
HAL Id: tel-00978771
https://theses.hal.science/tel-00978771

Submitted on 14 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validation de métriques de testabilité logicielle pour les
programmes objets

Muhammad Rabee Shaheen

To cite this version:
Muhammad Rabee Shaheen. Validation de métriques de testabilité logicielle pour les programmes
objets. Software Engineering [cs.SE]. Université Joseph-Fourier - Grenoble I, 2009. English. �NNT : �.
�tel-00978771�

https://theses.hal.science/tel-00978771
https://hal.archives-ouvertes.fr

Université Joseph Fourier - Grenoble I

THESE

pour obtenir le grade de

DOCTEUR DE

L’UNIVERSITÉ JOSEPH FOURIER

Discipline : Informatique

préparée au Laboratoire d’Informatique de Grenoble

présentée et soutenue publiquement

par

Muhammad Rabee SHAHEEN

le 07 Octobre 2009

Validation de Métriques de

Testabilité Logicielle pour Les

Programmes Objets

JURY

M. Daniel Deveaux Rapporteur
M. Yves le Traon Rapporteur
Mme. Chantal Robach Examinatrice
Mme. Virginie Wiels Examinatrice
M. Farid Ouabdesselam Directeur
Mme. Lydie du Bousquet Co-directrice

ii

To my mother

To the spirit of my father

To all my family

1

2

Acknowledgements

This thesis has been achieved in the Laboratoire d’Informatique de Grenoble.

It is my pleasure to convey my gratitude to all the members in the LIG lab-

oratory, especially the members of VASCO team that I joined since 2006.

I gratefully acknowledge:

Farid Oubedsslam and Lady du Bousquet, my supervisors for their

guidance, advice, valuable discussion, patience and their constructive com-

ments during the three years.

Yves Ledru, head of VASCO team, for his friendship over the past two

years...

Roland Groz, Akram Idani, Catherine Oriat, Jean-Luc Richier

and all other team members ...

Chantal Robach and Virginie Wiels, who accepted to judge this work.

Daniel Deveaux and Yves le Traon, who accepted to review this thesis.

administrative and technical team, for their great availability...

all my friends and everyone whom I spent with him a nice time...

Words fail me express my appreciation to my parents and all my family to all

their supports and their love...

3

Finally, I would like to acknowledge everyone who was behind the successful

realization of this thesis, as well as expressing my apology that I could not

mention personally one by one...

4

Résumé

Pour les systèmes logiciels, la méthode de validation la plus utilisée est le test. Tester

consiste en l’exécution du logiciel en sélectionnant des données et en observant/jugeant

les sorties. C’est un processus souvent coûteux. L’effort de test est difficile à caractériser

précisément. Il dépend de la complexité du logiciel, des objectifs en termes de validation,

des outils et du processus développement.

La testabilité logicielle s’intéresse à caractériser et prédire l’effort de test. Cela est

nécessaire pour estimer le travail de test, prévoir les coûts , planifier et organiser le travail.

De nombreuses mesures ont été proposées dans la littérature comme indicateurs du coût

du test. Ces mesures sont focalisées sur l’évaluation de certains attributs qui peuvent

rendre le test difficile. D’autre approches proposent de repèrer des constructions difficiles

à tester à l’aide de patrons (testability antipatterns) par exemple.

D’une façon générale, peu d’études ont été réalisées pour valider ces métriques ou

patrons. Certaines de ces études donnent des résultats contradictoires. Or il est essentiel

de fournir des informations non biaisées.

Notre travail de thèse porte en premier lieu sur la validation de certaines métriques

de testabilité proposées pour la prédiction du coût du test de programmes objet. Notre

approche s’appuie sur une mise en relation des métriques et des stratégies de test et vise à

l’établissement de corrélation entre coût prédictive et coût effective. Ceci nous a conduit

à raffiner certaines des métriques étudiées.

Dans un second temps, nous nous sommes intéressés à des patrons (testability antipat-

terns) visant à détecter des faiblesses dans le code vis à vis du test. Le but de cette étude

est de comprendre à quels moments ces constructions sont introduites dans le code, afin

de les repérer le plus efficacement possible.

5

6

Abstract

The most used validation method for software is testing. Testing process consists of

executing the program by selecting a set of data and observing the outputs of the program.

The testing process is a costly in terms of time and money. Estimating the effort of testing

is important in order to be able to plan the testing phase. Therefore, some reliable

indicators are required to predict the cost of testing, according to the selected testing

strategy.

Software testability is a concept that characterizes the effort of testing. A variety of

software metrics were proposed in the literature as indicators of software testability. All

of them focus on measuring some software attributes that intend to make test difficult.

A few studies have been carried out in order to validate these metrics. Some of these

studies have controversial results about same metrics.

Our work in this thesis focuses on validating some testability metrics, and examining

whether they could be really used as indicators of testability. Our approach in metrics

validation considers both testability metrics and testing strategies, i.e. our methodology

checks a specific metric against a specific testing criterion with respect to predefined

hypotheses, and evaluates how much they are correlated. Additionally, we have defined

new metrics which are a result of an adapting of some classical object-oriented metrics.

The second part of our work concentrates on the testability antipatterns. The purpose

of this part is checking some testability antipatterns and detecting at which point they

are introduced during the software development phases.

7

8

Contents

1 Introduction 17

2 Software Testability Notion 23

2.1 Introduction . 23

2.2 Testability from Hardware to Software 23

2.3 Software Testability Definitions . 25

2.4 Binder’s Testability Factors . 26

2.5 Common Testability Factors . 27

2.6 Conclusion . 32

3 Testability Metrics and Metrics Validation 33

3.1 Introduction . 33

3.2 Scope-Oriented Testability Metrics . 34

3.2.1 Methods . 34

3.2.2 Classes . 37

3.2.3 Stubs . 37

3.2.4 Inheritance . 40

3.3 General Complexity Metrics . 40

3.3.1 Cohesion . 41

3.3.2 Inheritance . 43

3.3.3 Polymorphism . 44

3.3.4 Encapsulation . 44

3.4 Complexity Metrics Related to Observability and Controllability 45

3.4.1 Domain Testability . 45

3.4.2 Observability and Controllability of Components 46

3.4.3 System Testability - STA . 47

3.5 Testability Metrics Related to Error Likelihood 47

9

3.5.1 Propagation Infection Execution - PIE 47

3.5.2 Domain-Range Ratio - DRR and Visibility Component - VC . . . 48

3.6 Conclusion . 50

3.7 Metrics Validation . 50

3.7.1 Measure and Metric Definitions 52

3.7.2 Metric Construction Guide . 53

3.7.3 Metrics Validation Approaches . 54

3.7.4 Validation of Testability Metrics 56

3.7.5 Conclusion . 57

4 Inheritance Testing: Adjusting Classical Testability Metrics 59

4.1 Introduction . 59

4.2 Related Works . 60

4.3 Inheritance Testing in the Context of Java Applications 61

4.3.1 Inheritance in Java . 62

4.3.2 Dealing with Inheritance When Testing Java Systems 63

4.4 Cost of Inheritance Testing . 65

4.4.1 Hypotheses . 65

4.4.2 Cost of Testing . 65

4.4.3 Cost of Testing to Achieve Method Coverage 66

4.4.4 Cost of Testing Strategies to Achieve Branch Coverage 67

4.5 Conclusion . 69

5 Is DIT a Good Predictive Cost for Method Coverage Testing? 71

5.1 Introduction . 71

5.2 Data Source . 72

5.3 Data Analysis . 74

5.3.1 Inherited Methods and DIT/DITA 74

5.3.2 Defined Methods and DIT/DITA 80

5.4 Conclusion . 84

6 Is DIT a Good Predictive Cost for Branch Coverage Testing? 85

6.1 Introduction . 85

6.2 Statistical analysis . 86

6.2.1 Data Analysis . 86

6.3 Limits of the Experiment . 90

10

6.4 Conclusion . 91

7 Predicting the Cost of JUnit Designing 93

7.1 Introduction . 93

7.2 Basic Concepts in JUnit . 94

7.3 Data Source . 96

7.4 Data Analysis . 97

7.5 Limit of the Work . 100

7.6 Conclusion . 100

8 Detecting Testability Antipatterns during the Development Process 103

8.1 Introduction . 103

8.2 Testability Antipatterns . 104

8.3 Simulation of the Development Phases 105

8.4 Data Analysis . 107

8.5 Limits of the Work . 111

8.6 Conclusions . 111

Conclusion 112

A Basic Concepts in Statistics 115

A.1 Introduction . 115

A.2 Types of Variables . 116

A.3 Data Representation . 116

A.3.1 Tables . 117

A.3.2 Graphics . 118

A.4 Correlation Coefficient . 121

A.4.1 Pearson Correlation . 122

A.4.2 Spearman’s Correlation Coefficient 123

A.4.3 Kendall Rank Correlation Coefficient 126

A.4.4 Conclusion . 126

A.5 Statistical Hypothesis Testing . 127

A.6 Goodness of Fit Tests . 129

A.6.1 Chi-square Test χ2 . 130

A.6.2 Wilcoxon Tests . 131

A.7 Regression Analysis . 135

A.7.1 Simple Regression Model . 135

11

A.7.2 Multiple Regression Model . 137

A.8 Conclusion . 138

B Metrics Calculator 139

Glossary 143

Bibliography 147

12

List of Figures

2.1 OR gate - Controllability and observability 24

2.2 Testability Factors . 26

2.3 Sys-B is more observable than Sys-A . 28

2.4 Cycle . 30

4.1 Sub tree of NanoXML inheritance tree 64

5.1 Number of inherited methods w.r.t. DIT 75

5.2 Number of inherited application methods w.r.t. DITA 77

5.3 Number of inherited (application) methods w.r.t. DIT (and DITA) 78

5.4 Number of defined methods w.r.t. DIT 81

5.5 Number of defined methods w.r.t. DITA 81

5.6 Number of defined methods w.r.t. DIT and DITA 83

6.1 MCC distribution with respect to DITA=0 to DITA=5 88

6.2 Scatter plot for WMC w.r.t. DITA for some applications 89

6.3 Scatter plot for WMHA w.r.t. DITA for SCOPE and Azureus applications 90

7.1 Visualizing the relationship between WMC and WMC4Junit 98

7.2 Visualizing the relationship between WMC and WMC4Junit 99

8.1 Class interaction and Cycles . 105

8.2 Number of cycles per application at each level 110

A.1 Scatter plot for data given in Table A.4 119

A.2 Scatter plot for data given in Table A.5 120

A.3 Frequency histogram for marks in Example 4 121

A.4 Simple regression for data given in Table A.20 137

B.1 Metrics Calculator Main Window . 141

13

B.2 Adding Required Libraries . 141

B.3 Result Window of Metrics Calculator . 142

14

List of Tables

3.1 Testability Metrics and Factors . 35

3.2 Metrics Tools . 51

3.3 Effort estimation . 51

4.1 Test or not to test the inherited methods 61

4.2 Appropriate metric w.r.t selected testing strategies 69

5.1 Data source . 73

5.2 Distribution of the application classes w.r.t DITA and DIT 74

5.3 The Percentage of Number of Inherited Methods 76

5.4 Spearman’s rank-order correlation between the number of methods and

depth of total and application inheritance tree for each application 79

5.5 Average of Number of inherited (application) Methods w.r.t DIT and DITA 80

5.6 Number of classes w.r.t the ranges of number of inherited methods . . . 80

5.7 P-value of Wilcoxon test for the declared methods distribution at a fixed

DIT . 82

5.8 P-value of Wilcoxon test for the declared methods distribution at a fixed

DITA . 82

6.1 Spearman coefficients . 86

6.2 P-value of Wilcoxon test for MCC at a fixed DITA 87

7.1 Data Source . 96

7.2 Max and Min value for WMC and WMC4Junit 97

7.3 Spearman Correlations Analysis . 100

8.1 Data source . 105

8.2 The frequency of cycles of different sizes at the source code level 109

8.3 Max/Min cycle size and number of cycles at the source code level 109

15

16

8.4 Max/Min cycle size and number of cycles at the abstraction levels 110

A.1 Data Representation . 117

A.2 Contingency Table For Example 1 . 118

A.3 Two Way Table . 118

A.4 Sample data of Example 2 . 119

A.5 Distance/Gasoline Data - Example 3 . 120

A.6 Pearson Correlation for Example 6 . 124

A.7 Calculating Spearman Correlation For Example 7 125

A.8 Special Case for Spearman (Repeated values of X and/or Y) 125

A.9 Ranking and Calculating P value in Kendall Example 8 126

A.10 Correlation Methods . 127

A.11 Chi-Square (male/ female) promoted example 130

A.12 Calculating Chi-Square for (male/female) promoted example 131

A.13 Partial table of critical values of Chi-square Distribution 131

A.14 Data for Example 10 . 132

A.15 Ranking data of Example 10 . 133

A.16 Marks of students - Example 11 . 133

A.17 Ranking all students marks Example 11 134

A.18 Sum and average of ranks of subgroup A and B 134

A.19 Price of gas per gallon . 136

A.20 Calculating A and B values for simple regression - Example 12 136

Chapter 1

Introduction

Software development goes through several phases before arriving to a stable and reliable

release. A general approach of software development starts by gathering information

about the requirements, followed by designing, implementing, testing and maintaining

phases. Each of these phases is essential and important in the development cycle.

Software testing is one of the most important and complex phases in the software

development. It is considered as the only way to validate the software and the most used

one. It aims at verifying the validity of the obtained results of a program execution by

comparing them with the expected ones. The comparing process is called test oracle.

If any difference between an obtained and expected result, an error is reported and a

correction process begins.

A common definition of software testing is “Testing is the process of executing a

software with the intent of finding errors” [89]. Another definition of software testing is

given by Hetzel “Testing is any activity aimed at evaluating an attribute or capability

of a program or system and determining that it meets its required results” [62]. The

first definition does not focus only on the requirements of the software, it looks for any

problem in the system, while the second one is more strict (from the requirements view),

because it checks if the software conforms to its requirements.

Testing Techniques

The software testing activity consists of several successive steps. First, it begins with

unit testing, which is a testing process that intends to test the software unit by unit1.

The next step, is integration testing. It intends to test the combination of two or more

1A unit might be a method or a class.

17

18

units of the system together, in order to verify the functionality of these parts altogether.

Finally, the system testing is testing the overall system with all its parts. It is necessary

to achieve the three types of test, because errors that could appear during the integration

testing for instance, might not appear through the unit testing.

Other types of testing can be carried out in order to achieve different goals such as

regression testing, acceptance testing, performance testing, security testing, etc.

To test a software there is a variety of testing techniques (strategies) that could be

applied according to the available data about the software under test. Testing strategies

should focus especially on parts of the systems that are known to be fault proneness.

Here are some testing strategies:

• White-box, logic-driven or structural testing is a technique that allows the tester

to see and examine the internal structure of the software, and sometimes without

considering the specification of the software. For that, this technique focuses on

the details of the implementation, programming styles, control structures, methods,

data design ...etc. There are several methodologies belong to White-box technique,

such as branch coverage, statement coverage, decision coverage, etc.

• Black-box, data driven or functional testing is a technique that depends on the

specification of the software. Neither the behavior nor the structure of the software

is examined by the tester. Therefore, this technique focuses only on the inputs,

then its outputs are verified for conformance to the specified objectives. There are

also several methodologies belong to black-box technique, such as boundary value

analysis, equivalence partitions, etc.

• Gray-box testing is a technique that uses a combination of black box testing and

white box testing.

Testing Difficulties

Unfortunately, there is no way to guarantee that a system is free of bugs. Therefore

all systems must be exercised (tested) as much as possible. That means spending more

time and money on the software development. It often takes longer to test software

than to implement it. Because reported errors during the testing add more time to the

implementation phase, which in turn leads to a delay in the software release. In addition

to that, the more complex the software is, the more time it needs to be tested. Therefore,

the software testing is considered as a time consuming process. The difficulty of testing

1. Introduction 19

increases with the absence of the software documentation or the poor one. Moreover,

it is not possible to find all errors that could be found in software. Additionally, the

software testing is a long process, since it involves several activities, such as test plan,

test analysis, test cases, test design, etc. Furthermore, the selected testing strategy or the

testing criterion which is required to be met, has also an influence on the cost of testing.

Some testing strategies are cheaper than others, but they are less powerful.

In addition to these difficulties, other difficulties also may raise due to some program-

ming language techniques, for instance, in object oriented languages some feature such

as polymorphism and inheritance could significantly increase the difficulty of the test.

Therefore, the software testing is considered as a costly process in terms of time and

money. It could represent 40% of the total development cost [17]. Roughly speaking,

the cost of testing consists of two main parts, the cost of the machine time and the cost

of personnel time to find and fix defects. Of course this implies the test planning and

development in addition to the cost of running test cases and analyzing results. These

costs are assumed to increase linearly with the amount of test effort spent to find and fix

defects and length of the testing time [32, 98].

Software Testability

Several attempts were done to reduce the cost of testing. One approach is automating

as much as possible. The automation of testing activities reduces significantly the cost

of testing, and minimizes the human errors [8]. Another approach is “design for testing”

or “design for testability” [21]. This approach relies on the observation that for a same

problem, different solutions (with different designs) can be produced. Some of them are

easier to test than others. “Design for testability” favors design solution(s) that would

ease the test. These attempts and other tried to obtain systems which are easy to test.

A system that is easy to test is called a testable system. In this context, a new notion

has been introduced that is “Software Testability”. Software testability is an adapted

concept from the hardware systems that characterizes the testing difficulty level of the

software. This proposition raised the question, how do we measure the testability? In

other words, how to measure the difficulty level?

Metrics and Antipatterns

Different approaches have been in introduced in order to evaluate the software testability.

All of them were proposed in order to obtain testable software or to measure the testability

20

of software. And all aim at detecting the locations which are difficult to test. One

approach is based on defining testability metrics, which were proposed to estimate some

software attribute, such as number of lines of code, number of operators, cyclomatic

complexity, etc. Another approach is based on avoiding anti-testability patterns, which

are known to increase the difficulty of testing.

A large number of metrics were proposed, but one common idea is behind them.

The common idea is measuring an attribute that may cause or participate in increasing

the difficulty of test, which in turn increases the cost of testing. One could classify

these metrics into two main groups, one group is the metrics which help at evaluating

the testability for non-object programs and one group for evaluating the testability for

object programs. Since in this thesis, we are more interested in estimating the software

testability for object oriented programs, our focus will be dedicated to study the metrics

that are proposed to measure their testability.

Context and Motivation

Although there is a large set of metrics were defined to estimate the testability, a few

works have been done to validate these propositions. Even though the goal is clear, it is

not easy to validate how much it is accurate that these metrics are the required indicators

of the testability. And how to validate the relationship between these proposed metrics

and the testability. This is important issue for several reasons. First of all, a proposed

metric may not be a metric, because of the absence of a metric definition, and for that

a proposed metric might calculate a software attribute and not any more! Second, a

proposed metric could be suitable for certain testing strategies, but it is not suitable for

others. Therefore, it is important to decide which metric(s) one should use with respect to

the testing method that will be applied. Third point is the impossibility of relying on one

metric, either because each metric has its own limits, or because it could not characterize

what is really required. And that raises the necessity of finding a suite of metrics, where

each of them completes a part of the whole mission. Moreover, the proposed metrics have

to be validated according to accurate, clear and well defined validation methods.

Therefore, we are interested in experimenting some metrics and antipatterns in order

to validate them. Our research could be seen as a work with four axes:

A. Adjusting classical metrics: We have adjusted some classical metrics to be used in

estimating the cost of inheritance testing. We focused on two main testing criteria,

1. Introduction 21

i.e. methods coverage and branch coverage criteria. These adjusted metrics are

dedicated to be used at the unit testing level or the integration testing level.

B. Validating adjusted metrics: We focused in this axis on validating the adjusted

metrics with respect to related testing strategies. In order to validate them if

they could be used to estimate the cost of testing. That was done by analyzing a

set of Java applications and calculating the adjusted metrics, and then we studied

empirically these metrics values to check if these metrics could be used as predictive

metrics with respect to specific criteria.

C. Testability antipatterns analysis: In this part of our study, we concentrated on de-

tecting some antipatterns. We are interested in discovering at which points they are

introduced during the development process. Therefore, we studied a set of appli-

cation classes at different levels of abstraction (that we extracted from application

classes) and at source code level.

D. Developing “Metrics Calculator” tool: We developed a simple tool that can analyze

Java applications in order to calculate the adjusted metrics and some other classical

ones.

This work addresses two testing phases, i.e. unit testing and integration testing. More

precisely, for the unit testing we focused on estimating the cost of inheritance testing

which is often estimated by the depth of inheritance tree DIT . Therefore, we looked

to know whether DIT could be used to predict different testing costs. We chose costs

corresponding to classical testing approaches used in the industry. For integration testing

phase, we focused on an analysis of some testability antipatterns. The approaches that

we followed in this work to validate metrics or to analyze antipatterns are general. They

could be applied to other metrics or antipatterns, and could be validated with respect to

other testing strategies.

Thesis Outlines

The rest of this thesis is organized as following: Chapter 2 defines the software testabil-

ity concept, and presents the different factors that have an influence on the testability.

Chapter 3 summarizes a large set of testability metrics which were proposed in the lit-

erature and presents an overview about the different methodologies of metrics validation

process. Chapter 4 introduces our adaptation for the some metrics, and different hy-

potheses associated with the adapted metrics. Chapter 5 and 6 present the analysis of

22

depth of inheritance tree as a predictive and effective cost of testing with respect to the

made hypotheses. Chapter 7 presents the analysis of detecting the testability antipat-

terns during at different levels of software development. Chapter 8 an analysis to predict

the cost JUnit by measuring cyclomatic complexity of the class. Appendix A summarizes

basic concepts in statistics that we used during this study. Appendix B is dedicated to

“Metrics Calculator” tool that we developed to calculate our adapted metrics and some

other ones.

Chapter 2

Software Testability Notion

2.1 Introduction

Since software requires a high reliability level, and since the complexity of the software

increases, then more time and money will be needed for the software testing in order to

detect and identify all faults. Software testability is a system characteristic that could

achieve a double goal. On one hand, it aims at reducing the cost of software testing. And

on another hand, it helps to build more reliable software. The testability is an abstract

concept that deals with the costs of testing. By improving the testability, it is expected

that some part of these costs is being reduced, though not necessarily each individual

cost. In other words, one testability improvement could affects at least two types of

testing costs, such as time, money, number of test cases, etc.

The testability analysis is more related to the testing phase in the software devel-

opment life-cycle, but considering this concept early in the development cycle could im-

prove the testing process significantly. Adding the testability analysis to the development

phases will increase the design time and costs, but it will reduce the costs of validation

and maintenance.

In this chapter we discuss in more details the definitions of testability for software

and the main factors that influence the testability.

2.2 Testability from Hardware to Software

Testability was first introduced for hardware systems. It was defined as a design charac-

teristic that influences various costs associated with testing. A good testability level for

23

24 2.2 Testability from Hardware to Software

the hardware is necessary, because each produced piece (hardware component) must be

tested in order to detect the faults that are introduced during the realization.

Several factors have an influence on the hardware testability. Controllability, ob-

servability and predictability are the three most important factors that determine the

difficulty of deriving a test for a circuit. Controllability is the ability to establish a spe-

cific signal value at each node in a circuit by setting on the circuit’s input. Observability

is the ability to determine the signal value at any node in a circuit by controlling the

circuit’s inputs and observing its outputs. Predictability is the ability to obtain known

output values in response to given input [4].

Figure 2.1: OR gate - Controllability and observability

For example, the OR gate (Figure 2.1) is controllable if one can set the input value of

A and B. And it is observable, if one can observe the output value C.

The degree of a circuit’s controllability and observability is often measured with re-

spect to whether tests are generated randomly or deterministically using some algo-

rithms [4]. Thus, testability is a relative measure of the effort or cost of testing a circuit.

In general, it is based on the assumption that only primary inputs and primary outputs

can be directly controlled and observed. Testability reflects the effort required to perform

the main test operations of controlling internal signals from primary inputs and observing

internal signal at primary outputs.

One approach to build a testable system is “Design for testability”. The Design For

Testability (DFT) techniques are design efforts specifically employed to ensure that a

device is testable. In, general, DFT is used to reduce testing costs, enhance the quality

(fault coverage) of tests, and hence reduce defect levels. It can also affect test length,

tester memory, and test application time.

This notion has been applied to software for the same purpose in hardware, but

this time for reducing the test generation costs and enhancing the quality in software

programs [21]. Several testability definitions, for software, were proposed in the literature,

in the following we state some of these definitions.

2. Software Testability Notion 25

2.3 Software Testability Definitions

The software testability is considered as a system characteristic which estimates the effort

of testing, or detecting the parts of software which are difficult to be tested. Several

software testability definitions have been introduced. All of them are relevant to the

cost of testing. Some definitions for instance consider the testability as a measure of the

ability to select inputs that satisfy certain structural testing criteria, e.g. the ability to

satisfy various code-based testing coverage’s [123]. For example, if the goal is to select a

set of inputs that execute every statement in the code at least once, and it is virtually

impossible to find a set to do so, then the testability would be lower than if it was easy

to create this set [119].

In the following we give some software testability definitions that were introduced in

the literature:

• Binder defines testability as “Other things being equal, a more testable system will

reduce the time and cost needed to meet reliability goals.” A second definition by

Binder is “A program’s testability is a prediction of its ability to hide faults when

the program is black-box tested with inputs selected randomly from a particular

input distribution” [21].

• The ISO definition of testability is “Attributes of software that bear on the effort

needed to validate the software product” [51].

• Bennitts defines “Testability is the ability to generate, evaluate, and apply tests

to satisfy a number of predefined test objectives (for example fault coverage, fault

isolation, runtime, time-to-profit) subject to the two fundamental constraints of

time and money.” [18].

• Voas has defined software testability as “The probability that a piece of software

will fail on its next execution during testing (with a particular assumed input dis-

tribution) if the software includes a fault” [118].

• The IEEE standard glossary of software engineering terminology defined testability

as “the degree to which a system or component facilitates the establishment of test

criteria and the performance of tests to determine whether those criteria have been

met” [3].

26 2.4 Binder’s Testability Factors

The ISO and Binder give a general definition of testability, while Voas focuses on the

notion of probability of failing. The second definition by Binder focuses on the ability of

hiding faults. On the other hand, the IEEE and Bennitts define the testability with respect

to specific criteria. As we said previously, all these definitions look at the testability as a

system feature relevant to the cost of testing. This characteristic is influenced by various

factors, which we present in the following sections.

2.4 Binder’s Testability Factors

Software testability for Binder is more than a characteristic. He considers it as a process

which consists of several parts [21]. He identifies six primary testability factors, which

could make test easier.

1. Representation

2. Implementation

3. Built-in Test

4. Test Suite

5. Test Tools

6. Test Process Capability

Figure 2.2 represents these six elements.

Figure 2.2: Testability Factors

Representation System representation starts from natural language statements about

desired capabilities to detailed formal specifications. Various approaches could be used

for representing object oriented systems, such as OOA and OOD. The system representation

is considered as a factor of testability because it provides an explicit description of the

2. Software Testability Notion 27

system behavior which aims at determining if a test has passed or not.

Implementation Respecting general principles of object oriented design or even of struc-

tural programming, could decrease various obstacles of testing. These principles such as

complexity, inheritance and other, could be measured by some metrics.

Built-in Test - (BIT) provides explicit separation of test and application functionality.

The built-in test aims at achieving an effective level of controllability and observability.

For instance, BIT capabilities could include set/reset methods, reporters to observe the

object state, and assertions to monitor some keys, such as pre/post conditions.

Test Suite is a collection of test cases and plans to use them. A test suite represents an

asset acquired at considerable cost and should be treated accordingly.

Test Tools are needed to automate the test. Because without automation less testing

will be done or greater test cost will be required to get a specific reliable goal. Test tools

should have basic elements, such as runtime trace, static analyzer, script editor, code-base

generator, input data generator, initializing the system, executing the test...etc.

Test Process Capability is the software process in which the testing is conducted. It

focuses on the organizational structure, staff and resources supporting the testing process.

Moreover, it implies different factors that can significantly improve the testing such as

training, motivation, experience, etc.

