
HAL Id: tel-00979707
https://theses.hal.science/tel-00979707v1

Submitted on 16 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving bivariate algebraic systems and topology of
plane curves
Yacine Bouzidi

To cite this version:
Yacine Bouzidi. Solving bivariate algebraic systems and topology of plane curves. Symbolic Compu-
tation [cs.SC]. Université de Lorraine, 2014. English. �NNT : 2014LORR0016�. �tel-00979707�

https://theses.hal.science/tel-00979707v1
https://hal.archives-ouvertes.fr

École doctoral IAEM Lorraine, Département de formation doctorale en
informatique

THÈSE DE DOCTORAT

Pour obtenir le titre de

Docteur de l’université de Lorraine

Spécialité : Informatique

Présentée par

Yacine Bouzidi

Résolution de systèmes bivariés et
topologie de courbes planes

Soutenue le 18 mars 2014 devant un jury composé de :

Rapporteurs : Laurent Busé (INRIA Sophia Antipolis-Méditerranée)

Laureano Gonzalez-Vega (Universidad de Cantabria)

Eric Schost (University of Western Ontario)

Examinateurs : Sylvain Lazard -directeur- (INRIA Nancy Grand Est - Loria)

Marc Pouget -co-directeur- (INRIA Nancy Grand Est - Loria)

Fabrice Rouillier (INRIA Paris Roquencourt)

Michael Sagraloff (Max-Planck-Institut für Informatik Saarbrücken)

Monique Teillaud (INRIA Sophia Antipolis - Méditerranée)

Laboratoire Lorrain de Recherche en Informatique et ses Applications - UMR 7503

Remerciements

Je voudrais, en premier lieu, exprimer ma reconnaissance la plus sincère à
Sylvain Lazard et Marc Pouget, pour avoir encadré ma thèse et pour m’avoir
accompagné avec autant de rigueur, de sérieux et de disponibilité tout au long
de ces trois années d’effort. Travailler à leurs côtés a été un réel plaisir et m’a
beaucoup apporté à la fois sur le plan scientifique que humain.

Je voudrais également remercier profondément Fabrice Rouillier qui m’a
donné goût à la discipline du calcul formel, d’abord à travers ces cours pas-
sionnants en master, puis durant le stage de fin d’études effectué à ses cotés.
Son enthousiasme, ses nombreuses idées et son amour sans limite pour la
recherche scientifique sont autant de qualités qui ont fait du travail avec lui
une véritable fête. Trugarez !

Je tiens à remercier chaleureusement Eric Schost, Laurent Busé et Laure-
ano Gonzalez-Vega d’avoir accepté de rapporter ma thèse et Michael Sagraloff
et Monique Teillaud d’avoir accepté de faire partie de mon jury. Leurs nom-
breuses remarques et conseils sont la preuve de l’intérêt qu’ils ont porté à mon
travail.

Je voudrais également remercier Guillaume Moroz avec qui j’ai eu plaisir
à discuter, et qui s’est toujours montré disponible pour répondre à mes nom-
breuses questions. Ses "très très" nombreux pointeurs bibliographiques, ses
commentaires ainsi que ses pertinentes remarques m’ont été d’une grande util-
ité dans l’aboutissement de mes travaux.

Je remercie aussi tous mes collègues du Loria. Ceux d’abord de l’équipe
VEGAS qui m’ont si gentiment accueillit et ont veillé à ce que je me sente bien
au sein du groupe, Sylvain Petitjean, Xavier Goaoc, Laurent Dupont, Luis pe-
naranda et Guillaume Batog. Ceux ensuite, que j’ai côtoyé à l’intérieur des
murs du laboratoire ou bien en dehors, et avec qui, j’ai eu des échanges pas-
sionnants, drôles et parfois vifs pendant le déjeuner ou lors des innombrables
pauses café. Une spéciale dédicace au cheikh Nazim Fatès, mon collègue et
ami qui porte le tarbouche et chante l’andalou comme personne.

A tous mes amis avec qui j’ai passé de formidables moments à discuter de
sujets, il est vrai prosaiques, mais au combien drôles, à jouer au football, à
me changer les idées en somme, je dis également merci. Merci en particulier
à Mehdi d’avoir toléré ma grivoiserie, et à Ahmed mes talents de footballeur,
merci aussi à Rafik, Karim, Younes, Judith, Imene, Adrien, Lionel, Soumeya,
Alexandre, Lilia, et à Feriel mon fidèle souvenir ...

Merci également au groupe de parigots, chez qui j’allais respirer lorsque
je manquais d’air à Nancy. Khaled la Mannschaft, Rabah la scoumoune et
mourad, à la fois pourfendeur et jouisseur du libéralisme. Merci enfin, à tout
ceux que je pourrais avoir oublié.

ii

Pour terminer, j’ai une pensée particulière à toute ma famille, sans qui,
tout cela n’aurait jamais été possible. Votre soutient indéfectible et votre
confiance m’ont aidé à braver la tourmente et m’ont permit d’arriver à bon
port saint et sauf. A Vous donc, papouni, mamouni, les 3K (Kechrouda,
Kahlouch et Krimo) et le nouveau venu Akacha, je vous aime !

A ma mère, je dédis ces quelques vers d’Alfred de Musset

Ô toi, dont les soins prévoyants, Dans les sentiers de cette vie
Dirigent mes pas nonchalants, Ma mère, à toi je me confie.
Des écueils d’un monde trompeur Écarte ma faible nacelle.
Je veux devoir tout mon bonheur A la tendresse maternelle.

Contents

1 Introduction 1
1.1 The Problem . 1

1.1.1 Solving bivariate algebraic systems 3
1.1.2 Robustness and probabilistic algorithms 5
1.1.3 Complexity and efficiency 8

1.2 Contributions . 9
1.3 Related work . 11

1.3.1 Bivariate systems solving 11
1.3.2 Topology computation 17

2 Preliminaries 19
2.1 Notation . 20
2.2 Rational Univariate Representation 21
2.3 Computation with polynomials 22

2.3.1 Basic operations . 22
2.3.2 Greatest common divisor 23
2.3.3 Root isolation and interval arithmetic 26

2.4 Subresultant sequence . 28
2.4.1 Resultant . 29
2.4.2 Subresultant sequence 30
2.4.3 Subresultants computation 34

2.5 Modular techniques . 35
2.5.1 General principle . 36
2.5.2 Modular gcd computation 38

3 Separating Linear Form 41
3.1 Introduction . 41
3.2 Notation and preliminaries . 43
3.3 Separating linear form over Zµ versus Z 45
3.4 Number of solutions of Iµ versus I 47
3.5 Counting the number of solutions of Iµ 50

3.5.1 Triangular decomposition 50
3.5.2 Counting the number of solutions of Iµ 52

3.6 Computing a lucky prime and the number of solutions of I . . 55
3.7 Computing a separating linear form 57
3.8 Conclusion . 59

iv Contents

4 Rational Univariate Representation 61
4.1 Introduction . 61
4.2 RUR computation . 62

4.2.1 Proof of Proposition 4.2.1 64
4.3 RUR bitsize . 68
4.4 Conclusion . 72

5 Efficient Practical Algorithm 75
5.1 Introduction . 76
5.2 Preliminaries . 78
5.3 School-book non-modular algorithm 80

5.3.1 Triangular decomposition 80
5.3.2 Rational Univariate Representation 83

5.4 Modular algorithm . 86
5.4.1 Overview . 87
5.4.2 RUR-candidate for T = {B(x,y),A(x)} 88
5.4.3 RUR-candidates for S = {P,Q} 92
5.4.4 Las-Vegas algorithms 98

5.5 Conclusion . 102

6 Implications and applications 105
6.1 Isolating boxes from a RUR 106
6.2 Sign of a polynomial at the solutions of a system 109

6.2.1 Proof of Lemma 6.2.3 114
6.3 Over-constrained systems . 117
6.4 Topology of plane curves . 119

6.4.1 Isotop outline . 120
6.4.2 Improvements to Isotop 121

7 Implementations and experiments 123
7.1 Implementations . 123

7.1.1 RS3 bivariate solver . 124
7.1.2 CGAL Bivariate Algebraic Kernel 127

7.2 Experiments . 131
7.2.1 RS3 experiments . 132
7.2.2 Isotop2 experiments 137

8 Conclusion 151

Bibliography 155

Chapter 1

Introduction

Contents

1.1 The Problem . 1

1.1.1 Solving bivariate algebraic systems 3

1.1.2 Robustness and probabilistic algorithms 5

1.1.3 Complexity and efficiency 8

1.2 Contributions . 9

1.3 Related work . 11

1.3.1 Bivariate systems solving 11

1.3.2 Topology computation 17

1.1 The Problem

Computational geometry is the field of computer science dedicated to the es-
tablishment of theoretical foundations for the study of geometric algorithms.
Traditionally, the focus has been on linear objects such as points, line seg-
ments, polygons and polyhedra. The “simple” structure of these objects eases
the design of algorithms dealing with them as well as their analysis. In real
world however, most problems related to geometry are naturally modeled by
curved objects and a non-trivial task consists in providing algorithms that
compute efficiently and accurately with these objects. This explains why, re-
cently, tools that come from other fields such as algebra and topology, have
been used by the computational geometry community in order to improve the
accuracy and the efficiency of these algorithms. Typically solving algebraic
systems plays an increasing role in computational geometry algorithms that
deal with non-linear objects. Indeed, as non-linear objects are often defined
as a zero set of polynomials, computing the roots of polynomial systems yields
information about the structure and the properties of these objects. Among
the recent work that uses algebraic system solving in computational geome-
try, one can mention for example the work of Everett et al. [Everett 2007]

2 Chapter 1. Introduction

where several systems are solved in order to prove a conjecture on the Voronoi
diagrams of three lines in general position in three-dimensional space.

In this context, the computational geometry problem we will focus on
in this thesis is the computation of the topology of a real algebraic plane
curve. We consider such a curve C, defined in a Cartesian coordinate system
by a bivariate polynomial f with rational coefficients i.e. C = {(x, y) ∈
R2|f(x, y) = 0} with f in Q[x, y]. This problem is fundamental since it is
central in the problem of plotting the curve in a certified way, that is in a way
where the obtained plot is isotopic to the curve (see below). Last years, much
work has been dedicated to the problem of computing the topology of curves
leading to the development of several algorithms (see Section 1.3 for details).

In vague terms, computing the topology of a curve C consists in computing
a geometric representation that describes completely the structure of C. This
representation usually consists of a planar graph Gc whose vertices are mapped
to points of the curve and such that connecting these points by segments yields
a drawing isotopic to the input curve. In other words, C can be transformed
continuously into Gc without topological changes, see Figure 1.1.

C
Gc

Figure 1.1: Gc is an isotopic graph associated to the curve C.

In order to obtain an isotopic graph, the graph must contain vertices that
correspond to self-intersections and isolated points of the curve. However, in
order to avoid separating such relevant points from other singularities (e.g.,
cusps), all singular points of C, that is, points at which the tangent is not well
defined, are usually mapped to vertices of the graph. In addition, in order
to preserve the geometry of C, the computed graph usually contains vertices
that correspond to the extreme points of C for a particular direction (say the
direction of the x-axis), that is, points that are non-singular and for which

1.1. The Problem 3

the tangent line is vertical (i.e., parallel to the y-axis). These singular and
extreme points form the critical points of C, and an important step in the
construction of an isotopic graph of C is the determination of these points.
Since these points are defined as the solutions of some bivariate systems that
consists of f and some of its partial derivatives, computing efficiently these
critical points requires to efficiently solve systems of bivariate polynomials.

It should be stressed upfront that the problem of solving polynomial sys-
tems is one of the main topics in computer algebra and many successful the-
oretical and practical results have been obtained. However, most of these
algorithms treat the case of general polynomial systems and very few address
specifically the case we are interested in, that is the case of systems with bivari-
ate polynomials with rational coefficients. This explains why, an interesting
challenge consists in investigating the case of bivariate systems.

In the present document we are going to study, elaborate and implement
efficient and robust algorithms for solving systems of bivariate polynomials
with coefficients in Q. Beside the fact that this problem is fundamental in our
problem of computing the topology of curves, solving bivariate systems also
arises in many other application fields as for example robotic, computer aided
design or molecular biology.

Before going further, it is important to answer the following questions:

• What do we mean by solving systems?

• What do we mean by robustness?

• How do we evaluate the efficiency?

It is not an easy task to provide clear and definitive answers to these
questions. The answers often depend on the context of the computation and
the application fields for which the algorithms are designed. However, having
as objective the problem of computing the topology of plane curves, we try
to provide clear answers to these questions.

1.1.1 Solving bivariate algebraic systems

In abstract terms, solving a polynomial system means computing all its so-
lutions. Although simple, this definition is difficult to translate in computer
terms where the notion of “solution of a polynomial system” is not clearly
defined. In some contexts, solving a system amounts to computing some for-
mal representation of its solutions that allows to deduce more or less easily
information on these solutions such as numerical approximations, number of
solutions, etc. Such a representation can be for example a Gröbner basis, a

4 Chapter 1. Introduction

rational parameterization or a triangular representation. In some other con-
texts, the emphasis is put on the computation of numerical approximations
of the solutions. These numerical approximations are usually given as a set
of isolating axis-parallel boxes such that every real solution of the system lies
in a unique box and conversely. Isolating boxes for the solutions can be com-
puted directly from the input system using numerical approximation methods
such as Newton method, or they can be obtained from a formal representa-
tion of the solutions. It should be stressed however that formal solutions do
not necessarily yield, directly, isolating boxes of the solutions. In particular,
from a theoretical complexity view, it is not proved that the knowledge of a
triangular system or Gröbner basis of a system always simplifies the isolation
of its solutions. This observation also explains why it is not an easy task to
define precisely what a formal solution of a system is, and why usage prevails
in what is usually considered to be a formal solution.

In this thesis, we choose to represent the solutions of bivariate systems
using a particular type of rational parameterization called Rational Univariate
Representation [Rouillier 1999]. Such a representation is given by a univariate
polynomial f and two rational functions (fx

f1
, fy

f1
) that define a one-to-one

mapping between the roots of f and the solutions of the system (see Figure 1.2
for an illustration).

t

Univariate polynomial

x

y

P

Q

f(t)
V({P,Q}) → V(f)

(x,y) 7→ x + ay

(fx(t)
f1(t)

,
fy(t)
f1(t)

) ←[t

one-to-one mapping

Figure 1.2: Rational Univariate Representation of the system {P,Q} where V (S)

is the set of (complex) solutions of a system S of polynomials.

All the univariate polynomials of the Rational Univariate Representation,
i.e. {f, f1, fx, fy}, are uniquely defined with respect to a separating linear

form, that is, a linear combination of the variables x+ ay that takes different
values when evaluated at different solutions of the system. Also, computing
a Rational Univariate Representation requires to first compute such a linear
form which, at present, turns out to be the dominant part in the computa-
tion of this representation. This difficulty explains why in practice, based

1.1. The Problem 5

on the fact that a random linear form is separating with high probability,
most of the algorithms that compute rational parameterizations proceed by
choosing randomly a linear form and then computing the associated mapping,
which results in probabilistic Monte-Carlo algorithms for computing such a
representation. In some other algorithms, the chosen linear form is tested for
separation to eliminate the Monte-Carlo aspect but the problem of deciding
whether a linear form is separating turns out to be a difficult task.

In addition to the fact that a Rational Univariate Representation is concep-
tually simple, the choice of such a representation can be motivated in several
respects as discussed below.

Starting from a Rational Univariate Representation, one can easily com-
pute isolating boxes for the real solutions of the system by first computing
isolating intervals of the real roots of f (using any univariate isolation algo-
rithm, see for instance [Rouillier 2003, Mehlhorn 2008]) and then computing
the image of these intervals by the rational fractions fx

f1
and fy

f1
. This is impor-

tant in our problem of computing the topology since isolating boxes around
the critical points of the curve are needed as an input of the connection step.
An algorithm for efficiently computing isolating boxes of the solutions from
the associated Rational Univariate Representation is discussed in detail in
Chapter 6.

Another notable advantage of Rational Univariate Representations is that
they enable the transformation of problems involving solutions of multivari-
ate systems into problems on roots of univariate polynomials. One relevant
example (discussed in detail in Chapter 6) is the famous Sign_at operation
that consists in computing the sign of an arbitrary bivariate polynomial at
one solution of a bivariate system.

Finally, another important property of Rational Univariate Representa-
tions is that they give information about the multiplicity of the solutions.
This information is useful in many applications and especially for computing
the topology of curves where some multiplicities are often needed to deter-
mine the topology inside the boxes containing critical points of the curve (see
Chapter 6 for details).

1.1.2 Robustness and probabilistic algorithms

In this thesis, the emphasis is put on complete and certified algorithms for
solving bivariate systems and computing the topology of plane curves. In
other words we aim for methods that always return the correct result for all
types of input. For this purpose, three aspects need to be taken into ac-
count, the robustness, completeness and probabilistic aspects. By robustness

6 Chapter 1. Introduction

we mean robustness in the context of numerical rounding errors in a fixed-
precision floating-point arithmetic. By completeness we refer to the ability
of an algorithm to handle any input, possibly in degenerate form. Finally by
probabilistic aspects, we refer especially to algorithms that do, or do not, re-
turn a correct result, and distinguish in particular between Monte-Carlo and
Las-Vegas algorithms. These aspects are discussed in more details below.

Robustness. The question of exact computation is critical, especially in
computational geometry algorithms. Indeed, the correctness of these algo-
rithms is generally proved under the assumption that some basic geometric
predicates are computed exactly whatever is the input. In the context of alge-
braic input as we consider here, the exact representation of algebraic numbers
would require an infinite precision in floating point representation. Hence, we
use instead the classical implicit representation via isolating intervals. This
consists in representing the solutions of algebraic systems by isolating intervals
with multiple-precision bounds and in providing algorithms for computing ex-
actly with these solutions in, for instance, sign computations, comparison, etc
(see [Yap 2000, §6.3] for the case of roots of univariate polynomials).

Completeness. Our objective is the design of general algorithms that do
not assume any genericity conditions on the input. The precise meaning of
genericity varies depending on the problem and the algorithm. For instance, in
the case of topology computation, a very common condition is that the input
curve is in generic position, that is, no two critical points are vertically aligned.
In the case of system solving, a typical genericity condition is that the ideal
corresponding to the input system is radical, that is, no multiple solutions
exist. This is the case for example with numerical methods based on Newton
iteration where the correctness as well as the termination are guaranteed under
the condition that no multiple solutions exist. We however allow algorithms
that make genericity assumption when this assumption is verified during the
computation. For instance, when it comes to solving bivariate systems we
always assume in our algorithms that the system has finitely many solutions
and we provide a way to check that it is indeed the case.

Probabilistic algorithms. Many algorithms in computer algebra depend
on a generic choice. This choice is most of the time random in practice which
makes these algorithms probabilistic. These probabilistic algorithms are gen-
erally of two types: Monte-Carlo algorithms whose running time is bounded,
but whose output may be incorrect with a certain (typically small) probability,
and Las-Vegas algorithms who take an amount of time that varies randomly
and is not necessarily bounded, but always produce the correct result.

A school-book example that illustrates such algorithms is the famous coin
toss problem, where a coin is successively tossed aiming at obtaining a head

1.1. The Problem 7

(or tail). A natural Monte-Carlo algorithm consists in tossing a coin a con-
stant number of times, say k. The running time of such an algorithm is then
bounded by the time required to perform k tosses, while the probability to
obtain the desired outcome depends on k. One can alternatively opt for the
Las-Vegas variant of this algorithm that consists in tossing a coin until the
first head outcome (or tail). In that case the desired outcome is guaranteed
and only the running time is random, although not bounded.

A typical example of probabilistic Monte-Carlo algorithms in computer
algebra are those computing rational parameterizations of the solutions of an
algebraic system. As mentioned previously, all these algorithms require the
computation of a separating linear form. In practice, a linear form is chosen
randomly and the associated univariate representation is computed. However,
although such a random choice is valid with high probability, it may happen
that the chosen linear form does not separate the solutions and thus, that the
computed univariate representation does not correctly encode the solutions of
the system. Another example worth mentioning, is the methods that use com-
putations over Z/µZ combined with the Chinese Remainder Algorithm. This
strategy is quite commonly used in symbolic algorithms to avoid intermediate
growth of coefficients and thus speedup the computations (see Section 2.5 for
details). The choice of the prime numbers µ is done randomly and it may
happen that some of them are not appropriate for applying the Chinese Re-
mainder Theorem which leads to a wrong result. Although in practice, such
“unlucky” primes are rare, it is still possible to find examples for which, the
algorithm returns an incorrect result.

Such Monte-Carlo algorithms can be transformed into Las-Vegas algo-
rithms whenever there exists a way to verify that the output produced by
the algorithm is indeed correct. If so then the resulting Las-Vegas algorithm
is merely to repeatedly run the Monte-Carlo algorithm until one of the runs
produces an output that is checked to be correct. It should be stressed how-
ever that often, testing the output for correctness is far from being trivial and
induces a gap, from theoretical and practical point of view, between proba-
bilistic Monte-Carlo algorithms and the corresponding Las-Vegas variants. A
challenge that we will address in our work is to reduce as much as possible
this gap in order to obtain efficient algorithms while keeping the Las-Vegas
certification.

Note finally that, in some cases, the number of times that a probabilis-
tic algorithm can fail, can be upper-bounded which, thus, also bounds the
running time of the algorithm. This is for example the case with the algo-
rithms presented in this thesis, where the number of bad choices (the “unlucky”
prime numbers or the non-separating linear forms) is bounded and so as for
the running time. Such algorithms are known under the name of randomized

8 Chapter 1. Introduction

algorithms, and differ from the usual Las-Vegas algorithm where the running
time is usually not assumed to be bounded. However, especially in computer
algebra, one often uses the term Las-Vegas to refer to such algorithms because
they have the typical structure of Las-Vegas algorithms, which is to repeat
iteratively one procedure until it succeeds. We use the same terminology for
the algorithms presented below.

1.1.3 Complexity and efficiency

We measure the efficiency of our algorithms both from the theoretical and
practical point of view.

For the theoretical efficiency, we proceed in general by computing worst-
case asymptotic complexities, that is the asymptotic number of operations
performed by the algorithms. These complexities are bounded using the clas-
sical big O notation. Most complexity analyses in computer science measure
the complexity in terms of arithmetic operations. However, especially in com-
puter algebra, such complexities often underestimate the actual running time
of the algorithm. The reason behind this, is the growth of coefficients dur-
ing the computation, which increases the cost of arithmetic operations, thus
affecting the global efficiency of the algorithm. In the case of polynomial
with integer coefficients as we consider, a more relevant measure is the bit
complexity, that is, the number of bit operations performed by the algorithm.
In the context of algorithms on polynomials, such a complexity depends in
general on two parameters: the total degree of the input polynomials and the
maximum bitsize of their coefficients.

The bit complexity is hence a more precise measure of algorithms efficiency,
but its computation is in general tedious since it requires a more in depth
analysis of the algorithms than for the arithmetic complexity.

In addition, worst-case complexities are suitable to measure the intrinsic
difficulty of the problem at hand, but the latter should however be taken with
care when it comes to practical efficiency where the average analysis might be
more relevant. This is particularly the case with randomized algorithms whose
worst-case complexity may be very bad compared to the actual behavior of
the algorithm. For such algorithm we compute upper bounds on the expected
number of bit operations which we refer to as the expected bit complexity.

Finally, from the practical efficiency point of view, we compare the running
time of our implementations with several state-of-the-art implementations on
a large number of instances.

1.2. Contributions 9

1.2 Contributions

In this thesis, we present several results, both theoretical and practical con-
cerning the resolution of bivariate algebraic systems. These results mostly
concern the computation of separating linear forms and Rational Univariate
Representations. We also present contributions on strongly related problems
such as the computation of isolating boxes for the solutions of such systems
and the evaluation of the sign of other polynomials at the solutions of the
systems. Finally, we present results on the initial problem that motivated our
study, namely the computation of topology of plane algebraic curves.

In a nutshell, our main results are several algorithms for computing a RUR
and isolating boxes of the real solutions of a system of two bivariate polyno-
mials. The bit complexities of these algorithms are respectively ÕB(d

8 + d7τ)

in the worst-case and, in average, in ÕB(d
6 + d5τ) in a Las-Vegas setting and

also (but independently) in a Monte-Carlo setting, where d is the total degree
of the input polynomials and τ is the maximum bitsize of their coefficients and
where OB refers to an asymptotic upper bound on the bit complexity and Õ

means that polylogarithmic factors are omitted. Furthermore, some of these
probabilistic algorithms (both Monte-Carlo and Las-Vegas) are shown to be
very efficient in practice. We detail below a brief overview of our contributions.

Separating linear form. Our first contribution, which is the topic of
Chapter 3, is a new deterministic algorithm of worst-case bit complexity
ÕB(d

8 + d7τ) for computing a separating linear form of a system of two bi-
variate polynomials of total degree at most d and integer coefficients of bitsize
at most τ . The system should be zero dimensional but this is tested in our
algorithm. This decreases by a factor d2 the best known complexity for this
problem.

As a direct consequence, using our algorithm for computing a separating
linear form directly yields a rational parameterization of the solutions of a
bivariate system within the same overall complexity as our algorithm, both
in the approach of Gonzalez-Vega et al. [Gonzalez-Vega 1996, Diochnos 2009]
and in the one presented in Chapter 4 for computing a Rational Univariate
Representation as defined in [Rouillier 1999]. As a byproduct, we obtain an
algorithm for computing the number of (complex) distinct solutions of such
systems within the same complexity, i.e. ÕB(d

8 + d7τ).

Rational Univariate Representations. In Chapter 4 we show that
the Rational Univariate Representation (RUR for short) of Rouillier
[Rouillier 1999] (i) can be expressed with simple polynomial formulas, that
(ii) it has a total bitsize that is asymptotically smaller than that of Gonzalez-
Vega and El Kahoui by a factor d, and that (iii) it can be computed with

10 Chapter 1. Introduction

the same complexity, that is ÕB(d
7 + d6τ). Namely, we prove that the RUR

consists of four polynomials of degree at most d2 and bitsize Õ(d2 + dτ) (in-
stead of O(d) polynomials with the same asymptotic degree and bitsize for
the Gonzalez-Vega and El Kahoui parameterization). Moreover, we prove that
this bound holds for the RUR of any ideal containing P and Q, that is, for
instance the RUR of the radical ideal of 〈P,Q〉.

Efficient practical algorithms. Another aspect of our work is to investi-
gate efficient practical algorithms for computing a decomposition of a bivariate
system {P,Q} into a set of Rational Univariate Representations. We present
an approach that is similar to that in [Gonzalez-Vega 1996, Diochnos 2009]
and show how the use of a multi-modular approach based on the Chinese
Remainder Algorithm (see Section 2.5) combined with a random choice of a
separating linear form can speed up the computation of a RUR from theoret-
ical and practical point of view. Our first result is a Monte-Carlo algorithm
with an expected bit complexity in ÕB(d

6 + d5τ) and a good probability of
success (whose parameter appears in the bit complexity in a logarithmic factor
and is thus hidden). We then derive from this algorithm two Las-Vegas vari-
ants of expected bit complexity in ÕB(d

7+d6τ) and ÕB(d
6+d5τ) respectively.

These Las-Vegas algorithms use two different methods to check that the result
computed by the Monte-Carlo algorithm is correct. While the first method is
intuitive, conceptually elegant and implemented, the second one shows that
it is possible to design a Las-Vegas algorithm with the same asymptotic bit
complexity as the Monte-Carlo algorithm.

Isolation of the real solutions. As our main objective is to obtain nu-
merical approximations of the real solutions, we show in Chapter 6 that, given
a RUR, isolating boxes of the solutions of the system can be computed with
ÕB(d

6 + d5τ) bit operations. This decreases by a factor d4 the best known
complexity for isolating the solutions of a bivariate system from a correspond-
ing rational parameterization [Diochnos 2009]. Together with the previous
results, this first brings the overall bit complexity of isolating the real solu-
tions of a bivariate system via a univariate representation to ÕB(d

8 + d7τ) in
the worst-case. Note that this complexity equals the best known one proved
by Emeliyanenko and Sagraloff [Emeliyanenko 2011] for solving bivariate sys-
tems using an alternative resultant-based algorithm (see related work below).
This also brings the overall average bit complexity of isolating the real solu-
tions via a univariate representation to ÕB(d

6+d5τ) both in Monte-Carlo and
Las-Vegas settings.
Applications. We finally exhibit some advantages of computing a RUR of
a bivariate system through three applications: We first show how a rational
univariate representation (and more generally a rational parameterization)

1.3. Related work 11

can be used to perform efficiently two important operations on the input
system. We first show how a RUR can be used to perform efficiently the
sign_at operation. Given a polynomial F of total degree at most d with
integer coefficients of bitsize at most τ , we show that the sign of F at one real
solution of the system can be computed in ÕB(d

8 + d7τ) bit operations, while
the complexity of computing its sign at all the Θ(d2) solutions of the system
is only O(d) times that for one real solution. This improves the best known
complexities of ÕB(d

10+d9τ) and ÕB(d
12+d11τ) for these respective problems

(see [Diochnos 2009, Theorem 14 & Corollary 24] with the improvement of
[Sagraloff 2012] for the root isolation). Similar to the sign_at operation, we
show that a RUR can be split in two parameterizations such that F vanishes
at all the solutions of one of them and at none of the other. We also show
that these two parameterizations can be transformed into RURs, in order to
reduce their total bitsize, within the same complexity, that is, ÕB(d

8 + d7τ).
Coming back to our initial problem, that is, the computation of the topol-

ogy of curves, we show that solving bivariate systems through Rational Uni-
variate Representations brings improvements in several respects to the algo-
rithm presented in [Cheng 2010].

1.3 Related work

We discuss in the following, existing methods for isolating the real roots of
systems defined by two bivariate polynomials with integer coefficients. We
compare between the different state-of-the-art algorithms and give when pro-
vided the complexity of each of them. We further review different algorithms
for computing the topology of a planar algebraic curve. The majority of these
algorithms make extensive use of bivariate system solving techniques.

1.3.1 Bivariate systems solving

There exist many methods for isolating the real roots of system defined by
two bivariate polynomials with integer coefficients. These methods can be
classified in two different families. The family of numerical methods and that
of symbolic methods. Note that we only briefly discuss the former category
of methods since most of these methods are able to solve systems only under
genericity conditions.

Numerical methods. Such methods treat the polynomials as real value
functions and analyze the zero-level of these functions. They usually
lead to local computations where the solutions are sought in a given area
of interest, such as the famous Newton (-Raphson) method (see for e.g.

12 Chapter 1. Introduction

[Rheinboldt 1998]). The strength of numerical methods is undoubtedly their
practical efficiency due essentially to the use of approximate computation.
However, without convenient assumptions on the input system or additional
algebraic computations, such methods seldom give guarantee of correctness
and termination, especially in case of systems with singular solutions (so-
lutions with multiplicities) where the Newton-like techniques are not appli-
cable anymore. One important representative of this set of methods is the
subdivision-based methods [Mourrain 2009, Garloff 2000, Sherbrooke 1993].
Subdivision can be seen as a generalization of the binary search, it starts
with a box of interest and recursively splits it into smaller boxes, eliminating
boxes which cannot contain a zero of the system, and ending up with a union
of boxes that contains all solutions of the system that lie within the given
box. In [Moore 2009], [Neumaier 1990, §5.1] and references therein, the check
for the existence as well as the uniqueness of some solution inside a given
box is achieved using numerical predicates based on interval computation
techniques such as interval evaluation, Newton interval method, Krawzcyk
operator [Rump 1983], etc.

Another set of numerical methods that are worth mentioning are those
based on homotopy continuation (see e.g. [Li 2003, Verschelde 2010]).
Roughly speaking, such methods use homotopy combined with numerical
tracking algorithms to approximate the solutions of a polynomial systems.

Symbolic methods. These methods comprise the classical elimination-
based methods such as resultant, triangular decomposition or rational univari-
ate representation-based methods. Compared to the aforementioned purely
numerical methods, symbolic methods are in general complete in the sense
that no assumption is made on the system under consideration. In addition,
the result, computed in a certified way provides global information on the set
of the solutions (including the complex ones). These methods, which can be
viewed as generalizations of the classical Gauss elimination method proceed
generally in two steps: a symbolic step (also called a projection step), where
a formal representation of the solutions is computed from the initial system
using algebraic properties and polynomial combinations, and a numerical step
(also called lifting step) that starts from this formal representation and com-
putes numerical approximations of the solutions of the system. The reliance
of such methods on costly symbolic computations (during the symbolic step)
makes those methods slow and impractical for general polynomial systems as
soon as their degree or number of variables become high. However they still
constitute a suitable choice for solving systems of bivariate polynomials. Al-
gebraic methods are of different sorts depending on the type of representation
computed in the symbolic step. We discuss in the following three main types of

1.3. Related work 13

representations, the resultant representations, the triangular representations
and the univariate representations.

Resultant representation. These methods follow the same basic idea.
They first project the solutions along several directions to derive a set of
candidate solutions and then identify among these candidates those that are
actually solutions. Note that for these methods, the projection step consists
only of resultant computations. We survey below several significant results
using this representation.

In [Seidel 2005] this projection idea is used to compute the set of critical
points of an algebraic planar curve f , that is the set of the real roots of
the system {f, ∂f

∂y
}. Under the assumption that the given curve is in generic

position, i.e. there are no two critical points on the same vertical line, the
algorithm projects the set of critical points, K, in three different directions.
First onto the x- and the y-axis which yields a set A × B ⊃ K of candidate
solutions given as pairs of isolating intervals, and then onto a third direction
that is verified to be non-degenerate in order to recover the set of actual
solutions K for A× B.

In [Cheng 2009] a local generic position-based method called LGP is pre-
sented for solving bivariate systems. Roughly speaking, this method performs
a coordinate transformation of the form x 7→ x+ay that transforms the initial
system S into a new system S ′ that is in generic position, i.e. where different
solutions are projected to different points on the x-axis. Then, the solutions
of S are deduced as linear combinations of the projections onto the x-axis of
the solutions of S and those of S ′. The key contribution of this paper is the
simple way the rational a in the linear form x + ay is computed. However,
one important drawback of this approach is that the rational a computed
this way can be of bitsize, that of the separation bound of the resultant of
the two input polynomials, i.e. Õ(d3τ). This has a negative impact on the
cost of symbolic computations after performing the coordinate transforma-
tion. Note that for the two previous methods, no complexity analyses of the
global solving algorithms are provided.

Unlike the two previous methods, the Grid method in [Diochnos 2009] does
not assume, nor compute a generic position for the initial system. Instead,
the algorithm projects the solutions onto the x- and the y-axes which yields
a set of pairs of algebraic numbers and then selects among this set, the pairs
at which the input polynomials vanish. Testing a pair is done by computing
the sign of the input polynomials at the corresponding algebraic numbers,
following the approach of Roy and Likteig [Lickteig 2001]. Although very
simple to describe, this method suffers from the symbolic cost of the exact
implementation of the Sign_at operation. The complexity analysis of this

14 Chapter 1. Introduction

method shows that the overall bit complexity is dominated by that of the
Sign_at operation which is in ÕB(d

14 + d13τ).

Recently, following the Grid approach in [Diochnos 2009], Berberich et al.
[Berberich 2011b] proposed a very efficient algorithm for isolating the real
roots of a bivariate system named Bisolve. The first step of this algorithm
is the same as that in the Grid method (i.e. the solutions are projected
onto the orthogonal axes by resultant computations). The second step is the
separation, where isolating discs that separate the (complex) projected solu-
tions from each others are computed using interval refinement [Kerber 2009b].
Finally, in a last step, an original inclusion predicate is used to validate a can-
didate solution as an actual real solution. This inclusion predicate based on
interval arithmetic and Hadamard’s bound on the determinant ensures, under
some conditions on the size of the intervals, the existence of a real solution
inside a given box. The complexity analysis provided in [Emeliyanenko 2012]
shows that isolating the real solutions of systems of two bivariate polynomials
using Bisolve can be done using ÕB(d

8+d7τ) bit operations where d and τ de-
note the degree and the bitsize of the input polynomials. It should be stressed
that this complexity is the best known complexity so far for the problem of
isolating the real solutions of a bivariate polynomial system.1 Furthermore,
the authors provide a very efficient implementation that benefits from a recent
approach [Emeliyanenko 2010] to compute resultants exploiting the power of
Graphics Processing Units (GPUs). The use of GPU computations reduces
substantially the cost of the symbolic step which is known to be the bottle-
neck in such elimination-based algorithms. One drawback of this approach is,
however, the portability of the software.

Triangular representation. Another way to express symbolically the so-
lutions of a polynomial system is to use a triangular representation of the
solutions. In the bivariate case, a triangular representation of a system has
the form {U(x), B(x, y)}. The advantage of such a triangular representation
with respect to the aforementioned resultant representation is that it eases,
although arguably, the numerical approximations of the solutions, since the
latter amounts to the isolation of the roots of univariate polynomials obtained
successively by substituting the variables by the roots of the preceding poly-
nomials.

The methods that compute such a triangular representation proceed gen-
erally by decomposing the initial system into a set of triangular systems such
that the union of the solutions of these systems is exactly the solutions of

1One of the main contribution of this thesis, is an algorithm that achieves the same com-

plexity bound, but by computing, in addition, a univariate representation of the solutions.

1.3. Related work 15

the initial system [Aubry 1999a, Lazard 1992].2 For general systems of m

polynomials with n variables, several algorithms exist for computing such a
decomposition. Some of these algorithms proceed by variable elimination,
that is, by reducing the solving of a system in n variables to that of a system in
n− 1 variables [Kalkbrener 1993, Wang 2001] while others proceed incremen-
tally, that is, by reducing the solving of a system in m equations to that of a
system in m−1 equations [Lazard 1991, Chen 2011]. However, few complexity
results are known about the size and the computation of triangular represen-
tations of general polynomial systems. We can mention [Dahan 2004], where
triangular representations of zero-dimensional varieties over the rational field
are considered and polynomial bounds on the bitsize of their coefficients in
terms of intrinsic quantities are proven.

Compared to general polynomial systems, several complexity results have
been obtained for the case of systems defined by two bivariate polynomi-
als with rational coefficients. In particular, Gonzalez-Vega and El Kahoui
[Gonzalez-Vega 1996], present a simple algorithm based on polynomial subre-
sultants, that computes a triangular decomposition of a bivariate system3.
The bit-complexity of this algorithm analysed in [Diochnos 2009] for sys-
tems of two polynomials with degree d and bitsize τ shows an overall cost in
ÕB(d

7+d6τ) bit operations. In addition, an efficient implementation of this al-
gorithm based on evaluation/interpolation techniques and computations over
prime fields is provided in [Li 2011]. Recently, Lebreton et al. [Lebreton 2013]
presented a probabilistic Monte-Carlo algorithm for computing a triangular
decomposition of the set of non-singular solutions of a bivariate system. This
algorithm relies on a combination of lifting techniques and fast modular com-
position. For the case of systems with integer coefficients, this algorithm was
shown to have an essentially optimal bit complexity.

As mentioned above, the isolation of the solutions of a triangular system
amounts to successively isolate polynomials with real algebraic numbers as co-
efficients. This is in fact non-trivial, especially when these polynomials have
multiple roots. In [Boulier 2009], the authors propose an algorithm which as-
sumes that the considered triangular system is squarefree. This algorithm uses
a generalization of Vincent-Collins-Akritas (or Descartes) algorithm to isolate
the real roots of polynomials with real algebraic number as coefficients. The
algorithm in [Cheng 2007] makes no squarefreeness assumption on the trian-
gular system and uses interval arithmetic combined with the so-called sleeve

polynomials to isolate the real solutions. More precisely, it replaces the co-
efficients of the algebraic polynomial by sufficiently refined intervals, hence

2In the literature, the term regular chain is also used to refer to such triangular systems.
3This algorithm is described in details in Chapter 3 where it is used to compute the

number of distinct solutions of a bivariate system.

16 Chapter 1. Introduction

obtaining upper and lower bounds (i.e. sleeve) for the polynomials. The iso-
lation is performed using evaluation and exclusion predicates that involve the
test to zero of the derivative. For the two previous algorithms, no complexity
results are given but only implementations.

Recently, Strzebonski and Tsigaridas [Strzebonski 2012] analyze two dif-
ferent approaches for isolating the real roots of a univariate squarefree poly-
nomial with coefficients in a simple algebraic extension. These approaches,
applied to the problem of isolating the real roots of a triangular system yield
a Las-Vegas algorithm whose expected bit complexity is ÕB(d

8 + d7τ + d6τ 2).

Univariate representation. Another widespread representation is the uni-
variate representation of the solutions. Recall that a univariate representa-
tion is a set of univariate polynomials and associated one-to-one mappings
that send the roots of the univariate polynomials to the solutions of the
system. The univariate representation of the solutions has a long history
that can be traced back to the work of Kronecker at the end of the 19th
century. In the last decades, such a representation has been extensively
used under different forms for the study of zero-dimensional polynomial sys-
tems [Renegar 1989, Canny 1988, Giusti 2001, Alonso 1996, Rouillier 1999].

A univariate representation is defined with respect to a separating poly-
nomial [Rouillier 1999] that is a polynomial that is injective on the set of the
solutions i.e. that takes different values when evaluated at distinct (complex)
solutions of the system. Also, the computation of any univariate representa-
tion usually decomposes in two different steps. A first step consists in com-
puting a separating polynomial for the solutions and a second step consists in
computing the polynomials defining the univariate representation. It should
be stressed however that, among the algorithms that compute univariate rep-
resentations, seldom search deterministically for a separating polynomial for
the solutions. In general a polynomial is randomly chosen as a linear com-
bination of the variables and the corresponding univariate representation is
computed with the hope that the chosen polynomial is separating. Although
such a random choice is good with high probability, without any further verifi-
cation, this leads to probabilistic Monte-Carlo algorithms for the computation
of univariate representations.

There exist plenty of algorithms for computing univariate representations.
We can mention the work in [Giusti 2001, Durvye 2008] and references therein,
where this representation is computed by means of the so-called geometric
resolution. These algorithms assume that the ideal representing the set of
solutions is radical since they use Hensel lifting which relies on Newton’s
iteration. Another way to compute such a representation is to use the concept
of u-resultant [Canny 1988].

1.3. Related work 17

In [Rouillier 1999] the case of non-radical ideal is considered and an ef-
ficient algorithm is proposed for computing a Rational Univariate Represen-
tation of the solutions or RUR. The RUR is proven to be unique (up to a
separating form) and preserves information on the multiplicities of the solu-
tions. The algorithm in [Rouillier 1999], which is recalled in Chapter 5 for the
case of bivariate systems, proceeds by performing linear algebra operations in
the quotient algebra corresponding to the ideal. It requires the knowledge of
the multiplication table of this quotient algebra, which can be computed for
example from a Gröbner basis of the ideal.

In the case of systems of bivariate polynomials with integer coefficients,
Gonzalez-Vega and El Kahoui [Gonzalez-Vega 1996] present an algorithm for
computing a subresultant-based RUR that proceeds by computing a triangular
decomposition of the input system. More precisely, the algorithm first applies
a generic linear change of variables to the two input polynomials and then
computes a decomposition into a set of rational representations using the
subresultant sequence of the sheared polynomials. The complexity analysis
of this algorithm in [Diochnos 2009] shows that the overall bit complexity is
dominated by the deterministic computation of the separating form used to
perform the generic change of variables that is ÕB(d

10 + d9τ). Once a linear
separating form is computed, the polynomials of the univariate representations
are obtained for the cost of a triangular decomposition, which is shown to be
in ÕB(d

7 + d6τ).
The main advantage of the univariate representation of the solutions with

respect to the two previous forms of representations (the resultant and the tri-
angular representation) is that it transforms the problem of isolating the real
solutions of a system into the problem of first, isolating a univariate polyno-
mial and, second, evaluating the image of the resulting intervals through the
mappings of the rational representation. A naive analysis of this numerical
step yields a bound in ÕB(d

10τ 2) bit operations, (see in [Cheng 2010], Lemma
9 and the proof of Theorem 4). However, as we will see in Chapter 6, this
complexity can be improved.

1.3.2 Topology computation

The problem of computing the topology of plane algebraic curves is rela-
tively recent compared to the system solving problem. The first papers deal-
ing with topology computation can be traced back to the nineties. Since
then, computing the topology of curves has become an active area of re-
search and a fair number of results have been obtained on the subject (see
e.g. [Burr 2008, Gonzalez-Vega 2002, Seidel 2005, Berberich 2011a] and ref-
erences therein). Modern efficient algorithms for computing the topology of

18 Chapter 1. Introduction

plane algebraic curves are of two types. One class of algorithms is based on
subdivision techniques, typically, a quad-tree decomposition of the plane (see
e.g. [Alberti 2008, Burr 2008, Plantinga 2004, Lorensen 1987] and references
therein), whose major drawback is that the subdivision has to reach some
separation bounds that are not practical so far in order to certify the results
when the curve contains singular points. It follows that, if no certification is
required, these methods are very fast in practice, however, they can become
very slow on difficult instances, if certification is required.

The other class of algorithms consists in Cylindrical-Algebraic-
Decomposition (CAD) like approaches which, in short, project some char-
acteristic points of the curve (the singular and extreme points with respect
to some direction) and then lift these points back to the curve (see e.g.
[Hong 1996, Gonzalez-Vega 2002, Eigenwillig 2007, Kerber 2011]). The pro-
jection (on the x-axis) is done by isolating the roots of a univariate polynomial
in x: the resultant of the polynomial P defining the curve and its derivative
with respect to y. Then, the lifting phase requires isolating the roots of
univariate polynomials in y with real algebraic numbers as coefficients (the
polynomial P in which x is replaced by the roots of the resultant). Roughly
speaking, this can be viewed as solving a triangular system [Aubry 1999b].

In [Cheng 2010], an alternative algorithm that relies on a bivariate solver
and on the computation of some multiplicities is introduced. This algorithm
first computes isolating boxes around the critical points of the curves via the
computation of a Rational Univariate Representation, then, a sweep line al-
gorithm is used to connect these points with other points of the curve in order
to construct an isotopic graph. This sweep line algorithm requires some mul-
tiplicities (in order to determine the topology of the curve inside the boxes of
the critical points) which are given by the Rational Univariate Representation.

Chapter 2

Preliminaries

Contents

2.1 Notation . 20

2.2 Rational Univariate Representation 21

2.3 Computation with polynomials 22

2.3.1 Basic operations . 22

2.3.2 Greatest common divisor 23

2.3.3 Root isolation and interval arithmetic 26

2.4 Subresultant sequence 28

2.4.1 Resultant . 29

2.4.2 Subresultant sequence 30

2.4.3 Subresultants computation 34

2.5 Modular techniques . 35

2.5.1 General principle . 36

2.5.2 Modular gcd computation 38

We give in this chapter the basic material that will be used in the sub-
sequent chapters. Some of the results stated below are well known and
their proofs (which we omit here) can be found in any introductory text-
book on computer algebra (see for example [von zur Gathen 2003, Basu 2006,
Yap 2000]). For some other results, although well-known and widely used, we
were surprisingly not able to find clear references for them in the literature.
This is the case, in particular for the complexity of computing greatest com-
mon divisors of univariate polynomials and also for the complexity of evalu-
ating a polynomial at rational. For those, we provide complete and precise
statements along with proofs.

The outline of this chapter is as follows. We first give in Section 2.2
the definition of the object we want to compute, that is, the Rational Uni-
variate Representation of a bivariate system. In Section 2.3 we review the
state-of-the-art complexity bounds of some fundamental operations on uni-
variate polynomials; namely, basic operations (addition, multiplication and

20 Chapter 2. Preliminaries

Euclidean division), computing greatest common divisors and roots isolation.
In section 2.4, we introduce the concept of polynomial subresultants and give
some of their properties used in our algorithms, together with some complex-
ity results. We discuss in section 2.5 modular techniques and their uses in
the context of symbolic computations. We first recall the theoretical concepts
behind these techniques (Modular homomorphism, Chinese Remainder The-
orem) and then give some related complexity results required for the analysis
of the algorithms based on modular techniques. We finally discuss an applica-
tion of these modular techniques to the computation of a gcd of two univariate
polynomials with integer coefficients.

2.1 Notation

We introduce below some notation that are used in the rest of this dissertation.

Bitsize. The bitsize of an integer p is the number of bits needed to represent
it, that is ⌊log p⌋+ 1 (log refers to the logarithm in base 2). If p is a rational
number, then its bitsize is given as the maximum bitsize of its numerator and
denominator. The bitsize of a polynomial with integer or rational coefficients
is the maximum bitsize of its coefficients. We refer to τγ as the bitsize of a
polynomial, rational or integer γ.

Integral domain. We denote by D a unique factorization domain, typically
Z[X, Y], Z[X] or Z, and by FD its fraction field. We also denote by F an
arbitrary field, typically Q or C.

Polynomial. For any polynomial P ∈ D[X], LcX(P) denotes its leading
coefficient with respect to the variable X (or simply Lc(P) in the univariate
case) and dX(P) its degree with respect to X. We denote by P the square-
free part of P that is the divisor of P of maximum degree that has no square
factors. An ideal generated by a set of polynomials S is denoted 〈S〉. For
an ideal I, we denote by V (I) its associated variety, that is, the set {σ ∈
C2, v(σ) = 0, ∀v ∈ I}. Similarly, we use V (P) to refer to the set of complex
roots of P . Finally, we use the notation P ≡ 0 when P vanishes identically.

Complexity. We use the classical O, Ω and Θ notation for denoting asym-
potic upper, lower and tight bounds. For the analysis of the complexity of
algorithms, we consider two types of complexities. On one hand, we consider
the arithmetic complexity of an algorithm (in the RAM model), that is the
number of arithmetic operations in some domain D, typically Z or Z/µZ, that
are performed by the algorithm. When D = Z, in order to obtain a more rele-
vant measure of complexity, we take into account the growth of coefficients in

2.2. Rational Univariate Representation 21

the operations cost by considering the bit complexity of the algorithm, that
is the number of bit operations performed by the algorithm. To easily dis-
tinguish between the arithmetic and bit complexities we use, respectively, the
notation O and OB for asymptotic upper bounds. Finally, we denote by Õ

the complexities where polylogarithmic factors are omitted. Note that, unless
specified otherwise, the stated complexities are worst-case complexities.

2.2 Rational Univariate Representation

A key object that we will use throughout this thesis is the Rational Univariate
Representation of a bivariate system. Therefore we recall hereafter its defini-
tion and its main properties. In the following, for any polynomial v ∈ Q[X, Y]

and σ = (α, β) ∈ C2, we denote by v(σ) the image of σ by the polynomial
function v (e.g. X(α, β) = α).

Definition 2.2.1 ([Rouillier 1999]). Let I ⊂ Q[X, Y] be a zero-dimensional

ideal, V (I) = {σ ∈ C2, v(σ) = 0, ∀v ∈ I} its associated variety, and a linear

form T = X+aY with a ∈ Q. The RUR-candidate of I associated to X+aY

(or simply, to a), denoted RURI,a, is the following set of four univariate

polynomials in Q[T]

fI,a(T) =
∏

σ∈V (I)

(T −X(σ)− aY (σ))µI(σ)

fI,a,v(T) =
∑

σ∈V (I)

µI(σ)v(σ)
∏

ς∈V (I),ς 6=σ

(T −X(ς)− aY (ς)), for v ∈ {1, X, Y }

(2.1)

where, for σ ∈ V (I), µI(σ) denotes the multiplicity of σ in I. If (X, Y) 7→ X+

aY is injective on V (I), we say that the linear form X+aY separates V (I) (or

is separating for I) and RURI,a is called a RUR (the RUR of I associated to

a) and it defines a bijection between V (I) and V (fI,a) = {γ ∈ C, fI,a(γ) = 0}:

V (I) → V (fI,a)

(α, β) 7→ α + aβ(
fI,a,X
fI,a,1

(γ),
fI,a,Y
fI,a,1

(γ)

)
←[γ

Moreover, this bijection preserves the real roots and the multiplicities.

