
HAL Id: tel-00979604
https://theses.hal.science/tel-00979604

Submitted on 16 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planification de trajectoire et commande pour les robots
mobiles non-holonomes

Yingchong Ma

To cite this version:
Yingchong Ma. Planification de trajectoire et commande pour les robots mobiles non-holonomes.
Autre. Ecole Centrale de Lille, 2013. Français. �NNT : 2013ECLI0025�. �tel-00979604�

https://theses.hal.science/tel-00979604
https://hal.archives-ouvertes.fr

No d’ordre: 2 3 9

ÉCOLE CENTRALE DE LILLE

THÈSE

présentée en vue d’obtenir le grade de

DOCTEUR

Spécialité : Automatique, Génie Informatique, Traitement du Signal et Images

par

Yingchong MA

Doctorat délivré par l’École Centrale de Lille

Titre de la thèse :

Planification de trajectoire et commande pour les

robots mobiles non-holonomes

Path planning and control of non-holonomic mobile
robots

Soutenue le 19 décembre 2013 devant le jury d’examen :

Président M. Philippe Fraisse Université Montpellier 2

Rapporteur M. Pascal Morin Université Pierre et Marie CURIE

Rapporteur M. Cédric Join Université de Lorraine

Examinateur Mme. Eva Crück Direction Générale de l’Armement

Examinateur M. Jean-Pierre Richard École Centrale de Lille

Directeur de thèse M. Wilfrid Perruquetti École Centrale de Lille

Co-encadrant de thèse M. Gang Zheng INRIA LILLE

Thèse préparée dans le Laboratoire d’Automatique, Génie Informatique et Signal
L.A.G.I.S., CNRS UMR 8219 - École Centrale de Lille

École Doctorale SPI 072
PRES Université Lille Nord-de France

À mes parents,

à toute ma famille,

à mes professeurs,

et à mes chèr(e)s ami(e)s.

Acknowledgements

The PhD work presented in this thesis has been done at “Laboratoire d’Automatique,

Génie Informatique et Signal (LAGIS)” in Ecole Centrale de Lille, from September

2010 to December 2013. This work is supported by the China Scholarship Council

(CSC), EU INTERREG IVA 2 Mers Seas Zeeen Cross-border Cooperation Pro-

gramme under SYSIASS project 06-020 and Ministry of Higher Education and

Research Nord-Pas de Calais Regional Council and FEDER through the “Contrat

de Projets Etat Region (CPER) CIA 2007-2013”.

I would like to express my most sincere gratitude and appreciation to my

supervisors Mr. Wilfrid Perruquetti and Mr. Gang Zheng, for their continuing

support, endless patience and valuable guidance and encouragement throughout

my years at Ecole Centrale de Lille. Their remarkable mind and admirable qual-

ities have always inspired me, and always remind me of how a great professor

should be.

I would like to express my sincere gratitude to the members of my PhD Com-

mittee, M. Pascal Morin, M. Cédric Join, M. Philippe Fraisse, Mme. Eva Crück

and M. Jean-Pierre Richard.

I also would like to express my sincere gratitude to all the members in the

teams of “Equipe des Systèmes Non-linéaires et à Retard” (SyNeR) and "Non-

Asymptotic Estimation for Online Systems" (NON-A), it has been a privilege to

work together with these intelligent and friendly colleagues. I would especially

like to mention the colleagues and friends in my office, Christophe Fiter, Romain

Delpoux, Emmanuel Bernuau, Hassan Omran and Qi Guo. Thanks to them, I

have passed three agreeable years.

Further thanks give to my parents and family for their incessant love and care,

finally, I would like to thank my dearest Hui Wang, who always be so patient and

supportive through all the tough times.

1

ACKNOWLEDGEMENTS

2

Contents

Acknowledgements 1

Table of Contents 2

List of Figures 7

1 Introduction 11

1.1 Background and Motivation . 11

1.2 State-of-the-art . 12

1.2.1 Non-holonomic systems . 13

1.2.2 Localization . 14

1.2.3 Path planning . 16

1.2.4 Motion control . 19

1.3 Outline of the thesis . 20

1.4 Contribution . 23

2 Real-time identification of different types of non-holonomic mo-

bile robots 25

2.1 Introduction . 25

2.2 Robot description . 27

2.3 Determination of input-output equations 28

2.3.1 Coordinate transformation 28

2.3.2 Input-output equations . 29

2.4 Distinguishability . 33

2.4.1 Distinguishability of input-output equations 33

2.4.2 Calculation of residuals . 35

2.4.3 Numerical differentiation 36

3

CONTENTS

2.5 Simulation results . 37

2.6 Conclusion . 41

3 Real-time local path planning for non-holonomic mobile robots 45

3.1 Introduction . 45

3.2 Path planning: an optimal control point of view 46

3.2.1 Problem statement . 46

3.2.2 Mobile robot model . 46

3.2.3 Optimal control problem 47

3.2.3.1 Nonlinear optimization problem formulation . . . 47

3.2.3.2 Receding horizon planner 48

3.2.3.3 Determination of the flat outputs 49

3.2.3.4 Parameterized trajectory 50

3.3 Path planning algorithm with intermediate objectives 51

3.3.1 Representation of obstacles 51

3.3.2 Distance between robot and segments 52

3.3.3 Local minima . 53

3.3.4 Avoidance of local minima by choosing intermediate objec-

tives . 54

3.3.5 Path planning algorithm with intermediate objectives . . . 55

3.3.5.1 The intermediate objectives selection 57

3.3.5.2 Reach switching region 58

3.3.5.3 Judge the switching time 61

3.3.6 Algorithm description . 61

3.4 Simulation results . 61

3.5 Conclusion . 63

3.6 Pseudocode . 65

4 Control of non-holonomic wheeled mobile robots via i-PID con-

troller 69

4.1 Introduction . 69

4.2 Problem statement . 70

4.3 Determination of the controller 72

4.3.1 i-PID controller . 72

4.3.2 Discussion on α(Y, Ẏ) . 74

4

CONTENTS

4.3.3 Algebraic estimation of F 76

4.4 Simulation results . 77

4.5 conclusion . 85

5 Motion planning for mobile robots using potential field and the

i-PID controller 93

5.1 Introduction . 93

5.2 Problem statement . 94

5.3 Potential field function . 96

5.3.1 Attractive potential function 96

5.3.2 Repulsive potential function 97

5.4 Motion planning for non-holonomic mobile robots via i-PID con-

troller . 105

5.4.1 Robot model . 105

5.4.2 i-PID controller . 106

5.5 Simulation results . 106

5.5.1 Switching strategy . 115

5.6 Conclusion . 120

6 Cooperative path planning for mobile robots based on visibility

graph 123

6.1 Introduction . 123

6.2 Problem statement . 124

6.3 Generation of intermediate objectives based on visibility graph . . 125

6.3.1 Polygon generation . 125

6.3.1.1 Disjoint points 127

6.3.1.2 Joint points . 128

6.3.2 Polygon mergence algorithm 129

6.3.3 Generation of intermediate objectives 134

6.4 Path planning based on intermediate objectives 134

6.4.1 Reach switching region . 134

6.4.2 Algorithm description . 136

6.5 Simulation results . 136

6.6 Conclusion . 140

Conclusions and Perspectives 141

5

CONTENTS

Résumé en français 145

References 150

List of publications 167

6

List of Figures

1.1 Applications of mobile robots . 12

1.2 Description of a robot wheel . 13

1.3 Example of cell decomposition . 17

1.4 Three obstacles and the visibility graph 18

1.5 Frame of the thesis . 21

2.1 Different types of robots . 26

2.2 Unicycle-type mobile robot . 27

2.3 Switching signal σ(t) . 37

2.4 Output of the system . 38

2.5 Residuals when the differentiations can be obtained directly . . . 39

2.6 Switching signal σ(t) identified when the differentiations can be

obtained directly . 39

2.7 Residuals when the differentiations are not known and calculated

by the numerical differentiator . 40

2.8 Switching signal σ(t) identified when the differentiations are not

known and calculated by the numerical differentiator 40

2.9 Noise imposed in x direction . 41

2.10 Noise imposed in y direction . 42

2.11 output with noise . 42

2.12 Residuals with white noise SNR=50dB 43

2.13 Switching signal σ(t) identified with white noise SNR=50dB . . . 43

3.1 Description of the environment 46

3.2 Planning and update horizons . 49

3.3 Approximation of obstacles with complex shape 51

3.4 The three cases for distance calculation 52

7

LIST OF FIGURES

3.5 Local Minima . 54

3.6 Complex Environment . 55

3.7 Intermediate Objectives Generation 58

3.8 Intermediate Objectives Selection 59

3.9 Scenario 1: Simple environment 62

3.10 Scenario 2: Complex environment 64

3.11 Scenario 3: Environment with corridor 64

4.1 Trajectory tracking result without noise 77

4.2 Tracking of position x without noise 78

4.3 Tracking of position y without noise 78

4.4 i(θ̂) in the noise free case . 79

4.5 Linear velocity control without noise 79

4.6 Angular velocity control without noise 80

4.7 Tracking errors without noise . 80

4.8 Noise imposed in x SNR = 30dB 81

4.9 Noise imposed in y SNR = 30dB 81

4.10 Trajectory tracking result with white Gaussian noise SNR = 30dB 82

4.11 Tracking of position x with white Gaussian noise SNR = 30dB . 82

4.12 Tracking of position y with white Gaussian noise SNR = 30dB . 83

4.13 i(θ̂) with white Gaussian noise SNR = 30dB 83

4.14 Linear velocity control with white Gaussian noise SNR = 30dB . 84

4.15 Angular velocity control with white Gaussian noise SNR = 30dB 84

4.16 Tracking errors with white Gaussian noise SNR = 30dB 85

4.17 Trajectory tracking result with a hysteresis zone 86

4.18 Tracking of position x with a hysteresis zone 86

4.19 Tracking of position y with with a hysteresis zone 87

4.20 i(θ̂) with a hysteresis zone . 87

4.21 Linear velocity control with a hysteresis zone 88

4.22 Angular velocity control with a hysteresis zone 88

4.23 Tracking errors with a hysteresis zone 89

4.24 Stabilization of position x . 89

4.25 Stabilization of position y . 90

4.26 i(θ̂) of stabilization . 90

4.27 Linear velocity control of stabilization 91

8

LIST OF FIGURES

4.28 Angular velocity control of stabilization 91

5.1 Local minima problems in original potential field method 95

5.2 Modified potential field method 95

5.3 Local minima problems in modified potential method 96

5.4 Sudden change of VRO . 98

5.5 Different cases of Urep(θ, ω) . 99

5.6 Vectors for defining repulsive force 101

5.7 Relationship among Srep1, Srep2, Srep3 and Srep4 103

5.8 Relationship among Srep1, Srep2, Srep5 and Srep6 103

5.9 Situation with local minima . 107

5.10 Robot trajectory with original Srep(P,v) 108

5.11 Repulsive force of original Urep(P,v) 109

5.12 Velocity tracking in x direction with original Srep(P,v) 109

5.13 Velocity tracking in y direction with original Srep(P,v) 110

5.14 Tracking errors with original Srep(P,v) 110

5.15 Linear velocity control with original Srep(P,v) 111

5.16 Angular velocity control with original Srep(P,v) 111

5.17 Robot trajectory with only Srep(θ, ω) 112

5.18 Repulsive force Srep(θ, ω) with only Srep(θ, ω) 112

5.19 Velocity tracking in x direction with only Srep(θ, ω) 113

5.20 Velocity tracking in y direction with only Srep(θ, ω) 113

5.21 Tracking errors with only Srep(θ, ω) 114

5.22 Linear velocity control with only Srep(θ, ω) 114

5.23 Angular velocity control with only Srep(θ, ω) 115

5.24 Robot trajectory with both Srep(θ, ω) and Srep(P,v) 116

5.25 Repulsive force Srep(P,v) with both Srep(θ, ω) and Srep(P,v) . . 116

5.26 Repulsive force Srep(θ, ω) with both Srep(θ, ω) and Srep(P,v) . . . 117

5.27 Velocity tracking in x direction with both Srep(θ, ω) and Srep(P,v) 117

5.28 Velocity tracking in y direction with both Srep(θ, ω) and Srep(P,v) 118

5.29 Tracking errors with both Srep(θ, ω) and Srep(P,v) 118

5.30 Linear velocity control with both Srep(θ, ω) and Srep(P,v) 119

5.31 Angular velocity control with both Srep(θ, ω) and Srep(P,v) . . . 119

5.32 Distance between the robot and an obstacle 120

5.33 Path planning using optimization control and potential field . . . 121

9

LIST OF FIGURES

5.34 Zoom of zone A . 121

5.35 Zoom of zone B . 122

5.36 Switching Time . 122

6.1 Disadvantage of Local Path Planning 124

6.2 Polygon generation . 126

6.3 Polygon generation . 128

6.4 Polygon mergence of Case1 . 130

6.5 Polygon mergence of Case2 and Case3 131

6.6 Polygon mergence of Case4 . 131

6.7 Polygon mergence of Case5 and Case6 132

6.8 polygon mergence . 133

6.9 Reach Switching Region . 135

6.10 Path planning in simple environment 138

6.11 Path planning in complex environment 139

1 Les applications des robots mobiles 145

2 Différents types des robots . 146

10

Chapter 1

Introduction

1.1 Background and Motivation

The study of mobile robots started from 1960s, Nilsson et al. developed an au-

tonomous robot named “Shakey” Nilsson (1969) in order to study the artificial

intelligence, the autonomous planning and control of robot systems in complex

environment. A new research peak occurred world widely in 1980s, a large num-

ber of world famous companies, such as General Electric, Honda and Sony, began

to develop robot platforms, and these platforms were mainly used in university

laboratories and research institutes, which improved the development of vari-

ous researches of mobile robots. Since 1990s, with the development of computer

science, sensor technology and artificial intelligence, there has been a rapid devel-

opment of robot technology, and the applications of mobile robots were further

developed.

In the past a few decades wheeled mobile robots have been more widely studied

and attracted more and more interests of many researches because of their wide

applications in industries and theoretical challenges Kolmanovsky & McClam-

roch (1995); Laumond (1998). For example, the SR4 robot platform on Linux

developed by Smart Robots company, the wheeled mobile robot Pioneer P3-DX

developed by ActivMedia Robotics for research and teaching, the famous Mars

Exploration Rover Spirit and etc. More recently, the applications and develop-

ments of mobile robots have become more and more popular, and mobile robots

have been proposed for using in rescue missions Dissanayake et al. (2006); Murphy

et al. (2009); Nagatani et al. (2011), explorations Burgard et al. (2005); Rooker &

11

1. INTRODUCTION

(a) Mars Exploration Rover (b) Robot soccer game

Figure 1.1: Applications of mobile robots

Birk (2007); Weisbin & Rodriguez (2000), tour guide Han et al. (2010); Tomatis

et al. (2002), and even entertainment such as robot soccer games Camacho et al.

(2006); Cardoso et al. (2012); Kim (2004).

While however with the rapid development of automation and robot tech-

nology, there are higher challenges for mobile robots, and the requests for au-

tonomous navigation in complex environment and control accuracy become cru-

cial. This motivates us to focus on the autonomous navigation and trajectory

tracking of mobile robots. The general objective is to design new path plan-

ning algorithms to navigate robots in complex environment and propose robust

controller to track the desired trajectory.

1.2 State-of-the-art

Autonomous navigation is an important issue in robotics research. This problem

is of theoretically interesting properties and of practical importance. Navigation

is a task that an autonomous robot must do correctly in order to move safely

from one location to another without getting lost or colliding with other objects

Pearsall (2001). Three general problems are involved in navigation: localization,

path planning and motion control. Since we consider the non-holonomic mobile

robots, let us firstly take a look at non-holonomic systems.

12

introduction/pic/MarsRover.eps
introduction/pic/MrSoccer.eps

1.2 State-of-the-art

1.2.1 Non-holonomic systems

Many mechanical systems are subject to constraints of position and velocity,

that is to say several relations between the positions and velocities of the different

points of the system must be satisfied throughout the movement. The constraints

are called holonomic if it is possible to integrate and they lead to the algebraic

relations linking to the configuration settings. These relationships can be removed

by a suitable change of variables and the system is called holonomic system. In

the case of non-integrable constraints, the elimination is not possible and the

system is called non-holonomic system.

✲

✒ ❘

✻
✴ θ

(x, y)

x

y

Figure 1.2: Description of a robot wheel

The kinematic expression of a unicycle wheel under the pure rolling and non-

slipping assumptions (see Fig. 1.2) can be expressed as follows:







ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
(1.1)

where v is the linear velocity, ω is the angular velocity and θ is the angle of the

wheel with respect to x-axis. One can see that the equation (1.1) is subject to

the non-holonomic constraint:

ẏ cos θ − ẋ sin θ = 0 (1.2)

Equation (1.1) and (1.2) implies that there are only two possible movements for

each configuration, i.e. rolling forward or backward and turning in space, and

13

1. INTRODUCTION

this constraint has to be considered when designing control strategy.

The wheeled mobile robots are subject to non-holonomic constraints because

of the constraints of rolling wheels, which means that the motion perpendicular to

the wheels is impossible for wheeled robots based on the pure rolling hypothesis.

Therefore the implementation of non-holonomic mobile robots is a challenge for

nonlinear control theory.

The open-loop method and closed-loop method are described to control the

non-holonomic mobile robot. The open-loop methods search for feasible tra-

jectories with the initial system state connecting with the final one under the

consideration of collision avoidance, minimum path cost, etc. In Dubins (1957)

the shortest trajectory between two oriented points was studied, and in Reeds

& Shepp (1990) the shortest trajectory is considered to be composed of at most

three straight segments and arcs. However as we all know that the open-loop

methods are not robust to the disturbance, errors or noises in the system.

Closed-loop methods of non-holonomic systems have been studied, in which

the input is constructed as a function of the system state to compensate for noises

and errors in the system. However according to Brockett’s theorem Brockett et al.

(1983), there is no smooth feedback control that stabilizes the given configuration,

which is also discussed in Bloch (2003) and Bloch et al. (1992). This means

that the class of the controllers should be extended to take into account the

time-varying or the non-smooth controllers Samson & Ait-Abderrahim (1991).

The smooth time-invariant control can only be used to achieve non-vanishing

Cartesian trajectories tracking (the linear velocity of the robot is assumed to be

always nonzero) Campion et al. (1991), and non-smooth controls have been used

to stabilize non-holonomic mobile robots such as Park et al. (2000). For non-

vanishing Cartesian trajectories tracking problems, PID controllers Normey-Rico

et al. (2001), sliding mode controls Defoort et al. (2006) and some other methods

are used Morin & Samson (2004). Moreover, using the flatness property of the

robot system Fliess et al. (1995), the dimension of the system can be reduced,

which will result in more computation efficiency.

1.2.2 Localization

The localization problem is a key problem in mobile robotics, and it is also the

foundation of the path planning and control problem, because first of all the

14

1.2 State-of-the-art

robot need to know “Where am I?”, the title of a publication Borenstein et al.

(1996). In a little more detail, the goal of a localization task is to estimate the

position of the robot in a given repository. In the applications of mobile robots,

the accurate localization of the mobile robot is one of the key tasks to ensure the

precise navigation, thus the localization should be as accurate as possible based

on available measurements.

Generally, the methods of robot localization can also be divided into two

categories: absolute localization and relative localization.

In absolute localization problems, robots need to detect different features in

the environment to implement desired tasks. One of the absolute methods is

landmark-based localization. The robot uses points of known position in the

environment which can be “seen” by the robot, named as landmarks, to determine

its position. In Conticelli et al. (2000) and Martinelli & Siegwart (2005), the

localization problem is formulated as an observability problem based on more

than three landmarks. In order to solve the problems that it may be difficult to

find so many landmarks in some situations, single landmark based methods are

developed, in Jang et al. (2005) and Lemaire et al. (2005), the proposed methods

use a single landmark and the shape of the landmark. In Sert et al. (2011),

the proposed method uses a single landmark and the relative angle between the

landmark and the robot. GPS (Global Position System) was developed by the

United States Department, and GPS-based navigation systems are also used in

absolute localization for a variety of land-based vehicles Abbott & Powell (1999).

Recently many different methods have been proposed to reduce errors of GPS in

localization problem Qi & Moore (2002); Redmill et al. (2001).

In relative localization problems, odometry is widely used because of its short-

term accuracy, high sampling rate and easy implementing O’Kane (2006). Odom-

etry is based on some simple equations which can be easily implemented and that

utilize data from inexpensive incremental wheel encoders. However the disadvan-

tage of odometry is also well known, it is inaccurate with an unbounded accumu-

lation of errors Gourley & Trivedi (1994). Another approach is based on inertial

navigation with gyros and/or accelerometers Barshan & Durrant-Whyte (1995);

Brooks (1986). The integration of inertial and visual information is investigated

in Viéville & Faugeras (1990). However this approach is not advantageous because

the data of accelerometers must be integrated twice to yield position, which makes

15

1. INTRODUCTION

these sensors exceedingly sensitive to the drift. In addition, simultaneous local-

ization and mapping (SLAM) problem also attracts interest of many researchers.

SLAM is a process by which a mobile robot can build a map of an environment

and at the same time use this map to deduce it’s location Durrant-Whyte & Bai-

ley (2006). Several techniques have been proposed to tackle the SLAM problem,

in Di Marco et al. (2004); Dissanayake et al. (2001) they represent the environ-

ment by a set of characteristic elements detectable by the robot sensory system,

in Wulf et al. (2004) lines and segments are used to represent the environment,

and Williams (2001) generates a short-term submap with the robot’s own local

coordinate frame using the constrained local submap filter.

Each method described above has its own advantages and disadvantages, thus

in real applications two or more methods are often used synthetically to achieve

better performance.

1.2.3 Path planning

We call path planning as calculating a feasible path without collision for a robot

between a start configuration to a given configuration in a particular environment.

Path planning is quite important in robot navigation problems, since it enables

the selection and the identification of a suitable path for robots to traverse in

the environment. The path planning algorithms can be divided into two broad

categories: global path planning and local path planning.

When the environment is completely known before the robot moves, a collision

free trajectory with lowest cost from the starting point to the target can be

obtained by global path planning algorithms, the cost can be defined to be the

travelled distance, energy expended, time exposed to danger, etc. In such cases,

the complete information can only be available in static environment, and collision

free paths are selected and planned off-line. Different kinds of approaches have

been proposed, such as cell decomposition Glavaški et al. (2009), visibility graph

Bicchi et al. (1996); Dudek & Jenkin (2010); Huang & Chung (2004), retraction

Ó’Dúnlaing & Yap (1985), Heuristic-based algorithms Dijkstra (1959); Hart et al.

(1968), genetic algorithms Ismail et al. (2008); Nearchou (1998), and projection

Schwartz & Sharir (1983) etc.

Cell decomposition is a basic path planning algorithm which divides the space

into connected regions called cells. Then find out adjacent cells that have a com-

16

1.2 State-of-the-art

Figure 1.3: Example of cell decomposition

mon boundary, therefore the path can be obtained by connecting the midpoints

of the adjacent cells and their common boundaries in order, an example is shown

in Fig. 1.3.

The visibility graph is also an efficient approach, and it has the advantage of

calculating the shortest collision-free optimal trajectory quickly and easy imple-

menting. Let us firstly give out the definition.

Definition 1.2.1. Alt & Welzl (1988) Let S = {S1, S2, ..., Sn} be a set of non-

intersecting polygonal obstacles. We denote by V = {v1, v2, ..., vm} the set of

vertices and by E = {e1, e2, ..., em} the set of edges of polygons bounding the

obstacle in S. A pair {vi, vj} of vertices in V is visible if the open line segment

joining vi and vj is either an edge in E or does not intersect the interior of any

obstacle in S, and the segment connecting them is called a visibility. To calculate

the path from the start point to the goal point, we need to add the start point

O(x(t), y(t)) and the goal point G(xf , yf) as vertices to V, that is, we consider

the visibility graph of the set V∗ := V ∪ {O(x(t), y(t)), G(xf , yf)}. The visibility

graph Gs of S is the undirected graph with V∗ as set of vertices and the visibility

as edges (see Fig. 1.4).

After the construction of visibility graph, assign each edge vivj in the Gs

a weight, such as the length of the path, then the shortest path can be easily

17

introduction/pic/cell.eps

1. INTRODUCTION

obstacle r
Robot G(xf , yf)

obstacle

obstacle

O(x(t), y(t))

Objective

S1

S2

S3

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

e1

e2

e3

e4

e5
e6

e7

e8

e9

e10
e11

e12e13

Figure 1.4: Three obstacles and the visibility graph

computed by using search methods such as Dijkstra’s algorithm Aho & Hopcroft

(1974).

Another well-known algorithm of global heuristics search is A∗ Nilsson (1980),

which can find the shortest collision free path through a fully mapped environment

by using a priority queue. D∗ search Stentz (1994) is an extension of the A∗

algorithm, and has been used in many applications Choset & Nagatani (2001). It

can modify the planned path dynamically if unknown obstacles are encountered.

When the robot has partial knowledge about the environment before it starts,

the robot has to plan the path locally with the information captured by the

sensor equipped on the robot Goto et al. (1987). The Bug1 and Bug2 algorithms

Lumelsky & Stepanov (1987) are the earliest and simplest sensor-based path

planning algorithms, based on the boundary following method. Another famous

algorithm is the artificial potential field approach (APF) proposed in Khatib

(1985). The basic idea of this approach is to fill the robot workplace with potential

fields, the attractive potential field is caused by the target to attract the robot

moving towards the target, and the repulsive potential field is caused by obstacles

to repulse the robot away from obstacles. One of the main drawbacks of APF

is the local minima when the composition of all forces on the robot is equal to

zero. Some extension algorithms based on APF have been proposed Koren &

Borenstein (1991); Latombe (1991).

When considering the path planning problem for unicycle-like mobile robots,

the physical limitations and the kinematic constraints have to be taken into ac-

count. Some algorithms have been proposed for this kind of robots Guo & Tang

(2008); Kolmanovsky & McClamroch (1995); Laumond (1998), and an algorithm

proposed in Defoort et al. (2009) describes the path planning problem as a non-

18

1.2 State-of-the-art

linear optimal problem with constraints, which guarantees the navigation of the

robot in unknown environments. An extended algorithm is proposed in Kökösy

et al. (2008) based on the Tangent Bug algorithm Kamon et al. (1996) to treat

the problem of irregular obstacles by following the obstacle boundary.

1.2.4 Motion control

After generating the desired trajectory for the mobile robot, the question that

arises is how the physical system realizes the desired movement. Generally the

robot control problem can be divided into two main problems: the trajectory

tracking problem and stabilization problem. The control problem of trajectory

tracking can also be categorized into two types: linear control and nonlinear

control. Oelen & van (1994) proposed a linear controller which is robust to the

perturbation in robot velocity control. Separated feedback loops control for robot

position and velocity was used in Chung & Harashima (2001). The kinematic

model of the robot was linearized in Pears (2001), and in which a proportional

linear control was applied. The famous PID controller was applied in Normey-

Rico et al. (2001), in which a simple linearized mobile robot model is used.

The linear control indeed has great advantages because of its simplicity in

linear control theory, while however when comparing with nonlinear control its

robustness is very limited. In linear control the initial states are often required

to stay close to the reference to ensure the stability, instead nonlinear control

is able to guarantee the stability without this kind of problems. Moveover, it

is known that the feedback stabilization at a given posture cannot be obtained

by smooth time-invariant control Campion et al. (1991), this implies that the

problem is truly nonlinear, and linear control is ineffective here. For nonlinear

non-holonomic robot systems, there are usually open loop controls where the

inputs are calculated from the reference trajectory De Wit & Sordalen (1992),

flatness based control Fliess et al. (1995) is a kind of open-loop control, whose

robustness can be strengthened Ryu & Agrawal (2008), and it is widely applied

in optimal control problems. However, it is well known that the open-loop con-

trol is not robust to disturbance and modeling errors so that it cannot guarantee

the mobile robot to move along the desired trajectory. Nonlinear feedback con-

trol for mobile robots is used in Samson & Ait-Abderrahim (1991) to solve the

trajectory tracking problem, and the dynamic feedback linearization is also used

19

1. INTRODUCTION

in D’Andréa-Novel et al. (1995). Tayebi & Rachid (1996) proposed a nonlinear

control law based on partial state feedback linearization and Lyapunov’s direct

method, but the disturbance and uncertainty were not considered in the control

design. There are also many other nonlinear control methods. Sliding mode con-

trol (Aguilar et al. (1997); Yang & Kim (1999)) is widely accepted because it is

capable of coping with uncertainties Perruquetti & Barbot (2002). Neural net-

works approaches (Liu et al. (2007); Yang et al. (1998)) is able to predict future

robot posture according to the current posture and the controls.

A model-free control approach is introduced in Fliess & Join (2008, 2009),

which approximates the system model by a simple local model with unknown

term. It exhibits robustness to the unmodeled dynamics and disturbance in the

system Fliess et al. (2011), and it has been widely studied and applied to many

electrical and mechanical processes Gédouin et al. (2008); Join et al. (2010);

Riachy et al. (2011); Villagra & Balaguer (2010).