2.5 Common Testability Factors

In the previous section we showed the factors that influence the software testability as

they were proposed by Binder. In the following we present common factors that were

widely considered as main keys of software testability. The factors presented here are

more related to Binder’s first and second factors, i.e. representation and implementation.

Factors of Hardware Origin

Some testability factors have been adapted from hardware origin, such as Controllability,

Observability, Information loss and Diagnosability. The Controllability and Observability

28 2.5 Common Testability Factors

have been considered as main factors that affect the testability.

Software controllability has been defined as “How easy it is to provide a program

with the needed inputs, in terms of values, operations, and behaviors” [8]. According

to Freedman, controllability is the ease of producing a specified output from a specified

input [53]. While controllability, as defined by Pettichord, is the ability to apply inputs

to software under test or place it in a specified state [96].

Software observability has been defined as “How easy it is to observe the behavior

of a program in terms of its outputs, effects on the environment, and other hardware

and software components” [8]. According to Freedman, observability refers to the ease of

determining if specified inputs affect the outputs [53].

So a part of a system is controllable and observable if we can activate this part and

observe its output respectively. Activating a part of system means it can be put in

certain state, or under certain condition. The more one could observe, the more the part

of system is observable Figure 2.3.

Figure 2.3: Sys-B is more observable than Sys-A

Example: The following class SumExample has an integer attribute b. The value of

b is produced randomly in the constructor of the class. This way in generating the value

of b, makes it somehow uncontrollable Listing. 2.1.

Listing 2.1: Uncontrollable Attribute Example

class SumExample

{
int a , b , c ;

public SumExample ()

{
Random r = new Random () ;

b = r . next Int (1 0) ;

}

void setA (int x)

{

2. Software Testability Notion 29

a = x ;

}

void sum()

{
c = a + b ;

}
}

A related factor to the observability has been introduced by Voas. It is Information

Loss. The Information Loss is defined as a phenomenon that occurs during program ex-

ecution that increases the likelihood that a fault will remain undetected [117]. It occurs

when internal information computed by the program during execution is not communi-

cated in the program’s output. The Information loss could be explicit or implicit. It is

explicit when the variables are not validated either during execution (by a self-test) or at

execution termination as output. Therefore the inaccessibility to internal variable (local

variable) leads to explicit information loss. A very simple example is a class with one

(more) attribute(s), but it does not have any get methods that allows to monitor the

value of this attribute(s).

While implicit loss information happens if two or more different input parameters

produce same output. Let f(t) be a function with one input parameter. Then if for two

inputs x and y, while x 6= y , we get same output z = f(x) = (y), we say the function f

causes implicit information loss. e.g. f(t) = (t)2.

The forth factor of hardware origin is diagnosis. It is defined as the minimal difference

between the system and its model. The easiness of diagnostics can be seen as a criterion

of testability [72]. There are some influencing factors between testability and diagnostics,

such as fuzziness, state characterization, and abstraction. Each of these factors could

have an influence on the testability [72].

Different metrics relevant to these four factors were proposed in the literature, next

chapter shows a variety of such metrics.

Integration Level Factors

In the previous section, we showed some factors that came from hardware origin then

they were adapted to be used with software systems. The factors presented here have an

influence on the integration testing. Dependency, Coupling and Cohesion are three factors

that address problems related to integration testing. The dependency between classes is

30 2.5 Common Testability Factors

one of the elements that could make test difficult. For example, in unit testing we test

every class in isolation from other classes. Therefore server1 classes should be stubbed,

which could be difficult in some cases, especially if it manifests in many different code

locations [69]. The dependency is not necessarily between classes, it could be between

class and a system resource; e.g. data file, images, etc. Also this kind of dependency

could cause a difficulty in testing when these resources are unavailable or not suitable for

testing and no other resources could be used instead.

A specific type of the dependency is cycling. A cycle is a loop in a directed graph,

e.g. a module A uses module B, the module B uses C, and C uses A, see Figure 2.4.

The more modules are in a cycle, the more difficult to test these modules [70], because a

tester cannot test any of these modules without the presence of all other parts. For that

a cycle must be tested as a group or decoupled with cycle-breaking stub [23].

Figure 2.4: Cycle

Another common factor is Coupling. This factor provides summary information about

the design and the structure of the software. It has a double effect on the testability: com-

plexity and scope effects [21]. The coupling between two units measures the dependency

relations between two units by reflecting the interconnections between units. Faults in

one unit may affect the coupled unit [113]. Therefore, more interconnections are between

units, more likelihood that a fault in one unit may affect others. Indeed, faults are found

during integration testing exactly where coupling typically occurs [66]. Different levels

of coupling have been ordered by Jones [94]. These levels have influence on a variety of

software quality factors. And they are also used to estimate the complexity of software

system design, in addition to number of faults [116].

The third common factor is Cohesion. It corresponds to the degree to which elements

of a class belong together [41]. In other words, it refers to the internal consistency within

parts of the design. Cohesion is considered as one of most important factors of quality

1A server or supplier class is a class that offers some services to other classes.

2. Software Testability Notion 31

[86], and is considered to affect the complexity of testing [21]. Several types of cohesion

were defined by Constantine in [113], such as Coincidental, Logical, Temporal, etc. These

cohesion types are based on how much a class actions are related to each other?, are the

actions perform always a certain sequence of execution?, are the actions related by time?,

etc.

Binder has considered the lack of cohesion will lead to test more states in order to

prove the absence of side effects among methods [21]. Therefore cohesion is considered

as a factor of testability, and good testing results in better quality software [68, 8]

Object-Oriented Relevant Factors

Other factors that influence the testability are relevant to object-oriented paradigm, such

as Inheritance and Polymorphism. The Inheritance is one of the main characteristic

in object oriented programming. Inheritance is the ability of using features (data and

functionality) defined already in another module (class) as if they were defined in the

inheritor module (class). The inheritor module is called child, while the module that

offers this ability is called parent. There are two types of inheritance:

1. “Single Inheritance” means a child can only have one direct parent.

2. “Multiple Inheritance” means a child could have more than one parent.

Inheritance is considered as a critical issue in object oriented testing. One reason

behind this consideration is that an inheritance error may lead to subtle bugs, e.g. bugs

due to overridden functionality [90], subclass bugs or side effects can cause failure in

superclass methods. If a superclass is changed, all subclasses need to be tested...etc.

Another important factor related to object oriented programming is Polymorphism.

The polymorphism allows instance variables to be bound to references of different types

according to the structure of the inheritance hierarchy. Polymorphism is considered as a

factor that makes testing process difficult. The compositional relationships of inheritance

and aggregation, combined with the power of polymorphism, can make it harder to detect

faults in the way components are integrated [7, 8]. Using polymorphism could also make

code harder to understand and therefore fault-prone [100]. For instance the difficulty of

understanding the different interactions between a message sender and a receiver including

all possible bindings, another example is the problem caused by the difference between

the pre/postconditions of an overriding method and the overridden one. In general, most

of the problems that could happen due to inheritance could happen with polymorphism

[22, 23, 40, 95].

32 2.6 Conclusion

2.6 Conclusion

In this chapter, we have presented several factors that have an influence on testability.

Some factors from hardware origin, other are relevant to integration testing, etc. Each of

these factors obligates us to take it into account during the process of testing software.

Therefore we could imagine that testability is more than just a simple characteristic.

It could be seen as a set of characteristics each of them makes a part of puzzle game.

To complete this game one has to be sure that he has all the pieces (controllability,

observability, no-information loss, etc). If any piece is missing, that means the software

is not testable completely.

The question now can we estimate the testability of software? If yes, how could we

measure it? Are all the factors, which are mentioned here, are really good indicators of

testability? How to evaluate how much they are relevant to testability? In the following

chapter, we will navigate through a large set of metrics of testability, which were proposed

to evaluate these different factors.

Chapter 3

Testability Metrics and Metrics

Validation

3.1 Introduction

In chapter 2, we have introduced different factors that could have some influences on

testability. Each of these factors has its own characteristic that obligates us to take

it into account during testability analysis process. Taking these factors in developer’s

consideration will make testing process easier, cheaper, and less time consuming. An

important question is, how could we estimate each one of these factors? And how could

we estimate the total testability of a system? Several approaches have been proposed

to evaluate the testability of a system. Lots of metrics have been proposed to estimate

testability.

In this chapter, we introduce a large set of metrics which have been proposed as

testability indicator. Most of them can be evaluated only at the source code level. Even

it is a bit late in the development cycle, evaluating testability at the source code level

allows to identify low-testable parts of an application and to organize the testing work.

Despite of the availability of such set of metrics but not all of them have been validated.

Later in this chapter, we will discuss two main approaches that were used to validate some

metrics.

Testability metrics evaluate the scope and/or the complexity of testing [21]. The

scope evaluates how many test cases have to be produced. The complexity indicates

how much it is difficult to produce a test. For some cases, lots of test cases may be

required, but it could be easy to identify them; or few tests may be required but it could

be very difficult to design them.

33

34 3.2 Scope-Oriented Testability Metrics

Here we focus on source-code based metrics for object-oriented systems. We have

collected more than 40 metrics that were proposed in the literature. They were declared

to be testability relevant. The reason why there are so many metrics is that there are

many strategies for test data selection/generation. Test data selection is based on the

code or on the specification, at different phases (unit, integration and system testing), and

with different purposes (among which achieving different coverage criteria). Moreover,

there are different ways to understand what the cost of testing is. For instance, it can be

the number of test cases, the size of test cases, the number of stubs, or the time spent to

produce the tests.

Surprisingly, few metrics were really usable for testability evaluation. Some of them

are hardly computable. Few are included in case tools. And few studies did formal or

experimental validation to check if they are really relevant to software testability.

Table 3.1 associates some testability metrics that we present here, with the testability

factors that we presented in the Chapter 2. Clearly, most of metrics are related to the

complexity. Henderson identified the complexity as a factor affects the understandability,

modifiability and testability [60]. The last three columns on the right of the Table 3.1

show at which level one could use these metrics to estimate the testability. Even one

should notice that some metrics could be used at more than level, for instance LOC

could be used to estimate to the number of lines per method, per class, all classes in

packages, or the whole system. Additionally, certain metrics could be used to estimate

the number of stubs that are needed to test method or class.

In the following, we first present scope-oriented metrics (section 3.2). Sections 3.3,

3.4 and 3.5 focus on complexity metrics. Section 3.4 is dedicated to observability and

controllability related metrics, and metrics presented in section 3.5 are related to the

probability to reveal the next error. Section 3.7 is dedicated to discuss some methodolo-

gies for validation the testability metrics.

3.2 Scope-Oriented Testability Metrics

3.2.1 Methods

Methods may be considered separately during unit-testing. Several sets of criteria defined

for procedural programs can then be used. They are generally defined with respect to the

control-flow graph or the data-flow graphs [89, 23, 55, 91, 52]. Classical control-flow graph

3. Testability Metrics and Metrics Validation 35

Metric \Factor C
o
n
tr

o
ll
a
b
il
it
y

O
b
se

rv
a
b
il
it
y

In
fo

rm
a
ti

o
n

L
o
ss

D
e
p
e
n
d
e
n
c
y

C
o
u
p
li
n
g

C
o
h
e
si

o
n

In
h
e
ri

ta
n
c
e

P
o
ly

m
o
rp

h
is

m

C
o
m

p
le

x
it
y

S
c
o
p
e

E
st

im
a
ti

n
g

S
tu

b
s

U
n
it

T
e
st

in
g

In
te

g
ra

ti
o
n

T
e
st

in
g

S
y
st

e
m

T
e
st

in
g

LOC X X X X

Halstead X X X X

CC X X X

DRR X X X

Fan-in/Out X X X X X X

PIE/EPIE X X

Domain Testability X X X X

WMC X X X

NOC X X X X

DIT X X X X

NOM X X

CBO X X X X X X X

RFC X X X X

LCOM X X

RCO X X X

SCCr X X

SCCp X X

STA X X X X

VC X X X

MIF X X

PF X X X X

EF X X

Table 3.1: Testability Metrics and Factors

36 3.2 Scope-Oriented Testability Metrics

criteria are statement, branch or decision, condition, MC/DC (Modified Condition/De-

cision Coverage), path. For data-flow graph, classical criteria are all-paths, all-du-paths,

all-uses, all-c-uses, all-defs-uses, all-p-uses.

In [11] and [130], two families of metrics have been proposed to evaluate the number

of elements which has to be covered with respect to the control-flow and data-flow graph

testing strategies : respectively all-paths, visit-each-loop-paths, simple paths, structured,

branches, statements, and p-uses, defs, uses, d-u-paths and dominating paths. By defini-

tion, those metrics predict the scope of the associated testing strategies, i.e. the minimum

number of required tests to reach the coverage criteria.

Similarly, the Cyclomatic Complexity (CC), named also McCabe’s complexity, [80,

81, 127] is equal to the number of decision statements (or individual conditions) plus

one. Mathematical analysis has shown that CC gives the recommended number of tests

needed to test every decision point in a program [127]. Thus, it predicts the scope of the

branch coverage testing strategy.

In [12], two flow graph metrics were defined axiomatically: Number of Trails metric

which represents the number of unique simple paths through a flowgraph (path with no

repeated nodes), and Mask [k=2] metric, which stands for “MAximal Set of K-walks”,

where a k-walk is a walk through a flowgraph that visits no node of the flowgraph more

than k times. Mask reflects a sequence of increasingly exhaustive loop-testing strategies.

These two metrics measure the structural complexity of the code. One of the main benefits

of defining these testability metrics axiomatically is that flowgraphs can be measured

easily and efficiently with tools such as QUALMS [12].

Number of lines of code (LOC)1 is one of the simplest metrics [5]. LOC has no stan-

dard definition. One definition of a Line of Code is given in [39]: “A Line of code is

any line of program text that is not a comment or blank line, regardless of the number

of statements or fragments of statements on the line. This is specifically includes all

lines containing program headers, declaration, and executable and non-executable state-

ments”. LOC is considered an ambiguous metric, because there are many ways in which

this metric could be calculated.

For example, consider the following code:

for (i =0; i <10; ++i) wr i t e (” h e l l o ”) ; /∗ j u s t p r i n t ! ! ∗/

The ambiguity appears here, what is the value of LOC in the previous code? Is it 1,

2 or 3 lines? Due to this ambiguity of calculation, LOC was not considered as reliable

1There are several acronyms for LOC such as SLOC, KLOC and KSLOC. The letter K stands

for Kilo indicates that the scale is in thousands. The letter S stands for Source.

3. Testability Metrics and Metrics Validation 37

metric. However, since the bigger the program is, the more errors will be, so it could be

used to estimate the cost of testing.

3.2.2 Classes

Since it is often difficult to test the class methods independently, they are considered

as a minor granularity for the unit testing. Therefore, we focus in this section on the

testability metrics that are relevant to the classes. The class is an essential concept in

object-oriented programming. It groups attributes of an object and the operations on

these attributes. It can also be considered during unit-testing.

Weighted Methods per Class (WMC) metric belongs to the Chidamber and Kemerer

object-oriented metrics suite [36]. For a class C with methods M1, M2...Mn, let c1, c2, .., cn

be the complexity of these methods.

WMC =
i=n
∑

i=1

ci

Complexity was deliberately not defined in the original paper in order to allow a gen-

eral application of this metric. If all method complexities are considered to be unity,

then WMC1 = n represents the number of methods. WMC1 can be used to evaluate

the number of test cases to achieve the method coverage [21]. This criterion is one of

the simplest object-oriented code-coverage coverage criteria (corresponding to function

coverage). It requires each method to be executed at least once. A similar metric to

WMC1 is Number Of Methods (NOM) representing explicitly the number of methods of

a class [21].

When cyclomatic complexity is used as complexity measure to compute WMC (WMCCC),

it evaluates the number of the test cases required to test all the methods of the class to

reach the decision coverage criteria. Moreover, the more methods in a class, the greater

potential impact on children, since children inherit all (public/protected) methods defined

in the class.

3.2.3 Stubs

Stubs may be required during unit or integration testing, they are also useful to achieve

more unitary test. A stub is an extra routine that is provided by the tester, to imitate

another part of the system. Different metrics can be used to estimate the number of re-

quired stubs to carry out a unit testing. In the following we present some of these metrics:

38 3.2 Scope-Oriented Testability Metrics

The Fan Out (FOUT) of method A is the number of local flows from method A plus

the number of data structures which A updates [61]. In other words FOUT estimates the

number of methods to be stubbed, to carry out a unit testing of method A

Binder proposes to use Response For Class (RFC) metric to evaluate how many stubs

has to be produced for unit testing at class level [21]. RFC is one of the Chidamber and

Kemerer metrics suite [36]. It is defined as the count of the methods defined in a class, in

addition to the methods that are called directly by a method of this class. The number

of methods to be stubbed corresponds to the number of calls of methods defined outside

the class/subsystem under test. Since RFC counts also the number of methods defined

within the class, RFC only provides an approximation of the number of methods to be

stubbed, to carry out a unit testing of a class.

RFC = |RS| where RS = {M} ∪∀i {Ri}

where {Ri} is the set of methods called by method i, and {M} is a set of all methods in

the class.

A class is coupled to another class if one of them acts on the other, i.e. a method of

a class uses methods or instance variables of the other. There are several definitions for

the coupling between objects. One of them was proposed by Chidamber and Kemerer in

[36]: Coupling Between Objects (CBO) of a class is the number of other classes to which

it is coupled. CBO can be used to evaluate the number of classes to be stubbed, in order

to carry out a unit testing of a class [21].

Eight different levels of coupling were ordered by Jones [94]. These levels influence the dif-

ferent quality factors of a unit such as reusability, maintainability, understandability...etc.

An extension to these levels was made to become 12 levels [67] (see also Chapter 2). These

levels evaluate the software system designs complexity, and a relationship between these

levels and the number of faults [116].

Other coupling metrics were also proposed to measure the coupling, such as Coupling

Factor (COF) which is based on estimating the number of relations between a client class

and supplier(server) class [47, 42]. The larger number of relations between classes, the

more complexity will be. In addition to that the larger number of relations will limit the

understandability. COF is given by the following formula:

COF =

∑TC

i=1[
∑TC

j=1 is client(Ci, Cj)]

TC2 − TC

3. Testability Metrics and Metrics Validation 39

where TC represents the total number of classes in the system under study, and is client

refers to the relation between two classes Ci, Cj, and is defined as following:

is client(Ci, Cj) =

{

1 iff (Ci⇒Cj)∧(Ci 6=Cj)

0 otherwise

}

where Ci ⇒ Cj means the class Ci contains at least one reference to the class Cj.

Other coupling metrics focus on the relationship between classes in different packages,

such as Afferent/Efferent Coupling (Ca & Ce) [99]. The Ca metric is defined as the

number of classes from other packages that depend on the classes within a package, while

the Ce metric is defined as the number of classes from other packages that the classes

within the package depend upon.

Certain coupling metrics were proposed to measure the complexity of message passing

among classes, such as Message Passing Coupling (MPC) [26]. MPC counts only calls

of methods of other classes, and do not consider the calls for the methods defined inside

the class itself.

Class Fan Out (Class FOUT) represents the number of classes on which a given class

depends [105]. This metric could be used to estimate the number of classes to be stubbed.

When some strategies are used to schedule intelligently the test of the different classes

in order to decrease the number of subs required to be produced, CBO or Class FOUT

may be not relevant. In [74], authors show that 400 stubs would be required to test 122

classes individually (without any strategy) against 8 when an optimal test order is used.

In [70], S. Jungmayr proposes a testability metric in the context of static dependencies

within object-oriented systems. A dependency of a component A on a component B

exists if A requires B to compile or to function correctly. If A inherits from B or if it uses

method(s) or attribute(s) of B then A depends on B. Dependency relation is transitive.

A dependency graph may contain cycles. Such cycles can be broken by removing some

dependencies. The set of removed dependencies are called Feedback Dependency Set.

Number of Stubs needed to Break Cycles (NSBC) evaluates the number of stubs re-

quired to be built with an integration testing strategy.

NSBC = |CFb|
where C is the set of all components, CFb a feedback component set (CFb ⊂ D), and D is

the set of all dependencies. Finding a smallest feedback component set is NP-complete.

To identify a small feedback component set S. Jungmayr proposed an algorithm based

on both Tarjan and greedy algorithms [70].

40 3.3 General Complexity Metrics

3.2.4 Inheritance

Inheritance is one of the main features of object-oriented programming paradigm. Since

it has been demonstrated that inheritance may be abused in many ways [9], one may

expect that several testing criteria would have been dedicated to inheritance testing.

Surprisingly, few testing methods/criteria deal with inheritance [59, 95, 34, 50, 37]. Most

of them restrict testing to validate changes in the inherited features (methods and at-

tributes).

In [23], all inherited methods should be retested. In [59, 95, 34, 50], it is suggested to

re-test only (modified) inherited features (attributes or methods). Since, the number of

inherited methods is considered to be generally proportional to the Depth of Inheritance

Tree (DIT) [36, 21], DIT is considered as a way to estimate the testing effort. But it

does not provide an estimation of how many test cases have to be produced [108]. A class

with a small inheritance tree may have more inherited methods than a class with a large

inheritance tree.

When a class inherits the same property of an ancestor via multiple paths in the

hierarchy, there is repeated inheritance. Repeated inheritance is not allowed in several

object-oriented languages, such as Java, C#, and VB .Net. Overuse of repeated inher-

itance increases software error [37]. That’s why C.-M. Chung et al. propose a testing

method to search for errors caused by the repeated inheritance. Each class concerned by

repeated inheritance has to be tested in the context of its inheritance sub-trees.

Authors introduce the notion of URI (Unit Repeated Inheritance) as a specific in-

heritance sub-graph, where the number of nodes equals the number of edges (G =

(V, E) where |V | = |E|). Repeated inheritance tree can be decomposed as a set of

basic URIs. For an inheritance tree, let t be the number of terminal classes (classes

with no out-edges) and Ui be the set of URI related to the terminal class i. The

complexity of the repeated inheritance is defined as | ∪t
i=1 Ui|. This complexity corre-

sponds to the number of repeated inheritance sub-tree to be examined. Here again, it

does not predict how many test cases have to be produced for each of them.

3.3 General Complexity Metrics

In the previous section, we discussed scope metrics which could be used to estimate the

number of test cases. In this section, we present complexity metrics which could be used

3. Testability Metrics and Metrics Validation 41

to estimate the difficulty of producing a test. As we have seen previously, the Cyclomatic

Complexity (CC) gives the recommended number of tests needed to test every decision

point in a program [127]. Thus, it predicts the scope of the branch coverage testing

strategy. It is also considered as an indication of the complexity of testing. Indeed, a

method with a CC greater than 50 is considered to be untestable 1.

By extension, WMCCC could also be considered as an indication how difficult it is to

test the class. However, it could be difficult to interpret: WMCCC indicates that a

class A with 60 very simple methods (ci = 1) will require more testing than a class B

with one method having a complexity of 50. When analyzing CC for each method, B

will be more difficult to test (since a method with a complexity of 50 is supposed to

be untestable) and 60 simple methods will require 60 simple tests. The authors in [85]

proposes to use WMCCC with three other metrics: Mean Method Complexity (MMC),

Standard Deviation Method Complexity (SDMC) and Number of Trivial Methods (NTM).

Using the 4 metrics as opposed to WMCCC alone allows distinguishing between certain

types of classes and therefore interprets the results accordingly.

Another complexity metrics were proposed by Halstead [84]. Halstead’s metrics are

based on the number of operators and operands per module. They evaluate the length,

difficulty, effort and required time of programming a program.

3.3.1 Cohesion

Cohesion is an extension to the definition of similarity, which was proposed by Bunge

[36]. The similarity σ() of two things is the intersection of the sets of properties of the

two things.

σ(X, Y) = P (X) ∩ P (Y)

Cohesion has been considered to be a factor influence the cost of testing [36]. Having

lack of cohesion in a class C means that this class has many functionalities which are not

related to each other, and as a result the class C will behave in less predictable way than

a class of a fewer functionalities.

Lack of Cohesion of a Method (LCOM) is the 6th measure of the Chidamber and Ke-

merer metrics suite [36]. LCOM measures the degree of similarity between the class’s

methods. The more methods share the same attributes, the larger is cohesion. LCOM

1http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html

http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html

42 3.3 General Complexity Metrics

metric has been redefined several times [25]. We give here the definition1 of LCOM4,

given by Hitz and Montazer. Let Gx = (V, E) be a graph representing calls between class

methods. V is the set of vertices, which represents the method names. E is the set of

edges. E = {(m, n) ∈ V × V |∃i ∈ Ix : (m accesses i) ∧(n accesses i) ∧ (m calls n) ∧ (n

calls m)} where Ix is the set of the attributes. LCOM4 = |E|
LCOM has been proposed as a testability metric by Binder in [21], because high LCOM

means more states that have to be tested to prove the absence of side effect among the

methods.

Tight Class Cohesion (TCC) is the percentage of pairs of public methods of the class

which are directly connected [20].

TCC = NDC/NP where NP = N ∗ (N − 1)/2

where N the number of methods, NP represents the number of possible connections and

NDC number of indirect connections.

Loose Class Cohesion (LCC) considers the pairs connected directly or indirectly [20].

LCC = (NDC + NIC)/NP

where NIC represents the number of indirect connections.

Information CoHesion (ICH) was proposed by Lee et al. [75]. It is based on the

information flow. It considers the cohesion of a method m implemented in a class c as

the number of the invocations to other non-inherited methods of class c, weighted by the

number of the parameters of the invoked methods. Cohesion between calling and called

methods is stronger if the latter has more parameters more information is passed.

Most Cohesive Component (MCC) is introduced in [106] as the most cohesive form if

each class’s method has interaction with all of instance variables (special methods such

as set and get are excluded).

Ratio of Cohesive Interactions (RCI) is another cohesion metric that was defined by

Briand et al. [27]. It is based on a concept called “Data declaration interaction DD −
1LCOM1, LCOM2, etc definitions differ from each other in that some definitions consider direct/indi-

rect access to an attribute, include/exclude set and get methods, include/exclude inherited features, etc.

3. Testability Metrics and Metrics Validation 43

interaction”. A DD−interaction exists between two attributes, when any change/use of

one of these two attributes will require a change/use of the another attribute. When the

interaction happens between an attribute of the class and a local variable of a method,

this interaction is called DM − interaction. The RCI for a class is given by:

RCI(c) =
|CI(c)|
Max(c)

where CI represents all interactions DD − interactions and DM − interactions, and

Max(c) is the maximal set of all possible cohesive interactions of the software part, that

could be obtained by connecting every data declaration to every other data declaration

and method with which it could interact.

3.3.2 Inheritance

Inheritance influences the scope of testing as previously indicated. Binder indicates that it

also influences the complexity of testing. Like DIT, several other measures were proposed

for inheritance tree complexity evaluation. Class Fan-In (FIN) is the number of parent

classes of a subclass. It is applied only in multiple inheritance languages. A high Class

FIN value increases the possibility of incorrect bindings [21].

Number Of Children (NOC) is the number of classes that inherit directly from a class

[36]. It is the number of immediate subclasses subordinated to a class in the class hi-

erarchy. It indicates how many derived classes will be affected by some modification in

the parent class. So if a modification in the parent class affects the derived classes, it is

required to retest the methods in the children. NOC is considered as a scope metric and

a complexity metric. Because the higher NOC is, the more tests should be produced,

and the greater the number of children, the greater likelihood of improper abstraction of

the parent class [36].

In [42], Abreu et al. propose a set of measures called MOOD set, for object-oriented de-

sign quality evaluation. This set includes Method Inheritance Factor (MIF) and Attribute

Inheritance Factor (AIF). They compute the number of the inherited methods/attributes

(Mi) in all classes divided by the number of available (inherited & defined) methods/at-

tributes (Ma) for all classes. Those factors are defined to evaluate the inheritance com-

plexity of the whole system. They could be adapted to evaluate MIF and the AIF for

44 3.3 General Complexity Metrics

each class (instead of for all classes together).

MIF =

∑TC

j=1 Mi(Cj)
∑TC

j=1 Ma(Cj)

where TC is the total number of classes in the system under study. Having MIF = 0

indicates that either there are no inheritance, or all inherited methods are overridden.