We refer to Figure 1.2 for an illustration of the one-to-one mapping defined
by a RUR.

22 Chapter 2. Preliminaries

2.3 Computation with polynomials

We recall some elementary results about univariate polynomials together with
the complexity of some recurrent operations. We discuss in the following
three subsections, basic operations (addition, multiplication, etc), greatest
common divisor, and root isolation and interval computations. We emphasize
in particular on the bit complexity bounds (i.e. the number of bit operations
required to perform the operations). Such a complexity depends in general on
two parameters: the total degree of the polynomials and the maximum bitsize
of their coefficients. It is worth noting that we only consider in the rest of this
section, fast operations, that is operations with the best known complexities.

2.3.1 Basic operations

We start with the two following theorems which give both the arithmetic
and the bit complexity of adding, multiplying and dividing two univariate
polynomials f, g ∈ Z[X]. For a detailed description of the corresponding
algorithms, together with a proof of complexity, the reader may refer to
[von zur Gathen 2003, Corollary 8.27, Theorem 9.6 and subsequent discus-
sion].

Theorem 2.3.1 (addition and multiplication). Let f, g ∈ Z[X] with de-

gree at most d and maximum bitsize τ .

• The sum f + g can be computed in O(d) arithmetic operations, OB(dτ)

bit operations and has coefficients of bitsize at most τ + 1.

• The product f g can be computed in Õ(d) arithmetic operations, ÕB(dτ)

bit operations and has coefficients of bitsize in O(τ + log d).

Theorem 2.3.2 (Euclidean division). Let f, g ∈ Z[X] with degree at most

d and maximum bitsize τ . The computation of q, r ∈ Z[X] such that f =

qg+r with deg(r) < deg(g) can be done using Õ(d) arithmetic operations and

ÕB(d
2τ) bit operations. The polynomials q and r have degree at most d and

coefficients of bitsize in O(dτ).

Theorem 2.3.3 (Divisibility test). 1 Let f, g ∈ Z[X] of degree at most d

and maximum bitsize τ . Testing that f divides g can be done using ÕB(d
2+dτ)

bit operations.

1In [von zur Gathen 2003, §9.1], the authors discuss an algorithm for exact division,

that is, where the remainder is known to be zero in advance, that runs in ÕB(d
2 + dτ).

Here, we assume that the division is exact, run the previous algorithm, and then, check

that the quotient is correct by performing one univariate multiplication in O(ÕB(d
2 + dτ))

bit operations (Theorem 2.3.1).

2.3. Computation with polynomials 23

We now state a bound on the complexity of evaluating a univariate poly-
nomial which ought to be known, even though we were not able to find a
proper reference for it. For completeness, we provide a proof.

Theorem 2.3.4 (evaluation). Let a be a rational of bitsize τa, the evaluation

at a of a univariate polynomial f of degree d and with rational coefficients of

bitsize at most τ can be done in ÕB(d(τ + τa)) bit operations, while the value

f(a) has bitsize in O(τ + dτa).

Proof. The complexity ÕB(d(τ + τa)) is obtained by recursively evaluating
the polynomial

∑d
i=0 ai x

i as
∑d/2

i=0 ai x
i + xd/2

∑d/2
i=1 ai+d/2 x

i. Evaluating xd/2

at a can be done in OB(dτa log
3 dτa) time by recursively computing log d

2

multiplications of rational numbers of bitsize at most dτa, each of which
can be done in OB(dτa log dτa log log dτa) time by Schönhage-Strassen algo-
rithm (see e.g. [von zur Gathen 2003, Theorem 8.24].

∑d/2
i=0 ai+d/2 a

i has
bitsize at most dτa + τ , hence its multiplication with ad/2 can be done in
OB((dτa + τ) log2(dτa + τ)) time. Hence, the total complexity of evaluating f

is at most T (d, τ, τa) = 2T (d/2, τ, τa) +OB((dτa + τ) log3(dτa + τ)). Expand-
ing the recursive formula, we get T (d, τ, τa) = 2i+1T (d

2i+1 , τ, τa) + OB((dτa +

τ) log3(dτa+τ)+ · · ·+2i(d
2i
τa+τ) log3(d

2i
τa+τ)) which implies that T (d, τ, τa)

6 OB(dτa log
3(dτa+τ) log d+τ log3(dτa+τ)

∑log d
i=0 2i) and hence that T (d, τ, τa)

6 OB(d(τa + τ) log4(dτa + τ)) which is in ÕB(d(τa + τ)).

2.3.2 Greatest common divisor

The greatest common divisor of two polynomials (gcd) is one of the most
fundamental notions in computer algebra and appears as a sub-problem of
most of the algorithms we present in this thesis. We recall the definition of the
gcd of two univariate polynomials and give some of its important properties
that are used throughout this work. We also give complexity results on the
size and the computation of the gcd of two univariate polynomials with integer
coefficients.

Definition 2.3.5 (gcd). Let P,Q ∈ D[X]. A greatest common divisor of P

and Q denoted gcd(P,Q) is a polynomial G in D[X] that divides both P and

Q and such that every common divisor of P and Q also divides G.

Remark. Note that a gcd of two polynomials P and Q is defined up to
an invertible element in D. Also, one can choose a representative system
in order to make the gcd unique. For example, one can require this gcd to
be monic (that is with a leading coefficient equal to 1) as done for instance
in [von zur Gathen 2003, §3]. In our applications, however, we are usually

24 Chapter 2. Preliminaries

interested in the roots of polynomials which obviously do not change when
polynomials are multiplyied by a constant factor.

When D[X] is an Euclidean domain, a greatest common divisor of P and
Q can be computed by applying successive Euclidean divisions.

Algorithm 1 Classical Euclidean Algorithm
Input: P,Q in D[X] an Euclidean domain
Output: A greatest common divisor G ∈ D[X] of P and Q

r0 ← P , r1 ← Q

while ri 6= 0 do
ri+1 ← ri−1 rem ri
i← i+ 1

return ri−1

The sequence of remainders {r0, r1, . . . , rk} in the Euclidean Algorithm, is
known as the Euclidean remainder sequence of P and Q and the last element
of this sequence rk is a gcd of P and Q in D[X].

The following result is the analog of Bézout’s identity for polynomials. A
proof can be found for instance in [Basu 2006, Proposition 1.9].

Theorem 2.3.6 (Bézout’s identity). Let P,Q ∈ D[X] of degrees respec-

tively p and q. If G = gcd(P,Q) has degree g, then there exist U, V ∈ D[X] of

degrees smaller respectively than q − g and p− g such that UP + V Q = G.

The polynomials U and V are called the Bézout’s coefficients of P and
Q and are useful for various tasks involving the polynomials P and Q, as
for example, the computation of the multiplicative inverse of P modulo Q.
Indeed, suppose P and Q are relatively prime, then there exist U and V such
that UP + V Q = 1, and hence, U is the inverse of P modulo Q. One method
to compute these polynomials along with the gcd of P and Q consists in
applying a variant of the Euclidean algorithm called the Extended Euclidean
Algorithm. A detailed description of this basic algorithm can be found in
any computer algebra textbook (see for example [von zur Gathen 2003] or
[Basu 2006]).

The following result is used in the next section to exhibit the relationship
between the resultant of two polynomials and their gcd (Theorem 2.4.3).

Theorem 2.3.7. Let P,Q ∈ D[X] of degrees respectively p and q. G =

gcd(P,Q) has degree larger or equal than 1 (i.e. G /∈ D) if and only if there

exist U, V ∈ D[X] of degrees strictly less than q and p respectively, such that

UP + V Q = 0.

2.3. Computation with polynomials 25

In addition to the gcd, we consider in the sequel the gcd-free part of P with
respect to Q, that is, a divisor D of P such that P = gcd(P,Q)D. Note that
when Q = ∂P

∂X
, the polynomial D is the square-free part P of P . In addition,

similarly as for gcds, gcd-free parts and square-free parts are defined up to an
invertible factor in D, but for convenience, we nonetheless often refer to the

gcd-free or square-free part.

Theorem 2.3.8 ([Basu 2006, Remark 10.19]). 2 Let P and Q in D[X] of

degree at most d. The gcd of P and Q, or the gcd-free part of P with respect

to Q can be computed with Õ(d) operations in D.

We now consider the case of univariate polynomials with integer coef-
ficients. We start with the following result which is an application of the
general Mignotte’s bound to polynomials with integer coefficients.

Theorem 2.3.9 (Mignotte’s bound). [Basu 2006, Corollary 10.12] Let

P ∈ Z[X] of degree d and bitsize τ and let Q ∈ Z[X] be a polynomial that

divides P in Z[X]. Then Q has bitsize in O(d+ τ).

Theorem 2.3.10. Two polynomials P , Q in Z[X] with maximum degree d

and bitsize at most τ have a gcd in Z[X] with coefficients of bitsize in O(d+τ)

which can be computed with ÕB(d
2τ) bit operations. The same bounds hold

for the bitsize and the computation of the gcd-free part of P with respect to Q.

Proof. [Basu 2006, Corollary 10.12] states that P and Q have a gcd in Z[X]

with bitsize in O(d+τ) while [Basu 2006, Remark 10.19] claims that a gcd and
gcd-free parts of P and Q can be computed in ÕB(d

2τ) bit operations. These
two results nevertheless, are not sufficient to conclude that a gcd of bitsize
in O(d + τ) can be computed in the previous bit complexity. On the other
hand, according to [Lickteig 2001, Corollary 5.2], the last non-zero Sylvester-
Habicht polynomial, which is a gcd of P and Q [Basu 2006, Corollary 8.32],
can be computed in ÕB(d

2τ) bit operations. Moreover, the same corollary
proves that the Sylvester-Habicht transition matrices can be computed within
the same bit complexity, which gives the cofactors of P and Q in the sequence

2Instead of the Classical Euclidean Algorithm whose complexity is quadratic in the de-

gree of the input polynomials, Basu et al consider here the fast divide-and-conquer algorithm

(also called half-gcd algorithm) introduced in [Knuth 1971] and [Schönhage 1982]. Roughly,

the idea behind this algorithm is to compute only the sequence of quotients {q0, q1, . . . , qk}
(instead of the remainder sequence {r0, r1, . . . , rk}) and then, to deduce any remainder ri
(including the gcd) from this sequence. The fact that this quotient sequence is asymptot-

ically O(d) times smaller than the remainder sequence allows to decrease the asymptotic

complexity of computing one element in the remainder sequence from Õ(d2) to Õ(d). A

comprehensive description of this algorithm together with a proof of complexity can be o

be found in [Yap 2000, §2.4].

26 Chapter 2. Preliminaries

of the Sylvester-Habicht polynomials (i.e., Ui, Vi ∈ Z[X] such that UiP + ViQ

is equal to the i-th Sylvester-Habicht polynomials). The gcd-free part of P
(resp. Q) with respect to Q (resp. P) are the cofactors corresponding to the
one-after-last non-zero Sylvester-Habicht polynomial [Basu 2006, Proposition
10.14], and can thus be computed in ÕB(d

2τ) bit operations. However, the
gcd (resp. gcd-free part) of P and Q computed this way has coefficients in Z

of bitsize in O(dτ). To obtain a gcd with the stated bitsize i.e. O(d+ τ), one
can divide the last non-zero Sylvester-Habicht polynomial by the gcd of its
coefficients. This yields the gcd (resp. the gcd-free part) of P and Q of smallest
bitsize in Z[X] which is known to be in O(d+ τ) according to Theorem 2.3.9.
The gcd of the coefficients, which are of bitsize Õ(dτ) [Basu 2006, Proposition
8.46], follows from O(d) gcds of two integers of bitsize Õ(dτ) and each such gcd
can be computed with ÕB(dτ) bit operations [Yap 2000, §2.A.6]. Therefore,
a gcd (resp. gcd-free part) of P and Q of bitsize O(d + τ) can be computed
in ÕB(d

2τ) bit complexity.

We provide a more refined version of the previous result in the case of two
polynomials with different degrees and bitsizes.

Theorem 2.3.11. Let P and Q be two polynomials in Z[X] of degrees p

and q and of bitsizes τP and τQ, respectively. A gcd of P and Q of bitsize

O(min(p+ τP , q+ τQ)) in Z[X], can be computed in ÕB(max(p, q)(pτQ+ qτP))

bit operations. A gcd-free part of P with respect to Q, of bitsize O(p+ τP) in

Z[X], can be computed in the same bit complexity.

Proof. The algorithm in [Lickteig 2001] uses the well-known half-gcd approach
to compute any polynomial in the Sylvester-Habicht and cofactors sequence
in a softly-linear number of arithmetic operations, and it exploits Hadamard’s
bound on determinants to bound the size of intermediate coefficients. When
the two input polynomials have different degrees and bitsizes, Hadamard’s
bound reads as Õ(pτQ + qτP) instead of simply Õ(dτ) and, similarly as for
Theorem 2.3.10, the algorithm in [Lickteig 2001] yields a gcd and gcd-free
parts of P and Q in ÕB(max(p, q)(pτQ + qτP)) bit operations. Furthermore,
the gcd and gcd-free parts computed this way are in Z[X] with coefficients of
bitsize Õ(pτQ + qτP), thus, dividing them by the gcd of their coefficients can
be done with ÕB(max(p, q)(pτQ + qτP)) bit operations and yields a gcd and
gcd-free parts in Z[X] with minimal bitsize, which is as claimed by Mignotte’s
bound (Theorem 2.3.9) in O(p+ τP).

2.3.3 Root isolation and interval arithmetic

We recall some bounds on univariate polynomial roots and their separation
(for a single root and also amortized over all the roots), the complexity of

2.3. Computation with polynomials 27

isolating the real roots of a univariate polynomial, and elementary results on
interval arithmetic. In the following, f denotes a univariate polynomial of
degree d with integer coefficients of bitsize at most τ .

Theorem 2.3.12 ([Yap 2000, §6.2 Lemma 6.5)] and [Basu 2006, Proposition
10.9]). For any root γ of f , max(1, |γ|) = 2O(τ) and

∏
{γ root of f} max(1, |γ|) =

2O(τ).

Theorem 2.3.13 (separation bound). ([Emiris 2010, Theorem 1]) Let

sepγ be the separation bound of a root γ of f defined as the minimum distance

between γ and any other (possibly complex) root of f . Then sepγ = 2−Õ(dτ+d2)

and
∏

{γ roots of f} sepγ = 2−Õ(dτ+d2).

Theorem 2.3.14. Let f and g be integer polynomials of degree bounded by d

and bitsize bounded by τ . Assume f square free and coprime with g, then for

any root γ of f , |g(γ)| = 2−O(dτ) and
∏

{γ root of f} |g(γ)| = 2−O(dτ).

Proof. The bound for a single root is stated in [Yap 2000, Lemma 6.34].
For the bound on all the roots, one remarks that the resultant res(f, g)

of f and g can be written (see for instance [Yap 2000, Theorem 6.15]) as
res(f, g) = Lc(f)d

∏
{γ root of f} |g(γ)|. Since f and g are coprime this resul-

tant is a non-nul integer. Also Lc(f) is bounded by 2τ and it follows that∏
{γ root of f} |g(γ)| = | res(f,g)Lc(f)d

| > | 1
Lc(f)d

| > 2−dτ .

Theorem 2.3.15 (real roots isolation). ([Mehlhorn 2013, Theorem 5]3)

Isolating intervals of all the real roots of f can be computed and refined up to

a width less than 2−L with ÕB(d
3 + d2τ + dL) bit operations.

Moreover, we assume that all isolating intervals of a root γ of f are dyadic
intervals, that is of the form Jγ = [⌊γ⌋+m/2k, ⌊γ⌋+ (m+ 1)/2k] with k > 0

and m an integer between 0 and 2k − 1. It follows that the width w(Jγ) = 2k

and the maximum bitsize of the endpoints of the interval Jγ is in O(τ + k)

(indeed, |γ| 6 2||f ||∞ 6 2τ+1 (see for instance [Yap 2000, §6.2 Lemma 6.5)])
and hence τ(⌊γ⌋) 6 τ + 2 and τ(Jγ) = τ((⌊γ⌋2k +m+ 1)/2k) 6 τ + k + 4).

For evaluating a polynomial on an interval we use interval arithmetic and
the fast divide and conquer scheme as explained in the proof of Theorem 2.3.4.
The interval resulting of the evaluation of the polynomial f on an interval J
using these rules is denoted �f(J). The next lemma bounds the growth of

3Theorem 5 of [Mehlhorn 2013] is stated for complex roots, however it is straightforward

to identify the boxes containing the real roots within the same complexity. Indeed, by

considering L in Õ(dτ + d2) with 2−L smaller than twice the root separation bound of

f (which is possible by Theorem 2.3.13), the isolating boxes of the complex roots do not

intersect the real axis.

28 Chapter 2. Preliminaries

the width of an interval when a polynomial evaluation is performed. Note
that the assumption that the width is smaller that 1 is not restrictive for an
isolating interval of a root γ of f since this is always the case for our choice
of dyadic representation.

Theorem 2.3.16. Let J be an interval of width smaller than 1. Then, for each

γ ∈ J and each y ∈ �f(J), we have |y − f(γ)| 6 22d+τ max(1, |γ|)d−1w(J).

Proof. The fast evaluation scheme for the polynomial f(x) =
∑d

i=0 ai x
i is

recursively computed as
∑d/2

i=0 ai x
i + xd/2

∑d/2
i=1 ai+d/2 x

i. Let denote f1(x) =∑d/2
i=0 ai x

i, f2(x) =
∑d/2

i=1 ai+d/2 x
i, ε = w(J) and m = max(1, |γ|). The proof

proceeds by induction on the degree d = 2k for the formula |y − f(γ)| 6
22d+τmd−1ε.

For d = 20 = 1, y = a0 + a1(γ + e1) with |e1| 6 ε and f(γ) = a0 + a1γ,
hence |y − f(γ)| = |a1e1| 6 2τε which proves the formula.

Now assume d = 2k for k > 1, one can write y ∈ �f(J) = �f1(J) +
Jd/2�f2(J) as y = y1 + (γ + e1) . . . (γ + ed/2)y2 with yi ∈ �fi(J), |ej| 6 ε and
f(γ) = f1(γ) + γd/2f2(γ). One has

|y−f(γ)| 6 |y1−f1(γ)|+ |γ|d/2|y2−f2(γ)|+ |y2||(γ+e1) . . . (γ+ed/2)−γd/2| (2.2)

Using the induction, |yi − fi(γ)| 6 2d+τmd/2−1ε and |γ|d/2| 6 md/2. The tri-

angular inequality yields |y2| 6 |y2 − f2(γ)| + |f2(γ)|, hence using the induc-

tion and the straightforward upper bound |f2(γ)| 6 2τmd/2(d/2 + 1), we obtain

|y2| 6 2τmd/2(2d/2ε/m+ d/2 + 1) 6 2τmd/2(2d/2 + d/2 + 1).

On the other hand,

|(γ + e1) . . . (γ + ed/2)− γd/2| = |
j=d/2−1∑

j=1

ejγ
j−1(γ + ej+1) . . . (γ + ed/2)|

6

j=d/2−1∑

j=1

ε|γ|j−1|γ + ej+1| . . . |γ + ed/2|

6 (d/2− 1)εmd/2−12d/2−1

since |γ + ek| 6 2m.

With all these results together, Eq. (2.2) yields |y− f(γ)| 6 22d+τεmd−1(21−d+

2−3/2d−1(d/2 − 1)(2d + d/2 + 1)) and one can show that the factor 21−d +

2−3/2d−1(d/2− 1)(2d + d/2 + 1) is smaller than 1 for d > 1.

2.4 Subresultant sequence

We review in this section the theory of subresultants which is an ubiquitous
tool in computer algebra for solving algebraic systems. We first introduce the

2.4. Subresultant sequence 29

resultant of two polynomials which is a polynomial closely related to the gcd
and then discuss the subresultant sequence which generalizes the notion of
resultant as the remainder sequence generalizes the notion of gcd.

2.4.1 Resultant

Let P and Q be two non-zero polynomials of degree p and q in D[X]:

P = apX
p + ap−1X

p−1 + . . .+ a0 and Q = bqX
q + bq−1X

q−1 + . . .+ q0.

We define the Sylvester matrix of P and Q and describe the link between
this matrix and Euclid’s algorithm.

Definition 2.4.1 (Sylvester matrix). The Sylvester matrix of P and Q is

the following (p+q)-square matrix whose rows are Xq−1P, . . . , P,Xp−1Q, . . . , Q

considered as vectors in the basis Xp+q−1, . . . , X, 1.

Syl(P,Q) =

p+q columns︷ ︸︸ ︷

ap ap−1 · · · · · · a0
ap ap−1 · · · · · · a0

. . .
. . .

ap ap−1 · · · · · · a0
bq bq−1 · · · b0

bq bq−1 · · · b0
. . .

. . .

. . .
. . .

bq bq−1 . . . b0

q rows

p rows

Definition 2.4.2 (Resultant). The resultant of the polynomials P and Q

with respect to X, denoted ResX(P,Q) or Res(P,Q) is the determinant of the

Sylvester matrix Syl(P,Q).

The matrix Syl(P,Q) is the transpose of the matrix of the linear mapping

(U, V) 7−→ U P + V Q

where U = uq−1X
q−1+ . . .+u0, V = vp−1X

p−1+ . . .+v0 and the couple (U, V)

is given as (uq−1, . . . , u0, vp−1, . . . , v0) and where UP + V Q is identified to its
vector of coefficients.

It is known from Theorem 2.3.7, that P and Q have a non-trivial common
factor in D[X] if and only if there exist two polynomials U and V of degree
strictly less than q and p respectively, such that U P + V Q = 0. Translated
in terms of Sylvester matrix, this result yields the following property of the
resultant.

30 Chapter 2. Preliminaries

Theorem 2.4.3. Res(P,Q) = 0 if and only if P and Q have a common factor

in D[X].

Proof. The statement directly follows from the definition of the resultant as
the determinant of Syl(P,Q) and from the above discussion.

The definition of the resultant as the determinant of the Sylvester matrix,
yields an important property called specialization. Let φ : D −→ D′ be a
ring homomorphism. Note that φ induces a homomorphism from D[X] −→
D′[X] by mapping all the coefficients of the polynomial. We will refer to the
latter also as φ.

Theorem 2.4.4. Let ap, bq ∈ D be the leading coefficients of P and Q respec-

tively. If φ(ap) 6≡ 0 and φ(bq) 6≡ 0, then φ(Res(P,Q)) = Res(φ(P), φ(Q)).

Let now consider the case where P and Q are bivariate polynomials with in-
teger coefficients. Considering these polynomials as elements in (Z[X])[Y], the
Sylvester matrix has now as entries, polynomials in Z[X] and its determinant
which is the resultant of P and Q is also in Z[X]. The following proposition
is important for the algorithms presented in this thesis. See [Cox 1997, §6] for
a more general statement.

Proposition 2.4.5. Let P,Q ∈ Z[X, Y] be coprime and ResY (P,Q) their

resultant with respect to Y . Let ap(X) and bq(X) be their leading coefficients

in Y . The two following statements are equivalent.

• α ∈ Q is a root of ResY (P,Q).

• ap(α) = bq(α) = 0, or there exits β ∈ Q such that P (α, β) =

Q(α, β) = 0.

Given two bivariate polynomials P and Q ∈ Z[X, Y], the previous re-
sult shows that computing their resultant with respect to Y yields the X-
coordinate of all their common solutions. A natural further step would be
to compute for each common solution the corresponding Y -coordinate. Such
information can be obtained using the concept of subresultant polynomials
which we introduce in the following subsection.

2.4.2 Subresultant sequence

We first introduce the concept of polynomial determinant of a matrix which
is used in the definition of subresultants.

2.4. Subresultant sequence 31

Definition 2.4.6 (Polynomial determinant). Let M be an m× n matrix

with m 6 n and Mi be the square sub-matrix of M consisting of the first m−1

columns and the i-th column of M , for i = m, . . . , n. The polynomial determi-
nant of M is the polynomial defined as det(Mm)X

n−m+det(Mm+1)X
n−(m+1)+

. . .+ det(Mn).

Let P and Q be two non-zero polynomials in D[X] of degree p and q with
p > q. As for the resultant, subresultants are closely related to the Sylvester
matrix of P and Q.

Definition 2.4.7 (Sylvester sub-matrix). For i = 0, . . . ,min(q, p− 1), the

i-th Sylvester sub-matrix of P and Q is the (p + q − 2i) × (p + q − i) matrix

extracted from Syl(P,Q) by deleting the i last rows of the coefficients of P ,

the i last rows of the coefficients of Q, and the i last columns.

Syli(P,Q) =

p+q - i columns︷ ︸︸ ︷

ap ap−1 · · · · · · a0
. . .

. . .

ap ap−1 · · · · · · a0
bq bq−1 · · · b0

. . .
. . .

. . .
. . .

bq bq−1 . . . b0

q-i rows

p-i rows

Definition 2.4.8 (Polynomial subresultant). For i = 0, . . . ,min(q, p −
1), the i-th polynomial subresultant of P and Q, denoted by SresX,i(P,Q) is

the polynomial determinant of Syli(P,Q). When q = p, the q-th polynomial

subresultant of P and Q is b−1
q Q.4

Using the notation of Definition 2.4.6, every polynomial subresultant can
be written as SresX,i(P,Q) = det(Syli,p+q−2i)X

i + . . .+ det(Syli,p+q−i) where
Syli,k denotes the square sub-matrix of Syli(P,Q) consisting of the first p +

q − i − 1 columns and the k-th column of Syli(P,Q). Note that when i = 0,
Syl0 coincides with the Sylvester matrix of P and Q and the corresponding
polynomial determinant then becomes the determinant of Syl(P,Q) which is
the resultant of P and Q.

4It can be observed that, when p > q, the q-th subresultant is equal to bp−q−1
q Q, however

it is not defined when p = q. In this case, following El Kahoui [El Kahoui 2003], we extend

the definition to b−1
q Q assuming that the domain D is integral, which is the case throughout

this thesis.

32 Chapter 2. Preliminaries

Definition 2.4.9 (Principal subresultant). SresX,i(P,Q) has degree at

most i in X, and the coefficient of its monomial of degree i in X, which we

denote by sresX,i(P,Q), is called the i-th principal subresultant coefficient.

It may happen that sresX,i(P,Q) equals zero; in that case, we say that the
polynomial subresultant SresX,i(P,Q) is defective, otherwise SresX,i(P,Q)

is said to be non-defective or regular.
The principal subresultant sresX,i(P,Q) is the determinant of the matrix

Syli,p+q−2i which is represented by the linear mapping

(U, V) 7−→ U P + V Q

where U = uq−1−iX
q−1−i+ . . .+u0, V = vp−1−iX

p−1i + . . .+v0 and the couple
(U, V) is given as (uq−1−i, . . . , u0, vp−1−i, . . . , v0).

The following lemma is a direct consequence of the previous observation.

Lemma 2.4.10. sresX,i(P,Q) = 0 if and only if there exist non-zero poly-

nomials U, V ∈ D[X] with deg(U) < q − i and deg(V) < p − i, such that

deg(UP + V Q) < i.

One can examine when the principal subresultants vanish to identify the
degrees that appear in the remainder sequence of the Euclidean algorithm.
In particular the following theorem shows how to determine the degree of the
gcd of P and Q depending on the vanishing of some principal subresulant
coefficients.

Theorem 2.4.11. [Basu 2006, Proposition 4.25] The degree of gcd(P,Q) is

equal to k if and only if sres0 = sres1 = . . . = sresk−1 = 0 and sresk 6= 0.

As for the resultant (Theorem 2.4.4), the matricial definition of the poly-
nomial subresultants yields the same specialization property.

Theorem 2.4.12. Let ap, bq ∈ D be the leading coefficients of P and Q re-

spectively. If φ(ap) 6≡ 0 and φ(bq) 6≡ 0, then, for all i, φ(Sresi(P,Q)) =

Sresi(φ(P), φ(Q)).

We now state the following fundamental theorem called the gap structure
theorem for subresultants. It describes the particular structure of the poly-
nomial subresultants graphically displayed in Figure 2.1 and shows the link
between these polynomials and the polynomials appearing in the Euclidean
remainder sequence. We refer to [El Kahoui 2003, Theorem 4.3] for a concise
proof of this theorem.

Theorem 2.4.13 (Gap Structure Theorem). Let 0 6 j 6 min(q, p − 1),

and assume that Sresj is regular and Sresj−1 6= 0 is of degree k < j − 1.

Then:

2.4. Subresultant sequence 33

(i) Sresj−2 = . . . = Sresk+1 = 0

(ii) sresj−k−1
j Sresk = sresj−k−1

j−1,k Sresj−1

(iii) sres2jSresk−1 = (−1)j−ksresj−1,ksreskSresj + CjSresj−1 with Cj ∈
D[X]

0

0

0

0

Sres j

Sres j−1 defective of degree k

Sres k

Sres k−1

Sres k−2 defective of degree l

0

0

0

Sres l

0

0

0

0

Figure 2.1: Illustration of the Gap Structure Theorem.

A direct consequence of Theorem 2.4.13 is the following corollary whose
proof can be found for instance in [Basu 2006, Corollary 8.34].

Corollary 2.4.14. If rj−1(P,Q) and rj(P,Q) are two successive polynomials

in the Euclidean remainder sequence of P and Q, of degrees respectively dj−1

and dj, then Sresdj−1−1(P,Q) and Sresdj(P,Q) are proportional to rj(P,Q).

In fact, the previous corollary together with the gap structure theorem
show that the subresultants of P and Q are equal either to 0 or to polynomials
in the Euclidean Remainder Sequence of P and Q (up to multiplicative factors
in D). In particular, one important property which we will often use in the rest
of this thesis is that the last non-zero subresultant of P and Q is non-defective
and is a greatest common divisor of P and Q.

Let now reconsider the case of two bivariate polynomials with integer coef-
ficients, P =

∑p
i=0 aiY

i and Q =
∑q

i=0 biY
i in D[X, Y], with p > q. As shown

by Proposition 2.4.5, one can identify the X-coordinates of the common so-
lutions of P and Q by computing their resultant with respect to Y . Using

34 Chapter 2. Preliminaries

the polynomial subresultant defined above, it is also possible to determine
the gcd of P and Q at these X-coordinates. This key feature, stated in the
following theorem is instrumental in the triangular decomposition algorithms
described in Chapters 3 and 5. Note that this result is often stated with the
stronger assumption that is, that none of the leading terms ap(α) and bq(α)

vanish. This property is a direct consequence of the specialization property of
subresultants and of the gap structure theorem; see [El Kahoui 2003, Lemmas
2.3, 3.1 and Corollary 5.1] for a proof.

Theorem 2.4.15. For any α such that ap(α) and bq(α) do not both vanish, the

first SresY,k(P,Q)(α, Y) (for k increasing) that does not identically vanish is

of degree k and it is the gcd of P (α, Y) and Q(α, Y) (up to a nonzero constant

in the fraction field of D(α)).

2.4.3 Subresultants computation

Exploiting the gap structure theorem (Theorem 2.4.13), one can compute effi-
ciently the polynomial subresultants using a variant of the classical Euclidean
algorithm (see e.g. [Basu 2006, Algorithm 8.21]). This algorithm performs
successively divisions and returns the sequence of the intermediate remain-
ders consisting in the sequence of the polynomial subresultants. Furthermore,
the latter approach allows to adapt fast techniques for computing one polyno-
mial in the Euclidean remainder sequence [Yap 2000, §2.4] in order to compute
any polynomial subresultant without computing the complete sequence (see
[Reischert 1997] and [Lickteig 2001]).

Next, we give some bit complexity results related to the size and the com-
putation of the polynomial subresultants of two polynomials with integer co-
efficients.

We first analyze the size of the polynomial subresultants. Since these
polynomials are defined by determinants of some Sylvester sub-matrices, we
can use the Hadamard’s inequality ([von zur Gathen 2003, Theorem 16.6]) to
derive bounds on the degree and the size of their coefficients. Proofs of the
following theorems can be found in [Basu 2006, Propositions 8.11,8.12 and
8.34].

Theorem 2.4.16. Let P and Q be in Z[X1, . . . , Xn][Y] (n fixed) with coeffi-

cients of bitsize at most τ such that their degrees in Y are bounded by dY and

their degrees in the other variables are bounded by d.

• The coefficients of SresY,i(P,Q) have bitsize in Õ(dY τ).

• The degree in Xj of SresY,i(P,Q) is at most 2d(dY − i).

2.5. Modular techniques 35

Theorem 2.4.17. Let P and Q be in Z[X1, . . . , Xn][Y] (n fixed) with coeffi-

cients of bitsize at most τ such that their degrees in Y are bounded by dY and

their degrees in the other variables are bounded by d.

• Any polynomial subresultant SresY,i(P,Q) can be computed in Õ(dndn+1
Y)

arithmetic operations, and Õ(dndn+2
Y τ) bit operations.

• All the polynomial subresultants can be computed in Õ(dndn+2
Y) arith-

metic operations, and Õ(dndn+3
Y τ) bit operations.

2.5 Modular techniques

The use of modular techniques is rather classical in computer algebra to avoid
certain computational problems that arise in general with symbolic computa-
tions. Roughly, the principle of these techniques consists in transforming one
problem over an algebraic domain, to a set of similar problems over simpler
domains. A classical example, on which we will focus our attention, is the
approach based on the integer Chinese Remainder Theorem or CRT, where
instead of directly solving a problem over Z, one solves it modulo several in-
tegers m (over Zm) and then, reconstruct the solution over Z from the set of
solutions over Zm.

An important advantage of such an approach is that it allows to avoid
intermediate coefficient swell during the computations. This swelling phe-
nomenon is quite well observable for instance in the computation of a
greatest common divisor of two univariate polynomials with integer coeffi-
cients, where the size of the intermediate coefficients can reach a bound in
Õ(d2τ) [von zur Gathen 2003, Theorem 6.52] whereas the size of the coeffi-
cients in the computed gcd does not exceed a quantity in Õ(d + τ) (Theo-
rem 2.3.9).

Historically, the use of modular techniques in computer algebra can be
traced back to Collins [Collins 1971] and Brown [Brown 1971] in the context
of computing resultants of multivariate polynomials, gcds and subresultants.
Since then, an extensive literature has been produced on the subject; see
for example [Yap 2000, §4] or [von zur Gathen 2003, §5] for comprehensive
introductions.

Next, we review in short the principle of the CRT-based algorithms for
solving algebraic problems and recall some related complexity results. We
then discuss briefly the application of this principle to the computation of the
gcd of two univariate polynomials with integer coefficients.

36 Chapter 2. Preliminaries

2.5.1 General principle

We first define the concept of modular homomorphism which is of primary
importance for the design of the modular algorithm presented below.

Definition 2.5.1. The homomorphism of the reduction modulo m ∈ Z is the

map: φm : Z→ Zm defined by ∀x ∈ Z : φm(x) = x mod m.

We extend the previous definition to modular homomorphisms over the
ring of polynomials with integer coefficients and keep the same notation as
above. More precisely, given a polynomial P ∈ Z[x1, . . . , xn], we denote by
φm(P) the polynomial resulting from the reduction of all the integer coeffi-
cients of P by φm. For example, if P (x, y) = 7xy2 +9xy+13x+15y+1 then
φ5(P (x, y)) = 2xy2 + 4xy + 3x+ 1.

An important property of this modular homomorphism is that it allows,
under some conditions, to reconstruct from a set of images in Zm1 , . . . ,Zmk

a unique preimage in Z. This key feature is formalized in the following
theorem known as the Chinese Remainder Theorem or more shortly CRT.5

See [Yap 2000, Theorem 4.1] or [von zur Gathen 2003, Corollary 5.3] for
proofs.

Theorem 2.5.2. Let m1,m2, . . . ,mk ∈ Z be integers that are pairwise co-

prime, that is, gcd(mi,mj) = 1 for i 6= j and let m =
∏k

i=1 mi. Then, for any

sequence of integers r1, r2, . . . , rk with ri ∈ Zmi
, there exists a unique r ∈ Zm

such that:

r ≡ ri mod mi for i = 1, . . . , k

The proof of Theorem 2.5.2 is constructive and yields a simple algorithm
for computing the unique solution r of the set of modular equations x ≡ ri
mod mi for i = 1, . . . , k [von zur Gathen 2003, Algorithm 5.4]. Moreover,
an efficient version of this algorithm based on a “divide-and-conquer” strat-
egy with a quasi-optimal complexity is described in [von zur Gathen 2003,
§10.3]. In the following, we refer to this algorithm as the Chinese Remainder

Algorithm and give its complexity in Theorem 2.5.4.

Using the ingredients above, we are now able to outline the different steps
of the CRT-based algorithm for solving problems defined over the polynomial
ring Z[x1, . . . , xn] (See the illustration in Figure 2.2). This algorithm consists
actually of three steps. First, modular homomorphisms are applied using sev-
eral moduli mi in order to obtain a set of similar problems over Zmi

[x1, . . . , xn],

5Note that a more general version of this theorem can be found in the literature where

instead of integers, one consider ideals (see e.g. [Yap 2000, Theorem 4.1]).

2.5. Modular techniques 37

then, the solutions of these problems are computed over Zmi
[x1, . . . , xn] and

finally, these solutions are lifted back over Z[x1, . . . , xn] using the Chinese
Remainder Algorithm.

Figure 2.2: General scheme of the CRT-based approach.

An important issue in the CRT-based approach concerns the correctness of
the lifted solution. Indeed, in order to apply correctly the Chinese Remainder

Algorithm, two conditions must be satisfied.

• For every chosen moduli mi, the solution of the modular image over
Zmi

[x1, . . . , xn] has to be equal to the modular image of the solution over
Z[x1, . . . , xn] by the homomorphism φmi

. Homomorphisms for which this
equality does not hold are called unlucky homomorphisms and a non-
trivial task in the design of a CRT-based algorithm is to detect and to
discard them. For example, in the modular computation of the gcd of
two univariate polynomials described in the next section, the unlucky

homomorphisms are those for which the degree of this gcd increases.

• The product of the chosen moduli mi has to be larger than the maxi-
mum integer appearing in the solution, so that all the coefficients of the
solution can be recovered from their images modulo the mi. In general,
this is done by computing (when possible) a theoretical bound on the
size of the solution and choosing a set of moduli whose product is larger
than those bounds. In some cases however, such bounds turn out to be
hard to compute or quite pessimistic which affects the efficiency of the
algorithm.

In the following, we give two important complexity results that are needed
for the analysis of a CRT-based algorithm.

38 Chapter 2. Preliminaries

Theorem 2.5.3. [von zur Gathen 2003, Theorem 10.24] Given m1, . . . ,mk ∈
N>2 with m =

∏k
i=1 mi of bitsize τ and r ∈ N less than m, we can compute r

mod m1, . . . , r mod mk using ÕB(τ) bit operations.

Theorem 2.5.4. [von zur Gathen 2003, Theorem 10.25] Given pairwise co-

prime integers m1, . . . ,mk ∈ N>2 with m =
∏k

i=1 mi of bitsize τ and

r1, . . . , rk ∈ N such that ri < mi for all i, we can compute the unique

solution r ∈ N less than m of the Chinese Remainder Problem r ≡ ri
mod mi for i = 1, . . . , k using ÕB(τ) bit operations.

Remark. In practice, in order to avoid the cost of checking the coprimality
of the moduli mi (hypothesis of the Chinese Remainder Theorem), the mi are
chosen to be prime numbers. We also make this choice in the presentation
of our modular algorithms by considering prime numbers instead of arbitrary
integers. These prime numbers are denoted by µ.

2.5.2 Modular gcd computation

We illustrate here how the tools from the previous section can be used on
a classical problem, namely computing a gcd of two univariate polynomials
with integer coefficients. As mentioned in the beginning of this section, the
CRT-based approach for computing the gcd is particularly efficient since it
eliminates the growth of intermediate coefficients that usually appears in the
Euclidean-like algorithms.

Following [Yap 2000, §4], we first review some important properties of the
gcd under transformations by modular homomorphisms. Then we present the
general framework behind the modular gcd algorithm. We focus our attention
only on the results we need for the description of the algorithms presented in
this thesis and refer to [Yap 2000, §4.6] for a complete and a detailed overview.

Theorem 2.5.5. Let P,Q ∈ Z[X] and µ be an integer such that φµ(Lc(P)) 6=
0 or φµ(Lc(Q)) 6= 0. Then,

deg(gcd(φµ(P), φµ(Q))) > deg(gcd(P,Q)).

Proof. Writing P = gcd(P,Q) × D and Q = gcd(P,Q) × H and ap-
plying φµ to both sides of the two equations, we obtain φµ(P) =

φµ(gcd(P,Q)) × φµ(D) and φµ(Q) = φµ(gcd(P,Q)) × φµ(H). The polyno-
mial φµ(gcd(P,Q)) is not zero in Zµ since φµ(P) 6≡ 0 or φµ(Q) 6≡ 0 and
it divides both φµ(P) and φµ(Q), thus, it also divides gcd(φµ(P), φµ(Q)),
thus deg(φµ(gcd(P,Q))) 6 deg(gcd(φµ(P), φµ(Q))). On the other hand, since
gcd(P,Q) divides P and Q, then Lc(gcd(P,Q)) divides Lc(P) and Lc(Q) in Z.
Thus, φµ(Lc(P)) 6≡ 0 or φµ(Lc(Q)) 6= 0 implies that φµ(Lc(gcd(P,Q))) 6= 0,
thus deg(φµ(gcd(P,Q))) = deg(gcd(P,Q)) and the claim follows.

2.5. Modular techniques 39

From the previous proof, one can notice that for a given prime num-
ber µ, if φµ(Lc(P)) 6= 0 or φµ(Lc(Q)) 6= 0 and deg(gcd(φµ(P), φµ(Q))) =

deg(gcd(P,Q)) then, there exists c ∈ Zµ such that φµ(gcd(P,Q)) = c ×
gcd(φµ(P), φµ(Q)). In addition, computing a normalized form of the gcd
in Q[X] allows to turn the constant c to 1 and thus to obtain the equality
φµ(gcd(P,Q)) = gcd(φµ(P), φµ(Q)) (see [Brown 1971]). Using the terminol-
ogy of the previous section, the homomorphisms φµ for which φµ(Lc(P)) = 0

and φµ(Lc(Q)) = 0, or deg(gcd(φµ(P), φµ(Q))) > deg(gcd(P,Q)) are called
unlucky homomorphisms. Clearly, using such homomorphisms for lifting the
gcd will leads to a wrong result. The following theorem gives a more precise
characterization of unlucky homomorphisms which yields an upper-bound on
their number.

Theorem 2.5.6. [Yap 2000, Lemma 4.11] Let P,Q ∈ Z[X] and µ be a prime

such that φµ(Lc(P)) 6= 0 or φµ(Lc(Q)) 6= 0. φµ is an unlucky homomorphism

for computing gcd(P,Q) if and only if φµ(sresd(P,Q)) = 0 where d is the

degree of gcd(P,Q).

Theorem 2.5.7. [Yap 2000, Lemma 4.12] Let P,Q ∈ Z[X] of degree at most

d and maximum bitsize τ . If π is the product of all unlucky primes for com-

puting the gcd of P and Q, then

τπ 6 2τ(d+ 1).

Using the two previous theorems, several algorithms for computing the
gcd of two univariate polynomials using modular techniques have been pre-
sented (see for example [von zur Gathen 2003] for probabilistic algorithms and
[Yap 2000] for deterministic ones). The following result gives the expected bit
complexity of the Las-Vegas algorithm presented in [von zur Gathen 2003,
§6.7].

Theorem 2.5.8. [von zur Gathen 2003, Corollary 11.11] Let P,Q ∈ Z[x] of

degree at most d and maximum bitsize τ . The gcd of P and Q can be computed

using an expected number of ÕB(d
2 + dτ) bit operations.

Chapter 3

Separating Linear Form

Contents

3.1 Introduction . 41

3.2 Notation and preliminaries 43

3.3 Separating linear form over Zµ versus Z 45

3.4 Number of solutions of Iµ versus I 47

3.5 Counting the number of solutions of Iµ 50

3.5.1 Triangular decomposition 50

3.5.2 Counting the number of solutions of Iµ 52

3.6 Computing a lucky prime and the number of solu-

tions of I . 55

3.7 Computing a separating linear form 57

3.8 Conclusion . 59

We address in this chapter the deterministic computation of a separat-
ing linear form of a system of bivariate polynomials with integer coefficients,
that is a linear combination of the variables that takes different values when
evaluated at distinct (complex) solutions of the system. In other words, a
separating linear form defines a shear of the coordinate system that sends the
algebraic system in generic position, in the sense that no two distinct solutions
are vertically aligned. As mentioned in the introduction, the computation of
such linear forms is at the core of most algorithms that solve algebraic systems
by computing rational parametrizations of the solutions and, moreover, the
computation of a separating linear form is the bottleneck of these algorithms,
in terms of worst-case bit complexity.

The results presented in this chapter have been the subject of a publication

in the ISSAC 2013 conference [Bouzidi 2013b].

3.1 Introduction

Let P and Q be two bivariate polynomials of total degree bounded by d and
integer coefficients of maximum bitsize τ . Let I = 〈P,Q〉 be the ideal they

42 Chapter 3. Separating Linear Form

define and suppose that I is zero-dimensional. The goal is to find a linear
form T = X +aY , with a ∈ Z, that separates the solutions of I. As discussed
above and in the introduction (Chapter 1), computing such a linear form is a
key step of many algorithms for solving algebraic systems through univariate
representations.

We first outline a classical algorithm which is essentially the same as those
proposed, for instance, in [Diochnos 2009, Lemma 16] and [Kerber 2012, The-
orem 24]1 and whose complexity, in ÕB(d

10 + d9τ), is the best known so far
for this problem. This algorithm serves two purposes: it gives some insight
on the more involved ÕB(d

8 + d7τ)-time algorithm that follows and it will be
used in that algorithm but over Z/µZ instead of Z.

Known ÕB(d
10 + d9τ)-time algorithm for computing a separating lin-

ear form. The idea is to work with a “generic" linear form T = X + SY ,
where S is an indeterminate, and find conditions such that the specialization
of S by an integer a gives a separating form. We thus consider P (T − SY, Y)

and Q(T − SY, Y), the “generic” sheared polynomials associated to P and
Q, and R(T, S) their resultant with respect to Y . This polynomial has been
extensively used and defined in several context; see for instance the related
u-resultant [Van der Waerden 1930].

It is known that, in a set S of d4 integers, there exists at least one integer
a such that X +aY is a separating form for I since I has at most d2 solutions
which define at most

(
d2

2

)
directions in which two solutions are aligned. Hence,

a separating form can be found by computing, for every a in S, the degree of
the squarefree part of R(T, a) and by choosing one a for which this degree is
maximum. Indeed, for any (possibly non-separating) linear form X + aY , the
number of distinct roots of R(T, a), which is the degree of its squarefree part,
is always smaller than or equal to the number of distinct solutions of I, and
equality is attained when the linear form X+aY is separating (Lemma 3.3.3).
The complexity of this algorithm is in ÕB(d

10 + d9τ) because, for d4 values
of a, the polynomial R(T, a) can be shown to be of degree O(d2) and bitsize
Õ(d2 + dτ), and its squarefree part can be computed in ÕB(d

6 + d5τ) time.
We now outline the algorithm that we present in this chapter.

ÕB(d
8 + d7τ)-time algorithm for computing a separating linear form.

To reduce the complexity of the search for a separating form, one can
first consider to perform naively the above algorithm on the system Iµ =

1The stated complexity of [Kerber 2012, Theorem 24] is ÕB(d
9τ), but it seems the fact

that the sheared polynomials have bitsize in Õ(d + τ) (see Lemma 3.2.1) instead of Õ(τ)

has been overlooked in their proof.

3.2. Notation and preliminaries 43

〈P mod µ,Q mod µ〉 in Zµ = Z/µZ, where µ is a prime number upper
bounded by some polynomial in d and τ (so that the bit complexity of arith-
metic operations in Zµ is polylogarithmic in d and τ). The resultant Rµ(T, S)

of P (X − SY, Y) mod µ and Q(X − SY, Y) mod µ with respect to Y can be
computed in ÕB(d

6 + d5τ) bit operations and, since its degree is at most 2d2

in each variable, evaluating it at S = a in Zµ can be easily done in ÕB(d
4)

bit operations. Then, the computation of its squarefree part does not suffer
anymore from the coefficient growth, and it becomes softly linear in its de-
gree, that is ÕB(d

2). Considering d4 choices of a, we get an algorithm that
computes a separating form for Iµ in ÕB(d

8) time in Zµ. However, a serious
problem remains, that is to ensure that a separating form for Iµ is also a
separating form for I. This issue requires to develop a more subtle algorithm.

We first show, in Section 3.3, a critical property (Proposition 3.3.2) which
states that a separating linear form over Zµ is also separating over Z when µ

is a lucky prime number, which is, essentially, a prime such that the number
of solutions of 〈P,Q〉 is the same over Z and over Zµ. We then show in
Sections 3.4 to 3.6 how to compute such a lucky prime number. We do that
by first proving in Section 3.4 that, under mild conditions on µ, the number
of solutions of Iµ is always less than or equal to the number of solutions
of I (Proposition 3.4.1) and then by computing a bound on the number of
unlucky primes (Proposition 3.4.2). Computing a lucky prime can then be
done by choosing a µ that maximizes the number of solutions of Iµ among
a set of primes of cardinality Õ(d4 + d3τ). For that purpose, we present in
Section 3.5 a new algorithm, of independent interest, for computing in Õ(d4)

arithmetic operations in Zµ the number of distinct solutions of the system Iµ;
this algorithm is based on a classical triangular decomposition. This yields, in
Section 3.6, a ÕB(d

8 + d7τ)-time algorithm for computing a lucky prime µ in
Õ(d4 + d3τ). Now, µ is fixed, and we can apply the algorithm outlined above
for computing a separating form for Iµ in Zµ in ÕB(d

8) time (Section 3.7).
This form, which is also separating for I, is thus obtained with a total bit
complexity of ÕB(d

8 + d7τ) (Theorem 3.7.1).

3.2 Notation and preliminaries

We introduce the following notation which are extensively used throughout

this Chapter and the next one. Given the two input polynomials P and Q,
we consider the “generic” change of variables X = T − SY , and define the
“sheared” polynomials P (T − SY, Y), Q(T − SY, Y), and their resultant with
respect to Y ,

R(T, S) = ResY (P (T − SY, Y), Q(T − SY, Y)). (3.1)

44 Chapter 3. Separating Linear Form

The complexity bounds on the degree, bitsize and computation of these poly-
nomials are analyzed at the end of this section in Lemma 3.2.1. Let LR(S) be
the leading coefficient of R(T, S) seen as a polynomial in T . Let LP (S) and
LQ(S) be the leading coefficients of P (T − SY, Y) and Q(T − SY, Y), seen as
polynomials in Y ; it is straightforward that these leading coefficients do not
depend on T . In other words:

LP (S) = LcY (P (T − SY, Y)), LQ(S) = LcY (Q(T − SY, Y)),

LR(S) = LcT (R(T, S)).
(3.2)

Lemma 3.2.1. Let P and Q in Z[X, Y] be of total degree at most d and

maximum bitsize τ . The sheared polynomials P (T −SY, Y) and Q(T −SY, Y)

can be expanded in ÕB(d
4 + d3τ) and their bitsizes are in Õ(d + τ). The

resultant R(T, S) can be computed in ÕB(d
7 + d6τ) bit operations and Õ(d5)

arithmetic operations in Z; its degree is at most 2d2 in each variable and its

bitsize is in Õ(d2 + dτ).