1.3 Outline of the thesis

The outline of the thesis is shown in Fig. 1.5. Chapter 2 presents the identifi-

cation of different types of non-holonomic mobile robots. The robot models can

not be avoided in the navigation problem, because in path planning algorithms,

the physical constraints for example the velocity constraint, are expressed as

constrains on robot configuration variables Bloch (2003). As for robot control,

most of the controllers designed are based on robot models, thus the controllers

are different with different robot models. Therefore, given an unknown model

of non-holonomic mobile robot, the first task is to identify the robot kinematic

model, and then we can design the model-based controller for it. In this chapter

the robot identification problem is formulated as the identification of the switch-

ing signal of a switched singular nonlinear system, and the distinguishability of

the deduced switched singular system is discussed.

With the identified robot kinematic model in Chapter 2, the path planning

algorithm can be designed based on the known model. In Chapter 3, a new local

path planning algorithm is proposed. Obstacles are assumed as circles in most of

the local path planning algorithms, however in real situations, the environment

may be complex and normally obstacles cannot be described as circles. Moreover

20

1.3 Outline of the thesis

Robot
✲(v, ω) ✲

✲

Chapter 2

Identification
✲

Robot (2.0)

J =
∫ tf
t0

F (U(t), q(t), t)dt

st : vmax, ωmax

collision avoidance

Flatness of

the system

J =
∫ tf

t0
F (x, y, t)dt

st : g(x, y, ẋ, ẏ)

✲
xr, yr

the system

Flatness of

❄ ❄

✲

open-loop control

(v, ω)
reference

Chaptet 3: Path planning

Chapter 4
Motion control

❄

✲(v, ω)
closed-loop control

Robot ✲(x, y)

✻

qinital, qfinal

(x, y)

(a)

Solutions to optimization algorithm

in Chapter 3 exist ?

❄

YESNO

Open-loop control

(v, ω)

Robot

❄
Chapter 5

Motion planning

❄

closed-loop control

(v; ω)

✲ ✛

✻

0

(b)

Figure 1.5: Frame of the thesis

21

1. INTRODUCTION

in local planning problems, the robot can only “see” a part of an obstacle due

to the limitation of the robot sensor. Therefore the obstacles can neither be

represented as circles nor as complete obstacles. This motivates us to propose a

new algorithm to represent irregular obstacles and generate optimal trajectories

for robot without following the obstacle boundaries. The obstacles are represented

as segments, and an algorithm of choosing intermediate objectives is proposed.

The robot can reach the target and avoid obstacles by reaching the intermediate

objectives generated by the new algorithm.

In Chapter 4, an intelligent PID controller (i-PID controller) is proposed to

control the non-holonomic robot. The controller used in Chapter 3 is an open-

loop control, which is not robust to errors and noises in the system, thus the

robust i-PID controller is used to control the robot and the parameter in the

controller is discussed to achieve better performance.

Chapter 5 proposes a new potential field method for robot motion planning,

and uses the i-PID controller to track the desired velocity. The path planning

algorithm proposed in Chapter 3 is considered as an optimal control problem,

thus its efficiency largely depends on the optimization algorithm, an inefficient

optimization algorithm will result in very long computation time, and normally

the programme of optimization problem is rather complex. Moreover in some

situations, such as when the robot gets very close to obstacles, there is no solu-

tion to the optimization problem. With these disadvantages, we propose a new

motion planning method which takes into account the robot orientation and an-

gular velocity, and is able to solve local minima problems and produce smooth

repulsive force in complex environment. However as we know that the potential

field approach may not give optimal paths, thus as shown in Fig. 1.5(b) we com-

bine the two path planning methods, the robot will switch to the potential field

strategy when there is no solution to the optimization algorithm, and then switch

back to continue.

In Chapter 6 we consider the cooperation path planning between robots.

When there is more than one robot in the environment, robots can share their

detected information and the path can be planned more optimally, since a single

robot will ultimately be spatially limited. The planning algorithm also gener-

ates intermediate objectives based on visibility graph, and in order to cope with

22

1.4 Contribution

the disadvantages of visibility graph, an algorithm is proposed to generate poly-

gons from a series of jointed segments and merge polygons when two polygons

intercross. The reaching of the intermediate objectives is ensured by either opti-

mization algorithm proposed in Chapter 3 or the path planning method proposed

in Chapter 5.

1.4 Contribution

This thesis considers the autonomous navigation of non-holonomic mobile robots

in complex environment.

First, the identification of different types non-holonomic mobile robot systems

is discussed, the proposed technique for identification can be implemented in real-

time and is quite robust to the noises in the measurement.

With the identified robot kinematic model, we propose a local path planning

algorithm for non-holonomic mobile robots in unknown complex environment.

In the proposed path planning algorithm, the irregular obstacles are represented

as a series of segments, and local minima problems can be solved by choosing

intermediate objectives. The robot can reach the target by reaching the selected

intermediate objectives in order.

After having obtained the desired trajectory, an i-PID controller, which is

robust to measurement disturbance and is able to stabilize the robot at a static

point, is applied for the control of non-holonomic mobile robots. Then the pa-

rameter selection of the controller is discussed, and a selection criterion is given.

To cope with the disadvantages of optimal path planning algorithm and local

minima problems in classic potential field approach, we propose a new potential

field approach for non-holonomic mobile robot path planning, which is able to

produce smooth repulsive force in complex environment to avoid oscillations.

Then in order to improve the motion control performance, the i-PID controller

is used, and the force generated by potential field function is used as reference.

At last, we take into consideration of cooperative path planning of multi-

robots. A cooperative path planning algorithm is proposed for the navigation of

non-holonomic mobile robots based on visibility graphs. In order to use visibility

graph in local planning and to cope with the disadvantages of visibility graph,

23

1. INTRODUCTION

an algorithm for expanding obstacles is proposed to provide safe path and merge

polygons when two polygons intercross.

24

Chapter 2

Real-time identification of different

types of non-holonomic mobile

robots

2.1 Introduction

As stated in Chapter 1, the mobile robot navigation problem is of great impor-

tance, and there are considerable research efforts into solving the robot navigation

problems in different applications Latombe (1991); Salichs & Moreno (2000). The

path planning and motion control of the mobile robots are two main aspects in

the navigation problem. Many path planning algorithms have been proposed for

wheeled mobile robots Defoort et al. (2009); Guo & Tang (2008); Kökösy et al.

(2008). As for the motion control, no matter what control approach is applied,

like PID controllers Ardiyanto (2010), nonlinear feedback control approach Wan

& Chen (2008), and sliding mode control Defoort et al. (2008); Mehrjerdi & Saad

(2010), those controllers are designed based on the robot model. As a result,

the robot models can not be avoided in the robot navigation problems, and the

designed controllers are different according to different robot kinematic models

(an example of different types of robots is shown in Fig. 2.1). Thus, given an

unknown model of wheeled mobile robots, the first task is to identify the robot

kinematic model, and then we can design the model-based controller for it. Since

the kinematic model of mobile robot depends on the construction manners and

wheel configurations, which seems difficult to be identified, fortunately, by intro-

25

2. REAL-TIME IDENTIFICATION OF DIFFERENT TYPES OF
NON-HOLONOMIC MOBILE ROBOTS

Figure 2.1: Different types of robots

ducing the concepts of degree of mobility and degree of steerability, the set

of kinematic models of wheeled mobile robots can always be partitioned in five

classes (see de Wit et al. (1996) and Campion et al. (1996) for precise definition

and classification of mobile robot types).

For those different types of non-holonomic mobile robot, in this chapter we

treat the identification problem of the kinematic models as a detection of active

mode of a special switched system. A switched system is a dynamical system

that consists of a family of subsystems (linear or nonlinear) and a logical rule,

called the switching law, that orchestrates switching between these subsystems,

and here only one value is possible. In recent years, there has been increas-

ing interest in switched systems due to their significance from both theoretical

and practical points of view, and several important results for such systems have

been achieved, for example, stability Agrachev & Liberzon (2001); Vu & Liberzon

(2005), stabilization De Persis et al. (2002); Moulay et al. (2007), controllability

results Sun et al. (2002); Xie et al. (2002), and tracking Bourdais et al. (2007).

Since switched system consists of different subsystems, if we model the subsys-

tem as one of possible kinematic model of non-holonomic robots, then the robot

model identification problem becomes the identification of the subsystems of this

switched system.

26

chapter1_ident/pic/robots.eps

2.2 Robot description

✻

✲

Om ≡ M

✯

q1

q2

−→
Xm

−→
Y m

❑ q3

O
−→
X b

−→
Y b

❑

Figure 2.2: Unicycle-type mobile robot

2.2 Robot description

As stated in the introduction, by introducing the concepts of degree of mobility

and degree of steerability, the set of kinematic models of wheeled mobile robots

can be partitioned in five classes. Our research considers the first four classes.

Let us take the simple unicycle model as an example, which is depicted in Fig.

2.2, with an arbitrary inertial base frame b being fixed in the plane of motion

and a frame m being attached to the robot. For a general kinematic model, the

state is given by q = [q1, q2, q3, q4]
T , where (q1, q2) is the coordinate of its origin

Om, q3 is the orientation angle with respect to x-axis
−→
X b, q4 is the angle of the

plane of steering wheel with respect to the robot frame Ym when it exists. In the

following, the robot types are distinguished as (a.b), where a represents the degree

of mobility and b represents the degree of steerability (see de Wit et al. (1996)

and Campion et al. (1996) for precise definition). Without loss of generality, the

kinematic models under the non-holonomic constraints of pure rolling and no

slipping exists, thus they can be described as follows:

Type (2.0)

Σ1







q̇1 = ν1 cos q3

q̇2 = ν1 sin q3

q̇3 = ν2

(2.1)

where the control input is ν = [ν1, ν2]
T with ν1 and ν2 being linear and angular

velocity respectively.

27

2. REAL-TIME IDENTIFICATION OF DIFFERENT TYPES OF
NON-HOLONOMIC MOBILE ROBOTS

Type (3.0)

Σ2







q̇1 = ν1 cos q3 − ν2 sin q3

q̇2 = ν1 sin q3 + ν2 cos q3

q̇3 = ν3

(2.2)

where the control is ν = [ν1, ν2, ν3]
T with ν1 and ν2 being the robot velocity

components along Xm and Ym respectively, and ν3 is the angular velocity.

Type (2.1)

Σ3















q̇1 = −ν1 sin(q3 + q4)
q̇2 = ν1 cos(q3 + q4)
q̇3 = ν2

q̇4 = ν3

(2.3)

where ν3 is the angular velocity of the steering wheel, ν1, ν2 are defined as those

of type (2.0) robot. The control input of this system is defined as that of type

(3.0) robot.

Type (1.1)

Σ4















q̇1 = −Lν1 sin q3 sin q4

q̇2 = Lν1 cos q3 sin q4

q̇3 = ν1 cos q4

q̇4 = ν2

(2.4)

where L is half of the distance between the two fixed wheels, and the input is

ν = [ν1, ν2]
T with ν1 being the linear velocity and ν2 being the angular velocity

of the steering wheel.

Note 2.2.1. Let us note that a last class exists (Type (1.2)), if the first four

robot kinematic models can be identified, then one can know that the unidentified

model is the fifth model (Type (1.2)).

2.3 Determination of input-output equations

2.3.1 Coordinate transformation

As stated above, the robot kinematic models are sets of ordinary differential

equations (ODE), our objective is to identify which ODE is active. For each

pair of the ODEs, they are distinguishable if for any non trivial input these two

systems produce different outputs. In this chapter, it is assumed that one can

only measure the position of the robot, i.e. the outputs of the studied system are

q1 and q2. Then it is necessary to study input-output equations of the systems to

28

2.3 Determination of input-output equations

study the distinguishability of the subsystems. In order to facilitate the analysis,

let us consider the following change of coordinates

{

Z = q1 + jq2

Θ = ejq3
(2.5)

where j represents the imaginary unit (j2 = −1). Applying the change of coor-

dinates to systems (2.1) - (2.4), one can obtain a switched singular system of the

following general form:
{

Eσ(t)ẋ = Gσ(t)(x)u
Y = Cx

(2.6)

where x = [Z, Θ, q4]
T is the system state, u = [ν1, ν2, ν3]

T is the input, Y is the

output with C = [1, 0, 0]. The switching function is defined as

σ(t) : R+ → I, I , {1, 2, 3, 4}

and for different subsystems, one has

E1 = E2 =





1 0 0
0 1 0
0 0 0



 , E3 = E4 =





1 0 0
0 1 0
0 0 1





G1(x) =





Θ 0 0
0 jΘ 0
0 0 0



 , G3(x) =





jΘejq4 0 0
0 jΘ 0
0 0 1





G2(x) =





Θ jΘ 0
0 0 jΘ
0 0 0



 , G4(x) =





jLΘ sin q4 0 0
jΘ cos q4 0 0

0 1 0





It is well known that for a singular system (switched or not), the output

may be not differentiable due to the existence of the singular matrix (Eσ(t) in

system (2.6)). However, since system (2.6) possesses special structure, i.e. C =

CEσ(t) and Gσ(t)(x) = Gσ(t)(Eσ(t)x), thus the output of this system is successively

differentiable, i.e. Y ∈ C∞.

2.3.2 Input-output equations

Now the problem formulated here becomes the real time computation of the

switching signal σ(t) to identify the subsystems of (2.6). Since one can identify the

29

2. REAL-TIME IDENTIFICATION OF DIFFERENT TYPES OF
NON-HOLONOMIC MOBILE ROBOTS

switching signal σ(t) by using the input and the output of the system, it is clear

that one needs to deduce some input-output representations of each subsystem.

One can notice that system (2.6) is defined in complex domain, and we need to

take complex transforms, thus let us firstly give some necessary definitions.

For a given scalar complex function of x ∈ Cn, one can note it as z(x) =

a(x) + jb(x), where z : Cn → C, a : Cn → R, b : Cn → R, the partial derivative

of z with respect to x is defined as ∂z
∂x

= ∂a
∂x

+ j ∂b
∂x

. If the matrix ∂(z,ż,...,z(n))
∂x

has

row rank r in complex domain, then we note as rankC

∂(z,ż,...,z(n))
∂x

= r. Then we

have the following theorem on input-output equations.

Theorem 2.3.1. Given switched singular system of the form (2.6), where x ∈
Cn, u ∈ Rm, Eσ(t) ∈ Rn×n, Gσ(t) ∈ Cn×m, C ∈ C1×n with C = CEσ(t) and

Gσ(t)(x) = Gσ(t)(Eσ(t)x), if

rankC

∂(Y, Ẏ , ..., Y (lσ(t)−1))

∂x
= rankC

∂(Y, Ẏ , ..., Y (lσ(t)))

∂x

then there exists an input-output representation of each subsystem of (2.6), and

this input-output function can be obtained by taking lthσ(t) derivative of the output

Y .

Proof. The proof of this theorem is based on Conte et al. (1999), which proves

the existence of the input-output functions of the regular nonlinear systems.

For system (2.6), if

rankC

∂(Y, Ẏ , ..., Y (lσ(t)−1))

∂x
= rankC

∂(Y, Ẏ , ..., Y (lσ(t)))

∂x

one can conclude that

∂Y (lσ(t))

∂x
∈ spanC

{

∂Y

∂x
,
∂Ẏ

∂x
, ...,

∂Y (lσ(t)−1)

∂x

}

thus the vector S = (Y, Ẏ , ..., Y lσ(t)−1) satisfies the relation

rankC

∂S

∂x
= lσ(t)

In this case, there exist analytic functions p1(x), ..., pn−lσ(t)
(x) such that the

30

2.3 Determination of input-output equations

matrix

J =
∂(S, p1, p2, ..., pn−lσ(t)

)

∂x

has full rank. Then one has the system of equations



















































x̃1 = CEσ(t)x

x̃2 = CEσ(t)ẋ = CGσ(t)(Eσ(t)x)u

.

.

.

x̃lσ(t)
= (CEσ(t)x)(lσ(t)−1) = h(Eσ(t)x, u, ..., u(lσ(t)−1))

x̃σ(t)+k = pk(Eσ(t)x, u, ..., u(γ)), k = 1, 2, ..., n− lσ(t)

(2.7)

It can be concluded that (2.7) is of the form Fk(Eσ(t)x, x̃, u, ..., u(γ)) = 0, k =

1, 2, ..., n with
∂(F1, F2, ..., Fn)

∂x
= J

Therefore there exist n functions

φk(x̃, u, ..., u(γ)) = xk for 1 ≤ k ≤ n

which defines a local diffeomorphism φ parameterized by u, u̇, ..., u(γ):

x = φ(x̃) (2.8)

Applying the change of coordinates induced by (2.8), the system (2.6) be-

comes:


























































˙̃x1 = x̃2

˙̃x2 = x̃3

.

.

.
˙̃xlσ(t)

= h(lσ(t))(φ(x̃), u, ..., u(γ))
˙̃xlσ(t)+k = pk(φ(x̃), u, ..., u(γ)) k = 1, 2, ..., n− lσ(t)

Y = x̃1

(2.9)

31

2. REAL-TIME IDENTIFICATION OF DIFFERENT TYPES OF
NON-HOLONOMIC MOBILE ROBOTS

Since we notice that
Y = x̃1

Ẏ = x̃2

.

.

.

Y (lσ(t)−1) = x̃lσ(t)

thus the input-output functions can be obtained from (2.9) as follows:

Y lσ(t) = h(lσ(t))(φ(Y, Ẏ , ..., Y (lσ(t)−1)), u, ..., u(γ)) (2.10)

From Theorem 2.3.1 one can conclude that there always exist input-output

equations for each subsystem of (2.6), and the input-output equations can be

obtained by taking 2nd order derivative of the output Y . Taking the subsystem

σ(t) = 1 as an example, since Y = Z, then one has

Ẏ = Ż = ν1Θ (2.11)

and

Ÿ = ν̇1Θ + ν1Θ̇ = (ν̇1 + jν1ν2)Θ (2.12)

which leads to
∂(Y, Ẏ)

∂x
=

(

1 0 0
0 ν1 0

)

and

∂(Y, Ẏ , Ÿ)

∂x
=





1 0 0
0 ν1 0
0 ν̇1 + jν1ν2 0





One can see that, in the real field, rankR

∂(Y,Ẏ)
∂x

= 2 and rankR

∂(Y,Ẏ ,Ÿ)
∂x

= 3.

However, in the complex field, one has rankC

∂(Y,Ẏ)
∂x

= rankC

∂(Y,Ẏ ,Ÿ)
∂x

= 2, thus

the condition of Theorem 2.3.1 is satisfied, and the input-output equation can be

calculated with the 2nd order derivative of Y . An easy calculation via equation

(2.11) and (2.12) yields the following input-output equation:

Ÿ =
ν̇1

ν1
Ẏ + jν2Ẏ (2.13)

32

2.4 Distinguishability

Analogously, one can obtain input-output equations for other subsystems.

When σ(t) = 2, one obtains

Ÿ =
ν̇1 + jν̇2

ν1 + jν2
Ẏ + jν3Ẏ (2.14)

For σ(t) = 3, one has

Ÿ =
ν̇1

ν1
Ẏ + j(ν2 + ν3)Ẏ (2.15)

and if σ(t) = 4, the input-output equation is of the following form

Ÿ =
ν̇1

ν1
Ẏ − ν2L cos(arg Ẏ)d(arg Ẏ)

dt

Re(Ẏ)
Ẏ + j

d(arg Ẏ)

dt
Ẏ (2.16)

where Re(Ẏ) and arg Ẏ are the real part and the argument of the complex number

Ẏ respectively, and Ḟ = d(F)
dt

represents the differentiation of function F with

respect to t.

2.4 Distinguishability

2.4.1 Distinguishability of input-output equations

Once the input-output equations are obtained, one can use them to analyze the

distinguishability of the subsystems. Let us firstly recall the definition of the

distinguishability.

Definition 2.4.1. Fliess et al. (2008a) The two subsystems are said to be strongly

distinguishable if, and only if, the subsystems have the same input-output behavior

only when U = [0 0 0] and Y = 0. If not, the two subsystems are said to be

weekly distinguishable.

It is clear that the subsystems of (2.6) are distinguishable with non trivial

inputs, thus the problem consists in seeking the peculiar inputs that produce the

same output for the subsystems, in which cases the subsystems are not distin-

guishable.

Theorem 2.4.1. The subsystems of (2.6) can be distinguished, if and only if the

input ν1 6= 0, ν2 6= 0 and ν3 6= 0.

33

2. REAL-TIME IDENTIFICATION OF DIFFERENT TYPES OF
NON-HOLONOMIC MOBILE ROBOTS

Proof. Firstly let us prove the sufficiency. For the input-output equations (equa-

tion (2.13) - (2.16)) of subsystems of system (2.6), let us denote Ii as the ith

input-output equation, where i ∈ [1, 2, 3, 4]. If the four equations have the same

form, i.e. Ii = Ij, i, j ∈ [1, 4], and i 6= j, then we can obtain that ν1 = ν2 = ν3 = 0.

Thus one can see that if ν1 6= 0, ν2 6= 0 and ν3 6= 0, there is no input-output

equation that has both the same real part and imaginary part as another input-

output equation, therefore the input-output equations are of the different form,

and we can conclude that these subsystems are distinguishable if ν1 6= 0, ν2 6= 0

and ν3 6= 0.

Then let us prove the necessity. Firstly one can notice that if the subsys-

tems are distinguishable, we must have ν1 6= 0, since the input-output equations

((2.13),(2.15) and (2.16)) can not be calculated when ν1 6= 0. Now let us consider

each pair of the subsystems.

If subsystems σ(t) = 1 and σ(t) = 2 are distinguishable, the equations (2.13)

and (2.14) must be different, the two equations are of the same form if and only

if ν2 = 0 and ν3 = 0. Thus if the two subsystems are distinguishable, we have

ν2 6= 0 and ν3 6= 0.

For subsystems σ(t) = 1 and σ(t) = 3, (2.13) and (2.15) are of the same form

if and only if ν3 6= 0. Thus we have ν3 6= 0, if subsystems σ(t) = 1 and σ(t) = 3

are distinguishable.

Analogously for subsystems σ(t) = 2 and σ(t) = 3, we have ν2 6= 0, if equation

(2.14) and (2.15) are dinstinguishable.

For subsystems σ(t) = 1 and σ(t) = 4, the equations are of the same form

if and only if when ν2 = d(arg Ẏ)
dt

and ν2 = 0 or cos(arg Ẏ) = 0 or d(arg Ẏ)
dt

= 0.

However cos(arg Ẏ) is determined by the inputs and varies during the control

process, thus we can conclude that the two equations are of the same form if and

only if ν2 = d(arg Ẏ)
dt

= 0. Consequently, we have ν2 6= 0, if subsystems σ(t) = 1

and σ(t) = 4 are distinguishable.

As for subsystems σ(t) = 2 and σ(t) = 4, equations (2.14) and (2.16) are of

the same form if and only if ν2 = ν3 = d(arg Ẏ)
dt

= 0, thus we have ν2 6= 0 or ν3 6= 0

if subsystems σ(t) = 2 and σ(t) = 4 are distinguishable.

Analogously for subsystems σ(t) = 3 and σ(t) = 4, equations (2.15) and (2.16)

are of the same form if and only if when ν2 = ν3 = d(arg Ẏ)
dt

= 0, thus we have

ν2 6= 0 or ν3 6= 0 if subsystems σ(t) = 3 and σ(t) = 4 are distinguishable.

In summary, we have ν1 6= 0, ν2 6= 0 and ν3 6= 0, if the subsystems are

distinguishable.

34

2.4 Distinguishability

Once the input-output equations are distinguishable, then one can use those

equations to identify the switching signal, which will be detailed in the following.

2.4.2 Calculation of residuals

After having obtained the distinguishable input-output equation for each subsys-

tem of (2.6), let us define the residual associated to the subsystem as follows:

Ri(t) =























Ÿ − ν̇1

ν1
Ẏ − jν2Ẏ , i = 1

Ÿ − ν̇1+jν̇2

ν1+jν2
Ẏ − jν3Ẏ , i = 2

Ÿ − ν̇1

ν1
Ẏ − j(ν2 + ν3)Ẏ , i = 3

Ÿ − ν̇1

ν1
Ẏ +

ν2L cos(arg Ẏ)d(arg Ẏ)
dt

Re(Ẏ)
Ẏ − j d(arg Ẏ)

dt
Ẏ , i = 4

It is clear that the current ith subsystem is active if Ri(t) = 0. Since the residuals

are complex numbers, the corresponding σ(t) can be identified, if both the real

part and the imaginary part of Ri(t) converge to zero within a short time period,

thus

σ(t) = i, if

∫

TR

|Ri(t)|dt = 0, i ∈ I (2.17)

where TR is a freely chosen but very short residual judging window.

It should be noted that the judging rule (2.17) is valid only for the case where

one can precisely measure the input, the output and their derivatives. However,

for the case where the input or the output are corrupted with noises, or the

derivatives of the input and the output are not known (in this case one need to

calculate them by some additional techniques), the calculated residuals do not

exactly equal to 0 within the time window TR, then the judging rule (2.17) can

be replaced by the following one:

σ(t) = arg min
i∈I

∫

TR

|Ri(t)|dt (2.18)

In this case, the problem is then reduced to a real-time computation of time

derivative of the input and the output of the studied system despite of noises,

which makes the calculation of the derivative become a crucial issue.

35

2. REAL-TIME IDENTIFICATION OF DIFFERENT TYPES OF
NON-HOLONOMIC MOBILE ROBOTS

2.4.3 Numerical differentiation

The numerical differentiation technique presented here was proposed by Fliess et

al. in Sira-Ramirez & Fliess (2006), and more details can be found in Fliess et al.

(2008b); Liu et al. (2011); Mboup et al. (2009) and references therein.

Consider a signal y(t) =
∞
∑

k=0

y(k)(0) tk

k!
which is assumed to be analytic around

t = 0 and its truncated Taylor expansion yN(t) =
N
∑

k=0

y(k)(0) tk

k!
, where t > 0. Its

Laplace transform is of the form:

YN(s) =

N
∑

k=0

y(k)(0)

sk+1
(2.19)

Introducing the algebraic derivation d
ds

, and multiply both sides of equation

(2.19) by dα

dsα sN , α = 0, 1, ..., N , one has a triangular system of linear equations

and from which the derivatives can be obtained:

dαsNYN

dsα
=

dα

dsα
(

N
∑

k=0

y(k)(0)sN−k−1) (2.20)

which is independent of all the unknown initial conditions, and the coefficients

y(0), ..., y(k)(0) are linearly identifiable Fliess & Sira-Ramírez (2003), then y(k)(0)

can be obtained by taking inverse laplace transform of (2.20) over a time window

T .

It is worth noting that the algebraic technique stated here is robust with

respect to noises involved into the control inputs and outputs Fliess et al. (2008b).

Noises are viewed here as highly fluctuations around 0, therefore they can be

attenuated by low-pass filters, as iterated integrals with respect to time Fliess

et al. (2004). Moreover this algebraic technique has other advantages: it is of

non-asymptotic nature, the desired estimation can be obtained instantaneously; it

provides explicit formulae, which can be implemented directly; it does not require

any assumption concerning the statistical distribution of the unstructured noise.

In practice, this algebraic technique is implemented with discrete measured

data, thus it is necessary that the sampling time Ts should be small enough

with respect to the duration time between two successive switchings∗ Liu et al.

∗In practice it is at least 100 times smaller, thus the Zeno phenomenon are excluded

36

2.5 Simulation results

(2011); Mboup et al. (2009). Moreover in Liu et al. (2011) some other analysis

are discussed for several classes of noises.

2.5 Simulation results

Usually the model of the robot will not change, thus σ(t) is fixed for t > 0.

However since we assume that the robot type is unknown, thus σ(t) depends

on different types of robots. In order to show the feasibility of the proposed

method, it is assume that σ(t) is a time-varying signal. In the previous section

we have discussed the condition of the distinguishability, thus one can choose

v = [1.5, 1.3, 0.5]T to avoid indistinguishable cases. For the simulation settings,

the sampling time of numerical differentiator is Ts = 0.005 s, the sliding time

window is T = 0.5 s and the residual judging window is TR = T = 0.5 s. The

switching signal σ(t) is shown in Fig. 2.3, and the output of the switching system

is shown in Fig. 2.4.

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (s)

Sigma(t)

Figure 2.3: Switching signal σ(t)

The first scenario supposes that the output and the differentiation of the

output can be directly obtained without noises, and the simulation results are

37

chapter1_ident/pic/sigma.eps

2. REAL-TIME IDENTIFICATION OF DIFFERENT TYPES OF
NON-HOLONOMIC MOBILE ROBOTS

0 5 10 15 20
−8

−6

−4

−2

0

2

time (s)

Output x
Output y

Figure 2.4: Output of the system

shown in Fig. 2.5 and Fig. 2.6. In this case, the switching signal is identified

by
∫

TR
|Ri(t)|dt = 0 and one can see that the identification of the active mode is

perfect.

The second scenario assumes that the differentiation of the outputs is not

directly known but without noises, and the 1st and 2nd order derivatives of the

outputs are calculated by numerical differentiator presented in section 2.4.3. Sim-

ulation results are shown in Fig. 2.7 and Fig. 2.8 with the same input and

output as the former simulation. One can see that the residuals do not equal

to 0 because of the calculation errors, and the switching signal is identified by

σ(t) = arg min
i∈I

∫

TR
|Ri(t)|dt. One can also notice that there exists a short inter-

val where σ(t) can not be identified, and this is due to the fact that we use the

numerical differentiator and the integral of Ri over the residual judging window

TR, so this non identifiable interval is equal to T and can be reduced by reducing

the time window T and residual judging window TR.

