
HAL Id: tel-00979002
https://theses.hal.science/tel-00979002v1

Submitted on 15 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Content-Centric Networking Node for a Realistic
Efficient Implementation and Deployment

Wei You

To cite this version:
Wei You. A Content-Centric Networking Node for a Realistic Efficient Implementation and Deploy-
ment. Networking and Internet Architecture [cs.NI]. Télécom Bretagne, Université de Rennes 1, 2014.
English. �NNT : �. �tel-00979002�

https://theses.hal.science/tel-00979002v1
https://hal.archives-ouvertes.fr

N° d’ordre : 2014telb0312

Sous le sceau de lSous le sceau de l UUniversitniversitéé européenne de Beuropéenne de Bretagneretagne

Télécom Bretagne

En accréditation conjointe avec l’Ecole Doctorale Matisse

Co-tutelle avec Orange Labs

Ecole Doctorale – MATISSE

A Content-Centric Networking Node
for a Realistic Efficient Implementation and Deployment

Thèse de Doctorat

Mention : Informatique

Présentée par Wei You

Département : Informatique

Laboratoire : IRISA Pôle (uniquement si Lab-STICC) :

Directeur de thèse : Annie Gravey

Soutenue le 20 janvier 2014
(Seulement si date connue)

Jury :

Mme Isabelle Chrisment, Professeur, Université de Nancy 1 (Rapporteur)
M. Walid Dabbous, Directeur de recherche Inria, Sophia-Antipolis (Rapporteur)
M. Bernard Cousin, Professeur, Université de Rennes 1 (Président du jury)
Mme Annie Gravey, Professeur, Institut Mines Telecom, Rennes (Directeur de thèse)
M. Gwendal Simon, Docteur, Institut Mines Telecom, Rennes (Encadrant académique)
M. Bertrand Mathieu, Docteur, Orange Labs, Lannion (Encadrant industriel)
M. Farid Bendabis, Docteur, Thalès Communications and Security, Colombes (Examinateur)

i

Acknowledgement

This three years research experience will be an important period in my life. Without
the help and support from many people around me, there would be no possible that
these work and this thesis can be finished.

First of all I would like to thank my parents for their support and understanding
at all the time for that I studied in a country far away from home .

I would also like to thank Bertrand Mathieu, my supervisor at Orange Labs,
who opened me a door of the CCN world. His advices, knowledge and guidance are
invaluable. Without his help and support, I would not have finished this thesis. I
also very appreciate that he left me a lot of freedom for carrying the research work
on.

I grateful acknowledge my academic supervisor, Gwendal Simon, for his help. His
academic knowledge, research spirit and his rigour encourage me a lot. I also want to
thank him for his reviews of the papers that we finished together.

I would also want to give my thanks to Prosper Chemouil, my director at Orange
Labs, and to Annie Gravey, my director at Télécom Bretagne, that they offered me
this precious opportunity to work both at Orange Labs and at Télécom Bretagne.

Many thanks to all the colleagues that I worked or cooperated with: Patrick
Truong, Jean-François Peltier, Jean-Louis Simon, Jean-Yves Mazeas, Tomas Morin
and David Fahed from Orange Labs MOVI team, and Zhe Li, Jiayi Liu, Yaning Liu
and Fen Zhou from Télécom Bretagne Info department.

Also I want to thank my previous team manager Myriam Vialat and current team
manager Maria Luisa Guerra Feliz De Vargas, for their great support.

At last, I would like to thank everyone again who helped and supported me during
these three years for the realization of my thesis.

ii Acknowledgement

iii

Abstract

The current IP based Internet architecture is designed in 70s. With the technologies
development and the Internet usage evolution, this design becomes heavier and heavier
and less efficient for the Internet services, especially for the content delivery, which
generates the main part of current networking traffic. Facing this shortcoming, many
research forces propose an Information-Centric Networking (ICN) paradigm, which
focus on an information-oriented networking architecture. Following this direction,
Van Jacobson and his PARC team proposed the Content-Centric Network (CCN)
solution in 2009. The CCN aims to build a pure content-oriented network, which
means that the entire networking architecture and all the networking activities are
based on the content themselves. Content discovery and delivery, networking packet
routing are all based on content names. The CCN intergrades many features such as
on-path caching, self content security, multicast, mobility, natively into its prototype,
not as in IP that these features are realized by adding other overlay or services. The
entire content name based networking design can make the content delivery more
efficient.

The novel CCN proposal has many benefits but it brings also a big challenge for
current hardware technologies, for example the memory requirement. On one hand,
the transition from IP addresses to content names requires more memory space for
storing the relative longer and more complex content names and also for more packets
information. On the other hand, since in CCN the information exchanges are based
on content names, but not on the end-to-end conversation, more and more networking
packets will be generated. That can lead a more intense networking traffic which re-
quires a higher routing performance. In another word, the memories which are imple-
mented into a CCN router should provide a fast access performance. However today’s
fast memory chip can not provide a big storage volume or the large memory chips
have a relative slow access performance. Then with the conventional implementation
technique, there will be a tradeoff between the storage space and the performance
speed for bring the CCN into real. Thus how to reduce the memory consumption
is an important issue for the deployment of CCN solution in current networks. And
furthermore in a CCN node, different components have different memory utilization
structures. So the solutions of how to reduce the memory requirement for different
components have to be different too. In this thesis I focused on how to improve the
performances of different CCN node components and how to finally guarantee the
performance of the entire node.

I firstly focused on the PIT element. In order to reduce the memory requirement
and further improve the routing performance, I proposed a distributed PIT system

iv Abstract

which is based on the Bloom filter structure. The Bloom filter based system can
largely reduce the memory consumption of the PIT table. The distributed design
firstly can resolve the information retrieval problem which is a native shortcoming
of Bloom filter. Secondly, the distributed system can make each CCN face manage
its own PIT table, instead of using a global table read/write lock for a centralized
table. Thus the treatment and the routing speed are improved. At last a two-level
verification design can guarantee the false positive ratio is limited.

Thereafter I concentrated on the FIB element. In the origin CCN design, the FIB
is filled by the flooded content advertisements. Considering of the huge number of
potential content numbers, this method will explode the FIB table and also introduce
a big volume of networking traffic. Facing this point, I proposed a content-aware
dynamic CCN forwarding system which includes a content advertisement publish
protocol, a FIB filling algorithm and a downstream forwarding element. The content
publish protocol requires that each advertisement is forwarded only towards certain
nodes, not flooded the entire networking. The FIB takes the consideration of the
content popularity and memories only the information of contents that delivered
towards it. And when a FIB forwards an Interest message which is unknown by
the forwarding base, it sends the Interest packet to the “certain nodes” that receive
the content advertisement. The downstream forwarding element is a table that is
in charge of discovery the other potential content sources in order to take better
advantages of the in-networking caches of the other nodes.

The third contribution of this thesis is about the interconnection issue of the CCN
networking design and the CDN service. The CDN service brings already many ad-
vantages in IP network and it should also be supported in any other next generation
networking solutions. However since the CCN does not support the negative response
and there is no service such as DNS redirection or the address-based HTTP redirec-
tion, the interconnection between a conventional CCN node and a CDN repository
node becomes an issue because the key point of interconnecting with CDN service
is how to resolve the CDN repository miss-hit problem. In order to overcome this
problem, I proposed in this thesis a system, which can be implemented into a classic
CCN node, that can support the interconnection of the CCN networking structure
with the CDN services. This system includes two elements. One element is in charge
of sending the related Interest packets towards the CDN repositories. The other one
is for discovering the CDN content miss case and recover this lost. With this inter-
face, the conventional CDN nodes can be deployed into a CCN networking and this
“upgraded” CCN node can also be connected with other classic CCN nodes in the
traditional way.

To summarize up, this thesis contains three contributions that focus individually
on different CCN node component in order improve the performance of one CCN
node. Therefore they can be combined together and create an entire CCN node that
is more efficient.

Keywords: CCN, performance, efficiency, memory,implementation, PIT, Bloom fil-
ter, forwarding, FIB, dynamic, content-aware, algorithm, protocol, CDN.

v

Contents

Acknowledgements i

Abstract iii

Contents vii

List of Tables ix

List of Figures xii

Résumé xiii

1 Introduction 1
1.1 The evolution of IP network and the motivation for ICN 1

1.1.1 Limitation of IP . 1
1.1.2 Motivation of ICN . 3

1.2 Objectives and Contributions . 5
1.3 The organization of dissertation . 7

2 Background 9
2.1 General Introduction . 9
2.2 Some ICN projects . 9

2.2.1 NetInf and SAIL . 9
2.2.2 DONA . 11
2.2.3 PSIRP and PURSUIT . 12

2.3 Content-Centric Networking . 13
2.3.1 CCN architecture and message exchange 14

2.4 CCN Naming and Routing . 16
2.4.1 OSPFN protocol . 17

2.5 CCN on-path caching . 18
2.6 Summary of ICN state-of-the-art study 18
2.7 CCN optimization and Memory Technology 20

3 DiPIT: A Bloom Filter based CCN PIT redesigning 23
3.1 Introduction . 23
3.2 Background and Related Works . 24

3.2.1 IP lookup . 25

vi CONTENTS

3.2.2 Bloom filter . 25
3.3 Preamble: Modeling PIT table . 26
3.4 Analysis on the centralized hash table 27

3.4.1 Table size and Cost . 28
3.4.2 Collision ratio . 29
3.4.3 Discussion . 30

3.5 DiPIT – Distributed Bloom filter based PIT architecture 31
3.5.1 PITi: One Bloom filter per CCN face 31
3.5.2 A shared Bloom filter to deal with false positive 33
3.5.3 Main DiPIT algorithms . 34
3.5.4 Discussion on multiple same Interest messages filtering issue . . 35

3.6 Evaluation . 36
3.6.1 Settings . 37
3.6.2 Required memory size . 37
3.6.3 Bursty and multi-path traffic 39
3.6.4 Extra Data traffic load . 40
3.6.5 Discussion . 42

3.7 Implementation in CCNx . 42
3.7.1 Evaluation 1: in-line network 43
3.7.2 Evaluation 2: Geant networking 43
3.7.3 Discussion . 44

3.8 Case study: hierarchical network . 44
3.8.1 Analysis . 45
3.8.2 Settings . 46
3.8.3 Discussion . 46

3.9 Conclusion . 48

4 A dynamical content-aware forwarding system for CCN 49

4.1 Introduction . 49
4.2 Related Works . 50
4.3 A Content-Aware CCN forwarding structure 51

4.3.1 Content Advertisement Protocol 52
4.3.2 Content-Aware Dynamic FIB 52
4.3.3 Dynamic Interest Forwarding Table 53

4.4 Evaluations . 54
4.4.1 Settings . 55
4.4.2 Impact of Content Popularity 55
4.4.3 Impact of Network Topology 56
4.4.4 Impact on Entry Storage Duration in FIB 57
4.4.5 Impact of Catalog Size . 57
4.4.6 Impact of DIFT hit-ratio . 58
4.4.7 Impact of response time . 58
4.4.8 Discussion . 60

4.5 Conclusion . 60

CONTENTS vii

5 Interconnecting CDN service with CCN networking 61
5.1 Introduction . 61
5.2 Background and motivation . 63

5.2.1 Business Considerations – Analyzing the CDN Revolution . . . 63
5.2.2 Naive Integration of Repositories in CCN 64

5.3 Introducing cRouters . 65
5.3.1 The Repository Forwarding Table 65
5.3.2 The Pending Repository Interest Table 67
5.3.3 Data Packet Processing . 69
5.3.4 Packet Processing in the cRouter 69

5.4 Example of cRouters Deployment . 72
5.5 Evaluations . 74

5.5.1 Memory requirement analysis 74
5.5.2 Redirection rate vs. content popularity 76
5.5.3 Data Response time analysis 77
5.5.4 Location of deployment analysis 77
5.5.5 Discussion . 78

5.6 Conclusion . 79

6 Conclusion 81

7 Future Works 85

Bibliography 93

Publications 95

Glossary 97

viii CONTENTS

ix

List of Tables

2.1 CCN Pending Interest Table . 14
2.2 CCN Forwarding Information Base . 15
2.3 Comparison of existing ICN solutions 19
2.4 Current memory technology . 20

3.1 CCN node modeling parameters . 28

5.1 The Repository Forwarding Table . 66
5.2 The Pending Repository Interest Table 68
5.3 The FIB table of cRouter I . 73
5.4 The RFT table of cRouter I . 73
5.5 Current memory technology . 75

x LIST OF TABLES

xi

List of Figures

1 L’architecture de réseaux IP . xiii
2 L’architecture des réseaux ICN . xv
3 La structure d’un nœud CCN . xvii

1.1 IP networking architecture . 2
1.2 ICN networking architecture . 4

2.1 Routing scheme of NetInf . 10
2.2 Routing scheme of DONA . 11
2.3 Routing scheme of PSIRP . 12
2.4 The node structure of Content-Centric Network 16
2.5 The naming of Content-Centric Network 17

3.1 A binary Bloom filter structure . 26
3.2 k=(3;4;5), m/n=(1:10) . 27
3.3 k=(3;4;5), m/n=(10:20) . 27
3.4 k=(3;4;5), m/n=(20:50) . 27
3.5 k=(3;4;5), m/n=(50:150) . 27
3.6 Required SRAM memory cost vs. λin 29
3.7 Required RLDRAM memory cost vs. λin 29
3.8 Predicted collision ratio of SRAM in function of λin 30
3.9 The conventional CCN node architecture 31
3.10 The CCN node architecture with DiPIT system 32
3.11 Internal PITi architecture . 32
3.12 Duplicated Interest message coming through different interfaces 36
3.13 Required memory size in function of λin 38
3.14 Required memory size in function of λin 39
3.15 Proba. of false positive in function of λin 40
3.16 Memory size in function of prob. that same Interest packet arrives at

diff. interfaces . 41
3.17 The burst in function of packet arrival rate following Poisson law . . . 41
3.18 Required memory size in function of λin 42
3.19 Linear topology of evaluation 1 . 43
3.20 Linear topology of evaluation 2 . 44
3.21 A hierarchical networking topology . 45
3.22 Summary of the best choices for PIT table, according to the cost . . . 47

xii LIST OF FIGURES

4.1 The node structure of the content-aware forwarding design 51
4.2 Algorithm for incoming Data . 53
4.3 Algorithm for incoming content request 55
4.4 The memory requirement vs. the content popularity 56
4.5 The FIB memory requirement vs. the number of links 57
4.6 The FIB memory requirement vs. the storage time 57
4.7 Total memory requirement vs. number of publications 58
4.8 The DIFT hit ratio vs. the content popularity distributions 59
4.9 Average Data response time vs. the content popularity distributions . 59

5.1 The CCN node architecture with the repository elements 66
5.2 The Interest message process . 67
5.3 The Data message process . 69
5.4 Use case 1: The Interest domain name not present in RFT (this domain

name is not managed by the CDN repositories. 71
5.5 Use case 2: Interest domain name present in RFT, but content name

not in PRIT. CDN repository has this content. 71
5.6 Use case 3: Same Interest from different clients arrive, domain name

present in RFT, CDN repository has this content. 71
5.7 Use case 4: CDN repository miss (domain name managed by the CDN

repository but content not cached). 72
5.8 Use case 5: CDN repository replies lately 72
5.9 An example of implementing the cRouters in a hierarchical networking

with CDN nodes . 73
5.10 The memory space requirement vs the cache hit ratio 75
5.11 The memory space requirement vs the cache hit ratio 76
5.12 PRIT size vs. zipf distribution . 76
5.13 Redirection rate vs. zipf distribution 77
5.14 Data response time & the extra traffic load vs Interest retransmission

interval . 78
5.15 The cost of different deployment location 79

xiii

Résumé

L’évolution d’Internet IP et les limitations

Internet a été créé dans les années 70s pour échanger des informations ou communi-
quer. Les utilisations d’Internet étaient relativement simples, comme rechercher des
informations sur des sites web, parler avec des amis grâce à des logiciels de messagerie
instantanée, envoyer/recevoir des mails, télécharger des fichiers depuis des serveurs
FTP, etc. Pour ces usages, les communications dans les réseaux sont réalisées selon
un modèle de bout-en-bout, en établissant des tunnels de communications, depuis
un point de terminal (un utilisateur par exemple) vers un autre point (Figure 1).
Ce modèle, en vigueur pour les protocoles TCP/IP, était parfaitement adapté à ces
usages.

Figure 1: L’architecture de réseaux IP

Mais au fur et à mesure, Internet est devenu de plus en plus populaire et de plus
en plus utilisé, ce qui a conduit à une évolution d’Internet et des technologies, les
réseaux étant plus complexe qu’avant. Les terminaux ne sont plus simplement des
ordinateurs bureautiques ou portables, mais sont maintenant des smart phones, des
tablettes, des terminaux de jeux vidéo, etc. Les infrastructures réseaux ne se limitent
plus à xDSL ou à la fibre optique; les réseaux WiFi, mobile 3G/4G, WSN et satellites
sont maintenant largement déployés. La structure de TCP/IP et la couche de trans-
port devient de plus en plus complexe pour gérer cette pluralité d’environnement.
Plusieurs couches et services ont été ajoutés afin de s’adapter à ces besoins. Par ex-
emple le mécanisme NAT [Tsi00] est appliqué pour résoudre le problème de manque

xiv Résumé

d’adresse ; La couche sécurité [KA98] est ajoutée pour protéger les données des utilisa-
teurs; Le service DNS [E+11] est déployé pour traduire des adresses URL aux adresses
IP. De plus, les fonctionnalités comme le multicast, la mobilité, le multi-homing, la
communication sans fil, le SDN, le cloud computing etc., sont ajoutées dans la couche
transport du modèle TCP/IP, par l’intermédiaire de couches supplémentaires ou de
patches protocolaires. L’effet le plus important de cette évolution est le changement
des usages Internet. Au lieu d’avoir l’objectif de se connecter à des serveurs identifiés
pour rechercher une information, les utilisateurs souhaitent maintenant récupérer les
informations, sans se soucier de l’entité qui leur fournira. Selon des études, en 2013
59,5% de trafic réseaux étaient composés des vidéos en ligne (par exemple Youtube,
Dailymotion, Netflix ou des services VoD d’opérateurs). Et ce pourcentage pourrait
atteindre 69% en 2017 [Cis]. Des services tels que Twitter, Facebook attirent beau-
coup de clients car les gens aiment bien de partager des informations personnelles
avec des amis. Flickr, Instagram deviennent aussi très populaires. Çeci illustre que
les utilisateurs n’ont pas uniquement des textes (profils, status) à partager. Si on
analyse bien tous les phénomènes, on peut trouver que ce qui a changé est le concept
fondamental des usages Internet. Ce qui intéresse les clients n’est plus l’endroit où il
peut trouver (localisations) les informations, mais plus précisement les informations
(contenus) elles-mêmes. Néanmoins, le modèle original d’Internet de type bout-en-
bout n’est pas efficace pour de tels services de distributions de contenus. C’est pour
cette raison que des applications P2P [SF02] et CDN [VP03] sont appliqués dans les
réseaux.

Les motivations d’Information-Centric Networking

Pour remédier aux inconvénients mentionnés ci-dessus, des chercheurs ont réfléchi à
une nouvelle solution d’Internet, mieux adaptée aux usages Internet actuels. Ces
réflexions ont abouti à un nouveau paradigme réseau, dénommé Information-Centric
Networking (en anglais) — ICN [MTP+11]. Les réseaux ICN proposent de changer
l’Internet, qui est actuellement basé sur les localisations des serveurs avec des adresses
bien définies, vers une architecture basés sur le nom des objets, avec les fonctionnalités
mentionnées précédement nativement intégrées (Figure 2). Dans un réseau ICN, les
éléments de base du réseau sont les contenus, identifiés avec un nommage précis,
plutôt que les machines (e.g. des serveurs, routeurs) identifiés avec leurs adresse IP.
Toutes les fonctionnalités des réseaux comme le routage, la sécurité, sont aussi basées
sur les noms des contenus. Comme dit dans le paragraphe précédent, avec IP, tous les
échanges d’information sont basés sur des communications. C’est-à-dire qu’avant de
commencer des activités, les clients doivent signaler au réseau avec quel point exact
ils veulent communiquer. Ensuite le réseau a pour objectif de trouver ce point et
d’établir une connexion entre les deux entités. Le réseau ICN est un modèle basé
sur le récepteur (receiver-driven en anglais). C’est-à-dire qu’un utilisateur exprime
seulement son intérêt sur des contenus au réseau. Ensuite c’est le réseau qui a pour
charge de trouver les bons contenus et les meilleures sources pour ces contenus, en
se basant sur leurs noms. Quand l’intérêt du client arrive finalement à une source
de contenu, le contenu est délivré en suivant le chemin inverse du message d’intérêt

Résumé xv

jusqu’au client. Au final, le client est satisfait car il reçoit le contenu désiré, même
s’il n’a pas connaissance de l’entité qui lui a fourni ce contenu.

Figure 2: L’architecture des réseaux ICN

Outre le modèle qui est différent, par rapport à IP, ICN intègre aussi des fonction-
nalités directement dans le réseau. Par exemple, ICN inclut nativement des avantages
comme un nommage indépendant de la localisation, un routage basé sur les noms,
la faculté de cacher des contenus dans les réseaux, le multicast, la sécurisation des
contenus nativement intégrée, etc. Grâce à ces avantages, les réseaux ICN sont plus
efficaces pour délivrer des contenus aux utilisateurs avec une meilleure qualité et per-
mettent aussi d’améliorer la gestion des capacités réseaux des fournisseurs des réseaux.
Voici les principales fonctions nativement intégrées dans ICN :

• Le multicast: En cas de multiples demandes d’utilisateurs différents pour un
même contenu, seule la première requête est envoyée vers une source potentielle,
les autres sont enregistrées et mis en attente dans le nœud ICN. Lorsque les don-
nées reviennent depuis la source de contenu, elles seront retransmises à chaque
demandeur par l’interface sur laquelle la demande a été reçue. Ainsi, ICN peut
nativement effectuer du multicast afin d’optimiser la livraison de contenu.

• La mobilité: Étant donné qu’ICN fonctionne sur un modèle non-connecté (il
n’y a pas de connexion établie dans un réseau ICN), la mobilité des utilisateurs
ne modifie pas le comportement des réseaux ICN. Leurs demandes, issues de
différents endroits à différents moments, sont traitées indépendamment par les
réseaux ICN, chacune comme une requête unique.

• Le multipath: Un objet de contenu peut être disponible dans plusieurs sources

xvi Résumé

de contenu. Ainsi, chaque demande à un nœud ICN peut être transmise vers
plusieurs destinations si plusieurs interfaces (par exemple, 3G, WiFi) sont disponibles
sur le nœud ICN. Cela permet de partager la charge de trafic et de trouver les
meilleures sources de contenu.

• La sécurité: ICN fournit une garantie de sécurité auto-protégée via des con-
tenus cryptés et auto-certifiés, et non pas via des connexions de communication
sécurisées comme IP. Seuls les utilisateurs autorisés peuvent déchiffrer les con-
tenus.

• Les caches dans réseaux: Une caractéristique importante des réseaux ICN
est la capacité de mise en cache de contenus directement dans les noeuds du
réseau. Chaque morceau d’un contenu peut être mis en cache dans les nœuds
de réseau se trouvant sur le chemin de la livraison du contenu, de sorte que
les demandes ultérieures pourront être satisfaites plus rapidement, directement
par les caches des noeuds ICN. Les paquets perdus pourront aussi être aussi
récupérés plus rapidement par des retransmissions directes depuis les caches les
plus proches.

Bien qu’ICN soit maintenant un sujet de recherche étudié par plusieurs équipes
de recherche, il en est encore à ses premières phases. De nombreuses perspectives de
recherche sont ouvertes. Dans les dernières années, plusieurs projets ou solutions ont
été mises en œuvre par des équipes de recherche différentes, avec l’objectif de réaliser
et déployer un réseau ICN; chacun de ces projets ayant des avantages et des intérêts
différents. Parmi ceux-ci, nous pouvons citer: CCN [JST+09] DONA [KCC+07],
NetInf [MA10], PSIRP [ZGR+10].

Dans cette thèse, j’ai choisi CCN comme une cible de recherche. En effet, CCN
est une solution ICN qui a pour but ultime de proposer un réseau complet basé sur
des contenus et de finalement remplacer IP (contrairement à d’autres solutions qui
proposent plutôt une approche overlays, toujours basée sur IP). De plus, il existe un
prototype open source assez avancé, avec lequel nous pouvons faire des expérimenta-
tions et proposer des améliorations.

Content-Centric Networking

La solution Content-Centric Networking [JST+09] (CCN) a été proposée par Van
Jacobson et son équipe de PARC en 2009. Dès le début, elle a attiré beaucoup
d’attention et il y a des nombreux projets qui travaillent sur cette proposition, par
exemple le projet Named Data Networking (NDN) aux états unis [ZEB+10]; le projet
ANR CONNECT [Con] en France, etc. Dans des réseaux CCN, les localisateurs de
réseaux comme l’adresse IP sont abandonnés. L’unité de réseaux dans CCN est un
segment (aussi appelé chunks dans CCN) de contenu et chaque segment de contenu a
un propre nom. Toutes les activités sont basées sur ces noms de contenu. Le concept
fondamental de CCN est que lorsqu’un client veut un contenu, il envoie une requête
d’intérêt (le paquet Interest dans CCN) qui contient le nom de ce contenu souhaité.
N’importe quelle source de contenu qui a ce contenu peut répondre (par le paquet
Data), avec le nom du message Data qui correspond au nom du message Interest.

Résumé xvii

Figure 3: La structure d’un nœud CCN

Le nommage de contenus est au cœur de la solution CCN. CCN utilise une struc-
ture hiérarchique pour nommer des contenus. Un nom hiérarchique est organisé avec
un préfix-suffixe, par exemple ccnx:/parc.org/video/widget1/version2/chunk2. Dans
cet exemple, tous les contenus proposés par parc peuvent partager le même préfixe
ccnx:/parc.org/. Un même contenu peut avoir plusieurs versions différentes et un
contenu peut être divisé en plusieurs petits segments, afin d’adapter la couche de
transport. Ainsi, chaque nom de CCN se termine par la version et les informations
de segments qui peuvent simplifier la découverte de contenu.

Un nœud CCN est principalement composé de trois éléments (Figure 3): la Pend-
ing Interest Table (PIT), la Forwarding Information Base (FIB) et le Content Store
(CS). CCN utilise un concept de face dans son architecture. La face est similaire à
la notion d’interface en IP, mais elle inclue aussi des interfaces vers des applications,
et pas seulement les connexions physiques.

• La table PIT a deux fonctionnalités principales. La première est qu’elle mé-
morise temporairement des messages Interest que le noeud reçoit avant de les
transmettre ensuite au noeud suivant. Grâce à cette table, en retour des don-
nées, le paquet Data peut suivre les chemins inverses et finalement arriver
jusqu’aux clients demandeurs. Le deuxième rôle de PIT est d’éviter de mul-
tiples envoi des mêmes messages Interest. Lorsque plusieurs messages Interest
qui demandent un même contenu arrivent sur un noeud, seul le premier est ren-
voyé pour chercher le contenu; les autres restent dans ce nœud et attentent la
réception du contenu. Une fois reçues, les données seront retournées sur chacune
des faces présentes dans la PIT.