Proof. Writing P as
∑d

i=0 pi(Y)X i, expending the substitution of X by T−SY
needs the computation of the successive powers (T − SY)i for i from 1 to d.
The binomial formula shows that each polynomial (T − SY)i is the sum of
i+ 1 monomials, with coefficients of bitsize in O(i log i). Using the recursion
formula (T−SY)i = (T−SY)i−1(T−SY), given the polynomial (T−SY)i−1,
the computation of (T − SY)i requires 2i multiplications of coefficients hav-
ing bitsize in O(i log i), which can be done in ÕB(i

2 log i) bit operations. The
complexity of computing all the powers is thus in ÕB(d

3 log d). The second
step is to multiply pi(Y) by (T − SY)i for i = 1, . . . , d. Each polynomial
multiplication can be done with O(d2) multiplications of integers of bitsize
in O(τ) or in O(d log d), and thus it can be done in ÕB(d

2(τ + d log d)) bit
operations and yields polynomials of bitsize O(τ +d log d). For the d multipli-
cations the total cost is in ÕB(d

3(τ +d log d)). Consequently the computation
of P (T − SY, Y) and Q(T − SY, Y) can be done in ÕB(d

3(τ + d)) bit op-
erations and these polynomials have bitsize in Õ(τ + d). In addition, since
P (T −SY, Y) and Q(T −SY, Y) are trivariate polynomials of partial degree in
all variables bounded by d, Theorem 2.4.16 implies the claims on R(T, S).

Throughout this chapter, we assume that the two input polynomials P and
Q are coprime in Z[X, Y], that they define the ideal I, that their maximum
total degree d is at least 2 and that their coefficients have maximum bitsize τ .
Note that the coprimality of P and Q is implicitly tested during Algorithm 5
because they are coprime if and only if R(T, S) does not identically vanish.
By abuse of notation, some complexity ÕB(d

k) may refer to a complexity
in which polylogarithmic factors in d and in τ are omitted. Iµ = 〈Pµ, Qµ〉

3.3. Separating linear form over Zµ versus Z 45

denotes the ideal generated by Pµ = φµ(P) and Qµ = φµ(Q). Similarly
as in Equation (3.1), we define Rµ(T, S) as the resultant of Pµ(T − SY, Y)

and Qµ(T − SY, Y) with respect to Y , and we define LPµ
(S), LQµ

(S), and
LRµ

(S), similarly as in (3.2). We refer to the overview in Section 3.1 for the
organization of this chapter.

3.3 Separating linear form over Zµ versus Z

We first introduce the notion of lucky prime numbers µ which are, roughly
speaking, primes µ for which the number of distinct solutions of 〈P,Q〉 does
not change when considering the polynomials modulo µ. We then show the
critical property that, if a linear form is separating modulo such a µ, then it
is also separating over Z.

Definition 3.3.1. A prime number µ is said to be lucky for an ideal I =

〈P,Q〉 if it is larger than 2d4 and satisfies

φµ(LP (S)) φµ(LQ(S)) φµ(LR(S)) 6≡ 0 and #V (I) = #V (Iµ).

Proposition 3.3.2. Let µ be a lucky prime for the ideal I = 〈P,Q〉 and let

a < µ be an integer2 such that

φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0.

If X + aY separates V (Iµ), it also separates V (I).

The key idea of the proof of Proposition 3.3.2, as well as Propositions
3.4.1 and 3.4.2, is to prove the following inequalities (under the hypothesis
that various leading terms do not vanish)

#V (Iµ) > dT (Rµ(T, a)) 6 dT (R(T, a)) 6 #V (I) (3.3)

and argue that the first (resp. last) one is an equality if X + aY separates
V (Iµ) (resp. V (I)), and that the middle one is an equality except for finitely
many µ. We establish these claims in Lemmas 3.3.3 and 3.3.5. As mentioned
in Section 3.1, Lemma 3.3.3 is the key property in the classical algorithm for
computing a separating form for I, which algorithm we will use over Zµ to
compute a separating form for Iµ in Section 3.7. For completeness, we outline
its proof (see also [Diochnos 2009, Lemma 16] or [Basu 2006, Proposition
11.23]). Recall that P and Q are assumed to be coprime but not Pµ and Qµ;
we address this issue in Lemma 3.3.4.

2We assume a < µ for clarity so that the linear form X + aY is “identical” in Z and

in Zµ. This hypothesis is however not needed and we actually prove that if X + φµ(a)Y

separates V (Iµ), then X + aY separates V (I).

46 Chapter 3. Separating Linear Form

Lemma 3.3.3. If a ∈ Z is such that LP (a)LQ(a) 6= 0 then dT (R(T, a)) 6

#V (I) and they are equal if and only if X + aY separates V (I). The same

holds over Zµ, that is for Pµ, Qµ, Rµ and Iµ, provided Pµ and Qµ are coprime.

Proof. Since LP (a) LQ(a) 6= 0, the resultant R(T, S) can be specialized at
S = a, that is R(T, a) = ResY (P (T − aY, Y), Q(T − aY, Y)). On the other
hand, the sheared polynomials P (T − aY, Y) and Q(T − aY, Y) are coprime
(since P and Q are coprime) and since LP (a) LQ(a) 6= 0, they have no common
solution at infinity in the Y -direction. Thus, according to Proposition 2.4.5
the roots of their resultant with respect to Y are the T -coordinates of the
(affine) solutions of Ia = 〈P (T −aY, Y), Q(T −aY, Y)〉. Hence, dT (R(T, a)) 6

#V (Ia) = #V (I). Moreover, if X + aY separates V (I), T = X + aY takes
distinct values for every solution in V (I), and since these values of T are
roots of R(T, a), dT (R(T, a)) > #V (I) and thus they are equal. Conversely, if
dT (R(T, a)) = #V (I), R(T, a) admits #V (I) distinct roots T = X+aY which
means that X + aY separates all the solutions of V (I). The same argument
holds over Zµ.

The following two lemmas state rather standard properties. For complete-
ness and readers’ convenience, we provide proofs of these statements for which
we could not find accurate references.

Lemma 3.3.4. If φµ(LP (S)) φµ(LQ(S)) φµ(LR(S)) 6≡ 0 and µ > 4d2 then Pµ

and Qµ are coprime in Zµ[X, Y].

Proof. Since φµ(LP (S)) φµ(LQ(S)) 6≡ 0, the property of specialization of resul-
tants (Theorem 2.4.4) yields that φµ(R(T, S)) = Rµ(T, S) and φµ(LR(S)) 6≡ 0

implies that Rµ(T, S) 6≡ 0. We can thus choose a value S = a ∈ Zµ so that
Rµ(T, a) 6≡ 0 and LPµ

(a)LQµ
(a) 6= 0; indeed, µ > 4d2 and φµ(LR(S)), LPµ

(S)

and LQµ
(S) have degree at most 2d2, d and d respectively (Theorem 2.4.16).

For such a value, the resultant of Pµ(T−aY, Y) and Qµ(T−aY, Y) is Rµ(T, a).
This resultant is not identically zero, the leading coefficients (in Y) LPµ

(a) and
LQµ

(a) do not depend on T (see Eq. (3.2)) and are not zero, thus Pµ(T−aY, Y)

and Qµ(T − aY, Y) are coprime. The result follows.

Lemma 3.3.5. Let µ be a prime and a be an integer such that

φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0, then dT (Rµ(T, a)) 6 dT (R(T, a)).

Proof. We first observe that the degree of R(T, a) and φµ(R(T, a)) are the
same. Indeed, φµ(LR(a)) 6= 0 by hypothesis and thus LR(a) 6= 0. Thus,
the leading coefficient LR(S) of R(T, S) does not vanish when specialized at
S = a, and it also does not vanish when furthermore taken modulo µ.

Now, the degree of the squarefree part of a univariate polynomial is its
degree minus the degree of its gcd with its derivative. Furthermore, according

3.4. Number of solutions of Iµ versus I 47

to Theorem 2.5.5, the degree of the gcd of two univariate polynomials cannot
decrease by reduction modulo µ, if their leading coefficients do not both vanish
modulo µ. The leading coefficients of R(T, a) and its derivative do not vanish
modulo µ since φµ(LR(a)) 6= 0, and thus

dT (R(T, a)) = dT (R(T, a))− dT (gcd(R(T, a), R′(T, a)))

> dT (φµ(R(T, a)))− dT (gcd(φµ(R(T, a)), φµ(R
′(T, a))))

= dT (φµ(R(T, a))).

We finally argue that φµ(R(T, a)) = Rµ(T, a). By hypothesis, φµ(LP (S))

and φµ(LQ(S)) do not identically vanish, thus we can specialize the resultant
R by φµ, that is φµ(R(T, S)) = ResY (φµ(P (T − SY, Y)), φµ(Q(T − SY, Y)))

(Theorem 2.4.4). Hence, φµ(R(T, S)) = Rµ(T, S). The evaluation at S = a

and the reduction modulo µ commute (in Zµ), thus φµ(R(T, a)) = Rµ(T, a)

in Zµ[T], which concludes the proof of the lemma.

Proof of Proposition 3.3.2. By Lemmas 3.3.3, 3.3.4 and 3.3.5, if µ is a
prime and a is an integer such that X + aY separates V (Iµ) and
φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0, then

#V (Iµ) = dT (Rµ(T, a)) 6 dT (R(T, a)) 6 #V (I).

Since µ is lucky, #V (Iµ) = #V (I) thus dT (R(T, a)) = #V (I) and by
Lemma 3.3.3, X + aY separates V (I).

3.4 Number of solutions of Iµ versus I

As shown in Proposition 3.3.2, the knowledge of a lucky prime permits to
search for separating linear forms over Zµ rather than over Z. We prove
here two propositions that are critical for computing a lucky prime, which
state that the number of solutions of Iµ = 〈Pµ, Qµ〉 is always at most that of
I = 〈P,Q〉 and give a bound on the number of unlucky primes.

Proposition 3.4.1. Let I = 〈P,Q〉 be a zero-dimensional ideal in Z[X, Y].

If a prime µ is larger than 2d4 and

φµ(LP (S)) φµ(LQ(S)) φµ(LR(S)) 6≡ 0

then #V (Iµ) 6 #V (I).

Proof. Let µ be a prime that satisfies the hypotheses of the proposition. We
also consider an integer a < µ such that φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0

and such that the linear form X + aY is separating for Iµ. Such an integer

48 Chapter 3. Separating Linear Form

exists because (i) φµ(LP (S)), φµ(LQ(S)), and φµ(LR(S)) are not identically
zero by hypothesis and they have degree at most d or 2d2 (Theorem 2.4.16)
and, as mentioned earlier, (ii) Iµ is zero dimensional (Lemma 3.3.4) and it
has at most d2 solutions which define at most

(
d2

2

)
directions in which two

solutions are aligned. Since 2d + 2d2 +
(
d2

2

)
< 2d4 (for d > 2), there exists

such an integer a 6 2d4 < µ. With such an a, we can apply Lemmas 3.3.3 and
3.3.5 which imply that #V (Iµ) = dT (Rµ(T, a)) 6 dT (R(T, a)) 6 #V (I).

Next, we bound the number of primes that are unlucky for the ideal 〈P,Q〉.

Proposition 3.4.2. An upper bound on the number of unlucky primes for the

ideal 〈P,Q〉 can be explicitly computed in terms of d and τ , and this bound is

in Õ(d4 + d3τ).

Proof. According to Definition 3.3.1, a prime µ is unlucky if it is smaller than
2d4, if φµ(LP (S)LQ(S) LR(S)) = 0, or if #V (I) 6= #V (Iµ). In the following,
we consider µ > 2d4. We first determine some conditions on µ that ensure
that #V (I) = #V (Iµ), and we then bound the number of µ that do not satisfy
these conditions. As we will see, under these conditions, LP (S), LQ(S), and
LR(S) do not vanish modulo µ and thus this constraint is redundant.

The first part of the proof is similar in spirit to that of Proposition 3.4.1
in which we first fixed a prime µ and then specialized the polynomials at
S = a such that the form X + aY was separating for Iµ. Here, we first
choose a such that X + aY is separating for I. With some conditions on µ,
Lemmas 3.3.3 and 3.3.5 imply Equation (3.4) and we determine some more
conditions on µ such that the middle inequality of (3.4) is an equality. We
thus get #V (Iµ) > #V (I) which is the converse of that of Proposition 3.4.1
and thus #V (Iµ) = #V (I). In the second part of the proof, we bound the
number of µ that violate the conditions we considered.

Prime numbers such that #V (I) 6= #V (Iµ). Let a be such that the form
X+aY separates V (I) and LP (a)LQ(a)LR(a) 6= 0.3 Similarly as in the proof
of Proposition 3.4.1, we can choose a 6 2d4.

We consider any prime µ such that φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0,

so that we can apply Lemmas 3.3.3 and 3.3.5. Since X + aY separates V (I),
these lemmas yield that

#V (Iµ) > dT (Rµ(T, a)) 6 dT (R(T, a)) = #V (I). (3.4)

Now, dT (R(T, a)) = dT (R(T, a))−dT (gcd(R(T, a), R′(T, a))), and similarly
for Rµ(T, a). The leading coefficient of R(T, S) with respect to T is LR(S), and

3It can be shown that LP (a)LQ(a) 6= 0 implies LR(a) 6= 0 (see for instance Lemma 4.2.5)

but this property does not simplify the proof.

3.4. Number of solutions of Iµ versus I 49

since it does not vanish at S = a, LR(a) is the leading coefficient of R(T, a).
In addition, we have shown in the proof of Lemma 3.3.5 that Rµ(T, a) =

φµ(R(T, a)), hence the hypothesis φµ(LR(a)) 6= 0 implies that Rµ(T, a) and
R(T, a) have the same degree. It follows that, if µ is such that the degree of

gcd(R(T, a), R′(T, a)) does not change when R(T, a) and R′(T, a) are reduced

modulo µ, we have

#V (Iµ) > dT (Rµ(T, a)) = dT (R(T, a)) = #V (I).

Since φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0, we can apply Proposition 3.4.1
which yields that #V (Iµ) 6 #V (I) and thus #V (Iµ) = #V (I).

Therefore, the primes µ such that #V (Iµ) 6= #V (I) are among those such
that LP (a), LQ(a) or LR(a) vanishes modulo µ or such that the degree of
gcd(R(T, a), R′(T, a)) changes when R(T, a) and R′(T, a) are reduced modulo
µ. Note that if LP (a), LQ(a), and LR(a) do not vanish modulo µ, then LP (S),
LQ(S), and LR(S) do not identically vanish modulo µ.

Bounding the number of prime divisors of LP (a), LQ(a) or LR(a). The num-
ber of prime divisors of an integer z is bounded by its bitsize. Indeed, its bitsize
is ⌊log z⌋ + 1 and its factorization into w (possibly identical) prime numbers
directly yields that 2w 6

∏w
i=1 zi = z = 2log z 6 2⌊log z⌋+1. We can thus bound

the number of prime divisors by bounding the bitsize of LP (a), LQ(a) and
LR(a). We start by bounding the bitsize of LP (S), LQ(S) and LR(S).

Each coefficient of P (T − SY, Y) has bitsize at most τ ′ = τ + d log d +

log(d+1)+1. Indeed, (T−SY)i is a sum of i+1 monomials whose coefficients
are binomials

(
i6d
j

)
< dd. The claim follows since each coefficient of P (T −

SY, Y) is the sum of at most d + 1 such binomials, each multiplied by a
coefficient of P (X, Y) which has bitsize at most τ . We get the same bound
for the coefficients of Q(T − SY, Y) and thus for LP (S) and LQ(S) as well.
Concerning LR(S), we have that R(T, S) is the resultant of P (T −SY, Y) and
Q(T − SY, Y) thus, by Theorem 2.4.16, its coefficients are of bitsize Õ(dτ ′).
In fact, an upper bound can be explicitly computed using, for instance, the
bound of [Basu 2006, Theorem 8.46] which implies that the resultant of two
trivariate polynomials of total degree d′ and bitsize τ ′ has bitsize at most
2d′(τ ′ + ⌊log 2d′⌋ + 1) + 2(⌊log(2d′2 + 1)⌋ + 1), which is in Õ(d2 + dτ) in our
case. Therefore, LP (S), LQ(S) and LR(S) have degree at most 2d2 and their
bitsizes can be explicitly bounded by a function of d and τ in Õ(d2 + dτ).

Finally, since a 6 2d4, its bitsize is at most σ = 4 log d+ 2. It is straight-
forward that the result of an evaluation of a univariate polynomial of degree
at most d′ and bitsize τ ′ at an integer value of bitsize σ has bitsize at most
d′σ + τ ′ + log(d′ + 1) + 1. Here d′ 6 2d2 and τ ′ is in Õ(d2 + dτ). We thus
proved that we can compute an explicit bound, in Õ(d2 + dτ), on the number
of prime divisors of LP (a), LQ(a), or LR(a).

50 Chapter 3. Separating Linear Form

Bounding the number of prime µ such that the degree of gcd(R(T, a), R′(T, a))

changes when R(T, a) and R′(T, a) are reduced modulo µ. By Theorem 2.5.7,
given two univariate polynomials in Z[X] of degree at most d′ and bitsize at
most τ ′, the product of all µ, such that the degree of the gcd of the two polyno-
mials changes when the polynomials are considered modulo µ, is bounded by
(2τ

′
√
d′ + 1)2d

′+2. As noted above, the number of such primes µ is bounded by
the bitsize of this bound, and thus is bounded by (d′+1) (2τ ′+log(d′+1))+1.
Here d′ 6 2d2 and τ ′ is in Õ(d2 + dτ) since our explicit bound on the bitsize
of LR(a) holds as well for the bitsize of R(T, a), and, since R(T, a) is of de-
gree at most 2d2, the bitsize of R′(T, a) is bounded by that of R(T, a) plus
1+log 2d2. We thus obtain an explicit bound in Õ(d4+d3τ) on the number of
primes µ such that the degree of gcd(R(T, a), R′(T, a)) changes when R(T, a)

and R′(T, a) are reduced modulo µ.
The result follows by summing this bound with the bounds we obtained

on the number of prime divisors of LP (a), LQ(a), or LR(a), and a bound (e.g.
2d4) on the number of primes smaller than 2d4.

3.5 Counting the number of solutions of Iµ

For counting the number of (distinct) solutions of Iµ = 〈Pµ, Qµ〉, we use
a classical algorithm for computing a triangular decomposition of an ideal
defined by two bivariate polynomials. We first recall this algorithm, slightly
adapted to our needs, and analyze its arithmetic complexity.

3.5.1 Triangular decomposition

Let P and Q be two polynomials in F[X, Y]. A decomposition of the solutions
of the system {P,Q} using the subresultant sequence appears in the theory
of triangular sets [Lazard 1991, Li 2011] and for the computation of topology
of curves [Gonzalez-Vega 1996].

The idea is to use Theorem 2.4.15 which states that, after specializa-
tion at X = α, the first (with respect to increasing i) nonzero subresultant
SresY,i(P,Q)(α, Y) is of degree i and is equal to the gcd of P (α, Y) and
Q(α, Y). This induces a decomposition of the system {P,Q} into triangular
subsystems ({Ai(X), SresY,i(P,Q)(X, Y)}) where a solution α of Ai(X) = 0

is such that the system {P (α, Y), Q(α, Y)} admits exactly i roots (counted
with multiplicity), which are exactly those of SresY,i(P,Q)(α, Y). Further-
more, these triangular subsystems are regular chains, i.e., the leading coeffi-
cient of the bivariate polynomial (seen in Y) is coprime with the univariate
polynomial. For clarity and self-containedness, we recall this decomposition

3.5. Counting the number of solutions of Iµ 51

Algorithm 2 Triangular decomposition [Gonzalez-Vega 1996, Li 2011]
Require: P,Q in F[X, Y] coprime such that LcY (P) and LcY (Q) are co-

prime,4dY (Q) 6 dY (P), and
A ∈ F[X] squarefree.

Ensure: Triangular decomposition {(Ai(X), Bi(X, Y))}i∈I such that
V (〈P,Q,A〉) is the disjoint union of the sets V (〈Ai(X), Bi(X, Y)〉)i∈I

1: Compute the subresultant sequence of P and Q with respect to Y : Bi =

SresY,i(P,Q)

2: G0 = gcd(ResY (P,Q), A) and T = ∅
3: for i = 1 to dY (Q) do
4: Gi = gcd(Gi−1, sresY,i(P,Q))

5: Ai = Gi−1/Gi

6: if dX(Ai) > 0, add (Ai, Bi) to T
7: end for
8: return T = {(Ai(X), Bi(X, Y))}i∈I

in Algorithm 2, where, in addition, we restrict the solutions of the system
{P,Q} to those where some univariate polynomials A(X) vanishes (A could
be identically zero).

The following lemma states the correctness of Algorithm 2 which follows
from Theorem 2.4.15 and from the fact that the solutions of P and Q project
on the roots of their resultant (Proposition 2.4.5).

Lemma 3.5.1 ([Gonzalez-Vega 1996, Li 2011]). Algorithm 2 computes a tri-

angular decomposition {(Ai(X), Bi(X, Y))}i∈I such that

(i) the set V (〈P,Q,A〉) is the disjoint union of the sets

V (〈Ai(X), Bi(X, Y)〉)i∈I,
(ii)

∏
i∈I Ai is squarefree,

(iii) ∀α ∈ V (Ai), Bi(α, Y) is of degree i and is equal to gcd(P (α, Y),

Q(α, Y)), and

(iv) Ai(X) and LcY (Bi(X, Y)) are coprime.

In the following lemma, we analyze the complexity of Algorithm 2 for P

and Q of degree at most dX in X and dY in Y and A of degree at most
d2, where d denotes a bound on the total degree of P and Q. We will use
Algorithm 2 with polynomials with coefficients in F = Zµ and we thus only
consider its arithmetic complexity in F. Note that the bit complexity of
this algorithm, over Z, is analyzed in [Diochnos 2009, Theorem 19] and its

4The hypothesis that LcY (P) and LcY (Q) are coprime can be relaxed by applying the

algorithm recursively (see Algorithm 7 for details).

52 Chapter 3. Separating Linear Form

arithmetic complexity is thus implicitly analyzed as well; for clarity, we provide
here a short proof.

Lemma 3.5.2. Algorithm 2 performs Õ(dXd
3
Y) = Õ(d4) arithmetic operations

in F.

Proof. From Theorem 2.4.17 (note that this lemma is stated for the coeffi-
cient ring Z, but the arithmetic complexity is the same for any field F), the
subresultant sequence of P and Q can be computed in Õ(dXd

3
Y) arithmetic

operations, and the resultant as well as the principal subresultant coefficients
have degrees in O(dXdY). The algorithm performs at most dY gcd compu-
tations between these univariate polynomials. The arithmetic complexity of
one such gcd computation is softly linear in their degrees, that is Õ(dXdY)

(Theorem 2.3.8). Hence the arithmetic complexity of computing the systems
{Si}i=1...d is Õ(dXd

2
Y). The total complexity of the triangular decomposi-

tion is hence dominated by the cost of the subresultant computation, that is
Õ(dXd

3
Y) = Õ(d4).

3.5.2 Counting the number of solutions of Iµ

Algorithm 3 computes the number of distinct solutions of an ideal Iµ =

〈Pµ, Qµ〉 of Zµ[X, Y]. Roughly speaking, this algorithm first performs one
triangular decomposition with the input polynomials Pµ and Qµ, and then
performs a sequence of triangular decompositions with polynomials resulting
from this decomposition. The result is close to a radical triangular decompo-
sition and the number of solutions of Iµ can be read, with a simple formula,
from the degrees of the polynomials in the decomposition. Note that Algo-
rithm 3, as Algorithm 2, is valid for any base field F but, since we will only
use it over Zµ, we state it and analyze its complexity in this case.

Lemma 3.5.3. Algorithm 3 computes the number of distinct solutions of

〈Pµ, Qµ〉.

Proof. The shear of Line 1 allows to fulfill the requirement of the trian-
gular decomposition algorithm, called in Line 2, that the input polynomi-
als have coprime leading coefficients. Once the generically sheared poly-
nomial Pµ(X − SY, Y) is computed (in Zµ[S,X, Y]), a specific shear value
b ∈ Zµ can be selected by evaluating the univariate polynomial LPµ

(S) =

LcY (Pµ(X−SY, Y)) at d+1 elements of Zµ. The polynomial does not vanish
at one of these values since it is of degree at most d and d < µ. Note that
such a shear clearly does not change the number of solutions.

According to Lemma 3.5.1, the triangular decomposition
{(Ai(X), Bi(X, Y))}i∈I computed in Line 2 is such that the solutions

3.5. Counting the number of solutions of Iµ 53

Algorithm 3 Number of distinct solutions of 〈Pµ, Qµ〉
Require: Pµ, Qµ in Zµ[X, Y] coprime, µ larger than their total degree
Ensure: Number of distinct solutions of 〈Pµ, Qµ〉
1: Shear Pµ and Qµ by replacing X by X − bY with b ∈ Zµ so that

LcY (Pµ(X − bY, Y)) ∈ Zµ

2: Triangular decomposition: {(Ai(X), Bi(X, Y))}i∈I = Algorithm 2
(Pµ, Qµ, 0)

3: for all i ∈ I do
4: Ci(X) = LcY (Bi(X, Y))−1 mod Ai(X)

5: B̃i(X, Y) = Ci(X)Bi(X, Y) mod Ai(X)

6: Triangular decomp.: {(Aij(X), Bij(X, Y))}j∈J i
= Algorithm 2(

B̃i(X, Y), ∂B̃i(X,Y)
∂Y

, Ai(X)
)

7: end for
8: return

∑
i∈I

(
i dX(Ai)−

∑
j∈Ji

j dX(Aij)
)

of 〈Pµ, Qµ〉 is the disjoint union of the solutions of the 〈Ai(X), Bi(X, Y)〉, for
i ∈ I. It follows that the number of (distinct) solutions of Iµ = 〈Pµ, Qµ〉 is

#V (Iµ) =
∑

i∈I

∑

α∈V (Ai)

dY (Bi(α, Y)).

Since Bi(α, Y) is a univariate polynomial in Y , dY (Bi(α, Y)) =

dY (Bi(α, Y))−dY (gcd(Bi(α, Y), B′
i(α, Y))), where B′

i(α, Y) is the derivative of
Bi(α, Y), which is also equal to ∂Bi

∂Y
(α, Y). By Lemma 3.5.1, dY (Bi(α, Y)) = i,

and since the degree of the gcd is zero when Bi(α, Y) is squarefree, we have

#V (Iµ) =
∑

i∈I

∑

α∈V (Ai)

i−
∑

α∈V (Ai)
Bi(α,Y) not sqfr.

dY (gcd(Bi(α, Y), ∂Bi

∂Y
(α, Y)))

 .

(3.5)
The polynomials Ai(X) are squarefree by Lemma 3.5.1, so

∑
α∈V (Ai)

i is equal
to i dX(Ai).

We now consider the sum of the degrees of the gcds. The rough idea
is to apply Algorithm 2 to Bi(X, Y) and ∂Bi

∂Y
(X, Y), for every i ∈ I, which

computes a triangular decomposition {(Aij(X), Bij(X, Y))}j∈Ji
such that, for

α ∈ V (Aij), dY (gcd(Bi(α, Y), ∂Bi

∂Y
(α, Y))) = j (by Lemma 3.5.1), which sim-

plifies Equation (3.5) into #V (Iµ) =
∑

i∈I

(
i dX(Ai)−

∑
j∈Ji

∑
α∈V (Aij)

j
)
.

However, we cannot directly apply Algorithm 2 to Bi(X, Y) and ∂Bi

∂Y
(X, Y)

because their leading coefficients in Y have no reasons to be coprime.

54 Chapter 3. Separating Linear Form

By Lemma 3.5.1, Ai(X) and LcY (Bi(X, Y)) are coprime, thus
LcY (Bi(X, Y)) is invertible modulo Ai(X) (by BÃ c©zout’s identity); let Ci(X)

be this inverse and define B̃i(X, Y) = Ci(X)Bi(X, Y) mod Ai(X) (such that
every coefficient of Ci(X)Bi(X, Y) with respect to Y is reduced modulo
Ai(X)). The leading coefficient in Y of B̃i(X, Y) is equal to 1, so we can ap-
ply Algorithm 2 to B̃i(X, Y) and ∂B̃i

∂Y
(X, Y). Furthermore, if Ai(α) = 0, then

B̃i(α, Y) = Ci(α)Bi(α, Y) where Ci(α) 6= 0 since Ci(α)LcY (Bi(α, Y)) = 1.
Equation (3.5) can thus be rewritten by replacing Bi by B̃i.

By Lemma 3.5.1, for every i ∈ I, Algorithm 2 computes a triangu-
lar decomposition {(Aij(X), Bij(X, Y))}j∈Ji

such that V (〈B̃i,
∂B̃i

∂Y
, Ai〉) is

the disjoint union of the sets V (〈Aij(X), Bij(X, Y)〉), j ∈ Ji, and for all
α ∈ V (Aij), dY (gcd(B̃i(α, Y), ∂B̃i

∂Y
(α, Y))) = j. Since the set of α ∈ V (Ai)

such that B̃i(α, Y) is not squarefree is the projection of the set of solutions
(α, β) ∈ V (〈B̃i,

∂B̃i

∂Y
, Ai〉) we get

#V (Iµ) =
∑

i∈I

i dX(Ai)−

∑

j∈Ji

∑

α∈V (Aij)

j

 .

Aij(X) is squarefree (Lemma 3.5.1) so
∑

α∈V (Aij)
j = j dX(Aij), which con-

cludes the proof.

The next lemma gives the arithmetic complexity of the above algorithm.

Lemma 3.5.4. Given Pµ, Qµ in Zµ[X, Y] of total degree at most d, Algorithm

3 performs Õ(d4) operations in Zµ.

Proof. According to Lemma 3.2.1, the sheared polynomials P (T − SY, Y)

and Q(T − SY, Y) can be expanded in ÕB(d
4 + d3τ) bit operations in Z.

Thus the sheared polynomials Pµ(X − SY, Y) and Qµ(X − SY, Y) can obvi-
ously be computed in Õ(d4) arithmetic operations in Zµ.5 The leading term
LcY (Pµ(X − SY, Y)) ∈ Zµ[S] is a polynomial of degree at most d and a value
b ∈ Zµ that does not vanish it can be found by at most d+1 evaluations. Each
evaluation can be done with O(d) arithmetic operations, thus the shear value
b can be computed in Õ(d2) operations. It remains to evaluate the generi-
cally sheared polynomials at this value S = b. These polynomials have O(d2)

monomials in X and Y , each with a coefficient in Zµ[S] of degree at most d;
since the evaluation of each coefficient is softly linear in d, this gives a total
complexity in Õ(d4) for Line 1.

According to Lemma 3.5.2, the triangular decomposition in Line 2 can be
done in Õ(d4) arithmetic operations. In Lines 4 and 5, Ci(X) and B̃i(X, Y)

5It can easily be proved that these polynomials can be computed in Õ(d3) arithmetic

operations but the Õ(d4) bound is sufficient here.

3.6. Computing a lucky prime and the number of solutions of I 55

can be computed by first reducing modulo Ai(X) every coefficient of Bi(X, Y)

(with respect to Y). There are at most i coefficients (by definition of subre-
sultants) and according to Theorem 2.3.2, the arithmetic complexity of every
reduction is softly linear in the degree of the operands, which is Õ(d2) by
Theorem 2.4.16. The reduction of Bi(X, Y) modulo Ai(X) can thus be done
with Õ(d3) arithmetic operations in Zµ. Now, in Line 4, the arithmetic com-
plexity of computing the inverse of one of these coefficients modulo Ai(X) is
softly linear in its degree [von zur Gathen 2003, Corollary 11.8], that is Õ(di)

where di denotes the degree of Ai(X). Furthermore, computing the product
modulo Ai(X) of two polynomials which are already reduced modulo Ai(X)

can be done in Õ(di) arithmetic operations [von zur Gathen 2003, Corollary
11.8]. Thus, in Line 5, the computation of B̃i(X, Y) can be done with i such
multiplications, and thus with Õ(idi) arithmetic operations. Finally, in Line
6, the triangular decomposition can be done with Õ(i3di) arithmetic opera-
tions by Lemma 3.5.2. The complexity of Lines 4-6 is thus in Õ(d3 + i3di)

which is in Õ(d3 + d2idi). The total complexity of the loop in Line 3 is thus
Õ(d4 + d2

∑
i idi) which is in Õ(d4) because the number of solutions of the

triangular system (Ai(X), Bi(X, Y)) is at most the degree of Ai times the de-
gree of Bi in Y , that is idi, and the total number of these solutions for i ∈ I
is that of (P,Q), by Lemma 3.5.1, which is at most d2 by BÃ c©zout’s bound.
This concludes the proof because the sum in Line 8 can obviously be done
in linear time in the size of the triangular decompositions that are computed
during the algorithm.

3.6 Computing a lucky prime and the number
of solutions of I

We now show how to compute the number of solutions of I = 〈P,Q〉 and a
lucky prime for that ideal.

Lemma 3.6.1. Algorithm 4 computes the number of distinct solutions and a

lucky prime for 〈P,Q〉 in ÕB(d
8 + d7τ) bit operations. Moreover, this lucky

prime is upper bounded by Õ(d4 + d3τ).

Proof. We first prove the correctness of the algorithm. Note first that for all
µ ∈ B satisfying the constraint of Line 4, Lemma 3.3.4 implies that φµ(P) and
φµ(Q) are coprime. It follows that Algorithm 3 computes the number of dis-
tinct solutions Nµ = #V (Iµ) of Iµ. By Proposition 3.4.1 and Definition 3.3.1,
Nµ 6 #V (I) and the equality holds if µ is lucky for I. Since the set B of
considered primes contains a lucky one by construction, the maximum of the
computed value of Nµ is equal to #V (I). Finally, the µ associated to any

56 Chapter 3. Separating Linear Form

Algorithm 4 Number of distinct solutions and lucky prime for 〈P,Q〉
Require: P,Q in Z[X, Y] coprime of total degree at most d and bitsize at

most τ

Ensure: The number of solutions and a lucky prime µ for 〈P,Q〉
1: Compute P (T − SY, Y), Q(T − SY, Y), R(T, S) = ResY (P (T −

SY, Y), Q(T − SY, Y))

2: Compute a set B of primes larger than 2d4 and of cardinality Õ(d4+ d3τ)

that contains a lucky prime for 〈P,Q〉 (see Proposition 3.4.2)
3: for all µ in B do
4: if φµ(LP (S)) φµ(LQ(S)) φµ(LR(S)) 6≡ 0 then
5: Compute Nµ = Algorithm 3(φµ(P), φµ(Q))

6: end if
7: end for
8: return (µ,Nµ) such that Nµ is maximum

such maximum value of Nµ is necessarily lucky by the constraint of Line 4
and since µ is larger than 2d4.

We now prove the complexity of the algorithm. The polynomials P (T −
SY, Y), Q(T−SY, Y) and their resultant R(T, S) can be computed in ÕB(d

7+

d6τ) bit operations by Lemma 3.2.1.
Proposition 3.4.2 states that we can compute an explicit bound Ξ(d, τ)

in Õ(d4 + d3τ) on the number of unlucky primes for 〈P,Q〉. We want to
compute in Line 2 a set B of at least Ξ(d, τ) primes (plus one) that are larger
than 2d4. For computing B, we can thus compute the first Ξ(d, τ) + 2d4 + 1

prime numbers and reject those that are smaller than 2d4. The bit complexity
of computing the r first prime numbers is in Õ(r) and their maximum is in
Õ(r) [von zur Gathen 2003, Theorem 18.10]. We can thus compute the set of
primes B with ÕB(d

4+d3τ) bit operations and these primes are in Õ(d4+d3τ).
In Line 4, we test to zero the reduction modulo µ of three polynomials

in Z[S] which have been computed in Line 1 and which are of degree O(d2)

and bitsize O(d2 + dτ) in the worst case (by Lemma 3.2.1). For each of these
polynomials, the test to zero can be done by first computing (once for all)
the gcd of its O(d2) integer coefficients of bitsize O(d2 + dτ). Each gcd can
be computed with a bit complexity that is softly linear in the bitsize of the
integers [Yap 2000, §2.A.6] (and the bitsize clearly does not increase), hence
all the gcds can be done with a bit complexity of ÕB(d

2(d2 + dτ)). Then
the reduction of each of the three gcds modulo all the primes in B can be
computed via a remainder tree in a bit complexity that is softly linear in the
total bitsize of the input (Theorem 2.5.3), which is dominated by the sum of
the bitsizes of the Õ(d4+d3τ) primes in B each of bitsize in Õ(1). Hence, the

3.7. Computing a separating linear form 57

Algorithm 5 Separating form for 〈P,Q〉
Require: P,Q in Z[X, Y] of total degree at most d and defining a zero-

dimensional ideal I
Ensure: A linear form X + aY that separates V (I), with a < 2d4 and

LP (a)LQ(a) 6= 0

1: Apply Algorithm 4 to compute the number of solutions #V (I) and a lucky
prime µ for I

2: Compute P (T − SY, Y), Q(T − SY, Y) and R(T, S) = ResY (P (T −
SY, Y), Q(T − SY, Y))

3: Compute Rµ(T, S) = φµ(R(T, S))

4: Compute Υµ(S) = φµ(LP (S)) φµ(LQ(S)) φµ(LR(S))

5: a := 0

6: repeat
7: Compute the degree Na of the squarefree part of Rµ(T, a)

8: a := a+ 1

9: until Υµ(a) 6= 06and Na = #V (I)

10: return The linear form X + aY

tests in Line 4 can be done with a total bit complexity in ÕB(d
4 + d3τ).

In Line 5, we compute, for Õ(d4+d3τ) prime numbers µ, φµ(P) and φµ(Q)

and call Algorithm 3 to compute the number of their common solutions. Using
the same argument as above, each coefficient of P and Q can be reduced
modulo the Õ(d4+d3τ) primes with ÕB(d

4+d3τ) bit operations, thus the bit
complexity of computing all the φµ(P) and φµ(Q) for µ in B is in ÕB(d

6+d5τ).
By Lemma 3.5.4, the bit complexity of Algorithm 3 is in ÕB(d

4). Hence,
the total bit complexity of Line 5 is ÕB(d

8 + d7τ), and so is the overall bit
complexity of Algorithm 4.

3.7 Computing a separating linear form

Using Algorithm 4, we now present our algorithm for computing a linear form
that separates the solutions of 〈P,Q〉.

Theorem 3.7.1. Algorithm 5 returns a separating linear form X + aY for

〈P,Q〉 with a < 2d4. The bit complexity of the algorithm is in ÕB(d
8 + d7τ).

Proof. We first prove the correctness of the algorithm. We start by proving
that the value a returned by the algorithm is the smallest nonnegative integer
such that X + aY separates V (Iµ) with Υµ(a) 6= 0. Note first that, in Line 3,

6Υµ(S) is a polynomial in Zµ[S] and we consider Υµ(a) in Zµ.

58 Chapter 3. Separating Linear Form

φµ(R(T, S)) is indeed equal to Rµ(T, S) which is defined as ResY (Pµ(T −
SY, Y), Qµ(T − SY, Y)) since the leading coefficients LP (S) and LQ(S) of
P (T − SY, Y) and Q(T − SY, Y) do not identically vanish modulo µ (since
µ is lucky), and thus LPµ

(S) = φµ(LP (S)), similarly for Q, and according
to Theorem 2.4.4 the resultant can be specialized modulo µ. Now, Line 9
ensures that the value a returned by the algorithm satisfies Υµ(a) 6= 0, and
we restrict our attention to nonnegative such values of a. Note that Υµ(a) 6= 0

implies that φµ(LP (a)) φµ(LQ(a)) φµ(LR(a)) 6= 0 because the specialization
at S = a and the reduction modulo µ commute (in Zµ). For the same reason,
LPµ

(S) = φµ(LP (S)) implies LPµ
(a) = φµ(LP (a)) and thus LPµ

(a) 6= 0 and,
similarly, LQµ

(a) 6= 0. On the other hand, Line 9 implies that the value a

is the smallest that satisfies dT (Rµ(T, a)) = #V (I), which is also equal to
#V (Iµ) since µ is lucky. Lemma 3.3.3 thus yields that the returned value
a is the smallest nonnegative integer such that X + aY separates V (Iµ) and
Υµ(a) 6= 0, which is our claim.

This property first implies that a < 2d4 because the degree of Υµ is
bounded by 2(d2+d), the number of non-separating linear forms is bounded by(
d2

2

)
(the maximum number of directions defined by any two of d2 solutions),

and their sum is less than 2d4 for d > 2. Note that, since µ is lucky, 2d4 < µ

and thus a < µ. The above property thus also implies, by Proposition 3.3.2,
that X + aY separates V (I). This concludes the proof of correctness of the
algorithm since a < 2d4 and LP (a)LQ(a) 6= 0 (since Υµ(a) 6= 0).

We now focus on the complexity of the algorithm. By Lemma 3.6.1, the
bit complexity of Line 1 is in ÕB(d

8 + d7τ). The bit complexity of Lines 2
to 5 is in ÕB(d

7 + d6τ). Indeed, by Lemma 3.2.1, R(T, S) has degree O(d2)

in T and in S, bitsize Õ(d2 + dτ), and it can be computed in ÕB(d
7 + d6τ)

time. Computing Rµ(T, S) = φµ(R(T, S)) can thus be done in reducing O(d4)

integers of bitsize Õ(d2 + dτ) modulo µ. According to Theorem 2.3.2, each
reduction is softly linear in the maximum of the bitsizes, thus the reduction
of R(T, S) can be computed in ÕB(d

4(d2 + dτ)) time (since µ has bitsize in
O(log(d4 + d3τ)) by Lemma 3.6.1).7 The computation of Υµ can clearly be
done with the same complexity since each reduction is easier than the one in
Line 3, and the product of the polynomials (which does not actually need to
be computed since we are only interested in whether Υµ(a) vanishes) can be
done with a bit complexity that is softly linear in the product of the maximum
degrees and maximum bitsizes according to Theorem 2.3.1.

7Note that Rµ(T, S) can be computed more efficiently in ÕB(d
5+d3τ) bit operations as

the resultant of Pµ(T−SY, Y) and Qµ(T−SY, Y) because computing these two polynomials

and their reduction can be done in ÕB(d
4 + d3τ) bit operations (Lemma 3.2.1) and their

resultant can be computed with Õ(d5) arithmetic operations in Zµ (Lemma 2.4.17) and

thus with ÕB(d
5) bit operations since µ has bitsize in O(log(d4 + d3τ)).

3.8. Conclusion 59

We proved that the value a returned by the algorithm is less than 2d4,
thus the loop in Line 6 is performed at most 2d4 times. Each iteration con-
sists of computing the squarefree part of Rµ(T, a) which requires ÕB(d

4) bit
operations. Indeed, computing Rµ(T, S) at S = a amounts to evaluating, in
Zµ, O(d2) polynomials in S, each of degree O(d2) (by Lemma 3.2.1). Note
that a does not need to be reduced modulo µ because a < 2d4 and 2d4 < µ

since µ is lucky. Thus, the bit complexity of evaluating in Zµ each of the
O(d2) polynomials in S is the number of arithmetic operations in Zµ, which
is linear the degree that is O(d2), times the (maximum) bit complexity of the
operations in Zµ, which is in OB(log dτ) since µ is in Õ(d4 + d3τ) by Lemma
3.6.1. Hence, computing Rµ(T, a) can be done in ÕB(d

4) bit operations. Once
Rµ(T, a) is computed, the arithmetic complexity of computing its squarefree
part in Zµ is softly linear in its degree (Theorem 2.3.8), that is Õ(d2), which
yields a bit complexity in ÕB(d

2) since, again, µ is in Õ(d4 + d3τ). This leads
to a total bit complexity of ÕB(d

8) for the loop in Lines 6 to 9, and thus to a
total bit complexity for the algorithm in ÕB(d

8 + d7τ).

3.8 Conclusion

We presented an algorithm of bit complexity ÕB(d
8 + d7τ) for finding a

separating linear form of a bivariate system, improving by a factor d2 the
best known algorithm for this problem. Finding a separating linear form
is at the core of approaches based on rational parametrizations for solv-
ing such systems and, as mentioned in the introduction, our algorithm di-
rectly improves the bit complexity of the classical method for computing
rational parametrizations via subresultants [Gonzalez-Vega 1996]. Interest-
ingly, computing a separating linear form remains the bit-complexity bottle-
neck in this algorithm [Diochnos 2009] and we will show in the next chapter
that this is also the bottleneck for computing the rational parametrization of
[Rouillier 1999]. Another result proved in Chapter 6, is that isolating boxes
for the solutions of a bivariate system can be computed from these rational
parametrizations in a smaller bit complexity. This thus yields algorithms of
bit complexity ÕB(d

8+d7τ) for computing rational parametrizations of bivari-
ate systems and isolating their real solutions. It should be stressed that this
complexity matches the recent one presented by Emeliyanenko and Sagraloff
[Emeliyanenko 2012] for “only” computing isolating boxes of the real solu-
tions. Furthermore, as shown in Chapter 6, rational parametrizations yield
efficient algorithms for various related problems, such as evaluating the sign
of a polynomial at the solutions of the system, or solving over-constrained
systems.

Chapter 4

Rational Univariate

Representation

Contents

4.1 Introduction . 61

4.2 RUR computation . 62

4.2.1 Proof of Proposition 4.2.1 64

4.3 RUR bitsize . 68

4.4 Conclusion . 72

In this chapter we present and analyse an algorithm for computing the Ra-
tional Univariate Representation (RUR) of a system defined by two bivariate
polynomials of total degree at most d with integer coefficients of maximum
bitsize τ . As mentioned in the introduction, such an algorithm decomposes
in two phases: first computing a separating linear form for the solutions and
second, computing the associated Rational Univariate Representation. In the
previous chapter, we focused on the first phase of this algorithm and showed
that a separating linear form can be computed in ÕB(d

8+d7τ) bit operations.
Here, we suppose computed a separating linear form and focus on the second
phase, that is the computation of the Rational Univariate Representation.

The results presented in this chapter are part of an article published in the

ISSAC 2013 conference [Bouzidi 2013a].

4.1 Introduction

We first show that the Rational Univariate Representation (RUR for short)
of Rouillier [Rouillier 1999] (i) can be expressed with simple polynomial for-
mulas, that (ii) it has a total bitsize which is asymptotically smaller than
that of Gonzalez-Vega and El Kahoui [Gonzalez-Vega 1996] by a factor d, and
that (iii) it can be computed with the same complexity, that is ÕB(d

7 + d6τ)

(Theorem 4.1.1). Namely, we prove that the RUR consists of four polynomi-
als of degree at most d2 and bitsize Õ(d2 + dτ) (instead of O(d) polynomials

62 Chapter 4. Rational Univariate Representation

with the same asymptotic degree and bitsize for Gonzalez-Vega and El Ka-
houi parametrization). Moreover, we prove that this bound holds for any
ideal containing P and Q, that is, for instance the radical ideal of 〈P,Q〉
(Proposition 4.3.1).

We formally state in the following theorem the main result of this chapter.
This theorem is stated for any separating linear form X+aY with integer a of
bitsize Õ(1) with the abuse of notation that polylogarithmic factors in d and
τ are omitted. Recall that according to the previous chapter, a separating
form X + aY with a positive integer a < 2d4 can be computed in ÕB(d

8 +

d7τ) bit operations (Theorem 3.7.1). This theorem is a direct consequence of
Propositions 4.2.2 and 4.3.1.

Theorem 4.1.1. Let P,Q ∈ Z[X, Y] be two coprime bivariate polynomials

of total degree at most d and maximum bitsize τ . Given a separating form

X + aY with integer a of bitsize Õ(1), the RUR of 〈P,Q〉 associated to a

can be computed using Proposition 4.2.1 with ÕB(d
7 + d6τ) bit operations.

Furthermore, the polynomials of this RUR have degree at most d2 and bitsize

in Õ(d2 + dτ).

This chapter is organized as follows: in Section 4.2, we present our algo-
rithm for computing the RUR based on the formulas of Proposition 4.2.1. We
then use these formulas in Section 4.3 to prove new bounds on the bitsize
of the coefficients of the polynomials of the RUR. The main results of this
chapter are summarized in Theorem 4.1.1.

Throughout this chapter we assume that the two input polynomials P and
Q are coprime in Z[X, Y], that their maximum total degree d is at least 2 and
that their coefficients have maximum bitsize τ .

4.2 RUR computation

We show here that the polynomials of a RUR can be expressed as combi-
nations of specializations of the resultant R and its partial derivatives. The
seminal idea has already been used by several authors in various contexts (see
e.g. [Canny 1987, Alonso 1996, Schost 2001]) for computing rational param-
eterizations of the radical of a given zero-dimensional ideal and mainly for
bounding the size of a Chow form. Based on the same idea but keeping track
of multiplicities, we present a simple new formulation for the polynomials of
a RUR, given a separating form.

For the convenience of the reader, we recall here the definition of the
Rational Univariate Representation of a bivariate system we introduced in
Section 2.2.

4.2. RUR computation 63

Definition 2.2.1. Let I ⊂ Q[X, Y] be a zero-dimensional ideal, V (I) =

{σ ∈ C2, v(σ) = 0, ∀v ∈ I} its associated variety, and a linear form T =

X+aY with a ∈ Q. The RUR-candidate of I associated to X+aY (or simply,

to a), denoted RURI,a, is the following set of four univariate polynomials

in Q[T]

fI,a(T) =
∏

σ∈V (I)

(T −X(σ)− aY (σ))µI(σ)

fI,a,v(T) =
∑

σ∈V (I)

µI(σ)v(σ)
∏

ς∈V (I),ς 6=σ

(T −X(ς)− aY (ς)), for v ∈ {1, X, Y }

(4.1)

where, for σ ∈ V (I), µI(σ) denotes the multiplicity of σ in I. If (X, Y) 7→ X+

aY is injective on V (I), we say that the linear form X+aY separates V (I) (or

is separating for I) and RURI,a is called a RUR (the RUR of I associated to

a) and it defines a bijection between V (I) and V (fI,a) = {γ ∈ C, fI,a(γ) = 0}:

V (I) → V (fI,a)

(α, β) 7→ α + aβ(
fI,a,X
fI,a,1

(γ),
fI,a,Y
fI,a,1

(γ)

)
←[γ

Moreover, this bijection preserves the real roots and the multiplicities.

Proposition 4.2.1. For any rational a such that LP (a)LQ(a) 6= 0 and such

that X + aY is a separating form of I = 〈P,Q〉, the RUR of 〈P,Q〉 associated

to a is as follows:

fI,a(T) =
R(T, a)

LR(a)

fI,a,1(T) =
f ′
I,a(T)

gcd(fI,a(T), f ′
I,a(T))

fI,a,Y (T) =
∂R
∂S

(T, a)− fI,a(T)
∂LR

∂S
(a)

LR(a) gcd(fI,a(T), f ′
I,a(T))

fI,a,X(T) = TfI,a,1(T)− dT (fI,a)fI,a(T)− afI,a,Y (T).

We postpone the proof of Proposition 4.2.1 to Section 4.2.1 and first an-
alyze the complexity of the computation of the expressions therein. Note
that a separating form X + aY as in Proposition 4.2.1 can be computed in
ÕB(d

8 + d7τ) according to Theorem 3.7.1.

Proposition 4.2.2. Computing the polynomials in Proposition 4.2.1 can be

done with ÕB(d
7 + d6(τ + τa)) bit operations, where τa is the bitsize of a.

