels for Process Development Phases 103

CPP

TR

At
RC
PP

CD

CSC
CTP

CUT

Cn

DevelopChangeAndTestUnit
DevelopChangeTest Process

DesignReviewFeedback

CP-Plans

ModifiedDesign

CodeFeedback

SourceCode

TP-Feedback

ObjectCode

CUT-Package

ST-Notification

O-Notification

ModifiedTestPlans

TaskAssignment

C-Recommendation

P-Plans

TestResults

AM-Design

AuthorizationR-Change ProjectPlans

CurrentDesign

CS-Code CT-Plan

CU-Test
Cancellation

MonitorProgress

ModifyTestPlanScheduleAndAssignTasksModifyCode

ReviewDesign

TestUnit

ModifyDesign

ModifyUnitTestPackage

AMD

PP
CR

ReviewDesignDRF

ON

AMD
MD

TA
UPP

TestUnit
CF
TPF

STN
TR

TA

OC

CUTP

ModifyUnitTestPackage CUTP

TA
MD

TPF

MTPMDSC

CUT

ModifyCode

SCTA

MD

OC

CF

ModifyTestPlan

MTP TA

CTP

MonitorProgress
CR
PP

CnTA

CPP ON STN

ModifyDesign
MD

TA

DRFCD
RC

ScheduleAndAssignTasks
RC TAUPPPP RCAt

Figure 4.10 – ISPW Scenario - Instantiation Phase

104 4. Structure of Metamodels

’hand’ symbol for hard-copy hand carried artifacts and ’data store’ symbol is used for
the digital artifacts stored in the repository. Message events are also either by emails
or by telephone. But these symbols are not of prime importance and depend upon
the tooling support implementation. The important point to note is that the model
is refined to the level that each interaction is properly defined.

4.3 Contractual Interactions

4.3.1 Design by Contract

Design by Contract (DbC) is a software construction approach that was developed
in the context of software programming language Eiffel [Meyer 92b]. The prime focus
of this approach is to guarantee the valid interactions between software components,
through the use of contracts [Meyer 92a]. Software components are taken as clients
(callers) and suppliers (routines). A client demands a service and a supplier provides
it. The mutual obligations and benefits between clients and suppliers are explicitly
specified. A supplier is obliged to provide "valid response", if all the conditions for
its processing are duly met. Similarly a supplier has the benefit to receive only the
"valid requests" which bind it to respond with the valid response. In case of software
process modeling, an activity plays both the roles; clients and suppliers. When an
activity receives an input from some other activity, it serves as a client of that activity
for that specific input artifact. When an activity provides an output to some other
activity, it serves as a supplier of that activity for that specific output artifact.

DbC uses the concept of Abstract Data Types (ADT) to ensure the encapsula-
tion of the data and methods behind well-defined interfaces. Assertions are exploited
to explicitly specifiy the interfaces for the components through pre-conditions, post-
conditions and invariants. Specification of these interfaces is called a ’contract’. These
contracts defined in ADT are bound together for the interacting components. Activ-
ities defined in the CPMF framework follow the DbC concept and specify their inter-
faces for interaction with other activities. This ensures the encapsulation of data and
’methods’ of a software activity. When all the interaction of an activity is restricted
through the specified interfaces, the use of conditions guarantee the validity of inputs
and outputs for it. For example, if a software development activity is responsible to
review a piece of code for quality assurance, it can specify the input software develop-
ment file and the output software development file through respective interfaces. The
input interface of the software development file can add pre-conditions e.g. the code
should be executable, it should conform to a specific language grammar, etc. Simi-
larly the output interface can add the post-conditions e.g. the software development
file should be approved by quality control engineer, it can even specify the quality
metrics for redundancy, cycles, nested block depth etc.

The core idea of design by contract is to hold responsible the software components
that is developed to carry out a particular task. This means that a software component
is responsible to provide the expected results if it is provided with the inputs that it
expects. This helps in locating the precise component in case the output of a system

4.3. Contractual Interactions 105

is not what was being expected. Anomalies in the software processes can be located
and fixed precisely and efficiently by checking out which specific contract between the
activities was broken. It also promotes the completeness of each individual activity
by explicitly specifying the inputs and the expected properties of inputs through pre-
conditions. Similarly the outputs and the desired properties of outputs are ensured
through the post-conditions. Focus on the completeness of definition for the activities
promotes explicit coupling. This explicit coupling is not a dependence of an activity
on some other activity, rather on some well defined inputs.

One other important motivation for choosing DbC for the CPMF framework is
to promote reusability. The overall architecture results in a modular process, where
each activity serves as a separate module. Each module in this architecture has its
defined interfaces, coupled with well specified assertions. This way, any activity that
specifies compatible required and provided contracts can be replaced with the current
activity. Compatible contracts mean that the new activity can have less required
contracts but it should offer all or more provided contracts than that of the activity it
is replacing. The activity being replaced and the replacing activity should both have
the same objective as well. It means that once an activity is developed in CPMF, it
can be used in any location, where it has access to the required contracts, provides
the desired contracts and serves the objective. This fosters reusability in process
modeling approach, provided a means of storing, searching and retrieving existing
activities is offered by the implementing tools.

Apart from modularity and reusability, DbC can also be exploited to offer multi-
ple abstraction levels. These abstraction levels serve as the concept of interfaces in
software programming languages, where the specification of interfaces defines a type
for the software module. Any concrete level software module that implements these
interfaces has to offer the implementation of these interfaces. This way, all the im-
plementations of the same ’type’ are guaranteed to provide a known set of outputs.
This concept of abstraction has been exploited by CPMF in its implementation and
instantiation level metamodels. Besides the level of abstraction, the structure of a
contract also changes with advancing phases of process development lifecycle. This is
visible from the refinement/evolution of contracts over the process lifecycle.

4.3.2 Contract refinement

CPMF follows DbC to have a modular process architecture with specified in-
terfaces. Each activity defines its contract to be able to interact with its context
or content. Context of an activity are the sibling activities and the parent activity
whereas content of the activity are the activities composed by the process that it
contains. The contracts of an activity have a direction and a position. The direction
of a contract specifies whether it is required or provided and the position of a contract
specifies whether it is internal or external. Internal contracts are only possible for
composite activities. For composite activities their contracts are in the form of a pair.
For each external contract, their exists an internal contract of opposite direction. This

106 4. Structure of Metamodels

pair of contracts for composite activities serves for delegation purposes. It is used to
pass the interaction from the content of an activity to its context or vice versa.

The contracts of the activities in CPMF are responsible for a guaranteed inter-
action between the activities. Each contract of an activity adds an ’obligation’ or
a ’benefit’ to the activity. Obligation of an activity is its provided contract, which
obliges the activity to provide the valid contract content specified by the contract,
if all its requirements for processing are met. Benefit of an activity is its required
contract, which guarantees to pass through only the valid contract content to the
activity. Contract content of a contract is specified by it and depends upon the level
of abstraction of the activity. This mutual agreement on the obligation of one activ-
ity towards the benefit of another activity creates a dependency between them. The
guarantee of correctness of interaction for every dependency comes from the notion
of this mutual agreement. This dependency between the activities may or may not
be explicitly specified in the model, depending upon the level of abstraction. Depen-
dency between abstract level activities is explicitly specified. However, on concrete
level the dependency between the contracts is not specified. The reason for not spec-
ifying the dependency is that an activity at concrete level can receive the input from
any other activity that provides ’correct’ output.

The core idea of CPMF framework is to have a refinement-based process modeling
approach, where a process is specified in its initial phase of development and is refined
over time with advancing phasing of process development lifecycle. For the current
implementation of this framework, we chose three metamodels, each for a different
phase of process development. Each of these metamodels evolves the structure of
the process. The contracts of activities in these processes are also refined along the
development phase.

Initially, the processes are specified using the Process Specification metamodel
(PSpec). PSpec defines the activities having two types of contracts: Communication
Contracts and Artifact Contracts, as shown in figure 4.11. Communication contracts
of specification activities define the messages that need to be passed between activities
for carrying out the processing. Artifact contracts of a specification activity contain
the artifact specification. Artifact specifications specify the artifact that is required
or provided by the activity.

Activities at the implementation level of process development are of two kinds:
Activity Definitions and Activity Implementations. Activity Implementations pro-
vide concrete implementation methodology either by composing other activities or
by defining the primitive level tasks to accomplish it. The contracts of activity im-
plementation are the concrete contracts and the contracts of the activity definition
are the abstract contracts. When the contracts of a specification model are refined to
the implementation model, they transform to abstract contracts. Concrete contracts
in process implementation model are developed in the implementation phase from
scratch. Concrete contracts need to conform to the abstract contracts, so that the
activity implementation can conform to the activity definition.

Abstract contract in PImp are of three kinds: Communication Contract, Artifact
Contract and Lifecycle Contract, as shown in the contract for activity definition in

4.3. Contractual Interactions 107

Satisfies

Sp
ec

ific
ati

on
 Ac

tiv
ity M Satisfies M

Sp
ec

ific
ati

on
 Ac

tiv
ity

Communication contracts

Artifact contracts

Messages

Artifact Specifications

Figure 4.11 – Contracts for Specification Activities

figure 4.12. A communication contract in a process implementation model is a direct
mapping from specification model with no change in its structure. It defines the mes-
sage based interaction between two activities. For example, if an activity requires an
information from some other activity to continue its processing, it is specified through
a communication contract. Different standards, use messages to define the interac-
tion between the activities. These communication channels are specified through
these contracts. An artifact contract of a process implementation model results from
a transformation mapping from the process specification model. An artifact contract
is refined in implementation model by adding an artifact state machine, defining the
automaton of the artifact lifecycle. The same artifact can have different lifecycles
for two different activities i.e. the artifact provided by an activity can follow a life-
cycle within that activity and another different in some other activity that requires
it. For example a software development file with some code may be completed for
an activity that produces it. When this file is required by quality assurance activity,
it might follow a different lifecycle till it is approved by this activity. For a binding
between a required artifact contract and a provided artifact contract, their must be
a ’satisfaction’ relationship between the artifact specifications in them and a ’subset’
relationship between the provided contract and the required contract. ’Satisfaction’
relationship guarantees that the provided artifact serves the need of the activity that
requires it for carrying out the processing. The ’subset’ relationship between the two
artifact state machines guarantees that the events specified by the provided contract
can all be understood by the state machine of the required contract.

Lifcycle contract in PImp is also an abstract contract that defines an activity state
machine. Activity state machine defines the automaton for the activity lifecycle. It
defines the events and the respective states that an activity can attain. This contract
is used to trigger the processing of its activity and to ensure the synchronization with

108 4. Structure of Metamodels

SatisfiesAc
tiv

ity
 De

fin
itio

n

M Satisfies M

Subset

Subset Subset

Satisfies

Ac
tiv

ity
 De

fin
itio

n

Activity

Machine

Activity

Machine

Ac
tiv

ity
 Im

ple
me

nta
tio

n

map map
Ac

tiv
ity

 Im
ple

me
nta

tio
n

Lifecycle contracts

Co
mm

un
ica

tio
n c

on
tra

ct

Art
ifa

ct
con

tra
ct

Me
ssa

ge
 Co

ntr
act

Co
ntr

ol
Co

ntr
act

Events Event listeners

Figure 4.12 – Contracts for Implementation model Activities

4.3. Contractual Interactions 109

the parent activities. For example, the termination of a maintenance activity would
terminate all its sub-activities, with the exception of those that are being shared by
some other parent activity, still in execution.

Concrete contracts in PImp define events. These events are responsible for the
actual processing of the activities when the process is executed in the next phases.
There are two kinds of concrete contracts defined by PImp: Message Contract and
Control Contract. Message contracts define message events. These events are mapped
to the messages defined in the communication contract at the abstract level. They
are responsible for triggering the flow of messages between the interacting activities.
Control contracts define control events, which may be mapped to the artifact specifi-
cations at the abstract level. When an event is mapped to an artifact specification, it
is responsible for a change of state of the artifact (when the process is enacted in future
phases). A control event that does not map to an artifact specification is responsible
for the change of the state of the activity. Event in the required contract of an ac-
tivity implementation is basically a listener to that event. Thus provided contracts
are responsible for triggering those events and required contracts are responsible for
listening to those events.

Events are specified in the state machines of the abstract contracts, however their
definition is carried out at the concrete level. A provided control contract of an activity
implementation defines a set of events that form a subset of the events specified in
the artifact state machine at abstract level. This ensures that all the events defined
in the provided control contract are already specified. As explained earlier, the events
specified in the provided artifact state machine are a subset of the events specified in
required artifact state machine. This ensure that if two activities are bound together
for an interaction at the abstract level, then the activity receiving the artifact can
listen to all the events specified for that artifact. The required control contract of
an activity implementation defines the listeners for the events related to the artifact.
The set of events specified by the required artifact state machine should be a subset
of events for which the required control contract defines the event listeners. This
ensures that the required control contract of an activity can listen to all the events
produced by the provided control contract of the activity on which it depends.

An activity defined in the Process Instantiation Metamodel (PIns) follows the same
bi-layered architecture of PImp i.e. it also has an abstract level process containing
the activity definitions and a concrete level process containing instantiation activities,
as shown in figure 4.13. Activity definitions are at the abstract level and have ab-
stract contracts for interactions. Instantiation activities have concrete contracts, that
conform to the abstract contracts of the corresponding activity definition. Abstract
contracts of PIns result from a transformation mapping from the abstract contracts
of PImp. Communication contracts at instance level are the same as implementa-
tion level, they both define the message that is used for the process choreography.
Additional properties like timestamp, medium, etc. are added to the message but
the structure remains the same. Artifact contract in PIns carries forward the same
artifact specification. However, artifact state machine is only offered in the provided
artifact contract. The required artifact contract only shows the list of events that it

110 4. Structure of Metamodels

is listening to. The artifact state machine is still present in the activity definition but
is not made public through the contracts. This promotes information hiding, when it
is not relevant in instantiation phase, as all the dependencies are already specified at
the implementation phase.

The provided Lifecycle contract of the activity definition in PIns offers the activity
state-machine, just like in PImp. However the required Lifecycle contract does not
offer the activity state-machine, instead it offers the list of events that it is listening
to (similar to the required artifact contracts). The implementations of an activity are
developed and validated in the implementation phase of process development lifecy-
cle. Process Instantiation phase looks forward to add the execution semantics of the
existing process implementations. It hides the details not required for the execution
phase. The validation of contracts is also not repeated in the instantiation phase.
For example a provided contract of a prepare design activity offers an artifact spec-
ification for a design document. A required contract from the design review activity
also defines the artifact specification for this design document. A binding between
the two contracts explicitly expresses the dependency of the design review activity
over the prepare design activity. The ’satisfies’ relationship between the two contracts
enforces a validation check, which is based on two things: 1) the artifact in the two
contracts points to the same ’real life artifact’ and 2) the verification that the set
of events specified in the artifact state-machine of the provided contract of prepare
design activity is a subset of the set of events defined by the artifact state-machine of
the required contract of design review activity. This validation between the binding
contracts is not carried out again in the instantiation phase to eliminate redundancy.

The concrete contracts of the Process Instantiation model are the same as in the
process Implementation model. The Message contract defines the message events and
the contract contract defines other control events for the processing of the activity.
However, the validation of conformance is already carried out in the implementation
level, so the set of events defined in the concrete events are not validated against the
abstract contracts anymore. The control events map to the artifact specifications in
the implementation level model. In the instantiation phase, artifacts are prepared and
stored in the artifact repository. For the ’hardcopy’ artifacts, a reference is still kept
in the artifact repository. The provided control contract of the instantiation activity
maps directly to the artifact in the repository instead of its artifact specification.
However, the required control contract of the instantiation activity still maps to the
artifact specification of the artifact. An artifact in the artifact repository maps to
the artifact specification that it realizes. Thus the transfer of artifact between two
activities is handled through the control events, which notify the ’completion’ of the
artifact by the providing activity, after releasing its locks (if present) through the
version management system. It is a choice of the activity implementer to decide
whether or not to lock the artifacts.

The external control contract of an instantiation activity is responsible for trigger-
ing the events to its context, or for listening to the events received from its context.
Internal control contracts are only possible for the composite instantiation activities.
The internal contract of an instantiation activity also contains an event broker to

4.3.
C

ontractual
Interactions

111

Artifact
Repository

Activity Definition

M
M

Activity Definition

A
c
tiv

ity

M
a
c
h
in
e

A
c
tiv

ity

M
a
c
h
in
e

Instantiation Activity

map
map

Instantiation Activity
Lifecycle ContractArtifact Contract

Communication ContractMessage Contract

Control Contract

message event
control event

F
igure

4.13
–

C
ontracts

for
Instantiation

m
odel

A
ctivities

112 4. Structure of Metamodels

manage the events of the process that it contains. Events are broadcasted in the
context of the contract that triggers them (unicast and multicast are also possible
in the associated implementation). No logical connectors are defined in the abstract
level of the CPMF process models. All the required abstract contracts follow an OR-
type logic and all the provided abstract contract follow an AND-type logic. On the
concrete level, any of the logical connectors OR, AND and XOR can be implemented
by specifying the desired behavior in the respective contract. The event broker of the
process takes care of the proper routing by keeping track of the successful interactions
between the activities.

4.4 Methodological Summary

CPMF approach presents a methodology where multiple metamodels can be used
for modeling the processes. Each of these metamodels targets a specific phase of
process development lifecycle. A refinement relationship between these metamodels
allows to refine the process model with each passing phase. The approach itself is not
restricted to any specified number of phases. However, metamodels are provided for
a basic process development lifecycle with only three phases of development: speci-
fication, implementation and instantiation. This approach can be applied to a more
complex process development lifecycle where additional metamodels can be developed.

Process model at specification phase of process development takes into account all
the constructs needed to specify its data-flow and interactions between multiple roles
of constituent activities. This model is refined in the implementation phase where
the control-flow of the activities is added to the process model. Multiple specification
models can be created for single process model. These process models can be refined
as a single implementation process model. The use of a bi-layered architecture in im-
plementation process model allows to separate the data-flow from the control-flow of
the process. Activities of the specification model are refined to activity definitions and
activity implementations are defined for each of them. A default activity implemen-
tation of each composite activity definition presents the composition of its internal
process (as specified in the specification model). Other activity implementations can
also be developed for an activity definition. Other implementation level details in-
clude activity state machines, artifact state machines and objective etc. This model
is then further refined in the instantiation phase to develop a process instantiation
model. Process instantiation model adds the instantiation level details like scheduling
information and links the activities to real artifacts, actors and tools. Activity imple-
mentations are refined to instantiation activities. Instantiation activity, as opposed
to activity implementation, contains both abstract and concrete processes making it
a complete unit of processing. Each activity is mapped to the corresponding activity
of the previous phase of process development. This allows an instantiation activity
to trace back to corresponding process specification.

This process modeling methodology can be applied in the software industry in
different manners. First, following the methodology from scratch to develop the
processes. Second, translating existing processes to CPMF process model and tak-

4.4. Methodological Summary 113

ing advantage of the different offerings of the approach. In the first case, a process
designer is responsible to develop a process specification model. This model is an
abstract model which can be developed from organizational process standards or any
other adopted standard. In case, no standard is followed, a specification model can
be developed from scratch for the precise project as well. The intention of develop-
ing process specification model is to have organizational level (or even a wider level)
reusability of process specifications. Business analysts and other business profession-
als use this model to analyze the strategies of the business. In software industry, the
business analysts can define organizational standards and strategies for the develop-
ment of software.

Process implementation models are used for specific projects. The process de-
signer is responsible for refining process specification models to develop a process
implementation model. This project specific model contains the implementation de-
tails related to that project e.g. availability of resources and primitive level activity
implementations according to the project requirements. Process designer can also
choose to translate a process model from any other approach like SPEM, BPMN or
YAWL to process implementation model. Currently, we do not offer any transforma-
tions to/from other approaches and thus the process designer will have to write such
transformation definitions himself/herself 1. In this case, the process designer can
benefit from the existing process specification model to ensure compliance to organi-
zational/adopted standards. Instantiation details can be added to this process model,
once process designer refines the model for instantiation phase. Process instantiation
model is executable and can be loaded into the process interpreter. Once the process
is executed, then the stakeholders (organizational heads, project managers, business
analysts, actors) can interact with it through the project management dashboard.

1. This transformation should be straight forward, keeping in view the table of corresponding
constructs support in Appendix B

114 4. Structure of Metamodels

Chapter 5

Implementation of the Framework

Contents

5.1 Prototype Architecture . 115

5.2 Process Development . 118

5.3 Process Execution . 120

5.4 Implementation Summary 128

Abstract - This chapter presents the implementation of the CPMF framework
through the supporting prototype. It describes the architecture of the prototype. Im-
plementation of the prototype is defined in two parts: the development of processes and
their execution. For the development of processes, a graphical and a textual process
editors are introduced. The transformations of process models from one phase to an-
other is also explained in this part. The second part explains the execution support for
process models using a process interpreter. Finally, the execution support for dynamic
activity creation and dynamic adaptations are explained.

5.1 Prototype Architecture

One of the major issues in software process development approaches is a lack
of consistent support for the entire process lifecycle. This means that different ap-
proaches need to be followed in different phases of process lifecycle. Using multiple
approaches in process development lifecycle creates issues like loss of semantics when
transforming a model from one technology to another, lack of traceability, inconsis-
tent tool support, etc. To overcome these issues, a single consistent approach that
takes care of the process development in all its associated lifecycle phases is fruitful.
We present a comparison of the related approaches and their support for associated
process lifecycle phases in figure 5.1.

Business process modeling approaches are commonly used in software projects as
well. We see that BPMN, does not support the development of an abstract level
strategic process model without any implementation details. It offers a single process

115

116 5. Implementation of the Framework

Business Analyst

Process
Architect,/Developer

Business
Professional

Process Architect

Process Developer

Project Manager,
Administrator

Business/Process
Analyst

Business/Process
Analyst

Process
analysis

Process
implementation

Process
enactment

Process
monitoring

Process
 evaluation

Process
simulation

Process
design

Strategy

xS
PE

M
MO

DA
L YA

WL

CP
MF

BP
MN

BP
EL

SP
EM EP
C

Roles Life Cycle Process Modeling Language

Pr
oc

es
s E

xe
cu

tio
n

Pr
oc

es
s D

ev
elo

pm
en

t

Lit
tle

-JIL

Figure 5.1 – Related process modeling approaches

modeling notation that can be used from process analysis phase to its implementation.
However, for the execution, BPMN process models need to be transformed into BPEL
models. This transformation allows the enactment of the modeled processes. SPEM
process models suffer from the same shortcomings, even through it provides better
completeness for software development processes. The lack of execution semantics
in SPEM, do not allow the process models to be enacted directly. They either need
to be transformed to some other approach that allows process execution like BPEL
or can be mapped to the project management suits, where their execution semantics
rely on the implementation choices of the process developer. Extensions to SPEM
like xSPEM and MODAL provide the needed support for the execution of SPEM
process models. EPCs and YAWL relatively cover more phases of process lifecycle,
but without exploiting the concepts of abstraction, resulting in complex models in
initial phases of process development.

Various process lifecycles define multiple different phases for process development
and its execution. CPMF framework does not constrain the usage of some particu-
lar process lifecycle phases. But for the purpose of demonstration, we have chosen
three phases: specification, implementation and instantiation. Each of these process
lifecycle phases have a corresponding process metamodel to offer the concepts needed
to develop a process model in that particular phase. A prototype implementation is
provided along with the CPMF approach to help in developing the process models
during the three chosen phases of development. However, other metamodels could be
added to the prototype to customize the chosen set of metamodels.

5.1. Prototype Architecture 117

Client-side
Presentation

Tier

Server-side
Presentation

Tier

Application
Logic
Tier

Resource
Management

Tier

Client
Web Browser

Service
Interface

Web Service
Client

Web
Interface

Process
Interpreter

Process
Editors

Artifact
Repository Process

Repository

Transformation
Engine

DevelopmentExecution

Figure 5.2 – Prototype Architecture

The tool support provided with CPMF framework allows to model the software
processes in multiple phases of process lifecycle. The specification phase of process
modeling allows the description of problem solving strategies for the processes in an
abstract level, without polluting the model with implementation details. Details are
added to the process model in each advancing phase of process lifecycle. Hence, this
approach covers the first six phases of process lifecycle illustrated in figure 5.1. In this
figure, a dotted line extension beyond the monitoring phase, reflects the ability of the
approach to model those development phases as well, if their respective metamodels
could be developed and integrated in the accompanying process modeling prototype.
The approach itself allows to model the processes in any phase of process development,
but the prototype is limited to first six phases for demonstration purposes.

The development of tool support for the CPMF framework has allowed us to
concretize our ideas and to see the phase-wise development of process models in
action. This prototype models real life processes and demonstrates the effectiveness
of phase-wise modeling of software development processes. Along with the support for
process modeling, this prototype is equipped with an interpreter that can interpret
executable processes from the model. Processes in software development projects
being distributed in nature, need to support geographically separated collaboration.
This is handled through the use of service oriented architecture for the software project
management dashboard. Processes also deal with a large number of artifacts and
thus resource management routines need to be taken care of. An n-tier architecture
is chosen for the implementation of this prototype, as shown in figure 5.2.

118 5. Implementation of the Framework

5.2 Process Development

5.2.1 Process Editors

The initial components of our prototype implementation are model editors that are
capable of modeling the software development processes conforming to their respec-
tive metamodels, depending upon the phase of model development. For example, the
specification phase provides the notions of activity definitions, abstract processes, re-
sponsibilities, etc. There are two model editors integrated within the CPMF prototype
implementation: the graphical editor based on Openflexo [Openflexo 13] viewpoints
and the textual editor based on Xtext [Efftinge 06]. Openflexo is an open source mod-
eling suite that allows to develop dedicated tools for software development models.
The viewpoint component in Openflexo is used to develop model editors that represent
different views of a model. The motivation of using Openflexo for the development of
process editor comes from the integrated software development environment that it
offers. Apart from integration to the software development environment, it provides
easy mechanisms to develop further different views based on a single concrete model.
Thus the process models developed in the CPMF graphical editor can be used to
extract different views, when needed.

Graphical models are often chosen for their ease of understandability and intu-
itive nature. However, if the complexity of the model grows, graphical models become
cluttered and are very difficult to develop and understand. We have also developed
textual editors for different phases of process development. Textual models in CPMF
allow the development of complex models, where graphical models may seem verbose.
Process models developed in the graphical editor allow to add additional information
regarding the models through model inspectors. For example, the artifact specifica-
tions and the artifact lifecycle defined in an abstract artifact contract of an activity
can be specified in the model inspector for the associated activity. These process
models are saved as project files that contain the ontology model for the process.
A process repository is associated with the model editors, which allows to store the
process models. These process models can be retrieved from the repository based on
the tag associated with each process.

Besides developing a process model from scratch, the model editors are also used
to inject details in the existing process modeling. When the process models are
transformed from one phase to another, additional structural entities and properties
are added to the process model. In order to add details to these added entities, models
are loaded into the model editor, which allows to enrich the models with further
details. These refined process models can then again be stored into the process
repository for further usage. One of the objectives of phase-wise development of
process models was to support reuse. This is made possible by accessing the activity
components from the repository and assembling them together to create/update a
process model.

5.2. Process Development 119

5.2.2 Transformations in Process Models

The core of the model editor is based upon the three process metamodels provided
by the framework and the transformation definitions between them. A process model
in specification phase is developed either from scratch or by reusing already developed
processes, present in the process repository. Specification level process model is a non
executable representation of the processes at an abstract level which are used for
defining the structure of the process model. This process model is parsed into an
xml file using the Document Object Model (DOM). Once a specification model is
developed, it is stored in the process repository for reuse. This process model is used
for the strategic decisions taken by the software project management teams. This xml
representation of the process model can be bootstrapped by the process interpreter
to recreate the respective objects for all the activities in the process model.

A model transformation is developed to transform the specification process mod-
els into their implementation counterparts. This transformation is handled by the
transformation engine, developed in java. Because of the simplicity of refinement
transformation, the transformation definition is written in plain java. Transforma-
tion engine maps the constructs of the specification model to the constructs of the
implementation model and creates an implementation level process model. As the
hierarchy of activities is considered as a specific implementation in the PImp, the
hierarchical structure contained within each activity is transformed as a particular
implementation of that activity.

’Slots’ are created in the process implementation model to add other implemen-
tation level details. These details are entered manually, using the process editors.
These details may vary from activity properties to adding the activity and associated
artifact state-machines. Implementation level process models can also be stored in the
process repository for further reuse. Traceability links are maintained in all the pro-
cess models after specification phase. Each activity definition in the implementation
level process model can be traced back to its counterpart in the previous phase. These
traceability links are also maintained in the future phases of process development.

Implementation process models can be transformed into the instantiation process
models by the transformation engine. Instantiation level process models are exe-
cutable and need further instantiation level details to be able to execute. ’Slots’ are
again created in the process instantiation model that require the instantiation level
details. These details are entered manually in the instantiation model. Multiple ac-
tivity implementations are possible for each activity definition in the implementation
level model. These slots are created in all of the activity implementations and are car-
ried on to the instantiation model. However, the instantiation details are only entered
into the chosen instantiation activities for each activity definition. These instantia-
tion activities can replace each other. This replacement of instantiation activities is
handled as process adaptation by the process interpreter during execution.

120 5. Implementation of the Framework

5.3 Process Execution

5.3.1 Process Enactment

The process interpreter can retrieve the executable process models from the reposi-
tory. It then bootstraps the process models and creates the respective runtime objects
for the activities present in the process model. The process interpreter incorporates
an event management system that is responsible for the runtime execution of these
activities. Our choice of relying on events for the concrete process model was mo-
tivated by the intentions of adding reactivity to the process models. This choice of
event based implementation favors to decouple the activities as well. The process in-
terpreter is also loaded with activity factory, that allows runtime creation of activity
implementations. Underlying bi-layered process metamodel allows us to add, remove
or substitute instantiation activities in an instance process model, at runtime.

Geographical distribution is an inherent nature of software development processes,
where stakeholders need to collaborate in order to execute the processes. Java servlets
are used to develop a web interface for the process interpreter. The web interface
presents a project management dashboard, which is used to monitor the execution of
the software development processes. The project management dashboard presents a
customized interface for each role in the software development project. The project
manager has access to all the activities in the project for planning and monitoring
purposes. States of all activities and artifacts are displayed in the project management
dashboard to monitor the advancement of the executing processes. Each role has
access to the details of the activities associated with it.

In order to cater the needs of resource management, an artifact repository is also
added to the prototype. Artifact versioning is supported by the artifact repository.
The details of artifact versioning are kept hidden from the developers. Developers
are responsible to develop the artifacts and upload them to the software project man-
agement dashboard. The project management dashboard is linked with the artifact
repository and handles the versioning of artifacts. It also takes care of the locking
mechanism for each artifact and allows access for the artifacts to the concerned roles
of the activities only. Every activity has access to the associated guidelines and the
input artifacts. Rights are associated to each action associated to the artifact and the
activities. Only the roles that have access to a particular action for an activity or an
artifact are allowed to carry out the task.

The project management dashboard is implemented in a way that it is based on
the contracts of the activities. The user interface adapts itself according to the role,
associated actions and state of the activity. Figure 5.3 presents different screen-shots
of the project management dashboard and each snapshot reflects a different aspect:
a) Each actor can log in to the project management dashboard and interact with the
activities assigned to him. b) Project management dashboard is capable to handling
multiple projects at a time. An actor may be working on multiple projects within
an organization. c) Provided artifacts for an activity can be uploaded through the
project management dashboard. d) The project management dashboard reacts to the

5.3. Process Execution 121

a) Authentication for every actor and process owner

b) Project Management Dashboard c) Activity (no artifact provided)

e) Activities with corresponding statesd) Activity (two artifacts provided)

Figure 5.3 – Project Management Dashboard

122 5. Implementation of the Framework

ReviewDesign_minimal

ReviewDesign_complete

PlanReview

Review_S

DraftFeedback

agenda

notification

schedule

recommendations

minutesofMeeting
ApprovedModifiedDesign

ModifiedDesignReview

DesignReviewFeedback

schedule
schedule

1

2
3

ReviewDesign_conform

PlanReview

Review_S

DraftFeedback

agenda

notification

schedule

recommendations

minutesofMeeting
ApprovedModifiedDesign

ModifiedDesignReview

DesignReviewFeedback

schedule
schedule

TestConformance
notification

ReviewDesign_complete

PlanReview

Review_M

DraftFeedback

agenda

notification

schedule

recommendations

minutesofMeeting

ApprovedModifiedDesign

ModifiedDesignReview

DesignReviewFeedback

schedule
schedule

Figure 5.4 – Runtime adaptation

change of artifact state. It adapts the interface accordingly. e) An actor is presented
with the state of the associated activities and other guidelines, properties associated
to the activities.

5.3.2 Execution dynamics

Requirements volatility is an issue faced by software development communities for
long. These changes in software requirements trigger a change in the specification and
design of the system under development. They also affect the processes being followed
to develop such systems. There are other motivations like momentary customizations
and evolutionary changes that demand a process system to allow a certain level of flex-
ibility at runtime to support manipulations [Mutschler 08, van der Aalst 00]. CPMF
framework offers the required flexibility to evolve, update, improve, or customize a
running process by adding, removing or substituting activities in it.

We have used the ISPW-6 benchmark (section 4.1.2) as the running case study
to explain the CPMF process models in the previous chapter. For the purpose of
explaining the runtime support for activities during their execution, we will take three
scenarios from the same benchmark. The ReviewDesign (RD) activity from the ISPW-
6 benchmark problem is a composite activity implemented using three sub-activities,
as shown in Figure 5.4. The dependencies between the activities are shown explicitly
in the figure for the purpose of understandability only. The first scenario deals with
a temporary change in the process model under the current execution scheme. In
the current model, the RD activity has a feedback loop to the ModifyDesign activity.
Let us imagine a scenario where the review has already been carried out twice and
the current design is almost perfect except that it needs some slight changes. Thus

5.3. Process Execution 123

the review committee decides to approve it with these changes in a way that the
next review should not be that elaborate. Thus the review activity is customized
in a way that only one person reviews the design for the said changes and sends
the acceptance notification to MonitorProgress activity. The actual RD activity is
implemented using three sub-activities, where as the customized RD activity would
be a primitive activity. In this scenario the pre-adaptation activity is composite,
whereas the post-adaptation activity is primitive.