The final scenario is similar to the second scenario, but supposes that there are

noises (as shown in Fig. 2.9 and Fig. 2.10) adding to the output measurement,

shown in Fig. 2.11. The simulation results are depicted in Fig. 2.12 and Fig.

2.13 with the white Gaussian noise of SNR = 50dB (signal-to-noise ratio), and

38

chapter1_ident/pic/output.eps

2.5 Simulation results

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

time (s)

R

1
(t)

R
2
(t)

R
3
(t)

R
4
(t)

Figure 2.5: Residuals when the differentiations can be obtained directly

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (s)

Sigma(t)

Figure 2.6: Switching signal σ(t) identified when the differentiations can be ob-
tained directly

39

chapter1_ident/pic/Ri_known.eps
chapter1_ident/pic/sigma_known.eps

2. REAL-TIME IDENTIFICATION OF DIFFERENT TYPES OF
NON-HOLONOMIC MOBILE ROBOTS

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

time (s)

R

1
(t)

R
2
(t)

R
3
(t)

R
4
(t)

Figure 2.7: Residuals when the differentiations are not known and calculated by
the numerical differentiator

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (s)

Sigma(t)

Figure 2.8: Switching signal σ(t) identified when the differentiations are not
known and calculated by the numerical differentiator

40

chapter1_ident/pic/Ri_unknown.eps
chapter1_ident/pic/sigma_unknown.eps

2.6 Conclusion

the identified switching signal σ(t) is the same as previous simulations. One can

conclude from the results that the proposed method is robust to the noises, and

the subsystems can be identified quickly in real time by using the judging rule:

σ(t) = arg min
i∈I

∫

TR
|Ri(t)|dt.

0 5 10 15 20
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

Noise in x

Figure 2.9: Noise imposed in x direction

2.6 Conclusion

The identification of non-holonomic mobile robot systems is discussed in this

chapter, the problem is formulated as the identification of the switching signal of

a switched singular nonlinear system, and the distinguishability of the deduced

switched singular system is studied. The proposed technique can be implemented

in real-time and it is quite robust to the noises in the measurement. The good

performance of the technique was validated by several simulations.

41

chapter1_ident/pic/x_noise.eps

2. REAL-TIME IDENTIFICATION OF DIFFERENT TYPES OF
NON-HOLONOMIC MOBILE ROBOTS

0 5 10 15 20
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

time (s)

Noise in y

Figure 2.10: Noise imposed in y direction

0 5 10 15 20
−8

−6

−4

−2

0

2

time (s)

Output x with noise
Output y with noise

Figure 2.11: output with noise

42

chapter1_ident/pic/y_noise.eps
chapter1_ident/pic/output_noise.eps

2.6 Conclusion

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

time (s)

R

1
(t)

R
2
(t)

R
3
(t)

R
4
(t)

Figure 2.12: Residuals with white noise SNR=50dB

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (s)

Sigma(t)

Figure 2.13: Switching signal σ(t) identified with white noise SNR=50dB

43

chapter1_ident/pic/Ri_n50.eps
chapter1_ident/pic/sigma_n50.eps

2. REAL-TIME IDENTIFICATION OF DIFFERENT TYPES OF
NON-HOLONOMIC MOBILE ROBOTS

44

Chapter 3

Real-time local path planning for

non-holonomic mobile robots

3.1 Introduction

Path planning is quite important since it enables the selection and the identifica-

tion of a suitable path for robots to traverse in the environments.

When considering the path planning problem for unicycle-like mobile robots,

the physical limitations and the kinematic constraints have to be taken into ac-

count. Previous work Defoort et al. (2009) describes the path planning problem as

a nonlinear optimal problem with constraints, which guarantees the navigation of

the robot in unknown environments. However, it simply represents the obstacles

by circles, and there are at least two drawbacks for these algorithms: firstly only

the circular obstacles are taken into account, and secondly local minima cannot

be avoided when robots getting closed to the complex obstacles. Therefore, this

algorithm is not suitable for a complex environment with different shapes of ob-

stacles. An extended algorithm is proposed in Kökösy et al. (2008) based on the

Tangent Bug algorithm Kamon et al. (1996) to treat this problem by following

the boundaries of obstacles, which however involves unnecessary detours along

the obstacle boundaries and leads to non optimal trajectories.

In this chapter, the irregular contours of obstacles are represented by segments.

The path planning problem for unicycle-like mobile robots is described as an

optimal control problem by involving all physical constraints. Local minima are

avoided by choosing intermediate objectives based on the real-time environment.

45

3. REAL-TIME LOCAL PATH PLANNING FOR
NON-HOLONOMIC MOBILE ROBOTS

Figure 3.1: Description of the environment

3.2 Path planning: an optimal control point of

view

3.2.1 Problem statement

In general cases, the environment may be complex and normally obstacles cannot

be described as circles, as assumed in Defoort et al. (2009) (see Fig. 3.1 for

example). Moreover, due to the distance limitation of sensors equipped on robots,

only a portion of an obstacle can be captured, so that the robot may not know

the exact shape of the obstacle. In this case, obstacles can neither be described

as circles nor be described as complete polygons.

As a result, our goal is to represent obstacles in a more accurate way, and to

propose an efficient path planning algorithm which guarantees the safe navigation

of robot from a known initial position to a desired target in unknown environments

while satisfying the physical constraints of the robot.

3.2.2 Mobile robot model

As stated in Chapter 2, the path planning algorithms for non-holonomic mobile

robots are based on robot kinematic models. Since we consider the robot path

46

chapter2_plan/pic/environment.eps

3.2 Path planning: an optimal control point of view

planning as an optimal control problem with constraints, we need to choose flat

outputs such that all the system states can be expressed by the flat outputs

and their successive time derivatives, thus the constraints of the robot can be

considered as the constraints of the flat outputs, and the optimal control problem

of the robot can be considered as an optimal problem of the flat outputs, which

is described in the following sections. The flat outputs are different for different

robot models, once the the robot model is identified, the flat outputs can be

decided.

This chapter considers the type (2.0) robot, let us firstly recall the type (2.0)

robot kinematic model:






ẋ = υ cos θ
ẏ = υ sin θ

θ̇ = ω
(3.1)

where υ and ω are the linear and angular velocity respectively, θ is the orientation

of the robot body with respect to x-axis, U = [υ, ω]T is the control inputs, and

q = [x, y, θ]T is the system state (see Fig. 2.2).

3.2.3 Optimal control problem

3.2.3.1 Nonlinear optimization problem formulation

As mentioned before, the path planning problem for mobile robots with physical

constraints can be formulated as an optimal control problem. Generally speaking,

it is to find the optimal control U = [v, ω] for system (3.1) and to minimize the

following cost function:

J =

∫ tf

t0

F (U(t), q(t), t) dt (3.2)

where t0 and tf are the initial time and the final time respectively, U = [v, ω]

and q = [x, y, θ]. F is a function of U and q which defines the cost function to

be minimized. F can be chosen in advance, and can take several different forms.

For example, when F = 1, i.e. to minimize the time tf − t0, it implies that the

robot reaches the target as fast as possible. In this chapter the cost function is

chosen as follows to guarantee the robot moving towards the objective:

F = ((x(t)− xf)
2 + (y(t)− yf)

2) (3.3)

47

3. REAL-TIME LOCAL PATH PLANNING FOR
NON-HOLONOMIC MOBILE ROBOTS

where (xf , yf) is the desired final position.

Moreover, the expected optimal control and the resulting states should satisfy

the following physical constraints:

C1 : the constraint on optimal control and state, i.e. the optimal control U and

the states q should satisfy the kinematic model (3.1) for t ∈ [t0, tf].

C2 : the constraint on initial and final conditions, i.e.

q(t0) = q(0), q(tf) = qfinal

C3 : the constraint on boundedness of control, i.e.

| υ | ≤ υmax and | ω | ≤ ωmax

C4 : the constraint on collision avoidance, i.e.

d(O, R) ≥ r

where d(O, R) is the distance between the robot and any obstacle, and r is

the given distance which guarantees the obstacle avoidance criterion.

3.2.3.2 Receding horizon planner

When the map is large, or is partially known, it is impossible to solve the above

optimal control problem to obtain the whole optimal trajectory. In order to avoid

this problem, the receding horizon planner Mayne & Michalska (1990) can be used

to compute only a part of the trajectory from the current position to the final one

over a time interval [τk, τk + Tc], where Tc is the update period, and 0 < Tc < Tp,

where Tp is the trajectory planning horizon.

As shown in Fig. 3.2, the robot only computes a trajectory of horizon Tp and

updates at each step τk = τinitial + kTc.

In order to simplify the optimal problem described above, we introduce as

well the following two elements: the flatness properties of the systems and pa-

rameterized trajectory, proposed in Defoort et al. (2009).

48

3.2 Path planning: an optimal control point of view

✻

✲✛

✲✛

✲

Tp

Tc

Predicted Trajectory

Real Trajectory

x

y

τk τk+1

Figure 3.2: Planning and update horizons

3.2.3.3 Determination of the flat outputs

Definition 3.2.1. Fliess et al. (1995) Let a system be described by the nonlinear

equation q̇ = f(q, U), where q ∈ Rn and U ∈ Rm. This system is differentially

flat if there exists a vector z = [z1, ..., zm]T ∈ Rm called flat output, such that the

state variable q and the input U can be expressed by the flat output and a finite

number of its derivatives.

For the robot describe by equation (3.1), by choosing vector z = [x, y]T , it

can be shown that x, y are the flat outputs for the studied system. Indeed, θ, υ

and ω can all be expressed by x, y and their first and second-order derivatives:







θ = arctan ẏ

ẋ

υ =
√

ẋ2 + ẏ2

ω = ÿẋ−ẍẏ

ẋ2+ẏ2

(3.4)

Then the optimal control problem (3.2) with constraints is mapped into the flat

output space, and one only needs to optimize x and y to obtain the optimal values

of θ, υ and ω.

Remark 3.2.1. Let us mention that all non-degenerate mobile robots (see Cam-

pion et al. (1996)) are flat de Wit et al. (2001). Thus the proposed method works

for all non-degenerate mobile robots. For example, mobile robot of type (1.1)

described by equation (2.4) is flat, with the flat output being z = [q1, q2]
T .

49

3. REAL-TIME LOCAL PATH PLANNING FOR
NON-HOLONOMIC MOBILE ROBOTS

3.2.3.4 Parameterized trajectory

In order to transform the optimal trajectory generation problem into a nonlinear

parameter optimization problem, the trajectory of the robot can be approximated

by finite dimensional curves, which can be expressed as a function of t as follows:















x(t) =
N
∑

i=0

ciBi(t)

y(t) =
N
∑

i=0

diBi(t)

(3.5)

where t ∈ [0, Tp], Tp is the planning period, ci, di ∈ R are the coefficients, and

B1, B2, ...BN are sequences of N functions of t used to approximate x(t) and y(t),

which can take different forms.

A finite order polynomial Bi(t) = ti would be necessary to satisfy the con-

straints as in Guo & Tang (2008), and the simplicity of the polynomial is beneficial

in many aspects.

A solution of B-spline functions can also be applied Defoort et al. (2009),

when

Bi,0(t) =

{

1 if nodi ≤ t < nodi+1,
0 otherwise.

Bi,d(t) =
t− nodi

nodi+d+2 − nodi

Bi,d−1(t) +
nodi+d+1 − t

nodi+d+1 − nodi+1

Bi+1,d−1(t)

where d is the order of the B-spline function, and nodi is the control knots divided

over the time interval [τk, τk + Tp]. B-spline is very efficient for curve approxi-

mation in terms of both approximation quality and computational time, and it

features interesting properties such as continuity, robustness and flexibility Dela-

haye et al. (2010). A comprehensive list of B-spline properties can be found in

De Boor (2001).

There are also other methods for trajectory representation, a comparison can

be found in Sillito & Fisher (2009).

The optimal coefficients ci and di can be numerically found using the con-

strained feasible sequential quadratic optimization algorithm Lawrence et al. (94),

then the open loop control U = [υ, ω]T is deduced by using equation (3.4).

50

3.3 Path planning algorithm with intermediate objectives

Figure 3.3: Approximation of obstacles with complex shape

3.3 Path planning algorithm with intermediate ob-

jectives

3.3.1 Representation of obstacles

In real situations, as stated in section 3.2.1, the obstacles can be described neither

as circles nor as complete polygons.

Since a robot can only see a portion of an obstacle contour, as shown in Fig

3.3, the visible portion of the ith obstacle contour can be approximated by a

succession of segments Sj
i , where j = 1, 2, ..., q, and q is the number of segments

on an obstacle. Each segment is represented by its two end points pj
i and pj+1

i ,

and each point has their coordinates (x
p

j
i
, y

p
j
i
) and (x

p
j+1
i

, y
p

j+1
i

) respectively. The

functions of the segments of obstacle contours can be obtained by applying the

image processing algorithms Graham (1972), which is beyond the scope of our

discussion. Thus, we assume that the irregular obstacles are represented by a

serial of segments.

Remark 3.3.1. If the distance between two obstacles dobs < 2r, where r is the

given distance which guarantees the obstacle avoidance criterion, then we can

51

chapter2_plan/pic/polygonobs.eps

3. REAL-TIME LOCAL PATH PLANNING FOR
NON-HOLONOMIC MOBILE ROBOTS

①①

①

①

①

S
j
i p

j+1
i (xj+1

i , y
j+1
i)p

j
i (x

j
i , y

j
i)

O0

O1

O2

R0
R2

R1

Figure 3.4: The three cases for distance calculation

consider the two obstacles as one obstacle, since the robot can not pass through

the space between the two obstacles.

3.3.2 Distance between robot and segments

Since obstacles are represented by segments, the obstacle avoidance constraint

C4 in the optimal control problem (3.2) becomes the distance constraint between

the robot and segments.

Denote O(xo, yo) the robot position, pj
i (x

j
i , y

j
i), pj+1

i (xj+1
i , yj+1

i) the two end

points of segment Sj
i . Then one can define the distances between those points:

d(O, pj
i) =

√

(xo − xj
i)

2 + (yo − yj
i)

2

d(O, pj+1
i) =

√

(xo − xj+1
i)2 + (yo − yj+1

i)2

d(pj
i , p

j+1
i) =

√

(xj
i − xj+1

i)2 + (yj
i − yj+1

i)2

Thus, the distance between the robot and the segment Sj
i , noted as d(O, Sj

i),

can be calculated according to the relative position of the robot and the segment.

There are three possible cases (see O0, O1, O2 in Fig. 3.4) :

Case 1. d(O, pj+1
i)2 > d(O, pj

i)
2 + d(pj

i , p
j+1
i)2. In this case the robot locates in

the left region R0 of Sj
i . It is easy to see that d(O, Sj

i) = d(O, pj
i), which is the

red dotted line in R0.

52

3.3 Path planning algorithm with intermediate objectives

Case 2. d(O, pj
i)

2 > d(O, pj+1
i)2 + d(pj

i , p
j+1
i)2. In this case the robot locates in

the right region R2 of Sj
i . It is obvious that d(O, Sj

i) = d(O, pj+1
i), which is the

red dotted line in R2.

Case 3. If not in case 1 and case 2, the robot will be in region R1. The dis-

tance between the robot and the segment d(O, Sj
i) can be obtained by simply using

Heron’s formula. A straightforward computation yields:

d(O, Sj
i) = 2

√

M(M − d(O, pj
i))(M − d(O, pj+1

i))(M − d(pj
i , p

j+1
i))

d(pj
i , p

j+1
i)

where M =
d(O,p

j
i)+d(O,p

j+1
i)+d(pj

i ,p
j+1
i)

2
. See the red dotted line in R1.

Summary, the distance between the robot and segment Sj
i is determined by

the following equation:

d(O, Sj
i) =











d(O, pj
i), case 1

d(O, pj+1
i), case 2

2

√
M(M−d(O,p

j
i
))(M−d(O,p

j+1
i

))(M−d(pj
i
,p

j+1
i

))

d(pj
i ,p

j+1
i)

, case 3

One can notice that d(O, Sj
i) is not differentiable at the points between the pieces,

but it is piecewise differentiable, therefore it will not introduce problems to the

optimal control problem.

However, it will be explained in the next section that this algorithm of using

segments to represent obstacles suffers from local minima problems.

3.3.3 Local minima

It is worth noting that using of segments to represent the obstacle contour in-

evitably involves the local minima problems. This phenomenon happens when

the robot arrives a point where the distance between the robot and the objective

is minimum under the constraint of obstacle avoidance.

As shown in Fig. 3.5, S1
i , S2

i and S3
i are segment obstacles, the robot gets

to the local minima point O(x, y), r is the obstacle avoidance criterion. The

robot needs to go left or right to avoid the segment obstacles, however, no matter

the robot moves to left side or right side of point O(x, y), the cost function

53

3. REAL-TIME LOCAL PATH PLANNING FOR
NON-HOLONOMIC MOBILE ROBOTS

✉

✉S1
i

S2
i

S3
i

❯

❑

❯

❑

d(O, G) = min((x(t)− xf)2 + (y(t)− yf)2)

Objective

G(xf , yf)

Robot
O(x, y)

r

p1
i

p2
i

p3
i

p4
i

Figure 3.5: Local Minima

((x(t) − xf)
2 + (y(t) − yf)

2) in optimization problem (3.2) will become larger,

thus the robot will stop at this point.

3.3.4 Avoidance of local minima by choosing intermediate

objectives

This local minima problem cannot be avoided by the optimal path planning

algorithm stated above. However one can notice that the local minima might

occur when the connection between the current robot position and the objective

crosses with the segment (see in Fig. 3.5 the segment GO crosses S2
i). As a result,

one can introduce some intermediate objectives for the robot if these intermediate

objectives can guide the robot to escape the local minima and to achieve the final

objective.

Generally, the selection of the intermediate objectives is according to the

information detected by the sensor equipped on the robot. Once the intermedi-

ate objectives are chosen, optimal path planning algorithm can be then used to

calculate optimal trajectory between the current position of the robot and the

intermediate objectives without the local minima phenomenon.

For example, in Fig. 3.5, one can choose the intermediate objectives {p1
i , p

2
i , G}

instead of the final objective {G}, navigating the robot to reach p1
i , then p2

i and

finally G. Then the optimal sub trajectories: O → p1
i , p1

i → p2
i and p2

i → G can

be calculated by solving the optimal control problem stated in section 3.2. It can

54

3.3 Path planning algorithm with intermediate objectives

Figure 3.6: Complex Environment

be seen that if the robot follows this way, there is no local minima phenomenon.

3.3.5 Path planning algorithm with intermediate objectives

The “following the obstacle boundary mode” proposed in Kökösy et al. (2008) can

avoid the obstacles without local minima, but the robot needs to unnecessarily

detour along with the contour of polygons. For example in Fig. 3.6, robot need

follow the contours {p4
i , p

3
i , p

2
i , p

1
i } or {p5

i , p
6
i , p

7
i } to get outside of the concave

obstacle. The proposed algorithm in this chapter takes into account only the

disjoint endpoints (the head p1
i and the tail p7

i) of a serial of joint segments which

is used to represent the detected partial obstacle.

The procedure of the proposed algorithm with intermediate objectives can be

illustrated in Fig. 3.6. At the first time, the robot detects via sensors a serial

of joint segments: {p1
i , · · · , p7

i } around its local environment. Since the dotted

part {p8
i , · · · , p14

i } is invisible for this moment, the robot assumes that there are

no obstacles in the invisible part, thus it thinks the obstacle is only {p1
i , · · · , p7

i }.
Then the robot chooses a temporary set of intermediate objectives in order to

avoid the local minima, noted as IO−List = {p7
i , p

6
i , p

5
i , G}. The robot gets the

55

chapter2_plan/pic/complexobs.eps

3. REAL-TIME LOCAL PATH PLANNING FOR
NON-HOLONOMIC MOBILE ROBOTS

head of IO−List, i.e. p7
i , then it generates an optimal sub trajectory O → p7

i by

solving optimal control problem defined in section 3.2. When the robot arrives in

the region Rs, i.e. the region where robot can always see the second element in

IO−List, p6
i in this scenario, we remove the reached point p7

i into a close list, noted

as CloseList← p7
i . Robot scans again its surrounding and detects new obstacles

represented by {p7
i , p

14
i }. Since the head point p7

i belongs to CloseList which

means robot has already reached this point, thus the intermediate objectives

should be deduced from the tail point p14
i , which updates the temporary list of

intermediate objectives by: IO−List = {p14
i , G}. Finally the robot can reach G

by following this list.

Remark 3.3.2. Although the optimization method can be applied to any kind of

mobile robots to drive the robot from one point to another one, however the ap-

proach described in this chapter might not be applicable for general non-holonomic

robot (like car-like mobile robot) if the approaching direction to the intermediate

point is not considered. The reason is that, after achieving the intermediate point,

some kinds of robots will not have enough space to turn (due to the non-holonomic

constraint) in order to achieve the next trajectory. However, the unicycle model

considered here has not such a problem since it allows turning in space.

From the above description, the proposed algorithm contains the following

three aspects:

1. Select the intermediate objectives from local information to generate a tem-

porary list IO−List;

2. Be sure that the robot can reach another region (for example, Rs in Fig.

3.6);

3. Judge when the robot arrived at this region.

Before explaining these three aspects, let us give some notations which will be

used in the sequel. Define P = {Pi} for 1 ≤ i ≤ N to be all the set of the obstacle

boundaries detected by the equipped sensors, where N is the number of detected

obstacle boundaries. Note Pi = {pj
i} for 1 ≤ j ≤ Ni being the set of joint points

to represent the ith obstacle boundary, where Ni is the number of points. Each

segment Sj
i is defined by its endpoints Sj

i = (pj
i , p

j+1
i). Let IO−List = {pk, G}

for 1 ≤ k ≤ m save the selected intermediate objectives. Denote dis(pkpk+1) for

56

3.3 Path planning algorithm with intermediate objectives

1 ≤ k ≤ m− 1 the function to calculate the distance between point pk and point

pk+1, and note

dis({O} ∪ IO−List) = dis(Op1) +
m−1
∑

k=1

dis(pkpk+1) + dis(pmG)

as the function to compute the complete path cost from robot’s current position

O to the final target G by following IO−List.

For the reached intermediate points which have already treated, we removed

them from IO−List and save them into a CloseList which is used to avoid un-

necessary returns. Thus for an endpoint belonging to CloseList, the path cost

from this path is set to be +∞. List−H and List−T are defined to save two

possible lists of intermediate objectives from the head and the tail of IO−List,

being initialized as List−H = List−T = {G}.

3.3.5.1 The intermediate objectives selection

Whenever the robot detects several segments obstacles around its surrounding, it

always chooses the one with which the begin-final segment OG has an intersection.

If OG has no intersection with all obstacles, then the robot can see the target G

directly and thus the optimal path is the straight line OG. Otherwise, OG can

have only one intersection with all obstacles, since it can detect only visible part

of obstacles. For example, in Fig. 3.7, OG intersects with Pi, and the possible

optimal trajectory might from p1
i or p5

i , but it is absolutely not possible from the

obstacles Pi+1 or Pi+2 since those paths from Pi+1 or Pi+2 are obviously larger

than the ones from Pi.

After determining the exact obstacle (In Fig. 3.7, it is Pi since segment p2
i p

3
i

in Pi = {p1
i , · · · , p5

i } intersects with OG), we search the intermediate objectives

from both sides of OG. Take the right region of OG for example, one has the

segment p3
i p

4
i , and check whether the segment Gp4

i has an intersection with Pi.

If not, that means the robot can see the final objective G after passing over the

point p4
i , thus the point p3

i does not need to be added on List−T . If segment

Gp4
i has an intersection with Pi, which implies the robot is not able to see G

after passing over p4
i , thus the robot needs to go to point p3

i in order to see G.

Consequently, p3
i should be added on List−T . Iteratively search next segment

57

3. REAL-TIME LOCAL PATH PLANNING FOR
NON-HOLONOMIC MOBILE ROBOTS

Robot O(x(t), y(t))

Target G(xf , yf)

Pi+2

Pi

Pi+1

S1
i

S2
i

S3
i

S4
i

p1
i

p2
i

p3
i

p4
i

p5
it

t

Figure 3.7: Intermediate Objectives Generation

(p4
i p

5
i in Fig. 3.7) until the end of the segment of Pi, one obtains

List−T = {p5
i , p

4
i , G}

By applying the same procedure for the left region of OG, one gets

List−H = {p1
i , p

2
i , G}

Finally, the temporary list of intermediate objectives is then determined by the

path cost of these two lists, i.e. if

dis(O, List−T) > dis(O, List−H)

then IO−List = List−H . Otherwise IO−List = List−T

The routine to generate the list of intermediate objectives is given in Algo-

rithm 1 in section 3.6.

3.3.5.2 Reach switching region

In order to clearly explain the algorithm, let consider the following simple segment

obstacle depicted in Fig. 3.8, and suppose that one has obtained the following

58

3.3 Path planning algorithm with intermediate objectives

Segment Obstacle

Objective
G(xf , yf)

Robot
O(x, y)

✈

✈

p3
i

p4
i

✈

p2
i

p1
i

t
t

V1

V2

V3Rs

A
C

p̄1
i

⑥
✰
r

t

Figure 3.8: Intermediate Objectives Selection

list of intermediate objectives:

IO−List = {p1
i , p

2
i , G}

Thus robot is guided to reach the first element in IO−List, i.e. p1
i , then p2

i and

finally G. Then one can solve the optimal problem with constraints C1 − C4 by

minimizing the cost function with respect to current intermediate objective, i.e.

min

∫

Tp

∥

∥O − p1
i

∥

∥

2
dt, s.t. C1 − C4 (3.6)

The solution to this optimal problem yields optimal trajectories, then one can

get optimal control (v, ω) according to (3.4).

However, choosing directly p1
i as final target in cost function (3.6) result in

local minima again. For example, as shown in Fig. 3.8, where r is the collision

free distance, the point A is on the boundary satisfying the obstacle avoidance

criterion. In this situation, the robot may stop at point A since no other trajec-

tories are more optimal than to stay at this point (it has already minimized the

cost function (3.6) and satisfied as well C1 − C4). Finally, the robot cannot pass

over the segment p1
i p

2
i to see the second intermediate objective p2

i .

59

3. REAL-TIME LOCAL PATH PLANNING FOR
NON-HOLONOMIC MOBILE ROBOTS

In order to make sure that the robot can always achieve this, let us give the

following notations. Denote V1 the top region of line p1
i p

2
i (the region where the

second intermediate objective p2
i is visible), and V2 the left region of line Op1

i (the

region where robot can reach freely). Define V3 the collision constraint region:

V3 = {(x, y) : (x− xi)
2 + (y − yi)

2 ≤ r2, ∀(xi, yi) ∈ p1
i p

2
i }

Then define the switching region Rs as follows:

Rs = (V1 ∩ V2) ∩ V 3

where V 3 is the complement of V3.

As the switching region is defined, one can see that the optimal path for the

robot is to go directly into the switching region, as a result one can choose p̄1
i ∈ Rs

and replaces p1
i by p̄1

i in (3.6) to ensure the robot go into the switching region

as directly as possible, and avoid detours around the endpoint of the obstacles,

thus this optimal problem can be solved without local minima, since the robot

can always pass over the segment p1
i p

2
i to see the second intermediate objective

p2
i .

Here the modified intermediate objective p̄1
i is determined as follows (see Fig.

3.8): firstly find out the point C at a distance of r to the point p1
i on the extension

of segment from the endpoint p2
i to the endpoint p1

i , and then select p̄1
i at a

distance of r to the point C on the extension of segment from the robot to the

point C.

It is worth noting that the connection between the modified intermediate point

p̄1
i and robot position may crosses with another obstacle, if the line connected

between p̄1
i and robot crosses with another obstacle, the intermediate objective

should be selected from the obstacle that crosses with the line, add the new

intermediate objective to the IO_List, and generate new modified intermediate

objective p̄1
i from new IO_List. (See line 10-16 in Algorithm 4)

The routine to select intermediate objectives is given in Algorithm 2 in section

3.6.

60

3.4 Simulation results

3.3.5.3 Judge the switching time

Suppose that one has IO−List = {p1
i , p

2
i , · · · , G} and the associated switching

region Rs. Since the robot reinitializes and solves the optimal problem after

every Tc, thus one can use the position of robot at t = 0 and t = Tc (named as

(x(0), y(0)) and x(Tc), y(Tc)) to judge whether it enters Rs. For this, note the

function f(x, y) = 0 representing the first segment p1
i p

2
i in IO−List. If

f(x(0), y(0))f(x(Tc), y(Tc)) < 0

one can judge that the robot has already entered in the region Rs, implying that

the robot has passed over p1
i and now can see p2

i . Thus we move p1
i from IO−List

into CloseList.

The routine to judge the switching time is given in Algorithm 3 in section 3.6.

