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Résumé

Dans les systèmes micro ou nano-�uidiques, le glissement de vitesse à l'interface �uide-
parois est un phénomène important. Pour modéliser cet e�et à l'échelle macroscopique,
les conditions aux limites de Navier ont été introduites, avec la longueur de glissement
comme paramètre. Lorsque le �uide est un gaz, cette longueur est liée au coe�cient
d'accommodation tangentiel (TMAC) et au libre parcours moyen, selon le modèle de
Maxwell. Le but de ce travail est de traiter systématiquement ce modèle par une ap-
proche multi-échelle et de l'étendre en incorporant la morphologie et l'anisotropie de la
surface.

La thèse est composée de cinq chapitres.

Après l'Introduction, les notions de base de la théorie cinétique des gaz, l'équation de
Boltzmann et les solutions associées (Navier-Stokes-Fourier, Burnett, Grad, Direct Sim-
ulation Monte Carlo...) sont rappelées dans le Chapitre 1. Les modèles d'interaction
gaz-paroi ainsi que les modèles de glissement introduits dans le cadre de la mécanique des
�uides sont aussi rappelés. Le chapitre se termine par la description de la méthode de
calcul par dynamique moléculaire (MD) utilisée dans ce travail.

Le Chapitre 2 est dédié au développement d'une technique simple a�n de simuler les écoule-
ments induits par la pression. Le principe est de se baser sur les formules atomistiques du
tenseur des contraintes (Irving Kirkwood, Méthode de Plan, Contraintes Virielles) et de
modi�er les conditions périodiques, tout en maintenant la di�érence entre l'énergie ciné-
tique des atomes à l'entrée et à sortie du domaine de calcul. Plusieurs types de conduite
sont étudiés avec cette technique. Les résultats (température, vitesses...) sont discutés et
comparés.

Le Chapitre 3 concerne l'étude du potentiel d'interaction gaz-paroi par la méthode ab-
initio. Le code CRYSTAL 09 est utilisé pour obtenir le potentiel entre un atome d'argon
(Ar) et une surface de platine (Pt) <111> en fonction de la distance. Ensuite, le potentiel
atome/surface est décomposé en potentiel binaire et approché par une fonction analytique.
Cette fonction est ensuite implémentée dans un code MD pour simuler les collisions gaz-
paroi et déterminer le coe�cient TMAC.

Dans le Chapitre 4, l'e�et de morphologie est étudié. Le potentiel multi-corps Quan-
tum Sutton Chen (QSC) est utilisé pour le solide Pt <100> et un des potentiels binaires
étudié dans le chapitre précédent pour le couple Ar-Pt. Le potentiel QSC est nécessaire
pour reproduire l'e�et de surface qui a�ecte le résultat �nal. Di�érentes surfaces sont
traitées : surface lisse, surface nanostructurée, surface aléatoire obtenue par déposition de
vapeur (CVD). Le coe�cient TMAC est déterminé de façon généralisée, c.à.d en fonction
de l'angle du �ux d'atomes incidents sur la surface. Les anisotropies de surface et le noyau
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de collision sont également examinés.

Dans le Chapitre 5, on propose un modèle de glissement anisotrope pour les �uides en
fonction du tenseur d'accommodation. Le modèle est obtenu par les calculs analytiques
approchés développés dans le cadre de la théorie cinétique. On a ainsi généralisé l'équation
de Maxwell en montrant que le tenseur de longueur de glissement est directement lié au
tenseur d'accommodation. Le modèle est en bon accord avec les résultats de la méth-
ode MD. Concernant la simulation MD, on a développé une technique pour reproduire
l'anisotropie du tenseur d'accommodation.

Le mémoire de thèse se termine par une synthèse des résultats obtenus. Des perspectives
pour de futures études sont proposées.
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Abstract

In most applications concerning a �uid �owing over a solid surface, the no-slip velocity
condition was widely used because it is simple and produces the results in agreement with
experiments. However, this dynamical boundary condition is not appropriate when the
�ow under consideration is at a micro or nano length scale. In order to model this e�ect
at the macroscopic scale, the Navier boundary conditions have been introduced, with the
slip length as a parameter. When the �uid is a gas, this length is related to the tangen-
tial momentum accommodation coe�cient (TMAC) and the mean free path, according to
the Maxwell model. The aim of this work is to systematically address this model using
a multi-scale approach and to extend it by incorporating both the morphology and the
anisotropy of a surface.

The thesis consists of �ve chapters.

In Chapter 1, the basics of the kinetic theory of gases, the Boltzmann equation and related
solutions (Navier-Stokes-Fourier, Burnett, Grad, Direct Simulation Monte Carlo ...) are
brie�y presented. The models of gas-wall interaction and slip models introduced in the
�uid mechanics are also recalled. The chapter ends with a description of the computational
method used for the molecular dynamics simulations performed in this work.

Chapter 2 is dedicated to the development of a simple technique to simulate the pres-
sure driven �ows. The principle is to rely on the atomistic formulas of the stress tensor
(Irving Kirkwood, Method of Plane, Virial Stress) and to modify the periodic conditions by
maintaining the di�erence between the kinetic energy of the ingoing and outgoing particles
of the simulation domain. Several types of channels are studied with this technique. The
results (temperature, velocity ...) are discussed and compared.

Chapter 3 deals with the study of the gas-wall interaction potential by the ab-initio method.
The code CRYSTAL 09 is used to obtain the potential between an atom of argon (Ar) and
a surface of platinum Pt(111) as a function of distance. Then the gas-wall potential is
decomposed into binary potential and approached by an analytic function. This function
is then implemented in a MD code to simulate the gas-wall collisions and determine the
TMAC coe�cient. In Chapter 4, the e�ect of morphology is studied. The multi-body
Quantum Sutton Chen (QSC) potential is used for Pt(100) solid and the binary potential
proposed in the previous chapter for the Ar-Pt couple is employed. The QSC potential is
needed to reproduce the surface e�ects that a�ect the �nal results. Di�erent surfaces are
treated : smooth, nanostructured surface and, random surface obtained by Chemical vapor
deposition (CVD). The TMAC is determined using a generalized approach, i.e. depending
on the angle of incident �ux of gas atoms on the surface. The surface anisotropy and the
scattering kernel are also examined.
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In Chapter 5, we propose a model of anisotropic slip for �uids based on accommoda-
tion tensor. The model is obtained by the analytical approximate calculations developed
in the framework of the kinetic theory. We thus generalize Maxwell's equation by showing
that the slip length tensor is directly related to the accommodation tensor. The model
is in good agreement with the MD results. Thanks to our MD simulations, we develop a
suitable technique for reproducing the anisotropy of the accommodation tensor .

The thesis ends with a conclusion section in which we suggest some perspectives for a
continuation of this work.
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Nomenclature

B(v′,v) scattering kernel [d.u.]
b slip length tensor [m]
Cp, Cv heat speci�c at constant pressure and volume [J.K−1.Kg−1]
C1, C2 �rst and second order slip coe�cients [d.u.]
c̄ thermal speed [m.s−1]
De dissociation energy parameter [J ]
Ep, Ec potential and kinetic energy [J ]
Ec Eckert number [d.u.]
er unit normal vector of surface element dSr [d.u.]
F external force [Kg.m.s−2]
f(x,v, t) probability density function [d.u.]
f0 Maxwellian distribution function [d.u.]
I(vr,Ω) di�erential cross section of the collision [m2]
Kn Knudsen number [d.u.]
kB Boltzmann constant, kB = 1.3806503× 10−23 [Kg.m2.s−2.K−1]
kw rigidity of harmonic springs [Kg.s−2]
Ls slip length [m]
L, B, H length, width and height of the channel [m]
l, h length and height of the wall rib [m]
M surface mobility tensor [d.u.]
m molecular mass [Kg]
N accommodation tensor in the current basis Oxy [d.u.]
Pr Prandtl number [d.u.]
Q(φ) rotation transformation matrix
Q molecular physical quantities
Q macroscopic physical quantities
Re Reynolds number [d.u.]
rij distance between particles i and j [m]
rc cut-o� radius [m]
rv Verlet radius [m]
Sr cross surface [m2]
T Temperature [K]
t time [s]
u stream velocity [m.s−1]
us slip velocity tensor [m.s−1]
V interaction energy [J ]
v(v1, v2, v3) velocity space [m.s−1]
vi, vr incident and re�ected velocity [m.s−1]
x(x1, x2, x3) physical space [m]
(x, y, z) cartesian coordinate [m]
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Greek symbols

αx, αy, αz momentum accommodation coe�cients along x, y, z axes[d.u.]
δt time step [s]
dΩ solid angle [sr]
ϵ depth of the potential well [J ]
η viscosity [Kg.m−1.s−1]
γ external force �eld [Kg.m.s−2]
κ thermal conductivity [W.m−1.K−1]
λ mean free path [m]
µi percentage of the elementary kernel Bi [d.u.]
Φ−, Φ+ incoming and outcoming �ux at the wall
ψ1, ψ2, ... functions in Chapman and Enskog model
ω vertical harmonic vibrational frequency [J ]
ρ number density [m−3]
σ distance at which the inter-particle potential is zero in Lennard Jones potential [m]
σt tangential momentum accommodation coe�cient [d.u.]
σn normal momentum accommodation coe�cient [d.u.]
σT energy accommodation coe�cient [d.u.]
τ shear stress vector [Pa]
θ, ϕ zenithal and azimuthal angles [rad]
ξ damping coe�cient in Langevin equation [d.u.]

Indices

an e�ective anisotropic
dir directional
e equilibrium
fcc face centered cubic
g gas
i, j particles
iso e�ective isotropic
s solid
w wall
+, − upper and lower walls

Special symbols

⟨.⟩ ensemble average
⊗ dyadic product
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Introduction

Over the past decades, micro/nano�uidic systems have developed rapidly as the result
of continuous progresses in micro/nanofabrication technologies. Such systems contribute
to a technological revolution in many areas such as the cooling of electronic components,
micro electro mechanical systems (MEMS), biotechnology and medicines. One of the most
successful commercial application of micro�uidics is the inkjet printhead which consist of
an ink reservoir fabricated from silicon, a heating element to drive the �uid, and a nozzle
(Fig. 1). Droplets created by this system is generally about 50 µm. According to Tabeling,
tens of millions of inkjet printers use MEMS and billions of documents are written and
read thanks to micro�uidics [1].

Figure 1: An inkjet printhead (left) and the visualization of droplets of ink projected onto
a target (right) [1], [2].

Another examples of micro�uidic systems which can be found in computer science, me-
chanical and chemical engineering are chemostats, pumps, conducts, mixers, �lters, and
valves (Fig. 2). Besides, the actual technologies permit also the construction of microde-
vices containing multiple components with di�erent functionalities. A single integrated
chip could perform many works concerning the biological or chemical processing from the
sampling, pre-processing, and measurement in an assay. This leads to save time and re-
duce the reagent consumption. Nowadays, lab-on-a-chip devices are used for abundant
�elds including analysers of air and water quality, diagnostics of illnesses, and devices that
replace many functions of components of human body. The economic possibilities of this
�eld have been estimated at tens of billions of dollars per year [1].
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Figure 2: Examples of micro/nano�uidic systems.

Figure 3: This chip is commercialized by Agilent Technologies and permits the identi�ca-
tion of speci�c genetic sequences in a 1-µl sample of roughly puri�ed DNA. The process
time is just about 10 min [1].

As many investigators pointed out, physics that apply to nanotechnology scale is di�erent
from that on a human scale. Indeed, in the macroscopic scale, the surface/volume ratio
is on the order of unity while in nanoscale, it rises to nearly a million. Such large ratios
allow the surface e�ects dominate the physics and quantum e�ects begin to show and
thus become important. The understanding of these physical e�ects at such small scales is
therefore a vital interest in the manufacture and use of micro/nano electrodynamic systems.

At the same time, improvements in the numerical modeling are also needed to analyze
the reliability of the systems. Depending on the nature of the problem, there are di�er-
ent suitable computational methods, such as those based on the Navier-Stokes and energy
equations, the Burnett or Super Burnett models [3�5], or the molecular simulations. In the
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great family of molecular simulation methods, this is the Monte-Carlo method, which �rst
appeared in 1953 with the work of Metropolis et al. [6]. This method is purely statistical
and is well suited to the study of thermodynamic properties. The method is to succes-
sively change the movement of molecules randomly following a conditional probability by
the thermodynamic state of the considered system. However, the classic Monte-Carlo
method does not allow to study the dynamic aspects of systems. First proposed by Alder
et Wainwrigth [7] in 1957 , the molecular dynamics (MD) simulation can overcome this ob-
stacle. In general, there are two main types of MD simulation, which can be distinguished
according to the way of interaction forces calculations. In classical MD simulations, the
interaction forces are derived from the �xed empirical potentials, while in ab initio MD
simulations, the quantum nature of the chemical bond is explicitly taken into account and
the interaction forces are determined from the quantum chemistry. By integrating the
equations of motion at time t, the molecular dynamics allows to evolve over time a system
of particles de�ned by their positions, velocities and accelerations. As the user desires,
the molecular properties can be sampled, averaged, and used to compute �ow quantities,
such as velocity, density, and viscosity. For micro/nano�ows, the MD method is one of the
most accurate method since realistic interactions between particles or between particles
and boundaries may be accounted for.

In most applications concerning a �uid �owing over a solid surface, the no-slip velocity
condition was widely used because it is simple and produces the results in agreement with
experiments. However, this dynamical boundary condition is not appropriate when the
�ow under consideration is at a micro or nano length scale. In order to model this e�ect
at the macroscopic scale, the Navier boundary conditions have been introduced, with the
slip length as a parameter. When the �uid is a gas, this length is related to the tangen-
tial momentum accommodation coe�cient (TMAC) and the mean free path, according to
the Maxwell model. The aim of this work is to systematically address this model using
a multi-scale approach and to extend it by incorporating both the morphology and the
anisotropy of a surface.

The thesis consists of �ve chapters.

In Chapter 1, the basics of the kinetic theory of gases, the Boltzmann equation and related
solutions (Navier-Stokes-Fourier, Burnett, Grad, Direct Simulation Monte Carlo ...) are
brie�y presented. The models of gas-wall interaction and slip models introduced in the
�uid mechanics are also recalled. The chapter ends with a description of the computational
method used for the molecular dynamics simulations performed in this work.

Chapter 2 is dedicated to the development of a simple technique to simulate the pres-
sure driven �ows. The principle is to rely on the atomistic formulas of the stress tensor
(Irving Kirkwood, Method of Plane, Virial Stress) and to modify the periodic conditions by
maintaining the di�erence between the kinetic energy of the ingoing and outgoing particles
of the simulation domain. Several types of channels are studied with this technique. The
results (temperature, velocity ...) are discussed and compared.

Chapter 3 deals with the study of the gas-wall interaction potential by the ab-initio method.
The code CRYSTAL 09 is used to obtain the potential between an atom of argon (Ar) and
a surface of platinum (Pt)⟨111⟩ as a function of distance. Then the gas-wall potential is
decomposed into binary potential and approached by an analytic function. This function
is then implemented in a MD code to simulate the gas-wall collisions and determine the
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TMAC coe�cient.

In Chapter 4, the e�ect of morphology is studied. The multi-body Quantum Sutton Chen
(QSC) potential is used for Pt ⟨100⟩ solid and the binary potential proposed in the previous
chapter for the Ar-Pt couple is employed. The QSC potential is needed to reproduce the
surface e�ects that a�ect the �nal results. Di�erent surfaces are treated : smooth, nanos-
tructured surface and, random surface obtained by Chemical vapor deposition (CVD). The
TMAC is determined using a generalized approach, i.e. depending on the angle of incident
�ux of gas atoms on the surface. The surface anisotropy and the scattering kernel are also
examined.

In Chapter 5, we propose a model of anisotropic slip for �uids based on accommoda-
tion tensor. The model is obtained by the analytical approximate calculations developed
in the framework of the kinetic theory. We thus generalize Maxwell's equation by showing
that the slip length tensor is directly related to the accommodation tensor. The model
is in good agreement with the MD results. Thanks to our MD simulations, we develop a
suitable technique for reproducing the anisotropy of the accommodation tensor.

The thesis ends with a conclusion section in which we present some perspectives for con-
tinuations of this work.
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Chapter 1

Theories and computation methods

in micro�uidics

1.1 Kinetic theory of gases

1.1.1 Velocity distribution function

A �uid is an ensemble of a large number of molecules that interact and move in space. The
macroscopic behavior of the �uid can then be completely determined from the knowledge
of the particle positions and velocities. However, such a description is not feasible when
the number of molecules achieve the order of the continuum limit. A more cost e�ective
way to model �uids, especially suitable for gases, is to use a single statistical distribution
function [4].

Consider at time instant t and at location x(x1, x2, x3) in the physical space, there are
N �uid molecules occupying a di�erential volume dx = dx1dx2dx3. In addition to time
and location, these molecules can also be classi�ed by their velocity v(v1, v2, v3). As a
result, the probability density function f(x,v, t) for the velocity can be de�ned by

dN = fdv, (1.1)

where dN is the number of particle in the sample with velocity in the range of v and
v + dv. The term dv = dv1dv2dv3 denotes a di�erential volume in the velocity space (see
Fig.1.1).

Knowing the distribution function f , the macroscopic properties Q (stresses, temperature,

Figure 1.1: Elementary volume in physical and velocity space.
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Table 1.1: Some relations between macroscopic physical quantities Q and molecular quan-
tities Q. Here, m and ρ = nm are respectively the molecular mass and the mass density

Q Q

Stream velocity u v

Stress tensor σ −ρ(v − u)⊗ (v − u)
Heat �ux q

ρ
2 |v − u|2(v − u)

Figure 1.2: Phase space element

mean velocity, etc...) can be determined by means of average of the molecular quantities
Q (velocity, momentum, energy, etc...)

Q =
1

n

∫

Qfdv, n =

∫

fdv, (1.2)

where n is the number density. Generally, these macroscopic quantities are moments of
the distribution function f , as listed in Table 1.1.