In a second scenario, we imagine a perfective process improvement, where the
RD activity is changed in a way that a new sub-activity is added to it. This new
sub-activity verifies the conformance of design to the adopted standard. This new
sub-activity is performed by an external consultant. The new RD activity remains
a composite activity in this scenario, but its sub-assembly is updated. Both pre-
adaptation and post-adaptation activities in this scenario are composite.

The third scenario illustrates the change of one sub activity from RD activity
implementation. In incremental development lifecycles, the MD activity might not
give the complete design for review, it can rather give the design of a module for the
review. In such case when the design review event is triggered by the MD activity,
the preconditions of the RD activity are verified. RD activity triggers the PlanReview
(PR) activity, which is an automatic activity. This activity checks the calendars of the
participants and the availability of the meeting rooms to schedule a Review_S (RS)
activity. Based on the scope property, it triggers an adaptation in the RS activity. One
implementation of RS activity targets the review of module design, which is a short
review, while the other is a comprehensive review that takes into account the effect
of modified design on complete system. In this scenario, both the pre-adaptation and
post-adaptation activities are primitive.

5.3.2.1 Dynamic Creation

In order to induce a certain level of automation in the framework, we argue that
the possibility of dynamic activity creation is of high value. By dynamic activity
creation, we mean that activities can be created at runtime, either manually or (semi-)
automatically. This allows to evolve the process model at runtime by adding new
activities to it, which were not planned at the specification and implementation time.
For processes that run for years and can not be brought down for evolution, we need
a possibility to create new activities and add them to the process.

An activity Factory has been designed for the process model at runtime. This
module is integrated in the process interpreter and during execution a call to it re-
turns an activity implementation. For the current version of the tool implementation,
we do not support runtime creation of activity definitions. An activity definition
should already be present at the abstract level to create an instantiation activity that
conforms to it. The contracts of the instantiation activity need to conform to that of
activity definitions. In order to create an instantiation activity, we need to specify its
activity definition. Development of a contract for activity implementations that does

124 5. Implementation of the Framework

not conform to its counterpart at activity definition is restricted by the editor. Thus
the framework ensures that all concrete processes conform to the abstract process.

For manual creation of activities, the process designer is responsible to create the
activities at the runtime. By calling the activity factory and specifying the required
features manually, instance activities are created. For semi-automatic creation of in-
stance activities, a new activity implementation can be created by the system based
on the contracts already specified at the abstract level. Only primitive activities can
be created (manually or) semi-automatically by the framework. Composite activities
can be created manually by composing primitive activities. Primitive activity creation
can be semi-automatic because the designer needs to trigger this creation, however
he does not need to specify the concrete contracts of the activity manually. The
concrete contracts of the activity are developed by the system, based on the default
state-machines of the artifacts at the abstract level. An example of this type of activity
creation would be an alternative primitive implementation of Review_S sub-activity
of the ReviewDesign_complete activity. Let us name this alternative implementation
as Review_S2 that conforms to the same activity definition, Review_def. In this
case, the contracts of Review_def are specified at the abstract level, and at runtime
the alternative activity implementation, Review_S2, is created based on those con-
tracts (having default state-machines for each contract). This implementation of the
review activity can accept review schedule, and it can create events for notifications,
forwarding approved design and recommendations and choose any means like emails
or hand carried hard copies. The role of this activity is also chosen, based on the
responsibility assignment matrix, where a senior design engineer can perform this
activity.

5.3.2.2 Dynamic Adaptation

CPMF allows the specification of the software development processes in the first
phase, which are then refined into concrete processes with implementation details
in its second phase. The process implementation model defines multiple activity
implementations for each activity definition defined at the abstract level. Process Im-
plementation metamodel introduces a certain degree of variability in the model that
depends on the process requirements, contextual fluctuations and runtime criticality
of the process modeling system. Finally in its last phase, a set of activity implemen-
tations is chosen for injecting the instantiation level details and the process model
is transformed into an executable model. Such a strategy defers variability binding
until runtime. During the course of execution, modifications to the structure and be-
havior of concrete process can be carried out, such as adding, removing, substituting
its instantiation activities. It is worthwhile to note that we are not targeting towards
an adaptive process model where the abstract processes adapt at runtime. We have
limited our scope in this framework to provide dynamic adaptations for the concrete
processes only. A future perspective of this thesis is to provide dynamic adaptations
to the abstract level of the process as well. This will overcome the restriction to adapt
an activity to other implementation alternatives only. The process designer would be

5.3. Process Execution 125

Specification Implementation Instantiation
Figure 5.5 – Activity implementation variants

able to add new activities from scratch by adding both activity definitions and the
corresponding activity implementations.

Variation is introduced in the software process modeling in its implementation
phase, where multiple activity implementations can be developed for each activity
definition, as shown in figure 5.5. All these activity implementations conforming to
a single activity definition need to conform to its contracts. The contracts at the
concrete level contain events that map to the artifact specifications at the abstract
level. This mapping is used to ensure the conformance of activity contracts. Confor-
mance of artifacts to their specifications and roles to responsibilities is also ensured
by a mapping between them. The CPMF framework guarantees the conformity of
an activity implementation to its definition through restricting the development of
non-conforming implementations. The number of possible configurations of an exe-
cutable process model depends on the total number of implementation variants for
all activity definition.

Variability points in a process model, refer to the situation where multiple activity
implementations are available for execution and one of them is chosen, based on the
satisfaction of its precondition. These variability points are responsible for triggering
the adaptation. Preconditions are used to constrain the execution of activity imple-
mentations to the specific context configuration. Besides this, preconditions also allow
to catch the unexpected behavior of the process. In such situations, a precondition
acts as a variability point and triggers a dynamic runtime adaptation. This concept
of variability point is not part of the metamodel, rather it is an implementation choice
for the prototype. Runtime adaptations can also be triggered by human decisions for
various intentions like process improvements or runtime process composition. The
project management interface for the process owner, allows to adapt the processes.
This interface presents different implementation alternatives of an activity implemen-
tation. The process administrator can choose to replace an activity implementation
with another.

Post-conditions of an activity implementation model the impact of its execution
on the system configuration. A system configuration is a snapshot of all the activities

126 5. Implementation of the Framework

Activity ReviewDesign_minimal(ReviewDesign RD_complete)

implements ReviewDesign_def{

description ("This activity is responsible for the review

of the modified design...")

properties [

reviewer = RD_complete.Review.reviewLeader;

scope = RD_complete.PlanReview.scope;

iteration = RD_complete.PlanReview.iteration;

approval = RD_complete.DraftFeedback.approval;

-

-

]

External Contracts [

Req event ModifiedDesignReview_R refersTo ReviewDesign_R

Prv event ReviewDesignFeedback_P refersTo DesignFeedback_P

]

roles [

ProjectManager refersTo Authority

DesignEngineer refersTo Responsible

]

}

Listing 1 – State mapping scenario 1

in the running system along with their properties. We can use these post-conditions to
reason about the execution outcomes of a process. The execution of the process can be
abstracted as a state machine, where states are the possible execution configurations
and the transitions are the possible adaptations: human triggered or dynamically
triggered. A complete specification of state machine can help the process designer to
perform various tests and validations before the actual implementation.

The adaptation of activities might need the creation of a new instantiation activity
in case its corresponding activity implementation was not created in the implementa-
tion phase. If the instantiation activity already exists, it is simply chosen to replace
the current instantiation activity. In both these cases, the state and properties of
the current activity implementation need to be transferred to the new instantiation
activity that would replace it. In the process of creation, a mapping towards the
properties and state of the old instantiation activity is established through the use
of a constructor. The limitation of this method is its hard-coded mapping to each
available instantiation activity. In order to overcome this limitation, we also offer an
interactive state transfer mechanism where the mapping between the old and new
instantiation activity are presented to the process owner on web interface. Process
owner can chose to map the properties that need to be kept intact for state transfer.

Let us examine the runtime adaptation in action by looking into each scenario, pre-
sented in the last section. The first scenario substitutes the ReviewDesign_complete
instantiation activity of DesignReview activity definition with a another implementa-
tion, ReviewDesign_minimal. We assume that only the ReviewDesign_complete in-
stantiation activity was available at runtime and we did not have access to an instance
of ReviewDesign_minimal activity. In this scenario, the ReviewDesign_complete ac-

5.3. Process Execution 127

RD_conform.Review.reviewer = RD_complete.Review.reviewLeader;

RD_conform.PlanReview.scope = RD_complete.PlanReview.scope;

RD_conform.PlanReview.iteration = RD_complete.PlanReview.iteration;

RD_conform.DraftFeedback.approval = RD_complete.DraftFeedback.approval;

Listing 2 – State mapping scenario 2

tivity has already been executed several times in a feedback loop with the Modify-
Design activity. At a certain point in time, this adaptation is triggered by a human
decision. In this case a new instantiation activity needs to be created at runtime.
As this activity is human triggered, the responsible role for the activity needs to
create the ReviewDesign_minimal activity. This activity is created using the state
update mechanism, thus the properties and state of the ReviewDesign_complete ac-
tivity are transferred to it. The hard-coded mapping is specified in the constructor
of the ReviewDesign_minimal, a part of which is listed in Listing 1. The state of
the ReviewDesign_minimal is recovered from all the sub-activities of the ReviewDe-
sign_complete instantiation activity. ReviewDesign_minimal being a primitive ac-
tivity does not have any sub-activities and thus has to carry these properties. This
adaptation substitutes a composite instantiation activity with a primitive one.

For the second scenario, a new sub-activity is added to the existing ReviewDe-
sign_complete activity. This adaptation is also triggered by a human decision for
the purpose of process improvement. The first step in order to continue this adap-
tation is to create the TestConformance activity at runtime. We assume that the
activity definition for this activity is already available at the abstract level. This ac-
tivity is created using the activity factory provided by the framework. This activity
is created from scratch and does not need to import any sort of state from any other
activity. However the placement of this activity in the ReviewDesign activity needs
an adaptation on part of the ReviewDesign_complete instantiation activity. A new
ReviewDesign_conform activity is created which imports the state for PlanReview,
Review_S and DraftFeedback sub-activities from ReviewDesign_complete, using the
static state update, as shown in Listing 2. This adaptation is from a composite
activity to another composite activity which has got an additional sub-activity.

The third scenario substitutes a sub-activity from the ReviewDesign_complete
activity with another, where the activity implementations for both these instantia-
tion activities were developed at the implementation phase. Figure 5.6 shows that a
modify review event is triggered by ModifyDesign activity. This event is received by
the ReviewDesign_complete activity which delegates it to its PlanReview Activity.
There is a tight integration between the Openflexo development environment and the
process interpreter. PlanReview activity is an automatic activity and would auto-
matically plan the review based on the calendars of the participants and availability
of the resources. The scope property of the PlanReview is calculated from the type
of Design offered by the ModifyDesign activity. The two implementations of Review
activity are ReviewSystem and ReviewModule instantiation activities. Which of these
instantiation activities would be used for the current iteration depends upon the scope
property of the PlanReview. The preconditions of the two implementations specify

128 5. Implementation of the Framework

ModifyDesign
DREvent

Schedule

DR_complete PlanReview

Review_System

Review_Module

DREvent

Schedule

Figure 5.6 – Dynamic adaptation

if they can be executed with the current value of scope. If the current instantiation
activity in the system satisfies the condition, it is executed and no adaptation is re-
quired. However if the precondition of the current implementation is not satisfied
then it can trigger an adaptation. The process interpreter would look for an alterna-
tive instantiation activity that conforms to the same definition to run this adaptation.
This adaptation would substitute the current instantiation activity implementing the
Review activity definition with the one whose precondition is satisfied.

In this case, let us assume that ReviewSystem instantiation activity was bound for
the current execution and at runtime the ModifyDesign instantiation activity offered
the updated design of a single module. In this case, the event would be delegated by
the ReviewDesign activity to the PlanReview activity which would automatically plan
the review and send emails to the concerned roles for a confirmation. The scope of the
plan would be set to module review. The precondition of the ReviewSystem activity
would not be satisfiable and then it would trigger an adaptation. This adaptation
would access the ReviewModule instantiation activity and a state update would be
done on it to copy the state of the ReviewSystem instantiation activity to it. Finally
the instantiation activities would be replaced and the system configuration would be
updated.

5.4 Implementation Summary

One of the problems with existing process modeling approaches is that they sup-
port a small part of the complete process development lifecycle. They often tend
to focus on either implementation or instantiation phases of process development.
Process designers need a different approach for process specification, transform them
to implementation approaches and then further transform them to instantiation ap-
proaches for making the process model executable. Some of the approaches cover both
implementation and instantiation phases, but a transformation is needed to support
complete process development lifecycle. These transformations from one approach
to another result in semantic losses, because of inconsistent process modeling plat-
forms. CPMF provides an implementation prototype that can be used to develop
process models for specification level, as shown in figure 5.7. These process models
are developed using either a graphical process editor provided with the prototype or
through the textual domain specific language. One of more process specification mod-
els are then transformed to the process implementation models using a transformation
engine, provided with the prototype. This transformation engine transforms the pro-

5.4. Implementation Summary 129

PSpec model
development
Process Editor

Process Editor

Refinement to
PImp model

Process Editor

Refinement to
PIns model

Process Editor

Implementation
details injection

Process Editor

Instantiation
details injection

Manipulation in
Process Repository

Web Interface Process model
Execution

Process Interpreter

Process
Monitoring

Project Dashboard

Process
Adaptations

Project Dashboard

Start

End

ref
ine

tra
ce

ba
ck

tra
ce

ba
ck

ref
ine

Process
bootstrapping

Process Interpreter

Process model
Encation

Process Interpreter

Artifact Repository
Manipulations

Project Dashboard
Process

Termination
Process Interpreter

Start

End

Inte
rnal

 flow
cha

rt

Figure 5.7 – Process Implementation flowchart

cesses from specification to implementation and from implementation to instantiation
phases.

Once the process models are refined to instantiation phase, they become exe-
cutable. These executable process models can be loaded into the process interpreter
provided in the implementation prototype. The process interpreter bootstraps the
process model and executes it. An embedded web-server (developed using Jetty)
allows to setup a web interface for interacting with executing processes. This web
interface is called a Project Management Dashboard. A process owner can access all
the activities of a process that he/she owns. Actors playing specific roles associated
with the activities can access those activities only. Once the artifacts required by
an activity are available, the state of the activity changes to ’ready’, in the default
activity statechart. The associated actor of the activity can download the required
artifacts, do the processing and upload the developed artifacts through this web inter-
face. Process owner can adapt the activities to one of the implementation alternatives
already developed from implementation phase. Adaptation of the activities in an ex-
ecuting process model needs to take care of the transfer of state between the old
and the new activity implementation. This is handled by the interpreter using either
hard-coded mapping through activity implementation constructors or by presenting
the properties of the two implementations to the process owner, which can link them
together to a transfer of state.

Part III

Evaluation of the Framework

130

Chapter 6

Case Study

Contents

6.1 Case Study Scenario . 131

6.2 Case Study Implementation 136

6.3 Findings & Discussion . 150

Abstract - This chapter presents the application of CPMF framework on a pseudo-
real case study to elaborate and justify the claims made in this thesis. The scenario
chosen for this case study is termed as pseudo-real for the reasons that the original
process is modified to illustrate the key concepts of this approach. The scenario is ex-
plained in the first section. Second section presents the implementation of the scenario
processes in CPMF framework. Finally, this chapter concludes with a discussion on
the implementation of this case study.

6.1 Case Study Scenario

Case studies are a common strategy to elaborate and evaluate the proposed re-
search methodologies in many fields. This can be attributed to its strength in help-
ing the investigators to understand complex inter-relationships between the varying
claims in their propositions. They rely on the applicative evidence of already devel-
oped theoretical propositions. Successful applications demonstrate the feasibility of
the proposed methodologies.

In order to explore the applicability of refinement based process modeling method-
ology and to uncover improvement opportunities for this method, we have conducted
this case study. It involves the implementation of pseudo-real processes from a soft-
ware enterprise using multiple models. Each of these process models are specific to a
particular development phase of software process development lifecycle. It involves a
usage of the supporting tool implementation provided with this research thesis. The
process development modules of the prototype are used to develop the processes of
this scenario and the process execution modules are used to execute them.

131

132 6. Case Study

The implementation of this case study starts with the development of process
models from specification level. It illustrates the refinement of the process model
to the later phases of process development. Reuse of existing process elements from
process repository, compliance of process elements to the chosen standards and the
contractual interactions between the process components are also presented through
this case study implementation. Enactment of the process model that has been devel-
oped through multiple refinements validates its executability. Runtime adaptations
to the executing processes are presented to discuss the dynamic nature of the process
modeling approach. Finally, the possibilities of monitoring the processes in execution
are presented for this scenario.

6.1.1 Background

The process covered in this case study concerns the testing phase of software
development. A software enterprise needs to develop the testing phase process for a
particular software development project, AlphaSystem. This enterprise has its own or-
ganizational standards to develop the testing processes. We assume in this case study
that the organizational standard was already developed using CPMF framework (for
previous projects handled by this enterprise). Apart from its own organizational stan-
dard, this organization also wants to follow the ISO/IEC 29119 standard [IEEE 13]
for software testing. Consequently, the processes being implemented for this partic-
ular software project need to comply with both these standards (organizational and
ISO/IEC 29119).

Testing process is developed for the specification phase and stepwise refined till
the instantiation phase. Reuse of already existing processes in the process repositories
for the development of current testing process is also taken into account. Once the
executable model is developed, it is executed on the process interpreter. Execution of
the testing phase processes is monitored through the project management interface.
Runtime adaptations are carried out on the testing process for AlphaSystem.

The ISPW-scenario used in chapter 4 and 5 to illustrate the CPMF process mod-
eling approach is a standard benchmark, which is an abstract representation of the
real life processes in the software industry. On the other hand, the testing process
chosen for this case study is a real life process carried out in the testing phase of a
software enterprise. This software process is adapted for a better demonstration of the
key problem areas identified in the current process modeling approaches. The intent
remains to come up with a complete model of the processes that can represent the
way a software development organization typically works. The names of the project,
actors and the software enterprise are fictitious.

This case study would enable an appropriate guidance for the future users of the
CPMF approach. This motivation provides a provision for the case study to focus on
the main propositions of the approach and eases the way for the acceptance of this
methodology. The next section describes the scenario presented by the case study
and then section 6.1.3 details the link between the research questions of this thesis
and the case study.

6.1. Case Study Scenario 133

Figure 6.1 – Test Process ISO-29119-2 [IEEE 13]

6.1.2 Scenario

A software enterprise, TB-Enterprise is developing a software system for its clients.
The software system is named as AlphaSystem. During the course of this development
project, this enterprise needs to go through the testing phase of the software system
under development (among other software development phases). The development of
the processes for the AlphaSystem project takes place before the actual execution of
these processes. TB-Enterprise has developed its own organizational standards for
the software development projects. That organizational standard covers the testing
process as well, so we take into account the testing process part of the standard only.
However, for the AlphaSystem project, the client wants TB-Enterprise to follow the
ISO/IEC/IEEE 29119-2 standard. Thus, this enterprise is planning to follow both
the standards to develop the testing process for AlphaSystem.

The 29119-2 international standard presents the software testing process in mul-
tiple layers as shown in the figure 6.1. The first level presents the organizational test
process, which covers the development of organizational test process specification, its
use and its updations. TB-Enterprise follows the first level and develops the test pro-
cess specification using a specification process model of CPMF approach. This model
will further be implemented, used and finally stored in the process repository for any
updation, if necessary. The second level of the standard presents the test manage-
ment process, which defines the activities for managing the process through planning,
monitoring & control and completion activities. Finally the third level presents the
dynamic test process, which focuses on the design and development of the tests. All

134 6. Case Study

Defect tracking
& Management

Test
Planning

Test
Preparation

Test
Execution

UAT &
Closure

Figure 6.2 – Test Process Organizational Standard

the activities presented in the second and third level of this abstract process model are
composite activities which have further sub-activities to develop a fine-grain process
model. Standards are developed in CPMF framework as specification process models.
A specification process model for 29119-2 standard is developed by TB-Enterprise for
this project and stored in the process repository for possible future reuse.

The organizational standard for software testing process is presented through five
main activities. Test planning is the first activity followed by the test preparation
activity. These activities are then followed by two activities in parallel: test execution
and defect tracking & management. The test execution activity contains the sub-
activities that are responsible for executing different tests like smoke tests, regression
tests, integration tests and system tests. The final activity is user acceptance testing
& closure, which ends the testing process, when the end user/client accepts the Al-
phaSystem. We have assumed in this case study that this organizational standard was
already developed under CPMF framework by TB-Enterprise for some other projects.
The specification process model of this organizational standard, TB-Enterprise test-
ing process, is retrieved from the process repository and used for the development of
the test process for the AlphaSystem project.

Both specification process models (each modeling a different standard) are refined
into a single process implementation model for AlphaSystem. The abstract level of
this implementation process model presents a workflow kind of model that complies
with both the standards. The activity definitions present in the abstract level of
this model are implemented by the concrete activity implementations. Some of the
activity definitions in this process model will be implemented by multiple activity
implementations to allow a degree of process variation. This case study also reuses
some of the activity implementations already developed for prior projects. They are
also retrieved from the process repository and reused.

Finally, the implementation process model is refined to the instantiation process
model. This executable process model is executed by the process interpreter. A web
interface is used to monitor and control the executing processes. Artifacts created
during the execution of the process are stored and retrieved from an artifact repos-
itory associated with the process interpreter. This artifact repository keeps these
artifacts under version control and access to them is allowed to the associated roles
only. During the execution of the process model, it can be adapted by replacing the

6.1. Case Study Scenario 135

instantiation activities with other instantiation activities already transformed from
alternative activity implementations.

6.1.3 Questions & propositions

The research questions targeted by this thesis are presented in chapter 1. We link
those research questions to the different aspects of this case study before presenting
its implementation. This way, the readers may connect the research problems to the
methods with which they are dealt in CPMF approach.

— RQ-1: Contractual interactions CPMF process modeling approach defines
the contracts for every activity in the process model, either at the abstract
level or at the concrete level. All the interactions between the activities in the
testing process of this case study are based on the contracts of the interacting
activities. Contractual interactions are implemented in all three phases of
process development.

— RQ-2: Process reuse We have assumed in this case study that the orga-
nizational standard for software testing process was developed by the TB-
Enterprise as a specification level process model for some earlier project. Be-
cause of the abstract nature of specification level process model, it can be
reused in a broader scope. The reuse of concrete level activities will be demon-
strated by reusing the activity implementations from the process repository.

— RQ-3: Data-flow vs Control-flow The data-flow and the control-flow of
the activities in the testing process are modeled at different layers by CPMF
methodology. Implementation and instantiation phase process models use a
bi-layered approach, where data-flow is modeled at the abstract level. The
control flow of the AlphaSystem testing process during execution (in the inter-
preter) follows the concrete level model, which is developed in implementation
phase and further refined in instantiation phase. The actual data-flow during
execution is also handed by the control-flow events at the concrete level that
map to their respective artifacts.

— RQ-4: Compliance to standard(s) TB-Enterprise has its own organiza-
tional standard for software testing. For AlphaSystem project, it needs to
follow the ISO/IEC/IEEE-29119-2 standard as well. Thus this case study
demonstrates the methods for complying to multiple standards for developing
a process model.

— RQ-5: Backward traceability The testing process for AlphaSystem com-
plies to two standards, where each of these standards is modeled as a specifi-
cation process model. Activities at implementation and instantiation phase of
the testing process can be traced back to their counterparts in previous phase
models. In this case study, each activity (in later phase models) may be traced
back to either or both ISO standard and the organizational standard.

— RQ-6: Process/software development automation A level of automa-
tion for the testing process development is demonstrated through the use of

136 6. Case Study

transformation for process refinements. The automation of testing process ex-
ecution is illustrated through the capability to invoke concerned tools by some
activities of this process.

6.2 Case Study Implementation

We are going to discuss the details regarding the implementation of this case
study in this section. These details are discussed in a manner that we start from the
specification model till the final execution of the instance process model, highlighting
the key propositions of this thesis.

6.2.1 Compliance to multiple standards

It is assumed in the organizational standard of TB-Enterprise was developed
as a specification process model and stored in the process repository. In order to
develop the implementations of the AlphaSystem process model, this specification
model is retrieved from the process repository. Process models are stored in the
process repository along with different tags associated to them e.g. their level of
abstraction (i.e. specification, implementation or instantiation), their objectives, etc.
These tags allow to search process models in the process repository. Once a process
model corresponding to the process requirements is found, it can be retrieved and
tailored (if necessary).

TB-Enterprise Test Process is the specification level process that is retrieved from
the process repository. It is an abstract level process specification model for the
testing phase of software development and does not require any tailoring for our
current software project. It is composed of five composite activities: Test planning,
Test preparation, Test execution, Defect tracking & management and UAT & closure,
as illustrated in the figure 6.3 . This testing process assumes that unit testing is the
responsibility of the development team which should be carried out before sending
the application for this testing process. Hence, unit tests are not part of the this
testing process. Test planning is the first activity to be performed in this process and
is responsible for developing a Test plan. It requires the Project management plan
(PMP), Software design document (SDD) and Software requirement document (SRD).
It contains further sub-activities for analyzing and planning the process, identifying
the test strategy for the software project and finally the development of the test
scenarios. It is performed by Quality assurance lead and Testers. Once this activity
is complete, it provides the Test plan (TP) and the Test scenarios (TS).

Test preparation is an activity that depends on the Test planning activity. This
dependency is highlighted through the binding between the two activities for TP and
TS contracts, where Test preparation activity requires these two artifacts. Apart
from these two artifacts, this activity also requires SRD, Software development files
(SDF) and Traceability matrix (TM). TM is an optional contract for this activity
which is used for the subsequent iterations of the activity, for updating the associated

6.2.
C

ase
Study

Im
plem

entation
137

TB-Enterprise Test Process

Test preparation

Prepare/update
test scenarios

Test environment
setup

Prepare/update
test cases/data

Elaborate testing
deliverables

Map requirements
to test cases

Review test cases
/data

SDF

TP

TS

TP

SRD

TD

TC

TM TESR

TM

TESR

TD

TC

TS Assign test case /
data & env. setup

message
message

TM

TDL

Defect tracking & management

Check defect
duplication

Log bug
in tool Review

bug

Re-assign to
bug logger

Assign to
developerPerform debug

validation

Analyze the
defect

Debug the
defect

Verify
defect correction

SDF

reassignment

message

DF

TR

TDL

SDF

message

message

TDL

bug status

message

Test planning
PMP

TS

SRD

TP

SDD
Analysis &
planning

Test scenario
development

Test strategy
Identification

TSR

Test Execution

update Traceability
Matrix

Release
Build

Smoke-level
Tests

Regression
testing

Integration
testing

System
testing

Adhoc
testing

Release for
UAT & closure

Build & Deploy
in QA/SI Env.

TC

TESR SDF

TP

SSR

TC

TDL

VCDR

DF

TM

TM

TR

TD

RN

TR

TR

TR TR

TR

message

UAT & Closure

SSR TRVCDR

SSR

TC

Closure

User acceptance
testing

Figure 6.3 – Organizational standard for testing process

138 6. Case Study

artifacts. This activity has multiple sub-activities that are responsible for developing
Test data (TD), Test cases (TC), TM and for setting up the test environment. A Test
environment setup report (TESR) is provided by this activity for the details relating
to the test environment. This activity is performed by the Quality assurance lead
(QA-L) and the Testing team(Ts).

Test execution follows the Test preparation activity and is responsible for the
execution of different tests on the software system under development. It requires
TP from the Test planning activity, hence creating a dependency between them. TD,
TC, TM and TESR are also required by this activity, which it acquires from the
Test preparation activity. Subsequent iterations of this activity requires Test defects
log (TDL) and Defects fixed (DF). Technical lead is responsible for releasing the
build. The application is then deployed in the quality assurance/ system integration
environment, which allows the execution of the test. Smoke-level tests and regression
tests are performed for qualifying the build for further tests and ensuring that no
unwanted changes were introduced in the system after modifications through multiple
iterations. Functionality, GUI, usability, security and database test cases are executed
for Integration testing. Volumes, compatibility and load/performance test cases are
executed for the System testing. Ad hoc testing finalizes the Test results from other
tests and forwards it for UAT release if they are successful or to the Defect tracking
& management activity if the tests are failed. If the tests are successful, Verified &
closed defect report (VCDR) and Status/summary report (SSR) are provided by this
activity. Technical lead, Quality assurance lead and testing team are responsible for
Test execution activity.

Defect tracking & management is an activity that executes in loop with the Test
execution activity, till all the test are successful. This activity logs the defects, after
ensuring that it is not already present in the log. It also verifies the earlier debug val-
idations. Defects are reviewed and assigned to the development team for debugging.
In case any defect is invalid or is a ’known issue’, it is re-assigned to the defect logger.
Finally the defect is analyzed, debugged and verified for correction by the develop-
ment team. It provides a contract for the Defects fixed (DF), which is required by
the Test execution activity, thus creating the loop. It also provides the Test defects
log (TDL), which it uses itself in further iterations. This activity is performed by the
Quality assurance lead, Module lead, testing team and the development team.

The final activity of TB-Enterprise testing process is UAT & closure activity.
On successful execution of all the tests, it receives VCDR, SSR, TC, TR artifacts
at its required contracts. User acceptance testing is carried out as the final test
of the software application. There are different responsibilities associated with this
sub-activity. It is performed by user representatives, assisted by the testing team
and approved by client and technical lead. Finally a closure of the testing process
prepares the status summary report that details the test completion results.

For the AlphaSystem project, TB-Enterprise needs to follow the ISO standard
29119-2 as well. In order to comply with this process standard, it is developed as
a specification process model. ISO 29119-2 Test process is a specification process
model that is developed using Process Specification metamodel provided by CPMF

6.2. Case Study Implementation 139

framework. Once this model is developed, it can be stored in the process repository for
reuse in other software development projects. ISO 29119-2 Test process combines the
two layers of the standard; Test management processes and Dynamic test processes.
Test management processes consists of three activities: Test planning, Test monitoring
& control and Test completion. Dynamic test processes contains four activities, the
Test design & implementation, Test environment setup & maintenance, Test execution
and Test incident reporting. All the activities of Dynamic test processes are composed
by a single parent activity, Dynamic test. The reasons for combining the two layers
was to get a single process specification model for this standard, as shown in figure 6.4.

Test planning activity is responsible for the development of the test plan. Sub-
activities are responsible for analyzing the context and organizing the plan devel-
opment activity. Then risks are identified and the measures for treating them are
devised. Further sub-activities are responsible for defining test strategy, determining
scheduling & staffing and finally the development of Test plan (TP). Once TP is ready
Test monitoring & control activity can be started. A dependency between them is
highlighted through a binding between the provided contract of Test planning activity
and required contract of Test monitoring & control activity for TP. Test monitoring &
control is also a management level process, that is responsible for monitoring, control
and reporting of the Dynamic test activity. This monitoring and control is carried out
throughout the lifecycle of the Dynamic test activity. Once the Dynamic test activity
is complete, it provides Test results (TR) and Test summary report(TSR) to the Test
completion activity. Test completion activity archives the test artifacts, cleans up the
test environment and reports the completion of the testing process. It provides the
Test summary report for the future activities in the software development project.

Dynamic test activity of this standard is the activity responsible for designing,
developing and executing tests for the software application. It is developed through
four sub-activities: Test design & implementation, Test environment setup & main-
tenance, Test execution and Test incident reporting. Test design & implementation
activity is responsible for the development of Test case specifications (TCS), Test pro-
cedure specifications (TPS) and Traceability matrix (TM). These artifacts are offered
through the provided contract. Both Test environment setup & maintenance and
Test execution activities show their dependencies to Test design & implementation
activity for TCS, TPS, TM. Test environment setup & maintenance activity sets up
the environment to carry out the tests. Once the environment is setup, a Test envi-
ronment readiness report (TERR) is provided by this activity. This activity is also
responsible for maintaining the test environment through multiple iterations.

Test execution activity depends on the Test design & implementation activity
for TPS, TCS and TM and on Test environment setup & maintenance activity for
TERR. Once the test environment is set up and the test cases are ready, this activity
can execute the tests, compare test results and prepare the test execution log. This
activity is generic and can be used for all types of tests being executed in the testing
process. Successful completion of all tests, terminate it and eventually the Dynamic
test activity. However, if the test fails, it provides the Test execution log (TEL)
and Test results, which can be accessed by the Test incident reporting activity. Test

140
6
.
C

a
se

S
tu

d
y

Test planning

message Understand
context

TP

Organize test
plan development Identify & analyze

risks

Identify risk
treatment

Design Test
Strategy

Determine staffing
& scheduling

Record test
plan

Gain consensus
on test plan

Communicate
test plan

Set-up

Monitor

Report

Control

TP

TR

TSR

message message

TRTR
message

Test monitoring & control ISO 29119-2 Test Process

Test completion
TR

Clean up test
environment

Identify lessons
learned

Report test
completion

Archive test
assetsTSR

TSR

TSR

TSR

TSR

TSR

Dynamic test

Test incident reporting
TEL IRCreate /update

incident report
IRAnalyze test

results
TR

Test environment setup & maintenance

TP

TERRMaintain test
environment

TERREstablish test
environment

TPS

TEL

TP

TR

IR

Test design & implementation

TP Identify feature
sets Derive test

conditions
Derive test

coverage items

Derive test
cases

Assemble
test sets

TCS

TMTCS

TDS

TPS

TMTM
TM

TMTM
Derive test
procedures

TPS

Test execution

TPS

TELRecord test
execution

TRTR

TERR

TRCompare test
results

TM

Execute test
procedure

TCS

Figure 6.4 – ISO standard for testing process

6.2. Case Study Implementation 141

incident reporting activity analyzes the test results and generates an Incident report
for the Test management processes.

