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Abstract

This thesis is related to the Bit Error Rate (BER) estimation for any digital com-
munication system.

In many designs of communication systems, the BER is a Key Performance Indica-
tor (KPI). The popular Monte-Carlo (MC) simulation technique is well suited to any
system but at the expense of long time simulations when dealing with very low error
rates. In this thesis, we propose to estimate the BER by using the Probability Density
Function (PDF) estimation of the soft observations of the received bits.

First, we have studied a non-parametric PDF estimation technique named the Ker-
nel method. Simulation results in the context of several digital communication systems
are proposed. Compared with the conventional MC method, the proposed Kernel-based
estimator provides good precision even for high SNR with very limited number of data
samples.

Second, the Gaussian Mixture Model (GMM), which is a semi-parametric PDF
estimation technique, is used to estimate the BER. Compared with the Kernel-based
estimator, the GMM method provides better performance in the sense of minimum
variance of the estimator.

Finally, we have investigated the blind estimation of the BER, which is the esti-
mation when the sent data are unknown. We denote this case as unsupervised BER
estimation. The Stochastic Expectation-Maximization (SEM) algorithm combined with
the Kernel or GMM PDF estimation methods has been used to solve this issue. By
analyzing the simulation results, we show that the obtained BER estimate can be very
close to the real values. This is quite promising since it could enable real-time BER
estimation on the receiver side without decreasing the user bit rate with pilot symbols
for example.





Résumé

Dans cette thèse, nous proposons d’étudier les estimations du taux d’erreurs binaire
(BER) pour n’importe quel système de communications numériques.

Dans la majorité des cas, le BER est un paramètre clé de la conception du système.
Les simulations de type Monte-Carlo (MC) sont alors classiquement utilisées pour es-
timer les taux d’erreurs ; mais elles se révèlent très côuteuse en temps de simulation
lorsque les taux d’erreurs sont très faibles. De plus, elles ne sont pas applicables au
cas le taux d’erreurs doit être estimé en aveugle au niveau du récepteur. Par con-
séquent, nous proposons de mettre en œuvre des techniques d’estimation de densités
de probabilités (PDF) des observations souples en sortie du récepteur afin de réduire le
nombre d’échantillons nécessaires pour estimer les taux d’erreurs binaires du système
de communications numériques étudié.

Dans un premier temps, nous avons étudié l’estimation non-paramétrique appelée
“méthode du noyau” (Kernel) pour estimer la PDF. Le BER est calculé par intégration
(analytique) de la PDF estimée. Les résultats des simulations pour différents systèmes
de communications numériques ont été analysés. Par rapport à la méthode MC, la
méthode du noyau permet d’obtenir une estimation plus précise.

Ensuite, nous avons utilisé le modèle de mélanges de gaussiennes (GMM), qui est
une méthode semi-paramétrique souvent employées en reconnaissance de forme, pour
estimer le BER. Par rapport à la méthode du noyau, la méthode GMM permet de
réaliser les meilleures performances dans le sens de la minimisation de la variance de
l’estimateur.

Enfin, nous avons étudié l’estimation du BER de façon aveugle, c’est à dire sans
utiliser la connaissance des informations binaires transmises. Cette estimation est basée
sur l’algorithme SEM (Stochastic Expectation-Maximization), en combinaison avec les
méthodes du noyau et de la GMM vues précédemment. A partir des résultats des
simulations, nous constatons que le BER estimé de façon aveugle peut être très proche
de la valeur réelle tout en utilisant peu d’échantillons. Cette méthode pourrait s’avérer
très avantageuse pour l’estimation en ligne et en temps réel du BER au niveau du
récepteur.





Acronyms

ARQ Automatic Repeat Request

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BP Belief Propagation

BPSK Binary Phase Shift Keying

CCDF Complementary Cumulative Distribution Function

CDF Cumulative Distribution Function

CDMA Code-division Multiple-access

EM Expectation-Maximization

ENS Equivalent Noise Source

FEC Forward Error Correction

FPRA Floating-Point Relative Accuracy

GEC Generalized Exponential Class

GM Gaussian Mixture

GMM Gaussian Mixture Model

I.I.D. Independent and Identically Distributed

IS Importance Sampling

KDE Kernel Density Estimation

KEYS Kernel Estimating Your Shapes

KMA K-Means Algorithm

kNN k-Nearest Neighbor

KPI Key Performance Indicator

LDPC Low Density Parity Check

LLR Log-likelihood Ratio

MAI Multiple Access Interferences

MAP Maximum A-Posteriori

MC Monte-Carlo

MFSK/FH Multiple Frequency Shift Keying/Frequency Hopping



xiv ACRONYMS

MIMO Multiple Input Multiple Output

ML Maximum Likelihood

MLE Maximum Likelihood Estimation

NF Noise Figure

OLS Ordinary Least Squares

PDF Probability Density Function

QA Quasi-Analytical

QC-LDPC Quasi-Cyclic-Low Density Parity Check

QoS Quality of Service

Rx Receiver

SEM Stochastic Expectation-Maximization

SISO Soft-Input Soft-Output

SNR Signal-to-Noise Ratio

SOVA Soft-Output Viterbi Algorithm

SS Spread Spectrum

TE Tail Extrapolation

Tx Transmitter

WCSS Within-Cluster Sum of Squares



CHAPTER

1 Introduction

1.1 Overview

In analog communication systems, the distortion of the signal was used as a Key
Performance Indicator (KPI) of the quality of the transmission. In digital communica-
tions, the KPI of the quality of the transmission is the Bit Error Rate (BER).

The BER represents the probability of receiving an erroneous bit. Thus, BER gives
end-to-end performance measurement and quantifies the reliability of the entire com-
munication system from “bits in” to “bits out”. In other words, BER depends on all
the components of the communication system and may be affected by several factors,
e.g., transmission channel noise, distortion, attenuation, fading, synchronization prob-
lems and interferences. But it can also be improved by implementing error correction
schemes, resource allocation mechanisms, power control or link adaptation schemes.

Recently, Bit Error Rate estimation techniques have attracted much attention. BER
estimation is useful in Automatic Repeat Request (ARQ) and Hybrid ARQ systems
[SLS03, MZB01], in which packets may be retransmitted if the BER estimates are
too high. Other applications may be found in [HW01, VWR+01, HC06]. Especially,
on-line and real-time BER estimation for digital communication systems is of some
practical utility. Accurate BER estimates can be used as meaningful feedback quality
criteria [LH01]. As an example, power control mechanisms in digital communication
systems typically use the BER as a quality measure feedback for maintaining transmit
power at minimum required levels to maintain a desired Quality of Service (QoS)
(i.e., the transmitted Radio Frequency signal power can be decreased or increased till
the BER estimates reach a predefined criterion [Man06]). Hence, the BER estimation
is very important since it is not only the most important quality criteria for digital
communication systems but also the feedback information which enables system-level
optimizations.

In general, the BER cannot be analytically calculated and need to be estimated.
The popular Monte-Carlo (MC) simulation technique is convenient for estimating BER
by dividing the number of incorrect received bits by the total number of transmitted
bits during a given time. Unfortunately, it is well known that the Monte-Carlo method
has a very high computational cost for very low BER. Consequently, the MC technique
is not suitable for many applications, such as real-time and on-line BER estimation.
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1.2 Requirement of real-time on-line Bit Error Rate

estimation

As presented above, the BER estimate can be used as a feedback for many practi-
cal communication systems to perform system-level functions, such as power control,
resource allocation, link adaption [AG99]. In these applications, the BER is required
to be on-line estimated. Thus, the BER estimation faces the following challenges :

– The BER estimator should be immune to the transmitter/receiver scheme, chan-
nel condition, interference model and other information about the entire commu-
nication system, although these elements impacts the system performance and
the reliability of the BER estimate. In other words, we should find a technique
that provides reliable BER estimate for any communication system ;

– The BER should be estimated with the smallest possible number of samples.
Moreover, BER should be estimated by observing the soft values, and, if possible,
without having pilots symbols or any known bits.

This thesis is mainly motivated by the above challenges. In this report, we shall
present some new BER estimators based on Samir Saoudi’s works [STG09, STTP10,
SAIM11] :

– First, we will present two new BER estimation techniques based on probability
density function (PDF) estimations. PDF estimations will be based on either
non-parametric estimation (Kernel method) and on semi-parametric estimation
(Gaussian Mixture Model). We assume that the estimators do not have any in-
formation about the transceiver scheme and about the channel model. However,
the transmitted data bits are still assumed to be known, which means that the
estimation takes into account, for each received sample, what the sent bit is ;

– Second, we will present a novel unsupervised BER estimator : the estimation
does not require the knowledge of the transmitted information bits ; hence the
estimation of the BER is blind. Only the soft observations are used to meet the
requirements of on-line BER estimation.

1.3 Thesis organization

Chapter 2 introduces the basic idea of the conventional Monte-Carlo method and
the related modified MC-based techniques : the Importance Sampling method, the
Tail Extrapolation method and the Quasi-Analytical method. We will also present
the BER estimation method based on Log-Likelihood Ratio (LLR). Then we will
show that BER estimation can be considered equivalent to estimating the Probability
Density Functions of the receiver’s soft outputs. We will give a brief introduction of
the non-parametric method and the semi-parametric method. Special attention will
be paid to the Kernel method and the Gaussian Mixture Model which are the basis of
the fast BER estimation techniques studied in Chapter 3, 4 and 5.
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In Chapter 3, we will investigate the use of Kernel method for BER estimation
in a supervised fashion. We will show that the key parameter which determines the
performance of BER estimate is the bandwidth of the Kernel-based estimator. Some
methods for the bandwidth selection will be proposed and the behavior of the pro-
posed supervised Kernel-based estimator for different communication systems will be
reported. In this report, we focus on four systems :

1. Binary Phase-Shift Keying (BPSK) signal over Additive White Gaussian Noise
(AWGN) and Rayleigh channels ;

2. CDMA system with standard and decorrelator-based receivers ;

3. Turbo coding system ;

4. Low Density Parity Check (LDPC) coding system.

In Chapter 4, we address the semi-parametric method denoted Gaussian Mixture
Model. We will report the performance of BER estimation for the same systems as
presented in the previous chapter.

In Chapter 5, we extend the BER estimation techniques studied in Chapter 3 and
4 without the knowledge of transmitted information data. This scheme is denoted
“unsupervised BER estimation” and it is opposed to the “supervised” case described
in Chapter 3 and 4. The unsupervised BER estimation is based on a Stochastic
Expectation-Maximization (SEM) algorithm. Then we will study the behavior of the
unsupervised BER estimator.

Chapter 6 concludes the whole dissertation and gives some perspectives for future
research.





CHAPTER

2 State of the art for Bit

Error Rate estimation

2.1 Overview of conventional Bit Error Rate estima-

tion techniques

Before focusing on the fast Bit Error Rate estimation techniques, it is necessary to
give a brief introduction of the conventional BER estimation methods. In this section,
we shall give a tutorial exposition of some famous techniques : the well-known Monte-
Carlo simulation, the modified MC-based estimation methods and the Log-Likelihood
Ratio-based BER estimation technique.

2.1.1 Monte-Carlo simulation

The Monte-Carlo method is the most widely used technique for estimating the BER
of a communication system [JBS00, Jer84]. This technique is implemented by passing
N data symbols through a model of the studied digital system and by counting the
number of errors that occur at receiver. The simulation will include pseudo random
data and noise sources, along with the models of the devices that process the signal
present in the studied system. A number of symbols are processed by the simulation,
and the experimental BER is then estimated.

Let us consider a communication system transmitting BPSK symbols over an
AWGN channel. Let (bi)1≤i≤N ∈ {−1,+1} be a set of N independent transferred data.
For AWGN channel, the standard baseband system model can be expressed as :

s = g · b+ n, (2.1)

where s and b are the received and transmitted signals respectively, g is the channel
gain, n is the additive noise.

Let (Xi)1≤i≤N be the corresponding soft output before the decision at the receiver.
Thus, Xi = si, i = 1, . . . , N .

The hard decision is given by :

b̂i = sign(Xi) (2.2)
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We introduce the following Bernoulli decision function :

I(bi) =

{

1 if b̂i �= bi,

0 otherwise.
(2.3)

Hence, the BER can be expressed as :

pe = P (b̂i �= bi) = P [I(bi) = 1] = E[I(bi)] (2.4)

where E[·] is the expectation operator. Using multiple realizations of the transmitter
and channel, the MC method estimates the BER by using the ensemble average.

p̂e =
1

N

N∑

i=1

I(bi) (2.5)

The estimation error is given by :

∆ = pe − p̂e =
1

N

N∑

i=1

(pe − I(bi)) (2.6)

The variance of the estimation error is given by [JBS00] :

σ2
∆ =

pe(1− pe)

N
(2.7)

Then the normalized estimation error can be expressed as :

σn =
σ∆

pe
=

√
1− pe
peN

(2.8)

Specifically, for small BER, Eq. 2.8 can be rewritten as :

σn ≈
√

1

peN
(2.9)

Eq. 2.9 gives the number of transmitted data symbols needed for a desired accuracy :

N ≈ 1

σ2
npe

(2.10)

Clearly, small values of BER requires a large number of data symbols, otherwise the
number of errors is too small and the estimation deviation shall be large. For example,
N ≈ 100/pe is needed while counting 100 errors. If we wish to study a system with a
BER equal to 10−6, we need at least 108 bits.

In a word, MC simulation takes excessively long time to compute small BER
values. Various variance reduction solutions can be used to decrease the estimation
deviation without increasing the number of data symbols [JBS00, SBG+66, Jer84].
However, the implementations of these methods are complex.

Remark : in the above analysis, we have assumed that the bit errors are indepen-
dent, otherwise the number of errors will increase [JBS00].
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2.1.2 Importance Sampling method

As previously discussed, small BER requires a large number of data symbols. This
is often considered as a fatal weakness of the classical Monte-Carlo method, especially
for Spread Spectrum (SS) communication systems [QGP99] (e.g., CDMA system) that
every transmitted bit needs to be modulated by the spread spectrum codes with a large
number of bits.

A widely used method that can reduce BER simulation complexity for SS commu-
nication systems is a modified Monte-Carlo method, called Importance Sampling (IS)
method [Wik13a,And99]. In [CHD09], a BER estimation method based on Importance
Sampling applied to Trapping Sets has been proposed.

For Importance Sampling method, the statistics of the noise sources in the system
are biased in some manner so that bit errors occur with greater probability, thereby
reducing the required execution time. As an example, for a BER equal to 10−5, we may
artificially “degrade” the channel performance to increase the BER to 10−2.

Fig. 2.1 shows the general system structure using Importance Sampling method to
estimate BER.

 

Signal 

source
∑ Reception Decision

Error 

count

Noise source 

f*( )

Delay

w(x)

ˆepiX

�

bi

external 

noise

ˆ
ib

channel

si

Figure 2.1 — Structure of a system using Importance Sampling method

Let Xi; i = 1, 2, . . . , N be the input of the decision device. Let f(·) be the origi-
nal noise probability density function and let f ⋆(·) be the increased noise probability
density function using external noise source. We define the weighting coefficient :

w(x) =
f(x)

f ⋆(x)
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For a simple threshold-sensing decision element, an error occurs when there is a
large excursion of the threshold voltage VT , i.e.,

bi = 0 :

{

error count = 1 if Xi ≥ VT ,

error count = 0 otherwise.

bi = 1 :

{

error count = 1 if Xi ≤ VT ,

error count = 0 otherwise.

When “zero” is sent (bi = 0), the error probability is simply :

pe =

∫ +∞

−∞
I(x)f(x)dx

where I(·) is an indicator function that is one when an error occurs and zero when the
correct symbol is obtained, i.e.,

I(Xi) =

{

1 if Xi ≥ VT when bi = 0 or Xi ≤ VT when bi = 1,

0 otherwise.

Considering the natural estimator of the expectation which is the sample mean, we
can write :

p̂e =
1

N

N∑

i=1

I(Xi) (2.11)

Considering the probability density function of the external noise, we can rewrite :

pe =

∫ +∞

−∞
I(x)

f(x)

f ⋆(x)
f ⋆(x)dx

=

∫ +∞

−∞
I⋆(x)f ⋆(x)dx

= E[I⋆(X)]

The above equation is not merely a mathematical artifice. In fact, the statistics of
the noise processes are altered and the expectation is performed with respect to f ⋆(·).

As before, we can obtain the estimator by using the sample mean.

p̂⋆e =
1

N

N∑

i=1

I⋆(Xi) =
1

N

N∑

i=1

w(Xi)I(Xi) (2.12)

Comparing with Eq. 2.11, the weight, w(x), is added and evaluated at Xi. This
means that it is possible to reduce the variance by introducing an external noise with
biased density.

The performance of IS-based BER estimation strongly depends on biasing scheme
w(x). If a good biasing scheme is selected for a given system, an accurate BER estimate
can be obtained with very short simulation run time. Otherwise, the BER estimate
may even converge at a slower rate than the conventional Monte-Carlo simulation.
This means that the IS method cannot be considered as a generic method for BER
estimation for any given communication system.
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2.1.3 Tail Extrapolation method

The BER estimation problem is essentially a numerical integration problem. Let us
consider the eye diagram in Fig. 2.2, measured for a GSM system when SNR = 20 dB.
We can find the worst case of the received bit sequence.

 

A B

A B

error bit area 

Figure 2.2 — Probability density function tails from eye diagram

We consider the probability density function of the eye slice at line A and B. The
lower bound on the probability density function (green line) is the worst case bit
sequence, and the small red area contains all of the bit errors. The BER of the given
system can be considered as the area under the tail of the probability density function.

In general, we cannot describe which kind of distribution the slopes of the bathtub
curve of eye diagram belong to. We can assume that the probability density function
belongs to a particular class and then perform a curve fit to the observed data. This
approach for BER estimation is called Tail Extrapolation (TE) method [JBS00].

We shall set multiple thresholds of lower bound. A normal Monte-Carlo simulation
is executed, and the number of times the decision metric exceeds each threshold is
recorded. A broad class of the probability density functions is then identified. The tail
region is often described by some member of the Generalized Exponential Class (GEC),
which is defined as :

fυ,σ,μ(x) =
υ

2
√
2Γ( 1

υ
)
exp
(

−
∣
∣
∣
∣

x− μ√
2σ

∣
∣
∣
∣

υ)

where
– Γ(·) is the gamma function ;
– μ is the mean of the distribution ;
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– σ is related to the variance Vυ through :

Vυ =
2σ2Γ( 3

υ
)

Γ( 1
υ
)

The parameters (υ, σ, μ) are then adjusted to find the probability density function
that best fits the data samples. Thereby the BER can be estimated by evaluating the
integral of the probability density function for the used threshold.

However, it is not always clear which class of probability density function and which
thresholds should be selected. In general, it is difficult to evaluate the accuracy of the
BER estimate [JBS00,SBG+66,Jer84].

2.1.4 Quasi-analytical estimation

The above methods consist in analyzing the entire received waveform (data + noise)
at the output of receiver. Now we consider solving the BER estimation problem in two
steps :

– One deals with the transmitted signal ;
– The other deals with the noise contribution to the waveform.

Particularly, we assume that :

– The noise is referred to as an Equivalent Noise Source (ENS) ;
– The probability density function of the ENS is known and specifiable.

Therefore, we can assume that the system performance can be closely evaluated
by an ENS having a suitable distribution. This method is called the Quasi-Analytical
(QA) estimation [Jer84]. By taking into account the noiseless waveform, we can
compute the BER with the ENS statistics. More specifically, we let the simulation
itself compute the effect of signal fluctuations in the absence of noise, and then
superimpose the noise on the noiseless waveform.

The assumption of the noise statistics leads to a great reduction in computation
effort. The usefulness of the QA estimation will depend on how closely the assumption
matches reality [SPKK99]. However, except for the linear system, the ENS statistics
may be very difficult to predict before the fact.

2.1.5 BER estimation based on Log-Likelihood Ratio

Receiver can implement soft-output decoding (e.g. A Posteriori Probability (APP)
decoder) to minimize the bit error rate in each information bit. The APP decoder may
output probabilities or Log-Likelihood ratio values.



2.1. OVERVIEW OF CONVENTIONAL BIT ERROR RATE ESTIMATION
TECHNIQUES 11

Let (bi)1≤i≤N ∈ {+1,−1} be the transmitted bits and Xi; i = 1, 2, . . . , N be the
received values. The LLR is defined as :

LLRi = LLR(bi|Xi = xi) = log
P (bi = +1|Xi = xi)

P (bi = −1|Xi = xi)
(2.13)

Using Bayes’ theorem, we get :

LLRi = log
P (bi = +1)

P (bi = −1)
︸ ︷︷ ︸

a-priori information

+ log
P (Xi = xi|bi = +1)

P (Xi = xi|bi = −1)
︸ ︷︷ ︸

channel information

(2.14)

The hard decision is performed by computing the sign of the LLR, i.e.,

b̂i =

{

+1 if LLRi(bi|Xi) > 0,

−1 otherwise.

In [LHS00], some fundamental properties of LLR values are derived and new BER
estimators are proposed based on the statistical moments of the LLR distribution.

Consider the following criterion :

P (X = +1|Y = y) + P (X = −1|Y = y) = 1

Solving Eq. 2.13 by using the above criterion allows to derive the a posteriori prob-
abilities P (bi = +1|Xi) and P (bi = −1|Xi).

P (bi = +1|Xi) =
eLLRi

1 + eLLRi
P (bi = −1|Xi) =

1

1 + eLLRi

We take the absolute value Λ = |LLRi| of the LLR. Then, we can derive the
probability that the hard decision of the ith information bit is wrong.

pi =
1

1 + e−Λ
(2.15)

Hence, an estimate of BER can be given by :

p̂e,1 =
1

N

N∑

i=1

pi (2.16)

Another estimate of BER can be derived by using the exponential symmetric prop-
erty of the LLR [LHS00].

p̂e,2 =

∫

λ

f̂Λ(λ)
1

1 + eλ
dλ (2.17)

where fΛ is the estimated PDF of Λ.
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The limitations of the LLR-based BER estimation method are :
– the 1st estimate of BER given by Eq. 2.16 might be less efficient than the 2nd

estimate of BER given by Eq. 2.17 since fΛ(λ) is typically Gaussian and smooth
enough ;

– the 2nd estimator is more complex to be performed since an estimate of fΛ(λ)
must be computed (e.g., by means of a histogram) before the integral ;

– both methods are sensible to the variance of channel noise since the LLR distri-
bution strongly depends on the accuracy of the SNR estimate. In fact, the above
estimators implicitly assume that the SNR is known to the decoder.

In [SSB05], a new BER estimator which does not exhibit a dependence on the
SNR uncertainty has been proposed. However, the estimator relies on the erroneous
Gaussian LLR distribution assumption.

2.1.6 Conclusion of BER estimation methods

There is no shortage of techniques that can be applied to the Bit Error Rate esti-
mation. In this section, we have presented the conventional Monte-Carlo simulation. In
consideration of the very long execution time for low BER, we have discussed three tech-
niques, Importance Sampling method, Tail Extrapolation method and Quasi-Analytical
estimation.

These solutions require the assumptions concerning the behavior of real system, and
the performance is strongly determined by the assumed parameters, which probably
need to be modified for different communication system. For general case, it is difficult
to find the ideal model or the suitable values of the parameters.

Then, some new BER estimators based on the LLR distribution have been
presented but still with some drawbacks, e.g. BER estimators present dependence on
the SNR uncertainty and on the particular channel characteristics. In addition, other
recent papers on this topic can be found in [DWY09,LRT03].

Unfortunately, all these methods require the knowledge of the transmitted infor-
mation bits, whereas in practical situation the estimator does not know transmitted
data.

2.2 Probability Density Function estimation

To speed up Monte-Carlo simulation, the QA estimation method proposed using
the Probability Density Function of ENS. As previously discussed, the required ENS
statistics is difficult to be found in practical situation. Anyway, this has drawn great
inspiration for BER estimation : instead of using the PDF of noise, estimating the PDF
of soft observations may be more helpful since :
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– the soft observations are perfectly known by receiver ;

– the PDF of receiver’s soft outputs includes all the information about the system,
such as the transceiver scheme, the distortion, the channel model, etc. In other
words, the PDF itself provides a description of end-to-end performance of system.
Thus, the PDF estimate should have a very close relationship with BER estimate.

Hence, PDF estimation can be an interesting alternative to BER estimation. Such
BER estimation method using the channel/receiver’s soft outputs is called soft BER
estimation since it directly use the soft observations without requiring hard decisions
about transmitted bits. The principle is quite simple :

– firstly we estimate the Probability Density Function of received values ;

– then we compute the BER estimate by using the PDF estimate.

In this section, we will discuss the widely used methods that can be applied to the
probability density function estimation and present how to use the PDF estimate to
compute BER estimate.

2.2.1 Introduction to PDF estimation

Probability Density Function estimation deals with the problem of modeling a prob-
ability density function given a finite number of data set. In the last 25 years, density
estimation has experienced a tremendous development. The techniques of density esti-
mation are very useful in the context of parametric statistics. They have been applied
in many fields, such as banking (e.g., Tortosa-Ausina, 2003 [TA03]), economics (e.g.,
DiNardo and Fortin, 1996 [DFL95]), archaeology (e.g., Baxter, Beardah and Westwood,
2000 [BBW00]), etc.