• La table FIB de CCN est similaire à celle d’IP. Elle est utilisée pour gérer
les informations de transfert des paquets Interest vers des sources qui ont les
contenus demandés. La table FIB est remplie par des publications de contenus
qui sont publiés par des fournisseurs de contenu.

xviii Résumé

• Le Content Store est un cache (ou une mémoire tampon) installé dans les
nœuds CCN. Lorsqu’un nœud reçoit des données (message Data), selon les
stratégies de caches définies, le nœud peut sauvegarder une copie de ces données
dans son CS pour répondre aux demandes ultérieures.

Pour obtenir un contenu dans un réseau CCN, une entité cliente transmet dans le
réseau un message Interest relatif à ce contenu et comprenant le nom du contenu. Sur
réception de ce message Interest sur une face réseau donnée, un nœud CCN, vérifie
s’il dispose du contenu recherché dans son Content Store. S’il dispose du contenu
recherché, il le transmet par l’intermédiaire de la face sur laquelle la message Interest
a été reçu, à destination de l’entité cliente, éventuellement par l’intermédiaire d’autres
nœuds. S’il ne dispose pas du contenu recherché, il vérifie dans sa table PIT s’il a
déjà reçu un message Interest relatif au même contenu via la même face ou une autre
face. Si ce n’est pas le cas, il mémorise dans sa PIT le nom du contenu dans le
paquet Interest en association avec un identifiant de la face par laquelle ce message
Interest a été reçu. Il envoie ensuite ce message Interest dans le réseau selon la
table FIB. Si, par contre, sa table PIT comprend une entrée qui a déjà le nom du
contenu recherché en association avec l’identifiant d’une autre face, il ne transmet pas
la requête reçue, mais met à jour cette entrée associée de la PIT avec l’identifiant de
la face par laquelle ce paquet Interest a été reçu. En effet, si la PIT comprend déjà
le nom du contenu recherché, cela signifie qu’un message Interest relatif à ce contenu
a été précédemment reçu et transféré dans le réseau, et que le nœud est en attente
d’une réponse à ce message Interest.

Lorsqu’un message Data est reçu sur une face, le nœud consulte sa table PIT pour
connaître les faces ayant demandées ce contenus et transmet le paquet Data sur toutes
les faces qui sont associées au nom du contenu. La PIT permet donc de retrouver le
chemin que doit emprunter ce message Data pour atteindre le ou les clients qui l’ont
demandé. Après transmission de ce message Data, l’entrée associée dans la PIT sera
supprimée.

Contributions

L’objectif global de ma thèse est de garantir et améliorer les performances des réseaux
CCN. Plus concrètement je me suis concentré sur les performances des nœuds, avec
à l’esprit l’aspect de limitation des hardwares. En effet, CCN peut effectivement
apporter des avantages indéniables, mais le matériel hardware actuel ne permet pas
de supporter une solution CCN. Par exemple d’après la structure originale de CCN, un
nœud a besoin de mémoire pour mémoriser les noms de contenus. Mais les mémoires
offrant de grands volumes de stockage ne supportent pas des temps d’accès rapides.
Donc les performances de routage sont très réduites. Ceci a motivé mes travaux de
thèse et conduit à la réalisation de trois contributions majeures, basées sur les trois
différents composants du nœud CCN.

La distribution de la table CCN PIT en utilisant des filtres de Bloom
Une PIT classique de CCN est réalisée comme une table centralisée basée sur des
tables de hachage. On constate que les noms de contenu dans CCN sont de grande

Résumé xix

taille, et très variable. Un nœud CCN, pour traiter un message Interest, doit donc
stocker et manipuler les noms de contenu représentés sur un nombre quelconque de
bits, ainsi que le ou les identifiant(s) de face. La table PIT qui mémorise tous les
paquets d’Interest reçus, ainsi que l’information relative au chemin que le contenu doit
emprunter peut alors constituer une faiblesse pour un réseau CCN du fait de la taille
que cette table peut atteindre. En effet, les réseaux CCN étant destinés à acheminer
tous les contenus mis à disposition sur le réseau Internet, on comprend qu’une telle
table peut mémoriser des méga-, voire des giga-octets d’informations. On sait par
ailleurs que plus la taille de la table PIT est importante et plus les temps d’accès
aux données qu’elle contient sont importants. Cela peut nuire considérablement aux
performances d’un réseau CCN.
Dans cette contribution j’ai proposé une nouvelle structure de table PIT de type
distribué. Dans ce système, à chaque face d’un nœud est associée une PIT distribuée
(appellée PITi), propre aux messages Interest reçues sur cette face. Par rapport à la
mise en œuvre connue d’un nœud CCN qui comprend une table PIT globale, chaque
PITi dans un nœud est de taille beaucoup plus petite que la table globale. En effet,
la PITi dédiée à une face ne mémorise que les messages Interest reçues sur cette face.
Par ailleurs, la table étant dédiée à la face il n’est pas nécessaire de mémoriser le ou
les identifiant(s) de face sur laquelle/lesquelles les paquets Interest ont été reçues. Les
PITis étant plus petites, un accès à ces tables est plus rapide, ce qui optimise le temps
de traitement routage. Ce gain au niveau de chaque nœud d’un réseau contribue à
améliorer les performances du réseau.

Comme il n’est plus nécessaire de mémoriser les identifiants de face dans les PITs,
j’ai aussi proposé que les PITis soient mises en œuvre au moyen de filtres de Bloom
avec compteurs. Un filtre de Bloom, avec ou sans compteurs, est une structure
de données probabiliste compacte dont la taille est fixe et indépendante du nombre
d’éléments contenus. Une telle table peut donc être extrêmement compacte. Une telle
structure est très intéressante pour mémoriser une très grande quantité de représen-
tations de noms de contenus de taille variable. Le filtre de Bloom avec compteur est
adapté à l’enregistrement d’éléments, dans le cas présent les représentations des noms
de contenus après application de fonctions de hachage à ces noms de contenus, et à
la suppression d’éléments. Le filtre de Bloom est donc tout à fait adapté pour la mé-
morisation de représentations de noms de contenus. Une fois qu’un nom de contenu
est mémorisé dans une PITi mise en œuvre par un filtre de Bloom, le nœud a besoin
d’interroger le filtre pour savoir si le nom de contenu est présent dans le filtre, et de
supprimer ce nom de contenu, lorsqu’un message Data a été traité. Ainsi, les filtres
de Bloom avec compteurs optimisent la taille mémoire requise par la table PIT et
contribue à optimiser les performances lors de traitement dans le réseau.

Cependant, les filtres de Bloom sont sujets aux faux-positifs. En effet, bien que l’on
sache avec certitude qu’un élément est absent du filtre de Bloom, on ne sait qu’avec
une certaine probabilité qu’un élément peut être présent dans le filtre. Afin de réduire
la probalilité de faux-positifs, une seconde vérification avec un filtre de Bloom binaire
global (appellé Shared Bloom Filter – SBF) est ajoutée, après la vérification réalisée
dans une PITi sous condition que le résultat de la vérification de PITi soit positif. A
cet effet, lorsqu’un message Interest de contenu arrive sur une face, la PITi associée
à la face est interrogée sur la présence du nom du contenu requis. Si la PITi indique

xx Résumé

que le nom du contenu est présent, alors l’interrogation du SBF permet de vérifier si
l’on est en présence d’un faux-positif. En effet, si le SBF interrogé sur la présence du
nom du contenu indique que le nom du contenu est absent, alors cela signifie qu’on est
en présence d’un faux-positif puisque cela indique qu’aucun message Interest relatif
à ce nom de contenu n’a été acheminé. Par ailleurs, si le SBF indique que le nom
du contenu est présent alors on considère que c’est un faux-positif et que ce paquet
Interest est une requête dupliquée. Ce paquet Interest est donc bloqué. Les résultats
de simulations montent que la taille nécessaire pour implémenter la table PIT est
largement réduite avec ma solution. Il est donc possible de réaliser cette table PIT
avec les mémoires rapides d’aujourd’hui. La probabilité et l’impact de faux-positifs
sont significativement réduits grâce au second filtre de Bloom global.

Une table CCN FIB dynamique basée sur les contenus Dans CCN, les
routages de messages Interest sont réalisés à partir des noms de contenu et les in-
formations de routage sont maintenues dans la FIB. La FIB est remplie par les pub-
lications de contenus propagés dans les réseaux. Cela signifie que si un fournisseur de
contenu souhaite publier un contenu, il faut propager une publication dans le réseau
afin que les autres nœuds sachent que ce contenu est disponible. Chaque nœud du
CCN qui reçoit cette publication va ajouter le nom du contenu ou le préfixe dans sa
FIB, avec la face sortante qui est calculée sur une théorie des graphes de routage et
l’identifiant de l’annonceur (protocole OSPFN). Mais j’ai trouvé que cette méthode
n’est pas dans la philosophie de CCN, car elle est toujours basée sur les identifiants des
fournisseurs ou des autres nœuds de contenu. La performance est également limitée
car, comme toutes les publications sont propagées dans les réseaux, les publications
atteignent tous les nœuds disponibles et les FIBs de ces nœuds CCN devraient donc
contenir toutes les informations de routage qui couvrent tous les contenus disponibles
sur l’ensemble du réseau. La taille de la FIB serait donc immense. De plus, avec cette
propagation globale, chaque nœud de réseau a la même vue des contenus disponibles
dans les réseaux. Ce n’est pas efficace parce que, en réalité, les différentes régions ont
des popularités de contenu différentes. À mon avis, le système basé sur les contenus
doit également intégrer ces comportements de contenu comme la popularité.
Sur la base de ces analyses, j’ai proposé un système de transfert CCN dynamique basé
sur les contenus transitant par le nœud. Dans cette proposition, la FIB est remplie
directement par les paquets Data entrants, et non par les annonces de publications.
Lorsqu’un nœud reçoit un message Data en réponse à un message Interest, il va mé-
moriser le préfixe ou le nom de domaine ainsi que la face entrante du message Data
dans sa FIB. Ainsi lorsqu’un nœud a un message Interest à envoyer, s’il y a déjà des
informations associées à ce préfixe, ce message Interest sera envoyé selon ces informa-
tions. Par contre, si aucune information n’est définie, une (face défaut), qui permet
le routage vers certains nœuds pré-définis, par exemple des routeurs de bordures d’un
AS, est utilisée. Dans ce cas, les messages Interest sont redirigées vers les (faces
défaut). Ce système prend également en considération des sources de contenu (ils
peuvent être des Content Stores dans les routeurs, des caches dans les set-top box,
ou des terminaux de P2P, etc.), qui sont au niveau du nœud en aval. En effet, étant
donné que les segments de paquet Data sont mis en cache dans les Content Stores
sur le chemin de la livraison, ces nœuds peuvent également être considérées comme

Résumé xxi

fournisseur de contenu potentiel. Cependant, la conception originale de transfert de
CCN origine ne considère pas cela parce que les Content Stores n’annoncent pas les
contenus qu’ils cachent. J’ai donc proposé d’ajouter une table qui s’appelle DIFT
(Dynamic Interest Forwarding Table). La DIFT a des relations avec la PIT. En effet,
les informations sauvegardées dans PIT sont utilisés pour livrer des messages Data.
Elles peuvent aussi être considérées comme des informations de transfert qui nous
indiquent les Content Stores dont les nœuds viennent de recevoir des messages Data.

Interconnexion des réseaux CCN avec des services CDN La technologie
CDN est déjà largement déployée dans le réseau IP. Elle apporte de nombreux avan-
tages. Du point de technique, il peut réduire la latence de livraison de contenus,
équilibrer la charge dans les réseaux, et offrir aux utilisateurs une meilleure qualité
d’expérience. Du point de vue de l’entreprise, la mise en œuvre de serveurs CDN
permet d’économiser le trafic de bordure entre les fournisseurs de réseaux différents.
Certains chercheurs pensent que les caches sur le chemin, comme le Content Store
de CCN, peuvent remplacer les services CDN. Personnellement, je pense que toute
proposition de réseau du future devrait prendre en considération le service CDN, y
compris le CCN. En effet, si un nœud de CCN sur le chemin veut effectuer les mêmes
fonctionnalités qu’un serveur CDN, il doit être équipé d’un grand volume de cache de
l’ordre du Tera-octets. Ce genre de routeur hybride CCN / CDN ne peut donc pas
offrir une bonne performance, car il doit fonctionner très rapidement à la fois pour le
routage et pour la gestion de contenu CDN, ce qui est critique pour les technologies
de mémoire d’aujourd’hui. A mon avis, le service CDN doit être intégré de manière
indépendante.

Cependant, certaines fonctionnalités du prototype CCN limitent le déploiement
de CDN directement dans un réseau CCN, en raison du problème miss-hit CDN. En
effet, d’une part, CCN, de par son protocole, ne supporte pas de réponse négative.
Deuxièmement, il n’y a pas de notion de localisation dans CCN, donc la redirection
n’est pas possible pour les serveurs CDN.
Face à ces inconvénients, je propose une nouvelle architecture de nœud CCN (nommé
cRouter) et un algorithme de traitements des paquets, qui permet l’interfonctionnement
des serveurs CDN et des réseaux CCN, sans modifier le prototype CCN origine. Dans
ce système, les informations de transfert vers des serveurs CDN ne sont pas indiquées
dans la table FIB, mais dans une nouvelle table, appellée RFT (Repository Forward-
ing Table). La RFT contient des noms de domaines ou des préfixes de noms, dont
les contenus peuvent être présents dans les serveurs CDN (accord entre fournisseurs
de CDN et fournisseurs de contenus). Cette table peut être configurée de manière
manuelle ou dynamique avec des protocoles de propagation. La FIB elle mémorise
uniquement les informations associées aux serveurs d’origine. Ceci est nécessaire car
les serveurs CDN ne contiennent qu’une partie des contenus des fournisseurs (les plus
populaires souvent) et il y a donc risque de ne pas trouver le contenu si le paquet In-
terest est transmis uniquement au nœud CDN (ce que nous appelons miss-hit). Afin
de détecter ce CDN miss, j’ajoute une table, qui s’appelle PRIT (Pending Repository
Interest Table), pour mémoriser temporellement les noms et les faces entrantes des
paquets Interest qui sont rédigés aux serveurs CDN. Ce mécanisme est lié à la re-
transmission du côté client. Lorsqu’un cRouter reçoit un message Interest, il va tout

xxii Résumé

d’abord vérifier s’il est présent dans le RFT. Si le RFT ne trouve pas d’information
relative à ce message Interest, ce message Interest sera traité normalement par PIT
et FIB. Si l’information existe , un processus de vérification dans PRIT est activé.
Si dans PRIT, il n’y a pas d’entrée associée au nom de ce message Interest, ou s’il y
a une entrée mais la face entrante de ce message Interest n’apparaît pas dans cette
entrée, ce paquet Interest sera envoyé vers des serveurs CDN en fonction de la table
RFT. En même temps, le nom et la face entrante de le message Interest sont sauve-
gardés, ou mis à jour dans la table PRIT. Si ce n’est pas le cas, c’est-à-dire que la
PRIT trouve bien une entrée qui contient déjà ce nom et cette face de paquet Interest,
ou une liste de face vide, il considère ce message Interest comme une répétition de
message Interest et que le serveur CDN n’a répondu pour cette demande. Dans ce
cas, ce message Interest sera envoyé au serveur d’origine avec le processus normale
de PIT/FIB. L’entrée dans PIT est créée avec la face entrante de ce message Inter-
est, mais aussi avec toutes les faces qui sont listées dans l’entrée trouvée dans PRIT.
Parallèlement, l’entrée dans la PRIT est conservée pour un moment, avec la liste de
face vide, pour les prochaines vérifications. Lorsque le message Data est reçu, il sera
envoyé aux clients soit selon la table PRIT s’il vient via une face connectée à un
serveur CDN, soit selon la table PIT s’il vient via une face connecté à un nœud autre
qu’un serveur CDN.

Les avantages de cette solution sont que les fonctionnalités des différentes entités
de réseaux sont bien séparées. Le fournisseur de services CDN peut se concentrer
sur la gestion et la diffusion des contenus et les opérateurs peuvent se focaliser sur la
façon d’améliorer les performances réseau. De même, les constructeurs peuvent aussi
se concentrer soit sur des serveurs multimédias efficaces, soit sur des routeurs plus
performants, selon leur activité.

Mots clés: CCN, performance, efficacité, mémoire,implémentation, PIT, filtre de
Bloom, forwarding, FIB, dynamique, content-aware, algorithme, protocole, CDN.

1

Chapter 1

Introduction

I would like to start this thesis by introducing the context of today’s Internet. In
this chapter my goal is to provide a brief presentation of the IP networking evolution
and the motivation for the ICN/CCN paradigm. Then I make a short introduction
of the objectives and the contributions of this thesis. At last this chapter ends by an
outline of the entire thesis.

1.1 The evolution of IP network and the motivation for

ICN

1.1.1 Limitation of IP

Since the current Internet was designed in 60s-70s, it has played a more and more
important role in people’s life. From the beginning, the Internet is designed as an
end-to-end model and runs on top of five layers of the TCP/IP protocol stack with
the intention to connect a few machines.

1. Physical layer. The physical layer includes all the medium for the transmission
of the signals, for example the optical fiber, the twisted pair cable, or the air
(WiFi).

2. Data link layer. The data link layer provides a reliable link between two
directly connected devices. It includes the functions as error correction, the
packet retransmission control, loop detection, and channel assignment, etc.

3. Internet layer. There might be multiple data links between two devices. The
role of the Internet layer is to choose the optimal routes and switch points
between the equipment. The TCP and IP protocols are included in this layer.

4. Transport layer. In the Internet layer, packets are delivered in the hop-by-hop
communication model. The role of Transport layer is to establish a virtualized
end-to-end link between two remote devices that are communicating.

5. Application layer. The Application layer provides all the Internet application
services or protocols, for example the HTTP, FTP, BGP or DNS etc.

2 1. Introduction

Based on this Internet paradigm, all the Internet information exchanges are real-
ized by establishing the communication channels between the networking equipment
(as shown in Figure 1.1). This host-centric Internet design perfectly matched the
simple Internet usage at the early age, since early Internet applications or protocols
were also end-to-end communications, for example web surfing on a certain web site,
instance message chat with a close friend, sending e-mails, or FTP download from a
known server, etc.

Figure 1.1: IP networking architecture

The science and technology never stop from evolving. In the last decade, the
Internet has experienced an explosive revolution. The networking link layer is no
longer limited at the optical fiber or xDSL technique. Various technologies are de-
ployed for Internet information exchange, from WiFi, mobile 3G and 4G, to Zig-
Bee [BPC+07], Satellite, etc. The end-user terminals which support the Internet
experience cover from the PC, laptop, smartphone, tablette, to the video game ter-
minals, music players, set-top box, etc. NAT [Tsi00] is proposed because of the lack
of IP addresses. DNS [E+11] is deployed because we need to translate the human
readable URLs to the routable IP addresses. Information security becomes also im-
portant, for example E-commerce is popular today, thus IPsec layer [KA98] is also
addressed. Not to mention, multicast, multi-homing [SX01, NB09], mobility, security
for multi-homing [MPH+12], security for mobility, cloud computing, SDN, etc., more
and more patches or overlays are added on the current Internet protocol stack in
order to meet the needs. More importantly, the Internet usage is changing as well.
It is switching from the host-centric to a content-oriented model. On-line video (e.g.
Youtube, Dailymotion, Netflix, VoD services (Video-on-Demand), etc.) becomes al-
ready the major contribution (59.5% in 2013, and 69% estimated for 2017) of the
networking traffic [Cis]. Twitter, Facebook attract many users who enjoy sharing
their daily life on-line with others. Flickr, Instagram gets also success because not
only the text information is what people want to share, but also the multimedia in-
formation. The Internet becomes more and more complex and bottlenecks start to
appear. For example:

• If one hundred million users are watching the World Cup football game on line

1.1. The evolution of IP network and the motivation for ICN 3

at the same time, and even if each user has only a basic 100kbps downlink
connection, it leads to a total throughput of 10Tbps, which is much more than
the tier one throughput capacity of a country. In order to save the bandwidth,
the live videos are currently retransmitted from CDN nodes [VP03] which are
deployed by the video service providers. Sometimes the P2P [SF02] acceleration
technology is also implemented. That is why when we watch a live football game
online, we have a few minutes delay. This phenomenon is because that even if
two football fans are neighbors, the server has to send two data packets to each
of them. So what about a solution where the server only sends one copy and lets
the routers located on the last mile send this packet twice to the end-users? It
would be network-efficient, however the standard IP structure does not support
it.

• Today more and more mobile devices are connected to the Internet and people
move a lot. If one move from one WiFi hot-spot to another one, or switch
from a WiFi connection to a cellular network (3G, 4G), the established Internet
connection will be down, because the IP address is changed and the route has
to be recalculated. That is why it is difficult to keep an efficient end-to-end
connection in a mobile IP network.

1.1.2 Motivation of ICN

Facing these shortcomings, many research communities are motivated to develop a
so called Information-Centric Networking paradigm (ICN) [MTP+11]. Because if we
look carefully at the deep common points of those problems, we can observe that all
services rely on the end-to-end connection. But the current Internet usage shows that
what people care about is no longer “where” it can get the information that they are
interested in, but “what” the information actually are, which means the end-to-end
model is no longer the obligation.

The ICN paradigm aims to shift Internet model from the current complex IP
structure to a simple and generic one based on the information objects, with all the
services that are mentioned above embedded (as shown in Figure 1.2). In ICN net-
work, the basic networking unit is the named content objects, no longer the identified
nodes (e.g. servers, routers, terminals, etc.). All the networking activities are based
on the named content objectives. In IP, before every activity, the end-users should
tell the network clearly which location they want to communicate with. The job of
the network is to find out the exact location and establish a conversation channel.
The ICN is a receiver-driven networking model, where end-users only express their
interests for a given content, the entire network is in charge of routing the requests
based only on the content names towards the best content containers and deliver-
ing the contents through the reverse paths to the end-users. The end-users in fact
have no idea about where these copies of contents are from. The ICN aims to build
the attributes directly into the networking design. It natively includes the features
as location-independent naming, name-based routing, in-networking caching, native
multicast, self-secured content, etc.

With this design, ICN can optimize and simplify the content delivery experience
and leverage the service providers’ infrastructure capabilities, such as:

4 1. Introduction

1. The mobility: Since the ICN communications are not based on the established
connections, the movements of end-users will not affect the networking activ-
ities. Their requests from different locations at different times are processed
independently by the network.

2. The multicast: The requests for a same content from different end-users will
aggregate in one ICN node and only the first one is sent out. When the content
is replied, each appended request will get a copy of the content. Thus the ICN
can natively perform the multicast in order to optimize the content delivery.

3. The multipath: A given content object can be available in more than one
content container. Thus each request at an ICN node can be sent out via
multiple available interfaces (e.g. cable, WiFi) in order to share the traffic load
and find out the best content containers.

4. The security: ICN provides a self-protected security guarantees via the en-
crypted contents and the self-certified content names, not via the secured com-
munication channels. Only the authorized users can decrypt the content.

5. The on-path caching: The most import feature of ICN is that it provides the
on-path caching capacity of the contents. Each piece of content object can be
cached in the networking nodes along the delivery path, so that the subsequent
requests can be replied more rapidly direct from the caches, and the lost packets
can be also covered faster.

Figure 1.2: ICN networking architecture

1.2. Objectives and Contributions 5

Although ICN enters now into the main stream of networking research, it is still
in the early stage. In the past few years, many projects have been carried on in
order to propose a concrete ICN solution to deploy it in reality. Different projects
use distinct notations to indicate their design choices and features. For example the
CCN [JST+09], DONA [KCC+07], NetInf [MA10], PSIRP [ZGR+10],

In my thesis I chose the CCN as my research target, because it is the most ad-
vanced and mature proposal. Its ultimate goal is to replace the entire IP based
networking structure with the named content based design, although the others are
more about proposing a optimized overlay candidates.

1.2 Objectives and Contributions

The global objective of this thesis is to guarantee and improve the CCN networking
performance.

In my research work I focused on how to improve the performance of a single CCN
node in terms of overcoming the hardware limitations, packets processing, content-
based forwarding and content discovery. The motivation of these choices is that, the
CCN protocol and its services are still in the early stage. There is no existing mature
service in business yet. Thus it is a little early to talk about the quality of a certain
service. And on the other hand, the performance of each single node is the base of
the performance of the connected network. Hence I think it is important to start by
focusing on the single node performance.

This thesis mainly contains three contributions that are related with the three
CCN node components:

• I proposed a new distributed CCN PIT design which is based on the Bloom filter
structure. The original CCN PIT is designed as a hash table based structure.
Hash table solutions, which have a O(1) time complexity, are largely used in IP
applications. However they require too many memory space for CCN PIT us-
age. Since CCN content names are longer and more complex than IP addresses,
a relative high packet arrival rate makes the memory requirement of imple-
menting hash table base PIT exceed current fast memory volume limit. Thus
the forwarding performance is limited. In order to reduce the memory space
consumption, I proposed a Bloom filer based PIT solution in a distributed man-
ner. The implementation of Bloom filter can significantly reduce the memory
requirement, and the distributed structure can tackle the information retrieving
problem of Bloom filter. In this contribution I carefully present the solution.
And the evaluations validated the advantages of this solution. At last, I also
made an example for giving some reality deployment recommendations.

• I considered the CCN forwarding information design. The CCN Interest mes-
sages are forwarded based on the content names. The routing information of
Interest packets are maintained by the Forwarding Information Base (FIB) ta-
ble. This table is similar as the FIB in IP network. It contains the prefixes of
the content names (a.k.a ContentNames in CCN paradigm) and the outgoing
interface (a.k.a face in CCN). However the FIB is filled by the broadcast content

6 1. Introduction

advertisements. That means if a content provider wants to publish a content, it
should propagate a content advertisement into the network in order to announce
the availability of this content. Each CCN node that receives this content ad-
vertisement will add the content name or prefix into its FIB, together with the
associated outgoing face which is calculated based on a routing graph theory
and the Id of the announcer. But I found this method is not CCN-friendly, since
it is still based on the identifiers of the content providers. The performance is
also limited. Because with this manner, first of all, the FIBs should contain
all the routing information that allow to access to all the available contents in
the entire network. The size of FIB will be huge. Second of all, in the original
manner each networking node has the same view of the available content in the
entire network. This is not efficient because in reality different regions have
different content popularities. In my opinion the content-centric forwarding
scheme should also consider the behaviours of contents, for example the content
popularity. Based on these analysis, I proposed a content-aware CCN forward-
ing structure. In this proposal, the CCN FIB forwarding information is realized
directly based on the incoming content packets, not on the broadcast content
advertisement. This scheme takes also into consideration of the Content Stores
that are at the downstream node. Since the content packets are cached in the
Content Stores along the delivery path, these nodes can also be considered as
potential content provider. However the original CCN forwarding design does
not consider this because the Content Stores do not send the advertisements
even they have the contents.

• In this contribution I studied about the deployment of CDN services in CCN
network. The CDN technology has already been largely deployed into IP net-
work. It brings many benefits. From a technical point, it can reduce the content
delivery delay and offer the end-user a better Quality of Experience. From the
business point, implementing CDN servers can economize the peering traffic
between different IPSs. I think any next generation networking proposal should
support the CDN service, including CCN. Indeed, some researchers argued that
such on-path cache can replace the CDN services. However I doubt about this
consideration. The reason is if a on-path CCN node wants to perform the same
functionality as the CDN server, it should be equipped with a large space cache
in the order of Tera Bytes. This kind of hybrid CCN/CDN node thus cannot
offer a good performance, since it should perform fast both for packet routing
and for CDN content management, which is critical for today’s memory tech-
nologies. I believe that the CDN service should be integrated in an independent
manner. Some features of CCN protocol restrict deploying the CDN directly in
CCN network, because of the CDN miss-hit issue. Firstly, the CCN does not
support the negative reply. Secondly, there is no locator notion in CCN, thus
the direct redirection is not possible for CDN servers. Facing these inconvenient,
I proposed a new CCN node architecture and packet process algorithm, which
allows the interworking of CDN servers and the CCN core network, without
modifying the original CCN prototype. The advantages of this solution is that
the functionalities of different entities are well separated. The CDN service

1.3. The organization of dissertation 7

provider can concentrate on the content delivery management issue, and the
operators can focus on how to improve their the networking performances.