These two standards (organizational and ISO standard) for the testing process
in software projects have the same objective, but have a different perspective on the
process. ISO standard does not detail the specifics of different kinds of tests needed
and their order. The organizational standard adds the debugging activities to the
testing process as well. Compliance to both these standards for developing the testing
process for AlphaSystem, requires a single process implementation model that should
be refined from both these models. Process implementation model can use different
names for the activities, but should keep the mapping towards the corresponding
activity in either or both of these process specification models.

6.2.2 Design by Contract

Each activity defined in the process specification models presented in the previ-
ous section interacts with other activities through defined contracts. The inputs of
the activities are specified through the required contracts and the outputs from the
activities are specified through the provided contracts. For example Analysis & plan-
ning sub-activity of the Test planning activity in TB-Enterprise testing process has
three required contracts: PMP, SDD and SRD and offers two provided contracts: TP
and TS. Each of these contracts (whether required or provided) contains an artifact
specification. All the work products specified in these two process models are artifact
specifications and not the artifacts themselves. These artifact specifications describe
the structure and function of the artifacts that need to be produced during the ex-
ecution of these processes. PMP required contract of Analysis & planning activity
presents an artifact specification of project management plan.

Bindings between the activity contracts ensure that the artifact required by an
activity is the same as the artifact provided by the activity on which it is depending.
Artifact specifications contained by both the contracts ensure the agreement over
the artifact. This agreement can be further refined by the use of conditions. Pre-
conditions and the post-conditions are defined for every activity (when needed) in
these process models. Let us take the example of the Integration testing activity of
TB-Enterprise testing process. The conditions associated with this activity are as
follows:

Pre-conditions

— All functions in the build have successfully passed unit testing.

— The build is properly version controlled.

— Testing environment is in place for the test.

— Test cases include the cases for integration testing.

— All required integrated systems are available.

142 6. Case Study

Post-conditions

— Test result(TR) report is developed/updated.

— Failed test have been added to the TR report with highlighted defects.

— Successful tests have been added in the TR report (for validation of bugs fixed
in subsequent iterations).

6.2.3 Bi-layered implementation of processes

Once both the process specification models for the testing process are at hand,
they can be refined for the development of the process implementation model. The
process implementation model for the AlphaSystem testing process is a bi-layered
model conforming to the Process Implementation metamodel, provided by the CPMF
framework. The layers of the process model correspond to abstract and concrete
levels. The abstract level of the process model contains the activity definitions and
the bindings between them to define the flow of data. The concrete level of the
process model contains the activity implementations, each of which implements an
activity definition. Activity definitions at the abstract level are not hierarchical. The
implementation of an activity definition at the concrete level decides whether the
activity is implemented through multiple sub-activities or a single primitive activity.

Processes from the adopted standards (organizational standard and the ISO stan-
dard) for the AlphaSystem testing process are refined in a way that the abstract
process of PImp model contains a set of all the abstract processes (containing ac-
tivity definitions without their internal hierarchy). The internal hierarchy of each
activity definition corresponds to a separate process, which is also present in the ab-
stract level. Thus the abstract level of the process implementation model contains
all the processes and sub-processes without any link of containment. Containment of
a process in an activity definition of some other process is dependent on the imple-
mentation of this activity definition. Figure 6.5 presents the implementation process
model for the testing process. However all other activities definitions except Test
Execution Def are intentionally not depicted in this figure for reasons of brevity. Test
Execution Def activity definition at the abstract level presents its external contracts,
but does not give any detail about its implementation. Test Execution Abstract Pro-
cess is also present at the abstract level. It was contained by the Test execution
activity in specification model. But at the abstract level of implementation model, it
is a separate process having no link with Test execution Def. However it is a possible
candidate process that can be used for the implementation of this activity. AlphaSys-
tem Test Execution Activity implements the Test Execution Def activity definition by
providing a concrete process corresponding to the Test Execution Abstract Process.

Test Execution Def activity defined at the abstract level presents its (input and
output) artifact contracts. Besides the artifact contracts it also presents its lifecycle
contract (not depicted in the figure), that presents the state machine for this activity
definition. Even though, CPMF framework allows a custom life cycle for each activity
definition, it uses a default lifecycle with six activity states: waiting, ready, active,

6.2.
C

ase
Study

Im
plem

entation
143

Test Execution Abstract Process

update Traceability
Matrix Def

Release
Build Def

Smoke-level
Tests Def

Regression
testing Def

Integration
testing Def

System
testing Def

Adhoc
testing Def

Release for UAT
& closure Def

Build & Deploy
in QA/SI Env. Def

TC

TERR SDF

TP

SSR
TC

TEL

VCDR

DF

TM

TM

TR
TD

RN

TR

TR

TR TR

TR

TM

Smoke-level Testing Abstract Process

TD

TEL
Record test

execution Def

TRTR

TERR

Compare test
results Def

TM
Execute test

procedure Def
TC TR

TR

Adhoc Testing Abstract Process

TD

TEL
Record test

execution Def

TRTR

TERR

Compare test
results Def

TM
Execute test

procedure Def
TC TR

TR

Regression Testing Abstract Process

TD

TEL
Record test

execution Def

TRTR

TERR

Compare test
results Def

TM
Execute test

procedure Def
TC TR

TR

System Testing Abstract Process

TD

TEL
Record test

execution Def

TRTR

TERR

Compare test
results Def

TM
Execute test

procedure Def
TC TR

TR

Integration Testing Abstract Process

TD

TEL
Record test

execution Def

TRTR

TERR

Compare test
results Def

TM
Execute test

procedure Def
TC TR

TR

Test Abstract Process

TD

TMSDF

DF

TESR

Test Execution Def

TC

TP
TM

TEL

VCDR

SSR

TC
TR

Note: contains other activity
 definitions also

AlphaSystem Test Execution Activity

Release for UAT
& closure primitive

AlphaSystem Test Execution Process

Release Build Build & deploy in
QA /SI environment Update traceability

matrix

Smoke - level Test
Smoke-level Test Process

Execute test
procedure

Compare test
results

Record test
execution

TR
TC

TM
TERR

TR

TEL

TR TR

Adhoc Test
Adhoc Test Process

Execute test
procedure

Compare test
results

Record test
execution

TR
TC

TM
TERR

TR

TEL

TR TR

Regression Test
Regression Test Process

Execute test
procedure

Compare test
results

Record test
execution

TR
TC

TM
TERR

TR

TEL

TR TR

System Test
System Test Process

Execute test
procedure

Compare test
results

Record test
execution

TR
TC

TM
TERR

TR

TEL

TR TR

Integration Test
Integration Test Process

Execute test
procedure

Compare test
results

Record test
execution

TR
TC

TM
TERR

TR

TEL

TR TR

Release for UAT & Closure
Closure Release Process

Update test`
cases Prepare

reportsTR
TC VCDRTC

TR
SSR

Closure Release Abstract Process

SSR

VCDR
Compare test

results Def
TR

TC

TR
Execute test

procedure Def
TC

Figure 6.5 – Implementation model for test execution

144 6. Case Study

paused, terminated and completed. The events in this state chart are prepare, activate,
terminate, complete, pause and resume. The state machine defined in this activity
life cycle contract, links these events to corresponding states for triggering a change
in state.

Each artifact contract of the Test Execution Def presents the artifact specification
for the artifact that it provides or requires. This artifact specification also provides
a metamodel for the artifact. For example, the Test Cases(TC) artifact contract
for this activity defines the artifact specification for test cases. This particular arti-
fact specification requires that a test case should have a name, description and data
requirements. The associated metamodel for the test case provides its structure con-
sisting of multiple steps, where each step has its description and the expected results.
TC artifact contract of Test Execution Def also presents a state machine for the
artifact lifecycle.

AlphaSystem Test Execution Activity at the concrete level implements the Test Ex-
ecution Def activity by providing the implementation details through the AlphaSys-
tem Test Execution Process. As it implements the corresponding activity definition
as a composite activity, opposite internal contracts are created for all its external
contracts. Each contract of this activity implementation presents a set of events that
map to the artifact specification at the abstract level. For example, the TC contract
of this activity implementation presents a set of events that map of the test case
specification at the abstract level. AlphaSystem Test Execution Activity has two TC
contracts, one required and one provided. Each of the implementation level contracts,
maps to the respective contracts at the abstract level. The set of events presented by
the provided TC contract at the implementation level are the subset of events defined
in the artifact state machine. However the set of events (actually event listeners)
present at the required TC contract are the super-set of the events defined in the cor-
responding artifact state machine. Each pair of internal and external contracts, serves
for the delegation of events across activity borders. The internal lifecycle contract of
the AlphaSystem Test Execution Activity presents an event broker that is responsible
for managing the interactions between the sub-activities.

6.2.4 Reusing process elements

The abstract level of the implementation model for AlphaSystem Tesing process
contains the set of abstract processes that are used for activity implementations. Each
abstract process for a specific kind of testing like integration testing, system testing,
etc. follow the same hierarchical structure. The reuse of processes at the abstract
level is demonstrated by reusing the Integration Testing Abstract Process for the
development of other abstract processes for system testing like regression testing etc.
Once a process is developed, it can be reused and tailored for a specific use to model
other processes. This reuse of abstract process remains at the implementation phase
of process development only, because tailoring abstract level processes in instantiation
phase is currently not handled by the associated tool implementation.

6.2. Case Study Implementation 145

As an abstract process is reused within a process model, similarly the concrete
level activity implementations are also reused for concrete processes. AlphaSystem
Test Execution activity has five activities for different kinds of tests. As the contracts
of the corresponding activity definitions for these activities are the same, a single
implementation is reused for implementing all these activities. This should not be
confused with activity sharing, where one activity implementation is shared amongst
different processes. In case of the sub-activities of AlphaSystem Text Execution, they
are all different implementations having different properties, but their development
is based on the reuse of a single implementation.

Release for UAT & Closure activity in this model is implemented as a primitive ac-
tivity. Let us assume that an already developed activity definition & implementation
for this activity is found in the process repository. By searching for the associated tags
and contracts, these process elements can be retrieved from the process repository.
Once this second implementation is retrieved, it can be added to the current process
model. Implementation level process model allows multiple activity implementations
for an activity definition. In order to add this implementation to the model, a copy
of the abstract level process for its contained activity architecture is placed in the
abstract level of the current process model and a copy of the activity implementation
is added to the concrete level.

6.2.5 Process refinement

This case study deals with two specification process models described in the pre-
vious sections. These process specification models are refined as a single process
implementation model. Process specification metamodel for the AlphaSystem test
process was defined in a single level without any implementation details, other than
the process hierarchy. This process hierarchy is only a part of the complete process
implementation. When a process model is refined to the PImp model, implementa-
tion details are injected into this process model. The structure of the process model
changes from a single layer to a bi-layered architecture. Once the two layers are
formed, the abstract level of the process contains the structural information for the
activity regarding its contracts and the data-flow architecture of the processes. The
concrete level of the process offers the concrete activity implementations. The injec-
tion of implementation details accounts for the addition of activity life cycles, artifact
life cycles, artifact specification metamodels, etc. at the abstract level. Implemen-
tation details that are injected in the concrete level of the process model are the
definition of events to specify the control-flow, properties of the activities and defini-
tion of milestones etc. that are specific to the particular project under development.
These implementation level details are injected into the AlphaSystem Test Execution
activity, once it is refined as an implementation model from the specification models.

This process model gets further refined into the process instantiation model, where
the abstract level of the model remains more or less the same as that of the process
implementation model, as depicted in figure 6.6. However, further instantiation level
details are injected into the concrete level of this process model. The reason we say

146 6. Case Study

that the abstract level remains more or less the same is that no structural change
occurs at the abstract level, other than hiding the activity state machines of the re-
quired contracts and only showing the list of events. The validations carried out at the
implementation level between provided and required artifact contracts of interacting
activities are not repeated in this phase. Because we do not allow adaptations of the
abstract level of the instantiation process model for now, these validations become re-
dundant. The concrete level activity implementations of PImp model are refined into
instantiation activities. These instantiation activities require additional properties
for staffing, scheduling, handling artifact in repositories, message choreographies etc.
Staffing details are the assignment of roles to actors. For example the Execute Test
Procedure has Tester as an associated role with Responsible as its assigned responsi-
bility. This means that tester is responsible for carrying out this activity. The Tester
role is played by an actor named Marianne. The profile of an actor gives addition
details like email, department, organization, etc. for realizing the communications.
Scheduling details for this activity give the start date & time and the end date &
time.

An artifact is created for each artifact specification defined at the abstract level. In
case the artifact is a hard copy (not digital), a dummy object is created with its asso-
ciated properties to manage the physical distribution/transfer of the artifact between
the stakeholders. In this particular case study, most of the artifacts passed between
the activities were digital copies, thus a repository url address was assigned to each
artifact. This repository address helps in retrieving the artifact from the repository
by the activity that requires it. The Test Environment Readiness Report(TERR) re-
quired by the Build & Deploy in QA/SI environment activity is the only hard copy
artifact. For this artifact, a dummy artifact is created that shows the current posses-
sor of this artifact. It also keeps track of the state of the artifact, as per the artifact
state machine defined for it at the abstract level.

6.2.6 Execution of scenario processes

Process instantiation models are executable. The process interpreter, developed
as a tool support for this research project, is responsible for executing the processes.
A project management dashboard is a web interface provided alongside the interpreter
that serves for monitoring and controlling the execution of the software development
process models. Each actor plays certain roles in a project. The authentication
module of the project management dashboard allows access to the concerned actors
only. The transitions of artifact and activity states in a software project are associated
with specified roles for each activity. Thus an actor can only trigger the transitions
that are authorized to the role(s) that it is playing. Thus when an actor logs into
the project management dashboard, he/she can only view the activities associated to
him/her. This actor can only perform the actions that are authorized to him/her in
the project management dashboard.

Marianne is a tester in TB-Enterprise. She physically receives the Test Environ-
ment Readiness Report (TERR) on a working day. When she logs in to her project

6.2. Case Study Implementation 147

AlphaSystem Test Execution Activity

System Testing Abstract Process

TD

TEL
Record test

execution Def

TRTR

TERR

Compare test
results Def

TM
Execute test

procedure Def
TC TR

TR

TEL

Execute test
procedure

TC
TRTR

TERR Record test
execution TELTR

Compare test
results TRTR

TM

TC

TERR

TR

TM
TR

System Test

Test Execution Abstract Process

update Traceability
Matrix Def

Release
Build Def

Smoke-level
Tests Def

Regression
testing Def

Integration
testing Def

System
testing Def

Adhoc
testing Def

Release for UAT
& closure Def

Build & Deploy
in QA/SI Env. Def

TC

TESR SDF

TP

SSR
TC

TEL

VCDR

DF

TM

TM

TR
TD

RN

TR

TR

TR TR

TR

TM

Smoke-level Testing Abstract Process

TD

TEL
Record test

execution Def

TRTR

TERR

Compare test
results Def

TM
Execute test

procedure Def
TC TR

TR

TEL

Execute test
procedure

TC
TRTR

TERR Record test
execution TELTR

Compare test
results TRTR

TM

TC

TERR

TR

TM
TR

Smoke-level Test

Integration Testing Abstract Process

TD

TEL
Record test

execution Def

TRTR

TERR

Compare test
results Def

TM
Execute test

procedure Def
TC TR

TR

TEL

Execute test
procedure

TC
TRTR

TERR Record test
execution TELTR

Compare test
results TRTR

TM

TC

TERR

TR

TM
TR

Integration Test

Regression Testing Abstract Process

TD

TEL
Record test

execution Def

TRTR

TERR

Compare test
results Def

TM
Execute test

procedure Def
TC TR

TR

TEL

Execute test
procedure

TC
TRTR

TERR Record test
execution TELTR

Compare test
results TRTR

TM

TC

TERR

TR

TM
TR

Regression Test

Adhoc Testing Abstract Process

TD

TEL
Record test

execution Def

TRTR

TERR

Compare test
results Def

TM
Execute test

procedure Def
TC TR

TR

TEL

Execute test
procedure

TC
TRTR

TERR Record test
execution TELTR

Compare test
results TRTR

TM

TC

TERR

TR

TM
TR

Adhoc Test

VCDR

TC

TR

SSR

Release for UAT & Closure
Closure Release Abstract Process

SSR

VCDR
Compare test

results Def
TR

TC

TR
Execute test

procedure Def
TC

Update test
casesTC TC

TR TR
Prepare
reportsTC VCDR

TR SSR

TC

TR

Release for UAT
& Closure primitiveTC

TC

TR
TR
VCDR
SSR

Update traceability
matrixTM TM

RN

Release
build RN

TEL
DF
TP

TM

TD

TC

TEL

TESR

SDF

TM

TP

DF

TERR
Build & deploy in
QA/SI Environment

SDF
RN

TESR

VCDR
SSR
TC
TR

Figure 6.6 – Instance model for test execution

148 6. Case Study

management dashboard she can enter into any of the projects that she is working on.
For this case study she enters into the AlphaSystem project. She is responsible for
carrying out the smoke tests for this project. The first build is already released and
deployed in the quality assurance and system integration environment. The traceabil-
ity matrix has been updated. When she logs into her dashboard for this project, she
is notified that Test Cases(TC) and Traceability Matrix (TM) are available to her and
the Execute Test Procedure sub-activity of the Integration Test activity is in ’ready’
state. She can see from the information panel that she has to complete the tests on
the same day. Links are provided on the dashboard so that she can download TC and
TM.

The pre-conditions of the Integration Test activity ensure that the inputs to the
activity are valid. The first test case is about testing the authentication module of
the AlphaSystem. The steps defined in the test case along with their expected results
are as follows:

— Step 1: Invoke application from desktop icon - (Expected result : Login screen
is displayed)

— Step 2: Login with Username and Password - (Expected result : Main menu
screen is displayed)

— Step 3: Logout from application - (Expected result : Login screen is displayed)

— Step 4: Login with Incorrect Username and Password - (Expected result :
Login error message is displayed)

— Step 5: Login with Username and Incorrect Password - (Expected result :
Login error message is displayed)

She starts the Execute Test Procedure activity by changing the state of the activity
from ready to active. This automatically changes the state of the parent activity
Integration Test from ready to active. She performs these steps in parallel with
the second sub-activity Compare Test Results and notes the success/failure of the
steps in the TestResult(TR) document. She can upload the TR document through
dashboard as many times as she wants. Each time she uploads the TR document,
a new version is created in the artifact repository. There are other test cases in the
TC document as well, which she has to perform to complete this activity. Meanwhile
she receives a phone call by the testing lead to pause the activity and do some other
activities. She pauses the Integration Test activity, which automatically pauses all
the running sub-activities. She resumes these activities once she gets the message
from the testing lead. Once all the tests are executed and all the test results are
compared and updated in the TR document. She uploads the TR document through
the dashboard and explicitly specifies that it is the final version of this artifact. This
triggers a transition of state for this artifact to complete and an event is triggered
for the activities that required this document. Then she changes the state of these
activities as complete and starts the Record Test Execution activity that she has to
complete within the same working day in order to follow the project management
plan.

6.2. Case Study Implementation 149

Let us assume different exceptional situations during this process. 1) If the TC
document to be received by Integration Test activity did not conform to the TC
metamodel. The pre-condition of this activity would not allow this activity to receive
this document. 2) The AlphaSystem Test Execution activity is paused or terminated
during the execution of this activity. The Integration Test activity would be paused or
terminated automatically. This is handled by the lifecycle contracts of each activity
and the propagation of events from child to parent or parent to child (depending
upon the event). 3) The failure of test cases in this activity is not considered as an
exceptional situation. So in this case, the negative results are updated in the TR and
the execution of the activity terminates normally.

6.2.7 Runtime adaptation

Tailoring a process to develop implementation process model or the instantiation
process model is possible by loading the process in the process editor and carry out the
necessary changes. Process tailoring may be needed for improving the current process
model or for customizing it. Process models are tailored by customization when they
are retrieved from the process repository to build a new model. Apart from process
tailoring, CPMF framework also allows for runtime adaptations of the process. This
runtime process adaptation allows to change processes during the execution of the
process model. The adaptation allowed by CPMF framework has certain limitations:
1) It only offers a controlled adaptation. This means that different process variations
are already at hand and the process engineer can choose to interchange them during
execution (with or without state transfer). 2) Process variations account for the
concrete level of the process only i.e. abstract processes can not be adapted during
execution. For the adaptions that are not supported by CPMF framework yet, the
running process has to be stopped. And the implementation process model needs to
be tailored, then refined into the instance process model for execution.

AlphaSystem Test Execution Activity is developed at the implementation phase
of process development lifecycle in this case study. This activity implementation was
developed using the concrete process corresponding to the Test Execution Abstract
Process. This concrete process is AlphaSystem Test Execution process that contains
the activity implementations of all the activity definitions present in the Test Execu-
tion Abstract Process. One of these activity definitions is Release for UAT & Closure
Def. Two activity implementations were developed for this activity definition at the
concrete level, as depicted in figure 6.6. One of them is a primitive activity implemen-
tation and the other is a composite activity implementation. The composite activity
implementation is implemented through the Closure Release Process. In order to im-
plement this activity with this process, its corresponding abstract process, Closure
Release Abstract Process, is added to the abstract level of the process model. This
provides a complete process model, that can use any of these activity implementa-
tions, where the abstract processes for both these implementations are present at the
abstract level. When multiple activity implementations are developed for a single
activity definition in a process model, one of them is selected to be the ’active’ im-

150 6. Case Study

plementation. In this case, we have chosen the composite activity implementation to
be the active implementation for the process model.

When the process model is refined to the instantiation process model, the ab-
stract level of the process remains almost the same, but is included in the parent
activity implementation, as shown in figure 6.6. Runtime process adaptation does
not allow any adaptations to the abstract level of the instance process model. Ac-
tivity implementations of the Release for UAT & Closure Def activity definition in
implementation model are refined as instantiation activities at the concrete level of
instance process model. When this process model is executed, the interpreter loads
the ’active’ instantiation activity i.e. the Release for UAT & Closure instantiation
activity. During the execution of the process model, the process engineer decides to
adapt the process model in the way that he wants to replace Release for UAT & Clo-
sure instantiation activity with Release for UAT & Closure Primitive. As both these
instantiation activities implemented the same activity definition, thus the contracts
of both these instantiation activities allow to replace one with the other. The state
of Release for UAT & Closure might have been updated during the execution of the
process model. In order to replace them during the execution of the process model,
the state of Release for UAT & Closure needs to be transferred to Release for UAT
& Closure Primite instantiation activity. CPMF framework provides two options to
the process engineer to transfer the state: 1) through the use of a constructor, where
the mapping between the properties of the instantiation activities is already devel-
oped in the constructor. 2) through manual mapping, where the properties of the
instantiation activities are manually mapped, so that the state of one instantiation
activity can be transferred to the other. In this specific case study, as we had only two
variations of implementations, so the transfer of state is carried out through the use
of constructor. However, this can also be performed through manual mapping, which
can be carried out through the project management dashboard. Project management
dashboard offers a html form showing the current state of the activity and demands
the value of the new state. It is important to understand that process adaptations
are not carried out by the responsible roles of the activities. They can only be carried
out by the process owner, which is a special responsibility associated with composite
activities (that contain the process).

6.3 Findings & Discussion

This case study involves the implementation of the testing process of a software
development project, AlphaSystem, in a fictitious company named TB-Enterprise.
CPMF framework proposes to model software development processes using a dedi-
cated metamodel for each phase of software process development life cycle. A ded-
icated metamodel for a particular phase of process development life cycle allows to
define a boundary around the concepts relating to this specific phase. Consequently,
the process model in a particular phase does not get polluted with the irrelevant con-
cepts in that phase. This produces a lightweight process model in the initial phase of
process development that gets refined over time with each passing phase. Additional

6.3. Findings & Discussion 151

details are added to the process model in the appropriate phase of process develop-
ment. TB-Enterprise uses this ideology to develop the AlphaSystem testing process
through a set of models, each corresponding to a specific phase of process development
life cycle.

TB-Enterprise had already developed its own organizational standard for soft-
ware testing process for a previous project. This standard was developed using the
CPMF approach and thus the corresponding process model was stored in the process
repository at the time of its development. For AlphaSystem project, the client has
demanded a compliance to ISO Standard 29119-2, which resulted in a scenario where
TB-Enterprise has to comply with both the standards. It develops a process spec-
ification model for the ISO standard, which is also stored in the process repository
for possible future reuse. Both these process specification models are refined into a
process implementation model. Process implementation models are project specific,
where specific implementation details for the process are injected into the process
model. This process model is further refined into an instance process model that
allows its execution by the process interpreter.

This case study focuses on explaining the key propositions made in the thesis.
CPMF approach for dealing with specific scenarios was demonstrated, which are
difficult to handle otherwise. Different process modeling approaches, discussed as
the state of the art in this thesis, offer little or no support for compliance with
process standards. CPMF approach not only offers the possibility to comply with a
process standard, it takes a step ahead by offering compliance to multiple standards.
This is demonstrated in this case study through the use of two standards (i.e. an
organizational standard and a ISO standard), where AlphaSystem Testing Process
complies to both of them.

One of the main focuses of CPMF approach is to foster decoupling of activities
in process models. This is achieved through the use of events based flow at the
concrete level of executable process models and the completeness of the definition for
each individual activity. A single activity without its surrounding processes is not
able to give a meaningful information in other process modeling approaches. On the
contrary, a single activity in an executable CPMF process model contains the details of
the associated work products through artifact specifications, artifact state machines,
artifact metamodels, the details of activity life cycle, associated pre-conditions and
post-conditions, etc. This completeness of the definition of an activity is achieved over
time through a series of refinements. This is also demonstrated by the implementation
of the processes in this case study. Apart from the completeness of activities, this
case study demonstrates the design by contract approach followed by CPMF to foster
correctness of interactions and modularity.

This case study also demonstrates the way actors interact with executing pro-
cess models through the project management dashboard. How their access rights to
certain activities and certain actions related to a specific activity are managed by
the dashboard. Current process modeling approaches do not focus on the runtime
adaptations of the executing processes. CPMF also takes a step forward in this direc-
tion to make software processes more dynamic. CPMF offers a ’controlled’ runtime

152 6. Case Study

adaptation for executing processes in a way that a process can be adapted to differ-
ent variations already developed in the implementation phase. A scenario of process
adaptation is also covered in this case study that demonstrates the approaches for
runtime adaptations.

Chapter 7

Pattern Support in CPMF

Contents

7.1 Workflow Patterns . 153

7.2 Workflow Data Patterns . 154

7.3 Workflow Control-flow Patterns 158

7.4 Workflow Resource Patterns 165

7.5 Discussion . 170

Abstract - This chapter presents the implementation of workflow patterns using
CPMF Framework. It also compares the results with other well-known approaches for
software and business process modeling. We have focused on three types of patterns for
workflow: data-flow, control-flow and resource-flow. We conclude this chapter with
a discussion that presents the overall evaluation of the CPMF approach based on the
implementations of the workflow patterns that it supports.

7.1 Workflow Patterns

Workflow patterns are developed under the workflow pattern initiative by Eind-
hoven University of Technology and Queensland University of Technology. This
initiative started in 1999, which initially presented workflow control-flow patterns
[van der Aalst 03a]. A total of 20 patterns were presented to define the control-flow
perspectives that should be offered by a complete process modeling language or a
workflow language. Later on, another 23 control-flow patterns were added to the
original control-flow patterns, thus a total of 43 patterns [Russell 06a]. The seman-
tics of these control-flow patterns is defined through Coloured Petri Nets. Workflow
pattern initiative also presented workflow patterns for data [Russell 05a], resource
[Russell 05b] and exception handling [Russell 06b] perspectives. The purpose of pre-
senting workflow patterns for a variety of perspectives is to assess the relative strengths
and weaknesses of different process modeling approaches.

153

154 7. Pattern Support in CPMF

CPMF approach is assessed against all the data, control-flow and resource perspec-
tives offered by the workflow patterns. As the proposed process modeling approach
does not provide support for exception handling for the moment, we did not present
an evaluation of this perspective. Workflow pattern initiative provides the evaluated
rating for well-known process modeling languages and tools. This gives us an oppor-
tunity to place the evaluations of CPMF approach alongside other approaches for the
purpose of comparisons. The details of each pattern are not included in this chap-
ter for reasons of brevity. They can be accessed on the workflow pattern initiative
website 1.

7.2 Workflow Data Patterns

The flow of data from one activity to another in an executing process, enables
it to produce meaningful results. Different approaches focus on different aspects to
model the processes. Some of them keep the flow of data as their primary focus and
the process model is built around the concept of data-flow between the activities.
Others may choose to be guided by the control-flow for modeling processes. CPMF
framework uses a bi-layered approach, where the data flow is specified at the abstract
level of the process model. The concrete level of the process model handles the
control-flow of the processes using an event management system. Even though data
flow is specified at the abstract level, it is realized through the event management
system during execution. Artifact events at the concrete level map to their respective
artifact specifications. The flow of an event between two activities realizes the actual
transfer of data between them.

The data to be transferred between the activities can be of different forms. CPMF
supports the flow of data in two forms: artifacts and messages. Both forms of data are
passed using their respective contracts. Artifacts in CPMF are structured documents
that are considered as models. Each artifact conforms to its metamodel. The flow
of data between two activities, specified at the abstract level, uses the corresponding
artifact specifications. Apart from presenting the metamodel for the artifact, these
artifact specifications also provide the artifact state-machine for defining its life cycle.
Messages are also passed between the executing activities. They can pass data in
the form of emails & text messages and also the data types like string, integer, float,
boolean, date, time, etc.

Workflow data patterns 2 are the patterns defined by the Workflow pattern initia-
tive, that concern the flow of data in a process[Russell 05a]. Table 7.1 summarizes
the evaluation of CPMF implementation for the supported data patterns and com-
pares it with other process modeling approaches. Evaluation results of other process
modeling frameworks/tools in this table are taken from the Phd thesis of Nick Rus-
sell [Russell 07]. Details for CPMF Implementations of these data patterns can be
consulted in appendix 1.1. First eight Workflow Data Patterns(WDP) concern the

1. http://www.workflowpatterns.com/
2. http://www.workflowpatterns.com/patterns/data/

7.2. Workflow Data Patterns 155

A
B

 workflow

C

subworkflow

D
task

multiple instance taskblock task

 case

use(X)

def var X

ZYX

E

Figure 7.1 – Task level data visibility [Russell 05a]

visibility of data elements within a process model. For example WDP-1 presents a
pattern where a data element’s visibility is restricted only to the context of individual
execution instance of a task. This pattern is presented by the Workflow Patterns
Initiative [Russell 05a], as:

Pattern 1 (Task Data)

Description: Data elements can be defined by tasks which are accessible
only within the context of individual execution instances of that task.

Example The working trajectory variable is only used within the Calcu-
late Flight Path task.

Motivation To provide data support for local operations at task level.
Typically these data elements will be used to provide working storage
during task execution for control data or intermediate results in the ma-
nipulation of production data. Figure 7.1 illustrates the declaration of a
task data element (variable X in task B) and the scope in which it can be
utilised (shown by the shaded region and the use() function). Note that
it has a distinct existence (and potential value) for each instance of task
B (i.e. in this example it is instantiated once for each workflow case since
task B only runs once within each workflow).

CPMF framework encapsulates the data within the activity such that it can be
shared with its context, only through its specified contracts. The visibility or scope of
a data element in an activity depends upon the specification of artifact contracts and
message contracts at the abstract level of the process model. WDP-1 to 3 concern
different levels of scope for the elements i.e. within the context, to the contained

156
7
.
P
a
tte

rn
S
u
p
p
o
rt

in
C

P
M

F

Pattern W
eb

Sp
he

re

F
lO

W
er

C
O

SA

X
P
D
L

B
P
E
L

B
P
M

N

U
M

L

C
P
M

F

WDP-1 (Task Data)

WDP-2 (Block Data)

WDP-3 (Scope Data)

WDP-4 (Multiple Instance Data)

WDP-5 (Case Data)

WDP-6 (Folder Data)

WDP-7 (Workflow Data)

WDP-8 (Environment Data)

WDP-9 (Data Interaction - Task to Task)

WDP-10 (Data Interaction - Block Task to Sub-Workflow Decomposition)

WDP-11 (Data Interaction - Sub-Workflow Decomposition to Block Task)

WDP-12 (Data Interaction - to Multiple Instance Task)

WDP-13 (Data Interaction - from Multiple Instance Task)

WDP-14 (Data Interaction - Case to Case)

WDP-15 (Data Interaction - Task to Environment - Push-Oriented)

WDP-16 (Data Interaction - Environment to Task - Pull-Oriented)

WDP-17 (Data Interaction - Environment to Task - Push-Oriented)

WDP-18 (Data Interaction - Task to Environment - Pull-Oriented)

WDP-19 (Data Interaction - Case to Environment - Push-Oriented)

WDP-20 (Data Interaction - Environment to Case - Pull-Oriented)

WDP-21 (Data Interaction - Environment to Case - Push-Oriented)

WDP-22 (Data Interaction - Case to Environment - Pull-Oriented)

Table 7.1 – Workflow Data Patterns WDP-1 to WDP-22

7.2. Workflow Data Patterns 157

activities and to the subset of contained activities. CPMF framework supports all
three kinds of scope for a data element.

WDP-4 defines the scope of a data element restricted to the executing instance of
an activity that can have multiple instances. It is also supported by CPMF approach,
which allows multiple instances of an activity. Each activity instance has its own
working copy of the artifacts. WDP-5 defines a case scope for the data element.
A case is a particular instance of a process instead of an activity. In CPMF, a
case corresponds to an instance of a composite instantiation activity, which follows
the same contractual interaction paradigm. WDP-6 defines a scope for the data
element such that it can be assessed by multiple cases on a selective basis. CPMF
allows to bind data with multiple composite activities. The use of pre-conditions
can be exploited for selective accessibility of the data elements, providing a partial
support for the implementation of WDP-6. A data element is accessible by any
activity in the process model that defines a corresponding required contract for it,
thus supporting WDP-7. WDP-8 requires the approach to be able to support data
elements that are present in the execution environment of the process model e.g. from
other applications. Roles are associated to CPMF activities, which may be played by
actors (human resource) or tools. These tools allow the activities to access or provide
information to the environment. Interactions with the executing environment are not
contractual.