3.3.6 Algorithm description

Given the temporary list of intermediate objectives IO−List, which enables to

define the switching region Rs and calculate the modified intermediate objective

p̄1
i , one can solve optimal problem over Tp to get optimal trajectories, which

yields the optimal controls v and ω for robot over [0, Tp]. Then one applies

those optimal controls only for an interval [0, Tc]. When t = Tc, one iterates the

same procedure as before, i.e., scans the surroundings to get segments obstacles

P, generates the list of intermediate objectives IO−List, calculates the modified

intermediate objective p̄1
i and solves the optimal problem over Tp and implements

the optimal controls for [0, Tc]. The algorithm stops when the robot reaches the

final target G. The routine is detailed in Algorithm 4 in section 3.6.

3.4 Simulation results

In order to show the feasibility and the efficiency of the proposed algorithm,

three simulations for different scenarios are made, and the comparisons with

visibility graph with expanded obstacles are made in the latter two simulations.

The simulation settings are as follows: the range of robot sensors is 3 m; the

maximum speed of robot is 1.0 m/s, the maximum acceleration is 1.0 m/s2, the

61

3. REAL-TIME LOCAL PATH PLANNING FOR
NON-HOLONOMIC MOBILE ROBOTS

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Predicted Trajectories
Real Trajectories
Intermediate Objectives

Figure 3.9: Scenario 1: Simple environment

maximum angular velocity is 1.0 rad/s, the maximum angular acceleration is 1.0

rad/s2. The planning horizon interval Tp is 2 s, and the update period Tc is 0.2s.

For the simple scenario, depicted in Fig. 3.9, black polygons represent ob-

stacles, containing a concave obstacle and a triangle obstacle. In this scenario,

there exists a broad zone of local minima. The robot starts from the initial point

(6, 4.5) to the target (18, 18). The red crosses shown in the figure are the inter-

mediate objectives chosen by the proposed algorithm, the red trajectories are the

predicted ones planned by the receding horizon planner, and the blue trajecto-

ries are real trajectories. It can be seen that the proposed algorithm generates

a safe and optimal path of intermediate objectives and avoids the local minima

successfully.

Two more complex scenarios are shown in Fig. 3.10 and Fig. 3.11, arrows

in the figures indicate the orientation of the robot, and the red crosses shown

in the figure are the intermediate objectives chosen by the proposed algorithm.

Comparisons with visibility graph with expanded obstacles are made, the blue

trajectories are generated by the path planning algorithm proposed in this chap-

ter, and the pink ones are generated by visibility graph.

One can see that in Fig. 3.10 several local minima exist, the robot starts

from (7, 2) to (10, 20) and avoids all the local minima by choosing intermediate

objectives and reaches the target successfully by using only local sensor informa-

62

chapter2_plan/pic/SimuSimple.eps

3.5 Conclusion

Table 3.1: Comparison of simulation results
Method Running Time (s) Time-saving Trajectory Length (m)

Scenario 2
Our method 3.02 19.2% 22.2

Visibility Graph 3.74 22.1

Scenario 3
Our method 3.21 20.1% 30.2

Visibility Graph 4.02 29.8

tion. In Fig. 3.11, where there is a long winding corridor, the robot starts from

(7, 2) to (25, 10). It can be seen that the robot manages to walk through the long

corridor and reach the target successfully while avoiding local minima and all the

obstacles.

Normally visibility graph is used in global planning when the map is com-

pletely known, in order to use visibility graph in local planning with unknown

map, the algorithm needs to generate expanded polygon for each obstacle in the

local map and search for the shortest path among all the obstacles, then iterate

until the robot reaches the target. In our proposed algorithm the robot search

for the shortest path only in some obstacles (normally one or two) in each iter-

ation, which reduces the computational complexity compared to visibility graph

approach.

As we can see in the figure 3.10, 3.11 and table 3.1, there are no big differences

between the trajectories generated by two different methods, however it costs less

time by using our method.

Implementations in a wifibot and real environment can be found in the fol-

lowing link: Video Link

3.5 Conclusion

This chapter presents a path planning algorithm for navigation of non-holonomic

mobile robots in unknown complex environments. The new algorithm takes into

account irregular obstacles which are impossible to be approximated by circles.

In order to avoid local minima problems, an algorithm of choosing intermedi-

ate objectives is proposed. The robot can reach the target and avoid obstacles

by choosing appropriate intermediate objectives. Efficiency of the proposed al-

gorithm is shown thereafter via different simulations and implementations in a

63

http://www.youtube.com/watch?v=EjNaESTXTR8

3. REAL-TIME LOCAL PATH PLANNING FOR
NON-HOLONOMIC MOBILE ROBOTS

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Our Algorithm
Visibility Graph

Figure 3.10: Scenario 2: Complex environment

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20

Our Algorithm
Visibility Graph

Figure 3.11: Scenario 3: Environment with corridor

64

chapter2_plan/pic/SimuComplex.eps
chapter2_plan/pic/SimuCorridor.eps

3.6 Pseudocode

wifibot, the simplicity of the algorithm is shown via the comparison with visibility

graph.

3.6 Pseudocode

Algorithm 1 The Intermediate Objectives List Generation Function

1: Function IO−Generation (G(xf , yf), O(x(t), y(t)), P)
2: for each Pi do
3: if ∃pj

i , p
j+1
i ∈ Pi s.t. pj

ip
j+1
i

⋂

OG 6= ∅ then
4: select Pi, break
5: end if
6: end for
7: List−T = List−H = {G}
8: for k=j+1: 1:m-1 do ⊲ m is the number of points on Pi

9: if Gpj+2
i

⋂

Pi 6= ∅ then
10: List−T = {pj+1

i }
⋃

List−T
11: end if
12: end for
13: List−T = {pm

i }
⋃

List−T
14: for k=j:-1:2 do
15: if Gpj−1

i

⋂

Pi 6= ∅ then
16: List−H = {pj

i}
⋃

List−H
17: end if
18: end for
19: List−H = {p1

i }
⋃

List−H
20: if pm

i ∈ CloseList then
21: dist(List−T) = +∞
22: end if
23: if p1

i ∈ CloseList then
24: dist(List−H) = +∞
25: end if
26: if dist({O}⋃

List−T) ≤ dist({O}⋃

List−H) then
27: Return List−T
28: else
29: Return List−H
30: end if

65

3. REAL-TIME LOCAL PATH PLANNING FOR
NON-HOLONOMIC MOBILE ROBOTS

Algorithm 2 Selection of the Intermediate Objective
1: Function IO−Selection (O(x(t), y(t)), IO−List)
2: Get the first segment p1

i p
2
i from IO−List

3: Get the function f(x, y) = 0 for this segment;
4: Compute point C s.t. f(xc, yc) = 0, dis(Cp1

i) = r dis(Cp2
i) = r + dis(p1

i p
2
i);

5: Determine the function g(x, y) = 0 for the segment OC;
6: Select p̄1

i s.t. g(xp̄1
i
, yp̄1

i
) = 0, dis(Cp̄1

i) = r dis(Op̄1
i) = r + dis(OC);

7: Return p̄1
i

Algorithm 3 Switching Time
1: Function Switch ((x(0), y(0)), (x(Tc), y(Tc)), IO−List)
2: Get the first segment p1

i p
2
i from IO−List

3: Get the function f(x, y) = 0 for this segment;
4: if f(x(0), y(0))× f(x(Tc), y(Tc)) < 0 then
5: Remove the 1st element p1

i from IO−List
6: Add p1

i into CloseList
7: end if

66

3.6 Pseudocode

Algorithm 4 Path Planning
1: Function PathP lanning(G(xf , yf), Ini. conditions)
2: t = 0
3: while (x(0)− xf)

2 + (y(0)− yf)
2 ≥ ε do

4: Get P from sensor
5: IO−List = IO−Generation(G(xf , yf), O(x(0), y(0)), P)
6: if IO−List = {G} then ⊲ Can see G
7: [x,y] = Optimisation(G) over Tp

8: else
9: Get p̄1

i = IO−Selection(IO−List) ⊲ Opt. with the 1st intermediate objective

10: for each Pi do ⊲ Check p̄1
i can be seen or not

11: if ∃pj
i , p

j+1
i ∈ Pi s.t. pj

ip
j+1
i

⋂

p̄1
i O 6= ∅ then

12: add−List = IO−Generation(p̄1
i , O(x(0), y(0)), P)

13: IO−List = add−List ∪ IO−List
14: Get p̄1

i = IO−Selection(IO−List)
15: end if
16: end for
17: [x,y] = Optimisation(p̄1

i) over Tp

18: end if
19: for t ∈ [0, Tc] do
20: Get (υ, ω) from (3.4) based on x and y
21: Apply (υ, ω) to the robot
22: end for
23: Switch(x(0), y(0), x(Tc), y(Tc), IO−List)
24: Reset t = 0
25: end while

67

3. REAL-TIME LOCAL PATH PLANNING FOR
NON-HOLONOMIC MOBILE ROBOTS

68

Chapter 4

Control of non-holonomic wheeled

mobile robots via i-PID controller

4.1 Introduction

In Chapter 3 we have obtained an optimal trajectory, and this chapter aims at

controlling the robot to track the reference trajectory. The trajectory tracking

problem is to determine a control to asymptotically stabilize the tracking error.

However as stated in section 1.2.1, according to the Brockett’s necessary condi-

tion, the non-holonomic mobile robot systems are not asymptotically stabilizable

by continuous state feedback. This has led to the development of other control

strategies to solve this asymptotic stabilization problem. The use of time-varying

continuous state feedback control for asymptotic stabilization of a mobile robot

was originally developed by Samson Samson (1991), and a first result of the ex-

istence of such stabilizing control is given in Coron (1992). Thereafter, various

approaches were developed to asymptotically stabilize the non-holonomic mobile

robot, such as the methods based on the direct Lyapunov method Pomet (1992);

Samson (1995), and the method based on the backstepping techniques Jiang

& Nijmeijer (1999). Although these controllers have relatively good robustness

properties, they also have practical disadvantages concerning the convergence rate

and the delicate tuning of control parameters. As for the use of discontinues con-

trol for the mobile robot, a piecewise continuous control is used in Hespanha et al.

(1999), and a sliding-mode control based on the transformation of the system into

polar coordinates is proposed in Chwa (2004).

69

4. CONTROL OF NON-HOLONOMIC WHEELED MOBILE
ROBOTS VIA I-PID CONTROLLER

The i-PID controller introduced in Fliess & Join (2009) exhibits the robustness

to the unmodeled dynamics and disturbance in the system Fliess et al. (2011),

and it has been widely studied and applied to many electrical and mechanical

processes Riachy et al. (2011); Villagra & Balaguer (2010). This chapter aims at

applying the so-called i-PID controller to the non-holonomic robots in order to

control the robot with measurement disturbance. However, due to the particu-

larity of the non-holonomic systems, this controller can not be simply applied,

for this a switching parameter is selected and a robust controller is proposed to

control the robot in the presence of measurement disturbance.

4.2 Problem statement

In Chapter 3 we have proposed a path planning algorithm for non-holonomic

mobile robots, however one can notice that in Chapter 3 section 3.2.3.4, the

proposed controller is the open loop control deduced from equation (3.4), which

is not robust to errors and noises in the system. Therefore a robust controller is

required to control the robot with measurement disturbance.

This chapter still focus on the type (2.0) robot described in (3.1). Suppose

that we can only measure the position (x, y) of the robot, which implies that the

relative degree of those measurements is equal to 1, since the first part of system

(3.1) is of the following form:

[

ẋ
ẏ

]

=

[

cos θ 0
sin θ 0

] [

v
ω

]

It is clearly that the second control input ω is not involved in the above equa-

tion, since the decoupling matrix is singular. Due to this fact, one classic solution

is to add an integrator to the first input in order to overcome the singularity of

the decoupling matrix Ge (2010). For this, let us consider the following extended

system:















ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
v̇ = ξ

70

4.2 Problem statement

with u = [ξ, ω] being the new input. One can check that, with the extended

system, the relative degree for both output is equal to 2. Then one obtains:

[

ẍ
ÿ

]

= G(x, y, ẋ, ẏ)u (4.1)

where

G =

[

cos θ −v sin θ
sin θ v cos θ

]

=

[

cos(arctan ẏ

ẋ
) −

√

ẋ2 + ẏ2 sin(arctan ẏ

ẋ
)

sin(arctan ẏ

ẋ
)

√

ẋ2 + ẏ2 cos(arctan ẏ

ẋ
)

] (4.2)

which is invertible if v =
√

ẋ2 + ẏ2 6= 0.

If there is no disturbance in the measurement, a classical PID controller, which

needs the exact value of G−1, can be used to achieve non-vanishing Cartesian

trajectories tracking (the linear velocity of the robot is assumed to be always

non-zero), since G is singular when v = 0. It has been shown (Datta et al.

(2000)) that this method cannot be used to stabilize the robot to a static point

due to the same reason.

In addition, noises and disturbance are inevitable in real situations, thus the

exact computation of G−1 in (4.2) cannot be obtained. Consider the output

under disturbance as Y = [x, y]T + D, where D = [d1, d2]
T is the disturbance in

the measurement. Thus the estimated values of θ, v and ω are disturbed:







θd = arctan ẏ+d̃2

ẋ+d̃1

υd =
√

(ẋ + d̃1)2 + (ẏ + d̃2)2
(4.3)

thus we have

Ÿ = G(Y, Ẏ)u + D̃ (4.4)

with

G(Y, Ẏ) =

[

cos(θd) −υd sin(θd)
sin(θd) υd cos(θd)

]

(4.5)

where θd and υd are defined in (4.3), and d̃1, d̃2 and D̃ represent respectively the

associated disturbance in the first and second derivatives of the noisy outputs.

It is clear that the system (4.4) can not be controlled with the classical PID

controller, since G(Y, Ẏ) defined in (4.5) can not be accurately estimated due

71

4. CONTROL OF NON-HOLONOMIC WHEELED MOBILE
ROBOTS VIA I-PID CONTROLLER

to the unknown disturbance. Moreover, G(Y, Ẏ) becomes singular when υd =

0. In order to overcome the two drawbacks when applying the classical PID

controller, we use the recently proposed i-PID controller to control the robot

with measurement disturbance.

4.3 Determination of the controller

Since the controller proposed here is based on the i-PID controller, let us firstly

present the basic idea of this controller, and then detail how to apply this con-

troller into the control of the unicycle model with the measurement disturbance.

4.3.1 i-PID controller

Generally speaking, the method of i-PID controller locally approximates the sys-

tem model by using a simple local model with an unknown term, and the unknown

term can be estimated by the measurements of the input and output of the sys-

tem, then a so-called i-PID controller can be deduced to realize the control goal.

In this chapter the system model (4.4) is approximated by the following local

model over a small time interval T = [tk, tk+1] with k ∈ Z+:

Ÿ (t) = F (t) + α(Y, Ẏ)u(t) (4.6)

where u and Y are known input and output signals with disturbance, α(Y, Ẏ)

is a non-singular 2× 2 dimensional matrix which should be well chosen in order

to achieve the control goal. F ∈ R2 represents all unknown terms including the

disturbances, which can be estimated by using the information of Y , u and α.

For the above-mentioned locally approximated continuous model over time

interval T , one can estimate F by discretizing it. Precisely, denote Ts the sampling

period, so at each sampling time k = t/Ts, one has

Ÿk = Fk + α(Yk, Ẏk)uk

For the sake of simplicity, we denote α(Yk, Ẏk) as α(Y, Ẏ) in the following, then

it yields Fk = Ÿk −α(Y, Ẏ)uk, where Yk and uk are measurable signals at time k,

and Ÿk is the 2nd order differentiation of the output Y at sampling time k. If it is

72

4.3 Determination of the controller

assumed that Ts is small enough such that Fk−1 → Fk, then the i-PID controller

can be designed as follows:

uk = α−1
k (Y, Ẏ)(−Fk−1 + ek) (4.7)

where ek = Ÿref,k−K2(Ẏk− Ẏref,k)−K1(Yk−Yref,k) with Yref being the references

of the output to be tracked, and K1 and K2 being the freely chosen coefficients

such that the polynomial s2 + K2s + K1 is Hurwitz.

Remark 4.3.1. We want to emphasize that this approach can treat not only the

kinematic model, but also the dynamic model. The robot dynamic model can be

expressed in the following form Rashid & Sidek (2011):

M(q)q̈ + C(q, q̇) + G(q) = B(q)ud (4.8)

where q ∈ Rn×1 is a vector of generalized coordinates and q̇ ∈ Rn×1 is a vector of

velocities of generalized coordinates. M(q) ∈ Rn×n is a symmetric positive definite

inertia matrix of the system, C(q, q̇) ∈ Rn×n is the centripetal and coriolis matrix.

G(q) is the gravitational terms, B(q) ∈ Rn×r is the input transformation matrix,

and ud ∈ Rr×1 is the input vector.

Equation (4.8) can be rearranged of the following form:

ρ̇ = f(ρ) + H(ρ)ud (4.9)

where ρ = [qT , q̇T], and f(ρ) and H(ρ) are given as:

f(ρ) =

[

q̇

−M(q)−1C(q, q̇)q̇ −M(q)−1G(q)

]

H(ρ) =
[

0, (M(q)−1)T
]T

As one can see from equation (4.9), it will just introduce some additional terms

in (4.4), which in fact can be integrated into the term D̃ in (4.4). Therefore, we

can use the method proposed in this chapter to treat the stabilization problem for

the dynamic model of robot.

As one can see in the controller (4.7), there are two parameters to be deter-

mined, αk(Y, Ẏ) and Fk, which will be discussed in the following.

73

4. CONTROL OF NON-HOLONOMIC WHEELED MOBILE
ROBOTS VIA I-PID CONTROLLER

4.3.2 Discussion on α(Y, Ẏ)

The determination of α(Y, Ẏ) is the most important issue when applying such a

controller. A good parameter α(Y, Ẏ) should well approximate G(Y, Ẏ) defined

in (4.5), and be always invertible, and change as few times as possible as time

goes on, so it is best that α(Y, Ẏ) is time-invariant.

In Sira-Ramírez et al. (2011) and Youcef-Toumi & Wu (1991), similar con-

trollers are presented, which use an unknown term to represent unknown parame-

ters and disturbance in the system model. However, in Sira-Ramírez et al. (2011)

the similar parameter G(Y, Ẏ) in the system is a time-invariant scalar. In Youcef-

Toumi & Wu (1991) the determination of α(Y, Ẏ) is discussed, nevertheless, the

similar parameter G(Y, Ẏ) in the system is assumed to be always invertible and

time-invariant. Thus in their controller α(Y, Ẏ) can be set as a fixed number or

a fixed invertible matrix.

We aim at finding out an invertible time-invariant α to well approximate

G(Y, Ẏ) in the controller. However, let us take a look at G(Y, Ẏ) in our system

(4.4): it is a matrix whose entries vary as time goes on, and the sign of all entries

in G(Y, Ẏ) is changing, which makes it impossible to use a time-invariant α to

approximate G(Y, Ẏ).

In order to have G(Y, Ẏ) well approximated by α(Y, Ẏ), α(Y, Ẏ) needs to

change according to G(Y, Ẏ). One can of course set that

α(Y, Ẏ) =

[

cos θ̂ −v̂ sin θ̂

sin θ̂ v̂ cos θ̂

]

where θ̂ = arctan
˙̂y
˙̂x

is the estimation of θ with noises, ˙̂x and ˙̂y are the estimations

of ẋ and ẏ with noises, and v̂ is the estimation of v defined in (3.4). In this way,

this method is in fact equivalent to the controller linked to exact linearization

by feedback with the estimate of θ and v. However, one can notice that α(Y, Ẏ)

will be singular when v̂ = 0. In order to make α(Y, Ẏ) being invertible and well

approximate G(Y, Ẏ), another intuitive choice is to remove v̂ in the above matrix

and one obtains:

α(Y, Ẏ) =

[

cos θ̂ − sin θ̂

sin θ̂ cos θ̂

]

The above selected α(Y, Ẏ) is suitable for the controller, since it is always in-

vertible and it can well approximate G(Y, Ẏ). However, since this choice of θ̂

74

4.3 Determination of the controller

is always time-varying when robot moves, which will increase the computation

complexity of the controller. In order to make the selected α(Y, Ẏ) change as few

times as possible when robot moves, we propose to choose it as follows:

α(Y, Ẏ) =

[

sgn(cos θ̂) −sgn(sin θ̂)

sgn(sin θ̂) sgn(cos θ̂)

]

where sgn(σ) is the sign function which extracts the sign of the real number σ,

and it is assumed that sgn(0) = 1. For this proposed α(Y, Ẏ), let us define the

following switching signal i(θ̂) : R→ I with I = {1, 2, 3, 4}:

i(θ̂) =



















1 if θ̂ ∈ (2kπ, 2kπ + π
2
)

2 if θ̂ ∈ (2kπ + π
2
, 2kπ + π)

3 if θ̂ ∈ (2kπ + π, 2kπ + 3π
2

)

4 if θ̂ ∈ (2kπ + 3π
2

, 2(k + 1)π)

(4.10)

where k ∈ Z. The corresponding constant matrices can then be defined as follows:

α1 =

[

1 −1
1 1

]

α2 =

[

−1 −1
1 −1

]

α3 =

[

−1 1
−1 −1

]

α4 =

[

1 1
−1 1

]

Therefore, the proposed matrix αi(θ̂) satisfies:

α(Y, Ẏ) = αi(θ̂), ∀θ̂ ∈ R

Summarily, the selected αi(θ̂) has several advantages. Firstly it has only 4

values when θ̂ changes in [2kπ, 2(k + 1)π], which is able to make α(Y, Ẏ) change

as few times as possible. Secondly it is always invertible, so that the controller

can stabilize the robot at a static point with the robot velocity being zero.

It can be seen that the choice of α(Y, Ẏ) involves the estimation values θ̂, ˙̂x

and ˙̂y, thus the efficient estimation of these values is important, the numerical

differentiation method used for estimation and its advantages can be found in

section 2.4.3.

75

4. CONTROL OF NON-HOLONOMIC WHEELED MOBILE
ROBOTS VIA I-PID CONTROLLER

4.3.3 Algebraic estimation of F

Now there is only one parameter F left in the i-PID controller to be determined.

The calculation of F also uses the algebraic technique described in section 2.4.3.

Let us consider the local approximated model:

Ÿ = F + αu (4.11)

where F can be considered as a constant between two sampling time if the sam-

pling time is fast enough with respect to the time variation of F . Then by taking

the Laplace transformation of both sides of equation (4.11), one obtains

s2Y(s)− sY(0)− Y′(0) =
F

s
+ αU(s) (4.12)

where Y and U are the Laplace transforms of y(t) and u(t) respectively.

In order to eliminate the unknown terms Y(0) and Y′(0) which are linked to

unknown initial conditions, we take the 2nd order derivative of both sides with

respect to s:

s2Y′′(s) + 4sY′(s) + 2Y(s) =
2F

s3
+ αU′′(s) (4.13)

By dividing both sides of equation (4.13) with s3, one has:

Y′′(s)

s
+

4Y(s)′

s2
+

2Y(s)

s3
=

2F

s6
+

αU′′(s)

s3
(4.14)

Take the inverse Laplace transformation of both sides of equation (4.14), one

obtains:

∫ T

0

(−τ)2Y dτ +

∫ T

0

4(T − τ)(−τ)Y dτ +

∫ T

0

(T − τ)2Y dτ

=
2FT 5

5!
+ α

∫ T

0

(T − τ)2

2!
(−τ)2udτ

(4.15)

where [0, T] is a short time window, and the window is sliding in order to get

the estimate at each time instant. Let τ = δT ∈ [0, T], where δ ∈ [0, 1], after

simplification equation (4.15) becomes:

T 3

∫ 1

0

(6δ2 − 6δ + 1)Y dδ =
FT 5

60
+

T 5α

2

∫ 1

0

(1− δ)2δ2udδ (4.16)

76

4.4 Simulation results

Hence, at sampling step k, the numerical estimate value of Fk can be expressed

as:

Fk =
60

T 2

∫ 1

0

(6δ2 − 6δ + 1)Y dδ − 30α

∫ 1

0

(1− δ)2δ2udδ (4.17)

4.4 Simulation results

In the simulation, the parameters are set: K2 = 20, K1 = 100, time window

T = 3s, sampling time Ts = 0.01. The reference trajectory is set as:

{

xr = sin 2t
yr = sin t

2

Fig. 4.1 to Fig. 4.7 show the simulation result of the designed control applied

on the non-holonomic wheeled mobile robot without noise. Fig. 4.1, Fig. 4.2 and

Fig. 4.3 show the trajectory tracking result, with the blue curves representing the

reference trajectory, the red ones representing the robot trajectory. i(θ̂) during

the simulation is shown in Fig. 4.4, the control inputs are shown in Fig 4.5 and

Fig. 4.6, and the tracking errors are shown in Fig. 4.7. One can see from the

simulation that the robot is well controlled with the stabilization of the robot

system and α selected appropriately.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

reference
robot

Figure 4.1: Trajectory tracking result without noise

77

chapter3_iPID/pic/without_trajectory.eps

4. CONTROL OF NON-HOLONOMIC WHEELED MOBILE
ROBOTS VIA I-PID CONTROLLER

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

D
is

pl
ac

em
en

t i
n

th
e

x
di

re
ct

io
n

(m
)

x

r

x

Figure 4.2: Tracking of position x without noise

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

D
is

pl
ac

em
en

t i
n

th
e

y
di

re
ct

io
n

(m
)

y

r

y

Figure 4.3: Tracking of position y without noise

When adding disturbance of white Gaussian noise of SNR = 30dB (signal-

to-noise ratio) to the measurement (as shown in Fig. 4.8 and Fig. 4.9), the

simulation result is shown from Fig. 4.10 to Fig. 4.16. Fig. 4.10, Fig. 4.11 and

Fig. 4.12 show the tracking result, i(θ̂) is shown in Fig. 4.13, the control inputs

78

chapter3_iPID/pic/without_x.eps
chapter3_iPID/pic/without_y.eps

4.4 Simulation results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (s)

i(
θ̂
)

i(θ̂)

Figure 4.4: i(θ̂) in the noise free case

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

time (s)

lin
ea

r
ve

lo
ci

ty
 (

m
/s

)

v

Figure 4.5: Linear velocity control without noise

are shown in Fig. 4.14 and Fig. 4.15, and tracking errors are shown in Fig. 4.16.

As we can see that the robot is able to track the trajectory with measurement

noises, and the designed controller is effective and robust to the noises.

One can notice that there are frequent changes of αi(θ̂) in the Fig. 4.13, this

79

chapter3_iPID/pic/without_alpha.eps
chapter3_iPID/pic/without_v.eps

4. CONTROL OF NON-HOLONOMIC WHEELED MOBILE
ROBOTS VIA I-PID CONTROLLER

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−20

−15

−10

−5

0

5

10

15

20

time (s)

an
gu

la
r

ve
lo

ci
ty

 (
ra

d/
s)

ω

Figure 4.6: Angular velocity control without noise

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

time (s)

Tracking error in x direction
Tracking error in y direction

Figure 4.7: Tracking errors without noise

is because when the angle of the robot θ is very close to kπ
2

(k = 0, 1, 2...), the

estimated θ̂ under noises may vacillate around kπ
2

. While this error is not signif-

icant and can be eliminated by introducing a hysteresis zone. When θ̂ vacillates

around kπ
2

within the hysteresis zone, we consider that αi(θ̂) does not change.

80

chapter3_iPID/pic/without_w.eps
chapter3_iPID/pic/without_errors.eps

4.4 Simulation results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

time (s)

Noise in X

Figure 4.8: Noise imposed in x SNR = 30dB

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time (s)

Noise in Y

Figure 4.9: Noise imposed in y SNR = 30dB

81

chapter3_iPID/pic/x_noise.eps
chapter3_iPID/pic/y_noise.eps

4. CONTROL OF NON-HOLONOMIC WHEELED MOBILE
ROBOTS VIA I-PID CONTROLLER

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

reference
robot

Figure 4.10: Trajectory tracking result with white Gaussian noise SNR = 30dB

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

D
is

pl
ac

em
en

t i
n

th
e

x
di

re
ct

io
n

(m
)

x

r

x

Figure 4.11: Tracking of position x with white Gaussian noise SNR = 30dB

82

chapter3_iPID/pic/noise30_trajectory.eps
chapter3_iPID/pic/noise30_x.eps

4.4 Simulation results

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

D
is

pl
ac

em
en

t i
n

th
e

y
di

re
ct

io
n

(m
)

y

r

y

Figure 4.12: Tracking of position y with white Gaussian noise SNR = 30dB

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (s)

i(
θ̂
)

i(θ̂)

Figure 4.13: i(θ̂) with white Gaussian noise SNR = 30dB

83

chapter3_iPID/pic/noise30_y.eps
chapter3_iPID/pic/noise30_alpha.eps

4. CONTROL OF NON-HOLONOMIC WHEELED MOBILE
ROBOTS VIA I-PID CONTROLLER

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

time (s)

lin
ea

r
ve

lo
ci

ty
 (

m
/s

)

v

Figure 4.14: Linear velocity control with white Gaussian noise SNR = 30dB

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−20

−15

−10

−5

0

5

10

15

20

time (s)

an
gu

la
r

ve
lo

ci
ty

 (
ra

d/
s)

ω

Figure 4.15: Angular velocity control with white Gaussian noise SNR = 30dB

84

chapter3_iPID/pic/noise30_v.eps
chapter3_iPID/pic/noise30_w.eps

4.5 conclusion

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

time (s)

Tracking error in x direction
Tracking error in y direction

Figure 4.16: Tracking errors with white Gaussian noise SNR = 30dB

The following simulation (Fig. 4.17 to Fig. 4.23) is made with a hysteresis zone

of π
40

and a white Gaussian noise of SNR = 30dB adding to the measurement.