There are three basic approaches to perform density estimation :
– Parametric density estimation :

normally, parametric density estimation is referred to parameter estimation. This
approach consists in assuming a given functional form for the density function
(e.g., Gaussian). The parameters of the distribution function (e.g., mean and
variance for Gaussian distribution) are then optimized to fit the dataset ;

– Non-parametric density estimation :
compared to parametric density estimation, no functional form of the density
function is assumed. The density estimation is determined entirely from the
dataset. As an example, a histogram calculation is typically performed by non-
parametric density estimation ;

– Semi-parametric density estimation :
semi-parametric approach consists in using mixture models that have parametric
and non-parametric components.

Remark : the mentioned “dataset” is a set of observation samples from experiment,
typically the values Xi; i = 1, 2, . . . , N , which consists of repeated I.I.D. (Independent
and Identically Distributed) sampling from a probability distribution.
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2.2.2 Parametric density estimation : Maximum Likelihood Es-
timation

Assume that the probability density function takes a particular parametric form ;
the parametric density estimation consists in estimate the values of the parameters of
the density function.

Two main decisions have to be made for implementing a parametric approach :

– specify the parametric form of the density function :
the parametric form of the density estimator determines what family of density
functions can be expressed using that functional form. Thus, a number of chosen
assumptions are the inductive bias of the density estimator. With a large number
of data samples, estimation result is good if the chosen model fits the training
data.

– learn the parametric model based on observation dataset :
three main approaches can be implemented to solve this problem :

a) Maximum Likelihood Estimation (MLE) : this approach consists in choosing
parameter values that maximize the probability of the dataset ;

b) Bayesian inference [DY79] : this approach consists in maintaining a proba-
bility distribution over all possible parameter values, balancing a prior dis-
tribution with the evidence of the dataset ;

c) Maximum A-Posteriori (MAP) [Wol80, Gre90, DHS12] : this approach can
be considered as a regularization of MLE and usually used to obtain a point
estimate of an unobserved/unsupervised dataset on the basis of empirical
data. The MAP is widely used for decoding algorithm (e.g., Turbo decoding).

In this report, we focus on the most widely used approaches : Maximum Likelihood
estimation.

For a fixed dataset and underlying distribution, Maximum Likelihood estimation
selects values of the distribution parameters that give the observed data the greatest
probability.

Considering an I.I.D. dataset including N random variables, Xi; i = 1, 2, . . . , N ,
drawn from the distribution fX(x|θ) where θ is a number of unknown parameters
[θ1, . . . , θm], then we can write :

fX(x|θ) =
N∏

i=1

fX(Xi|θ) = L(θ) (2.18)

where L(θ) is the likelihood of the dataset. To give the greatest probability, simply
maximize L(θ) for parameters θ.

θ̂ = argmax
θ

[fX(x|θ)] (2.19)

In practice, rather than using the likelihood, we use :
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– logarithm of L(θ), called the log-likelihood, because it is generally easier to work
with sums rather than products ;

log[L(θ)] =
N∑

i=1

log[fX(Xi|θ)] (2.20)

– average log-likelihood :
1

N
log[L(θ)] (2.21)

Also, it is often more convenient to minimize the negative log-likelihood :

θ̂ = argmin
θ

[− logL(θ)] (2.22)

A general approach to maximize the log-likelihood or to minimize the negative log-
likelihood consists in taking the analytic derivative of the error function and equating
to zero. For Gaussian estimators, we obtain the following equation for the estimates μ̂
and σ̂2 :

μ̂ =
1

N

N∑

i=1

Xi

σ̂2 =
1

N

N∑

i=1

(Xi − μ̂)2

(2.23)

Thus, the ML estimates for normal Gaussian distribution N(μ, σ2) is given by :

θ̂ = (μ̂, σ̂2) (2.24)

In statistics, the bias of an estimator is defined as the difference between the esti-
mator’s expected value and the true value of the estimated parameter. An estimator
is said to be unbiased when :

Bias[θ̂] = E[θ̂]− θ = 0 (2.25)

It turns out that the ML estimate of the mean for normal Gaussian distribution is
unbiased. However, the ML estimate of the variance is biased since :

E[σ̂2] =
N − 1

N
σ2 �= σ2 (2.26)

The parameter that we really want to measure is the true variance which represents
the average distance of the samples from the center μ of the actual distribution, but
we use the center of the samples μ̂ instead. Basically, the sample mean is an Ordinary
Least Squares (OLS) [Wik13b] estimator for the true center μ, and μ̂ makes the sum
∑N

i=1(Xi − μ̂)2 as small as possible. In general, the average distance of the samples
from the center of the samples is less than the average distance from the center of the
distribution.
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Because of this bias, the definition of sample variance is usually based on the Laplace
approximation which multiplies the estimate of the variance by N

N−1
. Notice that MAT-

LAB uses this unbiased estimate of the variance.

σ̂2 =
1

N − 1

N∑

i=1

(Xi − μ̂)2 (2.27)

For a large number of samples, the bias of the variance for normal distribution
becomes zero asymptotically. The bias is only noticeable when there are very few
samples.

In general, we define two parameters to measure the performance of statistical
estimates [Que56] :

– bias : it measures how close is the estimate to the true value of the parameter ;

– variance (or standard deviation) : it measures how much it changes for different
datasets.

Remark : the normal distribution can be expressed in terms of the Q-function. Q(x)
is the Complementary Cumulative Distribution Function (CCDF) for a zero mean and
a unit variance Gaussian distribution.

Q(x) = 1− Φ(x) =
1√
2π

∫ ∞

x

exp(−μ2

2
)dμ (2.28)

where Φ(x) is the Cumulative Distribution Function (CDF) of the normal Gaussian
distribution.

2.2.3 Non-parametric density estimation

So far we have been discussing the parametric estimation. Either the likelihood or
at least the parametric form was known.

Instead, the non-parametric approach avoids any assumptions about the density
distribution of samples, which means that the non-parametric density estimation at-
tempts to estimate the density function directly from the dataset without assuming a
particular form for the underlying distribution.

2.2.3.1 Empirical density estimation

The Empirical Probability Density Function is considered as the simplest density
estimate [WW78]. For a dataset Xi, i = 1, . . . , N , the empirical estimator is given by :

f̂X(x) =
1

N

N∑

i=1

δ(x−Xi) (2.29)

The Empirical PDF estimation consists in placing a delta function at each data
point. By introducing the bins, this method can evolve into a well-known non-
parametric estimator : the histogram.
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2.2.3.2 Histogram

A histogram is constructed by a starting point x0, and a bin width h. The bins
which enclose the data point Xi are of the form Im = [x0 + (m − 1)h, x0 +mh),m ∈
{1, 2, . . . ,M}. The estimator is given by :

f̂X(x) =
1

Nh

N∑

i=1

M∑

m=1

BIm(Xi) (2.30)

where :

BIm(Xi) =

{

1 if Xi ∈ Im,

0 otherwise.
(2.31)

The choice of the bin width (or the number of bins) has a substantial effect on the
shape and other properties of estimator [VRV94].

Fig. 2.3 shows two histograms and the true PDF fX(x) for the data set, with dif-
ferent bin widths (so different bins number). The red curve represents the theoretical
density function. Note that the estimates are piecewise constant and that they are
strongly influenced by the choice of bin width.
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Figure 2.3 — Histograms with different bin widths

We can make a summary of the drawbacks of the histogram :

– strict dependence on bin width : in high dimensions we would require a very large
number of samples, otherwise most of the bins would be empty ;

– we obtain a step function even if the theoretical PDF is a smooth one.

These issues make the histogram unsuitable for most practical applications.
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2.2.3.3 General formulation of non-parametric density estimation

We consider an I.I.D. random variable, Xi, i = 1, . . . , N , with a distribution fX(x).
The probability that X will fall in a given region, Φ, is given by :

P =

∫

Φ

fX(t)dt (2.32)

Suppose that N samples are drawn from the distribution fX(x), the probability that
k samples (k ≤ N) are enclosed in the region Φ is given by the binomial distribution :

P (n = k) =

(
N
k

)

P k(1− P )N−k (2.33)

The mean and the variance of the ratio n̂/N can be expressed as :

E[
n̂

N
] = P V ar[

n̂

N
] = E[(

n̂

N
− P )2] =

P (1− P )

N
(2.34)

It can be shown from Eq. 2.34 that the distribution becomes sharper when N → ∞.
Therefore, we can expect that a good estimate of the probability can be obtained from
the mean fraction of the points enclosed in the region Φ.

P ≈ n̂

N
(2.35)

Assume that the volume enclosed by the region Φ is small enough, we can write :

P =

∫

Φ

fX(t)dt ≈ fX(x)× VolumeΦ (2.36)

From Eq. 2.35 and Eq. 2.36, we obtain :

fX(x) ≈
n̂

N × VolumeΦ
(2.37)

From Eq. 2.37, it can be shown that the estimate becomes more accurate as N is
large enough and the volume of Φ, VolumeΦ, is small enough. This means that we have
to find a compromise for the volume of Φ :

– the volume of Φ must be large enough to include enough samples within Φ ;

– the volume of Φ also must be small enough to support the assumption given by
Eq. 2.36.

Moreover, two basic approaches can be adopted while applying Eq. 2.37 to practical
density estimation problems :

– we can “fix” k and determine VolumeΦ from the data. This leads to k-Nearest
Neighbor (kNN) approach [TS92,Das91] ;

– we can also “fix” VolumeΦ and determine k from the data. This leads to Kernel
Density Estimation (KDE) approach [WJ95,Sil86].
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2.2.3.4 Introduction to Kernel Density Estimation

The KDE consists in data smoothing compared to the histogram. In some fields
such as signal processing it is also termed the Parzen Window method or the naïve
estimation, after Murray Rosenblatt and Emanuel Parzen [Ros56, Par62]. Some soft-
ware packages for Kernel estimation can be found, such as the KEYS (a.k.a., Kernel
Estimating Your Shapes) package [Cra01].

2.2.3.4.1 Naïve estimator : Parzen window

Assume that the region Φ that encloses the k samples is a hypercube with sides of
length h centered at x, and then its volume is given by :

VolumeΦ = hD (2.38)

where D is the number of dimensions.

The normalized Parzen window is defined as :

KParzen(x) =

{

1 if |xd| < 0.5, ∀d = 1, . . . , D,

0 otherwise.
(2.39)

In general, this Kernel function, which corresponds to a unit hypercube centered at
the origin, is known as a Parzen window.

Assume that Xi; i = 1, . . . , N are drawn independently from the true density fX(x),
to verify if x is inside the hypercube centered at Xi, we can write :

KParzen(
x−Xi

h
) =

{

1 if the hypercube of Xi enclose x,

0 otherwise.
(2.40)

The total number of samples inside the hypercube is then :

n̂ =
N∑

i=1

KParzen(
x−Xi

h
) (2.41)

Merging with Eq. 2.37 we obtain the density estimate as :

fParzen(x) =
1

NhD

N∑

i=1

KParzen(
x−Xi

h
) (2.42)
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2.2.3.4.2 Smooth Kernels

Basically, the Parzen window has the following drawbacks :

– density estimates have discontinuities ;

– it weights equally all points (Xi)i=1,...,N , regardless of their distance to the esti-
mation point.

For these reasons, the Parzen window is commonly replaced with a smooth Kernel
function K(x) normalized to 1 :

∫

Φ

K(x)dx = 1 (2.43)

When D = 1, this leads to the density estimate as :

f̂X(x) = fKDE(x) =
1

Nh

N∑

i=1

K(
x−Xi

h
) (2.44)

Usually, K(x) is a symmetric and uni-modal PDF :
– center of Kernel is placed right over each data point ;
– contribution from each point is summed to overall estimate.

Therefore, any function having the following properties can be used as a Kernel :
⎧

⎪⎨

⎪⎩

(a)
∫
K(x)dx = 1

(b)
∫
xK(x)dx = 0

(b)
∫
x2K(x)dx < ∞

⇒ Kernel (2.45)

In our works, it is assumed to be an even and regular function with zero mean and
unit variance, such as the Gaussian Kernel :

KD(x) =
1

(2π)
D
2

e−
1
2
xT x K(x) =

1√
2π

e−
1
2
x2

when D = 1 (2.46)

 

KParzen(x) KKDE(x)

-1/2 1/2 -1/2 1/2

Area = 1 Area = 1

1

Figure 2.4 — Parzen window vs. Gaussian Kernel
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Next, we compute the expectation of the PDF estimate fKDE(x).

E[fKDE(x)] =
1

Nh

N∑

i=1

E[K(
x−Xi

h
)]

=
1

h

∫

K(
x− t

h
)fX(t)dt =

1

h
fX(x) ∗K(

x

h
)

(2.47)

It can be shown that the expectation of the estimate fKDE(x) is a convolution of the
true density fX(x) with the Kernel function. Thus, the Kernel width h plays the role
of a smoothing parameter : the smoother or the bandwidth of the estimate fKDE(x).

A Kernel is also a standardized weighting function, namely the weighting function
with h = 1.

weight(x, h) =
1

h
K(

x

h
) (2.48)

The Kernel function determines the shape of the weighting function, and the
smoothing parameter h determines the amount of smoothing. The two components
determine the properties of the estimate fKDE(x).

In an ideal condition, when h → 0, the weighting function 1
h
K(x

h
) approaches a delta

function and the PDF estimate fKDE(x) approaches the true density fX(x). However,
in practice we only have a finite number of samples, so the bandwidth h cannot be
made arbitrarily small, or the PDF estimate fKDE(x) would degenerate to a set of
impulses.

The properties of Kernel estimators, the bandwidth selection and the performance
of Kernel-based PDF estimation will be detailed in Chapter 3.

2.2.4 Semi-parametric density estimation

So far we have been discussing the parametric estimation and the non-parametric
density estimation techniques. The non-parametric density estimation is widely used in
practice since there is no assumption about the form of the unknown density function,
and the estimation is entirely based on the soft data points. However, the number
of parameters grows with the size of the dataset, so the models can quickly become
unwieldy and long computing time is required.

One solution to overcome this consists in using a hybrid approach : semi-parametric
density estimation [Far90], which consists in assigning functions for a set of data points
rather than fitting one Kernel function for each data point.

Using the semi-parametric density estimation, we can control the number of com-
ponents, and then pick a compromise between the efficiency of parametric methods
and the flexibility of non-parametric methods.



22 CHAPTER 2. STATE OF THE ART FOR BIT ERROR RATE ESTIMATION

2.2.4.1 Introduction to Gaussian Mixture Model

Mixture model is widely used as semi-parametric model for PDF estimation. This
method output a weighted sum of their parametric mixture components. The param-
eters comprise :

– mixture coefficients ;
– and all the parameters of the individual components.

Of all mixture models, the Gaussian Mixture Model is the most widely used for
data clustering and pattern recognition in signal processing and signal analysis domain
[MP04,RW84,CS09,WL05]. In this case, the studied distribution can be expressed as
a weighted sum of several Gaussian distributions with different means and different
variances.

Assume that X is the dataset with N samples and K is the number of Gaussian
components. The unknown PDF is a mixture of K Gaussians as follows [TSM+85] :

fGM(x) = fX,N(x) =
K∑

k=1

αkfk(x;μk, σ
2
k) (2.49)

where :
– αk is the population fraction in k, in other words, it represents the a priori

probability of the kth component for the Gaussian mixture ;

K∑

k=1

αk = 1 (2.50)

– fk(x;μk, σ
2
k) is a Gaussian PDF with mean μk and variance σ2

k.

This can be seen as :

fX,N(x) =
K∑

k=1

[P (kth component)× f(x|kth component)] (2.51)

In general, the unknown parameters of the GM are represented by :

θ = (αk, μk, σ
2
k)1≤k≤K

2.2.4.2 Difficulties of Mixture Models

The Gaussian Mixture Model-based PDF estimation technique consists in finding
the above unknown parameters with a given number of data samples for K components.
However, these parameters cannot be directly determined from the N data samples.

In fact, the difficulty in learning a mixture model is to know which mixture com-
ponent should be associated to which data. Imagine the data points are clustered into
several groups :
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– to assign data points to their clusters, we need to have each mixture component
fitted to its cluster ;

– to fit each component to its cluster, we need to know which data point(s) belong
to which cluster.

In data clustering, the data samples Xi are incomplete data because of missing the
cluster assignment information. We shall introduce another parameter, Zi, which is the
missing data and should be combined with the data points Xi to build the complete
dataset {Xi, Zi}i=1,...,N . The value of the missing data is set to k if the data Xi is
generated by the kth component of the mixture model.

In Chapter 4, we will present how to determine the unknown parameter θ by using
the incomplete data Xi along with the missing data Zi.

2.3 BER calculation with PDF estimate

Once we obtain the PDF estimate of soft observations, the BER estimate can be
calculated in an analytical fashion.

Let us consider a simple example. Let (bi)1≤i≤N ∈ {−1,+1} a set of N I.I.D.
transmitted data, let (Xi)1≤i≤N be the corresponding output of the sign decision having
the same probability density function, fX(x). According to Eq. 2.4, the BER is given
by :

pe = P [b̂i �= bi]

= P [X < 0, bi = +1] + P [X > 0, bi = −1]

= P [X < 0|bi = +1]P [bi = +1] + P [X > 0|bi = −1]P [bi = −1]

If the (bi)1≤i≤N are assumed to be identically distributed with P [bi = ±1] = 1/2,
we have :

pe =
1

2
P [X < 0|bi = +1] +

1

2
P [X > 0|bi = −1] (2.52)

Let f
b+
X (·) (resp., f

b−
X (·)) be the conditional PDF of X such as bi = +1 (resp.,

bi = −1), Eq. 2.52 can be rewritten as :

pe =
1

2

∫ 0

−∞
f
b+
X (x)dx+

1

2

∫ +∞

0

f
b−
X (x)dx (2.53)

As shown in Fig. 2.5, the BER can be expressed as the area dimension of the
intersection PDF curves.
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Figure 2.5 — BER estimation base on conditional PDF of data samples

Generally, the (bi)1≤i≤N are assumed to be identically distributed with P [bi = +1] =
π+ and P [bi = −1] = π−, where π+ + π− = 1. Since the data set is independent, the
PDF of X is a mixture of the two conditional PDF :

fX(x) = π+f
b+
X (x) + π−f

b−
X (x) (2.54)

Thus, the BER can be rewritten as :

pe = π+

∫ 0

−∞
f
b+
X (x)dx+ π−

∫ +∞

0

f
b−
X (x)dx (2.55)

If we know the PDF functions f b+
X (x) and f

b−
X (x), the BER can be easily computed

analytically by using parametric PDF estimation method, which means that we only
need to estimate the unknown parameters of the PDFs f

b+
X (x) and f

b−
X (x).

2.3.1 Theoretical BER : BER estimation based on parametric
PDF estimation

Firstly, we shall study the case of parametric PDF estimation. Let us consider the
simplest situation : the channel model is AWGN and a sequence of N bits BPSK (+1
or −1), (bi)1≤i≤N , is transmitted.

The AWGN channel model is given by :

AWGN ∼ N(0, σ2) (2.56)

where σ is the standard deviation which depends on the applied SNR.

Let A be the amplitude of the transmitted signal, we have :

σ =

√

A2

2× 10
SNR
10

(2.57)
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where SNR is the signal-to-noise ratio in dB.

If the transmitted bits, (bi)1≤i≤N , are equal to −1, the distribution function of the
received signals is :

X ∼ N(−1, σ2) = N(−1,
A2

2× 10
SNR
10

) (2.58)

Obviously, in order to obtain the parametric PDF estimate, we need to know the
transmitted data and the SNR estimates.

Assume that we know the channel information and the transmitted bits, the para-
metric PDF estimation method can be used to compute the theoretical BER values,
which can be expressed as :

BERtheoretical =
1

2
erfc(

1√
2σ

) (2.59)

where erfc(·) denotes the complementary error function defined as [And85,Gre03] :

erf(x) =
2√
π

∫ x

0

e−t2dt

erfc(x) = 1− erf(x) =
2√
π

∫ +∞

x

e−t2dt

(2.60)

Fig. 2.6 shows the theoretical BER and the BER estimate obtained by using Monte-
Carlo simulation for BPSK system. It can be shown that the parametric PDF estimator
provides reliable theoretical BER values with knowledge about the form of soft output
Xi, the channel model and the transmitted data.

Moreover, we observed the weakness of the conventional Monte-Carlo technique.
The MC-based BER estimates match closely to the theoretical BERs for small values
of SNR (from 0 dB to 4 dB). However, for high SNR (> 4 dB), the MC simulation
cannot return accurate result since 1000 data samples are not sufficient to have a good
precision. As an example, we have to count at least 10 errors for each value of SNR,
for SNR = 7 dB the theoretical value of BER is 8.0 · 10−4, therefore, the Monte-Carlo
simulation needs at least 1.25 · 105 samples for similar precision.
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Figure 2.6 — Theoretical BER and Monte-Carlo based BER estimate for BPSK
system when N = 1000

2.3.2 Practical situation : necessity of non-parametric or semi-
parametric PDF estimation

Using parametric PDF estimation method requires the knowledge about form of the
unknown PDF, whereas in practice it could be very difficult to find the right parametric
model for the received signal distribution.

In general, the PDF of the output Xi depends on the type of the channel and the
system scheme :

– the channel model could be AWGN or other distributions, e.g., Rayleigh or Rice
fading channel ;

– the transmitter could use any kinds of transmission scheme such as CDMA,
FDMA, TDMA, etc. ;

– the receiver could use iterative techniques such as turbo codes for MIMO (Mul-
tiple Input Multiple Output) systems.

As an example, Fig. 2.7 (a) shows the normalized histograms of the soft output Xi

for BPSK system with AWGN and Rayleigh channel when N = 1000 and SNR = 6 dB.
For simplicity reasons, we only consider the PDF of the bits −1.
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Figure 2.7 — (a). Normalized histogram of soft output Xi ; (b). Monte-Carlo-based
BER estimates for BPSK system for AWGN and Rayleigh channel (N = 1000, SNR =

6 dB)

It can be shown that, for AWGN channel, the histogram (and the PDF) of the
soft output is Gaussian, whereas for Rayleigh channel, the histogram (PDF) is vastly
different. This causes a large difference between the Monte-Carlo-based BER estimates,
as shown in Fig. 2.7 (b).

Fortunately, the Rayleigh distribution is well known, so that we still can utilize the
parametric method to estimate the BER. However, this is not the case in practice :

– it is difficult to find the channel model, e.g. for indoor wireless communication
system, the channel condition is difficult to be determined since it is affected by
many factors, such as obstacles, moving terminals, etc. ;

– hence, the channel estimation could be imprecise and the performance of BER
estimation will be degraded, e.g., using the LLR-based methods presented in
section 2.1.5, we may have a bad precision of BER since the LLR distribution
strongly depends on the accuracy of the SNR estimate.

Therefore, we suggest using the non-parametric and semi-parametric methods which
only focus on the soft output distribution and “ignores” channel information.
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2.4 Conclusion

We have firstly presented the conventional Monte-Carlo simulation, which demands
very long computing time for small values of BER, and then we have discussed three
specific techniques, Importance Sampling method, Tail Extrapolation method and
Quasi-Analytical estimation, but yet the performance of these methods is strongly
determined by the assumptions of parameters based on the behavior of real system. As
for the BER estimation methods based on LLR distribution, the performance of the
BER estimate depends strongly on the SNR uncerptainty.

In this report, instead of using the previous methods, we will suggest some new
techniques based on the estimation of PDF of soft observed samples right before the
hard decision. These PDF depends on the system scheme, the noise, the channel model,
and are either difficult to know or arbitrarily chosen, which means that in practice the
parametric PDF estimation technique cannot be used. Two PDF estimation techniques,
non-parametric method and semi-parametric method, have been presented in this chap-
ter. By using the PDFs estimates of receiver’s soft observations, the BER estimate can
be analytically calculated. In other words, the soft BER estimation is equivalent to
estimating the PDFs of conditional soft observations.

The non-parametric method and the semi-parametric method can provide accurate
PDF estimates for any digital communication system. The soft estimator could have
no information about system scheme and channel model. Moreover, it is also possible
that we do not need to know the transmitted data.

In Chapter 3, we will present the BER estimation technique based on non-
parametric estimation using Kernel estimation. In our works, the Gaussian Kernel
was used.

In Chapter 4, we will present the BER estimation technique based on semi-
parametric estimation. In our works, we use the Gaussian Mixture Model to estimate
the PDF.



CHAPTER

3 Bit Error Rate estimation

based on Kernel method

As discussed in Chapter 2, the conventional and modified Monte-Carlo techniques
require the knowledge about transmitted data, system scheme and channel model.
Moreover, excessively long computing time for small values of BER (high values of
SNR) limits the performance of estimator in practical situation. Hence, the soft BER
estimation techniques based on PDF estimation of receiver’s soft outputs can be con-
sidered as an alternative to overcome these drawbacks.

In this chapter, we shall focus on the non-parametric Kernel-based PDF and BER
estimation technique. For simplicity, we will consider the supervised case, which means
that we still assume that the estimator perfectly knows transmitted data.

3.1 Properties of Kernel-based PDF estimator

In section 2.2.3.4, we have given a brief introduction to the Kernel density estimation
technique. To understand the accuracy of estimator and evaluate the performances of
KDE, we will present in this subsection the general properties of Kernel estimators.

An efficient way to quantify the accuracy of a density estimator is to measure the
Mean Squared Error (MSE).