3.3.3 Polymorphism

It is an important feature in object-oriented programming, defined as a characteristic of

being able to have multiple forms. To test software that uses polymorphism, one should

test all possible bindings of receiver classes and target methods at different call points. In

[77], Lin and Huang define a testability of polymorphism metric in inheritance hierarchy,

based on the descendant paths.

Also a polymorphism factor (PF or POF) was defined to represent the actual number of

possible different polymorphic situations [44]. A very high POF value (above 10%) will

reduce the benefits of polymorphism. The PF metric is given by:

PF =

∑TC

j=1 Mo(Cj)
∑TC

j=1[Mn(Cj) ∗ DC(Cj)]

where TC is the total number of classes in the system. Mo is the number of overriding

methods in the class Cj, and DC is the number of derived classes of the class Cj.

Other metrics have been proposed in [21] to measure the complexity as a result

of the polymorphism such as percent of Dynamic calls (DYN), percent of non-overloaded

calls (OVR), number of yo-yo paths visible to CUT (Bounce-C), and number of yo-yo pa-

ths in SUT (Bounce-S). Although these metrics have not been evaluated, they were pro-

posed as an indicator of the opportunities for faults.

3.3.4 Encapsulation

Encapsulation is defined as “a software development technique that consists of isolating

a system function or a set of data and operations on those data within a module and

providing precise specifications for the module” [3]. Using the encapsulation makes private

data inaccessible directly during testing. An Encapsulation Factor (EF) metric for a class

was proposed to measure the encapsulation level of a class. EF was defined as a function

of two parameters privacy and unity, where privacy is based on the private data members

(the data visibility), and unity is the cohesion between the attributes and methods [102].

3. Testability Metrics and Metrics Validation 45

3.4 Complexity Metrics Related to Observability and

Controllability

As said previously, testability was originally defined for hardware components. For hard-

ware component context, testability is often characterized through observability and con-

trollability. To test a component, one must be able to control its inputs and observe

its outputs. When a component is embedded, its controllability and observability can

be decreased. This partly depends on the architectural design. Observability and con-

trollability were adapted to software systems based on components. In the following we

present 4 metrics of testability based on the observability and controllability.

3.4.1 Domain Testability

Two Domain Testability metrics have been proposed by Freedman for non object-oriented

software and based on these concepts [53]. A procedure F is observable if distinct outputs

are generated from distinct inputs, and an expression procedure F is controllable if the

set of all evaluations of F covers all values in the range (co-domain of F). Observability

and controllability extensions are the input/output variables required to achieve the def-

initions of observability and controllability.

The observability (Ob) and the controllability (Ct) according to the domain size of the

added inputs/outputs are given as following:

Ob = log2(|ID1| ∗ ∗ |IDn|)

Ct = log2(|OD1| ∗ ∗ |ODm|)

The Ob and Ct represent the number of extra binary inputs required to convert a func-

tion/procedure into observable and controllable form respectively, where IDi is the do-

main of the ith added input and ODj is the domain of the jth added output.

A limit of these metrics is that the cardinality of certain types cannot be calculated (i.e.

vector, array, object, etc). Moreover, one important feature in object-oriented paradigm

is that objects preserve states. So attributes could be used as implicit input/output for

a method. Therefore, the notion of observability and controllability extensions have to

be adapted to object-oriented features.

46 3.4 Complexity Metrics Related to Observability and Controllability

3.4.2 Observability and Controllability of Components

In [126], five metrics were proposed as reusability measure of software component. Two of

them are related to observability and one to controllability. The Rate of Component Obse-

rvability (RCO) represents the percentage of readable attributes in all fields implemented

within the Façade class of a component. If the value of RCO is in [0.17, 0.42] (confidence

interval) the height of the observability is supposed to be appropriate [126]. It is a

variation of percent Public And Protected (PAP) defined in [21].

RCO(c) = Pr(c)/A(c) when(A(c) > 0), 0 otherwise

where Pr(c) is the number of readable properties in the component c, and A(c) is the

number of fields in c’s Façade class.

The Self-Completeness of Component’s Return value (SCCr) is the percentage of busi-

ness methods without any return value in all business methods implemented within a

component c. It can be extended to non business methods and allows detecting the

absence of return values, which decreases observability. However, observability is not

limited to the existence of return values.

SCCr(c) = Bv(c)/B(c) when(B(c) > 0), 1 otherwise

where Bv(c) is the number of business methods without return value in c, and B(c) the

number of all business methods in c.

The Self completeness of component’s parameter (SCCp) is the percentage of business

methods without any parameters in all business methods implemented within a compo-

nent c. SCCp can be extended to other application layers (i.e. non business methods).

Since it can be easier to test methods which have no input parameter (see Category

and Partition [92]), classes with high SCCp may be easier to test than some with low

SCCp. One limit of SCCp is that it is independent from the difficulty to test methods

with parameters. Let A be a class of several methods each of them has one parameter,

(SCCp(A) = 0). Let B be a class of two methods, one with several methods and the

other without any parameter, (SCCp(B) > 0). A is probably easier to test than B.

Moreover SCCp does not capture the situation where methods have implicit parameters

(attributes).

SCCp(c) = Bp(c)/B(c) when(B(c) > 0), 1 otherwise

where Bp is the number of business methods without parameters in c.

3. Testability Metrics and Metrics Validation 47

3.4.3 System Testability - STA

System Testability (STA) of an object-oriented software is defined as mathematical mean

of all the objects testability obtained in the system [125].

STA =
1

n

m
∑

j=1

OTAj

where OTAj is the object testability defined as the product of its test controllability and

observability. Controllability of an object is the ability to control all the basic control

structures within the object. Observability of an object is the ability to indicate the

values of any variables within the path(s) sensitised by the current test case.

STA is the average of its component testability values. This definition does not take into

account the architecture of the system, which is quite unusual. It is usually expected

that the architecture influences the observability and the controllability.

3.5 Testability Metrics Related to Error Likelihood

Testing aims at finding errors [89]. The easier it is to find errors, the easier testing is.

One definition of software testability given by A. Bertolino is “the probability that a test

of the program on an input drawn from a specified probability distribution of the input

is rejected, given a specified oracle and given that the program is faulty” [19]. In other

words, it is the probability to observe an error at the next execution if there is a fault in

the program. Several metrics are related to this definition are presented hereafter.

3.5.1 Propagation Infection Execution - PIE

Propagation Infection Execution (PIE) analysis is a well-known metric proposed for testa-

bility. It has been proposed by Voas [120, 122]. PIE measure aims at computing the

sensitivity of individual locations in a program.

The sensitivity of a program location refers to the minimum likelihood that a fault at

that location will produce incorrect output, under a specified input distribution. This

measure has its origin in the RELAY model used for error detection [87]. It relies on the

fact that for discovering a fault in a program, three conditions should be met. First the

statement that contains the fault should be executed. Secondly the state of the variable

should be infected. And at last, it should be propagated to an output.

48 3.5 Testability Metrics Related to Error Likelihood

Testability of a software statement T (s) = Re(s)∗Ri(s)∗Rp(s) where Re(s) is the prob-

ability of the statement execution, Ri(s) the probability of internal state infection and

Rp(s) the probability of error propagation.

PIE analysis determines the probability of each fault to be revealed, and requires so-

phisticated calculations. It does not cover object-oriented features such as encapsulation,

inheritance, polymorphism, etc.

In [79], authors propose an adaptation of PIE analysis to compute the testability of a

class t(C). Based on t(C), the testability of the class is derived with respect to different

factors: cohesion, communication and inheritance. The t(C) is defined as the sum of

the testability of the methods t(Mi), where the testability of a method is defined as the

product of the execution rate of a method E(M) and the propagation rate of a method

P (M).

EPIE an extension to PIE analysis was proposed to reduce the number of analyzed

locations [65]. This method depends on two elements: implicit information loss and

statement dependency. EPIE method could be divided into three steps:

1. Break a program into blocks : a block consists of sequential statements. Loops and

conditional statement should be dispatched into another block.

2. Divide block into groups : each block is transfered into dependency graphs. Each

node has to be checked to see whether it has implicit information loss. In case

of finding information loss in some node, it has to be analyzed alone, finally the

dependency graph is broken into sub-graphs (groups).

3. Mark target statements: In each group one statement will be marked. A marked

statement is a location that will be executed first in the group.

Since EPIE marks only one statement in each group, the number of analyzed loca-

tions is decreased. The reason of choosing the first statement in each group, is that in

propagation analysis, wrong data status generated by statement may be cancelled by the

following statements, in such situation the probability of propagation will be decreased.

3.5.2 Domain-Range Ratio - DRR and Visibility Component -

VC

In the previous section we focused on the metrics that are based on the sensitivity analysis.

Since it is complicated to calculate the sensitivity metrics, such as PIE, a simplification

3. Testability Metrics and Metrics Validation 49

of sensitivity analysis has been proposed such as Domain-Range Ratio (DRR). DRR of

a specification is the ratio between the cardinality of the domain to the cardinality of the

range. DRR depends only on the number of values in the domain and the range, not on

the relative probabilities that individual elements may appear in these sets [121].

For a program, when the input domain is larger than the output domain, information

about the internal states may not be communicated in the outputs. This information

may have included evidence that internal states were incorrect. This loss suggests a lower

testability.

For instance, let us consider two functions F (x) = x mod 2 and G(x) = 2 ∗ x. F has a

domain on all R and a range on {0,1}. For such function, it is difficult to predict if the

result is really the one that corresponds exactly to the given input: it has an unlimited

and infinite set of inputs produce the same result (output). G has a domain on all R,

and the range also on all R. Any two different inputs will produce two different outputs.

Detecting an error for G(x) is easier than detecting an error on F (x).

DRR evaluates how much an application is supposed to hide faults. It is a priori infor-

mation, which can be considered as a rough approximation of testability.

Three categories of DRR were introduced in [121]:

1. Variable Domain/Fixed Range - VDFR: this category includes function(s) which

its domain is an infinite set of values, and its range is over a finite set.

2. Variable Domain/Variable Range - VDVR: this category includes function(s) which

its domain and range are infinite set of values.

3. Fixed Domain/Fixed Range - FDFR: this category includes function(s) which its

domain and range are finite set of values.

Depending on these categories, the exhaustive testing is theoretically possible on the

FDFR category, therefore the functions belong to FDFR category are considered to be

the highest testability. Functions belong to V DV R are considered to be less testable than

the ones of FDFR category and more testable than the ones of V DFR category. V DFR

is the category with the lowest testability, because it represents the largest amount of

internal state collapse among these categories.

J. McGregor and S. Srinivas proposed an extension of DRR for object-oriented pro-

grams called Visibility Component (VC) [82]. VC is the cardinality of possible outputs

(including the exceptions) divided by the cardinality of possible inputs. Two types of

50 3.6 Conclusion

parameters for a method are considered: implicit and explicit ones. The Visibility Com-

ponent is given by the formula:

V C =
cardinality of possible outputs

cardinality of possible inputs

Like domain testability measures, cardinality of certain types cannot be calculated

(i.e. vector, array, object, etc) by DRR or VC. This is major drawback makes impossible

to use DRR or VC practically.

3.6 Conclusion

Up to this point, we showed a large set of metrics that were proposed in the literature

as testability metrics. Some tools also are available for certain metrics, see Table 3.2 and

Table 3.3. In front of such large set of metrics one could be asked, are these metrics

accurate? Do they really estimate the testability of method, class and system? Actually,

very few works have been done to validate some metrics, even there is no clear guide

about when or when not to use some metric. Moreover, certain metrics are not calculable.

Therefore, we are interested in validating some metrics that have controversial impressions

in different studies.

Different validation methodologies for the metrics were defined. We look at them

in some details in the following sections. Some validation methodologies depend on

statistical concepts that we describe in details in the Appendix A.

3.7 Metrics Validation

As we mentioned previously, most of proposed metrics have not been proved in formal way

nor empirically. Moreover, some of them do not satisfy the metric definition. Therefore,

a lot of metrics have been criticized in the literature. In [71], C. Kaner and W.P. Bond

question the construct validity of software engineering metrics, as several other authors

before them [73, 10, 104]. The general question is “how do we know that we are measuring

the attribute that we think we are measuring?” And especially for the metrics presented

before, how do we know that they really correspond to testability evaluation?

Several frameworks and methodologies were proposed in the literature for measure-

ment and metrics validation [2, 73, 104, 83, 58, 128]. Among them, the standard IEEE

1061 [2] proposes a methodology to define metrics where the fifth step is Validation.

3
.

T
esta

b
ility

M
etrics

a
n
d

M
etrics

V
a
lid

a
tio

n
51

Tool name Reference Calculated metrics

1 CKJM http://www.spinellis.gr/sw/ckjm/ WMC, DIT, NOC, CBO, RFC, LCOM,...

2 NetBeans Metrics Module http://metrics.netbeans.org/ WMC, CBO, RFC, DIT, NOC,...

3 Eclipse Metrics plug-in http://metrics.sourceforge.net/ LCOM, WMC, CC, DIT,...

4 JStyle http://www.mmsindia.com/jstyle.html RFC, LCOM, Fan-In, Fan-Out, WMC, DIT

5 Understand for Java http://www.scitools.com LCOM, DIT, CBO, NOC, RFC,...

Table 3.2: Metrics Tools

Metrics Effort estimation Available tools

1 Control-flow graph metric suite [11] # of TC for control-flow graph coverage no

2 Data-flow graph metric suite [130] # of TC for data-flow graph coverage no

3 CC [80, 81, 127] # of TC for branch coverage (decision point) yes

4 WMC1 [36, 21] # of TC to achieve the method coverage yes

5 NOM [21] # of TC to achieve the method coverage yes

6 WMCCC [36, 21] # of TC to achieve the branch coverage at the class level yes

7 RFC [36, 21] # of methods to be stubbed yes

8 CBO [36, 21] # of classes to be stubbed (no integration strategy) yes

9 FOUT [61] # of methods to be stubbed (no integration strategy) yes

10 NSBC [70] # of classes to be stubbed (with an integration strategy) no

11 DIT [36, 21] proportional to # of TC (when inheritance is re-tested) yes

12 Complexity of the repeated inheritance [37] # of repeated inheritance sub-tree to examine no

Table 3.3: Effort estimation

52 3.7 Metrics Validation

Predictive metric results are compared to the direct metric results to determine whether

the predictive metrics accurately measure their associated quality factor. Moreover, the

standard lays out six validation criteria: correlation, tracking, consistency, predictability,

discriminative power and reliability. Another draft standard for testability and diagnos-

ability characteristics and metrics was developed by (D&MC), a subcommittee of IEEE

[111]. The purpose of this standard was to provide formal and unambiguous definition of

testability, where this definition should be independent of specific test, diagnosis process

and system under test.

In the following sections, we introduce the formal metric definition, different methods

of metric validation and the properties of metric.

3.7.1 Measure and Metric Definitions

In simple words, measuring means associating a number, that represents an attribute,

with a physical object. This association is called mapping or function in mathematics.

Formally, a measure is defined as following:

Let A be a set of physical or empirical objects. Let B be a set of formal objects, such

as numbers. A measure µ is defined to be a one-to-one mapping µ : A → B.

Since a measure is a one-to-one mapping, it guarantees that every object has one and

only one measure [49, 48, 71]. Some uses the term “metric” instead of “measure” which

is not the same. The “measure” is the common term, while “metric” is a special case

of it. A “metric” is a way of measuring the distance between two entities. Formally a

metric is defined as following:

Let A be a set of objects, let ℜ be the set of real numbers, and let m be a measure

m : A → ℜ. m is called metric if and only if it satisfies the following three properties:

1- Identity of indiscernibles: m(x, y) = 0 for x = y

2- Symmetry: m(x, y) = m(y, x) ∀ x, y

3- Subadditivity: m(x, z) ≤ m(x, y) + m(y, z) ∀ x, y, z

Although the term metric is often used when defining a testability measure, but it is

not the accurate term, since no testability measure has considered the three properties

of a metric. Additionally, the term metric is used to define the distance between two

entities in a set, which is the not the case of many testability metrics.

3. Testability Metrics and Metrics Validation 53

3.7.2 Metric Construction Guide

Several attempts have been done to describe necessary properties of software metrics

[128, 45, 101, 63, 97]. For instance, authors in [45, 101, 104] suggested certain number

of characteristics such as, a metric must be intuitive, computable easily, calculated in

reliable manner, robust, able to capture real differences between the measured values,

related to a specific quality factor and return useful information that could be used to

improve the design.

Weyuker proposed nine properties that were supposed to allow identifying the weak-

nesses of a measure in concrete way [128]. We list briefly here these properties:

• Property 1: A measure that rates all programs as equally complex is not a mea-

sure. There are distinct programs P , Q, such as ∃P , ∃Q where |P | 6= |Q|.

• Property 2: Let c be a nonnegative number. Then there are only finitely many

programs of complexity c.

• Property 3: There are distinct programs P, Q, such as |P | = |Q|.

• Property 4: ∃P , ∃Q where P ≡ Q and |P | 6= |Q|. That is to say, having two

programs that produce same results does not necessitate to have same complexity.

• Property 5: ∀P , ∀Q where |P | ≤ |P ; Q| and |Q| ≤ |P ; Q|. This property states

that the complexity of any program P is less than the complexity of P combined

with any other program.

• Property 6: ∃P , ∃Q, ∃R where |P | = |Q| and |P ; R| 6= |Q; R|. With the assump-

tion that P , R use some common variables, but Q, R are disjoint.

• Property 7: There are program bodies P , Q, such that Q is formed by permuting

the order of the statement of P and |P | 6= |Q|

• Property 8: If P is renaming of Q, then |P | = |Q|. That is to say, the name of a

program does not influence its complexity.

• Property 9: ∃P , ∃Q where |P | + |Q| < |P ; Q|. It is possible to have two pro-

grams where the sum of their complexities is smaller than the complexity of the

combination of these two programs.

54 3.7 Metrics Validation

These properties are considered as axioms that metrics should satisfy, but several

metrics does not satisfy these properties. For example, cyclomatic number do not satisfy

property 7, because the cyclomatic complexity of a program is completely independent

of the placement. Another example is the effort measure proposed by Halstead, which

does not satisfy the property 5, complete proof is given in [128].

It is important to notice that these properties are necessary but are not sufficient

to determine if a metric is a metric [49]. One reason for that is, these properties are

dedicated to complexity metrics, which may not be appropriate to be used with other

metrics. Therefore, the axioms should be defined without regarding a specific metric or

specific context. Generally, a good software metric has to possess well defined axioms,

that should be met by any proposed metric, and it should be defined with respecting to

a formal metric/measure definition.

3.7.3 Metrics Validation Approaches

In general, there are two main approaches for validating the software metrics, standard

and empirical approaches. The standard approach relies on validating the metrics for-

mally, while the empirical approach looks for a correlation between a quality factor and

the metric value. In the following we discuss both approaches.

Standard Approach

The goal of metrics validation is identifying both product and process metrics that could

predict specified quality factor values. A process metric is a metric that is used to measure

characteristics of the methods, techniques, and tools employed in developing, implement-

ing, and maintaining the software system. A product metric is a metric used to measure

the characteristics of any intermediate or final product of the software development pro-

cess.

The IEEE has proposed a methodology for software quality metrics. This methodol-

ogy has been defined as “a systematic approach to establishing quality requirements and

identifying, implementing, analyzing, and validating the process and product software

quality metrics for a software system” [2].

Measuring quality factor values could be done at a certain point in the life cycle, either

early or lately in the development process. If it cannot be applied early then predictive

measuring could be done.

The IEEE methodology consists of the following steps:

3. Testability Metrics and Metrics Validation 55

1. Establish software quality requirements.

2. Identify software quality metrics.

3. Implement the software quality metrics.

4. Analyze the software metrics results.

5. Validate the software quality metrics.

The validation of metrics refers to validating the relationship between a set of metrics

and a quality factor for a given application. In other words, the validation does not mean

a universal validation of the metrics for all applications [2].

The IEEE proposed to apply a validity criterion to validate a predictive metric. This

criterion consists of the following points:

• Square of the linear correlation coefficient.

• Rank correlation coefficient.

• Prediction error.

• Confidence level.

• Success rate.

These points imply several characteristics: Correlation which is used to estimate

whether there is a sufficiently strong linear association between a quality factor and a

metric. If there is not such association then it is not feasible to use that metric. This

characteristic is often used during the empirical validation of metrics. Tracking this

characteristic ensures that for any change in the quality factor a corresponding change

will occur to the metric value. Consistency this criterion assesses whether there is a

consistency between the ranks of quality factors values and the ranks of metrics values

for same quality factors. Predictability that means the metric is capable to estimate

the value of the quality factor with the required accuracy. Discriminative power this

characteristic reflects that the metric could be used to identify critical values, in order to

separate high quality software components from low ones. Reliability that means that

a metric has passed a validity test over a sufficient number or percentage of applications,

therefore there will be a confidence this metric could predict an accurate value.

In the Appendix A, we discuss in more details the points of this criterion, and we

introduce more concepts which are related to the validation process.

56 3.7 Metrics Validation

Empirical Validation

A common approach for validating a metric empirically begins by collecting a large set

of data, followed by calculating the required metric(s), then stating research hypotheses

about the measured attributes, finally applying some correlation methods to determine if

there is a correlation between the measured data and the metric(s) [60].

Generally, the empirical validation does not facilitate or resolve the problem of vali-

dating. In other words it does not help to find the desired metrics, which could be used

as a predictive metrics. One reason behind that is the contradictions between the results

of these studies, for instance, some studies show the importance for certain metrics, such

as DIT, CC, other studies dismiss this importance.

Different studies to validate the software metrics empirically have been carried out.

Most of them tried to establish the relation between object oriented metrics and fault-

proneness of classes [13, 30, 114, 28, 31, 46, 131, 57, 132].

3.7.4 Validation of Testability Metrics

Several formal and informal methods have been used to validate software metrics. This

severity reflects the difficulty of this process, in addition to the ambiguity of the charac-

teristic that we want to predict. The absence of both the formal testability definition and

formal metric definition causes this difficulty of validating. Furthermore, the difficulty of

the validation of the testability relies on the fact that the effort to test is subjective and

depends on the point of view. Therefore, the validation of testability metrics is considered

as a hard work, especially for the complexity metrics.

For instance, let us consider the Rate of Component Observability (RCO) [126] and

the percent Public And Protected (PAP) [21]. They both represent the percentage of

readable attributes, but are used differently with respect to the testability analysis: if a

high RCO is supposed to ease testing because observability is increased [126], a high PAP

is supposed to increase the difficulty of testing, because there are more opportunities for

side effects. A challenge is thus to propose some definition(s) for what could be the effort

to test.

The validation of scope metrics seems to be easier. By definition, scope metrics predict

the number of tests to produce with respect to a testing approach. To validate those

metrics empirically, one can compare the expected number of test cases given by the

metric and the effective one when applying the testing method. The possible differences

3. Testability Metrics and Metrics Validation 57

can be due to the impossibility to reach the associated coverage criteria because of the

infeasible execution paths for instance. If empirically, a scope metric prediction is very

different from the effective number of test cases, it may be error-prone and thus should

not be used.

We highlight here some studies have been done to validate certain object oriented

metrics, which are considered to be testability metrics. In [88], Mouchawrab et al. intro-

duced a generic measurement framework for object oriented software testability, which is

based on a theory expressed as a set of operational hypotheses. They identified 20 hy-

potheses, 4 of these hypotheses are related to inheritance concept (i.e. inherited features,

operation rule...etc), which could be identified, more or less, as a result of the metric DIT.

Other hypotheses are related to number of paths, coupling, dependency cycles, cohesion,

complexity of pre/post conditions and invariants, etc. This study focuses on the analysis

and design phases of software development. However, these hypotheses summarize differ-

ent testability metrics, and could be seen as an extension to the work of Binder presented

in [21].

Other studies focus on classical metrics, such as WMC, LCOM, DIT, RFC, CBO, etc.

But they were not correlated to testability. In [33], Bruntink et al. have evaluated the

correlation between a set of object oriented source code metrics (among which DIT) and

their capabilities to predict the effort needed for testing, expressed as dLOCC (Lines Of

Code for Class) and dNOTC (Number of Test Cases). Somewhat surprisingly, DIT was

not correlated to dNOTC. This was explained by the fact that inherited methods were

probably not systematically re-tested. However, if all inherited methods are re-tested, it

was expected that the number of test cases should increase with respect to DIT, as it has

been shown after in [108].

3.7.5 Conclusion

The validation of software metrics is a critical process. And it is more critical and impor-

tant for the validation of testability metrics. Formal and informal attempts have been

achieved in order to find the desired metric. Despite this variety of the methodologies of

validation, both the formal ones and the informal ones, it did not help to find the appro-

priate testability metrics. Therefore, we are interested in validating different testability

metrics with respect to specific testing criteria, and we carried out a validation process

that is similar to the standard approaches presented in this chapter, and supported by

an empirical analysis.

58 3.7 Metrics Validation

In this chapter, we introduced some metrics validation approaches. We presented

certain points that we considered as important factors to be considered during the metric

validation process. In the following chapters, we show our empirical validation of adapted

metrics with respect to specified testing strategies.

Chapter 4

Inheritance Testing: Adjusting

Classical Testability Metrics

4.1 Introduction

In chapter 3, we presented a large set of metrics which were proposed to estimate some

factors that influence the software testability. Some of these metrics are dedicated to

evaluate different object-oriented features, such as polymorphism, encapsulation, inheri-

tance, etc.

In this chapter, we focus on a main feature in object-oriented programming, that is

inheritance. As we have seen in chapter 3, several metrics were defined to characterize

the inheritance tree complexity, among which Number Of Root classes (NOR), Fan In

(FIN), Number Of Children (NOC) and Depth of Inheritance Tree (DIT).

Depth of Inheritance Tree (DIT) is our main interest. It belongs to the Chidamber

and Kemerer metrics suite [36], which has been proposed in early nineties. The depth

of a class within the inheritance hierarchy is the maximum length from the class node

to the root of the tree, measured by the number of ancestor classes. The deeper a class

within the hierarchy, the greater the number of methods it is likely to inherit [36, 59].

A variety of testing strategies have been dedicated to inheritance testing. Basically,

two types of strategies were proposed. It is either suggested to test all new methods

and to retest all inherited methods (for instance, see Binder’s book [23].) Or, it is

suggested restricting testing to validate only changes in the inherited features (methods

and attributes) [50, 34, 59].

In both cases, the number of methods to be tested is supposed to be proportional

to DIT [36, 21]. That is why DIT is generally considered as a way to estimate the

59

60 4.2 Related Works

testing effort. Additionally, DIT is often considered to be predictive metric, because the

inheritance tree is often defined during the design phase. Moreover, as we said previously,

DIT is one of the metrics that have controversial impression.

Examining some tests of Java applications, led us to refine the definition of DIT,

which in turn led to introduce an adaptation for some classical testability metrics that

aim at estimating the cost of inheritance testing. This chapter is dedicated to show our

adaptation of these metrics.

In the following, section 2 shows some related works, section 3 describes the inheri-

tance testing in the context of object-oriented systems. Section 4 is dedicated to the cost

of inheritance testing.

4.2 Related Works

Lots of work focused on the understanding of software systems in terms of objects and

their properties. For that, several set of metrics have been proposed such as the Chi-

damber and Kemerer set [36, 43]. The understanding of these metrics and especially

their relevance in improving the outcomes of software developments led us to a large set

of researches focusing on the validation of the different metrics [29, 13, 30, 114, 28, 31,

46, 131, 57, 132, 33, 44, 124, 24, 93].

We focused during this research on the object oriented paradigm, and we concentrated

on the understanding of how the Depth of Inheritance Tree (DIT) can be used to predict

the cost of unit testing. Since it has been demonstrated that inheritance may be abused

in many ways [9], several testing strategies have been dedicated to inheritance testing.

While other studies [13, 30, 114, 28, 31, 46, 131, 57, 132] did not consider DIT as a

significant factor of fault-proneness of classes. A class B that inherits class A, means

it will inherit all public properties and methods defined in A. Therefore, more test

cases will be required to test the methods not only the defined ones in the class B, but

also the inherited ones from A. Additionally, it will be required to test the different

possible interactions between the parent class A and the child one B. Consequently,

some authors have suggested to consider the inheritance complexity during the testing

prediction. While other considered that it is not necessary to retest already inherited

tested features because it is already tested, or they did not find any signification relation

between the inheritance and the fault-proneness of classes.