The data patterns from WDP-9 to 14 concern the data interactions within a
process. WDP-9 is supported by CPMF, because any activity is able to interact with
another activity within the same process instance. WDP-10 requires a composite
activity to be able to interact with its contained activities. This is possible through
the use of internal contracts of the composite activities. Internal contracts of an
activity can either be required or provided. These interactions are possible in both
ways, child to parent and parent to child, hence supporting WDP-11. WDP-12 and
WDP-13 require an activity to interact with multiple instances of another activity.
CPMF framework allows multiple instances of an activity at runtime. Interactions
to/from them are also possible. These interactions can be selective through the use
of conditions associated with the activities. This allows CPMF to implement both
these patterns. To implement WDP-14, two instances of a single composite activity
should be able to interact. To implement such a pattern, the provided contract of
the composite activity needs to be ’bound’ to the corresponding required contract
of the same activity. Only partial support for such a pattern is available, as CPMF
does not support it directly. Pre-conditions on the activity instances and the locking
mechanisms of the repository need to be exploited to achieve this behavior.

The data patterns from WDP-15 to WDP-26 are related to the data interac-
tions of the process elements with external environment. All the activities in CPMF
framework define associated roles for performing these activities. Multiple roles can
be associated with an activity, each having a different responsibility. These roles can
be played by actors (human resource) or by tools. Tools associated with the activities
are responsible for interactions with the environment. These interactions are not con-
tractual, as in the case of inter-activity interactions. Extra programmatic extensions

158 7. Pattern Support in CPMF

may be required to connect the tools with activity implementations (specifically the
automatic activities). We rate these patterns to be partially supported by CPMF, as
per the defined evaluation criteria of these patterns [Russell 05a].

Table 7.2 summarizes the evaluated ratings for the rest of the workflow data
patterns. WDP-27 to WDP-33 are the data transfer patterns, that describe the
mechanism by which data elements are passed from one activity to another. WDP-27
& 28 describe the transfer of data elements from one activity to another as ’transfer
by value’. The transfer of artifacts from one activity to another in CPMF takes
place through a common artifact repository. Thus, CPMF activities share a common
address space to provide or require an artifact. CPMF allows ’transfer by reference’
only, hence supporting WDP-30 & 31 and not providing any support for WDP-27
& 28. WDP-29 is supported by CPMF, as each activity keeps a local working copy
of the artifact that it accesses from the artifact repository. WDP-32 requires the
ability to perform a transforming function over the input data element just before
its is passed to the activity. CPMF does not allow any ’action’ to be performed
outside an activity. Thus the transforming function just before the input needs to be
developed as a separate activity, which is not the same intention, presented through
this pattern. So WDP-32 is not supported. However,in WDP-33 the transformation
function is performed just before it is passed out of the activity. This pattern is
supported, as the transformation function is carried out inside the activity in this
case.

The remaining workflow data patterns concern the routing of data from one activ-
ity to another. WDP-34 & 35 are supported by CPMF framework as preconditions
on the activities can be based both on the existence of the data elements to their
value. Every artifact in CPMF is considered as a model, whether it be a graphical
model or a textual document. Furthermore, its life cycle and specifications defined
at the abstract level make it a structured artifact. Pre-conditions associated with the
activities can access the properties of these artifacts. Similarly, the post-conditions
can also be based on the existence or the value of the data elements, thus providing
direct support for WDP-36 & 37. WDP-38 demands an activity to be triggered by
an external event. The contracts of activities at the concrete level of CPMF process
model contain events. The provided contracts of the activities are responsible for trig-
gering external events and the required contracts are responsible for listening to them.
This data pattern is directly supported by CPMF. Data based task trigger required
by WDP-39 is partially supported by CPMF, as no monitoring routines based on the
value of data elements are available to the activities. However, the events notifying
the change of state for the artifacts are listened by the activities, thus giving the pos-
sibility to trigger an activity. The last data pattern, WDP-40 that requires the data
based routing is also partially supported by CPMF. Logical connectors are not ex-
plicitly specified in CPMF process models, their logic needs to be implemented in the
contracts. Routing based on the value of the data elements can be achieved through
these contracts along with pre-conditions and the event broker for the process.

7.3.
W

orkflow
C

ontrol-flow
P
atterns

159

Pattern W
eb

Sp
he

re

F
lO

W
er

C
O

SA

X
P
D
L

B
P
E
L

B
P
M

N

U
M

L

C
P
M

F

WDP-23 (Data Interaction - Workflow to Environment - Push-Oriented)

WDP-24 (Data Interaction - Environment to Workflow - Pull-Oriented)

WDP-25 (Data Interaction - Environment to Workflow - Push-Oriented)

WDP-26 (Data Interaction - Workflow to Environment - Pull-Oriented)

WDP-27 (Data Transfer by Value - Incoming)

WDP-28 (Data Transfer by Value - Outgoing)

WDP-29 (Data Transfer - Copy In/Copy Out)

WDP-30 (Data Transfer by Reference - Unlocked)

WDP-31 (Data Transfer by Reference - With Lock)

WDP-32 (Data Transformation - Input)

WDP-33 (Data Transformation - Output)

WDP-34 (Task Precondition - Data Existence)

WDP-35 (Task Precondition - Data Value)

WDP-36 (Task Postcondition - Data Existence)

WDP-37 (Task Postcondition - Data Value)

WDP-38 (Event-based Task Trigger)

WDP-39 (Data-based Task Trigger)

WDP-40 (Data-based Routing)

Table 7.2 – Workflow Data Patterns WDP-23 to WDP-40

160 7. Pattern Support in CPMF

7.3 Workflow Control-flow Patterns

Workflow Control-flow Patterns (WCP) are the patterns defined to describe the
flow of control within the activities of a process model. This flow of control is based on
different dependencies between the activities to transfer the execution control. These
patterns initially cover the basic control flow logic like series, parallel execution, AND,
OR and XOR like constructs. Later on, patterns related to iterations, cancellation,
termination and multiple instances etc. are discussed. Originally, 20 control-flow
patterns were defined to describe different scenarios [van der Aalst 03a]. After that,
23 additional patterns were added to make the set of control-flow patterns more
comprehensive and complete [Russell 06a]. Some of the control flow patterns are said
to be very specific to YAWL language, for comparing the process modeling languages
[Börger 12]. However, we are going to implement all these control-flow patterns to
get a comprehensive picture.

CPMF framework specifies the data-flow between the activities at the abstract
level of its bi-layered process model. The control-flow of the activities is defined in the
concrete level using events. The focus of CPMF methodology is not on describing the
control flow of the activities in an easy manner. Rather, it focuses on more abstract
concepts like separation of concerns, contractual interactions, process refinements etc.
For this reason, the logical connectors are not explicitly specified outside the activities;
they are encoded within the contract of CPMF activities. This may make it hard to
understand the flow of control in a process model, visually. However, we believe that
multiple views can be extracted from a complete definition of a process model that
serve for a better understanding of a process model, for a particular point of view.
For the moment, the implementation tool provided along with CPMF framework does
not offer any of these views. However, such a view can be developed to extract some
particular information in a particular way, from a given process model.

Table 7.3 summarizes the evaluations of the implementation of original workflow
control-flow patterns from WCP-1 to WCP-20. It also compares the evaluated ratings
against other process modeling approaches, where their rating are already presented
[Russell 07]. WCP-1 to WCP-8 and WCP-16 define the basic control-flow patterns
involving sequence & parallel controls and the logical connectors like AND, XOR and
OR with merge and split kinds. All these basic logical connectors are not explicitly
specified outside the activities in the model, however CPMF framework offers a direct
support for implementing these patterns inside the contracts. The split patterns are
encoded inside the provided contracts and the merge patterns are encoded inside
the required contracts of an activity. Events are propagated within a context using
broadcast or unicast. For each process, the container activity offers an event broker
that manages all interactions with the contained process. Activities can listen to the
events based on their types, associated tags or the associated sender activity (where
it listens to all the instances of that sender). For every event received by an activity,
it is logged by the event broker. This information helps to manage the control flow
within a process for XOR-type constructs, where control flow should be passed to
one execution branch only. The contracts of an activity have a blocking mechanism,

7.3.
W

orkflow
C

ontrol-flow
P
atterns

161

Pattern W
eb

Sp
he

re

F
lO

W
er

C
O

SA

B
P
E
L

B
P
M

N

U
M

L

E
P
C
s

C
P
M

F

WCP-1 (Sequence)

WCP-2 (Parallel Split)

WCP-3 (Synchronization)

WCP-4 (Exclusive Choice)

WCP-5 (Simple Merge)

WCP-6 (Multi-Choice)

WCP-7 (Structured Synchronizing Merge)

WCP-8 (Multi-Merge)

WCP-9 (Structured Discriminator)

WCP-10 (Arbitrary Cycles)

WCP-11 (Implicit Termination)

WCP-12 (Multiple Instances without Synchronization)

WCP-13 (Multiple Instances with a Priori Design-Time Knowledge)

WCP-14 (Multiple Instances with a Priori Run-Time Knowledge)

WCP-15 (Multiple Instances without a Priori Run-Time Knowledge)

WCP-16 (Deferred Choice)

WCP-17 (Interleaved Parallel Routing)

WCP-18 (Milestone)

WCP-19 (Cancel Task)

WCP-20 (Cancel Case)

WCP-21 (Structured Loop)

WCP-22 (Recursion)

Table 7.3 – Original Workflow Control-flow Patterns WCP-1 to WCP-22

162 7. Pattern Support in CPMF

which blocks further input to the activity when an input is received. In order to get
further inputs, the contract needs to be reset.

The patterns added later on, left the complete set of control-flow patterns un-
ordered from a conceptual perspective, so we will not be discussing them in numerical
sequence. The contracts of CPMF allow the AND-type logical connectors and follow
a blocking mechanism, which can be reset (as per the design), so WCP-9 is directly
supported. WCP-10, WCP-21 and WCP-22 concern the iteration patterns for the
transfer of control. WCP-10 pattern requires the ability of activity to represent cy-
cles of execution. Each CPMF activity specifies a property for defining the number
of iterations that it will undergo. This number of iterations can also be changed at
runtime. The number of iterations can also be based dynamically on a pre-conditions
(that terminate loops), which controls the actual number of iterations at runtime.
Each activity can have multiple entry and exit points for the transfer of control.
This can also be exploited for ending an execution cycle. Thus a direct support for
WCP-10 is present in CPMF. Table 7.4 summarizes the evaluation for patterns after
WCP-21. WCP-21 is also supported by CPMF as pre-conditions and post-conditions
can determine the continuation of the loop. WCP-22 requires an activity to be able
to invoke itself during execution. This recursive behavior of the process model is not
yet supported by the CPMF tool implementation.

In order to implement WCP-11, a process model should have a mechanism to
terminate an activity that has provided all its artifacts and is not going to produce
them anymore. CPMF allows the definition of activity lifecycle, which takes into
account all such situations where an activity should change its state to complete,
thus providing direct support for this pattern. CPMF also supports WCP-43, where
all sub-activities of an activity are terminated, once a parent activity is complete.
Multiple instances of an activity are allowed in CPMF, where each instance has its
own data elements. These instances can execute concurrently, thus providing support
for WCP-12. The exact number of instances can be defined at implementation level,
instantiation level and may even be modified during execution. This allows us to
rate CPMF with a direct support for WCP-13 and partial support for WCP-14 and
WCP15. The two later patterns are evaluated for partial support because CPMF
framework does not offer the capability of synchronizing multiple instances of an
activity at their completion. However this can be achieved through the pre-conditions
of the subsequent activities. All the instances of an activity in CPMF have the same
contracts as defined for the activity. These instances trigger different events based on
the sources. The subsequent activity after the multiple instance activity can listen
to the events based on the event tags or the source activity type. The contract of
the subsequent activity can define a complete join for all instances or a partial join
for some instances. This allows direct support for WCP-34 and WCP-36. However,
WCP-35 is not currently implementable in CPMF because a subsequent activity can
not cancel the instances of a previous activity in a sequence of control flow.

The concrete level of CPMF does not define a fixed order of activity execution. It is
based on the dependencies of the contracts of activity definitions. So a partial ordering
of activities (like in other process models that rely on the ordering of activities) is

7.3.
W

orkflow
C

ontrol-flow
P
atterns

163

Pattern W
eb

Sp
he

re

F
lO

W
er

C
O

SA

B
P
E
L

B
P
M

N

U
M

L

E
P
C
s

C
P
M

F

WCP-23 (Transient Trigger) -

WCP-24 (Persistent Trigger)

WCP-25 (Cancel Region)

WCP-26 (Cancel Multiple Instance Activity)

WCP-27 (Complete Multiple Instance Activity)

WCP-28 (Blocking Discriminator)

WCP-29 (Cancelling Discriminator)

WCP-30 (Structured Partial Join)

WCP-31 (Blocking Partial Join)

WCP-32 (Cancelling Partial Join)

WCP-33 (Generalised AND-Join)

WCP-34 (Static Partial Join for Multiple Instances)

WCP-35 (Cancelling Partial Join for Multiple Instances)

WCP-36 (Dynamic Partial Join for Multiple Instances)

WCP-37 (Local Synchronizing Merge)

WCP-38 (General Synchronizing Merge)

WCP-39 (Critical Section)

WCP-40 (Interleaved Routing)

WCP-41 (Thread Merge)

WCP-42 (Thread Split)

WCP-43 (Explicit Termination)

Table 7.4 – Extended Workflow Control-flow Patterns WCP-23 to WCP-43

164 7. Pattern Support in CPMF

supported by CPMF. However, CPMF can not restrict two activities from executing
in parallel, if they have no inter-dependencies. This restricts CPMF to implement
WCP-17 and WCP-40. The life-cycle contracts of an activity are responsible for
notifying/listening to the state of child and parent activities. This allow activities
to synchronize their execution accordingly in a hierarchy. This possibility allows us
to implement WCP-18. WCP-39 requires an execution branch in the process model
to be able to pause another execution branch, where both branches originate from a
single source activity. CPMF framework does not restrict such behavior in the process
model, but it is not implemented in the CPMF tool, thus we rate this pattern as not
supported yet.

A lifecycle description of every activity in CPMF allows the cancellation of prim-
itive and composite activities, thus allowing the implementation of WCP-19 and
WCP-20. However for canceling a set of activities in a process, each of them has
to be canceled individually. CPMF does not allow selecting a ’non-connected’ set
of activities based on some criteria for any operation. Cancellation of such a set of
activities is possible if they are grouped together in a single process or by defining
an automatic primitive activity that sends the cancellation events to all activities in
the set. Thus WCP-25 is rated as partial support, as per the evaluation criteria of
the pattern. Cancellation of all the activity instances of an activity is also handled
individually, thus a partial support for WCP-26 as well. However, due to the lack of
direct support for synchronization of multiple instances at their completion, CPMF
is not able to provide a direct support. A partial support for WCP-27 can be pro-
vided by embedding every activity within an activity sending a terminating event. A
subsequent activity can be defined to wait for all these event for synchronization.

The event management system at the concrete level of CPMF process model
requires a trigger to activate an activity. This trigger can either be transient or
persistent, a choice defined within the contract of the activity. Direct support for
WCP-23 is offered due to the support of transient trigger, where the activity starts
when it receives the trigger, but can not start later on if it could not start earlier.
WCP-24 is supported through the support of persistent trigger, where the triggers
are retained until the pre-conditions are met.

Two different types of OR-joins are defined as WCP-28 and WCP-29. WCP-28
implements a blocking connector where the connector is blocked when one of the
inputs is received. This connector can be reset by the process. WCP-29 implements
this connector in a way that the other inputs are canceled. Both these forms of OR-
joins can be implemented in the required contract of an activity in CPMF. Partial
AND-joins are not offered through a dedicated construct in CPMF. Though they can
also be encoded in the required contracts through the use of conditions. Same is th
case for partial AND-joins with blocking behavior and canceling behavior. Thus we
rate these patterns (WCP-30 to WCP-33) for partial support, as per the evaluation
criteria given with the patterns. The merging connectors are encoded within the
contracts of the activity, thus the conditions for merging can be based on some local
data or can also be received from some other activity. These conditions of merging
may specify how many branches need to be merged. This allows us to implement

7.4. Workflow Resource Patterns 165

WCP-37. WCP-38 can not be implemented by CPMF because an activity (in current
implementation) can not guarantee that a non-enabled execution branch will not be
enabled in the future and hence some input will not arrive from previous activities
in the process. WCP-41 and WCP-42 concern splitting and merging process threads,
instead of multiple instances of an activity. All processes in CPMF are contained
within a composite activity and a thread of a process corresponds to an instance of a
composite activity. Thus both these patterns are supported, the same way multiple
instances of primitive activities are supported.

7.4 Workflow Resource Patterns

Workflow Resource Patterns (WRP) define the scenarios to capture the behavior
of the process model regarding the representation and utilization of resources. A re-
source in these patterns is considered as an entity that can perform a work. It can
either be human or non-human. Table 7.5 presents a summary of the evaluations for
CPMF implementations of first 20 patterns along with the comparisons of other pro-
cess modeling approaches. These 20 patterns are of two kinds: creation patterns that
deal with the manner in which the resources are associated to the activities and push
patterns that capture the situations where newly created activities are proactively
associated to resources. The rest of the patterns are summarized in table 7.6. These
patterns are pull patterns where resources are made aware of associated activities,
detour patterns dealing with interruptions, auto-start patterns for automatic activi-
ties, visibility patterns that define the scope of the resource and the multiple resource
patterns.

CPMF framework presents a refinement-based approach for process modeling.
The specification phase of the process models specify the associated responsibilities
and roles for each activity. A responsibility assignment matrix for each process model
assigns responsibilities to the corresponding roles. The implementation phase process
model refines the roles as a collection of capabilities. Finally, the instantiation process
model associates each role with actors or tools. Actors represent the human perform-
ers of the activities, whereas the tools are the hardware/software tools needed to
perform an activity. Because the identity of the resource can be specified at the de-
sign time, CPMF offers a direct support for WRP-1. WRP-2 is also supported by
CPMF because of the role based distribution of the ’work’ to the actors. WRP-3
demands the ability to defer the exact specification of actor to runtime. CPMF al-
lows to execute the process models with partial details, where the final details of the
process model can either be added/amended to the executing process model. Thus
WRP-3 is also supported by our approach.

WRP-4 demands that a range of privileges should be associated to the resources.
CPMF offers a direct support for this pattern through the use of responsibilities.
Responsibilities associated with each roles for a specific activity, specify the privileges
of that role in performing it. For example, for an activity the technical lead can have
the privilege of authorization. The ability to specify that two primitive activities
would be performed by two different actors is demanded by WRP-5. This is supported

166
7
.
P
a
tte

rn
S
u
p
p
o
rt

in
C

P
M

F

Pattern W
eb

Sp
he

re

F
lO

W
er

C
O

SA

B
P
E
L

B
P
M

N

U
M

L

C
P
M

F

WRP-1 (Direct Distribution)

WRP-2 (Role-Based Distribution)

WRP-3 (Deferred Distribution)

WRP-4 (Authorization)

WRP-5 (Separation of Duties)

WRP-6 (Case Handling)

WRP-7 (Retain Familiar)

WRP-8 (Capability-Based Distribution)

WRP-9 (History-Based Distribution)

WRP-10 (Organisational Distribution)

WRP-11 (Automatic Execution)

WRP-12 (Distribution by Offer - Single Resource)

WRP-13 (Distribution by Offer - Multiple Resources)

WRP-14 (Distribution by Allocation - Single Resource)

WRP-15 (Random Allocation)

WRP-16 (Round Robin Allocation)

WRP-17 (Shortest Queue)

WRP-18 (Early Distribution)

WRP-19 (Distribution on Enablement)

WRP-20 (Late Distribution)

Table 7.5 – Original Workflow Resource Patterns WRP-1 to WRP-20

7.4. Workflow Resource Patterns 167

by CPMF and is carried out once the process model is refined to the appropriate
life cycle phase. WRP-6 demands the possibility of assigning a resource to a case
when it is executed. A case in CPMF corresponds to an instance of a composite
activity (composed of a process). A composite activity (like primitive activities) can
be allocated to the actors at runtime, hence supporting WRP-6. WRP-7 allocates
a resource to an activity that performed the last activity. CPMF has the capability
to access the last executed activity from it execution log and from that activity, the
associated actor of that activity can be accessed. This allows CPMF to implement
this pattern. CPMF also offers a mechanism of assigning the resources to an activity
based on their capabilities, thus supporting WRP-8. WRP-9 allocates the resources
to an activity based on their previous execution history. An execution history of
activities is kept by the interpreter. This can be exploited to develop the execution
history for a specific actor. Through a little programmatic extension this can be
achieved. Thus we rate this pattern for partial support, according to its evaluation
criteria. CPMF currently does not support WRP-10, because an actor is associated
with an organization, but its position is not specifiable in the organizational hierarchy.
Thus actors can not be assigned to activities based on their relationships with other
actors. CPMF allows the execution of activities that are not allocated to any actors,
thus providing a support for WRP-11.

The current implementation of CPMF prototype does not allow the allocation of
resources to the activities on offer basis i.e. the assigned actors do not have the choice
to approve or reject the allocation. For these reasons, we do not support WRP-12,
WRP-13 and WRP-23 where resource allocation is non-binding. All assignments of
actors to the activities are considered binding to them. The selection of appropriate
actor can be chosen based on the capabilities, randomly or through a cycle between
a set of actors, hence supporting WRP-14 to WRP-16. Every actor maintains a
list of allocated activities. A little programmatic extension can be used to calculate
the working queues of each actor and allocations can be based on it. Thus WRP-
17 is partially supported by CPMF. The allocations of actors to the corresponding
activities can be carried out at design time or when even when the activity is loaded
in the interpreter for execution, thus supporting WRP-18. An actor can be assigned
to a task even during the execution of the process (where this activity is not yet
executing). This means that the precise primitive activity is assigned with an actor,
once its parent activity has started its execution. This primitive activity is enabled
for execution but requires the allocation of an actor for execution, thus WRP-19 can
be implemented. However, it can not start its execution unless an actor has been
allocated to it. Thus a late allocation of resource after execution has started, as
required by WRP-20 is not supported in CPMF framework.

WRP-21 requires a resource initiated allocation for the activities. An actor in
CPMF can allocate an activity for himself if he has appropriate privileges to do
so, thus supporting WRP-21. It is also possible for an actor to provide an internal
trigger for the execution of the activity. This gives an actor the authority to trigger
an activity without any external event. Thus pattern WRP-22 is also supported
by CPMF implementation. The work queue of an actor is initially ordered by the
reception of events. In case multiple activities are allocated to an actor that have

168
7
.
P
a
tte

rn
S
u
p
p
o
rt

in
C

P
M

F

Pattern W
eb

Sp
he

re

F
lO

W
er

C
O

SA

B
P
E
L

B
P
M

N

U
M

L

C
P
M

F

WRP-21 (Resource-Initiated Allocation)

WRP-22 (Resource-Initiated Execution - Allocated Work Item)

WRP-23 (Resource-Initiated Execution - Offered Work Item)

WRP-24 (System-Determined Work Queue Content)

WRP-25 (Resource-Determined Work Queue Content)

WRP-26 (Selection Autonomy)

WRP-27 (Delegation)

WRP-28 (Escalation)

WRP-29 (Deallocation)

WRP-30 (Stateful Reallocation)

WRP-31 (Stateless Reallocation)

WRP-32 (Suspension-Resumption)

WRP-33 (Skip)

WRP-34 (Redo)

WRP-35 (Pre-Do)

WRP-36 (Commencement on Creation)

WRP-37 (Commencement on Allocation)

WRP-38 (Piled Execution)

WRP-39 (Chained Execution)

WRP-40 (Configurable Unallocated Work Item Visibility)

WRP-41 (Configurable Allocated Work Item Visibility)

WRP-42 (Simultaneous Execution)

WRP-43 (Additional Resources)

Table 7.6 – Workflow Resource Patterns WRP-21 to WRP-43

7.4. Workflow Resource Patterns 169

no dependencies between them and have flexible deadlines, then the actor has the
possibility to re-arranging his working queue and selecting the activity that he wants
to perform first, thus supporting WRP-23 to WRP-26.

CPMF framework allows to manipulate the activities during the execution of a
process model. Thus an activity allocated to one actor can be re-allocated to another
actor in an executing process model. WRP-27 requires an actor to be able to re-
allocate his activity to another actor. CPMF offers the possibility to do so, only if
the actor has enough privileges to do so. Allocation/reallocation of activities in a
process is normally carried out by process owner. But rights to do such actions can
be given to the actors of the activities. The same criteria goes for the de-allocation
of an activity from an actor. CPMF process implementation tool provide support
to implement WRP-27 to WRP-29. The re-allocation of activities to other users
during executing is carried out as activity adaptation. The state of the activity can
be transferred to the new activity in such situations. This allows us to implement
WRP-30. WRP-31 that requires a stateless transfer but the activity has to use the
interactive method of state transfer between the activities. In this mechanism, a
process owner can choose to link no properties between the new activity and the
replaced activity. Hence no state is transfered in this case. WRP-32 and WRP-33 are
also supported by CPMF framework, as the actor has the possibility to suspend and
resume the execution of an activity and to mark it as complete (even if the activity
is skipped). An actor can also redo an activity, if the activity lifecycle allows so.
However the subsequent activities after this activity will not be repeated unless their
life-cycles also permits to start over an activity after completion. The default lifecycle
provided by the tool implementation does not permit that. Thus we rate WRP-34
for a partial support.

Once an activity has been allocated to an actor, it is presented to him on the
project dashboard. If this activity has no dependencies over other artifacts, an actor
can perform this activity before its scheduled plan and even upload the artifacts in the
repository, thus supporting WRP-35 and WRP-37. However CPMF does not allow the
execution of an activity by an actor before it is allocated to him/her, thus providing
no support for WRP-36. Once an actor has completed one task, next activity in his
queue can be triggered automatically or manually, if all the dependencies of those
activities are met. When an activity requires an external trigger, then it will not
start automatically. If the external trigger is to be initiated by an actor, then the
activity should be started manually. If it does not require a trigger, it starts as soon
as the previous activity is complete (and all other pre-conditions are met). Multiple
instances of an activity are also executed the same way. Thus CPMF allows partial
support to implement the patterns WRP-38 and WRP-39, where little programmatic
extensions are required.

An actor in a CPMF process model is able to access the activities allocated to him
through the project management dashboard. No actor (other than process adminis-
trator) can access the activities that are not allocated to him/her. Thus CPMF does
not support WRP-40. However WRP-41 is supported, which permits to configure the
scope of allocated activities to the actors. CPMF allows the execution of multiple

170 7. Pattern Support in CPMF

Figure 7.2 – Support for Workflow Control-flow Patterns

activities by the same actor simultaneously, thus supporting WRP-42. As explained
earlier, an activity can be adapted during it execution. Thus, if additional roles need
to be attached to an activity or a role needs to be played by more actors than actually
assigned, this can be handled through activity adaptations. This activity is adapted
to a new activity with the required properties. The state is transferred between the
old activity and the activity replacing it. This allows use to implement WRP-43.

7.5 Discussion

Workflow Patterns capture different aspects of process modeling languages. The
workflow pattern initiative by Eindhoven University of Technology and Queensland
University of Technology offers patterns for control-flow, resources, data and exception
handling. Even though they primarily focus on the evaluations of different workflow
languages, an informal equivalence of workflows is possible in other process modeling
languages. Different process modeling approaches (including other than workflows)
are evaluated and their rating are published on the workflow initiative website 3. Not
all of the approaches presented in the state of the art for this thesis are evaluated.
We have provided the evaluations of CPMF framework and compared it with other
approaches (where the data is taken from the workflow initiative website). These
evaluations concern the data, resource and control-flow patterns only. CPMF is not
currently providing support for exception handling, so exception handling patterns
are not implemented and are not included in this chapter.

CPMF framework supports most of the Workflow control-flow patterns either
completely or partially, as shown in the figure 7.2. Workflow control-flow patterns
focus on capturing the control-flow mechanisms provided by a software process mod-
eling approach. The basic control flow patterns concern the availability of logical
connectors to route the control flow among activities. CPMF framework allows the

3. http://www.workflowpatterns.com/

7.5. Discussion 171

encoding of this control flow logic inside activity contracts. The split connectors are
embedded inside the provided contracts, where as the merge connectors are encoded
inside the required connectors. Other process modeling approaches (that focus on the
flow of data/control) explicitly represent these logical connectors outside the activi-
ties, within the process. CPMF on the other hand focuses on other issues related to
process modeling and does not want to put unnecessary focus on the routing informa-
tion. The main focus of CPMF is to target completeness of individual activities where
a refinement based approach is presented. For the interactions of activities, CPMF
focuses on defining it in a bi-layered approach and through the use of contractual
paradigm. The motivation of encoding these logical connectors within the contracts
was to put more attention to the core issues discussed by CPMF. The process mod-
eling language for CPMF can always be extended to explicitly represent these logical
connectors in a process, outside the activities.

Out of the workflow control patterns that are not supported by CPMF the main
reasons stem back mostly to the support of recursion and default activity life cycles.
Recursion of an activity is not implemented in the tool support. Though, an activity
can invoke its own instance at the runtime, but managing the lifecycle of the two
activities to get the recursive behavior would need addition support for such linking.
Multiple instances of an activity can execute in an executing process, but they are
considered as parallel or sequential executions in the same context. This does not
mean that it is impossible to achieve it. The amount of effort required to implement
this pattern rates it as having no support. A default activity life cycle is provided
by CPMF for the instant execution of activities. The framework allows its users
to define different lifecycles for different activities. But for this evaluation, we have
considered the default lifecycle only. Many of the control-flow patterns which are
not supported currently, can be supported by defining appropriate life-cycles for the
concerned activities.

Workflow data patterns focus on the definition and management of artifacts in
the process model. CPMF framework defines artifact contracts for each activity at
the abstract level and artifact specification, artifact metamodel and artifact lifecycle
state-machine are used to describe the structure and behavior of each artifact in detail.
Moreover, an artifact repository at the concrete level manages the transfer of artifacts
between multiple activities. This artifact repository manages the concurrent access
of different activities and multiple versions of the artifacts. Most of the patterns in
this category are implementable by CPMF framework either completely or partially,
as shown in figure 7.3. Two patterns that are not supported by CPMF concern
the transfer of data elements between the activities based on their values instead of
references. Some of the data elements can be transferred between the activities based
on their value (through messages). However, for the transfer of artifacts between the
activities, their repository url is used.

Workflow resource patterns define the manner in which resources (human and
non-human) are represented and utilized by the process modeling approach. Most of
the necessary constructs used by these patterns are defined by the process modeling
approach. However, some patterns are not implementable by the tool support pro-

172 7. Pattern Support in CPMF

Figure 7.3 – Support for Workflow Data Patterns

Figure 7.4 – Support for Workflow Resource Patterns

vided along with CPMF framework. Constructs that are missing in CPMF process
model are the properties related to the organizational hierarchy of the actors that can
define their inter-relationships. Patterns that are not implemented due to the tool
implementations concern the support for offer based allocation and the execution of
unallocated activities. CPMF tool support does not provide support for offer based
resource allocation such that the resource has the privilege to accept or reject the
duties assigned to him/her. The tool also does not support the execution of activities
by an actor that is not associated to the activities (process administrator being an
exception). CPMF support for workflow resource patterns is better from the rest of
the approaches in state of the art, as shown in figure 7.4.

Contrary to other process modeling products/languages that are mostly commer-
cial, CPMF tool support is a prototype to evaluate the implementation feasibility of
the language. Thus it does not provide a complete implementation of the language
yet. This also resulted in a partial support or unavailability of support for different

7.5. Discussion 173

workflow patterns. With this argument, we want to put forward the fact that the
process modeling language proposed in this framework is not hindering the imple-
mentation of any of these patterns. If some workflow patterns are not supported by
the CPMF framework, it is the shortcoming of the tool implemented for CPMF, not
the process modeling language itself. Despite these shortcomings of the prototype
tool, the results of implementing the workflow patterns are encouraging. Table 7.7
summarizes the number of patterns supported by CPMF in comparison with other
approaches in state of the art.

Pattern WebSphere FlOWer COSA BPEL BPMN UML CPMF

WDP Direct Support 13 20 21 12 16 17 21

WDP Partial Support 11 12 5 7 6 1 16

WDP Support Missing 16 8 14 21 18 22 3

WCP Direct Support 10 16 19 17 24 25 28

WCP Partial Support 0 8 2 3 9 5 9

WCP Support Missing 33 19 22 23 10 13 6

WRP Direct Support 19 22 24 24 8 6 30

WRP Partial Support 1 2 6 5 0 0 6

WRP Support Missing 23 19 13 14 35 37 7

Table 7.7 – Workflow Patterns support summary

Part IV

Epilogue

175

176

Chapter 8

Conclusion and Perspectives

Contents

8.1 Contributions and Achievements 175

8.2 Limitations and Prospects 180

Abstract - We conclude our work in this chapter. The contributions of this
research work are presented using the solution criteria defined in the first chapter.
Finally, limitations of the current work and the possible future prospects are outlined.

8.1 Contributions and Achievements

The core objective of this thesis was to develop a comprehensive and consistent
approach for process modeling that is capable of handling these processes in various
stages of their development life cycle. This objective was to be achieved in a way
that instead of using "one model fits all phases" approach, multiple models should
be developed according to the precise nature of each phase of process development.
It was also required to separate the concerns related to data-flow from the control
flow such that each concern can be analyzed, developed, maintained and updated
individually.

This goal has been satisfied at three levels. First, the fundamental components
of business processes have been categorized according to their relevance to the spe-
cific phase of process development. These concepts are then used to develop multiple
metamodels, each pertaining to a specific process development lifecycle phase. Sec-
ond, a bi-layered approach has been chosen to separate the data-flow of the process
models from their control-flow. A mapping between both these layers guarantees
the conformance of control-flow to the specified data-flow. Finally, the development
of a prototype implementation equipped with a process interpreter that is responsi-
ble for executing the processes and allowing the capability to monitor them. This
demonstrates the support for refinement of the processes from specification to their
execution.