64 Chapter 4. Rational Univariate Representation

Proof of Proposition 4.2.2. According to Lemma 3.2.1, the resultant R(T, S)

of P (T−SY, Y) and Q(T−SY, Y) with respect to Y has degree O(d2) in T and
S, has bitsize in Õ(d(d+τ)), and that it can be computed in ÕB(d

6(d+τ)) bit
operations. We can now apply the formulas of Proposition 4.2.1 for computing
the polynomials of the RUR.

Specializing R(T, S) at S = a can be done by evaluating O(d2) polynomials
in S, each of degree in O(d2) and bitsize in Õ(d2+dτ). By Theorem 2.3.4, each
of the O(d2) evaluations can be done in ÕB(d

2(d2 + dτ + τa)) bit operations
and each result has bitsize in Õ(d2 + dτ + d2τa). Hence, R(T, a) and fI,a(T)

have degree in O(d2), bitsize in Õ(d2 + dτ + d2τa), and they can be computed
with ÕB(d

4(d2 + dτ + τa)) bit operations.
The complexity of computing the numerators of fI,a,1(T) and fI,a,Y (T) is

clearly dominated by the computation of ∂R
∂S

(T, a). Indeed, computing the
derivative ∂R

∂S
(T, S) can trivially be done in O(d4) arithmetic operations of

complexity ÕB(d
2+dτ), that is in ÕB(d

6+d5τ). Then, as for R(T, a), ∂R
∂S

(T, a)

has degree in O(d2), bitsize in Õ(d2+dτ+d2τa), and it can be computed within
the same complexity as the computation of R(T, a).

On the other hand, since fI,a(T) and f ′
I,a(T) have degree in O(d2) and

bitsize in Õ(d2 + dτ + d2τa), and fI,a(T) = R(T,a)
LR(a)

, one can multiply these

two polynomials by LR(a) which is of bitsize Õ(d2 + dτ + d2τa) and by the
denominator of the rational a to the power of dS(R(T, S)) which is an integer
of bitsize in O(d2τa), to obtain polynomials with coefficients in Z. Hence,
according to Theorem 2.3.10, the gcd of fI,a(T) and f ′

I,a(T) can be computed
in ÕB(d

4(d2+dτ+d2τa)) bit operations and it has bitsize in Õ(d2+dτ+d2τa).
Now, according to Theorem 2.3.2 the bit complexity of the division of the

numerators by the gcd is of the order of the square of their maximum degree
times their maximum bitsize which is in ÕB(d

4(d2+dτ+d2τa)) bit operations.
Finally, computing fI,a,X(T) can be done within the same complexity as

for fI,a,1(T) and fI,a,Y (T) since it is dominated by the computation of the
squarefree part of fI,a(T), which can be computed similarly and with the
same complexity as above, by Theorem 2.3.10.

The overall complexity is thus that of computing the resultant which is in
ÕB(d

6(d + τ)) plus that of computing the above gcd and Euclidean division
which is in ÕB(d

4(d2+dτ+d2τa)). This gives a total of ÕB(d
7+d6(τ+τa)).

4.2.1 Proof of Proposition 4.2.1

Proposition 4.2.1 expresses the polynomials fI,a and fI,a,v of a RUR in terms of
specializations (by S = a) of the resultant R(T, S) and its partial derivatives.
Since the specializations are done after considering the derivatives of R, we

4.2. RUR computation 65

study the relations between these entities before specializing S by a.
For that purpose, we first introduce the following polynomials which are ex-

actly the polynomials fI,a and fI,a,v of (4.1) where the parameter a is replaced
by the variable S. These polynomials can be seen as the RUR polynomials of
the ideal I with respect to a “generic” linear form X + SY .

fI(T, S) =
∏

σ∈V (I)

(T −X(σ)− SY (σ))µI(σ)

fI,v(T, S) =
∑

σ∈V (I)

µI(σ)v(σ)
∏

ς∈V (I),ς 6=σ

(T −X(ς)− SY (ς)), v ∈ {1, X, Y }.

(4.2)

These polynomials are obviously in C[T, S], but they are actually in Q[T, S]

because, when S is specialized at any rational value a, the specialized
polynomials are those of RURI,a which are known to be in Q[T] (see e.g.
[Rouillier 1999]).

Before proving Proposition 4.2.1, we express the derivatives of fI(T, S) in
terms of fI,v(T, S), in Lemma 4.2.3, and show that fI(T, S) is the monic form
of the resultant R(T, S), seen as a polynomial in T , in Lemma 4.2.5.

Lemma 4.2.3. Let gI(T, S) =
∏

σ∈V (I)(T −X(σ)− SY (σ))µI(σ)−1. We have

∂fI
∂T

(T, S) = gI(T, S)fI,1(T, S), (4.3)

∂fI
∂S

(T, S) = gI(T, S)fI,Y (T, S). (4.4)

Proof. It is straightforward that the derivative of fI with respect to T is∑
σ∈V (I) µI(σ)(T −X(σ)−SY (σ))µI(σ)−1

∏
ς∈V (I),ς 6=σ(T −X(ς)−SY (σ))µI(ς),

which can be rewritten as the product of
∏

σ∈V (I)(T −X(σ)− SY (σ))µI(σ)−1

and
∑

σ∈V (I) µI(σ)
∏

ς∈V (I),ς 6=σ(T−X(ς)−SY (ς)) which is exactly the product
of gI(T, S) and fI,1(T, S).

The expression of the derivative of fI with respect to S is similar to that
with respect to T except that the derivative of T − X(σ) − SY (σ) is now
Y (σ) instead of 1. It follows that ∂fI

∂S
is the product of

∏
σ∈V (I)(T −X(σ) −

SY (σ))µI(σ)−1 and
∑

σ∈V (I) µI(σ)Y (σ)
∏

ς∈V (I),ς 6=σ(T − X(ς) − SY (ς)) which
is the product of gI(T, S) and fI,Y (T, S).

For the proof of Lemma 4.2.5, we will need the following lemma which
states that when two polynomials have no common solution at infinity in
some direction, the roots of their resultant with respect to this direction are
the projections of the solutions of the system with cumulated multiplicities.

66 Chapter 4. Rational Univariate Representation

Lemma 4.2.4 ([Busé 2005, Prop. 2 and 5]). Let P,Q ∈ F[X, Y] defining

a zero-dimensional ideal I = 〈P,Q〉, such that their leading terms LcY (P)

and LcY (Q) do not have common roots. Then ResY (P,Q) = c
∏

σ∈V (I)(X −
X(σ))µI(σ) where c is nonzero in F.

The following lemma links the resultant of P (T−SY, Y) and Q(T−SY, Y)

with respect to Y and the polynomial fI(T, S) as defined above.

Lemma 4.2.5. R(T, S) = LR(S)fI(T, S) and, for any a ∈ Q, LP (a)LQ(a) 6=
0 implies that LR(a) 6= 0.

Proof. The proof is organized as follows. We first prove that for any rational a
such that LP (a)LQ(a) does not vanish, R(T, a) = c(a)fI(T, a) where c(a) ∈ Q

is a nonzero constant depending on a. This is true for infinitely many values
of a and, since R(T, S) and fI(T, S) are polynomials, we can deduce that
R(T, S) = LR(S)fI(T, S). This will also implies the second statement of the
lemma since, if LP (a)LQ(a) 6= 0, then R(T, a) = c(a)fI(T, a) = LR(a)fI(T, a)

with c(a) 6= 0, thus LR(a) 6= 0 (since fI(T, a) is monic).
If a is such that LP (a)LQ(a) 6= 0, then according to Theorem 2.4.4 the

resultant R(T, S) can be specialized at S = a, in the sense that R(T, a) is
equal to the resultant of P (T − aY, Y) and Q(T − aY, Y) with respect to Y .

We now apply Lemma 4.2.4 to these two polynomials P (T − aY, Y) and
Q(T − aY, Y). These two polynomials satisfy the hypotheses of this lemma:
first, their leading coefficients (in Y) do not depend on T , hence they have no
common root in Q[T]; second, the polynomials P (T−aY, Y) and Q(T−aY, Y)

are coprime because P (X, Y) and Q(X, Y) are coprime by assumption and the
change of variables (X, Y) 7→ (T = X + aY, Y) is a one-to-one mapping (and
a common factor will remain a common factor after the change of variables).
Hence Lemma 4.2.4 yields that R(T, a) = c(a)

∏
σ∈V (Ia)

(T−T (σ))µIa (σ), where
c(a) ∈ Q is a nonzero constant depending on a, and Ia is the ideal generated
by P (T − aY, Y) and Q(T − aY, Y).

We now observe that
∏

σ∈V (Ia)
(T − T (σ))µIa (σ) is equal to fI(T, a) =∏

σ∈V (I)(T − X(σ) − aY (σ))µI(σ) since any solution (α, β) of P (X, Y) is in
one-to-one correspondence with the solution (α + aβ, β) of P (T − aY, Y)

(and similarly for Q) and the multiplicities of the solutions also match, i.e.
µI(σ) = µIa(σa) when σ and σa are in correspondence through the mapping
[Fulton 2008, §3.3 Proposition 3 and Theorem 3]. Hence,

LP (a)LQ(a) 6= 0 ⇒ R(T, a) = c(a)fI(T, a) with c(a) 6= 0. (4.5)

Since there is finitely many values of a such that LP (a)LQ(a)LR(a) = 0

and since fI(T, S) is monic with respect to T , (4.5) implies that R(T, S) and

4.2. RUR computation 67

fI(T, S) have the same degree in T , say D. We write these two polynomials
as

R(T, S) = LR(S)T
D+

D−1∑

i=0

ri(S)T
i, fI(T, S) = TD+

D−1∑

i=0

fi(S)T
i. (4.6)

If a is such that LP (a)LQ(a)LR(a) 6= 0, (4.5) and (4.6) imply that LR(a) =

c(a) and ri(a) = LR(a)fi(a), for all i. These equalities hold for infinitely
many values of a, and ri(S), LR(S) and fi(S) are polynomials in S, thus
ri(S) = LR(S)fi(S) and, by (4.6), R(T, S) = LR(S)fI(T, S).

We can now prove Proposition 4.2.1, which we recall, for clarity.

Proposition 4.2.1. For any rational a such that LP (a)LQ(a) 6= 0 and such

that X + aY is a separating form of I = 〈P,Q〉, the RUR of 〈P,Q〉 associated

to a is as follows:

fI,a(T) =
R(T, a)

LR(a)

fI,a,1(T) =
f ′
I,a(T)

gcd(fI,a(T), f ′
I,a(T))

fI,a,Y (T) =
∂R
∂S

(T, a)− fI,a(T)
∂LR

∂S
(a)

LR(a) gcd(fI,a(T), f ′
I,a(T))

fI,a,X(T) = TfI,a,1(T)− dT (fI,a)fI,a(T)− afI,a,Y (T).

Proof. Since we assume that a is such that LP (a)LQ(a) 6= 0, Lemma 4.2.5
immediately gives the first formula.

Equation 4.3 states that fI,1(T, S)gI(T, S) = ∂fI(T,S)
∂T

, where gI(T, S) =∏
σ∈V (I)(T − X(σ) − SY (σ))µI(σ)−1. In addition, gI being monic in T , it

never identically vanishes when S is specialized, thus the preceding for-
mula yields after specialization: fI,a,1(T) =

f ′

I,a(T)

gI(T,a)
. Furthermore, gI(T, a) =

gcd(fI,a(T), f
′
I,a(T)). Indeed, fI,a(T) =

∏
σ∈V (I)(T − X(σ) − aY (σ))µI(σ)

and all values X(σ) + aY (σ), for σ ∈ V (I), are pairwise distinct since
X + aY is a separating form, thus the gcd of fI,a(T) and its derivative is∏

σ∈V (I)(T −X(σ) − aY (σ))µI(σ)−1, that is gI(T, a). This proves the formula
for fI,a,1.

Concerning the third equation, Lemma 4.2.5 together with Equation 4.4
implies:

fI,Y (T, S) =
∂fI(T,S)

∂S

gI(T, S)
=

∂(R(T,S)/LR(S))
∂S

gI(T, S)
=

∂R(T,S)
∂S

LR(S)−R(T, S)∂LR(S)
∂S

LR(S)2gI(T, S)

=
∂R(T,S)

∂S
− fI(T, S)

∂LR(S)
∂S

LR(S)gI(T, S)
.

68 Chapter 4. Rational Univariate Representation

As argued above, when specialized, gI(T, a) = gcd(fI,a(T), f
′
I,a(T)) and it does

not identically vanish. By Lemma 4.2.5, LR(a) does not vanish either, and
the formula for fI,a,Y follows.

It remains to compute fI,a,X . Definition 2.2.1 implies that, for any root γ
of fI,a: γ =

fI,a,X
fI,a,1

(γ)+ a
fI,a,Y
fI,a,1

(γ), and thus fI,a,X(γ)+ afI,a,Y (γ)− γfI,a,1(γ) =

0. Replacing γ by T , we have that the polynomial fI,a,X(T) + afI,a,Y (T) −
TfI,a,1(T) vanishes at every root of fI,a, thus the squarefree part of fI,a divides
that polynomial. In other words, fI,a,X(T) = TfI,a,1(T) − afI,a,Y (T) mod

fI,a(T). We now compute TfI,a,1(T) and afI,a,Y (T) modulo fI,a(T).
Equation (4.1) implies that fI,a,v(T) is equal to

T#V (I)−1
∑

σ∈V (I) µI(σ)v(σ) plus some terms of lower degree in T , and that

the degree of fI,a(T) is #V (I) (since X + aY is a separating form). First,
for v = Y , this implies that dT (fI,a,Y) < dT (fI,a), and thus that afI,a,Y (T)

is already reduced modulo fI,a(T). Second, for v = 1,
∑

σ∈V (I) µI(σ) is

nonzero and equal to dT (fI,a). Thus, TfI,a,1(T) and fI,a(T) are both of degree
#V (I), and their leading coefficients are dT (fI,a) and 1, respectively. Hence
TfI,a,1(T) mod fI,a(T) = TfI,a,1(T)−dT (fI,a)fI,a(T). We thus obtain the last
equation, that is, fI,a,X(T) = TfI,a,1(T)− dT (fI,a)fI,a(T)− afI,a,Y (T).

4.3 RUR bitsize

We prove here, in Proposition 4.3.1, a new bound on the bitsize of the co-
efficients of the polynomials of a RUR. This bound is interesting in its own
right and is instrumental for our analysis of the complexity of computing iso-
lating boxes of the solutions of the input system in Section 6.1.We state our
bound for RUR-candidates, that is even when the linear form X + aY is not
separating. We only use this result when the form is separating, for proving
Theorem 4.1.1, but the general result is interesting in a probabilistic context
when a RUR-candidate is computed with a random linear form as done in
Chapter 5. We also prove our bound, not only for the RUR-candidates of an
ideal defined by two polynomials P and Q, but for any ideal of Z[X, Y] that
contains P and Q (for instance the radical of 〈P,Q〉 or the ideals obtained by
decomposing 〈P,Q〉 according to the multiplicity of the solutions).

Proposition 4.3.1. Let P,Q ∈ Z[X, Y] be two coprime polynomials of total

degree at most d and maximum bitsize τ , let a be a rational of bitsize τa,

and let J be any ideal of Z[X, Y] containing P and Q. The polynomials of

the RUR-candidate of J associated to a have degree at most d2 and bitsize

in Õ(d2τa + dτ). Moreover, there exists an integer of bitsize in Õ(d2τa + dτ)

such that the product of this integer with any polynomial in the RUR-candidate

4.3. RUR bitsize 69

yields a polynomial with integer coefficients.1

Remark 4.3.2. Although we do not explicitly compute a non-asymptotic up-

per bound on the bitsize of the coefficients of the RUR-candidate, such an

explicit bound, in Õ(d2τa + dτ), can easily be computed following the proof of

Proposition 4.3.1 and using known upper bounds on the bitsize of the resultant.

Before proving Proposition 4.3.1, we prove a corollary of Mignotte’s the-
orem (Theorem 2.3.9) stating that the bitsize of a factor of a polynomial P
with integer coefficients does not differ much than that of P . We also recall a
notion of primitive part for polynomials in Q[X, Y] and some of its properties.

Lemma 4.3.3 (Mignotte). Let P ∈ Z[X, Y] be of degree at most d in each

variable with coefficients bitsize at most τ . If P = Q1Q2 with Q1, Q2 in

Z[X, Y], then the bitsize of Qi, i = 1, 2, is in Õ(d+ τ).

Proof. A polynomial can be seen as the vector of its coefficients and we denote
by ‖P‖k the Lk norm of P . Mignotte lemma [Mignotte 1989, Theorem 4bis p.
172] states that ‖Q1‖1‖Q2‖1 6 22d‖P‖2. One always has ‖Qi‖∞ 6 ‖Qi‖1 and
since the polynomials have integer coefficients, 1 6 ‖Qi‖∞. Thus ‖Qj‖∞ 6

22d‖P‖2 and log ‖Qj‖∞ 6 2d + log ‖P‖2. Thus, by definition, the bitsize of
Qj is ⌊log ‖Qj‖∞⌋ + 1 6 2d + 1 + log ‖P‖2. Since P has degree at most d

in each variable, it has at most (d + 1)2 coefficients which are bounded by
2τ , thus ‖P‖2 <

√
(d+ 1)222τ which yields that the bitsize of Qj is less than

2d+ 1 + log(d+ 1) + τ .

Primitive part. Consider a polynomial P in Q[X, Y] of degree at most d in
each variable. It can be written P =

∑d
i,j=0

aij
bij
X iY j with aij and bij coprime

in Z for all i, j. We define the primitive part of P , denoted pp(P), as P divided
by the gcd of the aij and multiplied by the least common multiple (lcm) of
the bij. (Note that this definition is not entirely standard since we do not
consider contents that are polynomials in X or in Y .) We also denote by τP
the bitsize of P (that is, the maximum bitsize of all the aij and bij). We prove
three properties of the primitive part which will be useful in the proof.

Lemma 4.3.4. For any two polynomials P and Q in Q[X, Y], we have the

following properties: (i) pp(PQ) = pp(P) pp(Q). (ii) If P is monic then

τP 6 τpp(P) and, more generally, if P has one coefficient, ξ, of bitsize τξ, then

τP 6 τξ + τpp(P). (iii) If P has coefficients in Z, then τpp(P) 6 τP .

1In other words, the mapping γ 7→
(

fJ,a,X

fJ,a,1
(γ),

fJ,a,Y

fJ,a,1
(γ)

)
sending the solutions of fJ,a(T)

to those of J (see Definition 2.2.1) can be defined with polynomials with integer coefficients

of bitsize Õ(d2τa + dτ). This will be needed in Chapter 6.

70 Chapter 4. Rational Univariate Representation

Proof. Gauss Lemma states that if two univariate polynomials with integer
coefficients are primitive, so is their product. This lemma can straightfor-
wardly be extended to be used in our context by applying a change of vari-
ables of the form X iY j → Zik+j with k > 2max(dY (P), dY (Q)). Thus,
if P and Q in Q[X, Y] are primitive (i.e., each of them has integer coeffi-
cients whose common gcd is 1), their product is primitive. It follows that
pp(PQ) = pp(P) pp(Q) because, writing P = α pp(P) and Q = β pp(Q),
we have pp(PQ) = pp(α pp(P) β pp(Q)) = pp(pp(P) pp(Q)) which is equal to
pp(P) pp(Q) since the product of two primitive polynomials is primitive.

Second, if P ∈ Q[X, Y] has one coefficient, ξ, of bitsize τξ, then τP 6

τξ + τpp(P). Indeed, We have P = ξ P
ξ

thus τP 6 τξ + τP
ξ
. Since P

ξ
has one of

its coefficients equal to 1, its primitive part is P
ξ

multiplied by an integer (the
lcm of the denominators), thus τP

ξ
6 τpp(P

ξ
) and pp(P

ξ
) = pp(P) by definition,

which implies the claim.
Third, if P has coefficients in Z, then τpp(P) 6 τP since pp(P) is equal to

P divided by an integer (the gcd of the integer coefficients).

The idea of the proof of Proposition 4.3.1 is, for J ⊇ I = 〈P,Q〉, to first
argue that polynomial fJ , that is the first polynomial of the RUR-candidate
before specialization at S = a, is a factor of fI which is a factor of the resultant
R(T, S) by Lemma 4.2.5. We then derive a bound of Õ(d2+dτ) on the bitsize
of fJ from the bitsize of this resultant using Lemma 4.3.3. The bound on the
bitsize of the other polynomials of the non-specialized RUR-candidate of J

follows from the bound on fJ and we finally specialize all these polynomials
at S = a which yields the result. We decompose this proof in two lemmas
to emphasize that, although the bound on the bitsize of fJ uses the fact that
J contains polynomials P and Q, the second part of the proof only uses the
bound on fJ .

Lemma 4.3.5. Let P,Q ∈ Z[X, Y] be two coprime polynomials of total degree

at most d and maximum bitsize τ , and J be any ideal of Z[X, Y] containing

P and Q. Polynomials fJ(T, S) (see (4.2)) and its primitive part have bitsize

in Õ(d2 + dτ) and degree at most d2 in each variable.

Proof. Consider an ideal J containing I = 〈P,Q〉. Counted with multiplicity,
the set of solutions of J is a subset of those of I thus, by Equation (4.2),
polynomial fJ(T, S) is monic in T and fJ(T, S) divides fI(T, S). Furthermore,
fI(T, S) divides R(T, S) by Lemma 4.2.5. Thus fJ(T, S) divides R(T, S) and
we consider h ∈ Q[T, S] such that fJ h = R. Taking the primitive part,
we have pp(fJ) pp(h) = pp(R) by Lemma 4.3.4. The bitsize of pp(R) is in
Õ(d2+ dτ) because R is of bitsize Õ(d2+ dτ) (Lemma 3.2.1) and, since R has
integer coefficients, τpp(R) 6 τR (Lemma 4.3.4). This implies that pp(fJ) also

4.3. RUR bitsize 71

has bitsize in Õ(d2 + dτ) by Lemma 4.3.3 because the degree of pp(R) is in
O(d2) (Lemma 3.2.1). Furthermore, since fJ(T, S) is monic in T , τfJ 6 τpp(fJ)
(Lemma 4.3.4) which implies that both fJ and its primitive part have bitsize
in Õ(d2 + dτ). Finally, the number of solutions (counted with multiplicity)
of 〈P,Q〉 is at most d2 by the Bézout bound, and this bound also holds for
J ⊇ 〈P,Q〉. It then follows from Equation (4.2) that fJ has degree at most
d2 in each variable.

Lemma 4.3.6. Let J be any ideal such that polynomials fJ(T, S) (see (4.2))
and its primitive part have degree O(d2) and bitsize in Õ(d2 + dτ) and a is a

rational of bitsize τa. Then all the polynomials of the RUR-candidate RURJ,a

have bitsize in Õ(d2τa + dτ). Moreover, there exists an integer of bitsize in

Õ(d2τa + dτ) such that its product with any polynomial in the RUR-candidate

yields a polynomial with integer coefficients.

Proof. Bitsize of fJ,v, v ∈ {1, Y }. We consider the equations of Lemma 4.2.3
which can be written as ∂fJ

∂u
(T, S) = gJ(T, S)fJ,v(T, S) where u is T or S, and

v is 1 or Y , respectively. We first bound the bitsize of one coefficient, ξ, of fJ,v
so that we can apply Lemma 4.3.4 which states that τfJ,v 6 τξ + τpp(fJ,v). We
consider the leading coefficient ξ of fJ,v with respect to the lexicographic order
(T, S). Since gJ is monic in T (see Lemma 4.2.3), the leading coefficient (with
respect to the same ordering) of the product gJfJ,v =

∂fJ
∂u

is ξ which thus has
bitsize in Õ(τfJ) (since it is bounded by τfJ plus the log of the degree of fJ).
It thus follows from the hypothesis on τfJ that τfJ,v is in Õ(d2+ dτ + τpp(fJ,v)).

We now take the primitive part of the above equation (of Lemma 4.2.3),
which gives pp(∂fJ

∂u
(T, S)) = pp(gJ(T, S)) pp(fJ,v(T, S)). By Lemma 4.3.3,

τpp(fJ,v) is in Õ(d2 + τ
pp(

∂fJ
∂u

)
). In order to bound the bitsize of pp(∂fJ

∂u
), we

multiply ∂fJ
∂u

by the lcm of the denominators of the coefficients of fJ , which we
denote by lcmfJ . Multiplying by a constant does not change the primitive part
and lcmfJ

∂fJ
∂u

has integer coefficients, so the bitsize of pp(∂fJ
∂u

) = pp(lcmfJ
∂fJ
∂u

)

is thus at most that of lcmfJ
∂fJ
∂u

which is bounded by the sum of the bitsizes of
lcmfJ and ∂fJ

∂u
. By hypothesis, the bitsize of fJ is in Õ(d2 + dτ) so the bitsize

of ∂fJ
∂u

is also in Õ(d2 + dτ). On the other hand, since fJ is monic (in T),
fJ lcmfJ = pp(fJ) and τlcmfJ

6 τpp(fJ) which is in Õ(d2 + dτ) by hypothesis.

It follows that τpp(fJ,v) and τfJ,v are also in Õ(d2 + dτ) for v ∈ {1, Y }.
Bitsize of fJ,X . We obtain the bound for fJ,X by symmetry. Simi-
larly as we proved that fJ,Y has bitsize in Õ(d2 + dτ), we get, by ex-
changing the role of X and Y in Equation (4.2) and Lemma 4.2.3, that∑

σ∈V (J) µJ(σ)X(σ)
∏

ς∈V (J),ς 6=σ(T − Y (ς)−SX(ς)) has bitsize in Õ(d2 + dτ).
This polynomial is of degree O(d2) in T and S, by hypothesis, thus after re-
placing S by 1

S
and then T by T

S
, the polynomial is of degree O(d2) in T and

72 Chapter 4. Rational Univariate Representation

1
S
. We multiply it by S to the power of 1

S
and obtain fJ,X which is thus of

bitsize Õ(d2 + dτ).

Specialization at S = a. To bound the bitsize of the polynomials of RURJ,a

(Definition 2.2.1), it remains to evaluate the polynomials fJ and fJ,v, v ∈
{1, X, Y }, at the rational value S = a of bitsize τa. Since these polynomials
have degree in S in O(d2) and bitsize in Õ(d2 + dτ), it is straightforward that
their specializations at S = a have bitsize in Õ(d2+dτ+d2τa) = Õ(d2τa+dτ).

The lcm of the denominators of all the coefficients in the polynomials of

RURJ,a has bitsize Õ(d2τa + dτ). We have already argued that lcmfJ , the
lcm of the denominators of the coefficients of fJ , is in Õ(d2 + dτ). For each
of the other polynomials fJ,v, v ∈ {1, X, Y }, denote by lcmfJ,v and gcdfJ,v

the
lcm of the denominators of its coefficients and the gcd of their numerators. By
definition, pp(fJ,v) =

lcmfJ

gcdfJ,v
fJ,v. Let c be any coefficient of pp(fJ,v) ∈ Z[S, T]

and a
b

be the corresponding coefficient of fJ,v ∈ Q[S, T] (with a and b coprime
integers); we have lcmfJ = c b

a
gcdfJ,v

6 c b since gcdfJ,v
divides a. It follows

that τlcmfJ
6 τpp(fJ,v) + τfJ,v which are both in Õ(d2 + dτ), as proved above.

Hence the lcm of the denominators of all the coefficients in RURJ,a has bit-
size Õ(d2 + dτ). Finally, since all these polynomials have degree O(d2), when
specializing by S = a, the bitsize of the denominators of the coefficients of
the polynomials increase by at most O(d2τa) and thus the bitsize of their lcm
also increases by at most O(d2τa), which concludes the proof.

Proof of Proposition 4.3.1. By Lemma 4.3.5, fJ has degree at most d2 in
each variable, so has fJ,v, v ∈ {1, X, Y } by Equation (4.2). It follows from
Equation (4.1) that all the polynomials of any RUR-candidate of J have de-
gree at most d2. The rest of the proposition is a corollary of Lemmas 4.3.5
and 4.3.6.

4.4 Conclusion

We presented in this chapter an algorithm for computing the Rational Uni-
variate Representation of systems defined by two bivariate polynomials with
integer coefficients. We first showed that the polynomials of the RUR of a
system of two polynomials can be expressed by simple formulas which yield a
new simple method for computing the RUR and also yield a new bound on the
bitsize of these polynomials. This new bound implies, in particular, that the
total space complexity of such RURs is, in the worst case, Θ(d) smaller than
the alternative rational parametrization introduced by Gonzalez-Vega and El
Kahoui [Gonzalez-Vega 1996]. Our complexity analysis shows that the cost

4.4. Conclusion 73

of our new algorithm for computing a RUR is dominated by that of finding a
separating form which is in ÕB(d

8 + d7τ) according to the previous chapter.
Actually, the algorithm presented above is more of a theoretical than a

practical interest. Indeed, the strategy that consists in computing determinis-
tically a separating linear form is time consuming in practice, where a random
choice of a linear form turns out to be almost always valid. In addition, the
computation of the resultant R(T, S) of trivariate polynomials is also not very
efficient in practice. One particular problem of interest is thus the design of an
algorithm for computing RURs of bivariate systems that is efficient in practice
and whose theoretical complexity is, ideally, good as well. This is the topic of
the next chapter in which we present randomized algorithms that are both ef-
ficient in practice and whose average theoretical complexities are substantially
better than the (worst-case) complexity of the algorithm we have presented
in this chapter.

Chapter 5

Efficient Practical Algorithm

Contents

5.1 Introduction . 76

5.2 Preliminaries . 78

5.3 School-book non-modular algorithm 80

5.3.1 Triangular decomposition 80

5.3.2 Rational Univariate Representation 83

5.4 Modular algorithm . 86

5.4.1 Overview . 87

5.4.2 RUR-candidate for T = {B(x,y),A(x)} 88

5.4.3 RUR-candidates for S = {P,Q} 92

5.4.4 Las-Vegas algorithms 98

5.5 Conclusion . 102

As mentioned at the end of the previous chapter, the strategy that con-
sists in computing a Rational Univariate Representation using the algorithm
of Chapter 3 for computing a separating linear form and the algorithm of
Chapter 4 for computing the polynomials of the RUR is not efficient in prac-
tice. First because searching deterministically for a separating linear form
is time consuming, and second because the computation with polynomials
in three variables is not efficient in practice. To avoid the cost of searching
deterministically for a separating linear form, another strategy is to select
randomly a candidate separating linear form, compute the RUR-candidate
associated to this linear form and finally check that the latter is indeed a
RUR (see e.g. [Rouillier 1999, Niang Diatta 2008]). This strategy transfers
the difficulty of finding a separating linear form into the problem of testing
whether a RUR-candidate is actually a RUR. Note that, although this strat-
egy is natural, the latter problem does not appear to be clearly easier than the
former. On the other hand, rather than handling polynomials in three vari-
ables for computing a RUR-candidate, one can opt for an alternative strategy

76 Chapter 5. Efficient Practical Algorithm

for computing the RUR that performs a triangular decomposition based on
bivariate subresultant sequences as done in [Gonzalez-Vega 1996].1

In this chapter, based on the two previous remarks, we investigate several
algorithms for computing Rational Univariate Representations of bivariate
systems. We show in particular how the use of probabilistic methods based
on multi-modular strategies and random choices of separating linear forms
can improve the practical efficiency, and the theoretical one in a Monte-Carlo
setting and also Las-Vegas, of the RUR computation.

Our first result is a probabilistic Monte-Carlo algorithm with an expected
bit complexity in ÕB(d

6 + d5τ) for computing a decomposition of a bivari-
ate system S = {P,Q} into a set of RUR-candidates. We then propose two
methods to test the result of this algorithm for correctness. While the first
method is intuitively simple and conceptually elegant, the second achieves a
better complexity bound. These methods yields two Las-Vegas algorithms for
computing a decomposition of S into a set of RURs whose expected bit com-
plexities are respectively in ÕB(d

7+d6τ) and ÕB(d
6+d5τ). Note furthermore

that the former Las-Vegas algorithm is efficient in practice as demonstrated
in Chapter 7, while the latter algorithm, more recent, has not yet been imple-
mented.

A very preliminary version of this chapter was presented at the 27th Eu-

ropean Workshop on Computational Geometry (EuroCG’11) [Bouzidi 2011].

5.1 Introduction

We first present in Section 5.3, a non-modular algorithm that, given a linear
form, computes a decomposition of the initial system into a set of RUR-
candidates associated to this linear form. To compute this decomposition, we
proceed in two steps.

First, we decompose the initial system S into a set of triangular systems
(of the form {A(x), B(x, y)}) using the subresultant sequence of P and Q.
This decomposition is essentially identical to that of Gonzalez-Vega and El
Kahoui [Gonzalez-Vega 1996] (see Algorithm 2 in Section 5.3) except that
here, we describe how the solutions that lie on common vertical asymptotes of
P and Q can be handled. Note that our approach for handling such solutions
is similar to the one in [Li 2011].

In a second step, for each triangular system resulting from the previous
decomposition, we compute the associated RUR-candidate using the classical

1In the paper in question, the authors consider a bivariate system defined by a polynomial

and one of its partial derivatives, however the presented approach can be trivially adapted

to a general bivariate system {P,Q} as it is done for example in [Diochnos 2009].

5.1. Introduction 77

algorithm from [Rouillier 1999].
A first interesting property that stems from the previous algorithm con-

cerns the multiplicity of the solutions in the resulting RURs. Indeed, we prove
(under the hypothesis that the chosen linear form is separating) that the mul-
tiplicity of a solution (α, β) given by a RUR computed by our algorithm is
equal to the multiplicity of β in the polynomial gcd(P (α, Y), Q(α, Y)) which
we refer to as the multiplicity of (α, β) in the fiber α (see Definition 5.2.1).
This property is a key feature in our application for computing the topology
of curves, presented in the next chapter.

In addition, it should be stressed that even though these two algorithms
(the triangular decomposition and the RUR-candidate algorithm) are stan-
dard, we show that their combination yields an improvement in terms of the
worst-case arithmetic complexity for the computation of the RUR-candidates
of S. More precisely, we show that computing a RUR-candidate from a trian-
gular system resulting from the triangular decomposition can be achieved in
Õ(D2) arithmetic operations instead of O(D4) (and Ω(D3)) [Rouillier 1999],
where D is the number of complex roots of the triangular system. Glob-
ally, we show that the overall computation of the RUR-candidates takes Õ(d4)

arithmetic operations, where d is the maximum total degree of P and Q, while
the arithmetic complexity of the algorithm of [Rouillier 1999] is in O(d8) and
Ω(d6) in the worst case.

We however stress that the above complexity improvement should be taken
with care when considering practical efficiency. Indeed, it does not necessarily
imply practical improvements when performing operations in Q because of
the possible growth of coefficients in the intermediate computations which
increases the bit-complexity of arithmetic operations. This is indeed an issue
in the above non-modular version of our algorithm because the coefficients of
the intermediate monic triangular subsystems (or equivalently lexicographic
Gröbner bases) are much larger than those of the output. However, as for
many other algorithms in computer algebra, one can hope to speed up the
computations in practice by using the classical framework of multi-modular
arithmetic based on the Chinese Remainder Theorem (see Section 2.5).

In Section 5.4, we discuss different algorithms that stem from the use of
multi-modular approach on the above algorithm. More precisely, we first apply
in Section 5.4.2 a multi-modular strategy to compute the RUR-candidate of a
regular triangular system {A(X), B(X, Y)} (Algorithm 9). We then extend in
Section 5.4.3 this modular algorithm to handle a general system S = {P,Q}.
This yields a Monte-Carlo algorithm (Algorithm 10) of expected bit complex-
ity in ÕB(d

6+d5τ) and whose probability of success is given in Theorem 5.4.10
In addition, in Section 5.4.4, we propose two methods for checking that

the computed RUR-candidates are actually RURs of our input system. The

78 Chapter 5. Efficient Practical Algorithm

first one is quite intuitive, it proceeds by verifying that the solutions of the
RUR-candidates computed by the Monte-Carlo algorithm are solutions of the
initial system with the right multiplicities. This method uses a key result
which informally speaking, shows that in a multi-modular setting, under mild
conditions, wrong solutions of the system can be computed but that, other-
wise, no true solutions are missed. The second method is more subtle, and
proceeds in two phases: it first checks that the RUR-candidates computed us-
ing a multi-modular approach are correct, and then, it checks that the chosen
linear form is separating. For checking the separation, we use the strategy
presented in [Diatta 2009] for testing the genericity of a curve with a slight
adaptation to the case of a general bivariate system.

Hence, using the two previous tests to verify the RUR-candidates (and
considering more prime numbers and linear forms until the tests succeed), we
obtain from our Monte-Carlo algorithm two Las-Vegas algorithms for comput-
ing the set of Rational Univariate Representations of the input system whose
expected complexities are respectively in ÕB(d

7 + d6τ) and ÕB(d
6 + d5τ).

5.2 Preliminaries

Multiplicities. Geometrically, the notion of multiplicity of intersection of
two regular curves is intuitive. If the intersection is transverse, the multiplicity
is one; otherwise, it is greater than one and it measures the level of degeneracy
of the tangential contact between the curves. Defining the multiplicity of the
intersection of two curves at a point that is singular for one of them (or possibly
both) is more involved and an abstract and general concept of multiplicity in
an ideal is needed. We recall this classical, though non-trivial, notion. We
also introduce a simple notion of multiplicity in fibers that will be output by
our solver and that are relevant for the topology of a plane curve.

Definition 5.2.1. Let I be an ideal of Q[x, y] and denote Q the algebraic

closure of Q. To each zero (α, β) of I corresponds a local ring (Q[x, y]/I)(α,β)
obtained by localizing the ring Q[x, y]/I at the maximal ideal 〈x − α, y − β〉.
When this local ring is finite dimensional as Q-vector space, we say that (α, β)

is an isolated zero of I and this dimension is called the multiplicity of (α, β)
as a zero of I [Cox 2005, §4.2].

We call the fiber of a point p = (α, β) the vertical line of equation x = α.

The multiplicity of p in its fiber with respect to a system of polynomi-

als {P,Q} in Q[x, y] is the multiplicity of β in the univariate polynomial

gcd(P (α, y), Q(α, y)). (This multiplicity is zero if P or Q does not vanish

5.2. Preliminaries 79

at p.)2

The multiplicity of p in its fiber with respect to a polynomial P ∈
Q[x, y], denoted as mult(P (α, y), β), is the multiplicity of β in the univariate

polynomial P (α, y). This multiplicity is the multiplicity of p in its fiber with

respect to {P, ∂P
∂y
} plus one.

In Section 5.4 we use a variant of the RUR introduced in Definition 2.2.1
which we refer to as the non-reduced RUR or NRUR (note that the same
definition can be found in [Alonso 1996] under the name of ARUR for, Antique
Rational Univariate Representation).

Definition 5.2.2. The NRUR-candidate of I associated to x + ay, denoted

NRURI,a is the following set of four univariate polynomials in Q[T]

fI,a(T) =
∏

σ∈V (I)

(T − x(σ)− ay(σ))µI(σ)

f̂I,a,v(T) = gI,a(T) fI,a,v(T) for v ∈ {1, x, y}
(5.1)

where gI,a(T) = gcd(fI,a(T),
∂fI,a
∂T

(T)) =
∏

σ∈V (I)(T − x(σ) − ay(σ))µI(σ)−1,

and fI,a,v(T) refers to the polynomials of the RUR-candidate.

Remark 5.2.3. The polynomials of the NRUR-candidate consist of products

between polynomials of the RUR-candidate or some of their factors, thus by

Mignotte’s lemma (Theorem 2.3.9), the results stated in Proposition 4.3.1 and

Remark 4.3.2 about the bitsize of the polynomials of the RUR-candidate also

hold for those of the NRUR-candidate.

We state a classical property of the gcd and the gcd-free part under special-
ization modulo µ, which will be used in Section 5.4. Given two polynomials
A,B ∈ Z[x], we denote by G the gcd of A and B and by D the gcd-free part
of A with respect to B. Similarly, we denote by Gµ, Dµ their counterparts
with respect to Aµ and Bµ.

Lemma 5.2.4. Let A,B ∈ Z[x] and µ be a prime number such that φµ(A) 6≡ 0

or φµ(B) 6≡ 0. Then, φµ(G) divides Gµ and Dµ divides φµ(D).

Proof. Writing A = G×D and B = G×H and applying the reduction modulo
µ on both sides of the two equations, we obtain Aµ = φµ(G) × φµ(D) and
Bµ = φµ(G)×φµ(H). The polynomial φµ(G) is not zero in Zµ since φµ(A) 6≡ 0

or φµ(B) 6≡ 0 and it divides both Aµ and Bµ, thus, it also divides their gcd Gµ.
On the other hand, writing Aµ = Gµ×Dµ, we have φµ(G)×φµ(D) = Gµ×Dµ.
Since φµ(G) 6≡ 0 we can divide both sides of this equation by φµ(G), to obtain
φµ(D) = Gµ

φµ(G)
×Dµ and the second claim follows since φµ(G) divides Gµ.

2The gcd is considered over Q(α)[y], the ring of polynomials in y with coefficients

in the field extension of Q by α.

80 Chapter 5. Efficient Practical Algorithm

5.3 School-book non-modular algorithm

The algorithm presented in this section first decomposes the system S =

{P,Q} into a set of triangular systems using the triangular decomposition
of Gonzalez-Vega and El Kahoui [Gonzalez-Vega 1996] which we recalled in
Section 3.5.1. This triangular decomposition algorithm is actually slightly
adapted here in order to handle the case of a system S having solutions that
lie on a common vertical asymptote of P and Q, similarly as in [Li 2011].
Then, for each triangular system resulting from this decomposition, the algo-
rithm computes the associated RUR-candidates using the classical algorithm
from [Rouillier 1999]. The output of our non-modular algorithm is thus a set
of RUR-candidates, which encode all the solutions of S if the chosen candidate
linear separating form is indeed separating.

5.3.1 Triangular decomposition

The first step of our algorithm consists in decomposing the input system
S = {P,Q} into a set of triangular systems of the form {A(x), B(x, y)}. This
decomposition is identical to that of Algorithm 2 except that here, we treat
the case where some solutions lie on some common vertical asymptotes of
the curves defined by P and Q. For completeness, we recall in Algorithm 6,
the triangular decomposition that handles the solutions away from common
asymptotes and then apply the latter recursively in Algorithm 7 in order to
obtain all the solutions of {P,Q}. We moreover show that the multiplic-
ities of the solutions in the obtained triangular systems correspond to the
multiplicities of these solutions in their fibers for the system {P,Q} (see Def-
inition 5.2.1). As indicated in the beginning of this chapter, this is important
in our application for computing the topology of curves, presented in the next
chapter.

Output. The output of Algorithm 7 consists of a set of triangular systems

Sk =

{
Fk(x) = 0

Sresk(x, y) = 0
such that gcd(Fk(x), sresk(x)) = 1 and all Fk are

squarefree. Note that for every k there might be several systems Sk depending
on whether the solution of Sk lies on a vertical asymptote or not; Sresk
denotes the k-th subresultant of P and Q, or of reductions of P and Q modulo
polynomials in Q[x] that divide at least one of their leading coefficients. In
addition, we prove the following result on multiplicities.

Lemma 5.3.1. The multiplicity of a solution in Sk is the multiplicity in its

fiber for the system {P,Q}.

5.3. School-book non-modular algorithm 81

Algorithm 6 Triangular decomposition away from asymptotes
[Gonzalez-Vega 1996, Li 2011]
Require: P,Q in Z[x, y] defining a finite set of solutions in C2, A in Z[x].
Ensure: T D a set of triangular systems {Fi(x), Sresi(x, y)}i∈I describing the

solutions of {P,Q} away from asymptotes, and whose x-coordinates are
roots of A.

1: Compute the subresultant sequence of P and Q

2: F = Fres(P,Q,A) = gcd(Resy(P,Q)

gcd(Lc(P),Lc(Q)
, A)

3: G0 = F

4: T D = ∅
5: for i = 1 to dy(Q) do
6: Gi = gcd(Gi−1, sresi(P,Q))

7: Fi = Gi−1/Gi

8: if dx(Fi) > 0, add Si = {Fi, Sresi(P,Q)} to T D
9: end for

10: return T D

Proof. Since Fk(x) a squarefree polynomial, the multiplicity of any solution
(α, β) in Sk = {Fk(x), Sresk(x, y)} is equal to the multiplicity of β in the uni-
variate polynomial Sresk(α, y). This is also equal to the multiplicity of (α, β)
in its fiber for the system {P,Q} since Sresk(α, y) = gcd(P (α, y), Q(α, y)) by
Theorem 2.4.15.

The following lemma is critical for bounding the degree and the bitsize of
the RUR-candidates we compute in this chapter.

Lemma 5.3.2. Let Ik be the ideal associated to a triangular system Sk. The

ideal I = 〈P,Q〉 is contained in Ik. Equivalently, the multiplicity of a solution

in Sk is smaller than or equal to its multiplicity in 〈P,Q〉.

Proof. We first perform the pseudo-division of P (x, y) by Sresk(x, y) with
respect to the variable y. This yields two polynomials U,R ∈ Z[x, y] such
that

sresδk(x)P (x, y) = U(x, y)Sresk(x, y) +R(x, y),

where δ ∈ N and where degy(R(x, y)) < degy(Sresk(x, y)).
In the following, we denote by α a root of Fk(x). Replacing x by α in the

above equation gives

sresδk(α)P (α, y) = U(α, y)Sresk(α, y) +R(α, y).

Furthermore, degy(R(α, y)) < degy(Sresk(α, y)) because, by definition of Fk

(see Algorithm 6, Line 7), Fk is coprime with the leading coefficient sresk(x)

82 Chapter 5. Efficient Practical Algorithm

Algorithm 7 Triangular Decomposition [Li 2011]
Require: P,Q in Z[x, y] defining a finite set of solutions in C2.
Ensure: T D a set of triangular systems {Fi(x), Sresi(x, y)}i∈I describing the

set of solutions of the system {P,Q}.
1: T D = {}
2: A = 0

3: repeat
4: T D = T D ∪ Algorithm 6(P,Q,A)

5: A = gcd(A,Lcy(P),Lcy(Q))

6: P = P mod A, Q = Q mod A

7: until A ∈ Q

8: return T D

of Sresk(x, y) (seen as a polynomial in y) and thus degy(Sresk(α, y)) =

degy(Sresk(x, y)).
On the other hand, by Lemma 3.5.1, Sresk(α, y) is a gcd of P (α, y)

and Q(α, y) and thus, there exists E(y) ∈ Q(α)[y] such that P (α, y) =

E(y)Sresk(α, y). Substituting P (α, y) in the previous equation yields

R(α, y) = [sresδk(α)E(y)− U(α, y)]Sresk(α, y).

Since degy(R(α, y)) < degy(Sresk(α, y)), this implies that R(α, y) identically
vanishes. This holds for any root α of Fk(x), which implies that Fk(x) is a
factor of R(x, y), or in other words, that there exists V (x, y) ∈ Z[x, y] such
that R(x, y) = Fk(x)V (x, y).

By substituting R(x, y) in the previous pseudo-division equality, we obtain
that sresδk(x)P (x, y) = U(x, y)Sresk(x, y) + V (x, y)Fk(x), which proves that
the polynomial sresδk(x)P (x, y) is in the ideal Ik.

Similarly, we have that sresδ
′

k (x)Q(x, y) is in Ik, for some δ′ ∈ N, and thus
the ideal J = 〈sresδk(x)P (x, y), sresδ

′

k (x)Q(x, y)〉 is contained in the ideal Ik.
As a consequence, given a solution γ = (α, β) of Ik, we have that the

multiplicity of γ in the ideal Ik, denoted as mult(γ, Ik), is smaller or equal
than mult(γ, J).

On the other hand, a property of the multiplicity stated in [Fulton 1989,
§3.3, Property 6] is that, for any three polynomials A,B,C ∈ Z[x, y],
mult(γ, 〈A,BC〉) = mult(γ, 〈A,B〉) + mult(γ, 〈A,C〉). Applied on J , this
implies that mult(γ, J) = mult(γ, I) since sresk(x) does not vanish at α.
Hence, mult(γ, Ik) 6 mult(γ, I), which is also equivalent to saying that the
ideal I = 〈P,Q〉 is contained in Ik.

Remark. Although in practice, our algorithm handles the case of systems
having some solutions located on common vertical asymptotes, however, in

5.3. School-book non-modular algorithm 83

order to simplify the theoretical analysis below, we will assume in the rest

of this chapter that no common vertical asymptotes exist, that is, that the

leading coefficients of P and Q with respect to y are coprime. In that case,
only one iteration of the loop in Algorithm 7 is sufficient to compute the
triangular decomposition of all the solutions of {P,Q}. Note that the presence
of common vertical asymptotes can increases by a factor d in the worst case,
the complexity of computing the above triangular decomposition, however
this can be avoided by performing a change of variable that transforms the
input system into a new system without common vertical asymptotes (see
[Diochnos 2009] for details). In practice however, this turns out to be less
efficient than the above strategy.

The following theorem provides the complexity of the triangular decom-
position under the above hypothesis. The proof of the arithmetic complexity
is given in Lemma 3.5.2 while that of the bit complexity can be found in
[Diochnos 2009, Proposition 18].

Theorem 5.3.3. Let S = {P,Q} with P,Q ∈ Z[x, y] of total degree at most d

and maximum bitsize τ such that Lcy(P) and Lcy(Q) are coprime. Algorithm 7

computes the triangular decomposition of S using Õ(d4) arithmetic operations

and ÕB(d
7 + d6τ) bit operations.

5.3.2 Rational Univariate Representation

The decomposition of the previous section yields triangular systems of the
form T = {B(x, y), A(x)} with the property that A(x) and Lcy(B)(x)

are coprime (such systems are referred to as regular triangular systems).
Thus, by Bèzout’s identity, there exists two polynomials U, V ∈ Q[x] such
that U A + V Lcy(B) = 1 and the system T can then be rewritten as

T̃ =

{
xdx +R1(x) = 0

ydy +R2(x, y) = 0
where ydy +R2(x, y) is the reduction of V B mod-

ulo A (that is each coefficient of B(x, y) in Z[x] is reduced modulo A(x)); R1

is of degree at most dx−1 and R2 is of degree at most dy−1 in y and at most
dx−1 in x. The resulting system T̃ is a (reduced) lexicographic Gröbner basis
according to Buchberger’s criteria [Cox 2007].

The ideal I associated to T̃ has a finite number of zeros which implies
that the quotient algebra Q[x, y]/I is a finite dimensional Q vector space.
Moreover, since the leading monomials of the polynomials in T̃ are xdx and
ydy , Q[x, y]/I has dimension D = dxdy which is also the number of zeros of I
counted with multiplicities [Cox 2007] and its basis is simply {xiyj | 0 6 i <

dx, 0 6 j < dy} which is the set of monomials that cannot be reduced by the
Gröbner basis of I [Cox 2005, §5.3].

84 Chapter 5. Efficient Practical Algorithm

Algorithm 8 RUR-candidate [Rouillier 1999]
Require: A basis of Q[x, y]/I, T = x+ ay a linear form
Ensure: The RUR-candidate of I associated to T

1: Compute the multiplication tensor of Q[x, y]/I, T = x+ ay

2: Compute Trace(MvT i), the trace of the multiplication matrix by the poly-
nomial vT i in Q[x, y]/I for i = 1, . . . , D and v ∈ {1, x, y}.