1.1.2 The Boltzmann equation

The evolution of f with time in physical and velocity spaces can be studied on the basis
of the conservative equations. For an element in the combined phase space dvdx shown in
Fig. 1.2, the local rate of change of the number particles at time t is

∂f

∂t
dxdv, (1.3)

The change in the number of particles within dxdv can be caused by in�ows of particles
through each side of the phase space element. First, the net in�ow of particles through the
physical space element dx is due to the convection of particles across the surface Sr of dx.
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Considering class v particles, the convection in�ow reads

−
∫

Sr

(fv) · (erdSr)dv, (1.4)

with er being the unit normal vector of surface element dSr. Using the Gauss theorem,
the surface integral can be rewritten as the volume integral :

∫

dx
∇ · (fv)dxdv . (1.5)

Since f and v are constant within dx and only particles of class v are considered, the
equation becomes

−v · ∂f
∂x

dxdv. (1.6)

Secondly, the �ux of particle across sides of dv can be caused by external force per unit
mass F. Similar to particle �uxes across side of dx, the net in�ow through the velocity
space dv is written as

−F · ∂f
∂v

dxdv. (1.7)

In addition to the above processes, the local number of particles can be changed by inter-
molecular collisions in the velocity space. This e�ect is expressed via the integral operator

{

∂f

∂t

}

coll

dxdv. (1.8)

The collision term can be evaluated by considering the collision between two particles of
di�erent class, say v and v1 and their post collision velocities v′ and v′

1. Skipping the
proof which is presented in many previous works [3, 4, 8], we admit the following �nal
expression

{

∂f

∂t

}

coll

dxdv =

(
∫ ∞

−∞

∫ 4π

0
vrI(vr,Ω)(f

′f ′1 − ff1)dΩdv1

)

dxdv, (1.9)

where f1, f ′ and f ′1 is the velocity distribution function at v1, v′ and v′
1 class and vr is

the relative velocities between the particles before and after collision,

vr = |v − v1| = |v′ − v′
1|. (1.10)

The term I(vr,Ω) is the di�erential cross section of the collision, in which the relative
velocity of the colliding particles falls within the solid angle dΩ.

Finally, the equation for the change of particle number of class v becomes

∂f

∂t
+ v · ∂f

∂x
+ F · ∂f

∂v
=

∫ ∞

−∞

∫ 4π

0
vrI(vr,Ω)(f

′f ′1 − ff1)dΩdv1. (1.11)

which is the Boltzmann equation for a simple dilute gas.

1.1.3 Approximate solutions

For the gas in equilibrium, the velocity class must be constant with time and position. As
a result, the collision term in the Boltzmann equation must vanish

{

∂f

∂t

}

coll

= 0. (1.12)
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Table 1.2: Approach equations of CE model for di�erent order k of Kn.

Order k Model equations
Kn0 Euler
Kn1 Navier-Stokes-Fourier
Kn2 Burnett

That condition implies that

f ′f ′1 − ff1 = 0 or ln f ′ + ln f ′1 = ln f + ln f1 (1.13)

or ln f is a collision invariant. Thus, it is natural to express ln f as linear combination of
linear momentum and kinetic energy since they are both collision invariant. Finally, we
can derive the famous Maxwellian distribution f0

f0(v) = n

(

m

2πkBT

)3/2

e
−m|v−u|2

2kBT . (1.14)

with kB being the Boltzmann constant. For nonequilibrium gases, the Boltzmann equation
is mathematically di�cult to solve due to the integral form of the collision term. In the
literature, approximate solutions have been proposed based on the simpli�ed treatment of
the latter [9�11].

Bhatnagar, Gross and Krook (BGK) [9] replaced the collision operator by a di�erence
between the sought distribution function f and a local equilibrium distribution f0

{

∂f

∂t

}

coll

=
1

τ
(f0 − f) , (1.15)

where τ is the characteristic time of the evolution from the particle distribution to the equi-
librium distribution. The basic idea of the BGK model is to see the collision process as a
relaxation phenomenon and the main role of the collision term is to relax the distribution
function into an equilibrium distribution. It is also assumed that the actual distribution
function is not very far from the equilibrium distribution.

Using the Knudsen number, Chapman and Enskog (CE) [10] employed an asymptotic
expansion of f

f = f0(1 + Knψ1 +Kn2ψ2 + ...) , (1.16)

where ψ1, ψ2, ... are functions of gas density, temperature and macroscopic velocity. By
truncating the series at order k of Kn, we obtain the k−order constitutive equations from
the Boltzmann equation as shown in Table 1.2.

An alternative approach is proposed by Grad [11], the Grad13 and Grad26 equations,
taking higher order moments as variables in addition to the usual quantities temperature,
density, etc.... Although these theories are very promising, the development is still under-
work, dealing with issues such as boundary conditions, solution existence, etc...

At �nite Knudsen number, the Boltzmann equation can be also solved numerically with
Direct Simulation Monte Carlo (DSMC) method. Representative particles are used in a
DSMC simulation instead of real molecules and the collisions between these particles are
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Figure 1.3: Classi�cation of the gas �ow regimes and governing equations over the range
of Knudsen numbers (Zhang et al., 2012)[13].

treated randomly. To date, the DSMC method is considered as the most accurate and
e�cient numerical method for rare�ed gas �ow simulation and has been widely used in
practice.

1.1.4 Flow regimes and validity of models

A key nondimensional parameter for micro�ows is the Knudsen number, which is de�ned
as the ratio

Kn =
λ

H
, (1.17)

where H is the characteristic length scale of �ow and λ is the mean free path estimated by

λ =
1√

2nπσ2
. (1.18)

The quantity σ in Eq. 1.18 is the diameter of the �uid molecules. In the case of Lennard
Jones (LJ) �uid, this diameter is approximately taken equal to the reference length σ ap-
pearing in the LJ interaction potential.

In rare�ed gas dynamics, the Knudsen number is normally used as a measure of the de-
gree of rarefaction. Rarefaction e�ects become more important as the Knudsen number
increases and thus pressure drop, shear stress, heat �ux and corresponding mass �ow rate
cannot be predicted by using models based on the continuum hypothesis [12]. A classi�-
cation of the di�erent �ow regimes and the corresponding governing equations are shown
in Fig. 1.3.

• Kn < 10−3 : the �ow is considered as a continuum and the transport phenomena
can be modeled by Navier-Stokes and energy conservation equations.

• 10−3 < Kn < 10−1 : it is considered a slip �ow. The Navier-Stoke and energy
equations remain applicable but it is necessary to take into account the boundary
conditions with slip velocity and temperature jump in the walls.

• 10−1 < Kn < 10 : transition �ow.

• Kn > 10 : free-molecular �ow.
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For gas �ow with high Knudsen number (> 10−1), the number of particle in a volume unit
of gas decreases and the number of intermolecular collisions is probably not su�cient to
form an equilibrium state. The behavior of individual particle become more important for
the macroscopic behavior of gas �ow as the Knudsen number increases. The continuum
approximation used in the �ows with small Knudsen number is then invalid and it is
necessary to apply microscopic approaches like the Boltzmann equation, that recognize
the molecular property of gases.

1.1.5 Gas-surface interface mechanisms

At the micro/nanoscale, the gas-surface interactions can have signi�cant impacts on the
overall �ow behavior. In the near surface region, the gas cannot be considered as in equi-
librium and the energy and momentum transfer between the gas particle and the surface
should be examined. This area is called the Knudsen layer : a thermodynamically nonequi-
librium region extending a distance of a few mean free path from the surface. For �ows
with small Knudsen number, the e�ect of Knudsen layer is not signi�cant, the continuum
approximation can be used by extrapolating the bulk gas �ow towards the surface. At
high Knudsen number, the collision frequency may be insu�cient to reach an equilibrium
state and the distribution function of gas will deviate from the Maxwellian distribution in
the Knudsen layer.

The gas-surface interaction can be accessed via some averaged parameters such as the
momentum and energy accommodation coe�cients. While the tangential and normal mo-
mentum accommodation coe�cients are used to characterize the momentum exchanges
parallel and perpendicular to the surface, the thermal accommodation coe�cient is used
for the energy exchange.

The Tangential Momentum Accommodation Coe�cient σt (abbreviated as TMAC) is de-
�ned as [14]

σt =
vit − vrt
vit − uw

, (1.19)

where vit and vrt are respectively the tangential velocity of incident and re�ected particles
and uw is the wall velocity.

When σt = 0, the re�ection is purely specular. As a result, the tangential velocity com-
ponent is unchanged, but the normal velocity component is reversed (see Fig. 1.4). This
corresponds to an extreme case where the wall is ideally smooth. In the other extreme,
the wall is ideally rough and the re�ection is purely di�usive, i.e σt = 1. The re�ection
occurs at a random angle and the average tangential velocity of re�ected particles is zero.
In Maxwell's work, a mixed re�ection mechanism is proposed: a portion of the particles
re�ect specularly and the remaining re�ect di�usively.

Since it is impossible to predict theoretically the trajectories or distribution of the incident
and re�ected particles, σt is usually determined from experiments or numerical simulations
As shown in the later sections, the coe�cient depends on many factors such as gas-surface
interaction potentials, the morphology of surface and temperature.

Unlike the TMAC, the Normal Momentum Accommodation Coe�cient (NMAC) σn has
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Figure 1.4: Specular re�ection and di�usive re�ection.

various forms of de�nitions as follows [14],

σn =
|vin|+ |vrn|
|vin|+ |vwn|

, (1.20)

σn =
|vin| − |vrn|
|vin| − |vwn|

, (1.21)

σn =
|vin| − |vrn|

|vin|
, (1.22)

σn =
|vin|+ |vrn|

|vin|
, (1.23)

in which vin and vrn are the normal velocity of incident and re�ected particles, respectively,
and vwn is given by :

vwn =

√

πkBTw
2m

, (1.24)

where Tw is the wall temperature.

In Equation (1.21), σn is singular when |vin| = |vwn|, while in the other equations (1.20),
(1.22) and (1.23), a singular σn can be avoided. However, the expressions of (1.22) and
(1.23) only show the relative normal momentum of incident and re�ected particles but
cannot represent the accommodation with the wall [14].

The energy transfer between the monoatomic gas particles and the surface can be charac-
terized via the Energy Accommodation Coe�cient (EAC) σT de�ned by

σT =
v2i − v2r
v2i − v2w

, (1.25)

At �rst glance, the coe�cients σt, σn, σT appear to be identical for all collisions. However,
with all the complexity of the wall structure at the atomic scale, σt, σn, σT should be
understood as e�ective quantities computed from a given �uxes of momentum and energy.
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Figure 1.5: Interpretation of the Navier slip length Ls for Couette velocity pro�les

1.1.6 Slip boundary conditions

One of the earliest �uid-solid boundary conditions was proposed by Navier [15], postulating
that the tangential �uid velocity relative to the wall uslip is proportional to the �ow shear
rate

uslip = ufluid − uwall = Ls

(

∂u

∂n

)

s

, (1.26)

where Ls is the slip length, uwall the wall velocity and ∂
∂n the normal derivative at the wall

surface. The slip length Ls is shown in Fig.1.5 with three cases : no-slip, partial slip and
perfect slip. For a pure shear �ow, Ls can be interpreted as the �ctitious distance below
the real surface where the no-slip boundary condition is satis�ed.

According to Maxwell [16], the slip length can be estimated by a simple relation

Ls = λ
2− σt
σt

. (1.27)

The slip equation is usually written in dimensionless form. When combined with thermal
transpiration e�ect [17], it becomes

Uslip =
2− σt
σt

Kn

(

∂U

∂n

)

s

+
3

2π

Cp − Cv

Cp

Kn2Re

Ec

∂T

∂s
, (1.28)

In (1.28), ∂
∂s implies tangential derivative at the wall surface, Cp and Cv the heat speci�c

at constant pressure and volume, Re and Ec the Reynolds number and Eckert number.

The slip velocities in second order have also been proposed to extend the validity range
of continuum equations for Knudsen numbers corresponding to the start of the transition
regime. For the isothermal �ows, they could be written in the general form as :

Uslip = C1Kn

(

∂U

∂n

)

s

− C2Kn2
(

∂2U

∂n2

)

s

, (1.29)

where C1 and C2 are the �rst and second order slip coe�cients, respectively. For Maxwell's
model in Equation 1.28, C1 =

2−σt

σt
and C2 = 0.

The slip coe�cients C1 and C2 available from the literature are listed in Tables 1.3 and
1.4 [13, 14]. Table 1.3 presents their values when σt = 1. There is no general agreement
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Table 1.3: Values of �rst and second order slip coe�cients in literature

References Approach C1 C2

Maxwell(1879) [16] First-order model 1 0
Schamberg (1947) [18] Second-order model 1 5π/12
Albertoni et al. (1963) [19] BGK model 1.1455 0
Deissler (1964) [20] Second-order model 1 9/8
Chapman and Cowling (1970) [10] Linearized Boltzmann model 1 0.5
Loyalka (1971) [21] BGK model 0.7252 0
Hsia and Domoto (1981) [22] Second-order model 1 0.5
Loyalka and Hickey (1989) [23] BGK based kinetic model 1.1019 0.0449
Mitsuya (1993) [24] 1.5-order model 1 2/9
Pan et al. (2000) [25] First-order model 1.125 0
Karniadakis and Beskok (2002) [26] Second-order model 1 -0.5
Wu and Bogy (2003) [27] New second-order model 2/3 0.25
Hadjiconstantinou (2003) [28] HS model 1.11 0.61
Cercignani and Lorenzani (2010) [29] HS model 1.1209 0.2347

BGK-based model 1.1366 0.69261
Li et al. (2011) [30] Lattice Boltzmann model 1 0.8

on the results : C1 is around unity while C2 varies from −0.5 to 9/8. In Table 1.4, the ex-
pressions of two slip coe�cients as function of σt are shown. These values could be derived
from the Navier-Stokes equation as well as the Boltzmann equation. The �rst-order slip
coe�cients C1 usually relate to σt, while the second-order slip coe�cients C2 are rather
di�erent.

Using a similar approach made for the slip velocity, von Smoluchowski also proposed a
boundary condition for the temperature that can be written in the dimensionless form as,

Tjump = Tfluid − Twall =
2− σT
σT

[

2Cp

Cp + Cv

]

Kn

Pr

(

∂T

∂n

)

s

, (1.30)

where σT is the thermal accommodation coe�cient and Pr is the Prandtl number given
by :

Pr =
Cpη

κ
, (1.31)

in which η is the dynamical viscosity and κ is the thermal conductivity.
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Table 1.4: Expressions of �rst and second order slip coe�cients in literature

References C1 C2

Maxwell (1879) [16] 2−σt

σt
0

Loyalka (1971) [21] 2−σt

σt

√
π
2 (1− 0.1871σt) 0

Cercignani (1988) [31] 2√
π
2−σt

σt
(1 + 0.1621σt)

2
π (0.5 + C2

1 )

Jie et al. (2000) [32] 2−σt

σt
−2−σt

σt

Re
Kn

Aubert and Colin (2001) [33] 2−σt

σt
9/8

Karniadakis and Beskok (2002) [26] 2−σt

σt
−2−σt

2σt

Lockerby et al. (2004) [34] 2−σt

σt

9
4π

Pr(γ′−1)
γ′

Wu (2008) [35], f = min[1/Kn, 1] 2
3

[

3−σtf3

σt
− 3

2
(1−f2)
Kn

]

1
4

[

f4 + 2
Kn2 (1− f2)

]

1.2 Molecular Dynamics method

Molecular Dynamics was �rst introduced by Alder and Wainwright in the late 1950's to
study the interactions of hard spheres [7]. This method consists in studying the trajectory
of particles, simulating the spatial evolution of system over the time. In the simulation,
each particle is considered as a point mass whose movement is determined by all the forces
exerted on it by other particles. The laws of Newtonian classical mechanics applied to a
particle i can be written as :

vi(t) =
∂ri
∂t

, (1.32)

mi
∂vi

∂t
= Fi = −∂Vpot

∂ri
, (1.33)

in which vi, ri and mi are the velocity, position and mass of particle i, respectively. Fi

is the force acting on the particle i and Vpot is the total potential energy of the system
consisting of N particles.

The equations of motion could be integrated by breaking the computations into a se-
ries of very short time steps (normally about some femtoseconds). At each step ti, the
forces on the atom i are calculated and combined with the current position and velocity
to determine its new position and velocity at time ti+1. An updated set of forces is then
computed for the new position, and so on the trajectory of particle versus time is totally
known.
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1.2.1 Interatomic potential

The interatomic potentials play an important part in the MD simulations since they govern
the dynamics of the system and thus the accuracy of the results. The best known of pairwise
potentials is the Lennard-Jones (LJ) 12-6. It represent the van der Waals forces with one
repulsive term in r−12 and one attractive term in r−6. For a pair of atoms i and j the
potential energy is :

V (rij) = 4ϵ

[

(

σ

rij

)12

−
(

σ

rij

)6
]

, rij =| ri − rj | (1.34)

where the parameters ϵ and σ are the scales of energy and length, respectively. The in-
teraction repels at close range, then attracts, and is eventually cut o� at some limiting
separation rc.

Traditionally the Lennard-Jones potentials are the most used since the mathematical ex-
pression allows to derive forces between particles e�ciently. However, although the at-
tractive part depending on r−6 describes correctly the dispersion interaction between two
particles, the repulsive part in r−12 has no theoretical justi�cation. To overcome this draw-
back, the repulsive part can be replaced by V0e−α(rij−R0) which reproduces correctly the
Pauli repulsion. The total pairwise potential should then be described by the Buckingham
form [36]:

V (rij) = V0e
−α(rij−R0) − C6

r6ij
, (1.35)

where R0 is the position of the minimum of V (rij). Increases in R0 decrease the corruga-
tion of the gas-surface potential. V0 and α must allow to reproduce the Pauli repulsion at
short ranges, and C6 is the van der Waals dispersion parameter.

