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Abstract

In our study, sea surface characteristics imaged by multi-polarization space-born synthetic

aperture radar (SAR) have been investigated. For the first time, a decomposition of different

scattering mechanisms have been performed for ocean satellite SAR imagery to better under-

stand the non-Bragg (Scalar) contribution to the total radar cross section (RCS) and Doppler

measurements. Characteristics retrieval and target classification has been established, using

polarimetry and Bayesian detection theories. There are generally three types of surface scat-

tering mechanisms occurring when the sea surface is detected by microwave radar, i.e., Bragg,

specular, and Rayleigh. Depolairzed Bragg contribution corresponds to sea surface capillary

wave, while the other two Scalar contributions correspond respectively to the crest of the

longer wave before it breaks and foams formed by wave breaking. Different scattering mech-

anisms induce different polarimetric scattering coefficients and Doppler spectrum. It had

been impossible to separate those scattering mechanisms with single polarization radar im-

ageries. On pixel scale, we decomposed radar scattering matrices physically into Bragg and

Scalar contributions. The decomposition is an iteration initiated with the radar incidence

angle, and controlled by a local incidence angle which is function of co-polarization and

cross-polarization. Based on these developments and testing, a strategy has been refined to

analyze the signature of different features, to retrieve wind seas and sea swell parameters,

as well as slick areas, ships, oil rigs, such polarized targets that may be buried in the Scalar

contribution. With polarimetric scattering matrices estimated both for Bragg and Scalar

contributions, a sea clutter model describing almost the real sea surface has been improved

statistically. From this point, this improved model could be combined with Bayesian detectors

to classify man-made metallic targets, such as ships, oil rigs, etc.

Keywords: multi-polarization, Scattering matrix, Sea surface scattering, target

detection
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Résumé

Ce travail de thèse a été consacré à la caractérisation de la surface de la mer par radar

à synthèse d’ouverture (RSO) polarimétrique porté par un satellite. Une décomposition

en différents mécanismes de diffusion est mise en oeuvre dans un premier temps, pour

une meilleure compréhension de la contribution non-Bragg (Scalaire) sur toutes les surface

équivalente radar (SER) et les mesures Doppler par images RSO sur la mer. La restitution

des caractérisations et la classification des cibles sont définis par polarimétrie et théorie de la

détection. Généralement, il y a trois types des mécanismes de diffusion sur la surface quand la

mer a été illuminé par une radar micro-onde, i.e., Bragg, spéculaire, et Rayleigh. La contribu-

tion de Bragg dépolarisée correspond à des petites vagues de capillarité-gravité, alors que les

autres, contributions scalaires correspondent à la réflexion spéculaire par la crête des vagues

qui est instable et déferle et la diffusion de Rayleigh sur la mousse après la vague déferlante.

Différents mécanismes de diffusion impliquent des coefficients de diffusion polarimétrique

différents et des spectre Doppler différents. On ne peut pas séparer les mécanismes de diffu-

sion avec les images radars en polarisation unique. Dans chaque pixel, la matrice de diffusion

est décomposée physiquement en contributions Bragg et Scalaire. Cette décomposition est

une itération qui est initiée avec l’angle d’incidence, et est contrôlée par l’angle d’incidence

local. Ce dernie est function du copolarisée et orthopolarisée. Une stratégie, basée sur ces

développements et sur ces tests, a été mise en place pour l’analyse de la signature des cibles,

la restitution des vent-vagues et la houle, et également les pollutions pétrolières, les navires,

ou les plate-formes pétrolière, car les cibles polarisée présentes dans la contribution scalaire

seulement. Les estimateurs des matrices de diffusion Bragg et Scalaire bénéficient à un modèle

statistique du fouillis de mer. Enfin, l’amélioration du modèle statistique avec la théorie de

la détection est proposée au regard la classification pour des cibles artificielless, comme les

navires ou les plate-formes pétrolières.

Mods-clés: Polarimétrie, Matrices de diffusion, Diffusion de la surface de la

mer, Cible détection
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CHAPTER

1 Introduction

During world war II, radar was much engaged to detect and track hostile vessels. Soon it

was noted that this detection was more and more hampered with increasing wind speed [2].

As one of the main meteorological variables in sea-state forecasting models, wind energy

generates sea surface roughness and then longer waves propagating for a long time to a far

distance. Radar signal returned from the sea surface could be inevitably modulated by both

roughness and the longer waves. After the war, radar has been much developed for civil use

with the development of synthetic aperture radar (SAR) in the 60’s. Imaging SAR working

on X-, C-, L-, or Ku-band provide 2-D information all over the seas on the Earth for every

few days, such as the one on-board the first non-military spacecraft Seasat (1978), the one

on-board the first European earth observing satellite ERS-1, and polarimetric SAR loaded on

the commercial satellite Radarsat-2 (as in Table 1.1). Moreover, dual- and quad-polarization

SAR sensors supply information of scattering mechanism as a third dimension measurement,

which endows polarimetry an inevitable basic tool for understanding SAR imageries.

It is known that over the ocean surface one can find man-made target such as oil plat-

forms, wind farms, and frequently oil spills as well as daily maritime transports. Sea surface

target detection is not a military requirement any more, but a prior problem for interpreting

SAR imagery over the real sea. For the natural ocean surface, there are improved electro-

magnetic (em) scattering models such as the extended two-scale model [3], wherein the sea

spikes (very high radar returned signal) may cause the false alarms by being considered as

a man-made target, such as ship or oil platforms. The objective of this work is to sepa-

rate different scattering mechanisms over the sea surface physically, i.e., by the polarimetric

scattering matrix, and try to understand the difference (scattering, energy power) in detail.

This improved understanding may help to retrieve the sea surface wave characteristics and

1
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Table 1.1 — Satellite imaging SAR summary

satellite frequency duration polarization

SeaSAT L 1978 HH

ERS-1 C 1991 VV

JERS-1 L 1992 HH

ENVISAT C 2002-2012 HH+HV,VV+VH

PALSAR/ALOS L 2006-2011 HH+VV+HV+VH

TerraSAR-X X 2007- HH+VV+HV+VH

RADARSAT-2 C 2007- HH+VV+HV+VH

COSMO-SkyMed X 2007- HH+HV,VV+VH

TanDEM-X X 2010- HH+VV+HV+VH

Sentinel-1A C 2013- HH+HV,VV+VH

to detect man-made targets.

1.1 Polarization of SAR em wave

Polarimetry theory dates back to the foundation of em wave theory by Maxwell [4]. Henri

Poincaré formalized many useful concepts in polarisation optics using geometrical approach,

followed by R. Clark Jones who used the formal matrix algebra to describe the propagation

of vector waves for the first time. Hans Mueller developed a matrix calculus for dealing with

partially polarised waves. Until 1952 when Edward Kennaugh [5] applied the matrix algebra

to radar scattering, the polarised EM wave had started to be used in the radar community,

where the wave polarization concept has been introduced.

Since the earliest dual-polarised side-looking imaging radar, the Ka-band real-aperture

system APQ-97 flown by the Westinghouse Corporation for civilian use in the 1960s, the

dual-polarised (like- and cross-polarised) paradigm for Earth observing radars, in particular

for SAR, has seen very little change over the past 40 years [6]. So far, operational polar-

ization radar is usually designed to transmit monochromatic plane em wave in horizontal

polarization and then vertical polarization alternatively. As the first commercial space-borne

SAR satellite, RADARSAT-2 (R2) transmitter sends out em wave in horizontal (H) and

vertical (V ) polarization alternatively, and the receiver collects backscattered em wave in H

and V polarization simultaneously, thus obtain like-polarised information in HH,V V , and

cross-polarised information in V H and V V . A monochromatic plane em wave having its elec-

tronic field ~E in any polarization can be expressed in an orthogonal polarization basis which
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is perpendicular to the line of wave propagation, as in figure 1.1, which shows a common

orthogonal basis with the horizontal axis (x) parallels to earth’s surface [7] while the vertical

axis (y) is perpendicular to this horizontal axis. The direction of wave propagation (z) is

perpendicular to the plane of orthogonal basis (x− y).

Figure 1.1 — Electric field of EM wave expressed in the orthogonal polarization basis

In this horizontal-vertical basis, the electric field

~E(HV ) = ĥH |Eh|ejδh + ĥV |Ev|ejδv (1.1)

where ĥH and ĥV is the unit vector of the orthogonal basis. The complex polarization trans-

formation ratio could be introduced as ρHV = |Ev/EH |ej(δV −δH) = tanαejδHV , and then the

electronic field could be expressed by the ratio ρHV and the total power (A) as

~E(HV ) = A cosα(ĥH + ρHV ĥV ) (1.2)

indicating that the phase of each orthogonal components is not definitive for the em wave

but the phase difference is.

Viewed towards the em wave’s propagation, the trace of the electronic field is normally an

ellipticity, since the total power of electronic field is a sinusoid function of time according to

the resolution of the Maxwell equation. Because of this, the polarization state of the em wave

is called elliptical polarization, as shown in figure 1.2 where the directions x and y stands for

the horizontal-vertical basis.

It is straightforward from the expression of (1.2) that the phase difference δHV defines

the shape of the ellipticity. If δHV = 0, when the two orthogonal components are ’in phase’,

the electronic field will be along the line with an angle of α to the horizontal direction; or if

δHV = 180◦, the electronic field will along the other line which is asymmetric with the former

according to the horizontal direction. For these cases, the polarization of the electronic field

is linear polarization. Furthermore, if the ratio angle α = 0 or α = 90◦, the electronic field is
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Figure 1.2 — Polarization ellipse of em wave

horizontally polarised or vertically polarised. Another special case is when δHV = ±90◦, the

trace of electronic field grows to a circle, and the polarization is circular (left or right).

Figure 1.2 shows a new orthogonal basis of (xN − yN ), with axises along the major axis

and minor axis of the polarization ellipse. The angle τ denotes the shape of the ellipse and

when τ = 0 the electronic field is linearly polarized. The angle φ denotes the orientation of the

ellipse, and especially for the linear polarization the φ = 0 or φ = 180o indicates a horizontal

polarization while the φ = 90o or φ = −90o indicates the vertical. The angle τ is called the

polarization elliptical angle, and φ the polarization orientation angle. The orientation angle

φ depends on the choice of horizontal axis, e.g. it is easier to be 0 in the new orthogonal

basis (xN − yN ). The distance between intersections of the major and minor axis with the

ellipse A is the amplitude of the electric field. The sign of τ determines the rotation, i.e., plus

denotes right rotation while minus indicates left rotation. Specially, when τ = 45o, the ellipse

polarization expands to circular polarization with uncertain orientation angle. For circular

polarization, the initial rotation of the electric field decides the left rotation or right rotation.

For a general case, αHV and δHV has the relationship with φ and τ as [8]

cos 2αHV = cos 2φ cos 2τ (1.3)

tan δHV = tan 2τ/ sin 2φ (1.4)

EM wave with any polarization could be expressed by 2D vectors such as the complex

(amplitude and phase) Jones vector (formula (1.5)) and real (power) Stokes vector (formula

(1.6)), wherein the subscripts x y stands for orthogonal components separately along the

horizontal direction and vertical direction. The complex Jones vector could be written as

product of unit matrices, which is especially applicable for the transform of elliptical co-

ordinate system (τ − φ). The power form of Stokes vector is better for radar backscatter



1.2. POLARIMETRIC SAR TARGET 5

measurements.

E =

[
Eh = E0xe

jδx

Ev = E0ye
jδy

]
(1.5)

gE =


g0 = |Ex|2 + |Ey|2

g1 = |Ex|2 − |Ey|2

g2 = 2<(ExE
∗
y)

g3 = −2=(ExE
∗
y)

 (1.6)

The first Stokes vector is the total intensity of electronic field, while the other three pa-

rameters describe the polarization state of the em wave. g1 is the absolute intensity according

to the horizontal direction (if g10) or the vertical direction (if g10). g2 indicates the part of

linear polarization beyond the axises while g3 indicates the part of circular polarization.

Straightforwardly, (g0)2 = (g1)2 + (g2)2 + (g3)2, and specially, g0 = g1, g2 = g3 = 0 indicates

linearly horizontal or vertical polarization, g0 = g3, g1 = g2 = 0 indicates circularly polarised

wave, g1 = g2 = g3 = 0 indicates unpolarised(that is, randomly polarised) wave [9].

The monochromatic plane em wave interacted with the earth surface, backscattered and

received by the radar receiver. If the surface is stationary, backscattered em waves still have

the same polarization with each other. On the contrary, if the surface varies with time and

position, e.g. due to the sea state, transmitted em waves, in one resolution area, naturally

interact with different scatters, thus have different polarizations, the resulted signal resolved

for this area is partial polarised. The stationary surface is referred to as stationary target or

pure target, while the dynamic surface is called distributed target, also referred to as partial

scatter analogously to the partial polarised em wave. The sea surface is typical distributed

radar target.

1.2 Polarimetric SAR target

The pulse of em wave from the transmitter to the earth surface till the radar receiver travels

through three fields, which centered at the transmitter, the scatter, and the receiver, and

could be separately described by right hand coordinate system as (xT , yT , zT ), (xS , yS , zS)

and (xR, yR, zR). Two alignments, the forward scattering alignment (FSA) and backscattering

alignment (BSA), are usually used in the definition of the three fields. FSA and BSA have

the same definition for (xT , yT , zT ) and (xS , yS , zS) coordinates, with zT from transmitting

antenna to the target and zS from scatter to the receiver. The difference lies in the zR

direction. FSA defines zR directing toward the em wave propagation direction, so FSA is also

called wave oriented alignment and usually used for bi-station radar system; BSA defines zR

departing the antenna, hence it is also called antenna oriented alignment and usually used
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Figure 1.3 — FSA for bi-station (left) vs. BSA for bi-station (middle) and BSA for mono-

station (right) alignments in [1]

for single station radar system. The coordinate geometry introduced in [1] is shown in figure

1.3.

The radar receiver obtains horizontal H polarization and vertical V polarization backscat-

tered em waves simultaneously, collecting HH, HV , V H, and V V quad-combination of po-

larization information, which is usually represented by matrix. The direct measurement of

the radar receiver connects with the transmitted em wave as

Es =
1√
4πr

SEiejkr

by the scattering/backscattering matrix

S =

[
SHH SHV

SV H SV V

]

where Spq indicates the received signal of p polarization from the q polarized transmitted em

wave. The distance r from the point at which the field is measured to the target where the

Sinclair matrix elements are determined, Ei is the incident electric field which is related to

the transmitting antenna effective length by

Ei =
jZ0I

2λr
hte

jkr

in which Z0 is the characteristic impedance of the medium, I is the transmitting antenna cur-

rent at some chosen point, λ is the wavelength and ht is the effective length of the transmitting

antenna.

In the coordinate system obeying FSA for bi-station radar system, the scattering matrix

directly measured from Jones vectors also refers to Jones matrix. In BSA coordinate system

for single station radar system, the backscattering matrix is called Sinclair matrix [7]. Jones

matrix and Sinclair matrix describes the transformation of the Jones vector of the incident

beam into the Jones vector of the scattered beam. So far, the satellite SAR imagery is

generally single station problem, and the Sinclair matrix will be used.
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It is frequently found in literatures [5, 7, 10, 11, 12] indicating that Sinclair matrix is a

coherent scattering matrix, while for the incoherent scattering, such as a partially polarized

distribution target, only the statistical average is available, wherein the Stokes reflection or

Mueller scattering matrix (in FSA) or Kennaugh matrix (in BSA) fit. According to the size

of the target, the one has a size smaller than the radar beam width is defined as the point

target, while the one larger than the radar beam width is the extent target. Point target

could be generally considered as pure target since it would be stationary and coherent during

the time of interaction with one single beam, and could be sufficiently characterized by the

effective scattering cross section. Extent target is usually also distributed target, which need

much more incoherent backscattered radar waves belonging to different beams, and in this

case the radar scattering coefficient as the statistical average is applicable. For the coherent

scattering target (point target), the received power equation is

Wc =
Z2

0I
2

128πRaλ2r4
(hr ⊗ h∗r)Tκs(ht ⊗ h∗t )

with the definition of Kronecker-product target matrix as

κs = S ⊗ S∗ =


|Sxx|2 SxxS

∗
xy SxyS

∗
xx |Sxy|2

SxxS
∗
yx SxxS

∗
yy SxyS

∗
yx SxyS

∗
yy

SyxS
∗
xx SyxS

∗
xy SyyS

∗
xx SyyS

∗
xy

|Syx|2 SyxS
∗
yy SyyS

∗
yx |Syy|2

 (1.7)

and Ra is the antenna resistance. The Kennaugh matrix of the target is defined as K =

Q∗κsQ
−1. As the development from Sinclair matrix to Kennaugh matrix in BSA, a parallel

development from Jones matrix to Mueller matrix could be in FSA convention. For the inco-

herent target (distributed target), whose scattered wave varies with time, each measurement

of the target with a radar pulse yields a Sinclair matrix S, from which the κs can be formed:

Wav =
Z2

0I
2

128πRaλ2r4
(hr ⊗ h∗r)T 〈κs〉 (ht ⊗ h∗t )

where 〈κs〉 = 1
N

∑N
1 κsn, with the angle brackets symbolizes pulse averaging, and the Ken-

naugh matrix of the target is defined as K = Q∗ 〈κs〉Q−1 should be symmetric.

During the early days of radar polarimetry, the statistical average had been the con-

ventional source of data [13, 7, 14], till when the single look complex (SLC) data products

available to enable the coherent Sinclair scattering matrix [11]. With the complex compo-

nents supplied by SLC product, in order to use covariance matrix for power calculation [10],

the classical 2 × 2 coherent scattering matrix could be vectorized by a set of complex basis

matrices which are orthonormal set under an hermitian inner product, among which are two

important, Pauli and Lexicographic.
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The set of Pauli basis matrices are

ΨP =

([
1 0

0 1

]
,

[
1 0

0 −1

]
,

[
0 1

1 0

]
,

[
0 −i
i 0

])
(1.8)

and the Lexicographic basis matrices are

ΨL =

([
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

])
(1.9)

The target vectors in these bases have the form of

kP = Trace(SΨP ) = [SHH + SV V , SHH − SV V , SHV + SV H , j(SHV − SV H)]T

and

kL = Trace(SΨL) = [SHH , SHV , SV H , SV V ]T .

Pauli vector kP is more related to physical characteristics of scatters. Specially for distributed

radar target which has partially polarization property, the coherency matrix

T = 〈kP · k∗Tp 〉

and covariance matrix

C = 〈kL · k∗TL 〉

respectively formed by Pauli and Lexicographer vector, are statistical average, with the 〈〉
indicates temporal or spatial ensemble averaging. Partially polarization target could not be

characterised by a single coherent scattering matrix, although every scattering matrix S

corresponds to one coherency and covariance matrix.

1.3 Polarimetric Sea surface scattering models

The sea surface is well-known distributed target which incoherently scatters the incident po-

larized em wave into partially polarized backscattering. It has been a problem of history to

study the em wave scattering property, especially the depolarization, of the sea surface [15].

EM wave scattered by a small particle or a collection of small particles has different polar-

ization characteristics from those of the incident beam. If the incident beam is unpolarised,

i.e. randomly polarized like the sunlight, the em wave passing by a polarizer is polarized

according to the polarizer configuration, and this phenomenon is ’polarization’. On the con-

trary, if the incident beam is fully polarised (linear or circular, which is always the case for

space-born polarization radars), the scattered em wave may become partially polarised or

even totally unpolarised, and this phenomenon is called ’depolarization’ [9]. Thus depolariza-

tion of polarization radar scattering is commonly investigated to identify different scattering
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mechanisms. Valenzuela [16] investigated sea surface depolarization following Rice’s method

for slightly rough surface, indicated that polarization ratio of VV over HH increases with the

absolute magnitude of the complex dielectric constant of the scattering surface. Since then,

depolarization has been investigated widely with the asymptotic modeling improvements. A

family of unified models based on local corrections of the tangent plane approximation (KA

which has no polarization sensitivity) through higher-order derivatives of the surface have

been worked out. For co-polarization components, advanced models such as small slope ap-

proximation (SSA, where the first order solution, SSA-1, considers only the SPM kernel to

first order B(k, k0) [17]) overestimate the polarization ratio with the increase of the incidence

angle; two scale model (TSM) and local curvature approximation (LCA, where the first or-

der solution LCA-1 could be rewritten with the same formulation as TSM [18]) predict sea

surface NRCS with reduced ratio of VV over HH, but still overestimated from the moderate

incidence angles and even worse at the high incidence angles.

Recently improved resonant curvature approximation (RCA) [18] reduces the polarization

correction by replacing the integrated wave number with the resonant Bragg wave number

for LCA-1. Besides of the incidence angle modulation of PR, both LCA and RCA are able

to reproduce an azimuth modulation of PR, which has already been presented by former

experiments and observations [19, 20, 21, 22]. The success of RCA recalled the focus on the

Bragg resonant contribution to the sea surface RCS measurements, as PR has been found

to be the result of the relative contribution of polarised and non-polarised (scalar) part of

the backscattered signal, which respectively correspond to polarised Bragg scattering and

non-polarised scattering such as specular, the small-scale breaking, and foam etc. In fact

the necessary presence of small ripples to generate upwind-downwind asymmetry (UDA)

and upwind-crosswind anisotropy (UCA) has already been indicated by Cox and Munk’s

measurements [21]. Breaking waves has been included into the description of the scattering

process by Kudryavtsev et al. [23]. However, in order to apply Kudryavtsev’s method to wind

inversion however, one must know a priori how the breaking-wave contribution to the NRCS

depends on the local wind vector [24].

As proposed by Quilfen et al. [21], co-polarized radar backscatter returns at higher inci-

dence angle can be well separated into two contributions, one of pure Bragg scattering type

and one a non-polarized scattering component. In this model, NRCS measurements can be

expressed as the sum of a scalar term and a polarization dependent term,

σpp0 = σsc + σpppol (1.10)

where σpppol is the Bragg contribution in line with small perturbation theory [25], for which

the normalized radar cross-section σpp0br is proportional to the surface elevation spectrum at
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the Bragg wave number [26] with the polarization dependence,

σpp0br = 16πk4
r |Gpp(θ)|2Fr(φ, kbr) (1.11)

where pp denotes co-polarization state HH or VV, kbr = 2krsinθ is the Bragg wave number

of surface waves scattering radar wave kr, θ is the incidence angle, φ is the antenna azimuth,

Fr(φ, k) is the 2D-wave number variance (folded) spectrum of the sea surface displacement.

For pure Bragg process, Gpp is the Bragg scattering geometric coefficient for HH or VV, they

are functions of local incidence angle at fixed dielectric permitivity, depending on antenna

polarization, for example (equation (29,30) in [27])

|Gvv(θ)|2 =
cos4 θ(1 + sin2 θ)2

(cos θ + 0.111)4
, |Ghh(θ)|2 =

cos4 θ

(0.111 cos θ + 1)4
(1.12)

when the water dielectric permitivity is set to be 81.