3: Solve the triangular linear system {(D − i)ai =∑i−1
j=0 ai−jTrace(MT j)}i=0,...,D−1 and set fI,a(T) =

∑D−1
i=0 aiT

D−i

4: Compute fI,a(T) =
∑d−1

i=0 biT
d−i and set Hk =

∑k
i=0 biT

k−i for k =

0, . . . , d− 1, the k-th Horner polynomial associated to fI,a(T)

5: Compute fI,a,v =
∑d−1

i=0 Trace(MvT i)Hd−i−1(T) for v ∈ {1, x, y}
6: return fI,a, fI,a,v for v ∈ {1, x, y}

One way to isolate the solutions of T̃ while keeping the multiplicity infor-
mation is to compute a Rational Univariate Representation (RUR) (Defini-
tion 2.2.1). The algorithm presented in [Rouillier 1999] for computing a RUR
first considers a random linear form x+ay (starting by x and y) and assumes
that this linear form is separating. Then, it computes a RUR-candidate and
checks, at the end, if it is correct; if not, another candidate separating linear
form is chosen. The algorithm terminates because only O(D2) linear poly-
nomials are not separating, which also implies that a random choice is good
with high probability. In the following, we recall the algorithm for computing
a RUR-candidate presented in [Rouillier 1999] (Algorithm 8) and show how
the particular structure of the system T̃ decreases the worst-case arithmetic
complexity from O(D4) and Ω(D3) to Õ(D2).3

The dominant part in the computation of the RUR-candidate as described
in [Rouillier 1999] is the computation of the multiplication tensor of the quo-
tient algebra Q[x, y]/I (i.e. all the images in Q[x, y]/I of all the possible
products of two elements of a monomial basis of Q[x, y]/I), which is a key
element for the computation of the traces Trace(MvT i) (Line 2). This com-
putation is done iteratively by multiplying an already reduced product by
one variable in Q[x, y]/I to get the reduction of another product. The cost of
such a computation depends on two parameters: the number of products to be
computed, denoted by K in the sequel, and the cost of the multiplication by
one variable in Q[x, y]/I. In [Rouillier 1999] the basis of Q[x, y]/I is given by
all the monomials that cannot be reduced modulo an arbitrary Gröbner basis
of I so that K ∈ O(D2) and the multiplication by one variable is reduced to a

3These complexities hold for one choice of candidate separating linear form.

5.3. School-book non-modular algorithm 85

matrix/vector product requiring O(D2) arithmetic operations which yields a
total of O(D4) arithmetic operations for computing the multiplication tensor.

In our setting, a basis of the algebra Q[x, y]/I is {xiyj | 0 6 i < dx, 0 6

j < dy}, thus, all the products of two elements in this basis result in the set
{xiyj | 0 6 i < 2dx, 0 6 j < 2dy} which is of size K = 4dxdy = 4D. On the
other hand, we consider the reduction modulo I of the product by x and y of
an already reduced polynomial. The facts that the system T̃ is triangular and
that the leading monomial of the bivariate polynomial is pure (ydy) yield that
each reduction can be performed in Õ(D) operations instead of O(D2). The
reduction modulo I of the product of x by a polynomial T already reduced in
Q[x, y]/I is

x× T (x, y) =
∑dx−1

i=0

∑dy−1
j=0 ai,jxi+1yj

=
∑dx−1

i=1

∑dy−1
j=0 ai−1,jxiyj + xdx ×∑dy−1

j=0 adx−1,jyj

=
∑dx−1

i=1

∑dy−1
j=0 ai−1,jx

iyj −R1(x)×
∑dy−1

j=0 adx−1,jy
j

in which the polynomial multiplication and difference can be computed in a
straightforward manner with O(dxdy) = O(D) arithmetic operations. The
reduction of the multiplication by y is

y × T (x, y) =
∑dx−1

i=0

∑dy−1
j=0 ai,jxiyj+1

=
∑dx−1

i=0

∑dy−1
j=1 ai,j−1xiyj + ydy

∑dx−1
i=0 ai,dy−1xi

=
∑dx−1

i=1

∑dy−1
j=0 ai−1,jx

iyj −R2(x, y)
∑dx−1

i=0 ai,dy−1xi

=
∑dx−1

i=1

∑dy−1
j=0 ai−1,jx

iyj

−∑degy(R2)
k=0 γk(x)

∑dx−1
i=0 ai,dy−1xi yk

where γk(x) denotes the coefficient of yk in R2(x, y). Then, the multiplica-
tion of γk(x) and

∑dx−1
i=0 ai,dy−1x

i can be done in Õ(dx) arithmetic operations
using fast univariate polynomial multiplication (Theorem 2.3.1); this gives a
univariate polynomial in x whose reduction modulo I, that is modulo the x-
univariate polynomial of S̃, can also be done in Õ(dx) arithmetic operations
(Theorem 2.3.2). This has to be done for every k 6 degy(R2) < dy which
thus takes Õ(dxdy), and so Õ(D), operations in total. Hence, there are O(D)

reductions which take Õ(D) operations each, giving the claimed complexity
of Õ(D2).

To compute the RUR-candidate of the regular triangular system T =

{B(x, y), A(x)}, one still needs to compute a basis of the quotient algebra
associated to I = 〈B(x, y), A(x)〉, or equivalently, the reduced lexicographic
Gröbner basis of I. The following lemma gives the complexity of the compu-
tation of the RUR-candidate including the cost of this step.

86 Chapter 5. Efficient Practical Algorithm

Lemma 5.3.4. Let T = {B(x, y), A(x)} be a triangular system with dx(A) 6

dx(B) and dy(B)dx(A) = dT and such that Lcy(B) and A are coprime. Let

T = x + ay be a linear form with a an integer of bitsize in Õ(1). The RUR-

candidate of T associated to T can be computed using Õ(d2T + dx(B)dy(B))

arithmetic operations.

Proof. The RUR-candidate of T is computed in two steps. First, the tri-
angular system T is transformed into a lexicographic Gröbner basis T̃ by
computing Lcy(B)−1, the inverse of Lcy(B) with respect to A, which can be
done with Õ(dx(B)) arithmetic operations by [von zur Gathen 2003, Corollary
11.11] and then by computing the reduction of Lcy(B)−1 B modulo A, which
can be done in Õ(dx(B)dy(B)), according to [von zur Gathen 2003, Corollary
11.8]. Second, the RUR-candidate of T̃ is computed using Algorithm 8 which,
as shown above, requires Õ(d2T) arithmetic operations.

The following result gives the arithmetic complexity for computing the
RUR-candidates of all the regular triangular systems output by Algorithm 7.

Theorem 5.3.5. Let S = {P,Q} with P,Q ∈ Z[x, y] of total degree at most d

and maximum bitsize τ and {S0, S1, . . . , Sq} be the regular triangular systems

associated to S. The RUR-candidates of all the systems Sk can be computed

using Õ(d4) arithmetic operations.

Proof. The systems resulting from the decomposition of S are of the form
Sk = {Sresk(x, y), Fk(x)}. According to Theorem 2.4.16, dx(Sresk) as well as
dx(Fk) are in O(d2) while dy(Sresk) is in O(d). We also have by Lemma 5.3.2
and Bézout’s bound on the system {P,Q} that

∑
k∈{1,...,q} dx(Fk)dy(Sresk) 6

d2. By Lemma 5.3.4, the RUR-candidate of a triangular system Sk can be
computed using Õ(dx(Fk)

2dy(Sresk)
2 + d3) arithmetic operations. Summing

over all the systems Sk for k ∈ {1, . . . , q} where q is in O(d), we obtain the
stated complexity.

The following theorem summarizes the results obtained in this section. Its
proof follows straightforwardly from Theorem 5.3.3 and the previous theorem.

Theorem 5.3.6. Given a system S = {P,Q} with P,Q ∈ Z[x, y] of total

degree at most d such that Lcy(P) and Lcy(Q) are coprime and a linear form

T = x + ay. The decomposition of S into a set of RUR-candidates can be

computed using Õ(d4) arithmetic operations.

5.4 Modular algorithm

The size of the coefficients in a RUR-candidate is reasonable in the sense that
they have the same asymptotic bound on the size, as those in the squarefree

5.4. Modular algorithm 87

part of the resultant according to Lemma 5.3.2, Proposition 4.3.1 and Theo-
rems 2.4.16 and 2.3.10. However, the size of the coefficients in intermediate
computations of the algorithm presented in the previous section may be quite
large. Typically, the transformation of the regular triangular systems into
lexicographic Gröbner bases leads in general to a significant growth of the co-
efficients, which slows the computation of the RUR-candidates. To avoid such
intermediate coefficients growth, we use a standard multi-modular strategy.
Roughly speaking, this consists in computing the decomposition of the input
system into RUR-candidates modulo several prime numbers and then, lifting
the result over the rationals using the Chinese Remainder Algorithm.

The use of a multi-modular approach may however leads in some cases
to a wrong result. In our case, this may happen if, either not enough prime
numbers have been used, which leads to the failure of the lifting phase in
the Chinese Remainder Algorithm, or if for some selected prime numbers µ,
the RUR-candidates are not well specialized, i.e. the images of the RUR-
candidates modulo µ are not equal to the RUR-candidates computed with the
input system modulo µ. The first issue can be easily handled by computing
a bound on the size of the coefficients of the RUR-candidates polynomials
using Proposition 4.3.1 together with Remark 4.3.2 and running the algorithm
on a set of prime numbers whose product is larger than this bound.4 To
handle the second problem, we first slightly modify the output of our modular
algorithm. Instead of a RUR-candidates, we compute non-reduced RUR-
candidates (see Definition 5.2.2) which are shown to have better specialization
properties under certain conditions.

5.4.1 Overview

As a first step, in Section 5.4.2, we design Algorithm 9 which, given a regular
triangular system T = {B(x, y), A(x)} and a linear form x+ay, computes the
associated RUR-candidate using multi-modular computations. This algorithm
selects a set of prime numbers µ satisfying the good specialization property
of Definition 5.4.2, computes over Zµ the non-reduced RUR-candidate of T
modulo each of these prime numbers and finally lifts the result over the ra-
tional using the Chinese Remainder Algorithm. The RUR-candidate is then
computed from the non-reduced one using Definition 5.2.2.

Afterward, in Section 5.4.3, we design Algorithm 10 which extends the
multi-modular strategy of Algorithm 9 to a general system S = {P,Q}. This
algorithm follows the approach of Section 5.3, i.e. a triangular decomposition

4The asymptotic bound stated in Proposition 4.3.1 for the RUR-candidate of a general

system {P,Q}, also holds for the RUR-candidates of the triangular systems presented above

according to Lemma 5.3.2.

88 Chapter 5. Efficient Practical Algorithm

followed by the computation of RUR-candidates. More precisely, for a set
of prime numbers the algorithm computes the triangular decomposition of
S and the non-reduced RUR-candidates associated to the resulting regular
triangular systems modulo each of these primes and it then lifts the resulting
non-reduced RUR-candidates over the rational.

Unlike Algorithm 9, the prime numbers are now chosen randomly in a given
set of primes and without guarantee on the specialization of the computed
non-reduced RUR-candidates. This yields a Monte-Carlo algorithm which we
analyze the expected bit complexity and the probability of success.

We finally show, in Section 5.4.4, how this Monte-Carlo algorithm can be
transformed into a Las-Vegas by adding a verification that ensures the cor-
rectness of the result. More precisely, we provide two different methods for
verifying that the computed RUR-candidates are indeed RURs of the input
system. One of these methods uses a key result proved on the Monte-Carlo
algorithm which roughly says that wrong solutions of the system can be com-
puted but that no true solutions are missed (Lemma 5.4.9).

5.4.2 RUR-candidate for T = {B(x,y),A(x)}
We consider a regular triangular system T = {B(x, y), A(x)}, and denote
by I the associated ideal. Algorithm 9 computes a RUR-candidate for T
using multi-modular computations. It should be stressed that we present this
algorithm only for pedagogical reasons as it introduces some tools used in our
main algorithm presented in Section 5.4.3.

Proposition 5.4.3 is fundamental for the correctness of this algorithm: it
gives conditions on a prime number µ so that the NRUR-candidate of T is
well specialized modulo µ.

Equivalently as for the RUR-candidate (Algorithm 8), the polynomials of
a NRUR-candidate can be expressed using trace formulas, as shown in the
following lemma. For completeness, we provide a proof which is a straightfor-
ward adaptation of the proof of [Rouillier 1999, Theorem 3.1].

Lemma 5.4.1. For v ∈ {1, x, y}, f̂I,a,v =
∑D−1

i=0 Trace(M I
vT i)HD−i−1(T)

where Hk(T) =
∑k

i=0 ai T
k−i is the i-th Horner polynomial associated to fI,a

and M I
h is the matrix of the multiplication by h ∈ Q[x, y] in Q[x,y]

I
.

Proof. Following the proof of [Rouillier 1999, Theorem 3.1], we first notice

that f̂I,a,v
fI,a

=
∑

α∈V (I)
µ(α)v(α)
T−T (α)

, which is equal to
∑

i>0

∑
α∈V (I) µ(α)v(α)T (α)i

T i+1 .

On the other hand,
∑

α∈V (I) µ(α)v(α)T (α)
i = Trace(M I

vT i) and

thus f̂I,a,v
fI,a

=
∑

i>0

Trace(MI

vTi)

T i+1 . Multiplying both sides by fI,a =

5.4. Modular algorithm 89

∑D−1
i=0 aiT

i, we then get f̂I,a,v =
∑D−1

i=0

∑D−i−1
j=0 Trace(M I

vT i) ajT
D−i−j−1 =∑D−1

i=0 Trace(M I
vT i)HD−i−1(T).

Definition 5.4.2. Let T = {B(x, y), A(x)} be a regular triangular system. A

prime number µ is said to be lucky with respect to T if and only if φµ(A) and

φµ(Lcy(B)) are coprime.

Proposition 5.4.3. If µ is lucky with respect to T , then fIµ,φµ(a) = φµ(fI,a)

and f̂Iµ
k
,φµ(a),v = φµ(f̂I,a,v) for v ∈ {1, x, y}.

Proof. Similarly as T̃ = {(Lcy(B))−1B,A} consists of a (non-reduced) Gröb-
ner basis of I for the lexicographic ordering x < y (see Section 5.3.2), when
φµ(A) and φµ(Lcy(B)) are coprime, the system T̃ µ = {(Lcy(B)µ)−1Bµ, Aµ} is
also a (non-reduced) Gröbner basis of Iµ for the lexicographic ordering x < y.
Thus, I and Iµ are both zero-dimensional and both vector spaces Q[x,y]

I
and

Zµ[x,y]

Iµ
are generated by the same monomial basis {xiyj, i = 0 . . . dx − 1, j =

0 . . . dy − 1}.
Let NFI,x<y (resp. NFIµ,x<y) be the (uniquely defined) normal form as-

sociated to the Gröbner basis T̃ (resp. T̃ µ). This normal form defines the
canonical surjection Q[x, y]→ Q[x, y]/I (resp. Zµ[x, y]→ Zµ[x, y]/I

µ). Since
φµ is a morphism, ∀h ∈ Q[x, y], φµ(NFI,x<y(h)) = NFIµ,x<y(φµ(h)), which
also implies that φµ(M

I
h) = M Iµ

φµ(h)
.

It first follows that φµ(fI,a) = fIµ,φµ(a) since they have the same de-
gree and share the same Newton sums, and second, that φµ(f̂I,a,v) =

φµ(
∑D−1

i=0 Trace(M I
vT i)HD−i−1(T)) =

∑D−1
i=0 Trace(M Iµ

vT i)HD−i−1(T) which is
equal to f̂Iµ,φµ(a),v.

The correctness of Algorithm 9 follows directly from Proposition 5.4.3
and the Chinese Remainder Theorem 2.5.2, noticing that the selected prime
numbers have their product larger than the size of the output.

Lemma 5.4.4. Let T = {B(x, y), A(x)} as in Lemma 5.3.4, with B(x, y),

A(x) of maximum bitsize τ ′. Let T = x+ay be a linear form with a an integer

of bitsize in Õ(1). Algorithm 9 computes the RUR-candidate of T associated to

T using ÕB(m(dx(B)dy(B)+d2T)+dx(B)2τ ′) bit operations, where m denotes

an upper-bound on the bitsize of the coefficients in the NRUR-candidate of T .

Proof. Let m be an upper bound on the bitsize of the coefficients of
fI,a, f̂I,a,v, v ∈ {1, x, y}. In line 2, we compute a set P of lucky prime numbers

5Algorithm 8 is slightly modified, replacing the formulas of Line 5 by those of

Lemma 5.4.1.

90 Chapter 5. Efficient Practical Algorithm

Algorithm 9 RUR-candidate for T = {B(x, y), A(x)}
Require: T = {B(x, y), A(x)} a regular triangular system and T = x+ ay a

linear form
Ensure: The RUR-candidate of T associated to T

1: Compute an integer m such that 2m is greater than the maximum size of
the coefficients of fI,a, f̂I,a,v, v ∈ {1, x, y} (see Remark 5.2.3)

2: Compute a set P of lucky prime numbers with respect to T such that∏
µ∈P µ > 2m

3: Compute T µ = {φµ(B(x, y)), φµ(A(x))} for all µ ∈ P
4: for µ ∈ P do
5: Compute the NRUR-candidate of T µ i.e. fIµ,a, f̂Iµ,φµ(a),v v ∈ {1, x, y}

using Algorithm5 8
6: end for
7: Lift the polynomials fI,a, f̂I,a,v v ∈ {1, x, y} from their images modulo µ

via the Chinese Remainder Algorithm
8: Compute gI,a = gcd(fI,a,

∂fI,a
∂T

)

9: return fI,a, fI,a,v =
f̂I,a,v
gI,a

v ∈ {1, x, y} the RUR-candidate of T

with respect to T such that
∏

µ∈P µ > 2m. To derive the corresponding bit
complexity, we need an upper bound on the number of unlucky prime numbers
with respect to T , that is, primes µ such that Lcy(B) and A are not coprime
when reduced modulo µ. A sufficient condition for φµ(Lcy(B)) and φµ(A) to be
coprime is that the integer Lc(Lcy(B)) Lc(A)Resx(Lcy(B), A) does not vanish
modulo µ [Yap 2000, §4.4]. Hence, the number of unlucky primes is bounded
by the number of prime divisors of Lc(Lcy(B)) Lc(A)Resx(Lcy(B), A). The
number of prime divisors of an integer z is bounded by its bitsize. Indeed,
its bitsize is ⌊log z⌋+ 1 and its factorization into w (possibly identical) prime
numbers directly yields that 2w 6

∏w
i=1 zi = z = 2log z 6 2⌊log z⌋+1. Using

classical bounds on the bitsize of the resultant [Basu 2006, Proposition 8.46],
an explicit upper bound U on the number of unlucky primes can be computed
and the latter is in Õ(dx(B)τ ′) since dx(A) 6 dx(B) by assumption.

To compute P , we first compute Resx(Lcy(B)(x), A(x)), then, we compute
the first m+U prime numbers and select among these primes those for which
φµ(Lc(Lcy(B)) Lc(A)Resx(Lcy(B), A)) 6= 0. Since U is an upper bound on the
number of unlucky primes, the number of the selected primes is then at least
equal to m and their product is thus larger than 2m. The bit complexity of
computing Resx(Lcy(B), A) is in ÕB(dx(B)2τ ′) according to Theorem 2.4.17,
that of computing the first m+B prime numbers is in ÕB(dx(B)τ ′ +m) and
these primes are in Õ(dx(B)τ ′+m) by [von zur Gathen 2003, Theorem 18.10].

5.4. Modular algorithm 91

The reduction of Lc(Lcy(B)) Lc(A)Resx(Lcy(B), A) modulo all these primes
can be computed via a remainder tree in a bit complexity that is soft linear
in the total bitsize of the input by Theorem 2.5.3, which is dominated by the
sum of the bitsize of the Õ(dx(B)τ ′ +m) primes, each of bitsize Õ(1). Hence
computing P can be done using ÕB(dx(B)2τ ′ +m) bit operations.

In line 3, we compute the images of T modulo all the prime numbers in
P . This amounts to reduce O(dx(B)dy(B)) integer coefficients of bitsize O(τ ′)

modulo at most m primes. One coefficient can be reduced with ÕB(τ
′ +m)

bit operations using the same argument as above. Thus, all the coefficients
are reduced using ÕB(dx(B)dy(B)(τ ′ +m)) bit operations.

In line 5, we compute for the at most m primes in P , the NRUR-candidate
associated to φµ(T). According to the proof of Lemma 5.3.4, for each
prime number in P (of bitsize in Õ(1)), this can be done by first comput-
ing the reduced lexicographic Gröbner basis of T which can be done with
ÕB(dx(B)dy(B)) bit operations and then computing the NRUR-candidate us-
ing Algorithm 8, which needs ÕB(d

2
T) bit operations. Hence, the loop from

line 4 to 6 needs ÕB(m(dx(B)dy(B) + d2T)) bit operations.
The lifting step applies the Chinese Remainder Theorem for each of the

O(dT) coefficients of fI,a, f̂I,a,v v ∈ {1, x, y}. According to Theorem 2.5.4,
this can be done with ÕB(m) bit operations for one coefficient and thus, with
ÕB(mdT) for all the coefficients.

Finally, the RUR-candidate is deduced from the non-reduced one using
one gcd computation and three Euclidean divisions between polynomials of
degree at most dT and bitsize in O(m), which requires ÕB(md2T) bit operations
according to Theorems 2.3.10 and 2.3.2.

We consider now a regular triangular system Sk = {Sresk(x, y), Fk(x)} as
returned by Algorithm 7 and denote by Ik the associated ideal. Applying the
result of the previous lemma on Sk yields the following theorem. Recall that
d and τ denote the maximum degree and bitsize of the input polynomials P

and Q.

Theorem 5.4.5. Let Sk = {Sresk(x, y), Fk(x)} with dy(Sresk)dx(Fk) = dk
and T = x + ay be a linear form with a an integer of bitsize in Õ(1). Algo-

rithm 9 computes the RUR-candidate of Sk associated to T using ÕB((d
3 +

d2k)(d
2 + dτ) + d5τ) bit operations. Assuming that Resx(sresk, Fk) is known,

the previous bit complexity reduces to ÕB((d
3 + d2k)(d

2 + dτ)).

Proof. According to Theorem 2.4.16, Sresk(x, y) has degree in x in O(d2) and
both Sresk(x, y) and Fk(x) have bitsize in dτ . In addition, since m denotes
an upper bound on the bitsize of the coefficients of fIk,a, f̂Ik,a,v, v ∈ {1, x, y},
then, by Lemma 5.3.2 and Remark 5.2.3, m is in Õ(d2 + dτ). The claim thus
follows by applying the result of Lemma 5.4.4.

92 Chapter 5. Efficient Practical Algorithm

Remark. Given a system S = {P,Q} with P,Q ∈ Z[x, y] of total degree
at most d and bitsize at most τ , we can use Algorithm 9 to design a first
algorithm that computes the RUR-candidates of S. This algorithm proceeds
first by computing the triangular decomposition of S over Z and then, for every
regular triangular system Sk, it computes a RUR-candidate using Algorithm 9.
The bit complexity of this algorithm is dominated by that of the triangular
decomposition, which is in ÕB(d

7+d6τ) by Theorem 5.3.3. Indeed, according
to Theorem 5.4.5 and noticing by Bézout’s bound that

∑
k∈{1,...,q} dk 6 d2

(Lemma 5.3.2), the bit complexity for computing all the RUR-candidates
from all the regular triangular systems is in ÕB(d

6 + d5τ).
One advantage of this algorithm is that it prevents the possible coefficient

swell that can result from the Gröbner basis computation, which highly speeds
up the computation of the RUR-candidates from the triangular systems. As
a consequence, the triangular decomposition step becomes the dominant part
in the whole algorithm. However, one can also reduce the cost of this step
by using multi-modular computations, as for the computation of the RUR-
candidates. This is the topic of the next section.

5.4.3 RUR-candidates for S = {P,Q}
We now extend the multi-modular approach used in Algorithm 9 to a general
system S = {P,Q}. Next, we compare quantities defined when applying the
triangular decomposition algorithm of Section 5.3 over Z and over Zµ for a
given prime number µ. In particular, we consider for P and Q in Z[x, y], the
polynomials Fi, Gi and the systems Si. On the other hand, given Pµ and Qµ

in Zµ[x, y], the corresponding objects will be denoted with the superscript µ,
that is by, F µ

i , G
µ
i and Sµ

i .

The following result, which is analogous to that of Proposition 5.4.3, pro-
vides conditions on a prime number µ such that the NRUR-candidates com-
puted for S = {P,Q} using the algorithms of Section 5.3 are well specialized
modulo µ. Recall that Fres(P,Q) is the squarefree part of the resultant of P
and Q, seen as polynomials in y from which are removed the common roots
of their leading coefficients.

Definition 5.4.6. Let S = {P,Q} and {S0, S1, . . . , Sq} be the regular triangu-

lar systems associated to S. A prime number µ is said to be lucky with respect

to S if

1. φµ(Lcy(P) Lcy(Q)) 6= 0,

2. Fres(P,Q) and Fres(Pµ, Qµ) have the same degree, and

3. ∀k ∈ {1, . . . , q}, µ is lucky with respect to the triangular system Sk

(Definition 5.4.2).

5.4. Modular algorithm 93

Proposition 5.4.7. If µ is lucky with respect to S = {P,Q} then, ∀k ∈
{1, . . . , q} fIµ

k
,φµ(a) = φµ(fIk,a) and f̂Iµ

k
,φµ(a),v = φµ(f̂Ik,a,v) for v ∈ {1, x, y}.

Proof. We first prove the following equality which is a consequence of the two
first conditions of Definition 5.4.6, and of Lemma 5.2.4.

φµ(Fres(P,Q)) = Fres(Pµ, Qµ). (5.2)

Fres(Pµ, Qµ) divides Resy(Pµ, Qµ) which is equal to φµ(Resy(P,Q)) by
the specialization property of subresultants since φµ(Lcy(P) Lcy(Q)) 6= 0.
Moreover, according to Lemma 5.2.4, φµ(Resy(P,Q)) divides φµ(Resy(P,Q)).
On the other hand, since we assume that Lcy(P) and Lcy(Q) are co-
prime, then φµ(Fres(P,Q)) is equal to φµ(Resy(P,Q)). Thus, Fres(Pµ, Qµ)

divides φµ(Fres(P,Q)). Since by definition of luckiness, Fres(Pµ, Qµ)

and Fres(P,Q) have the same degree, it follows that φµ(Fres(P,Q)) =

Fres(Pµ, Qµ).

Next, we prove that ∀k ∈ {1, . . . , q} the systems Sk = {Sresk, Fk} are well
specialized modulo µ or in other words that φµ(Sresk) = Sresµk and φµ(Fk) =

F µ
k . The specialization of the NRUR-candidates then, follows directly from

Proposition 5.4.3.
Since φµ(Lcy(P) Lcy(Q)) 6= 0, the specialization property of subresultants

implies that ∀k ∈ {0, . . . , q}, φµ(Sresk) = Sresµk . Next, we prove by induction
that ∀k ∈ {1, . . . , q}, φµ(Fk) = F µ

k .

Initialization of the induction. According to the triangular decomposi-
tion algorithm, F µ

1 is the gcd-free part of Fres(Pµ, Qµ) with respect to sresµ1
which is also that of φµ(Fres(P,Q)) with respect to φµ(sres1) by (5.2). Ac-
cording to Lemma 5.2.4, this gcd-free part divides φµ(F1) which is the image
modulo µ of the gcd-free part of Fres(P,Q) with respect to sres1. Since
µ is lucky with respect to S1 i.e. φµ(F1) and φµ(sres1) are coprime, then
φµ(F1) is the gcd-free part of φµ(Fres(P,Q)) with respect to φµ(sres1) and
the property follows for i = 1.

Induction. Suppose that the property holds for all i < k, that is ∀i < k:
F µ
i = φµ(Fi). Then, as a consequence we have Gµ

k = φµ(Gk). Applying the
same argument as above, it follows that F µ

k = φµ(Fk).

The following lemma shows that we can compute an explicit upper-bound
on the number of unlucky primes with respect to S = {P,Q}. This bound
will be used in Algorithm 10 to determine the probability of computing the
correct RUR-candidates of the decomposition of S.

Lemma 5.4.8. An upper bound on the number of unlucky primes with respect

to S = {P,Q} can be explicitly computed in terms of d and τ , and this bound

is in Õ(d5 + d4τ).

94 Chapter 5. Efficient Practical Algorithm

Proof. To bound the number of unlucky prime numbers with respect to S =

{P,Q}, we bound the number of prime numbers µ that violate at least one
condition of Definition 5.4.6.

Number of primes µ such that φµ(Lcy(P) Lcy(Q)) = 0. For a prime number
µ, φµ(Lcy(P) Lcy(Q)) = 0 if µ divides the gcd of all the coefficients of Lcy(P)

or the gcd of all the coefficients of Lcy(Q). Similarly as in the proof of The-
orem 5.4.5, the number of primes µ that divide one of the two previous gcds
is bounded by the sum of their bitsize, which is at most equal to 2τ .

Number of primes µ such that Fres(P,Q) and Fres(Pµ, Qµ) do not have the

same degree. According to the definition of Fres(P,Q), a prime number µ

such that φµ(Lcy(P)) and φµ(Lcy(Q)) are coprime and the degree of the gcd
of Resy(P,Q) and Resy(P,Q)

∂x
does not change after reduction modulo µ, implies

that Fres(P,Q)) and Fres(Pµ, Qµ) have the same degree (Theorem 2.5.7).
Hence, the prime numbers such that Fres(P,Q) and Fres(Pµ, Qµ) do not
have the same degree, are bounded by the sum of the number of primes for
which φµ(Lcy(P)) and φµ(Lcy(Q)) are not coprime and the number of those for
which the degree of the gcd of Resy(P,Q) and Resy(P,Q)

∂x
changes after reduc-

tion modulo µ. According to [Yap 2000, Lemma 4.12], given two univariate
polynomials in Z[x] of degree at most d′ and bitsize at most τ ′, the product
of all µ, such that the degree of the gcd of the two polynomials changes when
the polynomials are considered modulo µ, is bounded by (2τ

′
√
d′ + 1)2d

′+2.
The number of such primes µ is bounded by the bitsize of this bound, and
thus is bounded by (d′ + 1) (2τ ′ + log(d′ + 1)) + 1. For Lcy(P) and Lcy(Q),
d′ 6 d and τ ′ 6 τ which gives a first bound in Õ(dτ), while for Resy(P,Q)

and Resy(P,Q)

∂x
, d′ 6 2d2 and τ ′ is in Õ(d2 + dτ) ([Basu 2006, Proposition 8.46])

which gives a second bound in Õ(d4+d3τ). Summing these two bounds, yields
a bound in Õ(d4 + d3τ) on the the number of prime µ such that Fres(P,Q)

and Fres(Pµ, Qµ)) do not have the same degree.

Number of primes µ that are unlucky with respect to one of the Sk with k ∈
{1, . . . , q}. As shown in the proof of Theorem 5.4.5, the number of prime
numbers that are unlucky with respect to a triangular system Sk is bounded
by a quantity in Õ(d4+d3τ). Since the decomposition of S = {P,Q} yields at
most d such triangular systems, the number of primes that are unlucky with
respect to one of the Sk with k ∈ {1, . . . , q} is thus in Õ(d5 + d4τ).

The result follows by summing the three previous bounds.

Although the prime numbers in Algorithm 10 are chosen arbitrary without
prior verification, it is still possible during the algorithm, to detect (and hence
to discard) some sequences of NRUR-candidates that correspond to unlucky
primes just by looking to some intermediate degrees. The following lemma

5.4. Modular algorithm 95

which is a slight variation on Proposition 5.4.7 gives characterizations in terms
of some intermediate degrees, of unlucky prime numbers with respect to S.
These characterizations are useful to discard during the computation, all se-
quences of NRUR-candidates that correspond to unlucky prime numbers, once
a lucky prime has been chosen, which allows to improve the probability of suc-
cess of Algorithm 10. Another important result stated in this lemma, is that
the number of solutions (counted with multiplicities) of the RUR-candidates
computed by Algorithm 10 is greater or equal than the number of solutions of
the input system S = {P,Q}. This result is used in Section 5.4.4.1 to check the
correctness of the RUR-candidate output by Algorithm 10 by simply verifying
that all the candidate solutions are indeed solutions of system.

Lemma 5.4.9. Let S = {P,Q} and {S0, S1, . . . , Sq} be the regular triangular

systems associated to S with Si = {Fi(x), Sresi(x, y)} as described in Sec-

tion 5.3.1. Let µ be a prime number such that φµ(Lcy(P) Lcy(Q)) 6= 0. Then,

1. the degree of Fres(P,Q) is at least that of Fres(Pµ, Qµ).

If Fres(P,Q) and Fres(Pµ, Qµ) have the same degree, then,

2.
∑q

i=1 i × deg(Fi) 6
∑q

i=1 i× deg(F µ
i) and the inequality is strict if and

only if µ is unlucky with respect to one of the Sk with k ∈ {1, . . . , q}.

Proof. The first point is a direct consequence of the proof of Proposition 5.4.7.
For the second point, we first prove, by induction, that for i = 0, . . . , q, φµ(Gi)

divides Gµ
i .

Initialization of the induction. It follows from the proof of Proposi-
tion 5.4.7 that φµ(G0) = φµ(Fres) = Fres(φµ) = Gµ

0 .
Induction. Suppose that the property holds for k − 1, that is: φµ(Gk−1)

divides Gµ
k−1. Since Gk = gcd(Gk−1, sresk), this implies that φµ(Gk) divides

gcd(φµ(Gk−1), φµ(sresk)). By the specialization of subresultants, we have
that φµ(Gk) divides gcd(φµ(Gk−1), sresk(φµ)). Using the induction hypothesis
we then conclude that φµ(Gk) divides gcd(Gµ

k−1, sresk(φµ)), which is equal
to Gµ

k , hence the property holds for k.

We have Fres =
∏q

i=1 Fi and deg(Fres) = deg(φµ(Fres)), which implies
that ∀j ∈ {1, . . . , q}, deg(Fj) = deg(φµ(Fj)). Since Gj =

∏q
i>j Fi, then for

every j ∈ {1, . . . , q}, deg(Gj) = deg(φµ(Gj)). Together with the previous fact
that φµ(Gi) divides Gµ

i , we conclude that deg(Gj) 6 deg(Gµ
j).

Denote by ni (resp. mi) the degree of Fi (resp. F µ
i). Then we have

deg(Gj) =
∑q

i>j ni and deg(Gµ
i) =

∑q
i>j mi and the inequality deg(Gj) 6

96 Chapter 5. Efficient Practical Algorithm

deg(Gµ
j) rewrites as

∑q
i=j ni 6

∑q
i=j mi for every j ∈ {1, . . . , q}. Summing

these inequalities for j from 1 to q yields
∑q

i=1(i× ni) 6
∑q

i=1(i×mi).
Suppose now that µ is unlucky with respect to some Sk with k ∈ {1, . . . , q}.

In that case, φµ(Gk) strictly divides Gµ
k and deg(φµ(Gk)) < deg(Gµ

k). Applying
the same argument as above we obtain that

∑q
i=1(i× ni) <

∑q
i=1(i×mi).

Algorithm 10 RUR-candidates for S = {P,Q} (Monte-Carlo algorithm)
Require: P,Q in Z[x, y] defining a finite set of solutions in C2 with Lc(P)

and Lc(Q) coprime and a linear form T = x+ ay

Ensure: R the set of the RUR-candidates of the decomposition of S =

{P,Q}, associated to T .

1: Compute an integer m such that 2m is greater than the maximum size of
the coefficients of fI,a, f̂I,a,v, v ∈ {1, x, y} (see Remark 5.2.3)

2: Compute an upper bound B on the number of unlucky primes with respect
to S = {P,Q} (see Lemma 5.4.8)

3: Compute a set U of prime numbers µ > d2 whose cardinal is 2B

4: AR = ∅
5: repeat
6: Choose uniformly at random a set P of 2m primes µ in U such that

φµ(Lc(P) Lc(Q)) 6= 0

7: Compute Sµ = {Pµ, Qµ} for all µ in P
8: for µ ∈ P do
9: Compute the sequence Rµ of the NRUR-candidates of Sµ = {Pµ, Qµ}

using the algorithm of Section 5.3
10: AR = AR ∪Rµ

11: end for
12: Discard from AR every sequence Rµ of NRUR-candidates such that the

degree of Fresµ is not maximal
13: Discard from AR every sequence Rµ of NRUR-candidates such that the

sum of the degrees of Sµ
k is not minimal6

14: until AR contains at least m sequences of NRUR-candidates
15: Lift, with the Chinese Remainder Algorithm, the sequences of NRUR-

candidates in AR to a sequence R
16: Compute for every NRUR-candidate in R the corresponding RUR-

candidate (Definition 5.2.2)
17: return R

6We call degree of a regular triangular system T = {B(x, y), A(x)} the product of the

degree of B in y and the degree of A which is also the number of complex solutions of T
counted with multiplicities.

5.4. Modular algorithm 97

Theorem 5.4.10. Let S = {P,Q} with P,Q of total degree at most d and

maximum bitsize τ such that Lc(P) and Lcy(Q) are coprime, and T = x+ ay

be a linear form with integer a of bitsize in Õ(1). Let m be an integer in

ÕB(d
2 + dτ) that is larger than the maximum bitsize of the coefficients of the

RUR-candidates of S (see Remark 5.2.3). Algorithm 10 computes the RUR-

candidates of the decomposition of S, associated to T using an expected number

of ÕB(d
6+d5τ) bit operations with a probability of success larger than 1− 1

22m
.

Proof. We first bound the expected number of operations to compute the
RUR-candidates and then estimate the probability that the computed RUR-
candidates are correct.

Expected number of bit operations. In Line 3, we compute a set U of 2B

prime numbers larger than d2 such that 2B is in Õ(d5 + d4τ). For computing
U , we compute the first 2B + d2 prime numbers and reject those that are
smaller than d2. The bit complexity of computing the r first prime numbers
is in ÕB(r) and their maximum is in Õ(r) [von zur Gathen 2003, Thm. 18.10].
We can thus compute the set of primes U with ÕB(d

5 + d4τ) bit operations
and these primes are in Õ(d5 + d4τ).

In the outer loop (Line 5 to 14), we successively select sets P of random
prime numbers in U and compute for every prime µ therein, the corresponding
NRUR-candidates using the algorithms of Section 5.3 (see Theorem 5.3.6)
over Zµ. We stop when the condition in Line 14 is satisfied. To estimate the
corresponding expected number of bit operations, we analyse the cost of one
iteration and then determine the expected number of iterations.

In Line 6, we select among the prime numbers in U , a set P of 2m primes
that do not cancel Lcy(P) Lcy(Q). As shown in the proof of Proposition 5.4.8
there is at most 2τ prime number µ such that φµ(Lcy(P) Lcy(Q)) = 0, hence,
to compute P , we select 2m + 2τ = Õ(d2 + dτ) prime numbers from U and
reject those which identically cancel Lcy(P) Lcy(Q). This amounts to reduce
Lcy(P) Lcy(Q) modulo Õ(d2 + dτ) prime numbers, which can be done via
remainder tree in Õ(d3 + d2τ). We then compute for all the prime µ in P the
reduction of P and Q modulo µ which can be done using the same strategy
with Õ(d4 + d3τ) bit operations. In Line 8, for every prime number µ of
P , we call the algorithms of Section 5.3 (see Theorem 5.3.6) to compute the
NRUR-candidates of {Pµ, Qµ}. According to Theorems 5.3.3 and 5.3.5, the
arithmetic complexity of the whole algorithm is in Õ(d4). On the other hand µ

has bitsize in O(log(d5+d4τ)), thus, the bit complexity of one call is in ÕB(d
4)

which yields ÕB(d
6+d5τ) for computing all the sequences Rµ. Finally, the bit

complexities of Line 12 and 13 can be neglected. Hence, the bit complexity of
one iteration of the outer loop is in ÕB(d

6 + d5τ).
Choosing randomly a prime number µ in U , the probability that µ is

98 Chapter 5. Efficient Practical Algorithm

lucky with respect to S is larger than 1
2
. Thus choosing randomly 2m primes

numbers in U , the probability that half of them are lucky with respect to S

is larger than 1
2
. Hence, in average, at most two iterations of the outer loop

suffices to obtain at least m lucky prime numbers with respect to S.
Once at least m lucky prime numbers have been chosen, the halting con-

dition in Line 14 is necessarily satisfied. Indeed, according to Lemma 5.4.9,
none of the corresponding sequences of NRUR-candidates in AR are discarded
in Lines 12 (resp. 13) and we end up with a set AR containing at least m se-
quence of NRUR-candidates. The expected number of bit operations of the
outer loop is then in ÕB(d

6 + d5τ). Finally, the bit complexities of Lines 15
and 16 can be deduced from the proof of Theorem 5.4.5 and are respectively
equal to ÕB(d

4 + d3τ) and ÕB(d
6 + d5τ).

Probability of success. Algorithm 10 fails to output RUR-candidates of the
input system, if at Line 14, the set AR contains at least m sequences of NRUR-
candidates and none of them correspond to a prime µ that is lucky with re-
spect to S. Indeed if AR contains at least one sequence of NRUR-candidates
that correspond to such a prime number, then according to Lemma 5.4.9,
all the other sequences that correspond to unlucky prime numbers with re-
spect to S will be discarded in Line 12 or 13. Hence, the algorithm finally
finds m sequences corresponding to lucky primes and succeeds, according to
Proposition 5.4.7, to return the RUR-candidates. Hence, the probability that
Algorithm 10 fails is at most the probability that the first 2m prime numbers
are all unlucky with respect to S. Since a randomly chosen prime in U is
unlucky with probability less than 1

2
, the 2m randomly chosen prime num-

bers are unlucky with probability at most 1
22m

. It follows that Algorithm 10
succeeds with probability larger than 1− 1

22m
.

5.4.4 Las-Vegas algorithms

We present in the following, two methods for checking that the RUR-
candidates of S computed by Algorithm 10 are indeed RURs. To do that,
we need to check that the RUR-candidates computed by Algorithm 10 are
correct, but also that the chosen linear form is separating. Applying these
methods to the algorithm above, that is, running it iteratively until the check
is satisfied yields naturally two Las-Vegas algorithms for computing the RURs
of S = {P,Q} whose expected bit complexities are respectively in ÕB(d

7+d6τ)

and ÕB(d
6 + d5τ).

More precisely, these Las-Vegas algorithms choose randomly a linear form
x+ay with a an integer between 0 and 2d4 and run Algorithm 10 for this form.
This process is repeated until the check is positive. Since the number of non-
separating forms is less than d4, the chosen linear form has probability larger

5.4. Modular algorithm 99

than 1
2

to be separating, and as we have seen in the proof of Theorem 5.4.10,
at most two iterations of the outer loop suffices, in average, to obtain at least
m lucky prime numbers with respect to S; hence Algorithm 10 runs at most
four times on average before the check is positive.

Note that, the first Las-Vegas algorithm, of complexity ÕB(d
7 + d6τ), has

been implemented and its practical efficiency is demonstrated in Chapter 7.
The second algorithm, which has better complexity ÕB(d

6 + d5τ), is more
recent and has not yet been implemented. We present these two approaches
in the two following subsections.

5.4.4.1 ÕB(d
7 + d6τ)-expected-time Las-Vegas algorithm

Lemma 5.4.9 shows that for prime numbers µ such that φµ(Lcy(P) Lcy(Q)) 6=
0 and Fres(P,Q) and Fres(Pµ, Qµ) have the same degree, if the solution set
computed by Algorithm 10 is not correct (i.e. it is not equal to the solution
set of {P,Q}), then it cannot be a strict subset of the solutions of P and
Q counted with multiplicities. More precisely, some root of the lifted RUR-
candidates is not solution of the input system or some multiplicity is too
large.

This suggests a method to certify Algorithm 10 that consists in computing
RUR-candidates only modulo prime numbers satisfying the two previous con-
ditions and to add at the end of the algorithm, a verification step that checks
whether the roots of the obtained RUR-candidates are indeed roots of the
original system S = {P,Q} with their multiplicities in the RUR-candidates
smaller or equal to their multiplicities in their fibers with respect to S. Note
that this verification checks at the same time that the RUR-candidates com-
puted by Algorithm 10 are corrects and also that the chosen linear form for
computing these RUR-candidates is separating.

Checking whether the roots of a RUR-candidate {fI,a, fI,a,1, fI,a,x, fI,a,y}
are also roots of S can be done by substituting the coordinates x =

fI,a,x(T)

fI,a,1(T)

and y =
fI,a,y(T)

fI,a,1(T)
in P and Q and checking that fI,a divides their numerators.

Checking, for each solution of a RUR-candidate, that its multiplicity is smaller
or equal to that in its fiber in S can be done in a similar way using derivatives
with respect to y of P and Q. More precisely, if p = (α, β) is a solution
with multiplicity m in a RUR-candidate, one has to show that the derivatives
∂P (α,y)

∂y
, . . . , ∂

m−1P (α,y)
∂m−1y

and ∂Q(α,y)
∂y

, . . . , ∂
m−1Q(α,y)
∂m−1y

all vanish at β. An effective
way to do so is to consider the decomposition of the RUR-candidates output by
Algorithm 10 according to the multiplicity of their solutions. More precisely,
each RUR-candidate Rk = {fIk,a, fIk,a,1, fIk,a,x, fIk,a,y} is decomposed into a set
of single-multiplicity RUR-candidates Rk,i = {fIk,a,i, fIk,a,1,i, fIk,a,x,i, fIk,a,y,i}

100 Chapter 5. Efficient Practical Algorithm

such that fIk,a = Πif
i
Ik,a,i

. We then verify for i increasing from 2 that the so-
lutions of the RUR-candidate of multiplicity i are also solutions of the (i−1)th
derivatives of P and Q with respect to y as described above. Before giving the
bit complexity of the verification, we first analyze the bit complexity of de-
composing the RUR-candidates output by Algorithm 10 into RUR-candidates
whose solutions have the same multiplicity.

Lemma 5.4.11. Let Rk = {fIk,a, fIk,a,1, fIk,a,x, fIk,a,y} for k = 1, . . . , q be the

RUR-candidates output by Algorithm 10. Computing the decomposition of all

the Rk into single-multiplicity RUR-candidates can be done using ÕB(d
7+d6τ)

bit operations.

Proof. The decomposition of Rk = {fIk,a, fIk,a,1, fIk,a,x, fIk,a,y} is obtained by
first computing the squarefree decomposition fIk,a = Πif

i
Ik,a,i

and second, by
computing for each factor fIk,a,i the corresponding polynomials fIk,a,v,i = fIk,a,v
mod fIk,a,i for v ∈ {1, X, Y } (see [Rouillier 1999, §5.3] for details). Computing
the squarefree decomposition of fIk,a can be done with ÕB(dd

2
kτk) bit opera-

tions using Yun’s squarefree decomposition algorithm [von zur Gathen 2003,
Algorithm 14.21] together with Theorem 2.3.10, while computing the poly-
nomials {fIk,a,1,i, fIk,a,x,i, fIk,a,y,i} for each multiplicity i costs ÕB(d

2
kτk) bit

operations according to Theorem 2.3.2. Since there is at most d multiplicities,
the decomposition of Rk into single-multiplicity RUR-candidates can be done
using ÕB(dd

2
kτk). Summing over all the Rk for k = 1, . . . , d and using the fact

that τk = Õ(d2 + dτ) and that
∑

k dk 6 d2 by Lemma 5.3.2, Proposition 4.3.1
and Bézout’s bound, we obtain an overall complexity of ÕB(d

7 + d6τ) bit
operations.

Lemma 5.4.12. Checking that the solutions of all the RUR-candidates Rk,i

are solutions of {P,Q} with the right multiplicities in fiber can be done using

ÕB(d
7 + d6τ) bit operations.

Proof. Let Rk,i = {fIk,a,i, fIk,a,1,i, fIk,a,x,i, fIk,a,y,i} be the RUR-candidate of
multiplicity i resulting from the decomposition of the the RUR-candidate
Rk = {fIk,a, fIk,a,1, fIk,a,x, fIk,a,y}, and denote by dk,i and τk,i the maximum
degree and bitsize of its polynomials. Checking that the solutions of Rk,i

are solutions of P (resp. Q) is done by first, computing the numerator
of P (

fIk,a,x,i

fIk,a,1,i
,
fIk,a,y,i

fIk,a,1,i
) and then by checking that fIk,a,i divides this numera-

tor. We show in Lemma 6.2.1 that the computation of the numerator of
P (

fIk,a,x,i

fIk,a,1,i
,
fIk,a,y,i

fIk,a,1,i
) can be done in ÕB(d

3dk,iτk,i) and yields a polynomial of de-

gree in O(ddk,i). Testing the divisibility of this numerator by fIk,a,i is achieved
using ÕB(ddk,i(dk,i + τk,i)) bit operations according to Theorem 2.3.3. Hence,
checking that the solutions of Rk,i are solutions of {P,Q} can be done using

5.4. Modular algorithm 101

ÕB(d
3dk,iτk,i + dd2k,i) bit operations. On the other hand, since Rk,i corre-

sponds to solutions of multiplicity i, checking that these solutions have the
right multiplicity in their fibers amounts to repeat i times the above computa-
tion with the successive derivatives of P and Q which yields a bit complexity
in ÕB(i × (d3dk,iτk,i + dd2k,i)) for each RUR-candidate Rk,i. Now, summing

over all the RUR-candidates and using the fact that τk,i = Õ(d2 + dτ) and
that

∑
idk,i 6 d2 by Lemma 5.3.2, Proposition 4.3.1 and Bézout’s bound, we

obtain an overall bit complexity in ÕB(d
7 + d6τ).

The following theorem gives the expected bit complexity of computing
the RURs of S by repeating Algorithm 10 until the previous verification is
positive. This follows from Theorem 5.4.10 and Lemmas 5.4.11 and 5.4.12
since, as mentioned at the beginning of Section 5.4.4, Algorithm 10 runs at
most four times on average before the check is positive.

Theorem 5.4.13. Let S = {P,Q} with P,Q of total degree at most d and

maximum bitsize τ . The RURs of the decomposition of S and an associated

separating linear form T = x + ay with integer a of bitsize in Õ(1), can be

computed using an expected number of ÕB(d
7 + d6τ) bit operations.

5.4.4.2 ÕB(d
6 + d5τ)-expected-time Las-Vegas algorithm

As shown in the proof of Proposition 5.4.7, a sufficient condition for the
RUR-candidates computed by Algorithm 10 to be correct is that, the systems
Sk = {Sresk, Fk} are well-specialized modulo the selected prime numbers.
This means that for each prime number µ used to lift the RUR-candidates,
the equalities φµ(Sresk) = Sresµk and φµ(Fk) = F µ

k ∀k ∈ {1, . . . , q}, hold. An
effective way to check that this is indeed the case, is to lift over Z the polyno-
mials sresk and Gk for k = 1, . . . , q (see Algorithm 6), modulo the primes µ

used for lifting the RUR-candidates, and to check that, for every k, Gk divides
both sresk and Gk−1.7 If so, then the systems Sk are well-specialized and so
that for the RUR-candidates, which implies that the RUR-candidates lifted
over Z are corrects.

According to Theorem 2.5.4, lifting the polynomials sresk and Gk for k =

1, . . . , q over Z can be done using ÕB(d
5 + d4τ) bit operations, while testing

for the divisibility of sresk by Gk for k = 1, . . . , q, can also be done using
ÕB(d

5 + d4τ) bit operations according to Theorem 2.3.3.

7It is assumed here that the product of the primes used to lift the polynomials sresk
and Gk for k = 1, . . . , q is larger than their maximum coefficient. However, this assumption

is always fulfilled since we require in Algorithm 10 this product to be larger than an upper

bound on the maximum coefficient of the RUR-candidates which, in turn, also bounds the

maximum coefficient of sresk and Gk.