MSE(fKDE(x)) = E[(fKDE(x)− fX(x))
2]

= (E[fKDE(x)]− fX(x))
2 + E[(fKDE(x)− E[fKDE(x)])

2]

= Bias2(fKDE(x)) + V ar(fKDE(x))

(3.1)

A measure of the global accuracy of fKDE(x) is the Integrated Mean Squared Error
(IMSE) :

IMSE(fKDE(x)) = E[

∫ +∞

−∞
(fKDE(x)− fX(x))

2dx] =

∫ +∞

−∞
MSE(fKDE(x))dx

=

∫ +∞

−∞
Bias2(fKDE(x))dx+

∫ +∞

−∞
V ar(fKDE(x))dx

(3.2)
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It can be shown that there are two components that determine the MSE and IMSE :
the bias and the variance.

3.1.1 Bias and variance of Kernel estimator

The expectation of Kernel estimator is given by Eq. 2.44. Note that z = x−t
h

, and
then t = x− hz yields :

E[fKDE(x)] =

∫ +∞

−∞
K(z)fX(x− hz)dz

Expanding fX(x− hz) in a Taylor series, we obtain :

fX(x− hz) = fX(x)− hzf
′

X(x) +
1

2
(hz)2f

′′

X(x) + o(h2)

o(h2) can be ignored since it represents terms that converge to zero faster than h2 as
h approaches zero.

Considering the normalization of Kernel, we can write :

E[fKDE(x)] = fX(x)

∫ +∞

−∞
K(z)dz − hf

′

X(x)

∫ +∞

−∞
zK(z)dz +

h2

2
f

′′

X(x)

∫ +∞

−∞
z2K(z)dz

= fX(x) +
h2

2
υ2f

′′

X(x)

(3.3)
where υ2 represents the “variance” of the Kernel, f

′′

X(x) represents the second derivative
of the density at the sample x.

Thus, we get :

Bias(fKDE(x)) ≈
h2

2
υ2f

′′

X(x) (3.4)

Note that if h → 0, the bias tends to zero.

Assume that the Xi; i = 1, . . . , N are independently distributed, the variance of
Kernel estimate is given by :

V ar(fKDE(x)) =
1

(Nh)2

N∑

i=1

V ar(K(
x−Xi

h
)) (3.5)

We can write :

V ar(K(
x−Xi

h
)) = E

[(

K(
x−Xi

h
)
)2]

−
(

E
[

K(
x−Xi

h
)
])2

Thus,

V ar(fKDE(x)) =
1

Nh2

∫

(K(
x− t

h
))2fX(t)dt−

1

Nh2
(

∫

K(
x− t

h
)fX(t)dt)

2

=
1

Nh2

∫

(K(
x− t

h
))2fX(t)dt−

1

N
(fX(x) + Bias(fKDE(x)))

2
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Substituting z = x−t
h

and applying Taylor approximation yields :

V ar(fKDE(x)) =
1

Nh

∫

(K(z))2fX(x− hz)dz − 1

N
(fX(x) + o(h2))2

Note that if h → 0 and N → ∞, the above expression becomes approximately :

V ar(fKDE(x)) ≈
1

Nh
fX(x)

∫

(K(z))2dz (3.6)

It can be shown that the variance decreases as Nh increases, and that the estimator
is asymptotically unbiased as h → 0 and N → ∞ [SHG94,SGH97].

3.1.2 MSE and IMSE of Kernel estimator

The previous results for bias and variance of fKDE(x) lead to :

MSE(fKDE(x)) ≈
1

Nh
fX(x)M(K) +

1

4
h4υ2

2(f
′′

X(x))
2 (3.7)

and

IMSE(fKDE(x)) ≈
1

Nh
M(K) +

1

4
h4υ2

2J(fX) (3.8)

where : ⎧

⎪⎨

⎪⎩

υ2 =
∫
z2K(z)dz

M(K) =
∫
(K(z))2dz

J(fX) =
∫
(f

′′

X(x))
2dx

(3.9)

3.1.3 Kernel selection

From Eq. 3.8, we can observe that the IMSE can also be minimized with respect to
the Kernel function. The Epanechnikov Kernel gives the lowest IMSE [Han09].

KEp(x) =

{
3

4
√
5
(1− 1

5
x2) for |x| <

√
5,

0 otherwise.

This result can be used to examine the impact of Kernel choice on the optimal IMSE.
The efficiency for Epanechnikov Kernel is set to 1. The efficiency of a Kernel function,
K(x), compared to the optimal Epanechnikov Kernel, KEp(x), is defined as [Han09] :

Efficiency(K(x)) =
(IMSEopt,Ep(fKEp

(x))

IMSEopt,K(fK(x))

) 5
4
=
(υ2

2(M(K))4 using KEp

υ2
2(M(K))4 using K

) 1
4

(3.10)
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Tab. 3.1 shows the efficiencies for a number of well-known Kernels.

Kernel K(x) Efficiency

Epanechnikov

{
3

4
√
5
(1− 1

5
x2) for |x| <

√
5,

0 otherwise.
1

Triangular

{

1− |x| for |x| < 1,

0 otherwise.
0.993

Biweight

{
15
16
(1− t2)2 for |x| < 1,

0 otherwise.
0.994

Gaussian 1√
2π
e−

1
2
x2

0.951

Rectangular

{
1
2

for |x| < 1,

0 otherwise.
0.930

Table 3.1 — Well-known Kernels and their efficiencies

Throughout this report, we suggest the use of the most popular Gaussian Kernel
whose expression is given by Eq. 2.46.

3.1.4 Bandwidth (smoothing parameter) selection

As presented in section 2.2.3.4.2, the bandwidth h controls the smoothness (or
roughness) of a density estimate :

– a large bandwidth will over-smooth the density estimate and mask the structure
of the data ;

– a small bandwidth will under-smooth the density estimate that is spiky and very
hard to interpret.

As an example, we have simulated with different bandwidths the Kernel density
estimates of the Gaussian normal distribution and two piecewise uniform distributions,
as shown in Fig. 3.1.
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Figure 3.1 — (a). KDE of the normal distribution and (b). KDE of one distribution
with two piecewise uniforms with different bandwidths (h = 0.02, 0.2, 0.4 and 2),

number of data points N = 1024

Fig. 3.1 (a)-1 and Fig. 3.1 (b)-1 show the under-smoothing of the density estimates
due to small bandwidth.

When the bandwidth h is equal to 0.2, the estimated PDF curve shown in Fig. 3.1
(a)-2 fits closely to the theoretical curve. The result shown in Fig. 3.1 (a)-3 is also not
bad, only with a little distortion near the top of the curve. Fig. 3.1 (a)-4, (b)-2, (b)-
3 and (b)-4 show that the bandwidth selection bears danger of over-smoothing since
the selected bandwidth is too big. Selection of the bandwidth of Kernel estimator is
a subject of considerable research. There are several popular methods based on the
properties of the estimator.

3.1.4.1 Subjective selection

The simplest solution consists in using different bandwidths and selecting one that
looks right for the type of data under investigation.

As shown in Fig. 3.1, different distributions or even same distribution with different
parameters may demand different bandwidths :



34
CHAPTER 3. BIT ERROR RATE ESTIMATION BASED ON KERNEL

METHOD

– for Gaussian distribution X ∼ N(0, 1), the obtained estimate of Fig. 3.1 (a)-2
(h = 0.2) is better than the one of Fig. 3.1 (a)-1 (h = 0.02) and the one of
Fig. 3.1 (a)-3 (h = 0.4) ;

– for uniform distribution, the case of Fig. 3.1 (b)-1 (h = 0.02) shows a better
estimate than Fig. 3.1 (b)-2 (h = 0.2).

However, the bandwidth selection also depends on other parameters, such as the
number of data points. We consider the same example in Fig. 3.1 but with fewer samples
(N = 128).
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Figure 3.2 — (a). KDE of the normal distribution and (b). KDE of one distribution
with two piecewise uniforms with different bandwidths (h = 0.02, 0.2, 0.4 and 2),

number of data points N = 128
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Comparing with the previous results in Fig. 3.1, the estimates for both two distribu-
tions become worse. Moreover, it can be shown that the estimated curve when h = 0.4
(Fig. 3.2 (a)-3) has fewer fluctuations than the one of Fig. 3.2 (a)-2, this means that
the estimated result when h = 0.2 is no longer the optimal among the four obtained
curves.

Furthermore, it can be shown that the obtained estimate of Fig. 3.2 (b)-1 becomes
worse compared with the one of Fig. 3.1 (b)-1 when h = 0.02, however, the estimated
curve of Fig. 3.2 (b)-2 (h = 0.2) is similar to the one of Fig. 3.1 (b)-2. This seems
unusual since theoretically fewer data samples leads to a worse PDF estimation. One
explanation is that for any data number and any distribution there is an optimal value
of the bandwidth h ; when N = 128, the bandwidth of Fig. 3.2 (b)-2 (h = 0.2) is close
to the optimal value.

3.1.4.2 Selection with reference to some given distribution : optimal
smoothing parameter

It was shown from Eq. 3.8 that the IMSE of Kernel-based PDF estimate changes
as a function of the bandwidth h. Let the soft output right before the hard decision,
(Xi)1≤i≤N , be random variables having the same PDF, fX(x). The Kernel-based PDF
estimate, fKDE(x), is noted as f̂X(x).

– for very small values of h the first term in Eq. 3.8 becomes large, if h tends
towards 0, when N tends towards +∞, we have [STG09] :

E[f̂X(x)] → fX(x) (3.11)

the estimation of the PDF is asymptotically unbiased, but the estimate is under-
smooth ;

– as h gets larger the second term in Eq. 3.8 increases and the estimate becomes
over-smooth.

(a) General Kernel

There is an optimal bandwidth which minimizes the IMSE. The first derivative is
given by [TAS07] :

d(IMSE(f̂X(x)))

dh
= h3υ2

2J(fX)−
1

Nh2
M(K)

Setting this equal to zero yields the optimal bandwidth, given by :

h =
( M(K)

Nυ2
2J(fX)

) 1
5

(3.12)

Substituting Eq. 3.12 for h in Eq. 3.8 gives the minimal IMSE for the given PDF
and Kernel function.

IMSEopt(f̂X(x)) =
5

4

(J(fX)(M(K))4υ2
2

N4

) 1
5

(3.13)
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Note that the optimal h depends on the sample size, N , the unknown PDF, fX(x)
and the Kernel function, K(x). To derive the optimal bandwidth, we have to compute
the value of M(K), υ2

2 and J(fX) which depends on the unknown PDF, fX .

Replacing J(fX) by its estimate J(f̂X), we get :

IMSE ≈ 1

Nh
M(K) +

1

4
h4υ2

2J(f̂X) (3.14)

where M(K) and J(f̂X) are given by Eq. 3.9.

(b) Gaussian Kernel

For the Gaussian Kernel, we have :

{

K
′′

(x) = (x2 − 1)K(x)

υ2 = 1
(3.15)

Using Eq. 2.44 and Eq. 3.15, we have [STG09] :

J(f̂X) =
1

N2h6

N∑

i=1

N∑

j=1

{
∫ +∞

−∞

[(x−Xi

h

)2

−1
][(x−Xj

h

)2

−1
]

K
(2x− (Xi +Xj)√

2h

)

K
(Xi −Xj√

2h

)

dx

} (3.16)

Let us note that : {

m =
2x−(Xi+Xj)√

2h

ni,j =
Xi−Xj

2h

Then :

[(x−Xi

h

)2

−1
][(x−Xj

h

)2

−1
]

=
m4

4
+m2(2n2

i,j − 1) + (2n2
i,j − 1)2 (3.17)

Using Eq. 3.16 and Eq. 3.17, we have :

J(f̂X) =
1

N2h5
√
2

N∑

i=1

N∑

j=1

{

K(
√
2ni,j)

∫ +∞

−∞

[m4

4
+m2(2n2

i,j − 1) + (2n2
i,j − 1)2

]

K(m)dm

}

(3.18)

Since the Kernel function K(·) ∼ N(0, 1), we obtain :

{∫
m2K(m)dm = 1
∫
m4K(m)dm = 3
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Therefore, Eq. 3.18 can be rewritten as :

J(f̂X) =
1

N2h5
√
2

N∑

i=1

N∑

j=1

{

K
(Xi −Xj√

2h

)[(Xi −Xj√
2h

)4

+
3

4

]
}

(3.19)

Also, for a zero mean and unit variance Gaussian Kernel, we have :

M(K) =

∫ +∞

−∞
K2(x)dx =

1

2
√
π

(3.20)

If fX(x) ∼ N(μ, σ2), we have :

J(f̂X) =
3

8
√
πσ5

(3.21)

Using Eq. 3.20 and Eq. 3.21 at the same time to resolve Eq. 3.14, we can compute
the IMSE, and then derive the optimal smoothing parameter for a normal distribution
by minimizing the IMSE. We get :

h =
( 4

3N

) 1
5
σ (3.22)

(c) Numerical illustration

To be more specific, we will compute the MSE and the IMSE of KDE for the normal
distribution with the same configurations as given by Fig. 3.1 (a) and Fig. 3.2 (a).

The Kernel function is a zero mean and unit variance Gaussian distribution and we
utilize directly the normal PDF as the distribution fX . Hence, we get :

{
M(K) = 1

2
√
π

υ2 =
1√
2π

∫
z2 exp

(

− z2

2

)

dz = 1
(3.23)

The 2nd derivative of fX(x) is given by :

f
′′

X(x) =
1√
2π

(x2 − 1) exp
(

−x2

2

)

Thus, we get :

MSE =
1

2
√
2Nhπ

exp
(

−x2

2

)

+
h4

4
√
2π

[

(x2 − 1) exp
(

−x2

2

)]2

(3.24)
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Figure 3.3 — MSE of the KDE for normal distribution with different bandwidth
(h = 0.02, 0.2, 0.4 and 2) and different number of data points (a). N = 1024 (b).

N = 128

Fig. 3.3 shows the MSE of the KDE with different bandwidth (h = 0.02, 0.2, 0.4, 2)
and different number of data points (N = 1024 and 128). Compared with Fig. 3.1 (a)
and Fig. 3.2 (a), we can easily find the general relationship between the MSE and the
estimated density curves :

– in the case of 1024 data points, the value of MSE is minimum when h = 0.2, this
means that the simulated curves shall be better fit to the true normal distribution
than other configurations, as shown in Fig. 3.1 (a)-2. The optimal bandwidth
computed by using Eq. 3.22 is about 0.265, which is close to 0.2 ;

– in the case of 128 data points, the value of MSE is minimum when h = 0.4, as
shown in Fig. 3.2 (a)-3. This corresponds to the previous discuss in the above
subsection. The optimal bandwidth is about 0.401, which is very close to 0.4 ;

– when h = 2, the values of MSE are maximum for both two configurations, the
simulated curves are “very stable”, as shown in Fig. 3.1 (a)-4 and Fig. 3.2 (a)-4.

Furthermore, we can also compute the IMSE. Using Eq. 3.23, we get :

IMSE =
1

2
√
πNh

+
3h4

32
√
π

(3.25)
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Tab. 3.2 gives the values of IMSE for different configurations of the KDE model.

h = 0.02 h = 0.2 h = 0.4 h = 2
N = 1024, IMSE : 0.0137 0.0014 (min) 0.0020 0.8464
N = 128, IMSE : 0.1101 0.0111 0.0068 (min) 0.8473

Table 3.2 — IMSE of KDE for normal distribution with different configurations

It can be shown that the obtained IMSE with N = 1024 are generally better than
the IMSE with 128 samples. In fact, from Eq. 3.7 and Eq. 3.8, we can observed that
the MSE and the IMSE are inversely proportion to the number of data points. This
means that using more data samples is always helpful to Kernel PDF estimation.

It is also important to note that Eq. 3.22 only gives the optimal value of the band-
width when the unknown PDF is Gaussian. For other distributions, this value could
only be quasi-optimal. In our works, it is used as an initial condition for the itera-
tive procedure of our simulations to compute the optimal smoothing parameter for
non-Gaussian distribution (cf. section 3.2.2).

3.2 BER estimation based on Kernel method

3.2.1 PDF estimation based on Kernel method

Eq. 2.54 gives the expression of the output observations PDF which is a mixture of
the two conditional PDFs.

The following notation is used. The soft output (right before the hard decision),
(Xi)1≤i≤N , are random variables having the same PDF, fX(x). We assume that we know
the exact partitions of the observations (Xi)1≤i≤N into two classes C+ and C− which
respectively contains the observed output corresponding to the transmitted information
bit bi = +1 (resp., bi = −1). Let N+ (resp., N−) be the cardinality of C+ (resp., C−),
with N = N+ +N−.

The PDF estimation based on Kernel method is realized by using Eq. 2.38. The
estimation of the conditional PDF, f b+

X (x) (resp., f b−
X (x)), can be given by :

f̂
b+
X,N+

(x) =
1

N+hN+

∑

Xi∈C+

K
(x−Xi

hN+

)

f̂
b−
X,N−

(x) =
1

N−hN−

∑

Xi∈C−

K
(x−Xi

hN−

) (3.26)

where K(·) is the Kernel function. As presented in section 3.1.3, in our works we use
the Gaussian Kernel to estimate the PDF of soft observations. hN+ (resp., hN−

) is the
smoothing parameter which depends on the length of the observed samples, N+ (resp.,
N−).

Eq. 3.22 gives the general expression of the optimal smoothing parameter for Gaus-
sian Kernel and normal distribution. For the system with two classes C+ and C−, we
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can directly use the same expression :
⎧

⎪⎨

⎪⎩

hN+ =
(

4
3N+

)1/5

σ+

hN−
=
(

4
3N−

)1/5

σ−

(3.27)

3.2.2 Smoothing parameters optimization in practical situation

However, in the case of unknown PDF or unsupervised estimation (cf. Chapter
5) with Kernel-based method, it is impossible to derive the optimal IMSE smoothing
parameters, and only approximations are generally used. Thus, the optimal smoothing
parameters given by Eq. 3.27 are not exact. In this section, we will show how to use the
Maximum Likelihood criterion for the computation of optimal smoothing parameter
hN+ (resp., hN−

) in an iterative way.

Suppose there is an independent and identically distributed sample of output of N+

observations, (Xi)1≤i≤N , having the same PDF estimate, f̂ b+
X,N+

(·|hN+). It is demanded
to find some estimates of hN+ which could be as close as possible to the true values
which minimize the IMSE. Firstly, we specify the joint density function of all these
observations, which can be written as :

f̂
b+
X,N+

(X1, . . . , XN+ |hN+) = f̂
b+
X,N+

(X1|hN+) . . . f̂
b+
X,N+

(XN+ |hN+)

=

N+∏

i=1

f̂
b+
X,N+

(Xi|hN+)
(3.28)

Let us consider the observed values (Xi)1≤i≤N to be “fixed parameters” of the above
function, whereas hN+ will be the unknown variable which is allowed to vary freely.
The log-likelihood function is given by :

L(hN+ |X1, . . . , XN+) = f̂
b+
X,N+

(X1, . . . , XN+ |hN+) =

N+∏

i=1

f̂
b+
X,N+

(Xi|hN+) (3.29)

log
[

L(hN+ |X1, . . . , XN+)
]

= log
[N+∏

i=1

f̂
b+
X,N+

(Xi|hN+)
]

(3.30)

We utilize the Maximum Likelihood method to estimate the smoothing parameter
by finding a value of hN+ which maximizes the log-likelihood function, which means :

h⋆
N+

= argmax
hN+

{

log
[

L(hN+ |X1, . . . , XN+)
]}

(3.31)

where :

log
[

L(hN+ |X1, . . . , XN+)
]

=

N+∑

i=1

log
[ 1

N+hN+

N+∑

j=1

K
(Xi −Xj

hN+

)]

=

N+∑

i=1

log
[ 1

N+hN+

( N+∑

j=1,j �=i

K
(Xi −Xj

hN+

)

+
1√
2π

)]
(3.32)
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As an example, considering a decorrelator-based receiver of CDMA system (cf.
section 3.2.2.2), Fig. 3.4 shows the log-likelihood as a function of hN+ and hN−

with
1000 soft observations.
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Figure 3.4 — Behavior of log-likelihood function for decorrelator-based CDMA
system

From 3.4, we observe that there is a maximum value of the log-likelihood function.
The optimal value of hN+ (resp., hN−

), h⋆
N+

(resp., h⋆
N−

), can be either directly derived
from Eq. 3.32, or computed by using the derivative of the log-likelihood function. It
is easier to find the value of hN+ which cancels the derivative of the considered log-
likelihood function, which is given by :

{

log
[

L(hN+ |X1, . . . , XN+)
]}′

=
d
{[

L(hN+ |X1, . . . , XN+)
]}

d(hN+)

=
d
{[
∑N+

i=1

(

log 1
N+

+ log 1
hN+

+ log
(
∑N+

j=1 K
(Xi−Xj

hN+

)))]}

d(hN+)

= − N+

hN+

+

N+∑

i=1

∑N+

j=1 K
(Xi−Xj

hN+

)( (Xi−Xj)
2

h3
N+

)

∑N+

j=1,j �=i K
(Xi−Xj

hN+

)

(3.33)

Remark : for normal Kernel, K(
Xi−Xj

hN+
) = 1√

2π
if i = j.
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Simulations prove that the derivative of the considered likelihood function is strictly
monotonous as a function of the smoothing parameter, as shown in Fig. 3.5.
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Figure 3.5 — Relationship between the log-likelihood function and the smoothing
parameter

The zeros of Eq. 3.32 and Eq. 3.33 would be difficult to be solved analytically ;
the simulation run time is quite long. We would like to suggest two other methods to
compute the optimal smoothing parameter with fewer simulation run time.

3.2.2.1 Curve fitting method

By using the initial value of hN+ given by Eq. 3.27, we introduce the curve fitting
method to simplify the computation of the optimal smoothing parameter.

Curve fitting is the process of constructing a curve, which has the best fit to a series
data points. Furthermore, the obtain curve is presented by a mathematical expression
which is simpler than the considered function (i.e. Eq. 3.32 and Eq. 3.32).

There are many methods used to curve fitting, such as exponential model and
Gaussian model. In our works, we have chosen the polynomial model which is the most
popular method. Fig. 3.6 presents the flow chart of this method to derive the optimal
hN+ .

It is clear that if the real root of the obtained polynomial expression is not unique,
there will be several intersection points of X-axis (the axis of hN+), which means that
the obtained polynomial function is not monotonous. In this situation, we need to
increase the order P of the polynomial equation.

We have simulated the performance of the polynomial method for curve fitting of the
derivative of log-likelihood function. For the same decorrelator-based CDMA system
used in Fig. 3.4, curve fitting result of this derivative function is presented in Fig. 3.7
when order P is equal to 5. We can observe that the dotted line has at least three
intersection points with hN+-axis since the fitting curve is not monotonous. Therefore,
the “optimal” smoothing parameter is not unique, which means that we have to use a
higher-ordered polynomial model.
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Figure 3.6 — Flow chart for smoothing parameter optimization by using the curve
fitting method
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To apply this polynomial curve fitting method, we need a large number of outputs
at the receiver to correctly obtain the original mathematical expression of the con-
sidered function. Another drawback is that we also need a high-ordered polynomial
model in order to approximate and accurately fit the true function, which increases the
complexity and computation time.

Fig. 3.8 shows the simulation result for curve fitting of derivative function when
P = 7. It is shown that the obtained root is unique.
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Figure 3.8 — Derivative of the log-likelihood by curve fitting method(P = 7)

However, this does not mean that we can always obtain an accurate estimate of
h⋆
N+

or h⋆
N−

. As shown in Fig. 3.8, we can observe that there is still a difference (about
0.01) between the true value and the obtained value of h⋆

N+
. In this situation, we must

increase the fitting order again, or we choose another type of fitting model. Moreover,
increasing the order P may lead to “over fitting” of the derivative of log-likelihood
function.

Fortunately, for most cases that we have tested, the curve fitting method with
polynomial model works quite well. The problem only shows up when the true log-
likelihood function and its derivative have a great turning point, as shown in Fig. 3.4
and Fig. 3.7.
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3.2.2.2 Newton’s method

We suggested another method called Newton’s method to find the optimal smooth-
ing parameter. Fig. 3.9 illustrates the flow chart of this method for the computation of
h⋆
N+

by using the initial smoothing parameter hN+ .
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Fig. 3.10 shows the principle of Newton’s method. Firstly, with the initial value of
the smoothing parameter hN+ (red point in Fig. 3.10), we calculate the corresponding
value of the considered derivative function by using Eq. 3.33. Then we can find the
tangent line (red line in Fig. 3.10) of this point and obtain the first intersection point
of X-axis (blue point in Fig. 3.10). This first intersection is considered as a new updated
value of hN+ . By repeating this process, the second intersection point (blue point in
Fig. 3.10) can be found, which is much closer to the optimal value of hN+ . After several
times of iterative calculations, with the threshold condition, we can finally find a hN+

(green point in Fig. 3.10) which is very close to the real optimal value.

Let g(·) be the derivative of the log-likelihood function. To find the unique root of
the g(·) function, Newton’s algorithm can be implemented as follows [Kel03].

Let the initial condition be :

h
(0)
N+

=
( 4

3N+

) 1
5
σ+ (3.34)

At each iteration t, a new value of h(t)
N+

is given by using the previous value h
(t−1)
N+

:

h
(t)
N+

= h
(t−1)
N+

−
g(h

(t−1)
N+

)

g′(h
(t−1)
N+

)
(3.35)

where :

g(h
(t−1)
N+

) =
[

log
(N+∏

i=1

f̂
b+
X,N+

(Xi)
)]′

(t−1)
(3.36)

The difference between the obtained values of derivative function of two sequential
calculations is then compared with the threshold.