In real conditions, wind driven sea surface ripples and fluctuates over the longer gravity

waves. A SPM model as pure Bragg wave could not exist alone but always riding on a

longer wave, i.e., a series of tilted patches [28]. This approach of modeling was termed by

Wright as the composite or the two-scale model [29, 26], to which we will generally refer to as

’tilt Bragg model’. The calculations of the wave scattering problem including the ability to

predict quantitatively both the mean radar cross section and mean dynamical quantities can

be based upon an extended two-scale model [3]. As well known, tilt enhance depolarization

as (equitation 12.122 in [28])

Esvh = {(v̂ · v̂′)Sv′v′ (v̂
′ · ĥ)+(v̂ · ĥ′)Sh′h′ (ĥ

′ · ĥ)+[(v̂ · v̂′)(ĥ′ · ĥ)+(v̂ · ĥ′)(v̂′ · ĥ)]Sh′v′ )}E0 (1.13)

in which the first, second, and forth item on the right hand side are introduced by the two-

scale tilt, only the third item inherits from the second-order pure Bragg model by SPM, where

Sh′v′ is equivalent to Shv replacing θ by θ
′
. Similarly, co-polarization has also been introduced

with additional
(
v̂
′ · ĥ

)
and

(
v̂ · ĥ′

)
items by tilt effect (equitation 12.121 in [28]).

To the first-order approximation, the longer surface wave tilt was considered in the scat-

tering coefficient Gpq, and the normalized radar cross-section σpq0br is determined by averaging

the local scattering coefficients of small patches along the longer surface wave,

σpqT br = 16πk4
r |Gpq(θ − ζx, ζy)|2Fr(φ, k

′
br) (1.14)

the bar (̄) denotes an averaging over the long wave, ζx and ζy are slopes of the tilting waves

along and across the incidence plane. The Bragg wave number k
′
br = 2kr sin(θ − ζx). The

scattering coefficient for HH or VV as

Gvv(θ − ζx, ζy) = Gvv(θ − ζx)

Ghh(θ − ζx, ζy) = Ghh(θ − ζx) + (ζy/ sin(θ))2Gvv(θ)
(1.15)
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For tilt Bragg scattering, polarization ratio PR is a function of local incidence angle at

fixed dielectric permitivity (for example, when ε = 81),

PRT br =
σvvT br

σhhT br

=
cos4(θ − ζx)(1 + sin2(θ − ζx))2/(cos(θ − ζx) + 0.111)4

cos4(θ−ζx)
(0.111 cos(θ−ζx)+1)4

+ (ζy/ sin(θ))2 cos4 θ(1+sin2 θ)2

(cos θ+0.111)4

(1.16)

For the first time, tilt Bragg model considered the important cross-polarized components

and connected depolarization with tilt as the first order effect. Other polarimetric model has

been studied for sea surface backscattering acquired by multi look complex polarimetric SAR

data [30] with a polarimetric coherency matrix, but still no depolarization considered since

no tilt was considered in their approach.

1.4 Polarimetric K distribution

Another historical problem considering radar scattering from the sea surface deals with the

generation of K distribution [31], when pursuing a statistical model for speckle. Speckle

has been well-known for all coherent imaging modalities, such as laser imagery [32], optical

coherent tomography [33], as well as the speckle-free photoacoustic tomography [34]. Speckle

is not really noise but rather contains information on the sensor and observed surface [35],

while heretofore, speckle reduction is commonly known as ’filtering’, although ill-suited, since

speckle appears as a chaotic jumble and fluctuates the backscattered signal with a standard

deviation to mean of unity, which is the same property as white noise [35, 32].

Speckle, unlike system noise for SAR imageries, is not really noise but rather contains

information on the sensor and observed surface, and is a real em measurement [35, 36]. Once

the sea surface structure is resolved by radar imagery pixels, scatterers inside the pixel area

are not randomly distributed any more. It was believed that the sea clutter corresponds to

sea surface capillary wave. Capillary wave has a periodic structure offering in-phase sum of

coherent backscattered signal, then detected by the square law detector as the power of sum.

At high sea states, the large number of in-phase signals of sea clutter to sum up may introduce

local high, i.e., some level as high as the generic target, e.g. a ship, and this part of sea clutter

is called ’sea spike’, which may be the principle false alarm for sea surface target detection

[37, 38, 31, 39]. Sea spike normally comes from Rayleigh scattering by wave breaking or the

wave steep [40], which has high polarization ratio of HH over VV, i.e. higher than that from

capillary wave, and large Doppler velocity [37]. At the critical state where the sea surface wave

steep has been well established, the interruption of hydrodynamic interaction may generate

new capillary wave naturally. During wave breaking, bubbles in the air and foams around

the breaking may introduce Rayleigh scattering. As early as 1980s, the limitation of two-

scale model has been found when the sea spike appears more easily for HH polarization
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Figure 1.4 — Sea clutter and ship target (photo from internet)

than VV [41]. The capillary wave, which contributes as Bragg wave, supply a rough surface,

contributing as the variation obeying a circular Gaussian distribution (referred to as a fully

developed complex speckle [35]), while breaking waves supply foams and bubbles as a group

of Rayleigh scatterers, contributing to the variation obeying a non-Gaussian distribution

[42, 35], especially at high incidence angle. See figure 1.4.

The basic assumption of K-distribution is that the scattered electric field can be written

as the sum of contributions from N independent scatterers,

ξ(r, t) = ejwt
N∑
i=1

ai(r, t)e
jϕi(r,t) (1.17)

where ai(r, t) is a real form factor governing the angular distribution of radiation from the

ith scatterer, ϕi(r, t) is a phase factor depending on its position at time t with respect to the

observation point r. Defining the RCS σ(r, t) to be equal with the square of the envelope of

the field, σ(r, t) ≡ |ξ(r, t)|2, formula 1.17 describes a 2-D random walk in the complex plane

of N steps of lengths {ai} which is useful in statistical modelling of the RCS in 2-D plane

hence form a 2-D SAR imagery. For single-look polarimetric SAR, the K-distribution can be

derived either by assuming that the number of scatterers in a resolution cell has a negative

Binomial distribution [43] or by using a product model [44] of a Gaussian distributed complex
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vector and a Gamma distributed variable.

Traditional statistical models for sea surface consists of separating the radar target from

the backscatter of the real sea surface, however, it is still not a well defined problem to separate

the amplitude of the two due to the lack of in-situ measurements of the real sea conditions.

Nevertheless, different radar targets, even including the sea surface capillary wave which could

be still a kind of radar target, have different polarization properties, it would be another case

when using polarimetry data.

1.5 Organization of chapters

In our study, sea surface characteristics imaged by RADARSAT-2 multi-polarization SAR

have been investigated. For the first time, a decomposition of different scattering mechanisms

have been performed for ocean satellite SAR imagery to better understand the non-polarized

(Scalar) contribution to the total radar cross section (RCS) and Doppler measurements.

Characteristics retrieval and target classification has been established, using polarimetry and

Bayesian detection theories. There are generally three types of surface scattering mechanisms

occurring when the sea surface is probed by microwave radar, i.e., Bragg, specular, and

Rayleigh, which correspond respectively to sea surface capillary wave, the crest of the longer

wave before it breaks, and the bubbles and foams formed by wave breaking. Different scatter-

ing mechanisms induce different polarimetric scattering coefficients and Doppler spectrum. It

had been impossible to split those scattering mechanisms with single polarization radar im-

ageries. At pixel scale, we split radar scattering matrices into Bragg and Scalar contributions.

The splitting is an iteration initiated with the radar incidence angle and then controlled by

a local incidence angle which is function of co-polarization and cross-polarization.

Based on these developments and testing, a strategy has been refined to analyze the

signature of different features, to retrieve wind seas and sea swell parameters, as well as slick

areas, ships, oil rigs, such non-polarized targets that may be buried in the Scalar contributions.

With polarimetric scattering coefficients estimated both for Bragg and Scalar contributions,

a sea clutter model describing almost the real sea surface has been improved, for the first

time, according to scattering contributions statistically. On this point, this improved model

could be combined with Bayesian detectors to classify man-made metallic targets, such as

ships, oil rigs, etc., which had been buried in the Scalar contribution.

Three chapters in the following describe the approach from three viewpoints. From the

point of view of an average sea surface approximation, chapter 2 analyses the NRCS (Nor-

malized Radar Cross Section) and Doppler measurement of full polarization RADARSAT

2 SAR data in different polarization channels, as well as the polarization ratio between co-

polarization and cross-polarization channels. Chapter 3 analyses from the point of view of
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statistical approximation, which is focused on the whole distribution, the ENL(Equivalent

Number of Look) characteristic and the separated scattering contributions. In chapter 4 the

detection is established by a Bayesian strategy utilising the statistical results from Chapter

3. For the end, chapter 5 concludes the thesis with perspectives.



CHAPTER

2 SAR sea surface

characteristics

It is also the case that direct mathematical inversion is often not the preferred

route to solving the Inverse Problem because of its difficulty. Instead, repeated so-

lution of the Forward Problem for different values of the input parameters can be

used to achieve consistency with observations. Such methods only become of intrin-

sic merit when the dimensionality of the observations is sufficient to provide tight

constraints on the solution space.

Chapter 4 in [36]

As distributed target, sea surface is measured by SAR as backscattering coefficients. What

do these measurements mean over the sea surface, or what kinds of sea surface reconstruct

the transmitting chirp signals? For microwave, sea water has a large complex permittivity

hence short penetration length. Near vertical incidence angle, specular reflection dominants

in the backscattered signal. At moderate incidence angles (typically 20− 60◦), the theory of

radar backscattering is based on the mechanism of resonant microwave scattering from the

random rough surface [23, 45]. The em diffraction, usually named as Bragg scattering, breaks

up the transmitting em wave and retransmits it by interference. Among the diffracted signals,

the one towards the radar will be captured by the mono-static receiver and here comes the

backscattered signal. There would be some specular reflections toward the radar from facets

happen to be perpendicular to the transmitting em wave, but are normally ignorable. There

is still a third kind of possible redirected reflection by the double bounce from a corner like

scatterer, which may be formed from breaking waves (where comes the high radar returns

15



16 CHAPTER 2. SAR SEA SURFACE CHARACTERISTICS

called sea-spikes in chapter 3) or a real corner object from the sea surface target (in chapter

4). When the grazing incident microwave probes the sea surface near the horizontal incidence

angle, the backscattered radar signal reduced to around zero [28].

Casual observations have shown that the sea surface is not a random rough surface but

a superposition of significant structures. Wind generated ripples transfer their energy into

longer waves, till to waves long enough at some point which is ready to break in order to

redistribute the wave energy. Wave breaking introduces the sea spike signature on the SAR

imagery (what we will discuss in chapter 3 as a source of false alarm). When the wind has

been blowing for some time, an equilibrium could be established between the input energy

and its dissipation. So far, a wide spectrum of waves propagating on the sea has built up.

Moreover, the swell travelling into this area from remote rough weather should also be added

to this wave spectrum. All of these waves and breaking events are reflected in the spatial

variation of radar backscatter [42]. To interpret SAR imagery, the nature of such variation

needs to be characterised.

Figure 2.1 — Bragg scatterer, Specular and Rayleigh foams

The operationally used incidence angle ranges from 20−60◦ for satellite SARs, where the

resonant scattering for the medium incidence angle dominates the scattering contribution

[28]. According to Bragg’s law, the geometric structure (here is the wave peaks) should

have a dimension of the wavelength of the em wave to resonate and therefore leading to

the interference. The sea surface wave with a wavelength obeying Bragg’s law, called Bragg

wave which could be sensed by an active radar, normally has a wavelength of centimetres

according to the em wave. The surface roughness for radar is in particular the amplitude

of the Bragg wave, or up to an order of magnitude longer. Firstly we know that the wind

generated short ocean waves contribute as Bragg waves. Take ERS SAR for example, when

the wind is between about 2 and 12 ms−1 [46] it optimize the SAR imagery. For wind below

this range the backscatter will be close to the SAR noise floor and incapable of revealing

modulation. For wind above this range the backscatter will be too high to be modulated
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by most ocean phenomena, because the real sea surface has never independent Bragg waves

but ones parasitic on the longer waves which should be supplied by swell waves or currents.

However, the latter kinds of composed sea surfaces as Bragg waves over longer waves, referred

as two scale models, still have discrepancy from radar observations, for the backscattering

coefficient of both HH and VV polarizations as well as for the polarization ratio of VV

over HH and upwind to downwind ratio [23, 18]. Ericson et al.[47] investigated the radar

scattering mechanisms associated with wave breaking in laboratory conditions and showed

that radar returns near the breaking crest are the results of incoherent backscatters due

to the generation and tilting of enhanced surface roughness by breaking waves. They also

showed that the Kirchhoff approximation (scalar approximation) reproduces the observations

of breaking crest which have a polarization ratio close to unity. Based on their works, we

suggest that in addition to specular reflection, wave breaking is also polarization independent,

and therefore, Bragg scattering is the only source of depolarization [21, 22].

2.1 Theories

2.1.1 Polarization signature

To describe the target in real quantities, the electric fields should be described into real

elements as the Stokes vector and then the received power equation becomes

Wav =
Z2

0I
2

256πRaλ2r4
(GAr)

TQ∗ 〈κs〉Q−1GAt

in which the Stokes vectors of transmit and received em waves G = QJ (J = E ⊗ E∗ is the

complex coherency vector) could be expressed without scalar multiplier of the antenna as

GAi = Q(hi ⊗ h∗i ) =


|hix|2 + |hiy|2

|hix|2 − |hiy|2

2Re(h∗ixhiy)

2Im(h∗ixhiy)

 , i = t, r (2.1)

where

Q =


1 0 0 1

1 0 0 −1

0 1 1 0

0 j −j 0


and hi is the effective length of the transmitting (i=t) or receiving (i=r) antenna. κs is the

Kronecker-product target matrix defined in Equation (1.7). According to the relationship

between the orthogonal components of the em wave expressed in Equation (1.3) and (1.4),
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Figure 2.2 — Co-polarization and cross-polarization signature of a dipole

another representation of Stokes vector as the angles specifying the polarization ellipse could

be

GAi = Q


1

cos2τsin2φ

cos2τcos2φ

sin2τ

 (2.2)

where τ and φ is the ellipticity and orientation angle respectively of the polarization ellipse

and τ ∈ [−45◦, 45◦], φ ∈ [−90◦, 90◦]. For each arbitrary combination of disposal value for τ

and φ, the received power could be quantified directly as

Wav(S, τt, φt, τr, φr) =


1

cos2τrsin2φr

cos2τrcos2φr

sin2τr


T

K


1

cos2τtsin2φt

cos2τtcos2φt

sin2τt


where K is the Kennaugh matrix. The resulted power is called the polarization signature

of the target [48, 49], and the technique of building polarization signature for targets is

polarization synthesis. Following this technique, a group of typical polarization signatures of

standard scatters had been worked out and helped a lot in the field of target classification.

Two standard scatterers, dipole and dihedral shows in Figure 2.2 to 2.4. A dipole rotated

along the plan perpendicular to the line of sight (LOS) is more common in modelling a

capillary wave since the surface capillary wave always runs along the passage of a longer

wave with a rotation corresponding to an equal shift of orientation angle of the polarization

base. The polarization response of an orientated dipole of 45◦ shows a 45◦ shift of the signature

on the orientation direction (Figure 2.3).

Nasr et. al [50] described the target as a collection of elementary geometric reflectors

(EGR), including depolarized double-bounce dihedral structures, depolarized single-bounce

dipole structures and polarized single specular reflection. Cylindric scatterers depolarize the
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Figure 2.3 — Co-polarization and cross-polarization signature of an orientated dipole (45◦)

Figure 2.4 — Co-polarization and cross-polarization signature of a dihedral

incidence field according strictly to the Fresnel reflection coefficients [48], is one kind of

dihedral structure. A dihedral corner reflector has the polarization signature as in figure 2.4.

Van Zyl et al. studied the polarization signature of rough dielectric surface [48], to find

the Bragglike signatures (in figure 2.5 which will be introduced in following sections) for high

incidence angle measurements over the ocean surface. Hajnsek et al. [51] reviewed the two

common approximate methods for radar backscattering from rough surfaces, KA and SPM,

and gave the scattering matrix of a Bragg surface where the surface roughness ks << 0.3 as

[S] =

[
SHH SHV

SV H SV V

]
= ms

[
RS(θ, ε) 0

0 RP (θ, ε)

]
(2.3)

where ms is the backscatter amplitude containing the information about the roughness con-

dition of the surface, RS and RP are the Bragg scattering coefficients perpendicular and

parallel to the incidence plane respectively, and functions of the complex permitivity ε of the

ferromagnetic media and the local incidence angle θ,

RS = cos θ−
√
ε−sin2 θ

cos θ+
√
ε−sin2 θ

, RP = (ε−1)(sin2 θ−ε(1+sin2 θ))

(ε cos θ+
√
ε−sin2 θ)2

(2.4)

This expression for scattering matrix is equivalent to the first-order solutions in [16].
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Figure 2.5 — Co-polarization Bragglike signature of a roughsurface

2.1.2 CTD Model based decomposition

The polarization synthesis technique compose the polarization signature, provided the Ken-

naugh matrix is known, which is defined by the Sinclair scattering matrix S. Point target,

which has definite S, has definite polarization signature. If we consider point targets as

members of a group of scatterers which has the radar backscatter S, the problem of target

decomposition could be the inverse problem for each of the group of coherent scattering ma-

trices. Cameron[52] decomposed the scattering matrix based on the two basic properties of

radar scatterers, reciprocity and symmetry, into eleven classes of scatterers. This decomposi-

tion were reviewed both in [10] and [53], with opposite opinions [54], starting from where the

former researchers reached at a new decomposition of H-α-entropy decomposition, while the

latter researchers followed the Cameron’s decomposition to develop an adaptation referred

to as SSCM [55].

If we do not focus on the distributed sea surface, instead we consider for each single pixel

area, i.e. for each facet [56, 57, 58, 59], about the Bragg wave, which has a dimension as

the dipole, and the foam and bubble introduced by wave breaking, which has a dimension of

Rayleigh scatterers, and even the specular facet, the problem belongs to Cameron’s coherent

target decomposition (CTD) problem. Using CTD method, Ringrose et al. analysed SIR-

C quad polarization SAR complex imageries of ocean to find the main scatterer type is a

cylinder [60] with an insignificant relationship with wind speed. But Touzi et al. found that

when the coarse classification scheme of the Cameron method is dropped it becomes apparent

that less than 1% of ocean pixels are pure cylindrical scatterers [54, 61].

The complex amplitude ξ((x0, y0)) of a pixel with coordinates (x0, y0) is either equal to

the Sij component of the scattering matrix if we work with calibrated data, or proportional

to the total backscattered field if the data are not calibrated [35]. Converting measured

powers to geophysical quantity RCS σ or average backscattering coefficient σ0 requires careful

calibration and characterization of the system. However, for the purposes of such as mapping,
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target detection, and texture measurement, calibration may not be necessary as long as

radiometric distortions are changing slowly relative to the features of interest in the scene

[36].

2.1.3 Incoherent target decomposition and partially coherent sea surface

To validate Huynen-Kennaugh decomposition using the real radar measurement and due to

the practical difficult of measuring the absolute phases for the complex scattering matrix,

Van Zyl [62, 48] expressed the scatter transform by the real 4× 4 Mueller matrix M instead

of the complex 2×2 scattering matrix S. However, by the non-linear average of the incoherent

(spatial and temporal variate) target, the transform form M back to S is proved to be not

unique. Point target, which has definite S, has definite real matrix M . If we consider point

targets as members of a group of scatterers which has the radar backscatter S, the problem of

target decomposition could be the inverse problem for each of the group of coherent scattering

matrices. Based on this knowledge, Claude and Pottier[10] proposed a new decomposition of

H-α-entropy decomposition for incoherent targets.

Although it is incoherent radar target considering its unlimited extension and spatial-

temporal variation, the sea surface is not perfect random surface and hence the the sea

surface is not incoherent radar target only. Except for the incoherent radar backscatters from

the sea surface supplying a random noisy background, what caught oceanographers’ interests

are the coherently imaging Bragg resonant, and frequently happened specular reflectors, as

well as grouping of surface foams. The coherent imaging is the reason why radar could be

used for ocean observation. We noticed that during the early days scientists analysed radar

signals as incoherent backscatter [63] and ignored the coherent backscatter [47] due to the

low resolution of radar imaging, while the consideration for each single pixel area, i.e. for

each facet [56, 57, 58, 59] of different scattering mechanisms makes sense, especially when the

recent improvement of the RCA [18] model represented the azimuth polarization variation of

the NRCS using Bragg wave number instead of the whole wave spectral. Here we introduce

’partially coherent’ to acknowledge the incoherent elements over the sea surface while, not

introducing confusion, focus on the coherent scatterers over the surface, such as Bragg waves,

specular reflectors, and the Rayleigh foams, according to their polarization properties. Again,

the decomposition will be neither coherent target decomposition (CTD) nor incoherent target

decomposition (ICTD).
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2.2 Simple model

2.2.1 Sea surface imaging formation

SAR is a method for generating high-resolution radar maps. It is actually an imaging

scaterometer (Appendix B). SAR system is characterized by high spatial resolution and ra-

diometric resolution, which determine the amount of information that can be extracted from

the image. Spatial resolution is a measure of the accuracy with which the physical dimensions

of an object can be determined, and radiometric resolution is a measure of the accuracy with

which the microwave reflectivity of the terrain can be ascertained [64]. In signal sampling

field, spacing is equivalent to resolution, while it is also the size in meters of each pixel of

the imagery in image domain. Being defined as the width of the half power of the impulse

response of radar pulse, it’s the minimum space separation of two targets or equal cross

section that can be resolved as separate targets. In range direction, the range-compression

technique has been used to find the balance between long pulse repetition interval (PRI)

and pulse length τp and achieve the high spatial resolution in range direction. The azimuth

spacing was improved by using the Doppler shift [65], and therefore, relative motion between

the radar platform and the target is the key element in SAR imaging. The formation of a

SAR image relies on an accurate model of the imaging system, the transmitted signal, the

imaging geometry, the terrain surface and its evolution through time [66].

However, the theoretical basis of SAR principle assumes that the target field is stationary.

Whereby waves are imaged? Various effects and properties that contribute to the formation

and/or the degradation of satellite SAR images of ocean surface are summarised in [67] such

as tilt modulation, hydrodynamic modulation, velocity bunching, and azimuth smearing. To

the range direction, the wave imaging process for SAR is the same as that for any type of radar

(RAR), commonly described on the basis of a two-scale model, wherein the sea surface radar

backscatter is dominated by the statistical average properties of the short waves within the

resolution cell, with a modulation by longer waves, which is called tilt modulation, inducing

varying surface tilt and straining. Tilt modulation modifies the local incidence plan hence

the incidence angle, refer to figure 2.6 (middle), and is supposed to be linear related to the

slope of the long waves. The long wave effect on straining is called hydrodynamic modulation,

by changing the local roughness distribution heterogeneously. It is usually described by the

weakly non-linear formulation, as shown in figure 2.6 (bottom).

To the azimuth direction, the SAR special observation of Doppler history is sensitive to

the relative velocity between the radar and the target. In fact, a steady velocity of target

in radial direction, say the slant range and we will use ’radial’ to mean ’slant range’ when

referring to Doppler for simplicity, produces three possible effects known as azimuth image

shift, range walk, and amplitude reduction. Longer wave orbital motion has large component
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Figure 2.6 — Sea surface wave effect on SAR imaging

in the radial direction (figure 2.7), therefore is capable of causing constructive or destructive

image degradation in the azimuth direction. This may effect on the shorter wave in the

azimuth direction too significantly to imaging on the SAR instrument, say there is a non-

linear relationship between SAR image spectra and ocean wave spectra, cutting off the shorter

waves to be imaged.