In [33], M. Bruntink et al. have evaluated the correlation between a set of OO source

code metrics (among which DIT) and their capabilities to predict the effort needed for

4. Inheritance Testing: Adjusting Classical Testability Metrics 61

testing. In this study, test cases were all written as JUnit class [1]. The effort for testing

was expressed as the number of Lines Of Code for the JUnit Class (dLOCC) and the

Number of Test Cases (dNOTC). Five large open-source applications were studied. They

were available with their JUnit tests. One difficulty here was the fact that the method

used for the production of the test was not under control. Coverage criteria were different

from one application to another, and sometimes different from one package to another

from the same application. The result that the testing effort was not related to the DIT is

explained by the fact that inherited methods were probably not systematically re-tested.

4.3 Inheritance Testing in the Context of Java Ap-

plications

The cost of inheritance testing is influenced by the selected testing strategies. Some of

these strategies require to test all (defined and inherited) methods of the class, while

other strategies require to test only the inherited features that have been changed.

class parentClass

{
public void method1 ()

{
// do something . . .

}

public int method2 ()

{
// do something e l s e . . .

}
}

class ch i l dC l a s s

extends parentClass

{
public void method3 ()

{
// do whatever . . .

}

public void method4 ()

{
// do . . .

}
}

Table 4.1: Test or not to test the inherited methods

For instance, to test the class childClass (Table 4.1) we could choose one of two strategies,

the first one is to test all methods; that means testing method1, method2, method3 and

method4. Or to choose the second strategy that is to test just the defined methods in the

class childClass ; that means only we have to test method3, method4.

62 4.3 Inheritance Testing in the Context of Java Applications

One could ask, why should one retest an inherited method of a class in the following

contexts:

• if there is no modifications on inherited method?

• if it does not make any reference to modified attributes?

• if it does not call modified or overridden methods?

That might be true in some contexts, but not always. The inherited methods from a

super class were tested in the context of the super class, which might not be the same

context of the sub class(es). In other words, testing some methods in some specific context

does not guarantee that they still correct in other contexts.

4.3.1 Inheritance in Java

Object-oriented programming allows classes to inherit commonly used state and behav-

ior from other classes. Inheritance is the capability of a class to use the properties and

methods of another class while adding its own functionality. The deeper a class within

the hierarchy, the greater the number of methods it is likely to inherit [36, 59]. In the

Java programming language, each class is allowed to have one direct superclass, and

each superclass has the potential for an unlimited number of subclasses. The Object

class is the superclass of any class written in Java. All other classes are subclasses of the

Object class. The Object class includes 11 methods among which clone(), finalize(),

toString(), and equals(Object src).

A superclass contains elements and properties common to all of the subclasses. Often, a

superclass will be set up as an abstract class which does not allow objects of its prototype

to be created. Abstract methods are methods with no implementation. Subclass of an

abstract class must provide the implementation of the abstract methods or should be

declared as an abstract class.

Java does not allow multiple inheritance for classes (i.e. a subclass being the extension

of more than one superclass). To tie elements of different classes together Java uses

an interface. Interfaces are similar to abstract classes but all methods are abstract and

all properties are static final. Interfaces can be inherited (i.e. you can have a sub-

interface). It is not possible to create object from interfaces, and thus they cannot be

tested. Moreover, interfaces do not inherit of the Object class.

4. Inheritance Testing: Adjusting Classical Testability Metrics 63

4.3.2 Dealing with Inheritance When Testing Java Systems

Inheritance mechanism leads one to suppose that well-known super classes can be reused

with confidence in subclasses. However, Binder underlines that even if a superclass has

been shown to be reliable, it is not guarantee equal reliability its subclasses: reliable su-

perclass methods can fail in the context of the subclasses [23].

For testing classes in the context of inheritance, Binder distinguishes two cases [23]. Either

the class under test inherits from a trusted development environment (Java Development

Kit - JDK - in our case), or it inherits from a class that does not warrant this level

of confidence. In the first case, testing inherited methods is a problem of integration.

Otherwise, it is suggested to retest the superclass methods in the context of the subclass.

Therefore, it is important differentiate between the complete inheritance tree (in-

cluding the JDK classes) and the inheritance tree restricted to the application. This

distinguishing will lead to more accurate estimation of the cost of the inheritance testing.

In the following we formalize these two definitions of DIT.

Depth of Inheritance Tree

An object-oriented system consists of a set of classes, C. For every class c ∈ C we have

Ancestors(c) ⊂ C the set of classes from which c inherits either directly or indirectly.

The following formal definition of Depth of Inheritance Tree was given in [33].

DIT (c) = |Ancestors(c)|

This definition of DIT relies on the assumption that the considered object-oriented pro-

gramming language allows each class to have at most one parent class. Only then the

number of ancestors of c will correspond to the depth of c in the inheritance tree. Java

complies with this requirement.

This definition of DIT corresponds to the complete inheritance tree, i.e. it includes

standard Java classes JDK. Let us introduce DITA as the Depth of Inheritance Tree

restricted to the Application classes. Let JC be a set of all standard Java classes and

AC be a set of all application classes, JC ∩ AC = ∅.

If c ∈ AC, DITA(c) = |Ancestors(c)\JC|

For instance, let us consider NanoXML, a small XML parser for Java [103]. Figure 4.1

shows a sub-part of NanoXML inheritance tree. The classes XMLValidationException

and XMLException are both application classes. The three remaining classes are standard

64 4.3 Inheritance Testing in the Context of Java Applications

Java classes. The DIT for XMLValidationException class is 4 if we take into account the

complete inheritance tree. While it is only 1 if we take into account only the application’s

classes.

Figure 4.1: Sub tree of NanoXML inheritance tree

The differentiation between the entire inheritance tree and the application one, leads to

redefine certain number of metrics.

Let us now consider the methods. Let MD(c) be the set of methods that c newly declares,

and let MIn(c) be the set of methods that c inherits. Let M(c) denote the set of (defined

and inherited) methods of c:

M(c) = MD(c) ∪ MIn(c)

The metric NOM represents the number of methods defined in class the c (see Chapter 3).

It is given by the following formula:

NOM = |MD(c)|

Let us consider NOH to be the number of inherited methods:

NOH = |MIn|

Those definitions include standard Java classes. To restrict the study to the application

methods, we define MIA(c) as the set of methods that c inherits, and which are defined

in Ancestors(c)\JC. We also consider the set of application methods of c as:

MA(c) = MD(c) ∪ MIA(c)

4. Inheritance Testing: Adjusting Classical Testability Metrics 65

Since the NOH represents all inherited methods that belong to standard classes and

application classes, we introduce here an adapted definition to consider only the inherited

methods from application classes:

NOHA = |MIA|

the NOHA represents the number of inherited methods from application classes.

In the following, we discuss the cost of inheritance testing with respect to the metrics

NOM, NOH and NOHA.

4.4 Cost of Inheritance Testing

Since we are interesting in validating testability metrics, we focus in the following sections

on one of the controversial metrics, that is Depth of Inheritance Tree DIT. We want to

know if DIT could be used to as a predictive metric of testability.

4.4.1 Hypotheses

According to the previous discussion, let us call Ts the set of strategies that focus only

on testing the methods that are newly defined in a class, and let us call Tt the set of

strategies that suggest that all the inherited methods should be re-tested. Then the two

hypotheses are:

A. For testing strategies that do not consider inheritance (Ts), the cost of testing is

not influenced by DIT.

B. For testing strategies that consider inheritance (Tt), the cost of testing is influ-

enced by DIT.

4.4.2 Cost of Testing

The difficulty of estimating the cost of testing, resides in specifying what the cost of

testing is. Since there are several testing methods, as we have shown in Chapter 1, there

are also numerous methods of estimating the cost of testing.

In the following, we have chosen to estimate the cost of testing in terms of the number

of required tests for achieving the coverage of a given criterion. Estimating the cost

in such way, is compliant with the testability definitions given by Bennitts, IEEE and

others [18, 3].

66 4.4 Cost of Inheritance Testing

Applying this choice allows to refine the precedent hypotheses, to become:

Ȧ. For testing strategies that do not consider inheritance (Ts), the number of required

tests for covering a given criterion is not influenced by DIT.

Ḃ. For testing strategies that consider inheritance (Tt), the number of required tests

for covering a given criterion is influenced by DIT.

Clearly, the number of required tests for covering a criterion depends on the criterion,

which itself depends upon the selected testing strategy.

In the following, we study two coverage criteria, the first criterion is method coverage

(studied in chapter 5), the second one is branch coverage (studied in chapter 6).

4.4.3 Cost of Testing to Achieve Method Coverage

For achieving the methods coverage: (1) With considering the testing strategies Ts, the

cost of testing is estimated by the number of methods to test which is given by the simple

metric Number Of Methods (NOM). (2) But when considering the testing strategies Tt,

then either we test all the inherited methods by the class, in this case the number of

methods to be tested is given by NOH, or we test only inherited methods from application

classes, and in this case the number of methods to be tested is given by NOHA.

Therefore, we refine the previous hypotheses as following:

Ä. For testing strategies that do not consider inheritance (Ts), the number of defined

methods in a class (NOM) is not influenced by DIT.

B̈. For testing strategies that consider inheritance (Tt), the number of inherited meth-

ods in a class is influenced by DIT.

With respect to the definition 4.3.2, we can rewrite the previous hypotheses as fol-

lowing:

Ä-1 For testing strategies that do not consider inheritance (Ts), the number of defined

methods in a class is not influenced by DIT.

Ä-2 For testing strategies that do not consider inheritance (Ts), the number of defined

methods in a class is not influenced by DITA.

B̈-1 For testing strategies that consider inheritance (Tt), the number of inherited meth-

ods in a class is influenced by DIT.

4. Inheritance Testing: Adjusting Classical Testability Metrics 67

B̈-2 For testing strategies that consider inheritance (Tt), the number of inherited meth-

ods in a class is influenced by DITA.

Since the number of methods to be tested is considered as a metric to estimate the

predictive cost, we chose also another metric that could be used to estimate the effective

cost of testing, that allows to have more accurate estimation for the cost of testing. In

the following, we discuss the previous hypotheses but from the branch coverage point of

view.

4.4.4 Cost of Testing Strategies to Achieve Branch Coverage

The second selected testing strategy is the branch coverage. The branch coverage (or

Decision Coverage) exercises each possible branch in flow control structures. In other

words, branch coverage means that each branch direction must be traversed at least once

[89]. It is accepted as a “minimum mandatory testing requirement” in many industries

for the unit test phase of software [17].

It requires that each branch alternative in a program is exercised at least once [89].

It is used to evaluate testing thoroughness regardless of the strategy followed to select

the test cases and to decide whether testing can be stopped. The number of tests needed

to achieve branch coverage can be regarded as a measure of the “minimum mandatory

effort” to test a given program.

CC was defined by McCabe [80]. It is built on the number of basis paths through

the program. Cyclomatic Complexity CC is derived from a flowgraph and is math-

ematically computed using graph theory. More simply stated, it is found by deter-

mining the number of decision statements in a program and is calculated as: CC =

number of decision statements + 1. CC is a lower bound for the number of test cases

which are necessary to achieve a complete branch coverage.

CC is also considered as an indication of the difficulty of testing (complexity in the

sense of Binder in [21]). The following set of threshold values is generally given1. When

CC is between 1-10, the method or program is considered to be simple to test. With a

CC between 11-20, the method is more complex with a moderate risk. Between 21 and

50, the method is complex to test with a high risk. If CC is greater than 50, the method

is supposed to be untestable.

Achieving the branch coverage of the class A means achieving the branch coverage

of the methods of A. A lower bound for the number of test cases that are necessary to

1http://www.sei.cmu.edu/str/descriptions/cyclomatic body.html

68 4.4 Cost of Inheritance Testing

achieve a complete branch coverage of the class can be approximated by the sum of the

CC numbers of the methods. This can be computed with the Weighted Methods Per

Class (WMC), proposed by Chidamber and Kemerer [36] The original definition is the

following.

Consider a class C, with methods M1, ...,Mn that are defined in the class. Let ci be

the complexity of the method Mi. Then WMC(C) =
∑n

i=1 ci. The original definition of

WMC does not fix the definition of the ci. It can be either equal to one or equal to CC.

Here, we consider this last definition.

To predict the cost of testing strategies that requires achieving branch coverage of

methods defined and inherited in the class, we introduce Weighted Methods for the

Hierarchy of the Class (WMH). We define WMH(C) to be the sum of the WMC of each

class in the hierarchy of C.

WMH(C) = WMC(C) +
∑

Ci∈Ancestors(C)

WMC(Ci)

This definition is general: the whole hierarchy is considered. As we see previously, in

the context of Java, this definition includes standard classes. Therefore, we also introduce

Weighted Methods for the Hierarchy of the Class restricted to the application classes

(WMHA).

WMHA(C) = WMC(C) +
∑

ci∈Ancestors(C)\JC

WMC(ci)

Hypotheses

According to the previous discussion, we could state different hypotheses which are re-

lated to evaluate the difficulty to test a class. In the following hypotheses, we consider

the number of test cases that are necessary to achieve the branch coverage of the class

methods is expressed by Weighted Methods by Class (WMC), Weighted Methods for the

Hierarchy (WMHA) and the difficulty of testing is expressed by the Maximum Cyclomatic

Complexity of the methods within the class (MCC).

We define MCC of a class as following: Let C be a class with methods M1, ...,Mn

that are defined in the class. Let ci be the cyclomatic complexity of the method Mi.

MCC(C) =
n

max
i=1

ci

A. For branch testing strategies that do not consider inheritance (Ts testing strate-

gies), the difficulty to produce the test (estimated by MCC) is not correlated with

DITA.

4. Inheritance Testing: Adjusting Classical Testability Metrics 69

Metric Testing strategy

NOM Testing only defined methods

NOH Testing all inherited methods (including standard)

NOHA Testing inherited methods from application only

WMC Branch coverage for class (defined methods)

WMH Branch coverage for complete class tree

WMHA Branch coverage for application class tree

Table 4.2: Appropriate metric w.r.t selected testing strategies

B. For branch testing strategies that do not consider inheritance (Ts testing strate-

gies), the number of tests to be produced (estimated by WMC) is not correlated

with DITA.

C. For branch testing strategies that consider inheritance (Tt testing strategies), the

number of tests to be produced (estimated by WMHA) is correlated with DITA.

4.5 Conclusion

The cost of testing is varying according to the selected testing strategy. Different software

metrics were proposed to estimate the cost of testing. Choosing the right metric to

estimate the testing cost is considered an important issue. In this chapter, we presented an

adaptation to three metrics NOM, DIT and WMC, which are the total number of inherited

methods NOH, the number of inherited methods from application classes NOHA, the

depth of inheritance tree restricted to the application DITA, the Weighted Methods for the

Hierarchy WMH and the Weighted Methods for the Hierarchy restricted to the application

WMHA. Table 4.2 summarizes the testing strategies and the associated metrics that we

considered in this chapter.

These metrics are related to some testing strategies that consider the inherited meth-

ods during the testing process. In the next chapter, we present an experiment that we

carried out on a set of open source Java applications in order to validate the presented

hypotheses with respect to the adapted metrics presented in this chapter.

70 4.5 Conclusion

Chapter 5

Is DIT a Good Predictive Cost for

Method Coverage Testing?

5.1 Introduction

In this chapter, we carry out an experiment that allows us to analyze our adapted metrics

presented in the previous chapter and to validate certain hypotheses about estimating

the cost of testing.

In the following, we analyze the cost of testing by the estimating the number of

methods to be tested. Method coverage criterion is one of the weakest coverage criteria.

However, since this criterion could be calculated early in the development life cycle, it

could be used as a cost estimation of the testing strategies at the specification level.

Contrary to other criteria, such as instructions and branch coverage which could be

used only after the implementation phase, which is considered to be late to evaluate the

software testability.

We remind that we focus on two main groups of testing strategies: (1) A testing

strategies in Ts will require to test |MD(c)| methods for class c. (2) A testing strategies

in Tt will require to test |M(c)| or |MA(c)| methods for class c, depending if one considers

the complete inheritance tree or the inheritance tree restricted to the application classes.

Therefore, we stated some hypotheses that we would like to check them in this chapter.

Ä-1 For testing strategies that do not consider inheritance (Ts), the number of defined

methods in a class is not influenced by DIT.

Ä-2 For testing strategies that do not consider inheritance (Ts), the number of defined

methods in a class is not influenced by DITA.

71

72 5.2 Data Source

B̈-1 For testing strategies that consider inheritance (Tt), the number of inherited meth-

ods in a class is influenced by DIT.

B̈-2 For testing strategies that consider inheritance (Tt), the number of inherited meth-

ods in a class is influenced by DITA.

This chapter is organized as following, Section 2 presents the data source that we used

in this experiments. Section 3 shows the different steps of the data analysis.

5.2 Data Source

This study based on data collected from 25 real open-source applications. They were

chosen arbitrarily and downloaded from several web sites (mainly Sourceforge). They

represent 1 247 packages and more than 15 038 classes and interfaces. Table 5.1 gives a

brief description of these applications.

Data collection

In order to collect data from subject systems, we have produced a Java program1 that

takes a path of the application, and navigates through the different packages and classes.

It loads each class of the application dynamically, navigating from one class to another

in the inheritance tree in order to reach to the Object class. During this navigation the

program collects the following data:

• the total number of inherited methods NOH

• the total number of inherited methods from the application classes NOHA

• the total number of inherited methods from standard Java classes NOH −NOHA,

• the number of declared methods in the class NOM

• the classical DIT, starting from the root (Object class),

• the DITA, starting from the first parent application class.

This program focuses only on the inheritance of classes and ignores the inheritance of

interfaces. The calculations produced by the program are stored in an excel file.

1More details about our tool can be found in Appendix B.

5
.

Is
D

IT
a

G
o
o
d

P
red

ictive
C
o
st

fo
r

M
eth

o
d

C
o
vera

g
e

T
estin

g
?

73

Application Description # packages # classes max DITA

1-NanoXML(1) small XML parser for Java 1 19 1

2-EMMA(∗) (version 2.1) for measuring Java code coverage 28 255 5

3-AspectJ(2) (2007/02/28) aspect-oriented extension of Java 10 67 3

4-Chemical Evaluation Framework(∗) software to assist in hazard assessment 3 127 0

5-Java Groups-2.5.0(∗) group communication based on IP multicast 23 918 4

6-Ant project(3) (version 1.7) Java-based build tool 71 1022 6

7-Jsxe(∗) Java simple XML editor 25 453 2

8-XMLMath(∗) XML-based expression evaluator 2 80 3

9-HTMLCleaner(∗) Transforms HTML a into a well-formed XML 1 27 2

10-Azureus-v3.0.5.0(∗) Java bitTorrent Client 483 4827 7

11-KoLmafia-v12.3(∗) A interfacing tool with online adventure game 27 740 5

12-FreeCol-v0.7.3(∗) Civilization-like game 28 744 3

13-MegaMek-v0.32.2(∗) A networked Java clone of BattleTech 32 811 4

14-Robocode-v1.5.4(∗) A Java programming game 29 277 6

15-Freemind-v0.8.1(∗) A mind mapper and hierarchical editor 29 593 4

16-SweetHome3D-1.2.1(∗) An interior design for choosing placing furniture 6 560 4

17-Hibernate-3.2(∗) Relational Persistence for Idiomatic Java 267 2035 7

18-MyDoggy Docking Framework(∗) Manage secondary windows within main window 51 565 2

19-PDF Split and Merge 1.0.0-b2(∗) A Tool to merge and split PDF documents 51 179 4

20-QuickDownloader(∗) Accelerating downloads 19 90 0

21-Weirdx-1.0.32(∗) A pure Java X Window System server 3 108 4

22-Java Gui Builder0.6.5a(∗) Decouple GUI code from the rest of application 19 163 3

23-Scope/generic HMVC Framework(∗) A framework for component based development 27 189 3

24-Bluepad v0.1(∗) Turns cellphone to a remote PC controller 5 11 0

25-Jaxe(∗) Java XML editor 7 178 2

All - 1247 15038
(1) http://nanoxml.cyberelf.be; (2) http://www.eclipse.org/aspectj/; (3) http://ant.apache.org/;

(∗) http://www.sourceforge.net/;

Table 5.1: Data source

74 5.3 Data Analysis

5.3 Data Analysis

We analyzed the application classes in all the packages. Since an interface does not include

any implementation for any method and objects cannot be instantiated from interfaces,

they were excluded of this analysis. So the number of classes that we analyzed is 14 125.

Table 5.2 displays the distribution of these classes with respect to DIT and DITA

values. For the classical Depth of Inheritance Tree, there is no application class with

DIT=0 since all application classes inherits at least from Object class. For the Depth of

Inheritance Tree restricted to application classes, DITA is 0 if its superclass is a standard

JDK class. The number of classes with DITA = 0 is not equal to the number of classes

with DIT=1 since an application class can inherit from a standard JDK class, which in

its turn inherits from another JDK class and so on (cf. the XMLException class Fig. 4.1).

Inheritance Depth #classes w.r.t DITA #classes w.r.t DIT

0 8095 0

1 3432 6653

2 1342 3449

3 797 1623

4 306 973

5 99 689

6 35 366

7 19 254

8 0 84

9 0 26

10 0 8

Total 14125 14125

Table 5.2: Distribution of the application classes w.r.t DITA and DIT

5.3.1 Inherited Methods and DIT/DITA

In this section, we carried out a first analysis to evaluate the influence of the number of

inherited methods with respect to the depth of inheritance.

Correlation analysis

This analysis bases on three statistical concepts: scatter plot, Spearman’s rank and

Wilcoxon test. From a scatter plot graph, one could easily visualize if there is any

correlation between two variables, in our case for instance, DIT and NOM . Using

5. Is DIT a Good Predictive Cost for Method Coverage Testing? 75

Spearman’s rank allows to have more accurate vision about the correlation. We uses

Spearman correlation measurement (and not the more common Pearson correlation),

since rs can be applied independent of the underlying data distribution, and independent

of the nature of the relationship (which need not be linear). Finally, Wilcoxon test will

allow us to know if some distributions (in our case for instance, the methods distribution

w.r.t DIT) follow the same statistical law. More details about these concepts are found

in Appendix A.

It is expected that the deeper a class is within the hierarchy, the greater the number

of methods it is likely to inherit. To do that, we express the following two questions that

correspond to the hypotheses B̈ − 1 and B̈ − 2 (see 4.4):

1. Is the number of inherited methods (MIn(c)) influenced by DIT?

2. Is the number of inherited application methods (MIA(c)) influenced by DITA?

A first informal verification consists in drawing the scatter plot diagrams between the

number of inherited methods and the DIT. Fig 5.1 displays the number of inherited

methods with respect to the DIT. Fig. 5.2 displays the number of inherited methods

from the application classes with respect to the DITA. The scatter plot diagrams show

that there is positive relation between the number of inherited methods and the DIT.

In order to carry out a more formal verification, we calculate Spearman’s1 rank-

order correlation coefficient, rs, for the number of inherited methods (|MIn(c)|) (resp.

(|MIA(c)|) and DIT (resp. DITA). We use rs(n, d) to denote Spearman’s rank-order

correlation between the number of methods n and depth of inheritance d.

Figure 5.1: Number of inherited methods w.r.t. DIT

1Spearman’s and Kendall usually produce very similar results and there is no strong reason for

preferring one over the other [38].

76
5
.3

D
a
ta

A
n
a
ly

si
s

Application Total Inherited Total Inherited Total Inherited %of Java %of Application

Name Methods from Java from Application

NanoXML 288 272 16 94,44 5,56

EMMA 3994 3448 546 86,33 13,67

AspectJ 1108 843 265 76,08 23,92

CEF 7440 7440 0 100 0

JGroup 37605 27291 10314 72,57 27,43

Ant 59981 18561 41420 30,94 69,06

Jsxe 48265 47480 785 98,37 1,63

XMLmath 1293 935 358 72,31 27,69

HTMLcleaner 423 342 81 80,85 19,15

Azureus 93868 63864 30004 68,04 31,96

KoLmafia 204932 195701 9231 95,5 4,5

FreeCol 101491 96001 5490 94,59 5,41

MegaMek 96814 88581 8233 91,5 8,5

Robocode 35037 34146 891 97,46 2,54

Freemind 43560 34034 9526 78,13 21,87

SweetHome3D 46094 44324 1770 96,16 3,84

Hibernate 68542 23220 45322 33,88 66,12

MyDoggy 39641 38921 720 98,18 1,82

PDFSplit&Merge 18294 17690 604 96,7 3,3

QuickDownloader 11525 11525 0 100 0

Weirdx 4526 3711 815 81,99 18,01

JavaGuiBuilder 6601 2993 3608 45,34 54,66

Scope 8424 7280 1144 86,42 13,58

Bluepad 851 851 0 100 0

Jaxe 26049 24295 1754 93,27 6,73

Total 966646 793749 172897 82,11 17,89

Table 5.3: The Percentage of Number of Inherited Methods

5. Is DIT a Good Predictive Cost for Method Coverage Testing? 77

Figure 5.2: Number of inherited application methods w.r.t. DITA

We have calculated rs for each application. Table 5.4 shows the rs values observed for

each application. As expected, for all cases, rs is positive and goes between 0.79 and 1

for DIT, and between 0.87 and 1 for DITA. This indicates a strong positive correlation.

This means that the number of inherited methods increase with the DIT or DITA.

One can notice from Table 5.3 that the number of inherited methods from standard

classes represents a high percentage (more than 80%) of the total inherited methods.

While the number of inherited methods of the application classes is less than 20% of

the total inherited methods. That allow us to say, including the inherited methods from

standard Java classes will increase the number of test cases significantly.

We have also computed the average number of inherited methods for each of those

distributions. Table 5.5 shows the average number of inherited (application) methods

for DIT and DITA. One can notice from Table 5.5 that the average number of inherited

methods increases significantly from the level four (DIT=4).

Distribution analysis

So as expected, the number of inherited methods is correlated to the depth of inheritance

tree. The next question is “how does the number of inherited methods increase with

the DIT?”

To have a first idea, we have drawn the histograms of the number of inherited methods

distribution for a fixed DIT (resp. DITA). Fig. 5.3(a-e) draws these histograms for DIT

= 2 to 6 and Fig. 5.3(f-k) draws them for DITA = 1 to 6.

For better understanding of these histograms, we present the frequencies in Table 5.6

and which correspond to the histograms Fig. 5.3(a-e). From this table, one could see

that the number of classes that inherit less than 15 methods decreases on going from one

78 5.3 Data Analysis

(a-e) Number of inherited methods distribution for DIT = 2, 3, 4, 5 and 6

(f-k) Number of inherited application methods distribution for DITA = 1, 2, 3, 4, 5 and 6

Figure 5.3: Number of inherited (application) methods w.r.t. DIT (and DITA)

5. Is DIT a Good Predictive Cost for Method Coverage Testing? 79

Application Name rs(|MIn(c)|, DIT) rs(|MIA(c)|, DITA)

NanoXML 1 1

EMMA 0,98 0,98

AspectJ 0,98 0,99

CEF 0,91 1

JGroup 0,95 0,98

Ant 0,92 0,95

Jsxe 0,98 0,99

XMLmath 0,96 0,98

HTMLcleaner 0,99 0,99

Azureus 0,98 0,98

KoLmafia 0,95 0,92

FreeCol 0,79 0,98

MegaMek 0,97 0,98

Robocode 0,98 0,99

Freemind 0,79 0,87

SweetHome3D 0,97 0,99

Hibernate 0,96 0,97

MyDoggy 0,98 0,99

PDFSplitAndMerge 0,91 0,97

QuickDownloader 0,99 1

Weirdx 0,92 0,95

JavaGuiBuilder 0,93 0,98

Scope 0,9 0,91

Bluepad 0,91 1

Jaxe 0,9 0,99

Table 5.4: Spearman’s rank-order correlation between the number of methods and depth

of total and application inheritance tree for each application

inheritance level to a deeper one, that is clear from both Table 5.6 (row 1). In general, this

observation is still true for other inherited methods ranges, except for some cases, such

as the range 51-65. This observation assures that number of inherited methods increases

when going deeper in the hierarchy, therefore, the number of classes which inherit certain

range of methods decreases. While the exceptions of this observation, such as the range

51-65, is interpreted that at this range and at DIT=3 the number of classes increases

(from 164 to 365 classes) since there are methods that have been inherited in previous

ranges. On the other hand, the number of classes decreases (from 365 to 184) because

not all classes have the same depth, in other words, not all the classes that inherit from

the range 51-65 at DIT=3 have children.