1.3 The organization of dissertation

This thesis contains six chapters. The Chapter 1 and Chapter 2 present a broad
context and background of this work. The Chapters 3, 4 and 5 detail the three main
contributions of this thesis. The thesis will ended with a conclusion and a perspective
future work in Chapter 6 and Chapter 7, respectively.

Chapter 1, (i.e. this current chapter) , presents the motivation of the ICN
netwoek and why I choose CCN as the candidate. It introduces also the objectives
and the brief description of each contributions.

Chapter 2 gives firstly a brief introduction of some other ICN solutions. Af-
ter that I present the details of the CCN network, including the networking design,
content based routing, naming issue and on-path caching feature. In this chapter I
present also a summary of the current memory technologies, which is running through
this thesis.

Chapter 3 presents a new distributed PIT architecture which is based on the
Bloom filter. Compared to the hash table based solution, this proposal can largely
reduce the memory space requirement, so that the deployment of CCN node into real
become possible facing the current memory chip limit.

Chapter 4 presents a new dynamical CCN content-aware forwarding design.
Based on the incoming content packets, this scheme contains three main contribution:
a new content advertisement protocol, a new FIB filling protocol and a downstream
Interest message forwarding protocol. In this chapter I will present the details of each
component. I also give some evaluations to prove that this proposal is space efficient,
and since it is automatically aware of the local content popularities, the performance
is better.

Chapter 5 presents a new kind of CCN node — cRouter. cRouter can support
the classic CDN server interconnect with the CCN network. In this chapter I will
present the details of the cRouter, and explain how it works to interconnect the CDN
service and CCN core network, in considering of the CDN miss and CDN forwarding
issues.

Chapter 6 makes a global conclusion of this thesis. In my thesis the three
contribution focus on different CCN element, but they are not independent from each
other. In this chapter I will summarize that the global objective if this thesis is to
propose a redesigned CCN node structure with high performance and that meet the
current hardware technology limits.

Chapter 7 discuss some of the potential future works that can improve these
three years research.

8 1. Introduction

9

Chapter 2

Background

2.1 General Introduction

In Chapter 1, I have presented the motivation and some features of ICN. In this Chap-
ter, I first introduce some ICN solutions, and then I give a more detailed description
of the CCN design. Finally I briefly summarize the characteristics of current memory
technologies, since it drived my work for a realistic CCN node.

2.2 Some ICN projects

Since the ICN paradigm has been raised, many research forces proposed their ICN
solutions or projects, with different architectures. In this section, I present some of
them that are relative advanced and mature.

2.2.1 NetInf and SAIL

Network of Information (NetInf) [MA10, WWWd] solution is a networking ar-
chitecture, proposed by the European FP7 project named 4WARD and its follow-up
project named SAIL.

NetInf networking structure is based on a Naming Resolution System (NRS) and
a Multiple Distributed Hash Table (MDHT) routing mechanism. In NetInf, the con-
cepts of content representation and the data object of a content are clearly distinct.
An Information Object (IO) is for directly referring a piece of content object and a
Bit-level Object (BO) is the content data itself. An IO contains three information: a
globally unique identifier of the content, a set of meta-data and a Data Object (DO)
which can be regarded as a reference of the payload of the actual content — the BO.
The content identifier contains the type of the content (such as text document, audio
file, image, web page or live streams) and the hash of the owner’s (or publisher) pub-
lic key. The meta-data field contains a metalist which provides semantic information
about the content that can be helpful for the search service, like the bit rate and
codec of an audio recording or the author and the abstract of a document.

10 2. Background

Figure 2.1: Routing scheme of NetInf

The roles of content authors and publishers in NetInf are different. The authors are
the ones who create, sign and modify the IO. A same IO can have different versions and
different versions can have different authors and different signatures. The publishers
are not authorized to modify or sign the IOs, but they can redistribute the contents.

The NetInf Name Resolution System (NRS) takes a content identifier or a set
of attributes which describe the searched object as the input, and returns a set of
binding records for IOs that matches the input. The IOs include a reference (DOs)
that directly or indirectly can be used to retrieve the BO. This means in NetInf system
a two-step resolution is possible. The application or user can chose in the returned
IOs list which one to select for requesting the corresponding BOs, based different
criteria (cost, download speed, definition, quality, etc.).

Netinf defines different level name resolution zones which are realized by a Multiple
DHT (MDHT). Each zone is responsible to persistently store a BO with corresponding
identifying IO. When a client requests an object, a first DHT lookup is made at the
first level (e.g., its access networks zone). If it is not found, another DHT lookup is
issued at a upper level (e.g., POP zone). If it is still not found, another DHT lookup
is made at a upper level (e.g., domain level), etc. When the DHT lookup is successful
at a given level, the result is returned to the client. It is to be noted, that despite
the hop-by-hop routing and local resolution this provides, the top DHT level has to
contain bindings for all data registered in the domain, with possible scalability and
possibly performance issues. The Figure 2.1 illustrates the routing scheme of NetInf
architecture.

SAIL [WWWh, SAI13] is a EU-funded research project of Network of the Future.
SAIL chooses the NetInf solution as its fundamental networking architecture. The
mains research directions of SAIL are: Migration, Standardisation, Business and
Socio-Economics, Network of Information, Open Connectivity Services and Cloud
Networking.

2.2. Some ICN projects 11

2.2.2 DONA

The Data Oriented Network Architecture (DONA) [KCC+07] project aims to
define a clean-slate ICN network. The core of the routing in DONA is a hierarchical
naming resolution system with a flat content naming.

The naming issue in DONA is similar as the naming of NetInf. DONA uses a
flat P:L naming structure. The part P is the hash of the public key of the content
owner (the Principle concept in DONA). And the L is the owner assigned content
label. The content owners have the responsibility of ensuring the entire P:L name is
globally unique.

Figure 2.2: Routing scheme of DONA

However the routing in DONA is different from the NetInf routing. DONA applies
a hierarchical content name resolution system (Figure 2.2), the Resolution Handles
(RHs). Each RH node has a information base which contains three tuples, the content
name P:L, the next hop and the distance. The next hop is from where the node
receives the content name advertisement. The DONA routing contains content FIND
and contain REGISTER two processes. Both of the two processes are directly based
on the flat content name. When a RH receive a REGISTER message, it will add the
<P:L, next hop, distance> into its register table for a new arrival message, or update
the next and distance for an existing entry if the new arrival message has a shorter
distance. Then the RH will forward this message to its parent RH(s). At last the
content registration will end at the highest root RH(s). When a RH receives a FIND
message, it will look the content name in its local register table. If it finds a matched
entry, the FIND message will be forwarded through the next hop of the matched
entry. Otherwise, the RH will transfer the FIND message to its parent RH(s). As the
FIND message forwarding, each RH which is on the path appends the FIND locally,

12 2. Background

hence once the FIND arrives at the closest content container, the content object will
be returned via the reverse path of the FIND forwarding.

2.2.3 PSIRP and PURSUIT

The Publish-Subscribe Internet Routing Paradigm (PSIRP) [ZGR+10, WWWf]
is another European FP7 project. PSIRP proposed a clean slate ICN architecture
which is based on a publish-subscribe solution. PSIRP applies also a P(prefix):L(locator)
naming structure. The content name is referred as Resource Identifiers (RIds). The
PSIRP network includes a concept named Scopes, which is identified with Scope Iden-
tifiers (SIds). The Scopes control the characteristics of a content, such as access right,
authorization, availability, reachability, replication, persistence and the upstream re-
sources. Both the content publication (publish) and the content request (subscribe)
of a content are based on a pair <SId, RId>.

Figure 2.3: Routing scheme of PSIRP

The PSIRP routing scheme includes four important units: RendezVous Nodes
(RN), Topology Nodes (TN), Branching Nodes (BN) and Forwarding Nodes (FN).
The entire PSIRP network is divided into Domains, which is similar as the Au-
tonomous System of the current Internet. Each domain has one RN, one TN, one BN
and several FN. The RN of each domain is in charge of the matching between the
content publishers and subscribers, the location of the content publications and the
scopes. Every individual RN can have its own name resolution system. All the RNs
of every domain are interconnected with DHT into a global RendezVous Intercon-
nection (RI) which makes the scopes of each domain globally reachable. The TN is
in charge of managing the intra-domain networking topology and load balancing. It
also exchanges the path vector information with the other inter-domain TNs. The BN

2.3. Content-Centric Networking 13

builds up a routing map for routing the subscriber interests toward the inter-domain
or intra-domain content containers by using the topology which is maintained by the
TN. Finally the role of the FNs is to use a Bloom filter based forwarding implementa-
tion to realize the content forwarding from the content container to the subscribers.
The Bloom filter which is named Forwarding Identifier (FId) is modified during the
subscription delivery.

In PSIRP a subscriber expresses its subscription for a content to the local RN of
its domain to get the content container location. The BN uses the network topology
which is obtained by the TN to forward the subscription to the content container.
The subscription packet injects the return path into the Bloom filter and construct
the FId. At last the FNs use the FId to return back the required content to the
subscriber. The Figure 2.3 illustrates the routing scheme of PSIRP architecture.

The PSIRP project has ended at 2010, but the work has been carried on in the
PURSUIT project [WWWg] [PUR12], which is also a FP7 European project. This
project proposed to refine the PSIRP architecture, for both wireless and wireline
networks, in particular on important aspects such as caching mechanisms for better
resource utilization and management, transport issues and enhancing mobility with
network topologies.

2.3 Content-Centric Networking

After having analysed the ICN candidate solutions, I decided to select CCN (Content-
Centric Networking) for my research target, because it is the most promising one in
my opinion. Since my work relies on it, the CCN solution is much more detailed in
this section than the other previously described proposals.

Content-Centric Networking [JST+09] was proposed by Palo Alto Research Cen-
ter (PARC) in 2009. It is one of the most attractive ICN research candidates. From
the beginning, there are many research projects on this topic in the world, such as the
Named Data Networking(NDN) project [ZEB+10], the French national CONNECT
research project [WWWa], European FP7 COAST project [WWWc], etc. The ulti-
mate objective of CCN is to replace the IP based Internet that has met the bottlenecks
as mentioned in Chapter 1, with a content based model. CCN proposes a pure content
based networking architecture from content naming, content based routing, content
discovery and delivery, to content based security, in-networking caching.

Everything in CCN is based on the content names. In CCN, the networking
locator concept such as IP address is abandonned. The only identifier in CCN is the
content name itself. In CCN the information exchanges are not based on established
communication channels. The fundamental concept in CCN is that when the end-
users want whichever content information, they express their requests, which contain
the content names, into the network and any entity that has the matched content,
based on the content name, can reply the request with the matched content object.

In the following sections I will present some technical properties of CCN.

14 2. Background

2.3.1 CCN architecture and message exchange

In CCN, the networking elements are no longer identified by the location-related
identifiers, but by the unique content names. Each networking process is also based
on the content names. CCN contains two types of packet: Interest for sending the
requests and Data for replying the matching content. Each Interest packet carries
a ContentName (CCN name), which expresses what the client wants. Each Data
packet carries also a ContentName, which is used to describe the content in this Data
message and to match the Interest message. The CCN network is composed by the
CCN nodes. A CCN node can be everything: a router, a switch or even an end-user
terminal. CCN uses face concept instead of the interface notion which is familiar
in IP. The CCN face is a relative general concept, defining not only the physical
interface that connects the equipment but also the internal connection between the
upper software applications and the down hardware layers. Figure 2.4 illustrates the
architecture of a CCN node. Each CCN node is composed by three main elements:

1. Pending Interest Table (PIT) – The Pending Interest Table is introduced
in CCN. It contains two information in the table: the ContentNames of the
incoming Interest messages and the associated incoming faces. The Table 2.1
gives an example of a CCN PIT, which has two important roles. The first
one is for keeping the reverse path of the propagated Interest packet so that
the returned Data packet can follow these “breadcrumbs” downstream to the
consumers. When an Interest packet is forwarded out, the PIT memorizes the
Interest name and the incoming face locally (e.g. the third entry in Table 2.1).
When a Data message is returned back, the PIT looks the Data message name
up in the table and if there exists a matched Interest name, the CCN node will
send the Data packet out through the associated face(s) of the matched entry.
The second role of PIT is for avoiding multiple request forwarding. When the
Interest messages for the same content but from different incoming faces are
received, only the first one is forwarded, the others will be only appended in
PIT and waiting for the Data message back (e.g. the first entry in Table 2.1).
Once the CCN node receives a replied Data message from the first sent out the
Interest packet, all the other appended Interest messages can get a copy of the
Data message so that each client can receive the required Data object.

CCN Pending Interest Table

Content names Faces

ccnx:/youtube.com/news/baby_born/ face308, face321
ccn:/google.fr/ face103
ccn:/orange.fr/news/meteo/ face201
.

Table 2.1: CCN Pending Interest Table

2. Forwarding Information Base (FIB) – The CCN FIB is similar as the FIB
in IP routers. It contains the ContentNames or the aggregated prefixes of the
names, and the outgoing face. Table 2.2 shows an example of a CCN FIB.

2.3. Content-Centric Networking 15

FIB is used for forwarding the Interest messages to the sources that are known
to potentially hold the matching Data message. For example if a CCN node
receives an Interest message on a name as ccnx:/youtube.com/news
/baby_born/, and if the Content Store does not have a matched content and
the PIT does not give a matching result, the Interest packet will be forwarded
through the face101 according to the FIB. The IP FIB is filled by the routing
messages. The CCN FIB is filled by the content advertisements. If a content
provider wants to publish some available contents, it should send out the content
advertisements into the network. Every CCN node that receives such a content
advertisement will add the content name or prefix together with the incoming
face identifier in the FIB. An entry of CCN FIB can have multiple outgoing
face, that means the multicast is supported by default in CCN.

CCN Forwarding Information Base

Content names/prefixes Faces

ccn:/youtube.com/ face101, face102
ccn:/google.fr face103
ccn:/orange.fr/news/meteo/ face201
.

Table 2.2: CCN Forwarding Information Base

3. Content Store (CS) – CS is a cache or a buffer set in every CCN nodes. It
can cache the content objects that pass by and provide the in-network caching
feature for the goal of minimizing network bandwidth and latency demands, as
well as the server load. Content Stores of different CCN nodes can have different
caching strategies and content replacement policies. The Content Store is an
important element in the CCN network because it provides the on-path caching
benefits. However in the CCN research world there currently have two different
understanding of the Content Store. Some people consider the Content Store
as a CDN-cache like data base, that means the Content Store can have a large
storage volume and provide the CDN-like service. The others think that the
Content Store is only a short on-chip buffer. The main functionality is to
provide a fast retransmission reaction in case of a packet loss. In my thesis I am
aligned with the second consideration. Because first of all, the on-path storage
requires fast performance, however the current fast memory technology does not
support large volume. Secondly whether deploying the large CDN-like caches
everywhere on-path of the CCN network can really offer a good performance
than the conventional off-path CDN service is not clear.

The packet process in a CCN node is performed as following. When an Interest
packet arrives at a CCN face, the ContentName carried by this Interest packet is
firstly checked in the Content Store. If there is a matching Data message, it will
be directly returned through the same face where the Interest message arrived at.
Otherwise the ContentName is further checked in PIT. If there is already a matching
entry, the arrival face information is updated in the matching entry. If not, the FIB

16 2. Background

Figure 2.4: The node structure of Content-Centric Network

table is consulted for the forwarding information, and a new entry associated with
the new arrival Interest message and its incoming face is created in the PIT.

The Data packet follows the tracks left by the Interest packets in the CCN nodes.
When a Data packet arrives at a CCN node, the ContentName of the Data packet
is checked in the Content Store. If there is already a matching content cached in the
CS, this Data packet should be discarded. Otherwise, the Data message is checked
in PIT. A PIT entry match means this Data message has been required, it is then
sent out through all the faces that are listed at the matching PIT entry, and the
Data message can be (optionally) stored in the Content Store based on the caching
strategy.

2.4 CCN Naming and Routing

In CCN everything is based on content names. The naming and the named-based
routing scheme are the core of all the activities in CCN networking. The content
retrieval in CCN can be mainly divided into two parts: the content discovery and the
content delivery. The content discovery is related to how a content is named, how
it is published and how a CCN node addresses it. The content delivery defines the
CCN routing protocol which is about how a content provider propagates its contents
into the network, how a CCN node routes the end-users’ Interest packets to the best
content sources and how a CCN node delivers the contents to the end-users.

The content name is the only identifier of each content object, which permits
either the end-user or the intermediate networking unit to locate the best content
holder. The content name is usually a globally unique identifier, but the unique
named content can be in different containers, for example the original content servers,
the CDN repositories or the on-path caches.

The content name in CCN is designed as a hierarchical structure (Figure 2.5).
The hierarchical name is organized as a prefix-suffix order. ccnx:/parc

2.4. CCN Naming and Routing 17

Figure 2.5: The naming of Content-Centric Network

.org/video/widget1/version2/chunk2 is an example of a CCN content name. All the
content provided by parc can share the same ccnx:/parc.org/ prefix. The tree-like
structure can make the CCN name support the aggregations in CCN FIB as the IP
address aggregation. A same information object may have several different versions
and a single content can be divided into multiple small segments (chunks concept in
CCN) in order to adapt the transport layer. Thus each CCN name is ended by the
version and chunk information which can simplify the content discovery. The entire
name is signed with a SHA256 digital signature of the content provider. Thus only
the authorized receivers can decrypt the digital data.

The CCN routing is realized via direct name based routing. However, as I pre-
sented in 2.3.1, in CCN only the Interest messages are routed, but not Data pack-
ets. The CCN FIB is filled with the content advertisements that are flooded by the
broadcasting protocol, for example the OSPFN protocol [WHY+12] as proposed by
the NDN project. OSPFN is the first relatively mature proposal related to content
advertisement in CCN. I present some details of this protocol in the next subsection.

2.4.1 OSPFN protocol

The NDN project [ZEB+10] proposes OSPFN [WHY+12], which is an extended ver-
sion of the IP OSPF [Moy98] protocol for CCN, to broadcast the content advertise-
ments. OSPFN uses the Opaque Link State Advertisement (OLSA) to announce
content names or prefixes and router IDs. When a CCN node wants to publish an
advertisement, it creates an OLSA message which contains the name of the content
that it wants to publish and its router-ID. Its OSPFN engine is in charge of flooding
the OLSA message over the network in the same way as the IP OSPF protocol. An-

18 2. Background

other CCN node who receives this OLSA message will retrieve the content name and
the router-ID information that are carried in the message and query its local OSPF
engine with the router-ID to calculate the shortest path to the publisher and find out
the right next hop. Finally, the CCN engine injects the content name and the next
hop in its local FIB.

2.5 CCN on-path caching

One of the most remarkable characteristics that differs CCN from the current IP
Internet is the on-path caching system, which is offered by the Content Store design.
As I described in Section 2.3.1, the Content Store can be implemented in various
types of CCN nodes (e.g., routers, end-user terminals, border gateways, etc.). Each
Content Store can have the different caching and replacement strategies according
to the ISP needs. The Content Stores at different nodes works individually in the
original design. In order to get a better performance for different services, others
caching strategies can also be applied (for example a cooperative strategy [LS11]).

CCN protocol takes advantages of its URL alike hierarchical content name and
a multicast routing mechanism to forward user’s request to multiple sources of the
content. The source could be the original provider of the content, or the users who
are willing to share their local copies of it. Any network nodes along the path from
the requester to the source holding the corresponding content can directly satisfy the
end-user’s request. At the meantime, the node that do not cache can decide to store
the content passing through it according to a certain policy. Since the copyright check
and the authentication of the content is accomplished at the application level, network
operator does not need to implement specific functions to manage the storage space
at user side and authorize the publication of the content from them. Because of the
same reason, the CCN protocol deals with the cache storage offered by othe network
operator and contributed by the users in the same manner. The CCN name-based
routing is simple and efficient enough to retrieve the cached content.

2.6 Summary of ICN state-of-the-art study

The idea of Information-Centric networking is widely discussed in the research world
but it is still at a earlier stage and many features are still open for discussion. The
just presented ICN solutions have their own advantages and drawbacks. They can
be seen competitors or complementaries, depending on the objectives. I made a brief
summary of the key features of these ICN solutions in Table 2.3.

In the beginning of my thesis, I made an analysis of those solutions to decide which
solution to take into consideration for my research work. I analysed them based on
several features, such as scalability, naming, routing, forwarding, mobility support, the
potential to be deployed by network operators and the possible networking usages.
The following text detail the main reasons why I finally concluded that the CCN
solution is the most suitable.

The CCN URL-like hierarchical naming is flexible for the content names manage-
ment. The prefix parts of a name can used for distinguishing different content sources,

2.6. Summary of ICN state-of-the-art study 19

Solutions Naming Forwarding Caching Mobility

CCN
Hierarchical
naming

Name based rout-
ing; Longest pre-
fix matching

In each CCN
node

Transport-
based native
support

DONA Flat naming
Pub/Sub system;
Label switching

Only in Reso-
lution Handler
node

Not mentioned

PSIRP Flat naming
Pub/Sub system;
Label switching

Only in Ren-
dezVous points

Not natively
support

NetInf
half-flat
and half-
hierarchical

MDHT overlay In network nodes
Overlay-based
support via
NRS

Table 2.3: Comparison of existing ICN solutions

content or service types or even including the administrative information. The un-
bounded feature can support the self and dynamic content name generating. The
longest prefix matching routing allows the users to query the contents without know-
ing the full names, or even the content which are not yet published. The URL-like
naming and the aggregatable prefix are very similar as in IP, so that some mature IP
technologies can be reused for CCN, such as the BGP or OSPF protocols. Thus, if in
the future the IP based network and the ICN will temporally co-exist and cooperate
with each other, CCN is better for the migration.

CCN forwarding performs a direct name based routing, without adding any third
party element (contrarily to the naming resolution system in NetInf or the centralized
RendezVous points in DONA). The DNS service for IP is now too heavy to manage
and is already vulnerable, for the security issue. The direct name based routing
from CCN is lighter for the realistic implementation and it is less complex to adapt
CCN into various networking environments, such as the Wireless Sensor Network, the
vehicular networks or domestic networks.

CCN does not differentiate a lot between the networking level router and the end-
user level terminals. Each equipment in the network is a CCN node. So that the CCN
in-network caching features can be carried out in every CCN unit. Since the design
of the centralized caching node will suffer the capacity or the management issue, the
caching structure from CCN can extend the adaptability of the caching feature for
various networking use cases.

The mobility becomes an important issue for current networking performance.
The predominant current Internet applications, for example streaming delivery, se-
curity, VoIP, cannot still deal with the mobility requirement. Even if the mobility
in CCN is not yet mature, the location-independent networking design and the no-
connection based datagram transmission mode will have a better opportunity to deal
with the mobility issue.

Based on the aforementioned points, I chose CCN as the ICN solution in my
thesis research work. A scalable issue of how to manage billions content names is
unavoidable for the content based CCN and, for example, leads to memory issues in

20 2. Background

the local nodes, because the memory requirement of the naming tables will be very
huge. This is the starting point of my research work and the related challenges I
decided to address.

2.7 CCN optimization and Memory Technology

As I mentioned in the previous subsections, the CCN paradigm proposal can bring
many benefits but it is also a big challenge for current hardware technology, espe-
cially the memory requirement issues. The in-network caching design requires a large
memory space for content storage (Content Store). The switch from IP addresses
to the content names will also introduce a huge number of content identifiers, that
requires a large memory space to memorize the content names locally in each CCN
node for the information forwarding (PIT and FIB). And according to the perfor-
mance requirement of content caching or packet routing, the implemented memory
chips should perform fast.

Technology Access time(ns) Cost($/MB) Max. size

TCAM 4 200 ≈ 200Mbits

SRAM(on-chip) 1 27 ≈ 50Mbits

SRAM(off-chip) 4 27 ≈ 250Mbits

RLDRAM 15 0.27 ≈ 2Gb

DRAM 55 0.016 ≈ 10GB

High-speed SSD 1,000 0.03 ≈ 1TB

Table 2.4: Current memory technology [PV11]

Some related papers have already expressed some doubts about whether the cur-
rent hardware can support the novel content centric paradigm [PV11] and the realistic
implementation issues of CCN. Lee et al. from [LRH10] analyzed the energy efficiency
of CCN content storage. Rossi and Rossini from [RR12a] studied the caching perfor-
mance of CCN on the size of individual router caches. Somaya et al. from [ANO10]
investigated a CCN router design and implication of the CCN content store. The
above analysis research works are all based on the current CCN structure without
proposing an optimizing design which can improve the performance. And further-
more, most of the works are all about the CCN caching element (Content Store), but
less on the forwarding units (PIT and FIB). I tried to fill this gap and evaluated this
memory issue for the FIB and PIT CCN components. Looking at Table 2.4, which
summarizes today’s memory chip technologies, we can make a quick computation to
highlight the limits of current memory technologies for CCN. Let us suppose that the
average length of ContentNames in the Interest packets has 40-Bytes, that a CCN
node receives an average Interest packet arrival rate as 100Mpck/s, that the average
Data packets response time is 80ms. According to the Little’s Law, we need more
than 2Gbits memory space for the PIT and FIB. Even if, in the FIB, the content
names can be aggregated into shorter prefixes, the required memory space is still in
the order of Gigabit. The 100Mpck/s rate needs at least the SRAM to meet the
access time speed, but the SRAM can not support such a big volume requirement.

2.7. CCN optimization and Memory Technology 21

This example, showing the limitation of memories regarding the storage size versus
the access time, has driven my contributions in this thesis, which is how to optimize
the CCN node design in order make it meet the current hardware conditions.

22 2. Background

23

Chapter 3

DiPIT: A Bloom Filter based CCN

PIT redesigning

3.1 Introduction

The Content-Centric Networking proposal implies a major shift in the design and the
implementation of a new information-oriented networking. The name based paradigm
can bring many benefits, as mentioned in Chapter 2, but it is also a big challenge for
today’s hardware technologies. For example, the name based design will create plenty
of different content names in the network, and lead to one challenge related to the
memory requirement for a realistic implementation of the CCN architecture. Table 2.4
shows a summary of today’s fast memories. We can see that the fast chips (e.g. TCAM
or SRAM), which have a shorter access time, does not support a large volume, and a
large chip (e.g. RLDRAM or DRAM), which can support larger space requirement,
does not provide a fast access. Some researchers have argued that today’s router
technologies do not meet the requirement of CCN nodes [GKR+11a, PV11]. These
analysis however assumed a same node architecture than the classic one described in
the first CCN paper [JST+09]. My work in this chapter aims at developing a new
CCN node implementation, which not only preserves the original features of CCN, but
can also realistically be deployed with current hardware and software technologies.
As such, I propose a new implementation for one of the main components of the CCN
node, the Pending Interest Table (PIT).