Figure 2.7 — Orbital motion of water molecule in the moving waves

Besides the azimuth distortion introduced by velocity bunching effect, the wave phase

velocity field can also lead to a systematic deterministic mis-registration between successive

looks (defocusing effect) [67]. This reduction of along-track resolution associated with both the

unresolved random scatter motions and the limited scatter lifetime during the SAR integra-

tion time is referred to as azimuth smearing. This effect lowers the apparent image contrast,

while it may give the opportunity to remove the directional ambiguity of imaged harmonic

components, if one can sufficiently resolve the main wave pattern translation between the

different looks as it occurs during the SAR integration time.
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Sea state can be completely characterized statistically by the two-dimensional directional

wave spectrum F (k) describing the distributiong of wave energy with respect to the wave

propagation wave number [45, 68]. Before systematical organized field studies, the theory of

wind-generated ocean waves had already been improved since Jeffreys [69, 70] proposed the

linear instability mechanisms, which has been supported by Snyder and Cox’s measurements

in the item of growth but not in the item of growth rate. Both of field studies by Snyder and

Cox in 1966 and by Wilkerson in 1967 utilized a single mobile wave station to determine the

evolution of the wave spectrum in space and time, and similar exponential growth rate of a

single frequency component had been found. Meanwhile, field studies carried out indirectly

from measurements at a single fixed location under different wind conditions by Kitaigorodskii

in 1962. Based on Kitaigorodskii’s scaling law, laboratory experiments has been carried out

in late 1960s and early 1970s [71]. Combined with laboratory measurements, the theoretical

understanding of wave growth pushed out the first generation wave models in 1960s and early

1970s [72]. In order to interpret the energy interaction between air and sea, wave spectrum

has been investigated during 1960s by oceanographers measuring the same locating with

different wind speed or by air-born radar altimeter [71]. Direct measurements of the wind as

engine for waves lead to the second generation wave models. The shortcomings of the first

and second generation have been identified and discussed in detail in the SWAMP wave-

model intercomparison study, initiating a new generation of WAM model [72]. However, it

was until 1990s that the measurements of full two-dimensional spectrum have been obtained

only at selected sites and for restricted time periods using large wave-staff arrays, or special

remote sensing systems onboard aircraft such as Radar Ocean-Wave Spectrometer (ROWS),

the surface contouring radar or stereophotography.

Since 1990s, global measurements of the two-dimensional wave spectrum became possible

from space-born SAR flown on satellites ERS-1/2, Radarsat 1/2, shuttle missions and polar

platforms. New missions of ocean wave investigations experienced the mapping of ocean wave

spectrum from the SAR image spectrum [45], the unification of the directional spectrum [73],

the effect of long waves and swell [74, 75, 76]. The bound wave / free wave model by Plant

shows the consistency with sea surface slope spectrum measured in 1950s [77].

For full polarization radar imagery, it is possible to use the polarization synthesis technique

to solve optimal polarization problems. Among polarization parameters, orientation angle is

of special use for ocean remote sensing due to the so-called polarization modulation transfer

function (MTF) [78], which was first introduced by Schuler in 1995. The polarization MTF is

jointly driven by orientation angle and wave slope, i.e., at a special selected orientation angle,

the modulation of the wave slope on radar measured intensity could be enhanced, better than

any of that from the standard linear polarization HH , V V , HV or V H. This principle of

this method had been discussed earlier by Boerner et al. [8].
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Figure 2.8 — Right looking geometry of SAR imaging over the sea surface

A similar azimuth slope effect called orientation angle modulation proposed in [79] can

further be combined with an eigenvector α angle modulation which is more sensitive to inci-

dence angle, resulting a 2-D slope modulation. This α parameter was introduced in Cloude-

Pottier entropy-anisotropy- α polarization decomposition theorem [10]. It is roll-invariant in

the azimuth direction with high sensitivity to wave-induced modulation on local incidence

angle. Surface wave on azimuth and range direction can be accurately represented by the two

polarization parameters, orientation and eigenvector α angle, within each facet on the sea

surface. In [80] a circular polarization algorithm was proposed. To make difference between

this α parameter with the polarization ratio α in the former chapter, this α parameter will

be referred to as the α angle while the former α will be mentioned as α ratio.

For the orientation angle and eigenvector alpha angle, an average over image pixels should

be performed. This helps to better cope with the reflection asymmetry condition which is the

base of the circular polarization method of orientation shift calculation [80].

On the estimation of the orientation angle, a method based on the circular polarization

rotation property with the reflection asymmetry model was proposed in [81, 80], which has

more computational efficiency and accuracy than the polarization signature method which

gives an direct presentation of the orientation angle shift, denoting a shift from the maximum

co-polarization response induced by the azimuth slope of the imaging area (especially a

distributed media) [1].

Polarimetry approaches has been investigated for RADARSAT-2 SAR imagery [68, 82],

but different from the development by [79]. Here we recall the circular polarization method,
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which was recommended in [81, 80] as

φ =

{
η, if η ≤ π/4

η − π/2, if η > π/4
(2.5)

where

η =
1

4

tan−1

 −4<
(〈(

S̃HH − S̃V V
)
S̃∗HV

〉)
−
〈
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2
〉
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which equals to

φ =
1
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where the plus sign for the minus arctangent while minus sign for the plus arctangent, i.e.,

4φ ∈ (−3π

2
,−π

2
)
⋃

[
π

2
,
3π

2
)

The shift of orientation angle in the polarization signature is related to the azimuth surface

slope, the radar look angle, and the range slope [83, 84],

tanφ =
tanω

sin θ − tan γ cos θ
(2.8)

where φ, tanω, θ and tan γ are orientation angle, azimuthal slope, radar look angle and the

range slopes. This relationship also imply that orientation shift could be taken as an effect

from surface slopes in both azimuth and range directions.

The direct measurements of surface slopes were firstly used and valid on the topographic

[85]. But considering about the sea surface [79], there is still a difficulty of non-linear velocity

bunching introduced by the radial component of the orbital velocity of the surface wave [86].

For sea surface application, this technique was limited within the condition when the range-

to-velocity (R/V) is quite small so that the azimuth smearing item ∆a = −uR(x0)R/Vst

(equation [18] in [86]) will not introduce ambiguity when mapping the wave coordinate x0

into SAR image coordinate. Generally this problem is more significant for space borne SAR

than for air-born SAR conditions, with the latter has a smaller R/V (which is normally less

than 100s).

Keeping in mind of the orbital motion of water molecule in figure 2.7, the radial component

(along the direction of LOS) achieves its maxima around the wave peak, and the larger the

incidence angle, the nearer of this position to the wave peak. Based on this modelling, we

suppose that the velocity bunching effect dominates the scalar part while seldom appears

on the tilt Bragg part, so the limitation from velocity bunching on the Bragg wave spectra

retrieval will not be the problem in the following.
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According to target decomposition (TD) theorem, a target has a scattering matrix only

when it is a single scatter, i.e., the coherency matrix T3 has only one non-zero eigenvalue.

When there are more non-zero eigenvalues, a mean scattering matrix could be used to repre-

sent the primary scattering mechanism inside one facet. This mean scattering matrix has an

eigenvector as [1]

k =
√
λejϕ


cosα

sinα cosβejδ

sinα sinβejγ

 (2.9)

in which λ, α are roll-invariant roll-invariant mean scattering and the mean target power

(span) separately respectively, identifying the dominant scattering mechanism and the rest

three parameters β, δ, γ are orientation angle related, they are rotation variant and used

to define the target polarization orientation angle. The λ =
∑3

k=1 pkλk, where pk is the

eigenvalue pseudo probability,

pk =
λk∑3
i=1 λi

The five parameters connect with radar measurements by

T3 = kp · k∗Tp = k · k∗T (2.10)

in which the ’3-D Pauli feature vector’ [1]

kp =


SV V + SHH

SV V − SHH
SHV + SV H

 . (2.11)

and Spq, p, q ∈ {H,V } is the components of Sinclair scattering matrix.

For the ocean surface of the pixel size of SAR measurement, the averaged slopes are small

as the onset of wave breaking occurs at about 7◦. The approximation made from 2.9 and 2.11

yields

tanα ≈ SV V − SHH
SV V + SHH

(2.12)

Using the SMP model and considering only incidence angle, for the water dielectric con-

stant ε→∞, the relationship between α angle and incidence angle θi is

tanα = sin2 θi, (2.13)

as shown in figure 10.21 in [1]. Range slopes can be derived from the local incidence angle

corresponding to α angle subtracted by the incidence angle according to the radar geometry.

So far, using Bragg theory a model can be derived for sea surface slopes by the circular

polarization transformation for orientation angle and by eigenvector alpha angle as

γ = θi − θ
tanω = tanφ(sin θ − tan γ cos θ)

(2.14)
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where sin2 θi = tanα and

tan(2φ) =
2S̃HV

S̃V V − S̃HH
, tan(α) =

S̃V V − S̃HH
S̃V V + S̃HH

(2.15)

in which S̃HV , S̃V V , S̃HH are Bragg scattering estimates due to the small roughness elements

modulated by the longer waves.

2.2.2 Simple model as polarization difference

Valenzuela [16] investigated sea surface depolarization following Rice’s method for slightly

rough surface, indicated that polarization ratio of VV over HH is independent of the wave

spectrum of the surface while increase with the absolute magnitude of the complex dielectric

constant of the scattering surface, e.g. for dielectric constant as high as sea water, the po-

larization ratio could increase from 0 at 0 incidence angle to 10 dB at 50 deg. of incidence

angle. Also in [16] the depolarized power for backscattering in both polarizations were given

as the second-order fields effect.

For the case of radar remote sensing of distributed sea surface, the polarization ratio (PR)

defined in [22, 18] as the ratio of the normalized radar cross-section (NRCS) in VV over HH

expressed in a linear scale, wherein PR is presented in dB,

PR =
NRCSV V
NRCSHH

The Normalized radar cross-section (NRCS) has a statistical definition as

NRCSpq =
RCSpq

RCSpq−max−whole
(2.16)

where RCSpq ≡
〈
|Spq|2

〉
− | 〈Spq〉 |2. By analysing the NRCS and its approximation, the

sea surface was characterised with the average level of radar backscatters. Polarization ratio

models considering only incidence angle, such as M2 [22] and Z2 [87] fits separately part of the

satellite data, as shown in figure 2.12 (a). On the comparison with the model considering wind

direction (M1) [22], an overestimation happens when the incident angle is higher than 40◦.

Also the recent experimental model Z1 [87] depending on wind speed overestimates for the

high incidence angle and high wind speed. Differences arise from the high incidence angle and

high winds, wherein the polarization independent scattering from the sea surface dominants

the radar backscatter.

However, the discrepancy between the SAR measurement NRCS and the two-scale model

indicates a third kind of scattering mechanism may be invoked, which was supposed to come

from breaking waves [23, 88]. According to the laboratory observation showing the polariza-

tion ratio of the co-polarization backscattering coefficients is around unit [47], we suggest to
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consider this third type of scattering as a scalar (non-polarized) contribution attributed to

wave breaking effects through specular reflection on surface patches [18, 23]. Based on this

understanding, the direct radar measurements could be write as

NRCSHH = scalarCo pol + TiltBragghh

NRCSV V = scalarCo pol + TiltBraggvv

NRCSHV = scalarX pol + TiltBragghv

NRCSV H = scalarX pol + TiltBraggvh

(2.17)

where scalarr pol (r = {Co,X}) denotes the third kind of scattering mechanism (we group

them into one third kind for simplicity although may be due to different types of scatterers),

TiltBraggpq (p, q = {h, v}) corresponds to the tilt Bragg model. From this separation, tilt

Bragg should be the only contributor to polarization difference, for the assumption of the

same scalarCo pol for both HH and VV polarization. This could explain the overestimation

of PR models for the high winds and high incidence angles in [22] and [87]. It is straightfor-

ward that from the separation (2.17) if we know the relationship between TiltBragghh and

TiltBraggvv, the scalar contribution will be estimated directly from radar measurements, and

is also clear that if we could split the scalar contribution from the SAR measurement, the

discrepancy of the SAR measured PR should change. At this point, the ratio of TiltBraggvv

over TiltBragghh would not be PR any more, so the ratio α is defined as

α ≡ TiltBraggvv
TiltBragghh

(2.18)

and the PR could be estimated as

PR =
NRCSV V
NRCSHH

=
scalarCo pol + αTiltBragghh
scalarCo pol + TiltBragghh

. (2.19)

To implement this simple model, we simplify the scattering matrix decomposition as Bragg

scattering and cylinder-like contributions, as for figure ??, but here the Bragg scattering

matrix will replace the dipole matrix,

S =
∑

aiSbri +
∑

sj

[
cos 2φscj sin 2φscj

sin 2φscj − cos 2φscj

]
+ Sresidual (2.20)

where aiSbri are Bragg scattering matrices, and sj , φscj are complex scattering coefficients

and orientation angles of cylinder-like scatterers.

We know the Bragg scattering matrix as in equation 2.3. Considering depolarization, the

tilt effect will be expressed by an orientation angle, under the ’con-similarity transformation’

[1],

Stilt bragg = U2(φ)TSbraggU2(φ) (2.21)
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where

U2(φ) =

[
cosφ − sinφ

sinφ cosφ

]
(2.22)

with φ the orientation angle and Sbragg the one in equation 2.3, which arrives at

Stilt bragg =

[
Stilt HH Stilt HV

Stilt V H Stilt V V

]

= ms

[
RS(θ, ε) cos2 φ+RP (θ, ε) sin2 φ (RP (θ, ε)−RS(θ, ε)) sin 2φ

2

(RP (θ, ε)−RS(θ, ε)) sin 2φ
2 RS(θ, ε) sin2 φ+RP (θ, ε) cos2 φ

] (2.23)

where ms is still the backscatter amplitude containing the information about the roughness

condition of the surface, RS and RP are the Bragg scattering coefficients perpendicular and

parallel to the incidence plane respectively, and functions of the complex permitivity ε of the

ferromagnetic media and the local incidence angle θ,

RS = cos θ−
√
ε−sin2 θ

cos θ+
√
ε−sin2 θ

, RP = (ε−1)(sin2 θ−ε(1+sin2 θ))

(ε cos θ+
√
ε−sin2 θ)2

(2.24)

Transform into HH and VV convention we used before, orientated Bragg scattering matrix

could be written into equation 2.20,

S =
∑
bi

[
Rh(θ, ε) cos2 φbri +Rv(θ, ε) sin2 φbri (Rv(θ, ε)−Rh(θ, ε)) sin 2φbri

2

(Rv(θ, ε)−Rh(θ, ε)) sin 2φbri
2 Rh(θ, ε) sin2 φbri +Rv(θ, ε) cos2 φbri

]

+
∑
sj

[
cos 2φscj sin 2φscj

sin 2φscj − cos 2φscj

]
+ Sresidual

(2.25)

in which bi = aims. To be analogue with definition 2.18, a ratio of Bragg scattering coefficients

Rv over Rh could simplify Equation 2.25,

S =
∑
biRh(θ, ε)

[
cos2 φbri + β sin2 φbri (β − 1) sin 2φbri

2

(β − 1) sin 2φbri
2 sin2 φbri + β cos2 φbri

]

+
∑
sj

[
cos 2φscj sin 2φscj

sin 2φscj − cos 2φscj

]
+ Sresidual

(2.26)

where the ratio of Bragg scattering coefficients

β =
Rv
Rh

=
(ε− 1)(sin2 θ − ε(1 + sin2 θ))(cos θ +

√
ε− sin2 θ)

(cos θ −
√
ε− sin2 θ)(ε cos θ +

√
ε− sin2 θ)2

. (2.27)

One should be note is that the second-order SPM depolarization is not yet considered, hence

so far, the only source being considered for depolarization is the tilt effect. Before the imple-

mentation, explanations to several assumptions should be given to simplify the complexity.
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(a) random walk in HH (b) random walk in VV

Figure 2.9 — Random walk of Bragg vs scalar, co-pol. Solid line represents the random

walk of Bragg scattering and the vector sum has a phase bragg, dashed line represents the

random walk of Scalar scattering and result in the vector sum with a phase scalar, and the

radar measurements (HH and VV) is the vector sum of Bragg vector and Scalar vector, with

a phase of phase pixel.

1. Phase

Looking into the scattering mechanisms within pixel cell area, the interaction of quite

a number of isolated scatterers could be modelled by random walk [89]. At microwave

wavelengths, a rough surface is concerned about the wavelength larger than 1
4 of the

Bragg wave, according to the Rayleigh criterion (which we talked about this in details

in Chapter 3), meaning a mean quadratic phase shift higher than π/2. For a rough

surface, the distances between the elementary scatterers and the radar receiver vary due

to the random location of scatterers. Since phase relates only to the distance between

the target and the receiver, the received waves from each scatter, although coherent

in frequency, are no longer coherent in phase [1]. At this point of view, in our simple

scattering model, the Bragg contribution is the result of random walk of Bragg resonances

and the scalar contribution is the result of random walk of scalars, as shown in figure

2.9(a) and 2.9(b). We are not going to concern each of the isolated scatterers at this

stage, that is to say, since the backscattered signals from both Bragg-like and scalar-like

scatters could be modelled as random walk, as shown in figure 2.9(a) and 2.9(b), the

Bragg-like contributions could be taken as a whole by end-to-end sum, and the same for

the scalar-like contributions, leaving

S = B

[
cos2 φbr + β sin2 φbr (β − 1) sin 2φbr

2

(β − 1) sin 2φbr
2 sin2 φbr + β cos2 φbr

]
+Sa

[
cos 2φsc sin 2φsc

sin 2φsc − cos 2φsc

]
+Sresidual

(2.28)

where B , φbr and Sa, φsc are complex scattering coefficient and orientation angle from
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whole dipole-like scatters and whole cylinder-like scatterers. On this assumption, B ,

φbr and Sa, φsc are the ene-to-end sum over the pixel cell surface area. The difference

between figure 2.9(a) and 2.9(b) comes from the difference of π in the phase of horizontal

co-pol and vertical co-pol in the cylinder-like scatter matrix, the second terms on the

right of equation 2.25.

2. Orientation angle

In Equation 2.28, φbr and φsc are mean orientation angles for the Bragg-like scatterers

and cylinder-like scatterers inside the pixel surface area. The orientation angle φ relates

with the azimuthal slope and range slope as well as incidence angle by [84, 83]

tanφ =
tanω

sin θ − tan γ cos θ
(2.29)

where φ, tanω, θ and tan γ are orientation angle, azimuthal slope, radar look angle and

the range slopes. Investigations shows that for the ocean surface at scales 6.6×8.2m, the

averaged tilt angles are small, and the onset of wave breaking occurs at about 7 deg [79].

Thus the orientation angle could be assumed to be related only with azimuthal slope

and radar look angle. Based on this knowledge, the assumption of φbr = φsc could be

established.

3. Residual

The residual scattering matrix exists because the phase difference between radar received

co-pol and X-pol signals and even between X-pol signals, i.e. HV and VH. That’s the

indication to the existence of helix-like scatterers inside the pixel cell surface area. On

this point, we improve equation 2.25 as

Sresidual = CSrighthelix +DSlefthelix (2.30)

where C and D are end-to-end sums of complex scattering coefficients from total right

helix-scatters and left helix-like scatterers, for which the scattering matrix satisfying

Srighthelix =

[
cos 2φrhelix − i sin 2φrhelix − sin 2φrhelix − i cos 2φrhelix

− sin 2φrhelix − i cos 2φrhelix − cos 2φrhelix + i sin 2φrhelix

]

and

Slefthelix =

[
cos 2φlhelix − i sin 2φlhelix sin 2φlhelix + i cos 2φlhelix

sin 2φlhelix + i cos 2φlhelix − cos 2φlhelix + i sin 2φlhelix

]
,

with φrhelix and φlhelix the average level of orientation angles for total right helix-

scatters and left helix-like scatterers, and for simplicity with confidence, the assumption

of φrhelix = φlhelix = φbr = φsc could be established. One should be noticed is the helix-

like scattering contributes equal intensities to different polarization channels, thus to be
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taken as scalar. Another one should be noticed is although helix scatter introduce the

asymmetric but not non-reciprocal yet. Here we refer to the explanation in [52], saying

if reciprocity is violated it is likely to be due to propagation effects, interaction with spe-

cial materials or for low RCS returns, perhaps measurement noise. On this two notices,

the residual components has no help to explain the inter X-pol difference and should be

considered as a part of scalar.

Based on above assumptions, We rewrite equation 2.20 straightforwardly as

S = B

[
cos2 φ+ β sin2 φ (β − 1) sin 2φ

2

(β − 1) sin 2φ
2 sin2 φ+ β cos2 φ

]
+ Sa

[
cos 2φ sin 2φ

sin 2φ − cos 2φ

]
(2.31)

So far, there are 6 equations (in the following equation 2.32) for 6 unknown variables, i.e.

complex scattering coefficients B,Sa, and one orientation angle φ and polarization ratio β.

<(B)(cos2 φ+ β sin2 φ) + <(S) cos 2φ = <(SHH)

=(B)(cos2 φ+ β sin2 φ) + =(S) cos 2φ = =(SHH)

<(B)(sin2 φ+ β cos2 φ)−<(S) cos 2φ = <(SV V )

=(B)(sin2 φ+ β cos2 φ)−=(S) cos 2φ = =(SV V )

<(B)(β − 1) sin 2φ
2 + <(S) sin 2φ = <(SHV )

=(B)(β − 1) sin 2φ
2 + =(S) sin 2φ = =(SHV )

(2.32)

This decomposition were implemented on Radarsat-2 (R2) C-band data, and the prelim-

inary results are discussed here, leading to improvements in the following chapters. Since

in Equation 2.32 there are 6 unknowns in 6 equations, the first step is to estimate β with

radar look angle instead of local incidence angle, shown in the flowchart of Figure 2.10 where

the iteration flow chart goes for the first iteration. Based on the first estimated Bragg com-

ponents (Bragghh, Braggvv, Bragghv, and Braggvh), the local incidence angle could be esti-

mated by the relationship of Bragghh and Braggvv, as introduced by Cloude-Pottier entropy-

anisotropy- α polarization decomposition theorem, in Equation 2.13 and 2.15. 18 scenes of

full polarization involved here, as shown in Table 2.1, processed as slant range product with

a complex data type, i.e., SLC, for which the pixel spacing is determined by the radar range

sampling rate and pulse repetition frequency (PRF), and the single look processing made use

of full available signal bandwidth, reaching at a fine spatial resolution.
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Figure 2.10 — Iteration flow chart

2.3 Preliminary result and discussion

2.3.1 Wind and wave data

In-situ platforms collocated with R2 satellite data set are offered by the Observing System

Monitoring Center (OSMC) programme funded by NOAA/OCO, providing both the near real

and historical status of globally distributed meteorological and oceanographic data collection

systems. These platforms include both buoys and voluntary ships, returning one record per

hour, generally. The nearest records were interpolated in time for satellite data acquired in

Auguest and September, and latter records come from meterological moored buoys located

exactly in the satellite image scene, as shown in table 2.1. Sea states ranges from smooth

wavelets, according to Douglas sea scale (see table 2.2), to very rough sea surface, even high

sea state with a wave height as high as 7m.

Considering wind streaks, wind changes will induce changes of radar cross section, and

shall help to evaluate the relative sensitivity of VV, HH, and HV (or VH) polarization com-

position to wind parameter. This will help to assess which channel is best to retrieve wind

speed around a relatively high wind condition. Considering the detected waves, the cut-off

wavelength for VV, HH, HV, VV-HH and VV*conj(HH) polarization compositions have been

analysed. This should help to assess the proper polarization ratio α (defined former in Equa-

tion 2.18) of tilt Bragg VV over HH which separates the polarization part (the tilt Bragg

scatter) from the polarization independent part, i.e., the scalar contributions, as denoted in
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Table 2.1 — OSMC Wind and Wave

satellite incidence wind wind wave

acquisition angle (center) spd m/s dir deg. height m.