177

178 8. Conclusion and Perspectives

Seven solution criteria were defined at the beginning of this research, as a means of
evaluating the effectiveness of the proposed solution. We revisit each of these criteria
to explain how effectively the proposed solution has managed to solve the identified
problems in the existing approaches. We update table 3.1 with the evaluations of
CPMF regarding each of the solution criteria and present it in table 8.1.

Completeness: One of the main goals of CPMF approach was to develop an ap-
proach that caters for all the different phases of process development lifecycle. This
means that it had to take into account all the relevant components of a process model
pertaining to each phase of process development lifecycle. Contrary to other ap-
proaches that focus on a single or some of the phase of process development, CPMF
presents the concepts that encompass the complete lifecycle of a process. These con-
cepts are placed into relevant models of the specific phase of process development.
For example, the concept of state is important for the activity, only after the imple-
mentation phase. Thus the specification level process model is not polluted with this
concept. However, when the process model refines to the appropriate phase, it has
access to all the relevant concepts.

The notions related to the intent of each activity like goals, objectives and inten-
tions are added to each activity. On one hand they help in providing a comprehensive
description of an activity and on the other hand they serve as a guidance for the im-
plementation of the activities. The process developer of a specification level activity
might be different from the developer that develops activity implementations. So,
they help in guiding the implementation of each activity also. They are also useful
when choosing an activity for reuse from the process repository. The use of tags
and contracts helps in searching existing process components and these intent related
notions help in refining that search.

Because most of the process modeling approaches target one or some of the phases
of process development, they either miss out on providing the support for execution or
the support for abstract level process specifications. For example, SPEM and EPCs
do not provide a direct execution support. Most of the other approaches that tend to
enrich them with execution semantics, also end up with providing a transformation to
other languages that provide execution semantics like BPEL or XPDL. CPMF frame-
work provides the direct execution support for its process models. The behavior of a
process model is defined through the activity and artifact state-machines. Together
they allow to develop an executable process modeling whose execution behavior is
customizable. The formal semantics of CPMF itself are not defined as yet. A map-
ping to Hierarchical Petri Nets is developed to specify the interaction behavior of the
processes [Golra 12b]. But a formal validation of this semantics is missing.

Due to the completeness of constructs provided by CPMF, it is possible to trans-
form a process model developed with BPMN, BPEL or SPEM etc. to a specific phase
model in CPMF framework. However, we are afraid that a transformation in opposite
direction might result in a conceptual and structural loss. These transformations are
not developed as yet, but this argument is based on the richness of concepts offered
by CPMF.

8.1.
C

ontributions
and

A
chievem

ents
179

Criteria SPEM xSPEM MODAL BPMN BPEL EPCs YAWL Little-JIL CPMF

Completeness
Architectural constructs +/- + + +/- +/- +/- + + +

Process intents +/- +/- + + +/- - +/- +/- +

Process behavior - + + +/- + +/- + + +/-

Team Development
Choreography - - - + + - - - +

Task allocation + + + + +/- + + + +

Responsibility assignment - - - - - - - - +

Distributed process development - - - +/- + + + + +

Reusability
Approach-based systematic +/- +/- + - +/- - - +/- +

Implementation-based systematic +/- +/- +/- +/- + +/- +/- +/- +

Opportunistic + + + + + + + + +

Abstraction
Phase-wise refinement - - +/- - - +/- - - +

Internal conformance - - - - +/- - - - +

Modularity
Hierarchical modularity + + + + +/- + + +/- +

Contextual modularity +/- +/- + +/- + - - +/- +

Tailorability
Static process tailoring + + + + +/- +/- +/- +/- +

Dynamic adaptations - - - - + +/- +/- - +

Enactability
Direct execution support - + + - + - + + +

Activity lifecycle - +/- +/- +/- +/- - +/- +/- +

Artifact lifecycle - - +/- - - - - - +

Table 8.1 – Evaluation of existing approaches based on the solution criteria

180 8. Conclusion and Perspectives

Team Development: With increasing trends of outsourcing and sub-contracting,
software development processes are becoming distributed in nature. Moreover, the
geographical separation of different actors, teams and departments require an effective
support for process development methodologies that allow distributed development
of process models. This is supported by the implementation architecture of CPMF,
through the use of process repositories that allow concurrent version management.
This helps in developing the process models by different teams that are geographically
separated. Apart from the distributed development of process models, a support for
managing distributed software development processes is also important for a process
modeling approach. This requires an effective mechanism to associate work items with
resources that would be need to perform it. These resources can either be human or
non-human. A stress on interactions between these resources is required to support
distributed software development projects.

CPMF framework provides the concepts of responsibility and roles at the speci-
fication level. A role is a collection of capabilities to perform certain task and it is
assigned with some responsibility regarding the concerned activity. This responsibil-
ity defines the privileges of a role related to some activity. These roles are played
by actor (humans) and tools (non-humans). A mechanism of interactions among the
roles of different activities is presented in terms of message contracts. These message
contracts ensure the responsibility of a role to carry out an interaction. Effective
means of binding these resources for interactions and modeling them is not common
in many other approaches like SPEM, EPCs & YAWL. BPMN models when executed
using BPEL also lack the capability of guaranteeing such interactions because of the
inability of BPEL to model human processes effectively. These approaches do not
provide the mechanisms of integrating responsibility assignment matrices with asso-
ciated roles of activities. CPMF framework provides this capability for an effective
management of resources for a software development project.

Abstraction: Software process models can benefit from the use of abstractions in
two ways: horizontal, in terms of the advancing phase of process development lifecy-
cle and vertical within a single process model to structure it in multiple abstraction
layers. Abstraction across multiple phases of process development are exploited by
CPMF through the use of multiple metamodels, each pertaining to a specific phase
of process development lifecycle. These metamodels have a refinement relationship
between them, which serves to refine a process model from the earlier phases of pro-
cess development till its execution, possibly passing through different phases. The
current implementation of CPMF demonstrates this philosophy through the use of
three metamodels for specification, implementation and instantiation phases of pro-
cess development respectively. A process model in instantiation phase is ready for
execution by the process interpreter.

The use of abstraction within a process model (of a specific phase in CPMF)
can be exploited to develop it in multiple layers. CPMF uses a bi-layered approach
to model its processes, where the abstract level is used to specify the data-flow of
the process model and the concrete level (conforming to abstract level) defines its
control-flow. This approach allows to analyze, develop, maintain and update both

8.1. Contributions and Achievements 181

these levels separately. Apart from the structural benefits of this separation, it allows
to introduce variability in the process model. It also allows to develop the process
models in a manner which promotes standardization of the processes. This support
of standardization stems from the capability of CPMF to keep the process standard
at the abstract level of the process model and develop multiple implementations at
the concrete level. The conformance relationship between the two levels guarantees
the compliance to adopted standards.

Modularity: Modularity of software process models has been targeted by the process
modeling approaches in only one direction i.e. hierarchical modularity. This comes
from the fact that process models are hierarchical in nature, where all processes are
made up of smaller processes that are in turn made up of activities containing multi-
ple tasks. But there is a second dimension to modularity, which accounts for effective
partitioning of the process within the same context i.e. contextual modularity. This
is the generally known type of modularity in software systems that has been a mo-
tivation for component-based paradigm. Inspired from the same paradigm, CPMF
takes each activity as an equivalent to a process component. Each activity is properly
encapsulated, where all interactions (to and from it) are restricted through the de-
fined interfaces. Interfaces of an activity are defined through abstract contracts and
concrete contracts depending upon the abstract/concrete level of the process model.
Inspirations from Design by Contract (DbC) allowed to integrate pre-conditions and
post-conditions to the contracts of the activities. This guarantees the correctness of
interaction between two activities. It also allows to decouple the activities by focusing
on complete definitions for each activity.

Reusability: One of the benefits of choosing a modular approach for process mod-
eling is that it favors reusability. Other software process approaches in state of the
art do not follow the "design to reuse" philosophy and end up with offering only the
opportunistic reuse of process fragments. Contrary to them, CPMF follows the design
to reuse approach to foster process models that can benefit from the systematic reuse
of process fragments. From a process fragment, we mean to say, a part of process
model that can be as little as a primitive activity to as big as the complete process
model. A part of support for the process model approach is dependent upon the im-
plementation of that methodology. For example, one implementation tool for BPMN
can offer the facility to store and retrieve process components from a repository and
the other may not. This has got nothing to do with the design choice of the modeling
methodology. Along with the choice to follow design to reuse, CPMF implementa-
tion tool also supports reusability by offering a process repository. Activities (both
abstract and concrete) are stored in the repository for their potential reuse.

Tailorability: Another benefit related to the adoption of modular approach is the
support for tailorability. The motivation behind tailoring a software process is to
adapt it to the current requirements or to support process improvement. When a
support for process improvement is the target, one normally tailors the process model
statically. By static tailoring, we mean to say that concerned processes that need to
be updated are not executing. This is the most common form of process tailorability.
It is supported by CPMF framework in a more effective way in comparison to other

182 8. Conclusion and Perspectives

approaches. A modular approach with defined interfaces and the use of a bi-layered
architecture makes such tailoring effective. The contracts for any new activity (or
the update to an existing activity) need to conform to the defined interfaces of corre-
sponding activity definition at the abstract level. This ensures the correctness of the
process when tailoring it.

When the goal of process tailoring is to update a process in execution such that
it can meet the current requirements, dynamic updates are applied. This dynamic
updates replace the process (or a part of it) with the updated process fragments. So,
if an activity needs to be replaced by another activity during runtime, this would be
handled through dynamic update. CPMF framework allows to dynamically update
the executing process. This update may concern adding/removing news instances of
an activity that supports multiple instances. It can also replace one activity with
another, such that the state of the activity being replaced is transferred to the new
activity.

Enactability: For a process modeling approach that can handle the processes in
different phases of their development lifecycle, it is important to end up with an exe-
cutable model. A CPMF process model at the instantiation phase is capable of being
enacted directly. The tool support provided with the framework is equipped with a
process interpreter. It can bootstrap the process model and execute the activities
contained within the process. A project management dashboard is a web interface
used to interact with executing processes. Actors that are responsible to carry out
the activities log in to this dashboard and can update the state of the executing
processes. This interpreter also links the activities to the software development en-
vironment. The roles associated with an activity may be played by tools. Thus tool
invocations is also handled through this interpreter.

Different process modeling approaches allow to enact the process models. One of
the goals targeted by CPMF is also to make the approach flexible enough to handle
different complex scenarios. Contrary to other approaches, CPMF framework allows
the support to define state-machines for concerned activities and artifacts in a process
model. This gives flexibility to the the process developer to define various lifecycles
depending upon the precise nature of the process being modeled.

8.2 Limitations and Prospects

The research work carried out for this thesis proposed a new approach for model-
ing software development processes by giving pivotal focus to the notion of phase-wise
process refinement. For process models in a specific phase, inspirations were taken
from the concepts of "Design by Contract" and "Design for reuse". We have tried
to achieve the goals setup in the beginning of this thesis and have proposed our
methodology, Component-oriented Process Modeling Framework (CPMF) along with
a prototype implementation of this approach. Just like the concept of "continuous
process improvement" in process development, all approaches need to be improved
continuously to achieve excellence. This research work has some limitation, which

8.2. Limitations and Prospects 183

open up room for further improvements. Besides this, it opens up some new dimen-
sions that can be explored in this domain.

— Formal semantics: The definition of the proposed process modeling frame-
work is carried out using multiple metamodels. These metamodels define the
structure of the process models that are developed using CPMF. Its behavior
is explained in the thesis using informal natural language. Implementation of
the approach in a prototype evaluates the validity of the approach to a certain
level. Formalization of the runtime behavior of the processes can concretize
the approach theoretically. A translation of interaction control behavior of
CPMF process models to Hierarchical Petri Nets (HPN) has already been
done [Golra 12b]. However, this needs a formal validation of the semantics.

— Prototype limitations: The prototype implemented alongside this thesis
was developed with the intention to demonstrate the feasibility of the approach.
This prototype is made up basic components like process editor, process in-
terpreter, artifact & process repositories and a web interface to interact with
the executing processes. Many of the process patterns (discussed in chapter 7)
that are not currently supported by CPMF are due to the minimal implemen-
tation of the prototype. For example, the workflow resource pattern WRP-12
& 13 that concern the allocation of actor to the activities based on offers that
they can accept or reject is not implemented. This is not a shortcoming of
the process modeling approach. We have focused on demonstrating only the
core aspects of the methodology in the prototype. Further extensions to this
prototype will result in implementing different scenarios which are inherently
supported by the process modeling approach. Similarly, extraction of different
types of view from process models can also be implemented in the prototype
to extend its functionality.

— Dynamic updates at abstract level: CPMF framework allows to dynam-
ically update an executing process. These updates concern the activity im-
plementations at the concrete level of the process model. Activity definitions
at the abstract level of the process model are not subject to dynamic updates
as yet. Further extensions to the framework can look into the prospects of
dynamic updates of the activity definitions. Currently the CPMF only allows
a controlled adaptation between already developed activity implementations.
Dynamic updates to the abstract level activity definitions will open up new
horizons, where dynamic updates to the process will not more be restricted by
a controlled set of activity implementations.

— Multi-layered process modeling CPMF framework uses a bi-layered ar-
chitecture for implementation and instantiation phase process models. A
multi-layered modeling approach like Lazy Initialization Multilayered Model-
ing (LIMM) [Golra 11] that can benefit from unlimited number of abstraction
layers within a model can be exploited for process modeling. A recent standard
has used another multi-level modeling approach (Powertype based metamod-
eling) for situational method engineering [ISO/IEC 08c]. Implementing multi-
layered metamodeling approaches can result in more flexible process modeling

184 8. Conclusion and Perspectives

approaches that benefit from partial instantiations of the process models at
specific level of metamodeling.

— Support for Business Activity Monitoring (BAM) The current focus
of this thesis remained on the development aspects of the process lifecycle.
The possibility to execute the processes using process interpreter is provided
by the tool implementations. However, further extensions of this approach in
BAM can result in an effective iterative process lifecycle that can allow process
improvement more effectively. Every instantiation activity in the process in-
stance model keeps a trace to the previous models till the process specifications.
Thus, monitoring an executing process can result in precise recommendations
for process improvement. For example, a project manager notices that a lot of
multiple instances of a particular instantiation activity are used in the project.
This activity allows to trace back to its process specifications. This informa-
tion can result in improving this activity from specification to instantiation
as another development cycle of the process. This will also support contin-
uous process improvement, as the instantiation activities can be replaced at
runtime.

— Comprehensive software development Support The graphical process
editor for CPMF framework is based on the viewpoint concept from Open-
flexo. To demonstrate the support for automatic activity execution, we have
used some unit test examples. They serve fine to demonstrate the linkage
of process modeling framework to the associated software development envi-
ronment. However, a serious integration of the proposed process modeling
framework with Openflexo can result in a technology that can be used for real
life software process development. This can be achieved through the integra-
tion of the CPMF process interpreter with Openflexo software development
framework in a way that automatic processes can invoke and interact with a
set of tools handled by Openflexo. Openflexo already provides this support,
built around BPMN. Adding CPMF interpreter to this open source framework
can make this research project usable by the industry.

— Real life process modeling We have implemented ISPW benchmark for
process modeling in this thesis to demonstrate the key features of the approach.
A case was also carried out for modeling some pseudo-real test processes. But
both these processes are modeled so as to show the strengths and weaknesses of
the proposed framework. Implementation of real life processes in an industry
or for some student projects can be carried out. Surveys based on these real
life process implementations can be fruitful to guide future perspectives of this
research project.

Part V

Bibliography and appendices

185

186

Bibliography

[Adams 05] Michael J. Adams, Arthur H.M. ter Hofstede, David Edmond
& Wil M.P. van der Aalst. Facilitating Flexibility and Dynamic
Exception Handling in Workflows through Worklets. In Orlando
Bello, Johann Eder, Oscar Pastor & Joao Falcao e Cunha, ed-
itors, Proceedings of the 17th International Conference on Ad-
vanced Information Systems Engineering (CAiSE’05) Forum,
pages 45–50, Porto, Portugal, 2005. FEUP Edicoes. 2, 3

[Adams 06] Michael J. Adams, Arthur H.M. ter Hofstede, David Edmond
& Wil M.P. van der Aalst. Worklets: A Service-Oriented Im-
plementation of Dynamic Flexibility in Workflows. In Robert
Meersman & Zahir Tari, editors, On the Move to Meaningful
Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE,
volume 4275 of Lecture Notes in Computer Science, pages 291–
308. Springer Berlin Heidelberg, 2006. 5

[Almeida da Silva 11] M.A. Almeida da Silva, R. Bendraou, J. Robin & X. Blanc.
Flexible Deviation Handling during Software Process Enact-
ment. In Proceedings of the 15th IEEE International En-
terprise Distributed Object Computing Conference Workshops
(EDOCW), 2011, pages 34–41, 2011. 32, 34

[Ambriola 97] Vincenzo Ambriola, Reidar Conradi & Alfonso Fuggetta.
Assessing process-centered software engineering environments.
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 6, no. 3, pages 283–328, jul 1997. 20

[Andersen 01] Bjørn Andersen & Tom Fagerhaug. Advantages and disadvan-
tages of using predefined process models. Strategic Manufactur-
ing: IFIP WG5, 2001. 34

[Armbrust 09] Ove Armbrust, Masafumi Katahira, Yuko Miyamoto, Jürgen
Münch, Haruka Nakao & Alexis Ocampo. Scoping software pro-
cess lines. Software Process: Improvement and Practice, vol. 14,
no. 3, pages 181–197, 2009. 22

[Atkinson 02] Colin Atkinson & Thomas Kühne. Rearchitecting the UML in-
frastructure. ACM Transactions Modeling and Computer Sim-
ulations, vol. 12, no. 4, pages 290–321, October 2002. 73

187

188 BIBLIOGRAPHY

[Bandinelli 94] S. Bandinelli, M. Braga, A. Fuggetta & L. Lavazza. The archi-
tecture of the SPADE-1 Process-Centered SEE. In Brian C.
Warboys, editor, Software Process Technology, volume 772
of Lecture Notes in Computer Science, pages 15–30. Springer
Berlin Heidelberg, 1994. 20

[Beck 99] Kent Beck. Embracing change with extreme programming. Com-
puter, vol. 32, no. 10, pages 70–77, 1999. 36

[Belkhatir 91] N. Belkhatir, J. Estublier & W.L. Melo. A Support to Large
Software Development Process. In Proceedings of the First In-
ternational Conference on the Software Process, 1991, pages
159–170, 1991. 20

[Bendraou 07] Reda Bendraou, Benoit Combemale, X. Cregut & M.-P. Ger-
vais. Definition of an Executable SPEM 2.0. In Proceedings of
the 14th Asia-Pacific Software Engineering Conference, 2007.
APSEC 2007, pages 390–397, 2007. 32, 41, 42, 43, 46, 76, 202

[Beugnard 99] Antoine Beugnard, Jean-Marc Jezequel, Noël Plouzeau &
Damien Watkins. Making components contract aware. Com-
puter, vol. 32, no. 7, pages 38–45, 1999. 23, 24

[Bocchi 10] Laura Bocchi, Kohei Honda, Emilio Tuosto & Nobuko Yoshida.
A Theory of Design-by-Contract for Distributed Multiparty In-
teractions. In Paul Gastin & François Laroussinie, editors,
CONCUR 2010 - Concurrency Theory, volume 6269 of Lecture
Notes in Computer Science, pages 162–176. Springer Berlin Hei-
delberg, 2010. 23, 24

[Boehm 86] B Boehm. A spiral model of software development and enhance-
ment. SIGSOFT Software Engineering Notes, vol. 11, no. 4,
pages 14–24, August 1986. 36

[Boehm 96] Barry Boehm. Anchoring the software process. Software, IEEE,
vol. 13, no. 4, pages 73–82, 1996. 7, 59

[Booch 97] Grady Booch, James Rumbaugh & Ivar Jacobson. UML nota-
tion guide, version 1.1. Rational Software Corporation, Santa
Clara, CA, 1997. 2

[Börger 12] Egon Börger. Approaches to modeling business processes: a crit-
ical analysis of BPMN, workflow patterns and YAWL. Software
& Systems Modeling, vol. 11, no. 3, pages 305–318, 2012. 59,
60, 160

[Bruynooghe 91] R. F. Bruynooghe, J. M. Parker & J. S. Rowles. PSS: A System
for Process Enactment. In Proceedings of the First International
Conference on the Software Process, pages 128–141, 1991. 2

[Cass 99] Aaron G Cass, Barbara Staudt Lerner, Eric K McCall, Leon J
Osterweil & Alexander Wise. Logically central, physically dis-
tributed control in a process runtime environment. Technical
Report UM-CS-1999-065, University of Massachusetts, Com-
puter Science Department, Amherst, 1999. 63

BIBLIOGRAPHY 189

[Cass 00] A.G. Cass, A.S. Lerner, E.K. McCall, Leon J. Osterweil, Stan-
ley M. Sutton Jr. & Alexander Wise. Little-JIL/Juliette: a pro-
cess definition language and interpreter. In Proceedings of the
2000 International Conference on Software Engineering, 2000.,
pages 754–757, 2000. 61, 202

[Céret 13] Eric Céret, Sophie Dupuy-Chessa, Gaëlle Calvary, Agnès Front
& Dominique Rieu. A taxonomy of design methods process mod-
els. Information and Software Technology, vol. 55, no. 5, pages
795 – 821, 2013. 36

[Chang 01] E. Chang, E. Gautama & T.S. Dillon. Extended activity di-
agrams for adaptive workflow modelling. In Proceedings of
the Fourth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, 2001. ISORC - 2001, pages
413–419, 2001. 5

[Chung 89] Eun K. Chung. A survey of Process Modeling Tools. Techni-
cal Report No. 7, Computer Integrated Construction Research
Program, The Pennsylvania State University, 1989. 2

[Coalition 99] Workflow Management Coalition. The Workflow Management
Coalition Specification: Terminology & Glossary. Technical Re-
port No. WFMC-TC-1011, Issue 3.0, feb 1999. 29, 32

[Committee 02] ESD Symposium Committee. ESD Symposium Committee
Overview: Engineering Systems Research and Practice. Tech-
nical Report No. ESD-WP-2003-01.20, Massachusetts Institute
of Technology Engineering Systems Division, may 2002. 21

[Cortes-Cornax 12] Mario Cortes-Cornax, Alexandru Matei, Emmanuel Letier, So-
phie Dupuy-Chessa & Dominique Rieu. Intentional Fragments:
Bridging the Gap between Organizational and Intentional Lev-
els in Business Processes. In Robert Meersman, Hervé Panetto,
Tharam Dillon, Stefanie Rinderle-Ma, Peter Dadam, Xiaofang
Zhou, Siani Pearson, Alois Ferscha, Sonia Bergamaschi & Is-
abel F. Cruz, editors, On the Move to Meaningful Internet Sys-
tems: OTM 2012, volume 7565 of Lecture Notes in Computer
Science, pages 110–127. Springer Berlin Heidelberg, 2012. 8, 36

[Crnkovic 06] Ivika Crnkovic, Michel R. V. Chaudron & Stig Larsson.
Component-Based Development Process and Component Life-
cycle. In International Conference on Software Engineering Ad-
vances, page 44, 2006. 9

[Curtis 92] Bill Curtis, Marc I. Kellner & Jim Over. Process modeling.
Communications of the ACM, vol. 35, no. 9, pages 75–90, sep
1992. 2, 18, 19

[Davenport 93] Thomas H. Davenport. Process innovation: reengineering
work through information technology. Harvard Business School
Press, Boston, MA, USA, 1993. 18

190 BIBLIOGRAPHY

[Diaw 11] Samba Diaw, Rédouane Lbath & Bernard Coulette. Specifi-
cation and Implementation of SPEM4MDE, a metamodel for
MDE software processes. In International Conference on Soft-
ware Engineering and Knowledge Engineering, pages 646–653,
2011. 44, 202

[Dowson 94] Mark Dowson & Christer Fernström. Towards requirements for
enactment mechanisms. In Brian C. Warboys, editor, Software
Process Technology, volume 772 of Lecture Notes in Computer
Science, pages 90–106. Springer Berlin Heidelberg, 1994. 20

[Eclipse 13] Project Eclipse. Stardust - Comprehensive Business Process
Management for Eclipse, june 2013. 6, 30

[Efftinge 06] Sven Efftinge & Markus Völter. oAW xText: A framework for
textual DSLs. In Workshop on Modeling Symposium at Eclipse
Summit, volume 32, 2006. 118

[Elias 12] Mturi Elias & Paul Johannesson. A Survey of Process Model
Reuse Repositories. In Sumeet Dua, Aryya Gangopadhyay,
Parimala Thulasiraman, Umberto Straccia, Michael Shepherd
& Benno Stein, editors, Information Systems, Technology and
Management, volume 285 of Communications in Computer and
Information Science, pages 64–76. Springer Berlin Heidelberg,
2012. 3, 71

[ESA-ESTEC 09] ESA-ESTEC. ECSS-E-ST-40C, Space engineering - Software.
Requirements & Standards Division, ESA-ESTEC, mar 2009.
66, 67, 68, 78, 202

[Estublier 05] Jacky Estublier & German Vega. Reuse and variability in large
software applications. SIGSOFT Software Engineering Notes,
vol. 30, no. 5, pages 316–325, sep 2005. 21, 22

[Fahland 09] Dirk Fahland, Daniel Lübke, Jan Mendling, Hajo Reijers, Bar-
bara Weber, Matthias Weidlich & Stefan Zugal. Declarative
versus Imperative Process Modeling Languages: The Issue of
Understandability. In Terry Halpin, John Krogstie, Selmin Nur-
can, Erik Proper, Rainer Schmidt, Pnina Soffer & Roland Ukor,
editors, Enterprise, Business-Process and Information Systems
Modeling, volume 29 of Lecture Notes in Business Information
Processing, pages 353–366. Springer Berlin Heidelberg, 2009.
26, 27

[Feiler 93] Peter Feiler & Watts Humphrey. Software process development
and enactment: concepts and definitions. In Proceedings of
the Second International Conference on the Software Process.
Continuous Software Process Improvement, pages 28–40, 1993.
7, 11

[Foundation 10] The Yawl Foundation. YAWL - Technical Manual, Version 2.1,
2010. 59

BIBLIOGRAPHY 191

[Fuggetta 00] Alfonso Fuggetta. Software process: a roadmap. In Proceed-
ings of the Conference on The Future of Software Engineering,
ICSE’00, pages 25–34, New York, NY, USA, 2000. ACM. 1, 3

[Giese 00] H. Giese. Contract-based component system design. In Pro-
ceedings of the 33rd Annual Hawaii International Conference
on System Sciences, 2000., pages 10 pp.–, 2000. 24

[Golra 11] Fahad Rafique Golra & Fabien Dagnat. The lazy initialization
multilayered modeling framework: NIER track. In Proceedings
of the 33rd International Conference on Software Engineering
(ICSE), 2011, pages 924–927, 2011. 73, 181

[Golra 12a] Fahad Rafique Golra & Fabien Dagnat. Generation of dynamic
process models for multi-metamodel applications. In Proceedings
of the International Conference on Software and System Process
(ICSSP), 2012, pages 48–57, 2012. 40

[Golra 12b] Fahad Rafique Golra & Fabien Dagnat. Specifying the Inter-
action Control Behavior of a Process Model using Hierarchical
Petri Net. In PMDE 2012: 2nd Workshop on Process-based
approaches for Model-Driven Engineering, 2012. 176, 181

[Gonzalez-Perez 06] Cesar Gonzalez-Perez & Brian Henderson-Sellers. A powertype-
based metamodelling framework. Software & Systems Modeling,
vol. 5, no. 1, pages 72–90, 2006. 73

[Gonzalez-Perez 07] Cesar Gonzalez-Perez. Supporting Situational Method Engineer-
ing with ISO/IEC 24744 and the Work Product Pool Approach.
In Jolita Ralyté, Sjaak Brinkkemper & Brian Henderson-Sellers,
editors, Situational Method Engineering: Fundamentals and
Experiences, volume 244 of IFIP - The International Federation
for Information Processing, pages 7–18. Springer US, 2007. 41,
60

[Göser 07] Kevin Göser, Martin Jurisch, Hilmar Acker, Ulrich Kreher,
Markus Lauer, Stefanie Rinderle-Ma, Manfred Reichert & Peter
Dadam. Next-generation Process Management with ADEPT2.
In BPM’07 Demo Proceedings, numéro 272 in CEUR-WS.org
Workshop Proceedings, pages 3–6. CEUR-WS, September 2007.
36

[Hallows 02] Jolyon Hallows. The project management office toolkit. Ama-
com, 2002. 84

[Havey 09] Michael Havey. Essential business process modeling. O’Reilly
Media, Inc., 2009. 35, 53

[Hepp 05] M. Hepp, F. Leymann, J. Domingue, A. Wahler & D. Fensel.
Semantic business process management: a vision towards using
semantic Web services for business process management. In
Proceedings of the IEEE International Conference on e-Business
Engineering, 2005. ICEBE 2005., pages 535–540, 2005. 29

192 BIBLIOGRAPHY

[Hollenbach 95] Craig R. Hollenbach. Software process reusability in an indus-
trial setting. Master’s thesis, Virginia Polytechnic Institute and
State University, oct 1995. 22, 23

[Hollingsworth 95] David Hollingsworth. The Workflow Reference Model, Docu-
ment No. TC00-1003. The Workflow Management Coalition,
1995. 6, 29

[Hollingsworth 04] David Hollingsworth. The Workflow Reference Model: 10 Years
On. In Fujitsu Services, UK; Technical Committee Chair of
WfMC, pages 295–312, 2004. 3, 6

[Holt 83] Anatol W. Holt, R. Ramsey & J. Grimes. Coordinating Sys-
tem Technology as the Basis for a Programming Environment.
Electrical Communication, vol. 57, no. 4, pages 307–314, 1983.
2

[Holt 88] Anatol W. Holt. Diplans: a new language for the study and
implementation of coordination. ACM Transactions on Infor-
mation Systems (TOIS), vol. 6, no. 2, pages 109–125, apr 1988.
2

[Hruby 98] Pavel Hruby. Specification of workflow management systems
with UML. In OOPSLA Workshop on Implementation and Ap-
plication of Object-oriented Workflow Management Systems,
1998. 2

[Huhns 05] M.N. Huhns & M.P. Singh. Service-oriented computing: key
concepts and principles. IEEE Internet Computing, vol. 9, no. 1,
pages 75–81, 2005. 27, 28, 202

[Hurtado Alegría 11] Julio A. Hurtado Alegría, María Cecilia Bastarrica, Alcides
Quispe & Sergio F. Ochoa. An MDE approach to software pro-
cess tailoring. In Proceedings of the 2011 International Confer-
ence on Software and Systems Process, ICSSP ’11, pages 43–52,
New York, NY, USA, 2011. ACM. 32

[Hurtado 12] Julio Ariel Hurtado, María Cecilia Bastarrica, Sergio F. Ochoa
& Jocelyn Simmonds. MDE software process lines in small com-
panies. Journal of Systems and Software, 2012. 10

[IEEE 06] IEEE. IEEE Std 1074 TM-2006 - IEEE Standard for Devel-
oping a Software Project Life Cycle Process. Standard, IEEE
Computer Society, July 2006. 64, 65, 66, 72, 202

[IEEE 10] IEEE. IEEE Std 1517 TM-2010 - IEE Standard for Information
Technology - System and Software Life Cycle Processes - Reuse
Processes. Standard, IEEE Computer Society, August 2010. 65

[IEEE 13] IEEE. ISO/IEC/IEEE 29119-2(E) IEEE Std 29119 TM-2013 -
Software and systems engineering - Software testing - Part 2:
Test processes. Standard, IEEE Computer Society, February
2013. 132, 133, 203

BIBLIOGRAPHY 193

[Indulska 09] Marta Indulska, Peter Green, Jan Recker & Michael Rosemann.
Business Process Modeling: Perceived Benefits. In AlbertoH.F.
Laender, Silvana Castano, Umeshwar Dayal, Fabio Casati &
José PalazzoM. Oliveira, editors, Conceptual Modeling - ER
2009, volume 5829 of Lecture Notes in Computer Science, pages
458–471. Springer Berlin Heidelberg, 2009. 33

[ISO/IEC 08a] ISO/IEC. ISO/IEC 12207:2008(E) IEEE Std 12207 TM-2008 -
Systems and software engineering - Software life cycle processes.
Standard, IEEE Computer Society, February 2008. 65, 68

[ISO/IEC 08b] ISO/IEC. ISO/IEC 15288:2008(E) IEEE Std 15288 TM-2008 -
Systems and software engineering - System life cycle processes.
Standard, IEEE Computer Society, February 2008. 65

[ISO/IEC 08c] ISO/IEC. ISO/IEC 24744:2007 - Software engineering - Meta-
model for Development Methodologies. Standard, feb 2008. 73,
181

[Jaccheri 93] M.L. Jaccheri & R. Conradi. Techniques for process model evo-
lution in EPOS. IEEE Transactions on Software Engineering,
vol. 19, no. 12, pages 1145–1156, 1993. 41, 60

[Johnson 99] Donna L. Johnson & Judith G. Brodman. Tailoring the CMM
for small businesses, small organizations, and small projects. El-
ements of software process assessment and improvement, pages
239–259, 1999. 10

[Jones 02] M. Jones, E. Gomez, A. Mantineo & U.K. Mortensen. Introduc-
ing ECSS Software-Engineering Standards within ESA - Prac-
tical approaches for space- and ground-segment software. ESA
Bulletin, vol. 111, pages 132–139, aug 2002. 66

[Jouault 06] Frédéric Jouault, Jean Bézivin & Ivan Kurtev. TCS:: a DSL
for the specification of textual concrete syntaxes in model engi-
neering. In Proceedings of the 5th international conference on
Generative programming and component engineering, GPCE
’06, pages 249–254, New York, USA, 2006. ACM. 2, 3

[Kabbaj 07] Mohammed Kabbaj, Redouane Lbath & Bernard Coulette. A
deviation-tolerant approach to software process evolution. In
Ninth international workshop on Principles of software evolu-
tion: in conjunction with the 6th ESEC/FSE joint meeting,
IWPSE ’07, pages 75–78, New York, NY, USA, 2007. ACM.
32, 34