102 Chapter 5. Efficient Practical Algorithm

In a second step, we need to check that the chosen linear form X + aY is
separating, i.e. that the RUR-candidates of S computed by Algorithm 10 are
actually RURs. To do that, we use the same strategy as in [Niang Diatta 2008]
where the genericity of a curve f is tested by first computing a triangu-
lar decomposition of the system {f, f

∂f
} and then by checking algebraically

that for each triangular system {Sresk, Fk}, and for each root α of Fk the
polynomial Sresk(α, Y) admits only one root β. In our case, in order to
check that the linear form X + aY is separating, we consider the system
Sa = {P (T − aY, Y), Q(T − aY, Y)}, on which we apply the previous test.
More precisely, we first compute the triangular decomposition of Sa and then,
for each triangular system {Sresk(T, Y), Fk(T)} we check that for each root
γ of Fk the polynomial Sresk(γ, Y) admits only one root β.

From the complexity point of view, the triangular decomposition of Sa

can be computed using an expected bit complexity in ÕB(d
6 + d5τ). In-

deed, according to Theorem 2.4.17, computing the polynomials Sresk(T, Y)

for k = 1, . . . , q can be done using ÕB(d
6+d5τ) bit operations while matching

the latter with the corresponding factor of the resultant (see Algorithm 6)
can be done similarly as above using an expected number of ÕB(d

5 + d4τ) bit
operations (see Theorem 2.5.8). Finally, checking that for each triangular
system {Sresk(T, Y), Fk(T)}, ∀γ root of Fk the polynomial Sresk(γ, Y) ad-
mits only one root β can be done in ÕB(d

6+ d5τ) according to Theorem 2.3.3
(see [Diatta 2009, Theorem 3.3.9]).8

Similarly as in the previous section, we obtain the following result.

Theorem 5.4.14. Let S = {P,Q} with P,Q of total degree at most d and

maximum bitsize τ . The RURs of the decomposition of S and an associated

separating linear form T = x + ay with integer a of bitsize in Õ(1), can be

computed using an expected number of ÕB(d
6 + d5τ) bit operations.

5.5 Conclusion

We focused in this chapter on the practical efficiency of computing Rational
Univariate Representations of bivariate systems. We present an approach that
combines two ingredients. A decomposition of the initial system into several
RURs using a triangular decomposition based on subresultants followed by
several RUR computations, and the use of a multi-modular-based approach
that prevents intermediate coefficients growth.

8Note that this complexity improves by a factor d the one stated in [Diatta 2009, Theo-

rem 3.3.9]. This is due to the use of Theorem 2.3.3 which claims that testing the divisibility

can be done O(d) times faster than performing the Euclidean division.

5.5. Conclusion 103

To overcome the correctness problems induced by the multi-modular ap-
proach, we propose two methods for checking that the computed RURs cor-
rectly encode the solutions of the input system. This yields two Las-Vegas
algorithms with expected bit complexity respectively in ÕB(d

7 + d6τ) and
ÕB(d

6 + d5τ).
In the global process of solving bivariate systems via Rational Univariate

Representations, this brings the complexity of the symbolic part (the com-
putation of the Rational Univariate representation), in Las-Vegas setting, to
that of the numerical isolation of the solutions (see Chapter 6).

In addition of the speedup induced by the multi-modular approach, an-
other notable advantage of this approach is that it splits the initial system
S = {P,Q} into several smaller systems, which are naturally easier to handle.
This is particularly the case when it comes to computing with the solutions
of a bivariate system, where it is preferable to work with these solutions rep-
resented by a set of “small” RURs instead of one single RUR.

From a practical point of view, we implemented the Las-Vegas algorithm
described in Section 5.4.4.1 (Theorem 5.4.13). This algorithm turns out to be
very efficient as demonstrated in Chapter 7. Furthermore, the multi-modular
approach naturally yields a multi-thread implementation which is even more
efficient.

Finally, as mentioned in the introduction, the second verification method
has not yet been implemented. Although of better complexity, it is not clear
at all that the latter will outperform in practice the current implementation.
This is mainly due to the fact that checking whether the chosen linear form
is separating requires to perform a second triangular decomposition with the
sheared system Sa = {P (t − ay, y), Q(t − ay, y)} (see Section 5.4.4.2), which
will at least double the running time of the algorithm. Currently, we are
investigating an alternative method that runs in the same complexity that is
ÕB(d

6+d5τ), for checking that the chosen linear form is separating using only
the RUR-candidates computed by Algorithm 10.

Chapter 6

Implications and applications

Contents

6.1 Isolating boxes from a RUR 106

6.2 Sign of a polynomial at the solutions of a system . . 109

6.2.1 Proof of Lemma 6.2.3 114

6.3 Over-constrained systems 117

6.4 Topology of plane curves 119

6.4.1 Isotop outline . 120

6.4.2 Improvements to Isotop 121

We present in this chapter some implications and applications enlightening
the advantages of computing a RUR of a system. We start with the problem
of isolating the solutions of a bivariate system, that is, computing boxes with
rational coordinates that isolate the solutions. As mentioned along this thesis,
this is an important problem which is actually an integral part of the problem
of solving an algebraic system of equations. We show in Section 6.1 that the
complexity of computing isolating boxes from a RUR does not exceed the
complexity of computing the RUR itself even when the RUR is computed in
a probabilistic setting (as in Chapter 5). Hence adding the isolation step to
the algorithms described in the previous chapters does not change their bit
complexity.

We also address in Sections 6.2 and 6.3 two important applications of the
RUR, that is, the evaluation of the sign of a bivariate polynomial at a real
solution of the system and the computation of rational parametrizations of
systems defined by several equality and inequality constraints.

The last section of this chapter, is devoted to the problem of computing
the topology of curves. We show in particular that the application of our
new solver (consisting of the Las-Vegas algorithm of Chapter 5 and the isola-
tion algorithm of Section 6.1) to the algorithm of [Cheng 2010] yields several
algorithmic and complexity improvements.

Remark. In the three following sections, we first assume for simplicity that
we work with an arbitrary bivariate ideal I whose solutions are given by a

106 Chapter 6. Implications and applications

RUR {fI,a, fI,a,1, fI,a,X , fI,a,Y } with polynomials of degree bounded by dr and
integer coefficients of bitsize bounded by τr. The obtained results are applied
afterward for the RURs of the ideal 〈P,Q〉, computed in Chapter 4 or 5 (using
the bitsize bound given by Proposition 4.3.1), in order to obtain complexities
in terms of the degree and the bitsize of the input polynomials P and Q.1

6.1 Isolating boxes from a RUR

We consider here the problem of isolating boxes for the solutions of a system
{P,Q}, given its RUR. We presented in [Bouzidi 2013b] an algorithm of bit
complexity in ÕB(d

8 + d7τ) for that problem. We present here an improved
version of this algorithm whose complexity is in ÕB(d

6 + d5τ).
Given a RUR {fI,a, fI,a,1, fI,a,X , fI,a,Y }, isolating boxes for the real solu-

tions can be obtained by first computing isolating intervals for the real roots
of the univariate polynomial fI,a, and then evaluating the rational fractions
fI,a,X
fI,a,1

and fI,a,Y
fI,a,1

by interval arithmetic. When these isolating intervals are suffi-
ciently refined, the computed boxes are necessarily disjoint and thus isolating.
The following theorem analyzes the bit complexity of this algorithm.

Theorem 6.1.1. Let {fI,a, fI,a,1, fI,a,X , fI,a,Y } be the RUR of an ideal I and

let dr and τr be upper bounds for the degree and the bitsize of its polynomials.

Isolating boxes for the solutions of I can be computed in ÕB(d
3
r + d2rτr) bit

operations. The vertices of these boxes have bitsize in Õ(d2r + drτr).

Proof. Let fI,a,t = fI,a,X + afI,a,Y . For every real solution σ of I, let JX,σ ×
JY,σ be a box containing it. Instead of checking the overlap of boxes in two
dimensions, projecting these boxes via the separating element X+aY enables
a simpler intersection test on the real line. Indeed, a sufficient condition for
these boxes to be isolating is that the intervals {JX,σ + aJY,σ}σ∈V (I) do not
overlap. This leads to the following algorithm.

First we compute isolating intervals Jγ for the roots of fI,a (we assume a
dyadic representation of the form [a

2b
, a+1

2b
], a ∈ Z, b ∈ N). Second, while the

intervals �fI,a,t(Jγ)

�fI,a,1(Jγ)
overlap,2 we refine the involved intervals Jγ. When refined,

the precision of the interval is doubled, that is, if for some k > 0 the input
width is 2−k then the output width is less than 2−2k.

1The assumption that the polynomials of the RUR of 〈P,Q〉 have integer coefficients

satisfying the bitsize bound of Theorem 4.1.1 is without loss of generality since according

to Proposition 4.3.1 one can compute such polynomials in a complexity that is less than

that for computing the RUR.
2If 0 is in �fI,a,1(Jγ), the interval

�fI,a,t(Jγ)
�fI,a,1(Jγ)

is equal to R.

6.1. Isolating boxes from a RUR 107

The complexity of computing isolating boxes is then the complexity of the
initial isolation of the roots of fI,a, plus the complexity of the loop. Since the
width is quadratically smaller at each iteration, the number of iterations is in
log of the log of the minimum width eventually reached by the intervals Jγ
after refinement. We will show that for the boxes to be isolating, a worst-case
refinement up to a width in 2−L with L = Õ(d2r + drτr) for the roots of fI,a is
sufficient. The overall cost of computing isolating intervals of the roots of fI,a
and refining them up to a width in 2−L with L = Õ(d2r+drτr) is in ÕB(d

3
r+d2rτr)

(Theorem 2.3.15). On the other hand, due to the dyadic representation of the
computed isolating intervals, the bitsize of the endpoints these intervals is in
Õ(d2r + drτr). In addition, since the refinement is adaptative with respect to
each root, we will also show that the sum of the bitsizes of the endpoints of
the computed isolating intervals Jγ, after refinement, is also in Õ(d2r + drτr).

Without counting the cost of refinements, the cost of the computation
within one loop is then as follows: (a) The cost of evaluating the polynomials
fI,a,t and fI,a,1 of degree bounded by dr and bitsize bounded by τr at all the
(refined) intervals Jγ is in ÕB(d

3
r+d2rτr) by Theorem 2.3.4 and since the sum of

the bitsizes of the endpoints of the (refined) intervals Jγ is in Õ(d2r+drτr). (b)
The cost of the overlap test for all the intervals �fI,a,t(Jγ)

�fI,a,1(Jγ)
is in ÕB(d

3
r + d2rτr).

Indeed, the bit complexity of the overlap test is the sum of the bitsizes of
the endpoints of the intervals �fI,a,t(Jγ)

�fI,a,1(Jγ)
because when the intervals are suffi-

ciently refined to be disjoint, their order is that of the corresponding intervals
Jγ. Hence, we only need to perform comparisons between the endpoints of
two intervals �fI,a,t(Jγ)

�fI,a,1(Jγ)
when the corresponding intervals Jγ are consecutive.

Furthermore, the sum of the bitsizes of these interval endpoints is the sum
over all Jγ of big Õ of τr plus dr times the bitsize of the endpoints of Jγ (by
Theorem 2.3.4), which sums up to Õ(drτr+dr(d

2
r+drτr)) = Õ(d3r+d2rτr). The

overall complexity of the algorithm is thus ÕB(d
3
r + d2rτr) plus the complexity

of the refinements which is also in ÕB(d
3
r + d2rτr).

It remains to prove that (1) a refinement up to a width in 2−L with L =

Õ(d2r + drτr) for the isolating intervals of roots of fI,a is enough to compute
isolating boxes, and (2) the sum of the bitsizes of the endpoints of the isolating
intervals computed by this algorithm is in Õ(d2r + drτr).

A sufficient condition for the boxes to be isolating is that the intervals
�fI,a,t(Jγ)

�fI,a,1(Jγ)
do not overlap. Since each of these intervals always contains the

corresponding root γ of fI,a, they do not overlap if their width is smaller than
half the local separating bound sep(γ). We then study the width of such an
interval with respect to the width of the input interval Jγ.

One has w(
�fI,a,t(Jγ)

�fI,a,1(Jγ)
) 6 2max

y∈
�fI,a,t(Jγ)

�fI,a,1(Jγ)

| fI,a,t(γ)
fI,a,1(γ)

− y| and we can write

y =
fI,a,t(γ)+et
fI,a,1(γ)+e1

with et, e1 such that fI,a,t(γ) + et ∈ �fI,a,t(Jγ) and fI,a,1(γ) +

108 Chapter 6. Implications and applications

e1 ∈ �fI,a,1(Jγ) thus

∣∣∣∣
fI,a,t(γ)

fI,a,1(γ)
− fI,a,t(γ) + et

fI,a,1(γ) + e1

∣∣∣∣

=
1

|fI,a,1(γ) + e1|

∣∣∣∣
fI,a,t(γ)(fI,a,1(γ) + e1)

fI,a,1(γ)
− fI,a,t(γ)− et

∣∣∣∣

=
1

|fI,a,1(γ) + e1|

∣∣∣∣
fI,a,t(γ)

fI,a,1(γ)
e1 − et

∣∣∣∣

=
1

|fI,a,1(γ) + e1|
|γe1 − et|

6
1

|fI,a,1(γ) + e1|
max(|e1|, |et|) (1 + |γ|)

6
2

|fI,a,1(γ) + e1|
max(|e1|, |et|)max(1, |γ|).

We can now apply Theorem 2.3.16 to et and e1 which gives max(|e1|, |et|) 6
2dr+τr max(1, |γ|)dr−1w(Jγ). In addition, for latter calculation to make sense,
the denominator fI,a,1(γ)+ e1 must not vanish. By the definition of the RUR,
fI,a,1(γ) cannot vanish and a sufficient condition to ensure this property is
that w(Jγ) 6

|fI,a,1(γ)|/2

2dr+τr max(1,|γ|)dr−1 ; indeed this implies that |e1| 6 |fI,a,1(γ)|/2
and |fI,a,1(γ) + e1| > |fI,a,1(γ)| − |e1| > |fI,a,1(γ)|/2. Putting everything
together yields

w

(
�fI,a,t(Jγ)

�fI,a,1(Jγ)

)
6

2dr+τr+3 max(1, |γ|)dr
|fI,a,1(γ)|

w(Jγ).

Recall that to avoid overlaps it is sufficient that w(
�fI,a,t(Jγ)

�fI,a,1(Jγ)
) < sep(γ)

2
, so

it is sufficient that

2dr+τr+3 max(1, |γ|)dr
|fI,a,1(γ)|

w(Jγ) <
sep(γ)

2

or, equivalently,

w(Jγ) <
|fI,a,1(γ)|sep(γ)

2dr+τr+4 max(1, |γ|)dr .

According to Theorem 2.3.12, max(1, |γ|) = 2O(τr), Theorem 2.3.13 yields
sepγ = 2−Õ(drτr+d2r) and Theorem 2.3.14 yields |fI,a,1(γ)| = 2−O(drτr). A suf-
ficient condition for non-overlapping is thus that w(Jγ) = 2−Õ(drτr+d2r) or
in other words that a refinement of the roots of fI,a up to a precision in
L = Õ(drτr + d2r) is sufficient.3

3Note that the requirement that the denominator fI,a,1(γ) + e1 must not vanish, which

is ensured by requiring w(Jγ) 6
|fI,a,1(γ)|/2

2dr+τr max(1,|γ|)dr−1 , gives the same asymptotic behavior.

6.2. Sign of a polynomial at the solutions of a system 109

For bounding the cost of the evaluations of the RUR polynomials on the
computed isolating intervals, an amortized bound of the sum of the bitsizes
of the interval endpoints is needed. Due to the dyadic interval representation,
the bitsize of this sum is of the same order as that of the product of the widths
of all intervals. For all the roots together:

∏
w(Jγ) <

∏ |fI,a,1(γ)|
∏

sep(γ)

2dr(dr+τr+4)
∏

max(1, |γ|)dr

and the application of the amortized bounds of Theorems 2.3.12, 2.3.13 and
2.3.14 yields that the sum of the bitsizes of the interval endpoints is in Õ(drτr+

d2r).

Applying the previous theorem to the RURs computed in Chapter 4 or
Chapter 5 we obtain the following result.

Theorem 6.1.2. Given a RUR of 〈P,Q〉, isolating boxes for the solutions of

〈P,Q〉 can be computed in ÕB(d
6 + d5τ) bit operations, where d bounds the

total degree of P and Q, and τ bounds the bitsize of their coefficients. The

vertices of these boxes have bitsize in Õ(d4 + d3τ).

Proof. Depending on the algorithm we use for computing the RUR of 〈P,Q〉,
the RUR is given either as a single RUR (Chapter 4) or as a set of RURs
(Chapter 5). In the first case, the result follows straightforwardly using the
bounds of Theorem 4.1.1. For the second case, it is sufficient to notice that
each RUR resulting from the decomposition satisfies the bitsize bound of
Proposition 4.3.1 since the corresponding ideal contains the ideal 〈P,Q〉 by
Lemma 5.3.2, and that the sum of their degrees is bounded by the Bézout’s
bound of 〈P,Q〉 that is, d2 also by Lemma 5.3.2. Hence, denoting by di and
τi the degrees and bitsizes of the RURs resulting from the decomposition, we
have

∑d
i=1 di 6 d2 and τi ∈ Õ(d2 + dτ) thus

∑d
i=1 d

3
i + d2i τi is in Õ(d6 + d5τ)

and
∑d

i=1 d
2
i + diτi is in Õ(d4 + d3τ), which concludes the proof.

6.2 Sign of a polynomial at the solutions of a
system

The results presented in this section are part of an article published in the

ISSAC 2013 conference [Bouzidi 2013b].

This section addresses the problem of computing the sign (+,− or 0) of a
given polynomial F ∈ Z[X, Y] at the solutions of a bivariate system defined by
an ideal I. Let {fI,a, fI,a,1, fI,a,X , fI,a,Y } be the RUR of I. As in the previous
section, the degree and the bitsize of this RUR are denoted respectively by dr

110 Chapter 6. Implications and applications

and τr and we denote by d and τ the degree and the bitsize of F .4 We also
suppose for simplicity that d = O(dr) and τ = O(τr). We first describe a naive
RUR-based sign_at algorithm for computing the sign at one real solution of
the system, which runs in ÕB(d

9 + d8τ) time. Then, using properties of
generalized Sturm sequences, we analyze a more efficient algorithm that runs
in ÕB(d

8 + d7τ) time. We also show that the sign of F at the O(d2) solutions
of the system can be computed in only O(d) times that for one real solution.

Once the RUR {fI,a, fI,a,1, fI,a,X , fI,a,Y } of I = 〈P,Q〉 is computed, we can
use it to translate a bivariate sign computation into a univariate sign compu-
tation. Indeed, let F (X, Y) be the polynomial to be evaluated at the solution
(α, β) of I that is the image of the root γ of fI,a by the RUR mapping. We first
define the polynomial fF (T) roughly as the numerator of the rational fraction
obtained by substituting X =

fI,a,X(T)

fI,a,1(T)
and Y =

fI,a,Y (T)

fI,a,1(T)
in the polynomial

F (X, Y), so that the sign of F (α, β) is the same as that of fF (γ).

Lemma 6.2.1. The polynomial fF (T) = fd
I,a,1(T)F (T − aY, Y), with Y =

fI,a,Y (T)

fI,a,1(T)
, has degree O(ddr), bitsize in Õ(dτr), and it can be computed with

ÕB(d
3drτr) bit operations. The sign of F at a real solution of I is equal to the

sign of fF at the corresponding root of fI,a via the mapping of the RUR.

Proof. We first compute the polynomial F (T − aY, Y) in the form∑d
i=0 ai(T)Y

i. Then, fF (T) is equal to
∑d

i=0 ai(T)fI,a,Y (T)
ifI,a,1(T)

d−i. Con-
sequently, computing an expanded form of fF (T) can be done by computing
the ai(T), the powers fI,a,Y (T)i and fI,a,1(T)

i, and their appropriate products
and sum.

Computing ai(T). According to Lemma 3.2.1, P (T − SY, Y) can be ex-
panded with ÕB(d

4 + d3τ) bit operations and its bitsize is in Õ(d+ τ). These
bounds also apply to F (T − SY, Y) and we deduce F (T − aY, Y) by substi-
tuting S by a. Writing F (T − SY, Y) =

∑d
i=0 fi(T, Y)Si, the computation of

F (T −aY, Y) can be done by computing and summing the fi(T, Y)ai. Since a

has bitsize in O(log d) by hypothesis, ai has bitsize in O(d log d) ⊆ Õ(d), and
computing all the ai can be done with ÕB(d

2) bit operations. For each ai,
computing fi(T, Y)ai can be done with O(d2) multiplications between integers
of bitsize in Õ(d+τ), and thus with ÕB(d

2(d+τ)) bit operations. Thus, com-
puting all the fi(T, Y)ai can be done with ÕB(d

3(d+ τ)) bit operations, and
summing, for every of the O(d2) monomials in (T, Y), d coefficients (corre-
sponding to every i) of bitsize in Õ(d+τ) can also be done with ÕB(d

3(d+τ))

bit operations, in total. It follows that, F (T − aY, Y) and thus all the ai(T)

can be computed with ÕB(d
4 + d3τ) bit operations.

4We assume without loss of generality that the degree d is even.

6.2. Sign of a polynomial at the solutions of a system 111

Computing fI,a,Y (T)
i and fI,a,1(T)

i. fI,a,Y (T)
i has degree in O(ddr) and

bitsize in Õ(dτr). Computing all the fI,a,Y (T)
i can be done with O(d) multi-

plications between these polynomials. Every multiplication can be done with a
bit complexity that is softly linear in the product of the maximum degrees and
maximum bitsizes (Theorem 2.3.1), thus all the multiplications can be done
with ÕB(d

3drτr) bit operations in total. It follows that all the fI,a,Y (T)
i, and

similarly all the fI,a,1(T)
i, can be computed using ÕB(d

3drτr) bit operations
and their bitsize is in Õ(dτr).

Computing fF (T). Computing ai(T)fI,a,Y (T)
ifI,a,1(T)

d−i, for i = 0, . . . , d,
amounts to multiplying O(d) times, univariate polynomials of degree O(ddr)

and bitsize Õ(dτr), which can be done, similarly as above, with Õ(d3drτr) bit
operations. Finally, their sum is the sum of d univariate polynomials of degree
O(ddr) and bitsize Õ(dτr), which can also be computed within the same bit
complexity. Hence, fF (T) can be computed with ÕB(d

3drτr) bit operations
and its coefficients have bitsize in Õ(dτr).

Signs of F and fF . It remains to show that the sign of F at a real solution of
I is the sign of fF at the corresponding root of fI,a via the mapping of the RUR.
By Definition 2.2.1, there is a one-to-one mapping between the roots of fI,a and
those of I that maps a root γ of fI,a to a solution (α, β) = (

fI,a,X(γ)

fI,a,1(γ)
,
fI,a,Y (γ)

fI,a,1(γ)
)

of I such that γ = α + aβ and fI,a,1(γ) 6= 0. For any such pair of γ and
(α, β), fF (γ) = fd

I,a,1(γ)F (γ − a
fI,a,Y (γ)

fI,a,1(γ)
,
fI,a,Y (γ)

fI,a,1(γ)
) by definition of fF (T), and

thus fF (γ) = fd
I,a,1(γ)F (α, β). It follows that fF (γ) and F (α, β) have the

same sign since fI,a,1(γ) 6= 0 and d is even by hypothesis.

Naive algorithm. The knowledge of a RUR {fI,a, fI,a,1, fI,a,X , fI,a,Y } of
I yields a straightforward algorithm for computing the sign of F at a real
solution of I. Indeed, it is sufficient to isolate the real roots of fI,a, so that the
intervals are also isolating for fI,afF , and then to evaluate the sign of fF at
the endpoints of these isolating intervals. We analyze the complexity of this
straightforward algorithm before describing our more subtle and more efficient
algorithm. We provide this analysis for several reasons: first it answers a
natural question, second it shows that even a RUR-based naive algorithm
performs better than the state of the art.

Lemma 6.2.2. Given a RUR {fI,a, fI,a,1, fI,a,X , fI,a,Y } of I and an isolating

interval for a real root γ of fI,a, the sign of F at the real solution of I that

corresponds to γ can be computed with ÕB(d
3d2rτr + d3r) bit operations.

Proof. By Lemma 6.2.1, fF has degree O(ddr) and bitsize Õ(dτr), and it can
be computed with ÕB(d

2drτr) bit operations. Thus the product fF fI,a has

112 Chapter 6. Implications and applications

degree O(ddr) and bitsize Õ(dτr). By Theorem 2.3.13, the root separation
bound of fF fI,a has bitsize Õ(d2drτr). We refine the isolating interval of
γ for fI,a to a width less than the root separation bound of fF fI,a, which
can be done with ÕB(d

3
r + d2rτr + dr(d

2drτr)) = ÕB(d
2d2rτr + d3r) bit oper-

ations according to Theorem 2.3.15. Furthermore, we can ensure that the
new interval has rational endpoints with bitsize Õ(d2drτr), similarly as in
the proof of Theorem 6.1.1. On the other hand, by Theorem 2.3.10, since
fF has bitsize Õ(dτr), its squarefree part fF can be computed in complexity
ÕB((ddr)

2(dτr)) = ÕB(d
2d2rτr) and it has bitsize in ÕB(dτr + ddr). It then

follows from Theorem 2.3.4 that the evaluation of fF at the boundaries of the
refined interval can be done with ÕB(d

3d2rτr) bit operations which concludes
the proof by Lemma 6.2.1.

Improved algorithm. Our more subtle algorithm is, in essence the one
presented by Diochnos et al. for evaluating the sign of a univariate polyno-
mial (here fF) at the roots of a squarefree univariate polynomial (here fI,a)
[Diochnos 2009, Corollary 5]. The idea of this algorithm comes originally
from [Lickteig 2001], where the Cauchy index of two polynomials is com-
puted by means of sign variations of a particular remainder sequence called
the Sylvester-Habicht sequence. In [Diochnos 2009], this approach is slightly
adapted to deduce the sign from the Cauchy index ([Yap 2000, Theorem 7.3])
and the bit complexity is given in terms of the two initial degrees and bitsizes.
Unfortunately, the corresponding proof is problematic because the authors
refer to two complexity results for computing parts of the Sylvester-Habicht
sequences and none of them actually applies.5 Following the spirit of their
approach, we present in Lemma 6.2.3 a new (weaker) complexity result for
evaluating the sign of a univariate polynomial at the roots of a squarefree uni-
variate polynomial. This result is used to derive the bit complexity of evalu-
ating the sign of a bivariate polynomial at the roots of the system. For clarity,
we postpone the proof of this lemma to Section 6.2.1 after Theorem 6.2.4.

Lemma 6.2.3. Let f ∈ Z[X] be a squarefree polynomial of degree df and

bitsize τf , and (a, b) be an isolating interval of one of its real roots γ with

a and b distinct rationals of bitsize in Õ(dfτf) and f(a)f(b) 6= 0. Let g ∈
Z[X] be of degree dg and bitsize τg. The sign of g(γ) can be computed in

5Precisely, their proof is based on their Proposition 1 which claims, based on

[Lickteig 2001] and [Reischert 1997] that given two polynomials f and g of degree p > q and

bitsize in O(τ), any of their polynomial subresultants as well as the whole quotient chain

corresponding to the subresultant sequence can be computed with ÕB(pqτ) bit operations.

However, in [Lickteig 2001] the complexity results are not stated in terms of p and q but

only in terms of the maximum degree while in [Reischert 1997], the result assumes that the

(q − 1)th subresultant of f and g is known.

6.2. Sign of a polynomial at the solutions of a system 113

ÕB((d
3
f + d2g)τf + (d2f + dfdg)τg) bit operations. The sign of g at all the real

roots of f can be computed with ÕB((d
3
f + d2fdg + d2g)τf + (d3f + dfdg)τg) bit

operations.

Theorem 6.2.4. Given a RUR {fI,a, fI,a,1, fI,a,X , fI,a,Y } of I, the sign of F

at a real solution of I can be computed with ÕB(d
3
rτr + d2d2rτr) bit operations.

The sign of F at all the solutions of I can be computed with ÕB(dd
3
rτr+d2d2rτr)

bit operations.

Proof. By Lemma 6.2.1, the sign of F at the real solutions of I, is equal to the
sign of fF at the corresponding roots of fI,a, or equivalently at those of fI,a.
Furthermore, fF has degree O(ddr), bitsize in Õ(dτr), and it can be computed
with ÕB(d

3drτr) bit operations. On the other hand, by Theorem 2.3.10, the
squarefree part of fI,a can be computed in ÕB(d

2
rτr) bit operations and it has

bitsize in Õ(τr + dr). By Theorem 2.3.15 and 2.3.13, the isolating intervals (if
not given) of fI,a can be computed in ÕB((dr)

3+(dr)
2(τr+dr)) bit operations

with intervals boundaries of bitsize satisfying the hypotheses of Lemma 6.2.3.
Indeed, we can ensure during the isolation of the roots of f = fI,a that the
isolating intervals have endpoints with bitsize in Õ(drτr), similarly as in the
proof of Theorem 6.1.1. Applying Lemma 6.2.3 then concludes the proof.

Applying the previous theorem to the RURs computed in Chapter 4 or
Chapter 5 and using the same arguments as for Theorem 6.1.2, we obtain the
following result.

Proposition 6.2.5. Given a RUR of 〈P,Q〉 and assuming that the degree of

P and Q is bounded by d and their bitsize is bounded by τ , the sign of F at

a real solution of 〈P,Q〉 can be computed with ÕB(d
8 + d7τ) bit operations.

The sign of F at all the solutions of I can be computed with ÕB(d
9 + d8τ) bit

operations.

Remark 6.2.6. Proposition 6.2.5 also holds if the solutions of I = 〈P,Q〉
are described by the rational parameterization of Gonzalez-Vega and El Ka-

houi [Gonzalez-Vega 1996] instead of a RUR. Indeed, such parameterization

is defined, in the worst case, by Θ(d) univariate polynomials fi of degree dfi
whose sum df is at most d2, and by associated rational one-to-one mappings

which are defined, as for the RUR, by polynomials of degree O(d2) and bit-

size O(d2 + dτ). The result of Proposition 6.2.5 on the sign of F at one
real solution of I thus trivially still holds. For the sign of F at all real

solutions of I the result also holds from the following observation. In the

proofs of Lemmas 6.2.7 and 6.2.3, the computation of one sequence of uneval-

uated Sylvester-Habicht transition matrices has complexity ÕB(pH) (in proof

of Lemma 6.2.7) where p is in O(dfi + dg) in the proof of Lemma 6.2.3. The

114 Chapter 6. Implications and applications

sum of the pH over all i is thus O((df + ddg)H) instead of O((df + dg)H)

as for the RUR. However, dgH writes in the proof of Lemma 6.2.3 as

Õ(dg((df + dg)τf + df (τf + τg))) = Õ(dfdg(τf + τg)+ d2gτf) which writes in the

proof of Theorem 6.2.4 as Õ(d2d3(d3 + d2τ) + (d3)2(d2 + dτ)) = Õ(d8 + d7τ).

Thus multiplying this by d remains within the targeted bit complexity. On

the other hand, the complexity of the evaluation phase in the proofs of Lem-

mas 6.2.7 and 6.2.3 does not increase when considering the representation of

Gonzalez-Vega and El Kahoui instead of the RUR because the total complex-

ity of the evaluations depends only on the number of solutions at which we

evaluate the sign of the other polynomial and on the degree and bitsize of the

polynomials involved (values which do not increase in Gonzalez-Vega and El

Kahoui representation; only the number of polynomials is larger).

6.2.1 Proof of Lemma 6.2.3

As shown in [Basu 2006, Theorem 2.61], the sign of g(γ) is
V (SRemS(f, f ′g; a, b)) where V (SRemS(P, Q; a, b)) is the number of
sign variations in the signed remainder sequence of P and Q evaluated
at a minus the number of sign variations in this sequence evaluated at
b (see Definition 1.7 in [Basu 2006] for the sequence and Notation 2.32
for the sign variation). On the other hand, for any P and Q such that
deg(P) > deg(Q) and P (a)P (b) 6= 0 or Q(a)Q(b) 6= 0, we have ac-
cording to [Roy 1996, Theorems 3.2, 3.18 & Remarks 3.9, 3.25]6 that
V (SRemS(P,Q; a, b)) = W (SylH(P,Q; a, b)) where SylH is the Sylvester-
Habicht sequence of P and Q, and W is the related sign variation function.7

The following intermediate result is a consequence of an adaptation of
[Lickteig 2001, Theorem 5.2] in the case where the polynomials P and Q have
different degrees and bitsizes.

Lemma 6.2.7. Let P and Q in Z[X] with deg(P) = p > q = deg(Q)

and bitsize respectively τP , τQ. If a and b are two rational numbers of bit-

size bounded by σ, the computation of W (SylH(P,Q; a, b)) can be performed

with ÕB((p+ q2)σ + p(pτQ + qτP)) bit operations.

6The same result can be found directly stated, in French, in [Lombardi 1990, Theorem

4].
7The Sylvester-Habicht sequence, defined in [Basu 2006, §8.3.2.2] as the Signed Subre-

sultant sequence, can be derived from the classical subresultant sequence [El Kahoui 2003]

by multiplying the two starting subresultants by +1 the next two by −1 and so on. W is

defined as the usual sign variation with the following modification for groups of two con-

secutive zeros: count one sign variation for the groups [+, 0, 0,−] and [−, 0, 0,+], and two

sign variations for the [+, 0, 0,+] and [−, 0, 0,−] (see [Basu 2006, §9.1.3 Notation 9.11]).

6.2. Sign of a polynomial at the solutions of a system 115

Moreover, if aℓ and bℓ, 1 6 ℓ 6 u, are rational numbers of bitsizes that

sum to σ, the computation of W (SylH(P,Q; aℓ, bℓ)) can be performed for all

ℓ with ÕB((p+ q2)σ + (p+ qu)(pτQ + qτP) + puτP) bit operations.

Proof. Following the algorithm in [Lickteig 2001], we first compute the consec-
utive Sylvester-Habicht transition matrices of P and Q denoted by Nj,i with
0 6 j < i 6 p. These matrices link consecutive regular couples8 (Shi, Shi−1)

and (Shj, Shj−1) in the Sylvester-Habicht sequence as follows:
(

Shj

Shj−1

)
= Nj,i

(
Shi

Shi−1

)
such that i 6 p and (Shp, Shp−1) = (P,Q). (6.1)

According to [Lickteig 2001, Theorem. 5.2 & Corollary 5.2], computing all the
matrices Nj,i of P and Q can be done with ÕB(pH) bit operations, where H ∈
Õ(qτP + pτQ) is an upper bound on the bitsize appearing in the computations
given by Hadamard’s inequality.

We evaluate the Sylvester-Habicht sequence at a rational a by first eval-
uating P , Q, and all the matrices Nj,i at a, and then by applying iteratively
the above formula. Doing the same at b yields W (SylH(P,Q; a, b)).

First, note that the evaluation of P (a) and Q(a) can be done with
ÕB(p(τP + σ)) plus ÕB(q(τQ + σ)), that is ÕB(p(τP + τQ + σ)) bit opera-
tions (since p > q), by Theorem 2.3.4. The polynomials appearing in the
matrices Nj,i have bitsize at most H and the sum of their degrees is equal to
p [Lickteig 2001, Corollary 4.3].9 Thus, all Nj,i(a) have bitsize Õ(pσ+H) and
they can be computed in a total of ÕB(p(σ + H)) bit operations, by Theo-
rem 2.3.4. Moreover, by considering the matrices Nj,i other than the first one
Nk,p, as the consecutive transition matrices of the Sylvester-Habicht sequence
of the first regular couple (Shk, Shk−1) after (Shp, Shp−1), we have that the
polynomials appearing in these matrices have the sum of their degrees equal to
that of Shk which is at most q (since k 6 p−1 and Shp−1 = Q). Thus, except
the first one Nk,p(a), all evaluated matrices Nj,i(a) have bitsize Õ(qσ + H)

and they can be computed in a total of ÕB(q(σ +H)) bit operations.
We now apply iteratively Equation (6.1) for computing all the Shi(a).

Since all Sylvester-Habicht polynomials have bitsize at most H and degree at
most q except the first one Shp = P , the bitsize of Shi<p(a) is in O(qσ +H)

and that of Shp(a) is in O(pσ+τP). Given P (a), Q(a) and allNj,i(a), it follows

8Regular couples in the Sylvester-Habicht sequence are the nonzero Sylvester-Habicht

polynomials (Shi, Shi−1) such that deg(Shi) > deg(Shi−1).
9[Lickteig 2001, Corollary 4.3] states that consecutive Sylvester-Habicht transition ma-

trices consist of one zero, two integers and a polynomial which is, up to a coefficient, the

quotient of the division of two consecutive Sylvester-Habicht polynomials. These polyno-

mials being proportional to polynomials in the remainder sequence of (P,Q), the sum of

the degrees of their quotients is equal to the degree of P .

116 Chapter 6. Implications and applications

from their bitsizes that we can compute iteratively the Shi(a) in time ÕB(pσ+

H) for the first regular couple after (Shp, Shp−1) = (P,Q) and in time ÕB(qσ+

H) for each of the others. Thus, for computing of W (SylH(P,Q; a, b)), the
initial computation of all Nj,i takes ÕB(pH) bit operations and the evaluation
phase takes ÕB(p(τP +τQ+σ)) plus ÕB(p(σ+H)+q(qσ+H)) bit operations,
which gives a total of ÕB(p(σ +H) + q2σ) bit operations.

We now consider the case of computing W (SylH(P,Q; aℓ, bℓ)) for 1 6 ℓ 6

u. We slightly change the above algorithm as follows. We only change the
way to evaluate the first regular couple (Shk, Shk−1) after (Shp, Shp−1) at the
aℓ (and bℓ). Once the matrices Nj,i have been computed, we compute the
(non-evaluated) first regular couple (Shk, Shk−1) = Nk,p(Shp, Shp−1). Since
the polynomials in Nk,p have degree at most p and bitsize at most H, the
couple (Shk, Shk−1) can be computed in ÕB(p(H + τP + τQ)) = ÕB(pH) time
[von zur Gathen 2003, Corollary 8.27]. As noted above, Shk, and thus also
Shk−1, have degree at most q and they have bitsize at most H, so they can
be evaluated at a given aℓ in time ÕB(q(σℓ + H)) where σℓ is the bitsize of
aℓ. Now, the polynomials appearing in the matrices Nj,i, other than the first
one Nk,p, have bitsize at most H and the sum of their degrees is at most q,
so similarly as above, all the Nj,i(aℓ), except Nk,p(aℓ), can be computed in
total bit complexity ÕB(q(σℓ +H)). Then, we compute as above each of the
other regular couples evaluated at aℓ in time ÕB(qσℓ +H). Hence, the initial
computation of all Nj,i and of (Shk, Shk−1) takes ÕB(pH) bit operations and
the evaluation phase at all the aℓ takes the sum over ℓ, 1 6 ℓ 6 u, of ÕB(p(τP+

τQ + σℓ)) plus ÕB(q(σℓ +H) + q(qσℓ +H)) bit operations, that is ÕB(p(τP +

τQ) + (p + q2)σℓ + qH) which sums to ÕB(pu(τP + τQ) + (p + q2)σ + quH).
Hence the total bit complexity for computing all the W (SylH(P,Q; aℓ, bℓ)) for
1 6 ℓ 6 u is ÕB((p+ q2)σ+(p+ qu)H+puτP) which concludes the proof.

Proof of Lemma 6.2.3. We may assume that g has degree greater than one
since, if g is a constant the problem is trivial and, if g(X) = cX − d, then
the sign of g(γ) follows from (i) the sign of c if d

c
6∈ (a, b) and from (ii) the

signs of c, f(a), and f(d
c
) if d

c
∈ (a, b); indeed, the signs of f(a) 6= 0 and f(d

c
)

determine whether γ lies in (a, d
c
), {d

c
}, or (d

c
, b). Hence, when g has degree

one, the sign of g(γ) can be computed with ÕB(df (τg + dfτf)) bit operations
according to Theorem 2.3.4.

Recall that the sign of g(γ) is V (SRemS(f, f ′g; a, b)) [Basu 2006, The-
orem 2.61]. When g has degree greater than one, we cannot directly ap-
ply Lemma 6.2.7 since deg(f) < deg(f ′g). However, knowing the sign of f
and f ′g at a and b and noticing that their signed remainder sequence starts
with [f, f ′g,−f,−rem(f ′g,−f), . . .], we can easily compute the value c such
that V (SRemS(f, f ′g; a, b)) = V (SRemS(f ′g,−f ; a, b)) + c. Furthermore,

6.3. Over-constrained systems 117

as observed at the beginning of this section and since f(a)f(b) 6= 0 by hy-
pothesis, V (SRemS(f ′g,−f ; a, b)) = W (SylH(f ′g,−f ; a, b)). We can now
apply Lemma 6.2.7 which thus yields the sign of g(γ) with a bit complexity in
ÕB((p+q2)σ+p(pτQ+qτP)) which simplifies into ÕB((d

3
f+d2g)τf+(d2f+dfdg)τg).

For the sign of g at all the real roots of f , isolating intervals of these
roots can be computed in complexity ÕB(d

3
f + d2fτf) (see Theorem 2.3.15)

such that the bitsizes of the interval boundaries sum up to Õ(d2f + dfτf) (a
consequence of Davenport-Mahler-Mignotte bound, see e.g. [Diochnos 2009,
Lemma 6]). Similarly as for one root, Lemma 6.2.7 then yields that the sign
of g at all the real roots of f can be computed with a bit complexity in
ÕB((p + q2)σ + (p + qu)(pτQ + qτP) + puτP) which writes as ÕB((df + dg +

d2f)dfτf + (df + dg + d2f)((df + dg)τf + df (τf + τg)) + (df + dg)df (τg + τf)) and

simplifies into ÕB((d
3
f + d2fdg + d2g)τf + (d3f + dfdg)τg) bit operations.

6.3 Over-constrained systems

So far, we focused on systems defined by exactly two coprime polynomials.
We now extend our results to compute rational parameterizations of zero-
dimensional systems defined with additional equality or inequality constraints.
We assume given RURI,a = {fI,a, fI,a,1, fI,a,X , fI,a,Y } the RUR of an ideal I
associated to the separating form X+aY , we also assume that the polynomials
of this RUR have degree bounded by dr and bitsize bounded by τr. Given
another polynomial F ∈ Z[X, Y], we have seen in the previous section how
to compute the sign of F at the solutions of I. With a similar approach, we
now explain how to split RURI,a according to whether F vanishes or not at
the solutions of I.

Let F ∈ Z[X, Y] be of total degree at most d and maximum bitsize τ .
Identifying the roots of fI,a with the solutions of the system I via the RUR,
let fF=0 (resp. fF 6=0) be the squarefree factor of fI,a such that its roots are
exactly the solutions of the system I at which the polynomial F vanishes
(resp. does not vanish).

Theorem 6.3.1. Given RURI,a, the bit complexity of computing fF=0 (resp.

fF 6=0) is in ÕB(d
2d2rτr+d3drτr) and these polynomials have bitsize in Õ(dr+τr).

Proof. The polynomial fF (not to be confused with fF=0 or fF 6=0), as defined
in Lemma 6.2.1, has the same sign as F at the real solutions of the system
I. The same holds for complex solutions by considering the “sign” as zero or
nonzero. The roots of the squarefree polynomial fF=0 = gcd(fI,a, fF) thus are
the α + aβ with (α, β) solution of I and F (α, β) = 0. The polynomial fF 6=0

118 Chapter 6. Implications and applications

defined as the gcd-free part of fI,a with respect to fF is also squarefree and
encodes the solutions such that F (α, β) 6= 0.

According to Lemma 6.2.1 and the proof of Theorem 6.2.4, fF and fI,a
can be computed in, respectively, ÕB(d

3drτr) and ÕB(d
2
rτr) bit operations.

Moreover, these integer polynomials have, respectively, bitsize Õ(dτr) and
Õ(dr + τr) and degree O(ddr) and O(dr). Thus, by Theorem 2.3.11, their
gcd and the gcd-free part of fI,a with respect to fF , i.e. fF=0 and fF 6=0,
can be computed with ÕB(d

2d2rτr) bit operations and they have bitsize in
Õ(dr + τr).

For several equality or inequality constraints, iterating this splitting pro-
cess gives a parameterization of the corresponding set of constraints. It is
worth noticing that the set of polynomials {fF=0, fI,a,1, fI,a,X , fI,a,Y } defines
a rational parameterization of the solutions of the ideal I + 〈F 〉, but this is
not a RUR of this ideal (in the sense of Definition 2.2.1). First, because mul-
tiplicities are lost in the splitting process and second because the coordinate
polynomials of the parameterization are still those of the ideal I. Still, it is
possible to compute a RUR of the radical of the corresponding ideal (and
similarly for the ideal corresponding to F 6= 0):

Theorem 6.3.2. Given RURI,a and F ∈ Z[X, Y] of total degree at most d

and maximum bitsize τ , the bit complexity of computing the RUR of the radical

of the ideal I + 〈F 〉 is in ÕB(d
4
r + d3rτr).

Proof. Denote by J the radical of the ideal I + 〈F 〉. The polynomial fF=0

computed in Theorem 6.3.1 is the first polynomial fJ,a of RURJ,a. Indeed, it
vanishes at the solutions of this ideal (with identification of the roots of fJ,a
with the solutions of the system J) and it is squarefree. Then Proposition 4.2.1
yields that fJ,a,1 is the gcd-free part of f ′

J,a with respect to fJ,a. The latter

can be computed in ÕB(d
3
r + d2rτr) according to Theorem 2.3.10.

According to Definition 2.2.1 of a RUR, the X-coordinates of the solu-
tions of J are given by the polynomial fraction fJ,a,X

fJ,a,1
at the roots of fJ,a.

On the other hand, the solutions of J , seen as solutions of I, have their
X-coordinates defined by the polynomial fraction fI,a,X

fI,a,1
. This thus implies

thatfJ,a,X = f−1
I,a,1fI,a,XfJ,a,1 modulo fJ,a. The computation of f−1

I,a,1 together
with the multiplication with other polynomials of the RUR can be done in
ÕB(d

3
r + d2rτr) time ([von zur Gathen 2003, Corollary 11.11]). and gives a

polynomial of degree O(dr) and bitsize Õ(d2r + drτr). It remains to com-
pute the remainder of the division of this polynomial with fJ,a, which can be
done in ÕB(d

4
r + d3rτr) according to Theorem 2.3.2. A similar computation

gives the polynomial fI,a,Y , hence the computation of RURJ,a can be done in
ÕB(d

4
r + d3rτr) bit operations.

6.4. Topology of plane curves 119

Finally, applying the above theorems to the RURs of the ideal 〈P,Q〉 with
P and Q of total degree bounded by d and bitsize bounded by τ yields a
complexity in ÕB(d

8 + d7τ), for the two previous operations.

6.4 Topology of plane curves

We now address the problem of computing the topology of a real plane alge-
braic curve Cf defined by a bivariate polynomial f in Q[x, y] of total degree
d and maximum bitsize τ . As mentioned in the introduction of this thesis,
the idea is to follow the approach in [Cheng 2010] and to show how, using the
results obtained so far, we can improve their algorithm called Isotop.

Before presenting our main contributions, we give some definitions and
properties related to real plane algebraic curves and briefly recall the algorithm
Isotop for computing the topology of curves.

Definition 6.4.1 (x-critical point). A point p is called an x-critical point

of an algebraic curve f if f(p) = ∂f
∂y
(p) = 0.

Geometrically the critical points of the curve f are the points of f where
the normal vector (∂f

∂x
, ∂f
∂y
) is parallel to the x-axis or vanishes. That means

that the tangent to the curve f is either vertical, or not defined. Accordingly,
the critical points are distinguished in x-extreme points and singular points.

Definition 6.4.2 (x-extreme point). A point p is called an x-extreme point

of a curve f if f(p) = ∂f
∂y
(p) = 0 and ∂f

∂x
(p) 6= 0.

Definition 6.4.3 (singular point). A point p is called a singular point of a

curve f if f(p) = ∂f
∂x
(p) = ∂f

∂y
(p) = 0. Otherwise p is called regular.

The following lemma is due to Teissier [Teissier 1973]. It relates the mul-
tiplicity of a point p = (α, β) in its fiber with respect to f , denoted as
mult(f(α, y), β), with its multiplicities as an intersection point of the curves
(f, ∂f

∂y
) and (∂f

∂x
, ∂f
∂y
). These intersection multiplicities denoted as Int(f, ∂f

∂y
, p)

and Int(∂f
∂x
, ∂f
∂y
, p) are the multiplicities of p = (α, β) in the ideals 〈f, ∂f

∂y
〉 and

〈∂f
∂x
, ∂f
∂y
〉 as introduced in Definition 5.2.1.

Lemma 6.4.4. For an x-critical point p = (α, β) of the curve f ,

mult(f(α, y), β) = Int(f, ∂f
∂y
, p)− Int(∂f

∂x
, ∂f
∂y
, p) + 1.

A simpler result can be obtained for the case of x-extreme points, which
are known not to cancel the polynomial ∂f

∂x
.

120 Chapter 6. Implications and applications

Corollary 6.4.5. For an x-extreme point p = (α, β) of f ,

mult(f(α, y), β) = Int(f, ∂f
∂y
, p) + 1.

In the sequel, for simplicity, ∂f
∂y

and ∂f
∂x

are denoted respectively, fy and fx,
we also denote by fyi , the i-th derivative of f with respect to y. Finally, the
multiplicities of critical points in their fibers are all with respect to f .

6.4.1 Isotop outline

In few words, Isotop first focuses on the isolation of the critical points of the
curve f , together with the computation of their multiplicity in fiber. Then,
using a sweep-line method, the algorithm computes a rectangular decompo-
sition of the plane induced by the boxes of the critical points. Finally, the
graph isotopic to f is computed in all rectangles with a greedy method using
the multiplicities in fibers. Note that this connection step requires the knowl-
edge of the type of the critical point inside the considered box (singular or
x-extreme).

As our contributions solely concern the first step of this algorithm, that is,
the isolation of the critical points and the computation of their multiplicities
in fiber, we provide below, a more detailed explanation of this step.

Isolation of the critical points. The algorithm first splits the system of
critical points Ic, into the system of singular points and the system of extreme
points. The system of singular points is Is = {f, fy, fx}. That of extreme
points, denoted Ie, is computed by saturation. More precisely, the equation
1 − ufx = 0 is added to the system of critical points, and a Gröbner basis
computation is performed to eliminate the variable u and obtain the ideal
Ie. The isolation of the solutions of Is and Ie is done by computing Rational
Univariate Representations using the classical strategy that consists in, first,
computing Gröbner bases of Is and Ie, and then computing the corresponding
RURs.

Multiplicities of critical points in fibers. For extreme points, the algo-
rithm use the Teissier formula: the multiplicity of an extreme point in Ic is the
same as in Ie because precisely fx does not vanish at these points. The mul-
tiplicity in Ie is given by the RUR, and hence the multiplicity of an extreme
point in its fiber is this number plus one according to Corollary 6.4.5.

For singular points, since the multiplicity of a point (α, β) in its fiber
is, by definition (see Definition 5.2.1) the multiplicity of β in the univariate
polynomial f(α, y), this multiplicity is the smallest integer k such that the
k-th derivative of f(α, y) does not vanish at β. Accordingly, Isotop solves
successively systems Is,k, that consist of the system of singular points to which

6.4. Topology of plane curves 121

the equations fyi = 0 for i = 2, . . . , k have been added. At each step, a singular
point that is no longer solution of Is,k has its multiplicity in fiber equal to k.

We present in the following, some improvements to Isotop induced by
the results of the previous chapter.