Same observation of the histograms Fig. 5.3(a-e) can be noticed on the histograms

80 5.3 Data Analysis

DIT Average Number of DITA Average Number of

Inherited Methods Inherited Application Methods

1 11 0 0

2 24.68 1 11.83

3 52.23 2 27.86

4 80.69 3 54.69

5 340.9 4 80.61

6 443.84 5 93.26

7 527.5 6 95.74

Table 5.5: Average of Number of inherited (application) Methods w.r.t DIT and DITA

Fig. 5.3(f-k). However, it is important to mention that the variation of number of classes

and the number of inherited methods on the different levels of the hierarchy do not follow

same distribution law, which means calculating the number of inherited methods (or a

range) at certain depth does not allow assessing the exact number of inherited methods

at the next depth.

#inherited methods ranges DIT=2 DIT=3 DIT=4 DIT=5 DIT=6

11-15 1177 63 0 0 0

16-20 768 146 32 0 0

21-25 451 239 85 15 2

26-30 259 165 17 8 4

31-35 97 69 30 8 24

36-50 283 282 175 67 2

51-65 164 365 184 27 11

66-80 20 25 151 31 7

81-100 11 33 239 36 4

Table 5.6: Number of classes w.r.t the ranges of number of inherited methods

Note: For DIT = 1, all classes inherit from Object and thus have 11 inherited

methods. For DITA = 0, application classes do not inherit from another application

class, thus they have 0 inherited application methods.

5.3.2 Defined Methods and DIT/DITA

Previous analysis has confirmed that the number of inherited methods was increasing with

the DIT, both considering the total inheritance tree or tree restricted to the application

5. Is DIT a Good Predictive Cost for Method Coverage Testing? 81

classes. Another question is: does the number of defined methods increase with DIT?

This question is related to the hypotheses Ä − 1 and Ä − 2 (see 4.4).

One can expect that the number of methods defined in a class is increasing with the

depth of inheritance tree since the behavior of the object is expected to be more complex

(or at least, more detailed). Or, one can expect that fewer methods are required since

most of the behavior has been previously defined. And finally, one can expect that there

is no relation between them.

Again, as a first informal verification, we have drawn the scatter plot diagrams between

the number of defined methods and the DIT. Fig 5.4 and 5.5 display the number of defined

methods with respect to the DIT and DITA. The scatter plot diagrams show that there

is no evident relation between the number of defined methods and the DIT or DITA.

We have calculated the Spearman’s rank order for the classes considered all together.

We have obtained rs(|MD(c)|,DIT) = 0.05 and rs(|MD(c)|,DITA) = 0.06. This indicates

that there is no correlation between the number of declared methods and the depth of

inheritance.

Figure 5.4: Number of defined methods w.r.t. DIT

Figure 5.5: Number of defined methods w.r.t. DITA

82 5.3 Data Analysis

1 2 3 4 5

1 - 2.28 10−12 0.404 0.282 0.763

2 - - 2.51 10−8 0.016 0.002

3 - - - 0.181 0.834

4 - - - - 0.326

Table 5.7: P-value of Wilcoxon test for the declared methods distribution at a fixed DIT

0 1 2 3 4

0 - 0.046 3.23 10−7 0.0003 0.21

1 - - 4.14 10−10 8.710−6 0.05

2 - - - 0.48 0.68

3 - - - - 0.53

Table 5.8: P-value of Wilcoxon test for the declared methods distribution at a fixed DITA

To visualize the distribution law, we have drawn the histograms of the number of

declared methods distribution for a fixed DIT and a fixed DITA (see Fig. 5.6). These

histograms give the impression that the different distributions follow the same proba-

bilistic law. To check if the different distributions follow the same law, we have used

the Wilcoxon test (see A.6.2). This is a nonparametric test that compares two paired

groups. It has an associated null hypothesis. Generally, one rejects the null hypothesis

if the p-value is smaller than or equal to the significance level. If the level is 0.05, then

the results are only 5% likely to be as extraordinary as just seen, given that the null

hypothesis is true.

Results for DIT and DITA are given in Tables 5.7 and 5.8. For DITA = 2, 3 and 4, it

is reasonable to accept that the samples come from the same law. It is also reasonable

to accept that samples from DITA = 0 and 1 come from the same law, which is different

from the previous ones. For DIT, it is reasonable to accept that all the sample come from

the same law, expect the second sample (DIT=2), which is different.

As a consequence of these results, it might be interesting to have a predictive tool

that predicts the number of defined methods for a sub-class. This prediction is based on

the number of defined methods of the parent class and its depth of inheritance. Such a

predictive tool may give an idea about how much the sub-classes (new children) are.

5. Is DIT a Good Predictive Cost for Method Coverage Testing? 83

(a-c) Number of defined methods distribution for DIT = 1, 2 and 3

(d-f) Number of defined methods distribution for DIT = 4, 5 and 6

(g-i) Number of defined application methods distribution for DITA = 0, 1 and 2

(j-l) Number of defined application methods distribution for DITA = 3, 4 and 5

Figure 5.6: Number of defined methods w.r.t. DIT and DITA

84 5.4 Conclusion

5.4 Conclusion

The goal of this case study was understanding how the Depth of Inheritance Tree (DIT)

can be used to predict the cost of unit testing. Several previous studied have showed

the influence of inheritance on the quality of the developed systems. During this case

study, we wanted to estimate effective testing cost to achieve methods coverage criterion

by estimating predictive testing cost. We expressed the effective cost of unit testing as

the number of methods to be tested, and the predictive cost as the depth of inheritance

tree. Additionally, since we concentrated on object oriented language, we focused on an

important feature i.e. inheritance therefore, we have distinguished two types of testing

strategies: those which consider that inherited methods should be re-tested and those

which only consider defined methods to be tested.

We carried out this study with respect to the adapted definition of DIT i.e. DITA

that we defined in the previous chapter, and with respect to the different hypotheses that

we made in chapter 4. As a result of this analysis, one can use DIT/DITA for predicting

the cost of testing if it is intended to retest the inherited methods at the unit level.

Otherwise, DIT/DITA is not an adequate predictor for the cost of testing.

The number of methods to be tested is not considered as an accurate estimation to

estimate effective testing cost, that why we are going to consider more accurate effective

cost in the following chapter. In the next chapter we focus on branch coverage criterion,

for which we estimate the effective cost as the number of branches to be passed.

Chapter 6

Is DIT a Good Predictive Cost for

Branch Coverage Testing?

6.1 Introduction

In the previous chapter, we considered during our experimentation the cost of testing as

the number of methods to be tested, with respect to different testing strategies Ts and

Tt. Here, we present similar experiment but with respect to a different cost of testing.

As we mentioned in chapter 4, the number of methods to test represents a rough way to

estimate the cost of testing. Therefore, we consider here more accurate estimation that

is the cost of achieving branch coverage.

This study is carried on the same set of applications which are shown in Table 5.1,

and with respect to the following hypotheses that we detailed in chapter 4:

A. For branch testing strategies that do not consider inheritance (Ts testing strate-

gies), the difficulty to produce the test (estimated by MCC) is not correlated with

DITA.

B. For branch testing strategies that do not consider inheritance (Ts testing strate-

gies), the number of tests to be produced (estimated by WMC) is not correlated

with DITA.

C. For branch testing strategies that consider inheritance (Tt testing strategies), the

number of tests to be produced (estimated by WMHA) is correlated with DITA.

85

86 6.2 Statistical analysis

6.2 Statistical analysis

Application MCC rs(MCC,DITA) rs(WMC,DITA) rs(WMHA,DITA)

NanoXML 24 -0,270 -0.376561 0.156694

EMMA 55 -0,030 0.055409 0.428051

AspectJ 22 -0,018 0.002037 0.508643

CEF 70 0 0 0

Jgroup 91 0,039 0.230362 0.363079

Ant 109 0,158 0.140267 0.424910

JSXE 169 -0,057 -0.086228 0.127950

XMLMath 10 -0,227 -0.282045 0.615053

HTMLCleaner 49 0,154 0.124086 0.344639

Azureus 190 0,0469 -0.049650 0.082084

KoLmafia 341 0,037 0.055853 0.349263

FreeCol 129 0,056 0.165906 0.622566

MegaMek 627 0,127 0.135182 0.408373

RoboCode 54 -0,250 -0.101887 0.241725

Freemind 137 0,097 0.277715 0.619646

SweetHome3D 69 0,133 0.184145 0.433074

Hibernate 102 0,038 -0.077916 0.264031

MyDoggy 50 -0,024 0.063910 0.257330

PDF Split 32 0,025 0.184899 0.441028

Quick Downloader 20 0 0 0

Weirdx 97 0,221 0.059432 0.557433

Java GUI Builder 12 0,268 0.456639 0.439395

Scope 23 -0,127 -0.379926 0.056544

Bluepad 13 0 0 0

JAXE 143 0,073 0.159762 0.453179

Table 6.1: Spearman coefficients

6.2.1 Data Analysis

In the following subsections we are looking for validating the different assumptions about

the cost of testing and the relevant metrics to cyclomatic complexity.

Checking the hypothesis A.

We first analysed MCC and calculated Spearman’s rank-order correlation coefficient, rs,

for MCC with respect to DITA. The computation was done for each application. Table

6. Is DIT a Good Predictive Cost for Branch Coverage Testing? 87

6.1 displays the results. As it can be noticed, the rs values are on average very small.

This seems to indicate that the correlation between MCC and DITA is a weak correlation.

In a second step, we have drawn the histograms of MCC distributions for each DITA.

We have chosen the intervals classically used for the analysis of CC (see sect. 4.1).

Figures 6.1 display the histograms for DITA = 0 to DITA=5 all applications together.

These histograms give the impression that the different distributions follow the same

probabilistic law. To check this, we have used the Wilcoxon test.

0 1 2 3 4 5

0 - 0.95 1 1 0.14 0.98

1 - - 1 0.95 0.05 0.96

2 - - - 0.72 10−7 0.31

3 - - - - 10−6 0.22

4 - - - - - 0.99

Table 6.2: P-value of Wilcoxon test for MCC at a fixed DITA

The p-value of the Wilcoxon tests are given in Table 6.2. For DITA =0, 1, 2, 3 and

5, it is reasonable to accept that the samples come from the same law. The reason why

MCC distribution for DITA=4 is different from the other is not clear yet. However, one

should keep in mind that the samples of data for DITA=4 and 5 are not as large as the

others. For this reason, observations may be not significant. This analysis confirms that

the difficulty to test a class is independent of the depth of inheritance tree.

Checking the hypothesis B.

We carried out the same analysis for Weighted Methods per Class (WMC). Table 6.1

(column 4) displays Spearman’s rank-order correlation coefficients. For WMC, coefficients

are generally quite small, except for NanoXML, SCOPE, XMLMath, Java GUI

builder and Freemind. These small values tend to show that there is no correlation

between WMC and DITA, that is to say, for these applications, the number of tests to

write does not increase with DITA.

For the five applications: one should note that NanoXML has 17 classes out of

19 that have a DITA equals to 0. The two last 2 classes have a DITA equals to 1. It

is therefore not really relevant from a statistical point of view. For all the other, the

spearman rank-order coefficients are quite consistent with the observation of the scatter

plot (see Figure 6.2). For instance, the SCOPE application has 11 classes of DITA=2

88 6.2 Statistical analysis

Figure 6.1: MCC distribution with respect to DITA=0 to DITA=5

6. Is DIT a Good Predictive Cost for Branch Coverage Testing? 89

Figure 6.2: Scatter plot for WMC w.r.t. DITA for some applications

and 9 classes of DITA=3. Even if the sample is also not really relevant, classes at these

levels seems to require less tests than at level DITA = 0 or 1. (WMC is between 1 and 4

at level 3, with an average of 2, between 1 and 44 at level 2 with an average of 9, between

1 and 110 at level 1 with an average of 19 and between 1 and 86 at level 0 with an average

of 15). Similar observation can be done for the XMLMath application.

For Java GUI builder on the contrary, WMC tend to increase with DITA. (WMC

is between 1 and 25 at level 0 with an average of 6, between 2 and 39 at level 1 with

an average of 27, between 3 and 32 at level 2 with an average of 10, and between 3 and

42 at level 3 with an average of 12). Similar observation can be done for Freemind

application.

That led us to say, generally there is no correlation between the depth of inheritance

of the application DITA and the weighted methods per class WMC, which means the

number of tests to be produced with a Ts strategy is not correlated with DITA.

Checking the hypothesis C.

For Weighted Methods for Hierarchy (WMHA), it is naturally expected that it would

increase with DITA, since for one inheritance tree, a class at a certain level has a WMHA

superior than its ancestor(s), by definition. For this reason, one could expect positive

90 6.3 Limits of the Experiment

values closed to one for the Spearman’s rank-order correlation coefficients. On Table 6.1,

one can notice that the values are not so high.

Figure 6.3: Scatter plot for WMHA w.r.t. DITA for SCOPE and Azureus applications

Two elements can explain this result. Firstly, there are lots of classes at level 0 that

do not have children (i.e. they are not in an inheritance tree). Those classes can have a

WMC very high (sometimes higher than the WMHA of the classes at the last level(s)). A

second element is that data are compared all together. In one inheritance tree, WMHA

increases. All classes together, the inheritance trees are mixed and classes from one tree

can be compared with classes from other ones. An illustration is given Figure 6.3 with

the scatter plot of WMHA with respect to DITA for Azureus and AspectJ applications.

These results allow us to state that DITA could not be considered as a good indicator

for estimating the cost of structural testing.

6.3 Limits of the Experiment

In order to carry out our experiment, we have arbitrarily chosen 25 open-source Java

applications from different web sites (mainly sourceforge). It is quite surprising to see

that inheritance is not used as often as it could be expected: for the whole applications,

65% of the classes are defined at DITA=0 (see Table 5.2). Classes at levels 5, 6, and 7

represent approximately 1% of the classes. The choice of the application and especially

the type of applications (open-source) is possibly not representative of any Java software

applications.

Another important point is that the Cyclomatic Complexity is usually used to ap-

proximate the upper bound of the number of tests to be produced. It does not take into

account the infeasible “paths”. Therefore, fewer tests can be required in reality. So it

could be misleading to estimate the effective cost of testing with CC.

6. Is DIT a Good Predictive Cost for Branch Coverage Testing? 91

6.4 Conclusion

In chapter 5, we have carried out an experimentation in which we have distinguished

two types of testing strategies: those which consider that inherited methods should be

re-tested and those which only consider defined methods to be tested. The cost of unit

testing was expressed as the number of methods to be tested. This estimation of cost was

considered to be too inaccurate.

In this chapter, we wanted to analyze DITA as a predictive evaluation of the testing

cost with respect to a more precise effective testing cost. For this reason, we have chosen

to focus on branch coverage, which is considered by the practitioners to be “a minimum

mandatory testing requirement”. We expressed the cost of test as the number of test

cases that are necessary to achieve the branch coverage of the class methods expressed

by Weighted Methods by Class and Weighted Methods for the Hierarchy (WMC and

WMHA) and the difficulty of testing expressed by the Maximum Cyclomatic Complexity

of the methods within the class (MCC).

We have observed that the complexity of testing classes (MCC) was not correlated

with DITA. We also observed that WMC is often not correlated with DITA and that

WMHA is often correlated with DITA but not as much as expected. This means that when

one tests only the defined methods in a class, the DITA does not influence the number

of tests to produce in general. On the contrary, when one tests the defined methods in

the class and retests all inherited method, the number of tests to produce increase with

DITA, but not in a predictable way. Therefore, DITA is not a good predictive metric at

a design level. It is too abstract to be really relevant. This work has to be published in

[110].

The comparison between an effective cost and predictive cost as we showed till now

may not appear realistic, therefore we decided to lead another experiment in which we

focus on real test cases which are written in JUnit. In the following chapter we show our

analysis that is based on the relationship between the complexity of program and the

complexity of generating JUnit test with respect to branch coverage criterion.

92 6.4 Conclusion

Chapter 7

Predicting the Cost of JUnit

Designing

7.1 Introduction

In the previous chapters, we chose the number of required tests to be generated as an

indicator of the cost of testing. This indication does not consider the difficulty of gener-

ating the test cases. Another method of assessing the testing cost is the difficulty of the

produced (generated) testing programs. Intuitively, the more a program is complex, the

more time it needs to be built and validated. Therefore and in order to complete our pre-

vious experiments that we presented in precedent chapters, we carried out an additional

experiment which looks for predicting the complexity of testing programs. Here we focus

on some particular context where the testing programs are written using JUnit.

JUnit is a library that could be used at unit testing level for testing methods and

classes. It has been proposed for the purpose of writing and running tests in Java.

It is not an automated tool, so the programmer needs to write the test cases by hand.

Previously, we chose WMC as a predictor of the number of required tests, here we wanted

to estimate more precisely some testing effort, therefore, we chose the effort of JUnit test

design. Thus, if we consider the WMC of JUnit tests as a predictor to estimate the effort

of designing the tests, then we could check if the number of required tests is related to

the effort of designing the tests. In other words, we would like to check two assumptions:

A. For branch testing strategies, the number of required tests to be produced is corre-

lated with the effort of generating the testing programs.

93

94 7.2 Basic Concepts in JUnit

B. For branch testing strategies, the number of required tests to be produced is not

correlated with the effort of generating the testing programs.

We would like to mention here, that we do not have control on the JUnit tests which

we chose for the applications under study, but all these JUnit tests do not consider

the inheritance tree, i.e. they do not retest inherited feature. That means the testing

strategies of the selected applications corresponds to the testing strategies Ts that we

discussed in Chapter 4. Our study that we introduce in this chapter, aims to estimate

the cost of JUnit designing through the evaluating of the cost of a class under test. We use

the metric WMC as a predictor of the cost. Previously, we discussed the metric WMC,

therefore we just remind here the definition of WMC. It is the sum of the complexity

of each method in a class. The complexity of a method is expressed by the cyclomatic

number.

7.2 Basic Concepts in JUnit

JUnit is a library which is used to test classes and methods. It can run tests files by

executing a tool called test runner. The JUnit is not an automatic process, therefore one

must write the tests manually. The tests JUnit could be written for achieving different

goals, i.e. a specific criterion of test. For instance, the goal of writing JUnit tests could

be achieving some coverage criteria, verifying the boundary conditions, etc.

To illustrate the basic concepts of JUnit, let us have the following simple example

that returns the absolute value of an integer value. Then we are going to write the JUnit

test of this class.

package t r iv i a lExample ;

public class AbsoluteValue {
private int value ;

private int abso luteValue ;

public AbsoluteValue (){ }

public AbsoluteValue (int value){ this . va lue = value ; }

public void setValue (int value){ this . va lue = value ; }

7. Predicting the Cost of JUnit Designing 95

public int getValue (){ return value ; }

public int getAbsoluteValue (){
i f (va lue >= 0){ abso luteValue = value ; }
else { abso luteValue = value ;} //This must be abso lu t eVa lue=−1∗va lue ;

return abso luteValue ;

}
}

To start using JUnit, first we need to install the JUnit.jar file1. After that we can

write the JUnit test that starts with importing the required packages. The JUnit test

class of our simple example could be something similar to the following one:

package t r iv i a lExample ;

import org . j u n i t . ∗ ;

import org . j u n i t . Assert ;

public class AbsoluteValueTest {

@Test

public void getAbsoluteValueTest (){
Assert . a s s e r tEqua l s (2 , (new AbsoluteValue (2)) . getAbsoluteValue ()) ;

Assert . a s s e r tEqua l s (3 , (new AbsoluteValue (−3)) . getAbsoluteValue ()) ;

}
}

The class AbsoluteValueTest represents the test cases for our class AbsoluteValue.

The class AbsoluteValueTest may have different scenarios to test AbsoluteValue class’s

methods. In our case we just want to test the method getAbsoluteValue(). The

corresponding testing method for that one is getAbsoluteValueTest(). The method

assertEquals() evaluates whether a returned value equals the expected one. If there is

inequality then JUnit will show that there is an error.

Assert.assertEquals(ExpectedValue, ReturnedValue)

In our example, we test the method getAbsoluteValue() against two values 2 and

-3. The expected values must be 2 and 3 respectively. Since we have introduced an error

in the method getAbsoluteValue(), then the returned value for (-3) will be (-3). For

1The JUnit library can be downloaded from http://junit.org, we use the version 4.1

http://junit.org

96 7.3 Data Source

that JUnit will show the failure, by indicating that the expected value does not match

the returned one.

That is all what we need about JUnit to go ahead in our following statistical study.

Of course, there are other important notion related to JUnit, such as oneTimeSetUp,

oneTimeTearDown, setUp, etc, but here we do not need to explore all the features of

JUnit. In the following, we are going to analyze some open source applications, where

our goal is comparing the complexity of a class with the complexity of its JUnit test

class. For example, the weighted methods per class WMC of the class AbsoluteValue is

6. While the WMC of test class AbsoluteValueTest is 1. In other words, this study is

an attempt to predict the cost of writing JUnit tests by measuring the WMC of the class

under test.

7.3 Data Source

Our study was carried out on 10 open-source applications1. They were chosen arbi-

trarily and downloaded from sourceforge.net (except Ant, which is downloaded from

ant.apache.org). Table 7.1 gives small description for these applications, and the number

of JUnits that were written for some classes in the application. We would like to mention

here that the number of JUnit classes shown in Table 7.1 equals to the number of classes

for which these JUnits were written. In other words, we ignored other JUnit tests which

are written to run a sequence of JUnit tests.

Application Description #JUnit

Ant Java-based build tool 198

SweetHome3D An interior design for choosing placing furniture 11

JGroup Group communication based on IP multicast 50

JavaGuiBuilder Decouple GUI code from the rest of application 50

FreeCol Civilization-like game 11

Hibernate Relational Persistence for Idiomatic Java 49

Dozer A Java Bean to Java Bean mapper 48

OpenSaml A cross-platform SAML implementation 7

DrJava Java design environment to foster test-driven software development 89

Sahi An automation and testing tool for web applications 36

Total - 549

Table 7.1: Data Source

1In this study, it was not possible to apply the analysis on all the applications that we analyzed in

previous chpaters, since not all of them have the associated JUnit tests

7. Predicting the Cost of JUnit Designing 97

7.4 Data Analysis

We have analyzed these applications in order to calculate the WMC for each class in

addition to its associated JUnit. We refer in the following to the WMC of a JUnit

class as WMC4Junit. Table 7.2 shows the maximum and the minimum values of WMC

and WMC4Junit for each application. We would like to mention here that these values

concern only the classes which are associated with JUnit classes.

Application Max(WMC) Min(WMC) Max(WMC4Junit) Min(WMC4Junit)

Ant 263 1 121 2

SweetHome3D 288 12 28 3

JGroup 434 1 102 3

JavaGuiBuilder 39 3 42 3

FreeCol 947 15 33 2

Hibernate 142 1 98 3

Dozer 205 1 40 2

OpenSaml 75 1 12 3

DrJava 1067 1 80 2

Sahi 147 2 27 2

Table 7.2: Max and Min value for WMC and WMC4Junit

In order to predict the relationship between the WMC and WMC4Junit, first we drew

the scatter plot graph for the WMC with respect to WMC4Junit. Additionally, we tried

to express this relationship by using simple regression model (linear regression), in order

to see if one could predict the value of WMC4Junit by depending upon the value of WMC.

Then we used more formal correlation analysis. More precisely, we used the spearman

rank-order correlation coefficient.

From the figures 7.1 and 7.2, one could notice that the cyclomatic complexity of JUnit

class (WMC4Junit) slightly increases with the cyclomatic complexity of the associated

class (WMC). Three applications OpenSAML and FreeCol do not match this result, one

reason behind that is there is not probably enough information (JUnit classes) for these

two applications.

This result was confirmed by another analysis using the Spearman correlation, where we

found a positive correlation between the two variables WMC and WMC4Junit. Table

7.3 shows the values of Spearman correlation analysis. As a consequence, reducing the

complexity of a class, may lead to reducing the complexity and difficulty of writing tests

at the unit testing level. The advantage of considering this result into account is the

easiness of its applying, because the WMC can be estimated instantly during the coding

98 7.4 Data Analysis

Figure 7.1: Visualizing the relationship between WMC and WMC4Junit

7. Predicting the Cost of JUnit Designing 99

Figure 7.2: Visualizing the relationship between WMC and WMC4Junit

100 7.5 Limit of the Work

phase. Once the programmer notices a high level of complexity, he could rewrite/modify

the method/class responsible of that complexity.

Application Spearman Correlation Value

Ant 0.46

SweetHome3D 0.3

JGroup 0.3

JavaGuiBuilder 0.67

FreeCol 0.08

Hibernate 0.03

Dozer 0.23

OpenSaml -0.7

DrJava 0.3

Sahi 0.26

All Data 0.32

Table 7.3: Spearman Correlations Analysis

7.5 Limit of the Work

This work relies on a set of JUnit tests collected with some open source applications.

It is not so often that tests are delivered with open source code. The lack of data is a

first limit of this study. Moreover, the test files are not documented. In particular, the

way the tests were designed is not described. So it is possible that selected JUnit test

files were not designed to achieve same coverage type. The fact that the data may have

different nature is the second limit of the work. For a deeper analysis, it could be more

interesting to identify what kind of coverage was expected to be achieved by the JUnit

files.

7.6 Conclusion

Since in previous chapters we concentrated more on comparing the effective and predictive

testing cost and in order to get more reliable results we decided to lead an analysis based

on real test cases which are written in JUnit.

7. Predicting the Cost of JUnit Designing 101

In this chapter, we tried to associate the number of required tests with the effort of

designing the tests. We estimated the number of tests as WMC, while the effort of testing

is estimated as the WMC of JUnit tests. The results of this analysis show that there is

a moderate correlation between the number of tests required to achieve branch coverage

in a class (WMC) and the complexity of JUnit tests. Therefore, WMC is not only an

indicator of the number of tests, but also is an indicator of the complexity of JUnit test

design.

The following chapter is dedicated to show the results of our analysis on integration

testing level. For this analysis we focus on detecting antitestability patterns that could

appear during the software development cycle.

102 7.6 Conclusion

Chapter 8

Detecting Testability Antipatterns

during the Development Process

8.1 Introduction

In chapter 5, 6 and 7, we focused on some metrics that can be used to estimate the

testability at the unit testing level. Here in this chapter, we are interested in evaluating

the testability at the integration testing level. More precisely, we concentrate on detecting

some testability antipatterns and determining at which point they are introduced during

the development. We are motivated by several questions:

• Is it frequent to find cycles in a model?

• What is the percent of/How many cycles are introduced during the coding?

• At which point the cycles are introduced?

• How do the cycles sizes evolve in the development?

• Are there any elements that favor the occurrence of cycles? Which ones?

A testability antipattern is a factor that could affect negatively the testability of

software. It is a design solution known to make test difficult (and/or known to increase

the number of test to carry out) [14]. Two testability weaknesses have been described

in [16], self usage and interactions. Both of them characterize dependency cycles

in classes. As we showed in chapter 3, lots of testability metrics have been proposed

[35, 36, 21, 82, 46, 56], but only few studies have been carried out to identify the different

weaknesses of a design patterns [14, 70].

103

104 8.2 Testability Antipatterns

The antipatterns were proposed to be metrics that could be used at system or integra-

tion testing level. Difficulty of testing usually depends on dependencies among classes,

which require an order in the integration.

In this chapter we compare the antipatterns at source code level and at different

abstraction levels, in order to understand at which point they are introduced during the

development. We studied a number of open-source Java applications to detect the self

usage and interactions antipatterns occurrences at the source code and at different levels

of abstraction. The objective was to observe how frequent, how complex the cycles in

those applications and at which level they are introduced. We especially wanted to see if

the cycles are mainly introduced during the modeling or the coding phase.

8.2 Testability Antipatterns

Design patterns represent solutions to problems that arise when software is being de-

veloped in a particular context [14]. A testability antipattern “describes undesirable

configurations in the class diagram”. They could affect testability efforts and make tests

ineffective [64, 15].