[Kedji 12] K.A. Kedji, Redouane Lbath, Bernard Coulette, M. Nassar,
L. Baresse & F. Racaru. Supporting collaborative development
using process models: An integration-focused approach. In Inter-
national Conference on Software and System Process (ICSSP),
pages 120–129, June 2012. 45

[Keen 97] Peter G.W. Keen. The process edge: creating value where it
counts. Harvard Business Press, 1997. 18

194 BIBLIOGRAPHY

[Kellner 90] M.I. Kellner, P.H. Feiler, A. Finkelstein, T. Katayama, L.J. Os-
terweil, M.H. Penedo & H.D. Rombach. Software Process Mod-
eling Example Problem. In ’Support for the Software Process’,
Proceedings of the 6th International Software Process Work-
shop, pages 19 –29, Oct 1990. 79

[Kent 02] Stuart Kent. Model Driven Engineering. In Michael Butler,
Luigia Petre & Kaisa Sere, editors, Integrated Formal Methods,
volume 2335 of Lecture Notes in Computer Science, pages 286–
298. Springer Berlin Heidelberg, 2002. 1, 3

[Khalfallah 13] Malik Khalfallah, Nicolas Figay, Parisa Ghodous & Catarina-
Ferreira Silva. Cross-Organizational Business Processes Model-
ing Using Design-by-Contract Approach. In Marten Sinderen,
Paul Oude Luttighuis, Erwin Folmer & Steven Bosems, edi-
tors, Enterprise Interoperability, volume 144 of Lecture Notes in
Business Information Processing, pages 77–90. Springer Berlin
Heidelberg, 2013. 23

[Kloppmann 05] Matthias Kloppmann, Dieter Koenig, Frank Leymann, Ger-
hard Pfau, Alan Rickayzen, Claus von Riegen, Patrick
Schmidt & Ivana Trickovic. WS-BPEL extension for people–
BPEL4PEOPLE. Joint white paper, IBM and SAP, vol. 183,
page 184, 2005. 42, 54, 55

[Ko 09] Ryan KL Ko, Stephen SG Lee & Eng Wah Lee. Business pro-
cess management (BPM) standards: a survey. Business Process
Management Journal, vol. 15, no. 5, pages 744–791, 2009. 53

[Koudri 10a] Ali Koudri & Joel Champeau. MODAL: A SPEM Extension to
Improve Co-design Process Models. In Jürgen Münch, Ye Yang
& Wilhelm Schäfer, editors, New Modeling Concepts for Todays
Software Processes, volume 6195 of Lecture Notes in Computer
Science, pages 248–259. Springer Berlin Heidelberg, 2010. 41,
46

[Koudri 10b] Ali Koudri, Joël Champeau, Jean-Christophe Le Lann & Vin-
cent Leilde. MoPCoM Methodology: Focus on Models of Com-
putation. In Thomas Kühne, Bran Selic, Marie-Pierre Gervais &
François Terrier, editors, Modelling Foundations and Applica-
tions, volume 6138 of Lecture Notes in Computer Science, pages
189–200. Springer Berlin Heidelberg, 2010. 48

[Lehman 91] M.M. Lehman. Software engineering, the software process and
their support. Software Engineering Journal, vol. 6, no. 5, pages
243–258, 1991. 18

[Li 99] Xuandong Li & Johan Lilius. Timing Analysis of UML Se-
quence Diagrams. In Robert France & Bernhard Rumpe, edi-
tors, UML’99 - The Unified Modeling Language, volume 1723
of Lecture Notes in Computer Science, pages 661–674. Springer
Berlin Heidelberg, 1999. 2

BIBLIOGRAPHY 195

[Lindsay 03] Ann Lindsay, Denise Downs & Ken Lunn. Business processes-
attempts to find a definition. Information and Software Tech-
nology, vol. 45, no. 15, pages 1015 – 1019, 2003. 18

[Lonchamp 93] Jacques Lonchamp. A structured conceptual and terminological
framework for software process engineering. In Proceedings of
the Second International Conference on the Software Process,
1993. Continuous Software Process Improvement, pages 41–53,
1993. 18

[Ma 09] Zhilei Ma & F. Leymann. BPEL Fragments for Modularized
Reuse in Modeling BPEL Processes. In Fifth International Con-
ference on Networking and Services, 2009. ICNS ’09., pages 63–
68, 2009. 55

[Maciel 13] Rita Suzana Pitangueira Maciel, Ramon Araújo Gomes,
Ana Patrícia Magalhaes, Bruno C. Silva & Joao Pedro B.
Queiroz. Supporting model-driven development using a process-
centered software engineering environment. Automated Soft-
ware Engineering, vol. 20, no. 3, pages 427–461, 2013. 20

[Martin 91] James Martin. Rapid application development. Macmillan Pub-
lishing Co., Inc., Indianapolis, IN, USA, 1991. 36

[Medvidovic 00] N. Medvidovic & R.N. Taylor. A classification and compari-
son framework for software architecture description languages.
IEEE Transactions on Software Engineering, vol. 26, no. 1,
pages 70–93, 2000. 24, 25, 202

[Mendling 09] Jan Mendling. Event-Driven Process Chains (EPC). In Metrics
for Process Models, volume 6 of Lecture Notes in Business In-
formation Processing, pages 17–57. Springer Berlin Heidelberg,
2009. 57

[Mendling 10] J. Mendling, H.A. Reijers & Will M.P. van der Aalst. Seven
process modeling guidelines (7PMG). Information and Software
Technology, vol. 52, no. 2, pages 127 – 136, 2010. 33

[Meyer 92a] Bertrand Meyer. Applying ’design by contract’. Computer,
vol. 25, no. 10, pages 40–51, 1992. 22, 39, 104

[Meyer 92b] Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1992. 22, 104

[Montoni 06] Mariano Montoni, Gleison Santos, Ana Regina Rocha, Sávio
Figueiredo, Reinaldo Cabral, Rafael Barcellos, Ahilton Bar-
reto, Andréa Soares, Cristina Cerdeiral & Peter Lupo. Taba
Workstation: Supporting Software Process Deployment Based
on CMMI and MR-MPS.BR. In Jürgen Münch & Matias Vieri-
maa, editors, Product-Focused Software Process Improvement,
volume 4034 of Lecture Notes in Computer Science, pages 249–
262. Springer Berlin Heidelberg, 2006. 20

[Mutschler 08] B. Mutschler, M. Reichert & J. Bumiller. Unleashing the Ef-
fectiveness of Process-Oriented Information Systems: Problem

196 BIBLIOGRAPHY

Analysis, Critical Success Factors, and Implications. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Ap-
plications and Reviews, vol. 38, no. 3, pages 280–291, 2008. 122

[Naur 69] Peter Naur & Brian Randell, editors. Software Engineering:
Report of a conference sponsored by the NATO Science Com-
mittee, Garmisch, Germany, 7-11 oct. 1968. Scientific Affairs
Division, NATO, Brussels, 1969. 1

[OASIS 07] OASIS. Web Services Business Process Execution Language
(WS-BPEL), Version 2.0, may 2007. 2, 3, 4, 19, 29, 30, 42,
46, 52, 53, 76, 202

[OMG 08] OMG. Software & Systems Process Engineering Metamodel
Specification (SPEM), Version 2.0, apr 2008. 3, 5, 32, 37, 38,
41, 42, 76, 84, 202

[OMG 11] OMG. Business Process Model And Notation (BPMN), Version
2.0, jan 2011. 2, 3, 4, 5, 19, 32, 48, 50, 52, 76, 202

[Openflexo 13] Openflexo. Open source business architecture platform.
www.openflexo.org, 2013. 12, 118

[Osterweil 87] Leon J. Osterweil. Software processes are software too. In Pro-
ceedings of the 9th international conference on Software Engi-
neering, ICSE ’87, pages 2–13, Los Alamitos, CA, USA, 1987.
IEEE Computer Society Press. 1, 2, 3, 19, 24

[Ould 95] Martyn A. Ould. Business Processes: Modelling and analysis
for re-engineering and improvement. Wiley, Beverly Hills, 1995.
2

[Ouyang 06] Chun. Ouyang, Marlon Dumas, Arthur H.M. ter Hofstede &
Wil M.P. van der Aalst. From BPMN Process Models to BPEL
Web Services. In Proceedings of the International Conference
on Web Services, 2006. ICWS ’06, pages 285–292, 2006. 32, 52

[Papazoglou 07] MikeP. Papazoglou & Willem-Jan Heuvel. Service oriented ar-
chitectures: approaches, technologies and research issues. The
VLDB Journal, vol. 16, no. 3, pages 389–415, 2007. 27, 28

[Pesić 08] Maja Pesić. Constraint-Based Work on Management Systems:
Shifting Control to Users. PhD thesis, Eindhoven University of
Technology, 2008. 26

[Pichler 12] Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera,
Jan Mendling & HajoA. Reijers. Imperative versus Declarative
Process Modeling Languages: An Empirical Investigation. In
Florian Daniel, Kamel Barkaoui & Schahram Dustdar, editors,
Business Process Management Workshops, volume 99 of Lec-
ture Notes in Business Information Processing, pages 383–394.
Springer Berlin Heidelberg, 2012. 26, 27

[Pillain 11] Pierre-Yves Pillain, Joel Champeau & Hanh Nhi Tran. Towards
an Enactment Mechanism for MODAL Process Models. In First

BIBLIOGRAPHY 197

Workshop on Process-based approaches for Model-Driven En-
gineering (PMDE), 2011, page 33, June 2011. 3, 46, 48

[Portela 12] Carlos Portela, Alexandre Vasconcelos, Antônio Silva, Elder
Silva, Mariano Gomes, Maurício Ronny, Wallace Lira & Sandro
Oliveira. xSPIDER_ML: Proposal of a Software Processes En-
actment Language Compliant with SPEM 2.0. Journal of Soft-
ware Engineering and Applications, vol. 5, no. 6, pages 375–384,
2012. 41, 46

[Prieto-Diaz 87] Ruben Prieto-Diaz & Peter Freeman. Classifying Software for
Reusability. IEEE Software, vol. 4, no. 1, pages 6–16, 1987. 9

[Prieto-Díaz 93] Rubén Prieto-Díaz. Status report: software reusability. Soft-
ware, IEEE, vol. 10, no. 3, pages 61–66, 1993. 20

[Recker 06a] J. Recker, M. Indulska, M. Rosemann & P. Green. How Good is
BPMN Really? Insights from Theory and Practice. In Proceed-
ings of the 14th European Conference on Information Systems.
Goeteborg, Sweden, pages 1582–1593, 2006. 48

[Recker 06b] Jan C Recker & Jan Mendling. On the translation between
BPMN and BPEL: Conceptual mismatch between process mod-
eling languages. In The 18th International Conference on Ad-
vanced Information Systems Engineering. Proceedings of Work-
shops and Doctoral Consortium, pages 521–532. Namur Univer-
sity Press, 2006. 54

[Rosemann 06a] Michael Rosemann. Potential pitfalls of process modeling: part
A. Business Process Management Journal, vol. 12, no. 2, pages
249–254, 2006. 34

[Rosemann 06b] Michael Rosemann. Potential pitfalls of process modeling: part
B. Business Process Management Journal, vol. 12, no. 3, pages
377–384, 2006. 33, 34

[Rossi 07] D. Rossi & E. Turrini. Using a process modeling language for
the design and implementation of process-driven applications.
In Proceedings of the International Conference on Software En-
gineering Advances. ICSEA 2007, pages 55–55, 2007. 29

[Russel 07] Nick Charles Russel. Foundations of Process-Aware Informa-
tion Systems. PhD thesis, Faculty of Information Technology,
Queensland University of Technology, Brisbane, Australia, dec
2007. 58

[Russell 05a] Nick Russell, Arthur H.M. ter Hofstede, David Edmond &
Wil M.P. van der Aalst. Workflow Data Patterns: Identifi-
cation, Representation and Tool Support. In Lois Delcambre,
Christian Kop, Heinrich C. Mayr, John Mylopoulos & Oscar
Pastor, editors, Conceptual Modeling - ER 2005, volume 3716
of Lecture Notes in Computer Science, pages 353–368. Springer
Berlin Heidelberg, 2005. 13, 153, 154, 155, 157, 203

198 BIBLIOGRAPHY

[Russell 05b] Nick Russell, Wil M.P. van der Aalst, Arthur H.M. ter Hofstede
& David Edmond. Workflow resource patterns: Identification,
representation and tool support. In Advanced Information Sys-
tems Engineering, pages 216–232. Springer, 2005. 13, 153

[Russell 06a] Nick Russell, Arthur H.M. ter Hofstede, Wil M.P. van der Aalst
& Nataliya Mulyar. Workflow Control-Flow Patterns: A Re-
vised View. Technical Report BPM Center Report BPM-06-22,
BPMcenter.org, 2006. 12, 153, 160

[Russell 06b] Nick Russell, Wil M.P. van der Aalst & Arthur H.M. ter Hof-
stede. Workflow Exception Patterns. In Eric Dubois & Klaus
Pohl, editors, Advanced Information Systems Engineering, vol-
ume 4001 of Lecture Notes in Computer Science, pages 288–302.
Springer Berlin Heidelberg, 2006. 153

[Russell 07] Nicholas Charles Russell. Foundations of Process-Aware Infor-
mation Systems. PhD thesis, Faculty of Information Technol-
ogy, Queensland University of Technology, Brisbane, Australia,
2007. 154, 160

[Russell 09] Nick Russell & Arthur H.M. ter Hofstede. Surmounting BPM
challenges: the YAWL story. Computer Science - Research and
Development, vol. 23, no. 2, pages 67–79, 2009. 58, 59

[Sadiq 07] Shazia Sadiq, Guido Governatori & Kioumars Namiri. Mod-
eling Control Objectives for Business Process Compliance. In
Gustavo Alonso, Peter Dadam & Michael Rosemann, editors,
Business Process Management, volume 4714 of Lecture Notes in
Computer Science, pages 149–164. Springer Berlin Heidelberg,
2007. 10, 73

[Schall 08] D. Schall, Hong-Linh Truong & S. Dustdar. Unifying Human
and Software Services in Web-Scale Collaborations. Internet
Computing, IEEE, vol. 12, no. 3, pages 62–68, 2008. 42

[Scheer 00] August-Wilhelm Scheer & Markus Nüttgens. ARIS Architec-
ture and Reference Models for Business Process Management.
In Wil M.P. van der Aalst, Jörg Desel & Andreas Oberweis,
editors, Business Process Management, volume 1806 of Lecture
Notes in Computer Science, pages 376–389. Springer Berlin Hei-
delberg, 2000. 55

[Scheer 05] August-Wilhelm Scheer, Oliver Thomas & Otmar Adam. Pro-
cess modeling using event-driven process chains. In Marlon Du-
mas, Wil M.P. van der Aalst & Arthur H.M. ter Hofstede, ed-
itors, Process-Aware Information Systems, pages 119–146. Wi-
ley, Hoboken, New Jersey, 2005. 56

[Scheer 09] August-Wilhelm Scheer. Business process engineering: refer-
ence models for industrial enterprises. Springer-Verlag Telos,
2009. 56

BIBLIOGRAPHY 199

[Selic 03] Bran Selic. The pragmatics of model-driven development. Soft-
ware, IEEE, vol. 20, no. 5, pages 19–25, 2003. 2

[Snowdon 90] Robert A. Snowdon. An Introduction to the IPSE 2.5 project.
In Fred Long, editor, Software Engineering Environments, vol-
ume 467 of Lecture Notes in Computer Science, pages 13–24.
Springer Berlin Heidelberg, 1990. 2

[Society 10] IEEE Computer Society. IEEE Standard for Information Tech-
nology - System and Software Life Cycle Processes – Reuse Pro-
cesses. IEEE Std. 1517-2010, pages i –38, 2010. 21

[Sutton Jr. 97] Stanley M Sutton Jr. & Leon J. Osterweil. The design of a
next-generation process language. In Mehdi Jazayeri & Helmut
Schauer, editors, Software Engineering – ESEC/FSE’97, vol-
ume 1301 of Lecture Notes in Computer Science, pages 142–158.
Springer Berlin Heidelberg, 1997. 20, 33, 63

[Szyperski 97] Clemens Szyperski. Component software, Beyond object-
oriented programming. Addison-Wesley, 1997. 24

[Tan 09] Wei Tan, Yushun Fan, MengChu Zhou & MengChu Zhou. A
Petri Net-Based Method for Compatibility Analysis and Compo-
sition of Web Services in Business Process Execution Language.
IEEE Transactions on Automation Science and Engineering,
vol. 6, no. 1, pages 94–106, 2009. 30

[Taylor 88] Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon J. Os-
terweil, Richard W. Selby, Jack C. Wileden, Alexander L. Wolf
& Michael Young. Foundations for the Arcadia environment ar-
chitecture. ACM SIGSOFT Software Engineering Notes, vol. 13,
no. 5, pages 1–13, nov 1988. 20

[Team 10] CMMI Product Team. Improving processes for developing better
products and services, CMMI R© for Development, Version 1.3.
Technical report, Carnegie Mellon University, November 2010.
26

[Thu 05] TRAN Dan Thu, TRAN Hanh Nhi, Dong Thi Bich Thuy,
Bernard Coulette & Xavier Cregut. Topological properties for
characterizing well-formedness of process components. Software
Process: Improvement and Practice, vol. 10, no. 2, pages 217–
247, 2005. 72

[Tran 07] Hanh Nhi Tran, Bernard Coulette & Dong Thi Bich Thuy.
Broadening the Use of Process Patterns for Modeling Pro-
cesses. In International Conference on Software Engineering
and Knowledge Engineering, pages 57–62, 2007. 72

[Tran 11] Hanh Nhi Tran, Bernard Coulette, Dan Thu Tran & My Hang
Vu. Automatic reuse of process patterns in process modeling. In
Proceedings of the 2011 ACM Symposium on Applied Comput-
ing, pages 1431–1438. ACM, 2011. 72

200 BIBLIOGRAPHY

[Turan 12] Yenal Turan. Extension and Application of Event- driven Pro-
cess Chain for Information System Security Risk Management.
Master’s thesis, University of Tartu, may 2012. 56, 202

[Türetken 07] Oktey Türetken. A method for decentralized business process
modeling. PhD thesis, The Middle East Technical University,
2007. 20

[Valetto 01] Giuseppe Valetto, Gail E. Kaiser & Gaurav S. Kc. A Mobile
Agent Approach to Process-Based Dynamic Adaptation of Com-
plex Software Systems. In Proceedings of the 8th European
Workshop on Software Process Technology, EWSPT ’01, pages
102–116, London, UK, UK, 2001. Springer-Verlag. 36

[van der Aalst 97] Wil M.P. van der Aalst. Verification of workflow nets. In Pierre
Azéma & Gianfranco Balbo, editors, Application and Theory
of Petri Nets 1997, volume 1248 of Lecture Notes in Computer
Science, pages 407–426. Springer Berlin Heidelberg, 1997. 5

[van der Aalst 99] Will M.P. van der Aalst. Formalization and verification of
event-driven process chains. Information and Software Tech-
nology, vol. 41, no. 10, pages 639 – 650, 1999. 3

[van der Aalst 00] Wil M.P. van der Aalst & Stefan Jablonski. Dealing with work-
flow change: identification of issues and solutions. Computer
systems science and engineering, vol. 15, no. 5, pages 267–276,
2000. 122

[van der Aalst 03a] Wil M.P. van der Aalst, Arthur H.M. ter Hofstede, B. Kie-
puszewski & A.P. Barros. Workflow Patterns. Distributed and
Parallel Databases, vol. 14, no. 1, pages 5–51, 2003. 153, 160

[van der Aalst 03b] Wil M.P. van der Aalst, Arthur H.M. ter Hofstede, Bartek Kie-
puszewski & Alistair P. Barros. Workflow patterns. Distributed
and parallel databases, vol. 14, no. 1, pages 5–51, 2003. 12

[van der Aalst 04] Wil M.P. van der Aalst & Kees Max van Hee. Workflow man-
agement: models, methods, and systems. The MIT press, 2004.
58, 76

[van der Aalst 05a] Wil M.P. van der Aalst & Ana Karla A de Medeiros. Process
mining and security: Detecting anomalous process executions
and checking process conformance. Electronic Notes in Theo-
retical Computer Science, vol. 121, pages 3–21, 2005. 73

[van der Aalst 05b] Wil M.P. van der Aalst, Marlon Dumas, Arthur H.M. ter Hof-
stede, Nick Russell, H.M.W. Verbeek & P. Wohed. Life After
BPEL? In Mario Bravetti, Leïla Kloul & Gianluigi Zavattaro,
editors, Formal Techniques for Computer Systems and Business
Processes, volume 3670 of Lecture Notes in Computer Science,
pages 35–50. Springer Berlin Heidelberg, 2005. 54

[van der Aalst 05c] Wil M.P. van der Aalst & Arthur H.M. ter Hofstede. YAWL:
yet another workflow language. Information Systems, vol. 30,
no. 4, pages 245 – 275, 2005. 5

BIBLIOGRAPHY 201

[van der Aalst 07] Wil M.P. van der Aalst, Hajo A Reijers, Anton JMM Weijters,
Boudewijn F van Dongen, AK Alves de Medeiros, Minseok Song
& HMW Verbeek. Business process mining: An industrial ap-
plication. Information Systems, vol. 32, no. 5, pages 713–732,
2007. 3, 71

[van der Aalst 12] Wil M.P van der Aalst & Arthur H.M. ter Hofstede. Workflow
patterns put into context. Software & Systems Modeling, vol. 11,
no. 3, pages 319–323, 2012. 59

[Vanderfeesten 08] Irene Vanderfeesten, Hajo A. Reijers & Wil M.P. van der Aalst.
Evaluating workflow process designs using cohesion and coupling
metrics. Computers in Industry, vol. 59, no. 5, pages 420 – 437,
2008. 24

[Weigold 10] Thomas Weigold. A generic framework for process execution
and secure multiparty transaction authorization. PhD thesis,
University of Westminster, 2010. 31, 202

[Weigold 12] Thomas Weigold, Marco Aldinucci, Marco Danelutto &
Vladimir Getov. Process-driven biometric identification by
means of autonomic grid components. International Journal
of Autonomous and Adaptive Communications Systems, vol. 5,
no. 3, pages 274–291, 2012. 19

[White 08] Stephen A. White & Derek Miers. BPMN modeling and refer-
ence guide: understanding and using BPMN. Future Strategies
Inc., 2008. 48

[Whittle 96] Ben Whittle, Wing Lam & Tim Kelly. A Pragmatic Approach to
Reuse Introduction in an Industrial Setting. In Marjan Sarshar,
editor, Systematic Reuse: Issues in Initiating and Improving a
Reuse Program, pages 104–115. Springer London, 1996. 21

[Wise 98] Alexander Wise. Little-JIL 1.0 language report. Technical
report, Department of Computer Science, University of Mas-
sachusetts at Amherst, 1998. 63

[Wise 11] Alexander Wise, Aaron G. Cass, Barbara Staudt Lerner, Eric K.
McCall, Leon J. Osterweil & Stanley M. Sutton Jr. Using Little-
JIL to Coordinate Agents in Software Engineering. In Peri L.
Tarr & Alexander L. Wolf, editors, Engineering of Software,
pages 383–397. Springer Berlin Heidelberg, 2011. 61

202 BIBLIOGRAPHY

List of Figures

1 La couverture du cycle de vie des processus 2

2 Méta-modèles multiples pour la modélisation de processus 4

3 L’exemple du modèle de spécification du processus 6

4 L’exemple du modèle d’implémentation du processus 8

5 L’exemple du modèle d’instanciation du processus 9

6 Évaluation basée sur Workflow Patterns 11

2.1 Callback in asynchronous activity components 24

2.2 Taxonomy of ADLs. Courtesy: [Medvidovic 00] 25

2.3 Web Services architecture model [Huhns 05] 27

2.4 Web Service development and execution workflow [Huhns 05] 28

2.5 Process-driven applications vs. BPMS/WfMS [Weigold 10] 31

3.1 SPEM 2.0’s conceptual usage framework [OMG 08] 37

3.2 Structure of the SPEM 2.0 Meta-Model [OMG 08] 38

3.3 The xSPEM metamodel [Bendraou 07] 43

3.4 SPEM4MDE packages [Diaw 11] . 44

3.5 Activity Class Diagram of BPMN [OMG 11] 50

3.6 BPEL process structure [OASIS 07] . 53

3.7 EPC metamodel [Turan 12] . 56

3.8 Little-JIL process model legend [Cass 00] 61

3.9 Information flow [IEEE 06] . 66

3.10 Software life cycle processes [ESA-ESTEC 09] 67

4.1 Process Metamodels for Multi-metamodel Development 77

4.2 Process Metamodels for Multi-metamodel Development 77

204

LIST OF FIGURES 205

4.3 Process Specification Metamodel . 83

4.4 ISPW Scenario - Specification Phase 86

4.5 Process Implementation Metamodel - Core Package 89

4.6 Process Implementation Metamodel - Contract Package 91

4.7 ISPW Scenario - Implementation Phase 95

4.8 Process Instantiation Metamodel - Instance-core Package 98

4.9 Process Instantiation Metamodel - Instance-contract Package 100

4.10 ISPW Scenario - Instantiation Phase 103

4.11 Contracts for Specification Activities 107

4.12 Contracts for Implementation model Activities 108

4.13 Contracts for Instantiation model Activities 111

5.1 Related process modeling approaches 116

5.2 Prototype Architecture . 117

5.3 Project Management Dashboard . 121

5.4 Runtime adaptation . 122

5.5 Activity implementation variants . 125

5.6 Dynamic adaptation . 128

5.7 Process Implementation flowchart . 129

6.1 Test Process ISO-29119-2 [IEEE 13] 133

6.2 Test Process Organizational Standard 134

6.3 Organizational standard for testing process 137

6.4 ISO standard for testing process . 140

6.5 Implementation model for test execution 143

6.6 Instance model for test execution . 147

7.1 Task level data visibility [Russell 05a] 155

7.2 Support for Workflow Control-flow Patterns 170

7.3 Support for Workflow Data Patterns 172

7.4 Support for Workflow Resource Patterns 172

206 LIST OF FIGURES

List of Tables

3.1 Evaluation of existing approaches based on the solution criteria 70

7.1 Workflow Data Patterns WDP-1 to WDP-22 156

7.2 Workflow Data Patterns WDP-23 to WDP-40 159

7.3 Original Workflow Control-flow Patterns WCP-1 to WCP-22 161

7.4 Extended Workflow Control-flow Patterns WCP-23 to WCP-43 163

7.5 Original Workflow Resource Patterns WRP-1 to WRP-20 166

7.6 Workflow Resource Patterns WRP-21 to WRP-43 168

7.7 Workflow Patterns support summary 173

8.1 Evaluation of existing approaches based on the solution criteria 177

B.1 Corresponding constructs support in state of the art 250

208

Appendices

209

Appendix A

Further discussion on individual

Workflow Patterns

Precisions for pattern implementations

— The terms parent and child activities are used in this text as form of con-
tainment descriptors. The parent activities are the activities that compose the
process containing child activities.

— Tasks used in the workflow patterns are same as primitive activities in CPMF.

— Data-elements in the work patterns are same as artifacts in CPMF.

1.1 Data-flow Patterns

Pattern 1 (Task Data)

Description: Data elements can be defined by tasks which are accessible only within
the context of individual execution instances of that task.

Implementation: Data elements are defined in CPMF process models in the ac-
tivity definitions at the abstract level. These data elements need to have a unique
name within the scope of the activity. These data elements are not accessible outside
the execution context of individual activity, unless provided by the contracts of the
activity. Each activity definition can be implemented by multiple instantiation ac-
tivities. During execution, these data elements get their ’value’ at the concrete level
of the process model. Each instantiation activity can have multiple instances during
execution. The data element of an activity instance is accessible only within the scope
of that instance.

Evaluated rating: Direct support (+)

210

1.1. Data-flow Patterns 211

Pattern 2 (Block Data)

Description: Block tasks (i.e. tasks which can be described in terms of a corre-
sponding sub-workflow) are able to define data elements which are accessible by each
of the components of the corresponding sub-workflow.

Implementation: Activity definitions in CPMF process model can be implemented
through composite instantiation activities. A composite instantiation activity con-
tains other instantiation activities that have access to the data elements of their
parent activities. A delegation contract in activities allows to pass on the required
data elements to the parent activity to its contained activities. Contained activities
need to specify their required contracts in order to access the data elements offered
by the parent activities. Parent activities have the choice of sharing/hiding data
elements from their child activities through the use of contracts.

Evaluated rating: Direct support (+)

Pattern 3 (Scope Data)

Description: Data elements can be defined which are accessible by a subset of the
tasks in a case.

Implementation: All the interaction between the activities (even the parent ac-
tivities and their child activities) is handled through the use of contracts. A data
dependency between two activities is specified through binding at the abstract level.
Event-based concrete contracts of the activities conform to the abstract contracts,
during execution. A composite activity can be implemented through a set of child
activities. If required contracts for a particular data element are defined for a sub-
set of these child activities, they would be able to access this data element. Other
sub-activities that do not defined the required contract for this data element can not
access it. Thus the scope of data element access within a composite activity can be
defined through the required contracts of the contained activities.

Evaluated rating: Direct support (+)

Pattern 4 (Multiple Instance Data)

Description: Tasks which are able to execute multiple times within a single workflow
case can define data elements which are specific to an individual execution instance.

Implementation: Multiple instances of an instantiation activity are possible in
CPMF. In this case, they all will have the same contracts as defined in the instan-
tiation activity. The transfer of data elements between two activities in CPMF is
implemented through events. An artifact repository is a shared data store between
the activities. Once the event associated with the data element is received by an
activity instance, it can access the data element from the shared artifact repository.
Each activity instance in CPMF framework then creates its own working copy of the
element. For the artifacts that are physical and not copyable can be accessed by only

212 A. Further discussion on individual Workflow Patterns

one activity instance at a time. An artifact object for such data elements keeps track
of the current possessor of the artifact.

Evaluated rating: Direct support (+)

Pattern 5 (Case Data)

Description: Data elements are supported which are specific to a process instance
or case of a workflow. They can be accessed by all components of the workflow during
the execution of the case.

Implementation: Data elements are encapsulated in the activities and are only
shared through the specified contracts. CPMF does not offer a direct support for
sharing the data elements of an activity to all the components of the workflow, without
a well specified binding between the contracts at the abstract level. However a partial
support for such situations is possible through the use of a mutually shared artifact
repository and the event propagation mechanism in CPMF. Artifact events related
to case data elements are broadcasted to all the contained activities of the current
instance resulting in a similar effect. In this case, all activities who want to access
the data elements need to specify the required contract. CPMF strongly supports the
idea of contract specification for all interactions between the activities.

Evaluated rating: Partial support (+/-)

Pattern 6 (Folder Data)

Description: Data elements can be defined which are accessible by multiple cases
on a selective basis.

Implementation: The artifact repository used in CPMF tool support supports
concurrent version management. This helps in managing access to the data elements.
But this does not allow selective accessibility of data elements for different cases.

Evaluated rating: Support missing (-)

Pattern 7 (Workflow Data)

Description: Data elements are supported which are accessible to all components in
each and every case of the workflow and are within the control of the workflow system.

Implementation: Sharing a data element with all the instances of all the elements
of the process model is possible because of the use of a common artifact repository.
However, all the activities that need to access this data element have to specify their
required contract for this data element. Events related to such data elements are
broadcasted to all the activities of the process model. The concurrent access of such
data element is handled through the use of concurrent version management system
that allows to manage the access rights through a locking mechanism.

1.1. Data-flow Patterns 213

Evaluated rating: Direct support (+)

Pattern 8 (Environment Data)

Description: Data elements which exist in the external operating environment are
able to be accessed by components of the workflow during execution.

Implementation: Activities in CPMF framework need to specify contracts for
interacting with each other. However in order to interact with the environment,
no contracts are required. This allows activities to interact with the development
environment and invoke other development tools. Data from the environment can
also be accessed by the activities without the need of any specific contract.

Evaluated rating: Direct support (+)

Pattern 9 (Data Interaction - Task to task)

Description: The ability to communicate data elements between one task instance
and another within the same case.

Implementation: Two activity instances need to define their required and pro-
vided contracts in order to interact with each other. An explicit binding between the
two contracts is specified at the abstract level activity definitions. However activity
instances do not specify any dependency to any other activity.

Evaluated rating: Direct support (+)

Pattern 10 (Data Interaction - Block Task to Sub-Workflow Decomposi-
tion)

Description: The ability to pass data elements from a block task instance to the
corresponding sub-workflow that defines its implementation.

Implementation: A block task in CPMF is represented through a composite
activity. A composite activity instance contains a process composed of other activity
instances. All the contracts of composite activities in CPMF, are defined in pairs.
Each external contract has a corresponding internal contract of opposite direction.
Thus a required external contract has a corresponding provided internal contract.
Thus an activity can pass a data element to the sub-activities, even deep in the
hierarchy.

Evaluated rating: Direct support (+)

214 A. Further discussion on individual Workflow Patterns

Pattern 11 (Data Interaction - Sub-Workflow Decomposition to Block
Task)

Description: The ability to pass data elements from the underlying sub-workflow
back to the corresponding block task instance.

Implementation: The contracts of the composite activity defined in pair are valid
for both internal and external contracts. Thus each internal contract of a composite
activity has a corresponding external contract with opposite direction i.e. a required
internal contract will have a paired provided external contract. This allows for data
interactions initiating from child activities to their parent activities, and even higher
in the hierarchy.

Evaluated rating: Direct support (+)

Pattern 12 (Data Interaction - to Multiple Instance Task)

Description: The ability to pass data elements from a preceding task instance to
a subsequent task which is able to support multiple execution instances. This may
involve passing the data elements to all instances of the multiple instance task or
distributing them on a selective basis.

Implementation: Multiple instances of an instantiation activity are allowed in
CPMF process. Data interaction between a preceding activity to multiple instances
of the subsequent activities is also possible if a binding exists between the activity def-
initions of the subsequent activity and that of the multiple instance activity. Because
the data element is kept in the artifact repository, concurrent access to this artifact
does not pose any issue for ’read’ access. Every activity instance has a separate work-
ing copy of the data element. ’Write’ access to repository depends on the specific
case, where branching or merging is allowed by the concurrent version management
system.