6.4.2 Improvements to Isotop

Our first contribution is to change the Gröbner basis and RUR black box in
Isotop by the Las-Vegas algorithm of Chapter 5 that computes a decompo-
sition into RURs. More precisely, we consider the system of the critical points
defined as Ic = {f, fy} and isolate its real solutions using the algorithm of
Chapter 5 (Theorem 5.4.13) for computing the RURs, and the algorithm of
Section 6.1 for the isolation step. Solving the system of critical points using
these algorithms improves the efficiency of Isotop because, if the system of
critical points decomposes, then computing a RUR of one system as in Isotop

is much more time consuming than computing RURs of several smaller sub-
systems, otherwise, if the system does not decompose, the computation of
the Gröbner basis tends to be time dominant in Isotop and time consuming
compared to computing the triangular systems using subresultants.

On the other hand, we know by Lemma 5.3.1 and Definition 2.2.1, that the
multiplicities of the critical points in the RURs computed by the algorithm
of Chapter 5 are exactly the multiplicities of these points in their fibers with
respect to f . This property is critical for the efficiency of our new algorithm
for computing the topology, since it allows to prevent the extra cost of solving
several bivariate systems, consisting of f and its successive partial derivatives
with respect to y as explained above.

After we have computed the critical points of f with the corresponding
multiplicities in fibers, we still need (for the connection step) to distinguish
between singular and x-extreme points of f . Here, instead of solving the
systems Is = {f, fy, fx} and Ie = {f, fy, 1 − ufx}, we use the algorithm of
Section 6.3 to split the RURs of the system {f, fy} into two sets of RURs that
correspond respectively to the singular points and the x-extreme points of f .
According to Theorem 6.3.2, this can be done in complexity ÕB(d

8 + d7τ).
We also provide an implementation of this new algorithm called Iso-

top2, and compared it with state-of-the-art implementations for computing
the topology of curves. Corresponding benchmarks are given in Chapter 7.

Finally, one interesting question is, how, or whether, the results we ob-
tained in this thesis may impact the theoretical complexity of CAD-based
algorithms for computing the topology. Indeed, most of these algorithms
require (sometimes implicitly) the computation of the multiplicities of the

122 Chapter 6. Implications and applications

critical points in their fiber. Obtaining these multiplicities as a byproduct of
solving the critical system should certainly improve the theoretical complexity
of some of these algorithms. Similarly, many CAD-based algorithms proceed
by shearing the curve in order to put it in generic position. Although very
close, this problem is not equivalent to the problem of computing a separating
form for the critical points of a curve and a question is to know, if finding a
generic shear can be done in the same complexity as computing a separating
form.

Chapter 7

Implementations and experiments

Contents

7.1 Implementations . 123

7.1.1 RS3 bivariate solver 124

7.1.2 CGAL Bivariate Algebraic Kernel 127

7.2 Experiments . 131

7.2.1 RS3 experiments . 132

7.2.2 Isotop2 experiments 137

We presented in the previous chapters, algorithms for solving bivariate
systems and computing with their solutions using Rational Univariate Rep-
resentations. The complexity analysis of these algorithms shows their theo-
retical efficiency with resulting complexity bounds that are currently the best
available. However, even if the theoretical analysis gives some hints on the
relevance of our approach, ultimately, it is above all the practical efficiency
that can validate or not this approach.

In order to verify the practical efficiency of our approach, we have imple-
mented the algorithms presented in Chapters 5 and 6 and performed several
tests and comparisons with state-of-the-art implementations. We discuss in
the next section our implementation work, and then present in Section 7.2
some experimental results.

7.1 Implementations

An algorithm for isolating the real solutions of bivariate systems that follows
the approach of Chapter 5 and Section 6.1 has been implemented by Fabrice
Rouillier in the RS3 library. RS3 is an open source library written in C that
improves the well-known Real solving (RS) library, for the isolation of the real
roots of zero-dimensional bivariate algebraic systems.1 This library provides

1https://who.rocq.inria.fr/Fabrice.Rouillier/Home_Page/Software.html, see

also http://vegas.loria.fr/rs

https://who.rocq.inria.fr/Fabrice.Rouillier/Home_Page/Software.html
http://vegas.loria.fr/rs

124 Chapter 7. Implementations and experiments

the same interface as RS for computations with univariate polynomials. More-
over, since RS3 is based on the algorithm of Chapter 5 for the computation of
the RURs, it does not require any prior Gröbner basis computation and thus,
does not need a Gröbner basis engine, to the contrary of RS.

The development of the RS3 bivariate solver has been done in parallel
to the theoretical work in Chapter 5. Also, several choices we made in our
theoretical description are results of practical observations. Despite this, the
implementation of the bivariate solver in RS3 slightly deviates from the de-
scription given in Chapter 5 in several places. This is because some practical
choices in the implementation may substantially improve the practical running
time of the algorithm but make its analysis much harder without improving
the overall complexity bounds. Moreover, our aim in Chapter 5 was to present
in a comprehensive way the essence of our approach, delaying optimization
techniques to the implementation phase. An example of that is the assumption
we made on the absence of common vertical asymptotes which can artificially
pollute the overall complexity of the algorithm. In Section 7.1.1, we point out
the main differences between our theoretical description in Chapter 5 and the
implementation made by Rouillier.

Another part of our work was the implementation of our algorithms
in a new package in the Computational Geometry Algorithms library
(CGAL) [cga]. More precisely, we worked on the development of a new model
for the bivariate algebraic kernel concept in CGAL, based on the RS3 library.
This model gathers necessary tools for solving and handling bivariate polyno-
mial systems (see Section 7.1.2). Since CGAL is written in C++, we created
an interface with the RS3 library to benefit from many operations provided
by the latter, as for instance, the isolation of the real solutions of bivariate
systems or the refinement of the isolating boxes of the solutions. The im-
plementation of this model is described in detail in Section 7.1.2. Note also
that for the time being, the package is under prototypical status and very few
tests have been achieved. Once the test phase complete this package should
be submitted for integration in CGAL.

Finally, we implemented isotop2, a new version of Isotop based on our
new RS3 solver as described in Section 6.4. We choose to not detail this part
of the implementation below, since the initial implementation, Isotophas not
suffered from any changes except the replacement of the old RS solver by the
new RS3 solver.

7.1.1 RS3 bivariate solver

As mentioned above, aiming at practical efficiency, the implementation of our
bivariate solver presents several changes with respect to the description given

7.1. Implementations 125

in Chapter 5. We discuss below these main changes.

The choice of the linear form. It is obvious that choosing a linear form
of the form X+aY with a 6= 0, instead of the variable X or Y does not change
the complexity bound expressed in Õ for the RUR-candidates computation.
However, one can observe in practice that computing a RUR-candidate using,
as a linear form, the variable X or Y leads to intermediate coefficients that are
much smaller than those occurring in the computation of a RUR-candidate
with respect to a random linear form X + aY with a 6= 0. Hence, choosing
as a linear form the variable X or Y will obviously speedup the computation
of the RUR-candidates. In addition, choosing a random linear form X + aY

tends to destroy the sparseness of the system, which results in more symbolic
computations impacting negatively the running time of the algorithm.

In our implementation, based on the previous observation, we choose the
linear forms starting first with the variables X, Y and then X + iY with
i = 1, . . . , d4. In practice however, even if a random choice of the form X +

aY is separating with high probability, a mistake would be to consider that
this is also the case when it comes to the variable X or Y (because the
system modeling a practical problem inherits from its particular structure
or symmetries in the original coordinate system). Also, we want to avoid
computing the RUR-candidates over Z with respect to X or Y , and just at
the end realizing that the chosen variable is not separating. To avoid the
cost of computing completely the RUR-candidates, we design a filter that
is able, for a low cost, to exclude a linear form that is non-separating with
high probability. More precisely, the idea is to first choose a random linear
form X + aY and to compute the corresponding RUR-candidate modulo one
arbitrary prime number µ. Then the same computation is performed, but this
time with X or Y instead of X+aY and the degrees of the squarefree parts of
the resulting RUR-candidates first polynomials are compared. If the degrees
are the same and since X + aY is separating with high probability, it is then
also the case for the variable X and it can thus be used to compute the RURs
over Z. Compared to computing the RUR-candidate associated to one of the
variable X or Y over Z, the previous filter is much less expensive, since it
amounts to compute only two RUR-candidates modulo a prime number µ.

The choice of the prime numbers. In Algorithm 10, to ease the com-
plexity analysis, the prime numbers for computing the RUR-candidates are
chosen randomly in a given set of primes whose cardinal depends on the degree
and the bitsize of the input polynomials. This way of choosing primes sup-
poses the prior construction of this set, which turns out to be time consuming
in practice, especially when we deal with polynomials with high degree and
bitsize. In addition, the primes selected this way have size that also depends

126 Chapter 7. Implementations and experiments

on the degree and the bitsize of the input polynomials even though it does
not appear in the complexity expression (hidden in the Õ).

In our implementation, the prime numbers are chosen smaller than the
word size of the processor (264) and thus have bitsize that is independent of
the degree and the bitsize of the input polynomial. In addition, unlike in
Algorithm 10 where the prime numbers are chosen randomly in a given set,
here we avoid constructing this set and select successively primes, starting
from 264 and using the routine Prevprime.2 The rationale is that in practice,
the probability that a lot of unlucky prime numbers are located close to 264

is low.

Lifting the result. Another change concerns the way the RURs are lifted
over the integers. In our theoretical description, we first compute an upper-
bound on the size of these RURs and run the algorithm modulo a set of
primes whose product is larger than this bound. However, this bound is
not expected to be tight and can be in some cases quite far from the actual
size of the RURs, which generally results in unnecessary computations that
slow down the algorithm in practice. In our implementation, we avoid the
computation of such a theoretical bound and proceed as follows: We select
iteratively prime numbers as described above3, and for each selected prime
number µ, we compute the sequence of the RUR-candidates modulo µ, we
add this sequence to the set of the already computed sequences AR and we
lift the result over Z using the sequences in AR. We stop the loop, when two
successive lifts yield the same result over Z. Then, with high probability, the
computed sequence of RUR-candidates are correct.

Verification. The theoretical description of the verification in Sec-
tion 5.4.4.1 was guided more by the aim of achieving a good complexity bound
than achieving practical efficiency. In our implementation, we keep the same
general idea that consists in substituting the coordinates of the RURs in the
input polynomials, but we slightly modify the way we perform this substitu-
tion. Indeed, instead of evaluating the input polynomials using the monomial
basis representation, we use the Horner evaluation scheme, which is known to
be more efficient. On the other hand, in the algorithm of Section 5.4.4.1, we
first compute the polynomial resulting from the substitution and only after, we
compute the reduction of this polynomial by the first polynomial of the RUR,
fI,a. The drawback of this strategy in practice is that the degree increases at
each step of the substitution, which increases the overall cost of the substitu-
tion. In our implementation we proceed by reducing modulo the polynomial

2
Prevprime(a) returns the greatest prime number less than or equal to a.

3Instead of selecting the prime numbers by sets of m primes, the latter are now selected

one by one.

7.1. Implementations 127

of the RUR fI,a, at each step of the substitution so that the intermediate
degrees remain low (smaller than the degree of fI,a). From the complexity
point of view, proceeding this way will considerably increase the bitsize of the
intermediate coefficients. In practice however, we observed (without being
able to explain it) that the intermediate coefficients do not grow more than
the intermediate coefficients in the theoretical description, that is, without
reductions.

7.1.2 CGAL Bivariate Algebraic Kernel

The Computational Geometry Algorithms Library is the state of the art li-
brary for computational geometry algorithms. Written in C++, this library
follows the generic programming paradigm, which allows to exchange the types
or the methods used by an algorithm. Typically, an algorithm in CGAL can
be parametrized by any type as long as the latter satisfies a certain set of
requirements called concept. Any data type that fulfills the requirement of a
concept is called a model of this concept.

In CGAL, Algorithms are usually parametrized by a traits class (or
a kernel) that encapsulates the geometric objects, predicates and construc-
tions used by the algorithm. A typical example is a geometric algorithm,
whose traits class defines the input objects the algorithm is working on, and
the geometric primitives that are needed to compute with these objects.

While in the past, the focus of the library was on linear objects. Re-
cently, CGAL developers have decided to direct more of the project’s at-
tention to non-linear objects. As mentioned in the introduction, handling
non-linear objects often requires solving algebraic systems of equations and
computing with their solutions. To this purpose, the concept of algebraic
kernel has been introduced [Emiris 2008], with the aim of providing a set
of functions for computing with polynomials and polynomial systems. Cur-
rently, CGAL proposes two different concepts: A univariate algebraic kernel
(AlgebraicKernel_1) that encapsulates basic functionalities for univari-
ate polynomials and algebraic numbers resulting from the isolation of these
polynomials, and a bivariate algebraic kernel (AlgebraicKernel_2) that
gathers functions for handling polynomials in two variables.

Currently, two models of the AlgebraicKernel_1 concept exist in
CGAL. The first one is based on an algorithm for isolating the real roots of a
univariate polynomial using the bitstream Descartes method [Mehlhorn 2008].
The second one, developed by Peñaranda et al. [Lazard 2009], uses the RS li-
brary to perform the root isolation of univariate polynomials [Rouillier 2003].

For the AlgebraicKernel_2 concept, only one model currently ex-
ists. This model is based on algorithms computing a geometric and

128 Chapter 7. Implementations and experiments

topological analysis of a single curve [Eigenwillig 2007] and a pair of
curves [Eigenwilling 2008]. Roughly, these algorithms follow a Cylindrical-
Algebraic-Decomposition approach by first computing the x-coordinate of the
critical points of curves and pairs of curves by projection (resultant computa-
tion), and then by computing additional information about the fibers of these
x-coordinates, for instance, the corresponding y-coordinates, using polynomial
subresultants and Sturm-Habicht sequences [Gonzalez-Vega 1989].

Our contribution, which can be seen as an extension of the work of
Peñaranda et al. [Lazard 2009], is to propose a new class AlgebraicKer-

nel_rs_gmpz_2, which is a model for the AlgebraicKernel_2 concept,
based on the new RS3 bivariate solver. The implementation of this class is
an important step toward the integration in CGAL of our algorithm for com-
puting the topology of curves discussed in Section 6.4.

Before presenting the details of our implementation, we review below the
main requirements of the AlgebraicKernel_2 concept. Note that we fo-
cus here on the main functionalities and refer the reader to the CGAL man-
ual [Berberich 2013] for a complete description of this concept.

AlgebraicKernel_2 concept. A model for the AlgebraicKernel_2

concept has to provide the following types and functors:4

• Coefficient: A number type that represents the scalar coefficients of
bivariate polynomials.

• Polynomial_2: A type representing bivariate polynomials over the
scalar type Coefficient.

• Algebraic_real_2: A type that represents a point in the plane or
equivalently a solution of a bivariate system.

• Solve_2: A functor that computes the solutions of a bivariate system
S = {P,Q} of type Algebraic_real_2.

• IsCoprime_2, IsSquareFree_2, MakeCoprime_2,
MakeSquareFree_2, SquareFreeFactorize_2: Functors
checking for coprimality or squarefreeness, decomposing two polynomi-
als into a common part, and two coprime polynomials, computing the
squarefree part and the squarefree factorization.

• Compute_polynomial_X_2, Compute_polynomial_Y_2,
ComputeX_2, ComputeY_2: Functors computing algebraic num-

4A functor is an object that defines the operator(). Roughly speaking, it is an object

that acts like a function.

7.1. Implementations 129

ber corresponding to the x and y-coordinates of a solution of a bivariate
system as well as the corresponding univariate polynomials.

• IsZeroAt_2, SignAt_2, IsolateX_2, IsolateY_2, Isolate_2:

Functors checking the vanishing of a bivariate polynomial at a solution
of a bivariate system, computing its sign, computing an isolating box of
a solution with respect to the roots of a polynomial or a system of two
polynomials.

Note finally that a model of the AlgebraicKernel_2 concept must
have as a template argument a model of AlgebraicKernel_1 that pro-
vides basic operations for univariate polynomials needed for computations
with bivariate polynomials. This model also determines the type of the scalar
coefficients of the polynomials.

7.1.2.1 Data representation

Coefficients: Our bivariate algebraic kernel handles polynomials with in-
teger coefficients of arbitrary-length represented by the CGAL type Gmpz.
This type is based on the GMP library [Torbjörn Granlund 2002].

Polynomial_2: For representing univariate and bivariate polynomials, we
use the CGAL public package for polynomials with arbitrary coefficient types
[Hemmer 2010]. This package provides types and operations to deal with
multivariate polynomials. In particular, we use operations from this package
to implement the functors IsCoprime_2, IsSquareFree_2, MakeCo-

prime_2, MakeSquareFree_2 and SquareFreeFactorize_2 in our
algebraicKernel_2 class.

Algebraic_real_2: In order to fit the output of the RS3 solver, we rep-
resent a solution of a bivariate system using the Rational Univariate Represen-
tation. More precisely, we represent a solution (α, β) by a data structure that
contains the two polynomials of the input system P and Q, the four polyno-
mials of the RUR {f(T), f1(T), fX(T), fY (T)} that encodes the solution, and
three intervals corresponding respectively to an isolating interval of f(T), Jγ,
and the two intervals Jα = �fX(Jγ)

�f1(Jγ)
and Jβ = �fY (Jγ)

�f1(Jγ)
that correspond to the X

and Y -coordinates of the solution. Also, in order to ease several operations,
we store in this data structure some other relevant information, which we list
below.

• An integer m corresponding to the multiplicity of the solution in the
corresponding RUR. As shown in Section 6.4, this information is critical
for computing the topology of curves using the Isotop approach.

130 Chapter 7. Implementations and experiments

• The integer a of the separating linear form X+aY used to compute the
Rational Univariate Representation.

• Two polynomials RY and RX , that vanish respectively at the X-
coordinate and the Y -coordinate of the solution. These polynomials are
useful to perform operations that do not really fit our Rational Univari-
ate Representation such that Compute_polynomial_X_2, Com-

pute_polynomial_Y_2, ComputeX_2 or ComputeY_2 (see be-
low for details). It should be stressed however, that such polynomials are
not part of the RS3 solver output and computing them is in general time
consuming since it requires the computation of resultants of P and Q.
Also, in order to avoid the cost of computing them systematically, the
latter are by default initialized to null and computed only on demand,
that is, when one of the previous operations is called.

Finally, for interval representations, we use the CGAL number types
Gmpfr and Gmpfi, based respectively on the libraries MPFR [MPFR]
and MPFI [MPFI]. These number types have been implemented by Luis
Peñaranda during the development of the RS-based Univariate algebraic ker-
nel [Lazard 2009] and are integrated as standard number types in CGAL since
the version 3.6.

7.1.2.2 Functors implementation

Solve_2. Isolating the real solutions of a bivariate system S = {P,Q} is the
main functionality of the bivariate algebraic kernel. To perform this operation,
we developed an interface with the RS3 library. This interface provides two
functions that allows respectively to compute the RURs of S and to isolate
the solutions of a given RUR.

IsCoprime_2, IsSquareFree_2, MakeCoprime_2, MakeSquare-

Free_2, SquareFreeFactorize_2. As mentioned previously, all these
operations are realized using the basic operations provided by the CGAL
package for polynomials.

Compute_polynomial_X_2, Compute_polynomial_Y_2, Compu-

teX_2, ComputeY_2. These operations require the computation of the
univariate polynomials RX and RY that vanish respectively at the X and the
Y -coordinate of the solution, since the latter are not part of the output of our
RS3 solver. This is done by computing the squarefree part of the resultant of
the polynomials P and Q (stored in the data structure Algebraic_real_2)
with respect to X and Y . The two operations ComputeX_2, ComputeY_2

require in addition the computation of isolating intervals of RX (resp. RY)

7.2. Experiments 131

that correspond to the X-coordinate (resp. the Y -coordinate) of the solu-
tion. This is done by isolating the roots of the univariate polynomial RX

(resp. RY) and then, refining the isolating box of the solution until the inter-
val corresponding to the X-coordinate (resp. Y -coordinate) overlaps only one
isolating interval of the univariate polynomials RX (resp. RY).

For refining the isolating box of a solution, we use the quadratic refinement
method provided by the RS3 interface. This method, which takes a RUR as
input, first refines the isolating interval of f corresponding to the solution
and then compute the intervals corresponding to its X and Y -coordinate by
evaluating the rational fractions of the RUR using interval arithmetic.

IsZeroAt_2, SignAt_2, IsolateX_2, IsolateY_2, Isolate_2. The
implementations of these functors are all based on the same basic idea. It
consists in checking whether the considered solution is solution of the given
polynomials. If so, we have finished. Otherwise, we refine the box of the
solution and evaluate the polynomials at this box using interval arithmetic,
until 0 is not contained in the resulting interval so that we can conclude.

For checking that a solution (α, β) is a zero of a given polynomial F (X, Y),
we proceed as in Section 6.2 by first computing the polynomial fF resulting
from the substitution of the RUR coordinates associated to (α, β) in the poly-
nomial F (X, Y). Then we compute the squarefree part of the gcd of fF and
f and compute its signs at the two bounds of the isolating interval of f . If
the obtained signs are different, this means that the solution (α, β) is also a
solution of F (X, Y).

7.2 Experiments

Our tests consist of two parts: In the first part, we test the RS3 solver for the
isolation of the real solutions of bivariate systems and in the second part we
test isotop2 for the computation of the topology of curves.

The test suite includes 1500 examples of curves of degree up to 100
that are already used in [Labs 2009, Brown 2002, Gonzalez-Vega 2002,
Berberich 2011a, Berberich 2011b, Cheng 2010]. For the bivariate solving
tests, we consider the systems defined by the curves and their derivatives
with respect to the variable y. In the following, we only keep instances for
which the running time of RS3 is larger than 1 second on a regular laptop.
This reduces our data base to about 300 examples. We also consider one
challenging example from [Cazals 2008]. The timeout is set to 60 minutes for
the RS3 experiments and to 30 minutes for the Isotop2 experiments.

132 Chapter 7. Implementations and experiments

7.2.1 RS3 experiments

We run our experiments on 2.27GHz 6-Core Intel Xeon L5640 with 8MB of
L2 cache under Linux platform, and compare our RS3 solver in its sequential
and multi-thread versions (with respectively three and six threads), with the
bivariate version of the solver of the Maple package Regular Chains [Li 2011],
which we refer to as IsolateRC, and Lgp by Jin-San Cheng et al. [Cheng 2009]
(both implemented in maple).5 We measure separately the running times of
the two steps of our RS3 solver, that is, the symbolic step that consists in
computing the RURs and the numerical step in which isolating boxes for the
solutions are computed from these RURs, and we add as markers the running
times of computing the resultant on Maple and those of performing the trian-
gular decomposition (Triangularize) and the radical triangular decomposition
(Radical_Triangularize) in the Regular Chains Solver. This allows first to
compare the cost of computing the RURs to that of computing only the re-
sultant or the triangular decomposition, and second to measure the gain that
the RURs computation actually brings to the numerical step. In addition,
since only the symbolic part of our RS3 solver is multi-thread, isolating its
running time allows to measure precisely the impact of the use of multi-thread
implementations in the global running time, especially for instances where the
symbolic part is known to be the bottleneck of the solving process.

We study the performance of our RS3 solver on different classes of exam-
ples. We first consider a set of “special” curves taken from [Berberich 2011b].
These curves have, for instance, a large number of solutions, high-curvature
points, many solutions on the same vertical line or many clustered solutions.
The timings and the descriptions of these curves are given in Table 7.1 and
Table 7.2. Second, we consider, a set of home-made instances. These instances
include generic curves, generated either as random bivariate polynomials, or
as resultants of two random trivariate polynomials, and non-generic curves,
generated as the product of random curves with one or several of their vertical
translates so that each fiber will contain more than one critical point.6 In each
case, the curves are considered with increasing total degrees and coefficient
bitsizes. The timings for these curves are given in Tables 7.3, 7.4 and 7.5.

A main observation that stems from our experiments is that RS3, in its
sequential version, is generally faster than the two contestants. For IsolateRC,

5Note that we do not compare our solver to the recent solver Bisolve [Berberich 2011b]

since in the next section, we compare our Isotop2 implementation for computing the topol-

ogy of curves with FastAnalysis implementation from [Berberich 2011a], which is shown to

be quite uniformly faster than Bisolve.
6Each curve f(x, y) is multiplied by one or several curves of the form f(x, y + l) with

l = 1, 2, 3,

7.2. Experiments 133

the gain factor is, on average, equal to 140 varying between 0.4 and 1000 while
for Lgp, it is, on average, equal to 5 and varies between 0.1 and 40.

In addition, by comparing columns 2, 7 and 8 in our tables, one can see
that first, RC Triangularize is very efficient since it is only slower than the
resultant of Maple by a factor less than 10 although Triangularize computes
a lot more than the resultant, and second, that our computation of the RURs
(including the decomposition into triangular subsystems) is comparable to
Triangularize in the sense that the time ratio varies between 0.1 and 10.

On the other hand, comparing columns 3 and 10, which correspond to the
running times for only the isolation steps, we observe that first, the running
time of this step in RS3 is, except for very few instances, negligible compared
to the running time for computing the RURs and second, that computing
isolating boxes from the RURs is much more efficient than computing them
from regular triangular systems. Moreover, unlike RS3 where the isolation step
follows directly after the RURs computation, the solver IsolateRC requires first
the computation of the radical triangular decomposition before performing
the isolation of the solutions. Computing such a radical decomposition may
induce a substantial overhead compared to only computing the triangular
decomposition, especially for non-generic curves (see column 9 in Table 7.5).

We thus conclude from the above observations that the overhead of the
symbolic computation of the RURs (from the triangular systems) is small
compared to the significant benefit it yields for the isolation step.

Finally, we observe that the use of multi-thread implementations brings
a notable gain to the running times of the symbolic step of RS3, which is
expected since we use multi-modular arithmetic. One can however notice
that the gained factor is more important between the sequential version and
the multi-thread version with three threads (a factor between 2 and 3), than
between the latter and the multi-thread version with six threads especially
for curves with large coefficients (see Table 7.1). So far, we are not able to
explain this fact. Note finally that in most cases, the gained factor resulting
from the use of the multi-thread implementation is reflected in the running
time of the global RS3 solver; this is because the isolation step is in general
negligible compared to the RURs computation step.

Curves RURs_Seq Isolation RS3_Seq RURs_MT3 RURs_MT6 Resultant Triangularize Tr_radical RC_Iso_step IsolateRC LGP

13_sings_9 0.17 0.08 0.25 0.07 0.07 0.55 3.03 2.79 13.75 16.54 9.30
FTT_5_4_4 9.524 5.256 14.78 2.17 1.19 0.97 0.75 1.00 10.27 11.27 216.71
SA_2_4_eps 0.386 0.284 0.67 0.05 0.02 1.38 5.66 5.68 0.17 5.85 5.13
SA_4_4_eps 10.74 0.84 11.58 4.44 3.46 6.00 90.50 90.39 1.08 91.47 152.89
compact_surf 2.916 1.244 4.16 0.91 0.58 0.60 11.93 13.16 156.33 169.49 15.01
cov_sol_20 39.907 12.573 52.48 9.49 5.68 1.00 114.36 443.87 Timeout Timeout 67.69

curve24 11.334 2.936 14.27 4.27 3.34 6.48 9.90 10.10 3083.85 3093.95 45.90
curve_issac 0.256 0.244 0.50 0.05 0.06 0.28 2.03 2.38 464.59 466.97 2.81

cusps_and_flexes 1.684 0.716 2.40 0.96 0.82 0.97 3.47 3.67 129.99 133.66 2.97
deg16_7_curves 0.348 0.132 0.48 0.14 0.13 0.43 7.18 7.92 1.23 9.15 4.71
degree_6_surf 11.814 1.116 12.93 4.52 3.25 7.20 398.25 398.13 Timeout Timeout 337.64
mignotte_xy 221.095 12.435 233.53 153.32 148.45 51.50 247.23 248.22 Timeout Timeout 1077.57
dfold_10_6 0.759 0.221 0.98 0.30 0.21 0.05 0.55 0.55 41.95 42.50 5.43
grid_deg_10 8.329 0.861 9.19 5.03 4.63 1.31 4.36 4.76 63.42 68.18 2.80
huge_cusp 116.254 1.136 117.39 112.95 112.96 8.15 35.29 35.90 676.05 711.95 140.30

rand_9_2048 81.472 0.328 81.80 72.46 71.59 3.81 17.95 17.67 16.02 33.69 7.41
spider 79.341 16.199 95.54 26.26 19.49 33.83 281.29 287.22 Timeout Timeout Timeout

swinnerson 1.534 0.236 1.77 0.73 0.54 0.62 13.93 14.20 449.82 464.02 35.74
ten_circles 0.298 0.182 0.48 0.09 0.09 0.36 7.37 7.86 1.30 9.16 4.62

Table 7.1: Benchmark results for the “special” curves listed in Table 7.2. Running times are in seconds

Instance Description Instance Description

13_sings_9 large coefficients, high-curvature points FTT_5_4_4 many non-rational singularities

SA_2_4_eps singular points with high tangencies, displaced SA_4_4_eps singular points with high tangencies, displaced

compact_surf silhouette of an algebraic surface, many singularities,

isolated solutions

cov_sol_20 covertical solutions

curve24 curvature of degree 8 curve, many singularities curve_issac isolated points, high-curvature points

cusps_and_flexes high-curvature points deg16_7_curves a set of 7 random curves multiplied together

degree_6_surf silhouette of an algebraic surface, covertical solutions in

both directions

mignotte_xy a product of x/y− Mignotte polynomials, displaced,

many clustered solutions

dfold_10_6 a curve with many half-branches grid_deg_10 large coefficients, curve in generic position

huge_cusp large coefficients, high-curvature points rand_9_2048 random curve with large coefficients

spider degenerate curve, many clustered solutions swinnerson covertical solutions in both directions

ten_circles a set of 10 random circles multiplied together

Table 7.2: Description of the curves whose running times are given in Table 7.1. The polynomials defining these curves are
archived online at http://www.mpi-inf.mpg.de/departments/d1/projects/Geometry/BisolveDatasetAlenex2011.

http://www.mpi-inf.mpg.de/departments/d1/projects/Geometry/BisolveDatasetAlenex2011

d, τ , density RURs_Seq Isolation RS_Seq RURs_MT3 RURs_MT6 Resultant Triangularize Triangularize_radical RC_Iso_step IsolateRC LGP

10,32 0.148 0.332 0.48 0.12 0.07 0.37 0.48 0.45 17.07 17.52 0.68
12,32 0.552 0.308 0.86 0.13 0.07 0.40 0.70 0.69 22.23 22.92 0.74
14,32 1.156 0.384 1.54 0.43 0.35 0.52 0.90 0.91 39.08 39.99 1.71
16,32 2.592 0.468 3.06 1.07 0.88 0.99 2.64 2.62 52.30 54.92 2.72
18,32 4.53 0.56 5.09 1.98 1.66 1.75 5.62 5.64 60.99 66.63 3.84
20,32 7.032 1.008 8.04 2.92 2.31 3.01 10.88 10.87 126.74 137.61 16.12

8,1024,sparse 12.31 0.2 12.51 10.58 9.58 1.36 2.91 2.91 8.51 11.42 8.08
16,32,sparse 2.132 0.488 2.62 0.852 0.732 0.73 1.57 1.57 60.53 62.10 2.69

16,1024,sparse 163.196 0.764 163.96 120.25 113.93 15.50 202.16 202.31 76.59 278.90 26.09
32,1024,sparse 2271.056 613.504 2884.56 1320.196 1176.016 263.18 Timeout Timeout Timeout Timeout Timeout
8,1024,dense 11.258 0.392 11.65 8.96 8.70 1.25 2.72 2.77 16.69 19.46 2.28
16,32,dense 2.812 0.308 3.12 1.23 1.02 0.73 2.20 2.19 29.80 31.99 2.26

16,1024,dense 174.278 0.732 175.01 128.73 122.33 16.10 369.21 371.25 54.70 425.95 28.23
32,32,dense 60.056 7.504 67.56 23.71 17.85 27.73 327.34 328.03 1417.33 1745.36 121.43

Table 7.3: Benchmark results for random curves of degree d and bitsize τ . When the density of the polynomials is not
specified, it is equal to 50%. Running times are in seconds

d1, d2, τ RURs_Seq Isolation RS_Seq RURs_MT3 RURs_MT6 Resultant Triangularize Triangularize_radical RC_Iso_step IsolateRC LGP

3,3,32 0.23 0.11 0.34 0.08 0.06 0.37 1.97 1.81 24.22 26.03 1.17
4,4,16 1.546 0.524 2.07 0.48 0.36 1.41 18.30 18.20 2889.88 2908.08 5.95
4,4,32 5.686 0.484 6.17 2.53 2.12 4.49 196.79 197.85 Timeout Timeout 16.73
5,5,16 10.284 1.676 11.96 3.71 2.72 7.42 641.23 636.55 Timeout Timeout 175.79
5,4,32 2.49 0.91 3.40 0.69 0.47 2.18 53.49 53.49 Timeout Timeout 17.59

3,3,16,translated 2.926 1.244 4.17 0.71 0.38 3.99 77.61 90.88 2041.87 2132.75 16.97
4,3,16,translated 19.582 1.688 21.27 7.55 5.64 20.42 1183.04 1402.25 Timeout Timeout 122.99

Table 7.4: Benchmark results for resultants of two random trivariate polynomials of degrees d1, d2 and bitsize τ with 50%
of non-zero coefficients. In the two last rows, the obtained resultant is translated once. Running times are in seconds.

d, τ , nb_tr RURs_Seq Isolation RS3_Seq RURs_MT3 RURs_MT6 Resultant Triangularize Radical RC_Iso_step IsolateRC LGP

4,32,2 0.318 0.132 0.45 0.09 0.06 0.72 2.24 3.16 1.85 5.01 1.47
4,32,3 0.79 0.42 1.21 0.21 0.08 1.62 9.51 24.82 85.64 110.46 6.76
5,32,2 0.854 0.396 1.25 0.17 0.09 1.15 8.21 13.06 10.19 23.25 3.15
5,32,3 5.134 0.996 6.13 1.73 1.21 3.49 47.05 151.75 40.41 192.16 13.50
6,32,2 3.114 0.996 4.11 0.85 0.50 2.08 27.77 53.25 127.56 180.81 10.81
6,32,3 8.268 2.392 10.66 2.07 1.11 5.71 120.05 456.59 Timeout Timeout 47.32
7,32,2 8.156 1.384 9.54 2.79 2.08 3.76 95.23 228.56 820.42 1048.98 27.63
7,32,2 8.081 1.149 9.23 2.82 2.00 3.47 99.53 179.46 Timeout Timeout 23.14
7,32,3 24.146 2.404 26.55 8.41 6.07 11.46 475.74 772.45 993.01 1765.46 97.35
7,32,3 25.544 2.576 28.12 8.98 6.61 14.01 39.19 57.20 619.57 676.77 119.39
8,32,1 2.344 0.596 2.94 1.01 0.50 0.95 2.96 3.43 142.40 145.83 6.10
8,32,2 14.866 1.244 16.11 5.49 4.08 5.70 22.78 29.00 714.78 743.78 39.40
8,32,3 67.43 3.06 70.49 25.41 19.41 31.42 2356.67 Timeout Timeout Timeout 233.87

Table 7.5: Benchmark results for random curves of degree d, bitsize τ with 50% of non-zero coefficients which have been
translated nb_tr times. Running times are in seconds

7.2. Experiments 137

7.2.2 Isotop2 experiments

We compare our implementation Isotop2 with Isotop, [Cheng 2010],
CA, the arrangement package of CGAL [Eigenwillig 2007] and FastAnaly-
sis [Berberich 2011a]; some comparisons with older algorithms can be found
in these papers, in particular in [Cheng 2010].

Isotop2 versus Isotop. Comparing Isotop2 with Isotop [Cheng 2010],
we observe that Isotop2 is uniformly more efficient than Isotop . We ob-
serve a significant ratio of running time. For generic curves, the ratio varies
between 5 and 15 on curves of degree between 10 and 20. For non-generic
curves, we observe a ratio between 1.5 and 15 for degree between 12 and 25.
Naturally, the ratio increases with the degree of the curves. Corresponding
benchmarks are given in Tables 7.6, 7.7, 7.8, 7.9 and 7.10.

Isotop2 versus CA (CGAL). Comparing Isotop2 with CA
[Eigenwillig 2007], the curve analysis of the arrangement package of
CGAL, we observe that for small instances or generic ones, the running
times are similar with a small advantage for CA (of a factor at most 3).
On the other hand, for non-generic curves and particularly for high degree
ones, Isotop2 outperforms CA by factors ranging from 1 to 500, and on the
most difficult instances CA does not terminate in less than 30 minutes (on a
regular PC). Corresponding benchmarks are given in Table 7.11.

Isotop2 versus FastAnalysis. The algorithm presented in
[Berberich 2011a] and its implementation FastAnalysis reduce as much
as possible the (practical) cost of the symbolic computations by running a
very fast GPU implementation for computing resultants. Note that Fast-

Analysis and Isotop2 share the same implementation (RS [Rouillier 2003])
for isolating the roots of univariate polynomials with rational coefficients.

FastAnalysis is not yet distributed and we considered the instances pre-
sented in [Berberich 2011a]. We first compared FastAnalysis to the sequential
version of Isotop2 running on a comparable machine as in [Berberich 2011a]
and observed comparable behavior on most instances with an advantage to
FastAnalysis of a factor up to 4. We then compared FastAnalysis to the
multi-thread version of our algorithm. We observe that the two implementa-
tions perform similarly with an advantage to FastAnalysis of a factor between
1/2 and 3.7 Although the multi-thread version of RS3 is essentially linear in
the number of threads, this does not substantially change the comparative
behavior because the symbolic part of the computation (the RURs) becomes
negligible compared to the numeric phase (isolation) in the topology com-

7At this stage our running times of our multi-thread version of Isotop2 are

extrapolated because, for technical reasons, only our solver RS3 is multi-thread.

138 Chapter 7. Implementations and experiments

putation part of Isotop2, which is sequantial in the current version. The
benchmark results are reported in Table 7.12.

Challenging curves. We also ran Isotop2 on a challenging curve, called
ridge, coming from [Cazals 2008]. This curve was so far unreachable without
manually driving the computations using computer algebra savoir-faire and
some information on the structure of the curve. To our knowledge, this is
the first time that this curve can be handled with a black-box algorithm. The
polynomial defining ridge has degree 84 (43 in each variable), 1907 monomials
with coefficients of 53 digits. This curve has 1432 extreme points and 909

singular ones. The sequential version of Isotop2 terminates in 2 hours on
the same regular laptop as above (while we interrupted CA after three days)
and in about 10 mn on a regular laptop with 8 threads.7

7.2. Experiments 139

degree τ Isotop Isotop2
Isotop

Isotop2

10 32 3.8 0.76 5

12 32 9.7 1.49 6.5

14 32 22 2.58 8.5

16 32 72 7.2 10

18 32 160 13.33 12

20 32 320 22.85 14

Table 7.6: Running times in seconds (averaged over 5 runs) for random
bivariate polynomials with 50% non-zero coefficients of bitsize 32.

degree τ Isotop Isotop2
Isotop

Isotop2

16 64 29 3.81 7.6

25 80 590 39.33 15

Table 7.7: Running times (averaged over five runs) in seconds for resultants
of two random trivariate polynomials, both of total degree 4 or 5, with 50%
non-zero coefficients of bitsize 8.

degree τ Isotop Isotop2
Isotop

Isotop2

12 96 4.1 2.73 1.5

15 96 15 5 3

18 96 49 14 3.5

21 96 140 28 5

Table 7.8: Running times (averaged over five runs) in seconds for non-generic
curves generated by the product of a curve f with two of its translates f(x, y+
1) and f(x, y + 2). The curve f is chosen randomly with degree between 4
and 7 and 50% non-zero coefficients of bitsize 32.

d1 d2 degree τ Isotop Isotop2
Isotop

Isotop2

3 3 18 96 26 7.42 3.5

3 4 24 112 250 39.68 6.3

Table 7.9: Running times (averaged over five runs) in seconds for non-generic
curves generated by the product of a curve f with its translate f(x, y + 1).
The curve f is the resultant of two random trivariate polynomials of total
degree d1 and d2 and 50% non-zero coefficients of bitsize 8.

degree τ Isotop Isotop2
Isotop

Isotop2

20 64 39 16.95 2.3

24 64 240 80 3

28 64 350 100 3.5

Table 7.10: Running times (averaged over five runs) in seconds for polyno-
mials of the form g = f 2(x, y) + f 2(x,−y). The random polynomials f have
bitsize 32, term density 50% and degrees 10, 12, 14.

140 Chapter 7. Implementations and experiments

Table 7.11: Benchmark results of Isotop2 and CA (Curve Analysis) run
on a set of curves taken from [Labs 2009, Brown 2002, Gonzalez-Vega 2002,
Cheng 2010] whose descriptions can be found in [Peñaranda. 2010]. The sec-
ond column specifies the degree of the curve, its bitsize, the number of its
singular points, the number of its x-extreme points and the number of its
vertical asymptotes. We run two versions of CA, CA0 and CA1. The im-
plementation CA1 being optimized for generic curves. CA min corresponds
to the best running time between CA0 and CA1. The timeout is set to 30
minutes.

