S. Samir and D. Jia, Estimation rapide de la probabilité d'erreur pour les systèmes de communicationos numériques, 2011.

S. Samir and D. Jia, La méthode du noyau pour estimer rapidement une très faible probabilité d'erreur. TAIMA 2011 : Traitement et analyse de l'information, méthodes et applications, pp.3-08, 2011.

A. Jia, S. Idir-tarik, and . Samir, Unsupervised Bit Error Rate Estimation Using Maximum Likelihood Kernel Methods. VTC 2012-Spring : IEEE 75th Vehicular Technology Conference

S. Samir and D. Jia, Kernel method for Bit Error Rate Estimation, ISIVC12 : International Symposium on signal, Image, Video and Communications, pp.4-06, 2012.

S. Samir, D. Jia, ]. Alouini, and A. J. Goldsmith, Joint Maximum Likelihood and Expectation Maximization methods for Unsupervised Iterative Soft Bit Error Rate Estimation. VTC 2012-Fall : 76th IEEE Vehicular Technology Conference Capacity of rayleigh fading channels under different adaptive transmission and diversity-combining techniques. Vehicular Technology, IEEE Transactions on, vol.48, issue.4, pp.3-061165, 1999.

S. Äyrämö, T. Kärkkäinen, and K. Majava, Robust refinement of initial prototypes for partitioning-based clustering algorithms. Recent Advances in Stochastic Modeling and Data Analysis, pp.473-482, 2007.

C. Larry and . Andrews, Special functions for engineers and applied mathematicians, 1985.

C. Eric and . Anderson, Monte carlo methods and importance sampling, Lecture Notes for Statistical Genetics, vol.578, 1999.

D. Arthur and S. Vassilvitskii, k-means++ : The advantages of careful seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp.1027-1035, 2007.

M. Baxter, S. Beardah, and . Westwood, Sample Size and Related Issues in the Analysis of Lead Isotope Data, Journal of Archaeological Science, vol.27, issue.10, pp.973-980, 2000.
DOI : 10.1006/jasc.1999.0546

C. James, R. Bezdek, W. Ehrlich, and . Full, Fcm : The fuzzy cmeans clustering algorithm, Computers & Geosciences, vol.10, issue.2, pp.191-203, 1984.

C. Berrou and A. Glavieux, Near optimum error correcting coding and decoding: turbo-codes, IEEE Transactions on Communications, vol.44, issue.10, pp.1261-1271, 1996.
DOI : 10.1109/26.539767

C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1, Proceedings of ICC '93, IEEE International Conference on Communications, pp.1064-1070, 1993.
DOI : 10.1109/ICC.1993.397441

G. Celeux and J. Diebolt, Reconnaissance de mélange de densité et classification. un algorithme d'apprentissage probabiliste : l'algorithme sem, 1984.

G. Celeux and J. Diebolt, The sem algorithm : a probabilistic teacher algorithm derived from the em algorithm for the mixture problem, Computational statistics quarterly, vol.2, issue.1, pp.73-82, 1985.

G. Celeux and J. Diebolt, Etude du comportement asymptotique d'un algorithme d'apprentissage probabiliste pour les melanges de lois de probabilite A probabilistic teacher algorithm for iterative maximum likelihood estimation, 1. Conference of the International Federation of Classification Societies, pp.617-624, 1986.

E. Cavus, L. Charles, B. Haymes, and . Daneshrad, Low BER performance estimation of LDPC codes via application of importance sampling to trapping sets, IEEE Transactions on Communications, vol.57, issue.7, pp.1886-1888, 2009.
DOI : 10.1109/TCOMM.2009.07.050060

K. Cranmer, [. Chandrakala, C. Chandra-sekhar-nicole, M. Fortin, and T. Lemieux, Model based clustering of audio clips using gaussian mixture models Nearest neighbor (NN) norms :NN pattern classification techniques : A semiparametric approach, Advances in Pattern Recognition Seventh International Conference onDas91] Belur V Dasarathy Labor market institutions and the distribution of wages, pp.198-207, 1973.

O. Richard, . Duda, E. Peter, . Hart, G. David et al., Pattern classification, 2012.

P. Arthur, . Dempster, M. Nan, . Laird, B. Donald et al., Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society. Series B (Methodological), pp.1-38, 1977.