The PIT is a central component in a CCN node because it is involved in ev-
ery message processing. However it has not get too much research attention up to
now. Indeed, previous works related to CCN have more focused on the Content
Store [ANO10, MCG11] or on memory architecture for efficient FIB forwarding pro-
cesses [HAM11]. The role of a PIT is to store Interest packets that passed through
a CCN node until these Interest messages are “fulfilled” by the reception of matching
Data packets. For every reception of Interest packet, the PIT should create or up-
date an entry, which contains the Interest name and the incoming face information.
For every Data packet, the PIT should find out the matching entry and retrieve the
outgoing faces for Data packets delivery, and then delete the matching entry.

24 3. DiPIT: A Bloom Filter based CCN PIT redesigning

In an IP network, the size of the FIB table is relative stable and independent from
the packet arrival rate. But the CCN PIT is different (see Chapter 2 for details).
According to the highly dynamic behaviour, the implementation of the current PIT
design cannot accommodate to current memory technologies. A PIT needs a large
memory space to store the pending Interest packets (PIT cannot aggregate on content
name prefix because Data packet and Interest messages should exactly match between
each other). Considering an average Interest packet arrival rate of 125 millions packets
per second (hereafter noted Mpcks) and a packet round-trip time of 80 ms [PV11], the
number of the Interest messages which should be stored in PIT can easily reach the
order of 107. In addition, the content name structure is longer and more complex than
the IP address, even IPv6 [GKR+11b]. Therefore the memories with large volume
should be used, with the known limitations, especially long access time. Contrarily
to traditional IP FIB tables, a PIT table in a CCN node is highly dynamic. For
every incoming Interest packet (unless the requested content has been already cached
locally) and every matching Data packet, an operation should be carried out in the
PIT table. Consequently operations should be performed fast, which requires fast
memories that are unfortunately only available for small storage size.

To tackle this inextricable problem, I propose to distribute the single centralized
PIT of a CCN node to several sub-tables associated with each face, which I call
PITi. Each PITi has relatively smaller size, and it does not need to remember the
incoming interface information. Thus it is possible for the fast memory to support
one PITi table. I also implement each PITi with a counting Bloom filter, that can
largely reduce the total memory space. Benefits of this system include fast lookups
and small storage requirements. My distributed PIT proposal (namely DiPIT for
Distributed PIT) is independent from the naming structure, whatever the naming is
hierarchical or flat, long or short. In this Chapter I first analyse the limitations of the
centralized hash table in condition of today’s memory technologies. After that I give a
general description of the distributed PITi architecture. Then I give some evaluations
to analyse the distributed PIT solution performance in the terms of memory space
consumption and the networking load aspect. Finally I propose an example of a
hierarchical network with such a distributed PIT system.

3.2 Background and Related Works

Up to now, previous work related to Content-Centric nodes have mainly focused on
the performances of Content Store [ANO10, CGP11, MCG11] and on memory archi-
tecture for efficient FIB multicast forwarding processes [HAM11]. Indeed, researchers
are familiar with those domains of activities, since the Content Store component is
functionally close to the existing caches or the CDN nodes, and the CCN FIB is similar
to the IP FIB table. But the design and implementation of the PIT table have not get
much attention so far since the PIT is a completely new component, not present in IP
or in others information-centric networking proposals [ZGR+10, KCC+07]. However,
this component is at least as important as the Content Store and more demanding
than the FIB table because of the frequent updates in the PIT, contrarily to the FIB.
This is the reason why I precisely focus on this neglected component that plays a

3.2. Background and Related Works 25

crucial role in the performance of the CCN node.
In order to improve the CCN PIT lookup performance, I started my research by

studying the conventional lookup techniques in IP networking.

3.2.1 IP lookup

There are mainly four lookup techniques in IP network: TCAM [RM04, LS10], radix
tree [Skl91, LKN13], hash table based [WVTP97, TL11] and Bloom-filter+hash-table
solution [DKT03, YMB09]. As discussed in [PV11], none of them is acceptable for a
CCN node. TCAM is a hardware solution with bounded lookup performance at one
single memory access. It is perfect for a one-in-multiple-out lookup. But TCAM is
expensive and the memory space capacity is limited. Radix tree is not suitable for the
CCN naming structure because a naming tree willbe very wide and deep. Hash table
can perform fast lookup operations but, since CCN PIT is based on exact matching,
every entry should be memorized. If we do not want to have a big collision rate, large
memory is required. Finally, Bloom-filter/hash-table implements the Bloom filters on
fast memory chips as a pre-verification step for the purpose of reducing the number of
accesses on the slow hash table. But since the injecting step of the Bloom filter breaks
the original data structure, it can not directly be employed in IP FIB. So the hash
tables are still required for prefix. information retrieval. Then this approach suffers
from the same drawback as the previous approach: the aggregation is still needed and
the memory requirement for the hash table is too big for fast memory chip.

Even the Bloom-filter/hash-table method is not suitable for the CCN lookup, but
the fast verification feature of Bloom filter solution still got my attention. There
are also several studies on the implementation of pure Bloom filter structure for
the IP lookup. The BUFFALO system [YFR09] distributes IP forwarding tables on
each router interface. Since this system does not tolerate too many entries, it tar-
gets especially small-scale networks (typically enterprises) and data-center networks.
More recent papers dealing with Bloom filters for IP lookup or routing (for exam-
ple [SHKL09, JZER+09, JF08]) assume a relatively stable set of elements, which is
different form the dynamic behaviours of the PIT.

3.2.2 Bloom filter

Th Bloom filter was first introduced by Burton Howard Bloom in 1970. It is a space
efficient probabilistic data structure which can be used to test the existence of an
element in a set. The idea of a basic Bloom filter is to store the footprint of every
element in a vector by using just a few bits positions.

A Bloom filter includes a long binary vector and several independent hash func-
tions. The Figure 3.1 illustrates an example of a binary Bloom filter. To create a
Bloom filter, every member of the set (the ccn:/youtube.com/video1 ; ccn:/lemonde.fr/
text1 and ccn:/orange.com/live/stream1 in Figure 3.1) should be passed one by one
through k (k = 3 in this example) different hash functions. Each hash function will
code this element in a position of the vector whose length is m. Despite of the col-
lision, every element has k position bits in the vector. When we check if an entry
in the set (for example the ccn:/sina.com/), we also pass this element through the k

26 3. DiPIT: A Bloom Filter based CCN PIT redesigning

Figure 3.1: A binary Bloom filter structure

hash functions, if all the positions give positive answer, this entry can be considered
as exist in the set, otherwise, this entry definitely does not in the set.

Indeed, the Bloom filter can introduce the false positive because each position bit
can be set to 1 when adding other elements. If we note the number of members in
the set as n, the vector ability is m bits and we use k hash functions, the possibility
of the false positive can be calculated as :

fp = (1− e
−n·k
m)k (3.1)

With given m and n The optimal value of k is:

kopt = ln 2 ·
m

n
(3.2)

In this condition, the possibility of the false positive is in the minimal value. The
following figures show the evaluations of the false positive possibility in function of
the ratio of m to n from 1 to 50. The first four figures give the evaluation with k =
3, 4 and 5, and the following one is with the kopt.

The figures in Figure 3.2.2 clearly show that when m/n is big, for example bigger
than 6, the fp(k=5) < fp(k=4) < fp(k=3). But when m/n stays in the area (1:5),
fp(k=3) < fp(k=4) < fp(k=5). If we take a look at the difference of false positive at
each m/n between k = 3,4,5, we can see that when m/n is bigger than 5, the difference
between the maximum and the minimum is always less than 2%. To conclude of this
section, to make the false positive less than 10%, the ratio of m to n should bigger
than 5, and when m/n is bigger than 5, the difference between k = 3 or 4 or 5 is
not very important, even compared with the optimal k, we can still choose k = 3 for
saving the memory access time.

3.3 Preamble: Modeling PIT table

I provide in the following a model analysis of the CCN PIT table. I also introduce
the main notations that I used throughout this subsection in Table 3.1.

3.4. Analysis on the centralized hash table 27

2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Ratio m

n

F
al

se
p
os

it
iv

e
ra

te
(%

)

left y-axis

k=3

k=4

k=5

optimal k

2

4

6

8

N
u
m

b
er

of
h
as

h
fu

n
ct

io
n
s

(k
)

right y-axis

optimal k number

Figure 3.2: k=(3;4;5), m/n=(1:10)

10 12 14 16 18 20
0

0.5

1

1.5

2

Ratio m

n

F
al

se
p
os

it
iv

e
ra

te
(%

)

left y-axis

k=3

k=4

k=5

optimal k

8

10

12

14

N
u
m

b
er

of
h
as

h
fu

n
ct

io
n
s

(k
)

right y-axis

optimal k number

Figure 3.3: k=(3;4;5), m/n=(10:20)

20 25 30 35 40 45 50
0

0.1

0.2

0.3

Ratio m

n

F
al

se
p
os

it
iv

e
ra

te
(%

)

left y-axis

k=3

k=4

k=5

optimal k

15

20

25

30

35

N
u
m

b
er

of
h
as

h
fu

n
ct

io
n
s

(k
)

right y-axis

optimal k number

Figure 3.4: k=(3;4;5), m/n=(20:50)

60 80 100 120 140
0

0.01

0.01

0.02

0.02

Ratio m

n

F
al

se
p
os

it
iv

e
ra

te
(%

)

left y-axis

k=3

k=4

k=5

optimal k

40

60

80

100

N
u
m

b
er

of
h
as

h
fu

n
ct

io
n
s

(k
)

right y-axis

optimal k number

Figure 3.5: k=(3;4;5), m/n=(50:150)

When an Interest packet arrives a CCN node, it should first be checked in Content
Store. This Interest packet is then considered by the PIT table if no Data object
cached in the Content Store can fulfill this request. Thus the Interest packet entering
rate for the PIT is:

λpit =

nbrface
X

i=1

λi · (1− CShit)

The entries in PIT table are then “consumed” by the Data packets, so the number
of entries is in average λpit · RTT . We also consider redundant Interest packet, thus
we obtain that the actual number of stored PIT entries is:

NbrpitEntry =

nface
X

i=1

λi · (1− CShit) ·RTT · τinterest (3.3)

3.4 Analysis on the centralized hash table

The PIT table described in the seminal CCN paper [JST+09] is a centralized hash
table. This implementation is also chosen by default in the open-source release
CCNx [WWWe]. I analyze in this Section the scalability of the hash-based CCN
PIT table. In the evaluations I consider only the two fastest memory technologies,
the SRAM and the RLDRAM. The SRAM could be built either on-chip or off-chip

28 3. DiPIT: A Bloom Filter based CCN PIT redesigning

Parameters Meaning

nface
number of interfaces in the CCN
node

λi
Interest packet arrival rate at the in-
terface i

λpit
Interest packet entering rate to the
PIT table

RTT average Data packet round-trip time
CShit hit ratio of the Content Store

τinterest

ratio of Interest packets for the same
ContentName. It depends on the
traffic distribution

NbrpitEntry
number of stored entries in the PIT
table

Table 3.1: CCN node modeling parameters

(Table 2.4). The on-chip SRAM memory offers a faster access time however it is
limited at 50 Mbits size. This size is too small for the PIT table, so SRAM refers to
the off-chip SRAM in the rest of the paper.

I highlight in Equation (3.3) that the number of PIT entries depends on both CS
hit ratio (CShit) and traffic popularity distribution (τinterest). Both parameters do
not vary much for a given CCN node, and independent of the implementation design
of the PIT. To simplify the analysis, I set CShit = 0 and τinterest = 1.

3.4.1 Table size and Cost

Each entry in a hash table PIT contains the key value of ContentName (of length
sizekey) and the incoming interface identifier information (of length sizeface_id). The
estimated hash table size is then:

Sizehash = (sizekey + sizeface_id) ·

nface
X

i=1

λi ·RTT (3.4)

In the evaluation, I suppose a router with nface = 4 interfaces. The parameter
λin ranges from 0 to 200 Millions of packets per second (Mpcks). The average packet
RTT is 80 ms as defined in [PV11]. In order to hash the content names, we use three
different hash values: 24 bits, 32 bits and 64 bits.

In Figure 3.6 and Figure 3.7 we present the cost of implementing a hash-based
centralized PIT table on a SRAM memory or on a RLDRAM memory, respectively.
We can see that in Figure 3.6, all the three curves stop at cost = $6,750, which
refers to the maximum size of SRAM (250 MBytes). I highlight here that a SRAM
is fast enough for the processing of packets, but it cannot store the entries for high
Interest packet arrival rate. Even for short hash value like 24 bits, the SRAM can
only support up to 150 Mpcks packet arrival rate. The three curves in Figure 3.7 stop
at λ = 66 Mpcks since the RLDRAM cannot process more packets per second. If the
size is no more a problem, RLDRAM is too slow for most CCN nodes.

3.4. Analysis on the centralized hash table 29

To summarize this first evaluation, only SRAM with hash values lower to 32 bits
can meet both packet arrival rate and memory size requirements of a high-level CCN
node.

0 20 40 60 80 100 120 140 160 180 200
0

2,000

4,000

6,000

storage limits

average Interest arrival rate in Mpcks

C
o
st

in
$

hash= 24 bits

hash= 32 bits

hash= 64 bits

Figure 3.6: Required SRAM memory cost vs. λin

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

access time limits

average Interest arrival rate in Mpcks

C
o
st

in
$

hash= 24 bits

hash= 32 bits

hash= 64 bits

Figure 3.7: Required RLDRAM memory cost vs. λin

3.4.2 Collision ratio

Short hash value length enables the implementation of PIT with large storage of
Interest messages. But the shorter is the hash value length, the more probable are
collisions. A collision in hash table occurs when distinct elements are coded at the
same entry of a hash table. The elements that suffer from a collision are stored
in a linked list at the same hash entry, therefore a collision does not cause packet
loss (except if the memory is full), but information retrieval is much longer. Here I
evaluate the collision rate for different hash value lengths.

30 3. DiPIT: A Bloom Filter based CCN PIT redesigning

Collision =

8

<

:

nbrin − 2sizekey

nbrin
, nbrin > 2sizekey

0 nbrin ≤ 2sizekey

where nbrin =

nface
X

i=1

λi ·RTT (3.5)

Then I evaluate the collision ratio for hash value lengths 16 bits, 24 bits and 32 bits
(since we observed that higher values are not possible). In Figure 3.8, both 16 bits and
24 bits experience collisions for small Interest packet arrival rate. Moreover collision
ratios quickly reach their maximum level. Only the 32 bits hash values present low
collision rate until 200 Mpcks.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

average Interest arrival rate in Mpcks

C
o
ll
is

io
n

ra
ti

o

hash= 16 bits

hash= 24 bits

hash= 32 bits

Figure 3.8: Predicted collision ratio of SRAM in function of λin

3.4.3 Discussion

Through both evaluations in §3.4.1 and §3.4.2 I observe that the selection of the
memory technology depends on the packet arrival rate. For example, a RLDRAM
with a 32 bits (or more) hash value can support an edge router with a low packet
arrival rate (e.g. less than 66 Mpcks). However, for a bigger router (e.g., a core
network router), the packet rate is generally higher than 66 Mpcks and a SRAM
with a 32 bits hash value is the only option. If the rate is higher than 130 Mpcks,
the hash table implementation has some critical limitations because neither SRAM
nor RLDRAM can support both memory and access time requirements. Alternative
solutions should be designed.

3.5. DiPIT – Distributed Bloom filter based PIT architecture 31

3.5 DiPIT – Distributed Bloom filter based PIT architec-

ture

I aim to implement a fast, space-efficient and cost-friendly PIT tables, with regard to
the role of PIT defined in the CCN proposal. The two most popular table implemen-
tations that enable lookup in a time that does not depend on the size of the table (in
other words, O(1)-time lookup) are hash tables and Bloom filters. For DiPIT, I chose
Bloom filter solution because Bloom filters are more efficient in memory space than
hash tables, that is the main difficulty. Bloom filters can also be faster than hash
tables for lookup and update operations. In this chapter, I explore the opportunity
to leverage the appealing characteristics of Bloom filters for the implementation of
PIT table.

The traditional design and usage of Bloom filters can not be directly implemented
into PIT. Because a Bloom filter only remembers the footprint of each element. Once
an element has been injected into the filter, it is impossible to retrieve any other
information again. On the contrary, a PIT, as it has been conceived in CCN, the role
requires the PIT to not only check if an Interest name is present in the table, but
also retrieve the matching facing identifiers for sending Data packet. This mismatch
is tackled by implementing a distributed PIT table, which is named DiPIT.

Figure 3.9: The conventional CCN node architecture

The original CCN node architecture (Figure. 3.9) implements a centralized PIT
table. The DiPIT proposal constructs one PITi (a small PIT table) on each CCN face
(Figure. 3.10). Each PITi is constructed by a Bloom filter. In order to further reduce
the false positive rate, the system also includes one additional Bloom filter which is
shared by all faces. The principles of this proposal are presented in the following.

3.5.1 PITi: One Bloom filter per CCN face

Each PITi works independently and records in a counting Bloom filter the footprints
of the incoming Interest packets that come from the associated face. Incoming Data
packets are checked in parallel on all PITis and are forwarded on the faces when

32 3. DiPIT: A Bloom Filter based CCN PIT redesigning

Figure 3.10: The CCN node architecture with DiPIT system

the associated PITi has a matching footprint. Thus the DiPIT system keeps the
advantages of Bloom filters in terms of memory space and process time, and the
design of one PITi per face tackles the aforementioned face information issue.

Figure 3.11: Internal PITi architecture

I use a counting Bloom filter to deal with information removal. Indeed, a binary
Bloom filter does not support the removal of an element because a bit position in the
vector can be set to one by more than one element. In CCN, when a Data packet
is forwarded, the related Interest message entry should be deleted from the PIT
table. Therefore, entries are frequently added and removed in a PIT. The counting
Bloom filter addresses information removal by replacing the binary filter of Bloom
Filters by a set of counters. Each position of the filter (each hashed position) is an
integer that should be increased by one when another Interest packet comes. When a
Data packet is forwarded through a face, the counters associated with the according
Interest message should be decreased by one. The implementation of this counting

3.5. DiPIT – Distributed Bloom filter based PIT architecture 33

Bloom filter requires some extra memory, however it is still less than the memory
space required by a hash table. I prove this by a series of evaluations in Section 3.6.

The expired Interest message should be removed from the PIT table. The hash-
based PIT applies one timer for each PIT entry to delete the timed-out Interest
messages. Similarly, in DiPIT I introduce one timer that manages the removal of ex-
pired Interest messages. Every PITi counters will be decreased by one (if not already
at 0) at periodic interval. This interval is configurable and named DiPIT_TTL. This
value should be large enough, i.e. at least twice the average response time, represent-
ing the time to wait for the reception of the matched Data object. If the Data packet
is received before DiPIT_TTL, the counter will be “normally" decreased because the
Interest message has received the corresponding Data message. If no Data message
is received after the DiPIT_TTL period, the counter will be decreased meaning the
removal of the expired Interest message.

3.5.2 A shared Bloom filter to deal with false positive

A Bloom filter can introduce false positive since each filter position can be incremented
by different element insertion. The false positive rate can be estimated according to
Equation 3.1, and in our case the inserted elements number n the product of the
packet rate λ and the RTT .

The event of the false positive in this study is that the ContentName verification
gives a matching result but in reality no Interest packet for this ContentName has
been received on this face. We identify two side effects here.

• If an incoming Data packet mistakenly generates a match on the PITi of one
face, this Data packet is forwarded through this face, although no Interest mes-
sage matches this Data packet. This false positive produce some useless net-
working bandwidth waste. It will also delete the “fake” matching entry when
the Data packet goes out. Thus when the actual Data packet comes, it might be
dropped due to the missing Interest information. However these two problems
are not critical. First of all, the extra emission will affect nothing but some
networking resource consumptions. As the actual false positive rate is small,
the extra emission is also limited. Secondly the probability that a series of con-
secutive linked routers generate a false positive on the same Data packet is low,
so the extra networking load can be further limited on a few hops. For the mis-
taken deletion of a matching Interest message, the CCN designs incorporates
regular Interest packet re-emission from the client side, so this event can only
add some extra-latencies to the request.

• If an incoming Interest packet mistakenly generates a match on the PITi of one
face, this Interest packet is considered as a duplicate thus it is not forwarded.
The impact of false positives is critical because this Interest packet is lost.

I address the issue related to this latter side effect (an Interest message is not
forwarded because it mistakenly generates a match) by implementing a shared binary
Bloom filter in the control panel. If two Bloom filters work independently, the total
false positive rate is the product of the two individual false positive rates of the two

34 3. DiPIT: A Bloom Filter based CCN PIT redesigning

filters. By adding another filter after the first Interest message verification process,
the rate of false positive can be significantly reduced. Every matching for an Interest
packet raises another verification on the shared Bloom filter. If the second verification
result is negative, this Interest will be forwarded downstream and added into the
shared filter for a further check. If the result is positive, we can consider that this
Interest packet is indeed a duplicate.

It is important to understand that this system based on two serialized Bloom filters
differs from the implementation of a bigger Bloom Filter on each face. I emphasize
here three reasons:

• Memory space. In order to have the same false positive rate, each PITi should
be extended by the same size as the shared Bloom filter. Indeed, this extension
mode should cost more memory than implementing only one shared Bloom
filter.

• Performance. The Interest packets, which only need one verification at the
PITi, will take a longer lookup time because a bigger Bloom filter has more
hash functions than PITi.

• Relevance with regard to the internal process. A ContentName needs a second
verification only if it generates a match in one PITi. The number of potential
ContentNames to be tested for the second filter is smaller than the number
of different ContentNames that arrive at the node. Only a fraction of all the
received Interest messages requires two verifications.

For the same reason that I implemented a counting Bloom filter for each PITi in
order to support the deleting, a mechanism to limit the false positive of the shared
Bloom filter is also needed, since the returned Data packets do not remove the entries
in the shared Bloom filter. I suggest to refresh the shared Bloom filter sometimes.
I call it a RST mechanism. A RST notification is emitted from the control center,
typically when the number of inserted elements reaches a threshold or on a regular
basis. This RST mechanism does not damage the overall system behaviour, since the
Data packet is forwarded only according to the “bread crumbs" left by the pending
Interest messages in each PITi. The shared filter is not involved in Data object
delivering. In DiPIT system, the repeated Interest packet is dropped only when both
of the two level filters give a positive verification, thus the only side effect of the RST
mechanism is to forward one more time the duplicated Interest packet and waste some
networking bandwidth.

3.5.3 Main DiPIT algorithms

I present the pseudo-code of DiPIT algorithms at the reception of both Interest packet
and Data packet in Algorithm 1 and Algorithm 2, respectively.

Incoming Interest An Interest packet that arrives on a given face is firstly checked
in Content Store. If the Content Store does not have any matching Data object, the
Interest packet is then checked in the PITi associated with this face. Here has several
cases: (1) a negative result means that the Interest message never came in. It is

3.5. DiPIT – Distributed Bloom filter based PIT architecture 35

forwarded to the FIB and its footprint is added in the filter; (2) a positive result
means that either the Interest packet has already come, or it is a false positive. It
is then checked in the secondary shared Bloom filter; (2a) if the second filter gives
a negative answer, the Interest message is forwarded to the FIB and its footprint
is added in the second filter; (2b) on the contrary, a positive result means that this
Interest message is a duplicated emission, the CCN node blocks it.

Algorithm 1: Treatment of Interest packet in DiPIT

Input:
interest: incoming Interest packet on face i

CBFi: the counting Bloom filter associated with face i

BFS : secondary shared Bloom filter

Main program:

1: if interest matched in Content Store then
2: return matched Data

3: else
4: if CBFi matching test on (interest) == false then
5: transfer interest to forwarding module
6: increase the counters of CBFi at the footprint positions
7: exit
8: else if BFS matching test on (interest) == false then
9: transfer interest to forwarding module

10: add the footprint of interest in BFS

11: exit
12: else
13: block interest

Incoming Data The Data packet forwarding process is relatively simple. An in-
coming Data packet is verified in all the PITis, except the one where the Data packet
comes. If a PITi contains a matching Interest message footprint, the Data packet is
forwarded through this face and the footprint should be deleted from the PITi.

I do not describe a pseudo-code of the RST mechanism because there is no unique
way to implement RST. I have proposed several implementations of RST, which can be
roughly distinguished into two families: (i) the RST is triggered by an accumulated
number of bit set to one, and (ii) the RST runs on a regular basis. The concrete
threshold or the interval are depended on the size of the Bloom filters and the number
of packets to treat, according to the CCN nodes.

3.5.4 Discussion on multiple same Interest messages filtering issue

In the design of CCN, if one node receives multiple Interest messages on the same
content, only the first one is forwarded. The DiPIT architecture can avoid sending the
duplicated Interest packet coming through the same face, but not for those coming
from other faces, because every PITi performs independently from each other. This

36 3. DiPIT: A Bloom Filter based CCN PIT redesigning

Algorithm 2: Treatment of Data packet in DiPIT

Input:
data: incoming Data packet
i: face id
Face[]: set of faces
CBFi: the counting Bloom filter associated with face i

Main program:

1: if (data) matched in Content Store then
2: discard data

3: return
4: else
5: cache data in CS (optional)
6: for all i ∈ Face[] do
7: if data matches CBFi then
8: send data through face i

9: decrease the counters of CBFi at the footprint positions

leads to an extra networking load. However, such event can only occur when two
Interest packets arrive on distinct faces in a time frame of RTT (otherwise the second
Interest packet would find the Data object in the Content Store). I analyse now
this potential limitations. Let us suppose the worst case, i.e. several faces receiving
the same Interest message within a Data message Round-Trip Time. No matter
how many faces of the CCN node receive and forward the same Interest message,
the impact on the whole network is only within one hop. The case is illustrated in
Figure 3.12. The arrows denote Interest packet propagation. Node A receives the
same Interest message several times from its different faces. According to its FIB
table, all these Interest messages will be forwarded to node B. For node B, all these
Interest packets come from the link between B and A via the same face. Thus only
the first incoming Interest is further forwarded to the next hop C. The other Interest
packets are blocked by the PITi tables because they arise a positive matching in the
Bloom filter.

Figure 3.12: Duplicated Interest message coming through different interfaces

3.6 Evaluation

I performed several evaluations in order to validate that our DiPIT system can sig-
nificantly reduce the required memory space for CCN PIT table.

3.6. Evaluation 37

3.6.1 Settings

I assume one networking line card holding 16 interfaces. The average Interest packet
arrival rate ranges from 20Mpcks to 200Mpcks. Such a range is representative to
several classes of routers. The Data packet RTT time is set as 80ms [PV11]. We used
five hash functions for the counting Bloom filters. Each counter has 3bits, that counts
until 8. The shared Bloom filter has a size of 1Mbits. In most previous works, the
acceptable false positive probability is comprised between 0.01% and 10% [GWCL06,
BM04, YFR09, QLC11]. The applications of today’s IP network tend to tolerate a
packet loss rate of 1% at least, I thus set our acceptable false positive in the range from
0.1% to 1%. Since the exact match is required in PIT table, the content identifier size
is not important in our case. In the evaluations, the largest Interest packet arrival rate
is 200Mpcks and the RTT time of Data packet is 80ms. According to Little’s Law, the
biggest number of elements in the PIT table is (200 ·106) · (80 ·10−3) = 16 ·106, which
can be represented by 228. Thus for the centralized hash table I used H-bit of 28bits.
I also add 32bits H-bit in the evaluations, because 32bits is a common value in hash
functions. As in [PV11], I assume 40Bytes Interest packet. The CCN name lengths are
variable, so I take the middle value and give 128bits for each ContentName matching
in hash table. For each hash table entry we also had to add 2Bytes to memorize the
incoming interface identifiers.