C d τ s e a Isotop2 CA0 CA1 CA min CA
Isotop2

L16,012 97 22 4 0 0 519.04 Timeout Timeout Timeout >3

L16,016 97 14 4 0 0 361.90 Timeout Timeout Timeout >4

L16,021 97 10 4 0 0 345.27 Timeout Timeout Timeout >5

L17,075 65 140 2 0 0 228.46 630.36 1236.55 630.36 2.76

L16,011 81 18 4 0 0 218.55 Timeout Timeout Timeout >8

L17,074 65 113 2 0 0 193.68 477.82 1010.70 477.82 2.47

L16,026 81 7 4 0 0 158.59 Timeout Timeout Timeout >11

L17,073 65 86 2 0 0 150.43 352.60 779.11 352.60 2.34

L17,077 65 60 6 0 0 137.57 Timeout Timeout Timeout >13

L17,072 65 60 2 0 0 121.71 223.46 578.86 223.46 1.84

L2,84 100 8 1 0 0 104.45 200.38 Timeout 200.38 1.92

L16,015 73 10 4 0 0 100.71 Timeout Timeout Timeout >17

L17,076 65 33 6 0 0 100.42 Timeout Timeout Timeout >17

L17,071 65 33 2 0 0 90.91 121.83 429.16 121.83 1.34

L16,010 65 14 4 0 0 75.99 Timeout Timeout Timeout >23

L17,060 49 140 6 0 0 72.86 Timeout Timeout Timeout >24

L16,020 65 7 4 0 0 70.18 Timeout Timeout Timeout >25

L17,055 49 140 2 0 0 67.01 194.56 338.38 194.56 2.90

L17,059 49 113 6 0 0 64.79 Timeout Timeout Timeout >27

L2,79 90 8 1 0 0 64.61 122.38 1601.18 122.38 1.89

L17,054 49 113 2 0 0 55.89 148.20 266.04 148.20 2.65

L17,058 49 86 6 0 0 52.17 Timeout Timeout Timeout >34

M7,3,1 28 127 30 16 0 51.43 Timeout Timeout Timeout >35

L17,053 49 86 2 0 0 46.18 104.60 202.84 104.60 2.27

L2,83 80 7 1 0 0 42.00 51.54 670.79 51.54 1.23

L17,057 49 60 6 0 0 40.11 Timeout Timeout Timeout >44

L2,74 80 8 1 0 0 38.87 78.48 852.01 78.48 2.02

L17,052 49 60 2 0 0 35.22 65.69 145.56 65.69 1.87

L16,031 49 3 4 0 0 34.21 Timeout Timeout Timeout >52

L16,006 49 22 4 0 0 31.97 Timeout Timeout Timeout >56

L17,056 49 33 6 0 0 28.25 Timeout Timeout Timeout >63

M6,3,2 24 128 24 12 1 25.72 754.43 826.97 754.43 29.33

7.2. Experiments 141

C d τ s e a Isotop2 CA0 CA1 CA min CA
Isotop2

L2,78 72 7 1 0 0 25.23 32.52 376.05 32.52 1.29

L17,051 49 33 2 0 0 24.26 34.92 98.61 34.92 1.44

M6,3,4 24 129 20 24 0 22.84 767.37 627.94 627.94 27.49

L2,69 70 8 1 0 0 20.82 42.64 423.97 42.64 2.05

M6,3,1 24 127 6 4 0 18.26 415.34 468.27 415.34 22.74

L17,070 33 70 6 0 0 18.10 Timeout Timeout Timeout >99

M6,3,5 24 130 24 8 1 17.95 555.22 546.35 546.35 30.44

L16,009 49 10 4 0 0 17.54 Timeout Timeout Timeout >102

M7,2,1 21 97 14 12 0 16.92 426.24 436.36 426.24 25.19

L17,040 33 140 6 0 0 16.83 Timeout Timeout Timeout >106

L16,014 49 7 4 0 0 15.57 Timeout Timeout Timeout >115

M7,2,3 21 98 8 12 1 15.11 391.74 312.81 312.81 20.70

L2,73 64 7 1 0 0 14.67 20.86 201.53 20.86 1.42

M7,2,2 21 97 18 18 0 14.58 303.73 337.97 303.73 20.83

L17,069 33 56 6 0 0 14.28 Timeout Timeout Timeout >126

L17,035 33 140 2 0 0 13.95 45.97 72.03 45.97 3.30

L17,039 33 113 6 0 0 13.44 Timeout Timeout Timeout >133

L16,025 41 3 4 0 0 13.17 Timeout Timeout Timeout >136

L2,82 60 5 1 0 0 12.90 9.17 106.15 9.17 0.71

L16,005 41 18 4 0 0 12.68 Timeout Timeout Timeout >141

M5,3,5 20 128 10 8 0 12.64 203.85 225.35 203.85 16.13

M7,2,4 21 96 14 9 0 12.40 221.64 269.65 221.64 17.87

L17,034 33 113 2 0 0 12.25 34.66 54.17 34.66 2.83

M5,3,1 20 130 26 8 1 12.20 283.25 257.21 257.21 21.08

L17,038 33 86 6 0 0 12.10 Timeout Timeout Timeout >148

L17,068 33 43 6 0 0 11.82 Timeout 804.64 804.64 68.07

L2,64 60 8 1 0 0 10.66 24.89 183.40 24.89 2.33

L17,065 33 70 2 0 0 10.65 4.70 11.18 4.70 0.44

M5,3,4 20 129 16 12 0 10.35 204.12 190.90 190.90 18.44

L13,054 32 14 1 20 0 10.24 491.27 390.24 390.24 38.11

L17,033 33 86 2 0 0 10.11 23.82 39.81 23.82 2.36

L17,067 33 30 6 0 0 9.11 Timeout Timeout Timeout >197

L17,064 33 56 2 0 0 9.07 3.93 9.56 3.93 0.43

M6,2,2 18 100 6 12 0 8.97 46.40 63.03 46.40 5.17

M6,2,3 18 98 16 18 1 8.97 61.30 62.64 61.30 6.83

L17,037 33 60 6 0 0 8.66 1753.89 Timeout 1753.89 202.50

L6,032 10 22 0 61 0 8.39 39.02 38.93 38.93 4.64

L6,031 10 18 0 61 0 8.32 38.67 38.63 38.63 4.64

M5,3,2 20 128 18 12 1 8.25 178.51 176.11 176.11 21.34

L6,029 10 12 0 61 0 8.25 62.77 62.48 62.48 7.57

L6,030 10 15 0 61 0 8.21 38.15 37.95 37.95 4.62

L2,68 56 7 1 0 0 7.93 12.58 99.52 12.58 1.59

142 Chapter 7. Implementations and experiments

C d τ s e a Isotop2 CA0 CA1 CA min CA
Isotop2

L2,77 54 5 1 0 0 7.92 6.11 61.77 6.11 0.77

M5,3,3 20 132 18 12 0 7.92 110.11 109.87 109.87 13.87

L3,35 9 75 0 69 0 7.75 59.59 59.71 59.59 7.69

L17,032 33 60 2 0 0 7.71 14.84 28.17 14.84 1.92

L17,066 33 16 6 0 0 7.49 Timeout Timeout Timeout >240

L13,065 34 15 1 24 0 7.41 1187.52 Timeout 1187.52 160.24

L17,063 33 43 2 0 0 7.41 3.24 8.34 3.24 0.44

L3,34 9 59 0 68 0 7.03 52.34 51.20 51.20 7.28

L17,036 33 33 6 0 0 6.99 Timeout Timeout Timeout >257

L5,216 36 18 0 0 0 6.97 2.83 7.99 2.83 0.41

M6,2,4 18 96 9 15 1 6.91 48.34 46.83 46.83 6.78

L13,064 32 14 1 24 0 6.72 319.14 280.31 280.31 41.71

L3,33 9 45 0 67 0 6.48 54.05 54.11 54.05 8.34

L13,060 34 15 1 24 0 6.21 526.40 635.12 526.40 84.77

M6,2,1 18 97 18 18 0 6.11 46.80 55.29 46.80 7.66

L3,32 9 35 0 66 0 6.10 49.38 49.35 49.35 8.09

L16,019 33 3 4 0 0 6.06 Timeout Timeout Timeout >297

L17,062 33 30 2 0 0 5.88 2.54 6.97 2.54 0.43

M4,3,5 16 129 26 16 0 5.77 36.97 38.64 36.97 6.41

L3,31 9 29 0 65 0 5.70 95.19 94.73 94.73 16.62

L17,031 33 33 2 0 0 5.66 7.72 16.67 7.72 1.36

L13,042 28 12 1 16 0 5.61 153.28 430.32 153.28 27.32

M6,2,5 18 99 13 9 1 5.52 33.53 37.11 33.53 6.07

L17,050 25 70 6 0 0 5.38 1154.31 1102.13 1102.13 204.86

L11,066 24 27 12 24 0 5.35 71.61 72.27 71.61 13.38

L5,215 36 15 0 0 0 5.32 1.90 6.93 1.90 0.36

L11,060 24 25 6 12 0 5.17 35.88 36.39 35.88 6.94

L3,30 9 54 0 62 0 5.13 17.21 17.26 17.21 3.35

L2,59 50 8 1 0 0 5.09 12.66 73.45 12.66 2.49

L5,214 36 11 0 0 0 4.84 5.10 10.00 5.10 1.05

L13,059 32 14 1 24 0 4.82 647.77 130.74 130.74 27.13

M5,2,5 15 97 16 18 0 4.81 21.25 20.64 20.64 4.29

L3,29 9 37 0 61 0 4.74 14.48 14.39 14.39 3.04

L17,049 25 56 6 0 0 4.73 1248.89 1291.35 1248.89 264.04

L11,065 24 25 11 22 0 4.59 54.87 55.15 54.87 11.95

L2,72 48 5 1 0 0 4.57 3.78 33.17 3.78 0.83

L10,064 24 39 10 20 0 4.54 50.72 50.42 50.42 11.11

L10,064 24 39 10 20 0 4.47 49.73 50.02 49.73 11.12

L11,058 24 23 4 8 0 4.46 23.76 24.26 23.76 5.33

L3,28 9 24 0 60 0 4.46 14.70 14.74 14.70 3.30

L13,053 30 13 1 20 0 4.34 426.13 274.33 274.33 63.21

L13,058 30 13 1 24 0 4.29 402.95 416.64 402.95 93.91

7.2. Experiments 143

C d τ s e a Isotop2 CA0 CA1 CA min CA
Isotop2

L13,063 30 13 1 24 0 4.24 151.86 172.45 151.86 35.81

L6,028 9 21 0 46 0 4.24 16.49 16.69 16.49 3.89

M4,3,2 16 128 16 8 0 4.23 25.31 29.41 25.31 5.98

L6,025 9 11 0 46 0 4.21 32.57 32.61 32.57 7.74

L16,004 33 14 4 0 0 4.20 484.50 821.32 484.50 115.36

M5,2,3 15 95 20 12 1 4.20 16.31 15.91 15.91 3.79

L6,027 9 17 0 46 0 4.19 10.81 10.77 10.77 2.57

L6,026 9 14 0 46 0 4.18 15.87 15.86 15.86 3.79

L3,27 9 14 0 59 0 4.16 13.31 13.26 13.26 3.19

L11,064 24 22 10 20 0 4.00 41.39 41.69 41.39 10.35

L10,054 22 39 10 20 0 3.96 40.67 40.63 40.63 10.26

L17,048 25 43 6 0 0 3.96 1161.36 1226.82 1161.36 293.27

L17,061 33 16 2 0 0 3.96 2.06 5.71 2.06 0.52

L10,054 22 39 10 20 0 3.95 40.65 40.61 40.61 10.28

M4,3,4 16 127 12 8 1 3.93 26.03 25.93 25.93 6.60

L2,63 48 7 1 0 0 3.77 6.02 43.37 6.02 1.60

L3,26 9 7 0 58 0 3.73 40.18 40.16 40.16 10.77

M4,3,3 16 130 6 8 0 3.70 25.21 27.22 25.21 6.81

L17,045 25 70 2 0 0 3.67 1.77 3.74 1.77 0.48

M7,1,5 14 64 4 8 2 3.66 11.09 8.65 8.65 2.36

M5,2,4 15 96 10 18 0 3.65 15.72 15.40 15.40 4.22

L13,052 28 12 1 20 0 3.63 143.42 154.63 143.42 39.51

L9,011 24 14 12 20 0 3.62 297.68 297.92 297.68 82.21

L11,054 22 22 10 20 0 3.52 34.00 34.62 34.00 9.66

L13,030 24 10 1 12 0 3.50 56.56 103.52 56.56 16.16

L10,045 20 39 10 20 0 3.47 32.43 32.41 32.41 9.34

L2,81 40 3 1 0 0 3.42 0.93 8.30 0.93 0.27

L10,045 20 39 10 20 0 3.42 32.31 32.18 32.18 9.41

L13,048 30 13 1 20 0 3.39 650.08 77.45 77.45 22.84

L1,7 10 8 36 1 0 3.37 15.30 19.43 15.30 4.54

L13,057 28 12 1 24 0 3.37 158.91 154.16 154.16 45.74

L11,059 24 20 5 10 0 3.34 20.90 20.46 20.46 6.13

M5,2,2 15 98 4 6 0 3.26 10.93 12.19 10.93 3.35

M7,1,3 14 64 4 8 1 3.25 12.48 11.48 11.48 3.53

L16,008 33 7 4 0 0 3.19 1336.22 804.30 804.30 252.13

L17,047 25 30 6 0 0 3.12 1160.49 1164.10 1160.49 371.95

M5,2,1 15 95 23 6 0 3.12 17.81 18.02 17.81 5.71

L13,062 28 12 1 24 0 3.10 102.22 91.52 91.52 29.51

L1,6 9 7 28 1 0 3.04 9.10 9.12 9.10 2.99

L17,044 25 56 2 0 0 3.04 1.43 3.03 1.43 0.47

L11,045 20 22 10 20 0 3.01 27.48 28.07 27.48 9.13

L11,062 24 17 8 16 0 2.99 21.36 21.39 21.36 7.14

144 Chapter 7. Implementations and experiments

C d τ s e a Isotop2 CA0 CA1 CA min CA
Isotop2

M7,1,2 14 64 2 4 0 2.98 8.11 11.56 8.11 2.72

L5,213 36 8 0 0 0 2.97 2.34 7.11 2.34 0.79

L2,58 40 7 1 0 0 2.96 6.12 30.72 6.12 2.07

L13,047 28 12 1 20 0 2.95 260.30 338.01 260.30 88.21

L3,24 8 34 0 47 0 2.92 6.47 6.49 6.47 2.22

L2,54 40 8 1 0 0 2.89 9.22 46.30 9.22 3.19

L13,051 26 11 1 20 0 2.87 148.67 110.44 110.44 38.48

L10,044 20 34 9 18 0 2.84 20.41 20.34 20.34 7.16

L11,049 22 20 5 10 0 2.81 16.62 16.87 16.62 5.91

M7,1,1 14 65 6 8 0 2.80 15.30 14.86 14.86 5.31

L13,056 26 11 1 24 0 2.74 22.07 128.00 22.07 8.05

L5,204 30 18 0 0 0 2.72 0.78 2.74 0.78 0.29

L3,25 8 51 0 48 0 2.69 7.26 7.29 7.26 2.70

L11,052 22 17 8 16 0 2.67 17.52 17.62 17.52 6.56

L3,23 8 21 0 46 0 2.67 5.56 5.61 5.56 2.08

L17,043 25 43 2 0 0 2.63 1.24 2.68 1.24 0.47

L13,061 26 11 1 24 0 2.61 35.42 50.49 35.42 13.57

L10,044 20 34 9 18 0 2.60 20.02 20.44 20.02 7.70

L6,022 8 13 0 37 0 2.59 5.00 4.93 4.93 1.90

M4,3,1 16 129 6 0 0 2.55 22.40 20.50 20.50 8.04

L3,22 8 11 0 45 0 2.53 5.03 5.02 5.02 1.98

L6,021 8 10 0 37 0 2.52 4.84 4.87 4.84 1.92

L13,041 26 11 1 16 0 2.52 125.30 92.64 92.64 36.76

L11,040 20 20 5 10 0 2.51 13.75 14.04 13.75 5.48

L6,064 10 22 0 13 0 2.51 5.55 5.50 5.50 2.19

L10,062 24 29 8 16 0 2.50 24.53 24.96 24.53 9.81

L6,063 10 18 0 13 0 2.49 6.88 6.95 6.88 2.76

L6,062 10 15 0 13 0 2.47 5.38 5.34 5.34 2.16

L6,023 8 17 0 37 0 2.47 4.95 4.96 4.95 2.00

L2,67 42 5 1 0 0 2.46 2.13 15.41 2.13 0.87

L13,046 26 11 1 20 0 2.44 144.56 149.34 144.56 59.25

L6,061 10 12 0 13 0 2.43 14.97 14.92 14.92 6.14

L11,057 24 21 3 6 0 2.40 17.25 17.59 17.25 7.19

L17,046 25 16 6 0 0 2.39 Timeout Timeout Timeout >753

L6,024 8 20 0 37 0 2.38 4.95 5.00 4.95 2.08

L13,055 24 10 1 24 0 2.36 25.17 29.46 25.17 10.67

L9,010 22 14 10 12 0 2.36 88.61 101.35 88.61 37.55

L10,062 24 29 8 16 0 2.33 24.31 24.63 24.31 10.43

L9,009 20 13 10 20 0 2.31 138.71 131.60 131.60 56.97

L10,035 18 29 8 16 0 2.30 3.11 3.20 3.11 1.35

L3,21 8 7 0 44 0 2.30 4.18 4.26 4.18 1.82

L11,056 24 17 2 4 0 2.24 11.96 12.34 11.96 5.34

7.2. Experiments 145

C d τ s e a Isotop2 CA0 CA1 CA min CA
Isotop2

L11,048 22 15 4 8 0 2.23 8.70 8.88 8.70 3.90

L5,203 30 15 0 0 0 2.23 1.35 3.28 1.35 0.61

L2,76 36 3 1 0 0 2.16 0.62 4.91 0.62 0.29

L10,060 24 41 6 12 0 2.15 42.89 44.09 42.89 19.95

L10,060 24 41 6 12 0 2.15 43.02 43.33 43.02 20.01

L17,042 25 30 2 0 0 2.14 0.96 2.11 0.96 0.45

L10,052 22 29 8 16 0 2.13 20.41 20.02 20.02 9.40

L11,043 20 17 8 16 0 2.12 14.21 14.26 14.21 6.70

L11,039 20 15 4 8 0 2.06 7.24 7.19 7.19 3.49

L10,052 22 29 8 16 0 2.06 19.76 20.06 19.76 9.59

L13,036 26 11 1 16 0 2.01 32.81 147.63 32.81 16.32

M6,1,1 12 65 6 12 0 1.96 6.17 5.81 5.81 2.96

L11,050 22 12 6 12 0 1.94 7.58 7.79 7.58 3.91

L3,20 7 54 0 36 0 1.92 1.34 1.33 1.33 0.69

L13,040 24 10 1 16 0 1.92 76.44 60.96 60.96 31.77

L13,045 24 10 1 20 0 1.90 104.51 23.20 23.20 12.21

L13,050 24 10 1 20 0 1.89 67.56 52.66 52.66 27.86

L11,035 18 17 8 16 0 1.88 11.20 11.55 11.20 5.95

L10,056 24 28 2 2 0 1.88 7.09 7.52 7.09 3.77

M6,1,2 12 65 2 4 1 1.84 3.31 3.08 3.08 1.67

M4,2,3 12 96 12 6 1 1.83 3.23 3.58 3.23 1.77

L3,19 7 37 0 35 0 1.82 1.14 1.13 1.13 0.62

L10,043 20 29 8 16 0 1.81 10.58 10.85 10.58 5.85

L3,18 7 24 0 34 0 1.81 0.97 0.98 0.97 0.54

L10,056 24 28 2 2 0 1.80 7.05 7.42 7.05 3.92

L10,043 20 29 8 16 0 1.79 10.72 10.76 10.72 5.99

L10,035 18 29 8 16 0 1.77 3.67 3.16 3.16 1.79

L6,020 7 19 0 26 0 1.75 0.78 0.80 0.78 0.45

L3,17 7 14 0 33 0 1.75 2.11 2.11 2.11 1.21

L13,044 22 9 1 20 0 1.71 35.88 38.70 35.88 20.97

L5,202 30 11 0 0 0 1.71 1.14 2.96 1.14 0.67

L10,059 24 31 5 10 0 1.70 24.47 26.00 24.47 14.39

L11,031 18 15 4 8 0 1.70 5.67 5.76 5.67 3.34

L13,035 24 10 1 16 0 1.67 77.96 80.22 77.96 46.71

L16,013 25 3 4 0 0 1.66 822.08 849.64 822.08 495.23

L11,028 16 17 8 16 0 1.64 17.67 18.10 17.67 10.77

F24 16 22 9 8 0 1.63 10.01 7.81 7.81 4.79

L1,5 8 7 21 1 0 1.63 1.48 1.19 1.19 0.73

L10,028 16 29 8 16 0 1.63 9.50 9.54 9.50 5.83

L11,046 22 14 2 4 0 1.62 6.85 7.08 6.85 4.23

L3,16 7 7 0 32 0 1.62 1.82 1.83 1.82 1.12

L10,058 24 36 4 6 0 1.60 21.54 22.27 21.54 13.46

146 Chapter 7. Implementations and experiments

C d τ s e a Isotop2 CA0 CA1 CA min CA
Isotop2

L13,039 22 9 1 16 0 1.60 39.62 32.83 32.83 20.52

L10,028 16 29 8 16 0 1.59 9.40 9.48 9.40 5.91

L11,041 20 12 6 12 0 1.58 6.07 6.34 6.07 3.84

M4,2,1 12 99 6 9 1 1.58 2.65 2.95 2.65 1.68

L13,049 22 9 1 20 0 1.58 16.08 19.83 16.08 10.18

L17,030 17 70 6 0 0 1.58 22.09 21.64 21.64 13.70

L6,017 7 9 0 26 0 1.58 1.96 1.95 1.95 1.23

L13,029 22 9 1 12 0 1.57 37.08 53.71 37.08 23.62

L10,058 24 36 4 6 0 1.55 21.13 21.35 21.13 13.63

L6,018 7 12 0 26 0 1.52 1.96 2.00 1.96 1.29

L6,019 7 16 0 26 0 1.52 2.09 2.22 2.09 1.38

L17,041 25 16 2 0 0 1.52 0.72 1.75 0.72 0.47

L10,059 24 31 5 10 0 1.51 23.64 23.87 23.64 15.65

L17,020 17 140 6 0 0 1.48 27.11 29.39 27.11 18.33

L6,060 9 21 0 12 0 1.47 2.93 2.95 2.93 1.99

F1 8 6 21 7 0 1.47 0.86 0.85 0.85 0.58

L6,059 9 17 0 12 0 1.46 2.88 2.91 2.88 1.97

L11,037 20 14 2 4 0 1.45 5.52 5.69 5.52 3.80

L17,029 17 56 6 0 0 1.45 19.65 15.48 15.48 10.68

L6,057 9 11 0 12 0 1.45 7.70 7.69 7.69 5.30

L11,024 16 15 4 8 0 1.44 13.01 13.20 13.01 9.03

L6,058 9 14 0 12 0 1.44 2.87 2.94 2.87 1.99

M4,2,5 12 96 10 6 0 1.43 3.17 3.52 3.17 2.22

L10,049 22 31 5 10 0 1.42 19.59 20.08 19.59 13.79

L1,4 7 6 15 1 0 1.41 0.74 0.76 0.74 0.52

L13,034 22 9 1 16 0 1.41 67.66 36.48 36.48 25.87

L13,043 20 8 1 20 0 1.39 5.60 16.11 5.60 4.03

L10,049 22 31 5 10 0 1.34 19.40 19.67 19.40 14.48

M5,1,3 10 64 6 12 0 1.32 2.92 3.05 2.92 2.21

L5,201 30 8 0 0 0 1.31 1.14 2.90 1.14 0.87

L10,057 24 32 3 2 0 1.27 7.30 7.72 7.30 5.75

L10,057 24 32 3 2 0 1.27 7.40 7.81 7.40 5.83

L2,71 32 3 1 0 0 1.27 0.39 2.70 0.39 0.31

M4,2,4 12 96 8 6 0 1.27 2.41 2.54 2.41 1.90

L11,033 18 12 6 12 0 1.25 4.84 5.15 4.84 3.87

L10,040 20 31 5 10 0 1.24 10.78 11.08 10.78 8.69

L17,019 17 113 6 0 0 1.24 20.26 17.59 17.59 14.19

M6,1,5 12 65 3 6 1 1.23 3.03 4.67 3.03 2.46

L17,028 17 43 6 0 0 1.23 17.44 13.36 13.36 10.86

L13,024 22 9 1 12 0 1.22 68.10 38.29 38.29 31.39

L3,15 6 52 0 25 0 1.22 0.64 0.65 0.64 0.52

L10,050 22 19 6 12 0 1.21 8.10 8.21 8.10 6.69

7.2. Experiments 147

C d τ s e a Isotop2 CA0 CA1 CA min CA
Isotop2

L13,028 20 8 1 12 0 1.20 8.45 31.76 8.45 7.04

L10,040 20 31 5 10 0 1.19 10.76 10.97 10.76 9.04

L2,62 36 5 1 0 0 1.19 1.24 6.97 1.24 1.04

M6,1,4 12 66 3 6 1 1.18 2.46 2.92 2.46 2.08

L16,003 25 10 4 0 0 1.16 30.77 95.26 30.77 26.50

L17,018 17 86 6 0 0 1.16 12.03 13.52 12.03 10.36

L2,53 32 7 1 0 0 1.15 2.45 10.90 2.45 2.13

L13,033 20 8 1 16 0 1.14 22.12 36.60 22.12 19.40

L5,192 24 18 0 0 0 1.14 0.42 1.00 0.42 0.37

L10,050 22 19 6 12 0 1.13 8.44 8.20 8.20 7.25

L13,038 20 8 1 16 0 1.13 21.64 23.29 21.64 19.13

L17,027 17 30 6 0 0 1.11 4.19 15.11 4.19 3.77

L3,14 6 36 0 25 0 1.09 0.54 0.52 0.52 0.48

L11,015 12 12 6 12 0 1.07 5.92 6.00 5.92 5.53

L17,015 17 140 2 0 0 1.06 2.68 3.64 2.68 2.53

L11,026 16 12 6 12 0 1.06 11.18 11.31 11.18 10.55

M4,2,2 12 94 5 3 0 1.05 2.33 2.62 2.33 2.22

L10,041 20 19 6 12 0 1.05 4.14 4.45 4.14 3.94

L13,018 20 8 1 8 0 1.03 32.35 7.44 7.44 7.22

L3,12 6 12 0 23 0 1.03 0.81 0.80 0.80 0.78

L9,007 16 7 8 12 0 1.02 4.38 5.51 4.38 4.29

L10,048 22 23 4 6 0 1.01 6.48 6.57 6.48 6.41

L17,017 17 60 6 0 0 1.01 6.85 9.23 6.85 6.78

L13,037 18 7 1 16 0 1.00 2.51 5.24 2.51 2.51

M5,1,4 10 65 4 8 0 1.00 1.98 2.25 1.98 1.98

L10,046 22 23 2 2 0 1.00 3.92 4.12 3.92 3.92

L10,046 22 23 2 2 0 1.00 3.92 4.12 3.92 3.92

L5,191 24 15 0 0 0 1.00 0.66 1.27 0.66 0.66

148 Chapter 7. Implementations and experiments

Curves RS3_Seq Iso2_Seq Topology RS3_MT3 Iso2_MT3 Fast-Ana Iso2
Fast-Ana

Iso2_MT3
Fast-Ana

challenge_12b 19.38 58.82 39.44 10.31 49.75 44.3 1.32 1.12

degree_7_surf 12.73 17.734 5.004 5.72 10.724 7.39 2.40 1.45

FTT_5_4_4 14.82 57.22 42.4 7.45 49.85 32.23 1.77 1.54

L6_circle 3.82 6.32 2.5 1.81 4.31 2.1 3 2.05

mignotte 233 345 112 165.3 277.3 136.54 2.53 2.03

spider 96.05 167.77 71.72 42.57 114.29 26.26 6.35 4.35

swinnerton 1.77 6.8 5.03 0.97 6 7.12 0.95 0.84

Table 7.12: Benchmark results of Isotop2 and FastAnalysis run on the set
of curves from [Berberich 2011a]. The column labelled Topology shows the
running time of the topology part in Isotop2 that is, after isolating boxes
for the critical points have been computed. Running times are in seconds.

7.2. Experiments 149

The following figures contain graphs (generated by running Isotop2 on
Maple) corresponding to the polynomials in Table 7.12.

Figure 7.1: challenge_12b Figure 7.2: degree_7_surf

Figure 7.3: FTT_5_4_4 Figure 7.4: L6_circles

150 Chapter 7. Implementations and experiments

Figure 7.5: mignotte Figure 7.6: spider

Figure 7.7: swinnerton Figure 7.8: ridge

Chapter 8

Conclusion

We addressed in this thesis the problem of solving bivariate systems with in-
teger coefficients and its application for computing the topology of real plane
curves. While focusing on the computation of a Rational Univariate Rep-
resentation of the solutions of such systems, we tackled this problem from
two different points of view: the theoretical bit complexity and the practical
efficiency.

After investigating in-depth the different steps in the computation of the
Rational Univariate Representation of bivariate systems, we presented two
algorithms of worst-case bit-complexities in ÕB(d

8+d7τ) and in ÕB(d
7+d6τ)

for respectively computing a separating linear form and, given such a form,
a Rational Univariate Representation of the solutions of a bivariate system.
While the first algorithm improves the best known complexity bound by a
factor d2, the second one provide simple formulas for the RUR polynomials
that allow us to derive a new bound on the size of the coefficients in the
Rational Univariate Representation of a bivariate system.

This bound turns out to be of great interest in the design of an efficient Chi-
nese Remainder Theorem-based practical algorithm for computing the RURs
of a bivariate system. The idea of this algorithm is to compute in a multi-
modular fashion, a decomposition of the bivariate system into a set of RURs
by first computing a triangular decomposition [Gonzalez-Vega 1996] and then
computing Rational Univariate Representations for the resulting triangular
systems. As usual, an issue that is inherent to the use of multi-modular com-
putation is the correctness of the result. We overcome this issue by proposing
two methods for checking that the computed RURs encode the solutions of
the input system.

At first glance, computing a RUR after a triangular decomposition may
seem superfluous and time consuming. However, our experiments show that
first, computing a RUR does not induce a large overhead compared to only
computing a triangular decomposition, and second, it avoids the difficult iso-
lation of the solutions in fibers in the non-radical or non-generic cases. This
practical behavior is in accordance with the complexity analysis which shows
that the complexity of the computation of the RURs is the same as the com-
plexity of the computation of the triangular decomposition. More generally,

152 Chapter 8. Conclusion

we prove an expected complexity bound in ÕB(d
6 + d5τ) for this practical

algorithm.

From the complexity point of view, although the previous bounds are quite
remarkable (the expected complexity of our practical algorithm matches that
for only the isolation of the roots of the squarefree part of the resultant), an
ongoing work seems to suggest that for the specific case of systems defined by
a polynomial and one of its partial derivatives, as for instance, the system of
the critical points of a curve, some of the previous complexity bounds could
be improved by a factor d. This suggests, in other words, that computing the
number of critical points of a curve can be achieved in a better complexity
than that of computing the number of distinct solutions of a general bivariate
system (namely for the cost of a triangular decomposition).

More precisely, if the system at hand is given by a polynomial f and its
derivative with respect to y, fy, the idea roughly is to perform the triangular
decompositions of the two systems {f, fy} and {f, f 2

y } and to compute the
difference between the number of solutions counted with multiplicities in the
resulting triangular systems. As the solutions of {f, f 2

y } have their multiplic-
ities in fiber larger by one than the multiplicities in fiber of the solutions of
{f, fy}, computing the difference yields exactly the number of distinct solu-
tions. In addition, this computation can be done without computing the whole
triangular systems but only the leading terms of the latter, which amounts
to only compute the sequence of the principal subresultant coefficients. This
results in an algorithm with arithmetic complexity in Õ(d3) for computing
the number of distinct solutions of the system {f, fy}. Replacing in Algo-
rithm 3 of Chapter 3, the existing algorithm for computing the number of
distinct solutions, by the one above, reduces the worst-case bit complexity for
computing a separating linear form for the system {f, fy} to ÕB(d

7 + d6τ).
In addition, one can perform the previous computation in a multi-modular
Las-Vegas fashion which reduces the complexity of computing a separating
linear form to Õ(d5 + d4τ) in expected setting. Also, following the approach
of [Gonzalez-Vega 1996], it is most likely that, within the same expected bit
complexity, one can compute a decomposition of the system into a set of
subresultant-based rational parametrizations. Beside, we are convinced that
with some work, the previous results can be extended to the case of general
bivariate systems.

From the practical point of view, as mentioned in Chapter 5, in the current
implementation, only the verification based on the subtitution of the rational
fractions of the RUR in the input polynomials is available. Although this
strategy has shown quite good performance in practice, it will be interest-
ing to investigate other methods for checking the correctness of the output

153

of our bivariate solver. One of these methods, already mentionned in Chap-
ter 5, consists in using the approach of Daouda et al. [Niang Diatta 2008]
that checks the result directly on the resulting triangular system. An-
other promising method is to use the numerical inclusion predicate presented
in [Berberich 2011b], which ensures the existence of a unique solution inside a
given box. This predicate have been shown to be very efficient in practice. In
addition, unlike in [Berberich 2011b] where the predicate is used for a set of d4

candidate solutions in the worst case, in our case, after the RUR-candidates
computation, we end up with at most d2 candidate solutions, which reduces
substantially the overall cost of the check.

Another important point to further improve our implementation concerns
the algorithms used for basic operations. Indeed, in our theoretical descrip-
tion, we use algorithms that are known to have the best complexity bounds.
This is the case for example for the computation of the gcd of univariate
polynomials or the computation of one subresultant polynomial. However, in
practice, due to the constant factors hidden in the complexity bounds, such
algorithms become really efficient (compared to the naive algorithms) only
from a certain degree threshold. As the degree of the polynomials computed
in our algorithm, considerably varies during the algorithm, we thus aim at
designing algorithms for basic operations, which depending on the degree of
the input polynomials choose the most efficient strategy.

Finally, we can identify the following directions for future work. First, our
recent improvements for solving bivariate systems yield that the corresponding
step is most often non-dominant in the whole topology computation, as shown
in our experiments (Table 7.12). It is thus interesting to work again on the
other parts of the topology computation algorithm in order to improve their
efficiency. In addition, the complexity analysis of the topology algorithm
performed in [Cheng 2010] yields a bound of ÕB(d

24τ 2) that is most likely very
pessimistic. A more careful analysis, at the light of the results obtained in this
thesis, will undoubtedly reduces the latter to more or less that of the bivariate
system solving as hinted by the work of Mehlhorn et al. [Mehlhorn 2013].

Given an efficient algorithm for computing the topology of a curve, a
natural problem is consider arrangements of curves. For the time being, our
algorithm Isotop2 is only able to handle single curves. In other words, if the
input curve is given as a product of several curves, our algorithm considers it as
a unique curve. However, it is quite clear that computing the topology of every
curve and combining them afterward is much more efficient that computing
the topology of the product. This problem of computing the topology of
the arrangement of curves knowing their topologies was studied in detail by
Kerber in his thesis [Kerber 2009a] using a CAD like approach. We want,

154 Chapter 8. Conclusion

in our case, to tackle it using a RUR-based approach. Though it seems at a
first glance, that having the critical points under RUR representation should
ease many operations in the arrangement algorithm, a more in-depth study is
however needed to evaluate precisely the relevance of a RUR-based approach
for computing the arrangement of algebraic curves.

Finally, a quite natural and relevant direction of research is the study of
algorithms handling algebraic objects in three dimensions such as curves and
surfaces. More precisely, we aim at computing a graph isotopic to a 3D curve
or a piecewise linear mesh isotopic to a surface. Computing the topology
of a curve, which could be the singular locus of a surface, can be done by
projecting it onto a plane, computing the topology of the projection, and
then lifting back to recover the desired topology in 3D. It can also be done
by considering the curve directly in 3D, which amounts to computing with
polynomial systems in three variables. The first approach has already been a
focus of interest (see [Berberich 2010] and references therein). The drawback
of such an approach, however, is that the projection step often creates spurious
singular points. Investigating the second approach from the complexity and
the practical efficiency points of view is thus of particular interest.

Bibliography

[Alberti 2008] L. Alberti, B. Mourrain and J. Wintz. Topology and arrange-

ment computation of semi-algebraic planar curves. Comput. Aided
Geom. Des., vol. 25, no. 8, pages 631–651, 2008. (Cited on page 18.)

[Alonso 1996] M.-E Alonso, E. Becker, M.-F. Roy and T. Wörmann. Multi-

plicities and Idempotents for Zerodimensional Systems. In Algorithms
in Algebraic Geometry and Applications, volume 143 of Progress in

Mathematics, pages 1–20. Birkhäuser, 1996. (Cited on pages 16, 62
and 79.)

[Aubry 1999a] P. Aubry, D. Lazard and M. Moreno Maza. On the theories of

triangular sets. J. Symb. Comput., vol. 28, pages 105–124, July 1999.
(Cited on page 15.)

[Aubry 1999b] P. Aubry and M. Moreno Maza. Triangular sets for solving

polynomial systems: a comparative implementation of four methods. J.
Symb. Comput., vol. 28, pages 125–154, July 1999. (Cited on page 18.)

[Basu 2006] S. Basu, R. Pollack and M.-F. Roy. Algorithms in real algebraic
geometry, volume 10 of Algorithms and Computation in Mathematics.
Springer-Verlag, 2nd édition, 2006. (Cited on pages 19, 24, 25, 26, 27,
32, 33, 34, 45, 49, 90, 94, 114 and 116.)

[Berberich 2010] Eric Berberich, Michael Kerber and Michael Sagraloff. An

efficient algorithm for the stratification and triangulation of an alge-

braic surface. Comput. Geom. Theory Appl., vol. 43, no. 3, pages
257–278, 2010. (Cited on page 154.)

[Berberich 2011a] E. Berberich, P. Emeliyanenko, A. Kobel and M. Sagraloff.
Arrangement Computation for Planar Algebraic Curves. In
Symbolic Numeric Computation - SNC, 2011. Arxiv preprint
http://arxiv.org/abs/1103.4697. (Cited on pages 17, 131, 132, 137
and 148.)

[Berberich 2011b] E. Berberich, P. Emeliyanenko and M. Sagraloff. An Elimi-

nation Method for Solving Bivariate Polynomial Systems: Eliminating

the Usual Drawbacks. In Alenex, 2011. (Cited on pages 14, 131, 132
and 153.)

156 Bibliography

[Berberich 2013] Eric Berberich, Michael Hemmer, Michael Kerber, Sylvain
Lazard, Luis Peñaranda and Monique Teillaud. Algebraic Kernel. In
CGAL User and Reference Manual. CGAL Editorial Board, 4.3 édition,
2013. (Cited on page 128.)

[Boulier 2009] F. Boulier, C. Chen, F. Lemaire and M. Moreno Maza. Real

Root Isolation of Regular Chains. In Proceedings of the 2009 Asian
Symposium on Computer Mathematics (ASCM 2009), Math for In-
dustry, pages 1–15, 2009. (Cited on page 15.)

[Bouzidi 2011] Y. Bouzidi, S. Lazard, M. Pouget and F. Rouillier. New bivari-

ate system solver and topology of algebraic curves. In 27th European
Workshop on Computational Geometry - EuroCG, 2011. (Cited on
page 76.)

[Bouzidi 2013a] Y. Bouzidi, S. Lazard, M. Pouget and F. Rouillier. Rational

Univariate Representations of Bivariate Systems and Applications. In
Proceedings of the 38th International Symposium on Symbolic and
Algebraic Computation - ISSAC’13, 2013. (Cited on page 61.)

[Bouzidi 2013b] Y. Bouzidi, S. Lazard, M. Pouget and F. Rouillier. Sepa-

rating linear forms for bivariate systems. In Proceedings of the 38th
International Symposium on Symbolic and Algebraic Computation -
ISSAC’13, 2013. (Cited on pages 41, 106 and 109.)

[Brown 1971] W. S. Brown. On Euclid’s Algorithm and the Computation of

Polynomial Greatest Common Divisors. Journal of the ACM, vol. 18,
pages 478–504, 1971. (Cited on pages 35 and 39.)

[Brown 2002] C. W. Brown. Contructing Cylindrical Algebraic Decomposition

of the Plane Quickly, 2002. Manuscript, http://www.cs.usna.edu/
~wcbrown/. (Cited on pages 131 and 140.)

[Burr 2008] M. Burr, S.W.Choi, B. Galehouse and C. Yap. Complete Subdi-

vision Algorithms, II: Isotopic Meshing of Singular Algebraic Curves.
In Proceeding of the 33th International Symposium on Symbolic and
Algebraic Computation - ISSAC, 2008. (Cited on pages 17 and 18.)

[Busé 2005] L. Busé, H. Khalil and B. Mourrain. Resultant-based methods for

plane curves intersection problems. In Computer Algebra in Scientific
Computing (CASC), volume 3718 of Lecture Notes in Computer Sci-

ence, pages 75–92, Kalamata, Greece, September 2005. Springer Berlin
/ Heidelberg. (Cited on page 66.)

http://www.cs.usna.edu/~wcbrown/
http://www.cs.usna.edu/~wcbrown/

Bibliography 157

[Canny 1987] J. Canny. A new algebraic method for robot motion planning

and real geometry. In Proceedings of the 28th Annual Symposium on
Foundations of Computer Science, SFCS’87, pages 39–48, Washington,
DC, USA, 1987. IEEE Computer Society. (Cited on page 62.)

[Canny 1988] J. Canny. Some algebraic and geometric computations in

PSPACE. In Proceedings of the twentieth annual ACM symposium
on Theory of computing, STOC ’88, pages 460–467, New York, NY,
USA, 1988. ACM. (Cited on page 16.)

[Cazals 2008] F. Cazals, J.-C. Faugère, M. Pouget and F. Rouillier. Ridges

and Umbilics of Polynomial Parametric Surfaces. In B. Juttler and
R. Piene, editeurs, Geometric Modeling and Algebraic Geometry,
chapitre 3, pages 141–159. Springer, 2008. (Cited on pages 131
and 138.)

[cga] Cgal., Computational Geometry Algorithms Library.
http://www.cgal.org. (Cited on page 124.)

[Chen 2011] C. Chen and M. Moreno Maza. Algorithms for computing trian-

gular decompositions of polynomial systems. In Proceeding of the 36th
International Symposium on Symbolic and Algebraic Computation,
ISSAC ’11, pages 83–90, New York, NY, USA, 2011. ACM. (Cited on
page 15.)

[Cheng 2007] J.-S. Cheng, X.-S. Gao and C. K. Yap. Complete numerical

isolation of real zeros in zero-dimensional triangular systems. In Pro-
ceeding of the International Symposium on Symbolic and Algebraic
Computation- ISSAC, pages 92–99, 2007. (Cited on page 15.)

[Cheng 2009] J.-S. Cheng, X.-S. Gao and J. Li. Root isolation for bivariate

polynomial systems with local generic position method. In ISSAC, pages
103–110, 2009. (Cited on pages 13 and 132.)

[Cheng 2010] J.-S. Cheng, S. Lazard, L. Peñaranda, M. Pouget, F. Rouillier
and E. Tsigaridas. On the Topology of Real Algebraic Plane Curves.
Mathematics in Computer Science, vol. 4, pages 113–137, 2010. (Cited
on pages 11, 17, 18, 105, 119, 131, 137, 140 and 153.)

[Collins 1971] G. E. Collins. The calculation of multivariate polynomial re-

sultants. In Proceedings of the second ACM symposium on Symbolic
and algebraic manipulation, SYMSAC ’71, pages 212–222, New York,
NY, USA, 1971. ACM. (Cited on page 35.)

158 Bibliography

[Cox 1997] D. Cox, J. Little and D. O’Shea. Ideals, varieties, and algorithms.
Undergraduate Texts in Mathematics. Springer-Verlag, New York, 2nd
édition, 1997. (Cited on page 30.)

[Cox 2005] D. Cox, J. Little and D. O’Shea. Using algebraic geometry. Nu-
meéro 185 de Graduate Texts in Mathematics. Springer, New York,
2nd édition, 2005. (Cited on pages 78 and 83.)

[Cox 2007] D. Cox, J. Little and D. O’Shea. Ideals, varieties, and algorithms.
Undergraduate Texts in Mathematics. Springer-Verlag, New York, 3rd
édition, 2007. (Cited on page 83.)

[Dahan 2004] X. Dahan and É. Schost. Sharp estimates for triangular sets. In
Proceedings of the 2004 International Symposium on Symbolic and al-
gebraic computation, ISSAC’04, pages 103–110, New York, NY, USA,
2004. ACM. (Cited on page 15.)

[Diatta 2009] D. Niang Diatta. Calcul effectif de la topologie de courbes et

surfaces algebriques reelles. Ph.d. thesis, Universite de Limoge, France,
2009. (Cited on pages 78 and 102.)

[Diochnos 2009] D. I. Diochnos, I. Z. Emiris and E. P. Tsigaridas. On the

asymptotic and practical complexity of solving bivariate systems over

the reals. J. Symb. Comput., vol. 44, no. 7, pages 818–835, 2009. (Cited
on pages 9, 10, 11, 13, 14, 15, 17, 42, 45, 51, 59, 76, 83, 112 and 117.)

[Durvye 2008] Clémence Durvye and Grégoire Lecerf. A concise proof of the

Kronecker polynomial system solver from scratch. Expositiones Math-
ematicae, vol. 26, no. 2, pages 101–139, 2008. (Cited on page 16.)

[Eigenwillig 2007] A. Eigenwillig, M. Kerber and N. Wolpert. Fast and Exact

Geometric Analysis of Real Algebraic Plane Curves. In Proceedings of
the International Symposium on Symbolic and Algebraic Computation
- ISSAC, pages 151–158, 2007. (Cited on pages 18, 128 and 137.)

[Eigenwilling 2008] A. Eigenwilling and M. Kerber. Exact and Efficient

2D-Arrangements of Arbitrary Algebraic Curves. In Proc. 19th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA08),
pages 122–131, San Francisco, USA, January 2008. ACM-SIAM,
ACM/SIAM. (Cited on page 128.)

[El Kahoui 2003] M. El Kahoui. An elementary approach to subresultants

theory. J. Symb. Comput., vol. 35, no. 3, pages 281–292, 2003. (Cited
on pages 31, 32, 34 and 114.)

Bibliography 159

[Emeliyanenko 2010] Pavel Emeliyanenko. Modular resultant algorithm for

graphics processors. In Proceedings of the 10th international confer-
ence on Algorithms and Architectures for Parallel Processing - Volume
Part I, ICA3PP’10, pages 427–440, Berlin, Heidelberg, 2010. Springer-
Verlag. (Cited on page 14.)

[Emeliyanenko 2011] P. Emeliyanenko and M. Sagraloff. On the Complexity

of Solving a Bivariate Polynomial System. CoRR, vol. abs/1104.4954,
2011. (Cited on page 10.)

[Emeliyanenko 2012] P. Emeliyanenko and M. Sagraloff. On the Complexity

of Solving a Bivariate Polynomial System. In Proceedings of the 37th
International Symposium on Symbolic and algebraic computation, IS-
SAC’12, pages 154–161, 2012. (Cited on pages 14 and 59.)

[Emiris 2008] Ioannis Z. Emiris, Athanasios Kakargias, Sylvain Pion,
Monique Teillaud and Elias P. Tsigaridas. Towards an Open Curved

Kernel, 2008. (Cited on page 127.)

[Emiris 2010] I. Z. Emiris, B. Mourrain and E. P. Tsigaridas. The DMM

bound: Multivariate (aggregate) separation bounds. In S. Watt, editeur,
Proceedings of the 35th International Symposium on Symbolic and
Algebraic Computation - ISSAC’10, pages 243–250, Munich, Germany,
July 2010. ACM. (Cited on page 27.)

[Everett 2007] H. Everett, S. Lazard, D. Lazard and M. Safey El Din. The

Voronoi diagram of three lines. In Proceedings of the twenty-third
annual symposium on Computational geometry, SCG ’07, pages 255–
264, New York, NY, USA, 2007. ACM. (Cited on page 1.)

[Fulton 1989] W. Fulton and R. Weiss. Algebraic curves: an introduction
to algebraic geometry, volume 3. Addison-Wesley, 1989. (Cited on
page 82.)

[Fulton 2008] W. Fulton. Algebraic curves: an introduction to algebraic
geometry. 2008. Personal reprint made available by the author
(http://www.math.lsa.umich.edu/ wfulton/CurveBook.pdf). (Cited
on page 66.)

[Garloff 2000] J. Garloff and A. P. Smith. Investigation of a Subdivision Based

Algorithm for Solving Systems of Polynomial Equations, 2000. (Cited
on page 12.)

160 Bibliography

[Giusti 2001] M. Giusti, G. Lecerf and B. Salvy. A Gröbner Free Alternative

for Polynomial System Solving. Journal of Complexity, vol. 17, no. 1,
pages 154 – 211, 2001. (Cited on page 16.)

[Gonzalez-Vega 1989] L. Gonzalez-Vega, H. Lombardi, T. Recio and M.-F.
Roy. Sturm-Habicht Sequence. In Proc. Int. Symp. on Symbolic and
Algebraic Computation, pages 136–146, 1989. (Cited on page 128.)

[Gonzalez-Vega 1996] L. Gonzalez-Vega and M. El Kahoui. An Improved Up-

per Complexity Bound for the Topology Computation of a Real Alge-

braic Plane Curve. J. of Complexity, vol. 12, no. 4, pages 527–544,
1996. (Cited on pages 9, 10, 15, 17, 50, 51, 59, 61, 72, 76, 80, 81, 113,
151 and 152.)

[Gonzalez-Vega 2002] L. Gonzalez-Vega and I. Necula. Efficient topology de-

termination of implicitly defined algebraic plane curves. Computer
Aided Geometric Design, vol. 19, no. 9, 2002. (Cited on pages 17, 18,
131 and 140.)

[Hemmer 2010] Michael Hemmer. Polynomial. In CGAL User and Reference

Manual. Rapport technique, CGAL Editorial Board, 3.6 edition, 2010.
(Cited on page 129.)

[Hong 1996] H. Hong. An efficient method for analyzing the topology of plane

real algebraic curves. In Selected papers presented at the international
IMACS symposium on Symbolic computation, new trends and devel-
opments, pages 571–582, Amsterdam, The Netherlands, The Nether-
lands, 1996. Elsevier Science Publishers B. V. (Cited on page 18.)

[Kalkbrener 1993] M. Kalkbrener. A generalized Euclidean algorithm for com-

puting triangular representations of algebraic varieties. J. Symb. Com-
put., vol. 15, no. 2, pages 143–167, February 1993. (Cited on page 15.)

[Kerber 2009a] M. Kerber. Geometric Algorithms for Algebraic Curves and

Surfaces. PhD thesis, Universität des Saarlandes, Germany, 2009.
(Cited on page 153.)

[Kerber 2009b] M. Kerber. On the Complexity of Reliable Root Approxima-

tion. In CASC’09: Proceedings of the 11th International Workshop
on Computer Algebra in Scientific Computing, pages 155–167, Berlin,
Heidelberg, 2009. Springer-Verlag. (Cited on page 14.)

[Kerber 2011] M. Kerber and M. Sagraloff. A Worst-case Bound for Topology

Computation of Algebraic Curves. CoRR, vol. abs/1104.1510, 2011.
(Cited on page 18.)

Bibliography 161

[Kerber 2012] M. Kerber and M. Sagraloff. A worst-case bound for topology

computation of algebraic curves. J. Symb. Comput., vol. 47, no. 3,
pages 239–258, 2012. (Cited on page 42.)

[Knuth 1971] D. Knuth. The analysis of algorithm. Act du congrès interna-
tional des mathématiciens de 1970, vol. 3, pages 269–274, 1971. (Cited
on page 25.)

[Labs 2009] O. Labs. A List of Challenges for Real Algebraic Plane Curve

Visualization Software. In Nonlinear Computational Geometry, volume
IMA 151, pages 137–164. Springer, 2009. (Cited on pages 131 and 140.)

[Lazard 1991] D. Lazard. A new method for solving algebraic systems of posi-

tive dimension. Discrete Appl. Math., vol. 33, pages 147–160, October
1991. (Cited on pages 15 and 50.)

[Lazard 1992] D. Lazard. Solving Zero-Dimensional Algebraic Systems. J.
Symb. Comput., vol. 13, no. 2, pages 117–132, 1992. (Cited on
page 15.)

[Lazard 2009] Sylvain Lazard, Luis Mariano Peñaranda and Elias P. Tsigari-
das. Univariate Algebraic Kernel and Application to Arrangements. In
Jan Vahrenhold, editeur, SEA, volume 5526 of Lecture Notes in Com-

puter Science, pages 209–220. Springer, 2009. (Cited on pages 127, 128
and 130.)

[Lebreton 2013] R. Lebreton, E. Mehrabi and É. Schost. On the complexity

of solving bivariate systems: the case of non-singular solutions. In
Proceedings of the 38th International Symposium on Symbolic and
Algebraic Computation, ISSAC ’13, pages 251–258, New York, NY,
USA, 2013. ACM. (Cited on page 15.)

[Li 2003] T.Y. Li. Numerical Solution of Polynomial Systems by Homotopy

Continuation Methods. In Handbook of Numerical Analysis, volume 11
of Handbook of Numerical Analysis, pages 209 – 304. Elsevier, 2003.
(Cited on page 12.)

[Li 2011] X. Li, M. Moreno Maza, R. Rasheed and É. Schost. The modpn

library: Bringing fast polynomial arithmetic into Maple. J. Symb.
Comput., vol. 46, no. 7, pages 841–858, 2011. (Cited on pages 15, 50,
51, 76, 80, 81, 82 and 132.)

[Lickteig 2001] T. Lickteig and M.-F. Roy. Sylvester-Habicht Sequences and

Fast Cauchy Index Computation. J. Symb. Comput., vol. 31, no. 3,
pages 315–341, 2001. (Cited on pages 13, 25, 26, 34, 112, 114 and 115.)

162 Bibliography

[Lombardi 1990] H. Lombardi. Sous-Résultant, suite de Sturm, spécialisation.
PhD thesis, Université de Franche Comté, 1990. (Cited on page 114.)

[Lorensen 1987] W. E. Lorensen and H. E. Cline. Marching cubes: A high

resolution 3D surface construction algorithm. SIGGRAPH Comput.
Graph., vol. 21, pages 163–169, August 1987. (Cited on page 18.)

[Mehlhorn 2008] K. Mehlhorn and M. Sagraloff. A Deterministic Descartes

Algorithm for Real Polynomials, 2008. (Cited on pages 5 and 127.)

[Mehlhorn 2013] K. Mehlhorn, M. Sagraloff and P. Wang. From Approxi-

mate Factorization to Root Isolation with Application to Cylindrical

Algebraic Decomposition. CoRR, vol. abs/1301.4870, 2013. (Cited on
pages 27 and 153.)

[Mignotte 1989] M. Mignotte. Mathématiques pour le calcul formel. Presses
Universitaires de France, 1989. (Cited on page 69.)

[Moore 2009] R.E. Moore, M.J. Cloud and R.B. Kearfott. Introduction to
interval analysis. SIAM e-books. Society for Industrial and Applied
Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA
19104), 2009. (Cited on page 12.)

[Mourrain 2009] B. Mourrain and J.P. Pavone. Subdivision methods for solv-

ing polynomial equations. J. Symb. Comput., vol. 44, no. 3, pages
292–306, 2009. Polynomial System Solving in honor of Daniel Lazard.
(Cited on page 12.)

[MPFI] MPFI. MPFI: multiple precision interval arithmetic library. http:

//mpfr.org. (Cited on page 130.)

[MPFR] MPFR. MPFR: a library for multiple-precision floating-point com-

putations. http://mpfr.org. (Cited on page 130.)

[Neumaier 1990] A. Neumaier. Interval methods for systems of equations.
Cambridge Middle East Library. Cambridge University Press, 1990.
(Cited on page 12.)

[Niang Diatta 2008] D. Niang Diatta, B. Mourrain and O. Ruatta. On the

computation of the topology of a non-reduced implicit space curve. In
ISSAC’08: Proceedings of the twenty-first International Symposium
on Symbolic and algebraic computation, pages 47–54, New York, NY,
USA, 2008. ACM. (Cited on pages 75, 102 and 153.)

http://mpfr.org
http://mpfr.org
http://mpfr.org

Bibliography 163

[Peñaranda. 2010] L. Peñaranda. Géometrie algorithmique non linéaire et

courbes algébriques planaires. Ph.d. thesis, Universite Nancy 2, France,
2010. (Cited on page 140.)

[Plantinga 2004] S. Plantinga and G. Vegter. Isotopic approximation of

implicit curves and surfaces. In SGP’04: Eurographics/ACM SIG-
GRAPH Symposium on Geometry Processing, pages 245–254, 2004.
(Cited on page 18.)

[Reischert 1997] D. Reischert. Asymptotically fast computation of subresul-

tants. In Proceedings of the 1997 International Symposium on Sym-
bolic and algebraic computation, ISSAC’97, pages 233–240, New York,
NY, USA, 1997. ACM. (Cited on pages 34 and 112.)

[Renegar 1989] J. Renegar. On the worst-case arithmetic complexity of ap-

proximating zeros of systems of polynomials. SIAM J. Comput., vol. 18,
no. 2, pages 350–370, April 1989. (Cited on page 16.)

[Rheinboldt 1998] W.C. Rheinboldt. Methods for solving systems of nonlinear
equations. CBMS-NSF Regional Conference Series in Applied Mathe-
matics. Society for Industrial and Applied Mathematics, 1998. (Cited
on page 12.)

[Rouillier 1999] F. Rouillier. Solving zero-dimensional systems through the

rational univariate representation. J. of Applicable Algebra in Engi-
neering, Communication and Computing, vol. 9, no. 5, pages 433–461,
1999. (Cited on pages 4, 9, 16, 17, 21, 59, 61, 65, 75, 77, 80, 84, 88
and 100.)

[Rouillier 2003] F. Rouillier and P. Zimmermann. Efficient Isolation of Poly-

nomial Real Roots. J. of Computational and Applied Mathematics,
vol. 162, no. 1, pages 33–50, 2003. (Cited on pages 5, 127 and 137.)

[Roy 1996] M.-F. Roy. Basic algorithms in real algebraic geometry and their

complexity : from Strum theorem to the existential theory of reals.

Lectures on Real Geometry in memoriam of Mario Raimondo, Gruyter
Expositions in Mathematics., vol. 23, pages 1–67, 1996. (Cited on
page 114.)

[Rump 1983] S.M. Rump. Solving algebraic problems with high accuracy.
1983. (Cited on page 12.)

164 Bibliography

[Sagraloff 2012] M. Sagraloff. When Newton meets Descartes: A Simple and

Fast Algorithm to Isolate the Real Roots of a Polynomial. In Proceed-
ings of the 37th International Symposium on Symbolic and Algebraic
Computation, ISSAC’12, pages 297–304, 2012. (Cited on page 11.)

[Schost 2001] É. Schost. Sur la Résolution des Systèmes Polynomiaux à

Paramètres. PhD thesis, Ecole Polytechnique, France, 2001. (Cited
on page 62.)

[Schönhage 1982] A. Schönhage. The fundamental theorem of algebra in
terms of computational complexity. Manuscript. Department of Math-
ematics, University of Tübingen. Updated 2004., 1982. (Cited on
page 25.)

[Seidel 2005] R. Seidel and N. Wolpert. On the exact computation of the

topology of real algebraic curves. In Proc 21st ACM Symposium on
Computational Geometry, pages 107–115, 2005. (Cited on pages 13
and 17.)

[Sherbrooke 1993] E. C. Sherbrooke and N. M. Patrikalakis. Computation

of the solutions of nonlinear polynomial systems. Computer Aided
Geometric Design, vol. 10, no. 5, pages 379 – 405, 1993. (Cited on
page 12.)

[Strzebonski 2012] A. W. Strzebonski and E. P. Tsigaridas. Univariate real

root isolation in multiple extension fields. In Proceedings of the 37th
International Symposium on Symbolic and Algebraic Computation -
ISSAC, pages 343–350, 2012. (Cited on page 16.)

[Teissier 1973] B. Teissier. Cycles évanescents, sections planes et conditions

de Whitney. (French). In Singularités à Cargèse (Rencontre Singular-
ités Géom. Anal., Inst. Études Sci., Cargèse, 1972), numéro 7–8 de
Asterisque, pages 285–362. Soc. Math. France, Paris, 1973. (Cited on
page 119.)

[Torbjörn Granlund 2002] et al. Torbjörn Granlund. GNU Multiple Precision

Arithmetic Library 4.1.2, December 2002. http://swox.com/gmp/.
(Cited on page 129.)

[Van der Waerden 1930] B.-L. Van der Waerden. Moderne algebra 1.
Springer, Berlin, 1930. (Cited on page 42.)

[Verschelde 2010] J. Verschelde. Polynomial Homotopy Continuation with

PHCpack, 2010. (Cited on page 12.)

http://swox.com/gmp/

Bibliography 165

[von zur Gathen 2003] J. von zur Gathen and J. Gerhard. Modern computer
algebra. Cambridge Univ. Press, Cambridge, U.K., 2nd édition, 2003.
(Cited on pages 19, 22, 23, 24, 34, 35, 36, 38, 39, 55, 56, 86, 90, 97,
100, 116 and 118.)

[Wang 2001] D. Wang. Elimination methods. Texts & Monographs in Sym-
bolic Computation. Springer, 2001. (Cited on page 15.)

[Yap 2000] C. K. Yap. Fundamental problems of algorithmic algebra. Oxford
University Press, Oxford-New York, 2000. (Cited on pages 6, 19, 25,
26, 27, 34, 35, 36, 38, 39, 56, 90, 94 and 112.)