One can see in the Fig. 4.20 that frequent changes of αi(θ̂) are eliminated by

adding the hysteresis zone.

Fig. 4.24 to Fig. 4.28 illustrate the simulation of stabilize the robot at point

(4, 1), a white Gaussian noise of SNR = 30dB is added to the measurement as

well. Tracking result is shown in Fig. 4.24 and Fig. 4.25, and control inputs are

shown in Fig. 4.27 and Fig. 4.28. As we can see, the controller is able to stabilize

the robot at a static point with the robot velocity being 0.

Two more real-time 3D simulations are made in the following link by using

ROS (Robot Operating System): Video Link. One is reference tracking simula-

tion and the other one is the stabilization of the robot at a static point with the

robot velocity being zero.

4.5 conclusion

This chapter presents the i-PID controller applied to the non-holonomic wheeled

mobile robot. After the study of the system, the parameter α in the controller

is selected as a switching function according to the information of the system.

85

chapter3_iPID/pic/noise30_errors.eps
http://www.youtube.com/watch?v=UkmgVBFh6GU

4. CONTROL OF NON-HOLONOMIC WHEELED MOBILE
ROBOTS VIA I-PID CONTROLLER

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

x (m)

y
(m

)

reference
robot

Figure 4.17: Trajectory tracking result with a hysteresis zone

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

D
is

pl
ac

em
en

t i
n

th
e

x
di

re
ct

io
n

(m
)

x

r

x

Figure 4.18: Tracking of position x with a hysteresis zone

86

chapter3_iPID/pic/zone_trajectory.eps
chapter3_iPID/pic/zone_x.eps

4.5 conclusion

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

D
is

pl
ac

em
en

t i
n

th
e

y
di

re
ct

io
n

(m
)

y

r

y

Figure 4.19: Tracking of position y with with a hysteresis zone

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

time (s)

i(
θ̂
)

i(θ̂)

Figure 4.20: i(θ̂) with a hysteresis zone

87

chapter3_iPID/pic/zone_y.eps
chapter3_iPID/pic/zone_alpha.eps

4. CONTROL OF NON-HOLONOMIC WHEELED MOBILE
ROBOTS VIA I-PID CONTROLLER

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

time (s)

lin
ea

r
ve

lo
ci

ty
 (

m
/s

)

v

Figure 4.21: Linear velocity control with a hysteresis zone

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−20

−15

−10

−5

0

5

10

15

20

time (s)

an
gu

la
r

ve
lo

ci
ty

 (
ra

d/
s)

ω

Figure 4.22: Angular velocity control with a hysteresis zone

88

chapter3_iPID/pic/zone_v.eps
chapter3_iPID/pic/zone_w.eps

4.5 conclusion

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

time (s)

Tracking error in x direction
Tracking error in y direction

Figure 4.23: Tracking errors with a hysteresis zone

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time (s)

D
is

pl
ac

em
en

t i
n

th
e

X
 d

ire
ct

io
n

(m
)

x

r

x

Figure 4.24: Stabilization of position x

The presented i-PID controller is robust to the measurement disturbance of the

robot, and it can even stabilize the robot at a static point with the robot velocity

being zero with the proposed parameter α. The effectiveness and robustness of

the designed controller were shown thereafter via several different simulations.

89

chapter3_iPID/pic/zone_errors.eps
chapter3_iPID/pic/point_x.eps

4. CONTROL OF NON-HOLONOMIC WHEELED MOBILE
ROBOTS VIA I-PID CONTROLLER

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

time (s)

D
is

pl
ac

em
en

t i
n

th
e

Y
 d

ire
ct

io
n

(m
)

y

r

y

Figure 4.25: Stabilization of position y

0 0.5 1 1.5 2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

time (s)

i(
θ̂
)

i(θ̂)

Figure 4.26: i(θ̂) of stabilization

90

chapter3_iPID/pic/point_y.eps
chapter3_iPID/pic/point_alpha.eps

4.5 conclusion

0 0.5 1 1.5 2
−2

0

2

4

6

8

10

12

14

16

time (s)

lin
ea

r
ve

lo
ci

ty
 (

m
/s

)

v

Figure 4.27: Linear velocity control of stabilization

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−10

−5

0

5

10

time (s)

an
gu

la
r

ve
lo

ci
ty

 (
ra

d/
s)

ω

Figure 4.28: Angular velocity control of stabilization

91

chapter3_iPID/pic/point_v.eps
chapter3_iPID/pic/point_w.eps

4. CONTROL OF NON-HOLONOMIC WHEELED MOBILE
ROBOTS VIA I-PID CONTROLLER

92

Chapter 5

Motion planning for mobile robots

using potential field and the i-PID

controller

5.1 Introduction

Artificial potential field approach is widely studied because of its simplicity and

interesting mathematical analysis Latombe (1991); Rezaee & Abdollahi (2012);

Sfeir et al. (2011). The basic idea of this approach is to fill the robot workplace

with potential fields, the attractive potential field is caused by the target to

attract the robot moving towards the target, and the repulsive potential field is

caused by obstacles to repulse the robot away from obstacles. There are also

some extensions for the potential field method. In Conn & Kam (1998) moving

obstacles are considered with the time are considered as one of the dimensions

of the model workplace. In Ge & Cui (2002) the velocity of obstacles and target

are taken into consideration, and the unreachable target with obstacle nearby

problem is discussed in Ge & Cui (2000). Although the basic idea of potential

field approach in path planning seems easy, the problems of local minima and

oscillatory movements sometimes make the method less efficiency.

Local minima is the case when the total force imposed on the robot is zero

though robot has not reached its goal, or the direction of the total force passes

through obstacles. In order to solve local minima problems, Charifa & Bikdash

(2011) combines the potential field with boundary following algorithm, which in-

93

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

troduces long detours for the robot. Laue & Röfer (2005) proposed to combine

potential field approach with A∗ search, which however decreases the continuity

and increases the computational complexity because of the necessity of dividing

the workplace into grids. There are also other solutions, such as tangential poten-

tial fields Kim & Kim (2003), object grouping method Zhang et al. (2006), while

these methods are not effective when the total force passes through the center

of the obstacle. Moreover, the total force imposed on the robot is calculated by

summing up all the forces, this may cause some oscillations in the robot motion.

This problem can be solved by assigning distance criteria in the potential field

function.

In this chapter, we propose a new potential field approach for robot motion

planning to solve local minima and oscillation problems. The new potential func-

tion is defined by taking into account the robot orientation and angular velocity

besides the position and the linear velocity, and distance criteria is added to the

original potential function to decrease oscillations. The new potential function

allows the robot to avoid local minima and decreases the oscillations in robot

motion. At last, the i-PID controller, which is robust to the disturbances in the

system, is used for robot motion planning. This method only needs the online

measurements of the robot velocity and information of obstacles.

5.2 Problem statement

In Chapter 3 we have proposed a path planning algorithm using optimal control.

Leaving the complexity of programming, the efficiency of the method largely

depends on the efficiency of the optimization algorithm, and sometimes there

is even no solution to the optimization problem. Therefore in this chapter we

propose another robot motion planning method using potential field and i-PID

controller. When there is no solution to the optimization problem, the robot can

switch to this method which guarantees the obstacle avoidance, as shown in Fig.

1.5(b).

The potential field approach is widely used in robot motion planning, however

as we all know that the original potential field approach suffers from local minima

problems. As shown in Fig. 5.1, the direction of the total force imposed on the

94

5.2 Problem statement

✲

✻

Robot Target

Obstacle

x

y

✲
Stotal

✲✛

SattSrep

Figure 5.1: Local minima problems in original potential field method

✲

✻

Robot

Target

Obstacle

x

y

✯❃
v(t) Stotal

✲✛

✻

✲
Srep SattSv

Sv⊥

Figure 5.2: Modified potential field method

robot pass through the center of the obstacle, thus the generated force Stotal
∗

can not navigate the robot away from the obstacle. A modified method was

proposed in Ge & Cui (2002), which takes the robot velocity into consideration,

thus another force is introduced in the direction of the velocity to navigate the

robot away from the obstacle, as seen in Fig. 5.2. However when the direction

of the velocity also passes through the center of the obstacle, as seen in Fig. 5.3,

the modified method can not navigate the robot to avoid the obstacle either.

This motivates us to think whether we can introduce a force in the direction

perpendicular to the direction of the robot when the robot is approaching the

obstacle, thus the local minima problem can be solved. Therefore we take the

orientation and the angular velocity of the robot into consideration to propose

a new potential field function (see the next section), which is able to solve local

minima problems, which is the first contribution of this chapter.

Moreover, in the robot motion planning problem, the potential forces need to

change as smoothly as possible in order to achieve good tracking performance for

the controller, since it is the derivative of the potential field will be considered

∗The boldface type is used for vectors in this chapter.

95

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

✲

✻

Robot

Target

Obstacle

x

y

✲✲
v(t)Stotal

Figure 5.3: Local minima problems in modified potential method

to design the controller. Generally speaking, the total force (i.e. the derivative

of the total potential filed) is used for the controller design. A common way is

to set a positive linear velocity for the robot and design an angular controller

to make the orientation of the robot converging to the angle of the total force.

While this method is not robust to the disturbances in the system, therefore the

second contribution of this chapter is to propose the i-PID controller, which is

robust to the disturbance, in order to improve the motion planning performance.

5.3 Potential field function

5.3.1 Attractive potential function

Firstly, let us define the attractive potential field function. Like other potential

field methods, it is defined as a function of relative distance between the robot

and the target:

Uatt(P) = Katt‖Ptar −P(t)‖2 (5.1)

where P(t) and Ptar denote the positions of the robot and the target at time t

respectively, ‖Ptar − P(t)‖ is the Euclidean distance between the robot and the

target, and Katt is a positive parameter.

Therefore the desired virtual force towards the target is defined as the negative

gradient of the attractive potential function with respect to the robot position:

Satt(P) = −∇PUatt(P) =
∂Uatt(P)

∂P

= 2Katt‖Ptar −P(t)‖nRT

(5.2)

where nRT is the unit vector pointing from the robot to the target.

96

5.3 Potential field function

5.3.2 Repulsive potential function

Conventionally, the repulsive function is defined as a function of relative distance

between the robot and obstacles. Some papers also take the robot velocity into

consideration, like Ge & Cui (2002). In this chapter a new repulsive function is

presented which makes fully use of the position, velocity, orientation and angular

velocity of the robot, and it is able to avoid local minima problems.

In Ge & Cui (2002) the potential function of robot position and velocity is

considered as follows. Define Pd(P,Pobs) as the distance between the robot and

obstacle, and VRO(t) = v(t)TnRO as the velocity in the direction from the robot

to the obstacle, where v(t) is the robot velocity and nRO is a unit vector point

from the robot to the obstacle. Define amax as the maximum deceleration of

the robot, thus the distance traveled by the robot before VRO reduces to 0 is

Pm(VRO) =
V 2

RO

2amax
. Then the repulsive potential function is defined as

Urep(P,v) =



















0, if Pd(P,Pobs)− Pm ≥ p0 or VRO ≤ 0

Kpv

(

1
Pd(P,Pobs)−Pm

− 1
p0

)

,

if 0 < Pd(P,Pobs)− Pm < p0 and VRO > 0

(5.3)

where p0 is the influence range of the obstacle, and Kpv is a positive constant.

However one can notice in (5.3) that if VRO(t) changes from positive to neg-

ative in one step, a sudden change will occur in the value of repulsive potential

function Urep(P,v). For example in Fig. 5.4, the relative velocity VRO(tk) > 0 at

step tk, however at step tk+1 the relative velocity VRO(tk+1) < 0, thus Urep(P,v)

will drop to 0 suddenly. When considering the repulsive force, i.e. the derivative

of this repulsive potential, it will result in frequent oscillations in complex environ-

ment, which is not expected for controller design. To overcome this problem, we

multiply the original repulsive potential function by cos θd, where θd = ‖θ−θRO‖,
and θ is the orientation of the robot, θRO is the angle of the unit vector nRO. The

new Urep(P,v) is as follows:

Urep(P,v) =



















0, if Pd(P,Pobs)− Pm ≥ p0 or VRO ≤ 0

Kpv

(

1
Pd(P,Pobs)−Pm

− 1
p0

)

cos θd,

if 0 < Pd(P,Pobs)− Pm < p0 and VRO > 0

(5.4)

97

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

✲

✻

o

x

y

❢

✗

r

Robot
P(tk) ✲

q

Obstacle

Pobs

nRO

v(tk)

v(tk+1)

❢

❨

P(tk+1)

Figure 5.4: Sudden change of VRO

which guarantees the repulsive potential function reduce to zero smoothly while

VRO(t) become negative. Moreover as stated in the problem statement, the above

defined potential function suffers from local minima problems. Therefore in this

chapter a new repulsive potential function is presented to solve local minima

problems.

Let us define that if a maximum deceleration βmax is applied to the robot to

reduce its angular velocity, the angle traveled by the robot before angular velocity

w(t) reduces to zero is:

θ(ω) =
ω(t)2

2βmax

Then the repulsive potential function of robot orientation and angular velocity is

defined as follows:

Urep(θ, ω) =







































0, if VRO < 0 or Pd > pθ or θd > θ0

(−Kθ1(θd − θ(ω))2 + Kθ2)
2(pθ − Pd(P,Pobs))

2(θ0 − θd)
2,

if VRO > 0 and Pd ≤ pθ and θ(ω) < θd ≤ θ0

K2
θ2

(

pθ − Pd(P,Pobs)
)2(

θ0 − θd

)2
,

if VRO > 0 and Pd < pθ and θd < θ(ω)

(5.5)

where pθ is a positive constant describing the influence range of obstacle on

Urep(θ, ω), and pθ > p0, θ0 is the influence angle, Kθ1 and Kθ2 are positive con-

98

5.3 Potential field function

✲

✻

o

x

y

❡

▼ r

Robot
P(t)

Obstacle
Pobs

✼

v2(t)

θ0

θ(ω)

v1(t)

v3(t)
❑

✶

Figure 5.5: Different cases of Urep(θ, ω)

stants. As shown in Fig. 5.5, the direction of v1(t) is out of the influence angle θ0,

thus Urep(θ, ω) = 0. In the second case, the direction of v2(t) is in the influence

angle θ0 but out of the range of θ(ω), the potential function is of paraboloidal

profile. In the last case, the direction of v3(t) is inside angle θ(ω), the potential

function is defined as the maximum value of the parabola.

One can notice that in (5.5),
(

pθ−Pd(P,Pobs)
)2

enables the value of Urep(θ, ω)

change smoothly when robot reaches and leaves the influence range of the obsta-

cle, and
(

θ0−θd

)2
enables the value of Urep(θ, ω) change smoothly when θd reaches

and exceeds the influence angle. The smooth change of Uatt(θ, ω) is very beneficial

for tracking. Therefore the new repulsive potential function is defined as

Urep = Urep(P,v) + Urep(θ, ω) (5.6)

Thus the corresponding repulsive force Srep is defined as the negative gradient of

the repulsive potential function with respect to robot position and velocity. Since

∇vU(θ, ω) = 0, we have

Srep = Srep(P,v) + Srep(θ, ω)

= −∇PUrep(P,v)−∇vUrep(P,v)−∇PUrep(θ, ω)
(5.7)

The robot velocity in the direction from the robot to the obstacle VRO can be

99

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

written as

VRO(t) = v(t)TnRO

= v(t)T Pobs −P(t)

‖Pobs −P(t)‖

then the gradients of VRO(t) with respect to velocity and position are calculated

as

∇vVRO(t) = nRO (5.8)

∇PVRO(t) =
VRO(t)nRO − v(t)

‖Pobs −P(t)‖ (5.9)

For clarity, as shown in Fig. 5.6, denote VRO⊥(t)nRO⊥ as the velocity component

perpendicular to VRO(t)nRO, which is given in the following equation:

VRO⊥(t)nRO⊥ = v(t)− VRO(t)nRO (5.10)

where

VRO⊥(t) =
√

v(t)2 − VRO(t)2

nT
RO⊥nRO = 0

thus equation (5.9) can be written as

∇PVRO(t) =
−VRO⊥nRO⊥

‖Pobs −P(t)‖

Denote nθRO⊥
as the unit vector perpendicular to nRO, and θRO − θRO⊥ = π/2,

where θRO⊥ is the argument of unit vector nθRO⊥
. Thus we have

∇PθRO =
nθRO⊥

Pd(P,Pobs)
(5.11)

Therefore

∇Pθd = ∇P‖θ − θRO‖ (5.12)

If θ > θRO, we obtain

∇Pθd = ∇P(θ − θRO) =
−nθRO⊥

Pd(P,Pobs)
(5.13)

100

5.3 Potential field function

✲

✻

o

x

y

❡

▼ r

Robot
P(t)

✯

❫

nRO

nθRO⊥

✐
θRO

Obstacle

Pobs

✒

❪

v(t)

✯ VROnRO
VRO⊥(t)nRO⊥

Figure 5.6: Vectors for defining repulsive force

If θ ≤ θRO, we have

∇Pθd = ∇P(θRO − θ) =
nθRO⊥

Pd(P,Pobs)
(5.14)

However one can notice that when θ > θRO, nθRO⊥
= −nRO⊥, and when θ ≤ θRO,

nθRO⊥
= nRO⊥, thus one can obtain that

∇Pθd =
nRO⊥

Pd(P,Pobs)

Therefore we have

Srep(P,v) =















0, if Pd(P,Pobs)− Pm ≥ p0 or VRO ≤ 0

Srep1 + Srep2,
if 0 < Pd(P,Pobs)− Pm < p0 and VRO > 0

(5.15)

where

Srep1 =
−Kpv cos θd

(Pd(P,Pobs)− Pm)2

(

1 +
VRO

amax

)

nRO (5.16)

and

Srep2 =
KpvVROVRO⊥ cos θd

amaxPd(P,Pobs)(Pd(P,Pobs)− Pm)2
nRO⊥

+ Kpv sin θd

(

1

Pd(P,Pobs)− Pm

− 1

p0

)

nRO⊥

Pd(P,Pobs)

(5.17)

101

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

We also have

Srep(θ, ω) =







































0, if VRO < 0 or Pd(P,Pobs) > pθ or θd > θ0

Srep3 + Srep4

if VRO > 0 and Pd(P,Pobs) ≤ pθ and θ(ω) < θd ≤ θ0

Srep5 + Srep6,
if VRO > 0 and Pd(P,Pobs) < pθ and θd < θ(ω)

(5.18)

where

Srep3 = −2M2H(θ0 − θd)
2nRO (5.19)

Srep4 = 4Kθ1MH2(θd − θ(ω))(θ0 − θd)
2 nRO⊥

Pd(P,Pobs)

+ 2M2H2(θ0 − θd)
nRO⊥

Pd(P,Pobs)

(5.20)

and

Srep5 = −2K2
θ2H(θ0 − θd)

2nRO (5.21)

Srep6 = 2K2
θ2H

2(θ0 − θd)
nRO⊥

Pd(P,Pobs)
(5.22)

where

M = −Kθ1(θd − θ(ω))2 + Kθ2

and

H = pθ − Pd(P,Pobs).

The relationship among the repulsive reference velocity components is shown

in Fig. 5.7 and Fig. 5.8. The repulsive forces Srep1, Srep3 and Srep5 are in the

opposite direction of nRO, which will keep the robot away from the obstacle. The

repulsive forces Srep2, Srep4 and Srep6 are in the direction of nRO⊥, which will

drive the robot for detouring. One can see that because of the new repulsive

function Urep(θ, ω), another force is generated to repulse the robot away from the

obstacle, shown as the red arrows in Fig. 5.7 and Fig. 5.8. When there are

multiple obstacles, the repulsive force can be calculated by

Srep =

nobs
∑

j=1

Srep,j (5.23)

102

5.3 Potential field function

✲

✻

o

x

y

❞

▼ r

Robot
P(t)

Obstacle
Pobs

✣

❪

v(t)

θ(ω)

✙
Srep1

Srep2

✙

❑
⑥

✛

②
Srep

Srep3

Srep4

Figure 5.7: Relationship among Srep1, Srep2, Srep3 and Srep4

✲

✻

o

x

y

❞

▼ r

Robot
P(t)

Obstacle
Pobs

✸
❑ v(t)

θ(ω)

✙
Srep1

Srep2

✙
❑

■

✾

②
Srep

Srep5

Srep6

Figure 5.8: Relationship among Srep1, Srep2, Srep5 and Srep6

103

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

where nobs is the number of obstacles in the sensor, and Srep,j is the repulsive

force generated by the jth obstacle.

After calculation of attractive and repulsive forces, the total force can be

obtained by

Stotal = Satt + Srep (5.24)

and the total force Stotal can be used for motion planning.

The objective of motion planning is to control the robot follow the direction

of the total force θs, then one common solution is to design an angular controller

(a PID one) to force the orientation of the robot converging to the desired angle

θS, see Ge & Cui (2002). However, one can also regard this problem as a desired

velocity tracking problem, since vr,y

vr,x
= Sy

Sx
= tan θs, where vr,x and vr,y are the

desired velocity on x and y axis respectively, and Sx and Sy are the component of

Stotal on x and y axis respectively. Thus, if one can force the robot’s velocity on

x (which is equal to ẋ) to track vr,x, and make the robot’s velocity on y (which is

equal to ẏ) to track vr,y, then one can ensure the robot moving with the desired

angle θs. In fact, this new interpretation by tracking desired velocity has an

important advantage, i.e. it can take into account some physical constraints of

the robots, such as maximal velocity. For example, since vr,y = Sy

Sx
vr,x = Ksvr,x,

where Ks = Sy

Sx
is known and deduced from potential field function. If Ks ≥ 1, one

can set the desired velocities as vr,y = vmy, vr,x = vmy

Ks
, where vmy = vmax

√

K2
s

1+K2
s
.

If Ks < 1, one can define the desired velocities as vr,x = vmx, vr,y = Ksvmx, where

vmx = vmax√
1+K2

s

. In both cases, we can always ensure that the physical constraints

are satisfied. The corresponding controller will be detailed in the following section

by using a so-called i-PID technique.

104

5.4 Motion planning for non-holonomic mobile robots via i-PID
controller

5.4 Motion planning for non-holonomic mobile robots

via i-PID controller

5.4.1 Robot model

This chapter also considers the type (2.0) robot model, let us recall it here:







ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
(5.25)

Different methods have been proposed to use the total force for robot motion

planning, for instance, in Ge & Cui (2002) the angle of the total force is used

to design a PID controller to control θ, and set the linear velocity as a positive

one. However this method is not robust when there are noises in the system.

In De Luca & Oriolo (1994), a simple controller is obtained to track the desired

velocities vr,x and vr,y, by using pseudoinversion. Since in robot model (5.25) we

have
[

ẋ
ẏ

]

= G(θ)

[

v
ω

]

(5.26)

where G(θ) =

[

cos θ 0
sin θ 0

]

, thus the controller proposed in De Luca & Oriolo

(1994) is as follows:
[

v
ω

]

=
[

GT G
]−1

GT

[

vr,x

vr,y

]

(5.27)

where vr,x and vr,y are the desired velocity on x and y axis respectively. Thus,

if the robot is able to track both vr,x and vr,y, then the robot is able to track

the direction of the total force. However, as the author of De Luca & Oriolo

(1994) has pointed out that if the initial condition of the robot is different with

the reference, this approach can not converge the velocity to the reference, since

the controller just solves the tracking problem in the least square sense, and the

proposed controller in De Luca & Oriolo (1994) cannot guarantee the asymptot-

ical convergence: ẋ → vr,x and ẏ → vr,y. In order to ensure the convergence, an

intuitive solution is to consider the dynamics of ẍ and ÿ, and design a controller

to make ẋ and ẏ tracking the desired velocity vr,x and vr,y.

For this, let us consider the following dynamics deduced from the system

105

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

(5.25) as follows:
[

ẍ
ÿ

]

= G̃ũ (5.28)

where

G̃ =

[

cos θ −v sin θ
sin θ v cos θ

]

(5.29)

and ũ = [v̇, ω]T being the new control input. The following section is then devoted

to using the robust i-PID controller to achieve the tracking tasks.

5.4.2 i-PID controller

In this chapter, we use the controller proposed in Chapter 4 to control the robot.

Different from Chapter 4, the reference to be tracked here is the desired velocity,

thus the controller is a bit different:

ũk = α−1(x, y, ẋ, ẏ)(Fk−1 + ek) (5.30)

where

ek =

[

v̈r,x

v̈r,y

]

+ Kp

[

ẋ− vr,x

ẏ − vr,y

]

+ KI

∫

T

[

ẋ− vr,x

ẏ − vr,y

]

(5.31)

and Kp and KI are usual tuning gains. The determination of α(x, y, ẋ, ẏ) and

the calculation of Fk are exhaustively discussed in Chapter 4, and the numerical

differentiation method used here is stated in section 2.4.3. Here we just note that

Fk is calculated as

Fk =
6

T

∫ 1

0

(2δ − 1)

[

ẋ
ẏ

]

dδ + 6α(x, y, ẋ, ẏ)

∫ 1

0

(δ2 − δ)ũdδ (5.32)

where δ ∈ [0, 1].

5.5 Simulation results

In the simulation, the parameters are set as follows: maximum linear acceleration

amax = 2.0 m/s2, maximum angular acceleration βmax = 1.0 rad/s, obstacle

influence range on Urep(P,v) p0 = 0.3 m, obstacle influence range on Urep(θ, ω)

pθ = 0.6 m, time window T = 3 s, influence angle θ0 = π/4. Kp = 50, KI = 100,

106

5.5 Simulation results

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

X
axis

Y
ax

is

Obstacle

Target
Trajectory with old potential function
Trajectory with new potential function

Figure 5.9: Situation with local minima

Katt = 0.04, Kpv = 0.8 and Kθ1 = Kθ2 = 0.8,

α(x, y, ẋ, ẏ) =

[

sgn(cos θ̂) −sgn(sin θ̂)

sgn(sin θ̂) sgn(cos θ̂)

]

,

where sgn(σ) is the sign function which extracts the sign of real number σ, and

θ̂ is the estimation of θ.

The first simulation is made with the situation of local minima, in which

the connection between the robot and the target passes through the center of

the obstacle, and the velocity direction also passes through the center of the

obstacle. As we can see in Fig. 5.9, with the classical potential function defined

in Ge & Cui (2002), the robot stops in front of the obstacle. However with our

new potential function, there are no local minima problems due to the introduce

of new potential fields.

The second simulation is made using the original repulsive function of Ge &

Cui (2002) in comparison with our new repulsive function where no local minima

occurs. One can see that although the robot is able to avoid obstacles (Fig.

5.10), there are many unexpected oscillations in the generated repulsive force

(Fig. 5.11), which eventually result in oscillations in the generated references

107

chapter4_APF/pic/fig_local.eps

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

X − axis

Y
 −

 a
xi

s

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

Target
Robot Trajectory

Figure 5.10: Robot trajectory with original Srep(P,v)

(Fig. 5.12 and Fig. 5.13), this is detrimental for velocity tracking, the tracking

errors are shown in Fig 5.14. One can see that there are also many oscillations

in the generated controls (Fig. 5.15 and Fig. 5.16).

In the third simulation, only the repulsive force Srep(θ, ω) is imposed on the

robot, one can see in Fig. 5.17 that the robot is also able to avoid all the obstacles

with only Srep(θ, ω). We can see from Fig. 5.18 that Srep(θ, ω) changes smoothly

without sudden change, velocity tracking results are shown in Fig. 5.19 and Fig.

5.20, reference velocities also changes smoothly, the controller is able to track the

velocity references, one can see in Fig. 5.21 that the tracking errors are reduced.

The control inputs calculated by the i-PID controller are shown in Fig. 5.22 and

Fig. 5.23. However one can notice that there is no distance constraints in the

repulsive function Urep(θ, ω), so the trajectory in Fig. 5.17 is close to the obstacle.