∣
∣
∣
∣
∣

[

log
(N+∏

i=1

f̂
b+
X,N+

(Xi)
)]′

(t)
−
[

log
(N+∏

i=1

f̂
b+
X,N+

(Xi)
)]′

(t−1)

∣
∣
∣
∣
∣
≤ threshold (3.37)

In our works, the threshold is set to 10−4. If the obtained difference in Eq. 3.37
after t times iterations is sufficient small, the h

(t)
N+

can be considered as the “optimal”
smoothing parameter.
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3.2.3 BER calculation with Kernel-based PDF estimates

Using Eq. 3.26, we can evaluate the expression of Eq. 2.55.

We use the following change of variable : t = x−Xi

hN+
.

For the Gaussian Kernel, we have :

∫ 0

−∞
f̂
b+
X,N+

(x)dx =
∑

Xi∈C+

∫ − Xi
hN+

−∞

1

N+

K(t)dt

=
1

N+

∑

Xi∈C+

∫ +∞

Xi
hN+

1√
2π

e−
t2

2 dt

=
1

N+

∑

Xi∈C+

Q
( Xi

hN+

)

(3.38)

and ∫ +∞

0

f̂
b−
X,N−

(x)dx =
∑

Xi∈C−

∫ +∞

− Xi
hN−

1

N−
K(t)dt

=
1

N−

∑

Xi∈C−

∫ +∞

− Xi
hN−

1√
2π

e−
t2

2 dt

=
1

N−

∑

Xi∈C−

Q
(

− Xi

hN−

)

(3.39)

where Q(·) denotes the complementary cumulative Gaussian distribution function, as
presented in section 2.2.2.1. Q(·) can also be expressed by the erfc function as follows :

Q(x) =
1

2
erfc
( x√

2

)

(3.40)

Using Eq. 3.38 and Eq. 3.39, we can evaluate the expression of the soft BER estimate
for the Gaussian Kernel :

p̂e,N =
π+

N+

∑

Xi∈C+

Q
( Xi

hN+

)

+
π−
N−

∑

Xi∈C−

Q
(

− Xi

hN−

)

(3.41)

For Gaussian distribution, the smoothing parameters hN+ and hN+ are computed
by using Eq. 3.27. For non-Gaussian PDF, they should be computed in an iterative
way by using the proposed methods as presented in section 3.2.2.
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3.2.4 MSE of Kernel-based soft BER estimator

We have given the expression of the BER by Eq. 3.41, in this section we shall study
the convergence of the suggested BER estimator in the sense of MSE.

The MSE of the soft BER estimation can be written as :

MSE(p̂e(x)) = MSE(p̂e,N) = E[p̂e(x)− pe]
2

=
(
E[p̂e(x)]− pe

)2
+E
[
p̂e(x)− E[p̂e(x)]

]2

= Bias2(p̂e(x)) + V ar(p̂e(x))

(3.42)

where pe is the true BER.

In order to study the convergence of the MSE, we have to find the bias and the
variance of the soft BER estimator. According to the results shown in [STG09], we can
obtain the following theorems.

Assume that the conditional PDF, f
b+
X (x) (resp., f

b−
X (x)), is a second derivative

PDF function, that hN+ (resp., hN−
) → 0 as N → 0. Then the soft BER estimation is

asymptotically unbiased, i.e.,
lim

N→∞
E[p̂e,N ] = pe (3.43)

Assume that f
b+
X (x) (resp., f b−

X (x)) is a second derivative PDF function, that hN+

(resp., hN−
) → 0 as N → 0. Then variance of the soft BER estimation tends to zero

as N tends to +∞, i.e.,
lim

N→∞
E
[
p̂e,N − E[p̂e,N ]

]2
= 0 (3.44)

Using the two above theorems, it can be shown that the MSE of the soft BER
estimation tends to 0 as N tends to +∞.

Assume that f
b+
X (x) (resp., f b−

X (x)) is a second derivative PDF function, that hN+

(resp., hN−
) → 0 as N → 0. Then MSE of the soft BER estimation tends to zero as N

tends to +∞, i.e.,

lim
N→∞

E[p̂e,N − pe]
2 = lim

N→∞
MSE(p̂e,N) = 0 (3.45)

3.3 Simulation results of BER estimation based on

Kernel method

To evaluate the performance of the proposed non parametric BER estimation based
on Kernel method, we have considered four different frameworks :

– BPSK sequence over AWGN and Rayleigh channels ;
– CDMA system ;
– Turbo coding system ;
– LDPC coding system.
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3.3.1 Sequence of BPSK symbol over AWGN and Rayleigh
channels

Let (bi)1≤i≤N ∈ {−1,+1} be a sequence of N BPSK signal, transmitted over an
AWGN channel without using any coding technique and any kinds of transmission
scheme. To simplify the simulation, we only consider the cardinality of C−, with N =
N−, which means that the transmitted bits (bi)1≤i≤N are equal to -1. The conditional
PDF estimation of f b−

X (x) based on Kernel method is realized by using Eq. 3.26.

Fig. 3.11 shows the simulation results of the BER estimation for AWGN channel
when N = 2000. We compare the Kernel-based BER estimates of three cases :

– without using the proposed methods for smooth parameter optimization but using
the initial values given by Eq. 3.27 ;

– using Newton’s method for smooth parameter optimization ;

– using curve fitting method for smooth parameter optimization, the chosen order
P of polynomial model is equal to 10 (with unique root) ;
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Figure 3.11 — BER estimate based on Kernel method for BPSK system over AWGN
channel when N = 2000



50
CHAPTER 3. BIT ERROR RATE ESTIMATION BASED ON KERNEL

METHOD

The Monte-Carlo simulation works well for small values of SNR. When SNR >
6 dB, the Monte-Carlo method cannot return non-zero value for BER estimation.
Whereas, the Kernel-based BER estimates work quasi-well (not very close to the the-
oretical values) till SNR = 10 dB.

Moreover, we can clearly observe that the BER estimated by using the optimized
smooth parameters has similar precision to the one without bandwidth optimization.

TAB 3.3 shows the value of non-optimized and optimized smooth parameter for
different SNR. The corresponding BER estimates are also given and compared with
the theoretical values.

SNR 1 dB 3 dB 5 dB 7 dB 9 dB
Theoretical BER 0.0563 0.0229 5.954 · 10−3 7.727 · 10−4 3.362 · 10−5

hN−
given by Eq. 3.27 0.1450 0.1140 0.0901 0.0720 0.0597

BER estimate (a) 0.0608 0.0224 5.565 · 10−3 2.033 · 10−4 1.529 · 10−4

hN−,Newton’s method 0.1098 0.1242 0.1091 0.0900 0.0476
BER estimate (b) 0.0589 0.0231 5.967 · 10−3 3.767 · 10−4 9.516 · 10−5

hN−,curve fitting 0.1363 0.1245 0.1094 0.0902 0.0518
BER estimate (c) 0.0602 0.0231 5.973 · 10−3 3.749 · 10−4 1.245 · 10−4

Table 3.3 — Comparison of theoretical BER and BER estimates computed by
using (a). non-optimized smooth parameter, (b). Newton’s method-based optimized

smooth parameter, (c). curve fitting-based optimized smooth parameter

It can be shown that :

– the BER estimates using initial values of smoothing parameters and based on the
curve fitting or Newton’s method are all close to the theoretical values. In fact,
because of AWGN channel, the initial values of hN+ and hN−

are considered as
the optimal one ;

– as SNR get higher, the BER estimates become imprecise, e.g. for SNR = 9 dB,
the BER estimates are about 3 ∼ 5 times bigger than the theoretical value.

When SNR > 10 dB, the values of BER estimates decline sharply, even for the one
using optimized smooth parameter. In theory, this is caused by the limitation of length
of database (we only have 2000 samples). However, while taking 20,000 data samples,
the performance of BER estimation is still similar to the previous case.

To explain further, we consider the normalized histogram and the PDF estimate
(obtained by using Newton’s method-based optimized smooth parameter, when N =
2000 and SNR = 10 dB) of the soft output of BPSK receiver, as shown in FIG 3.12.
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Figure 3.12 — Histogram and Kernel-based PDF estimate of soft output of BPSK
receiver when N = 2000 and SNR = 10 dB

It can be shown that there is a conformance between the Kernel-based PDF estimate
(red curve) and the Monte-Carlo-based histogram. In theory, the true PDF is Gaussian
since the BPSK signal is transmitted over AWGN channel, whereas we found an obvious
“distortion” near the top of the kernel-based PDF curve. In fact, this distortion is
completely caused by small value of number count.

Furthermore, it is important to note that the BER estimate depends on the accuracy
of PDF estimation in the “error area” (tail of PDF). For our case, this corresponds to
the area where the value of soft output Xi is greater than zero. However, in the zoomed-
in figure, we found another distortion at the position of the PDF curve edge, because
the studied SNR is sufficient high so that there are only very limited number of samples
far from the center of distribution. Also, we found that the density declined to zero due
to lack of sample count. For this reason, the BER estimate declined sharply to very
small value when SNR is high.

If we focus on the “average” observations by performing several trials of simulation,
the histogram could be exactly Gaussian without oscillation and the distortions could
disappear. However, this does not make any sense since this is equivalent to increase
the size of dataset, whereas, in practice, we may have only few data samples as for
many practical systems it is required to estimate the real-time BER with only limited
number of data frames.
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In a word, the dependence of Kernel-based PDF estimate on Monte-Carlo simulation
may present bad performance. For Gaussian distribution, we suggest use Gaussian
Mixture Model for PDF and BER estimation. In Chapter 4, we can find that the
Gaussian Mixture Model-based PDF estimate is very close to the true PDF, and the
BER estimation has a much better precision compared with the Kernel-based one.

We have also performed the Kernel-based BER estimation for Rayleigh channel
with different size of dataset. We compared the BER estimates based on smoothing
parameters optimization using Newton’s method with the BER estimates computed
with the Gaussian initial values.
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Figure 3.13 — Kernel-based BER estimation for BPSK signal over Rayleigh channel
when (a). N = 100, (b). N = 1000

In Fig. 3.13, we can find that for small number of data samples, the Kernel-based
BER presents better performance than the one using Monte-Carlo simulation, even
for only 100 data points (cf. Fig. 3.13 (a)). Moreover, because of Rayleigh channel, it
is obvious that the BER estimates based on smoothing parameter optimization using
Newton’s method have better precision compared with the one with Gaussian initial
values of hN+ and hN−

.

Also, the Kernel-based BER estimate changes with the SNR as regularly as the
Monte-Carlo-based one does. As previously discussed, this is due to the dependence of
Kernel-based PDF estimate on Monte-Carlo simulation.

Fig. 3.14 shows the Kernel-based PDF estimates for the case of Rayleigh channel
when N = 100 and 1000. The results are given at SNR = 6 dB.
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Figure 3.14 — Kernel-based PDF estimation for BPSK signal over Rayleigh channel
when (a). N = 100, (b). N = 1000

For small values of SNR, even if taking very few data samples, we can always obtain
precise estimation results. As shown in Fig. 3.14 (a), the PDF curve estimated using 100
samples still fits to theoretical Rayleigh distribution, whereas the Monte-Carlo-based
histogram is very “confused”.

3.3.2 CDMA system

In this section, we shall consider a synchronous CDMA system with K users em-
ploying normalized spreading codes, using BPSK over an AWGN channel.

At each instant i, the received signal vector is given by

ri =
K∑

k=1

Akb
(k)
i sk + ni (3.46)

where :
– sk : spreading code corresponding to user k, sk ∈ {±1/

√
LSF}LSF . In the follow-

ing, we use the two spreading codes :
{

s1 =
1√
7
[+1,+1,+1,+1,−1,−1,−1]T

s2 =
1√
7
[−1,−1,+1,+1,−1,−1,−1]T

(3.47)

– LSF : spreading factor ;
– b

(k)
i : information bit of user k at instant i, b(k)i ∈ {±1} ;

– ni : temporally and spatially white Gaussian noise, i.e., ni ∼ N(μ, σ2ILSF
) ;

– Ak : signal amplitude of the users. In the following, we consider the case where
the two users have equal power, A1 = A2 = 1.

In our works, we consider two types of CDMA receiver : the standard receiver and
the decorrelator-based receiver.
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3.3.2.1 Standard receiver

A sufficient method for demodulating the data bits from the received signal of the
K users is to utilize the filter matched to the given spreading codes sk. The output of
the filter for the kth user is given by :

X
(k)
i = s

T
k ri k = 1, . . . K (3.48)

Fig. 3.15 shows the schema bloc of standard receiver for 2 users (K = 2).
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Figure 3.15 — Standard receiver

The detection of the kth user at time instant i is given by :
{

X
(1)
i = A1b

(1)
i + A2b

(2)
i ρ+ n

(1)
i

X
(2)
i = A2b

(2)
i + A1b

(1)
i ρ+ n

(2)
i

(3.49)

where :
– ρ : normalized cross-correlation between the two spreading codes. For the spread-

ing codes given by Eq. 3.47, ρ = 0.4286.

– n
(k)
i : Gaussian noise at the output of the detector of kth user, i.e., n(k)

i ∼ N(0, σ2).

The decision about information bit b
(k)
i is performed by computing the sign of

decision statistic.
b̂
(k)
i = sign(X

(k)
i ) k = 1, 2 (3.50)

Assume that the a priori probabilities of transmitted bits are identical for both
users. {

π+ = P [b
(k)
i = +1]

π− = P [b
(k)
i = −1]

∀ k, i (3.51)

The theoretical BER for user 1 is given by :

pe1,theoretical = 2π+π−Q
(A1 − A2ρ

σ

)
+(π2

+ + π2
−)Q
(A1 + A2ρ

σ

)
(3.52)

where Q(·) is given by Eq. 2.28.
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Fig. 3.16 shows the simulation results of BER estimation for the CDMA system
employing standard receiver. The number of soft outputs that serve for estimating the
BER is 1000. We consider two cases : single user and 2 users.

1 2 3 4 5 6 7
10

-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 dB

B
E

R

Kernel-based BER estimate for standard CDMA receiver (N = 1000)

 

 

Theoretical BER

MC-based BER

Kernel-based BER (without h
N
 optimization)

Kernel-based BER (optimized h
N
)

Single user

2 users

Figure 3.16 — Kernel-based BER estimation for standard CDMA receiver (N =
1000)

The Kernel method gives reliable BER estimation for given values of SNR. Com-
pared with Monte-Carlo simulation, the Kernel-based results are not always very close
to the theoretical values given by Eq. 3.51, e.g., it can be shown that for SNR = 6 dB,
the BER estimated by using Monte-Carlo method is closer to the theoretical value
compared with the one estimated by Kernel method.

We can also find the dependence of Kernel-based BER estimate on Monte-Carlo
simulation. However, for single trial, the BER estimate curve based on Kernel method,
especially the one using optimized smooth parameters, is “smoother” than the one
based on Monte-Carlo simulation.
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Fig. 3.17 illustrates the histograms and the Kernel-based PDF estimates when
SNR = 6 dB and 10 dB.
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Figure 3.17 — Histograms and Kernel-based PDF estimates for standard CDMA
receiver when (a). SNR = 6; dB, (b). SNR = 10 dB and N = 1000

While increasing the value of SNR, the error areas for C+ and C− become smaller as
errors are not normally seen. For this reason, if the simulation is performed several tri-
als, we may find that the Kernel method is unreliable for high SNR since the estimated
PDF functions in the error areas may be “unstable” and may present quasi-significant
difference between the results of different trials. However, the “average” PDF and BER
estimates could be closer to the theoretical one. Thus, if it is not required to estimate
the BER in a real-time fashion, performing several trials of Kernel simulation then
computing the mean BER can improve the BER estimates.

3.3.2.2 Decorrelator-based receiver

Adding a decorrelator after the filter allows improving the receiver performance.

The device R−1 shown in Fig. 3.18 represents the inverse correlation matrix of the
two spreading codes given by Eq. 3.47. In our case, R−1 is given by :

R−1 =

(
1 ρ
ρ 1

)

The input of the decision logic for user 1 is given by :

X
(1)
i = R−1(1, 1)y

(1)
i +R−1(1, 2)y

(2)
i (3.53)



3.3. SIMULATION RESULTS OF BER ESTIMATION BASED ON KERNEL
METHOD 57

 ir

(1)
iy

(2)
iy

(1)ˆ
ib

(2)ˆ
ib

1R

(1)
iX

(2)
iX

Matched filter 1

Matched filter 2

Figure 3.18 — Decorrelator-based receiver

The theoretical BER for user 1 can be expressed as :

pe1,theoretical = Q
(A1

√

1− ρ2

σ

)

(3.54)

Obviously, this value does not depend on the bits transmitted by user 2.

FIG 3.19 shows the Kernel-based BER estimates for the decorrelator-based receiver
while taking 2000 data samples. We have utilized the Newton’s method to optimize
the smooth parameters.
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It can be shown that :
– for low SNR, the BER performances of different estimation methods are quite

similar ;

– for high SNR, the proposed technique based on Kernel method provides reliable
BER estimates, with respect to the theoretical curve (obtained by using Eq. 3.54),
while the performance of Monte-Carlo method turns to be random because of the
very limited number of transmitted data bits.

Moreover, compared with the previous simulation results shown in Fig. 3.16, we can
observed a very small “bias” and a clear improvement in “stability” and “smoothness” :
the BER curves estimated by using the three methods no longer present dramatic
random fluctuations, since the number of data samples is increased.

However, 2000 samples are not sufficient while taking very high SNR, even for
the Kernel method. If the SNR gets higher, the Kernel method cannot provide BER
estimation in good precision while taking 2000 samples, e.g., when SNR = 20 dB, we
have tested the Kernel-based BER estimation for several trials and we found that there
are always vast and random fluctuations which are quite similar to the results shown
in Fig 3.11.

In Tab. 3.4, three BER values obtained by taking 100 trials and using the corre-
sponding initial and optimal values of the smoothing parameter hN+ are demonstrated
for SNR from 1 dB to 6 dB. Theoretical BER and estimated BER values by using
initial and optimal smoothing parameters (optimized by using Newton’s method) were
reported. The initial smoothing parameters are given by Eq. 3.27.

SNR 1 dB 2 dB 3 dB 4 dB 5 dB 6 dB
Theoretical BER 0.0758 0.0539 0.0355 0.0214 0.0115 0.0054
Mean BER (MC) 0.0800 0.0549 0.0389 0.0251 0.0120 0.0055

Mean BER (hN,initial) 0.0864 0.0605 0.0433 0.0305 0.0160 0.0077
Mean BER (hN,optimal) 0.0821 0.0582 0.0429 0.0300 0.0139 0.0061

Table 3.4 — Comparison of theoretical BER and estimated BERs by using optimal
and initial values of hN in the CDMA system

Firstly, we can find that the mean of BER estimation using Monte-Carlo method
is quite close to the theoretical BER. This is in line with the theory, in fact, the main
advantage of Monte-Carlo simulation is to lead very small bias when there is sufficient
trials and data samples.

Secondly, by comprehensive comparison, we arrive at a conclusion that the esti-
mated BER with optimal hN is closer to the theoretical values than the one with
initial hN . This conclusion accords with the simulation results shown in Fig 3.16 : the
PDF curves estimated by using optimal smooth parameters could be “smoother” than
the one without performing optimization, even if AWGN channel is used (note that
Eq. 3.14 gives an approximation of the IMSE). This can be explained by considering
the basic theory of bandwidth selection : optimal bandwidth should help PDF estimate
best fitted to the theory curve.
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Tab. 3.5 shows the corresponding initial and optimal values of the smoothing pa-
rameter hN+ for SNR from 1 dB to 6 dB. It is shown that the difference between the
initial and optimal values changes with SNR. To ensure the reliability of Newton’s
method, this difference must be much smaller than a given threshold, as presented in
section 3.2.2.2.

SNR 1 dB 2 dB 3 dB 4 dB 5 dB 6 dB
Mean hN,initial 0.1545 0.1322 0.1313 0.1274 0.1165 0.1103
Mean hN,optimal 0.1867 0.1506 0.1354 0.1306 0.1298 0.1140

Table 3.5 — Initial and optimal smoothing parameter hN+
for different SNR in

the CDMA system

Furthermore, we also have computed the variance of BER estimation with the three
methods (Monte-Carlo simulation, Kernel method without bandwidth optimization
and Kernel method using optimal bandwidth) when N = 2000 for different SNR. The
variance of the BER estimation is computed by performing 1000 trials.

SNR = 0 dB SNR = 4 dB SNR = 6 dB
Monte-Carlo Variance 5.0 · 10−5 2.4 · 10−5 1.3 · 10−5

Kernel using intial hN Variance 4.5 · 10−5 2.1 · 10−5 1.1 · 10−6

Kernel using optimal hN Variance 4.3 · 10−5 2.0 · 10−5 1.0 · 10−6

Table 3.6 — Variance of BER estimation for Monte-Carlo and Kernel methods for
different SNR using 2000 data samples and 1000 trials

In the sense of the minimum variance (or standard deviation) of BER estimation,
Kernel method using optimal bandwidth provides best performance. Without optimiz-
ing smooth parameters, the Kernel method leads to greater bias. The mean of the BER
estimation of Monte-Carlo method could be very close to the theoretical value while
taking a large number of trials, but the bias is the maximum compared with Kernel
method.

In conclusion, the Kernel method is more reliable than the Monte-Carlo method.
Specially, single trial of Kernel-based simulation can provide good performance, this
presents a major strength of the proposed Kernel-based BER estimator that the BER
could be estimated in a real-time fashion based on very limited number of data samples.

3.3.3 Turbo coding system

The 3rd framework is a digital system using turbo codes with 1/3 coding rate over
an AWGN channel. Principle and performance assessment of the turbo codes can be
found in [BGT93,BG96]. The Turbo coder/decoder codes are given by M. Mohamed
ET-TOLBA.
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Fig. 3.20 shows the simulation results of BER estimation in the case of turbo code.
8 iterations for Max-Log-MAP (Max-Log-Maximum A Posteriori) decoding algorithm
have been used to compute the soft observed LLRs. For MC simulation, we have taken
600 frames and 2000 frames, each frame contains 500 data bits.
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Figure 3.20 — Kernel-based BER estimation (300,000 samples) and MC-based BER
(300,000 and 1,000,000 samples) for turbo coding system

The Kernel method provides better performance than Monte-Carlo method in sin-
gle trial. For our simulation, when SNR = 1.4 dB, only 26 errors are counted for
the Monte-Carlo simulation. When SNR = 1.6 dB, the Monte-Carlo method fails to
obtain BER estimation since there is no errors. Without using the proposed smooth-
ing parameters optimization methods, the Kernel-based BER estimation also provides
good performance which is quite similar to the one using optimal hN .

In general, the Kernel-based BER estimation is much more reliable since the BER
curve seems quite “smooth”, this accords with the regular rule in the sense of the
minimum of bias, as presented in section 3.2.2.2.

Fig. 3.21 shows the statistical results of length of database for turbo code-based
system at different values of BER estimate. At least 100 errors are counted for Monte-
Carlo simulation. It can be shown that the Kernel method needs much less number
of data points than the Monte-Carlo simulation. To obtain a BER equals to 10−5, the
Monte-Carlo simulation needs at least 107 samples, whereas the Kernel method requires
5.0 · 105 samples. If each frame contains 500 data bits, only 1000 frames can be used
to have a similar precision.
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Figure 3.21 — Length of database at different values of BER for turbo coding
system

Therefore, we demonstrate that the proposed Kernel-based technique provides sim-
ilar BER results as Monte-Carlo and only requires a small number of soft outputs
compared with the classical Monte-Carlo simulation.

This advantage in reducing the number of data samples can be explained by con-
sidering the previous PDF estimation results (cf. Fig. 3.14) : the Kernel-based PDF
estimation can still be sufficiently “smooth” even if few data samples are used.

3.3.4 LDPC coding system

We have also tested the Kernel method for a 1/2 rate Quasi-Cyclic-Low Density
Parity Check (QC-LDPC) system. Principle and implementation of the QC-LDPC code
are presented in Appendix A.

Instead of computing the LLR, we use the pseudo a posteriori probabilities Qj (cf.
Appendix A (3)) as the soft observations :

soft observation = Q1
j(T )−Q0

j(T ) (3.55)

where Qi
j(T ) denotes the pseudo a posteriori probability that the jth transmitted bit

bj = i at T th iteration of decoding algorithm.

Obviously, we have : soft observationLDPC ∈ [−1,+1]. The decision is given by :

I(bi) =

{

1 if Q1
j −Q0

j > 0,

0 otherwise.
(3.56)
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Fig. 3.22 shows the simulation results of BER estimation in the case of QC-LDPC
code. The parity check matrix G is generated with a dimension of 635 × 1270. We
have used 500 frames and each one contains 635 random bits. For MC simulation, 500
frames and 15 000 frames are used respectively.
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Figure 3.22 — Kernel-based BER estimation for QC-LDPC system with 500 frames

As the previous results for other frameworks, we can always find the dependence
of the Kernel-based BER estimation on the Monte-Carlo simulation results (e.g., the
BER estimates from SNR = 1.5 dB to SNR = 2 dB). However, the Monte-Carlo-
based BER curve stops at SNR = 2 dB, whereas the Kernel method still works for
high values of SNR. If we want to achieve low BER (e.g., < 10−5) by using Monte-Carlo
method, a very big number of data samples must be used. In our simulation, 500× 635
= 317,500 samples are not sufficient since only single-digit errors could be found for
BER = 10−5. While using 15 000 frames, we can obtain the BER estimates down to
10−7 for MC simulation, whereas 500 frames are sufficient for the Kernel method to
have a good precision.