3.6.2 Required memory size

First I evaluated the required memory space according to the average Interest packet
arrival rate (λ). The DiPIT table size depends on the length of the Bloom filter and
the number of faces nface. The length of a Bloom filter m can be calculated from the
acceptable false positive fp, the number of applied hash functions k, and the number
of inserted elements n. From Equation (3.1), we have

m =
−n · k

log(1− fp
1

k)

, where the n the product of the packet rate λ and the Data packet RTT .

Each required memory size for a counting Bloom filter is the product of the vector
length and the counter size. We denote the counter size as Counter. Thus the
estimated memory size of the entire DiPIT system is:

Size = Counter ·

nface
X

i=1

−λi ·RTT · k

log(1− fp−k)
(3.6)

In Figure 3.13(a) (as well as in Figure 3.13(b), which is a zoom on the lowest
packet arrival rates), I represent the entire required memory space in the condition of
different acceptable false positive ratios of the DiPIT system. In this figure the number
of hash functions is fixed as 5. Lines with squared marks represent DiPIT for two false
positives values (0.1 and 1%). I also represent the size of the hash table for both in
lines with circled marks. The DiPIT system based on Bloom filter clearly outperforms
an equivalent system based on a hash table. Typically for λin = 100Mpcks, the

38 3. DiPIT: A Bloom Filter based CCN PIT redesigning

required memory space for DiPIT with 0.1% of false positive is only 36% of the space
required by the hash table.

Please note the represented sizes for DiPIT are for the whole DiPIT system. The
required size for an individual PITi is only 51MBytes for λin = 100Mpcks. Therefore
a PITi can be built on a fast memory. On the contrary, hash tables require an
implementation on a large capacity memory, which has a longer access time. On the
same space as the hash table, and for the same packet arrival rate, DiPIT would have
a false positive ratio of nearly 0.0001% (plain line covered behind the hash table line).

0 20 40 60 80 100 120 140 160 180 200
0

2,000

4,000

average Interest arrival rate in Mpcks

m
em

o
ry

sp
a
ce

in
M

B
y
te

s DiPIT fp= 0.1%

DiPIT fp= 1%

DiPIT fp= 0.0001%

hash table

(a) zoom out

20 40 60 80 100
101

102

103

average Interest arrival rate in Mpcks

m
em

o
ry

sp
a
ce

in
M

B
y
te

s

DiPIT fp= 0.1%

DiPIT fp = 1%

hash table

(b) zoom in

Figure 3.13: Required memory size in function of λin

In Figure 3.14, I studied more precisely the required memory space according
to various false positive ratios. I fixed the Interest packet arrival rate at 100Mpcks
(Data message response time is still 80ms). The 28-bits hash table needs 4.8GBytes.
A 32-bits hash table can reduce the collision ratio, but it requires 77GBytes. In order
to limit the false positive probability at 0.1% (corresponding to −3 in the x-axis),
DiPIT needs around 1GBytes if the Bloom filters use three hash functions, but only
786MBytes and 690MBytes are necessary for five and seven hash functions, respec-
tively. Thus we can also summarize that a router which does not deal with a high
packet arrival rate can be implemented with more hash functions for saving the mem-
ory space. On the contrary, high level routers (e.g., the edge routers at the peering
point or the core routers) with a higher packet arrival rates would consider using
less hash functions and relatively more memory to keep the acceptable performance
speed.

Implementing relatively more hash functions can reduce the false positive ratio.
However things are not that simple. The proper number of hash functions should
be carefully chosen with regard of the number of packets which the CCN node face
should treat and the implemented memory space. The Equation 3.2 shows the relation
between the optimal number of hash functions, the vector size (the memory space) and
the number of element (the Interest packets arriving rate). I represent in Figure 3.15
the probability to obtain false positives for two typical classes of memory, according
to the average packet arrival rate. As can be shown, when the memory space is small
(the m in Equation 3.2) and the Interest arriving rate is high (the n in Equation 3.2),

3.6. Evaluation 39

more hash functions introduce a higher false positive rate. For example seven hash
functions paradoxically lead to worse results than five or three hash functions on
32MBytes memory size at high packet arrival rate (see Figure 3.15(a)).

−6 −5 −4 −3 −2 −1 0
2

3

4

5

probability of false positives (log
10

)

m
em

o
ry

sp
a
ce

in
M

B
y
te

s
(l
o
g
1
0
)

DiPIT k = 3

DiPIT k = 5

DiPIT k = 7

hash 28bits

hash 32bits

Figure 3.14: Required memory size vs. false positive

3.6.3 Bursty and multi-path traffic

I now deal with more complex (and realistic) traffic. Firstly I consider that a given
Interest message is received by several CCN faces of the same node. Then, I deal
with fluctuant traffic.

If an Interest message comes several times from several different CCN faces (within
a Data message response time), DiPIT is not able to filter the duplications because
the same Interest messages coming to different faces are memorized independently
at different PITis. A hash table is not impacted since it has only one centralized
table. To be fair, I take into account this redundancy and I compute the actual space
requirement for hash tables and for DiPIT according to the different probabilities that
the received Interest messages from different faces are actually the same (Figure 3.16).
For example, the probability of 1 means that the whole traffic carries only one same
ConetentName. I show that only the 28-bits hash table can require less memory size
than DiPIT and only when more than 80% of traffic is redundant. In reality, it is
easy to imagine that the chance we have 80% of traffic about the same ContentName
within one Data message response time (which is in order of millisecond) is quite
small.

I now assume that the incoming traffic follows a Poisson distribution [KMFB04].
The more bursty the traffic is, the more false positives could be generated. In
the meantime, it also means more packet losses for the centralized hash table. In
Figure 3.17, DiPIT and the hash table are both designed to handle a traffic of
λin = 100Mpcks. Each PITi has five hash functions. The left y-axis presents the
probability of a bad event, which means either a false positive (in DiPIT) or a packet
loss rate (in hash table). The right y-axis presents the probability of different packet
arrival rates. I represent the Poisson law in red.

40 3. DiPIT: A Bloom Filter based CCN PIT redesigning

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

average Interest arrival rate in Mpcks

p
ro

b
ab

il
it
y

of
fa

ls
e

p
os

it
iv

es DiPIT k = 3

DiPIT k = 5

DiPIT k = 7

(a) memory size: 32 Mbytes

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1.001

1.501

2.002

·10−2

average Interest arrival rate in Mpcks

p
ro

b
ab

il
it
y

of
fa

ls
e

p
os

it
iv

es DiPIT k = 3

DiPIT k = 5

DiPIT k = 7

(b) memory size: 128 Mbytes

Figure 3.15: Probability of false positive vs. λin

A well-dimensioned hash table experienced no packet loss for traffic smaller than
100Mpcks, but the packet losses explode when the traffic is more intense. On the
contrary, if we take a look at the curve slope, the false positive of DiPIT increases
slowly. Typically, for 100Mpcks < λin < 120Mpcks, which is a reasonable traffic
burst, the probability of a bad event is still below 2% in DiPIT, although it reaches
up to 15% for the hash table. Definitely, DiPIT is less sensitive to traffic burst.

3.6.4 Extra Data traffic load

Because a PITi produces a false positive, some Data packets might be sent out al-
though no Interest message matches. Here I analyse the generated extra networking
load. Let us suppose a CCN node with nface interfaces receives nbrdata. I denote
by fpj_i the false positive ratio of the interface i at the node j. I set Nhop as the
number of times the “false" Data packets can be forwarded. The sum of the “false"

3.6. Evaluation 41

0 0.2 0.4 0.6 0.8 1
2

3

4

5

ratio of traffic carrying the same Interest packet

m
em

o
ry

sp
a
ce

in
M

B
y
te

s
(l
o
g
1
0
)

DiPIT fp = 0.1%

DiPIT fp = 1%

hash 28 bits

hash 32 bits

Figure 3.16: Memory size vs. ratio of traffic related to only one Interest packet

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

Interest arrival rate in Mpcks

p
ro

b
ab

il
it
y

of
b
ad

ev
en

t left y-axis

packet loss rate

false positive

0

0.01

0.02

0.03

0.04

p
ro

b
a
b
il
it
y

o
f
In

te
re

st
a
rr

iv
a
l
ra

te
right y-axis

Poisson distr.

Figure 3.17: The burst vs. packet arrival rate following Poisson law

Data packets that are sent out by one node impacts the Nhop networking link such
as:

Numberdata =

Nhop
X

j=1

(nbrdata ·

nface
X

1=1

fpj_i) (3.7)

I fix the average Data packet arrival rate at 100Mpcks and the Data message RTT
as 80ms. The acceptable false positive is 1%, 0.1% and 0.01%. From Figure 3.18 we
can see that after the second hop, the extra traffic is nearly zero. In fact, one node
can generate some extra Data packets but this extra traffic is stopped at the next
hops because the probability several (even only 2) nodes produce the same mistake
is very low.

42 3. DiPIT: A Bloom Filter based CCN PIT redesigning

1 2 3 4
0

2

4

6

8
·104

number of hops

n
u
m

b
er

o
f
ex

tr
a

D
a
ta

p
a
ck

et
s

fp= 1%

fp= 0.1%

fp= 0.01%

Figure 3.18: Extra Data packet load decreased during propagating

3.6.5 Discussion

These three evaluations prove that firstly the DiPIT can overcome the limitations
of fast memory chips. When the packet arrival rate exceeds 130Mpcks, only the
distributed system can allow SRAM technologies to be used for PIT. The trade-off is
the false positive. DiPIT is especially the solution for high-level networking routers
(like a core router or the peering router) that have a higher packet arrival rate. And
since DiPIT requires less memory than a hash table, DiPIT can also be considered
for CCN nodes with smaller packet rate arrival (if this node is not too sensitive to
false positive effects). In a Bloom-filter based PIT system, more hash functions can
reduce the filter size (Figure 3.14). If we seek a faster performance and we are less
sensitive to the cost, we can use less hash functions (as k = 3 or 5) and larger filter
in order to reach a targeted acceptable false positive. On the contrary, if we want to
limit the cost, we can implement more hash functions (as k = 7 or 11) in order to
reduce the memory space.

Secondly the DiPIT is less sensitive to the networking traffic burst, thus this
system is more stable when the networking traffic environment changes, for example
with flash crowd events.

At last, within the DiPIT system, the extra traffic which is introduced by the false
positive can be limited with in known number of hops.

3.7 Implementation in CCNx

I also implemented the DiPIT system into the CCNx release (version 0.4.2), and per-
formed some evaluations with a testbed at Telecom Bretagne. In my implementation,
every CCN face of a CCN node associates with a counting Bloom filter. The global
CCN node handle has a binary Bloom filter which is shared by all the CCN faces.
This shared binary Bloom filter ia armed with a RST mechanism which is triggered
by the number of inserted elements (the Interest names). The testbed is composed

3.7. Implementation in CCNx 43

by several real machines.

3.7.1 Evaluation 1: in-line network

The first evaluation was performed with a linear topology which included 9 nodes, as
shown in Figure 3.19.

Figure 3.19: Linear topology of evaluation 1

Settings

• There was only one content server and one client.

• The client generated 10000 Interest messages. The ContentName popularity
followed the zipf distribution with α = 0.7.

• For each of the 9 CCN node, the PITi (counting Bloom filter) had 1Mbits, the
SBF (shared binary Bloom filter) was also 1Mbits, and the threshold of the
RST was set as 2.5%.

Results

• Among the 10000 Interest requests that generated by the client (node 0), there
were 4827 different content names.

• The server (node 8) replied 4826 different contents.

• The DiPIT received 4821 Interest names and it “found” 82 repeated Interests.
Thus we can calculate the false positive rate in the PITi is 82

4821 = 1.7%.

• The DiPIT blocked 6 “repeated” Interest messages, which means the packet lost
rate of the entire topology was 6+(4827−4826)

4827 = 0.1%.

3.7.2 Evaluation 2: Geant networking

The second evaluation was run with a Geant networking topology, which was also
composed by 9 CCN nodes, as shown in Figure 3.20.

Settings

• There was only one content server and one client.

• The client generated 10000 Interest messages. The ContentName popularity
followed the zipf distribution with α = 0.7.

44 3. DiPIT: A Bloom Filter based CCN PIT redesigning

Figure 3.20: Linear topology of evaluation 2

• For each of the 9 CCN node, the PITi (counting Bloom filter) had 1Mbits, the
SBF (shared binary Bloom filter) was also 1Mbits, and the threshold of the
RST was set as 2.5%.

Results (the numbers near the dotted lines were the number of Interest messages)

• The Client (node 0) sent 4372 + 16 + 395 = 4783 different Interest messages.

• The server (node 8) received 4157+15+593 = 4765 different Interest requests.

• Thus the packet lost rate in total is 1− 4765
4783 = 0.37%.

• The server (node 8) replied 4761 contents, thus approximatively the packet lost
rate at one node is 4765−4761

4765 = 0.08%, which matched the result the total packet
lost rate and the result of the first evaluation.

3.7.3 Discussion

The results obtained from these two implementation evaluations do not concern the
memory consumption, but the analysis of the false positive impacts. As we can
see from the summarized results, the false positive ratio depends on the networking
topology, but the highest ratio is still limited at less than 1.7%. And thanks to the
two-step verification design, the Packet Loss Rate is limited at less than 0.1%. The
DiPIT system (distribution of the PIT on each interface and the shared Bloom filter)
then provides an acceptable limited ratio of false-positive and an acceptable solution
for this point of view as well.

3.8 Case study: hierarchical network

In an operational deployment, a network operator chooses and deploys different types
of routers for different locations based on different needs, different networking condi-

3.8. Case study: hierarchical network 45

tions or different budgets. Equally, the choice of a DiPIT system or the classic hash
based one, and the choice of different memory chips should also be based on those
aspects. I then analyse where the DiPIT-based CCN node can be more suited for
deployment, having a case study on a hierarchical network (such as the Orange one).
I especially identify the conditions under which a traditional hash table can be im-
plemented and the results show that DiPIT can significantly expand the applicability
of CCN in networks with today’s memory technologies.

3.8.1 Analysis

A three level hierarchical topology is considered in this case, illustrated in Figure 3.21.
The peering router is denoted as root. The root is connected with four core routers,
which are denoted as I, II, III and IV . Each core router is connected to four edge
routers, noted as 1, 2, 3, 4. The set of end-users which is connected to an edge
router is noted as A,B, . . . , E. Each set of end-users generates Interest packets with
λinMpcks. Each internal link has a dms delay. The root has Dms delay with outside
network. The acceptable false positive for the root, the core router and the edge
routers are denoted fproot, fpI , and fp1 respectively. The number of hash functions
for the Bloom filter are kroot, kI and k1 respectively. The Content Store hit ratio for
each level router is CSroot, CSI and CS1 respectively. The ratio of identical Interest
packets among the traffic is τinterest%.

Figure 3.21: A hierarchical networking topology

The edge router 1 receives the Interest messages from four interfaces at a rate
λinMpcks. The RTT for each interface is 2 ∗ d + D ms. I suppose that τinterest are
identical for the traffic of every interface and every router. Thus the overall distributed
PIT size for an edge server is:

Size1 = 2 · 4 · (1− CS1) · τinterest ·
−λin · 106 · (2 · d+D) ∗ 10−3 · k1

log(1− fp−k1
1)

(3.8)

The core router I receives the Interest packets from four edge routers, so it has
a higher input packet rate (when the Content Store has a realistic hit ratio). The

46 3. DiPIT: A Bloom Filter based CCN PIT redesigning

Interest packet arrival rate at each interface is equal to the Interest packet leaving
rate at the edge router up-streaming interface. Thus the overall distributed PIT size
for the core router is:

SizeI = 2 · 4 · (1− CS1) · (1− CSI)(τinterest)
2 ·

−λin · 106 · (d+D) · 10−3 · kI

log(1− fp
−kI
I)

(3.9)

Thus the overall DiPIT size for the root can be similarly derived as:

Sizeroot = 2 · 4 · (1− CS1) · (1− CSI) · (1− CSroot)(τinterest)
3 ·

−λin · 106 ·D · 10−3 · kroot

log(1− fp−kroot
root)

(3.10)

3.8.2 Settings

I now build the evaluation system. I consider that edge router receives Interest packets
from four set of terminals at rate 10Mpcks and τinterest% = 95%. The transmission
time on each internal link is 20ms, so RTT is smaller or equal to 80ms. I do not
consider Content Store caching because our main motivation is to identify the right
technologies for PIT, so the impact of CShit = 0 is identical on every technology.
Since I showed that false positive has not a significant impact on the whole network,
I set a relatively high acceptable false positive ratio for the root router (1%) while
we use 0.1% for the edge and core routers. Finally, I used 7 hash functions for the
edge routers, because the packet rate is not high. On the contrary, core routers and
root routers need faster performance, thus I use 5 and 3 hash function for them,
respectively.

3.8.3 Discussion

I now summarize how to choose the PIT architecture (traditional hash table or DiPIT)
and the cheapest memory technology for the routers at different levels. See Fig-
ure 3.22. In short, all green blocks correspond to configurations where DiPIT allows
an implementation of PIT table in today’s memory technologies although it is impos-
sible to make it with traditional hash tables (the blue blocks).

I now explain how to read Figure 3.22. I take the edge router as an example. If
we can accept a false positive ratio that is larger than 0.01% (right column), DiPIT is
always cheaper than centralized hash tables. And if the λin is smaller than 66Mpcks
(calculated with fp = 0.1%), it is better to implement with RLDRAM because it
is cheaper. If we are sensitive to the false positive (fp < 0.01%), the hash table is
a better solution. However when the λin exceeds 86Mpcks, the hash table can no
more be used. Then DiPIT with SRAM is the only option until λin = 140Mpcks.
Recommendations for core and root router should be read the same way.

Figure 3.22 highlights the main contribution of this paper: I provide a way to
let an operator make choices for the deployment of a CCN network. Consider for

3.8. Case study: hierarchical network 47

0

20

40

60

80

100

120

140
λin edge routers core routers root routers

Hash RLDRAM

Hash SRAM

DiPIT RLDRAM

DiPIT SRAM

fp ≤ 0.01%

fp ≥ 0.01%

fp ≤ 0.03%

fp ≥ 0.03%

fp ≤ 0.15%

fp ≥ 0.15%

Figure 3.22: Summary of the best choices for PIT table, according to the cost

48 3. DiPIT: A Bloom Filter based CCN PIT redesigning

example an operator with incoming traffic at 15Mpcks, and the requirement to limit
the false positive for the edge, core routers, and root router at 0.02%, 0.02%, and
0.2% respectively. The right choice for the edge routers is DiPIT+RLDRAM, for the
core routers is Hash+RLDRAM and for the root router is DiPIT+SRAM.

3.9 Conclusion

Content-Centric Networking is a novel networking paradigm, which can bring many
benefits for content delivery. If the basic principles are defined, improvements are
necessary to reach a better performance and make CCN nodes more efficient. How-
ever today’s memory technologies are not ready to support this innovation in term
of memory space and access time, especially for the PIT table. In this chapter, I
have proposed DiPIT, a distributed solution for the PIT component aiming at reduc-
ing the memory requirement in the CCN node. DiPIT is based on a PITi element,
implemented on every CCN face with a counting Bloom filter, and a shared central
element. Each PITi stores only the Interest packets coming on the associated face.
The shared element enables to limit the false positive, inherent to the use of Bloom
filters in the PITi. I analysed the feasibility and the scalability of the hash table.
The hash table presents some limitations at the table size and the performance speed
aspects but it does not produce any extra network load. The evaluations of DiPIT
show that with a small acceptable false positive ratio, DiPIT can significantly reduce
the memory space for implementing the CCN PIT table. Each technique has its ad-
vantage. The DiPIT system requires less memory space and enables implementations
on fast memory chips, so it can handle higher packet arrival rate. However DiPIT
introduces some extra network load because Bloom Filter can experience some false
positive. I also showed that mixing different memory chip technologies is possible.
Different networking conditions call for different approaches.

49

Chapter 4

A dynamical content-aware

forwarding system for CCN

4.1 Introduction

In the previous chapter I discussed the impact of memory problem of the CCN PIT.
The realistic implementation issue from the CCN impacts not only on the PIT table,
but also on the forwarding system. In this chapter I focus on the CCN forwarding
improvement. We all know already that the CCN protocol applies only two type
of packets — the Interest and the Data, for content discovery and delivery. And it
is noteworthy here that only the Interest packet is routable in the CCN transport
layer. The forwarding information of Interest packets, which are based on names,
are cached in the Forwarding Information Base (FIB) table of each CCN node. This
table contains the prefixes of the ContentName and the outgoing faces information.
The Interest packets are routed based on FIB according to the longest matching
prefix lookups. The content providers broadcast the content advertisements into the
network in order to announce the available contents. The reception of advertisement
messages allows each CCN node to fulfill its FIB table.

In my consideration, current CCN forwarding design admits three critical weak-
nesses, which have the potentials to prevent a worldwide deployment of CCN. First
a CCN human-readable domain name prefix does not enable efficient aggregation. In
comparison, aggregation applied to an IP binary address is much more efficient. The
consequence is an explosion of the number of FIB items. Second, with a world-wide
scale network, the propagation of advertisements from content providers will gener-
ate an important networking traffic. In fact, the fundamental reason of these two
points is that the potential number of content names is numerous, compared to the
actual IP address number. At last, the on-path cache in CCN such as Content Store
does not publish their cached objects. Since the CCN FIB is fulfilled by the content
advertisements, that means the conventional CCN forwarding does not include the
on-path caches as the content providers.

Thus, in this chapter I am trying to redesign the classic CCN forwarding sys-
tem with the purpose of optimizing the CCN routing performance and of making

50 4. A dynamical content-aware forwarding system for CCN

it more suitable for a realistic implementation. Here I propose a content-aware dy-
namic forwarding design for CCN architecture, which contains three main parts that
correspond the three points that I mentioned in the previous paragraph:

• A content advertisement protocol. In this design the advertisements are not
propagated into the entire network, but only via certain paths with respect
to the network topology and are collected by several selected nodes. Thus
different CCN nodes in the entire topology do not have the same view of the
entire available contents.

• A new algorithm to fill the FIB. This algorithm makes the fulfilling of CCN FIB
is content-aware and dynamic. The FIB is not filled by the broadcast advertise-
ments from the content providers, but rather from incoming Data packets in a
dynamic manner. Hence FIB memorizes only the content name prefixes or the
domain names that are locally popular.

• A dynamic Interest downstream forwarding scheme. The goal of this part is to
make a better reuse of CCN Data packets that are cached on the delivery path.
In current CCN implementations, Content Stores or other on-path caches do
not announce the cached contents. That means the FIB based Interest message
forwarding scheme does not include these in-networking caches. I propose here
a new dynamic Interest message downstream forwarding scheme, which aims at
discovering cached contents from downstream nodes.

Hereafter, I introduce firstly some related works about the CCN forwarding issue
in Section 4.2. Then the details of content-aware dynamic forwarding system are pre-
sented in Section 4.3. Finally, I evaluate the feasibility of implementing our proposal
in a CCN node in Section 4.4 before a short conclusion of this chapter.

4.2 Related Works

In Content-Centric Networking, or any other information-oriented networking solu-
tions, the content-based forwarding and routing are the basic concept. Indeed, lots
of previous work have focused on the CCN routing and forwarding issue, but most
of them addressed on the content request forwarding [WZB13, SSRV11], or traffic
congestion control [CGMP13, WRN+13]. But less work addresses on how the con-
tents get published or how the CCN FIB get filled. Indeed, there are various ICN
solutions, that I presented in Chapter 2, and each solution has its own forwarding
design. However those solutions are still based on either adding broadcast type mes-
sages, or including an additional element in the network [BCA+12]. NetInf relies on
a independent naming resolution system. PSIRP deploys the RendezVous nodes in
its topology. These methods try to passively forward requests to the potential content
locations without actually considering the name-based characteristics of data. At the
CCN side, the authors from [WHY+12, HAA+13] aim to extend the IP OSPF proto-
col for the CCN networking — the OSPFN (details are presented in Chapter 2). But
I am afraid this proposal is not CCN-friendly for three reasons. First, each content,
or at least each content prefix will create an OLSA message for the announcement,

4.3. A Content-Aware CCN forwarding structure 51

and the OLSA messages are propagated through the entire network then reaches ev-
ery CCN node. Thus such implementation will generate a lot of OLSA traffic into
the whole network. Second, each node has the same and entire catalog of all the
available contents in the whole networking topology. This design matches the needs
of IP networks but it is inappropriate for CCN, since CCN nodes look for contents
only when they receive requests for them. Indeed some contents are only popular at
certain geography regions [WPD+10, VdMSK02, BSAS13], and different regions do
not have the same catalog of popular contents [GHM12]. This calls for CCN nodes
having a local view of contents availability. At last an OLSA message still contains the
router-id information and a Shortest Path calculation is still performed based on the
router-id, that means the OSPFN is still a location-based broadcast algorithm, but
not a real content-centric one. These three points motivates the exploration of new
content-aware forwarding solutions—the content-aware dynamic CCN forwarding.

4.3 A Content-Aware CCN forwarding structure

In this section I present the dynamic content-aware forwarding solution for CCN. The
proposal requires a new architecture for the “forwarding unit” of CCN node. The new
structure is given in Figure 4.1. In the new system, I add a new element, which is
called Dynamic Interest Forwarding Table (DIFT). We also significantly change the
way the FIB is filled. To avoid confusion between today’s FIB implementation and
our proposal, we say hereafter “content-aware FIB”. The fundamental idea behind
this proposal is that I do not use broadcasted advertisement messages to decide the
forwarding. Instead, I leverage Data delivery paths, which allow each CCN node to
take into account the local popularity and availability of data. The Content-Aware
CCN forwarding structure contains three main compositions, the details of each are
presented one by one in the following subsections.

Figure 4.1: The node structure of the content-aware forwarding design

52 4. A dynamical content-aware forwarding system for CCN

4.3.1 Content Advertisement Protocol

I aim to realize a content-aware forwarding solution but it does not mean that I
do not need any content advertisement mechanism at all. Content providers still
need to advertise content, otherwise the network will not be aware of what providers
offer. However, in my proposal, these advertisement are not broadcasted in the en-
tire network. Furthermore, CCN node does not rely on these advertisements to fill
content-aware FIB. In the following, I use indifferently content advertisement and
content publication, which is a common term in network.

The default face is an important concept in the content advertisement protocol.
The default face(s) at each CCN node are the interfaces that are connected to the
“upper” node, that is the next routers on the path to the peering nodes of an Au-
tonomous System. It can typically be the root nodes of a hierarchical networking
topology or the border routers of a mesh networking topology.

The configuration of the default faces can be realized either manually, or through
the Shortest Path algorithm. For example in a hierarchical networking topology,
the network operator knows how nodes are connected with the upper node(s), the
neighbour nodes. Thus Internet Service Provider (ISP) can easily configure the default
face(s). In a mesh topology, the default face(s) can also be configured so that the
shortest path to the border nodes are default faces.

Let say a content provider wants to advertise a new content C. The equipment that
is in charge of emitting content advertisement is the first router of the content provider
delivery infrastructure. The first router first adds the advertisement information into
its FIB. Then it propagates the publication through all its default faces. The next
nodes receive this publication, and perform the same process, i.e., add the publication
into their FIBs and forward it through the default faces. Finally the publication
reaches the border nodes of the Autonomous System of content provider. Thus all
the node that are on the publication forwarding path and the border nodes have the
published content C in their FIB. The border nodes also collect all content publication
of other connected ASes.

Network operators can decide the number of border nodes in their AS, according
to network topology and size. Overall, this proposal matches a fundamental principle
of Internet, which is to let each network operator manage its own network. Here,
the diffusion of content advertisements actually depend on the policy of each network
operator. Other ways to collect and exchange content include distributed implemen-
tation based on Distributed Hash Tables (DHTs).