(0)20110803 40.90 1.65 121.13 0.70

(1)20110809 45.92 15.00 320.00 3.40

(2)20110810 45.89 14.38 300.00 2.98

(3)20110812 36.27 5.95 50.47 1.20

(4)20110819 40.92 7.00 320.00 0.40

(5)20110820 36.25 4.22 11.95 0.20

(6)20110904 19.38 14.92 270.00 2.10

(7)20110907 19.38 8.42 284.00 1.52

(8)20111203 45.09 12.40 240.00 2.06

(9)20111205 45.11 10.29 290.00 4.50

(10)20120329 29.32 11.84 320.00 2.95

(11)20120405 25.91 9.60 356.67 2.05

(12)20120406 32.56 9.78 40.00 2.70

(13)20120408 28.20 7.95 230.00 1.20

(14)20120409 30.42 4.76 282.50 3.05

(15)20120416 33.60 10.19 260.00 1.74

(16)20120423 27.06 17.50 309.00 7.51

(17)20120509 24.35 2.85 335.00 1.00

Table 2.2 — Douglas sea state

Douglas Description Wave height Wind speed Fetch Duration

sea state (SWH ft) (kn) (nmi) (h)

1 Smooth 0-1 0-6

2 Slight 1-3 6-12 50 5

3 Moderate 3-5 12-15 120 20

4 Rough 5-8 15-20 150 23

5 Very rough 8-12 20-25 200 25

6 High 12-20 25-30 300 27

7 Very high 20-40 30-50 500 30

8 Precipitous > 40 > 50 700 35
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Figure 2.11 — Validation flow chart

the simple model in Section 2.2.2. This part of work will be introduced in spectral analysis

section as the validation as well as to find the criterion for ceasing the iteration processing of

Figure 2.10. The validation flow chart is shown in Figure 2.11.

For the ’zeroth’ iteration, we took polarization ratio (imagery NRCS VV over HH) ac-

cording to the cross-polarizaion HV with wind reference, shown in Figure 2.12. Figure 2.12

(b) (c) and (d) show the correlation between PR and HV, in which colors are according to

incidence angle, wind speed and direction separately. It is clear from (b) that incidence angle

classifies the PR-HV tuple, i.e., HV represents wind information as well as PR. An evidence in

the following plots of (c) and (d) expresses well the dependence on wind speed and direction

of HV.

By decomposing the scattering matrix into tilt Bragg and scalar, for the first iteration, i.e.

without consideration of local incidence angle introduced by surface slope on range direction,

it is possible to find the polarization ratio α of tilt Bragg NRCS in VV polarization over

HH polarization, as in Figure 2.13 (a). From the second iteration and then on (Figure 2.13),

the local incidence angle introduced by surface slope on range direction could be estimated

from ’Bragg model’, as shown in the flow chart Figure 2.10 where the iteration goes into the

circulant to the right.

2.3.2 Doppler analysis

SAR instruments are essentially sensitive to Doppler effects. Due to the ’velocity bunch-

ing’ formation (equation (8) in [86]), a larger radial velocity where
R

V

dur
dx

> 1 leading to a

larger displacement ξ in azimuth direction, leaving the backscattered signals with same range

distance unresolvable (smearing) within this displacement. This displacement was found to
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(a) PR vs. models (b) PR vs. HV,

colored by incidence angle

(c) PR vs. HV,

colored by wind speed in situ

(d) PR vs. HV,

colored by wind dir. in situ

Figure 2.12 — Polarization ratio and depolarization HV.
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(a) Tilt Bragg PR, Iteration1 (b) Tilt Bragg PR, Iteration2

(c) Tilt Bragg PR, Iteration3 (d) Tilt Bragg PR, Iteration4

(e) Tilt Bragg PR, Iteration5 (f) Tilt Bragg PR, Iteration6

Figure 2.13 — Polarization ratio of Tilt Bragg. (Iteration 1,2,3,4,5,6)
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(a) Sigma-naught imagery HH (b) Sigma-naught imagery VV

(c) Sigma-naught Tilt Bragg HH, Iteration1 (d) Sigma-naught Tilt Bragg VV, Iteration1

(e) Sigma-naught Tilt Bragg HH, Iteration6 (f) Sigma-naught Tilt Bragg VV, Iteration6

Figure 2.14 — Sigma-naught of co-pol . (Iteration 0,1,6)
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function as the azimuthal cut-off factor with a Gaussian shape of exp(−k2
xξ
′2), which repre-

sents the linear SAR spectrum into a quasi linear approximation [45]. Kerbaol et al. analysed

ERS-1/2 wave mode imagettes to find the relationship between azimuth cut-off and wind

speed [90]. For ERS 1/2 wave mode, the operation incident angle of 19.9o and 23.5o relies the

radial component to the vertical velocity which is mainly supported by the gravity waves.

The non-linear also produce significant shift of the spectral peak and other distortions

of the spectrum [45], by which the analysis of the Doppler spectrum allows us to produce

maps of sea surface velocity [91]. Chapron et al. for the first time systematically extracted

global Doppler measurements for the range velocity. From a theoretical analysis and co-

located atmospheric wind and wave model predictions, these Doppler shifts are shown to

carry valuable quantitative information about the expected mean motion between the sea

scatters and the satellite platform, i.e., the radial velocity [3].

This technique of using Doppler difference to measure surface currents was firstly estab-

lished by an airborne two-antenna system [92], in which the two antennas are assumed to

be collinear with the radar motion and the time lag for the same surface scatter passing

by the two antennas’ boresights should be chosen long enough to obtain measurable phase

differences while shorter than the decorrelation time of the backscattered field [93]. With a

very stable satellite orbit and attitude, a similar residual Doppler shift could be achieved by

subtracting an accurately estimated satellite motion contribution fDcm from the measured

Doppler centroid fDc [3, 91], at this point of view, without the two-antenna system.

2.3.2.1 Azimuthal Doppler centroid and wind sea

RADARSAT-2 SAR product files specify the Doppler centroid predicted from satellite orbit

parameters. Due to the relative spacecraft-to-earth rotation rate expressed in equation (5)

of [94], the Doppler centroid prediction (fDcm) has a positive sign for an ascending pass and

a negative sign for a descending pass. Doppler centroid prediction supplied in orbit for each

15 seconds, i.e., for SLC product normally only one Doppler centroid prediction could be

contained in the data product, while for Wide swath product it is possible to have more than

one predictions, such as the ScanSAR mode product in Figure 2.15.

If the surface is in motion, the velocity on the radial direction contributes to the Doppler

shift leading to an estimation of (fDc) from radar measurements which is different from the

predicted (fDcm) according to the orbit parameters. This difference expressed in equation

(1) of [93], where a positive value of the surface motion radial component vr corresponds

to a target receding from the radar. The residual doppler centroid (fDca = fDc − fDcm) is

considered to have a linear relationship with the sum of surface velocity and current velocity

[95]. Recent research reveals that Doppler centroid anomalies helps to improve the wind
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Figure 2.15 — Doppler centroid predicted by satellite orbit parameters, for one scene of

ScanSAR mode, ascending pass

direction retrieval [96]. For future SAR missions, in particular Sentinel-1, the Doppler centroid

anomaly will be more robustly retrieved.

Doppler centroid corresponds to azimuth power spectrum density (PSD) peak location

[97, 98] and can be estimated by analysing the phase of the correlation function of the

complex signal measurements [97]. The estimation shown in Figure 2.16 were given in terms

of difference between co-pols, which were estimated over blocks of 512 × 512 pixels, where

the azimuth correlation functions of each azimuth block of 512 pixels averaged over range

block of 512 pixels. If the Doppler estimate is accurate enough, small block sizes are possible,

down to an azimuth size of the order of the real antenna footprint [91]. For SLC data, total

azimuth bandwidth equals azimuth bandwidth per look, while for SGF data, total azimuth

bandwidth equals the sum of all the azimuth bandwidth per look [99]. The standard quad-pol

SLC product were processed with an azimuth look bandwidth of 900Hz, i.e, an integration

time of T = 0.0011s, say the Doppler centroid shift between [−450Hz, 450Hz](as equation

2 in [100]), according to the orbit as described at the beginning. For Bragg, there were too

little difference between HH and VV to be detected even to the 6 iteration in our programme.

On the point of view as target decomposition, the Doppler difference between HH and VV

from the imagery is largely introduced by scalar contributions, which has a Doppler centroid

different from that of Bragg, but concentrates with iterations (in Figure 2.16 compare (c)

with (e)). On the right column in Figure 2.16, Doppler differences, with a linear function,

relate to the azimuth angle between wind and radar LOS.

2.3.2.2 Azimuthal cut-off wavelength and wind sea

Orbital motions associated with the surface wave scatters cause zaimuth smearing effect on

SAR imaging, leaving waves with wavelenth shorter than ’azimuth cut-off’ unresolved. This

cutoff is wind speed related and qualifies the retrieval of wave information from the data.
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(a) imagery VV - HH, vs. incidence angle (b) imagery VV - HH, vs. wind direction

(c) Bragg - Scalar vs. incidence angle, Iteration1(d) Bragg - Scalar vs. wind direction, Iteration1

(e) Bragg - Scalar vs. incidence angle, Iteration6(f) Bragg - Scalar vs. wind direction, Iteration6

Figure 2.16 — Doppler residual estimate by co-pol, Bragg, and scalar
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Non-linearity theory of mapping ocean wave onto SAR imagery helps to find this cut-off.

According to the theory [45], a roll-off Gaussian function exp(−k2ξ2) filters out the linear

part of SAR imagery spectrum, with ξ as the cut-off wavelength which could be estimated by

fitting the auto-covariance function (ACF), which is derived from inverse Fourier transform of

SAR image power spectrum, with the Gaussian cut-off factor [101]. As the azimuth Doppler

frequency spectrum of SAR imagery could be approximated as a Gaussian filtered quasilinear

spectrum, which has a correlation function as Figure 2.17(a), and to the pixel spatial domain

as 2.17(b), the estimate of cut-off wavelength could be find by fitting with a Gaussian function.

The central peak can be improved using cross correlation function between independent looks

(Figure 2.17(c) and (d)) instead of correlation function of single look.

a.Frequency correlation function b.Spatial correlation function

c.Frequency cross-correlation function d.Spatial cross-correlation function

Figure 2.17 — Doppler frequency cross- and co-spectra

SAR azimuth cutoff estimation is based on fully developed sea, where the lower integration

limit kcutoff is 1/6 of the peak of the wind sea spectrum [102]. For extremely high sea state,

when the traditional wind retrieval algorithms based on the SAR backscatter measurements

might be affected by the analog-to-digital saturation, azimuth cut-off exclusively depend on

vertical components of sea surface orbital motions, having a linear relationship of [90]

λc = 23.4 · U10 + Λ (2.33)

in which Λ represents a residual cut-off involving the nominal SAR azimuthal resolution.
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(a) Cut-off estimate by imagery VV (b) Cut-off estimate by imagery HH

(c) Cut-off estimate by tilt Bragg VV, Iteration 1(d) Cut-off estimate by scalar co-pol, Iteration 1

(e) Cut-off estimate by scalar co-pol, Iteration 3(f) Cut-off estimate by scalar co-pol, Iteration 5

Figure 2.18 — Cut-off estimate by co-pol Bragg and scalar scattering
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Figure 2.18 shows the cut-off estimate for co-polarization (radar imagery, Bragg compo-

nent, and Scalar component). Out of our expectation, Bragg contributions does not show a

less variation than radar measurements, although still keep the linear shape along wind speed.

The scalar part turns to give up the detection of cut-off, meaning that the scalar surface has

very long coherence distance which may be longer than the imaging area, or has no coherence

at all.

2.3.3 Spectral analysis

Wind streaks are manifestations of roll vortices in the planetary boundary layer [103, 104, 105,

106], corresponding to the linear, low-frequency expressions could be detected in SAR image

[107]. By calculating Fourier transform over SAR imagery, the spectral energy corresponding

to the wind streaks can be located, and the wind direction should be 90◦ from this direction

of wind streak, with several degrees of rotation [108]. Detailed algorithm for detecting wind

streaks from SAR imagery spectrum was illustrated in [109].

So far from what we know from the former analysis of Doppler shift and azimuth cut-off

wavelength, the decomposition of SAR imagery into Bragg scattering and scalar contribution

revealed two peak of the Doppler spectrum, which may corresponds to the wind sea and

swell on the wave spectrum respectively. On this point of view, the decomposition would

be optimized only when a maximum similarities between Bragg spectrum and its wind sea

part as well as those between scalar spectrum and its swell part have been reached. With this

hypothesis deducing different scattering mechanisms to different wave type, Bragg component

and scalar component are expected to have only one peak respectively.

This criterion will be given as

J =
Bragg

Windseas
− Scalar

Swell
(2.34)

Wave spectrum partition is a problem having been studied for long. Three Butterworth

filters used for spectrum splitting, as shown in Figure 2.19. Sub images of 1024× 1024 pixels

contained only sea surface of the data set were studied. FFT window was set to be 512× 512

moving over sub images with step of 256 pixels, thus there are 9 FFT spectra for each

sub image, and the sum of the 9 FFT spectra help to restrain noise level of the whole sub

image. To detect wind streaks on those FFT spectra of 512× 512 pixels, only around 10× 10

pixels should be considered, due to a pixel spacing around 5m and the scale of streaks from

1km to 9km. Concerning the partition of wind seas and swell, since we have azimuth cut-off

wavelength estimated formerly, the median of cut-off was selected as the splitting wavelength.

The filters for streak and wind seas are straightforwardly by a second order 2D Butterworth

filters, and the filter for swell could be established as the product of the other two.
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(a) Wind streak filter (b) Swell filter (c) Wind seas filter

Figure 2.19 — Three Butterworth filters for spectrum splitting

The variation of streak part and swell part is shown in Figure 2.20. Although the coherency

of swell with scalar is not as expected, the one between wind seas and Bragg gives confidence

of the criterion in Equation 2.34.

2.4 Discussion and conclusion

It is straightforward to derive from Equation (2.32) that

B(β + 1) = SHH + SV V

B(sin 4φ) = (SHH − SV V ) sin 2φ− (SHV + SV H) cos 2φ
(2.35)

Bragg contribution relates by β and φ with complex HH+VV, HH-VV, and HV+VH, which

are the three components of Pauli vector. Thus this decomposition is different from Pauli

decomposition by introducing the depolarization ratio β and the surface slope φ. With an

estimate of Bragg from (2.35), the Scalar contribution could be find from (2.32). As we

supposed formerly that Bragg and Scalar scatterers are following the model of random walking

inside of each pixel area, if the first two equations in (2.32) be powered and then averaged

for a sufficient pixel corresponding to an extent surface, Bragg and Scalar components are

incoherent with each other but coherent in phase by themselves, and hence the complex

product of B and Saâ¯â¯ is zero on average. Thus the model proposed in [21] will be confirmed

here,

σ0
hh − σ0

vv = σ0
brHH − σ0

brV V (2.36)

i.e., the Scalar contribution to σ0
hh and σ0

vv will be delimited by a subtraction and leaving

only Bragg related contribution.

But when happened the average of complex product of B and Sa be non-zero? Figure 2.21

shows an example of HH vs. the sum of BraggHH and Scalar, VV vs. the sum of BraggVV
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(a) NRCShh streak, swell, and wind sea (b) NRCSvv streak, swell, and wind sea

(c) NRCShv streak, swell, and wind sea (d) NRCSscalar streak, swell, and wind sea

(e) TiltBraggvv vs. TiltBragg wind sea (f)Scalarco−pol vs. Scalar swell

Figure 2.20 — Spectra partitions



48 CHAPTER 2. SAR SEA SURFACE CHARACTERISTICS

Figure 2.21 — NRCS HH and VV vs. sum of NRCS Bragg and NRCS Scalar, data

No.20111205
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Figure 2.22 — NRCS HH (square), VV (diamond), and conj(BraggVV)*Scalar (star)

and Scalar, and the comparison of VV-HH residual and Bragg VV-HH residual. Be consist

with the spectral analysis of the data No. 20111205, Bragg components reveal more local

wind related information, while HH, VV, even VV-HH is more influenced by the swell with

a wave length around 300 meters.

In real conditions, there would rarely be non-related Bragg and Scalar scatterers, as shown

in figure 2.22, where incidence angle and wind speed act as two fundamental rules for the

value of NRCS. The correlation Bragg and Scalar (star) is normally 5-10 dB lower than the

radar measured HH/VV. The fluctuation would be swell or current, any effect correlates

Bragg scatterers with Scalar scatterers.

Figure 2.23 — Location of data set.

Concerning about the data set, as shown in figure 2.23, where the numbers refer to the
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Figure 2.24 — spectra for windseas, top: Scalar (left) vs. VV (right), data No.20110904;

bottom: BraggVV (left) vs. VV (right), data No.20120509.

data numbers in table 2.1, the Mediterranean Sea wind seas have been extracted well either

by Bragg or by Scalar, and some others from North Sea, Celtic Sea, and the Atlantic Ocean

could also be retained by Bragg or Scalar. Two exceptions are shown in figure 2.24, where

the data No.20110904 located to the west of Ouessant Island in the Celtic Sea, and the data

No.20120509 located in the North Sea where is to the east of Scotland. For the Celtic scene,

the correlation of Bragg and Scalar is very high (as in figure 2.22) and in fact the local wind

of 14.92 m/s is inducing a wave of 100 meters to the the land. To the other end, the scene

from North sea with a wind speed of only 2.85 m/s supplied an extreme low correlation of

Bragg and Scalar, and although could be find from Bragg or Scalar spectra, a inclusion of the

wind seas peak is overwhelmed by the a swell propagating along the North-South direction.

To sum up, the cross product of Bragg and Scalar contributions are not ignorable for most

of cases, thus the sea surface depolarization and polarization could be separated by complex

scattering matrix better than the NRCS. By separation of scattering polarization, the fine

scale wind seas information are retained better than the direct SAR measurements.
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3 Statistical analysis

Chance, as we understand it, supposes the existence of things, and their general

known properties: that a number of dice, for instance, being thrown, each of them

shall settle upon one or other of its bases. After which, the probability of an assigned

chance, that is of some particular disposition of the dice, becomes as proper a subject

of investigation as any other quantity or ratio can be. But chance, in atheistical

writings or discourse, is a sound utterly insignificant: it imports no determination

to any mode of existence; nor indeed to existence itself, more than to non-existence;

it can neither be defined nor understood: nor can any proposition concerning it be

either affirmed or denied, excepting this one, ”That it is a mere word.”

Abraham de Moivre, 1735

Microwave remote sensing is different from optical remote sensing where the different

frequencies beyond visible light wavelengths supply an incoherent light source and meanwhile

the high frequencies lead to very short coherence lengths, and hence to most optical receivers,

echoes will appear incoherent so that make it possible to sum up their intensity contributions

resulting in the speckle-free images. For microwave wavelengths, which is monochromatic

and where the coherence length has an order of centimetres, the emitted radar wave train is

generally far longer than the wavelength and we thus speak of a coherent illumination [89].

The sum of echoes backscattered by each target will be carried out coherently, i.e. amplitudes

(in-phase) are summed up, resulting to a vary large intensity as the power of sum, rather than

the sum of the power (the case of optical remote sensing). In fact speckle has been well-known

for all coherent imaging modalities, such as laser imagery [32], optical coherent tomography

[33], as well as the speckle-free photoacoustic tomography [34]. Speckle is not really noise but

51
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rather contains information on the sensor and observed surface [35], while heretofore, speckle

reduction is commonly known as ’filtering’, although ill-suited, since speckle appears as a

chaotic jumble and fluctuates the backscattered signal with a standard deviation to mean of

unity, which is the same property as white noise [35, 32].

On the other hand, for an optical wavelength, the vast majority of surfaces are rough

according to Rayleigh criterion, saying that for an incident angle θ, if the mean quadratic

deviation of the surface irregularities δh satisfies δh > λ/(8 cos(θ)), i.e. a mean quadratic

phase shift higher than π/2, the surface is rough. While for microwave wavelength, surfaces

expire the Rayleigh criterion easily, such a generic target, whose characteristic length of

discontinuities L � λ, or a set of Rayleigh point targets, with L � λ. A generic target

will be discussed in the following as Chapter 4 and a set of Rayleigh point targets has been

discussed in Chpater 2.

Since radar was firstly used in the WWII for ship detection, the backscatter from the sea

surface was found to obscure small boats, thus termed as ’sea clutter’ [110]. Once successive

realizations on rough surfaces are observed, scattering by a set of point targets could be

considered as a randomly scattering[35, 32]. On this point, the observed sea clutter could be

statically modelled as speckle-like characteristics. In fact, during the early days when a radar

imaged over the sea surface with a resolution area much greater than the sea swell wavelength,

clutter is usually modelled simply as speckle and the amplitude is Rayleigh distributed. As

the radar resolution is increased, the clutter amplitude distribution is observed to develop a

long ’tail’ and the returns are often described as becoming spiky [42].

To sum up, the instantaneous power received from a single radar resolution cell varies

about its mean, which is represented by the sea surface reflectivity, due to two contributions.

The first source of the variation is the interference of these de-phased but coherent wavelets

results in the granular pattern we know as speckle [32]. Another variation, as high resolution

radar being used to resolve the finer structure of the sea surface, comes from the local surface

shape, incidence angle, capillary wave density and the hydrodynamic effect by the passage of

long waves and swell [42], whose effects on the SAR measurements have been presented in

the former Chapter 2.

Filtering approaches, which have been historically designed for incoherent imaging, may

have their limitations and yield less than optimal results when we try to extract specific

information from SAR images. However, if we think of filtering as a sequence of decisions and

estimates of unknown surface parameters, we see it fits perfectly well in a second approach

[35]. In any case, we have to define the surface parameters and to determine the influence of

speckle on our observations and consequently on their optimal assessment. For polarimetric

SAR data, the speckle problem is more complicated than that for a single polarization data,

because of the difficulties of preserving polarimetric properties as well as dealing with the
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cross-product terms [111] for existed filters, such as the mostly promised Lee filter [112].

Above all, speckle is not real noise but the coherent result of all the scatterers inside the pixel

area. We treat the radar signals stingily and care of even the trial information by pixel.

3.1 Theories

In the early days around 1990s, the well acknowledged model for SAR backscatter signal

is a band-pass Gaussian random with 0 mean [113], for which the envelope obeys Rayleigh

distribution, with a uniform phase on (0 − 2π), and the power obeys negative exponential

distribution. However, disobeying from Rayleigh distribution had been observed using high

resolution radars [114], leading to improvements from then on. The approach of radar detec-

tions has anyhow been the compound, or multiplicative. In the computation of characteristic

functions, the Mellin transform has been adopted recently, besides of the usual Fourier trans-

form [115, 116]. The main clue of the story from circular Gaussian to K distribution and

recently been generalized to G distribution will be shortly introduced in this section, and

other more distributions could be found in [116, 117].