An object oriented system is a set of classes that communicate with each other.

Some of these classes depend on others. Different studies showed that dependency is

the main cause behind the occurrence of antipatterns. In [70] two types of dependencies

were defined. The first type is physical dependency. The physical dependency exists

between two classes A and B if A cannot be compiled without B (e.g. inheritance).

And the second type is logical dependency. The logical dependency exists between A

and B if a change happens to a B would require a change to A.

A dependency relationship could be either direct or indirect. It is indirect if the path

between A and B includes other classes, otherwise it is direct. Figure 8.1(a) shows a

dependency (interaction) between the class C and D, which could be interpreted either

directly, or indirectly through the inheritance tree. Figure 8.1(b) represents the notion

of class cycle, for example, one cycle exists between D and E, another one exists also

between B and D through C.

The complexity of a dependency cycle increases when there are more than one path

to reach from one class to another, which in turns increase the potential usages. That

means more test cases or at least potential hidden errors. Also more classes in a cycle

will increase the difficulty of the test, one reason for that is the need for more instances

to be instantiated.

8. Detecting Testability Antipatterns during the Development Process 105

(a) (b)

Figure 8.1: Class interaction and Cycles

These types of dependency (interaction through more than one path and class cycle)

should be avoided either by refactoring or by using class interfaces [70, 14]. Several studies

[19, 129] focused on detecting and assessing the dependency. Jungmayr in [70] introduced

a set of metrics to measure the dependability and its influence on the testability.

As we previously said, we are interesting here in detecting at which point the cycles

are introduced in the development phases. In the following we introduce our method in

simulating a software development approach.

Application Description # packages # classes

1-NanoXML(1) small XML parser for Java 1 19

2-Chemical Evaluation Framework 1.001(∗) software to assist in hazard assessment 3 127

3-Jsxe(∗) Java simple XML editor 25 453

4-XMLMath(∗) XML-based expression evaluator 2 80

5-HTMLCleaner(∗) Transforms HTML a into a well-formed XML 1 27

6-MegaMek-v0.32.2(∗) A networked Java clone of BattleTech 32 811

7-weirdx-1.0.32(∗) A pure Java X Window System server 3 108

8-Java Gui Builder0.6.5a(∗) Decouple GUI code from the rest of application 19 163

9-Bluepad v0.1(∗) Turns cellphone to a remote PC controller 5 11

10-Jaxe(∗) Java XML editor 7 178

11-JDom1-1(2) Access to XML data 7 68

12-JFreeChart-1.0.9(∗) Create Charts 41 475

13-KoLmafia-v12.3(∗) A interfacing tool with online adventure game 27 740

All - 173 3260

(1) http://nanoxml.cyberelf.be; (2) http://www.jdom.org/; (∗) http://www.sourceforge.net/ ;

Table 8.1: Data source

8.3 Simulation of the Development Phases

There are various methods of software development. Some of these methods propose top-

down approach [112], which begins with describing the system at high level of abstraction

106 8.3 Simulation of the Development Phases

(called model or high design level), then this description is refined progressively until

getting the code (the final implementation).

In the following we define three abstraction levels. These levels intuitively correspond

to an approach that starts by highlighting the principle classes in the application, then it

identifies their attributes, afterwards it defines their methods (signatures), then it defines

the inner classes1, and finally the complete coding.

Obtaining the models using this method has two properties. First, all applications

are consistent with their models. Second, all models are expressed at the same level of

abstraction. As a consequence, this method makes the comparison consistent.

Level 1 considers the attributes of the application classes, but neither considers the

methods nor the attributes of an inner class type. In other words, it just considers the

attributes of types such as numbers, array, lists, string,...etc and the attributes whose

their types are classes which are not inner classes.

public class SampleExample{
/∗ At t r i b u t e s ∗/

int a t t r i b u t e 1 ;

S t r ing a t t r i b u t e 2 ;

byte [] a t t r i b u t e a r r a y ;

Non innerClassType at t r ibute complex ;

}

Level 2 considers the attributes and the methods signatures of the application classes,

but not those of inner class types, nor the methods which have one or more parameters

of inner class types, nor the methods that return a value of an inner class type.

public class SampleExample{
/∗ At t r i b u t e s ∗/

int a t t r i b u t e 1 ;

S t r ing a t t r i b u t e 2 ;

byte [] a t t r i b u t e a r r a y ;

Non innerClassType at t r ibute complex ;

/∗ Methods ∗/

public int ge tAt t r i bu t e 1 (){
return a t t r i b u t e 1 ;

}
public void s e tA t t r i bu t e 1 (int para0){}

1An inner class is a class that is defined in another class, it could be declared also inside the body of

a method (either with name or without name).

8. Detecting Testability Antipatterns during the Development Process 107

public void i n i t (){}
}

Level 3 considers the attributes, methods signatures and inner classes. It also consid-

ers the attributes of inner class types, and the methods which have parameter(s) of inner

class types, in addition to the methods that return a value of an inner class type. Since

the inner classes do not appear early in the development, therefore we did not include

them in the first and second levels of the abstraction levels.

public class SampleExample{
/∗ At t r i b u t e s ∗/

int a t t r i b u t e 1 ;

S t r ing a t t r i b u t e 2 ;

byte [] a t t r i b u t e a r r a y ;

Non innerClassType at t r ibute complex ;

InnerClassEx a t t r i b u t e 3 ;

/∗ Inner Class Type ∗/

InnerClassEx (){
// some a t t r i b u t e s and methods

}

/∗ Methods ∗/

public int ge tAt t r i bu t e 1 (){
return a t t r i b u t e 1 ;

}
public void s e tA t t r i bu t e 1 (int para0){}
public void i n i t (){}
public void c a l c (int para0 ,

InnerClassEx para1){}
}

Level 4 or Source code level represents the complete implementation of the class.

8.4 Data Analysis

This work aims at studying several open source applications in order to detect and analyze

the testability antipattern occurrences, and especially the class cycles, with the intention

to understand at which point the cycles are introduced during the development. To

108 8.4 Data Analysis

achieve this goal we analyzed 13 open-source Java applications. Table 8.1 gives small

description for these applications, and their sizes expressed by the number of packages

and classes. They represent 173 packages and more than 3260 classes and interfaces.

They were chosen arbitrarily on the web mainly from sourceforge.

It would be interesting to collect data during the real development of the application.

However, this is really difficult because the models which are used to build an application

are not distributed with the application. Therefore, we chose to simulate the top-down

approach using the reverse engineering.

To get the first three levels of abstraction, we developed a program based on Java

reflection. It can extract the three levels from the byte code. We have compiled each

model in order to get a model that is free of compilation errors. Then we have used

Classycle’s Analyser1, an Eclipse plugin, to analyze the class dependencies in Java appli-

cations at the source code level and at the abstraction levels. From this plugin we can

get the number of cycles and their size for each application.

The first goal of this analysis is identifying the class cycles that appear in each ap-

plication. Table 8.2 shows the frequency of different cycle sizes, expressed also by a

percentage. From this table one can observe that the number of cycles of size 2 and 3

represent 49.05% and 20.95% respectively of the total number of cycles of all sizes, while

the cycles that have a size greater than 21 smaller than 30 represent 2.38% of the total

number of cycles.

Although the cycles of size n are less complex than cycles of size m, where m > n, but

the total complexity caused by the cycles could be reduced if we can refactor the cycles

of size 2 and 3 which represent about 70% of all classes. Therefore, one should avoid and

refactor the cycles of all sizes, and that is not limited only to the big cycles.

In order to answer the questions “Are there any elements that favor the occurrence of

cycles? Which ones? ”, we studied the structure of the classes that make a part of the

cycles. We found that the main cause behind the previous observation is the occurrence

of inner classes. Table 8.2 shows the maximum cycle size, and the minimum cycle size,

the total number of classes related to all cycles in an application, the number of inner

classes, and the percentage of inner classes in a cycle to the total classes in it. From the

Table 8.2 one can notice that more than 50% of classes that belong to cycles are inner

classes.

1http://classycle.sourceforge.net/

8. Detecting Testability Antipatterns during the Development Process 109

Therefore avoiding or limiting the use of inner classes will reduce the number of

potential usages, that means less number of test cases will be required.

The second goal of our analysis is detecting at which point the cycles are introduced

during the development. Therefore we carried out this analysis at four levels, the three

abstraction levels in addition to the source cod level. The different levels of abstraction

allow us to know how many cycles are introduced at each level. Although it is clear that

the source code level will have the maximum number of cycles, and the level 1 will have

the minimum number of cycles, but we do not know at which level the number of cycles

begins to increase significantly, and at which level the cycle’s complexity increases.

Application/Cycle size 2 3 4 5-10 11-20 21-30 >30

CEF 1 4 1 3 0 1 1

Bluepad 0 0 0 1 0 0 0

HtmlCleaner 0 0 0 0 0 1 0

JavaGUIBuilder 6 4 1 1 0 0 0

Jaxe 6 2 0 0 0 0 1

Jdom 2 4 1 0 0 1 0

JfreeChart 20 5 1 2 1 0 1

JSXE 12 2 2 5 1 1 4

KoLmafia 13 4 4 3 0 1 1

MegaMek 38 18 3 11 3 0 4

Weirdx 2 1 0 0 0 0 1

NanoXML 2 0 0 0 0 0 0

XmlMath 1 0 1 0 0 0 0

Total 103 44 14 26 5 5 13

Percent 49,05 20,95 6,67 12,38 2,38 2,38 6,19

Table 8.2: The frequency of cycles of different sizes at the source code level

Application/Cycle size #Max #Min #Cycles #Classes in all cycles #Inner Classes %Inner classes

NanoXML 2 2 2 2 1 50

CEF 38 2 11 105 91 86.67

JSXE 129 2 27 361 209 57.89

XmlMath 4 2 2 6 1 16.67

HtmlCleaner 21 21 1 21 0 0

MegaMek 101 2 77 571 321 56.22

Weirdx 58 2 4 65 10 15.38

JavaGUIBuilder 6 2 12 34 22 64.71

Bluepad 10 10 1 10 0 0

Jaxe 132 2 9 150 84 56

JDom 24 2 8 44 13 29.55

JFreeChart 36 2 30 121 22 18.18

KoLmafia 598 2 26 703 396 56.33

Total - - 210 2193 1170 53.35

Table 8.3: Max/Min cycle size and number of cycles at the source code level

Table 8.4 shows, for each abstraction level, the maximum cycle size, minimum cycle

size and number of cycles. From both Table 8.3 and 8.4, we can observe that the number

of cycles increases progressively from level one to level four (source code level).

110 8.4 Data Analysis

Level 1 Level 2 Level 3

Application/Cycle size #Max #Min #Cycles #Max #Min #Cycles #Max #Min #Cycles

1-NanoXML 0 0 0 0 0 0 2 2 1

2-CEF 0 0 0 3 3 1 3 3 3

3-Jsxe 2 2 2 8 2 6 46 2 43

4-XMLMath 0 0 0 0 0 0 0 0 0

5-HTMLCleaner 0 0 0 8 8 1 10 10 1

6-MegaMek 13 2 5 39 2 15 45 2 47

7-weirdx 13 2 4 27 2 2 27 2 9

8-Java Gui Builder 0 0 0 0 0 0 3 2 7

9-Bluepad 0 0 0 0 0 0 0 0 0

10-Jaxe 4 3 3 9 3 3 24 2 19

11-JDom 3 3 3 8 8 1 10 2 7

12-JFreeChart 2 2 3 31 2 9 31 2 24

13-Kolmafia 2 2 1 29 2 4 29 2 99

Total 21 42 260

Table 8.4: Max/Min cycle size and number of cycles at the abstraction levels

Additionally, from Figure 8.2 one can notice that the number of cycles for the 3rd,

7th, 10th and 13th application at level 3 is greater than the number of cycles at the

source level. To interpret this observation we study the structure of the cycles, and we

found that some cycles at the source level could be formed from a combination between

two or more cycles found at level 3. This also could be seen by comparing the maximum

number of classes that form the cycles at the source level and the level 3 (see Table 8.3

and 8.4).

Figure 8.2: Number of cycles per application at each level

This analysis leads us to two conclusions. First, it is important to detect the cycles at

the model level and to refactor them in order to eliminate them as many as possible and

as soon as possible. Because the more there are cycles in the model, the more cycles will

8. Detecting Testability Antipatterns during the Development Process 111

be in the coding phase, or the more complex they will be. As a consequence the difficulty

of testing increases.

Second, it is not sufficient to analyze cycles at the model level, since new cycles would

be introduced during the coding phase. This means analyzing and refactoring of the code

may be required to ease the test. Moreover, the integration tests may not be built only

from the model since it may not describe existing cycles at the source code.

8.5 Limits of the Work

In this study, we focused only on the relationships between classes, more precisely, on

detecting the cycles that are introduced during the development phases. In this analysis

we have simulated the development by defining three levels of abstraction and collecting

data using reverse engineering. But these levels do not represent real development case,

which is not possible due to the difficulty of obtaining the real models that are used for

building the applications under study. This study could be extended to detect other types

of antipatterns that could be introduced during the development. Also, it is important

to analyze the consequences of refactoring the cycles and the inner classes, in order to

evaluate how much the testability is influenced by this modification. And whether it is

really merit the cost of the modifications.

8.6 Conclusions

In this chapter, we presented the notion of antipatterns, which are weaknesses that reduce

the testability of software. The antipatterns could be detected early in the life cycle of

software development. Additionally, we presented our quantitative analysis, that we

carried out to find if there is any relationship between the occurrence of antipatterns and

the characteristics of the code.

The results of this analysis show that the cycles are frequent to be found in the different

levels. According to our defined levels, the number of cycles increases significantly at the

level 3 and 4. Most cycles are of size 2 and 3, they represent about 70% of the total

cycles. Also, we found that inner classes participate strongly in forming the cycles.

Moreover, we found that detecting the cycles at the model level is important, but

it is not sufficient to avoid all problems caused by the cycles. One reason behind that

either the number of cycles introduced during any level of abstraction increases at the

next refined level or the cycles may become more complex. The results of this work have

112 8.6 Conclusions

been published in [107, 109] Therefore, analyzing the cycles at each level of development

is essential, and it is interesting to have some tools associated with the development

environments that could detect the cycles during the different phases of development.

Conclusion and Perspectives

Software testing is an expensive activity. It is the most reliable and used method to

validate the software programs. Different approaches were proposed to reduce the cost of

testing. One approach is the software testability. A large work has been done to define

metrics that are proposed to estimate the testability of the software. But a few works

have been carried out to validate those metrics.

In this thesis, we showed a large set of software testability metrics, and we focused

on validating some classical metrics. Some of these metrics are subject to controversial

opinions. In our validation process, we differentiate between two testing levels, the unit

testing level and the integration testing level. At the unit level, we focused on validating

testability metrics against specific testing criteria. Also, we have introduced new metrics

that were adapted from classical software metrics, these new metrics can be used to

estimate the cost of testing at the unit level. For the integration testing, our focus was

on the testability antipatterns, we were interested in detecting the antipatterns, and

checking when they are introduced during the development life cycle.

Our validation based essentially on empirical analyses that we carried out on different

open-source Java applications of different sizes. Finally, we developed “Metrics Calcu-

lator”, that is a simple tool to calculate our adapted metrics and some other classical

ones.

As a perspective to this work, it would be interesting to extend this methodology to

validate other testability metrics with respect to other testing strategies. That may lead

to well-defined guide that permits the developers and testers to determine which metrics

have to be used to evaluate the testability with respect to the testing methods which will

be used.

Another perspective is introducing a testability transformation approach that aims

at detecting predefined and customized testability antipatterns in order to transform low

testable software to more testable one. This approach may be developed to be used at

different development phases.

113

114 8.6 Conclusions

Appendix A

Basic Concepts in Statistics

A.1 Introduction

The role of scientists is not simply to try to describe phenomena, but rather to explain

them. From available knowledge, they develop scientific theories of why something hap-

pens and then make appropriate observations to check them. In turn, these observations

can lead to modifications of the theory, which must also be checked, and so on [78].

Scientific research involves a continual interaction between theory and empirical observa-

tions. An observation is characterized by several characteristics: type of variables, role

of variables, accuracy and precision.

To start a statistical study, one should clarify what we shall actually observe or

measure. Useful information can occur in many contexts. It may be obtained at first

hand by measuring the height of each person for example, or at second hand, by asking

the people how tall they are. Then this information should be shown by using some

data representation methods, in order to be used later to understand the nature of this

information, and to discover if there is any relationship that relates this data.

In our case, the information that we need to study is the proposed metrics of software

testability. Therefore, we have calculated certain number of testability metrics for several

applications in order to study the correlations (if there is any) between these metrics.

In this appendix, we present general basic concepts in statistics that have been used

in our empirical validation (chapters 5, 6, 7 and 8). Section 2 describes the different types

of statistical variables. Section 3 presents some methods for representing data. Section

4 shows how to measure the correlation between variables. Section 5 is dedicated to

describe different notions which are used in testing statistical hypotheses process. Section

115

116 A.2 Types of Variables

6 describes the goodness of fit tests. Section 7 focuses on analyzing the relationship

between variables by using a regression model.

A.2 Types of Variables

A variable is a symbol that represents any value of a specified set of values. The variables

refer to things that could be measured, controlled or manipulated in a research problem.

The variables differ according to their role, they could be independent or dependent. In

the following we list the different types of variables.

1. Nominal: when the names of the variables have no relationship of order or mag-

nitude among them, then the variable is called nominal, e.g.: sex, nationality or

religion.

2. Ordinal: if a variable can have three or more distinct values and these have a

rank order, without measure of distance among them, in this case the variable of

ordinal type, e.g.: letters grades (A, B, C...), appreciation of something (like, dislike,

indifferent).

3. Integral: in case of values that are counts, e.g. number of children.

4. Continuous: when the values are measures, and these variables have two types

(ratio and interval), e.g.: length, weight.

5. Discrete: the discrete variables are those variables which are not continuous, e.g.:

age, income, temperature.

A.3 Data Representation

Collected data should be shown in a representative and objective manner, in such way

one could get useful information from that representation. Showing data can be done in

different ways depending on the type of involved variable. Two main forms to represent

data are tables and graphics [78]. These two forms are important in descriptive statistics,

which is concerned with describing the number of relationships between them.

A. Basic Concepts in Statistics 117

A.3.1 Tables

After determining the variable that one wants to observe, one should determine how to

register it. An initial table of any study will contains observed values of all the variables.

This table called raw data, in which each column corresponds to a different variable.

Individual Sex Age Opinion

1 M 20 Agree

2 F 65 Disagree

3 F 45 Indifferent

4 M 71 Disagree

5 M 45 Agree

(a) Raw Data

Frequency

M 3

F 2

Total = #individuals 5

(b) Frequency Table

Table A.1: Data Representation

To summarize raw data we could use the notion of frequencies, where for each category

we calculate the number of individuals observed of a variable. For example in the Table

A.1a, we have 3 males and 2 females. The corresponding frequency table is Table A.1b,

which represents the number of individuals observed in each category. Here one should

notice that the total size of the sample (number of individuals) is equal to sum of all the

frequencies of a characteristic.

Number individuals = Number of males + Number of females

A simple frequency table does not allow showing the relationship among variables in case

of several variables. To show the relationship cross-classified frequency table or

contingency table can be used.

Example 1 Let us consider a group of 30 students, 13 out of 30 are males. This

group has the choice to follow an algorithm course. Some of them (18 students, within 10

are males) has followed it, while the others not. Table A.2 uses cross-classified frequency

table to summarize these data, the right column represents the frequency of the row; 13

students are male, and 17 students are female. The last line represents the frequency of

column; 18 students have followed the course, and 12 have not.

The Table A.2 is a case for the frequencies of two variables, which called two-way

table. Table A.3 represents a general form for two-way table of two variable Y and Z,

where nij corresponds to the frequency of Yi with considering Zj, and the marginal totals

are obtained by the following equations:

118 A.3 Data Representation

Followed the course

Sex Yes No Total

M 10 3 13

F 8 9 17

Total 18 12 30

Table A.2: Contingency Table For Example 1

Z = 1 Z = 2 · · · Z = J

Y = 1 n11 n12 · · · n1J

Y = 2 n21 n22 · · · n2J

...
...

...
. . .

...

Y = I nI1 nI2 · · · nIJ

Table A.3: Two Way Table

ni+ =
J

∑

j=1

nij, i = 1, 2, ..., I(rows)

n+j =
I

∑

i=1

nij, j = 1, 2, ..., J(columns)

n++ =
I

∑

i=1

J
∑

j=1

nij = n(Total)

A.3.2 Graphics

There are several types of diagrams for representing data such as scatter plot, stem

plots, leaf plots, box plots and whisker plots. In particular, we use the scatter plot and

histogram diagrams that we present here.

Scatter Plot

Scatter plot (scatter graph) could be used to take a first look on the behavior of data

understudy. It uses the Cartesian coordinates to visualize the values of X and Y. From

this graph, we can also determine the correlation (see also A.4) between the two variables

as following:

• Positive correlation if the data points go from lower left to upper right (Figure A.1).

A. Basic Concepts in Statistics 119

• Negative correlation if the data points go from upper left to lower right (Figure A.2).

Figure A.1: Scatter plot for data given in Table A.4

Example 2 Let us consider two variables X and Y , their values are given in the Table

A.4. To visualize the type of the correlation between these two variables, we represent

the data of X and Y using scatter plot. Figure A.1 represents the correlation between

the both variables. From this graph, we can notice that data points go from the lower

left to the upper right. Therefore we say there is a positive correlation between X and

Y .

X 152 134 157 176 133 158 137 128 131 294 240 243 263

Y 1041 1230 984 1366 532 997 683 672 754 3048 1780 1970 2938

Table A.4: Sample data of Example 2

Example 3 Let us consider two variables X and Y , their values are given in the Table

A.5. X represents the distance traveled by a car, and Y represents the gasoline remained

in the car’s tank1. For visualizing the relationship between the both variables we use

scatter plot graph. Figure A.2 represents the correlation between X and Y . From this

graph, we can notice that data points go from the upper left to the lower right. Therefore

we say there is a negative correlation between X and Y .

1We suppose that the car’s driver does not refill the tank until it goes empty.

120 A.3 Data Representation

X:Distance 0 50 150 280 350 420 540 680 700 750

Y:Gasoline 15 14 12 9,5 8 6,5 4,2 1,4 1 0

Table A.5: Distance/Gasoline Data - Example 3

Figure A.2: Scatter plot for data given in Table A.5

Frequency Histograms

The histogram is a summary graph that represents the count of data points which fall in

various ranges. In other words, a frequency histogram is a way to represent how many

items are in each numerical category.

Example 4 Let us consider the marks of students in maths (marks of 100): Mark:

47, 24, 67, 20, 38, 24, 76, 98, 31, 1, 38, 28, 6, 21, 2, 49, 38, 70, 19, 29, 62, 54, 38, 45,

44, 70, 92, 26, 35, 46, 44, 11, 49, 45, 6, 22, 2, 53, 33, 64.

We want to know how these marks spread according to five interval: [0,25], [26,45],

[46,55], [56,70], [70,100]. To do that, frequency histogram can be used as shown in Fig-

ure A.3.

Furthermore, suppose that for each course, a histogram represents how the marks

spread. To check these histograms if they follow the same distribution, or they belong to

the same distribution law, one could use Wilcoxon test method (see A.6.2).

A. Basic Concepts in Statistics 121

Figure A.3: Frequency histogram for marks in Example 4

A.4 Correlation Coefficient

The correlation coefficient measures the strength of relationship between two variables.

Let us consider two variables X, Y that are covarying, then there are two possibilities

of this covariance, either X and Y are increasing/decreasing together, or one of them

increases and the other decreases. In the first case, we say a positive correlation exists

between X and Y, and in the second case, we say a negative correlation exists between

X and Y.

Example 5 Consider X to be man’s age between 1 and 20 years, and Y to be his/her

height. One could state that X and Y are both increasing, so man’s age and his height are

correlated positively. Another example, consider X to be the distance that a car travels,

and Y to be the gasoline remained in the tank. In this example, X increases while Y

decreases which indicates a negative correlation between the two variables (see Example

3 and Figure A.2).

There are different methods to measure the correlation between variables. Some of

these methods depend on the relationship between the variables (if it is linear or not). A

relationship between two variables X and Y is linear if Y could be written as a function

of X(Y = F(X)), where the degree of X in F(X) is at most one. In other words, Y

could be written in the form Y = aX + c, where a and c are constant. Otherwise, the

relationship is non-linear.

There are two categories of statistical methods: parametric and non-parametric. A

parametric statistical method could be used only if we know form which statistical dis-

122 A.4 Correlation Coefficient

tribution the data sample is drawn. Otherwise, if the distribution is unknown then

we must use a non-parametric method to evaluate the correlation. In general a non-

parametric method could be used instead of a parametric method, but not the vice versa.

Choosing a parametric or non-parametric method is a matter of judgment. In general, a

non-parametric method protects against some violations of assumptions and not others.

Because it does not require any assumption about normality, equal variances, and inde-

pendence, which are required by some parametric methods. On the other hand, it is not

preferred to use non-parametric all the time, because parametric methods are robust and

have great power efficiency (relative to sample size).

We discuss in the following some of these methods:

1. Pearson Correlation

2. Spearman’s Correlation

3. Kendall Rank Correlation

A.4.1 Pearson Correlation

Pearson Correlation Coefficient is a statistical parametric method that requires a linear

relation between X and Y, and they should be drawn from Normal distribution. Pearson

correlation r is calculated from the following equation:

r = 1
n−1

∑

(Xi−X̄
sx

)(Yi−Ȳ
sy

)

where X̄, Ȳ are the sample averages, sx, sy are standard deviations1 and n is the

sample size.

The value of Pearson r ranges between -1 and +1. If the value of r is zero then there

is no relationship between X and Y . If the value of r belongs to]0,1[then X and Y are

correlated positively. If the value of r belongs to]-1,0[then X and Y are correlated

negatively. In case of r equals one, that means all data are lying on same line, and both

X and Y are increasing, in this case X and Y have perfect positive correlation. In

case of r equals -1, that means the value of Y increases while the value of X decreases,

and in this case X and Y have perfect negative correlation.

1Let X be a random variable and let X̄ be the average value of X, then the standard deviation of

X is given by:
√

E(X − X̄)2, where E represents the mathematical expectation.

A. Basic Concepts in Statistics 123

Example 6 If we go back to the sample data given in the Table A.4 and calculate

the Pearson correlation value1, we get r = 0.9539 which indicates a positive correlation

between the two variables X and Y . In the following we show how to calculate the

Pearson correlation:

Step 1: we start by calculating the average of X and Y :

X̄ =
1

n

n
∑

i=1

Xi = 180, 46

Ȳ =
1

n

n
∑

i=1

Yi = 1384, 23

where n is the sample size.

Step 2: we need the standard deviation for X and Y . The standard deviation for

sample data is calculated from the following formula:

sx =

√

√

√

√

1

n

n
∑

i=1

(Xi − X̄)2

sx = 55, 85

sy =

√

√

√

√

1

n

n
∑

i=1

(Yi − Ȳ)2

sy = 796, 95

Step 3: Now, we can apply the formula of Pearson, where the all required values are

presented in the Table A.6. Finally, we get r = 0, 95

A.4.2 Spearman’s Correlation Coefficient

Spearman correlation does not require a linear relationship between the two variables.

In addition to that, it is non-parametric method. So it could be used whatever the

distribution of X and Y. But we should be aware that this method is used if there are

no tied pairs in the sample. Spearman’s Correlation is interpreted in the same way as

Pearson Correlation.

Spearman correlation ρ is calculated as following:

1Several tools could be used to compute the Pearson correlation value, e.g. Microsoft Excel.