L. Dong, W. Wenbo, and L. Yonghua, Monte carlo simulation with error classification for multipath rayleigh fading channel, Telecommunications , 2009. ICT'09. International Conference on, pp.223-227, 2009.

P. Diaconis and D. Ylvisaker, Conjugate priors for exponential families. The Annals of statistics [Far90] Julian Faraway. Implementing semiparametric density estimation, Statistics & Probability Letters, vol.7, issue.102, pp.269-281141, 1979.

W. Edward and . Forgy, Cluster analysis of multivariate data : efficiency versus interpretability of classifications [Gal62] Robert Gallager. Low-density parity-check codes. Information Theory, Gna11] Ram Gnanadesikan. Methods for statistical data analysis of multivariate observations, pp.768-76921, 1962.

J. Peter and . Green, On use of the em for penalized likelihood estimation, Journal of the Royal Statistical Society. Series B (Methodological), pp.443-452, 1990.

H. William and . Greene, Econometric Analysis, 5/e. Pearson Education India, 2003.

E. Bruce, A. Hansen-john, K. Hong, K. Mostofa, . Howlader et al., Clustering algorithms Bit error rate estimation for improving jitter testing of high-speed serial links ITC'06 Decoder-assisted frame synchronization for packet transmission. Selected Areas in Communications, Test ConferenceJAN13] JANG. Gaussian mixture model, pp.1-102331, 1975.

C. Michel, P. Jeruchim, S. Balaban, and . Shanmugan, Simulation of communication systems : modeling, methodology and techniques, 2000.

M. Jang, C. Sun, and E. Mizutani, Techniques for estimating the bit error rate in the simulation of digital communication systems Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [book review]. Automatic Control, Selected Areas in Communications IEEE Journal on IEEE Transactions on, vol.2, issue.110, pp.153-170, 1984.

T. Carl and . Kelley, Solving nonlinear equations with Newton's method, Siam, vol.1, 2003.

R. Lucas, P. Marc, Y. Fossorier, S. Kou, I. Lin et al., Iterative decoding of one-step majority logic deductible codes based on belief propagation, Information Theory Workshop Proceedings. 2001 IEEE Proc. Int. Symp. on Turbo Codes & Rel. Topics, pp.931-937, 2000.
DOI : 10.1109/26.848552

Y. Lu, S. Lu, F. Fotouhi, Y. Deng, J. Susan et al., FGKA, Proceedings of the 2004 ACM symposium on Applied computing , SAC '04, pp.622-623, 2004.
DOI : 10.1145/967900.968029

D. Jeffery, . Laster, H. Jeffrey, W. Reed, and . Mclachlan, Bit error rate estimation using probability density function estimators. Vehicular Technology BIBLIOGRAPHY [M + 67] James MacQueen et al. Some methods for classification and analysis of multivariate observations Distributed power control algorithms for WCDMA cellular systems Estimation of mixing proportions by the em algorithm, Proceedings of the fifth Berkeley symposium on mathematical statistics and probabilityMan06] Gaurav Pradeep Mandhare Proceedings of the Statistical Computing Section of the Annual Meeting of the American Statistical Association, pp.260-267, 1967.

J. David, . Mackay, M. Radford, and . Neal, Near shannon limit performance of low density parity check codes, Electronics letters, vol.32, issue.18, p.1645, 1996.

K. Todd, G. Moon, D. Mclachlan, and . Peel, The expectation-maximization algorithm Signal processing magazine, IEEE, vol.13, issue.6, pp.47-60, 1996.

S. Myung, K. Yang, and J. Kim, Quasi-cyclic ldpc codes for fast encoding. Information Theory, IEEE Transactions on, vol.51, issue.8, pp.2894-2901, 2005.

H. Minn, M. Zeng, K. Vijay, and . Bhargava, On arq scheme with adaptive error control. Vehicular Technology, IEEE Transactions on, vol.50, issue.6, pp.1426-1436, 2001.

E. Parzen, On estimation of a probability density function and mode. The annals of mathematical statistics, pp.1065-1076, 1962.

Q. Yonghong, G. Zhongmin, and Y. Pan, Research on application of software simulation to spread spectrum communication systems, Journal of System Simulation, vol.11, issue.6, pp.461-464, 1999.