Besides, for a metallic cluster or a nanoparticle, the Sutton-Chen potential is often em-
ployed to calculate the interaction between solid atoms. It has the form :

Vpot = ϵ









1

2

N
∑

i=1

N
∑

j=1
j ̸=i

(

a

rij

)n

− c

N
∑

i=1

ρ
1/2
i









, ρi =

N
∑

j=1
j ̸=i

(

a

rij

)m

, (1.36)

where c is a dimensionless parameter and ρi is the local density of atom i. The parameters
ϵ and a determine the scales of energy and length, respectively and, n and m the range
and shape of the potential.

To save computational time, the interaction potential is often truncated at a cut-o� dis-
tance of rc ≈ 2.5σ to 5σ. This cut-o� radius corresponds to the distance beyond which the
interactions between the particles are negligible and not taken into account for the calcu-
lation of the forces. For example, at a typical cuto� distance of rc = 2.5σ the interaction
energy of LJ potential is just about 0.0163 of the well depth. However, the use of trun-
cated potential can pose a problem at small cut-o� radius. It may cause a discontinuity
in both the potential energy and the force near the cuto� value that e�ect to the energy
conservation of system.

1.2.2 Boundary conditions

In order to conserve the macroscopic behavior of simulated system and save the com-
putational time, the boundary condition should be treated in a reasonable manner. In
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Figure 1.6: Periodic boundary conditions for a simulation box in two dimensions

molecular dynamic simulations, the most used method is periodic boundary conditions
where the simulation region is divided into boxes and the central box is replicated in all
directions to give a periodic array. An example of two dimensional box is plotted in Fig.
(1.6). As seen in the �gure, the central box is bounded by 8 neighbors; in three dimen-
sions, the number of neighboring boxes would increase to 26. During the simulation, if a
particle leaves the box, another particle having the same physical properties go through
the opposite side. Hence, there are in fact no physical walls in boundaries of simulated
box and the number of particles thus remains constant.

Another problem concerning the boundary condition is the interaction �eld between the
particles. It is important to ensure that the particle cannot interact with its own image
and, hence, in�uences its own behavior. This condition is known as the minimum im-
age convention where the smallest box dimension must be greater than two times of the
interaction range. In the minimum image convention, each particle detect at most just
one image of every other particle of system which is repeated in�nitely by the periodic
boundary conditions [37]. As the minimum image convention is respected, the periodic
boundary conditions allow to maintain the energy and momentum of the system.

1.2.3 Initial state

Before a simulation can be performed, it is necessary to set initial positions and velocities
to all particles in the system. As the aim of the simulation is to study the equilibrium
�uid state, the choice of the initial state should not have e�ects on the results of the
simulation. Usually, the initial con�guration of system can be started with simple lattices
for the the gas atoms, such as the square or cubic lattice. On the other hand, the solid
atoms are placed at the sites of a crystalline lattice, for example cubic, body-centered
cubic, face-centered cubic, as shown in the Fig. 1.7. The lattice size should be chosen
appropriately according to the type of system under study. The initial velocities are drawn
from Maxwell-Boltzmann distribution corresponding to the average temperature of the
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system considered.

Figure 1.7: Typical initial con�gurations for the solid atoms

1.2.4 Integration of motion equations

The time integration of the Newton equations of motion allows the determination of the
evolution of a system as function of time. We have the positions, velocities, and accelera-
tions at time t and we want to calculate these values at time t + δt, where δt is the time
step. A popular integration scheme which was widely used is the Verlet method and the
Leapfrog algorithm [38]. The position of particle i at time t+ δt is derived from the Taylor
expansion of the position at time t :

ri(t+ δt) = ri(t) + δtvi(t) +
δt2

2
ai(t) , (1.37)

where vi(t) and ai(t) are the velocity and acceleration of particle i at time t, respectively.
The next step is to evaluate the velocity at half time (i.e. t + δt/2) and to calculate the
acceleration at time t+ δt from the interaction forces :

vi(t+
δt

2
) = vi(t) +

δt

2
ai(t) , (1.38)

ai(t+ δt) = −Fi(t+ δt)

mi
. (1.39)

Finally, the velocity at time t+ δt is given by

vi(t+ δt) = vi(t+
δt

2
) +

δt

2
ai(t+ δt) . (1.40)

The process is continued with successive time step δt and the evolution of a system is
therefore completely calculated. In molecular dynamic simulations, typical values of δt are
close to 1 fs.

1.2.5 Thermostats

During the simulation, at equilibrium or non-equilibrium state, it is helpful to work at
a constant temperature, at which a thermostat should be used. The thermostat can be
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applied either on wall particles, �uid particles or all particles of the system. The thermo-
stat methods are separated into global and local natures. The global thermostats, such
as velocity scaling or the ones of Nosé-Hoover [39] and Berendsen [40], control the system
temperature and dissipate the energy uniformly within the system. The local thermostats,
including Andersen [41], Langevin and Dissipative particle dynamics (DPD) thermostats,
dissipate energy on the spatially localized scale from a stochastic point of view [42].

In the present work, the Langevin thermostat is used for the solid walls. The motion
of a particle i is governed by the equation

mi
dvi(t)

dt
= −ξvi(t) + fi(t) +Ri(t) . (1.41)

where ξ is a damping coe�cient, vi is the velocity and mi is the mass of particle i. fi and
Ri are the interaction force and the random force applied on the particle i, respectively.

1.2.6 Calculation of physical properties

1.2.6.1 Statistical ensembles

In statistical physics, one of the basic concept is the ergodic hypothesis, in which the
average values over time of the physical quantities are equal to the statistical average
values of the quantities. This hypothesis is expressed by

Q ≡ 1

τ

∫ τ

0
Q(t)dt =

∑

i

piQi ≡ ⟨Q⟩ , (1.42)

where Q and ⟨Q⟩ are the time average value and the ensemble average value of the quantity
Q, respectively. pi is the probability of �nding the system in microscopic state i and Qi is
the value of Q at microscopic state i. Physical systems for which the ergodic hypothesis is
valid are called ergodic systems.

Macroscopic systems containing many particles are complex systems. In principle, to
completely characterize a system with N particles, we have to know three components of
position and three component of velocity for each particle. It is practically impossible to
obtain these 6N real numbers. However, not knowing all the information about all particles
does not prevent to calculate the macroscopic properties of the system. In fact, quantities
like energy, temperature, pressure ... are computed as statistical averaged quantities of a
large enough number of particles.

Di�erent macroscopic environmental constraints lead to di�erent types of ensembles, with
particular statistical characteristics [43]. As the Newton equations lead naturally to energy
conservation, molecular dynamics simulation is traditionally performed under the micro-
canonical or NV E ensemble where the number of particles N , volume V and energy E of
the systems are kept constant. However, other ensembles are sometimes used in molecular
dynamics as NV T ensemble, NpT ensemble and µV T ensemble. The ensemble widely
used for Monte Carlo simulation is canonical or NV T ensemble in which the number
of particles, volume, and temperature are �xed. Generally, in large NV E systems, the
�uctuations of temperature are small, and temperature may be considered approximately
constant. Therefore, a rather small part of a system may be considered as a canonical
system.
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Closely related to the NV T ensemble is the isothermal-isobaric, or NPT ensemble, with
the pressure P , rather than the volume V , kept �xed. While the microcanonical, canonical
and isothermal-isobaric ensembles describe closed systems for which there is no change
in the number of particles, the grand canonical or µV T ensemble is for an open system
in which the number of particles can change and the chemical potential (µ), volume and
temperature remain constant.

1.2.6.2 Physical quantities

Di�erent from the kinetic theory, Molecular Dynamics methods describe explicitly all atoms
in the system and the physical properties of the system can be computed accurately from
their positions and velocities.

Energy

The internal energy is the sum of potential and kinetic energies

E = Ep + Ec . (1.43)

For a system with N particles, the potential energy Ep and kinetic energy Ec are given by

Ep =
N
∑

i=1

Ee
i + Vpot , (1.44)

Ec =
1

2

N
∑

i=1

mi(vi − v)2 , (1.45)

where Ee
i is the external interaction potential applied to particle i and Vpot is the internal

total potential of the system as mentioned at the beginning of the present Chapter. In
(1.45), vi is velocity of particle i and v is barycentric velocity of �ow.

Temperature

Unlike the canonical ensemble, in microcanonical ensemble, the temperature is not con-
stant. It can be deduced from the kinetic energy of a system thanks to the theorem of the
equipartition of energy as follows :

Ec =
kBT

2
(3N −Nc) , (1.46)

where Nc is the number of constraints on the system and kB is the Boltzmann constant.

Pressure

For homogeneous �uids, the external pressure is expressed via the virial theorem as the
sum of two terms, one that corresponds to the part of ideal gas and the other involves the
interactions between the particles (virial) :

P =
1

V



NkBT − 1

3

N
∑

i=1

N
∑

j=i+1

rijfij



 , (1.47)

where rij is the vector joining particles i and j, and fij is the interaction forces between i
and j.

For inhomogeneous �uids, the pressure may be calculated from the formulae of Irving
and Kirkwood [44], Todd et al. [45] and the associated method of plane (MOP) by Evans
et al. [46]. These issues will be dealt with in Chapter 2.
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1.2.7 Optimization method for interaction computations

There are di�erent methods to compute the interactions between particles, like : all-pairs,
cell subdivision and neighbor list (or Verlet list). All-pairs method is easy to perform but
is not e�cient, at least when the interaction �eld rc is small compared with the size of
simulation region. Although the use of cuto� radius allows to reduce the number of cal-
culated forces, the test number of interatomic distances remains unchanged in comparison
with the case without cuto� radius (see Fig. 1.8). In the present work, we have combined
cell subdivision and neighbor list methods in order to optimize the computational e�ort.

Figure 1.8: All-pairs method for interaction computations : in a simulation box, all pairs
of particles should be examined.

1.2.7.1 Cell subdivision

This method consists in dividing the simulation region into many identical cubic cells
whose side size is greater than the cuto� radius. Thus a given particle interacts only
with the particles located either in the same cell or in the adjacent cells. An example of
cell subdivision method is shown in Fig. 1.9 in the 2D case. The computational zone of
interactions is bounded by the central cell and 8 neighboring cells. In three dimensions,
the number of adjacent cells of a given cell is increased up to 26. However, because of
symmetry, only half of cells needs be examined for the interatomic forces computations
(i.e. 13 in 3D and 4 in 2D).

1.2.7.2 Neighbor list

During the simulation, the microscopic environment change slowly : the particles almost
remain in the same region of space for some integration steps. Therefore, in parallel with
the cell subdivision method, we have used the neighbor list method to create the lists of
neighboring particles with new radius rv. This radius is chosen such that a particle located
outside the sphere bounded by rv radius does not have the time, during the rebuild time
of neighboring list, to enter into the interaction zone of the studied particle. The radius of
the neighbor list is written as :

rv = rc +∆r . (1.48)
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Figure 1.9: Representation of a simulation box in cell subdivision method in two dimen-
sions.

Figure 1.10: Truncated sphere interactions related to rc and neighbor list related to rv, of
a given particle.

The value ∆r is inversely related to the speed at which the list must be rebuilt, and it also
determines the number of noninteracting pairs that are included in the list. It therefore
has a certain in�uence on both processing time and storage. Typically, for the fastest
computation at liquid densities, ∆r ≈ 0.3σ to 0.4σ [47].

1.3 Parallelization of the calculations

A molecular dynamic code can be written using two programming models: sequential or
parallel. In the sequential model, a program is carried out by a single process. This process
running on a processor of a machine and has access to processor memory. However, for
complexes problems with important number of particles, the memory of a single processor
may be not large enough and/or the computation time is too high. To overcome these
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Figure 1.11: Diagram of an MPI application.

problems, we used the parallel calculation of MPI type (Message Passing Interface). This
allows to distribute computation charges on multiple processors.

In a parallel programming model by exchanging messages (MPI), each processor executes a
copy of the calculation program and has access to its own memory. Therefore, the program
variables become local variables at each processor. In addition, a processor cannot access
the memory of neighboring processors. However, it may send/receive information to/from
other processors by passing messages between processors via library functions MPI. The
communication cost consists in two parts: the time to get started a message transfer, and
a transfer time that depends on the message length. In order to make the message transfer
working e�ciently, it is important that the communication cost should be low compared
with the computation time of a processor. There is also the problem of charge balancing;
obviously the computation is optimal if all processors can be kept busy doing useful com-
puting. If some processors have less work to do than the others, the overall e�ectiveness
is reduced [47].

The MD code used in this thesis is the parallel version described in Ref. [47]. The original
code has been developed to match the aim of the present works. For the problems studied,
the �ow �eld is divided into several subregions which each processor handles. The number
of subregions depends on the number of processors that will be used. In our simulations,
the number of processors was only varied from 4 to 16 but it can easily be extended to
higher numbers processors according to the machine architecture. Amongst the proces-
sors, there is a processor numbered �0� having the responsibility of collecting the values
from all the other processors, after each of theme has calculated its local values. Proces-
sor �0� calculates then the total sums and send these values to each of the other processors.

The communication between two neighboring processors is shown in Fig.1.13. The subrou-
tines Detection detects if a particle leaves the �eld of processor 1, it registers the particle
number in Table A and then records the corresponding data as : position, velocities, ac-
celerations of particle in Table B by subroutine PackData. Since a particular particle is
no longer associated with a �xed memory location, so unlike the sequential version of the
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Figure 1.12: Spatial decomposition scheme in two dimensions : each cell is handled by a
di�erent processor.

Figure 1.13: Communication between two neighboring processors.

29



program, each particle is numerated with a unique identi�er. The subroutine MsgPack
sends the information stored in Table B to a bu�er called buffsend. This bu�er is often
referred to as envelope because the data is being packed into a single message before trans-
mission. After being sent and received between two processors via the MPI sending and
receiving functions, the information is stored in the buffreceive. Then unpack the data,
we �nally have the information particle which just enters into the neighboring processor 2.
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Chapter 2

Molecular dynamics simulation of

Poiseuille �ows

2.1 Introduction

One of the fundamental and practical problems in �uid mechanics is the Poiseuille �ows
between two parallel plates. In the case of Newtonian �uids, the problem has a simple
analytical solution which has been used extensively as benchmarks for numerical methods,
constitutive models and studies of boundary conditions (see [12] and the references cited
therein). Generally, �ows and related simulation methods can be classi�ed as acceleration
driven or pressure driven. Conventional MD simulations with periodic boundary conditions
[48�51] and gravity-like force �eld are typical examples of the former class. Regarding the
latter case, di�erent techniques have been developed to mimic �ows induced by pressure
di�erence [52�54]. Lupkowski and Swol [52] placed two rigid walls at the inlet and outlet
and applied a piston external forces on them. Li et al. [53] used a �ctitious membrane
which allows atoms to pass from one direction and forces atoms from the other direction
to be elastically re�ected with a given probability. Sun and Ebner [54] simulated 2D �uid
�ows in a long box while controlling the temperature at the two ends.

The present chapter presents a simple alternative procedure to simulate pressure driven
�ows with Molecular Dynamics method. Section 2.2 gives the problem statement, presents
some approximate analytical solutions reported in the archival literature for Poiseuille
�ows. The pressure expression and the pressure di�erence from the atomistic point of view
are also discussed in Section 2.3. Section 2.4 is focused on the implementation of periodic
boundary conditions linked to the pressure di�erence concept, and its implementation in
a MD code. The results of simulations are then compared with approximate analytical
solutions of the Navier-Stokes and energy equations in Section 2.5. The application of the
present method to �uids other than ideal gases and to rib-roughened channels are also
discussed.

2.2 Poiseuille �ows and analytical solutions

In the Cartesian coordinate system Oxyz, we assume that the �ow direction is along the
x-axis. The length, width and height of the channel are denoted by L, B and H in direction
x, y and z, respectively. The channel width B being very large with respect to the other
dimensions, it will be treated as in�nite. The �uid can exchange energy with the channel
walls which are maintained at constant temperature Tw.
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The range of Kn chosen in the present study, 0.02 ≤ Kn ≤ 0.1, belongs to the slip �ow
regime according to [12], i.e the �uid continuum mechanics is still useful provided that slip
boundary conditions are applied at the walls. The validity of the Navier-Stokes equations,
as shown by many authors (see [49] for example), can therefore be extended to Poiseuille
and Couette �ows for the present range of Kn.

In what follows, the terms "pressure driven �ow" and "acceleration driven �ow" are em-
ployed to de�ne two particular cases: i) the body force ργ applied on a unit �uid volume
is zero and the pressure p decreases along the �ow direction, ργ = 0, dp/dx ̸= 0 ii) the
inverse situation where ργ ̸= 0, dp/dx = 0. We shall also consider some available analytical
solutions of the Navier-Stokes equations reported in the literature. For both �ows, the �uid
velocity v in a cross section which accounts for slip e�ects (Navier boundary conditions)
at the wall admits the parabolic form

v(ẑ) = v(0)
[

1− a2ẑ
2
]

, ẑ =
z

H
. (2.1)

where a2 is a positive dimensionless constant related to pressure gradient (or body force),
viscosity, slip length, etc... It is noted that Eq. 2.1 is generally obtained for incompressible
�uids but it is also valid for compressible �uid �ows in a long channel [55]. In the latter
case, all the quantities v, a2 are functions of the streamwise coordinate x.

An approximation solution of the energy equation can be obtained by neglecting the con-
vective term [56]. The temperature T becomes then a quartic function of the coordinate
z

T (z) = Tw
[

b0 − b4ẑ
4
]

. (2.2)

Equation 2.2 is based on the incompressibility assumption. For compressible �uid �ows
in a long channel, Cai et al. [57] used a perturbation technique to derive the following
temperature distribution

T (x, z) = Tw
[

c0 − c2ẑ
2 − c4ẑ

4
]

. (2.3)

The dimensionless coe�cients ci, bi in Eq. 2.2 and Eq. 2.3 are related to pressure gradient
(or body force), viscosity, conductivity, speci�c heat etc... In Eq. 2.3, the coe�cients ci
depend on the position x. We also note that for acceleration driven �ow, Todd and Evans
[48] suggested a correction to the temperature pro�le given by Eq. 2.2 as a sextic function
of z:

T (z) = Tw
[

d0 − d2ẑ
2 − d4ẑ

4 − d6ẑ
6
]

. (2.4)

In section 2.5, MD simulations are used to reexamine the validity of the velocity and
temperature pro�les given by Eq. 2.1-2.4 and to determine the coe�cients ai, bi, ci, di by
curve �tting.