The last simulation is shown from Fig. 5.24 to Fig. 5.31, where both repulsive

forces Srep(θ, ω) and Srep(P,v) are imposed on the robot to avoid obstacles. The

robot trajectory is shown in Fig. 5.24, the forces generated by the potential field

function are shown in Fig. 5.25 and Fig. 5.26, velocity tracking results are shown

in Fig. 5.27 and Fig. 5.28, and tracking errors are shown in Fig. 5.29. The

108

chapter4_APF/pic/fig_pv_trajectory.eps

5.5 Simulation results

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)

S

rep
(P,v)

Figure 5.11: Repulsive force of original Urep(P,v)

0 2 4 6 8 10 12 14
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (s)

v

r,x

v
x

Figure 5.12: Velocity tracking in x direction with original Srep(P,v)

109

chapter4_APF/pic/fig_pv_Fpv.eps
chapter4_APF/pic/fig_pv_xr.eps

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

0 2 4 6 8 10 12 14
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (s)

v

r,y

v
y

Figure 5.13: Velocity tracking in y direction with original Srep(P,v)

0 2 4 6 8 10 12 14
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time (s)

Tracking error in x direction
Tracking error in y direction

Figure 5.14: Tracking errors with original Srep(P,v)

110

chapter4_APF/pic/fig_pv_yr.eps
chapter4_APF/pic/fig_pv_errors.eps

5.5 Simulation results

0 2 4 6 8 10 12 14

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

lin
ea

r
ve

lo
ci

ty
 (

m
/s

)

v

Figure 5.15: Linear velocity control with original Srep(P,v)

0 2 4 6 8 10 12 14
−8

−6

−4

−2

0

2

4

6

8

10

time (s)

an
gu

la
r

ve
lo

ci
ty

 (
ra

d/
s)

ω

Figure 5.16: Angular velocity control with original Srep(P,v)

111

chapter4_APF/pic/fig_pv_v.eps
chapter4_APF/pic/fig_pv_w.eps

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

X − axis

Y
 −

 a
xi

s

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

Target
Robot Trajectory

Figure 5.17: Robot trajectory with only Srep(θ, ω)

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

S

rep
(θ,ω)

Figure 5.18: Repulsive force Srep(θ, ω) with only Srep(θ, ω)

112

chapter4_APF/pic/fig_para_trajectory.eps
chapter4_APF/pic/fig_para_Ftheta.eps

5.5 Simulation results

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (s)

v

r,x

v
x

Figure 5.19: Velocity tracking in x direction with only Srep(θ, ω)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

v

r,y

v
y

Figure 5.20: Velocity tracking in y direction with only Srep(θ, ω)

113

chapter4_APF/pic/fig_para_xr.eps
chapter4_APF/pic/fig_para_yr.eps

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

0 2 4 6 8 10 12

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time (s)

Tracking error in x direction
Tracking error in y direction

Figure 5.21: Tracking errors with only Srep(θ, ω)

0 2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

time (s)

lin
ea

r
ve

lo
ci

ty
 (

m
/s

)

v

Figure 5.22: Linear velocity control with only Srep(θ, ω)

114

chapter4_APF/pic/fig_para_errors.eps
chapter4_APF/pic/fig_para_v.eps

5.5 Simulation results

0 1 2 3 4 5 6 7 8 9

−2

0

2

4

6

8

time (s)

an
gu

la
r

ve
lo

ci
ty

 (
ra

d/
s)

ω

Figure 5.23: Angular velocity control with only Srep(θ, ω)

control inputs calculated by the i-PID controller are shown in Fig. 5.30 and in

Fig. 5.31. One can see that with both repulsive forces Srep(θ, ω) and Srep(P,v),

the robot is able to avoid all the obstacles and keep a predefined distance from

the obstacles, and there is no oscillations in repulsive forces and input controls.

A 3D simulation made by using ROS (Robot Operating System) and an im-

plementation in a wifibot can be found in the following link: Video Link.

5.5.1 Switching strategy

As stated in section 5.2, when the robot is very close to obstacles, there is possibly

no solution to the optimization problem. The path planning strategy proposed in

this chapter always has solutions, but the robot trajectories may not be optimal.

Therefore we can combine the two planning methods, when there is no solution

to the optimization problem, the robot can switch to the method proposed in this

chapter to guide the robot away from obstacles, and then switch back to plan

optimal trajectories (see Fig. 1.5(b)).

The obstacles are assumed as circles in the previous simulations, and the

potential field functions are calculated from the center of the circle. However

in complex environment the obstacles are expressed as polygons as in Chapter

115

chapter4_APF/pic/fig_para_w.eps
http://www.youtube.com/watch?v=7adahs6YLZE

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

X − axis

Y
 −

 a
xi

s

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

Target
Robot Trajectory

Figure 5.24: Robot trajectory with both Srep(θ, ω) and Srep(P,v)

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time (s)

S

rep
(P,v)

Figure 5.25: Repulsive force Srep(P,v) with both Srep(θ, ω) and Srep(P,v)

116

chapter4_APF/pic/fig_2F_trajectory.eps
chapter4_APF/pic/fig_2F_Fpv.eps

5.5 Simulation results

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

time (s)

S

rep
(θ,ω)

Figure 5.26: Repulsive force Srep(θ, ω) with both Srep(θ, ω) and Srep(P,v)

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

v

r,x

v
x

Figure 5.27: Velocity tracking in x direction with both Srep(θ, ω) and Srep(P,v)

117

chapter4_APF/pic/fig_2F_Ftheta.eps
chapter4_APF/pic/fig_2F_xr.eps

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

v

r,y

v
y

Figure 5.28: Velocity tracking in y direction with both Srep(θ, ω) and Srep(P,v)

0 2 4 6 8 10 12

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time (s)

Tracking error in x direction
Tracking error in y direction

Figure 5.29: Tracking errors with both Srep(θ, ω) and Srep(P,v)

118

chapter4_APF/pic/fig_2F_yr.eps
chapter4_APF/pic/fig_2F_errors.eps

5.5 Simulation results

0 2 4 6 8 10 12

0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

lin
ea

r
ve

lo
ci

ty
 (

m
/s

)

v

Figure 5.30: Linear velocity control with both Srep(θ, ω) and Srep(P,v)

0 2 4 6 8 10

−2

0

2

4

6

8

time (s)

an
gu

la
r

ve
lo

ci
ty

 (
ra

d/
s)

ω

Figure 5.31: Angular velocity control with both Srep(θ, ω) and Srep(P,v)

119

chapter4_APF/pic/fig_2F_v.eps
chapter4_APF/pic/fig_2F_w.eps

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

3, thus in the following simulation, the potential functions are defined to be

calculated from the closest point on the obstacle, and the distance between the

robot and an obstacle is defined as the distance between the robot and the closest

point on the obstacle. For example in Fig. 5.32, if the robot is the position of R1,

then closest point is o1, and the distance between the robot and the obstacle is

R1o1. If the robot is the position of R2, then closest point is o2, and the distance

between the robot and the obstacle is R2o2.

✉✉

✉

✉
R1

R2

Obstacle

o1

o2

Figure 5.32: Distance between the robot and an obstacle

A simulation which combines the two methods is shown in Fig. 5.33, the blue

trajectories are planned by optimization, and the red trajectories in zone A and

zone B are planned by potential field functions. Zoom of zone A and zone B are

shown in Fig. 5.34 and Fig. 5.35 respectively. One can see that, the robot needs

to pass a narrow corridor, and there is no solution to the optimization problem

when the robot is very close to the obstacle, thus the robot switch to the potential

field function method, and the robot is able to move away from the obstacle, then

the robot switch back and continue. The switching time is shown in Fig. 5.36.

5.6 Conclusion

This chapter proposes a new potential field method for robot motion planning.

The new potential field function, which takes into account the robot orientation

120

5.6 Conclusion

4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

20

A

B

Intermediate objective
Trajectory planned by optimization
Trajectory planned by potential function

Figure 5.33: Path planning using optimization control and potential field

10 10.1 10.2 10.3 10.4 10.5 10.6 10.7

0.5

1

1.5

2

2.5

Trajectory planned by optimization
Trajectory planned by potential function

Figure 5.34: Zoom of zone A

and angular velocity, is able to solve local minima problems and produce smooth

repulsive force in complex environment to avoid oscillations. Then the i-PID

controller is used for robot motion planning, the force generated by potential field

121

chapter4_APF/pic/fig_switch.eps
chapter4_APF/pic/fig_switchzoom1.eps

5. MOTION PLANNING FOR MOBILE ROBOTS USING
POTENTIAL FIELD AND THE I-PID CONTROLLER

8.5 9 9.5 10

8

8.5

9

9.5

10

Trajectory planned by optimization
Trajectory planned by potential function

Figure 5.35: Zoom of zone B

0 5 10 15 20 25 30

Optimization

Potential field function

time (s)

Figure 5.36: Switching Time

function is used as reference. The advantages and the efficiency of the proposed

algorithm and the controller is shown thereafter via different simulations and an

implementation in a real robot.

122

chapter4_APF/pic/fig_switchzoom2.eps
chapter4_APF/pic/fig_SwitchingTime.eps

Chapter 6

Cooperative path planning for

mobile robots based on visibility

graph

6.1 Introduction

Multi-robot systems are currently a major focus of research in the field of robotics.

The research effort into the cooperative path planning relies on the fact that the

cooperative path planning between robots have the possibility to solve problems

more efficiently than a single robot, since a single robot will ultimately be spatially

limited. More recently, multiple autonomous mobile robots have been proposed

for rescue missions Murphy et al. (2009); Nagatani et al. (2011), exploration

Al Khawaldah et al. (2012); Kim et al. (2011), and even entertainments Camacho

et al. (2006); Kim (2004).

In this chapter, the problem of interest is the cooperative path planning of

autonomous mobile robots evolving in environment with obstacles. As stated in

section 1.2.3, the path planning methods can be divided into two broad cate-

gories: global path planning and local path planning. However, both global path

planning and local path planning have their own drawbacks. Completed environ-

ment information is required for the global path planning, which is not possible

when the environment is partially detected by the robots. In local path planning,

the path planned may not be globally optimized, since the environment is only

partially known.

123

6. COOPERATIVE PATH PLANNING FOR MOBILE ROBOTS
BASED ON VISIBILITY GRAPH

t

t
Objective G(xf , yf)

p1

p2

p3

p4

p5
p6

Obstacle

t

Robot1

Robot2
O1(x1, y1)

O2(x2, y2)

Figure 6.1: Disadvantage of Local Path Planning

The problem of path planning of multi-robot was investigated in Harinarayan

& Lumelsky (1994), but the algorithm proposed does not provide optimal path.

Some cooperative path planning approaches based on A∗ search Chiddarwar &

Babu (2011), geometric method Leroy et al. (1999) or artificial potential field

Warren (1990) are able to provide optimal path, while however, as stated before,

the constraints of the robot are not taken into account. In this chapter, the coop-

erative path planning is considered based on the shared map information between

robots, and robots are able to reach the target by achieving the intermediate ob-

jectives generated by visibility graph. The reach of the intermediate objectives is

ensured by the optimal control problem.

6.2 Problem statement

As stated above, the cooperative path planning between robots has the possibility

to solve problems more efficiently than a single robot, since a single robot will

ultimately be spatially limited.

For example in Fig. 6.1, there is an obstacle which is represented by its vertices

{p1, p2, ..., p6}. Robots are supposed to go to the desired objective G(xf , yf) while

avoid the detected obstacles. With only local information, Robot1 only sees the

obstacle p1p2p3, and Robot2 only sees the obstacle p1p6 (the solid line in the

figure), and one can see that the quasi-optimal∗ path for for Robot2 is {O2p
1G},

and when Robot2 pass over the point p1, another new obstacle p1p2p3 will be

∗means that shortest path without considering collisions and kinematic constraints

124

6.3 Generation of intermediate objectives based on visibility graph

found, then it will have to make a long detour to reach the objective, Robot1

will encounter similar problems too. Nevertheless if planning with the shared

information between the two robots, the path can be more quasi-optimal (O1p
3G

for Robot1 and O2p
6G for Robot2), thus unnecessary detours are avoided. This

motivates us to study the path planning problem based on shared information of

multi-robots.

Moreover, this chapter proposes to solve the path planning problem by using

visibility graph and optimal control. Visibility graph approach has the advantage

of calculating the shortest collision-free quasi-optimal trajectory quickly and easy

implementing Maron & Lozano-Pérez (1996), however the trajectory generated

by visibility graph consists of the vertices of the obstacles, that means robots will

have to touch these vertices when following the trajectory. As we know in practice,

the robot can not touch the obstacles and not even close to them. Moreover, the

visibility graph is an off-line path planning algorithm, and the velocity constraints,

robot kinematic constraints are not considered. These drawbacks prevent the

implementing of visibility graph on real mobile robots. For the problems stated

above, this chapter proposes to convert the detected information of obstacles into

polygons to avoid collisions of the vertices and merge two polygons when they

intercross, which will be explained in the next section, and then the constraints

of the robot are considered as a real time optimal control problem.

6.3 Generation of intermediate objectives based

on visibility graph

The visibility graph approach has the advantage of calculating the shortest collision-

free quasi-optimal trajectory quickly and easy implementing, however, as stated

in the previous section, its drawback prevents its implementing on real mobile

robots. To overcome these drawbacks, the polygon generation and mergence

algorithms are proposed in the following subsections.

6.3.1 Polygon generation

In our research, we take into account the general shape of obstacles. Considering

the limited sensor range, as stated in Chapter 3, only a portion of obstacles can

125

6. COOPERATIVE PATH PLANNING FOR MOBILE ROBOTS
BASED ON VISIBILITY GRAPH

Obstacle2

O(x(t), y(t))

✈
Target G(xf , yf)

p1
2

p8
2

p7
2

p6
2

p5
2

p4
2

p3
2

p2
2g8

2

g7
2

g6
2

g5
2

g4
2

g3
2

g2
2

g1
2

✕☛
r

Obstacle1

✈

p2
1

p3
1

p4
1

p1
1

g1
1

g2
1

g3
1

g4
1

g5
1

g6
1

Robot

Figure 6.2: Polygon generation

be captured, thus the obstacles can be described neither as circles nor as complete

polygons.

The representation of obstacles is defined as same as in Chapter 3, as shown

in Fig 3.3, the visible portion of the ith obstacle contour can be approximated by

a succession of segments Sj
i , where j = 1, 2, ..., q, and q is the number of segments

on an obstacle. Each segment is represented by its two end points pj
i and pj+1

i ,

and each point has their coordinates (x
p

j
i
, y

p
j
i
) and (x

p
j+1
i

, y
p

j+1
i

) respectively.

As stated in section 6.2, the robot can not touch the obstacles, not even close

to them, so the obstacles need to be expanded to provide safe path. Let us take

an example, as shown in Fig. 6.2, there are two obstacles Obstacle1 and Obstacle2

which are represented by their vertices respectively {p1
1, ..., p

4
1},{p1

2, ..., p
8
2}. The

dotted part {p4
1} and {p5

2, p
6
2, ..., p

8
2} are invisible for the moment, the robot as-

sumes that there is no obstacle in the invisible part. Successions of joint segments

are detected via the robot sensor: {p1
1p

2
1p

3
1}, {p1

2p
2
2p

3
2p

4
2}. If applying the visibility

graph with the visible segments, the shortest path Op4
2G will be generated, which

whereas will navigate the robot run into the obstacle. As a result, closed poly-

gons {g1
1, g

2
1, ..., g

6
1} and {g1

2, g
2
2, ..., g

8
2} are generated according to the segments

detected by the sensor. Thus a feasible safe quasi-optimal path {Og4
2g

5
2G} can be

obtained via visibility graph.

Before explaining the polygon generation algorithm, let us give some notations

which will be used in the sequel. Define P = {Pi} for 1 ≤ i ≤ N to be all

sets of obstacle boundaries detected by the sensor, where N is the number of

126

6.3 Generation of intermediate objectives based on visibility graph

detected obstacle boundaries. Note Pi = {pj
i} for 1 ≤ j ≤ Ni being the set of

points to represent the ith obstacle boundary, where Ni is the number of points.

Define List_In saves all the vertices of the expanded polygon, which are on

the same side of the obstacle with the robot. Define List_Out saves all the

vertices of the expanded polygon, which are on the other side of the segment

with the robot. Note O(x(t), y(t)) as the current robot position, gia and gib as

two vertices to be calculated whose corresponding point on the obstacle is pi,

named as boundary vertices. Note dis(Ogia) as the distance between the robot

position O(x(t), y(t)) and gia. For gia and gib, if dis(Ogia) < dis(Ogib), i.e. the

point gia is on the same side of the obstacle with the robot, and the point gib is

on the other side of the obstacle with the robot, then we move gia onto List_In,

noted as gia → List_In, and gib → List_Out. For example in Fig. 6.2, for

Obstacle2, List_In2 = {g1
2, g

2
2, g

3
2, g

4
2}, and List_Out2 = {g5

2, g
6
2, g

7
2, g

8
2}.

The generation of the polygon is based on the calculation of the points de-

tected on the obstacle. The points detected are distinguished as disjoint points

and joint points, let us firstly start with the disjoint points.

6.3.1.1 Disjoint points

Let us take one obstacle (p1p2p3) as an example (Fig. 6.3(a-b)), p1 is the disjoint

endpoint we concerned, r is the obstacle avoidance criterion, and point p′ is

at a distance of r to the point p1 on the extension of segment from p2 to p1,

whose coordinate can be easily obtained as (p′x, p
′
y), there are two cases to be

distinguished.

Case 1. If the slope of line p1p2 not exists, shown in Fig. 6.3(a), the coordinate

of the boundary vertices g1a(p
′
x + x, p′y) and g1b(p

′
x − x, p′y) can be obtained easily.

Case 2. If the slope k of the segment p1
i p

2
i exists, shown in Fig.6.3(b), the co-

ordinate of boundary vertices g1a(
r×k√
k2+1

+ p′x,
−r√
k2+1

+ p′y), and point g1b(
−r×k√
k2+1

+

p′x,
r√

k2+1
+ p′y) can be obtained.

After calculation, if dis(Ogia) < dis(Ogib), then gia → List_In, gib →
List_Out, and vice versa.

127

6. COOPERATIVE PATH PLANNING FOR MOBILE ROBOTS
BASED ON VISIBILITY GRAPH

pj−1

pj

(c) (d)

pj+1

pj

pj−1

pj+1

gja

gjb

gja

gjb

✉

✉
✉

✉

O(x(t), y(t))

✉

✉
Robot

O(x(t), y(t))
Robot

p1 p1

p2

p2

p′

g1a

g1b

g1a

g1b

(a) (b)

✻
❄

r

✲✛

❘
■r

p′

p3 p3

✒
✠

r

r

O(x(t), y(t))

✉ O(x(t), y(t))

✉

Robot

Robot

Figure 6.3: Polygon generation

6.3.1.2 Joint points

Take the joint point pj(xj , yj) as an example (seen in Fig. 6.3(c-d), whose previous

point is pj−1(xj−1, yj−1) and following point is pj+1(xj+1, yj+1). One can notice

that the boundary vertices gja, gjb to be calculated are at a distance of r to both

line pj−1pj and pjpj+1, thus the point can be calculate by this distance condition.

There are also two cases for the joint points.

Case1: If the slop of one segment connected with the joint point pj not exists,

for example the slop of pj−1pj not exists and the slop of pjpj+1 is kj+1, shown in

Fig. 6.3(c). With the above distance condition we have 4 solutions:

{

gx1 = xj + r

gy1 = yj + rkj+1 ± r
√

k2
j+1 + 1

{

gx2 = xj − r

gy2 = yj − rkj+1 ± r
√

k2
j+1 + 1

Case2: If both slop kj+1 and kj−1 exist, shown in Fig. 6.3(d), we also have 4

128

6.3 Generation of intermediate objectives based on visibility graph

solutions:






gx1 =
xjkj+1−xjkj−1+r

√
k2

j+1+1±r
√

k2
j−1+1

kj+1−kj−1

gy1 =
xjkj+1−xjkj−1+rkj−1

√
k2

j+1+1±rkj+1

√
k2

j−1+1

kj+1−kj−1











gx2 =
xjkj+1−xjkj−1−r

√

k2
j+1+1±r

√

k2
j−1+1

kj+1−kj−1

gy2 =
xjkj+1−xjkj−1−rkj−1

√

k2
j+1+1±rkj+1

√

k2
j−1+1

kj+1−kj−1

After having 4 solutions, find out gia with dis(Ogj
ia) of the smallest value, and

gib with dis(Ogj
ib) of the largest value, then gj

ia → List_In, gj
ib → List_Out.

After calculating the points on the obstacles one by one as stated above,

List_In and List_Out are obtained for each obstacle, thus the closed boundary

of obstacles are obtained.

6.3.2 Polygon mergence algorithm

When there are more than one robot in the system, there will be a shared map

between robots. Since non-intersecting closed polygons are required for the visi-

bility graph, two intercrossed polygons generated from two obstacles need to be

merged as a new closed polygon.

Assuming that obstacles Pi{p1
i , p

2
i , ..., p

n
i } and Pj{p1

j , p
2
j , ..., p

m
j } intercross with

each other, Pi and Pj are in the sensor range of robot1 and robot2 respectively. As

defined before, List_Ini and the List_Outi have all the boundary vertices of Pi,

the generated boundary Gi{g1
i , g

2
i , ..., g

2n
i } is obtained by connecting the points

on List_Ini and List_Outi one by one in order, equivalently we have List_Inj ,

List_Outj and Gj{g1
j , g

2
j , ..., g

2m
j } of Pj . Denote pk

i ↔ pm
j as connecting pk

i and

pm
j , the segment p1p2 is noted as p1p2, and function Intersection(ab, cd) returns

the intersection point of line ab and cd. Now let us consider the condition of

boundary mergence.

Theorem 6.3.1. Two obstacles Pi and Pj detected by two robots intercross with

each other, there are 7 possible cases.

Proof. The algorithm starts to search every point of the obstacle from the first

point p1
i of Pi until the endpoint, and then search the points on Pj. The points

of the obstacle can de divided into two types: disjoint points and joint point. For

each type of points, they are either on the other obstacle or not, so there are 4

129

6. COOPERATIVE PATH PLANNING FOR MOBILE ROBOTS
BASED ON VISIBILITY GRAPH

p1
j

p2
j

p3
j

p1
i

p2
i

p3
i

List_Ini[1]

List_Outi[1]

Robot1
O1(x1(t), y1(t))

Robot2
O2(x2(t), y2(t))

OBSTACLE

Pj

Pi
s

s

s

s

Figure 6.4: Polygon mergence of Case1

possible cases. However when the disjoint points is on the other obstacle, there

are three different situations, so we have six cases now. Moreover, there is one

more special case: the obstacle detected by one robot is a part of or exactly the

other obstacle. To sum up, there are seven possible cases.

Now let us clarify the seven possible cases.

Case1: Disjoint point is not on the other obstacle. Point p1
i is the

disjoint point of obstacle Pi, if p1
i /∈ Pj, then List_Ini[1]↔ List_Outi[1], shown

as the black solid line in Fig. 6.4.

Case2: Disjoint point is the disjoint point of the other obstacle. As

shown in Fig. 6.5. Point p1
i is the disjoint point of obstacle Pi, and point p1

j is the

disjoint point of the obstacle Pj , two obstacle jointed at the point p1
i (p

1
j), then if

p1
i p

2
i 6‖ p1

jp
2
j (shown in Fig. 6.5(a)), calculate new point

T1 = Intersection(List_Outi[1]List_Outi[2], List_Outj[1]List_Outj[2])
T2 = Intersection(List_Ini[1]List_Ini[2], List_Inj[1]List_Inj [2])

then let List_Ini[1] = List_Inj [1] = T2, List_Outi[2] ↔ T1, List_Outj[2] ↔
T1, shown as the black solid segments in the figure.

Case3: Disjoint point is the disjoint point of the other obstacle. If

p1
i p

2
i ‖ p1

jp
2
j , as shown in Fig. 6.5(b), then List_Ini[1]↔ List_Inj[1], and delete

point List_Outi[1], List_Outj[1].

Case4: Disjoint point is the joint point of the other obstacle.

Shown in Fig. 6.6, if point p1
i is the disjoint point of obstacle Pi, and p1

i ∈ Pj

130

6.3 Generation of intermediate objectives based on visibility graph

p2
i

p1
i

p1
j

p2
j

(a) (b)

p3
i

p2
i

p1
i

p1
j

p2
j

p3
j

List_Ini[1] List_Inj [1]

List_Ini[2]

List_Inj [2]

List_Outi[2]

List_Outj [2]

List_Ini[1] List_Inj [1]

Pi

Pi

Pj

Pj

T1

T2

s

s

ss
s

Robot2

Robot1
Robot2Robot1

s

Figure 6.5: Polygon mergence of Case2 and Case3

p3
i

p1
i

p2
i

p1
j

p2
j

p3
j

p1
i

p2
i

p3
i

p1
j

p2
j

p3
j

List_Ini[1] List_Outj [3]

List_Ini[1]

List_Outj [3](a) (b)

List_Outj[1]

List_Outi[2]

List_Outi[1]

Pi
Pj

Pi

Pj

T1

s
s

s

Robot1 Robot2

Robot1

Robot2 s

s

s

Figure 6.6: Polygon mergence of Case4

131

6. COOPERATIVE PATH PLANNING FOR MOBILE ROBOTS
BASED ON VISIBILITY GRAPH

s

p1
i

p2
i

p3
i

p4
i

p1
j

p2
j

p3
j

p4
j

Pi

Pj

T1

T2

List_Outj[4]

List_Outi[4]

List_Outj [1]

List_Outi[2]

s

(a)

s

p1
i

p2
i

p3
i

p4
i

p5
i

p5
j

p4
j

p3
j

p2
j

p1
j

List_Outi[5]

List_Outi[4]

List_Outi[3]

List_Outi[2]

(b)

s

s
s

Robot1

Robot1

Robot2
Robot2

Figure 6.7: Polygon mergence of Case5 and Case6

but not the disjoint point of Pj . For example p2
j = p1

i , then check the following

point p3
j and previous point p1

j of point p2
j , whether they satisfy the following

conditions:

(1) Not on obstacle Pi;

(2) line p1
jp

2
j ∦ p1

i p
2
i or p2

jp
3
j ∦ p1

i p
2
i ;

(3) Segment List_Outj[1]List_Outj[2] ∩ p1
i p

2
i = ∅

or List_Outj[2]List_Outj[3] ∩ p1
i p

2
i = ∅.

If the point satisfies all the conditions stated above, for example, point p3
j in

the Fig. 6.6(a) and 6.6(b), then List_Ini[1]↔ List_Outj[3].

While if the point only satisfies the first two conditions, but not the third one,

for example point p1
j in Fig. 6.6(b), segment List_Outj[1]List_Outj[2]∩p1

i p
2
i 6= ∅,

then calculate new point

T1 = Intersection(List_Outi[1]List_Outi[2], List_Outj[1]List_Outj[2])

and List_Outi[2] ↔ T1, List_Outj[1] ↔ T1, shown as the black solid segments

in the figure.

Case5: Joint point is on the other obstacle.

If a jointed point of obstacle Pi is also on obstacle Pj, take the point p2
j in Fig.

6.7(a) as an example. Then find out the segment which intercross with the other

obstacle but not on or parallel with the other obstacle, for example, i.e. p1
jp

2
j ∈ Pj,

p1
jp

2
j ∩ p2

i p
3
i = p2

j , p3
i p

4
i ∈ Pi, p3

i p
4
i ∩ p2

jp
3
j = p3

i and List_Outj[1]List_Outj[2] ∩

132

6.3 Generation of intermediate objectives based on visibility graph

p1
i

p2
i

p3
i

p4
i

p5
i

p1
j

p2
j

p3
j

Pj

Pi

t

t
O2(x2(t), y2(t))

Robot2

O1(x1(t), y1(t))
Robot1

Figure 6.8: polygon mergence

List_Outi[2]List_Outi[3] 6= ∅, then calculate new point

T2 = Intersection(List_Outi[2]List_Outi[3], List_Outj[1]List_Outj[2])

and List_Outi[2]↔ T2, List_Outj[1]↔ T2.

Same with point p3
i , calculate new point T1 and List_Outi[4]↔ T1, List_Outj[4]↔

T1. Shown as the black solid segments in Fig. 6.7(a).

Case6: Point is not on the other obstacle. If the point is not on the

other obstacle, pk
i for example, then check

(1) pk
i is not the first point of obstacle Pi;

(2) pk
i p

k−1
i ∩ Pj = ∅, where the point pk−1

i is the previous point of point pk
i ,

which has been searched.

If the point satisfies the two conditions, then List_Outi[k]↔ List_Outi[k−
1].

As we can see in Fig. 6.7(b), for example, point p3
i is not the first point of

Pi and p3
i /∈ Pj . However p2

i p
3
i ∩ Pj 6= ∅, thus point List_Outi[2] and point

List_Outi[3] are not connected. Point p4
i and point p5

i satisfy all the three con-

ditions, thus List_Outi[3]↔ List_Outi[4], List_Outi[4]↔ List_Outi[5].

Case7: When an obstacle in the sensor is a part of or exactly the other ob-

stacle, for example obstacle Pj ∈ Pi, then take the generated polygon of obstacle

Pi as the merged polygon.

Till now the the outer boundary is merged, then connect all the points in

List_In one by one in order, List_In[k]↔ List_In[k+1], where k = {1, 2, ..., mLi−
1}, mLi is the number of points in List_In, thus the merged polygon is obtained.

133

6. COOPERATIVE PATH PLANNING FOR MOBILE ROBOTS
BASED ON VISIBILITY GRAPH

6.3.3 Generation of intermediate objectives

Once the map is established after robots sharing their map information, the quasi-

optimal path can be generated by visibility graph, and the path consist of a series

of points which can be taken as intermediate objectives for robots. The robots

can reach the final objective by achieving every intermediate objective in order.

Let us define IO−List = {pk, G} for 1 ≤ k ≤ mIO saves the selected intermediate

objectives, where mIO is the number of intermediate objectives.

However as stated in previous section, the quasi-optimal paths generated by

visibility graph consist of only straight line segments, the velocity constraints,

kinematic constraints and non-holonomic constraints of the robot are not con-

sidered, so that the optimal path planning algorithm is applied to calculate the

robot trajectory between the current robot position and the intermediate objec-

tive, and ensure all the constraints of the robot, which will be explained in the

next section.