H. Maurice and . Quenouille, Notes on bias in estimation, Biometrika, vol.434, issue.3, pp.353-360, 1956.

M. Richard, A. Redner, F. Homer, and . Walker, Remarks on some nonparametric estimates of a density function The Annals of Mathematical Statistics Mixture densities, maximum likelihood and the em algorithm, SIAM review, vol.26, issue.2, pp.832-837195, 1956.

S. Saoudi, T. Ait-idir, Y. Mochida, and D. Parkyn, A Novel Non-Parametric Iterative Soft Bit Error Rate Estimation Technique for Digital Communications Systems, 2011 IEEE International Conference on Communications (ICC), pp.1-6, 2011.
DOI : 10.1109/icc.2011.5962691

URL : https://hal.archives-ouvertes.fr/hal-00623619

S. Saoudi, A. Ghorbel, and . Hillion, Some statistical properties of the kernel-diffeomorphism estimator. Applied stochastic models and data analysis, pp.39-58, 1997.

[. Saoudi and . Hillion, Non?parametric probability density function estimation on a bounded support : Applications to shape classification and speech coding. Applied Stochastic models and data analysis, pp.215-231, 1994.

W. Bernard and . Silverman, Density estimation for statistics and data analysis, 1986.

[. Soljanin, P. Liu, and . Spasojevic, Hybrid arq in wireless networks, DIMACS Workshop on Network Information Theory, 2003.

[. Shin, . Park, S. Kim, [. Ko, S. Strinati et al., New quasi-analytic ber estimation technique on the nonlinear satellite communication channels Ber and per estimation based on soft output decoding An iterative soft bit error rate estimation of any digital communication systems using a nonparametric probability density function, IEE Proceedings-Communications 9th International OFDM- Workshop, 2005. [STG09] Samir Saoudi, Molka Troudi, and Faouzi Ghorbel, pp.68-72, 1999.

S. Samir and D. Thomas, Ait-Idir Tarik, and Coupe Patrice. A fast soft bit error rate estimation method, EURASIP Journal on Wireless Communications and Networking, 2010.

E. Tortosa-ausina, Bank cost efficiency as distribution dynamics : controlling for specialization is important, Investigaciones económicas, vol.27, issue.1, pp.71-96, 2003.

T. Adel, M. Alimi, and S. Saoudi, A recursive approach to low complexity codes Information Theory Fast plug-in method for parzen probability density estimator applied to genetic neutrality study, EUROCON The International Conference on" Computer as a Tool, pp.533-547, 1981.

Y. Teh, I. Michael, . Jordan, J. Matthew, . Beal et al., Hierarchical Dirichlet Processes, Journal of the American Statistical Association, vol.101, issue.476, 2006.
DOI : 10.1198/016214506000000302

R. George, . Terrell, W. David, and . Scott, Variable kernel density estimation. The Annals of Statistics, pp.1236-1265, 1992.

. Michael-titterington, F. Adrian, . Smith, E. Udi, and . Makov, Statistical analysis of finite mixture distributions, 1985.

N. William, . Venables, D. Brian, W. Ripley, and . Venables, Modern applied statistics with S-PLUS BIBLIOGRAPHY [VWR + 01] Gerd Vandersteen Efficient bit-error-rate estimation of multicarrier transceivers, Design, Automation and Test in Europe Conference and Exhibition 2001. Proceedings, pp.164-168, 1994.

. Wikipedia, Importance sampling ? wikipedia, the free encyclopedia, 2013. [Online ; accessed 24, 2013.

. Wikipedia, Ordinary least squares ? wikipedia, the free encyclopedia, 2013. [Online ; accessed 24, 2013.

[. Matt, P. Wand, and C. Jones, Kernel smoothing, 1995.

[. Liao, Clustering of time series data???a survey, Pattern Recognition, vol.38, issue.11, pp.1857-1874, 2005.
DOI : 10.1016/j.patcog.2005.01.025

J. Joseph and . Wolcin, Maximum a posteriori estimation of narrow-band signal parameters, The Journal of the Acoustical Society of America, vol.6, pp.8-9, 1980.

[. Waterman and D. Whiteman, Estimation of probability densities by empirical density functions Mutual information theory for adaptive mixture models. Pattern Analysis and Machine Intelligence, YZ01] Zheng Rong Yang and Mark Zwolinski, pp.127-137396, 1978.