2.3 Pressure tensor and pressure di�erence

Before proceeding the molecular dynamics simulation, let us look at the de�nition of pres-
sure tensor from the atomistic viewpoint. Using statistical mechanic theory, Irving and
Kirkwood [44] derived the following pressure tensor decomposition (IK):

P = PK +PV . (2.5)
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The kinetic term PK depends on the molecular square velocity while the potential term
PV depends on pairwise interactions between molecules. In a system of N molecules, PK

and PV read

PK(r) =
N
∑

i=1

⟨m(vi − v̄)⊗ (vi − v̄)δ(ri − r)⟩

PV (r) = −1

2

N
∑

i

N
∑

j ̸=i

⟨

r(ij) ⊗ f (ij)Oijδ(ri − r)
⟩

(2.6)

The term inside the angular bracket ⟨.⟩ denotes the ensemble average and ⊗ denotes the
dyadic product. The term ri,vi,v are respectively the position vector, the velocity of the
particle i and the mean velocity. The distance vector and interaction force vector between
two molecules (i) and (j) are denoted respectively as r(ij) and f (ij). For LJ �uids, the
two vectors r(ij) and f (ij) are colinear and the force magnitude f (ij) is derived from the
interaction potential in function of the distance between the two molecules

f (ij) =
∂V(r(ij))
∂r(ij)

, r(ij) =∥ ri − rj ∥ . (2.7)

In Eq. 2.6, the notation δ(ri−r) is used for the delta Dirac function at ri and the expression
of the operator Oij reads

Oij = 1− 1

2!
r(ij)

∂

∂r
+ ...+

1

n!

[

−r(ij)
∂

∂r

]n−1

+ ... (2.8)

Equations 2.8 and 2.6 show that the derivation of IK pressure tensor involves an in�nite
sum of high order derivatives of the delta function and ensemble average, not suitable
for MD computations. A more convenient form of the pressure tensor and an associated
calculation method, the method of plane (MOP), was proposed in Todd et al. [45] and
Evans and Morriss [46]. When the �uid density is uniform, the operator Oij is reduced to
unity and equation 2.6 becomes (see [45, 58, 59]):

PK(r) =
1

V

∑

i

m(vi − v)⊗ (vi − v), PV (r) = − 1

V

∑

i<j

r(ij) ⊗ f (ij) (2.9)

where V is the volume of the �uid element located at r. In the literature, Eq. 2.9 is
sometimes referred to as IK1 pressure [45, 46]. In Eq. 2.6 and 2.9, the pressure can be
decomposed into two scalar quantities pK and pV as follows

p = pK + pV , pK =
1

3
tr PK , pV =

1

3
tr PV . (2.10)

It is clear that for ideal gases, the potential part pV vanishes and the pressure is reduced
to the kinetic part pK . For the other �uids, the potential part pV cannot be neglected.
The pressure di�erence ∆p between two points at distance ∆l reads

∆p = ∆pK +∆pV = kB∆(nT ) + ∆pV . (2.11)

The pressure components Pxx, Pyy, Pzz, number density n and stream velocity v are in-
variant in direction y. From a microscopic point of view, taking ∆l = ∆y, we must have

∆⟨v2x⟩ = ∆⟨v2y⟩ = ∆⟨v2z⟩ = 0, ∆⟨vx⟩ = ∆⟨vy⟩ = ∆⟨vz⟩ = 0 . (2.12)
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As it will be discussed in the following, all these conditions are satis�ed in our MD sim-
ulation algorithm if we apply periodicity for the boundary conditions in the y direction.
However, n, p, T can all vary in the �ow direction x. We note that in the steady state
regime, all quantities like T , p, pV , n are stable with time, and thus their di�erences ∆T ,
∆p, ∆pV , ∆n are also stable. In particular, equation (2.11) shows that the �nite variation
of temperature ∆T along x is related to those of other quantities via the expression

∆T =
∆p−∆pV − kBT∆n

kBn+ kB∆n
. (2.13)

If the stream velocity is much smaller than the thermal velocity, we can obtain a simpli�ed
expression for the temperature di�erence as

∆T =
m

3kB
∆⟨v2 − v2⟩ ≃ m

3kB
∆⟨v2⟩ . (2.14)

The objective of the MD method discussed in what follows is to maintain the di�erences in
squared velocity and, thus in temperature, in direction x. By that way, we can indirectly
generate the pressure di�erence ∆p. In the case where density ρ is invariant in x-direction
(incompressible �ow assumption), the temperature di�erence is proportional, for an ideal
gas, to the pressure di�erence since

∆p =
ρ

3
∆⟨v2⟩ . (2.15)

2.4 Modi�ed boundary conditions

In Molecular Dynamics, periodic boundary conditions (PBC) applied to velocities are tech-
niques to reduce the study of a large system to a smaller one far from the edge. Considering
a simulation domain as a cube, PBC requires that if a molecule passes through one face, it
reappears on the opposite face with the same velocity. Obviously, there is no di�erence in
pressure, density or temperature between any two opposite faces of the simulation domain.
Consequently ∆p = 0, as it will be shown in the next section.

In our problem, all the pressure components Pxx, Pyy, Pzz, do not vary along y, which
can be satis�ed by the traditional PBC applied on the faces y = ±B/2. However to create
a pressure di�erence along the x-axis, we must develop a strategy that produces a constant
di�erence between the squared velocity of the molecules crossing the face x = 0 and those
crossing the face x = L.

Usually, to keep unchanged the total number of molecules in the domain whenever a
molecule goes out of the domain, we must insert another molecule inside. In this chapter,
we generalize the PBC to account for the pressure di�erence by maintaining the di�erence
in squared velocity at the two opposite faces x = 0 and x = L.

From equations 2.13 and 2.14, we know that a constant pressure di�erence is related to a
constant di�erence in squared velocity. A constant parameter δ is thus used to create a
constant di�erence in squared velocity between the inlet and outlet faces (see Fig. 2.1).
In order to apply a velocity square di�erence equal to a constant 3δL between the faces
x = 0 and x = L, we modify the periodic boundary conditions so that if a molecule goes
trough the face x = L with a velocity v, we insert a molecule at x = 0 with a velocity v′

satisfying the following conditions

v′ = αv, α =
√

1 + 3δL/v2. (2.16)
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Analogously, if a molecule crosses the face x = 0 with a velocity v, it reappears at x = L
with a velocity v′ so that

v′ = αv, α =
√

1− 3δL/v2. (2.17)

Since 3δL is positive, it may happen that v2 − 3δL < 0. It is then impossible to �nd v′

Figure 2.1: Modi�ed periodic boundary conditions. The velocity v between the outgoing
molecules are di�erent from the ingoing molecules (Eq. 2.16 and 2.17)

Table 2.1: Summary of the boundary conditions applied on the simulation domain

Boundary conditions
Faces x Eqs. (2.16-2.17)
Faces y PBC
Faces z Thermal walls

satisfying Eq. 2.17. However, this e�ect can be assumed negligible for �ows with relatively
small speed (of the order 1% of the thermal speed), as seen in most MEMS/NEMS devices.
In the present simulations, the number of molecules that do not satisfy Eq. 2.17 were found
less than 1% of the outgoing molecules. In order to simulate low speed �ows, small values
of δ were used.

2.5 Numerical results

2.5.1 Simulation of ideal gas �ows

To model the interaction between the molecules, the 6-12 Lennard Jones potential is used:

V (r) = 4ϵ

[

(σ

r

)12
−

(σ

r

)6
]

, (2.18)

where ϵ is the depth of the potential well, σ is the �nite distance at which the inter-particle
potential is zero, and r is the distance between the particles.

The potential well depth parameter is ϵ = 0.1ϵ0 with ϵ0 being the reference potential
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well depth. Two cuto� distances were used in this study : rc = 21/6σ [45] corresponds
to repulsive interactions between molecules while rc = 2.5σ [47, 60, 61] corresponds to
attractive-repulsive interactions. In general, the present method is valid for any pair po-
tential. However, the simulation conditions of Table 2.2, i.e. (ϵ = 0.1ϵ0, 2

1/6σ), lead to a
very small potential part of the pressure pV (less than 1 % of the kinetic part pK) making
the behavior of the �uid close to an ideal gas.

Table 2.2: Input data for the �rst series of MD simulations.

N L B H Kn δ γ
[σ] [σ] [σ] [ϵ0/mσ] [ϵ0/mσ]

2400 86.2 6.5 43.1 0.05 10−3 4.3×10−4

600 43.1 6.5 21.5 0.1 2×10−3 8.6×10−4

(ϵ, rc) = (0.1ϵ0, 2
1/6σ), n̄ = 0.1σ−3, T = 2ϵ0/kb
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Figure 2.2: Pressure distribution (p̄(x)) along the channel for pressure driven �ow case
and acceleration driven �ow case (Kn = 0.05, rc = 21/6σ, ϵ = 0.1ϵ0, δ = 10−3ϵ0/mσ,
γ = 4.3× 10−4ϵ0/mσ). The full line represents the linear �t and is used to determine the
pressure gradient ∆p/∆x. The pressure unit is [ϵ0/σ3].

The two walls are modeled as thermally di�usive walls at the same and constant tempera-
ture. Whenever a molecule arrives at a wall, it is re�ected with the velocity corresponding
to the wall temperature Tw = 2ϵ0/kB and with a random direction. In this work, we do
not use thermostats, the �uid can exchange energy with the wall due to the wall model
described previously.

In our simulations, the global number density n̄ is kept �xed, n̄ = 0.1σ−3 in every con-
�gurations. Other geometric parameters like L,B,H and the number of the molecules N
are changed as shown in Table 2.2. The values of δ are chosen such that the di�erence
of the square of the molecular velocity between the inlet and outlet is small enough so
that the stream velocity is much smaller than the thermal speed. From the microscopic
viewpoint, the local stream velocity is the local average velocity of the molecules and from
the macroscopic viewpoint, it is the �ow speed v in the Navier Stokes equations and thus
connected to the pressure gradient ∇p (or volume force ργ). On the other hand, the
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thermal speed is the root mean square of the molecular velocity and is directly connected
to the local temperature T . The slope of the simulated total pressure distribution along
of the channel (see Fig. 2.2 and 2.3) is used to determine the pressure gradient −∆p/∆x
and the equivalent external acceleration ρ̄γ used in the accelerationdriven �ow simulations.
The quantity ρ̄ is the average mass density of the system, ρ̄ = mn̄. The computation with
Leap-Frog Verlet integration scheme is carried out for 108 time steps from equilibrium,
each of which is equal to 0.005 unit time τ =

√

mσ2/ϵ0. The height and length of the
channel are divided into 50 layers to determine accurately the distribution of local velocity
v, temperature T and pressure tensor P. The local velocity v measured in one bin located
at r is given by

v(r) =
1

nbin

∑

ri∈bin
vi , (2.19)

nbin being the particle number in the bin. The local pressure P (IK1-model) is:

P(r) =
1

Vbin





∑

ri∈bin
m(vi − v̄)⊗ (vi − v̄)− 1

2

∑

ri∈bin
r(ij) ⊗ f (ij)



 . (2.20)

The pressure components were also computed by using the method of plane [45, 62]. With
α, β being x, y or z, the pressure component Pβα along direction β and acting on the area
element Aα normal to the axis α is de�ned by:

Pβα(r) =
1

τAα

∑

ri∈Aα

m(viβ − v̄iβ)(viα − v̄iα)/viα +
1

τAα

∫

dt
∑

rij∩Aα,i<j

f
(ij)
β . (2.21)

In Eq. 2.21, the �rst sum is for all molecules crossing the area element Aα over the period
τ , and the second sum is for all pairs whose distance vectors cut the area element Aα. The
temperature T of one bin is then calculated by

T (r) =
m

3kB
⟨∥ v − v̄ ∥2⟩bin . (2.22)
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Figure 2.3: Distribution of pressure p̄(x) and pressure components P̄xx(x), P̄yy(x), P̄zz(x)
along the channel for pressure driven �ow case (Kn = 0.05, rc = 21/6σ, ϵ = 0.1ϵ0, δ =
10−3ϵ0/mσ). The pressure unit is [ϵ0/σ3].
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In what follows, the x-distributions of pressure, temperature and density correspond to
an average on y and z of the local quantities p(r) and n(r). They are denoted as p̄(x) =
⟨p(r)⟩y,z and n̄(x) = ⟨n(r)⟩y,z, respectively. Analogously, the pro�le along z of velocity,
temperature and density correspond to an average on x and y of local quantities with the
notations: v̄(z) = ⟨v(r)⟩x,y, T̄ (z) = ⟨T (r)⟩x,y and n̄(z) = ⟨n(r)⟩x,y, respectively.

From the simulations, the axial pressure distribution is plotted in Fig. 2.2 for the pressure
driven and the acceleration driven �ows with Kn = 0.05, rc = 21/6σ. As expected, for the
acceleration driven �ow case, the pressure is constant. In contrast, the pressure distribu-
tion for pressure driven �ow decreases linearly. We note here that the slope of the pressure
curve, equal to ∆p̄/∆x, is used to compute the value γ in the acceleration �ow simulation
according to the formula γ = −∆p̄/(ρ̄∆x). Under the simulation conditions n̄ = 0.1σ−3,
Tw = 2ϵ0/kB and rc = 21/6σ, ϵ = 0.1ϵ0, the kinetic part pK of the pressure dominates.

IK1 (Eq. 2.20)
MOP (Eq. 2.21)

Figure 2.4: Distribution of pressure P̄xx along the channel for pressure driven �ow case
(Kn = 0.05, rc = 21/6σ, ϵ = 0.1ϵ0, δ = 10−3ϵ0/mσ) computed by Eq. 2.20 and 2.21. The
pressure unit is [ϵ0/σ3].
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Figure 2.5: Dimensionless density pro�le (n̄(z)) in half of the channel cross-section for
pressure driven simulations (Kn=0.05, 0.1, rc = 21/6σ, ϵ = 0.1ϵ0, δ = 10−3ϵ0/mσ, 2 ×
10−3ϵ0/mσ).

In order to know how the pressure di�erence is distributed in the x, y, z-directions , the
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pressure components P̄xx, P̄yy, P̄zz along x are plotted in Fig. 2.3. All the three pressure
components decrease with x and the slopes are almost the same. The values of components
P̄xx, P̄yy are very close whereas the value of component P̄zz is smaller because the �uid
is con�ned in z-direction. Although the di�erence between the pressure components is
small (less than 4%), it implies that the velocity distribution deviates from the equilibrium
distribution. Because the pressure p̄ is the average value of P̄xx, P̄yy, P̄zz, the p̄-curve lies
between the others and have the same slope. It should be noted that equations 2.20 and
2.21 leads to relatively close results when considering the average axial pressure component
P̄xx (see Fig. 2.4). Figure 2.5 shows that the �uid density distribution n̄(z) across the
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Figure 2.6: Dimensionless velocity pro�le in half of the channel cross-section for Kn=0.05
and Kn = 0.1, (rc = 21/6σ, ϵ = 0.1ϵ0). The full lines represent equation v(ẑ) = v(0)(1 −
a2ẑ

2) that best �t the numerical results (a2 = 0.18 for Kn=0.05 and a2 = 0.29 for Kn=0.1).

channel width varies slightly around the average density n̄, except near the walls where
it can be as high as 1.4n̄. However, the phase diagram for LJ �uid [61] shows that the
�uid near the wall is still in gas state. In our simulations, n̄ and ϵ are chosen to be very
small (n̄ = 0.1σ−3, ϵ = 0.1ϵ0) and the �uid temperature near the wall is relatively large
(the temperature of the wall is Tw = 2ϵ0/kB). The �uctuation of the density pro�le shows
that the incompressibility assumption is no longer valid, especially near the channel walls.
However, the �uctuations being localized, it is interesting to check if the analytical solu-
tions presented in Section 2 still agree with the MD solutions.

Figure 2.6 shows that acceleration and pressure-driven �ows exhibit parabola-like velocity
pro�les in the center region of the channel, in agreement with Eq. 2.1. Near the wall where
the Knudsen layer dominates, the velocity distribution tends to deviate from the solution
given by Eq. 2.1 and a velocity slip at the wall is predicted. Based on the kinetic theories,
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di�erent models have been derived to explain the slippage [12] and generally, the slip e�ect
becomes important when the Knudsen number increases. The little di�erence in velocity
pro�le between the two types of �ow show that, despite their di�erent microscopic natures,
volume forces can be seen as equivalent to pressure gradients at the macroscopic scale.
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Figure 2.7: Dimensionless temperature pro�le (T̄ (z)) in half of the channel cross-section
for two Kn-values according to the �ow model (rc = 21/6σ, ϵ = 0.1ϵ0).

Regarding the temperature pro�le across the channel width, there is no visible di�er-
ence between acceleration and pressure-driven formulations whatever Kn (Fig. 2.7). The
temperature pro�le cannot be �tted by any of the three approximate analytical solutions
(Eq. 2.2-2.4). The temperature is minimal at the center of the channel and increases rapidly
near the wall, which does not agree with the approximate solutions obtained with the in-
compressible assumption (Eq. 2.2-2.3). With the simulation conditions reported in Table
2.2, this reverse trend cannot thus be explained by using the incompressible �ow equa-
tions. This anomaly was also observed by using DSMC method [63] and Super-Burnett
(SB) method [64]. Note that the �ow speeds in our simulations are very small, as in [63, 64].