3.1.1 Complex circular Gaussian model

3.1.1.1 Phase and circular Gaussian

We simplified in section 2.3 that for each kind of contribution to the total scattering matrix,

there should be a random walk process among total backscattering of the same type. Random

walk is amply substantiated by the coherent frequency of radar wavelength scattering on a

randomly structured rough surface, with an ignorable volume scattering. At this point, the

phase information contained in complex scattering coefficients B,Sa of equation 2.26 should

be regarded as the sum of several phase shifts [35]:

B =
∑

biRh(θ, ε) =
∑

aimsRh(θ, ε) =
∑
|Bi|ekϕi (3.1)

and

Sa =
∑

sj =
∑
|Saj |ekϕj (3.2)

where k denotes the imaginary unit vector, and

ϕ{i,j} = argSpq{i,j} + argh(x{i,j}, y{i,j}) +
−4πD{i,j}

λ
(3.3)

with Spq, p, q ∈ {H,V } denotes the polarization component of the scattering matrix, and

h(x{i,j}, y{i,j}) the radar response function by scattering point (x{i,j}, y{i,j}) on the surface,

D{i,j} the range distance between radar and the scattering point (x{i,j}, y{i,j}) on the surface.
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Figure 3.1 — Random walk on the complex plain of backscatters for isolated single pixel

area

We have known in Chapter 2 that argSpq of Bragg scattering depends on local incidence

angle and complex permitivity on/of the sea surface, while argSpq of scalar contributions,

for which a cylinder-like approximation was used, has no difference between VV polarization

and cross-polarization, with a π difference from HH polarization, c.f. equation 2.26.

The second item on the right argh(x{i,j}, y{i,j}) depends on the radar configuration thus

could be taken as a system constant. The last item relates only to range distance hence is

surface roughness dependent. In the surface area corresponding to one pixel size on the SAR

imagery, the differences between various ranges D{i,j} of an order of λ/2 are enough to cause

destructive interferences. In [28], Rayleigh criterion was replaced by Fraunhofer criterion,

δh > λ/(32 cos(θ)), which is more stringent requiring the maximum phase difference between

rays coming from the center and the edge of the antenna be less than π/8.

Based on the above analysis, we can see a random walk of the backscatters on the complex

plain, as in figure 3.1, where an 0 mean value for real and imaginary part of the complex signal

achieved by a large number of scatters separately, i.e. i, j ∈ [0, N ] for which the scatterers

number N is readily to be as large as enough to satisfy the central limit theorem (on the list

of C), and the envelop (amplitude, A) received from this single pixel to be around the sea

surface reflectivity R, according to a Rayleigh distribution

pA(A/R) =
2A

R
exp(−A

2

R
) (3.4)

whose power (intensity, I) obeys exponentially distribution

pI(I/R) =
1

R
exp(− I

R
), (3.5)

using the change of variable relation pA(A) = 2ApI(A
2). The complex signal (Cs = <(Cs) +

i=(Cs)) received from each single pixel is called complex Gaussian random variable, for

which the vector of real and imaginary parts (vector = (<(Cs),=(Cs))) is bivariate Gaussian

distributed [118].
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3.1.1.2 Multivariate complex Gaussian distribution

Now we consider not only about each isolated but more pixels, i.e. to take SAR imagery as

samples of realization for the complex Gaussian random process, i.e. radar reflectivity R of

the pixel area. So far, we regard radar reflectivity as uniform all over the imagery, i.e. the

imagery area is homogeneity. The whole of these samples is already a p-variate (set p the pixel

number of the SAR imagery) complex Gaussian random variable, z = (Cs1, Cs2, · · · , Csp)T ,

which is a p-tuple of complex Gaussian random variables such that the vector of real and

imaginary parts, (<(Cs1),=(Cs1), · · · ,<(Csp),=(Csp))
T , is 2p-variate Gaussian distributed

[118]. The distribution of z is

p(z) =
1

πp|Σz|
exp(−zT∗Σzz), (3.6)

where Σz = E(zT∗z) = ‖E(CsiC
∗
sj)‖ = ‖σij‖, the p Hermitian positive definite complex

covariance matrices, generalizes the radar reflectivity concept, since its diagonal elements,

Csp variances, correspond to radar reflectivities Rp, for

σij =

{
σ2
i if j = i,

(αij + kβij)σiσj if j 6= i.
(3.7)

where k is the imaginary unit. Moreover, in equation 3.7, the non-diagonal elements, covari-

ances between Csi and Csj , are proportional to the complex correlation coefficient [119]

ρij =
E(CsiC

∗
sj)√

E(CsiC∗si)E(CsjC∗sj)
= Dijexp(karg(

βij
αij

)) (3.8)

where the complex correlation module Dij is simply called coherence, while the phase arg(
βij
αij

)

is the effective phase shift between Csi and Csj .

3.1.1.3 Gamma distribution

One special multivariate case is multi-look processed data. Multi-look processing reduce the

fully developed speckle into non-fully developed, by dividing the Doppler spectrum into L sub-

looks. The looks generally overlap and the L sub-looks will then be correlated. Operationally,

a weighting filter (e.g., an Hanning filter for ERS1/2 and ENVISAT) is used to decorrelate

the L sub-looks [35]. After this processing, we have L independent samples for each pixel,

the averaged power fit a Gamma distribution as

p(I) =
L(LI)L−1

(L− 1)!(ασ2)N
exp(

LI

ασ2
) (3.9)

where I = 1
L

∑
(<(Csi)

2 + =(Csi)
2) is the averaged power for each pixel, <(Csi) and =(Csi)

are independently Gaussian distributed real and imaginary part of the complex signal, for
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which

p(<(Csi)) = 1√
πR

exp(−<(Csi)
2

R )

p(=(Csi)) = 1√
πR

exp(−=(Csi)
2

R )
(3.10)

where R is the radar reflectivity for the pixel area. α is the square law coefficient, L > 2 is

the look number and σ2 is the Gaussian covariance for both <(Csi) and =(Csi), and σ2 = R
2 .

Gamma distribution G(α, β, γ) is the type III solution to Pearson system [120], determined

by α, β, γ,

pX(x) =
(x− γ)α−1e−(x−γ)/β

βαΓ(α)
, x > γ;α > 0, β > 0. (3.11)

If γ = 0, three-parameter Gamma is simplified to double-parameter Gamma distribution

G(α, β),

pX(x) =
xα−1e−x/β

βαΓ(α)
, x > 0;α > 0, β > 0. (3.12)

and when β = 1, γ = 0, Gamma distribution has the standard expression as

pX(x) =
xα−1e−x

Γ(α)
, x > 0. (3.13)

Obviously, α is the shape parameter of Gamma distribution while β is the scale parameter.

When α = 0, the standard Gamma distribution (3.13) turn out to be a negative exponential

distribution, corresponding to multi-looking processed Gamma distribution and single look

negative exponential distribution respectively. If α is positive, the standard Gamma distribu-

tion has a name of Erlang distribution. Furthermore, if random U1, U2, ..., Uv obey Gaussian

distribution independently, then
∑v

j−1 U
2
j will follow a standard Gamma distribution (3.13)

with α = v/2, β = 2, γ = 0,

p2
X(x2) =

(x2)
v
2
−1e−x

2/2

2
v
2 Γ(v2 )

, x2 > 0. (3.14)

This type of Gamma distribution has a name of χ2 distribution with a freedom of order v,

χ2
v. For 1

2

∑v
j−1 U

2
j , the standard Gamma distribution of α = v/2, β = 1, γ = 0 works well,

p2
X(x2) =

(x2)
v
2
−1e−x

2

Γ(v2 )
, x2 > 0. (3.15)

The χ2 distribution, negative exponential distribution, Gamma distribution and Erlang

distribution all belong to exponential family.

3.1.1.4 Wishart distribution, coherence, and phase difference

Another multivariate case, multi-polarization data, is in a more general case where the statis-

tics of phase difference and coherence between difference channels are of ultimate importance.
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Furthermore, their statistical characteristics are not limited to the intensities or amplitudes

[1]. For a quad-pol case with a pixel number of p, each polarization channel could be regard

as a p-variate complex Gaussian random variable, whose possibility distribution function is

as Equation 3.6, and the four-polarization-channel could be regarded as four samples of p-

variate complex valued vectors. The polarimetric covariance matrix, nΣ̂z =
∑
zT∗1...pz1...p, (for

quad-pol here n = 4), is found to have a complex Wishart distribution [118],

p(nΣ̂z) =
|nΣ̂z|n−p

I(Σz)
exp

(
−tr(Σ−1

z nΣ̂z)
)

(3.16)

where I(Σz) = πp(p−1)/2Γ(n) · · ·Γ(n− p+ 1)|Σz|n.

The above consideration about multi-polarization data is straightforward from Section

3.1.1.2, while there is another way of thinking of the p-variate vector and its samples of

realization, i.e., to consider the quad-pol data as p realizations of 4-variate vector, then the

polarimetric covariance matrix, pΣ̂z =
∑
zT∗1...4z1...4 have the complex Wishart distribution as

p(pΣ̂z) =
|pΣ̂z|p−n

I(Σz)
exp

(
−tr(Σ−1

z pΣ̂z)
)

(3.17)

where I(Σz) = πn(n−1)/2Γ(p) · · ·Γ(p − n + 1)|Σz|p, for quad-pol here n = 4. A special case

for single polarization channel can be achieved when n = 1 and Equation 3.17 has the same

expression as Equation 3.9. By this explanation, p could be regard as either the pixel number

of a single look sub imagery or a p-look processing.

Lee et al. [112] proved that the correlation coefficient of multi-look intensities is indepen-

dent of the number of looks and to be the D2
ij of Equation 3.8.

3.1.1.5 Non-Gaussian cases

The above hypothetical condition modelled well the SAR imagery when the resolution was

not so fine thus be able to enclose a large number of scatterers which are equivalently and

randomly de-coherent in phase, leaving a random variation by in-phase coherent sum.

As we mentioned in Chapter 2, casual observations have shown that the sea surface

is not a random rough surface but a superposition of significant structures. The imaging

mechanism has been a controversial issue for quite a while. The main problem still lies in

the proper inclusion of the motion effects associated with ocean surface waves. Nevertheless,

all the different theories consider the velocity bunching effect as a basic imaging element.

In fact, the hydrodynamic interactions between short and long gravity waves imply that a

given resolution cell roughness is dependent on the position of the cell on the wave [56].

Then the number of scatterer per resolution cell is directly related to the sea state. With

this consideration, ENVISAT ASAR had been configured to concentrate the main efforts
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on a better representation of the hydrodynamic modulation transfer function by its higher

incidence angles and both VV and HH polarisation settings [67].

3.1.2 K-distribution family

Rayleigh distribution approximated well the envelope of the return signal when the radar

illuminates a large area of the sea. However, non-Rayleigh sea clutter was found since the

narrow beam-divergence and short pulse-length had been used on radars illuminating sea

surface. If the radar has pulse-to-pulse frequency diversity greater than the reciprocal of

the pulse length, which is generally considered sufficient to decorrelate returns, there is still

pulse-to-pulse correlation with respect to the whole population of returns [114, 121, 122]. For

RADARSAT2, a pulse bandwidth of 100MHz is acquired to achieve a range resolution of 3

meters for ultrafine mode [94], while even for the fine mode, where the pulse bandwidth of

30MHz vs the pulse length of 21µs, can definitely find the pulse-to-pulse frequency diversity

greater than the reciprocal of the pulse length. As early as 1970s, the non-Rayleigh distri-

bution such as Lognormal distribution and Weibull distribution has also been proposed in

literatures, but K-distribution has been proved to be the most accuracy [123, 121].

3.1.2.1 Correlation effect

As the refinement of resolution, the pixel cell area on the surface will not be ”homogeneity”

as an average of a large area but contains structures, i.e. Bragg wave modulated by longer

waves, currents, etc. Valenzuela [124] suggested that the return from a single ’patch’ of sea

surface can be expressed as the product of two statistically independent factors, one related

to the intrinsic properties of the ’patch’ and the other to its overall till. They assumed the first

factor to be negative exponentially distributed and the latter a rather complicated expression.

Here will refer what have been discussed in Section 3.1.1.5. The radar reflectivity R, which

is the parameter of most interest, will not be uniform. Thus it is straightforward to consider

the Equation 3.4 as a 2-variate distribution

pA,R(A,R) =

∫
2A

R
exp(−A

2

R
)p(R)dR (3.18)

where p(R) is the probability density function of the radar reflectivity R. Measurements

identified this variation as a Gamma distribution [42], which also proved that multi-look

processing isolated the Gaussian speckle variation and left the large scale variation of the

radar reflectivity R much more clear.
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3.1.2.2 K-distribution

K-distribution was first introduced in 1976 by Jakeman [125] as the development of non-

Rayleigh sea clutter modelling. The basic assumption of this modelling is that the scattered

electric field can be written as the sum of contributions from N independent scatterers,

ξ(r, t) = ejwt
N∑
i=1

ai(r, t)e
jϕi(r,t) (3.19)

where ai(r, t) is a real form factor governing the angular distribution of radiation from the

ith scatterer, ϕi(r, t) is a phase factor depending on its position at time t with respect to

the observation point r. Defining the RCS σ(r, t) to be equal with the square of the envelope

of the field, σ(r, t) ≡ |ξ(r, t)|2, formula 3.19 describes a 2-D random walk in the complex

plane of N steps of lengths {ai}, which was introduced with approximation methods in the

previous chapter 2, and is useful in statistical modelling of the RCS in 2-D plane hence form

a 2-D SAR imagery. To be different from the approach of Valenzuela [124] and modelling the

second factor, p(R) in Equation 3.18, as the χ2 distribution with a freedom of order 2(ν+ 1),

an exact solution of the finite 2-D random walk problem is K-distribution,

p(a; r) =
2b

Γ(1 + ν)
(
ba

2
)(ν+1)Kν(ba), ν > −1 (3.20)

where Γ(·) is the Eulerian Gamma function,Kν(·) is the modified Bessel function of the second

kind of order ν. The most important feature of the K-distribution is that Equation 3.20 leads

to an integral, where the freedom of the χ2 distribution is integrated to be 2N(ν + 1), which

can be evaluated analytically giving the RCS distribution

PN (σ; r) =
b/
√
σ

Γ(M)
(
b
√
σ

2
)MK(M−1)(b

√
σ) (3.21)

where M = N(ν + 1) is referred to as a shape parameter and 2
√
M/b is the slope parameter

of the distribution. In particular the shape parameter M is a real and non negative parameter

which indicates the departure from the exponential model of a fully developed speckle, while

the slope parameter is related to the mean intensity of the local backscattered field.

Another important assumption endowing K-distribution its reasonableness for non-

Rayleigh sea clutter is the statistical independence of {ai} from {ϕi}, leading to an estimate

of the shape parameter M according to Equation (28) and (12) in [125]. Although the sta-

tistical independence of {ai} from {ϕi} is still satisfied, the assumption of an uniform phase

had been found not satisfied when the phase, ϕ, does not distributed uniformly, i.e., the RCS

of 2-D random walk results a directional bias[126]. The non-uniform phase effect led to a

generalized K-distribution, c.f. Section 3.1.2.3.
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Furthermore, the indefinite integral of formula 3.21 can be performed exactly and the

result expressed in terms of another modified Bessel function,∫ X

0
PN (σ; r)dσ = 1− 2

Γ(M)
(
b
√
X

2
)MKM (b

√
X) (3.22)

This property is of particular value for calculating false-alarm and missed-signal probabilities

in modeling the detection of targets in the presence of sea clutter.

3.1.2.3 Generalized-K

Barakat [126] generalized K-distribution (GK) to a directional week diffuser, which has a

phase parameter to describe the phase departure from the uniform distribution, and Jakeman

[127] analysed properties of GK by more general n-dimensional random walk assumption, to

find the identical representation of GK and Rician distribution.

The generalized-K (GK) embodies Rayleigh, K, and Rice scattering scense which are

typical of marine scenes by three-parameters, whose expression for RCS σ(r, t) is given by

[128] which was originally Equation (4.5) in [126],

PN (σ; r) =
cb/
√
σ

Γ(M)
(
b
√
σ

2c
)MK(M−1)(cb

√
σ)I0(

b
√
σ

2
√
M
α) (3.23)

where c =
√

1 + α2/(4M) with α the departure from the uniform distribution of the phase

[127, 126], and I0 is the first kind modified Bessel function of 0th order. The other two param-

eters, 2
√
M/b and M , are inherited from two-parameter K-distribution. In Rice distribution,

α deals with the presence of a dominant specular component [128]. Using the GK distribution.

Ferrara et al. [129] analysed the metallic objects over sea surface to model the em backscat-

ter from sea surface with or without metallic object by one statistic representation, by the

analogy to a Ricean distribution which was discovered by S. O. Rice [130], the pioneer in the

field of communication theory, and is generally used to indicate the link quality for wireless

communication [131]. Fried [132] derived a theory to calculate the two parameters of the

Rician distribution for laser radar cross section from a randomly rough target, and recently,

Rician distribution has been reviewed by radar engineers for radar measurements[133].

3.2 ENL analysis

The RADARSAT-2 is Canadian satellite launched in December, 2007, onboard which is the

next-generation C-band synthetic aperture radar (SAR). RADARSAT-2 SAR products are

characterized by different beam modes used by the satellite and levels of processing for data
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Table 3.1 — Description of RADARSAT-2 SAR data for the experiment

data NO acquisition center beam mode

A 20090903T065905 13.857449W,38.538203N ScanSAR wide

B 20090818T174203 3.4700495E,39.206341N ScanSAR wide

C 20090831T180450 3.0840412W,43.836872N Wide swath single

D 20090903T065703 11.326580W,47.208936N Wide swath single

samples lines incidence angle looks R/A pixel spacing line spacing

10536 12402 19.4336185-49.4577484 4 / 2 50 50

10521 9976 19.4126492-49.4239120 4 / 2 50 50

7378 22743 30.7488785-39.5422554 1 / 1 11.8326979 4.96723223

7378 54122 30.7951603-39.5673752 1 / 1 11.8326979 4.96975422

Table 3.2 — Description of RADARSAT-2 SAR data for the experiment (cont.)

data NO samples lines

C1 7378 11372

C2 7378 11372

D1 7378 10824

D2 7378 10824

D3 7378 10824

D4 7378 10824

D5 7378 10824

products. To examine speckle characteristics observed from RADARSAT-2 polarization prod-

ucts, two SLC products acquired in wide swath single beam mode with dual polarization of

HH+HV and two SCW products acquired in ScanSAR Wide beam mode with dual polariza-

tion of HH+HV have been analysed, as in Table 3.1, which lie in the sea area around Iberian

Peninsula, to the southwest (acquired on Sep. 3th, 2009), the east (acquired on Aug. 18th,

2009), the northeast (acquired on Aug. 31st, 2009) and the northwest (acquired on Sep. 3th,

2009) separately of the peninsula. Due to the large pixel size on azimuth direction of the SLC

data, the whole image was split in azimuth direction into 2 parts and 5 parts for data C and

D respectively, while for SCW data, the image can be processed as a whole. After splitting,

data C turns to be C1 and C2, and data D turns to be D1, D2, D3 D4 and D5, shown in

Table 3.2.

A land mask with a resolution of 1km from NGDC is used to focus the analysis on the
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sea area. The sub images of 30*30 pixels are collected over sea area by the land mask. Firstly

we visit the whole image by sliding a window of 30*30 pixels in step of 15 pixels. The file

lutSigma.xml scaling Look-up Table (LUT) included with the product is used to convert the

digital numbers in the SAR imagery to sigma-nought values, applying a constant offset and

range dependent gain to the SAR imagery.

3.2.1 ENL and Chi-square test

Multi-look processing is the most commonly used speckle reduction technique, it reduces

speckle ’noise’ by averaging single-look images, in the sacrifice of resolution. The principle

behind this technique is that the sum of N identically distributed real-valued uncorrelated

random variables has a mean value which is N times the mean of any one component [136].

Traditional digital multi-look processing consists of incoherent addition of independent looks

of the same scene. The looks can be obtained by partitioning the available signal bandwidth

and processing each look independently. If no look overlapping is used, similar results are

obtained by using a simple mean filter applied on the one look processed image [137]. The

equivalent (or effective) number of looks (ENL) describes the degree of the averaging applied

to SAR measurements, and therefore it is a parameter to describe the speckle characteristic

of SAR imagery, and to be used as an indicator of the quality of SAR images generated, with

the definition as

ENL ,
(E(I))2

VAR(I)
=

[E(I)]2

E(I2 − [E(I)]2)
(3.24)

where I is the intensity of a pixel in the multiple-look image, E(·) and VAR(·) represents the

expectation value and the variance of I respectively [138]. This definition trace back to the

early days when the intensity images are generally acquired by a square-law detector of the

envelope detection [136].

Multi-look processing has been discussed in Section 3.1.1.3, where a weighting filter had

been used to decorrelate sub-looks and arrived at the Gamma distributed intensity, which

supplies an improved estimate of the geophysical parameter σ or σ0 [36]. If the multi-look

is carried out with L correlated sub-looks, the intensity of the averaged image, with a look

number of L
′
< L, is no longer distributed according to a Gamma distribution, but rather

according to Goodman distribution [35, 119], where the intensity distribution is expressed in

terms of L real non-negative eigenvalues λk of the covariance matrix. The Goodman distri-

bution is almost always approached in practice by a Gamma distribution using L
′

rather L,

by the relation with the coefficient of variation (CV) γS

γSI =
1√
L′

(3.25)
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where

γSI ,

√
VAR(I)

E(I)
=

√
E(I2 − [E(I)]2)

E(I)
(3.26)

is the ratio of the standard deviation to the mean and sometimes called a contrast parameter,

a measure of speckle strength which is always unity for speckle[119]. We note in Equation

3.25 that for L independent sub-looks, L
′

will be replaced by L. From this understanding,

ENL has a physical meaning as the reciprocal of the power of coefficient of variation γS .

The contrast is an important parameter contributing the improvement of speckle models

from uniformly Gaussian distributed to finer surface structures considered, such as K, dis-

tributions. Pioneer experimental work by Fujii and Asakura [139] found that the contrast

of the speckle is related to the surface roughness and already one year before, Berny and

Imbert [140] developed an optical instrument for measuring surface roughness based on the

properties of the diffuse and specular reflected fields. ENL was also used to classify targets

with directional behavior from the SAR imagery [141]. Concerning various sea state imaged

by SAR, sea clutter model such as Gaussian, lognormal, K, Rayleigh, Weibull have been

quantitatively tested by Pearson’s χ2
m test [142], which indicates K models sea clutter the

best, then lognormal, which is still better than Gaussian, Rayleigh and Weibull [143, 144].

In this study, ENL was investigated for dual polarization channels of both magnitude data

and sigma nought, and comparisons between HH and HV polarization as well as those with

and without incidence angles affection are plot in Figure 3.2. For the SCW products, sub

images of different sea area (so with different incident angle) from each of the SAR imagery

(both HH and HV) composed a data set. Then the ENLs (Equivalent Number of Looks)

are calculated for each sub image, compared with the ENL given by the description of the

product. For each sub image, the fitness of the histogram with Gamma as well as Gaussian

distribution are tested by chi-square statistical test of χ2
m.

Figure 3.2 (a) (b) come out from multi-look processed products with 4 looks on range

direction and 2 looks in azimuth direction, and (c) (d) come out from single look products. It

seems that the sigma nought values perform at look numbers given by the product description,

while the magnitude detected data performs with an ENL about 4 times as that of sigma

nought, i.e., the sigma nought data suffers from more speckle than the magnitude data. By

the horizontal axis, the ENL of HV channel stably hold on with a value with slightly change,

while it usually has a lower ENL for HH channel in lower incidence angle, i.e. the near

range of the swath, and the difference between near range and far range is bigger for SCW

products than SLC products, since the wide swath has a span of 7 degree of longitude. An

IDL programme with GUI has been built as a tool for this work, in which the ENL of the

sub images could be marked with color, showing the distribution of ENL on a user specified

area, as Figure 3.3. The ENL maps for all the data could be easily worked out.
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(a) azimuth averaged ENL of data A

(b) azimuth averaged ENL of data B

(c) azimuth averaged ENL of data C1

(d) azimuth averaged ENL of data D2

Figure 3.2 — ENL of ABCD magnitude vs. sigma nought for HH and HV, averaged in

azimuth direction
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Figure 3.3 — GUI presents the ENL distribution for a sub image, with the rainbow color

showing the ENL map from a low value of blue from the slick areas to a high value of red by

the homogeneous area. Sub image size of 473 × 473 pixels, center: 1.1271450E, 40.058058N,

center incidence angle: 23.7285 deg.