6.4 Path planning based on intermediate objec-

tives

The reaching of the intermediate objectives can be ensured by either optimization

algorithm proposed in Chapter 3 or the motion planning method proposed in

Chapter 5. In this chapter we use the optimal path planning algorithm proposed

in Chapter 3. The problem formulation, the representation of obstacles, the

distance between the robot and obstacles, the system model and the optimal

function are defined as same as those in Chapter 3. The problem is also considered

as an optimal control problem over a receding horizon, with Tc being the update

period, and 0 < Tc < Tp, where Tp is the trajectory planning horizon. However

the switching region is defined differently, let us clarify it in the following.

6.4.1 Reach switching region

Let take the following simple obstacle as an example (shown in Fig. 6.9) to

explain the algorithm. For Robot1, suppose that the list of intermediate objectives

134

6.4 Path planning based on intermediate objectives

is already obtained by the visibility graph approach:

IO_List = {g2
i , g

1
i , G}

Then the robot is navigated to reach the first point in IO_List, i.e. g2
i , then

g1
i , then G. Thus the problem now becomes an optimal problem with constraints

C1 − C4 (constraints stated in Chapter 3) by minimizing the cost function with

respect to current intermediate objective, i.e.

min

∫

Tp

∥

∥O − g2
i

∥

∥

2
dt, s.t. C1 − C4 (6.1)

As stated in Chapter 3, the solution of this optimal problem yields optimal

trajectories, then one can get optimal control (v, ω) according to the flatness

property of the system, or use the i-PID controller to track optimal trajectories.

The optimal path planning method is able to guarantee the robot moving

towards the intermediate objective, and we need to define when to switch the

intermediate objective, and continue to go to the next intermediate objective or

to replan the path.

Obstacle

p1
i

p2
i

p3
i

p4
i

p5
i

p6
i

p7
i

p8
i

g1
i

g2
i

g3
i

g4
i

g5
i

g6
i

g7
i

g8
i

✉

✉

✉ g9
i

g10
i

Objective

G(xf , yf)

Robot1

Robot2

Rs

Figure 6.9: Reach Switching Region

Firstly, let define the switching region. We use the connection line of the

next intermediate objective and the corresponding point of current intermediate

135

6. COOPERATIVE PATH PLANNING FOR MOBILE ROBOTS
BASED ON VISIBILITY GRAPH

objective on the obstacle to define the switching region. As shown in Fig. 6.9,

the intermediate objectives selected for Robot1 are {g2
i , g

1
i , G}, so point p1

i is the

corresponding point of g2
i , and the switching region Rs can be defined as the left

region of line p1
i g

1
i , this is because:

(1) the current intermediate objective will always be in the switching region,

thus the robot is able to enter the switching region when moving towards the

intermediate objective;

(2) next intermediate objective can always be seen in this region if there is

no new obstacle, robots will know whether to replan or go to next intermediate

objective in this region.

The robot position at t = 0 and t = Tc are used to judge whether the robot

enters the switching region Rs or not. The function of the line p1
i g

1
i can be

obtained as f(x, y) = 0, if f(x(0), y(0))f(x(Tc), y(Tc)) < 0, one can judge that

the robot has already reached the switching region Rs, and then the robot can

see next intermediate objective, so p1
i has been passed over, then g2

i is removed

from IO_List.

6.4.2 Algorithm description

Firstly robots scan the environment and expand the segments that are scanned,

then robots share the information, and merge the obstacles boundaries if neces-

sary. After that, visibility graph is applied to generate the intermediate objectives

list IO_List. Given the IO_List, one can solve the optimal path planning prob-

lem over Tp to get the optimal trajectories over Tp. Then controls (the open loop

control or the i-PID controller) are applied for the robot for only a time period

over [0, Tc]. Every time when t = Tc, check whether the robot gets into the switch-

ing region or not, and repeat the procedures as before. The algorithm stops when

the robots reach the final target G.

6.5 Simulation results

In order to show the feasibility and the efficiency of the proposed algorithm, two

simulations of simple and complex environment are made in contrast with two

simulations without cooperation between robots in the same environment. The

136

6.5 Simulation results

Table 6.1: comparison of Simulation result in simple environment
Robot Running Time (s) Steps Trajectory Length

Without Cooperation
R1 10.99 292 33.80
R2 6.97 132 18.55

With Cooperation
R1 3.982 114 19.13
R2 4.083 121 18.59

simulation settings are as follows: the range of the robot sensor is 3 meters; max-

imum velocity of the robot vmax = 1.0 m/s, maximum acceleration amax = 1.0

m/s2, maximum angular velocity ωmax = 1.0 rad/s, maximum angular acceler-

ation ω̇ = 1.0 rad/s2. The planning horizon interval Tp = 2 s, and the update

period Tc = 0.2 s.

For the simple environment depicted in Fig. 6.10, Robot1 starts at point

(−0.5,−4) going to the point (3, 8), the Robot2 starts at point (3.5,−2), going

to the point (0, 8). In Fig. 6.10(a), there is no cooperation between the robots.

In Fig. 6.10(b), the paths are planned with cooperation. It is clearly seen that,

Robot1 moved towards right because it is optimal when it plans locally, however

there is a long way to travel. Instead, with the shared information, Robot1 is able

to calculate the path optimally, and long detour is avoided. A detail comparison

is shown in Table 6.1, one can see that it takes Robot1 less than half time to reach

the target when planning with the shared information, the trajectories are well

optimized.

More complex scenarios are depicted in Fig. 6.11, in which Robot1 starts from

(−2.3,−4.5) to (−2, 7), and Robot2 starts from (1.5,−5) to (−5, 8). The dotted

segments in the figure are the parts that are not detected by the robots. One

can see that with only local information (shown in Fig. 6.11(a)), Robot1 moved

toward right first, and Robot2 moved toward left first, which however made a long

detour to reach the target. While in Fig. 6.11(b), the robots are able to plan

efficiently with shared information, the unnecessary detours are avoided. A detail

comparison is shown in Table 6.2, it is clearly seen that the time, step and length

of the trajectories are well optimized when planning with shared information.

137

6. COOPERATIVE PATH PLANNING FOR MOBILE ROBOTS
BASED ON VISIBILITY GRAPH

(a) Without cooperation

(b) With cooperation

Figure 6.10: Path planning in simple environment

Table 6.2: comparison of Simulation result in complex environment
Robot Running Time (s) Steps Trajectory Length

Without Cooperation
R1 8.74 127 20.04
R2 9.54 169 25.55

With Cooperation
R1 7.285 116 18.15
R2 7.65 126 20.05

138

chapter5_vg/pic/simple1.eps
chapter5_vg/pic/simple2.eps

6.5 Simulation results

(a) Without cooperation

(b) With cooperation

Figure 6.11: Path planning in complex environment

139

chapter5_vg/pic/complex1.eps
chapter5_vg/pic/complex2.eps

6. COOPERATIVE PATH PLANNING FOR MOBILE ROBOTS
BASED ON VISIBILITY GRAPH

6.6 Conclusion

This chapter presents a cooperative path planning algorithm for non-holonomic

mobile robots based on visibility graphs. The algorithm proposes the enhance-

ment of local path planning by sharing the information between robots, and the

intermediate objectives for robots are generated by the visibility graph. To cope

with the disadvantages of the visibility graph, an algorithm is proposed to gen-

erate polygons from a series of jointed segments and merge polygons when two

polygons intercross. The robots can reach the target efficiently with the shared

information while avoiding obstacles. The efficiency of the proposed algorithm

are shown via different simulations.

140

Conclusions and Perspectives

The purpose of this chapter is to summarize the contributions presented in the

thesis and introduce some perspectives for future work.

Conclusions

In this thesis, we studied the identification, path planning and motion control of

non-holonomic mobile robots.

Real-time identification of robot kinematic models is discussed in Chapter

2, we consider the identification problem of the robot models as a detection of

active mode of a special switched system, and each robot system is considered as

a subsystem of the switched singular system. Then the distinguishability of the

deduced switched singular system is discussed to give out the condition of the

distinguishability. Moreover, the proposed method is quite robust to noises and

disturbance in the system, one can see from the simulations that subsystems can

be identified quickly in real time with noises.

Based on the identified robot kinematic model, Chapter 3 proposes a new

path planning algorithm for non-holonomic robot in complex environment. In

order to represent obstacles in a more accurate way, the viewed part of an ob-

stacle is represented by a series of joint segments, and the algorithm generates

intermediate objectives for the robot to avoid local minima in the environment.

The reaching of intermediate objectives are ensured by optimal control problem

and all the physical constraints are considered. The algorithm is based on flatness

of the system, and can be extended to other types of robots stated in Chapter 2.

Compared to visibility graph approach, the proposed algorithm reduces the com-

putational complexity. The efficiency of the proposed algorithm is demonstrated

via simulations and implementations in a wifibot.

141

CONCLUSIONS AND PERSPECTIVES

It is well known that the open-loop control is not robust to the disturbance,

thus in Chapter 4 we apply the i-PID controller, which is quite robust to the

disturbance, to control the robot. In this chapter, the determination of the pa-

rameter α in the controller is discussed, and is selected as a switching function

according to the information of the system. We show that with the proper pa-

rameter α, the controller can even stabilize the robot at a static point with the

robot velocity being zero.

Because in some situations, there is no solution to the optimization algorithm

used in Chapter 3, another path planning strategy is proposed in Chapter 5,

which uses the potential field and i-PID controller. If there is no solution to

the optimization algorithm, we can switch the planning strategy (as shown in

Fig. 1.5(b)). The new potential field function defined in this chapter takes into

account the robot orientation and angular velocity, and it is able to solve local

minima problems and produce smooth repulsive force in complex environment to

avoid oscillations. The virtual force generated by potential field function is used

as the reference, the i-PID controller is used for robot motion control to achieve

good performance.

Chapter 6 considers the cooperative path planning between robots. Robots

can share their detected environment and their trajectories can be better planned.

Visibility graph is used to generate intermediate objectives for each robot. In

order to cope with the disadvantages of visibility graph, we propose an algorithm

to generate expand polygons for the detected part of obstacles, and to merge

boundaries of expanded obstacles after robots sharing their detected environment.

The reaching of the intermediate objectives is ensured by either optimization

algorithm proposed in Chapter 3 or the motion planning method proposed in

Chapter 5, and a switching region is defined to judge whether to go to next

intermediate objective or to replan the path.

Perspectives

At the end of this thesis, several issues remain unresolved, and some other meth-

ods can be developed. The theoretical concepts introduced in this thesis can lead

to several extensions and future applications.

142

CONCLUSIONS AND PERSPECTIVES

In Chapter 2, four robot kinematic models are discussed. Although as stated

in Note 2.2.1, if the first four robot kinematic models can be identified, then

the unidentified model is the fifth model (Type (1.2)), it is beneficial to study

the Type (1.2) robot kinematic model and its input-output function and flat

outputs. Therefore the path planning algorithm and the controller proposed in

other chapters can be applied on the Type (1.2) robot.

In Chapter 3 and 4, the path planning algorithm and the controller are pro-

posed for the (2.0) robot model. To be specific, in Chapter 3 all the constraints

imposed on the robot are calculated as constraints of the flat output based on

(2.0) robot model, and in Chapter 4 the parameter α in the controller (4.7) is

selected according to the matrix G(Y, Ẏ) in the robot model (4.1). Therefore

it is interesting to apply the proposed path planning algorithm and the i-PID

controller to the robots of other types which are discussed in Chapter 2.

Chapter 5 proposes a path planning strategy using potential field functions,

as we all know that the potential field approach can be used for lots of applica-

tions. For example, the new potential field strategy can be improved and used for

robot formation control Barnes et al. (2007). The formation control is to control

the robots moving cohesively in a specified geometrical pattern. The proposed

potential field method in this thesis can be modified to keep robots with a desired

distance and even a desired angle with other robots in the system, as well as avoid

the obstacles in the environment. The method can also applied in applications

like robot soccer games as in Vadakkepat et al. (2001), taking the ball as the

target of attractive force and other robots as obstacles of repulsive forces.

In Chapter 6, a cooperative path planning method based on visibility graph

is proposed for two mobile robots, and this method can be improved for more

robots. In the proposed method, the polygon mergence algorithm is for two

detected obstacles, and if there are more robots in the system, one can consider

to merge two boundaries and then merge another obstacle boundary with the

merged boundary. However this approach seems not very efficiency, it is beneficial

to consider a more efficient polygon mergence algorithm of more than two robots.

In addition, in our study we focus on wheeled mobile robots, it will be inter-

esting to try to apply the proposed approaches for other types of robots such as

UAVs (Unmanned Aerial Vehicle). For example, with the flat output of the UAV

143

CONCLUSIONS AND PERSPECTIVES

kinematic model Cowling et al. (2007), our path planning algorithm can be used

to search for optimal collision free path.

144

Résumé en français

Motivation de la recherche

L’étude des robots mobiles a commencé à partir des années 1960, Nilsson et al. ont

développé un robot autonome "Shakey" afin d’étudier l’intelligence artificielle, la

planification autonome et le contrôle des systèmes robotiques. Dans les dernières

décennies, les robots mobiles ont été largement étudiés, et a excité de plus en

plus les intérêts des nombreuses recherches en raison de leurs applications dans

l’industrie et leurs défis théoriques. Par exemple, la plate-forme robotique SR4

sur Linux développé par la société Smart Robots, le robot mobile Pioneer P3-DX

développé par ActivMedia Robotics pour la recherche et l’enseignement, la célèbre

Mars Rover Spirit et etc. Plus récemment, les applications des robots mobiles

sont devenus de plus en plus populaire, et les robots mobiles ont été utilisés dans

les missions de sauvetage, les explorations, les guides touristiques, et même des

divertissements tels que les jeux de football.

(a) Mars Rover (b) Jeux de football

Figure 1: Les applications des robots mobiles

145

./introduction/pic/MarsRover.eps
./introduction/pic/MrSoccer.eps

Résumé

Cependant, avec le développement rapide de l’automatisation et de la robo-

tique, il y a des défis plus élevés pour les robots mobiles, et les demandes de la

navigation autonome en environnement complexe deviennent importantes. C’est

pourquoi nous nous concentrons sur la navigation autonome et le suivi des tra-

jectoires des robots mobiles. L’objectif général de la recherche est de concevoir

des nouveaux algorithmes de planification à naviguer robots dans l’environnement

complexe et de proposer des contrôleurs robustes pour suivre la trajectoire désirée.

Identification des robots mobiles non-holonomes

La planification de trajectoire et le contrôle des robots mobiles sont les deux

aspects principaux du problème de la navigation. Toutefois, pour presque toutes

les approches du contrôle, les contrôleurs sont conçus sur la base du modèle de

robot. En conséquence, les modèles des robots sont très importants dans les

problèmes de la navigation, et les contrôleurs seront différents selon les différents

modèles des robots (un exemple des différents types des robots est représenté

sur la Fig. 2). Si nous avons un modèle de robot mobile inconnu, la première

tâche est d’identifier le modèle, puis nous pouvons concevoir des contrôleurs pour

le robot. Les modèles cinématiques des robots mobiles peuvent être classés en

cinq catégories en introduisant les concepts de degree of mobility et de degree of

steerability.

Figure 2: Différents types des robots

146

./chapter1_ident/pic/robots.eps

Résumé

Pour ces différents modèles des robots mobiles non-holonomes, nous consid-

érons le problème de l’identification comme une détection du sous-système d’un

système à commutation spéciale. Si nous modélisons le sous-système comme un

modèle possible des robots non-holonomes, alors le problème d’identification du

modèle de robot devient une problème de l’identification des sous-systèmes de ce

système à commutation.

Planification de trajectoire local pour les robots

mobiles non-holonomes

Planification de trajectoire est très important, car il permet de la sélection et de

l’identification d’une trajectoire possible pour les robots.

Lorsque nous considérons le problème de planification de trajectoire pour les

robots mobiles non-holonomes, les contraintes physiques et les contraintes cinéma-

tiques doivent être pris en compte. Certains algorithmes considèrent les obstacles

comme des cercles, ces algorithmes ne peuvent pas être utilisés dans un environ-

nement complexe. Certains algorithmes considèrent l’environnement complexe,

mais le “suivant la limite" mode qui n’est pas optimal est utilisé. Dans cette

thèse, les obstacles irréguliers sont représentés par des segments. Le problème de

planification de trajectoire pour des robots mobiles est décrit comme un prob-

lème de contrôle optimal. Minima locaux sont évités en choisissant des objectifs

intermédiaires.

Contrôle de robots mobiles non-holonomes

Le problème de suivi de trajectoire pour un robot consiste à déterminer un con-

trôle à stabiliser asymptotiquement l’erreur de suivi. Selon le condition nécessaire

de la Brockett, les systèmes des robots mobiles non-holonomes ne peuvent pas

être asymptotiquement stabilisé par une rétroaction de l’Etat continue. Le con-

trôleur “i-PID", qui est proposé par Fliess & Join, présente la robustesse à des

dynamiques non modélisés et des perturbations dans le système, et il a été étudié

et appliqué à des nombreux procédés électriques et mécaniques. Nous appliquons

le contrôleur “i-PID" pour les robots non-holonomes afin de contrôler les robots

147

Résumé

avec les perturbations de mesure. Toutefois, en raison de la spécificité des sys-

tèmes non-holonomes, cet contrôleur ne peut pas être appliqué simplement, donc

d’un paramètre de commutation est sélectionné et un contrôleur robuste est pro-

posé de contrôle le robot avec les perturbations de mesure.

Planification de trajectoires pour les robots mobiles

en utilisant de champs potentiels

Champ de potentiel est étudié largement en raison de la simplicité et de l’analyse

mathématique intéressant. Bien que l’idée de champ de potentiel semble facile,

parfois la méthode devient moins d’efficacité à couse des problèmes des minima

locaux et des mouvements oscillatoires.

Dans cette thèse, nous proposons un nouveau champ de potentiel pour le

robot planification de trajectoire pour résoudre les problèmes de minima locaux

et les problèmes d’oscillation. La nouvelle fonction est définie en tenant compte

de l’orientation du robot et de la vitesse angulaire, en plus de la position et de la

vitesse linéaire, et les critères de distance est ajouté pour réduire les oscillations.

La fonction proposée permet au robot d’éviter les minima locaux et de diminuer

les oscillations dans le mouvement du robot. Enfin, le contrôleur i-PID est utilisé

pour la planification de mouvement du robot. Cette méthode a seulement besoin

de la mesure de la vitesse du robot et de l’information d’obstacles.

Planification de trajectoire coopérative pour les robots

mobiles non-holonomes sur la base de graphe de

visibilité

Des systèmes des multi-robots sont actuellement un intérêt principal de la recherche

dans le domaine de la robotique. La planification de trajectoire coopérative a la

possibilité de résoudre les problèmes plus efficacement.

Les méthodes de planification de trajectoire peuvent être divisés en deux caté-

gories: la planification globale et la planification local. Cependant, tous les deux

méthodes ont leurs inconvénients. Les informations complets de l’environnement

148

Résumé

est nécessaire pour la planification de trajectoire global, mains ce n’est pas pos-

sible, parceque l’environnement est détectée partiellement par les robots. Dans

la planification de trjectoire local, la trajectoire prévue ne peut pas être opti-

misée globalement, car l’environnement n’est que partiellement connue. En con-

séquence, la planification de trajectoire coopérative est considéré à la base de

l’information partagée de chaque robot, et les robots sont capables d’atteindre

l’objectif par réaliser les objectifs intermédiaires générés par graphe de visibilité.

L’atteinte des objectifs intermédiaires est assurée par le problème de contrôle

optimal.

Conclusions et perspectives

Dans cette thèse, nous avons étudié l’identification de modèles cinématiques de

robot, la planification de trajectoire et le contrôle de mouvement des robots mo-

biles non-holonomes.

Contributions

Tout d’abord, l’identification des différents types de systèmes des robots mo-

biles non-holonomes est discutée. Avec le modèle cinématique identifiés, trois

algorithmes de planification de trajectoire dans l’environnement complexe sont

proposées pour un seul robot et plusieurs robots. Enfin, un contrôleur i-PID, qui

est robuste aux perturbations de mesure et est capable de stabiliser le robot à un

point statique, est appliqué pour contrôler les robots mobiles non-holonomes.

Perspectives

Les concepts théoriques dans cette thèse peuvent produire des extensions et des

applications futures. Tout d’abord, le type (2.0) robot est discuté dans la planifi-

cation de trajectoire et le contrôle, et il est intéressant d’appliquer les algorithmes

proposés pour les autres types des robots mobiles non-holonomes. De plus, le

champ de potentiel proposé peut être étendu à contrôler les robots en gardant

un motif géométrique souhaité. En outre, il est intéressant d’essayer d’appliquer

les approches proposées pour d’autres types de robots tels que UAVs (Unmanned

Aerial Vehicle).

149

Résumé

150

Bibliography

Abbott, E. & Powell, D. (1999). Land-vehicle navigation using gps. Proceed-

ings of the IEEE , 87, 145–162. 15

Agrachev, A.A. & Liberzon, D. (2001). Lie-algebraic stability criteria for

switched systems. SIAM J. Control Optim., 40, 253–269. 26

Aguilar, L., Hamel, T. & Soueres, P. (1997). Robust path following control

for wheeled robots via sliding mode techniques. In Intelligent Robots and Sys-

tems, IROS ’97., Proceedings of the 1997 IEEE/RSJ International Conference

on, vol. 3, 1389 –1395 vol.3. 20

Aho, A.V. & Hopcroft, J.E. (1974). The Design and Analysis of Computer

Algorithms. Addison-Wesley Longman Publishing Co., Inc., 1st edn. 18

Al Khawaldah, M., Al-Adwan, I. & Eid, K. (2012). New exploration strat-

egy for cooperative mobile robots. In Proceedings of the 11th WSEAS interna-

tional conference on Electronics, Hardware, Wireless and Optical Communica-

tions, EHAC’12/ISPRA/NANOTECHNOLOGY’12, 149–154, World Scientific

and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin,

USA. 123

Alt, H. & Welzl, E. (1988). Visibility graphs and obstacle-avoiding shortest

paths. Mathematical Methods of Operations Research, 32, 145–164. 17

Ardiyanto, I. (2010). Task oriented behavior-based state-adaptive pid (pro-

portional integral derivative) control for low-cost mobile robot. In Computer

Engineering and Applications (ICCEA), 2010 Second International Conference

on, vol. 1, 103 –107. 25

151

BIBLIOGRAPHY

Barnes, L., Fields, M. & Valavanis, K. (2007). Unmanned ground vehicle

swarm formation control using potential fields. In Control & Automation, 2007.

MED’07. Mediterranean Conference on, 1–8, IEEE. 143

Barshan, B. & Durrant-Whyte, H.F. (1995). Inertial navigation systems

for mobile robots. Robotics and Automation, IEEE Transactions on, 11, 328–

342. 15

Bicchi, A., Casalino, G. & Santilli, C. (1996). Planning shortest bounded-

curvature paths for a class of nonholonomic vehicles among obstacles. Journal

of Intelligent and Robotic Systems, 16, 387–405. 16

Bloch, A.M. (2003). Nonholonomic mechanics and control , vol. 24. Springer.

14, 20

Bloch, A.M., Reyhanoglu, M. & McClamroch, N.H. (1992). Control

and stabilization of nonholonomic dynamic systems. Automatic Control, IEEE

Transactions on, 37, 1746–1757. 14

Borenstein, J., Everett, H. & Feng, L. (1996). Where am i? sensors and

methods for mobile robot positioning. University of Michigan, 119, 120. 15

Bourdais, R., Fliess, M., Join, C. & Perruquetti, W. (2007). Towards

a model-free output tracking of switched nonlinear systems. In NOLCOS 2007

- 7th IFAC Symposium on Nonlinear Control Systems, Pretoria, South Africa.

26

Brockett, R.W. et al. (1983). Asymptotic Stability and Feedback Stabilization.

Defense Technical Information Center. 14

Brooks, R. (1986). A robust layered control system for a mobile robot. Robotics

and Automation, IEEE Journal of , 2, 14–23. 15

Burgard, W., Moors, M., Stachniss, C. & Schneider, F. (2005). Coor-

dinated multi-robot exploration. IEEE Transactions on Robotics, 21, 376–386.

11

Camacho, D., Fernĺćndez, F. & Rodelgo, M.A. (2006). Roboskeleton:

An architecture for coordinating robot soccer agents. Eng. Appl. of AI , 19,

179–188. 12, 123

152

BIBLIOGRAPHY

Campion, G., D’Andréa-Novel, B. & Bastin, G. (1991). Modelling and

state feedback control of nonholonomic mechanical systems. In Decision and

Control, 1991., Proceedings of the 30th IEEE Conference on, 1184 –1189 vol.2.

14, 19

Campion, G., Bastin, G. & D’Andréa-Novel, B. (1996). Structural prop-

erties and classification of kinematic and dynamic models of wheeled mobile

robots. Robotics and Automation, IEEE Transactions on, 12, 47–62. 26, 27,

49

Cardoso, P., Molina, L., Freire, E. & Carvalho, E. (2012). A method-

ology to designing strategies for robot soccer based on discrete event systems

formalism. In Robotics Symposium and Latin American Robotics Symposium

(SBR-LARS), 2012 Brazilian, 143 –149. 12

Charifa, S. & Bikdash, M. (2011). Mobile robot navigation using a combined

optimized potential field and a boundary following algorithm. Journal of Con-

trol Engineering and Technology , 1. 93

Chiddarwar, S.S. & Babu, N.R. (2011). Conflict free coordinated path plan-

ning for multiple robots using a dynamic path modification sequence. Robotics

and Autonomous Systems, 59, 508 – 518. 124

Choset, H. & Nagatani, K. (2001). Topological simultaneous localization

and mapping (slam): toward exact localization without explicit localization.

Robotics and Automation, IEEE Transactions on, 17, 125 –137. 18

Chung, Y. & Harashima, F. (2001). A position control differential drive

wheeled mobile robot. IEEE Transactions on Industrial Electronics, 48, 853–

863. 19

Chwa, D. (2004). Sliding-mode tracking control of nonholonomic wheeled mobile

robots in polar coordinates. Control Systems Technology, IEEE Transactions

on, 12, 637–644. 69

Conn, R. & Kam, M. (1998). Robot motion planning on n-dimensional star

worlds among moving obstacles. Robotics and Automation, IEEE Transactions

on, 14, 320–325. 93

153

BIBLIOGRAPHY

Conte, G., Perdon, A. & Moog, C.H. (1999). Nonlinear Control Systems:

An Algebraic Setting . Lecture Notes in Control and I 243, Springer. 30

Conticelli, F., Bicchi, A. & Balestrino, A. (2000). Observability and

nonlinear observers for mobile robot localization. In In IFAC Int. Symp. on

Robot Control, SyRoCo 2000.[5 , Citeseer. 15

Coron, J.M. (1992). Global asymptotic stabilization for controllable systems

without drift. Mathematics of Control, Signals and Systems, 5, 295–312. 69

Cowling, I.D., Yakimenko, O.A., Whidborne, J.F. & Cooke, A.K.

(2007). A prototype of an autonomous controller for a quadrotor uav. In Eu-

ropean Control Conference, 1–8. 144

D’Andréa-Novel, B., Campion, G. & Bastin, G. (1995). Control of non-

holonomic wheeled mobile robots by state feedback linearization. Int. J. Rob.

Res., 14, 543–559. 20

Datta, A., Ho, M. & Bhattacharyya, S. (2000). Structure and Synthesis of

PID Controllers . Advances in Industrial Control, Springer. 71

De Boor, C. (2001). A Practical Guide to Splines. No. 27 in Applied Mathe-

matical Sciences, Springer. 50

De Luca, A. & Oriolo, G. (1994). Local incremental planning for nonholo-

nomic mobile robots. In Robotics and Automation. IEEE International Con-

ference on, 104–110 vol.1. 105

De Persis, C., De Santis, R. & Morse, A. (2002). Nonlinear switched sys-

tems with state dependent dwell-time. In Decision and Control, 2002, Proceed-

ings of the 41st IEEE Conference on, vol. 4, 4419 – 4424 vol.4. 26

De Wit, C. & Sordalen, O. (1992). Exponential stabilization of mobile robots

with nonholonomic constraints. Automatic Control, IEEE Transactions on, 37,

1791 –1797. 19

de Wit, C., Siciliano, B. & Bastin, G. (1996). Theory of robot control .

Communications and control engineering, Springer. 26, 27

154

BIBLIOGRAPHY

de Wit, C., Siciliano, B. & Bastin, G. (2001). Theory of Robot Control .

Springer, Corrected edition. 49

Defoort, M., Floquet, T., Kökösy, A. & Perruquetti, W. (2006). In-

tegral sliding mode control for trajectory tracking of a unicycle type mobile

robot. Integrated Computer-Aided Engineering , 13, 277–288. 14

Defoort, M., Floquet, T., Kökösy, A. & Perruquetti, W. (2008).

Sliding-mode formation control for cooperative autonomous mobile robots. In-

dustrial Electronics, IEEE Transactions on, 55, 3944 –3953. 25

Defoort, M., Palos, J., Kökösy, A., Floquet, T. & Perruquetti,

W. (2009). Performance-based reactive navigation for non-holonomic mobile

robots. Robotica, 27, 281–290. 18, 25, 45, 46, 48, 50

Delahaye, D., Peyronne, C., Mongeau, M. & Puechmorel, S. (2010).

Aircraft conflict resolution by genetic algorithm and b-spline approximation.