However, this may not be very promising for many other practical systems where it is
required to obtain a real-time estimation of the BER, since the bandwidth optimization
algorithm will take excessively long computing time. In order to reduce the simulation
complexity, we propose to use a modified dataset which only contains a part of samples.
Let us consider the obtained histogram for C+ when SNR = 2.5 dB.
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Figure 3.23 — Histogram of the soft output (C+) for QC-LDPC system when
SNR = 2.2 dB

It can be shown that the soft output is extremely centered at +1 with very small
bias. The zoomed-in figure shows the histogram from 0.995 to 0.9995, in this area, only
few samples are found.

Tab. 3.7 reports the statistic of the values of soft outputs, Xb+ and Xb− , when
SNR = 2.5 dB. Recall that there are totally 317,500 outputs.

min value max value total number number : |xb± | = 1 number : |xb± | <1
Xb+ 0.4061 +1 158,512 121,049 37,463
Xb− -1 -0.6888 158,988 121,387 37,601

Table 3.7 — Statistic of soft data values when SNR = 2.5 dB

Since the BER is determined by the “error area” which represents the tails of the
conditional PDFs, we can get rid of the soft observations that equal to ±1. As shown
in Tab. 3.7, for C+, only 37,463 soft outputs will be taken into account, which is about
4 times less than the original size of dataset.

Furthermore, we can even reduce the size of dataset by setting a threshold ǫ. As
an example, when SNR = 2.5 dB, ǫ = 0.9995 means that only the soft outputs that
belong to [-0.9995, 0.9995] need to be taken into account. For the above simulation
result shown in Fig. 3.23, only 1368 soft outputs shall be used. However, the threshold
ǫ must be selected very carefully. For high SNR, ǫ cannot be too small in order to avoid
losing too much information. Empirically, we propose to use a threshold greater than
or equal to 0.9995.

Last, we shall test the performance of the proposed modified Kernel-based method
in the sense of mean and variance. Fig. 3.24 shows the maximum, minimum and mean
values of Kernel-based BER estimates for QC-LDPC system using 500 frames and 20
trials.
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Figure 3.24 — Kernel-based BER estimates comparison for QC-LDPC system (500
frames, 20 trials) : top : using unmodified dataset ; bottom : using modified dataset

(threshold = 0.9996)

It can be shown that the mean values of BER estimates are very close to the true
values. However, compared with the unmodified version, the proposed modified method
has worse precision in the sense of the minimum variance : the BER estimates obtained
by using modified dataset could be randomly variant in the region of high SNR, since
we only take in account a few number of observations corresponding to the tails of
PDFs.

3.4 Conclusion

In this chapter, we have firstly presented the properties of Kernel estimator. Then,
for Gaussian Kernel and AWGN channel, we have given the optimal smoothing pa-
rameters by minimizing the IMSE. Next, for practical situation, we have proposed two
algorithms to iteratively estimate the optimal bandwidths. Once we obtain the Ker-
nel estimators for both classes C+ and C−, the BER can be computed analytically.
Last, we have reported the behavior of the Kernel-based estimator for different digital
communication systems.

In the context of BER estimation, the Kernel method consists in estimating the
conditional PDFs and smooth the histogram. It was shown that, compared with the
conventional Monte-Carlo technique, the Kernel-based estimator provides better pre-
cision even with very limited number of data samples.
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Moreover, the soft observations can be any kind of soft information, e.g., for Turbo
coding system, the LLRs are used, whereas for LDPC coding system, we have applied
the pseudo a posteriori probabilities. This makes the Kernel estimator flexible to fit
the receiver’s schema and decoding algorithm.

For non-Gaussian distribution, the smoothing parameters given by Eq. 3.27 is no
longer applicable. The two proposed methods, curve fitting method and Newton’s
method, should be used.

For LDPC coding system, we have proposed to modify the size of dataset to reduce
the computing time. This method consists in getting rid of the soft outputs equal (or
very close) to ±1 since these samples are useless for BER estimation. This method will
also be used for BER estimation based on Gaussian Mixture Model.





CHAPTER

4 Bit Error Rate estimation

based on Gaussian

Mixture Model

In Chapter 3, we have proposed a new technique based on non-parametric Kernel
method to estimate Bit Error Rate. It was shown that the proposed method provides
similar BER results as Monte-Carlo while it only requires few soft outputs.

As presented in Chapter 2, the mixture model is a major class of semi-parametric
model. Compared with the proposed Kernel method based on non-parametric model,
we can easily control the number of mixture components in order to reduce the number
of parameters. In this chapter, instead of using the Kernel method, a semi-parametric
Gaussian Mixture Model will be utilized.

4.1 Missing data of component assignment

In section 2.2.4.2, we have shown that the unknown parameters of Mixture Model
cannot be obtained without finding the missing data Zi which determines the assign-
ment of every data point to the different components.

As Mixture Models are widely used in the domain of data clustering, we will show
how to perform the cluster assignment (the centroids of the K clusters, (μk)1≤k≤K) by
using the mixture model. First of all, we consider a simple case : the K-mean clustering.

4.1.1 K-means clustering

4.1.1.1 Principle of K-means clustering

K-means clustering is the classical method of clustering analysis [M+67,Har75]. Let
us consider N observations Xi ∈ {X1, . . . , XN}, K-means clustering method aims to
partition the N observations into K sets (K ≤ N) so as to minimize the Within-Cluster
Sum of Squares (WCSS).
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argmin
zik

(WCSS) = argmin
zik

(
N∑

i=1

K∑

k=1

zik||Xi − μk||2
)

(4.1)

where μk is the mean of data points which represents the centroid of cluster ; zik is the
“beacon” which is equal to 1 if Xi belongs to the kth cluster.

The centroid is also called the model parameter, often defined as θ = (μk)1≤k≤K .
The data samples Xi are incomplete data because of missing the cluster assignment
information. Thus, in clustering problem we need to find estimates for both zik and μk

that minimize the objective function (WCSS).

4.1.1.2 K-means clustering algorithm : KMA

The most common method for K-means clustering is an iterative algorithm, called
the Forgy’s batch K-Means Algorithm (Forgy’s batch KMA) [For65, ÄKM07]. The
algorithm proceeds by alternating between two steps :

– Assignment step : minimizing the WCSS with regard to zik.
Since all data samples are independent, we can choose zik to be 1 for whichever
value k gives the minimum value of the squared distance. Then we can assign the
current observation to the nearest cluster center.

z
(t)
ik =

{
Xi : ||Xi − μ

(t)
k || ≤ ||Xi − μ

(t)
j ||
}

∀j, 1 ≤ k, j ≤ K (4.2)

– Update step : minimizing the WCSS with regard to μk.
We take the derivative of WCSS with regard to μk and equate to zero. This step
is similar to the Maximization step of Expectation-Maximization algorithm for
GMM. In this subsection, we just give the expression of updated μk, the details
of calculations and proofs will be shown in section 4.2.2.

μk =

∑N
i=1 zikXi
∑N

i=1 zik
(4.3)

Another similar method for on-line clustering is called the sequential K-means al-
gorithm. This method updates the centers whenever a data point xi is available, as
follows :

– first, we initialize the centroids for K clusters.
– second, find the cluster centroid that is nearest to the incoming data point. Add

the data point to the cluster and update the cluster center as the mean vector of
all the data points in this cluster.

– then check if the nearest centroid of a data point is the center this data point
belongs to. Repeat to check all the data points.

The K-means procedure can be seen as an algorithm for partitioning the N samples
into K clusters so as to minimize the sum of the squared distances to the cluster centers.
However, K-means algorithm does have some weaknesses :

– we cannot specify the way to initialize the means. In general, we start with a
random number K as the number of Gaussians ;
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– the final results produced depend on the initial values of the means ;

– sometimes it makes hard guess for cluster assignment. In other words, for some
cases our model may not be sure about exact cluster assignment ;

– the final results produced also depend on the value of K.

Particularly, the last problem is troublesome, since we often have no idea how many
clusters “should” exist. Furthermore, there is no theoretical solution to find the optimal
number of clusters for any data samples. In general, we should compare the results of
different trials with different values of K and choose the best one.

There are some other popular algorithms of clustering, such as :

– Fuzzy C-means algorithm [BEF84,JSM97], which is the most used method based
on overlapping clustering algorithm ;

– Hierarchical clustering algorithm [TJBB06].

In the following subsection, we will discuss an improved approach based on K-means
algorithm : the model-based clustering method.

4.1.2 Probabilistic clustering as a mixture of models

The model-based clustering method consists in using certain models for clusters
and attempting to optimize the fit between the data samples and the chosen model.
Comparing with the K-means algorithm, the missing data of model-based method is not
constant (1 or 0) but defined as the probability that the studied observation belongs
to a cluster. For this reason, this method is also called the probabilistic clustering
approach.

In practice, each cluster can be mathematically represented by a parametric dis-
tribution, like a Gaussian or a Poisson. Therefore, the entire dataset is modeled by
a mixture of the chosen distributions. The most widely used model-based clustering
method is the one based on learning a mixture of Gaussian distributions. Therefore,
the probabilistic clustering based on Gaussian distributions is equivalent to the GMM-
based PDF estimation.

Let Zi ∈ {Z1, . . . , ZN} be the missing data that determines the component (cluster)
from which the data samples originate. Zi = k means that the data sample Xi belongs
to the kth component of the Gaussian mixture.

Let us consider the conditional PDF given by Eq. 2.49, the a priori probability αk

represents the probability that Zi = k [JAN13], i.e.,

P (Zi = k) = αk αk ≥ 0 and
K∑

k=1

αk = 1 (4.4)

Therefore, Zi can be considered as missing data that follows a multinomial distri-
bution, i.e., Zi ∼ Multinomial(α). For a chosen value of Zi, we have :

(X|Zi = k) ∼ N(μk, σ
2
k) 1 ≤ k ≤ K
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We can obtain the joint probability distribution :

P (Xi, Zi) = P (X|Zi = k)P (Zi) (4.5)

Let θ = (αk, μk, σ
2
k)1≤k≤K be the unknown parameters that we need to estimate.

The criterion we will use is the maximization of the joint likelihood of both observed
data samples, X, and missing data, Z. The log-likelihood function is given by [DLR77] :

log[L(X,Z; θ)] =
N∑

i=1

log[P (Xi, Zi; θ)]

=
N∑

i=1

log
∑

k

P (Xi, Zi = k; θ) =
N∑

i=1

log
K∑

k=1

P (Xi|Zi = k; θ)P (Zi = k; θ)

(4.6)

Unfortunately, the maximum value of Eq. 4.6 cannot be computed by using the
analytical derivative of the log-likelihood function, since we cannot obtain the close
form solution.

Let us consider the following simple case : assume that we know the values of Zi

for every data samples, we get :

log[L(X,Z; θ)] =
N∑

i=1

[logP (Xi|Zi = k; θ) + logP (Zi = k; θ)] (4.7)

Take the derivatives with respect to {αk, μk, σ
2
k} :

μk =

∑N
i=1 P (Zi = k)Xi
∑N

i=1 P (Zi = k)

σ2
k =

∑N
i=1 P (Zi = k)(Xi − μk)

2

∑N
i=1 P (Zi = k)

αk =
1

N

N∑

i=1

P (Zi = k)

(4.8)

This means that :
– αk is the mean of a posteriori probabilities that Zi = k ;
– μk is the mean of Xi with respect to Zi = k ;
– σ2

k is the variance of Xi with respect to Zi = k.

We have obtained the mathematical expression of the unknown parameters θ =
(αk, μk, σ

2
k)1≤k≤K by assuming that we know the values of Zi. However, Zi ∈

{Z1, . . . , ZN} is the missing data that we need to find. In the next paragraph, we
will discuss the way in which the missing data can be estimated and the algorithm of
PDF/BER estimation based on GMM.
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4.2 BER estimation based on Gaussian Mixture

Model

The most widely used approach to compute the missing data and estimate the
PDF is the Expectation-Maximization (EM) algorithm [Moo96,McL80], which is quite
similar to the K-means algorithm. The EM algorithm also estimates the unknown
parameters in an iterative way :

– Estimation step : we compute the missing data. This step corresponds to the
Assignment step of the K-means algorithm (cf. section 4.1.1.2) ;

– Maximization step : we compute the new parameters by maximizing the log-
likelihood function of data samples and missing data. This step corresponds to
the Update step of the K-means algorithm.

First, we will give a brief presentation of the EM algorithm. Then we will discuss
how to use the EM algorithm to estimate the unknown parameters of GMM. Finally,
we will present how to compute the BER by using the PDF estimates.

4.2.1 Introduction to Expectation-Maximization algorithm

In section 4.1.2, we have presented that it is hard to directly estimate the unknown
parameter θ from the log-likelihood function given by Eq. 4.6, since there is a missing
data Zi. That’s why we need to maximize the log-likelihood function in an iterative
way :

– in the Estimation step, we will try to find the “lower bound” of the log-likelihood
function ;

– in the Maximization step, we will optimize this “lower bound”.

Before discussing the details of EM algorithm, it is necessary to introduce the
Jensen’s inequality.

4.2.1.1 Jensen’s inequality

Let f be a function in real number field, for a given real variable X, if the 2nd

derivative f
′′

(X) ≥ 0, f(·) is called convex function, we get :

E[f(X)] ≥ f(E[X]) (4.9)

Eq. 4.9 is called the Jensen’s inequality.

If f
′′

(X) ≤ 0, f(·) is called concave function. Then we get :

E[f(X)] ≤ f(E[X]) (4.10)
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4.2.1.2 Principle of Expectation-Maximization algorithm

We consider the same example discussed in section 4.1.2. Let {Xi, Zi}i=1,...,N be
the complete data which represents the observations along with the missing data. The
log-likelihood function is given by Eq. 4.6. Let ρk,i be a certain kind of distribution :

∑

k

ρk,i(Zi) = 1 ρk,i(Zi) ≥ 0, k = 1, 2, 3 (4.11)

Then Eq. 4.6 can be rewritten as :

log[L(X,Z; θ)] =
N∑

i=1

log
∑

k

P (Xi, Zi = k; θ)

=
N∑

i=1

log
∑

k

ρk,i(Zi)
P (Xi, Zi = k; θ)

ρk,i(Zi)

(4.12)

Assume that the distribution of random variable X is a discrete distribution and we
know the probability mass function fX , then the expected value of a function Y = g(X)
of the variable X is :

E[g(X)] =
∑

x

g(x)fX(x) (4.13)

The above equation is referred to as the rule of the lazy statistician, which can be
applied in Eq. 4.12 :

– Zi corresponds to the discrete random variable X ;
– ρk,i corresponds to the probability fX , i.e., fX = ρk,i(Zi) ;
– P (Xi, Zi = k; θ)/ρk,i(Zi) corresponds to Y ;
– g(X) is the mapping from Zi to P (Xi, Zi = k; θ)/ρk,i(Zi).

By using Eq. 4.13, we can write :

E
[P (Xi, Zi = k; θ)

ρk,i(Zi)

]

=
∑

k

ρk,i(Zi)
P (Xi, Zi = k; θ)

ρk,i(Zi)
(4.14)

According to the Jensen’s inequality given by Eq. 4.10, consider that log(·) is a
concave function, we get :

log

(

E
[P (Xi, Zi = k; θ)

ρk,i(Zi)

]
)

≥ E

[

log
(P (Xi, Zi = k; θ)

ρk,i(Zi)

)
]

(4.15)

By using Eq. 4.14 and Eq. 4.15, Eq. 4.12 can be rewritten as :

log[L(X,Z; θ)] =
N∑

i=1

log
∑

k

ρk,i(Zi)
P (Xi, Zi = k; θ)

ρk,i(Zi)

≥
N∑

i=1

∑

k

ρk,i(Zi) log
(P (Xi, Zi = k; θ)

ρk,i(Zi)

)
(4.16)
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The “lower bound” of the log-likelihood function is then given by Eq. 4.16. Assume
that we know the value of parameter θ, then the probabilities P (Xi, Zi = k; θ) and
ρk,i(Zi) determinate the value of the log-likelihood function. We shall adjust these two
probabilities to optimize the value of “lower bound” till the equality in Eq. 4.16 holds.
The condition for equality is given by :

P (Xi, Zi = k; θ)

ρk,i(Zi)
= constant (4.17)

Consider that
∑

Z ρk,i(Zi) = 1 (cf. Eq. 4.11), we get :

ρk,i(Zi) =
P (Xi, Zi = k; θ)

constant
=

P (Xi, Zi = k; θ)
∑

k P (Xi, Zi = k; θ)

=
P (Xi, Zi = k; θ)

P (Xi; θ)
= P (Zi = k|Xi; θ)

(4.18)

Eq. 4.18 shows that ρk,i is seen as the a posteriori probability.

Therefore, the two steps of the Expectation-Maximization algorithm can be inter-
preted as :

– Estimation step :
at iteration t, we estimate the missing/hidden data ρk,i for each data sample Xi

using the parameter value θ(t−1) computed at the last Maximization step at the
previous iteration t − 1 (if t = 1, we use the initial value of the parameter, i.e.
θ(0)) ;

ρ
(t)
k,i(Zi) = P (Zi = k|Xi = xi; θ

(t−1)) for i = 1, . . . N and k = 1, . . . K (4.19)

– Maximization step :
at the current iteration, we compute the unknown parameter θ(t) by maximizing
the log-likelihood function, assuming independent observation Xi.

θ(t) = argmax
θ

[
N∑

i=1

∑

k

ρ
(t)
k,i(Zi) log

(P (Xi, Zi = k; θ(t−1))

ρ
(t)
k,i(Zi)

)
]

(4.20)

The obtained parameter θ(t) will be used at the next Estimation step at iteration
t+ 1.

4.2.2 Expectation-Maximization algorithm for Gaussian Mix-
ture Model

Now we shall back to the Gaussian Mixture Model. We will compute the unknown
parameter θ = (αk, μk, σ

2
k)1≤k≤K by using the Expectation-Maximization algorithm.
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4.2.2.1 Estimation step

We have given the expression of the a posteriori probabilities ρk,i in section 4.2.1.2.
(cf. Eq. 4.19). Then, by using simple Bayes’ rule, at iteration t, we have :

ρ
(t)
k,i = P (Zi = k|Xi = xi; θ

(t−1)) =
P (Xi = xi|Zi = k; θ(t−1))P (Zi = k; θ(t−1))

P (Xi = xi; θ(t−1))

For i = 1, . . . , N and for k = 1, . . . , K, we get :

ρ
(t)
k,i =

α
(t−1)
k fk(Xi;μ

(t−1)
k , σ

(t−1)2
k )

∑K
k=1 α

(t−1)
k fk(Xi;μ

(t−1)
k , σ

(t−1)2
k )

(4.21)

4.2.2.2 Maximization step

Since the values of ρk,i at iteration t have been computed, we will maximize the
joint log-likelihood function which can be rewritten as :

L(θ) =
N∑

i=1

∑

k

ρ
(t)
k,i(Zi) log

P (Xi, Zi = k; θ)

ρ
(t)
k,i(Zi)

=
N∑

i=1

K∑

k=1

ρ
(t)
k,i(Zi) log

P (Xi|Zi = k; θ)P (Zi = k; θ)

ρ
(t)
k,i(Zi)

=
N∑

i=1

K∑

k=1

ρ
(t)
k,i log

α
(t)
k√

2πσ
(t)
k

exp
(

− (Xi−μ
(t)
k

)2

2σ
(t)2
k

)

ρ
(t)
k,i

=
N∑

i=1

K∑

k=1

ρk,i

[

logα
(t)
k − 1

2
log(2πσ

(t)2
k )− (Xi − μ

(t)
k )2

2σ
(t)2
k

]

(4.22)

4.2.2.2.1 Calculation of μk

Setting the derivative with regard to μk of the joint log-likelihood function to zero,
we find :

∂(L(θ))

∂(μk)
=

N∑

i=1

ρ
(t)
k,i

Xi − μ
(t)
k

σ
(t)2
k

= 0

Thus, for k = 1, . . . , K, we get :

μ
(t)
k =

∑N
i=1 ρ

(t)
k,iXi

∑N
i=1 ρ

(t)
k,i

(4.23)

It can be shown that Eq. 4.23 corresponds to the 1st equation of Eq. 4.8.
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4.2.2.2.2 Calculation of σ2
k

Setting the derivative of the joint log-likelihood function with regard to σ2
k to zero,

we find :

∂(L(θ))

∂(σ2
k)

=

∂

(

∑N
i=1

∑K
k=1 ρ

(t)
k,i

(
(Xi−μ

(t)
k

)2

2σ
(t)2
k

− 1
2
log(σ

(t)2
k )
)
)

∂(σ
(t)2
k )

=
N∑

i=1

ρ
(t)
k,i

(Xi−μ
(t)
k

)2

σ
(t)2
k

− 1

2σ
(t)2
k

= 0

Thus, for k = 1, . . . , K, we get :

σ
(t)2
k =

∑N
i=1 ρ

(t)
k,i(Xi − μ

(2)
k )2

∑N
i=1 ρ

(t)
k,i

(4.24)

It can be shown that Eq. 4.24 corresponds to the 2nd equation of Eq. 4.8.

4.2.2.2.3 Calculation of αk

Taking into account the constraint
∑K

k=1 αk = 1, we shall firstly add a Lagrange
Multiplier into Eq. 4.22, we have :

Llagrange(θ) =
N∑

i=1

K∑

k=1

ρ
(t)
k,i

[

logα
(t)
k − 1

2
log(2πσ

(t)2
k )− (Xi − μ

(t)
k )2

2σ
(t)2
k

]

+β(
K∑

k=1

α
(t)
k − 1)

(4.25)

Since αk ≥ 0, setting the derivative of Eq. 4.25 with regard to αk to zero, we find :

∂(L(θ))

∂(αk)
=

N∑

i=1

ρ
(t)
k,i

α
(t)
k

+ β = 0

For k = 1, . . . , K, we get :

α
(t)
k =

−
∑N

i=1 ρ
(t)
k,i

β

Invoking the constraint
∑K

k=1 αk = 1 and the fact that
∑K

k=1 ρ
(t)
k,i = 1, we have :

−β =
N∑

i=1

K∑

k=1

ρ
(t)
k,i =

N∑

i=1

1 = N

Then, we have :

α
(t)
k =

∑N
i=1 ρ

(t)
k,i

N
(4.26)
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It can be shown that Eq. 4.26 corresponds to the 3rd equation of Eq. 4.8.

Eq. 4.23, Eq. 4.24 and Eq. 4.26 give the values of unknown parameter θ(t) =
(α

(t)
k , μ

(t)
k , σ

(t)2
k )1≤k≤K at iteration t. The obtained parameter θ(t) will be used at the

next Estimation step at iteration t+ 1.

4.2.3 Example of GMM-based PDF estimation using
Expectation-Maximization algorithm

Consider three Gaussian distributions, N1(0, 1), N2(−2, 3) and N3(2, 2). Assume
that we have 6000 samples :

– Component 1 (k = 1) : 2000 samples are the distribution N1(0, 1) ;
– Component 2 (k = 2) : 1000 samples are the distribution N2(−2, 1/9) ;
– Component 3 (k = 3) : 3000 samples are the distribution N3(2, 1/4).

Fig. 4.1 shows the histogram of the total 6000 data samples.
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Figure 4.1 — Example of GMM : Histogram of 6000 data samples

With the 6000 samples, we will estimate the PDF based on Gaussian Mixture
method by using the EM algorithm.

From Fig. 4.1, it is easy to guess that the initial number of Gaussians is 3 (K = 3).
The initial values of the unknown parameters, α(0)

k , μ(0)
k and σ

(0)2
k , with k = 1, 2, 3, are

defined as :
– α

(0)
k are defined as 1/K ;

– μ
(0)
k are defined as the randomly selected data points from the 6000 samples ;

– σ
(0)2
k are defined as the range of the input data.

σ
(0)2
k = max value of data − min value of data

Tab. 4.1 shows the estimated values of the unknown parameters, αk, μk and σk,
k = 1, 2, 3.

It can be shown that the obtained values of parameters are very close to the true
values of parameters of the Gaussian PDFs.
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Parameter αk μk σ2
k

True value
k = 1 : α1 = 1/3 k = 1 : μ1 = 0 k = 1 : σ2

1 = 1
k = 2 : α2 = 1/6 k = 2 : μ2 = −2 k = 2 : σ2

2 = 1/9
k = 3 : α3 = 1/2 k = 3 : μ3 = 2 k = 3 : σ2

3 = 1/4

Estimated value
k = 1 : α1 = 0.3312 k = 1 : μ1 = 0.0434 k = 1 : σ2

1 = 0.9648
k = 2 : α2 = 0.1724 k = 2 : μ2 = −1.9875 k = 2 : σ2

2 = 0.1082
k = 3 : α3 = 0.4963 k = 3 : μ3 = 2.0052 k = 3 : σ2

3 = 0.2531

Table 4.1 — Estimated values of unknown parameters {αk, µk, σ
2
k}

Fig. 4.2 shows the Gaussian components probabilities and the obtained PDF.
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Figure 4.2 — PDF estimates based on GMM with 6000 samples : (a). Histogram
compared with the final result of estimated PDF ; (b). PDF of the three Gaussian

components ; (c). Final result of estimated PDF

The red curve represents the final result of the estimated PDF. From Fig. 4.2 (a),
it can be shown that it fits very well to the histogram of data points.
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Fig. 4.3 shows the curve of joint log-likelihood probability computed by (Eq. 4.22)
with respect to the number of iterations of EM algorithm.
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Figure 4.3 — GMM example : Log-likelihood probability versus iteration number
of EM algorithm

It can be shown that the log-likelihood probability, given by (Eq. 4.22), is mono-
tonically non-decreasing throughout the training iteration number.