Evaluated rating: Direct support (+)

Pattern 13 (Data Interaction - from Multiple Instance Task)

Description: The ability to pass data elements from a task which supports multiple
execution instances to a subsequent task.

Implementation: Multiple instances of an instantiation activity can interact with a
subsequent activity through the use of common artifact repository. Events triggered
by each instance are received at the required concrete contract of the subsequent
activity. Once the concerned events are received, this activity can access the data
element from the repository. The use of pre-conditions allows for selective interactions
as well.

Evaluated rating: Direct support (+)

1.1. Data-flow Patterns 215

Pattern 14 (Data Interaction - Case to Case)

Description: The passing of data elements from one case of a workflow during its
execution to another case that is executing concurrently.

Implementation: A Case in CPMF corresponds to the instance of a concrete
process. A concrete process instance is contained by the instance of a composite
instance activity. Two instances of the same instantiation activity can only interact,
if the activity definition of the instantiation activity specifies a corresponding required
contract for its own provided contract. However no synchronizations are offered by
CPMF for such situations. A basic synchronization can be achieved by exploiting the
pre-conditions of the activities.

Evaluated rating: Partial support (+/-)

Pattern 15 (Data Interaction - Task to Environment - Push-Oriented))

Description: The ability of a task to initiate the passing of data elements to a
resource or service in the operating environment.

Implementation: Data interactions of CPMF activities with its environment does
not require the specification of contracts. Any activity instance can interact with its
environment to pass on the data element. The interaction concerning data elements
between activities uses a common repository. However, when interacting with the
environment, data element can be passed without using the repository. Roles are
associated with activities, which can be played by tools. Environment interactions
can be handled through the associated tools.

Evaluated rating: Partial support (+/-)

Pattern 16 (Data Interaction - Environment to Task - Pull-Oriented)

Description: The ability of a workflow task to request data elements from resources
or services in the operational environment.

Implementation: Requesting a data element from the activity instance uses the
same mechanism as passing the data to the environment. The data element does not
need to be passed through the artifact repository. Interactions with the environment
are highly dependent on the individual implementations of each activity. No con-
straints are imposed from the CPMF framework. Roles are associated with activities,
which can be played by tools. Environment interactions can be handled through the
associated tools.

Evaluated rating: Partial support (+/-)

216 A. Further discussion on individual Workflow Patterns

Pattern 17 (Data Interaction - Environment to Task - Push-Oriented)

Description: The ability for a workflow task to receive and utilize data elements
passed to it from services and resources in the operating environment on an unsched-
uled basis.

Implementation: The data interaction between the environment and process ele-
ments does not follow the same structure as the data interactions between the activity
instances. CPMF activities are allowed to interact with the environment. Interactions
between an activity and some application in its environment to receive data elements
is possible based on the implementation of the activity. Roles are associated with
activities, which can be played by tools. Environment interactions can be handled
through the associated tools.

Evaluated rating: Partial support (+/-)

Pattern 18 (Data Interaction - Task to Environment - Pull-Oriented)

Description: The ability of a workflow task to receive and respond to requests for
data elements from services and resources in the operational environment.

Implementation: Interactions with the environment are highly dependent on the
individual implementations of each activity. No constraints are imposed from the
CPMF framework. An activity can request any data element from its environment,
without the need of specifying a contract. Roles are associated with activities, which
can be played by tools. Environment interactions can be handled through the asso-
ciated tools.

Evaluated rating: Partial support (+/-)

Pattern 19 (Data Interaction - Case to Environment - Push-Oriented)

Description: The ability of a workflow case to initiate the passing of data elements
to a resource or service in the operational environment.

Implementation: A Case is an instance of a software process. Every process
in CPMF is contained in a container activity. A container activity can not contain
multiple processes. Thus all interaction to/from a process to the environment take
place through the container activity. A Case in CPMF represents an instance of a
composite activity. Thus this pattern is handled the same way as pattern 15.

Evaluated rating: Partial support (+/-)

Pattern 20 (Data Interaction - Environment to Case - Pull-Oriented)

Description: The ability of a workflow case to request data from services or re-
sources in the operational environment.

1.1. Data-flow Patterns 217

Implementation: This pattern is handled the same way as pattern 16, as Case in
CPMF corresponds to a composite activity instance.

Evaluated rating: Partial support (+/-)

Pattern 21 (Data Interaction - Environment to Case - Push-Oriented)

Description: The ability of a workflow case to accept data elements passed to it
from services or resources in the operating environment.

Implementation: This pattern is handled the same way as pattern 17, as Case in
CPMF corresponds to a composite activity instance.

Evaluated rating: Partial support (+/-)

Pattern 22 (Data Interaction - Case to Environment - Pull-Oriented)

Description: Data elements can be defined by tasks which are accessible only within
the context of individual execution instances of that task.

Implementation: This pattern is handled the same way as pattern 18, as Case in
CPMF corresponds to a composite activity instance.

Evaluated rating: Partial support (+/-)

Pattern 23 (Data Interaction - Workflow to Environment - Push-Oriented)

Description: The ability of a workflow engine to pass data elements to resources
or services in the operational environment.

Implementation: CPMF processes are not executed on a workflow engine. An
interpreter serves as a process engine and is used to execute these processes. An ar-
tifact repository is directly associated with the interpreter. All interactions between
the environment and the interpreter do not need to pass through the artifact repos-
itory. However, the interpreter can access the data elements from the repository to
pass on to the environment. A process in CPMF is always contained by a container
activity. Thus a root activity contains all the processes of a process model. The
interaction of the environment with the process model is in fact its interaction with
the root activity. Roles are associated with activities, which can be played by tools.
Environment interactions can be handled through the associated tools.

Evaluated rating: Partial support (+/-)

Pattern 24 (Data Interaction - Environment to Workflow - Pull-Oriented)

Description: The ability of a workflow to request workflow-level data elements from
external applications.

218 A. Further discussion on individual Workflow Patterns

Implementation: Please refer to the implementation of Pattern 23 for the imple-
mentation details.

Evaluated rating: Partial support (+/-)

Pattern 25 (Data Interaction - Environment to Workflow - Push-Oriented)

Description: The ability of services or resources in the operating environment to
pass workflow-level data to a workflow process.

Implementation: Please refer to the implementation of Pattern 23 for the imple-
mentation details.

Evaluated rating: Partial support (+/-)

Pattern 26 (Data Interaction - Workflow to Environment - Pull-Oriented)

Description: The ability of a workflow engine to handle requests for workflow-level
data from external applications.

Implementation: Please refer to the implementation of Pattern 23 for the imple-
mentation details.

Evaluated rating: Partial support (+/-)

Pattern 27 (Data Transfer by Value - Incoming)

Description: The ability of a workflow component to receive incoming data elements
by value relieving it from the need to have shared names or common address space with
the component(s) from which it receives them.

Implementation: The data elements are passed between the interacting activities
through the reference of repository location.

Evaluated rating: Support missing (-)

Pattern 28 (Data Transfer by Value - Outgoing)

Description: The ability of a workflow component to pass data elements to sub-
sequent components as values relieving it from the need to have shared names or
common address space with the component(s) to which it is passing them.

Implementation: The data elements are passed between the interacting activities
through the reference of repository location.

Evaluated rating: Support missing (-)

1.1. Data-flow Patterns 219

Pattern 29 (Data Transfer - Copy In/Copy Out)

Description: The ability of a workflow component to copy the values of a set of
data elements into its address space at the commencement of execution and to copy
their final values back at completion.

Implementation: A common artifact repository is associated with the process
interpreter. All interactions between the activities for passing data elements is han-
dled through the reference of repository locations of the data elements. An activity
accesses the data element from the repository and creates its own working copy. Once
the activity is complete it writes back the data element to the repository as a new
version.

Evaluated rating: Direct support (+)

Pattern 30 (Data Transfer by Reference - Unlocked)

Description: The ability to communicate data elements between workflow compo-
nents by utilizing a reference to the location of the data element in some mutually
accessible location. No concurrency restrictions apply to the shared data element.

Implementation: A common artifact repository is associated with the process in-
terpreter. All interactions between the activities for passing data elements is handled
through the reference of repository locations of the data elements. An activity triggers
an associated event to the data element, when it is ready to be shared. Subsequent
activity can retrieve the data element from the repository.

Evaluated rating: Direct support (+)

Pattern 31 (Data Transfer by Reference - With Lock)

Description: The ability to communicate data elements between workflow com-
ponents by passing a reference to the location of the data element in some mutually
accessible location. Concurrency restrictions are implied with the receiving component
receiving the privilege of read-only or dedicated access to the data element.

Implementation: A common artifact repository is associated with the process in-
terpreter. All interactions between the activities for passing data elements is handled
through the reference of repository locations of the data elements. An activity triggers
an associated event to the data element, when it is ready to be shared. Subsequent
activity can retrieve the data element from the repository. The artifact repository in
CPMF supports concurrent version management. Its implementation allows a locking
mechanism to the activities to manage the access rights for other activities.

Evaluated rating: Direct support (+)

220 A. Further discussion on individual Workflow Patterns

Pattern 32 (Data Transformation - Input)

Description: The ability to apply a transformation function to a data element prior
to it being passed to a workflow component.

Implementation: No action on data elements can be performed outside the activ-
ities. Transformation of a data element itself is considered as an activity in CPMF
framework. It is not possible to apply a transformation function to a data element
after it is delivered by an activity and just before it is received by some other activity.

Evaluated rating: Support missing (-)

Pattern 33 (Data Transformation - Output)

Description: The ability to apply a transformation function to a data element
immediately prior to it being passed out of a workflow component.

Implementation: A transformation of a data element can be performed within
an activity, as its own implementation. A composite activity can contain a trans-
formation activity as the last executing activity before its completion. This allows
to apply the transformation to the data element immediately before delivering it to
other activities through provided contract.

Evaluated rating: Direct support (+)

Pattern 34 (Task Precondition - Data Existence)

Description: Data-based preconditions can be specified for tasks based on the pres-
ence of data elements at the time of execution.

Implementation: Pre-conditions in CPMF framework can validate the presence
or absence of a particular data element.

Evaluated rating: Direct support (+)

Pattern 35 (Task Precondition - Data Value)

Description: Data-based preconditions can be specified for tasks based on the value
of specific parameters at the time of execution.

Implementation: Pre-conditions are part of every activity in CPMF framework.
They can be based on the value of the properties associated to the activities or data
elements. Data elements are structured in CPMF. Each artifact maps to an artifact
specification that has an associated artifact metamodel. Every artifact conforms to its
metamodel. The pre-conditions of an activity can be used to validate the correctness
of required artifacts.

Evaluated rating: Direct support (+)

1.1. Data-flow Patterns 221

Pattern 36 (Task Postcondition - Data Existence)

Description: Data-based postconditions can be specified for tasks based on the
existence of specific parameters at the time of execution.

Implementation: Activities in CPMF also define post-conditions for the activities.
These post-conditions can check the availability/absence of data elements.

Evaluated rating: Direct support (+)

Pattern 37 (Task Postcondition - Data Value)

Description: Data-based postconditions can be specified for tasks based on the value
of specific parameters at the time of execution.

Implementation: Post-conditions associated with the CPMF activities can be
used to validate the value of specific data elements. Data elements are structured in
CPMF. Post-conditions can also validate the correctness of provided artifacts.

Evaluated rating: Direct support (+)

Pattern 38 (Event-based Task Trigger)

Description: The ability for an external event to initiate a task.

Implementation: The concrete level of CPMF framework defines the control flow
of activities. The contracts of each activity contain events. Output events of an
activity triggered from the provided contract. The required contract of an activity
contains the event listeners. These events listeners are used to receive the events and
can trigger the activities.

Evaluated rating: Direct support (+)

Pattern 39 (Data-based Task Trigger)

Description: The ability to trigger a specific task when an expression based on
workflow data elements evaluates to true.

Implementation: There is no direct support for monitoring conditions based on
data elements. A data-based trigger is implemented through the use of events that
map to data elements. Each artifact in CPMF has an associated state machine. A
change of state for an artifact triggers an event that can be received by the activity.
These events based on change of artifact state along with the pre-conditions of the
activities can monitor the data elements for triggering the activity.

Evaluated rating: Partial support (+/-)

222 A. Further discussion on individual Workflow Patterns

Pattern 40 (Data-based Routing)

Description: The ability to alter the control flow within a workflow case as a
consequence of the value of data-based expressions.

Implementation: The concrete level of CPMF framework does not provide any
logical connectors for altering the control flow of the process. The logic for control
flow is embedded in the contracts of the activities and the event broker presented
by the container activity. In order to achieve a data-based routing in a process, this
logic has to be encoded in the activity through its preconditions and the event broker
provided by its container activity to manage the context.

Evaluated rating: Partial support (+/-)

1.2. Control-flow Patterns 223

1.2 Control-flow Patterns

Pattern 1 (Sequence)

Description: A task in a process in enabled after the completion of a preceding task
in the same process.

Implementation: Activities to be executed in a series one after another are bound
together though the contracts. This binding is possible if the provided contract of
the first activity, provides the artifact, which is required by the subsequent activity.
In this case both the activities are considered bound and the production of artifact
from first activity might trigger the execution of the subsequent activity (if other
pre-conditions are satisfied).

Evaluated rating: Direct support (+)

Pattern 2 (Parallel Split)

Description: The divergence of a branch into two or more parallel branches each
of which execute concurrently.

Implementation: If two activities need to be executed in parallel after the current
activity, this control flow is usually handled through an AND-Split connector. Logical
connectors in CPMF are not explicitly stated. They are encoded within the contracts.
No special connector is required to express a parallel split control flow. The default
control-flow of two activities following a single activity is of parallel split. They both
need to be bound to the same precedent activity.

Evaluated rating: Direct support (+)

Pattern 3 (Synchronization)

Description: The convergence of two or more branches into a single subsequent
branch such that the thread of control is passed to the subsequent branch when all
input branches have been enabled.

Implementation: This control flow structure is normally handled through an
AND-join connector. In CPMF, such a control flow structure can be achieved when a
single activity is bound to two precedent activities. In this case, the required contract
of the subsequent activity specifies the behavior (i.e. AND behavior). In this case,
the pre-condition of the activity is used to define this behavior.

Evaluated rating: Direct support (+)

Pattern 4 (Exclusive Choice)

Description: The divergence of a branch into two or more branches such that when
the incoming branch is enabled, the thread of control is immediately passed to precisely

224 A. Further discussion on individual Workflow Patterns

one of the outgoing branches based on a mechanism that can select one of the outgoing
branches.

Implementation: Two or more activities are followed by a single activity, where it is
bound to the subsequent activities. In this case, the exclusive-OR behavior is encoded
in the required contract of each subsequent activity, through the pre-conditions. The
pre-conditions are used to verify the log maintained by the event broker of the parent
activity. If no subsequent activity has accepted the input, then the current activity
can accept this input after updating the log maintained by the event broker. This
ensures that only one subsequent activity can accept the input.

Evaluated rating: Direct support (+)

Pattern 5 (Simple Merge)

Description: The convergence of two or more branches into a single subsequent
branch such that each enablement of an incoming branch results in the thread of control
being passed to the subsequent branch.

Implementation: A single activity follows two or more activities, such that the
precedent activities are bound to that single activity. In this case, this behavior is
encoded into the required contract of the subsequent activity. The log kept by the
event broker ensures the enablement of the subsequent activity. When an input is
received, the activity logs the enablement and continues its execution. This ensures
that its is enabled only once for a single precedent activity.

Evaluated rating: Direct support (+)

Pattern 6 (Multi-Choice)

Description: The divergence of a branch into two or more branches such that when
the incoming branch is enabled, the thread of control is immediately passed to one or
more of the outgoing branches based on a mechanism that selects one or more outgoing
branches.

Implementation: This control-flow structure is normally handled by OR-Split
connectors. In CPMF, when multiple activities follow a single activity, such a behavior
can be encoded in the pattern. This behavior is encoded in the pre-conditions of the
subsequent activities. These pre-conditions have access to the log maintained by the
event broker. The subsequent activity listens the event and checks the log. If no other
activity has logged its enablement, then it accepts the input. In case, the log already
contains an enablement, then the current activity can choose to accept or reject the
input non-deterministically.

Evaluated rating: Direct support (+)

1.2. Control-flow Patterns 225

Pattern 7 (Structured Synchronizing Merge)

Description: The convergence of two or more branches (which diverged earlier in
the process at a uniquely identifiable point) into a single subsequent branch such that
the thread of control is passed to the subsequent branch when each active incoming
branch has been enabled. The Structured Synchronizing Merge occurs in a structured
context, i.e. there must be a single Multi-Choice construct earlier in the process model
with which the Structured Synchronizing Merge is associated and it must merge all
of the branches emanating from the Multi-Choice. These branches must either flow
from the Structured Synchronizing Merge without any splits or joins or they must be
structured in form (i.e. balanced splits and joins).

Implementation: This control flow structure is normally handled through an OR-
join connector. In CPMF, such a control flow structure can be achieved when a
single activity is bound to two or more precedent activities. In this case, the required
contract of the subsequent activity specifies the behavior (i.e. OR behavior) through a
pre-condition. Events triggered by each of the precedent activities bound to the single
subsequent activity are listened. If an event of enablement is received the subsequent
activity can start its execution.

Evaluated rating: Direct support (+)

Pattern 8 (Multi-Merge)

Description: The convergence of two or more branches into a single subsequent
branch such that each enablement of an incoming branch results in the thread of control
being passed to the subsequent branch.

Implementation: Such a control flow structure can be achieved when a single
activity is bound to two or more precedent activities. In this case, the required
contract of the subsequent activity specifies the behavior through a pre-condition and
a local log for the queued events that it receives. Events triggered by each of the
precedent activities bound to the single subsequent activity are listened. Whenever
an event of enablement is received the subsequent activity starts its execution. If an
event is received during the execution of the activity, it augments the iteration of the
current activity and logs the input for the next iteration.

Evaluated rating: Direct support (+)

Pattern 9 (Structured Discriminator)

Description: The convergence of two or more branches into a single subsequent
branch following a corresponding divergence earlier in the process model such that the
thread of control is passed to the subsequent branch when the first incoming branch
has been enabled. Subsequent enablements of incoming branches do not result in the
thread of control being passed on. The Structured Discriminator construct resets when
all incoming branches have been enabled. The Structured Discriminator occurs in a

226 A. Further discussion on individual Workflow Patterns

structured context, i.e. there must be a single Parallel Split construct earlier in the
process model with which the Structured Discriminator is associated and it must merge
all of the branches emanating from the Structured Discriminator. These branches
must either flow from the Parallel Split to the Structured Discriminator without any
splits or joins or they must be structured in form (i.e. balanced splits and joins).

Implementation: Such a control flow structure can be achieved when a single
activity is bound to two or more precedent activities. In this case, the required
contract of the subsequent activity specifies the behavior through a pre-condition and
a local log for the queued events that it receives. Events triggered by each of the
precedent activities bound to the single subsequent activity are listened. When an
event of enablement is received the subsequent activity logs it and starts its execution.
If an event is received during the execution of the activity or after its execution, it
logs the events, but does not start the execution of the activity. Once events are
received from all the precedent activities, the local log is cleared.

Evaluated rating: Direct support (+)

Pattern 10 (Arbitrary Cycles)

Description: The ability to represent cycles in a process model that have more than
one entry or exit point. It must be possible for individual entry and exit points to be
associated with distinct branches.

Implementation: Each CPMF activity allows for multiple input and output con-
tracts. It also supports different kinds of control flow behaviors to allow arbitrary
cycles in the execution of the process model.

Evaluated rating: Direct support (+)

Pattern 11 (Implicit Termination)

Description: A given process (or sub-process) instance should terminate when there
are no remaining work items that are able to be done either now or at any time in
the future and the process instance is not in deadlock. There is an objective means of
determining that the process instance has successfully completed.

Implementation: CPMF process model allows to define a customizable life-cycle
for each activity. In case a user does not define a life-cycle, a default life-cycle is
followed by the activity. This life-cycle allows to terminate the activity from one or
more states.

Evaluated rating: Direct support (+)

Pattern 12 (Multiple Instances without Synchronization)

Description: Within a given process instance, multiple instances of a task can be
created. These instances are independent of each other and run concurrently. There

1.2. Control-flow Patterns 227

is no requirement to synchronize them upon completion. Each of the instances of
the multiple instance task that are created must execute within the context of the
process instance from which they were started (i.e. they must share the same case
identifier and have access to the same data elements) and each of them must execute
independently from and without reference to the task that started them.

Implementation: Multiple instances of an activity are allowed in CPMF. Each of
these instances have their own properties. The inputs and outputs of an activity are
handled through references to the artifact repository. Each instance of an activity can
refer to a unique artifact in the repository (and can also refer to different artifacts).
This allows concurrent execution of each activity instance, where they are not syn-
chronized upon completion. Each activity instance follows its own lifecycle, separate
from other activity instances.

Evaluated rating: Direct support (+)

Pattern 13 (Multiple Instances with a priori Design-Time Knowledge)

Description: Within a given process instance, multiple instances of a task can be
created. The required number of instances is known at design time. These instances
are independent of each other and run concurrently. It is necessary to synchronize
the task instances at completion before any subsequent tasks can be triggered.

Implementation: Multiple instances of an activity are allowed in CPMF. Each
of these instances have their own properties. Design-time activity implementation
allows to specify the allowed number of instances for each implementation. One can
also specify the synchronization of each instance upon completion using the post-
conditions of the activity implementations. Each activity instance follows its own
lifecycle, separate from other activity instances. This allows concurrent execution of
each activity instance, where they are synchronized upon completion.

Evaluated rating: Direct support (+)

Pattern 14 (Multiple Instances with a priori Run-Time Knowledge)

Description: Within a given process instance, multiple instances of a task can
be created. The required number of instances may depend on a number of runtime
factors, including state data, resource availability and inter-process communications,
but is known before the task instances must be created. Once initiated, these instances
are independent of each other and run concurrently. It is necessary to synchronize
the instances at completion before any subsequent tasks can be triggered.

Implementation: CPMF allows multiple instances of an activity in its process
models. Each of these instances have their own properties. Activity implementation in
the instantiation phase process model specify the allowed number of instances for each
implementation. Although there is no direct way to precise the synchronization upon
completion, one can specify the synchronization of each instance upon completion
using the pre-conditions of the subsequent activity implementations. Each activity

228 A. Further discussion on individual Workflow Patterns

instance follows its own lifecycle, separate from other activity instances. This allows
concurrent execution of each activity instance, where they are synchronized upon
completion.

Evaluated rating: Partial support (+/-)

Pattern 15 (Multiple Instances without a priori Run-Time Knowledge)

Description: Within a given process instance, multiple instances of a task can
be created. The required number of instances may depend on a number of runtime
factors, including state data, resource availability and inter-process communications
and is not known until the final instance has completed. Once initiated, these instances
are independent of each other and run concurrently. At any time, whilst instances
are running, it is possible for additional instances to be initiated. It is necessary to
synchronize the instances at completion before any subsequent tasks can be triggered.

Implementation: CPMF allows multiple instances of an activity in its process
models. Each of these instances have their own properties. Activity implementation
in the instantiation phase process model specify the allowed number of instances for
each implementation. Runtime adaptation to the activities allows to update this
property, which can be based on any runtime factor. Although there is no direct way
to precise the synchronization upon completion, one can specify the synchronization
of each instance upon completion using the pre-conditions of the subsequent activity
implementations. Each activity instance follows its own lifecycle, separate from other
activity instances. This allows concurrent execution of each activity instance, where
they are synchronized upon completion.

Evaluated rating: Partial support (+/-)

Pattern 16 (Deferred Choice)

Description: A point in a process where one of several branches is chosen based
on interaction with the operating environment. Prior to the decision, all branches
represent possible future courses of execution. The decision is made by initiating the
first task in one of the branches i.e. there is no explicit choice but rather a race between
different branches. After the decision is made, execution alternatives in branches other
than the one selected are withdrawn.

Implementation: Two or more activities are followed by a single activity, where it is
bound to the subsequent activities. In this case, the exclusive-OR behavior is encoded
in the required contract of each subsequent activity, through the pre-conditions. The
pre-conditions are used to verify the log maintained by the event broker of the parent
activity. If no subsequent activity has accepted the input, then the current activity
can accept this input after updating the log maintained by the event broker. This
induces a race between different branches and ensures that only the first activity can
accept the input.

Evaluated rating: Direct support (+)

1.2. Control-flow Patterns 229

Pattern 17 (Interleaved Parallel Routing)

Description: A set of tasks has a partial ordering defining the requirements with
respect to the order in which they must be executed. Each task in the set must be
executed once and they can by completed in any order that accords with the partial
order. However, as an additional requirement, no two tasks can be executed at the
same time (i.e. no two tasks can be active for the same process instance at the same
time).

Implementation: CPMF allows to define process models based on the dependencies
of the activities. In two sequential activities, the second one depends on the first one.
Defining a partial order between the activities is not possible in CPMF, because
principally CPMF does not based its process model on the ordering of activities.
Another reason for not supporting this pattern is the incapability of the supporting
tool to prevent the execution of two tasks at the same time.

Evaluated rating: Support missing (-)

Pattern 18 (Milestone)

Description: A task is only enabled when the process instance (of which it is
part) is in a specific state (typically a parallel branch). The state is assumed to be a
specific execution point (also known as a milestone) in the process model. When this
execution point is reached the nominated task can be enabled. If the process instance
has progressed beyond this state, then the task cannot be enabled now or at any future
time (i.e. the deadline has expired). Note that the execution does not influence the
state itself, i.e. unlike normal control-flow dependencies it is a test rather than a
trigger.

Implementation: CPMF allows to develop a separate lifecycle for each activity.
This way the lifecycle for each parent and child activity is defined, where events are
propagated between them for the transition of the states. A particular state in any
activity can only be achieved, based on the events and its current current state. This
allows to enable implement this pattern.

Evaluated rating: Direct support (+)

Pattern 19 (Cancel Task)

Description: An enabled task is withdrawn prior to it commencing execution. If
the task has started, it is disabled and, where possible, the currently running instance
is halted and removed.

Implementation: Each activity in the CPMF process model can have a separate
lifecycle. If this lifecycle defines the possibility to cancel the execution of an activity,
it is achievable. The default lifecycle of each activity in CPMF allows to terminate
an activity after enablement. This means that it can be terminated even prior to its
start of execution.

230 A. Further discussion on individual Workflow Patterns

Evaluated rating: Direct support (+)

Pattern 20 (Cancel Case)

Description: A complete process instance is removed. This includes currently
executing tasks, those which may execute at some future time and all sub-processes.
The process instance is recorded as having completed unsuccessfully.

Implementation: Each process in the CPMF process model is contained in an
activity. The lifecycle of the containing activity defines the overall lifecycle of the
process. Each activity in the CPMF process model can have a separate lifecycle.
If this lifecycle defines the possibility to cancel the execution of an activity, it is
achievable. The default lifecycle of each activity in CPMF allows to terminate an
activity after enablement. This means that it can be terminated even prior to its
start of execution. Termination of an activity means the termination of the contained
process.

Evaluated rating: Direct support (+)

Pattern 21 (Structured Loop)

Description: The ability to execute a task or sub-process repeatedly. The loop has
either a pre-test or post-test condition associated with it that is either evaluated at
the beginning or end of the loop to determine whether it should continue. The looping
structure has a single entry and exit point.

Implementation: Each activity in CPMF allows for multiple iterations. The
number of iterations for an activity can be specified at design time, but they can also
be updated during the execution of the activity. Each activity can specify the pre-
conditions and post-conditions. These conditions are evaluated for each iteration. An
activity can specify indefinite iterations by giving a special value (-1) to its iteration
property. In this case, a condition can be used for specifying the termination condition
for an activity’s execution.

Evaluated rating: Direct support (+)

Pattern 22 (Recursion)

Description: The ability of a task to invoke itself during its execution or an ancestor
in terms of the overall decomposition structure with which it is associated.

Implementation: Even though an activity in CPMF can be executed for multiple
iterations, it does not provide sufficient support for recursion. The core process mod-
eling approach does not interfere with this behavior. It is not implemented in the
prototype that accompanies the CPMF framework. For such a support, the prototype
has to offer the possibility to store the state for each iteration of an activity during
its execution.

1.2. Control-flow Patterns 231

Evaluated rating: Support missing (-)

Pattern 23 (Transient Trigger)

Description: The ability for a task instance to be triggered by a signal from another
part of the process or from the external environment. These triggers are transient in
nature and are lost if not acted on immediately by the receiving task. A trigger can
only be utilized if there is a task instance waiting for it at the time it is received.

Implementation: Triggering of each activity in CPMF is based on the event
management system. Each activity defines event listeners in the required contracts so
as to listen to the events. The required contract of an activity differentiate between
the transient and the persistent triggers. Transient triggers are not logged by the
activity and can be acted upon immediately, if the pre-conditions are met. If the
pre-conditions are met later on, this event is considered lost, as it is not logged.

Evaluated rating: Direct support (+)

Pattern 24 (Persistent Trigger)

Description: The ability for a task to be triggered by a signal from another part of
the process or from the external environment. These triggers are persistent in form
and are retained by the process until they can be acted on by the receiving task.

Implementation: Triggering of each activity in CPMF is based on the event
management system. Each activity defines event listeners in the required contracts so
as to listen to the events. The required contract of an activity differentiate between
the transient and the persistent triggers. Persistent triggers are logged by the activity
and can be acted upon immediately and even after some time, when the pre-conditions
are met. If the pre-conditions are met later on, this event is considered received by
the activity, as it is logged.

Evaluated rating: Direct support (+)

Pattern 25 (Cancel Region)

Description: The ability to disable a set of tasks in a process instance. If any of
the tasks are already executing (or are currently enabled), then they are withdrawn.
The tasks need not be a connected subset of the overall process model.

Implementation: Each activity in the CPMF process model can have a separate
lifecycle. If this lifecycle defines the possibility to cancel the execution of an activity,
it is achievable. The default lifecycle of each activity in CPMF allows to terminate
an activity after enablement. In order to terminate a set of activities, it must be done
individually, one by one. It can also be achieved by grouping this set of activities under
one process, this allows to terminated all these activities through the termination of
the containing process.

232 A. Further discussion on individual Workflow Patterns

Evaluated rating: Partial support (+/-)

Pattern 26 (Cancel Multiple Instance Task)

Description: Within a given process instance, multiple instances of a task can be
created. The required number of instances is known at design time. These instances
are independent of each other and run concurrently. At any time, the multiple instance
task can be canceled and any instances which have not completed are withdrawn. Task
instances that have already completed are unaffected.

Implementation: CPMF allows multiple instances of an activity in its process
models. Each of these instances have their own properties. Activity implementation
in the instantiation phase process model specify the allowed number of instances for
each implementation. Each activity instance follows its own lifecycle, separate from
other activity instances. This allows concurrent execution of each activity instance.
If this lifecycle defines the possibility to cancel the execution of an activity, it is
achievable. The default lifecycle of each activity in CPMF allows to terminate an
activity after enablement. Terminating an activity that is already enabled in a process
model results in the termination of all its instance that is executing. The instances
that are already complete are not affected. In order to terminate all the instances,
they all need to be terminated manually one by one.

Evaluated rating: Partial support (+/-)

Pattern 27 (Complete Multiple Instance Task)

Description: Within a given process instance, multiple instances of a task can be
created. The required number of instances is known at design time. These instances
are independent of each other and run concurrently. It is necessary to synchronize
the instances at completion before any subsequent tasks can be triggered. During the
course of execution, it is possible that the task needs to be forcibly completed such
that any remaining instances are withdrawn and the thread of control is passed to
subsequent tasks.

Implementation: CPMF allows multiple instances of an activity in its process
models. Each of these instances have their own properties. Activity implementation
in the instantiation phase process model specify the allowed number of instances for
each implementation. Each activity instance follows its own lifecycle, separate from
other activity instances. This allows concurrent execution of each activity instance.
If this lifecycle defines the possibility to specify the ’complete’ status of the execution
of an activity, it is achievable. The default lifecycle of each activity in CPMF allows
to specify the complete state an activity. Completion of an activity that is already
enabled in a process model results in the completion of all its instance that is execut-
ing. The instances that are already complete are not affected. In order to specify the
completion of all the instances, they all need to be specified manually one by one.

Evaluated rating: Partial support (+/-)

1.2. Control-flow Patterns 233

Pattern 28 (Blocking Discriminator)

Description: The convergence of two or more branches into a single subsequent
branch following one or more corresponding divergences earlier in the process model.
The thread of control is passed to the subsequent branch when the first active incoming
branch has been enabled. The Blocking Discriminator construct resets when all active
incoming branches have been enabled once for the same process instance. Subsequent
enablements of incoming branches are blocked until the Blocking Discriminator has
reset.

Implementation: In CPMF, such a control flow structure can be achieved when a
single activity is bound to two or more precedent activities. In this case, the required
contract of the subsequent activity specifies the behavior (i.e. OR behavior) through a
pre-condition. Events triggered by each of the precedent activities bound to the single
subsequent activity are listened. If an event of enablement is received the subsequent
activity can start its execution. Before the start of the execution, the event is logged.
This blocks any further input, until it is reset. It can be reset when all the incoming
branches have been enabled once.

Evaluated rating: Direct support (+)

Pattern 29 (Canceling Discriminator)

Description: The convergence of two or more branches into a single subsequent
branch following one or more corresponding divergences earlier in the process model.
The thread of control is passed to the subsequent branch when the first active incoming
branch has been enabled. Triggering the Cancelling Discriminator also cancels the
execution of all of the other incoming branches and resets the construct.

Implementation: Such a control flow structure can be achieved when a single
activity is bound to two or more precedent activities in CPMF. In this case, the
required contract of the subsequent activity specifies the behavior (i.e. OR behavior)
through a pre-condition. Events triggered by each of the precedent activities bound
to the single subsequent activity are listened. If an event of enablement is received
the subsequent activity can start its execution. Before the start of the execution, the
event is logged. Events from other branches are canceled if already one of the branch
event is logged. The contract is reset when events are received from all branches.