Statistical properties of sea-clutter are of interest to radar designers for the prediction

of probability of detection and probability of false alarm. In radar applications, goodness of

fit of clutter statistics to a model is important mainly in the low probability of false alarm

region. Standard statistical tests such as the Chi-square goodness of fit test are of limited

use for clutter data [138, 143]. For the modified chi-square test, set K=50, boundary of test

region is where the probability of false alarm less than 0.1. The modified Chi-square result

for the sub image of Figure 3.3 as the Table 3.3. It was found that the ENL of the whole sub

image is effected mainly by the ship signature, and the Gamma distribution always fit better

than Gaussian distribution in both polarization of magnitude data and sigma nought data.

3.2.2 Generalized K motivated by ENL analysis

ENL maps for all the data had been worked out, from which we can find local areas with large

range of data value, since the image scenes is mainly over the coastal area, large area of slicks,

ships, etc, where ENL turns to be a minimum value at the edge of signatures [145]. To set

different size of sub image for ENL computing could identify whether it is a single target or

a large area of sea surface phenomena. Sub images with ships are investigated by sub images



66 CHAPTER 3. STATISTICAL ANALYSIS

Table 3.3 — Modified Chi-square test

Center: 0.80935087E, 38.932451N

Incidence angle: 20.80470 deg., Size: 30× 30 pixels

SB7 Magnitude HH Magnitude HV Sigma0 HH Sigma0 HV

Min value 305 132 0.000215842 0.0000401194

Mean value 2166.8629 932.92820 0.020911358 0.0037265709

Max value 16069 8621 0.598286 0.172445

ENL 1.14512 1.18036 0.141585 0.0707068

χ2
m Gaussian 30.6473 38.7491 49.1862 54.6243

χ2
m Gamma 16.4603 18.8614 39.3768 52.3360

size of 30×30 pixels and 300×300 pixels. To see the goodness of Gamma distribution fitting

the SAR imagery, a ratio of Gamma distribution to Gaussian distribution over the χ2
m value

is plot in Figure 3.4, the smaller of the χ2
m the better fit. With the horizontal axis of the ENL

value, figure 3.4 indicates that Gamma distribution performs better than Gaussian at the

lower value of the ENL, i.e., where has a heavy contaminated area. The advantage of Gamma

distribution is especially overwhelming for the magnitude data. For the sigma nought data,

Gamma distribution has not a much clear advantages over Gaussian distribution. Gamma

distribution performs better at smaller size of sub images when using magnitude data, while

a bigger size of sub image would be better for Gamma distribution when using sigma nought

data. Ferrara et al. [129] did the similar analysis, and an indicator of homogeneity by ENL

was used to form a generalized K distribution.
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(a)

(b)

Figure 3.4 — Test ratio of Gamma over Gaussian as function of ENL, (a) for the magnitude

Gamma distribution performs better than Gaussian at the lower value of the ENL, i.e., where

has a heavy contaminated area. (b) for sigma nought the advantage of Gamma distribution

has not clear advantages over Gaussian distribution.

3.2.3 Polarization and non-polarization contributions over the sea surface

Although the contrast parameter, γ, of the surface considered the finer structures in terms

of correlate and non-correlate, it resolved the problem still remains by a scale of sub-image,

where a region of interests (ROI) should be selected priorly. Other improvements such as G

distributions, considered the detections as backscatter multiplied by speckle contributions. We

will not deny this approach, just considering about its general success, but we now reconsider

this problem by approach of more physically decomposition of scattering mechanisms, i.e.,

Bragg and Scalar contributions. The reasonability of this reconsideration relies on the fact

that the sea surface is never static hence the speckle phenomenon appearing on the ocean

scenes envoys different information from that on the land scenes.
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Furthermore, the priority of polarization decomposition of single pixel makes difference

from the detection on 2-D sub-image scale to the detection within single pixel. By the pixel

scale, with a brief recall of Chapter 2, we decomposed radar scattering matrices into Bragg

and Scalar contributions physically. The decomposition is an iteration initiated with the

radar incidence angle and then controlled by a local incidence angle which is function of

co-polarization and cross-polarization. Based on these developments and testing, a strategy

has been refined to analyze the signature of different features, to retrieve wind seas and sea

swell parameters, as well as slick areas, ships, oil rigs, such non-polarized targets that may

be buried in the Scalar contributions.

3.2.3.1 Polarized-K distribution

For polarimetric SAR, the single-look SLC data can be represented by a scattering matrix,

S, while the multi-look processing of scattering matrix could not be the simple average,

since the vector summation of random complex numbers obeying circular Gaussian is still

complex circular Gaussian[1], but should turn to the covariance or coherency matrix, which

are the statistical average introduced in Chapter 1. Without loss of generality, we will present

polarimetric data, both single- and multi-look, using the coherency or covariance matrix in

the following. After carefully estimating polarimetric scattering coefficients for both Bragg

and Scalar contributions, we then proposed a sea clutter model, polarized-K (Pol − K)

distribution, which describes quite the real sea surface.

We decomposed Bragg and Scalar scattering as dealing with single scattering respectively,

for each pixel, hence the covariance matrix C or coherency matrix T has one single non-

zero and non-negative real eigenvalue. The eigenvector represents scattering process, and this

eigenvalue relates to its magnitudes [1]. This decomposition gives the probability of weighting

each pixel to be Bragg or Scalar. The flowchart in Figure 3.5 describes this strategy. Moreover,

the reciprocity property satisfied by the equal cross-pol of both Bragg and Scalar respectively

promise the simple representation of T3 and C3 for the coherency and covariance matrices.

For pure target, the single non-zero eigenvalue λ is equal to the Frobenius norm of the unit

target vector u and corresponds to the span of the associated scattering matrix [1], i.e.,

λ = S∗HHSHH + S∗HV SHV + S∗V HSV H + S∗V V SV V = span(S) (3.27)

where S = {Sbr, Ssa} corresponding to λ = {λbr, λsa}, could be the scattering matrix for

either Bragg or Scalar contribution.

The derivation of Pol − K distribution stems from Wishart distribution (c.f. Equation

3.17 in Section 3.1.1.4) which is based on the circular Gaussian assumption, and wherein

the complex covariance matrices Σz, defined in Equation 3.6, is the average of complex
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Figure 3.5 — Pol-K detection

covariances, i.e., the scattering coefficients, of each complex measurement, hence different

from the covariance matrix C defined in Chapter 1. Alternatively, for each single-look Sinclair

matrix S, Σz, defined in Equation 3.6, is the total scattered power which is called span,

Σz = S∗HHSHH + S∗HV SHV + S∗V HSV H + S∗V V SV V = span(S) = Tr(C) = Tr(T ) (3.28)

A simple analogue is to rewrite the GK distribution of Equation 3.23 into form of eigen-

value λ of polarimetric covariance matrix C3 / coherency matrix T3,

PN (λ) =
cb/
√
λ

Γ(M)
(
b
√
λ

2c
)MK(M−1)(cb

√
λ)I0(

b
√
λ

2
√
M
α) (3.29)

where λ = {λbr, λsa} could be the eigenvalue of the covariance matrix for either Bragg or

Scalar contribution, with the three parameters, i.e., M, 2
√
M/b and α, inherited from GK,

and I0 is the first kind modified Bessel function of 0th order. Before the completion of Pol−K
modelling, the parameterization should be specified.

3.2.3.2 Parameterization

The Pol − K distribution describes quite the real sea surface by considering the ratio of

Bragg over Scalar contributions, with polarimetric scattering coefficients estimated for both

Bragg and Scalar contributions. Thus the parameterization here is different from those used

in modelling the averaged radar measurement, but considering the fine details within single

pixel, where the two contributions have been decomposed. The basic model for the K-family

consisted in Equation 3.19 could be decomposed into an addition,

ξ(r, t) = ejwt

 Nb∑
ib=1

Bib(r, t)e
jϕib(r,t) +

Nsc∑
isc=1

Scisc(r, t)e
jϕisc(r,t)

 , (3.30)
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as in Figure 2.9(a) and 2.9(b). With the three assumptions described in Section 2.3, what

we care about is the summation of Bragg and Scalar respectively, which result in only two

components as in Equation 2.31.

1. Shape parameter M

The shape parameter M is a real and non negative parameter which indicates the depar-

ture from the exponential model of a fully developed speckle, as a result of the bunching

phenomena [41, 56], which is not neglectable for pixel resolution as fine as the longer

wavelength. The bunching phenomena can be included in the random walk in Equation

3.19 as well as 3.30, taking the scatter population N(in Equation 3.19 is Nb+Nsc) locally

Poisson, which is unconditional integrated with a Gamma distributed local mean and

becames the negative binomial (NB) distribution ruled by the non-negative bunching

parameter ν [146],

p(N) =

(
N + ν

N

)(
ν + 1

N + ν + 1

)ν+1( N

N + ν + 1

)N
(3.31)

where N is the mean number of N . It could be clear from the NB model that the

bunching effect introduced an additional number of scatterer, N + ν + 1, instead of the

real population of scatterers, N , and the Equation 3.31 gives the probability for the set

of N scatterers with the presence of ν of them to be strong ones. As M = N(ν + 1)

gets larger, the NB distribution tends to a Poisson distribution and the K-distribution

becomes an exponential model. According to Equation (12) and (28) in [125], with the

assumption of statistical independence of {ai} from {ϕi} in Equation 3.19, M could be

identified with 2Neff , when the scatterer population N is asymptotically large, and Neff

is defined to be a mean ’effective’ number of scatterers,

Neff ≡
N〈a2〉2

〈a4〉
(3.32)

where a is the form factor in Equation 3.19 governing the angular distribution of radiation

from the scatterers, and 〈am〉 is the mth moment of p(a, r) in Equation 3.20.

2. Slope parameter 2
√
M/b

The slope parameter is related to the mean intensity of the local backscattered field,

2
√
M

b
=
√
E(σ) (3.33)

where E(σ) is the mean RCS of the scattered field.

3. Phase parameter α

The phase parameter α describes the departure from the uniform distribution of the
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phase [127, 126], biasing the possibility of the phase ϕ in Equation 3.19 by the von Mises

form

p(ϕ) =

{
exp(αcosϕ)

2πI0(α) , −π < ϕ < π

0, elsewhere
, (3.34)

where I0 is the first kind modified Bessel function of 0th order, comparing with the

uniformly distributed phase ϕ in Equation 3.19 as

p(ϕ) =

{
1

2π , −π < ϕ < π

0, elsewhere
.(3.35)

In Rice distribution, α deals with the presence of a dominant specular component [128].

3.3 Availability of Pol −K distribution

The basic quantity measured by a coherent radar system at each pixel is a pair of voltages in

the in-phase and quadrature channels [36], then the real and imaginary parts of the complex

signal are derived by mixing (detect) the received signals with in-phase and quadrature local

oscillators, hence the labelling with I and Q [42]. Earlier instruments utilise a square law

detector to restore the detected radar returns (detected voltages) as intensities. For most

applications the representation of the image magnitude is enough, i.e. square roots of de-

tected radar returns (envelope of detected voltages), and so called amplitude. If the image

has been power detected, the peak intensity is the maximum pixel value in the main lobe

of the impulse response function (IRF) [147]. Many of distributions of univariate laws have

been used to describe SAR data, assuming the multiplicative model, such as Rayleigh, Square

Root of Gamma, Exponential, Gamma, and the class of the KI distribution. The adequacy

of these distributions depends on the data format (amplitude, intensity, complex etc. and the

number of looks) and the homogeneity of the data. Here it must be stressed that, although

referring to [148] which said that multiplicative model is a very common statistical model

for noisy polarimetric SAR data, assuming the backscatter obeys a generalized inverse Gaus-

sian distribution, while the speckle noise follows a Wishart distribution, and although the

assumption, that the the coherent illumination on a surface with roughness of the order of

a wavelength may cause speckle as a multiplication of the backscatter and the speckle, has

been greatly acknowledged [149], it has been never to say that speckle has a physical source

for radar received signal, let alone for noise.

The total data set, including Table 2.1 and 3.1, is analysed to test the Pol−K distribution

introduced in the end of the former Section 3.2.
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(a) BraggHH complex (b) Scalar complex

Figure 3.6 — SLC decompositon and their circular Gaussian distribution

3.3.1 Single look complex data

The decomposition of Bragg and Scalar from the SLC full polarimetric data is also single

look complex data. The probability density function for real and imagery part should not

be other than the circular Gaussian which was supposed for the large number of randomly

distributed scatterers. Figure 3.6 and 3.7 denotes a sub image of 512×512 pixels decomposed

into the two scattering contributions at the 6th iteration, shown as the circular Gaussian as

well as the amplitude. The incidence angle was 27.06 deg. and the wind speed was 17.5 m/s

for that day of 23, April 2012, reads from Table 2.1.

Complex data exists only when single look detection has been carried out. For multi-

look processing, complex values from the inverse FFT does not reduce speckle, but only the

sum of iid hence still single look. In SLC products, the measurements result in a matrix of

scattering coefficients, each image pixel is represented by a complex (I and Q) magnitude

valued, dimensionless numbers that describe the transformation of the transmitted EM field

to the received EM field for all combinations of transmit and receive polarization [116]. No

interpolation into ground range coordinates is performed during processing for SLC image

products, and so the range coordinate is given in radar slant range rather than ground range

[99, 94]. Pixel spacings are determined by the radar range sampling rate and pulse repetition

frequency (PRF). The processing for all SLC products covers a single look in each dimension

using the full available signal bandwidths.
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(a) BraggHH amplitude (b) Scalar amplitude

Figure 3.7 — SLC decompositon and their amplitudes

3.3.1.1 Second order statistics

The variation, as second order statistics, of the complex data,

var(ξ(r, t)) = E(<(ξ(r, t))2) + E(=(ξ(r, t))2)− E(ξ(r, t))2 (3.36)

turns out to be

var(ξ(r, t)) = E(<(ξ(r, t))2) + E(=(ξ(r, t))2), (3.37)

since the mean complex data E(ξ(r, t)) = 0, as shown in Figure 3.8, wherein is the histograms

for BraggHH and Scalar at the 6th iteration, as well as HH. Here comes the relation of

variation of the complex data to the radar cross-section, formerly introduced and defined to

be equal with the square of the envelope of the field, σ(r, t) ≡ |ξ(r, t)|2.

The amplitude of the backscattered wave in Equation 3.30 could also be decomposed into

Bragg and Scalar contributions,

Apq = |ξpq(r, t)| = |Bpq + Scpq| , (3.38)

providing the independence of Bragg and Scalar contributions, and the same for intensity of

single look pixel,

Ipq = |ξpq(r, t)|2 = |Bpq + Scpq|2 , (3.39)

where p, q ∈ {H,V } and Bpq and Scpq are the complex polarization components in Equation

2.31. Figure 3.9 shows the histograms for VV/HH, BraggVV/HH and Scalar, at the 6th

iteration. It is interesting to see the abstraction effect of scalar from Bragg contributions for

the VV-pol, while the summation of scalar and Bragg for the HH-pol.
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(a) Real part

(b) Imaginary part

Figure 3.8 — Histogram of real and imaginary parts of BraggHH and Scalar at the 6th

iteration

3.3.1.2 Sub-band decomposition

Recognizing scenes in a single look meter-resolution SAR imagery requires the capability

to identify relevant signal signatures in condition of variable image acquisition geometry,

arbitrary object pose and configuration. Among the methods to detect relevant scatterers

in SAR images, we can mention the internal coherence [150]. The SAR spectrum splitted in

azimuth generates a series of images which preserve high coherence only for particular object

scattering. This is the principle of multi-look processing method, which can be used on SLC

data by a sub-band decomposition technique. For imageries with sense of ocean, the physical

base is the mapping of ocean wave motion to the SAR imagery on the azimuth direction by

Doppler frequency. From Figure 3.10 to 3.12 gives an example for the sub-band processing, the
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(a) HH-pol

(b) VV-pol

Figure 3.9 — Histogram of amplitude for VV/HH, BraggVV/HH and Scalar, at the 6th

iteration

sub-image is the same one from the day of 23, April 2012. Furthermore, the RADARSAT-2

SAR antenna design allows the antenna to be partitioned into two halves along the direction

of flight and thus permits two closely spaced observations to be made of the same scene to

observe temporal changes [151].

As introduced in the former Section 3.2, the Equivalent Number of Look (ENL) is a

parameter of multi-look SAR images, which describes the degree of averaging applied to the

SAR measurements during data formation and postprocessing. [152] For the SLC sub-image

in Figure 3.10 and the 2-look processed sub-image in Figure 3.12, the ENL is 0.59648025

and 0.99622768 respectively. While the coefficient of variation γSI is the reciprocal of squared

ENL, 1.2947978 and 1.0018915, and γSA is 0.61222398 = 1/
√

2.6679601 and 0.47314656 =
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Figure 3.10 — SLC subimage (VV)

(a) Hamming filter (b) Sublook1 amplitude (c) Sublook2 amplitude

Figure 3.11 — Sublooking process
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Figure 3.12 — 2-look processed from Figure 3.10

1/
√

4.4669246 respectively, meaning the amplitude has a less fluctuate from the mean than

the intensity.

3.3.2 Intensity detected data

The use of the word ’intensity’ is by analogy with measurements at optical wavelengths and

is synonymous with power or energy [36]. The intensity of the detected field defined by

I(r, t) = |ξ(r, t)|2 = <(E)2 + =(E)2 (3.40)

had discussed as a variable change from the complex data in the former subsection. More

generally, intensity and amplitude detected data is multi-look processed, for reducing the

variation around the estimate for σ or σ0.
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For the multi-look processed intensity imagery, N -look intensity of each pixel [1, 134],

I(r, t) =

N∑
i=0

(<(E)2
i + =(E)2

i ) (3.41)

3.3.3 Amplitude detected data

If the image has been power detected, the square root of the intensity is the amplitude. An

extension of the complex-Gaussian distribution considering about a single large scatterer (dif-

fuser) with deterministic amplitude embedded in a rough surface is the Rician distribution,

which comes from Rician communication channel and had been applied to radar measure-

ments [35, 130, 153].

3.4 Discussion and conclusion

According to the principle equation (3.19) of K-family, our decomposition has a consistency

with K-distribution concerning the treatment on independent scatterers.

The shape parameter M determines the shape of ’tail’. A higher value of M corresponds

to a shorter ’tail’ of the PDF. The phase parameter α determines the shape of ’height’. A

higher value of α corresponds to a lower peak of the PDF. When α = 0, Pol-K degrades to

K distribution, i.e., K is a special case of Pol-K distribution. For a 1024 × 1024 sub-image,

given the same parameters as shown in table 3.4,

Table 3.4 — Pol-K parameters

for Bragg contribution for Scalar contribution

parameter estimate parameter estimate√
E(λbra) 4048.53

√
E(λsca) 1816.98

M 18.28 M 16.75

b 0.002 b 0.005

α 1.85 α 2.75

the comparison of Pol-K vs. K distribution are shown in figure 3.13. Although K distri-

bution describes the shape of ’tail’ as well as Pol-K does, there is an ouverestimate for the

’height’ of the peak. This disadvantage does rarely matter with the application such as ship

detection, where the problem focus on the ’tail’ part of the PDF. The merit of Pol-K will be

find for an application such as oil slick detection.

In this chapter, we proposed a generalized K motivated by ENL analysis, the Polarized-K

distribution, which is established by the decomposition introduced in chapter 2. The principle
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Figure 3.13 — Comparision of Pol-K vs. K distribution for a 1024*1024 sub image

is based on the physical generation of speckle, leading to separated modellings for each of

the different scattering mechanisms, i.e., Bragg contribution and Scalar contribution. This is

different from traditional modellings for speckle, where the latter are usually considering the

direct radar measurements as the single variable, and the physical information inside pixel

areas is ignored.





CHAPTER

4 Target detection

From the number of trials it happens and fails in a certain number of trials,

without knowing any thing more concerning it, one may give a guess whereabouts

it’s probability is, and, by the usual methods computing the magnitudes of the areas

there mentioned see the chance that the guess is right. And that the same rule is

the proper one to be used in the case of an event concerning the probability of which

we absolutely know nothing antecedently to any trials made concerning it, seems to

appear from the following consideration: viz. that concerning such an event I have

no reason to think that, in a certain number of trials, it should rather happen any

one possible number of times than another.

An essay towards solving a problem in the doctrine of chances, by Thomas Bayes,

published in 1763 by Richard Price

As early as the Mercury programme, astronauts experienced the low orbits Earth observa-

tion. Then photographs taken by the Gemini programme gave the first indications that usable

information about the oceans could be obtained from spacecraft. Skylab provided dramatic

photographs of internal waves, and later the internal wave solitons were discovered for the

first time by the Apollo-Soyuz flight in 1975, with the ground truth measurements from the

experience of Skylab. Followed that, microwave sensor and radar altimeter had been equipped

on the first sea satellite SEASAT. Attributed to the plentiful SAR imageries over the ocean,

imaging mechanisms for sea surface phenomena have been studied by a group of oceanogra-

phers in the early 1980s. At that time, ship targets could be found only by their wakes[154],

due to the low imaging resolution that could not resolve a ship target beyond one single

pixel. One of the objectives of those studies aimed at the automatic interpretation of SAR

81
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imageries. However, it was till 1993 when the general concept of automatic target recognition

(ATR) was introduced by MIT scientists [155]. The principle of ATR technique is that the

target detection depends on two fundamental radar parameters [44], i.e., the target-to-clutter

ratio and the standard deviation of the background clutter.

To realize ATR for target detection using SAR imageries, statistical detectors had been

investigated. One of the most recommended algorithm is the cell averaging CFAR detector,

somewhere also referred to as the power ratio detector (PR), which considers the statistically

modelling of the background, and then looks for pixels with a low probability of belonging to

the background. Besides of the modelling of the background, likelihood ratio test detectors

(LRT) consider also the modelling of the target for optimal detection [54]. Considering about

the optimal detection, one aspect of the radar waveform that requires particular attention is

its polarisation and the dependence on polarisation of the back-scattered radar signals, which

can be represented by the polarisation scattering matrix [42]. Departing from Kennaugh’s

pioneering introduction of polarization into radar polarimetry in 1952, polarimetry has been

utilized on radar backscattering mechanisms with different target parameter sets[13, 156,

157], which have already shown their great power in the domain of classification. Based

on Huynen’s parameterization [13] of a scattering matrix, Dilsavor et al.[158] proposed a

family of polarimetric generalized likelihood ratio tests (PGLRTs) for terrain targets. Freeman

and Durden[159] reported that three-component scattering model is successfully applied to

decompose mixed scattering components in measured POLSAR data. However, despite of the

greatly use and successful of target decomposition(TD) theory in terrain target classification,

the sea surface has still been simply treated as ’kind of Bragg’ scatter.

As described in chapter 2, the ocean surface has much more fluctuation than what it had

been expected with comparison to the surface over the land. In fact, before the launch of

the first polarimetric SAR satellites, such as Envisat which launched in 2002 being capable

of imaging in dual-polarization, and RADARSAT-2 which launched in 2007 with a quad-

polarization imaging capability, there had been already plenty of investigations about the

capability of polarimetric data on ship detection, using air-born SAR data [160, 61]. Daniel et

al. [161] discussed different cases from fully polarimetric data to single HH polarization data,

from 1-ft resolution data to 1-m resolution data, for the performance of the discrimination

algorithm. It was found that at operational satellite SAR incidence angles (< 60◦) there is

a significant improvement of ship-sea contrast when the full polarimetric information is used

instead of the single channel polarization information (HH,VV,or HV) [162]. Yeremy et al.