Next, we study the in�uence of γ and δ on the temperature pro�le. By increasing the
acceleration parameter γ or the δ-parameter (squared velocity,) the stream velocity is in-
creased. A change in the form of the temperature pro�le is observed in Fig. 2.8 and 2.9 as
γ (or δ) increases. At high values of γ (or δ), the temperature pro�les seem to be closer
to the approximate solutions which predict a maximum at the center of the channel and
a minimum at the walls. At small values of γ (or δ), the temperature pro�les for the two
�ow types di�er just a little. However, at high values of γ (or δ), the discrepancy becomes
more important: the curvature at the center of channel for the pressure driven �ow case is
higher than that for the acceleration driven �ow case. Using curve �tting procedure, we
�nd that the temperature pro�le of the pressure driven �ow case agrees quite well with the
quartic expression (Eq. 2.3). The temperature for the acceleration driven �ow case does
not �t well with Eq. 2.2. To explain this discrepancy, Todd and Evans [48] argued that the
transport coe�cients are not constant and there exist an additional cross-coupling between
strain rate and heat �ux. They proposed a correction to (Eq. 2.3) with a z6-extra term for
the temperature pro�le (see Eq. 2.4). The dashed line drawn in Fig. 2.9 shows that the
sextic polynomial �t very well the present numerical results.
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Figure 2.8: Variation of temperature pro�le when increasing the pressure gradient or pa-
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Figure 2.9: Changes in the temperature pro�le for various values of the acceleration pa-
rameter γ (Kn = 0.05,rc = 21/6σ, ϵ = 0.1ϵ0). The solid and the dashed lines correspond
to equations b0 − b4ẑ

4 and d0 − d2ẑ
2 − d4ẑ

4 − d6ẑ
6 that best �t the numerical results.

b0 = 2.53, b4 = 13.0, d0 = 2.46, d2 = 0.54, d4 = 4.58, d6 = −97.8 for γ = 0.1ϵ0/mσ and,
b0 = 1.48, b4 = 4.57 for γ = 0.05ϵ0/mσ.
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2.5.2 Applications to general cases

The application of the method to cases for which the �uid particles interact strongly, i.e
the potential pressure pV is of the order of pK , is considered in that section. The case of
rib-roughened channels is also brie�y discussed.

With the algorithm developed in the previous section, two cases were considered with
the same parameters, except for the cuto� distance rc and density number n̄. In the �rst
case, n̄ = 0.1σ−3 and the cuto� distance is set to rc = 2.5σ (attractive-repulsive inter-
action). In the second case, the �uid density is increased up to n̄ = 0.8σ−3 while seting
rc = 21/6σ as in the previous section. The well depths ϵ are the same in both cases and
equal to the reference value, i.e ϵ = ϵ0. All the parameters for these two cases are summa-
rized in Table 2.3.

Table 2.3: Input data for MD simulations in Section 2.5.2

n̄ N L B H δ Tw
[σ−3] [σ] [σ] [σ] [ϵ0/mσ] [ϵ0/kb]

0.1 2400 86.2 6.5 43.1 1×10−3 2
0.8 2400 86.2 3.2 43.1 1×10−3 2
(n̄, ϵ, rc) = (0.1σ−3, ϵ0, 2.5σ), (0.8σ

−3, ϵ0, 2
1/6σ)
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Figure 2.10: Axial variations of pressures p̄(x) = pK + pV and pK for pressure driven �ow
(n̄ = 0.1σ−3, rc = 2.5σ, ϵ = ϵ0). The pressure unit is [ϵ0/σ3].

In the �rst case (n̄ = 0.1σ−3), �gure 2.10 displays the kinetic part p̄K and the virial
pressure p̄ according to Eq. 2.9 along the channel. Except a slight curvature in the p̄K
curve, both pressure curves decrease continuously and linearly. The relative di�erence
between the slopes of both curves is less than 1%, which means that the gradient of the
potential part ∆p̄V /∆x is also small in comparison with the kinetic part ∆p̄K/∆x even if
p̄V is not negligible (|p̄V /p̄K | ≃ 0.2). In the second case (n̄ = 0.8σ−3), Figure 2.11 shows a
totally reverse trend: both the virial pressure pro�le and its potential part decrease with x.
The variation of the potential part contributes to 80% of the virial pressure variation with
∆p̄/∆x = −0.0177 and ∆p̄V /∆x = −0.0159. We conclude that the method is convenient
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Figure 2.11: Axial variations of pressures p̄(x) = pK + pV and pV for pressure driven �ow
(n̄ = 0.8σ−3, rc = 21/6σ, ϵ = ϵ0). The pressure unit is [ϵ0/σ3].

for generating virial pressure pro�les which decrease in the axial direction.

Next, we consider the velocity pro�les across the channel section for these two cases. The
velocity pro�les (Fig. 2.12) agree then with Eq. 2.1. The slip length for the case n̄ = 0.8σ−3

is smaller than for the case n̄ = 0.1σ−3 because the mean free path is decreased when the
density number is increased. When computing the average pressure component P̄xx along
the channel, �gure 2.13 shows that there is no visible di�erence between equations 2.20
and 2.21
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Figure 2.12: Dimensionless velocity pro�le in half of the channel cross-section for n̄ =
0.1σ−3 and n̄ = 0.8σ−3. The dashed lines represent the equations a0 − a2z

2 that best �t
the numerical results.

It should thus be emphasized that the present method is relevant to generate various �uid
�ows even if we control only the di�erence in squared molecular velocity. It does not imply
that the potential part pV , which depends on the interatomic interaction, does not vary
along the �ow direction. As shown numerically, the variation of pV contributes consider-
ably to the pressure gradient.
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IK1 (Eq. 2.20)
MOP (Eq. 2.21)

Figure 2.13: Axial variations of pressure component P̄xx computed by Eq. 2.20 and 2.21.
The pressure unit is [ϵ0/σ3].

Figure 2.14: Streamlines in a rib-roughened channel. The color represents the �uid density
�eld.

The third case aimed at modeling the �ow within a rib-roughened channel. The parame-
ters are the same as in the second case (n̄ = 0.8σ−3, rc = 21/6σ ) but the channel height is
suddenly reduced in its middle part by inserting on both walls ribs of height h and length l.
The rib-to-channel width ratio is equal to h/H = 0.8 and l/L = 0.3 (Fig.2.14). Figure 2.14
exhibits the onset of two vortices close to the rib corners at the upstream section. It is
also shown that the �uid �ow is highly non uniform and characterized by wavy streamline
patterns within the downstream region. From Fig. 2.15, the axial pressure variations are
rather di�erent from those predicted for smooth channels. Although the variations of the
axial pressure predicted by the two expressions are quite similar, there are considerable
di�erences between them. The MOP pressure is 8% smaller than the IK1 pressure. The
changes in pressure at the downstream and upstream sections display also smoother pres-
sure variations. This considerable di�erence is due to the strong inhomogeneity of the �uid
within the channel. Generally, the MOP, based on the hydrodynamics equation, must be
used in such situation.
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IK1 (Eq. 2.20)
MOP (Eq. 2.21)

Figure 2.15: Distribution of pressure component P̄xx in a rib-roughened channel computed
by Eq. 2.20 and 2.21. The pressure unit is [ϵ0/σ3].
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Chapter 3

Gas-wall potential and e�ects on the

accommodation coe�cient

3.1 Introduction

As mentionned in Chapter 1, Maxwell introduced a gas-wall momentum accommodation
parameter σt (TMAC) to quantify the slip e�ects [16]. He postulated that after collision
with the wall, a gas atom rebounds either di�usively or specularly, with the associated
portions of σt and 1− σt, respectively. Although Molecular Dynamics simulations showed
that the re�ection mechanism is more complicated than Maxwell's postulate, the coe�cient
σt is still widely used due to its simplicity. For example, in the case of isothermal �ows,
Eq. (1.28) is reduced to

Uslip =
2− σt
σt

Kn

(

∂U

∂n

)

s

. (3.1)

With MD method, the accommodation parameter can be computed either indirectly or
directly. The former concerns the simulation of con�ned �ows [51, 65], �nding the slip
velocity and using slip equation (3.1) to calculate σt . The latter method consists in pro-
jecting a gas atom with velocity vi into a surface, measuring the re�ected velocity vr, and
computing σt [66]. However, the success of the MD method relies on the accuracy of the
interaction potential of the gas-wall couple into consideration. The choice of such poten-
tial for a MD simulation is crucial. This interaction potential can be either determined by
quantum electronic structure calculations or elaborated to reproduce experimental data
with some empirical parameters.

Based on periodic density functional theory computations, a Pt-Ar potential is developed
for MD simulations. Other pairwise potentials from the literature will be also considered
to discuss what kind of interaction potentials should be used for correct MD simulations
and what are the consequences of the choice of a given potential.

We have chosen the Pt-Ar couple because a number of references exist about the interac-
tion potential between the Pt(111) surface and an Ar atom. In particular, the Pt(111)-Ar
couple has been widely involved in MD simulations of atomic beam experiments [67�74]
or of slip �ows [65, 75�78], as examples. A section of the present chapiter is devoted to a
brief review of the existing Pt-Ar pairwise potentials.
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3.2 Interaction potentials

3.2.1 Previous works

Experimentally, only few data exist about the interaction of an Ar atom with a Pt(111)
surface. Zeppenfeld et al. [79] measured the vertical vibrational frequency of the adsorbed
atom at about 5 meV from inelastic He scattering on Ar monolayer physisorbed on Pt(111).
To the best of our knowledge, the �rst reference to the total adsorption energy appeared
in the work of Head-Gordon et al. [68] who reported a Ar on Pt(111) binding energy of
about 80 meV (7.5 kJ.mol−1 or 900 K). Zeppenfeld et al. [80] mentioned a value of 96 meV
from unpublished results of Zeppenfeld, Kern and Becher. Most of the empirical potentials
have been optimized in order to reproduce the 80 meV binding energy and experimental
results on trapping, desorption and scattering of Ar on Pt(111).

In the following, we give a brief description of the previous interaction potentials between
Ar and Pt(111). r represents the position of the Ar atom, ri the position of the ith Pt
atom and z is the normal distance of Ar above the surface. Most of the potentials given
below are empirical and Table 3.1 contains the associated parameters.

Head-Gordon et al. [68] have employed Morse type functions to reproduce the experimen-
tal measurements about the trapping and desorption of the Ar atom on the Pt surface,
as well as the binding energy of 80 meV. They assumed that the incorrect form of the
attractive part of this potential does not play a crucial role for trapping or scattering:

VHead−Gordon = De

∑

i

(exp[−2σ(|r− ri| −R0)]− 1)2 , (3.2)

where De is the dissociation energy parameter which controls the strength of binding and
σ is the strength parameter which is linked to the e�ciency of energy transfer between
gas and surface. It must be noticed that Yamamoto [75] used this Morse potential for the
study of the slip �ow of Ar on Pt(111), but with a twice too large value for σ.

The most common empirical potentials used for MD are Lennard-Jones 6-12 potentials,
in order to obtained a better representation of the long-range attractive part that can be
important in the simulation of the fragmentation of clusters or droplets:

VLJ = 4ϵ
∑

i

[

(

σ

|r− ri|

)12

−
(

σ

|r− ri|

)6
]

, (3.3)

ϵ is the depth of the potential well and σ is the �nite distance at which the pair potential
is zero. As examples, Svanberg and Pettersson [81] have optimized parameters such that
the interaction potential reproduces the one of Head-Gordon et al. [68] in order to model
the scattering of Ar clusters from the Pt(111) surface. Maruyama and Kimura [73, 74],
and Spijker et al. [76] have suggested values for σ and ϵ for the simulation of nucleation of
Ar liquid droplets on Pt surface. Ramseyer et al. [82] have also derived a Lennard-Jones
type potential from the experimental data derived by Zeppenfeld et al. [79, 80].

More elaborated interaction potentials have also been derived. For a MD study of the
trapping and scattering of Ar on Pt(111), Smith et al. [69] used an interaction potential
between the Ar atom and the Pt surface de�ned as a sum of pairwise repulsive terms and
a non-corrugated van der Waals attractive part:

VSmith =
∑

i

V0e
−α(|r−ri|) − −CvdW

√

(z − z0)6 + (CvdW /Vmin)2
. (3.4)
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The parameters were chosen such that CvdW = 2.3697 eV.Å2, evaluated from the Ar
polarizability and the Pt dielectric function. Kulginov et al. [71] determined an empirical
potential energy function for the Pt(111)-Ar system based on atomic beam scattering data,
the measured well depth, and the vibrational frequency of the absorbed atom by Comsa
et al. [68, 79]. This function is composed of a pairwise sum of non-central potentials. The
repulsive pair potential has the Buckingham form [36]:

VKulginov =
∑

i

(

V0e
−α(|r−ri|−r0) −D(r)

C6

|r− ri|6
)

, (3.5)

and the attractive part corresponds to the van der Waals attraction multiplied by a damp-
ing function D(r). C6 is chosen such that the total potential reproduces the van der
Waals attraction calculated by Smith et al [69]. They suggested also that their and the
Head-Gordon functions [68] should by shifted by ≈ -0.7 Å to better agree with the sum
of the van der Waals radii of the Ar and Pt atoms. They con�rmed that the position of
the potential well can not be determined by the scattering data alone and that electronic
structure calculations should be made. From the ab initio point of view, only Lahaye [70]
have used Hartree-Fock calculations on Ar approaching a Pt4 cluster to derive a Pt(111)-
Ar interaction potential with a similar form to the one of Smith et al. [69] (see equation
(3.4)).

3.2.2 Computational approach

As explained in the previous section, several potentials exist for the Pt(111)-Ar interaction,
most of them being obtained empirically since the computation of such interaction poten-
tial still remains a challenging task. In order to �ll this lack, large periodic computations
using the density functional theory approach have been performed. All these electronic
structure computations were done with the CRYSTAL09 code [83] using the PBE func-
tional revised for the study of solids (PBEsol) [84]. For the description of the Pt atoms,
the pseudo-potential and basis set introduced by Doll [85] to investigate the absorption of
CO on a Pt(111) surface was used. For the Ar atom, the all electron basis set developed
by Nada et al. [86] was chosen. As a starting point of these computations, the lattice
parameter of a platinum bulk was investigated to check the accuracy of the methodology
used. At this level of calculation, the equilibrium lattice parameter is obtained at a = 3.96
Å. That is in relatively good agreement with the experimental value of 3.92 Å [87], and
consistent with those computed by Doll [85] at 4.01 Å and 4.05 Å using the PW91 and
B3LYP functionals, respectively.

The pairwise potential cannot be obtained directly from quantum chemistry calculations
since the interaction of an Ar atom with an isolated Pt atom is strongly di�erent of an
interaction of an Ar atom with an Pt atom embedded in a surface slab. A way to obtain
the pairwise interaction potential between a gas atom and a surface atom is to decompose
of the Pt(111)-Ar potential in two bodies term. To this end, the Pt(111)-Ar interaction
was modeled by using a super-cell representing a three-layer Pt slab, the Pt atoms being
arranged as in the face-centered cubic lattice, with the PBEsol optimized platinum bulk
lattice parameter of 3.96 Å. The Ar atom was adsorbed on one side of the slab, vertical to
the (111) surface in front of a fcc-hollow site. On this site, the Ar atom is placed vertically
above a Pt atom of the third Pt layer. We have checked that the adsorption energy is
little sensitive to the adsorption site, the variation in the adsorption energy being of 7 meV
between the top and fcc-hollow sites. Several slab sizes have been tested. The (4x4x3) slab
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Figure 3.1: Scheme of the Pt cluster used to decompose the global Pt(111)-Ar interaction
potential on a sum of two bodies Pt-Ar terms used for the molecular dynamics. The circle
represents the argon atom adsorbed on the fcc-hollow site, numbers 1 represent platinum
atoms of the �rst layer, numbers 2 Pt atoms of the second layer, and numbers 3 Pt atoms
of the third layer, respectively.

appears to be a good compromise between accuracy of the interaction energy and compu-
tational e�ort. Using this (4x4x3) slab, the distance between two Ar atoms is about 11.2
Å, about three times larger than the equilibrium distance of the diatomic Ar2 molecule
(Re(Ar-Ar) = 3.76 Å [88]). The relaxation of the �rst layer was not considered according
to the work of Doll [85] showing the very small change in the binding energy due to such a
relaxation. Finally, a k-point sampling net of size 16 x 32 was used, and the Fermi function
was smeared with a temperature of 0.01 Eh to improve the convergence of the total energy
with respect to k-point sampling and the convergence of the Pt(111) surface energy with
respect to the number of layers [83].

The resulting computed energies have been �tted by a sum of pairwise functions in order
to reproduce the Pt(111)-Ar interaction potential.

V Pt(111)−Ar(z) =
∑

i

V Pt−Ar(|r− ri|) , (3.6)

z is the distance between the Ar atom at the vertical of the fcc-hollow site and the �rst
layer of the Pt(111) surface. z = 0 is de�ned as the position of the Pt nuclei of this �rst
layer for T = 0K. The sum is made over all of the 121 Pt atoms of the cluster depicted in
Figure 3.2.2 which is supposed to reproduce the Pt(111) surface. According to the previous
empirical pairwise potentials, a similar function (see equation (3.7)) as the one used by
Kulginov et al. [71] has been employed to �t the computed energies.

V Pt−Ar(r) = V0e
−α(r−r0) − C6

r6
, (3.7)
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Table 3.1: Pt(111)-Ar interaction potential parameters.

∑

Rep + vdW V0 (eV) α (Å−1) CvdW ( eV.Å3) z0 (Å) Vmin (eV)
Smith [69] 900 3.2 2.3697 0.65 0.3
Lahaye [70] 975.455 2.8 0.81 1.72 0.63
∑

(Rep+vdW) V0 (eV) α (Å−1) r0 (Å) C6 (eV.Å6)
Present work 0.00818 3.3 3.928 64.92
Kulginov [71] 2000 3.3 -0.75 68.15
Morse De (meV) 2σ (Å−2) r0 (Å)
Head-Gordon [68] 11.6 1.6 4.6
Yamamoto [75] 11.6 3.2 4.6
Lennard-Jones 6-12 ϵ (meV) σ (Å)
Ramseyer [82] 6.6 3.37
Svanberg [81] 6.80 4.00
Maruyama [73, 74] 5.58 3.085
Spijker [76] 6.82 2.94

with r = |rAr − rPt|. The �tted parameters are given in Table 3.1.