4.3.2 Content-Aware Dynamic FIB

To fill a content-aware FIB, many options are possible. This proposal is to leverage
incoming Data messages. When a CCN node receives a Data message, it memorizes
the domain name of the ContentName and the incoming face in content-aware FIB. It
can thus forward the subsequent Interest packets for the same domain name through
the face from which it received the Data to reach the content container.

The algorithm of the incoming Data at the content-aware forwarding structure is
shown in Figure 4.2. The content-aware FIB does initially not contain any forwarding
information, except the default face(s) configuration. Once the node receives a content

4.3. A Content-Aware CCN forwarding structure 53

Analyse and retrieve
the domain information

normal data for-
warding process

lookup in FIB

add the content name
and the sending
face(s) in DIFT

update or cre-
ate the entry

reset the timer of the
replacement strategy

Data from face i

take the domain name
and the incoming face

replacement
strategy

Figure 4.2: Algorithm for the processing of incoming Data packet

packet, it retrieves the domain name and adds it into FIB together with the incoming
face information. If the content-aware FIB does not have any entry on this domain
name, it creates one. If there is already an existing entry on this domain name, it
updates the entry with the new arrival face. It is allowed to have several outgoing
faces. Typically contents from a given domain can be provided by different providers,
for example the original server or a CDN repository.

Each entry is thus associated with a face list, which is updated at reception of
every matching Data packet. I opt for a simple First-In-First-Out (FIFO) replacing
strategy to avoid too long face lists. If one entry has too many faces in the list, the
older faces should be replaced with the newer ones, so that memory space is saved
and expired information are discarded. For the same reason, the entire content-aware
FIB also includes a replacement strategy (LRU or Random) for the entries (different
domain names).

When the node receives an Interest request, if this Interest packet matches the
content-aware FIB on the Interest domain name, this Interest message is forwarded
through the faces of the matching entry. If the domain name is unknown by FIB, the
node sends them through the default interface(s).

4.3.3 Dynamic Interest Forwarding Table

In addition to the above algorithm for content-aware FIB, I would like to make a better
use of Content Store (CS) in routers. CCN Data are cached along the propagating
path, and each node has a local cache. However CSs do not advertise content in
current CCN protocol. Thus the goal is to overcome these limitations and to exploit
cached content in the downstream CSs, which can become content sources.

I propose a new table, which is called Dynamic Interest Forwarding Table (DIFT),

54 4. A dynamical content-aware forwarding system for CCN

to take advantage of the downstream CSs. A DIFT stores recent Data packets that
have been forwarded to downstream nodes. The idea is that, since downstream nodes
have generally to manage less traffic, it is possible that a request for a content that has
been recently treated by a node is still available in the CS of one downstream node.
In other words, contents cached in CS are expected to stay longer in downstream
routers, so routing Interest messages to them makes sense.

The structure of DIFT is similar as the PIT. Each DIFT entry contains two
columns, one is for the ContentNames and the other one is for the related face iden-
tifier(s). When a Data packet is returned to a CCN node, a PIT lookup process is
performed. The Data message is forwarded through the faces of the matching PIT
entry, and the matching PIT entry is then deleted. DIFT table is used to temporar-
ily memorize the deleted PIT information. It may serve in a very short term to
forwarding Interest messages (as shown in Figure 4.2).

I give in Figure 4.3 the flowchart for Interest packet processing in the content-
aware forwarding algorithm. When an Interest packet arrives at a CCN node (and
requested content is not stored in the local CS), after the PIT process, there are two
forwarding steps: DIFT lookup and content-aware FIB lookup. If a matching entry
is found in DIFT, it means that one copy of the requested content has been recently
sent to some downstream nodes, so it might still be stored in their CS. Hence, the
Interest packet is forwarded to those downstream nodes. In the meantime, since
the content might not still be in the CS of downstream nodes, the CCN node also
forwards Interest message towards a reliable content provider through the default face
of content-aware FIB.

How to use the DIFT table and the content-aware FIB can vary and depend on
a forwarding strategy based on the concrete networking conditions. When a node
receives an Interest message, it can choose whether to consult the DIFT or not. If so,
according to the different forwarding information in both FIB and DIFT, the node
can decide to send the Interest message in either parallel or serially. That is the role
of the strategy bloc I add between the FIB and DIFT in Figure 4.3.

The DIFT table is also implemented with a purge timer, because the behaviour of
DIFT is far more dynamic than content-aware FIB. First, it memorizes longer name
prefixes while FIB stores only domain names. Second, the forwarding information in
the DIFT is related to the dynamic content container (e.g. the CS of the downstream
CCN nodes or the end-users of a P2P system), while the content-aware FIB is re-
lated to the relatively reliable content providers (e.g. the content provider, the CDN
repositories or the ISP caches). Since the content sources that are included in DIFT
are not as reliable as those in content-aware FIB, the entries at the DIFT should be
updated and refreshed faster with a simple replacement strategies (for example the
FIFO or Random policies).

4.4 Evaluations

I performed some evaluations of our proposal to study the feasibility of our content-
aware CCN forwarding scheme, with a focus on memory in CCN nodes and on the
response time. The motivation is that previous works on CCN nodes have revealed

4.4. Evaluations 55

Present in
cache?

get the content
from cache
and send it

Forwarding strategy layer
(paralleled? serialized?

normal request for-
warding process by FIB

lookup in DIFT

If present in DIFT,
send the request
to the listed faces

Send the Interest out

Content-aware forwarding layer

Interest

yes

no

Figure 4.3: Algorithm for the processinf og incoming Interest packet

that memory issues within CCN node can seriously prevent the implementation of
some smart but not realistic algorithms, e.g. [YMT+12, PV11]. I thus decided to
have a comprehensive look at memory implementation issues.

4.4.1 Settings

I consider a typical CCN node, which is deployed in a network where in average each
node has 3 external links (e.g. the Abilene topology). Moreover I consider one default
face. I suppose there are 12,000 content that are advertised in the network, including
2,000 which have been received by this peculiar CCN node. The node receives in
average 200 Interest packets per second and each Interest packet experiences a 10 ms
Data object RTT. The size of each entry size in the traditional FIB and in the DIFT
are 32 Bytes (30 Bytes for the ContentNames plus 2 Bytes of the face identifiers), and
the average entry size of content-aware FIB is 22 Bytes (in other words the domain
name is in average 22 Bytes long).

The popularity of the set of contents is a critical parameter. I assume a Zipf
popularity distribution with a parameter α. Previous works have revealed how critical
is this parameter [RR12a]. In the following, we make this parameter vary in typical
ranges from 0 to 2.

4.4.2 Impact of Content Popularity

In Figure 4.4, I present the memory requirement according to the parameter α of
the Zipf distribution. In the traditional CCN publication algorithm, the CCN node

56 4. A dynamical content-aware forwarding system for CCN

receives all content advertisement, and FIB is filled accordingly. Hence the size of
classic FIB is independent of α. The content-aware FIB is of course smaller. I evaluate
this in Figure 4.4.

I first analyse the solution with only content-aware FIB. The size of this content-
aware FIB is the highest for small values of α. The more uniform is the content
popularity, the higher is the probability that the CCN node has to forward a Data
packet related to every content in the catalog, and consequently the larger is FIB
size. When α increases, some contents are never requested, so this CCN node ignores
these contents.

I now study the association of content-aware FIB and DIFT. I assume every
DIFT entry stays 10,000 time Data RTT. As can be expected, the size of DIFT is
more sensitive to content popularity. The overall memory requirement is close to
the one required by the traditional FIB implementation when α is around 0.8, which
corresponds to the generic web traffic [FRRS12]. For values of α bigger than 0.8 (e.g.
it is case fo VoD traffic [FRRS12]), the overall memory requirement is smaller than
the traditional FIB.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

120

240

360

480

α of zipf distribution

M
em

or
y

si
ze

in
K

B
y
te

s

Classic FIB

c-a FIB

c-a FIB + DIFT

Figure 4.4: Memory requirement vs. content popularity

4.4.3 Impact of Network Topology

I now explore the impact of network topology on memory requirements. In Figure 4.5,
I represent FIB size according to the degree of CCN node. Different curves represent
different values of α for content popularities. It has to be recalled that Data packets
coming from the default face are not memorized. A node with many connections
to other CCN nodes should thus store more Data packets because the overall traffic
coming from non-default face is bigger. In current core networks, each core node is
in average connected to 3-4 links (e.g. Abilene topology or Géant topology). In this
case, our content-aware FIB consumes not more than 50% of the classic FIB memory.

4.4. Evaluations 57

1 2 3 4 5
0

100

200

300

400

Number of links

M
em

or
y

si
ze

in
K

B
y
te

s

Classic FIB

c-a FIB, α = 0.8

c-a FIB, α = 1.0

c-a FIB, α = 1.3

Figure 4.5: FIB memory requirement vs. the number of links

4.4.4 Impact on Entry Storage Duration in FIB

FIB incorporates a timer. Entries are automatically removed from FIB when they
are too old. In Figure 4.6 we analyze FIB size according to the entry saving duration.
For small values of α, the table size reaches it maximum even with a shorter saving
duration, that means the FIB is filled fast. On the contrary, for example when α = 1.3,
even if entries are kept for 30 minutes, FIB does not reach its maximum value. This is
can be explained by observing that FIB is filled much slower when content popularity
is less uniform.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

100

200

300

400

Storage duration in minute

M
em

or
y

si
ze

in
K

B
y
te

s

Classic FIB

c-a FIB, α = 0.8

c-a FIB, α = 1.0

c-a FIB, α = 1.3

Figure 4.6: FIB memory requirement vs. the FIB entry storage duration

4.4.5 Impact of Catalog Size

In the previous evaluations, the size of catalog (i.e. the number of different contents
is set to 12,000. In Figure 4.7 I analyse the impact of the number of publications

58 4. A dynamical content-aware forwarding system for CCN

on the memory size requirement. Intuitively, more publications means more memory
space needs. We can see the size of classic FIB linearly increases with the number of
publications. In Figure 4.7(a), I show a wide evaluation with potentially very large
catalog. Here, the content-aware FIB enable a significant gain in terms of memory
requirements. In Figure 4.7(b), I emphasize the special case of very few different
contents. Here, the traditional FIB can be more efficient than our content-aware FIB
only for α = 0.8. Otherwise, content-aware solution is always at least close to the
traditional FIB, or far better.

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000
0

200

400

Content publication number

M
em

or
y

si
ze

in
K

B
y
te

s

Classic FIB

c-a FIB+DIFT, α = 0.8

c-a FIB+DIFT, α = 1.0

c-a FIB+DIFT, α = 1.3

(a) zoom out

0 500 1,000 1,500 2,000 2,500
0

20

40

60

80

100

Content publication number

M
em

or
y

si
ze

in
K

B
y
te

s

Classic FIB

c-a FIB+DIFT, α = 0.8

c-a FIB+DIFT, α = 1.0

c-a FIB+DIFT, α = 1.3

(b) zoom in

Figure 4.7: Total memory requirement vs. the number of publications

4.4.6 Impact of DIFT hit-ratio

The Content Stores of downstream nodes have their own replacing strategies. Of
course, all the Interest messages that are sent by the upstream DIFT table do not
generate a match. In this evaluation I suppose the downstream nodes can offer a 75%
CS hit-ratio. Thus I define the DIFT hit-ratio as the number of incoming Interest
packets that gets a DIFT match and get the downstream CS hit, over the number of
all incoming Interest packets. In Figure 4.8 we see that applying a bigger DIFT size
can offer a better DIFT hit ratio. And a bigger Zipf α can raise also a better DIFT
hit-ratio. For example the Zipf distribution of the generic web traffic has an α = 0.8,
the 64 KBytes, 128 KBytes and 256 Kbytes DIFT can offer a 49%, 58% and 68%
DIFT hit-ratio, respectively.

4.4.7 Impact of response time

Since according to the DIFT table, some requests for the popular content are for-
warded downstream closer P2P users, the content delivery time can be improved. In
this evaluation I analyse with the content-aware forwarding scheme, the average Data
packet response time in function of the content popularity. I suppose here a hier-
archical networking topology which has three levels: the root nodes, the core nodes
and the edge nodes. The average round-trip times are 10ms for the links between
the connected levels, and 80ms for attaining the original servers. For example if the

4.4. Evaluations 59

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

The α of zipf distribution

T
h
e

D
IF

T
h
it

-r
a
ti

o

DIFT 64KBytes

DIFT 128KBytes

DIFT 256KBytes

Figure 4.8: DIFT hit ratio vs. the content popularity distributions

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

α of zipf distribution

A
v
er

ag
e

D
at

a
re

sp
on

se
ti

m
e

(m
s)

c-a solution

Classic CCN

Figure 4.9: Average Data response time vs. the content popularity distributions

content-aware DIFT can find a matched content at the P2P end users which are
connected under the same edge node, core node or root node as the demander, the
Data packet delivery time is 10ms, 20ms or 30ms, respectively. The Content Store of
each node can offer 0.3%, 0.2% and 0.1% content hit-ratio at edge node, core node
and root node, respectively, since down level nodes receive less intensive traffic than
high nodes. If the content request gets satisfied at the Content Store of the node
of a certain level, the delay is thus the half of the related Data message Round-Trip
Time. From Figure 4.9 we can see that by implementing the content-aware forwarding
solution, Interest message experiences a shorter response time for whichever content
popularity. We can also observe that the difference between content-aware solution
and the classic CCN forwarding for a bigger α is greater than the one for a smaller α.
This can be explained as the more popular a content is, the more possible that the
Interest packets are served at the downstream nodes, which offer a shorter response
time.

60 4. A dynamical content-aware forwarding system for CCN

4.4.8 Discussion

The above evaluations valid that the content-aware forwarding design is more efficient
in terms of the memory implementation. In various networking environment, for
example different content popularities, different networking topologies, different FIB
entry storage durations, different content catalog size, different caching hit-ratios and
different content response times, it can significantly reduce the memory requirement
compared to the classic forwarding system. Only when the content popularity is more
uniform (e.g. the α parameter of Zipf distribution is less than 0.8), or if the content
catalog size is small (e.g. the total number of available content is not more than
1000), the content-aware forwarding system needs more memory. But this extreme
condition is rare in the normal networking environment. Even if this case happens,
the additional memory consumption is less than 30% of the required classic CCN
forwarding table needs.

4.5 Conclusion

I present in this chapter a content-aware dynamic forwarding proposal for CCN. In
comparison to the traditional broadcast-based approach, this approach is more re-
spectful of the information-centric principles. The content-aware forwarding proposal
let each CCN node only store domain names that are close to it, thus FIB information
differs among CCN nodes to reflect localized variation of popularity. In this approach,
we can also make a better use of in-networking caches in the downstream nodes. The
evaluations demonstrate that such CCN node implementation is feasible with regard
to memory requirements, with table size that is not larger than in the traditional
approach.

61

Chapter 5

Interconnecting CDN service with

CCN networking

5.1 Introduction

The Internet is ineluctably becoming a gigantic content delivery platform [eri12]. To
enable this shift, Content Delivery Networks (CDNs) deploy massive content repos-
itories as close as possible to end-users. A CDN repository is authorized to serve
contents on behalf of content providers, i.e. to intercept requests for addresses in
the domain names of their clients (content providers) and to redirect these requests
toward their repositories. Since a repository can fulfil a large proportion of requests
for addresses in the domain names of its clients, it should be considered as a natural
destination for the said domain names. Meanwhile, the Content-Centric Network,
as well as other ICN solutions, are suggested for a radical shift toward information-
centric approaches where content discovery and delivery are directly implemented into
the routing protocol with on-path caches [ADI+12]. However these proposals have
ignored repositories so far.

With regard to the flourishing literature related to the management of caches in
CCN, I understand that many network scientists believe that the CCN-based universal
cache, which leverages storage facilities embedded, can totally replace the indepen-
dent CDN repository. But this way of thinking means that the hybrid CCN/CDN
node should be able to ensure high capacity of routing and forwarding functions,
as well as efficient content storage and management. I think there is a misunder-
standing about what routers will be able to offer. Networks of caches have been
extensively studied a decade ago until it was revealed that cooperative caching has
inherent weaknesses [WVS+99]. In particular, the filter effect makes that the traffic
after going through one cache does not have any more the characteristics that enable
good cache performances [Wil02]. More recent studies have shown that multi-path
request forwarding does not help in preventing the filter effect [RR12b]. In practice,
protocols for wide network of caches (e.g. HTCP) are still unused. Instead, practical
implementations of cooperative caching strategies (e.g. squid) are deployed in front
of servers rather than in the network.

62 5. Interconnecting CDN service with CCN networking

I follow the initial vision from [JST+09] where Content Stores (CS), which are
low-volume fast-access memory technologies in CCN nodes, are confined to improve
Data packets retransmission in case of packet loss, rather than a permanent content
container. I believe in the existence of CDN repositories, which implements complex
strategies to optimally utilize a high volume storage. These repositories can be con-
trolled by a CDN provider, or a network operator or even a content provider like it
is the case with Netflix [Ope12]. These CDN repositories are also very different from
routers since they are optimized for fast delivery of content and not for traffic man-
agement. In other words, a repository is not a CCN node with huge volume of storage
data, it is a server, which focuses on replying to requests on behalf of a small number
of content providers. In this vision, the techniques that have been proposed for dis-
covering contents in network of caches (e.g., [SNS+12]) are not relevant. Besides the
technical issue, from the business point of view, each actor (network operators and
CDN providers) would not like to break their current business models.

The motivation of this chapter is to make both CDN repositories and CCN coexist.
This challenge is fundamental with regards to the key role of CDN repositories in
content delivery and to the importance of name-oriented routing in the future of
networks. Thinking of the coexistence, I identified here two major questions. The
first one is how do CCN nodes route Interest requests to CDN repositories?
In CCN, the content servers must advertise the contents that they offer. The CCN
FIB is filled with such content advertisements. Thus the CCN nodes are aware of
the available contents and where to forward the Interest packets to. Then one quick
idea is that we can ask the CDN repositories announce too what they have cached
by using the any content publication protocol (as I presented in Chapter 4). The
CCN nodes which receive these CDN repository advertisements add the information
in their FIBs. It can work with a small number of contents but it can not be efficient
in case of billions and billions of different contents. If every content is advertised with
its full name, it will introduce a big network overhead and a huge FIB table size.
Since the CDN service is for several certain content providers, the contents from the
same domain names can be aggregated to a smaller identification name. Thus all the
Interest messages carrying the same domain names are successful forwarded to the
CDN repositories. For example, instead of advertising the full name of two contents
(ccn.Orange.com/Video/Lannion/Demo1 and ccn.Orange.com/VoD/film1) that both
will be registered in the CCN node, we can assume that only one aggregated name
(ccn.Orange.com/) can be advertised by the CDN nodes. It will largely reduce the
necessary memory size in the CCN routers and ease the forwarding process as well,
since it will be faster to retrieve information. However, the CDN repositories hold
only the most popular contents offered by the service providers, not the full catalog.
So Here comes the second question. How do CCN nodes get content from
the original servers in case of a CDN miss? CCN protocol differs from IP
protocol as it does not support negative reply or address-based redirection. If we
use aggregated information in the FIB as mentioned earlier (ccn.Orange.com/), all
the Interest messages related to this domain name will be sent towards the CDN
repositories. But in case the target CDN repository does not have the contents, the
preceding CCN node cannot be informed and the end-user will never get the content,
whereas it is available in the original server.

5.2. Background and motivation 63

In order to realize the cooperation between CCN and the CDN caches, I propose
here a novel CCN node, namely cRouter, which aims at integrating CDN repositories
in CCN. The main feature of a cRouter is that a CDN repository can “plug” on it.
From a business perspective, a cRouter is managed by an Internet Service Providers
(ISP) while the repositories are not necessarily. An ISP operator can deploy cRouters
on-the-fly in its CCN network without affecting other nodes. Since the ISP operator
is free to deploy any number of cRouters at strategic locations in its network, the
proposal preserves one of the most fundamental principles of the Internet, which is
to let the ISP operators actually operate their networks by themselves. Furthermore,
this proposal does not require changing CCN, since I do neither modify any CCN
message, nor create any new message.

5.2 Background and motivation

In this Section, I first give a shot presentation of some additional business-oriented
motivations for the deployment of repositories in networks. Then, I show that naive
implementations with current CCN nodes fail.

5.2.1 Business Considerations – Analyzing the CDN Revolution

Several theoretical models have been proposed to capture the reality of exchanges
between business entities in the context of massive content delivery [MCL+11, DD11].
On this side, I do not focus on precisely modeling monetary interactions, but rather on
understanding the motivations behind the strategies of today’s stakeholders. There
are four main actors are distinguished:

1. Content providers want to serve their subscribers (residential end-users) with-
out having to engage specific deals with ISPs. They also want to maintain
exclusive relationships with their clients (monetizable service personalizations),
thus they want to be notified of each action of their clients. Therefore traffic
interception by un-authorized third-parties is not acceptable.

2. CDN providers have deployed a content delivery infrastructure (servers, pos-
sibly backbone networks) and have agreements with content providers. They
want to get rid of variable costs and to find added value in content handling.
CDN providers also want to participate to global infrastructure investments, in
order to better balance and value their core assets (technologies, knowledge and
current infrastructures).

3. ISPs receive money from residential end-users. They want to maintain cost
structures under control in order to remain competitive on the Internet access
market (i.e. maintaining low pricing/level of margin). They also want to control
the global QoS offered to certain services and to maintain a certain level of
differentiation.

Actors include ISP, transit network operators, content providers and CDN. In
short, content providers want to be notified of each action of their clients. There-
fore traffic interception by un-authorized third-parties is not acceptable. On their

64 5. Interconnecting CDN service with CCN networking

sides, CDN providers have deployed a content delivery infrastructure (servers, possi-
bly backbone networks) and have agreements with content providers. Finally, ISPs
want to maintain cost structures under control and to control the global QoS offered
to certain services.

The explosion of multimedia traffic recently changed the market equilibrium. Since
CDN providers have deployed most of their servers out of ISP networks, bottlenecks
start appearing in the peering links between ISP and CDN networks, which has led
to a series of clashes between well-established actors [ora12, Gol10]. To overcome
this problem, CDN providers would like to deploy more repositories directly in ISP
networks, while ISP promote the raise of so-called telco-CDN, which consists of multi-
ple ISP-controlled repositories with guaranteed links to the customers [Ray09, LS13].
However, telco-CDNs focus on a small area although content providers generally need
global delivery. This is an opportunity for traditional CDN providers, which can
coordinate multiple localized telco-CDNs and interface these latter to the content
providers. Moreover, CDN can also profit in sharing their experience of content de-
livery with ISPs through licenses or co-management agreement [lcd12]. This analysis
leads to the proliferation of repositories controlled by third-party actors within the
ISP networks. In a word, I believe in multiple independent repositories deployed
within ISP networks. The management of these repositories can be done in multiple
ways, including (i) by the ISP itself, (ii) jointly by the ISP and a CDN provider
through a licensing agreement, and (iii) by a renting CDN provider through a col-
location agreement. I also believe that network operators will keep control on traffic
management and will look for solutions to smoothly integrate repositories, including
information-centric protocols.

5.2.2 Naive Integration of Repositories in CCN

So far, repositories have been absent of CCN protocol, as well as of other information-
centric network proposals. A very recent version of CCNx software features a so-called
repository component, which is expected to let applications save some data in the local
hard-disk of routers [WWWe]. This first step toward the integration of CDN repos-
itories in CCN is however not documented well from a network standpoint [WWr].
Nothing is said about the integration of such router component in the protocols.

In CCN the FIB is filled with the broadcast content advertisements, e.g. by using
the OSPFN [WHY+12] protocol. Thus CCN nodes are aware of available contents
and can implement routing protocols. FIB are key elements of information-centric
routing, and how to fill FIB is critical for our problem. There are four naive ways to
integrate repositories in CCN through the FIB, but none of them is good. Here are
why.

• To better integrate CDN repositories into CCN, one solution is to make repos-
itories advertise what they store with the full name. This solution however
does not scale: To advertise every content with its full name would induce net-
work overhead and huge FIBs. Such solution can work with a small number of
contents but it cannot be widely implemented.

• Another solution is to make CDN repositories advertise only the domain names

5.3. Introducing cRouters 65

of their clients, so that all the requests for the same domain are forwarded
toward CDN repositories. Such solution respects constraints on FIB memory
size. However, the CDN caches hold only a subset of the catalog offered by
the service providers, then if an Interest message is sent towards a repository
that does not have the content, no intermediate entity is aware of this miss (no
negative response in CCN). Worst, all future retransmitted Interest packet also
fall in the trap: they follow the same path to the same repository, which cannot
reply.

• Another solution is to lever native multicast features of CCN. A FIB supports
multicast by default by associating several outgoing information to an FIB entry.
For the domains that are included in the CDN repository, it is possible to
still maintain the information about the original server so that the problem
encountered above can be solved by simply forwarding Interest packets twice:
one to CDN repository and one to original server. This solution is however not
efficient. The original server receives all requests although most of them can be
handled by repositories. Such solution is against the original intention of CDN
services and double Interest-related traffic.

• The last idea is to add all CCN node functionalities and components into the
CDN repository and transform it into a transit CCN node with an extra-large
Content Store (e.g., the CCNx Repository element). If such CDN/CCN hybrid
node experiences a miss, it would simply forward the Interest packet as in
a regular CCN nodes, based on its PIT table and FIB. I discarded this idea
because (1) it would impact the networking topology (lot of traffic would have
to pass through this CDN/CCN node, with the risk of creating bottlenecks) (2)
the repository should perform not only a fast content management, analysis and
retrieving process, but also a fast Interest packet management and redirection
performance, which is not viable as proved by [PV11], and (3) since such
CDN/CCN is on most forwarding path, a failure of the repository function, for
any reason, would result in a loss of all Interest packets in the area.

5.3 Introducing cRouters

I now introduce the cRouter. A cRouter is associated with at least one CDN reposi-
tory. A cRouter has all functionalities of a regular CCN node and is also connected
to other CCN nodes. It has two new components (Figure 5.1):

• Repository Forwarding Table (RFT), which stores the domain names of the
content providers that have agreements with the associated repositories

• Pending Repository Interest Table (PRIT), which stores the Interest messages
that were previously forwarded to one of the associated repositories

5.3.1 The Repository Forwarding Table

In CCN, a FIB table contains the Interest packet forwarding information. This table
is filled by the content publications that are advertised by servers. I define a RFT

66 5. Interconnecting CDN service with CCN networking

Figure 5.1: The CCN node architecture with the repository elements

as a FIB-like table, which is used to store only the content domain names that are
served by the repositories which are associated with the node. As in a FIB, a RFT
contains the outgoing face identifiers through which the CCN node can access the
right repository. I give an illustration of a RFT in a cRouter in Table 5.1. This table
shows that this cRouter is associated with at least three repositories. Two of them
are in charge of serving videos from Youtube and Dailymotion and the remaining one
has agreements with Google.

Repository Forwarding Table

Domain names Faces

YouTube, DailyMotion 101, 102

Google 103

.