124 A.4 Correlation Coefficient

X Y (X − X̄)2 (Y − Ȳ)2 (X − X̄)/sx (Y − Ȳ)/sy (X − X̄)(Y − Ȳ)/sx.sy

152 1041 810,06 117807,36 -0,51 -0,43 0,22

134 1230 2158,67 23787,13 -0,83 -0,19 0,16

157 984 550,44 160184,67 -0,42 -0,50 0,21

176 1366 19,91 332,36 -0,08 -0,02 0,00

133 532 2252,60 726297,28 -0,85 -1,07 0,91

158 997 504,52 149947,67 -0,40 -0,49 0,20

137 683 1888,91 491724,59 -0,78 -0,88 0,68

128 672 2752,21 507272,67 -0,94 -0,89 0,84

131 754 2446,44 397190,82 -0,89 -0,79 0,70

294 3048 12890,98 2768128,05 2,03 2,09 4,24

240 1780 3544,83 156633,28 1,07 0,50 0,53

243 1970 3911,06 343125,59 1,12 0,74 0,82

263 2938 6812,60 2414198,82 1,48 1,95 2,88

Table A.6: Pearson Correlation for Example 6

ρ = 1 − 6
∑

d2
i

n(n2−1)

where di is the difference between the ranks of corresponding values of X and Y , and n

is the number of pairs.

Example 7 Suppose that X and Y are given in the Table A.4. To calculate ρ we

follow the following steps:

1. Order the value of X.

2. Ranking each value of X and Y.

3. Calculate the difference between rank X and the corresponding rank Y.

4. Applying the formula of ρ.

∑

d2
i = 38 ⇒ ρ = 0, 895604

According to the calculated value of Spearman Correlation for X and Y, we can say

that X and Y are correlated positively, which corresponds also to the Figure A.1.

Note In the ranking step, if we have two (or more) equal values of the variables, then

the associated rank will be the average of the corresponding ranks (see Table A.8). The

ranks that will be used in the calculation of Spearman are shown in the column “Rank

X” in of the Table A.8.

A. Basic Concepts in Statistics 125

X Y Rank X Rank Y di d2
i

128 672 1 2 -1 1

131 754 2 4 -2 4

133 532 3 1 2 4

134 1230 4 8 -4 16

137 683 5 3 2 4

152 1041 6 7 -1 1

157 984 7 5 2 4

158 997 8 6 2 4

176 1366 9 9 0 0

240 1780 10 10 0 0

243 1970 11 11 0 0

263 2938 12 12 0 0

294 3048 13 13 0 0

Table A.7: Calculating Spearman Correlation For Example 7

X Initial Rank X Rank X

128 1 1

131 2 2

133 3 3

134 4 4

137 5 (5 + 6)/2 = 5.5

137 6 (5 + 6)/2 = 5.5

152 7 7

157 8 8

158 9 9

176 10 (10 + 11 + 12)/3 = 11

176 11 (10 + 11 + 12)/3 = 11

176 12 (10 + 11 + 12)/3 = 11

240 13 13

243 14 14

263 15 15

294 16 16

Table A.8: Special Case for Spearman (Repeated values of X and/or Y)

126 A.4 Correlation Coefficient

A.4.3 Kendall Rank Correlation Coefficient

Kendall correlation τ is also a non-parametric method that evaluates the degree of sim-

ilarity between two sets of objects ranks. The following formula shows how to calculate

τ value:

τ =
4P

n(n − 1)
− 1

where n is the number of items, and P is the sum of items ranked after the given item

by both rankings.

Example 8 Suppose that X and Y are given in the Table A.4. To calculate Kendall

correlation we apply the following steps:

1. Order the value of X.

2. Ranking each value of X and Y.

3. Calculating P as sum of ti, where ti is the number of items that have rank higher

than the rank value of ith item.

4. Applying the formula of τ .

X 1 2 3 4 5 6 7 8 9 10 11 12 13

Y 2 4 1 8 3 7 5 6 9 10 11 12 13

ti 11 9 10 5 8 5 6 5 4 3 2 1 0

Table A.9: Ranking and Calculating P value in Kendall Example 8

P =
∑

ti = 69

τ =
4 ∗ 69

13(13 − 1)
− 1 = 0.769 where n=13

Kendall τ has three versions, called τa, τb and τc, the first version does not make any

adjustment for ties, while the second and the third versions do. τb is used when data

tables are square (2-by-2 table) otherwise τc is used.

A.4.4 Conclusion

To analyze accurately the correlation between two variables, we should choose the more

appropriate correlation method. Choosing the right method depends on some assump-

tions about the variables. Table A.10 represents a simple guide to choose the appropriate

correlation method.

A. Basic Concepts in Statistics 127

Correlation methods Assumptions about the variables

Pearson Correlation - A linear relationship between the both variables.

- Both variables are interval.

- Both variables are well approximated by normal distribution.

Spearman Corrlation - Do not require a linear relationship between variables.

- Do not require the variable to be interval.

- Do not require any assumption about the frequency distribution.

Kendall Correlation - Same as Spearman.

Table A.10: Correlation Methods

A.5 Statistical Hypothesis Testing

A hypothesis is either a suggested explanation for an observable phenomenon or a rea-

soned proposal predicting a possible causal correlation among multiple phenomena. If

the hypothesis is stated in terms of population parameters such as mean and variance,

the hypothesis is called a statistical hypothesis [54]. A statistical hypothesis test

is a procedure that enables us to agree or disagree with the statistical hypothesis using

sample data. For instance, a quality test organization carries out a test to evaluate the

quality of an appliance if it is correspond to the standard quality.

Hypothesis testing enables one to quantify the degree of uncertainty in sampling

variation, which may account for the results that deviate from the hypothesized values

in a particular study. There are two types of hypothesis, first a research hypothesis

that represents a general idea about the nature of the question in the population, while

the goal of the second type, statistical hypothesis, is establishing the basis for tests of

significance.

Statistical hypothesis testing starts by making a set of two statements about the

parameter(s) in question. One statement must be true, while the other must be false.

The first statement is called the null hypothesis and is denoted by H0, and the second

is called the alternative hypothesis and is denoted by H1. The null hypothesis is a

generally the opposite of the research hypothesis. For instance, H0 assumes that there is

no association between the predictor and the outcome variables in the population under

study, while H1 assumes the existence of this association.

Statistical hypothesis testing depends on calculating the probability of observing the

difference between two values. This probability is called the p-value. According to the

p-value, if it is low enough, one can conclude that H0 is not true, and there is really a

difference between the two values.

128 A.5 Statistical Hypothesis Testing

Several interpretation of p-value are often made:

• p-value is viewed as the probability that the results obtained were due to chance.

• 1-p is considered the reliability of the result; that is, the probability of getting the

same result if the experiments were repeated.

• Alternatively p-value can be treated as the probability that the null hypothesis is

true.

To establish a statistical hypothesis test, one should follow the fives steps:

1. Formulate the null hypothesis H0, about some phenomenon or parameter, and the

alternative hypothesis H1.

2. Compute the statistical test for the given conditions.

3. Calculate the p-value.

4. Accept/reject the null hypothesis:

• accept H0: if the p-value is greater than a significance level (typically 0.05).

• reject H0: if the p-value is less than or equal a significance level (typically 0.05).

5. Interpret the results according to the hypotheses H0 and H1.

The results of a hypothesis test may be subject to two distinctly different errors.

These errors called Type I and Type II errors. Type I error happens if H0 is rejected

incorrectly, that is, when H0 is true, but for the sample (under study)-based inference

procedure rejects it. Type II error happens if H0 is incorrectly failed to be rejected,

that is, if H0 is not true, but inference procedure fails to detect this fact. Clearly, Type

I and II errors cannot be commited at the same time, and we cannot know if we have

commited one of these two errors.

Example 9 An elementary school has 300 students. The principal of the school thinks

that the average IQ of students is at least 110. To prove her point, she administers an IQ

test to 20 randomly selected students. Among the sampled students, the average IQ is

108 with a standard deviation of 10. Based on these results, one can test if the principal

should accept or reject the original hypothesis. Let us consider the significance level of

0.01.

A. Basic Concepts in Statistics 129

Step 1 Stating the null hypothesis and the alternative one:

Null hypothesis H0: µ >= 110

Alternative hypothesis H1: µ < 110

where µ is the hypothesized population mean of IQ.

The null hypothesis will be rejected if the sample mean is too small, according to the

significance level.

Step 2 We then calculate the standard error SE:

SE =
s√
n

=
10√
20

= 2.236

where s is the given standard deviation and n is the sample size.

Step 3 We will apply the Student t-test t that corresponds to the Student distribution1

(with the assumption the population is normally distributed):

t =
(x̄ − µ)

SE
=

(108 − 110)

2.236
= −0.894

where x̄ is the sample mean.

Step 4 Since the sample size is 20, the the degree of freedom is 20-1=19. We use the

previous information to calculate the probability P(t < -0.894). We used an online

statistical table2.

P (t < −0.894) = 0.19

⇒ p − value = 0.19

Since obtained p-value is greater than the significance level, we cannot reject the null

hypothesis.

A.6 Goodness of Fit Tests

One could have a sample data, and a function that supposed to describe the data. From

hypothesis testing point of view, one could ask the question: does this function really

provide an adequate description of the way the data behave? In other words, are there any

1Choosing the statistical test is done with respect to the population distribution, for instance if it is

Fisher distribution, then the corresponding test is F-test.
2 http://stattrek.com/Tables/t.aspx

http://stattrek.com/Tables/t.aspx

130 A.6 Goodness of Fit Tests

significance and incompatible differences? To show that there are real differences between

the data and the function, one has to prove that the probability of these differences

is small, then the null hypothesis is rejected, the function and the date are supposed

to disagree, and the fit is not “good”. Goodness of fit tests are formal hypothesis

tests that can be used to determine whether a set of observed values fit some specified

distribution [78]. There are several tests could be used to do that, such as χ2 and Wilcoxon

tests.

A.6.1 Chi-square Test χ2

The χ2 is the squared difference between the observed values and their theoretical pred-

ications, suitably weighted by the errors of measurement.

χ2 =
N

∑

i=1

(xobserved
i − xideal

i)2/expected error

where the expected error is the standard deviation of x. The chi-square test is used if

we have one categorical independent variable and one categorical dependent variable. For

example, the independent variable might be gender (male and female) and the dependent

variable whether or not employees are promoted within two years of appointment. The

two variables are cast into a contingency Table A.11. The chi-square test tells us whether

the variable on the row is independent of the variable on the column.

Promoted Not promoted Total

Male 36 14 50

Female 30 25 55

Total 66 39 105

Table A.11: Chi-Square (male/ female) promoted example

To apply the formula of χ2 we need to calculate the expected value for each cell. The

expected value of a cell cij equals to the total value of the row i times the total value of the

column j divided by the grand total. For example the expected value that corresponds to

the value 36 is 50× 66/105 = 31.428, in similar way we can calculate the other expected

values for the others, Table A.12.

Now, we can get the value of χ2, which represents the sum of the values in the left

column:

χ2 = 0.665 + 1.125 + 0.604 + 1.023 = 3.417

A. Basic Concepts in Statistics 131

xobserved xexpected y = xobserved − xexpected y2/xexpected

36 31.428 4.572 0.665

14 18.571 -4.571 1.125

30 34.571 4.571 0.604

25 20.428 4.572 1.023

Table A.12: Calculating Chi-Square for (male/female) promoted example

To interpret the calculated value of Chi-Square, we need to determine the degree of

freedom, and we need a table of the critical values of the Chi-Square distribution. The

degree of freedom df is given by the number of cells minus one. For our example df = 3.

The Table A.13 is a partial table1 of critical values of χ2.

Level of Significance

df 0.10 0.05 0.025 0.01 0.001

1 2.706 3.841 5.024 6.635 10.828

2 4.605 5.991 7.378 9.210 13.816

3 6.251 7.815 9.348 11.345 16.266

4 7.779 9.488 11.143 13.277 18.467

5 9.236 11.070 12.833 15.086 20.515

Table A.13: Partial table of critical values of Chi-square Distribution

If we consider a significance level of 0.05, then our calculated χ2 is smaller than the

corresponding critical value 7.815 for a degree of freedom df=3. Therefore, there is no

dependency between the row and column variables of Table A.11.

A.6.2 Wilcoxon Tests

There are two types of Wilcoxon tests: Wilcoxon Mann-Whitney Test and Wilcoxon

Signed Ranks Test. Wilcoxon Mann-Whitney Test is a powerful non-parametric test,

which is used for comparing two populations. It is used to test the null hypothesis that two

populations have identical distribution functions against the alternative hypothesis that

the two distribution functions differ only with respect to location (median). This test does

not require the assumption that the differences between the two samples are normally

1Chi-Square table could be found on http://www.itl.nist.gov/div898/handbook/eda/section3/

eda3674.htm

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm

132 A.6 Goodness of Fit Tests

distributed [76]. Wilcoxon Signed Ranks Test is used to test that a distribution is

symmetric about hypothesized value. In other words, it is designed to test a hypothesis

about the location (median) of a population distribution. This test also does not require

the assumption that the population is normally distributed.

Example 10 (Wilcoxon Signed Ranks Test): Let us suppose that we want to

make a report that shows if the students are really interested in some topics. We will

inquire 16 students to give a mark of 100 for two topics A and B that represents their

interest in these two topics. Table A.14 shows their responses:

Student 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Topic A 78 24 64 45 64 52 30 50 64 50 78 22 84 40 90 72

Topic B 78 24 62 48 68 56 25 44 56 40 68 36 68 20 58 32

Table A.14: Data for Example 10

To apply Wilcoxon test, first we start by calculating the difference between X that

represents the marks of topic A, and Y that represents the marks of topic B. Second, we

calculate the absolute value of this difference. After calculating the difference, we rank1

these resulting values (absolute and signed) Table A.15.

The next step is calculating the value of W for the Wilcoxon test, which is the sum

of the signed ranks.

W = 1 − 2 − 3.5 − 3.5 + 5 + 6 + 7 + 8.5 + 8.5 − 10 + 11 + 12 + 13 = 67

Note: The sum of positive ranks is +W = n(n+1)/2, where n is the number of ranks

without regarding the zero values, in the previous example n is 14. This sum represents

the maximum possible positive value. While -W = -1 × n(n+1)/2 is the minimum

possible negative value.

In our example +W= 105 and -W= -105, therefore a preponderance of positive signs

among the signed ranks would refer to rate the topic A as a higher probability than the

topic B. Otherwise, if there is a preponderance of negative signs, that would refer that

the topic A has a lower probability than the topic B. While in case of W is close to 0

that refers the probability of each topic A and B is approximately equal, then there is

no preference between these topics for the students. For our example, since there is a

preponderance of positive signs, then the students prefer the topic A more than the topic

B.

1If the difference between X and Y is zero, they are excluded from the ranking.

A. Basic Concepts in Statistics 133

X Y X-Y Abs(X-Y) Rank absolute Rank signed

78 78 0 0 - -

24 24 0 0 - -

64 62 -2 2 1 1

45 48 3 3 2 -2

64 68 4 4 3.5 -3.5

52 56 4 4 3.5 -3.5

30 25 -5 5 5 5

50 44 -6 6 6 6

64 56 -8 8 7 7

50 40 -10 10 8.5 8.5

78 68 -10 10 8.5 8.5

22 36 14 14 10 -10

84 68 -16 16 11 11

40 20 -20 20 12 12

90 58 -32 32 13 13

72 32 -40 40 14 14

Table A.15: Ranking data of Example 10

Example 11 (Wilcoxon Mann-Whitney Example): Let us consider a group of

21 students. We form two subgroups A of 11 students, and B of 10 students. A hypothesis

is supposed about the subgroup A that its students are more active than the students of

B. A teacher has examined the two subgroups, with giving a mark of 10 for each student.

The Table A.16 represents the marks given by the teacher.

Subgroup A 4.6 4.7 4.9 5.1 5.2 5.5 5.8 6.1 6.5 6.5 7.2

Subgroup B 5.2 5.3 5.4 5.6 6.2 6.3 6.8 7.7 8.0 8.1

Table A.16: Marks of students - Example 11

The average of marks of the subgroup A is 5.6, and the average of the subgroup B

is 6.5. From regarding the average of each subgroup, one could say that the subgroup

A does not reflect the assumption that A is more active than B. To test whether the

calculated average difference is significant, we will apply Wilcoxon Mann-Whitney test.

First we are going to rank the marks of all students, Table A.17.

Then we calculate the sum and the average of ranks of each subgroup Table A.18.

134 A.6 Goodness of Fit Tests

Student’s Mark 4.6 4.7 4.9 5.1 5.2 5.2 5.3 5.4 5.5 5.6 5.8

Rank 1 2 3 4 5.5 5.5 7 8 9 10 11

Belongs to A A A A A B B B A B A

Student’s Mark 6.1 6.2 6.3 6.5 6.5 6.8 7.2 7.7 8.0 8.1

Rank 12 13 14 15.5 15.5 17 18 19 20 21

Belongs to A B B A A B A B B B

Table A.17: Ranking all students marks Example 11

The total sum of all ranks TAB is N(N+1)/2, where N is the total number of students.

Therefore TAB is 231. We could also find the average of all ranks simply by the formula

(N+1)/2. In our example the total average is 11.

Ranks
∑

Ranks Ranks Ave.

Ranks of A 1 2 3 4 5.5 9 11 12 15.5 15.5 18 TA = 96.5 8.8

Ranks of B 5.5 7 8 10 13 14 17 19 20 21 - TB = 134.5 13.5

Table A.18: Sum and average of ranks of subgroup A and B

Let us assume that the null hypothesis for our example is, “there is no difference

between the subgroup A and B”. The null hypothesis could be true if the average of the

A ranks and the B ranks approximate the overall average value of (N+1)/2=11. In other

words the TA and TB (that are given in Table A.18) will approximate the values:

T
′

A = nA(N + 1)/2 = 11(21 + 1)/2 = 121 where nA is size of A

T
′

B = nB(N + 1)/2 = 10(21 + 1)/2 = 110 where nB is size of B

We calculate the standard deviation of TA and TB, which is given by:

σT =

√

nAnB(N + 1)

12
= ±14.2

Next step is calculating the standard score or what is called z-ratio. The standard

score indicates how many standard deviations of an observation is above or below the

average. Z-ratio is given by the following formula:

Z =
(T − M) ± 0.5

σT

A. Basic Concepts in Statistics 135

where T is any of the observed values TA or TB and M is the corresponding average of

T .

ZA =
(96.5 − 121) + 0.5

14.2
= −1.69

ZB =
(134.5 − 110) − 0.5

14.2
= +1.69

It is not by chance that the absolute value of ZA and ZB are equal. For all instance

of ZA and ZB they will have the same absolute values. Therefore no difference if the test

of statistical significance is done with ZA or ZB. For our example, since observed value

TA smaller than its null-hypothesis value of T
′

A and the value of ZA is negative, that will

lead to the assumption that the subgroup B is more active than A.

A.7 Regression Analysis

Regression analysis is a statistical method for analyzing a relationship between two or

more variables in such a manner that one variable can be predicted by using information

on the others [6, 76, 115]. It could be applied to predict the future values of variables.

The purpose of a regression analysis is to observe sample measurements taken on different

variables, called independent variables (factors), and to examine the relationship between

these variables and a dependent variable (response).

In the following we describe two regression methods that could be used to find a

relationship between variables.

A.7.1 Simple Regression Model

A regression analysis starts with an estimate of the population mean(s) using a function,

which explains the relationship between the independent variable(s) and the dependent

variable. This function is called the regression function (regression model). In the sim-

plest case, this function can be described geometrically by a line if there is only one

independent variable or a multidimensional plane if there are several. In the simple case,

the regression function (model) has the following form:

y = A + Bx + ǫ

This form represents the linear regression model. Where y is the independent variable and

x is the dependent one. A and B are called the regression coefficients. The ǫ represents

the error term.

136 A.7 Regression Analysis

Example 12 Let us consider the data shown in the Table A.19, which represents the

price of gas per gallon and the quantity sold over a period of 15 years:

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Price 1.62 1.667 1.69 1.70 1.72 1.73 1.736 1.74 1.75 1.755 1.756 1.77 1.767 1.756 1.77

Quantity 159 160 163 166 167 167 168 167 167.9 168.9 169 169 170 171 172

Table A.19: Price of gas per gallon

We want to represent these data as a regression model. For simplifying we will consider

a linear form y = A + Bx. Now we have to find the value of A and B. For that purpose

we use the Least Square method. The idea behind this method is minimizing the error of

prediction. A and B are calculated from the formula:

B =

∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2

A = ȳ − Bx̄

Year x=Price y=Quantity (x − x̄) (y − ȳ) (x − x̄) ∗ (y − ȳ) (x − x̄)2

1 1,62 159 -0,10847 -7,98667 0,86629 0,01177

2 1,67 160 -0,06147 -6,98667 0,42945 0,00378

3 1,69 163 -0,03847 -3,98667 0,15335 0,00148

4 1,7 166 -0,02847 -0,98667 0,02809 0,00081

5 1,72 167 -0,00847 0,01333 -0,00011 0,00007

6 1,73 167 0,00153 0,01333 0,00002 0,00000

7 1,74 168 0,00753 1,01333 0,00763 0,00006

8 1,74 167 0,01153 0,01333 0,00015 0,00013

9 1,75 167,9 0,02153 0,91333 0,01967 0,00046

10 1,76 168,9 0,02653 1,91333 0,05077 0,00070

11 1,76 169 0,02753 2,01333 0,05543 0,00076

12 1,77 169 0,04153 2,01333 0,08362 0,00173

13 1,77 170 0,03853 3,01333 0,11611 0,00148

14 1,76 171 0,02753 4,01333 0,11050 0,00076

15 1,77 172 0,04153 5,01333 0,20822 0,00173

Table A.20: Calculating A and B values for simple regression - Example 12

According to the Table A.20 the A and B could be calculated:
n

∑

i=1

(xi − x̄)(yi − ȳ) = 2, 12919

A. Basic Concepts in Statistics 137

n
∑

i=1

(xi − x̄)2 = 0, 02572

then:

B = 2, 12919/0, 02572 = 82, 7834

A = 166, 9866 − (82, 7834 ∗ 1, 72847) = 23, 8979

So the regression model (function) is:

y = A + Bx = 23, 8979 + 82, 7834x

Form this regression model, one can predict future values of y that represent the quantity

of gas.

Figure A.4: Simple regression for data given in Table A.20

A.7.2 Multiple Regression Model

In the previous section, we saw how to find the regression model (function) using the

simple form y = A + Bx. Where the dependent variable y depends only on one variable

x, which is not always the case. In general, the dependent variable could have dependency

on other variables, and here the regression model will have the following form:

y = A +

p
∑

i=1

BiXi

138 A.8 Conclusion

Finding the constants Bi requires a sample of n observations of X where each observation

satisfies the regression model:

yi = β0 +
i=1
∑

i=p

βixi + ui

where ui is the error term, and βi are constants.

The constant βi can be calculated using the least squares procedure, which minimizes

the sum of squares of errors:

S =
i=n
∑

i=1

u2
i =

i=n
∑

i=1

(yi − β0 − β1x1 − β2x2 − ... − βpxp)
2

This minimization of the sum of squares leads to the following equations, from which the

values of βi can be found:

i=n
∑

i=1

yi = nβ0 + β1

i=n
∑

i=1

xi1 + β2

i=n
∑

i=1

xi2 + ... + βp

i=n
∑

i=1

xip

i=n
∑

i=1

xi1yi = β0

i=n
∑

i=1

xi1 + β1

i=n
∑

i=1

x2
i1 + β2

i=n
∑

i=1

xi1xi2 + ... + βp

i=n
∑

i=1

xi1xip

i=n
∑

i=1

xi2yi = β0

i=n
∑

i=1

xi2 + β1

i=n
∑

i=1

xi1xi2 + β2

i=n
∑

i=1

xi
i2 + ... + βp

i=n
∑

i=1

xi2xip

....
i=n
∑

i=1

xipyi = β0

i=n
∑

i=1

xip + β1

i=n
∑

i=1

xi1xip + β2

i=n
∑

i=1

xi2xip + ... + βp

i=n
∑

i=1

x2
ip

There are various tools that can calculate these constant such as TANAGRA1.

A.8 Conclusion

In this appendix we have presented several basic concepts in statistics such as representing

data using graphics and table, measuring the correlation between variables using different

methods, in addition to an overview on the steps of leading a statistical hypotheses test.

The topics presented here present common concepts that are used in several empirical

studies. Therefore, we used them also during the analysis study that we carried out.

1TANAGRA is a free data mining software, that has several methods for exploratory data analysis.

It can be downloaded from http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html

http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html

Appendix B

Metrics Calculator

Metrics Calculator is a simple tool that we developed to calculate some metrics, among

which the adapted metrics that we introduced in this thesis. It can calculate the following

metrics:

• DIT, depth of inheritance tree.

DIT (C) = |Ancestors(C)|

• DITA, depth of inheritance tree restricted to the application tree.

DITA(C) = |Ancestors(C)\JC|

where JC is the set of all Java classes

• WMC, weighted method per class.

WMC(C) =
n

∑

i=1

ci

where ci is the cyclomatic complexity of the method i in the class C.

• WMH, weighted method per class for the entire hierarchy.

WMH(C) = WMC(C) +
∑

Ci∈Ancestors(C)

WMC(Ci)

• WMHA, weighted method per class for the application hierarchy (does not include

the Java classes such as JDK).

WMHA(C) = WMC(C) +
∑

ci∈Ancestors(C)\JC

WMC(ci)

139

140

• NOM, number of methods including the class’s constructors.

NOM = |MD(C)|

where MD(C) is the set of methods which are defined in the class C.

• NOH, number of inherited methods.

NOH = |MIn|

where MIn is the set of all inherited methods.

• NOHA, number of inherited methods of application classes.

NOHA = |MIA|

where MIA is the set of all inherited methods except the inherited ones from Java

classes.

• RFC, response for class.

RFC = |RS| where RS = {M} ∪∀i {Ri}

where {Ri} is the set of methods called by method i, and {M} is a set of all methods

in the class.

• NOC, number of immediate children.

NOC(C) = |Descendants(C)|

• CC, McCabe cyclomatic complexity of a method.

CC = number of decision statements + 1

How to use

To use Metrics Calculator, we need to specify the path of the application that we want

to analyze, see Figure B.1. If the specified application requires some jars library to

be run, we can specify them from the menu Settings>Class path, see Figure B.2. The

Settings window allows the use to add single, multiple or folder path. If repeated paths

are common to be used in the analysis, they can be save to a text file and be loaded later

from the same Settings window.

B. Metrics Calculator 141

Figure B.1: Metrics Calculator Main Window

Figure B.2: Adding Required Libraries

After specifying the application path and its required libraries, we simply click on the

button “Start Analyzing” to run the analysis process. Once the analysis process finishes

a result window appears, see Figure B.3. The result window shows each class of the

application classes the calculated metrics values in the same row.

In order to Visualize the cyclomatic complexity of any class, it is sufficient to click on

the class name to list all class’s methods including the constructors and their associated

complexity.

Some tools, such Metrics plugin for eclipse, assign a unity to any methods if they

are defined in an interface, defined as native or even as abstract method. Actually, the

method in such cases does not have any implementation, therefore assigning a value of 1

to it may not be accurate. For that we have chosen to assign zero value to such methods.

142

Figure B.3: Result Window of Metrics Calculator

Additionally, we differentiate among four levels of RFC metric:

• RFC0: includes all kinds of call, even the ones that do not appear explicitly in the

source code.

• RFC1: excludes some special calls such as toString(), append() that could appear

in both byte and source code.

• RFC2: excludes the calls of constructors, even the ones that do not appear explicitly

in the source code.

• RFC3: excludes both calls of level one and two.

Choosing the required level for RFC is done from the menu Settings.