In Proceedings of ENRI Int. Workshop on ATM/CNS. Tokyo, Japan, vol. 4,

71–77. 50

Di Marco, M., Garulli, A., Giannitrapani, A. & Vicino, A. (2004). A set

theoretic approach to dynamic robot localization and mapping. Autonomous

robots , 16, 23–47. 16

Dijkstra, E. (1959). A note on two problems in connexion with graphs. Nu-

merische Mathematik , 1, 269–271. 16

Dissanayake, G., Paxman, J., Miro, J.V., Thane, O. & Thi, H.T. (2006).

Robotics for urban search and rescue. In Industrial and Information Systems,

First International Conference on, 294 –298. 11

Dissanayake, M.G., Newman, P., Clark, S., Durrant-Whyte, H.F.

& Csorba, M. (2001). A solution to the simultaneous localization and map

building (slam) problem. Robotics and Automation, IEEE Transactions on, 17,

229–241. 16

Dubins, L.E. (1957). On curves of minimal length with a constraint on average

curvature, and with prescribed initial and terminal positions and tangents.

American Journal of mathematics, 79, 497–516. 14

155

BIBLIOGRAPHY

Dudek, G. & Jenkin, M. (2010). Computational Principles of Mobile Robotics.

Computational Principles of Mobile Robotics, Cambridge University Press. 16

Durrant-Whyte, H. & Bailey, T. (2006). Simultaneous localization and

mapping: part i. Robotics & Automation Magazine, IEEE , 13, 99–110. 16

Fliess, M. & Join, C. (2008). Commande sans modèle et commande à modèle

restreint. e-STA, 5, 1–23. 20

Fliess, M. & Join, C. (2009). Model-free control and intelligent PID controllers:

towards a possible trivialization of nonlinear control? In 15th IFAC Symposium

on System Identification (SYSID 2009), IFAC, Saint-Malo, France. 20, 70

Fliess, M. & Sira-Ramírez, H. (2003). An algebraic framework for linear

identification. ESAIM: Control, Optimisation and Calculus of Variations, 9,

151–168. 36

Fliess, M., Lévine, J. & Rouchon, P. (1995). Flatness and defect of nonlinear

systems: Introductory theory and examples. International Journal of Control ,

61, 1327–1361. 14, 19, 49

Fliess, M., Join, C., Mboup, M. & Sira-Ramírez, H. (2004). Compression

différentielle de transitoires bruités. Comptes Rendus Mathematique, 339, 821–

826. 36

Fliess, M., Join, C. & Perruquetti, W. (2008a). Real-time estimation for

switched linear systems. In Decision and Control, 2008. CDC 2008. 47th IEEE

Conference on, 941 –946. 33

Fliess, M., Join, C. & Sira-Ramirez, H. (2008b). Non-linear estimation is

easy. Int. J. Modelling Identification and Control , 4, 12–27. 36

Fliess, M., Join, C. & Riachy, S. (2011). Revisiting some practical issues in

the implementation of model-free control. In 18th IFAC World Congress, IFAC

WC’2011 , CDROM, Milan, Italie. 20, 70

Ge, S. (2010). Autonomous Mobile Robots: Sensing, Control, Decision Making

and Applications. Control Engineering, Taylor & Francis. 70

156

BIBLIOGRAPHY

Ge, S. & Cui, Y. (2000). New potential functions for mobile robot path planning.

Robotics and Automation, IEEE Transactions on, 16, 615–620. 93

Ge, S. & Cui, Y. (2002). Dynamic motion planning for mobile robots using

potential field method. Autonomous Robots, 13, 207–222. 93, 95, 97, 104, 105,

107

Gédouin, P.A., Join, C., Delaleau, E., Bourgeot, J.M., Arbab-

Chirani, S. & Calloch, S. (2008). Model-free control of shape memory

alloys antagonistic actuators. In 17th IFAC World Congress, CDROM, Seoul,

Korea, Republic Of. 20

Glavaški, D., Volf, M. & Bonkovic, M. (2009). Robot motion planning

using exact cell decomposition and potential field methods. In Proceedings of

the 9th WSEAS international conference on Simulation, modelling and opti-

mization, SMO’09, 126–131. 16

Goto, Y., , Goto, Y. & Stentz, A. (1987). Mobile robot navigation: The

cmu system. IEEE Expert , 2, 44–54. 18

Gourley, C. & Trivedi, M. (1994). Sensor based obstacle avoidance and map-

ping for fast mobile robots. In Robotics and Automation, 1994. Proceedings.,

1994 IEEE International Conference on, 1306–1311, IEEE. 15

Graham, R.L. (1972). An efficient algorithm for determining the convex hull of

a finite planar set. Information Processing Letters, 1, 132–133. 51

Guo, Y. & Tang, T. (2008). Optimal trajectory generation for nonholonomic

robots in dynamic environments. In Robotics and Automation, 2008. ICRA

2008. IEEE International Conference on, 2552 –2557. 18, 25, 50

Han, B.O., Kim, Y.H., Cho, K. & Yang, H. (2010). Museum tour guide

robot with augmented reality. In Virtual Systems and Multimedia (VSMM),

2010 16th International Conference on, 223 –229. 12

Harinarayan, K. & Lumelsky, V. (1994). Sensor-based motion planning for

multiple mobile robots in an uncertain environment. In Intelligent Robots and

157

BIBLIOGRAPHY

Systems ’94. ’Advanced Robotic Systems and the Real World’, IROS ’94. Pro-

ceedings of the IEEE/RSJ/GI International Conference on, vol. 3, 1485 –1492

vol.3. 124

Hart, P., Nilsson, N. & Raphael, B. (1968). A formal basis for the heuristic

determination of minimum cost paths. Systems Science and Cybernetics, IEEE

Transactions on, 4, 100–107. 16

Hespanha, J.P., Liberzon, D. & Morse, A.S. (1999). Logic-based switch-

ing control of a nonholonomic system with parametric modeling uncertainty.

Systems & Control Letters, 38, 167–177. 69

Huang, H.P. & Chung, S.Y. (2004). Dynamic visibility graph for path plan-

ning. In Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004

IEEE/RSJ International Conference on, vol. 3, 2813 – 2818. 16

Ismail, A.T., Sheta, A. & Al-Weshah, M. (2008). A mobile robot path

planning using genetic algorithm in static environment. Journal of Computer

Science, 4, 341–344. 16

Jang, G., Kim, S., Kim, J. & Kweon, I. (2005). Metric localization using a

single artificial landmark for indoor mobile robots. In Intelligent Robots and

Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on,

2857–2862, IEEE. 15

Jiang, Z.P. & Nijmeijer, H. (1999). A recursive technique for tracking control

of nonholonomic systems in chained form. Automatic Control, IEEE Transac-

tions on, 44, 265–279. 69

Join, C., Robert, G. & Fliess, M. (2010). Model-free based water level control

for hydroelectric power plants. In IFAC Conference on Control Methodologies

and Tecnologies for Energy Efficiency, CMTEE , CDROM, IFAC, Vilamoura,

Portugal. 20

Kamon, I., Rimon, E. & Rivlin, E. (1996). A new range-sensor based glob-

ally convergent navigation algorithm for mobile robots. In Robotics and Au-

tomation, 1996. Proceedings., 1996 IEEE International Conference on, vol. 1,

429–435 vol.1. 19, 45

158

BIBLIOGRAPHY

Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile

robots. In Robotics and Automation. Proceedings. 1985 IEEE International

Conference on, vol. 2, 500 – 505. 18

Kim, D.H. & Kim, J.H. (2003). A real-time limit-cycle navigation method for

fast mobile robots and its application to robot soccer. Robotics and Autonomous

Systems, 42, 17 – 30. 94

Kim, J. (2004). Soccer Robotics. Springer Tracts in Advanced Robotics, Springer.

12, 123

Kim, R.S., Choi, H., Kim, E. & Chang-Woo, P. (2011). Mobile robot ex-

ploration via pseudo range model. In Computers, Networks, Systems and In-

dustrial Engineering (CNSI), 2011 First ACIS/JNU International Conference

on, 108 –110. 123

Kökösy, A., Defaux, F.O. & Perruquetti, W. (2008). Autonomous nav-

igation of a nonholonomic mobile robot in a complex environment. In Safety,

Security and Rescue Robotics, 2008. SSRR 2008. IEEE International Workshop

on, 102 –108. 19, 25, 45, 55

Kolmanovsky, I. & McClamroch, N. (1995). Developments in nonholonomic

control problems. Control Systems, IEEE , 15, 20 –36. 11, 18

Koren, Y. & Borenstein, J. (1991). Potential field methods and their inherent

limitations for mobile robot navigation. In Robotics and Automation, 1991.

Proceedings., 1991 IEEE International Conference on, vol. 2, 1398–1404. 18

Latombe, J.C. (1991). ROBOT MOTION PLANNING.: Edition en anglais.

The Springer International Series in Engineering and Computer Science,

Springer. 18, 25, 93

Laue, T. & Röfer, T. (2005). Robocup 2004. chap. A behavior architecture for

autonomous mobile robots based on potential fields, 122–133, Springer-Verlag.

94

Laumond, J. (1998). Robot motion planning and control . Lecture notes in control

and information sciences, Springer. 11, 18

159

BIBLIOGRAPHY

Lawrence, C., Zhou, J. & Tits, A. (94). User’s guide for CFSQP version 2.5:

AC code for solving (large scale) constrained nonlinear (minimax) optimization

problems, generating iterates satisfying all inequality constraints. Institute for

Systems Research TR, 94, 16r1. 50

Lemaire, T., Lacroix, S. & Sola, J. (2005). A practical 3d bearing-only

slam algorithm. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005

IEEE/RSJ International Conference on, 2449–2454, IEEE. 15

Leroy, S., Laumond, J.P. & Simeon, T. (1999). Multiple path coordination

for mobile robots: A geometric algorithm. In In Proc. of the International Joint

Conference on Artificial Intelligence (IJCAI , 1118–1123. 124

Liu, D., Fei, S., Hou, Z., Zhang, H. & Sun, C. (2007). Advances in neural

networks–ISNN 2007 . No. 2 in Lecture Notes in Computer Science, Springer.

20

Liu, D.Y., Gibaru, O. & Perruquetti, W. (2011). Error analysis of Jacobi

derivative estimators for noisy signals. Numerical Algorithms, 58, 53–83. 36,

37

Lumelsky, V.J. & Stepanov, A.A. (1987). Path-planning strategies for a

point mobile automaton moving amidst unknown obstacles of arbitrary shape.

ALGORITHMICA. 18

Maron, O. & Lozano-Pérez, T. (1996). Visible decomposition: Real-time

path planning in large planar environments. AI Memo, 1638. 125

Martinelli, A. & Siegwart, R. (2005). Observability analysis for mobile

robot localization. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005

IEEE/RSJ International Conference on, 1471–1476, IEEE. 15

Mayne, D. & Michalska, H. (1990). Receding horizon control of nonlinear

systems. Automatic Control, IEEE Transactions on, 35, 814–824. 48

Mboup, M., Join, C. & Fliess, M. (2009). Numerical differentiation with

annihilators in noisy environment. Numerical Algorithms, 50, 439–467. 36, 37

160

BIBLIOGRAPHY

Mehrjerdi, H. & Saad, M. (2010). Dynamic tracking control of mobile robot

using exponential sliding mode. In IECON 2010 - 36th Annual Conference on

IEEE Industrial Electronics Society , 1517 –1521. 25

Morin, P. & Samson, C. (2004). Trajectory tracking for non-holonomic vehi-

cles: overview and case study. In Robot Motion and Control, 2004. RoMoCo’04.

Proceedings of the Fourth International Workshop on, 139–153, IEEE. 14

Moulay, E., Bourdais, R. & Perruquetti, W. (2007). Stabilization of non-

linear switched systems using control lyapunov functions. Nonlinear Analysis:

Hybrid Systems, 1, 482 – 490, proceedings of the International Conference on

Hybrid Systems and Applications, Lafayette, LA, USA, May 2006: Part I. 26

Murphy, R., Kravitz, J., Stover, S. & Shoureshi, R. (2009). Mobile

robots in mine rescue and recovery. Robotics Automation Magazine, IEEE , 16,

91 –103. 11, 123

Nagatani, K., Kiribayashi, S., Okada, Y., Tadokoro, S., Nishimura,

T., Yoshida, T., Koyanagi, E. & Hada, Y. (2011). Redesign of rescue

mobile robot quince. In Safety, Security, and Rescue Robotics (SSRR), 2011

IEEE International Symposium on, 13 –18. 11, 123

Nearchou, A.C. (1998). Path planning of a mobile robot using genetic heuris-

tics. Robotica, 16, 575–588. 16

Nilsson, N.J. (1969). A mobile automation: an application of artificial intel-

ligence techniques. In Proceedings of the 1st international joint conference on

Artificial intelligence, IJCAI’69, 509–520, Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA. 11

Nilsson, N.J. (1980). Principles of Artificial Intelligence. Tioga Publishing

Company. 18

Normey-Rico, J.E., Alcalĺć, I., Gĺőmez-Ortega, J. & Camacho, E.F.

(2001). Mobile robot path tracking using a robust pid controller. Control En-

gineering Practice, 9, 1209 – 1214. 14, 19

Ó’Dúnlaing, C. & Yap, C.K. (1985). A "retraction" method for planning the

motion of a disc. Journal of Algorithms, 6, 104–111. 16

161

BIBLIOGRAPHY

Oelen, W. & van, J.A. (1994). Robust tracking control of two-degrees-of-

freedom mobile robots. Control Engineering Practice, 2, 333–340. 19

O’Kane, J.M. (2006). Global localization using odometry. In Robotics and Au-

tomation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference

on, 37–42, IEEE. 15

Park, K., Chung, H. & Lee, J.G. (2000). Point stabilization of mobile robots

via state-space exact feedback linearization. Robotics and Computer-Integrated

Manufacturing , 16, 353–363. 14

Pears, N.E. (2001). Mobile robot tracking of pre-planned paths. Advanced

Robotics, 15, 97–107. 19

Pearsall, J. (2001). Concise Oxford Dictionary . Oxford University Press.

Tenth Edition, Rivised ed. 12

Perruquetti, W. & Barbot, J.P. (2002). Sliding mode control in engineer-

ing . CRC Press. 20

Pomet, J.B. (1992). Explicit design of time-varying stabilizing control laws for

a class of controllable systems without drift. Systems & Control Letters, 18,

147–158. 69

Qi, H. & Moore, J.B. (2002). Direct kalman filtering approach for gps/ins in-

tegration. Aerospace and Electronic Systems, IEEE Transactions on, 38, 687–

693. 15

Rashid, M. & Sidek, S. (2011). Dynamic modeling and verification of uni-

cycle mobile robot system. In Mechatronics (ICOM), 2011 4th International

Conference On, 1–5. 73

Redmill, K.A., Kitajima, T. & Ozguner, U. (2001). Dgps/ins integrated

positioning for control of automated vehicle. In Intelligent Transportation Sys-

tems, 2001. Proceedings. 2001 IEEE , 172–178, IEEE. 15

Reeds, J. & Shepp, L. (1990). Optimal paths for a car that goes both forwards

and backwards. Pacific Journal of Mathematics, 145, 367–393. 14

162

BIBLIOGRAPHY

Rezaee, H. & Abdollahi, F. (2012). Adaptive artificial potential field ap-

proach for obstacle avoidance of unmanned aircrafts. In Advanced Intelligent

Mechatronics, 2012 IEEE/ASME International Conference on, 1–6. 93

Riachy, S., Fliess, M. & Join, C. (2011). High-order sliding modes and in-

telligent PID controllers: First steps toward a practical comparison. In 18th

IFAC World Congress, IFAC WC’2011 , CDROM, Milan, Italy. 20, 70

Rooker, M.N. & Birk, A. (2007). Multi-robot exploration under the con-

straints of wireless networking. Control Engineering Practice, 15, 435 – 445.

11

Ryu, J.C. & Agrawal, S.K. (2008). Differential flatness-based robust control

of a two-wheeled mobile robot in the presence of slip. ASME Conference Pro-

ceedings, 2008, 915–921. 19

Salichs, M. & Moreno, L. (2000). Navigation of mobile robots: open ques-

tions. Robotica, 18, 227–234. 25

Samson, C. (1991). Velocity and torque feedback control of a nonholonomic cart.

In Advanced robot control , 125–151, Springer. 69

Samson, C. (1995). Control of chained systems application to path following and

time-varying point-stabilization of mobile robots. Automatic Control, IEEE

Transactions on, 40, 64–77. 69

Samson, C. & Ait-Abderrahim, K. (1991). Feedback control of a nonholo-

nomic wheeled cart in cartesian space. In Robotics and Automation, Proceed-

ings., 1991 IEEE International Conference on, 1136 –1141 vol.2. 14, 19

Schwartz, J.T. & Sharir, M. (1983). On the ąřpiano movers’ąś problem i.

the case of a two-dimensional rigid polygonal body moving amidst polygonal

barriers. Communications on Pure and Applied Mathematics, 36, 345–398. 16

Sert, H., Kökösy, A. & Perruquetti, W. (2011). A single landmark based

localization algorithm for non-holonomic mobile robots. In Robotics and Au-

tomation (ICRA), 2011 IEEE International Conference on, 293–298, IEEE.

15

163

BIBLIOGRAPHY

Sfeir, J., Saad, M. & Saliah-Hassane, H. (2011). An improved artificial po-

tential field approach to real-time mobile robot path planning in an unknown

environment. In Robotic and Sensors Environments, IEEE International Sym-

posium on, 208–213. 93

Sillito, R.R. & Fisher, R.B. (2009). Parametric trajectory representations for

behaviour classification. In British Machine Vision Conference, BMVC 2009,

London, UK, September 7-10, 2009. Proceedings, British Machine Vision As-

sociation. 50

Sira-Ramirez, H. & Fliess, M. (2006). An algebraic state estimation approach

for the recovery of chaotically encrypted messages. International Journal of

Bifurcation and Chaos, 16, 295–309. 36

Sira-Ramírez, H., Cortés-Romero, J. & Luviano-Juárez, A. (2011). Ro-

bust Linear Control of Nonlinear Flat Systems, Robust Control, Theory and

Applications. InTech. 74

Stentz, A. (1994). Optimal and efficient path planning for partially-known en-

vironments. In Robotics and Automation, 1994. Proceedings., 1994 IEEE In-

ternational Conference on, 3310–3317. 18

Sun, Z., Ge, S.S. & Lee, T.H. (2002). Controllability and reachability criteria

for switched linear systems. Automatica, 200–2. 26

Tayebi, A. & Rachid, A. (1996). Path following control law for an industrial

mobile robot. In Control Applications, 1996., Proceedings of the 1996 IEEE

International Conference on, 703 –707. 20

Tomatis, N., Philippsen, R., Jensen, B., Arras, K., Terrien, G.,

Piguet, R. & Siegwart, R. (2002). Building a Fully Autonomous Tour

Guide Robot: Where Academic Research Meets Industry. 12

Vadakkepat, P., Lee, T.H. & Xin, L. (2001). Application of evolutionary

artificial potential field in robot soccer system. In IFSA World Congress and

20th NAFIPS International Conference, 2001. Joint 9th, 2781–2785, IEEE.

143

164

BIBLIOGRAPHY

Viéville, T. & Faugeras, O.D. (1990). Cooperation of the inertial and visual

systems. In Traditional and non-traditional robotic sensors, 339–350, Springer.

15

Villagra, J. & Balaguer, C. (2010). Robust motion control for humanoid

robot flexible joints. In Control Automation (MED), 2010 18th Mediterranean

Conference on, 963 –968. 20, 70

Vu, L. & Liberzon, D. (2005). Common lyapunov functions for families of

commuting nonlinear systems. Systems and Control Letters, 54, 405–416. 26

Wan, J. & Chen, P. (2008). Analysis on nonlinear feedback controls for differ-

ential mobile robots and its application to multi-robot formation control - part

one. In Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th

International Conference on, 1224 –1229. 25

Warren, C. (1990). Multiple robot path coordination using artificial potential

fields. In Robotics and Automation, 1990. Proceedings., 1990 IEEE Interna-

tional Conference on, 500 –505 vol.1. 124

Weisbin, C. & Rodriguez, G. (2000). Nasa robotics research for planetary

surface exploration. Robotics Automation Magazine, IEEE , 7, 25 –34. 12

Williams, S.B. (2001). Efficient solutions to autonomous mapping and naviga-

tion problems. Ph.D. thesis, The University of Sydney. 16

Wulf, O., Arras, K.O., Christensen, H.I. & Wagner, B. (2004). 2d map-

ping of cluttered indoor environments by means of 3d perception. In Robotics

and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Con-

ference on, vol. 4, 4204–4209, IEEE. 16

Xie, G., Zheng, D. & Wang, L. (2002). Controllability of switched linear

systems. Automatic Control, IEEE Transactions on, 47, 1401 – 1405. 26

Yang, J.M. & Kim, J.H. (1999). Sliding mode control for trajectory track-

ing of nonholonomic wheeled mobile robots. Robotics and Automation, IEEE

Transactions on, 15, 578 –587. 20

165

BIBLIOGRAPHY

Yang, X., He, K., Guo, M. & Zhang, B. (1998). An intelligent predictive

control approach to path tracking problem of autonomous mobile robot. In

Systems, Man, and Cybernetics, 1998. 1998 IEEE International Conference

on, vol. 4, 3301 –3306 vol.4. 20

Youcef-Toumi, K. & Wu, S. (1991). Input/output linearization using time

delay control. In American Control Conference, 1991 , IEEE. 74

Zhang, B., Chen, W. & Fei, M. (2006). An optimized method for path plan-

ning based on artificial potential field. In Intelligent Systems Design and Ap-

plications, vol. 3, 35–39. 94

166

List of publications

Papers published

1. Ma, Y., Zheng, G., Perruquetti, W. and Qiu. Z: Local path planning

for mobile robots based on intermediate objectives. To appear in

Robotica 2014.

2. Ma, Y., Zheng, G., Perruquetti, W. and Qiu Z.: Control of non-holonomic

wheeled mobile robots via i-pid controller. In 2013 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), pp 4413-

4418.

3. Ma, Y., Zheng, G. and Perruquetti, W.: Real-time identification of

different types of non-holonomic mobile robots. In 9th IFAC Sym-

posium on Nonlinear Control Systems (NOLCOS), pp 791-796.

4. Ma, Y., Zheng, G. and Perruquetti, W.: Real-time local path planning

for mobile robots. In 2013 9th Workshop on Robot Motion and Control

(RoMoCo), pp 215-220.

5. Ma, Y., Zheng, G. and Perruquetti, W.: Cooperative path planning

for mobile robots based on visibility graph. In 2013 32nd Chinese

Chinese Control Conference (CCC), pp 4915-4920.

Papers submitted

1. Ma, Y., Zheng, G., Perruquetti, W. and Qiu Z.: i-PID controller deter-

mination for non-holonomic mobile robots. Submitted to Robotica.

167

List of publications

2. Ma, Y., Zheng, G., Perruquetti, W. and Qiu Z.: Non-holonomic mobile

robot motion planning via a modified potential field function and

the i-PID controller. Submitted to Journal of Intelligent and Robotic

Systems.

3. Ma, Y., Zheng, G., Perruquetti, W. and Qiu Z.: Motion planning for

mobile robots using potential field and the i-PID controller. Sub-

mitted to IROS 2014.

168

Path planning and control of non-holonomic
mobile robots

Abstract

This thesis is dedicated to the path planning and control strategy for non-

holonomic mobile robots.

Firstly, the identification of different mobile robot kinematic models is dis-

cussed: robot kinematic models are formulated as a switched singular nonlinear

system, and the problem becomes the real-time identification of the switching

signal.

Secondly, based on the identified robot model, a local path planning algo-

rithm is proposed, in which the irregular contour of obstacles is represented by

line segments. The path planning problem is formulated as a constrained reced-

ing horizon planning problem in which the trajectory is obtained by solving an

optimal control problem with constraints.

Thirdly, we apply an i-PID controller to control the non-holonomic mobile

robot with measurement disturbance. A switching parameter α is proposed be-

cause of the particularity of the non-holonomic system.

In addition to our proposed path planning algorithm, another path planning

approach using potential field is proposed. The modified potential field function,

which takes into account orientation and angular velocity of the robot, is able to

solve local minima problems and produce smooth forces to avoid oscillations.

Finally, a cooperative path planning approach between robots is proposed by

using the shared local information of each robot. In this approach, an algorithm

for expanding obstacles and merging intersecting obstacles is proposed. The

visibility graph is used for each robot in order to generate a series of intermediate

objectives which guide the robot to its final target.

Keywords: Non-holonomic mobile robot, Path planning, Motion control,

Potential field function, Cooperative path planning

Planification de trajectoire et commande pour les
robots mobiles non-holonomes

Résumé

Ce travail vise à proposer de nouvelles stratégies pour la planification et la

commande des robots mobiles non-holonomes.

D’abord, la problématique d’identification des différents modèles cinématiques

de robot mobiles est discutée. Le modèle cinématique du robot est formulé comme

un système singulier non-linéaire et à commutation, donc l’identification de mod-

èle est simplifiée à l’identification en temps réel du signal de commutation.

Ensuite, sur la base du modèle identifié du robot, un algorithme de plan-

ification locale est proposé, dans lequel le contour irrégulier de l’ obstacle est

représenté par des segments. La trajectoire est obtenue en résolvant un problème

de commande optimale avec contraintes.

Puis nous appliquons un contrôleur i-PID pour contrôler le robot mobile non-

holonome avec la perturbation dans les mesures. Un paramètre de commutation

α est proposé en raison de la particularité du système non-holonome.

En plus de notre algorithme de planification proposé, une autre approche

de planification en utilisant les champs de potentiels est proposée. La nouvelle

fonction de champ de potentiel est en mesure de résoudre les problèmes de minima

locaux et de produire des forces lisses pour éviter les oscillations.

Enfin, une approche de planification coopérative entre robots est proposée en

utilisant les informations locales partagées par chaque robot. Un algorithme pour

étendre les obstacles et fusionner les obstacles qui s’entrecroisent est proposé.

Le graphe de visibilité est utilisé pour chaque robot afin de générer une série

d’objectifs intermédiaires qui pourront le guider vers son objectif final.

Mots-clés: Robots mobiles non-holonomes, Planification, La commande du

mouvement, Fonction potentiel, Planification coopérative.

	Acknowledgements
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Background and Motivation
	1.2 State-of-the-art
	1.2.1 Non-holonomic systems
	1.2.2 Localization
	1.2.3 Path planning
	1.2.4 Motion control

	1.3 Outline of the thesis
	1.4 Contribution

	2 Real-time identification of different types of non-holonomic mobile robots
	2.1 Introduction
	2.2 Robot description
	2.3 Determination of input-output equations
	2.3.1 Coordinate transformation
	2.3.2 Input-output equations

	2.4 Distinguishability
	2.4.1 Distinguishability of input-output equations
	2.4.2 Calculation of residuals
	2.4.3 Numerical differentiation

	2.5 Simulation results
	2.6 Conclusion

	3 Real-time local path planning for non-holonomic mobile robots
	3.1 Introduction
	3.2 Path planning: an optimal control point of view
	3.2.1 Problem statement
	3.2.2 Mobile robot model
	3.2.3 Optimal control problem
	3.2.3.1 Nonlinear optimization problem formulation
	3.2.3.2 Receding horizon planner
	3.2.3.3 Determination of the flat outputs
	3.2.3.4 Parameterized trajectory

	3.3 Path planning algorithm with intermediate objectives
	3.3.1 Representation of obstacles
	3.3.2 Distance between robot and segments
	3.3.3 Local minima
	3.3.4 Avoidance of local minima by choosing intermediate objectives
	3.3.5 Path planning algorithm with intermediate objectives
	3.3.5.1 The intermediate objectives selection
	3.3.5.2 Reach switching region
	3.3.5.3 Judge the switching time

	3.3.6 Algorithm description

	3.4 Simulation results
	3.5 Conclusion
	3.6 Pseudocode

	4 Control of non-holonomic wheeled mobile robots via i-PID controller
	4.1 Introduction
	4.2 Problem statement
	4.3 Determination of the controller
	4.3.1 i-PID controller
	4.3.2 Discussion on (Y,)
	4.3.3 Algebraic estimation of F

	4.4 Simulation results
	4.5 conclusion

	5 Motion planning for mobile robots using potential field and the i-PID controller
	5.1 Introduction
	5.2 Problem statement
	5.3 Potential field function
	5.3.1 Attractive potential function
	5.3.2 Repulsive potential function

	5.4 Motion planning for non-holonomic mobile robots via i-PID controller
	5.4.1 Robot model
	5.4.2 i-PID controller

	5.5 Simulation results
	5.5.1 Switching strategy

	5.6 Conclusion

	6 Cooperative path planning for mobile robots based on visibility graph
	6.1 Introduction
	6.2 Problem statement
	6.3 Generation of intermediate objectives based on visibility graph
	6.3.1 Polygon generation
	6.3.1.1 Disjoint points
	6.3.1.2 Joint points

	6.3.2 Polygon mergence algorithm
	6.3.3 Generation of intermediate objectives

	6.4 Path planning based on intermediate objectives
	6.4.1 Reach switching region
	6.4.2 Algorithm description

	6.5 Simulation results
	6.6 Conclusion

	Conclusions and Perspectives
	Résumé en français
	References
	List of publications