In Figure 3.2.2, the circle represents the Ar atom adsorbed on the fcc-hollow site, numbers
1 represent the Pt atoms of the �rst layer, numbers 2 the Pt atoms of the second layer,
and numbers 3 the Pt atoms of the third layer. By considering the Ar atom at the vertical
position above a fcc-hollow site of the Pt(111) surface, the system presents a third order
rotation axis. This rotational symmetry is conserved for the construction of the Pt cluster
used for the decomposition. The height of this cluster is 4.57 Å and its width is larger
than 8.0 Å. When the Ar atom is close to its equilibrium position, the distance between
the Ar atom and the more external Pt atoms of the cluster is more than 8.0 Å. For most of
the pairwise potentials studied in this work, including the present potential, the pairwise
interaction can be neglected for rPt−Ar > 8.0 Å. The convergence of the recomposed po-
tential V Pt(111)−Ar(z) relative to the number of Pt atoms has been checked, in particular
the addition of a fourth layer has a negligible contribution in the sum of equation (3.6).
Moreover, V Pt−Ar(r) is expected to be adequate to reproduce the attractive part of the
potential: the C6 value of 64.92 eV.Å6 obtained is consistent with the value of 68.15 eV.Å6

chosen by Kulginov et al. [71] to reproduce the CvdW value of Smith et al. [69] calculated
from the polarizability of the Ar atom and the dielectric function of Pt.

3.3 Computation of TMAC by Molecular dynamics

In this section, we describe the MD method to simulate the gas-wall interaction and di-
rectly calculate the accommodation coe�cient. Each gas-wall collision is treated separately
as in most direct scattering experiments (see [67, 89]). This method is suitable for dilute
gas for which it can be assumed that only one atom interacts with the wall in one collision
event. In the three-dimensional MD simulation, the Ar atoms beams are projected with
di�erent incident angles on a clean Pt(111) surface lying on the Oxy plane. The x̂ direc-
tion corresponds to the < 110 > direction associated with the maximum Pt atom density
direction, such that the distance between two atoms equals 2.772 Å.
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Figure 3.2: Molecular dynamics scheme. The incident argon atoms are with vi velocities
with no contribution along y. θ is the incident angle. The Pt wall has a fcc structure with
a (111) surface. Each Pt atom is connected to the nearby ones by harmonic springs of
rigidity kw (see the text).

The directional σdirt coe�cient associated with each θ and φ is de�ned by the following
formula [12]:

σdirt (θ, φ) =
⟨vin⟩ − ⟨vrn⟩

⟨vin⟩
, (3.8)

where θ and ϕ are the zenithal and azimuthal angles, respectively. θ is the incident angle
of the gas atom with the z axis, n̂ is direction of the projection of the incident and re�ected
velocities on the Oxy plane, making an angle ϕ with the x̂ direction. vin and vrn are the
projections of the incident and the re�ected velocities on n̂, respectively.

vin = vi sin(θ), vrn = vr sin(θ). (3.9)

In order to model the Pt-wall and to maintain its temperature, a phantom wall technique
[73, 74, 90] is used in this work. Each Pt atom is connected to the nearby ones by harmonic
springs with rigidity kw, allowing it to vibrate around its site. The wall structure is made
of 924 atoms, arranged in (111) fcc four layers slab of size 40 × 40 × 6.77 Å3 (see Figure
3.3). The last two layers are the phantom layers, the lowest is �xed. The temperature of
the bulk part of the wall, Tw, is controlled by a Langevin thermostat applied to the second
phantom layer [91]. The motion of an upper phantom atom i is governed by the equation:

mi
dvi(t)

dt
= −ξvi(t) + fi(t) +Ri(t) . (3.10)

In equation (4.6), vi is the velocity of the atom i, fi is the resulting force acting on it by
the surrounding ones, mi is the atomic mass and ξ is the damping coe�cient. The third
term in the right hand side of equation (4.6) is then the random force applied on the atom.
In the simulation, it is sampled after every time step δt from a Gaussian distribution with
zero average and mean deviation of

√

6ξkBTw/δt. The simulations were carried out by
setting rigidity, time step and damping factor at the following values [90]:

kw = 46.8 N/m, δt = 2 fs, ξ = 5.184× 10−12kg/s. (3.11)
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The spring constant kw has been optimized by Maruyama and Kimura to reproduce the
physical properties of solid platinum [73, 74]. The phantom atoms technique allows to
model the semi-in�nitely large bulk solid kept at a constant temperature Tw with the
proper heat conduction characteristics. We also checked that to add on two layers does
not change the σt values. The gas velocity at each time step is calculated by the usual
Leap-Frog Verlet integration scheme. For a given pair potential V (Rij), we can compute
the force vector fij that atom j at position Rj exerts on atom i at position Ri by:

fij = −dV
Pt−Ar

dr

rij

∥rij∥
, rij = ri − rj . (3.12)

The computational costs may be reduced by assuming that an Ar atom only interacts with
the Pt wall within a cuto� distance rc =12 Å, corresponding to a negligible attraction of
about 0.02 meV. On the other hand, rc is very small with respect to the mean free path.
Initially, Ar atoms are given with a �xed incident velocity vi de�ned in the Oxz plane and
with a norm associated to the gas beam temperature Tg, such that

viτ =
√

⟨v2iτ ⟩ =
√

kBTg
mAr

. (3.13)

This value corresponds to the average value of the positive part of the incident velocity
along the τ̂ direction. The wall temperature Tw is kept at 200 K, 300 K and 400 K and
the gas beam temperature Tg is kept at a slightly higher value than Tw, here Tg = 1.1×Tw.

The Ar atoms are inserted randomly at the distance rc with respect to the wall surface and
their re�ected velocity vr is recorded when they bounce back beyond this cuto� distance.
Whenever an Ar atom crosses this boundary, another one will be inserted with velocity vi.
The process continues until we obtain a converged value of ⟨vrn⟩, i.e. after approximatively
12000 collisions. A typical run requires 4× 107 time steps of 2 fs. The periodic boundary
conditions are applied along the x, y directions throughout the simulation.

3.4 Results and discussions

3.4.1 Interaction potentials

The Pt(111)-Ar interaction potential and the corresponding Pt-Ar pairwise potential cal-
culated in the present work are plotted in Figures 3.3 and 3.4, respectively. The potentials
described in the above referenced works (see Section 2.1) are also shown. Table 3.1 con-
tains the �tted parameters and Table 3.2 presents the equilibrium interaction energies, Ve,
the equilibrium value, ze, of the Pt(111)-Ar distance and the vertical Pt(111)-Ar harmonic
vibrational frequency, ωe. These data are compared with those deduced from other po-
tentials and with available experimental values (Ve = −80 meV and ωe = 5 meV [68, 79]).
ωe has been estimated from the second derivative of the interaction potentials at their
respective minimum geometries, using the Ar mass as the reduced mass considering that
the Pt surface has an in�nite mass.

Figure 3.3 presents the Pt(111)-Ar potential computed together with those discussed in
Section 2.1. Four types of potentials can be distinguished. The �rst ones are the Lennard-
Jones potentials established by Maruyama and Kimura [73, 74] and by Spijker et al. [76].
They depict a relatively weak value of Ve, of ≈ −40 meV, and a short equilibrium ze < 3
Å. The second group of potentials includes those of Head-Gordon et al. [68] and Svanberg
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Table 3.2: Equilibrium interaction energy (Ve in meV), equilibrium distance (ze in Å), and
estimated vertical harmonic vibrational frequency (ωe in meV) of the Pt(111)-Ar interaction
potentials.

Potential Ve / meV ze / Å ωe / meV
Present -81.3 3.35 4.8
Kulginov [71] -89.7 3.24 4.8
Ramseyer [82] -72.8 3.22 5.0
Maruyama [73, 74] -38.4 2.93 3.9
Spijker [76] -43.2 2.76 8.1
Head-Gordon [68] -76.0 4.11 5.7
Svanberg [81] -77.2 3.89 4.4
Yamamoto [75] -41.8 4.28 8.8
Smith [69] -104.0 3.00 5.6
Lahaye [70] -103.4 2.98 8.7
Exp. [68, 79] -80.0 a 5.0 b

a Estimated V0 value.
b Anharmonic vibrational frequency.
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Figure 3.3: Pt(111)-Ar interaction potentials. z is the distance between the Ar atom at
the vertical of the fcc-hollow site and the �rst layer of the Pt(111) surface. z = 0 is de�ned
as the position of the Pt nuclei of this �rst layer for T = 0 K.
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Figure 3.4: Pt-Ar pairwise potentials.

and Pettersson [81]. They reproduce correctly the experimental value of Ve, but with rela-
tively large values of ze compared with the other potentials. Additionally, we can mention
the potential of Yamamoto [75], based on the parameters derived by Head-Gordon et al.

[68], but with 2σ = 3.2 Å−2 instead of 2σ = 1.6 Å−2. The resulting potential depicts a
weak value for Ve and a relatively large equilibrium distance. The third group concerns
the potentials deduced by Smith et al. [69] and Lahaye et al. [70]. Both use global van
der Waals attractive part of the potential between Ar and the Pt surface. They cannot be
decomposed into a pairwise sum. The corresponding Ve are lower than −100 meV and the
ze are ≈ 3 Å.

The last group includes the present potential, and those of Kulginov et al. [71] and
Ramseyer et al. [82]. Our Ve value well reproduces the experimental value of approxi-
mately −80 meV and is ranged between the Kulginov and Ramseyer ones. The ze = 3.35
Å deduced from our potential is also consistent with those of about 3.25 Å from the Kulgi-
nov or Ramseyer potentials. Experimentally, no information exists about the equilibrium
distance between the Ar atom and the Pt surface but, such values around 3.2 and 3.4 Å
should be correct since the last group of potentials reproduce properly as well the exper-
imental equilibrium interaction energy as the experimental vertical Pt(111)-Ar harmonic
vibrational frequency. The values of ωe of this group of potentials are indeed very close to
the experimental value of 5 meV.

Finally, the forces corresponding to all considered pairwise potentials are plotted in Fig-
ure 3.5. One can notice that the |f(RPt−Ar)| functions (equation (3.12)) decay rapidly as
RPt−Ar increases and can be negligible when RPt−Ar ≥ 3Re.

It must be noticed that, although the present and the Kulginov interaction potentials use
the same mathematical expression, the repulsive part parameters are strongly di�erent.
In the Kulginov potential, the V0 and α parameters have been determined from measured
scattering data. This is not possible for R0 which accounts for the position of the repul-
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Figure 3.5: Pt-Ar pairwise forces.

Table 3.3: Comparison of the σdirt (θ = 45◦, 0◦) given by two models for T = 300 K and an
incident angle of 45◦.

Potential De / meV Re / Å Model 1 Model 2
Present work 9.5 3.93 0.40 0.14
Yamamoto [75] 11.6 4.60 0.28 0.14

sive potential with respect to the attractive one. R0 has been derived from local-density
approximation DFT calculations. In our model, the potential can be seen as a Morse po-
tential for which the attractive part is replaced by a van der Waals function. R0 is seen as
the minimum position of the potential where the repulsive part equilibrates the repulsive
one. The di�erences between the present and the Kulginov parameters could come from
the fact that the Kulginov parameters, V0 and α, have been determined before R0, whereas
in our case, R0 is almost �xed before optimizing V0 and α. Both potentials are very similar
for energies within the minimum and the dissociative region, as shown in Figures 3.3 and
3.4. However, strong divergences appear for very high energies, which are out of the scope
of this study.

3.4.2 TMAC results

In order to consider the e�ect of the wall model, two models have been considered in a
preliminary step. The �rst model simulates the mutual interaction between a gas atom
and the wall (Model 1), whereas in the second model (Model 2), the gas atom exerts no
force on the wall atoms. The former is more realistic but very expensive and for a given
set of wall atoms, only one gas-wall collision is considered in one simulation. In Table 3.3,
the σdirt (45◦, 0◦) values have been computed from Models 1 and 2 using our new pairwise
potential and the one used by Yamamoto [75]. For both potentials, σdirt (45◦, 0◦) = 0.14 if
the simpli�ed Model 2 is considered.
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Table 3.4: Dissociation energy (De in meV), equilibrium distance (Re in Å), and σdirt (θ =
45◦, 0◦) computed at Tw = 300 K with an incident angle of 45◦ from di�erent Pt-Ar
pairwise potentials.

Potential De / meV Re / Å σdirt (θ = 45◦)
Present work 9.5 3.93 0.40
Kulginov [71] 10.2 3.85 0.46
Ramseyer [82] 9.1 3.76 0.49
Maruyama [73, 74] 5.6 3.46 0.34
Spijker [76] 6.8 3.30 0.28
Head-Gordon [68] 11.6 4.60 0.24
Svanberg [81] 6.8 4.49 0.23
Yamamoto [75] 11.6 4.60 0.28

This value is comparable to the σt value of 0.19 found by Yamamoto [75] using a Couette
�ow simulation approach and a simpli�ed wall description. In his simulation, the Pt atoms
are connected through Lennard-Jones pairwise potentials with no possible relaxation. We
�nd that Model 1 gives a much higher σdirt (45◦, 0◦) values. Model 2 corresponds indeed to
a much harder surface and, the re�ection tends to be more specular than with Model 1.
Numerical results based on Model 1 show clearly that the wall can be locally deformed due
to the collision. The gas atoms stay longer near the surface and interact deeply with it,
resulting in a more di�usive re�ection. This preliminary study conducted us to use Model
1 for all of the results discussed in what follows.

The values of σdirt (45◦, 0◦) computed at 300 K with an incident angle of 45◦ are tabulated
in Table 3.4. The main characteristics of the pairwise potentials (i.e. the dissociation
energies, De and the equilibrium positions, Re) are also given. The σdirt (45◦, 0◦) values
reported in Table 3.4 vary between 0.23 and 0.49. Such di�erences are closely related to the
type of potential used. A �rst group of pairwise potentials, that includes the Maruyama
and Kimura [73, 74] and Spijker et al. [76] potentials, present low dissociation energies De

(≈ 6− 7 meV) and short equilibrium positions (< 3.5 Å). For both of these potentials, the
σdirt (45◦, 0◦) is about 0.3. It should be noticed that these Lennard-Jones type potentials
are commonly used in MD simulations [65] even if they do not reproduce properly the
Pt(111)-Ar interaction (see Section 2.2). The second group results from interaction poten-
tials associated with Ve close to the experimental value and large ze, i.e. Head-Gordon and
Svanberg potentials [68, 81]. These pairwise terms are characterized by relatively large
values of Re (> 4.5 Å) resulting in small σdirt (45◦, 0◦) values, close to 0.25. The third
group deals with the pairwise potential of the present work together with the Kulginov
and Ramseyer ones [71, 82]. All these two bodies terms lead to σdirt (45◦, 0◦) values in the
0.4− 0.5 range. They present equilibrium geometries around 3.8− 3.9 Å and De ranging
from 9.1 meV to 10.2 meV.

If σt ≈ 1, the wall is almost di�usive whereas if σt ≈ 0, the wall is almost specular.
The wall tends to become di�usive if the Ar atoms can approach closer to the wall and
interact more with it. This situation is obtain for the third class of pairwise potentials
whereas the pairwise potentials of the �rst and second classes lead to more specular inter-
action of Ar with the wall. In the �rst class, the pairwise terms present shorter equilibrium
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Figure 3.6: σdirt (θ, ϕ) values computed for Tw = 300 K, θ = 45◦ using the present potential,
for ϕ varying between 0 and 90◦.

Table 3.5: σdirt (θ, 0◦) and corresponding standard deviation σTMAC computed at Tw = 300
K with the Pt-Ar pairwise potential of the current work for di�erent incident angles.

Incident angle σdirt (θ, 0◦) σTMAC

10◦ 0.43 2.30
30◦ 0.41 0.85
45◦ 0.40 0.63
60◦ 0.41 0.55
80◦ 0.45 0.51

distances and lower De compared to the third class potentials. In the second class, the
situation is reversed: the equilibrium distances are longer than those predicted from the
third class. The force function (see Figure 3.5) resulting from our pairwise term can almost
be superimposed with the curves associated with the Kulginov and Ramseyer forces. Con-
sequently, almost identical values of σt are obtained. Moreover, it can be mentioned that
the analytical expression of the potential has a low in�uence: indeed, our and Kulginov
potentials have the Buckingham behavior, whereas the Ramseyer one is a Lennard-Jones
potential.

σdirt (45◦, ϕ) has been evaluated for di�erent values of ϕ and the resulting values are de-
picted in Figure 3.6. The orientation of the Oxz plane with respect to the surface has a
negligible impact on the σt value and the surface (111) can be seen as isotropic.
Table 3.5 shows that the σdirt (θ, 0◦) variations with the incident angle are within 0.40 to
0.45 for the new potential suggested in present work. When averaging over θ, i.e. summing
the di�erent σdirt (θ, 0◦) values determined for the values of θ displayed in Table 3.5 and
dividing by the number of the θ values, the resulting σt is 0.42. This averaged value could
be associated to the σt parameter in the Maxwell's model.
Figure 3.4.2 gives the full distribution of the x component of the re�ected velocity for
12000 collisions using the present pair potential for Tw = 300 K, θ = 45◦ and ϕ = 0◦.
The standard deviation of the �tted curve equals 155.4 m.s−1 and is related to the TMAC
standard deviation:

σTMAC =
σ⟨vrx⟩
⟨vix⟩

. (3.14)
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We notice that the deviations reported in Table 3.5 are very high, especially for small inci-
dent angles. These high deviations can be explained through analyzes of the post-collision
path of the Ar atoms. After the collision with the wall, an Ar atom can bounce backward
or forward with a large re�ection angle. Therefore, the accommodation coe�cient for a
single Ar atom can be very high and, even negative. Theoretically, the σt corresponding to
a single collision can take any negative or positive value according to the Maxwell model.
This phenomenon is in agreement with the work of Finger et al. [66]. The deviation is
higher with small θ since the initial tangential velocity in the denominator of equation
(3.14) decreases.