Table 5.1: Repository Forwarding Table

To fill in the RFT, we see two options: (i) the ISP operator that is responsible
of the cRouter fills its RFT. This option is for ISPs that know well their own CCN
topologies and the repositories that are deployed in their networks, no matter these
repositories are managed by themselves or by third-party providers. Although the
set of contents that are actually stored in a repository can be dynamic, the domain
names of these contents are generally defined when the repository is installed, and are
relatively stable. Furthermore, it is expected that the ISP knows well the configuration
of cRouters and their associated repositories, hence RFT tables can be manually
filled by ISP engineers themselves. (ii) the RFT is filled in the same way as FIB
tables are filled, i.e. through the implementation of a broadcasting protocols like
OSPFN. But only the domain-name level name prefixes are published in the OSLA
packets [WHY+12]. I typically propose to add a flag in OSPFN packets to differentiate

5.3. Introducing cRouters 67

the publications to FIB from those to RFT. When a cRouter gets a RFT-related
publication, it creates or updates a RFT entry with the domain names and the face
identifier from which this cRouter received the advertisement. A regular CCN node
receiving such RFT-related publication can ignore it. In the following, I detail RFT
processing together with PRIT processing, as illustrated in Figure 5.2.

Matched in RFT?

Matched in
PRIT?

Matched entry
has interface list?

From the same
face or not?

copy all the
listed faces as the

incoming faces
to PIT & erase

them from PRIT

PRIT
update

Regular PIT
& FIB process

PRIT update
& RFT for-
ward process

Interest

yes

no

yes

no

yes

no

yes no

Figure 5.2: The Interest message process

5.3.2 The Pending Repository Interest Table

In this work, a repository is a storage server, and it does not implement any redirect-
ing function, which is not supported in CCN. Thus, I have to implement a special
mechanism to handle the case of miss at the repository. I propose the PRIT, which is
somehow similar to the regular PIT table, but only applies to the Interest messages
that have been forwarded to repositories in the past. The role of the PRIT is to allow
the detection of the incoming Interest messages that have probably generated a miss
at the repository. I give an example of PRIT in Table 5.2.

I detail the processing of incoming Interest packet in Figure 5.2. When an Interest

68 5. Interconnecting CDN service with CCN networking

Pending Repository Interest Table

Interest ContentNames Incoming faces

ccnx:/youtube.com/music/top10/
GamnanStyle.flv/chunk0 01, 04

ccnx:/google.com/web/gamnan
%+style%+live/

Table 5.2: Pending Repository Interest Table

packet arrives at a cRouter, the RFT lookup step is added just before the regular PIT-
FIB process. After the Content Store check (if CS does not have the content), the
cRouter looks for the segment of the Interest domain name up in the RFT. If the
lookup result is negative, then the cRouter enters to the regular PIT-FIB process. On
the contrary, if the RFT gives a positive check, the cRouter should firstly try to get
the Data object from the right CDN repository and the cRouter enters in the process
related to the PRIT. There are four cases:

• No matching entry in the PRIT. It is the first time the cRouter receives
an Interest message for this ContentName. The Interest message is forwarded
to the repositories according to RFT information. Meanwhile, a PRIT entry is
created with the ContentName and the incoming face identifier. For example
in Table 5.2, when the Interest message for Gamnan Style video provided by
Youtube first arrived from face 01 at the cRouter, a new entry has been created
for this entry (there is no related entry created in the PIT table).

• A matching entry in the PRIT but the incoming face is not within
the associated face list. The cRouter has already forwarded a similar Interest
packet to a repository and is still waiting for the Data packet. The PRIT only
updates the entry with the new incoming face. For example in Table 5.2, when
the same Interest request for YouTube’s Gamnan Style video arrives from face
04, the matched PRIT entry is updated with face 04, but this Interest packet
is not sent out.

• The incoming face is in the face list which is associated with a match-
ing entry. In CCN, the user sends again the same Interest message when it
does not get the content after a time-out. Here the cRouter receives again the
same Interest message from the client side, and finds a matching PRIT entry
for both this ContentName and this incoming face. The cRouter thus realizes
that a CDN cache miss occurred (the cRouter has sent a same Interest mes-
sage to a repository earlier but the CDN node did not reply) and this Interest
packet should be sent to the original server according to the regular FIB. The
entry in the PRIT is kept without any face (see for example the second entry in
Table 5.2), so that future Interest packet will not be forwarded to repositories.
The Interest packet is then forwarded to the original server.

• A matching entry without any associated face. The Interest message
for this ContentName has already been forwarded to original server because

5.3. Introducing cRouters 69

the repository was unresponsive. For example if the cRouter receives again an
Interest request for Gamnan Style Live in Google, this Interest packet should
be directly processed with the regular PIT and FIB processes.

Each PRIT entry also implements a timer (as in PIT). The role of the timer is
to clean the time-out entries that have not found the content in the repository but
no subsequent similar Interest message has been received. The PIT timer is short,
which is in the order of the Data packet round-trip-time. The PRIT timer should be
set longer (for example in the order of minutes or hours), because CDN repository
management policies are dynamic.

5.3.3 Data Packet Processing

The processing of Data packets at a cRouter is less complex. It is presented in Fig-
ure 5.3. When a Data packet is returned back to a cRouter, whether this Data packet
comes from the repository or from a regular server should be firstly distinguished. If
the Data packet comes from a regular server, the regular PIT lookup process is per-
formed. The related PRIT entry (if it has any) is not deleted so that the following
Interest messages will not be sent to the repository again. If the Data object comes
from a repository, only a PRIT lookup is performed. Thus, the Data message is sent
to all faces that are associated with the ContentName in the PRIT, and then the
entry is deleted. Please note that it may occur that the entry does not contain any
associated faces, for example when the repository has been very long to emit a Data
response and in the meantime the cRouter received a re-sent Interest packet. In that
case, the PRIT entry should be deleted.

From cache
node or not?

PIT check. Update
the data sending queue

with the matched
face(s) & deleting
the matched entry

PRIT check. Update
the data sending queue

with the matched
face(s) & deleting only

the matched faces

Send Data with the
data sending queue

data

yes
no

Figure 5.3: The Data message process

5.3.4 Packet Processing in the cRouter

In this section I present the Interest and Data packet processing algorithm, described
with the different use cases.

70 5. Interconnecting CDN service with CCN networking

The Interest packet process with the different use cases is as follows:

• Use Case 1: The Interest domain name is not present in the RFT (CDN
does not cache content for this domain). The cRouter simply processes
the Interest packet with regular PIT and FIB tables in order to forward the
Interest to the original server (as shown in Figure 5.4).

• Use case 2: The requested content is cached in the CDN repository. It
is the first time the cRouter receives an Interest message for the ContentNamen
ad there is no PRIT entry. The Interest message is forwarded to the repository
according to RFT. Meanwhile, a PRIT entry is created with the ContentName
and the incoming face identifier (as shown in Figure 5.5).

• Use case 3: A matching entry in the PRIT but the incoming face is
not within the associated face list. The cRouter has already forwarded a
similar Interest request to a repository and is still waiting for the Data object.
The PRIT only updates the entry with the new incoming face. (as shown in
Figure 5.6).

• Use case 4: The incoming face is in the list of faces associated with a
matching entry. The cRouter receives again the same Interest packet from
the client side, it finds a matching PRIT entry for both this ContentName and
this incoming face. The cRouter thus realizes that the CDN repository did
not reply for this content and a miss occurred. The Interest packet is then
forwarded to the original server according to the regular FIB. Moreover, the list
of faces that was associated with the entry in the PRIT is now stored in the
regular PIT, thus all previous Interest messages for the requested content will
be fulfilled when Data message will get back from the original server. The entry
in the PRIT is kept in the table but without any face (we removed all associated
faces). It thus indicated that a miss occurred and that future Interest request
should not be forwarded to repositories. Later if an Interest packet for this
ContentName comes again, it will find a matching entry without any associated
face and the Interest message will be directly processed with the regular PIT
and FIB processes (as shown in Figure 5.7).

• Use case 5: The CDN repository lately replies with a content. This case
means the CDN repository has the requested content but for whichever reason
it replies late after the cRouter considered the case as a CDN miss. The first
steps are the same as in use case 4, and when the delayed response from the
CDN repository arrives at the cRouter, it will find a matched PRIT entry with
an empty face list. In this case it will simply delete the related PRIT entry
(as shown in Figure 5.8) to indicate it is not a miss and subsequent Interest
messages can be forwarded to the CDN repository.

The processing of Data packets at a cRouter is less complex. When a Data packet
is returned back to a cRouter, we should first distinguish whether this Data message
comes from the repository or from a original server. If the Data message comes from a
original server, the regular PIT lookup process is performed. The related PRIT entry

5.3. Introducing cRouters 71

Figure 5.4: Use case 1: The Interest domain name not present in RFT (this domain
name is not managed by the CDN repositories.

Figure 5.5: Use case 2: Interest domain name present in RFT, but content name not
in PRIT. CDN repository has this content.

Figure 5.6: Use case 3: Same Interest from different clients arrive, domain name
present in RFT, CDN repository has this content.

72 5. Interconnecting CDN service with CCN networking

Figure 5.7: Use case 4: CDN repository miss (domain name managed by the CDN
repository but content not cached).

Figure 5.8: Use case 5: CDN repository replies lately

(if it has any) is not deleted so that the following Interest messages will not be sent
to the repository again. If the Data message comes from a repository, only a PRIT
lookup is performed. Thus, the Data packet is sent to all faces that are associated
with the ContentName in the PRIT, and then the entry is deleted.

5.4 Example of cRouters Deployment

I present in this section an example of plugging CDN repositories in cRouters. Please
refer to Figure 5.9 for an illustration.

Suppose an operator with a three-level hierarchical CCN networking topology. In
Figure 5.9, the links between CCN nodes are continuous. This ISP would like to
host some CDN repositories in its network. Two CDN repositories are deployed, say
CDN repo A and CDN repo B, which store contents from Youtube and Dailymotion,
respectively. The ISP has observed that the best places to “plug” these repositories

5.4. Example of cRouters Deployment 73

Figure 5.9: Example of cRouters in a hierarchical network with CDN repositories

are at the regional-level routers. This decision considers the volume of traffic and
the characteristics of the repositories (storage size and bandwidth capacity). The
repositories are connected with the regional-level routers by the dotted lines. The
Youtube server is outside the ISP domain and it is connected with the ISP root
router. I deploy the cRouter solution on the regional-level nodes because these are
the only CCN nodes that are connected to repositories.

FIB of cRouter I

ContentName prefixes Faces

youtube.com 01 (root)

... ...

Table 5.3: The FIB table of cRouter I

RFT of cRouter I

Domain names Faces

youtube.com 11 (repository A)

dailymotion.com 12 (repository B)

Table 5.4: The RFT table of cRouter I

Let us take cRouter I as an example. Due to the regular advertisement publication
from Youtube server, the FIB of cRouter I looks like Table 5.3. The cRouter I is also
manually configured to link with the CDN repositories A and B. Its RFT is represented
in Table 5.4. The nodes 1, 2, 3 and 4 are regular CCN nodes, they are not cRouters.

Suppose now cRouter I receives from node 1 an Interest request for a popular
video in YouTube. cRouter I firstly checks its RFT and finds a matched entry with

74 5. Interconnecting CDN service with CCN networking

CDN repo A because this repository is in charge of all Interest packets for YouTube
(see Table 5.4). Meanwhile no entry matches in the PRIT. Therefore, this Interest
packet is forwarded to cache A and meanwhile an entry is created at the PRIT at
cRouter I. CDN repo A stores this video and returns the file to cRouter I, and sub-
sequently to the end-user following the reverse path. Later cRouter I receives from
node 2 an Interest packet for a non-popular YouTube video. Similarly, a related entry
is created in the PRIT and the Interest message is forwarded to the CDN repo A.
Unfortunately CDN repo A does not store this video. Thus cRouter I does not get
any response. Then the end-users resends its Interest request. Now the ContentName
matches an entry in PRIT of cRouter I, with the same incoming face. The cRouter I
knows it has already required this content to CDN repo A. Then it keeps the PRIT
entry with an empty list of face, and puts this list in a new PIT entry. The Interest
packet is forwarded to the root node according to FIB. When the video Data object
is back from the regular Youtube server and arrives at cRouter I, cRouter I knows
the Data packet is from the original server not from the CDN repository. Then only
the PIT lookup is triggered and the PRIT entry still shows that this file is not stored
in the repository.

5.5 Evaluations

To the best of my knowledge, no previous works has addressed the interworking of the
CDN into the CCN. Hence I do not compare the cRouter solution to others, rather
provide an evaluation of some key characteristics of a cRouter.

5.5.1 Memory requirement analysis

A cRouter is a CCN node that contains two new tables. First of all it is interesting
of measuring the extra-cost of these memory spaces and of analysing the feasibility
in terms of the memory requirement. I focus on the PRIT in this discussion, because
the RFT stores only a few domain names. According to studies [GFMM12], a large
portion of the traffic volume is related to a dozen of domain names, so the size of
RFT is just in the order of hundreds Bytes, which can be implemented on any fast
memory chip.

Let us start with a description of a typical cRouter. It is connected with the CDN
repositories through the line cards of 20Mbps. The Data object Round-Trip Time for
in-domain networking and for out-domain are 20ms and 150ms respectively [SKBT12].
I consider that 65% of the incoming traffics can be forwarded to a repository because
the requested files are in the domain name handled by the CDN [GFMM12]. I assume
that each Interest packet has 40-Byte length and the average length of ContentNames
in Interest messages are 30-Byte. I add 2-Bytes for the face identifiers in PRIT
entry [PV11].

I consider today’s memory chip technologies (see Table 5.5 for a summary from [PV11])
and two possible implementations of the PRIT. The most basic implementation is
based on a hash table, while a more sophisticated implementation is based on Bloom
filters [YMT+12], as I presented in Chapter 3. I applied a counting Bloom filter which
has five independent hash functions and the designed false positive rate is 0.1%.

5.5. Evaluations 75

Technology time (ns) Cost ($/MB) Max. size

SRAM 0.45 27 ≈ 210 MB
RLDRAM 15 0.27 ≈ 2 GB

High-speed SSD 1,000 0.03 ≈ 10 TB

Table 5.5: Current memory technology [PV11]

I represent in Figure 5.10 the memory requirement of PRIT in function of the
CDN hit ratio. The hit ratio plays an important role. The higher the hit ratio is,
the lesser memory space is required. The reason is as follows. The in-domain latency
between the CDN repositories and the ISP routers is smaller than the out-domain
latency between an ISP peering routers and the original content servers (for example
Youtube is in an isolated Autonomous System). Thus according to Little’s Law, the
more requests are treated by repositories, the shorter Interest packets stay in the
PRIT, consequently the table size is smaller. We also can see that both the hash-
table based and the Bloom filter based PRIT solution can be built with the fast
SRAM memory chip.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

CDN server hit ratio

R
eq

u
ir

ed
m

em
o
ry

sp
a
ce

in
K

B
y
te

Hash table based PRIT

Bloom filter based PRIT

Figure 5.10: The memory space requirement vs. the cache hit ratio

In Figure 5.11, I present the total memory requirements after the implementations
of PRIT plus the current PIT in comparison to the size of the original single PIT
without the PRIT. I compute the ratio of the total size requirement to the original
PIT size. When the curve is above 1, the total size of PRIT plus current PIT is larger
than the original single PIT. The higher the hit ratio is, the more memory savings we
get, since the Interest messages with a matching Data object from CDN repositories
are no longer pending in the PIT table. However, the miss-hit Interest should wait
for the second emission to reach the original server, which costs longer time. Indeed
if the hit-ratio is low, there is more Interest messages pending in the PRIT and the
required memory space is larger.

Then the impact of traffic distribution on the memory requirement is analysed
here. I suppose the incoming traffic follows the Zipf distribution. The Figure 5.12
shows the PRIT memory size in function of different Zipf distribution parameter (α).

76 5. Interconnecting CDN service with CCN networking

0 0.2 0.4 0.6 0.8 1
0.01

0.1

1

10

100

CDN server hit ratiora
ti

o
P

R
IT

to
P

IT
m

em
o
ry

re
q
u
ir

em
en

t

Hash table based PRIT

Bloom filter based PRIT

Figure 5.11: ratio of PRIT to PIT memory requirement vs. the cache hit ratio

In this evaluation I assume the incoming traffic rate is 10Mbps, 20Mbps and 50Mbps.
As we can expect, the memory requirement is sensitive of the incoming traffic rate
(the memory size of a higher Interest packet rate is larger than the one of lower
traffic rate), and also the content popularity (for example for each incoming rate, the
memory requirement of α = 1 is 50% of the memory at α = 0.2).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

300

Zipf parameter α

R
eq

u
ir

ed
m

em
o
ry

sp
a
ce

in
K

B
y
te

lambda = 50Mbps

lambda = 20Mbps

lambda = 10Mbps

Figure 5.12: PRIT size vs. zipf distribution

5.5.2 Redirection rate vs. content popularity

The redirection rate is the ratio of the number of the Interest messages which are redi-
rected to the original server by the PRIT in case of a miss-hit at the CDN repositories
or because of the lack of PRIT space, over the number of the total Interest messages.
The redirection rate should be limited as low as possible because high redirection
rate means that more Interest packets are resent to the original sources so that more

5.5. Evaluations 77

networking traffic are generated and these Interest messages will suffer a longer Data
response time. From Figure 5.13 we can see that implementing a larger size PRIT can
significantly reduce the Interest packet redirection rate. I notice also that the content
popularity gives a evident impact on the redirection rate. The uniform distribution
raise a higher redirection rate. For example even with a 96KByes, the redirection rate
is 20% for α = 0.2. But as long as the content popularity becomes less uniform, the
redirection rate is significantly reduced. The 96KBytes PRIT suffers 6% redirection
ratw when α = 0.8, which refers the generic web traffic [FRRS12].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

50

Zipf parameter α

In
te

re
st

d
ev

ia
ti

o
n

ra
ti

o
in

% PRIT = 96KBytes

PRIT = 64KBytes

PRIT = 48KBytes

Figure 5.13: Redirection rate vs. zipf distribution

5.5.3 Data Response time analysis

One of the key value of the CDN deployment is to offer a better quality of experience,
for example a faster content delivery time. We now analyze Data response time issue.
Most settings are similar as in Section 5.5.1.

To reduce the impact of a miss in the repository, one solution is to set a shorter
Interest message retransmission interval. However, such setting would lead to a sig-
nificant growth of the number of networking message. In Figure 5.14 I set the hit ratio
at the repository at 0.7. We can see that a shorter Interest message retransmission in-
terval can reduce the average Data object response time but it introduces more extra
interworking messages. Suppose we do not want have more than 0.5 extra messages,
then the Interest message retransmission interval should be no longer than 200ms.
With such reasonable setting of 200ms interest message retransmission interval, the
average Data response time is near 120ms.

5.5.4 Location of deployment analysis

I consider now the topology of Figure 5.9. For an ISP, CDN repositories can be
located either at the regional routers level (for example cRouter I) or at the edge
routers level (for example node 1), which are closer to the end-users. Since regional
routers experience a higher Interest packet arrival rate, the configuration of cRouter

78 5. Interconnecting CDN service with CCN networking

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

Interest retransmission interval (in second)

A
v
er

ag
e

D
at

a
re

sp
on

se
ti

m
e

(i
n

se
co

n
d
)

left y-axis

Data response time

0
1
2
3
4
5
6
7
8
9
10
11
12
13

E
x
tr

a
n
et

w
or

k
in

g
m

es
sa

ge

right y-axis

Extra traffic load

Figure 5.14: Data packet response time and extra traffic load vs. Interest message
retransmission interval

should include fast but expensive memory chips for PRIT. The advantage is that
the efficiency of repositories is better. On the contrary, RLDRAM can be enough if
cRouters are deployed in edge routers level but more repositories are required.

In the following evaluation, I set the Interest packet arrival rate of edge node (for
example node 1) in the range of 1 − 10Gbps. A repository is equipped with a 1TB
high-speed SSD disk as the content container. The other parameters are the same
as in the previous sections. The configurations are as follows: in the edge cRouter
scenario, cRouters are deployed at edge nodes, while in the regional cRouter scenario,
cRouters are in regional nodes.

I am also interested in evaluating the cost of the PRIT memory to handle such
traffic. as illustrated in Figure 5.15, until an Interest packet arrival rate 7Gbps, the
regional cRouter scenario is cheaper because, in both scenarios, cRouters are equipped
with RLDRAM-based PRIT but the overall memory size of cRouters at the regional
level is smaller than at the edge level. However, when the Interest packet arrival rate
exceeds 7Gbps, the regional cRouter scenario becomes much more costly because the
regional node collects all the traffic from the edge levels and the traffic rate becomes
so high that SRAM technologies should be implemented on the routers.

5.5.5 Discussion

The results of these evaluations show that even if this solution requires two additional
tables, the whole memory requirement of the total forwarding tables does not increase
much. The performance of the cRouter depends on the content behaviours, for exam-
ple the content popularity. In most networking environment, the content popularity
parameter α of the Zipf distribution is greater than 0.8, and in this condition the
memory requirement is at the same level as the classic CCN node design, the packet
redirection rate is limited at a low level (e.g. 2% for 96KBytes PRIT). A shorter
average Data response time requires a shorter Interest packet retransmission interval

5.6. Conclusion 79

2 4 6 8 10
101

102

103

Interest arrival rate at the edge node (Gbps)

M
em

o
ry

C
o
st

in
$

Total cost at edge cRouters

Total cost at regional cRouter

Figure 5.15: The cost of different deployment location

in order to quickly recover the CDN miss-hit. However that will lead to extra net-
working traffic. So during the realistic implementations, a trade-off should be made
between the networking traffic and the Data response time performance. For example
if we want to limit the average Data response time for 70ms, we have to suffer about
two times extra networking traffic.

5.6 Conclusion

The advantages of CDN service are well known in IP. It brings a better end-user
quality of experience and reduces the traffic cost of both content providers and ISP
operators. Meanwhile the CCN networking paradigm emerged, with some use-cases
to show the feasibility of the approach, but did not take into consideration CDN net-
works so far. But I believe that the deployment of CCN should not ignore these key
advantages of CDN. In this contribution, I analyzed that the current CDN design can
not support and interconnect with CDN networks and an evolution of the CCN node
interconnected to the CDN repository, is necessary. That is why I have proposed the
cRouter, a “pluggable” CCN node with two new tables, namely the RFT (Repository
Forwarding Table) and the PRIT (the Pending Repository Interest Table). The RFT
can differentiate the forwarding information between original servers and CDN repos-
itories. The PRIT can tolerate the Interest packets redirection problem in case of a
repository miss. The evaluations that I have performed show that including the two
new tables has no additional cost for building a CCN node and the flow of messages
is not significantly affected. I have also exemplified how the cRouter can be deployed
in a real hierarchical network of an operator. The cRouter solution is fully compliant
with current CCN design (i.e. the cRouter can be connected to current CCN node)
and allows to keep the relationships and positions of key players in the delivery chain:
The CDN providers still keep the control of the storage functions, while the network
operators still focus on the transport part of the content.

80 5. Interconnecting CDN service with CCN networking

81

Chapter 6

Conclusion

The IP network architecture has been designed in 60s-70s for a communication-based
usage. But this end-to-end model can not perfectly match the Internet usage evolution
which is more oriented to a content-based model. The Content-Centric Network
(CCN) has been proposed in 2009 by Van Jacobson and his team of PARC, with
the purpose to replace the IP based Internet architecture by a content-based one, in
order to improve the delivery quality. The CCN integrates many services directly
into the networking design such as multicast, security, in-networking caching, etc.,
and brings many advantages for the network of the future. But the current hardware
technologies, especially the memory chip technologies, are not yet ready for supporting
the switch from a IP address based network to a content name based one. In this
thesis I investigated the realistic design and implementation issues of the CCN design.
The thesis is composed by three main contributions, summarized in the following:

• A distributed PIT based on Bloom filters: This contribution investigated
the CCN PIT element. I focused on this component because PIT is a brand-new
element in CCN that does not exist in IP architecture. I was then interested in
analysing the behaviour of this element. During the forwarding operation, PIT
is involved in both incoming Interest and Data packet processing. Thus PIT
should perform fast enough to follow the incoming packet rate. Meanwhile, In-
terest and Data perform exact matching in PIT. That means PIT should mem-
orize the entire ContentNames of the incoming Interests. This behaviour leads
to a large memory space requirement. Unfortunately today’s memory chips can
not meet these two needs. The fast memory, for example SRAM, does not have
a large volume. Or the huge memory chip which has a large space capacity,
for example RLDRAM, can not offer a fast access time. In order to overcome
the hardware bottleneck and keep the original PIT functionalities, I proposed
a distributed PIT structure which is based on the Bloom filter solution (named
DiPIT system). In my proposal the Bloom filter solution is applied with the
purpose of reducing the memory requirement. Furthermore, instead of having
one single centralized PIT in each CCN node, I distributed the PIT to each
CCN face. Each distributed small PIT (named PITi) was in charge of the
packets only for the face which it is associated to. The distributed system has
two advantages. First of all, the size of each single PITi is smaller. It thus can

82 6. Conclusion

be easily implemented into the fast SRAM. Secondly, the distributed design can
resolve the face information retrieval issue of the Bloom filters. The evaluation
results showed that the Bloom filter based PIT solution can significantly re-
duce the memory requirement. The implementation of CCN PIT then becomes
possible facing today’s memory limitations. Even if, in the future, the memory
technologies evolve, which means the fast memory can support relatively larger
volume, this proposal is also interesting because it costs always less memory
than the traditional method (e.g. hash table based). This solution is proposed
for the PIT element, however the same idea can also be applied to others, for
example the FIB table.

• A dynamic content-aware forwarding system: The Content-Centric Net-
working requires the content based routing, relying on the content name based
Forwarding Information Base (FIB). However in current CCN design, the CCN
FIB is filled by the flooded content advertisements, which is similar to the IP
address announcement. This design has some limits. First, since each content
should be announced through the network and since the number of contents
is much bigger than the number of current IP addresses, the content adver-
tisements will introduce lots of networking traffic. Second, in this traditional
method, each node which receives the content advertisement has the same view
of all the available contents in the networking. That will cause a huge FIB
table size. Thirdly this design does not take into consideration the content
behaviours, such as the local content popularity. So for a network which is
based on the content itself, it is neither efficient nor optimized. At last since
in this method the FIB only passively receives the content advertisements from
the content provider and in CCN the on-path caches do not announce the con-
tents that they have, so the Content Stores or other content cache capacities
at the end users’ equipment are actuality not included in the conventional for-
warding design. Focusing on these four points, in this contribution I proposed
a dynamic content-aware CCN forwarding design. This design contains three
contributions: a content publication protocol, a content aware FIB filling algo-
rithm and a dynamic downstream forwarding component. This solution is really
content based, considering the content and end-users’ behaviours. The content
advertisements are propagated only through certain paths and towards certain
nodes, instead of flooding the entire network. The FIB is filled based on the
incoming contents, and it memorizes only the locally popular content forward-
ing information. The dynamic downstream forwarding element is built based
on the PIT. It considers the end-equipments also as the content providers for
Interest forwarding. It is aware of the caches of the downstream nodes and can
forward the matching content requests to those nodes in order to discover the
best content containers. The mentioned downstream nodes can be the Content
Store of the on-path nodes, or the caches at the end-users’ equipment in a P2P
system, at the users’ set-top boxes, or the game terminals, etc.