From the above example, the identified Gaussian Mixture Model PDF can match
the data histogram closely. However, this is based on the fact that we are able to guess
the number of Gaussians correctly. In practice, this condition does not always hold.
The remedy will be presented in section 4.2.5.

4.2.4 BER calculation with GMM-based PDF estimates

In this section, we shall derive the mathematical expression of BER estimate when
using the Gaussian Mixture Model-based PDF estimator.

Let us recall the PDF-based BER expression given by (Eq. 2.55). Assume that we
know the partitions of the received observations (Xi)1≤i≤N into two classes, C+ and C−,
which contains the observed output such as the corresponding transmitted bit (bi = +1
and bi = −1, respectively). Thus, we need to perform the EM algorithm two times and
in independent way :

– for the data base C+, we perform the EM algorithm to estimate the unknown
parameters of the K+ Gaussians. Let θ

(T )
+ = (α

+(T )
k , μ

+(T )
k , σ

+(T )2
k )1≤k≤K+ be the

reached values at the last iteration T of the EM algorithm ;

– for the data base C−, we perform the EM algorithm to estimate the unknown
parameters of the K− Gaussians. Let θ

(T )
− = (α

−(T )
k , μ

−(T )
k , σ

−(T )2
k )1≤k≤K be the

reached values at the last iteration T of the EM algorithm.

The reliable estimate of the parameter θ(T )
+ (resp. θ(T )

− ) allows the estimation of the
conditional PDF f

b+
X (·) (resp. f b−

X (·)) and the computation of BER.
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Let f̂
b+
X,N+

(x) and f̂
b−
X,N−

(x) be the two conditional PDFs estimates, from Eq. 2.55
we can express the BER estimates as :

p̂e,N = π+

∫ 0

−∞
f̂
b+
X,N+

(x)dx

︸ ︷︷ ︸

D+

+π−

∫ +∞

0

f̂
b−
X,N−

(x)dx

︸ ︷︷ ︸

D−

(4.27)

where P [bi = +1] = π+ and P [bi = −1] = π−, with π+ + π− = 1.

We shall compute the values of D+ and D− by using the reached values of param-
eters θ

(T )
+ and θ

(T )
− . Given the fact that the two conditional PDFs are estimated using

the Gaussian Mixture Model, according to Eq. 2.49, for D+, we get [STTP10] :

D+ =

∫ 0

−∞

K+∑

k=1

α+
k f

+
k (x;μ

+
k , σ

+2
k )dx

=

K+∑

k=1

α+
k

∫ 0

−∞

1√
2πσ+

k

exp
(

−(x− μ+
k )

2

2σ+2
k

)

dx

Let z = (x− μ+
k )/σ

+
k , we get :

D+ =

K+∑

k=1

α+
k

∫ +∞

µ
+
k

σ
+
k

1√
2π

exp
(

−z2

2

)

dz

Invoking the classical complementary unit cumulative Gaussian distribution Q(·),
we have :

D+ =

K+∑

k=1

α+
k Q
(μ+

k

σ+
k

)

(4.28)

In the same way, for D−, we get :

D− =

K−∑

k=1

α−
k Q
(

−μ−
k

σ−
k

)

(4.29)

Combining Eq. 4.27, Eq. 4.28 and Eq. 4.29, we can derive the expression of the BER
estimate :

p̂e,N = π+

K+∑

k=1

α+
k Q
(μ+

k

σ+
k

)

+π−

K−∑

k=1

α−
k Q
(

−μ−
k

σ−
k

)

(4.30)

Remark : For simplicity, in our works, K+ is equal to K−.

4.2.5 Optimal choice of the number of Gaussian components

In section 4.2.3., we have seen an example of PDF estimation based on Gaussian
Mixture method. It is easy to guess the components number (K = 3) from the his-
togram shown in Fig. 4.1. In practice, this could be very difficult so we need to use
some heuristic search to find the optimum number of Gaussian PDFs.
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Let us remark that :
– if K is too small :

this corresponds to the case where the smoothing parameter hN is too large, as
shown in Fig. 2.4 (b)-2. The PDF estimate will be too smooth ;

– if K is too big :
the same class of observations will come from different Gaussian components and
the different Gaussians will be correlated. This is not useful for simulation since
all the received samples are assumed to be independent.

Consequently, the optimal choice of the number of Gaussians consists in finding
the largest one such that all the components are independent. We suggest initializing
the EM algorithm with a high enough value of K, and testing the independence of
components at the end of EM iteration. If it is not the case, we have to decrease
iteratively the number of components until the independence is reached.

An adaptive way to test the independence of two components, k1 and k2, is the
mutual information theory [Sha01,YZ01]. For C+, we consider the mutual relationship
defined in [STTP10,LLL06] :

MI+(k1, k2) = p+(k1, k2) log2
p+(k1, k2)

p+(k1)p+(k2)
(4.31)

where :
– p+(k1) and p+(k2) are the probabilities of the mixtures k1 and k2, respectively,

i.e.,

p+(k1) = α+
k1

=
1

N+

N+∑

i=1

ρ+k1,i

p+(k2) = α+
k2

=
1

N+

N+∑

i=1

ρ+k2,i

– p+(k1, k2) is the joint probability of the two components, i.e.,

p+(k1, k2) =
1

N+

N+∑

i=1

ρ+k1,iρ
+
k2,i

The sign of Eq. 4.31 allows us to know the independence of the two components :

– if sign(MI+(k1, k2)) = 0, p+(k1, k2) is equal to the product of the probabilities of
the two components, i.e., p+(k1, k2) = p+(k1)p+(k2). Thus, the two components
are independent ;

– if sign(MI+(k1, k2)) < 0, the two components are much less correlated ;

– if sign(MI+(k1, k2)) > 0, the two components are statistically dependent and one
of them can be removed.

For k1, k2 = 1, . . . , K+, we define the indicator I+ which denotes the maximum
value of the mutual information MI+(k1, k2).

I+ = max[MI+(k1, k2)]1≤k1,k2≤K+
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Thus, we can use the indicator I+ and I− to compute the optimal value of K+ and
K− in a parallel way. At the end of the last iteration of EM algorithm, if sign(I+) ≤ 0
(sign(I−) ≤ 0), we stop the algorithm, otherwise we have to decrease the number of
components by one.

The following equation can be used to choose the component which should be
removed.

k = argmax
1≤k1≤K+

K+∑

k2=1

MI+(k1, k2)

The quantity
∑K+

k2=1 MI+(k1, k2) represents the mutual information for the compo-
nent k1 and denotes whether this component has a significant and independent contri-
bution to the PDF estimation. If the largest positive value is found, the kth component
has a dependent contribution to the Gaussian Mixture and should therefore be removed.

For a new decreased value, K+ − 1 (K− − 1), initial parameters of the new EM
algorithm can be given by the output parameters at the last iteration of the previous
EM algorithm. However, the initial probabilities of the new mixtures, α

+(0)
k (α−(0)

k )
should be redefined to match the constraint

∑K
k=1 αk = 1.

4.2.6 Conclusion of Gaussian Mixture Model-based BER esti-
mation using Expectation-Maximization algorithm

The flow chart of the proposed GMM-based algorithm is shown in Fig. 4.4. The EM
algorithm can be considered as an extension method of the K-means algorithm. We
started with a sufficient big value of K+ (resp., K−) then utilize the previous method to
choose the optimal number of Gaussians. Normally, K+ and K− have the same initial
value since the soft output of C+ and C− should have similar distribution.

Furthermore, the maximum number of EM iterations T should be chosen carefully :
– if T is too small, the log-likelihood probability cannot be well maximized ;
– if T is too big, the simulation time will be enormous although the log-likelihood

probability has already reached the maximum value..

It is helpful to define a criterion of the maximum iteration number T . We suggest
using the “Floating-Point Relative Accuracy”(FPRA), cFPRA, which is constant for a
certain simulation platform. The rule for stopping the EM iteration is :

EM iteration

{

break if L(t)(θ)− L(t−1)(θ) ≤ cFPRA;

continue otherwise.
(4.32)

where L(t)(θ) presents the log-likelihood probability at iteration t, t ≤ T .
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Figure 4.4 — Flow chart for the suggested BER estimation based on EM-GMM
and Mutual Information theory [STTP10]

4.3 Simulation results of BER estimation based on

Gaussian Mixture Model

To evaluate the performance of the proposed non parametric BER estimation based
on Gaussian Mixture method. We have considered the same frameworks as given in
Chapter 3 :

– Sequence of BPSK signal over AWGN and Rayleigh channels ;

– CDMA system ; for simplicity, we only consider the performance of the BER
estimation for the system employing decorrelator-based receiver ;

– Turbo coding system ;

– LDPC coding system.
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4.3.1 Sequence of BPSK symbol over AWGN and Rayleigh
channels

Fig 4.5 shows the GMM-based BER estimation for BPSK signal over AWGN chan-
nel. We have taken 2000 samples, single Gaussian component has been used.
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Figure 4.5 — GMM-based BER estimation for BPSK signal over AWGN channel
(K = 1)

It can be shown that the Monte-Carlo simulation fails to return reliable estimate
when SNR > 7 dB, whereas the proposed estimation method based on Gaussian
Mixture Model provides extremely perfect performance for almost all studied SNR
values. The proposed GMM method results in a better estimate even for very high
SNR.

Moreover, compared with the Kernel-based simulation results (cf. Fig 3.11) which
depend on (in the sense of curve form) the BER estimates using Monte-Carlo simula-
tion (i.e., Kernel-based BER estimates for SNR ≥ 6 dB), the GMM method does not
exhibit such dependence. In fact, this dependence on MC-based BER estimate origi-
nates in the fact that, for high SNR, the PDF is badly estimated and becomes extreme
matte.



84
CHAPTER 4. BIT ERROR RATE ESTIMATION BASED ON GAUSSIAN

MIXTURE MODEL

Then we take a GM model which contains 3 Gaussian components.
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Figure 4.6 — GMM-based BER estimation and log-likelihood probabilities (SNR =
18 dB) for BPSK signal over AWGN channel (K = 3)

Fig 4.6 (a) shows the BER estimation results for K = 3 and T = 20. The estimation
performance is similar to the previous one shown in Fig 4.5. However, we found the
significant mismatch errors when SNR > 13 dB.

Fig 4.6 (b) shows the log-likelihood probabilities for SNR = 18 dB. For the class
C+, the maximization step is well performed, whereas for C− it fails to be done (we
can imagine that the value of log-likelihood probability is still increasing when t > 20).
This is the reason why we observed that mismatch error.

Therefore, it might be helpful to theoretically or “intuitively” estimate the channel
information and the soft output (e.g., by analyzing the histogram) before employing
the proposed GM method. If a quasi-Gaussian distribution is found, only few Gaus-
sian components can be taken to simplify the simulation complexity and reduce the
computing time.

We also have analyzed the BER estimation performance when BPSK signal is trans-
mitted over Rayleigh channel, as shown in Fig 4.7. We have taken 2000 data samples.
The maximum iteration number is 10 and we shall study the BER estimation results
at different number of Gaussian components.
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Figure 4.7 — GMM-based BER estimation for Rayleigh channel at different K

(K = 1, 2, 5), N = 2000, T = 10

It can be shown that :

– when K = 1, the BER estimate is good for low SNR. However, for high SNR,
the GMM method results in an inaccurate estimate since the distribution is non-
Gaussian ;

– when K = 2, the performance of BER estimation becomes better but still to be
improved ;

– when K = 5, the performance at high SNR is much better. Also, we can observe
that the GMM method also exhibits a dependence on Monte-Carlo simulation, as
the Kernel method does. It seems that this dependence goes somewhat against the
previous conclusion, since we did not note any dependence and similarity between
the obtained GMM-based BER curve and the Monte-Carlo one. To explain that,
we consider the histogram and the PDF estimates (Fig 4.8) at different K for
SNR = 10 dB. The database is completely same as the one used in the previous
BER estimation.



86
CHAPTER 4. BIT ERROR RATE ESTIMATION BASED ON GAUSSIAN

MIXTURE MODEL

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

Data values

p
d

f
Histogram and PDF for C+

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
0

0.2

0.4

0.6

Data values

p
d

f

Histogram and PDF for C-

Histogram

GMM-based PDF (K = 1)

GMM-based PDF (K = 2)

GMM-based PDF (K = 5)

2

3

4
 similar to 

the MC-

based 

histogram 

Figure 4.8 — Histogram and GMM-based PDF estimation for Rayleigh channel at
different K (K = 1, 2, 5), N = 2000, T = 10, SNR = 10 dB

As increasing the number of Gaussians, the PDF estimation performance is im-
proved, which means the PDF curve matches closely to the histogram. An obvious
relationship between the PDF estimate for C+ and the histogram can be found at the
top of the PDF curve.

Basically, the GM method keeps step with the Kernel method in the final aim —
the PDF estimate need to be sufficiently smooth and also should be a reflex of the
histogram. In this sense, the number of Gaussians, K, and the maximum iteration
number, T , also can be considered as a couple of “smoothing parameter”. For non-
Gaussian distribution :

– a bigger number of Gaussian components provide better fitting to the Monte-
Carlo histogram ;

– more iterations also allow improving the estimation performance in the sense
of the histogram fitting. For the simulation shown in Fig 4.7, we have taken 10
iterations as the maximum value. We found that the log-likelihood maximization
did not reach the limit of the Floating-Point Relative Accuracy. Therefore, more
iterations can be used.
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Remark : it is important to note that, increasing the number of EM-iteration does
not always provides the most accurate BER estimate. In fact, in single trial, if the
performance of Monte-Carlo simulation is very poor, the proposed estimation methods
could not work well even if we perform the “best” fitting to histogram.

Increasing iteration number shall increase the computing time. Thus, it is useful to
find a solution that keep the estimation performance with lower computational cost.

Note that the number of EM-iteration depends on the algorithm that determines
the initial values, θ(0) = (α

(0)
k , μ

(0)
k , σ

(0)2
k )1≤k≤K , of unknown parameters . Especially,

the value of μ(0)
k should be carefully selected (in general, α(0)

k is set to 1/K, σ(0)2
k is set

to the min squared distance between centers μ
(0)
k ). if suitable initial values are used,

the number of EM-iteration can be reduced.

The simplest solution is to initialize the unknown parameters in a random fashion,
i.e., we randomly select a data point as the mean μ

(0)
k . Obviously, this is not a good so-

lution since the selected μ
(0)
k could be far from the true center of the set of observations.

To initialize θ(0), we use the Forgy’s batch-version K-means algorithm described in
section 4.1.1.2. In Fig 4.9, we report the behavior of GMM-based BER estimation for
BPSK system over Rayleigh channel with the two initialization methods. The number
of Gaussians is set to 3 and the maximum number of EM iterations is set to 10.
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Figure 4.9 — GMM-based BER estimates for BPSK system over Rayleigh channel
with different initialization methods (K = 3, T = 10)
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It can be shown that the K-means algorithm provides more reliable BER estimates
for 10 iterations. Whereas initializing the parameters in a random way may cause
unreliable estimates, this can be improved by increasing the number of iterations or
using more data samples but obviously the computing time must be increased.

Many other methods can also be used to initialize the unknown parameter, such as
MacQueen’s mode [Gna11] and Y. LU’s version [LLF+04].

Remark :
– we do not have to use the sequential K-means algorithm since the characteristics

of the dataset is not varying with time ;

– A better set of initial centers will still have positive influence for K-means algo-
rithm. Some commonly used methods for initial center selection include :

1. randomly select K data points from the dataset ;

2. select the farthest/nearest K data points from the mean of the dataset ;

3. select K data points that have the largest sum of pairwise square distance ;

4. choose the centers one by one based on K-means++ [AV07].

In our works, the initial centers are randomly selected.

4.3.2 CDMA system with decorrelator-based receiver

We consider the same CDMA system model with 2 users as presented in section
3.2.2.2. Fig 4.10 shows the BER estimation for decorrelator-based CDMA system over
AWGN channel at different numbers of iteration. We have taken 2000 data samples. 4
Gaussian components have been used.

It can be shown that the performance of the GMM-based BER estimation is dis-
tinctly improved as increasing the number of iterations. This is always true for any
configuration of parameters since the log-likelihood probability increases monotonically
with increasing of iteration number.
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Figure 4.10 — GMM-based BER estimation for CDMA system using decorrelator
at different iteration numbers (K = 4, N = 2000)

For SNR = 20 dB and maximum iteration number = 5, we plot the values of the
log-likelihood probabilities, as shown in Fig 4.11. To clearly visualize the increasing
trends, we started from the 2nd iteration.
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Figure 4.11 — Log-likelihood probabilities for decorrelator-based CDMA system
(N = 2000, K = 5, SNR = 20 dB, T = 5)
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We observed the significant increasing either for both two classes, especially for C+

where the increase is by a factor of 29 from the 2nd to the 5th iteration.

This characteristic of the GM method provides flexibility for the estimation, but
can also be partly considered as a drawback — the estimation always requires long
simulation time, since we have to increase the iteration number to have a good precision
while taking several Gaussian components. That is why we suggest optimizing the
number of Gaussians, as presented in section 4.2.5.

Moreover, we found that extreme small BER values can be obtained. For this rea-
son, we guess the PDF of the soft observations of deccorelator-based CDMA system
over AWGN channel is similar to Gaussian. Therefore, it is possible to take fewer
components.

Fig 4.12 shows the BER estimation using GM method with different number of
Gaussian components for decorrelator-based CDMA system over AWGN channel.
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Figure 4.12 — GMM-based BER estimation for CDMA system with decorrelator
(K = 1 and 4, N = 2000)
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It can be shown that the performance of BER estimation based on GM method with
single Gaussian is not bad even for high SNR values (only with some fluctuations). The
maximum number of iterations could be greatly reduced (only 3 iterations lead to reach
the criterion of the Floating-Point Relative Accuracy) and the simulation time for such
system is only 2 seconds (from SNR = 0 dB to 15 dB).

Fig 4.13 shows the histograms and the GMM-based PDF estimates for the CDMA
system over AWGN channel when SNR = 6 dB. It can be shown that the true PDF
is quite similar to Gaussian function.
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Figure 4.13 — Histograms and GMM-based PDF estimates for CDMA system over
AWGN (SNR = 6 dB, N = 2000, K = 1, T = 3)

Furthermore, we have listed the estimated parameters, μ+(3)
k and σ

+(3)2
k , 1 ≤ k ≤

K,K = 1 or 4, for SNR = 15 dB, as shown in Tab. 4.2. We can find that, either for
K = 1 or for K = 4, the values of the Gaussian means (C+ or C−) are close to +1 or
-1, respectively.
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μ+
k μ−

k σ+2
k σ−2

k

K = 1, max ite. number = 3 0.9973 -1.0005 0.0160 0.0159

K = 4, max ite. number = 20

1.0345 -1.1092 0.0162 0.0160
0.9215 -0.8996 0.0165 0.0166
0.9694 -1.0302 0.0156 0.0154
1.0301 -0.9875 0.0156 0.0153

Table 4.2 — Estimated Gaussian Parameters for CDMA system (SNR = 20 dB,
N = 2000, K =1 and 4)

Next, we have compared the variance of GMM-based BER estimates with the
Kernel-based results and the one of Monte-Carlo simulation, as shown in Tab. 4.3.
The variance of the BER estimation is computed by performing 1000 trials.

SNR = 0 dB SNR = 4 dB SNR = 6 dB
Monte-Carlo Variance 5.0 · 10−5 2.4 · 10−5 10.3 · 10−6

Kernel using optimal hN Variance 4.3 · 10−5 2.0 · 10−5 1.0 · 10−6

GMM Variance 3.7 · 10−5 1.6 · 10−5 0.85 · 10−6

Table 4.3 — Variance of BER estimation for Monte-Carlo and Kernel methods for
different SNR using 2000 data samples and 1000 trials

It can be shown that the GMM method provides the best performance in the sense
of the minimum variance (or standard deviation) of BER estimation. This is a logical
conclusion — in fact, we have found that the PDF of the soft output for the stud-
ied CDMA system is similar to Gaussian function, and the GM model has natural
advantage on training the quasi-Gaussian distribution.

4.3.3 Turbo coding system

The 3rd framework is the same turbo code-based system as given in section 3.2.7.
Fig 4.14 shows the GMM-based BER estimation and the log-likelihood probabilities.
We have taken 300,000 samples in 600 frames. 5 Gaussian components are used and
the maximum iteration number is set to 30.

It can be shown that :

– the obtained BER estimates are quite similar to the Kernel-based results shown
in Fig 3.20 ;

– although the predefined maximum number of iterations is 30, we found that only
6 iterations are performed (Fig 4.14 (b)), since the criterion of the Floating-Point
Relative Accuracy is reached.

As we have taken a big number of data samples, it makes sense to compare the
simulation time of the GMM-based estimation with the one of the Kernel-based esti-
mation, as shown in Tab. 4.4. 600 frames are used for each simulation. The simulation
time is counted by using MATLAB.
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Figure 4.14 — (a). GMM-based BER estimation for turbo code system (600 frames,
K = 5, T = 30) ; (b). Log-likelihood probabilities (SNR = 1.6 dB)

BER estimation method BER simulation run time

Kernel method using optimal hN
10−4 5 min 15 s
10−5 41 min 5 s

GMM
10−4 1 min 5 s
10−5 8 min 45 s

Table 4.4 — Simulation run time at different BER for GMM-based and Kernel-
based BER estimation

It can be shown that the GMM method requires less time to finish the simulation.
The Kernel method is less efficient due to the complexity of the algorithm for bandwidth
optimization.

4.3.4 LDPC coding system

A 1/2 rate Quasi-Cyclic-LDPC (QC-LDPC) system has also been taken to analyze
the performance of GMM-based BER estimation. The soft observations are given by
Eq. 3.55

As presented in section 3.3.4, it is suggested to modify the original dataset to
reduce simulation run time. Fig. 4.15 shows the GMM-based BER estimation results
while using either the modified dataset and the original unmodified dataset. 5 Gaussian
components are used (the value of K could be reduced as employing the algorithm for
optimizing the number of Gaussian components, cf. section 4.2.5). The maximum num-
ber of iteration is set to 30. We get rid of the soft outputs equal to ±1 for SNR ≥ 2 dB,
for small values of SNR, we use the entire data samples to avoid losing information.
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Figure 4.15 — BER estimation based on the modified GM method for QC-LDPC
system (150 frames, K = 5, T = 30)

When using the modified dataset, the GMM-based BER estimator can provide
accurate BER estimate even for high SNR, whereas the MC simulation fails to do so
due to the very limited number of data samples (for MC method, we have to count
10 errors at different SNR). Compared with the Kernel-based simulation result (cf.
Fig. 3.22) obtained by using 500 frames, only 150 frames (150 × 635 = 95,250 samples)
are used while using modified dataset. This means that the size of outputs (outputs
∈ (−1,+1)) is sufficient large to provide good precision.

Moreover, for high SNR, the BER estimates obtained by using the unmodified
dataset are completely wrong. This seems unusual and cannot disappear even if we
increase the size of dataset.

As shown in 3.23 and Tab. 3.7, the majority of soft outputs of the studied LDPC
decoder are equal to +1 and -1. The PDF of the soft observations can be seem as
two delta functions at +1 and -1 with small single-side tails and bias. Thus, the PDF
estimation will be primarily “dedicated” to fit the “peaks” (+1 and -1) of the histogram
and will ignore the tails. However, these “peaks” does not provide any information of
the bit errors.
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We can sum up the importance of using the modified dataset for the studied QC-
LDPC coding system :

– using the modified dataset can reduce the computational cost ;
– for GMM-based estimator, it is necessary to use the modified dataset in order to

avoid the erroneous estimates for high SNR.

4.4 Conclusion

In this chapter, we have firstly presented the principle of probabilistic clustering by
using mixture models. The entire dataset can be modeled by a mixture of distributions,
such as Gaussian distributions, along with the known data samples and the missing
data. Then we have introduced the Expectation-Maximization algorithm, which can be
used to iteratively estimate the unknown parameters of the mixture model. In section
4.2.2, we have shown how to use the EM algorithm to estimate the unknown parameter
θ = (αk, μk, σ

2
k)1≤k≤K of Gaussian Mixture Model. Once we obtain the parameter and

the missing data for both classes C+ and C−, the BER can be computed analytically.
Then we have discussed the choice of the number of Gaussian components and reported
the behavior of GMM-based estimator for different frameworks of communication sys-
tem.

It was shown that, compared with the Kernel estimator, the GMM-based estimator
provides better performance for Gaussian distribution, e.g., for the system with BPSK
symbols over AWGN channel, the BER estimate obtained by using GMM method can
be extremely close to the theoretical value even for very high SNR, whereas the Kernel
method provides wrong results.

In the sense of the minimum variance, the GMM method provides the best perfor-
mance for Gaussian distribution. Moreover, the GMM method is also efficient in the
sense of the minimum computational cost : for Turbo coding system, we have com-
pared the simulation run time between the Kernel method and GMM, we found that
the GMM-based estimator takes few computing time and the Kernel method is less
efficient due to the high complexity of the algorithm for bandwidth optimization.

The performance of GMM-based BER estimator strongly depends on the number of
Gaussian components K and the number of EM-iteration T . For Gaussian distribution,
single Gaussian would be sufficient, whereas for non-Gaussian distributions, K must
be set to an enough large number. The choice of EM-iteration number depends on the
initial values of the unknown parameters. In our works, the K-means algorithm was
used to initialize these parameters of Gaussians. It was shown that, compared with the
random selection, K-means algorithm allows reducing maximum number of iterations.