Although most of the results of this work are obtained using a constant incident veloc-
ity corresponding to the gas temperature, we have done separate simulations using the
Maxwell-Boltzmann distribution for the normal incident velocity:

f ′(viτ ) =

(

mg

2πkBTg

)
1

2

× e
−mgv

2

iτ
2kBTg . (3.15)

The resulting value of σdirt (45◦, 0◦) value is 0.39 using the present potential for Tw = 300
K. This result is almost identical to the σdirt value of 0.40 in Table 3.4 obtained by the use
of the constant viτ de�ned by equation (3.13).

We now compare some previous MD studies on the σt determination for the Pt-Ar couple
with the present model. In their work, Sun and Li [77] have simulated Couette �ows in
smooth and rough nanochannels and have varied the temperature and the types of the
surface crystal.

In their model, they have used Pt-Ar pairwise potential derived by Maruyama and Kimura
[73, 74] and the Einstein model for the Pt slab vibration. For an isothermal �ow at 200 K,
they have obtained a σt value of 0.348 which can be compared with σdirt (45◦, 0◦) = 0.34
for 300 K of Table 3.4. At 200 K, the present model would leads to σdirt (45◦, 0◦) = 0.47,
larger than the Sun and Li one. The low value derived by Sun and Li is probably due to
their choice for the wall model since they have chosen a simple spring description based on
the Einstein model leading to k = 179.5 N.m−1, higher than the present kwall value. This
implies a more specular behavior of the collision.

Spijker et al. [76] have explored the computation of accommodation coe�cients by the
use of velocity correlation pro�les determined from MD simulations. Contrary to the
above studies, the Argon gas con�ned between two Pt walls was not subject to a �ow but
was at equilibrium. The Pt-Pt interactions in the walls were described by a Lennard-Jones
potential. They have reoptimized the parameters of the Lennard-Jones Pt-Ar derived by
Maruyama et al. [73, 74] to correctly describe the wettability character of Ar on a Pt sur-
face, and at 300 K they derived a σt value of 0.53 whereas using their potential we obtained
σdirt (45◦) = 0.28. The di�erence of the values can be due to either the wall model or the
way of computing σt. Their model is based on velocities correlations between incoming
and outcoming particles colliding with the walls to compute σt from in equilibrium gas
atoms.

Very recently, using the Pt-Ar potential reoptimized by Spijker et al. [76], Prabha and
Sathian [78] have simulated a Poiseuille �ow in a nanochannel by MD. The Ar gas nonequi-
librium �ow was maintained due to a gravity �eld. For a wall temperature of 300 K, a
Knudsen number of 0.74 and a gravity �eld of 5.10−7 nm/ps2, they obtained a σt value of
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0.290.This result agrees within 0.01 with the present σdirt (45◦, 0◦) value of 0.28 computed
at the same temperature and using the Spijker potential. This agreement allows to validate
the present MD model.

Agrawal and Prabhu compiled theoretical and experimental σt values in a survey. The
averaged value is of 0.983 [92] for Ar atoms independently of the surface material. Ex-
perimentally, Cooper et al. [93] deduced a value of 0.52± 0.1 from the �rst experimental
determination of the slip coe�cient for Ar through tubular carbon structures, and Arkilic
et al. [94] obtained σt between 0.75 and 0.85 for measurement of Ar mass �ows through
silicon micromachined channels due to an imposed pressure gradient. The σt di�erence
between these experimental works gives an idea of the importance of the material surface.
To the best of our knowledge, no experiment exists on the σt determination for the Pt-Ar
couple making a good comparison di�cult.

In order to conclude this study about the e�ect of the pair potential on the σt deter-
mination, the results of a scattering simulation are presented. Head-Gordon et al. also
reported molecular beam experiments for the Pt(111)-Ar system. Figure 2 of Ref. [68]
shows the velocity distribution of the scattered �ux of Ar atoms with an incident energy
of 2.5 kJ.mol−1 and an incident angle of 45◦ on a Pt(111) surface at 500 K. We have
simulated this experiment using the same parameters for the atomic beam with Tg = 600
K, corresponding to an energy of 2.5 kJ.mol−1, and the present potential. The re�ected
velocity has been plotted as a function of the re�ected angle and the corresponding curve
is compared with the experimental and simulated data of Head-Gordon et al. in Figure 3.8.

The simulated curve of Head-Gordon et al. was based on the use of the corresponding
potential of Table 3.1, which has been optimized on the measured data of Figure 3.8.
The present curve presents the same main trends as the experimental points. The re�ected
velocity is maximum for θr around 20◦ and for θr larger than 40-50◦, the norm of vr is
almost constant. However, the present calculated velocities are higher by approximately
100 m.s−1 in comparison with the measured data.
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Chapter 4

E�ects of wall surface

4.1 Introduction

As mentioned earlier, based on Eq. (5.45) of Maxwell's model, the σt parameter for a gas-
wall couple can be determined by either experiments [94] or Molecular Dynamics [51, 65]
in the Navier Stokes slip regime. However, most MD simulations of �ows were done at
nanoscale [95] and did not have the same conditions as in experiments. In order to com-
pare σt calculations with measurements for dilute gases, a more relevant MD approach
[47, 60] consists in studying every single gas-wall collision event. Consequently, σt can
be computed directly by projecting gas atoms into the surfaces and �nding momentum
changes [66]. This approach, which is quite similar to beam experiments [96], provides
insights into the re�ection mechanism and can be used to improve Maxwell's model. As
far as multi-scale simulations are concerned, the obtained �uid-wall interaction results can
be coupled with other numerical methods [3, 4, 8, 97�99].

In Eq. (3.1), the use of one parameter σt as in Maxwell's model means that the slip
behavior is isotropic. For anisotropic textured surfaces, more sophisticate models are
needed to reproduce the direction dependent slip or gas-wall interaction behavior. Bazant
and Vinogradova [100] suggested using a slip length tensor to quantify this behavior. The
tensorial nature of the slip e�ect was shown to be related to the interfacial di�usion [100?
�102]. E�ective slip tensors with bounds for �ows over superhydrophobic surfaces were
also obtained [103, 104]. As the slip models describe macroscopic behaviors, it is thus
relevant to investigate the problem at the scale of �uid wall interaction. For gases, Dadzie
and Meolans [105] generalized Maxwell's scattering kernel by using anisotropic accommo-
dation coe�cients. The consequences of the model on the slippage have not been studied.
Since the anisotropic scattering kernel model does not provide full information about the
gas-wall collisions, we shall use MD method to study these interactions in detail with the
focus on the surface morphology. The MD code used in this chapter is the parallel version
described in Ref. [47]. The original code has been enriched (e.g multi-body potentials,
statistical tools, etc..) to adapt to the aim of the present work.

Generally, results obtained from MD simulations depend on the following factors:
- The interaction potential between the gas/wall atoms as mentioned in Chapter 3.
- The dimension of the simulation models. In general, 3D models are better than 2D since
it accounts for interactions of the gas atom with all its neighbors.
- The potential between the solid atoms must be good enough to reproduce the free surface
e�ect. It is well known that the distance between the atomic layers near the free surface
are much smaller than in the bulk.
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- The temperature e�ect must be considered as gas molecules are adsorbed easier at cold
walls than at hot walls, which can results in a higher σt.
- The surfaces are not always ideally smooth and can have di�erent morphology (e.g ran-
domly rough or textured surfaces).

This chapter aims at including these features in simulations of molecular beam experi-
ments. The gas/wall couple under consideration is Argon and Platinum but the method-
ology of the present work can be used to obtain σt for any gas/wall couple provided that
an appropriate potential is used. The chapter is organized as follows. After the Introduc-
tion, Section 2 is devoted to the description of the computational method. It discusses
brie�y the choice of potentials, the method to prepare surface samples and MD simulation
of gas/wall interaction. We remark that a part of surface sample preparation requires a
separate molecular dynamics simulation of �lm deposition processes in order to create a
realistic random roughness surface. The σt results issued from the calculations are then
shown in Section 4. Finally, conclusions and perspectives are discussed.

4.2 Computation model

4.2.1 Interatomic potential

The interatomic potentials play an important part in the molecular dynamics simulations
since they govern the dynamics of the system and, thus the accuracy of the results. In
this work, the following van der Waals type pair potential between At and Pt derived by
Kulginov et al. [71] is used

ϕAr−Pt(rAr−Pt) = V0e
−α(rAr−Pt−r0) − C6

r6Ar−Pt

, rAr−Pt = |rAr − rPt| , (4.1)

where rAr−Pt is the distance between an Ar atom at location rAr and a Pt atom at location
rPt, or vice versa. As mentioned in Chapter 1, contrary to usual Lennard-Jones potentials,
the repulsive part of this pair potential has a Born-Mayer form and provides a better de-
scription of the strong repulsion of the electrons. The pairwise potential parameters have
been empirically adjusted such that the laterally average potential reproduces the mea-
sured properties of an Ar atom adsorbed on a slab of Pt atoms, i.e. a well depth of about
80 meV [68] and, a vibrational frequency of the adsorbed atom of about 5 meV [79]. The
van der Waals interaction of an Ar atom with a platinum surface can be evaluated from
the Ar-polarizability and the Pt-dielectric function. The values of the potential parameters
are given in Table 4.1 and were shown to be in good agreement with an ab-initio based
calculation [106].

Table 4.1: Parameters of the Pt-Ar pairwise potential [71].

V0 (eV) α (Å−1) R0 (Å) C6 (eV.Å6)
20000 3.3 -0.75 68.15

In terms of the potential between the Pt atoms, the multi-body Quantum-Sutton Chen
(QSC) potential is used [107]. As a particular Finnis-Sinclair potential type, the QSC po-
tential includes quantum corrections and predict better temperature dependent properties.
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Table 4.2: Quantum Sutton-Chen parameters for Pt [108].

n m ϵ (eV) c a (Å)
11 7 9.7894e-3 71.336 3.9163

For a system of N Pt-atoms, the potential is given by the following expression

Vpot,P t = ϵ
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where a is the lattice constant, Rij the distance between atom i and j and the local density
ρi of atom i. The parameters ϵ and a determine the scales of energy and length, respectively
and, n and m the range and shape of the potential. These potential parameters are given
in Table 4.2. Combining the Ar-Pt and Pt potentials, we can compute the total potential
of the system

Vpot =
N
∑

i=1

ϕAr−Pt(RAr−i) + Vpot,P t , (4.3)

and the force fi acting on atom i at position ri by

fi = −∂Vpot
∂ri

. (4.4)

Since we only consider the interaction of one Ar atom with a Pt surface, there is no
contribution of the Ar-Ar term in the total potential formula Vpot. The accuracy of the
QSC potential for Pt has been justi�ed in Ref. [108] as it reproduces accurately the melting
temperature and the speci�c heat of the material. Although its implementation is more
costly than the harmonic (spring) potential, it should better reproduce the surface e�ects,
since atoms near the free surfaces are di�erent from the bulk. Our tests on the QSC
potential show that in fully relaxed equilibrium system, the interatomic distance near the
free surfaces is much smaller than in the bulk (see Fig. 4.1). As shown by previous works
[109�111], the lattice constant, wall mass and sti�ness can have signi�cant impacts on σt
and the slip e�ects.

Figure 4.1: Surface e�ects: the fully relaxed con�guration (right) is di�erent from ini-
tial con�guration (left).The solid �lm system is composed of �xed atoms (bottom layer),
thermostat atom (upper bottom layer) and normal atoms (remaining layers).
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Figure 4.2: Nanotextured surface of type A (square)

4.2.2 Surface samples

In this work, three types of surfaces are considered: smooth surfaces, periodic nanotex-
tured surfaces and randomly rough surfaces. The orientation of their free surfaces is (100)
according to the Miller index. Initially, the Pt atoms are arranged in layers and the two
lowest ones (phantom atoms) are used to �x the system and for the thermostat purpose.
The remaining Pt atoms are free to interact with other solid atoms and gas atoms. The
random arrangement of these atoms de�nes the "rough" state of the surface and will be
detailed later on.

A smooth surface model is a system composed of 768 atoms arranged in 6 layers, all
of which are in perfect crystal order. The nanotextured models are constructed from the
smooth surface model by adding successively atom layers to create pyramids with the slope
angle 45◦. The slope is necessary to assure the stability of the system since perfectly verti-
cal blocks (slope angle 90◦) are less stable: in many cases atoms migrate to lower positions
and the blocks evolve into step-like structures with smaller potential energy. The base of
the pyramid can be a square (type A, Fig. 2) or an in�nite strip (type B, Fig. 3), so that
both isotropic/anisotropic e�ect can be considered. Although these pyramids are simpli-
�ed models of a real rough surface, it can show the dependence of σt on the roughness.
The latter in MEMS/NEMS is reported to be several Å [12]. In this work, the highest
peak, varying with the number of atoms layers added on the surfaces, ranges from 2 to 6 Å.

Randomly rough surface models are also constructed by adding atoms on the smooth
surfaces in a random way. In the available literature, there are several mathematical mod-
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Figure 4.3: Nanotextured surface of type B (strip)

els [112�115] that describe random roughness. However, these models are not suitable at
atomic scale: it is di�cult to force atoms to be at given positions and, structure param-
eters such as orientation (100) and lattice constant must be respected. Furthermore such
atomistic systems might not be appropriate in terms of potential energy. In our opinion,
a randomly rough surface which is consistent with the internal atomistic structure, should
be built from molecular dynamics simulations. Rapid cooling of thin �lms from the liquid
state [116] can create rough surfaces but the �nal systems could contain many defects (e.g.
pores, dislocations) and non crystalline structure (e.g. polycrystal, amorphous). As the
present work focuses on Pt (100), the rough surfaces are constructed by deposing atoms
randomly on the existing smooth Platinum surface. Since this procedure is quite similar
to the �lm vapor-deposition processes, it is asssumed that the created surface is quite close
to real MEMS/NEMS surfaces. The procedure of the material deposition is described as
follows.

The initial system is a Pt plate made of four layers of 512 solid atoms, arranged in (100)
fcc order. First, the system is relaxed towards the minimal potential energy con�guration.
Then, after 2000 time steps of 1 fs, a Pt atom is inserted randomly from a height of 10
Å with the initial thermal velocity corresponding to 1000 K. Under the attraction force
(QSC potential) from the Pt plate, the deposed Pt atoms move downwards until they reach
the plate which is maintained at 50 K. (see a snapshot of the deposition process in Fig.
4.4). Finally, when all inserted Pt atoms are attached �rmly into the Pt plate, the whole
system undergoes the anneal process at the ambient temperature Ta = 300 K with a time
step equal to 2 fs. During the whole simulation, the Leap-Frog Verlet integration scheme is
employed and the temperature is kept constant by simple velocity scaling method. Figure
4.4 shows a snapshot of the �nal system whose total number of Pt atoms have reached
733. To improve the statistical results, 5 samples obtained thanks to the above described
procedure are collected, as shown in Fig. 4.5.
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Figure 4.4: Snapshot of deposition process (left) and �nal thin �lm system (right)

Figure 4.5: Five samples obtained from the deposition process
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Figure 4.6: Representation of θ, φ in cartesian coordinate system

4.2.3 Dynamics of gas/wall collision

In what follows, we describe the MD method used to simulate the gas-wall collision and
to calculate the σt coe�cient. The simulations are three dimensional: an Ar atom is pro-
jected into a Pt(100) surface with di�erent incident angles θ and with di�erent approaching
φ-planes. In spherical coordinate system, (θ, φ) are the polar and azimuthal angles, re-
spectively (see Fig 4.6). As mentioned in Chapter 2, the coe�cient σdirt (θ, φ) is given
by

σdirt (θ, φ) =
⟨vin⟩ − ⟨vrn⟩

⟨vin⟩
, (4.5)

where vin and vrn are the projections of the incident and the re�ected velocity on the
vector n, respectively. The latter is the intersection of the plane xOy and the φ-plane,
i.e it lies on xOy and makes an angle φ with respect to Ox. Only one gas-wall collision
is treated per simulation and the averages ⟨vin⟩, ⟨vrn⟩ in Eq. (4.5) are taken over a large
number of simulations (or collisions). The de�nition (4.5) is the most accurate description
of gas-wall interaction since it is associated to each direction. We also calculate the e�ective
anisotropic σant (φ) coe�cients using the same equation (4.5) but with gas atoms arriving
from all directions: the direction of vi is randomly uniform with vin > 0. In the special
case where the surface is isotropic, σant varies little with φ and a single e�ective isotropic

σisot constant is su�cient for modelling gas-wall interaction as in Maxwell's model. The
latter e�ective isotropic coe�cient is obtained by the similar method but ⟨vin⟩, ⟨vrn⟩ in
Eq. (4.5) are further averaged over n (or φ).

We assume �rst that an Ar atom only interacts with the Pt wall within a cuto� distance
rc = 10 Å. Since this distance is much smaller than the typical mean free path at atmo-
spheric pressure or in high vacuum (λ > 69 nm), it can justify the choice of such a small
region to calculate the σt coe�cients. At a distance of 10 Å, an Ar atom can be consid-
ered as non-interacting with the Pt- wall atoms since the potential value at that distance
(-0.0580736meV) is negligibly small when compared with the potential well depth (10.21
meV). At the beginning of each simulation, an Ar atom is inserted randomly at the height
rc above the wall surface with initial incident velocity vi. The norm of vi is equal to the
thermal speed corresponding to the gas beam temperature Tg. Although the results of this
work are obtained using a constant incident velocity corresponding to the gas temperature,
we have done separate simulations using the Maxwell-Boltzmann velocity distribution and
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Figure 4.7: Molecular dynamics scheme. The incident argon atoms are with vi velocities.
θ is the incident angle. The Pt wall has a fcc structure with a (100) surface. The Pt atoms
are controlled by Sutton-Chen potential.