Evaluated rating: Direct support (+)

Pattern 30 (Structured Partial Join)

Description: The convergence of two or more branches (say m) into a single sub-
sequent branch following a corresponding divergence earlier in the process model such
that the thread of control is passed to the subsequent branch when n of the incoming
branches have been enabled where n is less than m. Subsequent enablements of incom-
ing branches do not result in the thread of control being passed on. The join construct

234 A. Further discussion on individual Workflow Patterns

resets when all active incoming branches have been enabled. The join occurs in a
structured context, i.e. there must be a single Parallel Split construct earlier in the
process model with which the join is associated and it must merge all of the branches
emanating from the Parallel Split. These branches must either flow from the Parallel
Split to the join without any splits or joins or be structured in form (i.e. balanced
splits and joins).

Implementation: The preconditions in the required contract of the subsequent
activity can be used for defining a partial or complete join. If a partial join is specified,
the control is transfered for the defined partial input contracts. The rest of the
incoming inputs would become inconsequential. In order to reset the contract, when
all the active incoming inputs are received, the log is cleared, which finally is used to
reset the contract. In order to support structured aspect of this join, the structure of
parallel split earlier in the model that is associated with the this parallel join has to
be managed manually. No direct support is present to take care of this association.

Evaluated rating: Partial support (+/-)

Pattern 31 (Blocking Partial Join)

Description: The convergence of two or more branches (say m) into a single sub-
sequent branch following one or more corresponding divergences earlier in the process
model. The thread of control is passed to the subsequent branch when n of the incom-
ing branches has been enabled (where 2 = n < m). The join construct resets when
all active incoming branches have been enabled once for the same process instance.
Subsequent enablements of incoming branches are blocked until the join has reset.

Implementation: The preconditions in the required contract of the subsequent
activity can be used for defining a partial or complete join. If a partial join is specified,
the control is transfered for the defined partial input contracts. The rest of the
incoming inputs would be blocked by this pattern. In order to reset the contract,
when all the incoming inputs are received, the log is cleared, which finally is used to
reset the contract.

Evaluated rating: Partial support (+/-)

Pattern 32 (Canceling Partial Join)

Description: The convergence of two or more branches (say m) into a single sub-
sequent branch following one or more corresponding divergences earlier in the process
model. The thread of control is passed to the subsequent branch when n of the in-
coming branches have been enabled where n is less than m. Triggering the join also
cancels the execution of all of the other incoming branches and resets the construct.

Implementation: The preconditions in the required contract of the subsequent
activity can be used for defining a partial or complete join. If a partial join is specified,
the control is transfered for the defined partial input contracts. The rest of the
incoming inputs would be canceled by this pattern. In order to reset the contract,

1.2. Control-flow Patterns 235

when all the incoming inputs are received, the log is cleared, which finally is used to
reset the contract.

Evaluated rating: Partial support (+/-)

Pattern 33 (Generalized AND-Join)

Description: The convergence of two or more branches into a single subsequent
branch such that the thread of control is passed to the subsequent branch when all input
branches have been enabled. Additional triggers received on one or more branches
between firings of the join persist and are retained for future firings. Over time, each
of the incoming branches should deliver the same number of triggers to the AND-join
construct (although obviously, the timing of these triggers may vary).

Implementation: The preconditions in the required contract of the subsequent
activity can be used for defining a join. The control is transfered from the input
contracts, once events are listened from all the branches. Each event is logged. Once
events are received from all the branches, the activity can be triggered and the log is
cleared for one cycle. Additional events received from any of the branches are retained
in the log for future enablements.

Evaluated rating: Partial support (+/-)

Pattern 34 (Static Partial Join for Multiple Instances)

Description: Within a given process instance, multiple concurrent instances of a
task (say m) can be created. The required number of instances is known when the
first task instance commences. Once n of the task instances have completed (where
n is less than m), the next task in the process is triggered. Subsequent completions
of the remaining m-n instances are inconsequential, however all instances must have
completed in order for the join construct to reset and be subsequently re-enabled.

Implementation: Multiple instances of an activity in the process model can be
created. Activity implementation in the instantiation phase process model specify
the allowed number of instances for each implementation. Each of these instances
have their own properties and the same contracts as defined in the activity definition.
Each activity instance follows its own lifecycle, separate from other activity instances,
thus allowing concurrent execution of each activity instance. The preconditions in the
required contract of the subsequent activity can be used for defining a partial or com-
plete join. If a partial join is specified, the control is transfered for the defined partial
input contracts. The rest of the incoming inputs would become inconsequential. In
order to reset the contract, when all the incoming inputs are received, the log is
cleared, which finally is used to reset the contract.

Evaluated rating: Direct support (+)

236 A. Further discussion on individual Workflow Patterns

Pattern 35 (Canceling Partial Join for Multiple Instances)

Description: Within a given process instance, multiple concurrent instances of a
task (say m) can be created. The required number of instances is known when the first
task instance commences. Once n of the task instances have completed (where n is
less than m), the next task in the process is triggered and the remaining m-n instances
are canceled.

Implementation: Multiple instances of an activity in the process model can be
created. Activity implementation in the instantiation phase process model specify the
allowed number of instances for each implementation. Each of these instances have
their own properties and the same contracts as defined in the activity definition. Each
activity instance follows its own lifecycle, separate from other activity instances, thus
allowing concurrent execution of each activity instance. The preconditions in the
required contract of the subsequent activity can be used for defining a partial or
complete join. If a partial join is specified, the control is transfered for the defined
partial input contracts. The rest of the incoming inputs however can not be canceled
by the subsequent activity. This does not mean that it is not achievable. The amount
of effort required for this would be relatively high. A special lifecycle needs to be
defined for the precedent activity implementations that allows the subsequent activity
implementation to trigger a cancel event for it. Thus it can be achieved, but is not
directly supported by the prototype.

Evaluated rating: Support missing (-)

Pattern 36 (Dynamic Partial Join for Multiple Instances)

Description: Within a given process instance, multiple concurrent instances of a
task can be created. The required number of instances may depend on a number of
runtime factors, including state data, resource availability and inter-process commu-
nications and is not known until the final instance has completed. At any time, whilst
instances are running, it is possible for additional instances to be initiated providing
the ability to do so had not been disabled. A completion condition is specified which is
evaluated each time an instance of the task completes. Once the completion condition
evaluates to true, the next task in the process is triggered. Subsequent completions of
the remaining task instances are inconsequential and no new instances can be created.

Implementation: Multiple instances of an activity in the process model can be
created. Activity implementation in the instantiation phase process model specify the
allowed number of instances for each implementation. Each of these instances have
their own properties and the same contracts as defined in the activity definition. Each
activity instance follows its own lifecycle, separate from other activity instances, thus
allowing concurrent execution of each activity instance. The preconditions in the
required contract of the subsequent activity can be used for defining a partial or
complete join. If a partial join is specified, the control is transfered for the defined
partial input contracts. As the precondition in the required contract of the subsequent
activity defines the partial join, it can also include a dynamic condition that needs to

1.2. Control-flow Patterns 237

be evaluated before the control is transfered. The rest of the incoming inputs would
become inconsequential. In order to reset the contract, when all the incoming inputs
are received, the log is cleared, which finally is used to reset the contract.

Evaluated rating: Direct support (+)

Pattern 37 (Local Synchronizing Merge)

Description: The convergence of two or more branches which diverged earlier in the
process into a single subsequent branch such that the thread of control is passed to the
subsequent branch when each active incoming branch has been enabled. Determination
of how many branches require synchronization is made on the basis on information
locally available to the merge construct. This may be communicated directly to the
merge by the preceding diverging construct or alternatively it can be determined on
the basis of local data such as the threads of control arriving at the merge.

Implementation: The preconditions in the required contract of the subsequent
activity can be used for defining such a merge pattern. The control is transfered from
the input contracts, once events are listened from all the synchronization branches.
The number of synchronization branches is communicated to this required contract
through the event broker of the parent activity. The event broker of the parent activity
keeps a log of the associated diverging construct present in the process model.

Evaluated rating: Direct support (+)

Pattern 38 (General Synchronizing Merge)

Description: The convergence of two or more branches which diverged earlier in
the process into a single subsequent branch such that the thread of control is passed to
the subsequent branch when either (1) each active incoming branch has been enabled
or (2) it is not possible that any branch that has not yet been enabled will be enabled
at any future time.

Implementation: Current implementation of CPMF does not allow the possibility
to an activity to know in advance, whether a branch to one of its input contracts will
never be enabled at any future time.

Evaluated rating: Support missing (-)

Pattern 39 (Critical Section)

Description: Two or more connected sub-graphs of a process model are identified as
"critical sections". At runtime for a given process instance, only tasks in one of these
"critical sections" can be active at any given time. Once execution of the tasks in one
"critical section" commences, it must complete before another "critical section" can
commence.

238 A. Further discussion on individual Workflow Patterns

Implementation: Their is not support in the CPMF implementation to pause one
of the execution branches by another execution branch of a process model. This does
not mean that such a pattern can not be implemented. It would require to develop
the process model in a way, where the two execution branches start with an OR-split
type pattern. In this way, only one of the execution branches can be active at a given
time. A reset mechanism for the pattern can be achieved through a corresponding
OR-join pattern, which resets the original OR-split for further processing.

Evaluated rating: Support missing (-)

Pattern 40 (Interleaved Routing)

Description: Each member of a set of tasks must be executed once. They can be
executed in any order but no two tasks can be executed at the same time (i.e. no two
tasks can be active for the same process instance at the same time). Once all of the
tasks have completed, the next task in the process can be initiated.

Implementation: CPMF process model can execute a process model sequentially
(restricting two activities to execute at the same time) in a way where a dependency
is introduced between all the activities of the process model. This will take away the
possibility to have a dynamic ordering of activities without any dependency between
them. It is not possible in the current implementation of CPMF to block the parallel
execution of two activities from the same process model, if there is no dependency
between them.

Evaluated rating: Support missing (-)

Pattern 41 (Thread Merge)

Description: At a given point in a process, a nominated number of execution threads
in a single branch of the same process instance should be merged together into a single
thread of execution.

Implementation: A process instance in CPMF is actually an activity instance
that contains the process. Hence a process thread is an activity in execution. Thread
merge is handled by CPMF similar to the activity merge.

Evaluated rating: Direct support (+)

Pattern 42 (Thread Split)

Description: At a given point in a process, a nominated number of execution threads
can be initiated in a single branch of the same process instance.

Implementation: A process instance in CPMF is actually an activity instance that
contains the process. Hence a process thread is an activity in execution. Thread split
is handled by CPMF similar to the activity split.

1.3. Workflow Resource Patterns 239

Evaluated rating: Direct support (+)

Pattern 43 (Explicit Termination)

Description: A given process (or sub-process) instance should terminate when it
reaches a nominated state. Typically this is denoted by a specific end node. When
this end node is reached, any remaining work in the process instance is canceled and
the overall process instance is recorded as having completed successfully, regardless of
whether there are any tasks in progress or remaining to be executed.

Implementation: CPMF process model allows to define a customizable life-cycle
for each activity. In case a user does not define a life-cycle, a default life-cycle is
followed by the activity. This life-cycle allows to terminate the activity from one
or more states. Propagation of event from child activities to their parent activities
and parent activities to their child activities ensures the management of respective
lifecycles. When a parent activity is complete or terminated, this event is propagated
to all its child activities. All child activities that are not complete or terminated yet,
listen to the event and change their state according to the respective event. This
ensures explicit termination of an activity within the process model.

Evaluated rating: Direct support (+)

1.3 Workflow Resource Patterns

Pattern 1 (Direct Distribution)

Description: The ability to specify at design time the identity of the resource(s) to
which instances of this task will be distributed at runtime.

Implementation: The final design of the process model is complete in the instance
process model, where each activity is associated with one or more actors, who perform
them.

Evaluated rating: Direct support (+)

Pattern 2 (Role-Based Distribution)

Description: The ability to specify at design-time one or more roles to which
instances of this task will be distributed at runtime. Roles serve as a means of grouping
resources with similar characteristics. Where an instance of a task is distributed in
this way, it is distributed to all resources that are members of the role(s) associated
with the task.

Implementation: It is possible to know the roles associated with each actor. This
allows to allocate the tasks to the actors based on the roles that they are performing.

Evaluated rating: Direct support (+)

240 A. Further discussion on individual Workflow Patterns

Pattern 3 (Deferred Distribution)

Description: The ability to specify at design-time that the identification of the
resource(s) to which instances of this task will be distributed will be deferred until
runtime.

Implementation: It is possible to execute partial process models in CPMF. This
allows to add the details during the execution. These details are added through the
project management dashboard. However, the exact activity can not be performed
unless a resource is allocated to it. Thus the resource needs to be allocated to the
activity before its execution.

Evaluated rating: Direct support (+)

Pattern 4 (Authorization)

Description: The ability to specify the range of privileges that a resource possesses
in regard to the execution of a process. In the main, these privileges define the range
of actions that a resource can initiate when undertaking work items associated with
tasks in a process.

Implementation: The use of ’responsiblities’ in CPMF process model, allows to
define the range of privileges associated with each role. These roles are then played
by actors. Thus each actor plays a role with well specified privileges.

Evaluated rating: Direct support (+)

Pattern 5 (Separation of Duties)

Description: The ability to specify that two tasks must be executed by different
resources in a given case.

Implementation: Two tasks can be associated to two different actors in CPMF.
Association of a task to an actor is deferred till instantiation phase. In this phase
each activity is independent of other activities.

Evaluated rating: Direct support (+)

Pattern 6 (Case Handling)

Description: The ability to allocate the work items within a given case to the same
resource at the time that the case is commenced.

Implementation: A case is a sub-process in CPMF framework that is contained
within an activity. Thus the composite activity containing this sub-process can be
allocated to a resource during the execution of the process model, in the same way as
other activities.

Evaluated rating: Direct support (+)

1.3. Workflow Resource Patterns 241

Pattern 7 (Retain Familiar)

Description: Where several resources are available to undertake a work item, the
ability to allocate a work item within a given case to the same resource that undertook
a preceding work item.

Implementation: Actors associated to any activity can be accessed by the frame-
work. This allows to access the actor associated with the previous activity and asso-
ciate it with the current activity.

Evaluated rating: Direct support (+)

Pattern 8 (Capability-Based Distribution)

Description: The ability to distribute work items to resources based on specific
capabilities that they possess. Capabilities (and their associated values) are recorded
for individual resources as part of the organizational model.

Implementation: Capabilities are associated with each actor. This allows to
record the skill set of each individual at disposal for the execution of the process. It
is possible to allocate an actor to an activity, based on his/her capabilities.

Evaluated rating: Direct support (+)

Pattern 9 (History-Based Distribution)

Description: The ability to distribute work items to resources on the basis of their
previous execution history.

Implementation: CPMF interpreter keeps the execution history for each actor.
But this is valid only for the execution of the current process model. There is no
database attached to the interpreter to keep track of all his execution history prior to
the current process model. Thus the activities can be associated with an actor based
on his/her previous execution history (within the current process model).

Evaluated rating: Partial support (+/-)

Pattern 10 (Organizational Distribution)

Description: The ability to distribute work items to resources based their position
within the organisation and their relationship with other resources.

Implementation: CPMF interpreter does not keep track of the organizational
break down structure. Thus it is not possible to relate two actors in terms of their
organizational hierarchy.

Evaluated rating: Support missing (-)

242 A. Further discussion on individual Workflow Patterns

Pattern 11 (Automatic Execution)

Description: The ability for an instance of a task to execute without needing to
utilise the services of a resource.

Implementation: CPMF framework allows for three different types of activities:
manual, semi-automatic and automatic. Automatic activities can be executed by the
interpreter without the need of any human intervention.

Evaluated rating: Direct support (+)

Pattern 12 (Distribution by Offer - Single Resource)

Description: The ability to distribute a work item to a selected individual resource
on a non-binding basis.

Implementation: Current implementation of the CPMF framework binds each
actor to perform the allocated activities. It is considered to be binding and he is not
given an opportunity to reject the allocated activities. However project manager has
the option to re-allocate an activity to another actor.

Evaluated rating: Support missing (-)

Pattern 13 (Distribution by Offer - Multiple Resources)

Description: The ability to distribute a work item to a group of selected resources
on a non-binding basis.

Implementation: Current implementation of the CPMF framework binds each
actor to perform the allocated activities. It is considered to be binding and he is not
given an opportunity to reject the allocated activities. However project manager has
the option to re-allocate an activity to another actor. This is the same case for single
or multiple actors.

Evaluated rating: Support missing (-)

Pattern 14 (Distribution by Allocation - Single Resource)

Description: The ability to distribute a work item to a specific resource for execution
on a binding basis.

Implementation: All activities allocated to an actor in the CPMF process frame-
work are considered binding.

Evaluated rating: Direct support (+)

1.3. Workflow Resource Patterns 243

Pattern 15 (Random Allocation)

Description: The ability to allocate work items to a selected resource chosen from
a group of eligible resources on a random basis.

Implementation: It is possible to allocate the activities to any random actor that
has the required capabilities to perform the role.

Evaluated rating: Direct support (+)

Pattern 16 (Round Robin Allocation)

Description: The ability to allocate a work item to a selected resource chosen from
a group of eligible resources on a cyclic basis.

Implementation: It is possible to allocate the activities to any random actor that
has the required capabilities to perform the role.

Evaluated rating: Direct support (+)

Pattern 17 (Shortest Queue)

Description: The ability to allocate a work item to a selected resource chosen from
a group of eligible resources on the basis of having the shortest work queue.

Implementation: Every actor maintains a list of allocated activities to it. However
the approach does not directly provide a mechanism to compare the working queues
of different actors. With a little programmatic extension, it is possible to compare the
working queues of different actors and allocate a certain activity to the actor having
the shortest queue.

Evaluated rating: Partial support (+/-)

Pattern 18 (Early Distribution)

Description: The ability to advertise and potentially distribute a work items to
resources ahead of the moment at which it is actually enabled.

Implementation: Activities can be allocated to actors as early as in the instance
process model. That means, even before the execution of the process model.

Evaluated rating: Direct support (+)

Pattern 19 (Distribution on Enablement)

Description: The ability to advertise and distribute a work items to resources at
the moment that the task to which it corresponds is enabled for execution.

244 A. Further discussion on individual Workflow Patterns

Implementation: It is possible to allocate the activities to an actor during the
execution of the process model. This is handled through the project management
dashboard. However the exact activity can not be executed unless it has been allo-
cated to an actor.

Evaluated rating: Direct support (+)

Pattern 20 (Late Distribution)

Description: The ability to advertise and distribute work items to resources after
the task to which the work item corresponds has been enabled for execution.

Implementation: It is possible to allocate the activities to an actor during the
execution of the process model. This is handled through the project management
dashboard. However the exact activity can not be executed unless it has been allo-
cated to an actor. Thus this case can not arrive in CPMF, where the activity shall
wait for its allocation for execution.

Evaluated rating: Support missing (-)

Pattern 21 (Resource Initiated Allocation)

Description: The ability for a resource to commit to undertake a work item without
needing to commence working on it immediately.

Implementation: An allocation of an activity to an actor can be done as early as
in the instance process model, that means even before the execution of the process
model. This allocation can be initiated by the actor itself (if he has the privileges to
assign activities).

Evaluated rating: Direct support (+)

Pattern 22 (Resource-Initiated Execution - Allocated Work Item)

Description: The ability for a resource to commence work on a work item that is
allocated to it.

Implementation: An actor can access his own specific area on the project manage-
ment dashboard. This allows him to manage all the activities allocated to him/her.
From this portal, he is able to commence the execution of the activities allocated to
him/her.

Evaluated rating: Direct support (+)

Pattern 23 (Resource-Initiated Execution - Offered Work Item)

Description: The ability for a resource to select a work item offered to it and
commence work on it immediately.

1.3. Workflow Resource Patterns 245

Implementation: An actor can access his own specific area on the project manage-
ment dashboard. This allows him to manage all the activities allocated to him/her.
From this portal, he is able to commence the execution of the activities allocated to
him/her.

Evaluated rating: Direct support (+)

Pattern 24 (System-Determined Work Queue Content)

Description: The ability of the system to order the content and sequence in which
work items are presented to a resource for execution.

Implementation: Activities allocated to an actor may have dependencies between
them. In this case they are sequenced by the system and must be performed in the
right sequence.

Evaluated rating: Direct support (+)

Pattern 25 (Resource-Determined Work Queue Content)

Description: The ability for resources to specify the format and content of work
items listed in the work queue for execution.

Implementation: In case where the activities allocated to an actor do not have
any dependencies between them, an actor is at liberty to arrange the sequence of the
activities allocated to him.

Evaluated rating: Direct support (+)

Pattern 26 (Selection Autonomy)

Description: The ability for resources to select a work item for execution based on
its characteristics and their own preferences.

Implementation: In case where the activities allocated to an actor do not have
any dependencies between them, an actor is at liberty to arrange the sequence of the
activities allocated to him. This sequence of activities can be based on the personal
preferences.

Evaluated rating: Direct support (+)

Pattern 27 (Delegation)

Description: The ability for a resource to allocate an un-started work item previ-
ously allocated to it (but not yet commenced) to another resource.

Implementation: The actor (having the privileges for activity allocation) can
allocate and re-allocate the activities to any other actor. Any actor that does not
have the necessary privileges has to contact the process owner.

246 A. Further discussion on individual Workflow Patterns

Evaluated rating: Direct support (+)

Pattern 28 (Escalation)

Description: The ability of a system to distribute a work item to a resource or
group of resources other than those it has previously been distributed to in an attempt
to expedite the completion of the work item.

Implementation: Activities can be re-allocated to any other actor or team, based
on any intention. For a complex re-allocation of activities, activity adaptations in
CPMF process model allows to reconfigure the process models completely.

Evaluated rating: Direct support (+)

Pattern 29 (De-allocation)

Description: The ability of a resource (or group of resources) to relinquish a
work item which is allocated to it (but not yet commenced) and make it available
for distribution to another resource or group of resources.

Implementation: All actors having the privileges to allocate the activities can also
de-allocate the activities from a certain actor or team. However, for an actor/team
that does not possess the privileges has to contact the process owner.

Evaluated rating: Direct support (+)

Pattern 30 (Stateful Reallocation)

Description: The ability of a resource to allocate a work item that they are currently
executing to another resource without loss of state data.

Implementation: Activity adaptations in CPMF framework takes care of the
transfer of state between the two activities. Activity adaptations is handled through
replacing one activity (or sub-activity) with another. In this case, the state is trans-
fered through two mechanisms: 1) hard-coded links between the properties of the
two activities and 2) interactive linking where the properties of the two activities are
presented to the process owner in project management dashboard. He can link the
properties where state needs to be transfered.

Evaluated rating: Direct support (+)

Pattern 31 (Stateless Reallocation)

Description: The ability for a resource to reallocate a work item that it is currently
executing to another resource without retention of state.

Implementation: Activity adaptations in CPMF framework takes care of the
transfer of state between the two activities. Activity adaptations is handled through

1.3. Workflow Resource Patterns 247

replacing one activity (or sub-activity) with another. In this case, the state is trans-
fered through two mechanisms: 1) hard-coded links between the properties of the
two activities and 2) interactive linking where the properties of the two activities are
presented to the process owner in project management dashboard. He can link the
properties where state needs to be transfered. Process owner can choose interactive
mechanisms and not link any of the properties for a stateless adaptation.

Evaluated rating: Direct support (+)

Pattern 32 (Suspension/Resumption)

Description: The ability for a resource to suspend and resume execution of a work
item.

Implementation: Each actor can access his specific working area on the project
management dashboard. He can the ability to manage all the activities allocated to
him. This project management dashboard allows the actor to carry out the transitions
to an activity, based on the lifecycle of the activity. The default lifecycle of every
activity allows to pause/resume an activity. Thus an actor can pause and resume all
activities allocated to him.

Evaluated rating: Direct support (+)

Pattern 33 (Skip)

Description: The ability for a resource to skip a work item allocated to it and mark
the work item as complete.

Implementation: Each actor can access his specific working area on the project
management dashboard. He can the ability to manage all the activities allocated to
him. This project management dashboard allows the actor to carry out the transitions
to an activity, based on the lifecycle of the activity. The default lifecycle of every
activity allows to the ’complete’ state of an activity. Thus an actor can change the
state of any or all the activities allocated to him to complete.

Evaluated rating: Direct support (+)

Pattern 34 (Redo)

Description: The ability for a resource to redo a work item that has previously been
completed in a case. Any subsequent work items (i.e. work items that correspond to
subsequent tasks in the process) must also be repeated.

Implementation: Redoing an activity is possible in CPMF framework only if the
lifecycle of the activity permits it. For a process model where certain activities need
to be repeated, the lifecycle of the activities should be developed in the appropriate
manner. This also applies for the lifecycle of the subsequent activities. The default

248 A. Further discussion on individual Workflow Patterns

lifecycle of activities does not support it, but it can be performed by customizing the
lifecycle, which is allowed by the framework.

Evaluated rating: Partial support (+/-)

Pattern 35 (Pre-Do)

Description: The ability for a resource to execute a work item ahead of the time that
it has been offered or allocated to resources working on a given case. Only work items
that do not depend on data elements from preceding work items can be "pre-done".

Implementation: Any activity allocated to an actor can be performed by the
actor if its dependencies are already met. If the dependencies are met, the state of
the activity turns from waiting to ready state. When an activity is in ready state,
the associated actor can perform it even before the scheduled time.

Evaluated rating: Direct support (+)

Pattern 36 (Commencement on Creation)

Description: The ability for a resource to commence execution on a work item as
soon as it is created.

Implementation: Any activity allocated to an actor can be performed by the
actor if its dependencies are already met. If the dependencies are met, the state of
the activity turns from waiting to ready state. Only, when an activity is in ready
state, the associated actor can perform it. Thus it can not be performed unless an
actor is associated or unless the dependencies are met.

Evaluated rating: Support missing (-)

Pattern 37 (Commencement on Allocation)

Description: The ability to commence execution on a work item as soon as it is
allocated to a resource.

Implementation: Any activity allocated to an actor can be performed by the
actor if its dependencies are already met. If the dependencies are met, the state of
the activity turns from waiting to ready state. Only, when an activity is in ready
state, the associated actor can perform it. Thus it can not be performed unless an
actor is associated or unless the dependencies are met.

Evaluated rating: Direct support (+)

Pattern 38 (Piled Execution)

Description: The ability to initiated the next instance of a task (perhaps in a
different case) once the previous one has completed with all associated work items

1.3. Workflow Resource Patterns 249

being allocated to the same resource. The transition to Piled Execution mode is at
the instigation of an individual resource. Only one resource can be in Piled Execution
mode for a given task at any time.

Implementation: Once an activity is complete, it outputs the artifacts provided
by it. The next activity in sequence if dependent on it, can start its execution as
soon as all its dependencies are met. The trigger of the next activity can be set to
the completion of all dependencies, human intervention or both.

Evaluated rating: Partial support (+/-)

Pattern 39 (Chained Execution)

Description: The ability to automatically start the next work item in a case once
the previous one has completed. The transition to Chained Execution mode is at the
instigation of the resource.

Implementation: Once an activity is complete, it outputs the artifacts provided
by it. The next activity in sequence if dependent on it, can start its execution as
soon as all its dependencies are met. The trigger of the next activity can be set to
the completion of all dependencies, human intervention or both.

Evaluated rating: Partial support (+/-)

Pattern 40 (Configurable Unallocated Work Item Visibility)

Description: The ability to configure the visibility of unallocated work items by
process participants.

Implementation: Process participants have access to all the activities allocated to
them through the project management dashboard. Only process owner/administrator
has access to all the activities in the process. Thus for actors, it is not possible to
configure or even view the state of the activities not allocated to them.

Evaluated rating: Support missing (-)

Pattern 41 (Configurable Allocated Work Item Visibility)

Description: The ability to configure the visibility of allocated work items by process
participants.

Implementation: Process participants have access to all the activities allocated to
them through the project management dashboard. Only process owner/administrator
has access to all the activities in the process. All actors that have the required
privileges can configure the visibility of the activities allocated to them.

Evaluated rating: Direct support (+)

250 A. Further discussion on individual Workflow Patterns

Pattern 42 (Simultaneous Execution)

Description: The ability for a resource to execute more than one work item simul-
taneously.

Implementation: Process participants have access to all the activities allocated
to them through the project management dashboard. Thus the actor has access to
the states and transitions of all the allocated activities. He/she has the possibility
to execute multiple concurrent activities in parallel, if their dependencies are already
met.

Evaluated rating: Direct support (+)

Pattern 43 (Additional Resources)

Description: The ability for a given resource to request additional resources to
assist in the execution of a work item that it is currently undertaking.

Implementation: CPMF framework allows to adapt the activities during their
execution. The framework also allows a communication service between the process
participants. An actor that requires addition resources for assistance has to ask
the process owner/administrator for allocating more actors to the current activity.
Process owner can adapt the process on the fly, so as to allocate multiple actors to
it. Once the process is adapted, he/she can allocate additional actors or teams.

Evaluated rating: Direct support (+)

Appendix B

Process Model Constructs

251

Constructs SPEM xSPEM MODAL BPMN BPEL EPCs YAWL Little-JIL

Process + + + + + + + +

Activity Type - - - - - - - -

Composite Activity + + + + + + + +

Primitive Activity + + + + + + + +

Responsibility - - - - - - - -

Role + + + + - + + +

Team + + + + - + + +

Actor - - - + - + + +

Tool + + + + - + + +

Goal - - + - - - - -

Guideline + + + - - - - -

Data-flow - - - + + + + +

Control-flow + + + + + + + +

Artifact Specification - - - - - - - -

Artifact Metamodel - - - - - - - -

Artifact + + + + + + + +

Event - - - + + + + +

Message Event - - - + + - + +

State - - + + + - + +

Conditions + + + + + - + +

Table B.1 – Corresponding constructs support in state of the art

	Résumé en français
	1 État de l'art
	2 Une approche multi-métamodèle pour la modélisation des processus
	3 Les méta-modèles pour le développement du processus
	3.1 Le méta-modèle de spécification du processus
	3.2 Le méta-modèle d'implémentation du processus
	3.3 Le méta-modèle d'instanciation du processus

	4 L'implémentation de l'outil de prototype
	5 La méthode de développement de processus
	6 L'évaluation de l'approche

	1 Introduction
	1.1 Context
	1.2 Problem Statement and Research Questions
	1.3 Solution Criteria
	1.3.1 Completeness
	1.3.2 Team Development
	1.3.3 Reusability
	1.3.4 Abstraction
	1.3.5 Modularity
	1.3.6 Tailorability
	1.3.7 Enactability

	1.4 Approach
	1.4.1 Phase-wise identification of the core process constructs
	1.4.2 Synthesis of process constructs into respective metamodels
	1.4.3 Development of the tooling support
	1.4.4 Evaluation of the process modeling framework

	1.5 Scope & Contributions of this Thesis
	1.6 List of Publications
	1.7 Outline of the thesis

	I State of the Art
	2 Software Process Modeling Context
	2.1 Process Modeling
	2.1.1 What is a Process?
	2.1.2 Process Modeling Languages and Notations
	2.1.3 Process-Centered Software Engineering Environments

	2.2 Process Reuse
	2.2.1 Design by Contract
	2.2.2 Interaction between the contracts

	2.3 Process Architecture
	2.3.1 Architectures for process modeling
	2.3.2 Declarative vs Imperative Process Modeling
	2.3.3 Service oriented architectures in process

	2.4 Process Execution
	2.4.1 Workflow Management Systems
	2.4.2 Business Process Management
	2.4.3 Process-driven Applications
	2.4.4 Process Execution Concerns

	2.5 Shortcomings of the process methodologies

	3 Process Modeling Frameworks
	3.1 Introduction
	3.2 Flow based Approaches
	3.2.1 Software Process Engineering Metamodel (SPEM 2.0)
	3.2.2 Business Process Model and Notation (BPMN)
	3.2.3 Business Process Execution Language (WS-BPEL)

	3.3 Event based Approaches
	3.3.1 Event-driven Process Chains (EPC)
	3.3.2 Yet Another Workflow Language (YAWL)
	3.3.3 Little-JIL

	3.4 Software Process Standards
	3.4.1 International Organization for Standardization & IEEE
	3.4.2 European Cooperation for Space Standardization (ECSS)

	3.5 Critical summary of approaches
	3.6 Discussion

	II Process Modeling Framework
	4 Structure of Metamodels
	4.1 Multi-metamodel Process Framework
	4.1.1 Component-oriented Process Modeling Framework
	4.1.2 Process modeling scenario

	4.2 Metamodels for Process Development Phases
	4.2.1 Specification Phase
	4.2.2 Implementation phase
	4.2.3 Instantiation phase

	4.3 Contractual Interactions
	4.3.1 Design by Contract
	4.3.2 Contract refinement

	4.4 Methodological Summary

	5 Implementation of the Framework
	5.1 Prototype Architecture
	5.2 Process Development
	5.2.1 Process Editors
	5.2.2 Transformations in Process Models

	5.3 Process Execution
	5.3.1 Process Enactment
	5.3.2 Execution dynamics

	5.4 Implementation Summary

	III Evaluation of the Framework
	6 Case Study
	6.1 Case Study Scenario
	6.1.1 Background
	6.1.2 Scenario
	6.1.3 Questions & propositions

	6.2 Case Study Implementation
	6.2.1 Compliance to multiple standards
	6.2.2 Design by Contract
	6.2.3 Bi-layered implementation of processes
	6.2.4 Reusing process elements
	6.2.5 Process refinement
	6.2.6 Execution of scenario processes
	6.2.7 Runtime adaptation

	6.3 Findings & Discussion

	7 Pattern Support in CPMF
	7.1 Workflow Patterns
	7.2 Workflow Data Patterns
	7.3 Workflow Control-flow Patterns
	7.4 Workflow Resource Patterns
	7.5 Discussion

	IV Epilogue
	8 Conclusion and Perspectives
	8.1 Contributions and Achievements
	8.2 Limitations and Prospects

	V Bibliography and appendices
	Bibliography
	Figures
	Tables
	Appendices
	A Further discussion on individual Workflow Patterns
	1.1 Data-flow Patterns
	1.2 Control-flow Patterns
	1.3 Workflow Resource Patterns

	B Process Model Constructs