For the studied QC-LDPC coding system which use the pseudo APPs as the soft
observations, it is necessary to modify the dataset (get rid of ±1 or set a threshold),
whereas this is not required for Kernel-based estimator.





CHAPTER

5 Unsupervised Bit Error

Rate Estimation

In Chapter 2, we have presented the famous Monte-Carlo simulation and some
modified methods (cf. section 2.1.1 - 2.1.5) for BER estimation. In Chapter 3 and 4,
two BER estimation techniques based on Kernel method and Gaussian Mixture Model
have been proposed. These techniques are called soft Bit Error Rate estimation since the
BER is computed by estimating the PDF of receiver’s soft output and no knowledge
about hard decision information is required. Moreover, the proposed methods could
apply to any digital communication system because the estimator does not depend on
the communication model and the transmitter scheme.

Unfortunately, all the above mentioned methods assume that the whole transmitted
data bits were known at the receiver side, i.e., for a given data set, we assumed that
the exact partitions of the observations into two classes C+ and C− were known. In
practical situation, the BER estimation should be performed in an unsupervised way
since we do not know this information.

In this chapter, we shall present an unsupervised Bit Error Rate estimation tech-
nique based on the well-known Stochastic Expectation Maximization (SEM) algorithm
combined with the use of the Kernel method or the Gaussian Mixture Model, in an
iterative way.

5.1 Unsupervised BER estimation based on Stochas-

tic Expectation Maximization algorithm using

Kernel method

The same notation as shown in Chapter 3 shall be used. Let (Xi)1≤i≤N be the
independent soft receiver output which have the same PDF, fX(x). The transmitted
information bits, bi = +1 and bi = −1 become the missing data which gives the classes
C+ and C− to which Xi should be linked. Let N+ (resp., N−) be the number of elements
of C+ (resp., C−), with N = N++N−. When using the Kernel method, the conditional
PDF, f b+

X (x) and f
b−
X (x), are given by Eq. 3.26. The task of the SEM algorithm is to

find the two classes C+ and C−, and then estimate the set of unknown parameters
θ = (N+, π+, hN+ , N−, π−, hN−

).
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In Chapter 4, we have presented the principle of Expectation Maximization algo-
rithm for the BER estimation based on Gaussian Mixture Model. The Stochastic EM al-
gorithm, proposed by Broniatowski, Celeux and Diebolt [CD+84,CD85,CD+86,CD87],
is an expanding method by introducing a random rule in the classical EM technique.

The unsupervised iterative BER estimation is still performed through the
Initialization, Estimation and Maximization steps, as the proposed GMM-based
method using classical EM algorithm [SAIM11]. We denote T as the maximum number
of SEM iterations, at each iteration t, we update the values of the unknown parameters,
θ(t) = (N

(t)
+ , π

(t)
+ , h

(t)
N+

, N
(t)
− , π

(t)
− , h

(t)
N−

).

5.1.1 Initialization

For the SEM-based unsupervised BER estimation, the most important parameters
to be decided are the classes C+ and C− which determines the values of the cardinalities
(N+ and N−) and the smoothing parameters (hN+ and hN−

). Moreover, the a priori
probabilities, π+ and π−, are also required to compute the conditional PDF. Thus, we
initialize the following parameters :

– C
(0)
+ and C

(0)
− : the initial condition of the two subsets is very important, a bad

choice may lead to increasing of iteration number. Since the soft output is the
only data set we know, the C

(0)
+ and C

(0)
− can be given by :

C
(0)
+ = {Xi|Xi ≥ 0}, C

(0)
− = {Xi|Xi < 0} (5.1)

for a given number of data samples, we can foresee that :

a) for small values of SNR, the initial condition may lead to more erroneous
partitions (i.e., those positive soft outputs corresponding to transmitted bit
value -1 and vise versa), since the theoretical bit error probability is high ;

b) for high SNR, the initial partitions may be quite exact. In this situation,
small number of EM iterations is sufficient to have a good precision of the
BER estimate.

– N
(0)
+ and N

(0)
− :

N
(0)
+ = Card C

(0)
+ , N

(0)
− = Card C

(0)
− (5.2)

– h
(0)
N+

and h
(0)
N−

: we can use Eq. 3.27 to compute the initial values of the smoothing
parameters (optimal values for Gaussian distribution). The standard deviations
of (Xi)1≤i≤N in their corresponding classes C

(0)
+ and C

(0)
− , σ(0)

+ and σ
(0)
− , need to

be firstly computed ;
– π

(0)
+ and π

(0)
− : these two parameters represent the a priori probabilities of the

information bits and can be approximated by :

π
(0)
+ =

N
(0)
+

N
, π

(0)
− =

N
(0)
−
N

= 1− π
(0)
+

(5.3)

– finally, we compute the conditional PDF f
b+(0)
X and f

b−(0)
X , given by Eq. 3.26,

using the initial parameters θ(0) = (N
(0)
+ , π

(0)
+ , h

(0)
N+

, N
(0)
− , π

(0)
− , h

(0)
N−

).
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5.1.2 Estimation step

The Estimation step of iteration t consists in estimating the a posteriori probabilities
of the unknown information bits, (bi)1≤i≤N , conditioned on observations (Xi)1≤i≤N with
knowledge of the estimate θ(t−1) obtained at the Maximization step of the previous
iteration t− 1. We denote ρ

(t)
i+ and ρ

(t)
i− the APPs of bi at iteration t, we get :

ρ
(t)
i+ = P (bi = +1|Xi; θ

(t−1)) =
P (bi = +1, Xi; θ

(t−1))

P (Xi; θ(t−1))
=

P (Xi|bi = +1; θ(t−1))P (bi = +1)

P (Xi; θ(t−1))

ρ
(t)
i− = P (bi = −1|Xi; θ

(t−1)) =
P (bi = −1, Xi; θ

(t−1))

P (Xi; θ(t−1))
=

P (Xi|bi = −1; θ(t−1))P (bi = −1)

P (Xi; θ(t−1))

Using Eq. 3.26, for 1 ≤ i ≤ N , we have :
⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ
(t)
i+ =

π
(t−1)
+ f̂

b+

X,N
(t−1)
+

(Xi)

π
(t−1)
+ f̂

b+

X,N
(t−1)
+

(Xi)+π
(t−1)
−

f̂
b
−

X,N
(t−1)
−

(Xi)

ρ
(t)
i− =

π
(t−1)
−

f̂
b
−

X,N
(t−1)
−

(Xi)

π
(t−1)
+ f̂

b+

X,N
(t−1)
+

(Xi)+π
(t−1)
−

f̂
b
−

X,N
(t−1)
−

(Xi)

(5.4)

5.1.3 Maximization step

In this step, at iteration t, we compute the estimate θ(t) by maximizing the joint
log-likelihood function based on conditional probabilities obtained at the Estimation
step of the same iteration. The log-likelihood function, L(θ(t)), is given by [SAIM11] :

L(θ(t)) = E

[

log
( N∏

i=1

fXi,bi(Xi, bi)
)

|(Xi)i≤i≤N

]

=
N∑

i=1

E
[

log
(

fXi,bi(Xi, bi)
)

|Xi

]

=
N∑

i=1

[

ρ
(t)
i+ log

(

π
(t)
+ f̂

b+

X,N
(t)
+

(Xi)
)

+ρ
(t)
i− log

(

π
(t)
− f̂

b−

X,N
(t)
−

(Xi)
)
]

(5.5)

Invoking a Lagrange Multiplier and taking into account the constraint π(t)
+ +π

(t)
− = 1,

we have :

LLagrange(θ
(t)) =

N∑

i=1

[

ρ
(t)
i+ log

(

π
(t)
+ f̂

b+

X,N
(t)
+

(Xi)
)

+ρ
(t)
i− log

(

π
(t)
− f̂

b−

X,N
(t)
−

(Xi)
)
]

− λ(π
(t)
+ + π

(t)
− − 1)
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To find a maximum of L(θ(t)), we have :

∂LLagrange(θ
(t))

∂π
(t)
+

= 0 ⇒ π
(t+1)
+ =

1

λ

N∑

i=1

ρ
(t)
i+

∂LLagrange(θ
(t))

∂π
(t)
−

= 0 ⇒ π
(t+1)
− =

1

λ

N∑

i=1

ρ
(t)
i−

Invoking the constraint π
(t)
+ + π

(t)
− = 1, we can obtain that λ = N , then :

⎧

⎨

⎩

π
(t)
+ =

∑N

i=1 ρ
(t)
i+

N

π
(t)
− =

∑N

i=1 ρ
(t)
i−

N
= 1− π

(t)
+

(5.6)

It can be shown that Eq. 5.6 has the same form as Eq. 4.26. For the GMM-based
BER estimation proposed in Chapter 4, we can start the next iteration while obtaining
the new values of π(t)

+ and π
(t)
− . However, for unsupervised BER estimation, there remain

two pairs of parameters to be decided : (N (t)
+ , h

(t)
N+

, N
(t)
− , h

(t)
N−

), which depend on the

outcome of the classification of subsets C
(t)
+ and C

(t)
− and determine the conditional

PDF estimates and the APPs in subsequent iterations. Therefore, the classification
procedure must be carefully performed.

A simple method to update the two subsets consists in using Bayes’ rule as follows :
⎧

⎨

⎩

C
(t)
+ = {Xi : ρ

(t)
i+ ≥ ρ

(t)
i−} = {Xi : π

(t)
+ f̂

b+

X,N
(t)
+

(Xi) ≥ π
(t)
− f̂

b−

X,N
(t)
−

(Xi)}
C

(t)
− = C̄

(t)
+ = {Xi : ρ

(t)
i+ < ρ

(t)
i−} = {Xi : π

(t)
+ f̂

b+

X,N
(t)
+

(Xi) < π
(t)
− f̂

b−

X,N
(t)
−

(Xi)}
(5.7)

However, this procedure could be quite “strict” that the received information may
not be correctly reassigned to the adapted subset, i.e., a positive output Xi correspond-
ing to transmitted bit value -1 may not be exchanged from C+ to C−.

Thus, we introduce a Stochastic EM algorithm that randomly performs the classi-
fication of the soft outputs [SAIM11].

5.1.4 Stochastic step

In the Stochastic step of iteration t, for i = 1, . . . , N , a uniform random variable,
U

(t)
i ∈ [0, 1], is generated. A random Bayes’ rule is applied as follows :

{

C
(t)
+ = {Xi : ρ

(t)
i+ ≥ U

(t)
i }

C
(t)
− = C̄

(t)
+ = {Xi : ρ

(t)
i+ < U

(t)
i }

(5.8)

The parameters N
(t)
+ and N

(t)
− can be obtained by using Eq. 5.2. To compute the

optimal smoothing parameters, we can :
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– directly use the optimal values for Gaussian distribution followed by Eq. 3.27 if
we know that the PDF is Gaussian ;

– iteratively use the exact expressions of Eq. 3.13 followed by Eq. 3.19 with an
initial values given by Eq. 3.27 ;

– use the proposed methods in section 3.2.2.

5.1.5 Conclusion for SEM-based unsupervised BER estimation
using Kernel method

After T SEM iteration, the soft BER can be given by Eq. 3.41 taking into account
the estimated parameters θ(T ) = (N
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Figure 5.1 — Summary of the SEM-based unsupervised BER estimation using
Kernel method



102 CHAPTER 5. UNSUPERVISED BIT ERROR RATE ESTIMATION

Fig. 5.1 shows the flow chart of unsupervised BER estimation based on Stochastic
Expectation-Maximization algorithm combined with Kernel method.

The value of maximum iteration number, T , should be carefully chosen :

– for low SNR, erroneous classifications (according to the signs of the soft outputs)
occur frequently. Thus, the maximum number of SEM iteration must be big
enough ;

– for high SNR, the initial condition of classification could be very good due to
improvement of SNR. In this situation, a small number of iteration is sufficient
to have an exact classification.

Therefore, to reduce the simulation run time, the values of T can be in different
scale : for low SNR, we use a big value, for high SNR, we use a small value.

5.2 Unsupervised BER estimation based on Stochas-

tic Expectation Maximization algorithm using

Gaussian Mixture Model

The unsupervised BER estimation can also be performed by using the Gaussian
Mixture Model.

We start with the initialization step. The initial classification is always the first
one and the cardinalities are then computed. Instead of finding the smoothing pa-
rameters, for a given number of Gaussians K, we should initialize the θ

(0)
GMM =

(α
(0)
k , μ

(0)
k , σ

2(0)
k )1≤k≤K , which is computed by using EM algorithm through T

′

iter-
ations. We denote θ(0) = (π

(0)
+ , θ

(0)
+,GMM , π

(0)
− , θ

(0)
−,GMM) the unknown parameters.

In the Estimation step, we estimate the APPs for every data samples (Xi)1≤i≤N

using Eq. 5.4. The conditional PDF estimates for C
(t)
+ and C

(t)
− are given by :

{

f̂
b+
X,N+

=
∑K

k=1 α
+
k f

+
k (x;μ

+
k , σ

+2
k )

f
b−
X,N−

=
∑K

k=1 α
−
k f

−
k (x;μ

−
k , σ

−2
k )

(5.9)

The Maximization step is the same as the one for SEM algorithm combined
with Kernel method. In the Stochastic step, at each iteration t, t = 1, . . . , T ,
we introduce an inner-iteration t

′

, t
′

= 1, . . . , T
′

to compute the GMM param-
eters θ

(t)
GMM = (α

(t)
k , μ

(t)
k , σ

2(t)
k )1≤k≤K . After T iteration, the soft BER estimate

can be obtained by Eq.4.30 taking into account the estimated parameters θ(T ) =
(π

(T )
+ , θ

(T )
+,GMM , π

(T )
− , θ

(T )
−,GMM).
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Fig 5.2 shows the flow chart of the SEM-based BER estimation using Gaussian
Mixture Model.
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Figure 5.2 — Summary of the SEM-based unsupervised BER estimation using
Gaussian Mixture Model

Compared with the SEM-based BER estimation algorithm using Kernel method,
inner EM iterations must be added to the initialization step and the SEM iteration.
Thus, the SEM-based BER estimation technique combined with GMM is more complex
than the one with Kernel method.
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5.3 Simulation results

To evaluate the performance of the proposed unsupervised SEM-based soft BER
estimation using Kernel method and Gaussian Mixture Model. We have considered the
same frameworks given in Chapter 3 and 4 :

– BPSK sequence over AWGN channel ;
– CDMA system with standard receiver ;
– Turbo coding system ;
– LDPC coding system.

5.3.1 Sequence of BPSK symbol over AWGN channel

First, we shall report the performance of SEM-based PDF estimation. In all simu-
lations, we consider T = 6 iterations for the SEM-based parameter estimation while at
each iteration, t = 1, . . . , T , we compute the optimal smoothing parameters h

(t)
N+

and

h
(t)
N−

for the current C+ and C− by using the proposed Newton’s method.

We consider the simplest case of uniform distributed probability BPSK bits that
the information bits are equiprobably generated. The number of data samples (soft
observations) is N = 1000 outputs. In Fig 5.3, we report the histogram and the esti-
mated conditional PDFs using the obtained parameters at the last iteration T = 6 for
SNR = 10 dB.
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Figure 5.3 — Histograms and estimated conditional PDFs (BPSK symbols, N =
1000) for uniform sources and SNR = 10 dB
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We can observe that the estimated PDFs are very close to the true Gaussian PDFs.

Secondly, we turn to the case when the transmitted data bits are not equiprobable.
Let π+ and π− be the a priori probabilities, we consider the scenario where π+ = 0.7
and π− = 0.3. As in the previous simulation of equiprobable transmitted bits, N = 1000
information bits are used. Fig 5.4 shows the histograms and the obtained conditional
PDFs for SNR = 10 dB.
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Figure 5.4 — Histograms and estimated conditional PDFs (BPSK symbols, N =
1000) for non-uniform sources (π+ = 0.7 and π

−
= 0.3) and SNR = 10 dB

We notice that the estimated conditional PDFs for C
(6)
+ and C

(6)
− are still close to

the theoretical values even if the a priori probabilities are not equal.

Also, in the case of non-uniform sources, we report in Tab. 5.1 the estimated N
(t)
+ ,

N
(t)
− , π(t)

+ and π
(t)
− at different iteration t (t = 1, . . . , 6) for SNR = 0 dB and 10 dB.

In this simulation, according to the values of a priori probabilities (π+ = 0.7 and
π− = 0.3), 679 bits of +1 and 321 bits of -1 are generated. This means that when the
Kernel estimator knows the transmitted bits, π+ = 0.679 and π− = 0.321 are used as
the estimates of the a priori probabilities for the non-parametric estimation.
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Iteration t t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

SNR = 0 dB

N
(t)
+ 664 666 681 680 677 680

N
(t)
− 336 334 319 320 323 320

π
(t)
+ 0.670 0.666 0.667 0.679 0.680 0.677

π
(t)
+ 0.330 0.334 0.333 0.321 0.320 0.322

SNR = 10 dB

N
(t)
+ 679 679 679 679 679 679

N
(t)
− 321 321 321 321 321 321

π
(t)
+ 0.679 0.679 0.679 0.679 0.679 0.679

π
(t)
+ 0.321 0.321 0.321 0.321 0.321 0.321

Table 5.1 — Estimated N
(t)
+ , N

(t)
−

, π
(t)
+ and π

(t)
−

for SNR = 0 dB and 10 dB

(BPSK smbols, T = 6, N = 1000, π+ = 0.7 and π
−
= 0.3)

It can be shown that :

– for low SNR (e.g., SNR = 0 dB), the estimated a priori probabilities, π(t)
+ and

π
(t)
− , and the obtained cardinalities, N (t)

+ and N
(t)
− , are changed with different SEM

iteration t, since many errors are generated while classifying the soft outputs ;

– for high SNR (e.g., SNR = 10 dB), the values of N
(t)
+ , N (t)

− , π(t)
+ and π

(t)
− are

constant and equal to their true values (N+ = 679, N− = 321, π+ = N+

N
= 0.679

and π− = N−

N
= 0.321), since very limited SNR can provide reliable classification.

This means that, for big values of SNR, the whole transmitted information bits were
“known” at the receiver, then the unsupervised PDF estimation corresponds to the
supervised non-parametric (Kernel) or semi-parametric (GMM) estimation technique.
In this situation, we only need to compute the smoothing parameters or the GMM
parameters and the SEM algorithm is not required.

Moreover, for small values of SNR, the number of SEM iterations is not the better
the bigger it gets due to the use of random classification Bayesian rule in stochastic
step. Note that for SNR = 0 dB, π(t)

+ and π
(t)
− are equal to the true values (π+ = 0.679

and π− = 0.321) when t = 4.

In Fig. 5.5, we report the behavior of the proposed SEM-based BER estimation
using Kernel method for non-uniform sources (π+ = 0.7 and π− = 0.3) and T = 6. The
optimal smoothing parameters of Kernel estimator are computed by using Newton’s
method.
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Figure 5.5 — Behavior of the SEM-based BER estimation using Kernel method for
non-uniform sources (BPSK symbols, N = 1000, π+ = 0.7 and π

−
= 0.3

We observe that the proposed SEM algorithm provides quasi-reliable BER estimates
for SNR values up to 10 dB. For simplicity, we only count 10 errors for the classical
Monte-Carlo simulation at each value of SNR. We observe that the MC technique fails
to obtain BER estimates and stops at SNR = 4 dB.

Furthermore, we notice that the values of SEM-based BER estimates are very close
to the supervised Kernel-based one, especially for high SNR, i.e., for SNR = 10 dB,
the two techniques have the same value of BER estimates. This is in line with the
results shown in Tab. 5.1. In fact, for high SNR, the SEM classification would be the
same as the one of supervised Kernel method, thus, the unsupervised SEM algorithm
is equivalent to the supervised technique.

However, we can find that the obtained BER estimates are not quite smooth. In
Fig. 5.6, we report the behavior of the SEM-based BER estimation for the same non-
uniform scenario but with 15,000 observations.



108 CHAPTER 5. UNSUPERVISED BIT ERROR RATE ESTIMATION

0 2 4 6 8 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

SEM−based BER estimation using Kernel method for BPSK system

E
b
/N

0
 dB

B
E

R

theoretical BER

MC−based BER

SEM−based BER

Bias

Figure 5.6 — Behavior of the SEM-based BER estimation using Kernel method for
non-uniform sources (BPSK symbols, N = 15, 000, π+ = 0.7 and π

−
= 0.3

It can be shown that the smoothness of the BER estimates is much improved.
However, significant biases can be found for high SNR. In fact, as shown in 3.11, these
biases are caused by the “nature” of Kernel-based estimator — compared with the
GMM-based estimator, the Kernel-based one cannot provide accurate PDF estimate
in the region of high SNR.

5.3.2 CDMA system with standard receiver

We consider the same CDMA system with two users and standard receiver as in
section 3.2.2.1. We focus on the scenario where π+ = 0.7 and π− = 0.3. The two users
have equal powers A1 = A2 = 1. The maximum iteration number T is set to 6 and
1000 data samples are used.

First, we report in Fig 5.7 and Fig 5.8 the conditional PDFs obtained by using
unsupervised Kernel method for SNR = 0 dB and 10 dB.
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Figure 5.7 — Histogram and estimated PDFs for CDMA system (SNR = 0 dB,
N = 1000, π+ = 0.7 and π
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It can be shown that :

– for low SNR (SNR = 0 dB), we observe that the conditional PDFs are cor-
rectly estimated according to the Monte-Carlo-aided histogram but with some
oscillations. In fact, in consideration of the cross-correlation ρ = 0.4286 (cf. sec-
tion 3.2.2.1), the Multiple Access Interferences (MAI) will be terrible and the
soft outputs of the CDMA receiver will be corrupted by severe MAI and thermal
noise. Therefore, a large number of data samples are required to improve the
smoothness ;

– for high SNR (SNR = 10 dB), no severe oscillations are found since the variance
of the MAI plus noise is reduced.

Secondly, we report in Fig 5.9 the behavior of SEM-based BER estimation using
either Kernel method or Gaussian Mixture Model. For GMM-based estimator, the
maximum number of EM iterations is set to 5.
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We observe that the unsupervised SEM algorithm combined with either Kernel
method or Gaussian Mixture Model provides reliable BER estimates. For high SNR,
the Monte-Carlo technique fails to do so due to the very limited number of obser-
vations. Moreover, the simulation run time is quite fast : for SNR = 10 dB, SEM
algorithm combined with GMM only takes 20 s to obtain the BER estimate ; the one
with Kernel method takes 7 min because the Newton’s method need long computing
time to optimize the smoothing parameters.

5.3.3 Turbo coding and LDPC coding systems

We shall consider the Turbo codes-based system. As in Chapter 3 and 4, we have
taken 300,000 samples in 600 frames. For all the simulations of this subsection, we
consider the case of uniform sources (APPs π+ = π− = 0.5) and T = 6 SEM itera-
tions. The SEM algorithm is combined with the non-parametric Kernel method. For
simplicity, we use the initial values of the smoothing parameters and did not perform
the bandwidth optimization. In Fig 5.10, we report the behavior of the unsupervised
BER estimates.
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Figure 5.10 — Behavior of the SEM-based BER estimation using Kernel method
for non-uniform sources (Turbo coding system, 600 frames, π+ = π
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112 CHAPTER 5. UNSUPERVISED BIT ERROR RATE ESTIMATION

For Monte-Carlo simulation, we count 100 errors for each value of SNR. The MC-
based BER estimation stops at SNR = 1.2 dB, whereas the unsupervised SEM tech-
nique provides reliable BER estimates for SNR values up to 1.6 dB.

Then, we focus on the 1/2 rate QC-LDPC system as considered in Chapter 3 and
4. The parity check matrix G is generated as a dimension of 635 × 1270. The SEM
algorithm is combined with the Kernel method.

First, we have used 500 frames for BER estimation where SNR values up to SNR =
2.5 dB, each frame contains 635 random bits as transmitted information bits, which
means 500 × 635 = 317, 500 samples are used. The proposed unsupervised technique
can provide reliable BER estimates but the simulation run time is terrible. In Tab. 5.2,
we report the simulation run time for SNR = 2.5 dB. The program takes about 24
hours to finish the SEM algorithm because of the very large number of data samples.

coding/decoding
SEM algorithm (without
bandwidth optimization)

Elapsed time 5 min 30 s 23 h 38 min 10 s

Table 5.2 — Simulation run time of SEM-based BER estimation for QC-LDPC
system (500 frames, SNR = 2.5 dB)

In order to reduce the program complexity and to decrease simulation run time,
we have used the proposed modified method (cf. section 3.3.4) — we ignore the soft
observations equal (or near) to the true bit values (−1 and +1) and only focus on the
minority since the BER is determined by the “error area” which is far from +1 and
−1. The predefined threshold ǫ is set to 0.9995, this means that we only consider the
observations which are less than +0.9995 for the positive soft outputs and bigger than
−0.9995 for the negative outputs. This modified dataset shall only be used for high
SNR (e.g., SNR ≥ 2 dB), for small values of SNR, we should use the entire data
samples to avoid losing information.