• The interconnection of CDN services with CCN network: The Content
Delivery Network (CDN) has already proved its success in IP network. CDN
has brought many advantages in both technical and business aspects. The

6. Conclusion 83

CCN can provide the in-networking caching but since the main usage of this
kind of caches are fundamentally different from the CDN repository servers,
we cannot simply and totally use CCN to replace CDN. And of course we still
want to keep the advantages of CDN in any new generation internet proposals,
including CCN. However the features from the original CCN design does not
support the interconnection between CCN network and CDN services. For
example the no-DNS reliable feature does not support the redirection from the
original server to the CDN repositories. The no-address/location behaviour can
not support the packet redirection neither, especially in case of a CDN content
miss. In this contribution a CDN forwarding mechanism and an Interest/Data
process protocol are proposed, in order to make the CCN structure able to
support the current CDN service. In this solution, two new tables are added
in a CCN node. One table, named RFT (Repository Forwarding Table), is in
charge of deciding which Interest messages should be forwarded to the CDN
servers. It contains the forwarding information of the domain names which are
managed by the CDN repositories. The second table, named PRIT (Pending
Repository Interest Table), has two functionalities. The first one is for Data
packet forwarding. Similar as PIT, when the CCN node forwards an Interest
message towards the CDN repository, the Interest is appended in the PRIT
table for the Data packet forwarding later. The second role of PRIT is for the
awareness of content miss at the CDN servers. If the CDN repository does
not have the required content, according to the CCN design, the CCN node
will receive a same repeated Interest message from the client side, and then
find an existing entry at the PRIT table. Thus it can notice that this Interest
message has already been forwarded to the CDN repository earlier and it can
not be satisfied by the CDN repository. The CCN node then should resend the
Interest message to the original servers.

The three contributions focus individually on the three main CCN node compo-
nents: PIT, FIB and CS. Each contribution is trying to improve the performance of
the different elements, and also to make the realistic implementation of each element
possible facing today’s hardware limits. These three contributions are also coherent.
Indeed, we can combine all the solutions together and build a whole optimal CCN
node that has a better performance and can meet the current memory technology
limits. But the solution proposed in one contribution can also be used in the others.
For example the distributed Bloom filter structure which is originally proposed in
DiPIT can also be applied in the dynamic FIB system.

In one word, in this thesis, I focused on the different CCN node elements with
the purpose of improving the performance of each element and thus of the entire
node, and to make it possible to implement such a CCN node in reality with current
hardware conditions.

84 6. Conclusion

85

Chapter 7

Future Works

This thesis addressed the question of improving the Content-Centric Network node
performance and the implementation of such next generation network proposal within
current technologies. The analysis and the evaluations of the three main contributions,
described in this thesis, focus more on the performance of each individual CCN node.
In order to go further on these works, I have some directions to suggest.

• The DiPIT system. The false positive rate is a key factor of this solution.
In this thesis I have performed some simulations based on a linear topology
and a Geant topology, with a zipf distribution traffic. We can still run more
simulations based on different networking topologies and different networking
traffic of various use cases, to see how the false positive rate and the packet loss
ratio will be. The distributed Bloom filter based system is initially designed for
the CCN PIT, but actually it can also be used for the other implementations,
for example the CCN FIB. So how and where that we can extend this design is
research direction that we can carry on in the future.

• The content-aware dynamic forwarding system. The OSPFN proposal,
as well as some other recently presented solutions that are based on OSPFN,
have already announced the first release. We can implement the content-aware
forwarding system into the latest CCNx release or the CCN-lite [WWWb] which
is developed by University of Basel, to compare the performance with the OS-
PNF protocol, in terms of networking traffic, memory requirement and the Data
response time improvement. This content-aware forwarding design is not lim-
ited at the CCN usage. In the future we can also develop and adapt it into the
other ICN networking solutions.

• The interconnection of CCN and CDN. This work is still at the early
stage. In the next step we can also implement the cRouter into the CCNx or
CCN-lite release, and use a network simulator, for example ns3, to run several
simulations with the CDN server models to evaluate the CDN redirection ratio,
packet loss ratio and the memory cost performances.

Finally, as I mentioned in the Chapter 6, the three contributions are coherent.
After we valid each contribution independently through a vast evaluations, we can

86 7. Future Works

combine the them together and propose a whole CCN node that is based on these
three optimized elements. After that we can still evaluate the performance by running
some simulations or evaluations with different use cases, for example the P2P system,
the online social networking use case, the WSN environment, or in an Internet of
Things usage, to see how it performs in different conditions.

87

Bibliography

[ADI+12] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman.
A survey of information-centric networking. Communications Magazine,
IEEE, vol.50, July 2012. 61

[ANO10] Somaya Arianfar, Pekka Nikander, and Jörg Ott. On content-centric
router design and implications. In ACM CoNext Workshop ReARCH,
2010. 20, 23, 24

[BCA+12] M.F. Bari, S. Chowdhury, R. Ahmed, R. Boutaba, and B. Mathieu. A
survey of naming and routing in information-centric networks. Commu-
nications Magazine, IEEE, 50:44–53, 2012. 50

[BM04] A. Broder and M. Mitzenmacher. Network applications of bloom filters:
A survey. Internet Mathematics, 1(4):485–509, 2004. 37

[BPC+07] Paolo Baronti, Prashant Pillai, Vince WC Chook, Stefano Chessa, Al-
berto Gotta, and Y Fun Hu. Wireless sensor networks: A survey on
the state of the art and the 802.15. 4 and zigbee standards. Computer
communications, 30(7):1655–1695, 2007. 2

[BSAS13] Athula Balachandran, Vyas Sekar, Aditya Akella, and Srinivasan Seshan.
Analyzing the potential benefits of cdn augmentation strategies for inter-
net video workloads. In Proceedings of the 2013 conference on Internet
measurement conference, IMC2013, pages 43–56, October 2013. 51

[CGMP13] Giovanna Carofiglio, Massimo Gallo, Luca Muscariello, and Michele Pa-
palini. Multipath congestion control in content-centric networks. In
IEEE INFOCOM NOMEN workshop, Turin, Italy, April 2013. 50

[CGP11] G. Carofiglio, V. Gehlen, and D. Perino. Experimental evaluation of
memory management in content-centric networking. In Proc. of IEEE
ICC, 2011. 24

[Cis] Cisco visual networking index: Forecast and methodology, 2012-2017.
xiv, 2

[Con] ANR CONNECT research project. xvi

88 BIBLIOGRAPHY

[DD11] A. Dhamdhere and C. Dovrolis. Twelve years in the evolution of the
internet ecosystem. IEEE/ACM Trans. Netw., 19(5):1420–1433, 2011.
63

[DKT03] Sarang Dharmapurikar, Praveen Krishnamurthy, and David E. Taylor.
Longest prefix matching using bloom filters. In ACM Sigcomm, 2003. 25

[E+11] Donald Eastlake et al. Rfc6195: Domain name system (dns) iana con-
siderations. 2011. xiv, 2

[eri12] Ericsson mobility report: on the pulse of the networked society. Ercisson,
Nov. 2012. http://www.ericsson.com/news/1659597. 61

[FRRS12] C. Fricker, P. Robert, J. Roberts, and N. Sbihi. Impact of traffic mix on
caching performance in a content-centric network. In IEEE INFOCOM
NOMEN Workshops, 2012. 56, 77

[GFMM12] V. Gehlen, A. Finamore, M. Mellia, and M. Munafo. Uncovering the big
players of the web. In Traffic Monitoring and Analysis. Springer Berlin
Heidelberg, 2012. 74

[GHM12] F. Guillemin, T. Houdoin, and S. Moteau. Statistics of youtube traffic
in orange ip networks. Orange Labs draft, 2012. 51

[GKR+11a] Ali Ghodsi, Teemu Koponen, Barath Raghavan, Scott Shenker, Ankit
Singla, and James Wilcox. Information-centric networking: Seeing the
forest for the trees. In Proc. of HotNet’X, 2011. 23

[GKR+11b] Ali Ghodsi, Teemu Koponen, Jarno Rajahalme, Pasi Sarolahti, and Scott
Shenker. Naming in content-oriented architectures. In ACM Sigcomm
Workshop ICN, 2011. 24

[Gol10] D. Golding. The real story behind comcast-level 3 battle. GigaOM, Dec.
2010. http://gigaom.com/2010/12/01/comcast-level-3-battle/. 64

[GWCL06] D. Guo, J. Wu, H. Chen, and X. Luo. Theory and network applications
of dynamic bloom filters. In IEEE INFOCOM, 2006. 37

[HAA+13] A K M Mahmudul Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan
Zhang, Lixia Zhang, and Lan Wang. Nisr: named-data link state rout-
ing protocol. In 3rd ACM SIGCOMM workshop on Information-centric
networking, August 2013. 50

[HAM11] H. Hwang, S. Ata, and M. Murata. Realization of name lookup table in
routers towards content-centric networks. In Proc. of CNSM, 2011. 23,
24

[JF08] Zbigniew Jerzak and Christof Fetzer. Bloom filter based routing for
content-based publish/subscribe. In ACM DEBS, 2008. 25

http://www.ericsson.com/news/1659597
http://gigaom.com/2010/12/01/comcast-level-3-battle/

BIBLIOGRAPHY 89

[JST+09] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N Briggs, and R Bray-
nard. Networking named content. In CoNEXT ’09. ACM, 2009. xvi, 5,
13, 23, 27, 62

[JZER+09] Petri Jokela, András Zahemszky, Christian Esteve Rothenberg, Somaya
Arianfar, and Pekka Nikander. Lipsin: line speed publish/subscribe
inter-networking. In ACM Sigcomm, 2009. 25

[KA98] Stephen Kent and Randall Atkinson. Rfc2401: Security architecture for
the internet protocol, November, 1998. xiv, 2

[KCC+07] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolin-
skiy, Kye Hyun Kim, Scott Shenker, and Ion Stoica. A data-oriented
(and beyond) network architecture. SIGCOMM Comput. Commun. Rev.,
37(4):181–192, August 2007. xvi, 5, 11, 24

[KMFB04] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido. A nonstationary
poisson view of internet traffic. In IEEE INFOCOM, 2004. 39

[lcd12] Orange and akamai form content delivery strategic alliance. Akamai
Press Release, Nov. 2012. http://www.akamai.com/html/about/press/
releases/2012/press_112012_1.html. 64

[LKN13] Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix
tree: Artful indexing for main-memory databases. In Proceedings of the
2013 IEEE International Conference on Data Engineering (ICDE 2013),
April 2013. 25

[LRH10] Uichin Lee, Ivica Rimac, and Volker Hilt. Greening the internet with
content-centric networking. In Proceedings of the 1st International Con-
ference on Energy-Efficient Computing and Networking, e-Energy ’10,
pages 179–182, New York, NY, USA, 2010. ACM. 20

[LS10] Wencheng Lu and Sartaj Sahni. Low-power tcams for very large for-
warding tables. IEEE/ACM Trans. Netw., 18(3):948–959, June 2010.
25

[LS11] Zhe Li and Gwendal Simon. Time-shifted tv in content centric networks:
The case for cooperative in-network caching. In IEEE ICC, 2011. 18

[LS13] Zhe Li and Gwendal Simon. In telco-cdn, pushing content makes sense.
IEEE Trans. on Networks and Services Management, 2013. 64

[MA10] V. Vercellone et al. M.D. Ambrosio, M. Marchisio. Second netinf archi-
tecture description. In Deliverable D6.2 of the 4WARD project, Jan.2010.
xvi, 5, 9

[MCG11] Luca Muscariello, Giovanna Carofiglio, and Massimo Gallo. Bandwidth
and storage sharing performance in information centric networking. In
Proc. of the ACM SIGCOMM workshop ICN, 2011. 23, 24

http://www.akamai.com/html/about/press/releases/2012/press_112012_1.html
http://www.akamai.com/html/about/press/releases/2012/press_112012_1.html

90 BIBLIOGRAPHY

[MCL+11] Richard T. B. Ma, Dah Ming Chiu, John C. S. Lui, Vishal Misra, and
Dan Rubenstein. On cooperative settlement between content, tran-
sit, and eyeball internet service providers. IEEE/ACM Trans. Netw.,
19(3):802–815, 2011. 63

[Moy98] John Moy. Rfc2328: Ospf version 2. April 1998. 17

[MPH+12] D. Migault, D. Palomares, E. Herbert, W. You, G. Ganne, G. Arfaoui,
and M. Laurent. E2e: An optimized ipsec architecture for secure and
fast offload. In The seventh ARES, 2012. 2

[MTP+11] Bertrand Mathieu, Patrick Truong, Jean-François Peltier, You Wei, and
Gwendal Simon. Information-centric networking: current research ac-
tivities and challenges, chapter Media Networks: Architectures, Appli-
cations and Standards. CRC Press, 2011. xiv, 3

[NB09] Erik Nordmark and Marcelo Bagnulo. Shim6: Level 3 multihoming shim
protocol for ipv6. Technical report, RFC 5533, June, 2009. 2

[Ope12] Netflix Open Connect Peering Guidelines, 2012. https://signup.

netflix.com/openconnect. 62

[ora12] Decision relating to practices concerning reciprocal interconnection ser-
vices in the area of internet connectivity. Decision 12-D-18, Sep. 2012.
French Competition Authority. 64

[PUR12] PURSUIT. FP7-INFSO-ICT-257217. Technical report, PURSUIT, April
2012. 13

[PV11] D. Perino and M. Varvello. A reality check for content centric networking.
In ACM Sigcomm workshop on ICN, 2011. 20, 23, 24, 25, 28, 37, 55, 65,
74, 75

[QLC11] Yan Qiao, Tao Li, and Shigang Chen. One memory access bloom filters
and their generalization. In IEEE INFOCOM, 2011. 37

[Ray09] D. Rayburn. More isps not letting cdn place servers inside their network,
doing it themselves. http://is.gd/UxExv6, April 2009. 64

[RM04] V.C. Ravikumar and R.N. Mahapatra. TCAM architecture for IP lookup
using prefix properties. IEEE Micro, 24(2):60–69, 2004. 25

[RR12a] D. Rossi and G. Rossini. On sizing ccn content stores by exploiting
topological information. In Proc. of IEEE Infocom NOMEN Workshop,
2012. 20, 55

[RR12b] Giuseppe Rossini and Dario Rossi. A dive into the caching performance
of content centric networking. In IEEE CAMAD, 2012. 61

[SAI13] SAIL. FP7-ICT-2009-5-257448/D-2.4. Technical report, Sail, Febreury
2013. 10

https://signup.netflix.com/openconnect
https://signup.netflix.com/openconnect
http://is.gd/UxExv6

BIBLIOGRAPHY 91

[SF02] Detlef Schoder and Kai Fischbach. Peer-to-peer. Wirtschaftsinformatik,
44, 2002. xiv, 3

[SHKL09] Haoyu Song, Fang Hao, M. Kodialam, and T.V. Lakshman. Ipv6 lookups
using distributed and load balanced bloom filters for 100gbps core router
line cards. In IEEE INFOCOM, 2009. 25

[SKBT12] D. Saucez, A. Kalla, C. Barakat, and T. Turletti. Minimizing bandwidth
on peering links with deflection in named data networking. In INRIA
paper, March 2012. 74

[Skl91] Keith Sklower. A tree-based packet routing table for berkeley unix. In
USENIX Winter, volume 1991, pages 93–99, 1991. 25

[SNS+12] E. Suyong, K. Nakauchi, Y. Shoji, N. Nishinaga, and M. Murata. Catt:
Cache aware target identification for icn. Communications Magazine,
IEEE, vol.50, December 2012. 62

[SSRV11] Shashank Shanbhag, Nico Schwan, Ivica Rimac, and Matteo Varvello.
Soccer: Services over content-centric routing. In 1st ACM SIGCOMM
Information-Centric Networking (ICN) workshop, August 2011. 50

[SX01] Randall R Stewart and Qiaobing Xie. Stream control transmission pro-
tocol (sctp). 2001. 2

[TL11] Rujiroj Tiengtavat and Wei-Ming Lin. Hybrid key duplication hashing
techniques for ip address lookup. INTERNATIONAL JOURNAL OF
COMPUTER NETWORKS AND SECURITY, 4(5):323–334, 2011. 25

[Tsi00] George Tsirtsis. Network address translation-protocol translation (nat-
pt). Network, 2000. xiii, 2

[VdMSK02] Jacobus Van der Merwe, Subhabrata Sen, and Charles Kalmanek.
Streaming video traffic: Characterization and network impact. In Pro-
ceedings of the 7th International Web Content Caching and Distribution
Workshop, IWCW, August 2002. 51

[VP03] A. Vakali and G. Pallis. Content delivery networks: status and trends.
Internet Computing, IEEE, 7(6):68–74, 2003. xiv, 3

[WHY+12] L. Wang, M. A. Hoque, Ch. Yi, A. Alyyan, and B.C. Zhang. OSPFN: An
OSPF Based Routing Protocol for Named Data Networking. Technical
Report NDN-003, Name Data Networking, July 2012. 17, 50, 64, 66

[Wil02] Carey L. Williamson. On filter effects in web caching hierarchies. ACM
Trans. Internet Techn., 2(1):47–77, 2002. 61

[WPD+10] M. Wittie, V. Pejovic, L. Deek, K. Almeroth, and B. Zhao. Exploiting
locality of interest in online social networks. In ACM CoNEXT 2010,
Novemver 2010. 51

92 BIBLIOGRAPHY

[WRN+13] Yaogong Wang, Natalya Rozhnova, Ashok Narayanan, David Oran, and
Injong Rhee. An improved hop-by-hop interest shaper for congestion
control in named data networking. In 3rd ACM SIGCOMM workshop
on Information-centric networking, August 2013. 50

[WVS+99] Alec Wolman, Geoffrey M. Voelker, Nitin Sharma, Neal Cardwell,
Anna R. Karlin, and Henry M. Levy. On the scale and performance
of cooperative web proxy caching. In ACM SOSP, pages 16–31, 1999. 61

[WVTP97] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner.
Scalable high speed ip routing lookups. In ACM Sigcomm, 1997. 25

[WWr] CCNx Repository. http://www.ccnx.org/releases/latest/doc/technical/
RepoProtocol.html. 64

[WWWa] Anr CONNECT project. http://anr-connect.org. 13

[WWWb] CCN-lite. http://www.ccn-lite.net/. 85

[WWWc] Fp7 COAST project. http://www.coast-fp7.eu. 13

[WWWd] Network of information. http://www.netinf.org. 9

[WWWe] Project CCNx. http://www.ccnx.org/. 27, 64

[WWWf] Psirp. http://www.psirp.org. 12

[WWWg] Pursuit research project. http://www.fp7-pursuit.eu/PursuitWeb/. 13

[WWWh] Sail research project. http://www.sail-project.eu/. 10

[WZB13] Jason Min Wang, Jun Zhang, and Brahim Bensaou. Intra-as cooperative
caching for content-centric networks. In Proceedings of the 3rd ACM SIG-
COMM workshop on Information-centric networking, ICN ’13, August
2013. 50

[YFR09] Minlan Yu, Alex Fabrikant, and Jennifer Rexford. Buffalo: bloom filter
forwarding architecture for large organizations. In ACM CoNEXT, 2009.
25, 37

[YMB09] Heeyeol Yu, R. Mahapatra, and Laxmi Bhuyan. A hash-based scalable
ip lookup using bloom and fingerprint filters. In 17th IEEE International
Conference on Network Protocols, ICNP 2009, October 2009. 25

[YMT+12] W. You, B. Mathieu, P. Truong, J. Peltier, and G. Simon. Dipit: A
distributed bloom-filter based pit table for ccn nodes. In IEEE ICCCN,
August 2012. 55, 74

[ZEB+10] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K.
Smetters, B. Zhang, G. Tsudik, KC. Claffy, D. Krioukov, D. Massey,
C. Papadopoulos, T. Abdelzaher, L. Wang, P. Crowley, and Edmund

BIBLIOGRAPHY 93

Yeh. Named data networking (NDN) project. In Technic Report NDN-
0001, Xerox Palo Alto Research Center-PARC, October 2010. xvi, 13,
17

[ZGR+10] András Zahemszky, Borislava Gajic, Christian Esteve Rothenberg,
Christopher Reason, Dirk Trossen, Dmitrij Lagutin, Janne Tuononen,
and Konstantinos Katsaros. Experimentally-driven research in pub-
lish/subscribe information-centric inter-networking. In Proc. of Trident-
Com, 2010. xvi, 5, 12, 24

94 BIBLIOGRAPHY

95

Presentations and Publications

Book Chapter

[1] Bertrand Mathieu, Patrick Truong, Jean-François Peltier, Wei You and Gwen-
dal Simon. “ Information-Centric Networking: Current Research Activities and
Challenges” in Media Networks: Architectures, Applications and Standards, CRC
Press, ISBN 978-1-4665-6658-3, 2011.

Conferences

[1] Wei You, Bertrand Mathieu, Patrick Truong, Jean-François Peltier and Gwendal
Simon, “ DiPIT: a Distributed Bloom-Filter based PIT Table for CCN Nodes”, in
IEEE Int. Conf. on Computers, Communications and Networks (ICCCN)’2012,
20 July - 2 August, Munich, Germany, 2012.

[2] Wei You, Bertrand Mathieu, Patrick Truong, Jean-François Peltier and Gwen-
dal Simon. “ Realistic Storage of Pending Requests in Content-Centric Network
Routers”, in IEEE Int. Conf. on Communications in China (ICCC)’2012, 15 - 17
August, Beijing, China, 2012.

[3] Wei You, Bertrand Mathieu and Gwendal Simon. “ How to make Content-
Centric Networks interwork with CDN networks”, in IEEE Network of the Future
(NoF)’2013, 23 - 25 October, Pohang, South Korea, 2013.

[4] Wei You, Bertrand Mathieu and Gwendal Simon. “ Exploiting end-users caching
capacities to improve Content-Centric Networking delivery”, in IEEE Int. Conf.
on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)’2013, 28 - 30
October, Compiegne, France, 2013.

Journals

[1] Bertrand Mathieu, Patrick Truong, Wei You, and Jean-François Peltier, “ Information-
centric networking: A natural design for social network applications ”, in IEEE
Communications Magazine, July 2012, vol. 50, n. 7, pp. 44-51.

96 Presentations and Publications

Patents

[1] Wei You, Bertrand Mathieu, Patrick Truong, and Jean-François Peltier, “ Internal
architecture of CCN node to improve the management of message transfer”, No.
11 60632, 2012.

[2] Wei You, and Bertrand Mathieu, “ A Content-aware dynamic FIB table based on
incoming content information for ICN networking”, No. 12 62260, 2012.

[3] Wei You, Bertrand Mathieu, and Gwendal Simon, “ New architecture in a CCN
node for integration of repositories in a CDN network”, No. 13 52113, 2013.

97

Glossary

–A–
AS Autonomous System
ANR Agence Nationale de la Recherche

–B–
BGP Border Gateway Protocol
BF Bloom Filter
BO Bit-level Object
BUFFALO Bloom Filter Forwarding Architecture for Large Organizations

–C–
c-a content-aware
CCN Content Centric Network
CDN Content Delivery Network
COMET COntent Mediator architecture for content-aware nETworks
CPU Central Processing Unit
CR Content Router
cRouter cache Router
CS Content Store

–D–
DASH Dynamic Adaptive Streaming over HTTP
DHT Distributed Hash Table
DIFT Dynamic Interest Forwarding Table
DiPIT Distributed Pending Interest Table
DNS Domain Name System
DO Data Object
DONA Data-Oriented Network Architecture
DRAM Dynamic Random Access Memory

–F–
FIB Forwarding Information Base
FIFO First In First Out
FN Forwarding Node
fp false positive
FTP File Transfer Protocol

98 Glossary

–H–
HD High Definition
HTCP Hyper Text Caching Protocol
HTTP Hypertext Transfer Protocol

–I–
ICN Information Centric Network
ID Identifier
IETF Internet Engineering Task Force
IO Information Object
IP Internet Protocol
IPsec IP Security protocol
IS-IS Intermediate System To Intermediate System
ISP Internet Service Provider

–L–
LFU Least Frequently Used
LRU Least Recently Used
LRFU Least Recently/Frequently Used
LSA Link State Advertisement
LSBD Link State Data Base

–M–
MDHT Multiple Distributed Hash Table

–N–
NAT Network Address Translation
NetInf Networking of Information
NRS Naming Resolution System

–O–
OLSA Opaque Link State Advertisement
OSPF Open Shortest Path First
OSPFN OSPF for Named-data

–P–
P2P Peer to Peer
PC Personal Computer
PIT Pending Interest Table
PoP Point of Presence
PRIT Pending Repository Interest Table
PSIRP Publish-Subscribe Internet Routing Paradigm
PURSUIT Publish Subscribe Internet Technology

–Q–
QoS Quality of Service
QoE Quality of Experience

Glossary 99

–R–
RAM Random-Access Memory
RFT Repository Forwarding Table
RH Resolution Handle
RI RendezVous Interconnection
RId Resource Identifier
RLDRAM Reduced-latency Dynamic random access memory
RN RendezVous Node
RST Reset
RTP Real-time Transport Protocol
RTT Round-Trip Time

–S–
SAIL Scalable and Adaptive Internet Solutions
SBF Shared Bloom Filter
SDN Software Defined Networking
SHA Secure Hash Algorithm
SId Scope Identifier
SRAM Static Random Access Memory
SSD Solid-state drive

–T–
TCAM Ternary content-addressable memory
TCP Transmission Control Protocol
TN Topology Node
TRIAD Translating Relaying Internet Architecture integrating

Active Directories
TTL Time To Live
TV Television

–U–
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator

–V–
VoD Video on Demand

–W–
WSN Wireless Sensor Network

	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	Résumé
	Introduction
	The evolution of IP network and the motivation for ICN
	Limitation of IP
	Motivation of ICN

	Objectives and Contributions
	The organization of dissertation

	Background
	General Introduction
	Some ICN projects
	NetInf and SAIL
	DONA
	PSIRP and PURSUIT

	Content-Centric Networking
	CCN architecture and message exchange

	CCN Naming and Routing
	OSPFN protocol

	CCN on-path caching
	Summary of ICN state-of-the-art study
	CCN optimization and Memory Technology

	DiPIT: A Bloom Filter based CCN PIT redesigning
	Introduction
	Background and Related Works
	IP lookup
	Bloom filter

	Preamble: Modeling PIT table
	Analysis on the centralized hash table
	Table size and Cost
	Collision ratio
	Discussion

	DiPIT – Distributed Bloom filter based PIT architecture
	PITi: One Bloom filter per CCN face
	A shared Bloom filter to deal with false positive
	Main DiPIT algorithms
	Discussion on multiple same Interest messages filtering issue

	Evaluation
	Settings
	Required memory size
	Bursty and multi-path traffic
	Extra Data traffic load
	Discussion

	Implementation in CCNx
	Evaluation 1: in-line network
	Evaluation 2: Geant networking
	Discussion

	Case study: hierarchical network
	Analysis
	Settings
	Discussion

	Conclusion

	A dynamical content-aware forwarding system for CCN
	Introduction
	Related Works
	A Content-Aware CCN forwarding structure
	Content Advertisement Protocol
	Content-Aware Dynamic FIB
	Dynamic Interest Forwarding Table

	Evaluations
	Settings
	Impact of Content Popularity
	Impact of Network Topology
	Impact on Entry Storage Duration in FIB
	Impact of Catalog Size
	Impact of DIFT hit-ratio
	Impact of response time
	Discussion

	Conclusion

	Interconnecting CDN service with CCN networking
	Introduction
	Background and motivation
	Business Considerations – Analyzing the CDN Revolution
	Naive Integration of Repositories in CCN

	Introducing cRouters
	The Repository Forwarding Table
	The Pending Repository Interest Table
	Data Packet Processing
	Packet Processing in the cRouter

	Example of cRouters Deployment
	Evaluations
	Memory requirement analysis
	Redirection rate vs. content popularity
	Data Response time analysis
	Location of deployment analysis
	Discussion

	Conclusion

	Conclusion
	Future Works
	Bibliography
	Publications
	Glossary