[53] suggested that with polarimetric data, ship detection algorithms will be developed with

a false alarm rates reduced by correctly classifying the false alarms.

So far, the polarimetry technique benefit to ocean remote sensing mainly on retrieving

sea surface slope from the orientation angle estimated on the L- or P-band SAR polarization
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imageries [1]. We used polarimetric sea sruface slope estimate in Chapter 2 to decompose

the sea surface scattering mechanisms. Following this decomposition, an Bayesian detector

relates to man-made target detection over the sea surface, which is based on generalized LRT

and therefore named as TD-GLRT has been worked out. Since sea spike as the general source

of false alarms had already being analysed as the sea surface signature as in Chapter 2, what

we will analyse in the TD-GLRT approach is the scattering relates to scalar.

4.1 Polarimetric Bayesian detectors

The cross-polarized backscattering received by RADARSAT-2 SAR enables target detection

at smaller incidence angles. Research works indicated also that the HH/HV combination

provides optimized target detection over a greater range of incidence angles than those of

RADARSAT-1. In review of state-of-art for ship detection [54], the generalized likelihood ratio

test (GLRT) assuming the received signals as Gaussian distributed for polarimetric data (PG-

GLRT) has been recommended by researches of a group of Italian scientists [163, 164]. In fact

as early as 1994, Dilsavor et al.[158] proposed a family of polarimetric generalized likelihood

ratio tests (PGLRTs), one PGLRT from which, designed for both Gaussian and K-distributed

clutter with known covariance and unknown target amplitude, phase, and orientation angle

about the radar LOS, gave a performance lying between those of the optimal polarimetric

detector (OPD) and the polarization whitening filter (PWF).

4.1.1 OPD

Novak et al [165] derived two advanced detectors, OPD and polarimetric matched filter

(PMF), to make use of polarimetric radar information in the detection and discrimination

of targets in a ground clutter background. Compared with simpler detectors using only am-

plitude information, OPD and PMF illustrated an advanced performance. OPD is derived

in an ideal situation where the parameters (σ, ε, γ, ρ) and target-to-clutter ratio (T/C)in are

exactly known, and hence it yields the best possible probability of detection (PD) for a given

false alarm probability (PFA). Unfortunately, the ideal situation is usually not satisfied in

practical.

4.1.2 PWF

PWF is another extreme case with completely unknown target [166], and hence is not optimal.

Processing the complex polarimetric measurements into an intensity image as a single channel

measurement, PWF will find an optimal weighting transformation to achieve the minimum

coherent speckle for homogeneous clutter characterized by fully polarimetric Gaussian clutter
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model. The approach is evaluated via the ratio of the standard deviation of the image pixel

intensities to the mean of the intensities, i.e., the ENL. The intensity (IPWF ) results from

PWF could be expressed as

IPWF = XT∗Σ−1
c X, (4.1)

where the complex polarimetric measurement

X =


HH

HV

V V

 . (4.2)

and the covariance of X, Σc = E(XT∗X), defined similarly as Σz in Equation 3.6. The

minimum ENL of IPWF achieved by PWF is −4.8dB.

4.1.3 PGLRTs

PGLRTs are parameterized by targets’ amplitude, phase, and orientation angle about the

radar LOS, i.e. the vector (m, ρ, ψ). Those target parameters are unknown in many practical

applications for the target modelling, but could be estimated by the detectors. It had been

demonstrated that when the parameter vectors are known, PGLRT reduced to Polarimetric

LRT (PLRT), which has equal performance with PMF, while if the parameter vectors are

unknown, PGLRT equals to PWF. PGLRTs had been considered for fully polarimetric terrain

responses [158] based on GLRTs.

According to Bayes criterion, the decision regions are defined by the statement as Equation

(12) in [167] which be rewritten here

pr/H1
(R/H1)

pr/H0
(R/H1)

≷H1
H0

p0(C10 − C00)

p1(C01 − C11)
, (4.3)

where H and p represents the hypothesis and the probability respectively. The subscription

0 and 1 stands for the false and true of the hypothesis H, as well as the priori probabilities

of the false and true exist in the real life, while the subscription r/H0 and r/H1 denotes the

observed probabilities of the observation r provided the false and true happened respectively.

C represents the cost of the decision, i.e., it cost C10 when you decide to be true when it is

false in fact, and the rest can be assigned in the same manner. The left of the inequality is

called the likelihood ratio and denoted by Λ(R), and the right is threshold of the test and

usually denoted by η. This Inequality 4.3 is a likelihood ratio test (LRT), when the likelihood

ratio greater than the threshold, we should decide the observation r to be said as true, and

vice verse. In the target detection using SAR imagery, H1 denotes truly to be the target while

H0 denotes falsely to be the target hence to be the background, and simply to set the cost
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for right decisions, C00 and C11, to be 0, while the wrong decisions, C10 and C01, to be 1,

and obtain priori probabilities for the target and background by a false alarm rate.

To extent the hypothesis H with parameter(s), which would be one or more and will not

simply be 0→ true or 1→ false but variate(s) within a set of values, i.e. in [min,max], and

to represent these parameters by a vector Θ, the Inequality 4.3 will be extend as

Λ(R) =
pr/Θ1

(R/Θ1)

pr/Θ0
(R/Θ0)

≷H1
H0

η, (4.4)

In general case the function pr/Θ(R/Θ), which is a function of Θ, is denoted as the likelihood

function, and the maximum likelihood (ML) estimate is the value of Θ at which the likelihood

function is a maximum. If ML estimates are used in Inequality 4.4, i.e.,

Λ(R) =
maxΘ1pr/Θ1

(R/Θ1)

maxΘ0pr/Θ0
(R/Θ0)

≷H1
H0

η, (4.5)

is called a generalized likelihood ratio test (GLRT).

Further extensions of PGLRTs have the PGLRT used for multi-dimension parameter

space in [168], and the PGLRT which is mainly focus on the terrain response of radar [169],

as well as the one for slicks detection over the sea [170].

4.1.4 TD-GLRT

Utilizing TD theorems, it is reasonable to model the polarimetric measurements into decom-

posed components, which may contribute both as the target and the background. Following

the decomposition in Chapter 2 and the statistical analysis in Chapter 3, the Bragg con-

tributes as the depolarized composite of and surface short waves and man-made target while

the Scalar contributes as the polarized scatterings which is considered as the composition of

target and wave breaking contributions. Thus for target detection, both Bragg contribution

and Scalar contribution supply as the background, wherein the man-made target buried, and

which could be modelled as

Xbr =


BraggHH

BraggHV

BraggV V

 (4.6)

and

Xsc =


ScalarHH

ScalarHV

ScalarV V

 , (4.7)

and finally to model the polarimetric measurement X as

X =


HH

HV

V V

 = Xbr +Xsc. (4.8)
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The hypothesis used for Bayesian detection is considered as

H0 : X = Xbr(wave) +Xsc(water)

H1 : X = Xbr(target) +Xsc(target)
(4.9)

If it is true for hypothesis H0, the measurement X comes from the sea water, and the other

hypothesis will be fit when X comes from a man-made target on the sea surface.

4.1.4.1 Modelling the background

To implement the Bayesian test for hypothesis 4.9, the statistical modelling for Xbr(wave)

and Xsc(water) should be given,

pX(X|H0) = pX [X|Xbr(wave), Xsc(water)], (4.10)

which are determined by the first and second order statistics of the Bragg and Scalar contri-

butions from the ocean wave.

4.1.4.2 Modelling the target

For an optimal detection, the statistical modelling for the target should also be given priorly.

Considering about the difficulty in practical, we will model the target with its first and

second order statistics, similarly to those for the background. The statistical modelling for

Xbr(target) and Xsc(target) should be given,

pX(X|H1) = pX [X|Xbr(target)], p[Xsc(target)], (4.11)

which are determined by the first and second order statistics of the Bragg and Scalar contri-

butions from the man-made target on the sea surface.

With the Scalar contribution decomposed from full polarization data besides Bragg con-

tribution, what we will propose in this chapter is one generalized LRT (GLRT) using target

decomposition (TD-GLRT). The hypothesis test has been given in inequation (4.9). It ap-

pears somehow like the multifamily LRT (MFLRT) [171], by separating the two hypotheses

into four. But considering that both Xbr(target) and Xsc(target) comes from target and both

Xbr(wave) and Xsc(water) comes from the background, the problem is still two hypotheses

problem. The radar measurements vector X composites the total backscattering contributions

of each pixel area by different polarization channels, and Xsc(target) denotes the electromag-

netic coefficient for man-made target. The description ’water’ specifies Xsc(water) could be

considered as all together the specular or Rayleigh scatterer formed by the wave breaking

processes, which all relate to water drops but not the wave, although by using the concept of

Scalar, we did not specify which comes from the crest of the longer wave before it breaks or
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(a) Scalar power (b) Scalar power, zoomin

(c) BraggHH power (d) BraggHH power, zoomin

(e) BraggVV power (f) BraggVV power, zoomin

Figure 4.1 — Bragg and Scalar ship subimage, Co-pol, 6th Iteration. The high target-

background-ratio of Scalar contribution in comparison with those from Bragg contribution,

especially when zoomed in (right column)
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which comes from surface foams formed by wave breaking. It is easier to explain the phys-

ical meaning of Xbr(target) and Xbr(wave), since it is considerable of the Bragg resonant

scattered from man-made target and not mention to the sea surface Bragg wave. One prior

knowledge of radar measurements should be noticed is that the energy from the wave should

usually be much more than that from the water drops. This could also be illustrated in the

coming plots in Figure 4.1.

Based on the above findings and understandings, the composite hypothesis for the sea

surface water Scalar contribution equals that for the non-water scalar contributions, which

says

H0 : Xsc = Xsc(water)

H1 : Xsc = Xsc(target)
(4.12)

where Xsc is the Scalar measurement modelled as in Equation 4.13, and Xsc(water) and

Xsc(target) could be estimated by the first and second order statistics, Θ = [E(σ), VAR(σ)],

wherein is the first and second moment of the physical parameter, the scattering coeffi-

cient, σ. For amplitude, there is only difference between co-pol and cross-pol, i.e. |ScHH | =

|ScV V |, |ScV H | = |ScHV | by our findings and assumptions in Chapter 2. At this point, Equa-

tion 4.13 could be simplified as

Xsc =

[
Scalarco−pol

Scalarcross−pol

]
. (4.13)

The parameter vector Θ = [E(σ), VAR(σ)] are unknown at pixel scale but could be known

as the whole image, hence at pixel scale to establish a GLRT detector with Θ = [E(σ), VAR(σ)]

could be selected for the whole image, and could be realized respectively as

Λ(Xsc) =
maxE(σT )maxVAR(σT )pXsc/E(σT ),VAR(σT )(Xsc/E(σT ), VAR(σT ))

pXsc/H0
(Xsc/H0)

≷H1
H0

η, (4.14)

where pXsc/E(σT ),VAR(σT )(Xsc/E(σT ), VAR(σT )) denotes the likelihood function of radar mea-

surement Xsc provided the man-made target radar coefficient σT has a mean of E(σT ) and

variation of VAR(σT ), which is equivalent to the probability function of radar measurement

Xsc. The same manner are followed by pXsc/E(σW ),VAR(σW )(Xsc/E(σW ), VAR(σW )). But for

pXsc/H0
(Xsc/H0), with the parameter fixed, denotes the probability function, which is equiv-

alent to the likelihood function.

The merit of TD-GLRT lies in the use of scalar component Sc of radar measurement

ξ = Bragg + Scalar, instead of using ξ directly, simplified the parameter vector Θ and even

to fix it for H0 as in inequation 4.14. The next step of this approach is to design a GLRT

by replacing the unknown Θ = [E(σ), VAR(σ)] with its ML estimate and setting up the LRT.

Based on the ENL analysis, the estimation of Θ = [E(σ), VAR(σ)] for background is established

over homogeneous areas where the ENL is lager than those of heterogeneous areas, and the
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latter is used to estimate Θ = [E(σ), VAR(σ)] for the target. The narrow variation of Scalar

background compared to Bragg and HH background could be find also in figure 4.2.

Figure 4.2 — Amplitude histograms for Bragg and Scalar ship subimage vs. HH, 6th

Iteration

4.2 TD-GLRT detection

To realize the TD-GLRT detection, ENL of quad polarization RADARSAT-2 SLC data will

be used to perform a quick method for background and foreground parameter estimation.

One sub-image with ship targets is shown in Figure 4.1 to 4.2, with the pixel location from

(512, 1024) to (1535, 2047), acquired on February 28th, 2011, over the coastal area of Ijmuiden

port, Holland. Compared with Bragg co-pols, either Scalar co-pol and cross-pol from both

Bragg and Scalar shows a much more lower background, rising the ratio of target to clutter

(T/C). Here the background indicates the reflection from water. The histograms denotes a

lower variation of scalar component compare with those of Bragg and the total data (HH).

4.2.1 ENL estimator

Conventional ENL has been defined for the case of single polarization SAR. Manually select

a homogeneous image region, assuming the speckle has been fully developed and without

texture, the scattering coefficient is circular complex Gaussian. For PolSAR data, the ENL

has traditionally been estimated separately for each polarimetric channel and then averaged

[152]. Continued with the previous work on statistical analysis in Chapter 3, we apply an

ENL threshold to estimate the parameter vector Θ = [E(σ), VAR(σ)] for both the target and
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Figure 4.3 — ENL histogram with two definitive peaks indicating a good candidate for

thresholding

the background represented by the Scalar contribution,

ENL Shetergeneous
homogeneous threshold. (4.15)

The principle of this method is based on the common sense that the presence of texture will

increase the locale variance and therefore leads to an underestimation of ENL, according to

the traditional definition as the coefficient of variation in Equation 3.25, and on the other

hand, will increase the scatters in the single resolution cell hence increase the backscattered

intensity of the incident microwave, corresponding to the brighter pixels on the SAR image.

As the expression in Equation 4.13, Xsc is a two dimension vector, and the same degradation

for ENL, the polarimetric definition of which as

ENL =
Tr(Σ)2

〈Tr((XT∗
sc Xsc)2)〉 − Tr(ΣΣ)

(4.16)

where Σ = E(XT∗
sc Xsc) is the covariance matrix of Xsc. This polarimetric ENL expression

is an extention of the one derived in [152], and 〈·〉 stands for the average within the moving

window. The homogeneity was then analyzed by computing the ENL using a moving window

of 30 by 30 pixels from which the mean covariance matrix Σ was estimated as well as the

mean of the trace of the product of the covariance matrix. Because the swath of the satellite

image for quad polarization data is only half of that of the SCW products, a window of 30 by

30 pixels contains less scatters for SLC than that of the SCW data. Different sizes of window

have been chosen in order to keep enough samples of the correlated scatterers and incoherent

ones. A landmask from NOAA of 1km resolution was used to calculate the mean value for



4.2. TD-GLRT DETECTION 91

the ocean image as well as the ENL distribution. The histogram shows very good threshold

property, as in Figure 4.3, with the two peaks located to the opposite ends on range of the

ENL. The threshold for ENL could be find easily from the histogram as 0.1. Figure 4.4 shows

the homogeneity estimation by ENL estimator.

Subimage (shown as amplitude square root) ENL map of the subimage to the left

Homogeneous samples

(shown as amplitude square root)

Heterogeneous samples

(shown as amplitude square root)

Figure 4.4 — Homogeneity shown on the ENL map of the subimage

4.2.2 TD-GLRT test

The parameter vector Θ = [E(σ), VAR(σ)] for both the target and the background represented

by the Scalar contribution could be estimated from the heterogeneity and homogeneous ROI

in Figure 4.4, and could also be represented using the histograms shown in Figure 4.5.

The long ’tail’ represented by the polarimetric measurements as well as the Bragg con-
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Figure 4.5 — PDF for target (H1) and water (H0)

tributions could also be found in the histogram of the Scalar contribution at the present of

man-made targets, and the ’tail’ will be longer, e.g. may as twice longer, than that represented

on the Bragg contribution without the present of man-made targets (comparison may be find

from Figure 3.9 and 4.5). This could as well support the principle of using Scalar contribution

to build TD-GLRT detection, since both Bragg and the total polarimetric measurements al-

ways denote a long ’tail’ characteristic by the histogram while the Scalar contribution has that

characteristic only when there are strong polarized scatterers, i.e. those come from man-mad

targets, appear in the resolution area. To our interest, the ’tail’ effect on Scalar is different

from the spiky effect introduced by the ’tail’ of Bragg or the direct radar measurements. It

is from the real generic target.

Figure 4.6 shows the statistical model will be used in the decision Inequality 4.14, which

is changed as

Λ(Xsc) =
pXsc/Θ1

(Xsc/Θ1)

pXsc/Θ0
(Xsc/Θ0)

=

b1/A

Γ(M1)
(
b1A

2
)M1K(M1−1)(b1A)

b0/A

Γ(M0)
(
b0A

2
)M0K(M0−1)(b0A)

≷H1
H0

η, (4.17)

by replacing the possibility density function pXsc/E(σT ),VAR(σT )(Xsc/E(σT ), VAR(σT )) and

pXsc/H0
(Xsc/H0) with K-distribution given in Equation 3.21 and its expression for ampli-

tude A =
√
σ,

PN (A; r) =
b/A

Γ(M)
(
bA

2
)MK(M−1)(bA), (4.18)

where the slope parameter 2∗
√
M
b = E(A) and the shape parameter M = N(ν + 1), with N
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Figure 4.6 — Pol-K-modelled target (H1) and water (H0)

the total scatterer number and ν is a real number lager than −1 which relates to the order

of freedom of radar reflectivity’s χ2 distribution.

Above mentioned methods were implemented on Radarsat-2 (R2) C-band data with pre-

liminary results leading to improvements in this chapter. The data set consists of 20 scenes

of full polarization and 4 scenes of dual polarization wide swath (2 with ScanSAR beam and

2 with Single Beam), shown in Table 4.2.2. The first two scenes which are acquired in the

ScanSAR Wide beam have their ground range product type, i.e., SGF, for which the pixel

spacing does not meet the Nyquist criterion in all areas of these two scenes [99], meaning that

this type of product are appropriate for applications where the full precision is not needed,

e.g., oil pollution detection, illegal ship monitoring. The rest scenes in the data set are all

belonging to slant range product with a complex data type, i.e., SLC, for which the pixel

spacing is determined by the radar range sampling rate and pulse repetition frequency (PRF),

and the single look processing made use of full available signal bandwidth, reaching at a fine

spatial resolution.

Simply setting η in Inequality 4.17 to be 1, the decision criterion 4.17 says H1 to be true

when the amplitude A > 1722. The result shown in Figure 4.8.

4.3 Discussion and conclusion

The accuracy of target classification depends on the uniqueness of the solution to an invert

scattering model. The main idea behind TD theorems is to express the average scattering
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Table 4.1 — Radarsat 2 C-band data set

satellite acquisition beam operational nominal resolution product

/ orbit pass mode mode (range,azimuth) (m) type

20090818/ a ScanSAR ScanSAR Wide, HH+HV 50,50 SGF

20090903/ d ScanSAR ScanSAR Wide 50,50 SGF

20090831/ d Single Beam Wide 11.83,4.97 SLC

20090903/ d Single Beam Wide 11.83,4.97 SLC

20101017/ d Single Beam Fine Quad Polarization 4.73,5.12 SLC

20110228/ a Single Beam Fine Quad Polarization 4.73,4.76 SLC

20110809/ d Single Beam Fine Quad Polarization 4.73,4.86 SLC

20110810/ d Single Beam Fine Quad Polarization 4.73,4.86 SLC

20111203/ a Single Beam Fine Quad Polarization 4.73,5.11 SLC

20111205/ d Single Beam Fine Quad Polarization 4.73,5.11 SLC

20110819/ d Single Beam Fine Quad Polarization 4.73,5.13 SLC

20110803/ d Single Beam Fine Quad Polarization 4.73,5.12 SLC

20110812/ d Single Beam Fine Quad Polarization 4.73,5.15 SLC

20110820/ d Single Beam Fine Quad Polarization 4.73,5.15 SLC

20120416/ a Single Beam Fine Quad Polarization 4.73,4.96 SLC

20120406/ d Single Beam Fine Quad Polarization 4.73,4.72 SLC

20120409/ d Single Beam Fine Quad Polarization 4.73,5.60 SLC

20120329/ a Single Beam Fine Quad Polarization 4.73,5.19 SLC

20120408/ a Single Beam Fine Quad Polarization 4.73,4.83 SLC

20120423/ d Single Beam Fine Quad Polarization 4.73,4.78 SLC

20120405/ a Single Beam Fine Quad Polarization 4.73,4.75 SLC

20120509/ a Single Beam Fine Quad Polarization 4.73,4.97 SLC

20110904/ a Single Beam Standard Quad Polarization 7.99,4.83 SLC

20110907/ d Single Beam Standard Quad Polarization 7.99,4.83 SLC
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Subimage (shown as amplitude square root) ENL map of the subimage to the left

Homogeneous samples

(shown as amplitude square root)

Heterogeneous samples

(shown as amplitude square root)

Figure 4.7 — Homogeneity detection by ENL

matrix for a random media problem as a sum of independent elements and to associate a

physical mechanism with each component. We tried for the first time the TD technique to

model the sea surface into two separate part according to their scattering mechanisms. That’s

the main principle of our approach TD-GLRT.

The polarimetic ENL estimate is the second benefits from polarimetry for TD-GLRT.

Histograms provide a means of determining whether or not an image is a good candidate

for thresholding. With polarimetric ENL histogram, it is possible to estimate the parameter

vectors for both the foreground pixels from background pixels.

Comparing with the conventional CFAR detection algorithms, the polarimetric method

has the merit in that once a threshold has been selected to determine the polarimetric prop-
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(a) TD-GLRT detection when H1 is true

(shown as intensity)

(b) TD-GLRT detection when H0 is true

(shown as amplitude)

Figure 4.8 — TD-GLRT detection

erties of each pixel, there are no other user inputs required, while on the other hand, CFAR

algorithms require a probability of false alarm so as to be able to generate a threshold. The

polarimetric method does not link the threshold to a false alarm rate so there is no trade-off

between false alarm rate and detection probability [60].



CHAPTER

5 Conclusion and

Perspectives

For the first time, we applied target decomposition theory on the polarimetric SAR data

over sea surface, which is a surface in motion everywhere at any time, making the problem

more complicate than the other conditions. This study is a trial for extracting details of a fine

resolution, i.e., within single pixel scale, taking the speckle as a represent of physical structure

instead of noise to be smoothed out. Characteristics retrieval and target classification has

been established, using polarimetry and Bayesian detection theories, both at pixel scale and

imagery scale.

1. Decomposition

A decomposition of different scattering mechanisms have been performed for ocean satel-

lite SAR imagery to better understand the non-polarized (Scalar) contribution to the

total radar cross section (RCS) and Doppler measurements.

There are generally three types of surface scattering mechanisms occurring when the

sea surface is probed by microwave radar, i.e., Bragg, specular, and Rayleigh, which

correspond respectively to sea surface capillary wave, the crest of the longer wave before

it breaks, and the bubbles and foams formed by wave breaking. Different scattering

mechanisms induce different polarimetric scattering coefficients and Doppler spectrum.

It had been impossible to split those scattering mechanisms with single polarization

radar imageries. At pixel scale, we split radar scattering matrices into Bragg and Scalar
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contributions. The splitting is an iteration initiated with the radar incidence angle and

then controlled by a local incidence angle which is function of co-polarization and cross-

polarization.