We have tested the unsupervised SEM-based BER estimation by using Kernel
method along with the modified dataset in single trial. For SNR = 2.5 dB, with
317,500 data samples, 158,230 soft observations which belong to C+ are generated, and
only 1374 observations are less than +0.9995. This means that, by using the modi-
fied unsupervised Kernel method, we only need to take into account 1374 samples to
estimate the f

b+
X . Thus, the simulation run time could be much reduced.
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In Tab. 5.3 and Fig. 5.11, we report the simulation run time and the BER estimates
for the modified SEM-based technique.

coding/decoding
SEM algorithm (without
bandwidth optimization)

Elapsed time 5 min 30 s 9 s

Table 5.3 — Simulation run time of SEM-based BER estimation for QC-LDPC
system (500 frames, SNR = 2.5 dB)
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Figure 5.11 — Behavior of the modified SEM-based BER estimation using Kernel
method for uniform sources (QC-LDPC system, 500 frames, π+ = π
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= 0.5)

It can be shown that, in the region of high SNR (SNR ≥ 2 dB), the SEM-based
BER estimates combined with Kernel method and modified dataset are close to the
one with original dataset. Compared to the simulation run time presented in Tab. 5.2,
only 9 seconds are sufficient to finish the modified SEM algorithm for SNR = 2.5 dB.
For low SNR, the simulation time would be longer since more samples which are far
from the true bit values +1 and −1 should be taken into account.
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5.4 Conclusion

In this chapter, we have presented an unsupervised BER estimation technique based
on the Stochastic Expectation-Maximization algorithm combined with the proposed
non-parametric (Kernel method) or semi-parametric (Gaussian Mixture Model) PDF
estimation method. We have tested and reported the behavior of PDF and BER es-
timates for different digital communication system. The proposed unsupervised BER
estimation technique provides reliable BER estimates even for high SNR independently
of the distribution of data bits.

The key of the proposed unsupervised technique consists in estimating the a priori
probabilities in an iterative way. Once we obtain the estimates of the classification
information, we use the Kernel method or the GM model to estimate the PDFs and
therefore the BER. The initial classification is done by taking into account the signs
of the soft observations. For high SNR, the initial a priori probabilities could be the
same to the true values, then the iterative SEM algorithm is not required.

Compared to the classical Monte-Carlo simulation and other presented BER esti-
mation techniques, the unsupervised BER estimation does not require the knowledge
of the transmitted information bit values. Moreover, we do not need to know the trans-
mitter scheme, channel condition, and reception technique. These characteristics help
the unsupervised estimator to adapt to practical situations.

The SEM algorithm may take very long simulation run time when the size of dataset
is large. For this reason, we have proposed to use modified dataset that only the soft
outputs around the tails of PDFs (“error area”) are taken into account. By doing so,
the simulation run time could be much more reduced by using the same data frames.
However, using modified dataset might cause unreliable estimation since the variance
is not minimum, as presented in section 3.3.4.



Conclusion and

perspectives

In many practical communication systems, a real-time and on-line Bit Error Rate
estimation would be of great interest to perform system-level functions, e.g., power
control, resource allocation, link adaptation, etc. Under this framework, several issues
must be taken into account :

– the estimator should be unsupervised, or blind, which means that no information
about transmitted data bits is available ;

– the estimation should be performed with a very limited number of data samples ;
– the performance and reliability of BER estimates should be immune to either the

transceiver scheme/techniques or to the channel model.

Classically, the Monte-Carlo technique is used to estimate the BER of a digital com-
munication system. This BER estimate approaches the true BER but the number of
transmitted bits becomes very high as long as the BER becomes very low. To solve this
issue, Monte-Carlo techniques have been modified, like for example : importance sam-
pling, tail extrapolation and quasi-analytical method. Unfortunately, all these methods
assume the knowledge of noise statistics.

Therefore, we have studied in this manuscript, soft BER estimation techniques by
the mean of probability density function (PDF). These PDFs are estimated from soft
channel observations, without any knowledge of the noise statistics.

In Chapter 2, we have introduced the non-parametric and semi-parametric methods
to estimate the PDF of soft observations. The non-parametric Kernel method and the
semi-parametric Gaussian Mixture Model have been used for supervised BER estima-
tion.

In Chapter 3, we have shown that the performance of Kernel-based PDF estimation
strongly depends on the smoothing parameter (the bandwidth). We have given the
expression of the optimal bandwidth when the PDF to be estimated is Gaussian. When
the PDF to be estimated is not Gaussian, the optimal value should be computed using
the Maximum Likelihood criterion. Then we have tested the Kernel-based technique
for different digital systems : i) BPSK signal over AWGN and Rayleigh channels ; ii)
CDMA system ; iii) turbo coding system and iv) QC-LDPC coding system. It can be
shown that the proposed Kernel method provides reliable PDF and BER estimates
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using only a small number of soft observations compared to the MC case.

In Chapter 4, we have presented the Gaussian Mixture Model-based BER estimation
technique using Expectation-Maximization (EM) method. The GMM-based estimator
depends on several parameters, such as the number of Gaussian components K and
the maximum EM-iteration number T . The value of K could be selected by using the
mutual information to evaluate the independence of the mixture. The value of T is
determined by some initial values which should be carefully selected. In our works, we
have proposed to use the K-means algorithm to initialize them. The GMM method has
been simulated under the same conditions as in Chapter 3. It can be shown that, by
carefully choosing the number of Gaussians and the maximum number of EM iterations,
the performance of BER estimation can be as good as the Kernel-based one, in average.
Moreover, the variance of the estimation is better.

The aim of the proposed supervised Kernel-based and GMM-based BER estimators
is to smoothen the MC-based PDFs (histograms) and minimize the distortions due to
the lack of data samples. Many advantages have been found :

– only a small number of soft observations is required, which means that the pro-
posed methods are well suited for on-line BER estimation ;

– compared with the classical and modified Monte-Carlo methods which fail to
perform BER estimation for high SNR when the number of samples is not high
enough, the proposed estimators provide reliable estimators ;

– the transceiver scheme and channel model are not required, which means that the
proposed estimators can be used for any digital communication systems ; more-
over, many types of soft observations could be applied, e.g., for BPSK symbols,
the soft outputs are composed of the transmitted data and the noise, whereas the
soft information of Turbo coding and LDPC coding systems is respectively the
LLR and the a posteriori probabilities.

In Chapter 5, we have presented the unsupervised BER estimation techniques.
As the knowledge of a priori probabilities of transmitted information bits and the
classification of receiver’s soft outputs are required, we have introduced an iterative
Stochastic Expectation-Maximization algorithm to iteratively compute these parame-
ters. Combined with the Kernel and GMM methods, we have analyzed the behavior of
the unsupervised BER estimator under the same conditions as in Chapter 3 and 4. It
was shown that, with a suitable number of SEM iterations, the unsupervised estimator
provides similar BER estimates as the supervised BER results estimated by using the
corresponding Kernel or GMM method. This is true even in the high SNR regime or
when using uniform or non-uniform sources. By taking into account the above advan-
tages of the Kernel-based and GMM-based methods, the unsupervised estimators are
able to meet the requirements of on-line and real-time BER estimation.

A first perspective could be to implement an on-line estimation of the BER, where
the estimation is updated at each sample, especially with the GMM-based estimator
which performs quite well, even if the number of samples is very low compared to the
targeted BER.
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As we only focused on the soft observations of binary information, we shall also
investigate the extension to the estimation of the symbol error rate, where the symbols
are taken in a given QAM or PSK constellation.





Appendix

Appendix A

LDPC codes

LDPC codes were firstly developed by Gallager in 1963 [Gal62], but soon forgotten
until Gallager’s work was discovered in 1996 [MN96] by MacKay.

(1) Parity-check matrix and Tanner graph

LDPC codes are defined by a sparse parity-check matrix, which is often randomly
generated and represented by a bipartite graph called Tanner graph [Tan81].

Fig. A.1 shows the Tanner graph of the sparse parity-check matrix given by Eq. A.1.

H =

⎛

⎜
⎜
⎝

1 1 0 1 0 0
0 1 1 0 1 0
1 0 0 0 1 1
0 0 1 1 0 1

⎞

⎟
⎟
⎠

(A.1)

Digit nodes

Subcode nodes

Figure A.1 — Tanner graph for the matrix of Eq. A.1

Tanner graph is partitioned into subcode nodes and digit nodes. For linear block
codes, the subcode nodes denote the rows of the matrix H. The digit nodes represent
the columns of the matrix H. An edge connects a subcode node to a digit node if a
nonzero entry exists in the intersection of the corresponding row and column.
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The girth of a Tanner graph is the length of the shortest cycle in the graph. In
Fig. A.1, the black lines represent the shortest loop. Short cycles degrade the perfor-
mance of LDPC decoders, because they affect the independence assumption (decoder
side) of the extrinsic information exchanged in the iterative decoding [LFKL00]. Hence,
LDPC codes with large girth are desired.

In our works, a Tanner QC-LDPC code [MYK05] without 4-cycles was used.

(2) LDPC encoding

Given a codeword μ and an M by N(N > M) parity check matrix H, we have :

μ ·HT = 0 (A.2)

Assume that the message bits, s, are located at the end of the codeword and the
check bits, c, occupy the beginning of the codeword, we have :

μ = [c|s] (A.3)

Also let :
H = [A|B] (A.4)

where A is an M by M matrix and B is an M by N −M matrix.

If A is an invertible matrix, the generator matrix G can be given as :

G =
[

[A−1B]T(N−M)×MIM×M

]

(A.5)

Thus, we get :
c = A−1Bs (A.6)

Eq. A.6 can be used to compute the check bits as long as A is non-singular.

(3) LDPC decoding

We used the Sum-Product method for LDPC decoding. This method is based on
the Belief Propagation (BP) algorithm.

Let {r} be the received signals and X = {X1, . . . Xj, . . . , XN} ∈ {0, 1} be the
codeword corresponding to the digit nodes of Tanner graph. Let S be the state when
X satisfy all the parity-check constraints. If :

P (Xj = 0|{r}, S)
P (Xj = 1|{r}, S) ≥ 1 (A.7)

we can write :
X̂j = 0

Otherwise, we obtain :
X̂j = 1
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Let Ra
i,j be the conditional probability when the ith parity-check constraint is sat-

isfied and the jth bit is equal to a (a = 0 or 1). We have :

{

R0
i,j = 1

2

[

1 +
∏

j∈N(i)\j(1− 2P 1
j,i)
]

R1
i,j = 1−R0

i,j

(A.8)

where N(i) is the set of information bits constrained by the ith subcode node.

If the transmitted bits are independent, we have :

P (S|Xj = 1, {r}) =
∏

k∈M(j)\i
R1

k,j

P (S|Xj = 0, {r}) =
∏

k∈M(j)\i
R0

k,j

(A.9)

where M(j) is the set of checks for Xj.

Thus, we get :

P (Xj = 0|{r}, S)
P (Xj = 1|{r}, S) =

1− Pj

Pj

k∏

i=1

P (S|Xj = 0, {r})
P (S|Xj = 1, {r}) (A.10)

where Pj is obtained by channel measurement at the receiver side.

Let Qa
j,i be the conditional probability that the jth bit is equal to a while using the

information from subcode nodes except the ith node.
{

Q0
j,i = (1− Pj)

∏

k∈M(j)\i R
0
i,j

Q1
j,i = Pj

∏

k∈M(j)\i R
1
i,j

(A.11)

At each iteration, Ra
i,j are firstly transmitted from the subcode nodes to the digit

nodes, and then Qa
j,i are transferred from the digit nodes to the subcode nodes to

update the values of Ra
i,j. If the iterative algorithm is convergent, we can finally obtain

the two probabilities at iteration t+ 1.
{

Q0
j(t+ 1) = kj(1− Pj)

∏

k∈M(j) R
0
i,j(t+ 1)

Q1
j(t+ 1) = kjPj

∏

k∈M(j) R
1
i,j(t+ 1)

(A.12)

where kj is the normalization factor for Q0
j(t+ 1) +Q1

j(t+ 1) = 1.

Let λ =
Q1

j (t+1)

Q0
j (t+1)

, the decision can be given by :

{

Xj = 1 if λ ≥ 1,

Xj = 0 otherwise.
(A.13)





Résumé de la thèse

Pour la majorité des systèmes de communications numériques, le taux d’erreurs
binaires (BER : Bit Error Rate) est un paramètre clé. En général, le BER ne peut pas
être calculé analytiquement et doit être estimé par les simulations de type Monte-Carlo
(MC). Cependant, elles se révélent très côuteuses en nombre d’échantillons et en temps
de simulation lorsque le BER est très faible. De plus, les données transmises doivent
être connues par le récepteur, ceci signifie que ces méthodes ne sont pas applicables
quand le taux d’erreurs doit être estimé de façon aveugle au niveau du récepteur.

Par conséquent, nous proposons de mettre en œuvre des techniques d’estimation
de densités de probabilités (PDF : Probability Density Function) des observations
souples en sortie du récepteur. Dans un premier temps, nous avons étudié l’estimation
non-paramétrique appelée “méthode du noyau” (Kernel) pour estimer la PDF. Ensuite,
le modèle de mélanges de gaussiennes (GMM : Gaussian Mixture Model) est utilisé.

L’introduction de l’estimation souple du BER

Nous considerons N échantillons des bits transmis I.I.D. (Indépendents et Iden-
tiquement Distribués), (bi)1≤i≤N , et les sorties souples du récepteur, (Xi)1≤i≤N , qui ont
la même PDF, fX(x). Alors le taux d’erreurs peut être exprimé par :

pe = P [b̂i �= bi]

= P [X < 0, bi = +1] + P [X > 0, bi = −1]

= P [X < 0|bi = +1]P [bi = +1] + P [X > 0|bi = −1]P [bi = −1]

On note que f
b+
X (·) et f b−

X (·) sont les PDFs des sorties souples X dans les conditions
bi = +1 et bi = −1. Le BER est :

pe = P [bi = +1]

∫ 0

−∞
f
b+
X (x)dx+ P [bi = −1]

∫ +∞

0

f
b−
X (x)dx (1)

En général, on note que P [bi = +1] = π+ et P [bi = −1] = π−, où π++π− = 1. Alors
la PDF des sorties souples est donnée par le mélange des deux PDFs conditionnelles :

fX(x) = π+f
b+
X (x) + π−f

b−
X (x) (2)
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Ce qui, en utilisant L’équation 1, donne :

pe = π+

∫ 0

−∞
f
b+
X (x)dx+ π−

∫ +∞

0

f
b−
X (x)dx (3)

La figure 1 montre les PDFs conditionnelles des observations souples gaussiennes
identiquement distribuées (π+ = π− = 1/2). Le BER est donné par la superficie de la
zone hachurée sous les deux courbes.
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Figure 1 — Exemple des PDFs conditionnelles des observations souples

Par conséquent, l’estimation du BER est équivalent à l’estimation de la PDF con-
ditionnelle des observations souples. Une fois que l’on obtient l’estimation de la PDF,
le BER peut être analytiquement calculé à partir de l’équation 3.

Plusieurs techniques pourront être utilisées pour l’estimation de la PDF, telles
que l’estimation paramétrique, la méthode non-paramétrique et la méthode semi-
paramétrique. La méthode paramétrique n’est utilisée que pour calculer le BER
théorique car il est souvent très difficile de trouver l’expression mathématique de
la PDF inconnue pour le système pratique. Nous proposons d’utiliser la méthode
non-paramétrique ou semi-paramétrique pour estimer la PDF des observations souples.
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L’estimation du BER par la méthode du noyau

La méthode du noyau est une technique non-paramétrique très souvent utilisée,
généralisant astucieusement la méthode d’estimation par histogramme. Pour les obser-
vations souples (Xi)1≤i≤N classifiées en deux parties, (Xi)1≤i≤N+ ∈ C+ et (Xi)1≤i≤N−

∈
C−, l’estimation des deux PDFs conditionnelles peut être donnée par :

f̂
b+
X,N+

(x) =
1

N+hN+

∑

Xi∈C+

K
(x−Xi

hN+

)

f̂
b−
X,N−

(x) =
1

N−hN−

∑

Xi∈C−

K
(x−Xi

hN−

) (4)

où K(·) est la fonction du noyau, qui est souvent choisie comme étant la densité d’une
fonction gaussienne standard avec une espérance nulle et une variance unitaire ; hN+ et
hN−

sont des paramètres de lissage, qui régissent le degré de lissage de l’estimation.

En utilisant l’équation 3, on obtient l’expression ci-dessous pour le noyau gaussien :

p̂e,N =
π+

N+

∑

Xi∈C+

Q
( Xi

hN+

)

+
π−
N−

∑

Xi∈C−

Q
(

− Xi

hN−

)

(5)

où Q(·) vaut 1
2
erfc
(

x√
2

)

.

1) Choix du paramètre de lissage

En général, le choix du Kernel est réputé comme peu influent sur l’estimateur, par
contre le choix des paramètres de lissage est une question centrale dans l’estimation
du BER. Pour une largeur hN+ (hN−

) trop grande, la majorité des caractéristiques est
effacée, au contraire une largeur trop faible provoque l’apparition de détails artificiels.

La figure 2 montre les résultats de l’estimation de la PDF par la méthode du noyau
avec differents nombres d’observations et differentes valeurs de paramètres de lissage.
On remarque que la PDF est très mal estimée si le paramètre de lissage est trop
grand ou trop faible. Par conséquent, l’utilisation de la méthode du noyau requiert
l’optimisation du paramètre de lissage.

Une façon répandue pour trouver la valeur optimale du hN consiste à minimiser
l’erreur quadratique moyenne intégrale (IMSE : Integrated Mean Squared Error) de la
PDF estimée. Pour le noyau normal et les PDFs gaussiennes N(μ+, σ

2
+) et N(μ−, σ

2
−),

les paramètres de lissage des classes C+ et C− sont :

hN+ =
( 4

3N+

) 1
5
σ+ hN−

=
( 4

3N−

) 1
5
σ− (6)

Pour le système pratique, la forme de la distribution des observations souples est
inconnue. Nous proposons d’annuler la dérivée de la fonction de vraisemblance condi-
tionnelle.



126 RÉSUMÉ DE LA THÈSE

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1
Normal distribution(N=128,h=0.02)

x

d
e
n

s
i
t
y

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1
Normal distribution(N=128,h=0.2)

x

d
e
n

s
i
t
y

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1
Normal distribution(N=128,h=0.4)

x

d
e
n

s
i
t
y

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1
Normal distribution(N=128,h=2)

x

d
e
n

s
i
t
y

 

 

Kernel estimate

theoretical curve

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1
Normal distribution(N=1024,h=0.02)

x

d
e
n

s
i
t
y

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1
Normal distribution(N=1024,h=0.2)

x

d
e
n

s
i
t
y

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1
Normal distribution(N=1024,h=0.4)

x

d
e
n

s
i
t
y

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1
Normal distribution(N=1024,h=2)

x

d
e
n

s
i
t
y

 

 

Kernel estimate

theoretical curve

(a)-1 

(a)-2 

(a)-3 

(b)-1 

(b)-2 

(b)-3 

(a)-4 (b)-4 

(a) (b) 

Figure 2 — Estimation par la méthode du noyau avec differents largeurs hN (0.02,
0.2, 0.4, 2) : (a). 128 observations ; (b). 1024 observations

d
{[

L(hN+ |X1, . . . , XN+)
]}

d(hN+)
= − N+

hN+

+

N+∑

i=1

∑N+

j=1 K
(Xi−Xj

hN+

)( (Xi−Xj)
2

h3
N+

)

∑N+

j=1,j �=i K
(Xi−Xj

hN+

) (7)

Cependant, le calcul de l’équation 7 est très difficile, alors nous proposons d’utiliser
– la méthode “curve fitting” : trouver la forme parfaitement adaptée à la courbe de

la dérivée de la fonction de vraisemblance ;
– la méthode “Newton” : trouver le hN optimal en traçant itérativement la tangente

de la dérivée de la fonction de vraisemblance.

2) Performances de l’estimation du BER par la méthode du noyau

Plusieurs systèmes de communications numériques ont été considérés pour tester la
méthode du noyau :

– symboles BPSK transmis sur les canaux AWGN et Rayleigh ;
– système CDMA ;
– turbo codes ;
– codes LDPC.
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La figure 3 montre la courbe du BER pour 1000 observations souples des bits BPSK
transmis sur le canal Rayleigh. On remarque que les BERs obtenus par l’optimisation
du paramètre de lissage sont les plus proches des valeurs théoriques. Le hN donné
par l’équation 6 donne une mauvaise estimation du BER car la distribution est non-
gaussienne. En outre, les courbes du BER estimé par la méthode du noyau sont plus
lissées que celles estimées par la simulation MC.
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Figure 3 — L’estimation du BER par la méthode du noyau (symboles BPSK, canal
Rayleigh, N = 1000)
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Figure 4 — L’estimation du BER par la méthode du noyau (LDPC codes, canal
AWGN, N = 317 500)

L’intéret principal de la méthode du noyau est de réduire le nombre d’échantillons.
La figure 4 montre les BERs estimés pour 317 500 observations souples des codes
QC-LDPC transmis sur le canal AWGN. En comparaison avec le BER du MC qui est
stoppé à 10−3, le BER estimé par Kernel peut atteindre 10−7 avec le même nombre
d’échantillons.

L’estimation du BER par le modèle de mélanges de gaussi-
ennes

Le modèle de mélanges de gaussiennes (GMM) est une méthode très souvent utilisée
pour la classification de données. Les PDFs conditionnelles des observations pour C+

et C− sont définie par :

fX,N+(x) =
K∑

k=1

α+
k fk(x;μ

+
k , σ

+2
k )

fX,N−
(x) =

K∑

k=1

α−
k fk(x;μ

−
k , σ

−2
k )

(8)
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où les (α+
k )1≤k≤K (resp. (α−

k )1≤k≤K) représentent les probabilités a priori de la kéme

composante de fX,N+ (resp. fX,N−
).

Le BER peut être estimé de la manière suivante :

p̂e,N = π+

K+∑

k=1

α+
k Q
(μ+

k

σ+
k

)

+π−

K−∑

k=1

α−
k Q
(

−μ−
k

σ−
k

)

(9)

1) L’estimation des paramètres inconnus des composantes gaussiennes

Les paramètres inconnus, θ+k = (α+
k , μ

+
k , σ

+2
k )1≤k≤K et θ−k = (α−

k , μ
−
k , σ

−2
k )1≤k≤K ,

sont estimés par l’algorithme EM (Expectation-Maximization) en utilisant les N
observations ainsi que la probabilité a posteriori où la ième observations Xi fait partie
de la kème composante gaussienne. La figure 5 montre l’organigramme de l’estimation
du BER par la méthode GMM.

2) Performances de l’estimation du BER par la méthode GMM

La figure 6 montre les BERs estimés par la méthode GMM pour les symboles BPSK
et le système CDMA. On remarque que :

– en comparaison avec la méthode MC, l’estimateur GMM permet de fournir des
estimations très précises avec 2000 observations (cf. figure 6 (b)) ;

– pour la distribution non-gaussienne (eg. canal Rayleigh, figure 6 (a)), plusieurs
composantes gaussiennes sont nécessaires ;

– plusieurs itérations EM sont nécessaires (cf. figure 6 (b)).
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Figure 5 — L’organigramme de l’estimation du BER par la méthode GMM
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T = 2, 5, 20)
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La méthode GMM est idéale pour la distribution gaussienne même avec très peu
d’échantillons. Le tableau 1 montre les variances des BERs estimés du système CDMA
pour differents SNR (Signal-to-Noise Ratio). En comparaison avec la simulation MC
et la méthode du noyau, la méthode GMM permet de fournir la meilleure performance
en terme de minimum de variance.

SNR = 0 dB SNR = 4 dB SNR = 6 dB
Monte-Carlo Variance 5.0 · 10−5 2.4 · 10−5 10.3 · 10−6

Kernel using optimal hN Variance 4.3 · 10−5 2.0 · 10−5 1.0 · 10−6

GMM Variance 3.7 · 10−5 1.6 · 10−5 0.85 · 10−6

Table 1 — Variance du BER estimé pour la méthode MC, Kernel et GMM (système
CDMA, canal AWGN, N = 2000, 1000 épreuves)

L’estimation en aveugle du BER

Pour une estimation au niveau du récepteur, les bits transmis sont inconnus.
Autrement dit, il faut estimer le BER de façon aveugle sans connaître la classifica-
tion des données C+ et C−, ainsi que les nombres d’échantillons associés N+ et N−.
Pour cela, nous proposons d’utiliser l’algorithme Stochastic Expectation-Maximization
(SEM). La classification est initialement réalisée par le signe des observations sou-
ples. La figure 8 montre l’organigramme pour l’estimation du BER en aveugle avec la
méthode du noyau et la méthode GMM.

La figure 7 montre les BERs estimés en aveugle en utilisant la méthode du noyau
pour les symboles BPSK sur le canal AWGN. Les bits transmis sont générés de façon
non-equiprobable (π+ = 0.7 et π− = 0.3).
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Figure 8 — L’organigramme pour l’estimation du BER en aveugle : (a). Kernel ;
(b). GMM

On remarque que le BER estimé de façon aveugle devient de plus en plus proche
de celui estimé par la méthode Kernel avec l’augmentation du SNR, surtout pour des
SNR supérieur à 7 dB. Cela est dû au choix initial des classes C+ et C−. Quand le SNR
est faible, la classification initiale provoque des erreurs. Au contraire, pour des valeurs
de SNR élevé, très peu d’erreurs pourront être trouvés. Dans ce cas-là, l’estimation en
aveugle est équivalente à l’estimation avec la connaissance des bits envoyés.

Plusieurs avantages de l’estimation du BER en aveugle peuvent être trouvés :

– elle est très adaptée à l’application pratique (eg. l’estimation du BER en ligne et
en temps réel) compte tenu des exigences citées au début du résumé ;

– elle bénéficie des intérêts de la méthode du noyau ou de la GMM :

1. réduire le nombre d’echantillons ;

2. minimiser la variance de l’estimation ;

3. servir pour n’importe quel type d’observations souples ;

4. le temps de simulation ne dépend pas du SNR.
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