Glossary

AIF Attribute Inheritance Factor

Bounce-C number of yo-yo paths visible to CUT

Bounce-S number of yo-yo paths in SUT

Ca & Ce Afferent/Efferent Coupling

CBO Coupling

CC Cyclomatic Complexity

COF Coupling Factor

Ct Controlability

DIT Depth of Inheritance Tree

DITA Depth of Inheritance Tree restricted to Application

DRR Domain Range Ratio

DYN percent of Dynamic Calls

EF Encapsulation Factor

EPIE Extened PIE

FDFR Fixed Domain / Fixed Range

FIN Fan-In

ICH Information CoHesion

KSLOC same as SLOC but K stands for Kilo

143

144

LCC Losse Class Cohesion

LCOM Lack Of Cohesion of a Method

LOC number of Lines Of Code

MC/DC Modified Condition / Decision Coverage

MCC Most Cohesive Component

MIF Method Inheritance Factor

MMC Mean Method Complexity

MPC Message Passing Coupling

NOC Number Of Children

NOH Number Of InHerited methods

NOHA Number Of Application inHerited methods

NOM Number Of Methods

NOR Number Of Root Classes

NOTC Number Of Test Cases

NSBC Number oof Stubs needed to Break Cycles

NTM Number of Trivial Methods

Ob Observability

OVR percent of non-Overloaded Calls

PAP Percent of Public and Protected attributes

PF/POF Polymorphism Factor

PIE Propogation Infection Execution

RCI Ratio of Cohesive Interactions

RCO Ratio of Component Observability

B. Metrics Calculator 145

RFC Response For Class

SCCp Self-Completeness of Component’s parameter

SCCr Self-Completeness of Component’s Return value

SDMC Standard Deviation Method Complexity

SLOC number of Source Lines Of Code

STA System Testability

TCC Tight Class Cohesion

VC Visibility Component

VDFR Variable Domain / Fixed Range

VDVR Variable Domain / Variable Range

WMC Weighted Methods per Class

WMH Weighted Methods per Class for the Hierarchy

WMHA Weighted Methods per Class for the Hierarchy restricted to the application

146

Bibliography

[1] JUnit. http://www.junit.org. 61

[2] IEEE standard for a software quality metrics methodology. IEEE Std 1061-1992,

12 Mar 1993. 50, 54, 55

[3] IEEE standard Glossary of Software Engineering Terminology. IEEE Std 610.12-

1990, Dec 1990. 25, 44, 65

[4] R. Kent A. Kent, J. G. Williams. Encyclopedia of microcomputers. CRC Press,

1991. 24

[5] A. A. Abdul Ghani, K. T. Wei, G. M. Muketha, and W. P. Wen. Complexity metrics

for measuring the understandability and maintainability of business process models

using goal-question-metric (GQM). IJCSNS International Journal of Computer

Science and Network Security, 8(5):219–225, 2008. 36

[6] A. Agresti. An Introduction to Categorical Data Analysis. Wiley, 1996. 135

[7] R. T. Alexander and A. J. Offutt. Criteria for testing polymorphic relationships.

Software Reliability Engineering, International Symposium on, 0:15, 2000. 31

[8] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University

Press, 2008. 19, 28, 31

[9] J.M. Armstrong and R.J. Mitchell. Uses and abuses of inheritance. Software Engi-

neering Journal, 9(1):19–26, january 1994. 40, 60

[10] L.M. Pickard B.A. Kitchenham and S.J. Linkman. An evaluation of some design

metrics. Softw. Eng. J., 5(1):50–58, 1990. 50

[11] R. Bache and M. Mullerburg. Measures of testability as a basis for quality assurance.

Software Engineering Journal, 5(2):86–92, 1990. 36, 51

147

148 Bibliography

[12] J. Bainbridge. Defining testability metrics axiomatically. Softw. Test., Verif. Re-

liab., 4(2):63–80, 1994. 36

[13] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented design

metrics as quality indicators. IEEE Trans. Software Eng., 22(10):751–761, 1996.

56, 60

[14] B. Baudry, Y. Le Traon, G. Sunyé, and J.-M. Jézéquel. Measuring and improving

design patterns testability. In 9th IEEE International Software Metrics Symposium

(METRICS 2003), pages 50–, Sydney, Australia, September 2003. 103, 104, 105

[15] B. Baudry and Y. Le Traon. Measuring design testability of a uml class diagram.

Information & Software Technology, 47(13):859–879, 2005. 104

[16] B. Baudry, Y. Le Traon, and G. Sunyé. Testability analysis of a uml class diagram.

In 8th IEEE International Software Metrics Symposium (METRICS 2002), pages

54–, Ottawa, Canada, June 2002. 103

[17] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, 1990. 19, 67

[18] R. G. (Ben) Bennitts. Progress in design for test: A personal view. IEEE Design

& Test of Computers, 11(1):53–59, 1994. 25, 65

[19] A. Bertolino and L. Strigini. On the use of testability measures for dependability

assessment. IEEE Trans. Software Eng., 22(2):97–108, 1996. 47, 105

[20] J. M. Bieman and B.-K. Kang. Cohesion and reuse in an object-oriented system.

In SSR, pages 259–262, 1995. 42

[21] R. V. Binder. Design for testability in object-oriented systems. Communications

of the ACM, 37(9):87–101, September 1994. 19, 24, 25, 26, 30, 31, 33, 37, 38, 40,

42, 43, 44, 46, 51, 56, 57, 59, 67, 103

[22] R. V. Binder. Testing object-oriented software: A survey. Softw. Test., Verif.

Reliab., 6(3/4):125–252, 1996. 31

[23] R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. The

Addison-Wesley Object Technology Series, 1999. 30, 31, 34, 40, 59, 63

Bibliography 149

[24] A. B. Binkley and S. R. Schach. Validation of the coupling dependency metric as a

predictor of run-time failures and maintenance measures. In In Proceedings of the

20 th International Conference on Software Engineering, pages 452–455, 1998. 60

[25] L. C. Briand, J. W. Daly, and J. Wüst. A unified framework for cohesion mea-

surement in object-oriented systems. Empirical Software Engineering, 3(1):65–117,

1998. 42

[26] L. C. Briand, J. W. Daly, and J. Wüst. A unified framework for coupling measure-

ment in object-oriented systems. IEEE Trans. Software Eng., 25(1):91–121, 1999.

39

[27] L. C. Briand, S. Morasca, and V. R. Basili. Defining and validating high-level

design metrics. Technical report, College Park, MD, USA, 1994. 42

[28] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter. Exploring the relationships

between design measures and software quality in object-oriented systems. Journal

of Systems and Software, 51(3):245–273, 2000. 56, 60

[29] L. C. Briand, J. Wüst, J. W. Daly, and V. Porter. A comprehensive empirical

validation of design measures for object-oriented systems. In 5th IEEE Interna-

tional Software Metrics Symposium (METRICS 1998), pages 246–257, Bethesda,

Maryland, USA, March 1998. 60

[30] L. C. Briand, J. Wüst, S. V. Ikonomovski, and H. Lounis. Investigating quality

factors in object-oriented designs: An industrial case study. In ICSE, pages 345–

354, 1999. 56, 60

[31] L. C. Briand, J. Wüst, and H. Lounis. Replicated case studies for investigating

quality factors in object-oriented designs. Empirical Software Engineering, 6(1):11–

58, 2001. 56, 60

[32] D.B. Brown, S. Maghsoodloo, and W.H. Deason. A cost model for determining the

optimal number of software test cases. IEEE Transactions on Software Engineering,

15(2):218–221, 1989. 19

[33] M. Bruntink and A. van Deursen. An empirical study into class testability. Journal

of Systems and Software, 79(9):1219–1232, September 2006. 57, 60, 63

150 Bibliography

[34] T. J. Cheatham and L. Mellinger. Testing object-oriented software systems. In

ACM Conference on Computer Science, pages 161–165, 1990. 40, 59

[35] S. R. Chidamber and C. F. Kemerer. Towards a metrics suite for object oriented

design. In OOPSLA, pages 197–211, 1991. 103

[36] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.

IEEE Trans. Software Eng., 20(6):476–493, 1994. 37, 38, 40, 41, 43, 51, 59, 60, 62,

68, 103

[37] C.-M. Chung, T. K. Shih, C.-C. Wang, and M.-C. Lee. Integration object-oriented

software testing and metrics. International Journal of Software Engineering and

Knowledge Engineering (IJSEKE), 7(1):125–144, 1997. 40, 51

[38] D. J. Colwell and J. R. Gillett. Spearman versus kendall. The Mathematical Gazette,

66(438):307–309, 1982. 75

[39] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software engineering metrics and

models. Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1986.

36

[40] B. J. Cox. The need for specification and testing languages. Journal of Object-

Oriented Programming, 1(2):44–47, 1988. 31

[41] B. du Bois, S. Demeyer, and J. Verelst. Refactoring-improving coupling and co-

hesion of existing code. Reverse Engineering, Working Conference on, 0:144–151,

2004. 30

[42] F. Brito e Abreu and R. Carapua. Object-oriented software engineering: Measur-

ing and controlling the development process. In 4th International Conference on

Software Quality (ASQC), McLean, VA, USA, October 1994. 38, 43

[43] F. Brito e Abreu and R. Carapuça. Candidate metrics for object-oriented software

within a taxonomy framework. Journal of Systems and Software, 26(1):87–96, 1994.

60

[44] F. Brito e Abreu and W. L. Melo. Evaluating the impact of object-oriented design

on software quality. In IEEE METRICS, pages 90–99, 1996. 44, 60

Bibliography 151

[45] L. O. Ejiogu. Five principles for the formal validation of models of software metrics.

SIGPLAN Not., 28(8):67–76, 1993. 53

[46] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. The confounding effect of

class size on the validity of object-oriented metrics. IEEE Trans. Software Eng.,

27(7):630–650, 2001. 56, 60, 103

[47] M. Goulão F. Brito e Abreu and R. Esteves. Toward the design quality evaluation

of object-oriented software systems. pages 44–57, October 1995. 38

[48] N. Fenton. Software measurement: A necessary scientific basis. IEEE Trans. Softw.

Eng., 20(3):199–206, 1994. 52

[49] N. E. Fenton. When a software measure is not a measure. Software Engineering

Journal, 7(5):357–62, September 1992. 52, 54

[50] S. P. Fiedler. Object-oriented unit testing. Hewlett-Packard Journal, 40(2):69–75,

April 1989. 40, 59

[51] International Organization for Standardization. ISO 9126: Information technology

software product evaluation quality characteristics and guidelines for their use.

Technical report, ISO, Geneva, 1991. 25

[52] P. G. Frankl and E. J. Weyuker. An applicable family of data flow testing criteria.

IEEE Trans. Software Eng., 14(10):1483–1498, 1988. 34

[53] R. S. Freedman. Testability of software components. IEEE Trans. Software Eng.,

17(6):553–564, 1991. 28, 45

[54] R. J. Freund and W. J. Wilson. Statistical Methods. Academic Press, 2003. 127

[55] D. Gu, Y. Zhong, and S. Ali. On testing of classes in object-oriented programs.

In Conference of the Centre for Advanced Studies on Collaborative Research (CAS-

CON), page 22, Toronto, Ontario, Canada, October 1994. IBM. 34

[56] S. C. Gupta and M. K. Sinha. Improving software testability by observability and

controllabliity measures. In IFIP 13th World Computer Congress, pages 147–154,

September 1994. 103

152 Bibliography

[57] T. Gyimóthy, R. Ferenc, and I. Siket. Empirical validation of object-oriented met-

rics on open source software for fault prediction. IEEE Trans. Software Eng.,

31(10):897–910, 2005. 56, 60

[58] R. Harrison, S. J. Counsell, and R. V. Nithi. An evaluation of the mood set of

object-oriented software metrics. IEEE Trans. Softw. Eng., 24(6):491–496, 1998.

50

[59] M.J. Harrold, J.D. McGregor, and K.J. Fitzpatrick. Incremental testing of object-

oriented class structures. In International Conference on Software Engineering

(ICSE), May 1992. 40, 59, 62

[60] B. Henderson-Sellers. Object Oriented Metrics: Measures of complexity. Prentice

Hall, 1996. 34, 56

[61] S. Henry and D. Kafura. Software structure metrics based on information flow.

Software Engineering, IEEE Transactions on, SE-7(5):510–518, Sept. 1981. 38, 51

[62] B. Hetzel. The complete guide to software testing (2nd ed.). QED Information

Sciences, Inc., Wellesley, MA, USA, 1988. 17

[63] A. Iannino, J. D. Musa, K. Okumoto, and B. Littlewood. Criteria for software

reliability model comparisons. SIGSOFT Softw. Eng. Notes, 8(3):12–16, 1983. 53

[64] C. Izurieta and J. M. Bieman. Testing consequences of grime buildup in object ori-

ented design patterns. In ICST ’08: Proceedings of the 2008 International Confer-

ence on Software Testing, Verification, and Validation, pages 171–179, Washington,

DC, USA, 2008. IEEE Computer Society. 104

[65] C. Y. Huang J. R. Chang and T. H. Tsai. Software testability analysis using

extended pie method. In ISSRE: CD-ROM Proceedings of the 18th IEEE In-

ternational Symposium on Software Reliability Engineering (Student Travel Grant

Award), Trollhättan, Sweden, Nov. 2007. 48

[66] Z. Jin and A. Jefferson Offutt. Coupling-based integration testing. In ICECCS,

pages 10–17, 1996. 30

[67] Z. Jin and A. Jefferson Offutt. Coupling-based criteria for integration testing. Softw.

Test., Verif. Reliab., 8(3):133–154, 1998. 38

Bibliography 153

[68] P. C. Jorgensen. Software Testing: A Craftsman’s Approach. Auerbach Publica-

tions, 2008. 31

[69] S. Jungmayr. Design for testability. In Proceedings of CONQUEST 2002., pages

57–64, September 2002. 30

[70] S. Jungmayr. Identifying test-critical dependencies. In International Conference on

Software Maintenance (ICSM), pages 404–413, Montreal, Quebec, Canada, 2002.

IEEE Computer Society. 30, 39, 51, 103, 104, 105

[71] C. Kaner and W. P. Bond. Software engineering metrics: What do they measure

and how do we know? In 10th IEEE International Software Metrics Symposium

(METRICS 2004), Chicago, USA, September 2004. IEEE. 50, 52

[72] K. Karoui, A. Ghedamsi, and R. Dssouli. A study of some influencing factors in

testability and diagnostics based on fsms. In ISCC, pages 109–115. IEEE Computer

Society, 1999. 29

[73] B. Kitchenham, S. L. Pfleeger, and N. E. Fenton. Towards a framework for software

measurement validation. IEEE Trans. Software Eng., 21(12):929–943, 1995. 50

[74] D. C. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen. A test strategy for

object-oriented programs. In 19th International Computer Software and Appli-

cations Conference (COMPSAC’95), pages 239–244, Dallas, Texas, USA, August

1995. IEEE Computer Society. 39

[75] Y. Lee, B. Liang, S. Wu, and F. Wang. Measuring the coupling and cohesion of an

object-oriented program based on information flow. In International Conference on

software quality (ICSQ’95), pages 81–90, Maribor, Slovenia, November 1995. 42

[76] E.L. Lehmann and Romano J. P. Testing Statistical Hypotheses. Springer, 2005.

132, 135

[77] J.-C. Lin and Y.-L. Huang. A new method for estimating the testability of poly-

morphism in class hierarchy. Int. Computer Symposium, Dec 1998. 44

[78] J.K. Lindsey. Introduction to applied statistics a modelling approach. Oxford, 2004.

115, 116, 130

154 Bibliography

[79] B.W.N. Lo and Haifeng Shi. A preliminary testability model for object-oriented

software. Software Engineering: Education and Practice, 1998. Proceedings. 1998

International Conference, pages 330–337, 26-29 Jan 1998. 48

[80] T. J. McCabe. A complexity measure. IEEE Trans. Software Eng., 2(4):308–320,

1976. 36, 51, 67

[81] T. J. McCabe and C. W. Butler. Design complexity measurement and testing.

Communication of the ACM, 32(12):1415–1425, 1989. 36, 51

[82] J. D. McGregor and S. Srinivas. A measure of testing effort. In Second USENIX

Conference on Object-Oriented Technologies (COOTS), 1996. 49, 103

[83] M. G. Mendonça and V. R. Basili. Validation of an approach for improving existing

measurement frameworks. IEEE Trans. Softw. Eng., 26(6):484–499, 2000. 50

[84] T. Menzies, J. S. Di Stefano, and M. Chapman. Learning early lifecycle IV&V

quality indicators. In METRICS ’03: Proceedings of the 9th International Sympo-

sium on Software Metrics, page 88, Washington, DC, USA, 2003. IEEE Computer

Society. 41

[85] J. Michura and M.A.M. Capretz. Metrics suite for class complexity. In Interna-

tional Conference on Information Technology: Coding and Computing (ITCC’05),

volume 2, April 2005. 41

[86] V. B. Misic. Cohesion is structural, coherence is functional: Different views, differ-

ent measures. In IEEE METRICS, pages 135–, 2001. 31

[87] L. J. Morell. A theory of fault-based testing. IEEE Trans. Software Eng., 16(8):844–

857, 1990. 47

[88] S. Mouchawrab, L. C. Briand, and Y. Labiche. A measurement framework

for object-oriented software testability. Information & Software Technology,

47(15):979–997, 2005. 57

[89] G. Myers. The Art Of Software Testing. Wiley-Interscience, 1979. 17, 34, 47, 67

[90] A. Nadeem and R. Lyu Michael. A framework for inheritance testing from VDM++

specifications. In 12th IEEE Pacific Rim International Symposium on Dependable

Computing (PRDC 2006), pages 81–88, California, Riverside, USA, December 2006.

IEEE Computer Society. 31

Bibliography 155

[91] S. Ntafos. A Comparison of Some Structural Testing Strategies. IEEE Transactions

on Software Engineering, pages 868–874, june 1988. 34

[92] S. Ntafos. On random and partition testing. In Proceedings of ACM SIGSOFT

international symposium on Software testing and analysis, pages 42–48. ACM Press,

1998. 46

[93] H. M. Olague, S. Gholston, and S. Quattlebaum. Empirical validation of three soft-

ware metrics suites to predict fault-proneness of object-oriented classes developed

using highly iterative or agile software development processes. IEEE Trans. Softw.

Eng., 33(6):402–419, 2007. Senior Member-Etzkorn,, Letha H. 60

[94] M. Page-Jones. The practical guide to structured systems design: 2nd edition.

Yourdon Press, Upper Saddle River, NJ, USA, 1988. 30, 38

[95] D. E. Perry and G. E. Kaiser. Adequate testing and object-oriented programming.

Journal of Object Oriented Programming, 2(5):13–19, 1990. 31, 40

[96] B. Pettichord. Design for testability. In Pacific Northwest Software Quality Con-

ference (PNSQC), Portland, Oregon, 2002. 28

[97] R. E. Prather. An axiomatic theory of software complexity measure. The Computer

Journal, 27(4):340–347, Nov 1984. 53

[98] Rani and R.B. Misra. On determining the software testing cost to assure desired

field reliability. India Annual Conference, 2004. Proceedings of the IEEE INDICON

2004. First, pages 517–520, Dec. 2004. 19

[99] R. Reißing. Towards a model for object-oriented design measurement. In In

ECOOP Workshop on Quantative Approaches in Object-Oriented Software Engi-

neering, pages 71–84, 2001. 39

[100] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class analysis for testing of

polymorphism in java software. IEEE Trans. Software Eng., 30(6):372–387, 2004.

31

[101] H. E. Dunsmore S. D. Conte and V. Y. Shen. Software engineering metrics and

models. Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1986.

53

156 Bibliography

[102] S. Saini and M. Aggarwal. Enhancing mood metrics using encapsulation. In

ICAI’07: Proceedings of the 8th Conference on 8th WSEAS International Con-

ference on Automation and Information, pages 252–257, Stevens Point, Wisconsin,

USA, 2007. World Scientific and Engineering Academy and Society (WSEAS). 44

[103] M. De Scheemaecker. About nanoxml, 2007. http://nanoxml.cyberelf.be. 63

[104] N.F. Schneidewind. Methodology for validating software metrics. Software Engi-

neering, IEEE Transactions on, 18(5):410–422, May 1992. 50, 53

[105] M. Schroeder. A practical guide to object-oriented metrics. IT Professional, 1:30–

36, Nov.-Dec. 1999. 39

[106] H. Seok Chae and Y. Rae Kwon. A cohesion measure for classes in object-oriented

systems. In 5th IEEE International Software Metrics Symposium (METRICS),

pages 158–166, Bethesda, Maryland, USA, March 1998. IEEE Computer Society.

42

[107] M.-R. Shaheen and L. du Bousquet. Quantitative analysis of testability antipat-

terns on open source java applications. In 12th ECOOP Workshop on Quantitative

Approaches on Object Oriented Software Engineering, 2008. 112

[108] M.-R. Shaheen and L. du Bousquet. Relation between depth of inheritance tree and

number of methods to test. In 1st International Conference on Software Testing,

Verification and Validation, Lillehammer, Norway, April 2008. IEEE. 40, 57

[109] M.-R. Shaheen and L. du Bousquet. Analysis of the introduction of testability

antipatterns during the development process. In Fourth International Conference

on Software Engineering Advances ICSEA, Porto, Portugal, September 2009. IEEE.

112

[110] M.-R. Shaheen and L. du Bousquet. Is depth of inheritance tree a good cost predic-

tion for branch coverage testing? In First International Conference on Advances in

System Testing and Validation Lifecycle VALID, Porto, Portugal, September 2009.

IEEE. 91

[111] J.W. Sheppard and M. Kaufman. Formal specification of testability metrics in ieee

p1522. AUTOTESTCON Proceedings, 2001. IEEE Systems Readiness Technology

Conference, pages 71–82, 2001. 52

http://nanoxml.cyberelf.be

Bibliography 157

[112] I. Sommerville. Software Engineering. Addison Wesley, 2004. 105

[113] W. Stevens, G. Myers, and L. Constantine. Structured design. Classics in software

engineering, pages 205–232, 1979. 30, 31

[114] M.-H. Tang, M.-H. Kao, and M.-H. Chen. An empirical study on object-oriented

metrics. In 6th IEEE International Software Metrics Symposium (METRICS’99),

pages 242–249, Boca Raton, FL, USA, November 1999. IEEE Computer Society.

56, 60

[115] P. Tassi. Méthodes Statistiques. Economica, 2004. 135

[116] D. A. Troy and S. H. Zweben. Measuring the quality of structured designs. Software

engineering metrics I: measures and validations, pages 214–226, 1993. 30, 38

[117] J. M. Voas. Factors that affect software testability. Technical report, 1991. 29

[118] J. M. Voas and K. W. Miller. Software testability: The new verification. IEEE

Software, 12(3):17–28, 1995. 25

[119] J. M. Voas, J. Payne, R. Mills, and J. McManus. Software testability: An experi-

ment in measuring simulation reusability. In SSR, pages 247–255, 1995. 25

[120] J.M. Voas. PIE: A dynamic Failure-Based Technique. IEEE Transaction on Soft-

ware Engineering, 18(8):41–48, August 1992. 47

[121] J.M. Voas and K. Miller. Semantic Metrics for Software Testability. J. Systems

Software, 20:207–216, 1993. 49

[122] J.M. Voas and K.W. Miller. Software Testability: the new Verification. IEEE

Software, 3:17–28, May 1995. 47

[123] J.M. Voas and K.W. Miller. Substituting voas’s testability measure for musa’s fault

exposure ratio. volume 1, pages 230–234 vol.1, June 1996. 25

[124] M. A. Branstad W. Richards Adrion and J. C. Cherniavsky. Validation, verification,

and testing of computer software. ACM Comput. Surv., 14(2):159–192, 1982. 60

[125] Y. Wang, G. King, I. Court, M. Ross, and G. Staples. On testable object-oriented

programming. SIGSOFT Softw. Eng. Notes, 22(4):84–90, 1997. 47

158 Bibliography

[126] H. Washizaki, H. Yamamoto, and Y. Fukazawa. A metrics suite for measuring

reusability of software components. In 9th IEEE International Software Metrics

Symposium (METRICS’03), pages 211–, Sydney, Australia, September 2003. IEEE

Computer Society. 46, 56

[127] A. H. Watson and T. J. McCabe. Structured testing: A testing methodology using

the cyclomatic complexity metric. NIST Special Publication 500-235, National

Institute of Standards and Technology, August 1996. 36, 41, 51

[128] E. J. Weyuker. Evaluating software complexity measures. IEEE Trans. Softw. Eng.,

14(9):1357–1365, 1988. 50, 53, 54

[129] H. Y. Yang, E. D. Tempero, and R. Berrigan. Detecting indirect coupling. In Aus-

tralian Software Engineering Conference, pages 212–221. IEEE Computer Society,

2005. 105

[130] P.-L. Yeh and J.-C. Lin. Software testability measurements derived from data flow

analysis. In 2nd Euromicro Conference on Software Maintenance and Reengineering

(CSMR), pages 96–103, Florence, Italy, March 1998. IEEE Computer Society. 36,

51

[131] P. Yu, T. Systä, and H. A. Müller. Predicting fault-proneness using oo metrics:

An industrial case study. In 6th European Conference on Software Maintenance

and Reengineering (CSMR 2002), pages 99–107, Budapest, Hungary, March 2002.

IEEE Computer Society. 56, 60

[132] Y. Zhou and H. Leung. Empirical analysis of object-oriented design metrics for

predicting high and low severity faults. IEEE Trans. Software Eng., 32(10):771–

789, 2006. 56, 60

	1 Introduction
	2 Software Testability Notion
	2.1 Introduction
	2.2 Testability from Hardware to Software
	2.3 Software Testability Definitions
	2.4 Binder's Testability Factors
	2.5 Common Testability Factors
	2.6 Conclusion

	3 Testability Metrics and Metrics Validation
	3.1 Introduction
	3.2 Scope-Oriented Testability Metrics
	3.2.1 Methods
	3.2.2 Classes
	3.2.3 Stubs
	3.2.4 Inheritance

	3.3 General Complexity Metrics
	3.3.1 Cohesion
	3.3.2 Inheritance
	3.3.3 Polymorphism
	3.3.4 Encapsulation

	3.4 Complexity Metrics Related to Observability and Controllability
	3.4.1 Domain Testability
	3.4.2 Observability and Controllability of Components
	3.4.3 System Testability - STA

	3.5 Testability Metrics Related to Error Likelihood
	3.5.1 Propagation Infection Execution - PIE
	3.5.2 Domain-Range Ratio - DRR and Visibility Component - VC

	3.6 Conclusion
	3.7 Metrics Validation
	3.7.1 Measure and Metric Definitions
	3.7.2 Metric Construction Guide
	3.7.3 Metrics Validation Approaches
	3.7.4 Validation of Testability Metrics
	3.7.5 Conclusion

	4 Inheritance Testing: Adjusting Classical Testability Metrics
	4.1 Introduction
	4.2 Related Works
	4.3 Inheritance Testing in the Context of Java Applications
	4.3.1 Inheritance in Java
	4.3.2 Dealing with Inheritance When Testing Java Systems

	4.4 Cost of Inheritance Testing
	4.4.1 Hypotheses
	4.4.2 Cost of Testing
	4.4.3 Cost of Testing to Achieve Method Coverage
	4.4.4 Cost of Testing Strategies to Achieve Branch Coverage

	4.5 Conclusion

	5 Is DIT a Good Predictive Cost for Method Coverage Testing?
	5.1 Introduction
	5.2 Data Source
	5.3 Data Analysis
	5.3.1 Inherited Methods and DIT/DITA
	5.3.2 Defined Methods and DIT/DITA

	5.4 Conclusion

	6 Is DIT a Good Predictive Cost for Branch Coverage Testing?
	6.1 Introduction
	6.2 Statistical analysis
	6.2.1 Data Analysis

	6.3 Limits of the Experiment
	6.4 Conclusion

	7 Predicting the Cost of JUnit Designing
	7.1 Introduction
	7.2 Basic Concepts in JUnit
	7.3 Data Source
	7.4 Data Analysis
	7.5 Limit of the Work
	7.6 Conclusion

	8 Detecting Testability Antipatterns during the Development Process
	8.1 Introduction
	8.2 Testability Antipatterns
	8.3 Simulation of the Development Phases
	8.4 Data Analysis
	8.5 Limits of the Work
	8.6 Conclusions

	Conclusion
	A Basic Concepts in Statistics
	A.1 Introduction
	A.2 Types of Variables
	A.3 Data Representation
	A.3.1 Tables
	A.3.2 Graphics

	A.4 Correlation Coefficient
	A.4.1 Pearson Correlation
	A.4.2 Spearman's Correlation Coefficient
	A.4.3 Kendall Rank Correlation Coefficient
	A.4.4 Conclusion

	A.5 Statistical Hypothesis Testing
	A.6 Goodness of Fit Tests
	A.6.1 Chi-square Test Chi
	A.6.2 Wilcoxon Tests

	A.7 Regression Analysis
	A.7.1 Simple Regression Model
	A.7.2 Multiple Regression Model

	A.8 Conclusion

	B Metrics Calculator
	Glossary
	Bibliography