Based on these developments and testing, a strategy has been refined to analyze the

signature of different features, to retrieve wind seas and sea swell parameters, as well as

slick areas, ships, oil rigs, such non-polarized targets that may be buried in the Scalar

contributions.

2. Statistical model

With polarimetric scattering coefficients estimated both for Bragg and Scalar contribu-

tions, a sea clutter model describing almost the real sea surface has been improved, for

the first time, according to scattering contributions statistically.

This model is a generalization of K distribution to multivariate, i.e., multi-polarization,

representations, hence we named it as Pol−K distribution. Not to estimate the average,

trials focus on the weighting of Bragg or Scalar contributions within single pixel, by

the prior knowledge regards the sea surface as a superposition of waves of various

wavelength as well as the common Rayleigh scatterers due to wave breaking.

3. Detection

Motivated by the improved statistical model, which could be combined with Bayesian

detectors, man-made metallic targets, such as ships, oil rigs, etc., which had been buried

in the Scalar contribution could be detected and classified. The Bayesian detector TD-

GLRT has been proposed following the target decomposition process. The ML estimation

of the parameter vectors, utilizing the polarimetric ENL estimator, have been designed

nested in the TD-GLRT detection algorithm. Weighting for each single pixel helps the

target detection, need not a region of interest (ROI) to be select by human intelligence

priorly.

The principle of TD-GLRT detection lies in the decomposition of scattering mechanism

into Scalar and Bragg. Being different from Bragg or direct polarimetric measurements

which always denote a long ’tail’ characteristic, the Scalar contribution has this charac-

teristic only when there are strong non-polarized scatterers, i.e. those come from man-

mad targets, appear in the resolution area. Because the Scalar contribution on normal

sea surface comes from specular and Rayleigh scatterers happening at the wave crest
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before it breaks and the foams occurring by the wave breaking, and the backscattered

energy from these scatterers are relatively smaller than those from Bragg resonant. To

our interest, the ’tail’ effect on Scalar is not spiky, but by the real generic target.





APPENDIX

A Analytical solution of

the radar equation

A radar system has a transmitter that emits in a predetermined direction the e.m. wave,

called radar signals. When these come into contact with an object, they intrigue a current

distribution inside of the object which generate the reflected and/or scattered fields. Thus the

radar signals are reflected especially well by materials of considerable electrical conductivity,

i.e. metals, seawater, and wet land. Among those radar signals reflected and/or scattered in

directions, the one direction which towards the transmitter make the radar work.

A.1 Definitions

A.1.1 Target Characteristics

The concepts of the idea of target determines the way in which they will be characterized [?].

Radar cross section

Given a radar configuration in which the target of interest is smaller than the footprint of

the radar system, the target is considered as an isolated scatterer. From the point of view of

power exchange, this target is characterized by the radar cross section.

The scattering cross-section is the effective area scattering in a given direction:
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σis(n̂i, n̂s;Q) =
4πR2|Es|2

|Ei|2
(A.1)

The variables in A.1 are the sphere radius R of the target surface and the receiving

antenna, Ei and Es is the incident electromagnetic wave and the scattered wave. RCS of a

target is a function of a large number of parameters which are difficult to consider individually.

The first set of these parameters are conneted with the imaging system:

• wave frequency.

• wave polarization.

• imaging configuration, i.e., incident and scattering directions .

The second set of parameters are related with the target itself:

• object geometrical structure

• object dielectric properties

Scattering coefficient

Given the situation in which the target of interest is significantly larger than the footprint

of the radar system, the target is more convenient to be characterized independently of its

extent, hence to be described by scattering coefficient. In order to describe the behavior of a

larger surface, we just sum the power incoherently from a collection of sub-surfaces of a size

similar to A. The scattering crossection coefficient is defined by:

σ0
is(n̂i, n̂s;Q) =

4πR2
〈
|Es|2

〉
A|Ei|2

(A.2)

Sigma-naught represents the ratio of the statistically averaged scattered power density to

the average incident power density over the surface of the sphere of radius R. According to

conservation of energy, σ0 should equal to one for isotropic re-radiation with no losses, but

can be much grater than one for the directional re-radiation.

A.1.2 Radar equation

With the definition above, the radar equation for the bistatic case can be present as

Pr(θs, φs) =
λ2

(4π)3

Pt(θ, φ)GtGr
R2

1R
2
2

σrt(θs, φs; θ, φ) (A.3)
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for the ’smaller’ target and

Pr(θs, φs) =
λ2

(4π)3

∫
Pt(θ, φ)GtGr

R2
1R

2
2

σ0
rt(θs, φs; θ, φ)dA (A.4)

for the ’extent’ target, where (θ, φ) defines the incident direction of the transmitted power

Pt(θ, φ) at polarization t and (θs, φs) defines the scattered direction of the received power

Ps(θs, φs) at polarization r.

A.2 Stratton-Chu integral formulation

Solving Maxwell’s equations for an e.m. wave striking a boundary allows the derivation of the

Fresnel equations, which can be used to predict how much of the wave is reflected, and how

much is refracted in a given situation. That’s the case of specular reflection. For modelling

oblique backscatter from rough surfaces, Stratton-Chu formulation is used to derive the Bragg

scattering model. Providing that a volume does not contain any sources, then based on the

physical-mathematical principle that fields at a point within a volume can be described in

terms of the field distributions on the surface of the volume, Stratton-Chu integral approach

can be used. Plant (1990) explains how this can be applied to specify the far-field radiated by

an antenna and then to model the pattern of illumination by that antenna at the air-water

interface, as long as the surface perturbations are of small amplitude.[?]

Stratton-Chu integral formular is as

~B(~x) = ~Bi(~x) +

∮
S
[ik(~n

′ × ~E)G− (~n
′ × ~B)×∇′G− (~n

′ · ~B)∇′G] da
′

(A.5)

~E(~x) = ~Ei(~x)−
∮
S
[ik(~n

′ × ~B)G+ (~n
′ × ~E)×∇′G+ (~n

′ · ~E)∇′G] da
′

(A.6)

Under the perfect conductivity assumption, it becomes

~B(~x) = ~Bi(~x) +

∮
S
(~n
′ × ~B)×∇′Gda

′
(A.7)

and more succinctly, as

~B(~x) = ~Bi(~x) +

∮
S

~J
′ ×∇′G da

′
(A.8)

where G = exp (ikR)/4πR is the retarded Green function, ~B(~x) is the induced currents and

~Bi(~x) is the incident field at the point ~x, and in the radiation gauge, when the vector potential

due to a sinusoidal current, the current density which was excited by the incident wave on

the surface, ~J(~x, t)= ~J(~x)eiωt, is given by

~A(~x) =
1

c

∫
S

~J(~x
′
)G da

′
(A.9)
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B Scatterometer

operation

Oblique-viewing radars measuring the average backscatter from a wide field of view (FOV)

are called scatterometers, and are used primarily to measure the wind which creates the

surface roughness elements. Scatterometers illuminate the same portion of the ocean from

different directions to make use of this dependence to extract wind speed and direction. When

the data came back to the ground, the entire returned power will be initially used to generate

one cross section measurement, which will then go into wind retrieval.

The magnitude and polarisation of the returned pulse is primarily a measure of the surface

roughness, which depends on the microwave reflecting properties of the sea surface, also

depends on the incidence angle [46]. Although theoretical models exist to relate backscattered

power to wind (as we have seen, Bragg scattering is the main contributing mechanism in

backscattering), the dispersions of these models (a few dB) fail to match the accuracy of

modern instruments (ERS has 0.2 dB). Hence, empirical models are used.

B.1 Wind definition

It is important to realize that the radar backscatter measurement σ0 is related to the wind

at 10 meters height above the ocean surface, simply because such measurements are widely

available for validation. This means that any effect that relates to the mean wind vector at

10 meters height is incorporated in the backscatter-to-wind relationship, by a geophysical
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model function (GMF). GMF function enables the calculation of equivalent neutral winds,

which is defined as the wind in case of a fully stratified (or stable) atmosphere.

B.2 ASCAT

ASCAT is a real aperture radar using vertically polarised antennas. Two sets of three an-

tenna are used to generate radar beams looking 45 degrees forward, sideways and 45 degrees

backwards with respect to the satellite’s flight direction, on both sides of the satellite ground

track. As the backscatter depends on the sea surface roughness as a function of the wind

speed and direction at the ocean surface, it is possible to calculate the surface wind speed

and direction by using these ’triplets’ within a mathematical model [172].

B.3 CMOD2

CMOD2 has the form

σ0 = B0[1 +B1cos(φ) +B2cos(2φ)]

B0 = 10αV γ , B1 and B2 are parabolic functions of the incidence angle θ and linear functions

of wind speed V. B1 term represents the smaller difference between backscatters of a wind

blowing up versus one blowing down the beam, and B2 term represents the large difference

between that of a wind blowing up or down compared to one blowing across the beam. Wind

direction φ is measured relative to the pointing direction of a beam (projected onto the

horizontal plane), whith φ = 0 corresponding to a wind blowing directly towards the beam.

Wind direction can also be defined with respect to the subsatellite track. To distinguish which

frame is being used, ϕ is used to indicate directions measured relative to the satellite pointing

direction and φ for directions relative to a beam.

For ERS SCAT, the fore, mid and aft beams has the relationship between of

ϕ = 45 + φ

ϕ = 90 + φ

ϕ = 135 + φ

So a σ0 triplet (σ0
1,σ0

2,σ0
3) can be written as

σ0
1 = B0[1 +B1(sinϕ+ cosϕ)/

√
2 +B2sinϕ]

σ0
2 = B∗0 [1 +B∗1sinϕ−B∗2cos2ϕ]

σ0
3 = B0[1 +B1(sinϕ− cosϕ)/

√
2−B2sinϕ]
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From the experimental assumption that B1 is small relative to B2, to neglect B1 and B∗1

when

σ0
1 + σ0

3 ≈ 2B0 = 2× 10αV γ

showing that a cross section where σ0
1 + σ0

3 = constant = 2σ0
ref corresponds to a section

of constant speed V. Also achieve an upwind circle for φ ∈ (0, π) and downwind circle for

φ ∈ (π, 2π) as

(
σ0

3 − σ0
1

2B0B2
)2 + (

σ0
2 −B∗0
B∗0B

∗
2

)2 = cos22φ+ sin22φ = 1
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C Glossary

C.1 Abbreviation

ACF Auto Covariance Function p.43

ATR Automatic Target Recognition p.78

BSA Backward Scattering Alignment p.6

CFAR Constant False Alarm Rate p.78

CTD Coherent Target Decomposition p.20

CV Coefficient of Variation p.60

EGR Elementary Geometric Reflector p.19

EM Electromagnetic p.1,2

ENL Equivalent Number of Look p.14,60

FFT Fast Fourier Transform p.45

FSA Forward Scattering Alignment p.6

GLRT Generalized Likelihood Ratio Test p.79

ICTD Incoherent Target Decomposition p.21

IRF Impulse Response Function p.69

GK Generalized K p.58

KA Kirchhoff Approximation p.9

LCA Local Curvature Approximation p.9

LOS Line of Sight p.18,27

LRT Likelihood Ratio Test p.78

LUT Look-Up Table p.59

MTF Modulation Transfer Function p.25

NB Negative Binomial p.67

NRCS Normalized Radar Cross Section p.9,28

OPD Optimal Polarimetric Detector p.79

OSMC Observing System Monitoring Center p.33

PDF Probability Density Function p.87

PGLRT Polarimetric GLRT p.78

POA Polarization Orientation Angle p.14

PR Polarization Ratio p.9,28

PR Power Ratio p.78

PRF Pulse Repetition Frequency p.33,69,90

PRI Pulse Repetition Interval p.21

PSD Power Spectrum Density p.41

PWF Polarization Whitening Filter p.79

RAR Real Aperture Radar p.23

RCA Resonant Curvature Approximation p.9

RCS Radar Cross Section p.iii

ROI Region of Interests p.65,87

R/V Range-to-Velocity ratio p.26

SAR Synthetic Aperture Radar p.iii

SCW ScanSAR Wide p.59
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SGF SAR Georeferenced Fine p.41

SLC Single Look Complex p.8

SSA Small Slope Approximation p.9

SSA Sea Surface Approximation p.9

SPM Small Perturbation Model p.9,27

T/C Target-to-Clutter ratio p.79

TD Target Detection p.27,78

TSM Two Scale Model p.9

UCA Upwind-Crosswind Anisotropy p.9

UDA Upwind-Downwind Asymmetry p.9

WAM WAve prediction Model p.25

C.2 Notation

α polarization transformation ratio angle p.3

α one of the polarimetric parameters in H/A/ᾱ decomposition p.27

α Ratio of tilt Bragg scattering by VV polarization over HH polarization P.29

β one of the polarimetric parameters in H/A/ᾱ decomposition p.27

β Ratio of Bragg scattering by SPM p.30

ε electric field scattered by irregular surface p.12

ηHV phase difference between the orthogonal components of an electric field p.3

θ radar incidence angle P.10

λ eigenvalue of coherency T matrix p.27

ρ complex polarization transformation ratio p.3

τ polarization elliptical angle P.5

φ polarization orientation angle P.5

ϕi a phase factor from the ith scatterer p.12

ϕ Phase p.51

ai a real form factor from the ith scatterer p.12

~E electric field of electromagnetic wave p.3

h antenna effective length p.6

ĥ unit vector of the orthogonal basis p.3

S Sinclair scattering matrix p.6

C.3 Terminology

C.3.1 Oceanography

capillary wave

A ripple along the interface of two fluids is called capillary wave. A capillary wave is a surface-

tension wave travelling along the phase boundary of a fluid, whose dynamics are dominated

by the effects of surface tension. The wavelength of capillary waves in water is typically less
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than a few centimeters (2.5cm). In [28], the term capillary wave was used for convenience

to describe both the short gravity waves and the surface-tension waves, which are the two

resonant components of the ocean surface to the radar wavelength.

gravity wave

Gravity wave is a wave whose dynamics are dominated by the effects of gravity. The wave-

length of gravity waves is typically greater than 5 centimetres.

swell

A swell is a series surface gravity wave that is not generated by the local wind. The wavelength

of swell is usually long but varies with the size of the water body and also from event to event,

e.g. rarely more than 150m in the Mediterranean and may longer than 700m away from the

most severe storms.

wind wave

Wind wave occurs on the free surface of ocean is called ocean surface waves. Wind waves

range in size from small ripples to huge waves over 30 meters high. When directly being

generated and affected by the local winds, a wind wave system is called a wind sea. After the

wind ceases to blow, wind waves are called swell.

fetch

The fetch describes how far the wave has travelled, i.e., the distance for which the wind blows

over the surface of the water. M. I. Skolnik defined in ”Radar Handbook” as the area of the

sea surface over which the wind seas are generated by a wind having a constant direction

and speed, or the length of the fetch area measured in the direction of the wind in which the

wind seas are generated. Fetch length along with the wind speed determines the size of wave

produced. The longer the fetch length and the faster the wind speed, the larger and stronger

the wave will be. Fetch length determines the power and energy of the wave. If the winds are

blowing in the same direction during the wave’s lifetime, the wave will in turn be stronger.

The longer the wind drags along the sea the more energy the wave will have which will make

the wave a destructive wave.
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friction velocity

The growth of waves under the influence of the wind has an equilibrium range, for that the

wave interactions are usually incapable of transferring energy from a given wave-number band

as rapidly as it is supplied by the wind. As a result the size of waves must be limited by the

requirement of the water surface stability. If the surface becomes locally unstable, the wave

breaks and energy lost from the wave motion, leaving a restored stability. The probability of

breaking at a given point is some function of the local fluid acceleration at the surface as a

fraction of the gravitational acceleration g [173].

destructive wave

Destructive wave is created in storm conditions. It has a short wave length but high frequency,

and is high and steep. It has a stronger backwash than swash and erode the coast, hitting

the shore 10-15 times a minute.

constructive wave

Constructive wave is created in calm weather. It has a long wave length but low height and

low frequency, hitting the shore 6-9 times a minute. It has a stronger swash than the backwash

and it breaks on the shore and deposit material, building up the beach.

fully developed sea

The maximum height to which ocean waves can be generated by a given wind force blowing

over sufficient fetch, regardless of duration, as a result of all possible wave components in the

spectrum being present with their maximum amount of spectral energy.

sea state

The numerical or written description of ocean-surface roughness. Ocean sea state may be de-

fined more precisely as the average height of the highest one-third of the waves (the significant

wave height) observed in a wave train.

wind streak

It is usually assumes that the wind direction aligns with boundary layer atmospheric roll

vortices, which often appear as streaks at kilometre-scales in SAR images of the ocean. The

orientation of wind streaks is assumed to lie essentially parallel to ocean surface wind direction

[174].
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significant wave height

Significant wave height (SWH), is defined as the average of the heights of the one-third

highest waves in a wave train observed at a point. It is approximately equal to four times the

standard deviation of the wave train.

Rayleigh scattering

When waves break, water droplets of varying size are thrown into the air, and air is trapped

creating bubbles within the water body. The bubble sphere has a dielectric constant much

more different from the surrounding medium, and the microwave energy scattered from these

Rayleigh scatterers is stronger. Rayleigh scattering is significant for (d/λ0) . 0.01 where d

is the diameter of the sphere and λ0 is the radar wavelength. Rayleigh scatters are isotropic

particles.

C.3.2 RADAR

looks

Individual looks are groups of single samples in a SAR processor that split the full synthetic

aperture into several sub-apertures, each representing an independent look of the identical

scene. In signal processing, the location of signal energy in the azimuth frequency domain

depends on the antenna pointing angle, and looks are different azimuth spectral bands. Since

the Doppler frequency varies with azimuth time, the azimuth frequency is often referred to

as Doppler frequency.

number of range looks

The number of distinct or overlapping coherently processed looks extracted from the pulse

bandwidth which are combined after detection to form the image.

number of azimuth looks

The number of distinct or overlapping coherently processed looks extracted from the Doppler

spectrum which are combined after detection to form the image.

azimuth look bandwidth

The processed Doppler bandwidth for each individual azimuth look. In Spotlight mode, it is

taken to mean the Doppler bandwidth of each target in the scene.
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ScanSAR azimuth look bandwidth

The Doppler bandwidth of the signal from any given target within the set of samples used

for each ScanSAR look. For any ScanSAR mode, this bandwidth varies from beam to beam,

and decreases from near edge to far edge within any one beam.

range-azimuth coordinate

The azimuth direction on the imaged surface is taken to be parallel to the motion of the

radar, and the range direction is perpendicular to azimuth direction clockwise.

distributed target

There is a fact that not all radar targets are stationary or fixed, but instead change with

time. Aside from the natural movements of the target, the radar itself may be airborne or

spaceborn, moving with respect to the target and illuminating in time the different parts of

an extended volume or surface. In these cases, the radar will receive time-averaged samples of

scattering from a set of different single targets. The set of single targets from which samples

are obtained is called a distributed radar target.

SAR velocity bunching relationships

The azimuthal resolution of a side-looking SAR relies on the phase history of the returns

from a scatterer, S, the position of the scatterer in the image plane can be related to the

Doppler shift [175]. For stationary scatterer, it has a reduced Doppler frequency when it

locates behind the satellite while an increased Doppler frequency when it locates ahead of

the satellite.

Doppler centroid frequency

The Doppler centroid frequency of the SAR signal is location of the azimuth beam centre.

aperture

Consider an opaque screen in the x,y plane at z=0. The aperture, Λ ,can be described as

a closed set of points such that the screen at (x,y) is removed if (x,y)∈ Λ [176]. EM wave

passing through the aperture can be described as multiplying a two-dimensional signal by a

two-dimensional function,
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co-polarisation nulls

The antenna polarisation state for which zero backscattered power is received from a par-

ticular target. For co-polarisation, the transmit and receive antennas are the same. Co-

polarisation nulls may not correspond to the maximum cross polarisation received power.

cross polarisation maxima

The antenna polarisation state for which maximum cross-polarised backscattered power is

received from a particular target.

cross polarisation nulls

The antenna polarisation state for which zero cross-polarised backscattered power is received

from a particular target. For co-polarisation, the transmit and receive antennas are the same.

Note that for cross polarisation nulls the co-polarisation power is maximum.

cross polarisation signature

The received signature when the transmit and receive antennas have orthogonal polarisations.

cross-polarised waves

Or orthogonal waves. Each wave in a pair of cross-polarised waves are completely polarised.

However, an antenna optimised to receive the co-polarisation maximum of one wave will

receive no power from the other wave. Note that, in general, an arbitrary wave may be

treated as the sum of two cross-polarised waves.

VV

Vertical transmit - vertical receive polarisation. A mode of radar polarisation where the

microwave of the electric field are oriented in the vertical plane for both signal transmission

and reception by means of a radar antenna. In this case, the plane of the electric field of the

microwave energy is designated by the letter V for both transmit and receive event, i.e. VV;

this transmit-receive polarity is also called like-polarised as opposed to cross-polarised. The

amount of radar backscatter received at a particular linear polarisation state from a particular

ground surface or object depends, in part, on the scattering mechanism and depolarisation

effects involved. The transmit-receive acronym is often used in conjunction with the frequency

band (wavelength) designation of a particular radar system.
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C.3.3 Statistics

centeral limit theorem

The central limit theorem (CLT) briefly states that the sum of a large number of i.i.d. (in-

dependently and identically distributed) random variables will be normally distributed, and

the approximation steadily improves as the number of observations increases. This theorem

is considered the heart of probability theory, although a better name would be normal con-

vergence theorem.

Rayleigh distribution

For 2-D vectors, if the two orthogonal components are i.i.d. (independently and identically

distributed) normally distributed, the module of vectors is Rayleigh distributed. One impor-

tant related distribution is the exponential distribution. If the module is Rayleigh distributed

then the power of vectors follows the exponential distribution.

modified Bessel functions

In the Bessel differential equation,

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0

if the argument is complex and purely imaginary, the solutions of this Bessel equation is

called the modified Bessel functions of the first (Iα) and second (Kα) kind, α is the order

of the Bessel functions and could be arbitrary real or complex number. (Iα) is exponentially

growing and (Kα) is exponentially decaying function.

Nyquist criterium

As for all sampled band-limited signals, digital SAR raw data must be sampled at a rate

greater than that dictated by the Nyquist criterion. For example, the ERS-1 raw SAR signal

is sampled in complex form at 18.96 MHz, corresponding to a range sample spacing of 7.91 m.

Since the ERS-1 chirp bandwidth is 15.55 MHz, this range signal is in principle oversampled

by 22%. [177] According to the Nyquist criterion, it is the signal bandwidth which determines

the minimum sampling rate. SAR image is the result of coherently processing returned echo

signals, thus the pixel values are complex quantities.
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square-law detectors

In radio frequency (RF) band detection, the electromagnetic field drives oscillatory motion of

electrons in an antenna. In optical detection, the desired non-linearity is embedded in the pho-

ton absorption process itself. Conveentional light detectors-so called ”Square-law detectors”-

respond to the photon energy to free bound electrons[178].

arcsine law

If the real part and the imaginary part of a complex digital signal are nearly Gaussian pro-

cesses, the autocorrelation function can be calculated only by examining their signs. Arcsine

law is fulfilled for SAR SLC signals.

cross-spectral analysis

The DFT of the cross-correlation may be called the cross-spectral density, or ’cross-power

spectrum’, or even simply ’cross-spectrum’.

relative variance

relative variance is the square of the coefficient of variation. In probability theory and statis-

tics, the coefficient of variation (CV) is a normalized measure of dispersion of a probability

distribution.
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