�nd that σt is insensitive to this modi�cation. A collision is considered as �nished when the
atom bounces back beyond the cuto� distance. Then the re�ected velocity vr is recorded
for the statistical purpose and another Ar atom is reinserted randomly to continue the pro-
cess. After approximatively 10000 collisions (simulations), converged values of σt values
were obtained. Numerical tests show that the statistical error of a typical 10000-collision
average is within 1.0%.

Throughout the simulations, periodic boundary conditions were applied along the x, y di-
rections. The velocities and positions of gas atoms and the solid atoms at each time step
are calculated by the usual Leap-Frog Verlet integration scheme. To control the temper-
ature Tw of the system, the phantom technique is used: the Langevin thermostat [91] is
applied to the atom layer above the �xed layers. The motion of an atom i belonging to
this layer is governed by the equation

mi
dvi(t)

dt
= −ξvi(t) + fi(t) +Ri(t) . (4.6)

In Eq. (4.6), vi is the velocity of the atom i, fi is the resulting force acting on it by the
surrounding ones, mi is the atomic mass and ξ is the damping coe�cient. The third term
Ri in the right hand side of Eq. (4.6) is the random force applied on the atom. In the
simulation, it is sampled after every time step δt from a Gaussian distribution with zero
average and mean deviation of

√

6ξkBTw/δt. The simulations were carried out by setting
time step and damping factor at the following values:

δt = 2 fs , ξ = 5.184× 10−12kg/s . (4.7)

The wall temperature Tw was kept at 200 K, 300 K and 400 K and the gas beam tem-
perature Tg was kept at a slightly higher value than Tw, here Tg = 1.1Tw. Such choice of
Tg was made arbitrarily and the procedure of the present work can be applied to any gas
temperature. Generally, to obtain the best statistical results, a typical run requires 4×107

time steps of 2 fs. All simulations were run on 9 processors, using a domain decomposition
and the Message Passing Interface. The longest simulation takes about 20 CPU hours. We
have carried out computations with di�erent time steps from 1fs to 3fs and we have found
that the results are insensitive to this factor.
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Table 4.3: σdirt (θ, φ) computed at Tw = 200 K, 300 K, 400 K for three roughness heights
h with θ = 10◦, 45◦, 80◦ and φ = 0◦.

Surface type θ Tw = 200 K Tw = 300 K Tw = 400 K

A (h =5.88 Å) 10◦ 0.96 0.87 0.79
45◦ 0.92 0.85 0.77
80◦ 0.90 0.83 0.74

A (h =3.92 Å) 10◦ 0.94 0.84 0.75
45◦ 0.90 0.79 0.74
80◦ 0.88 0.78 0.72

Smooth 10◦ 0.85 0.72 0.61
45◦ 0.82 0.70 0.60
80◦ 0.80 0.69 0.59

Table 4.4: σisot and σdirt (θ, φ) computed at Tw = 300 K.

Surface type φ θ σdirt σisot

A (h =5.88 Å) 0◦ 10◦ 0.87 �
0◦ 30◦ 0.86 �
0◦ 45◦ 0.85 �
0◦ 60◦ 0.85 �
0◦ 80◦ 0.83 �
� � � 0.85

Random � � � 0.92
(Fig. 4.5)
Smooth � � � 0.70

4.3 MD simulation results

4.3.1 E�ects of temperature and roughness height

From the description of the models in Section 2, the coe�cient σdirt can depend on the
several input parameters: temperature, surface morphology, incident direction (θ, φ). The
variation of σdirt in terms of these parameters is investigated in the following subsections.

The σdirt results at di�erent temperatures are shown in Tables 4.3 and Fig. 4.8. A general
trend can be noticed here: σdirt increases as the temperature decreases, ranging from 0.78
to 0.92 in the case of the highest roughness considered (h = 5.88 Å). This trend in σdirt

variation can be explained by the fact that the adsorption is stronger with colder walls.
Gas atoms stay longer near the wall, interact more with solid atoms and, as a result, the
re�ection is more di�usive. Similar remarks have been reported in Refs. [65, 76] for con-
�ned systems. For h = 5.88 Å and Tw = 300 K, Table 4.4 shows that the σdirt value
varies very little with the incident angle θ and very close to the average isotropic value
σisot = 0.85. This means that for this kind of surface, Maxwell's one parameter model is
su�ciently accurate to model gas-wall interaction.
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Figure 4.8: σdirt computed for the wall of type A (square) at Tw = 200 K, 250 K, 300 K,
350 K and 400 K for three roughness heights h with θ = 45◦ and φ = 0◦.

The σdirt coe�cient increases with the roughness of the wall surface (see Table 4.3 and Fig.
4.8). Computations carried out for pyramidal structures at the temperature of 300 K show
that the σdirt coe�cient can reach up to 0.87 for surfaces with the highest peak con�gu-
ration. It is clear that the presence of peaks leads to non uniform surface potentials with
local minima where gas molecules can easily be trapped: the gas atoms adhere stronger to
the wall and lose their initial momentum. Moreover, the changes in local slopes produce
more or less random variations in the local incident and re�ection angles.

Visualization of collision trajectories shows a clear di�erence between a smooth surface
and a rough surface. On a smooth surface, a gas molecule collides and bounces several
times before �nally escaping from the in�uence distance rc of the wall (see Fig.4.9). On
a rough surface, it stays near the wall and moves within the valley between the peaks, a
mechanism similar to surface di�usion, until the wall provides enough energy to escape (see
Fig.4.10). The real behaviors are mixed: we sometimes observe the colliding and bouncing
mechanisms on rough surfaces (not shown in Fig.4.10), but they are not typical.

Figure 4.9: Typical collision trajectories (solid and dashed lines) on a smooth surface. Gas
molecules collide and bounce several times before escaping.

Next we considered the case of random surfaces obtained from the atom deposition pro-
cess. With the same parameters for the deposition process, the σdirt obtained for the �ve
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Figure 4.10: Typical collision trajectories (solid and dashed lines) on a rough surface. Gas
molecules move within the valley between the peaks.

samples shown in Fig. 4.5 exhibit small di�erences, from 0.90 to 0.93. It is very close to
σisot value for random surfaces 0.92 (see Table 4.4). Thus, in addition to the roughness
height, the in-plane random arrangement of the atoms also plays a signi�cant role on the
accommodation coe�cient.

4.3.2 Surface anisotropy e�ect

An anisotropic textured surface can obstruct or facilitate the �ows di�erently along di�er-
ent directions. Bazant and Vinogradova [100] generalized Navier slip boundary conditions
for anisotropic texture surface by using a tensorial slip length. In the framework of the
kinetic theory, Dadzie and Meolans [105] proposed a new scattering kernel that accounts
for surface anisotropy. Their formulation is based on three independent accommodation
coe�cients αx, αy, αz along the three directions x, y, z. The coe�cients αx, αy represent
the tangential accommodation coe�cients and αz is the normal accommodation coe�-
cient. The tangential accommodation coe�cient αn in direction n is then computed by
the expression (see Appendix I)

σant (φ) = αn = αx cos
2 φ+ αy sin

2 φ . (4.8)

We remark that by substituting φ = 0◦ and φ = 90◦, the accommodation values αx and
αy along x, y direction can be recovered. In this subsection, we study the anisotropy e�ect
using MD and the directional σt de�nition in Eq. (4.5) and examine the relation (4.8).
The anisotropy e�ect can be seen from Figs. 4.11 and 4.12: the σdirt variation with φ is non
uniform for rough surfaces. The accommodation process along the two directions x, y is
highly di�erent. The σdirt is minimum when the atoms are projected along the longitudinal
direction of the strip (φ = 90◦), since the surface may be considered as almost smooth in
that direction (see Fig. 4.3). This σt value corresponds to αy in the model of [105]. The
maximal σt values recorded for φ = 0◦ and h > 0 can be attributed to the largest rough-
ness e�ect in that direction and correspond to αx in the model [105]. Moreover, Figs. 4.11
and 4.12 show an increase of anisotropy e�ect as the roughness increases: the di�erence
between the highest and the smallest σt value increases with the roughness height whereas
the σt results depend very little on the beaming direction for a smooth surface. This could
be explained by the fact that the smooth surface can be considered isotropic. Although
Figs. 4.11 and 4.12 show discrepancies of σt obtained in di�erent ways, all curves can �t
reasonably well the analytical relation (4.8) as plotted in solid, dashed and dash-dotted
lines.
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Figure 4.11: σdirt computed for type-B walls (strip) versus azimuth angle φ for di�erent
roughnesses (Tw = 300K, θ = 45◦). The solid, dashed, dash-dotted lines are the analytical
expressions (4.8) used to �t the present numerical results.

Figure 4.12: σant computed for type-B walls (strip) versus azimuth angle for di�erent rough-
nesses (Tw = 300K). The solid, dashed, dash-dotted lines are the analytical expressions
(4.8) used to �t the present numerical results.
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Table 4.5: Ratio ⟨vrm⟩/⟨vrn⟩ computed for type-B walls (strip) with di�erent roughness
heights h at Tw = 300K, θ = 45◦ and φ = 45◦.

h ⟨vrm⟩/⟨vrn⟩
0 0
1.96 Å 0.15
3.92 Å 0.39
5.88 Å 0.67

For anisotropic surfaces, the re�ected �ux is not always lying in the same plane with
the arriving one. Consequently, in addition to Eq. (4.5), we should account for the ra-
tio of the re�ected �ux components along two orthogonal directions m,n: ⟨vrm⟩/⟨vrn⟩.
According to the anisotropic model (see Appendix I), this ratio can be computed by the
expression

⟨vrm⟩/⟨vrn⟩ =
(αx − αy) cosφ sinφ

1− αx cos2 φ− αy sin
2 φ

. (4.9)

By observing the surface structure, we can deduce that ⟨vrm⟩/⟨vrn⟩ must vanish for im-
pinging �uxes parallel to the planes of symmetry of the anisotropic surface. That remark
is in good agreement with Eq. (4.9) where ⟨vrm⟩/⟨vrn⟩ = 0 at φ = 0◦, 90◦. Our MD simu-
lation con�rms the remark and also shows that the ratio is nonzero at φ ̸= 0. From Table
4.5, at φ = 45◦, we �nd that the ratio is signi�cant. It even increases with the roughness
height increases, i.e the anisotropic e�ect is enhanced.
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Chapter 5

Tensorial slip theory for gas �ows

5.1 Introduction

Among the topics of micro-nano�uidics, slip �ows at solid surfaces have been studied ac-
tively from di�erent aspects including experiments, modelling and computational methods
[3, 8, 12, 47, 60, 101, 102]. In most problems under consideration, Navier slip boundary
conditions are used

us = Ls
∂u

∂n
, or us =Mτ . (5.1)

In (5.1)1, us is the slip velocity which is assumed to be proportional to the normal velocity
gradient ∂u

∂n at the wall and to a slip length Ls. Equation (5.1)2 is another formulation
based on shear stress τ and surface mobility constant M . Considering a Newtonian �uid
of viscosity η, these two formulations are equivalent as Ls =Mη and τ = η ∂u

∂n . For gases,
the slip length Ls is shown to be related to σt and the mean free path λ according to
Maxwell's model [12, 16]

Ls =
2− σt
σt

λ . (5.2)

Micro-nano textured surfaces have drawn a lot of scienti�c interests recently. If suitably
designed, these surfaces can become superhydrophobic and reduce signi�cantly friction.
However, due to the strong surface anisotropy, the application of isotropic equation (5.1)
is quite limited. A natural generalization of (5.1) while keeping the relations linear is the
following tensorial form [100]

us = b
∂u

∂n
, or us = Mτ . (5.3)

In (5.3), us,u, τ are vectors and M,b are second rank tensors having the same meanings
as us, u, τ,M,Ls. Speci�cally, the tensors M and b can capture the anisotropy e�ect when
they are not proportional to the identity tensor I. In the gas regime, it is revealed that
the accommodation coe�cient can be orientation dependent [117] and its variation with
respect to the incident direction agrees reasonably well with the anisotropic gas-wall in-
teraction model [105]. The latter is formulated using a scattering kernel based on three
accommodation parameters. This information suggests that the tensors M and b can be
obtained from the accommodation coe�cients in the same manner as Maxwell's isotropic
model.

The present chapter which aims at addressing the aforementioned problem, is organized as
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follows. After the introduction, we shall revisit the concept of anisotropic scattering kernel
proposed in Ref [105] and the associated slip models in Section 5.2. Explicit expressions
for M and b as functions of the accommodation parameters are presented. Section 5.3 is
dedicated to Molecular Dynamics (MD) simulation of Poiseuille �ows where the anisotropic
gas-wall interaction model is implemented. The MD results will then be compared with
the available analytical solutions. Finally, some concluding remarks are given at the end
of the chapter.

5.2 Anisotropic slip theory for gas �ows

5.2.1 Scattering kernel for anisotropic surfaces

In kinetic theory, the boundary conditions for the distribution function f(v) are usually
described using a scattering kernel, for example

vzf(v) =

∫

Ω′

B(v′,v)|v′z|f(v′)dv′ . (5.4)

The scattering kernel B(v′,v) is the probability that a gas atom impinging the wall with
velocity v′ is re�ected with velocity v. In Eq. (5.4), the wall is assumed to be normal to
the z direction of the Cartesian coordinate system Oxyz. The velocity components of the
incoming and outgoing atoms and the velocity spaces Ω,Ω′ are de�ned as follows

v = (vx, vy, vz) ∈ Ω = {R× R× R
+} ,

v′ = (v′x, v
′
y, v

′
z) ∈ Ω′ = {R× R× R

−} . (5.5)

Di�erent phenomenological models for gas-wall interaction were proposed based on ac-
commodation parameters. The �rst popular scattering kernel was derived from Maxwell's
postulate on the re�ection mechanism of the gas atoms [16]: it can be either di�usive
or specular with the respective portion of σt and 1 − σt. Another wellknown model was
developed by Cercignani and Lampis [118, 119] and later extended by Lord [120] using
two parameters α and αEz. The former is the accommodation coe�cient of the tangential
momentum and the latter is the accommodation coe�cient of the kinetic energy due to the
normal velocity component vz. Being invariant with respect to any change of basis in the
plane xOy, these two models are suitable for describing the behavior of ideally or nearly
isotropic surfaces, e.g smooth crystalline surfaces. For periodic nano-textured surfaces (see
Fig. 5.1 ), MD simulations of beam scattering experiments in Chapter 4 showed that the
coe�cient σt depends on the surface orientation. Interestingly, the variation of σt with
respect to the incident azimuthal angle φ agrees quite well with results issued from the
anisotropic scattering kernel proposed by Dadzie and Meolans [105].

Let us call Φ−
i and Φ+

i the incoming and outcoming �ux at the wall of the momentum i
component de�ned mathematically by the expression

Φ−
i = mg

∫

Ω′

|v′z|v′if−(v′)dv′ ,

Φ+
i = mg

∫

Ω
|vz|vif+(v)dv , (5.6)

where f− and f+ are respectively the velocity distribution associated with the incident
molecules and re�ected molecules. Dadzie and Meolans [105] proved the following relation

Φ−
i − Φ+

i

Φ−
i

= αi , i = x, y ,
Φ−
z − Φ+

z

Φ−
z − Φe

z

= αz . (5.7)
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In (5.7), the three model parameters αx, αy, αz are the momentum accommodation coe�-
cients along x, y, z axes and Φe

z is the re�ected �ux associated to complete accommodation
situation: αx = αy = αz = 1.

Since (Φ+
x ,Φ

+
y ) and (Φ−

x ,Φ
−
y ) are components of tangential momentum vector �uxes Φ+

t

and Φ−
t expressed in the same basis, the �rst linear relation in (5.7) can be written in

tensorial form

Φ+
t = (I−A)Φ−

t , (5.8)

where A is the accommodation tensor admitting the diagonal form in the current basis

A =

[

αx 0
0 αy

]

. (5.9)

Finally, we note the following relation which results from (5.8)

(Φ+
t +Φ−

t ) = N(Φ−
t −Φ+

t ) , N = 2A−1 − I . (5.10)

In the current basis Oxy, tensor N is reduced to the matrix

N =

[

(2− αx)/αx 0
0 (2− αy)/αy

]

. (5.11)

By applying the rotation transformation Q(φ)

Q(φ) =

[

cosφ sinφ
− sinφ cosφ

]

, (5.12)

to (5.8,5.9), we �nd the relations between the tangential �uxes Φ±
n ,Φ

±
m in the new basis

(n,m) (see Appendix I)

5.2.2 Simpli�ed anisotropic slip model for gas �ows based on tangential
accommodation coe�cients

From now, we consider gas �ows over a periodic nano-textured surface (see Fig. 5.1)
and assume that it is possible to replace the latter with a nominally �at surface and an
equivalent gas-wall interaction model. It is noteworthy to say that given the boundary
conditions for the distribution f , there is no unique derivation of boundary conditions for
macroscopic quantities [3, 12, 16, 121]. Temperature jump and velocity slip equations are
usually based on near-wall approximation of f and the assumption that the Navier-Stokes-
Fourier (NSF) equations are valid up to the wall. In many cases, the obtained boundary
conditions are strongly coupled (i.e stress, heat �ux, temperature, velocity, etc.. are all
present in the same non linear equation) and di�cult to use in practice. In what follows,
we adopt the isothermal �ow hypothesis and present a simpli�ed slip model for anisotropic
surfaces. The derivation of the model relies essentially on the momentum equation and
its associated properties (5.7-5.11) while relaxing the other conditions of the anisotropic
kernel (A.1 - A.3, Appendix I). The advantage is that it can describe reasonably well the
surface anisotropy e�ect for a broader class of problems and avoid unphysical issues due
to the kernels. The shear stress vector τ that the wall exerts on the gas atoms can be
computed directly from the di�erence of tangential momentum �uxes due to collisions

τ = (Φ−
t −Φ+

t ) , (5.13)
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Figure 5.1: Equivalent gas-wall interaction model. In modelling and simulations, the
structured surface is replaced by a smooth surface with a scattering kernel R(v′,v). In
Ref. [117], the authors considered a (100) crystalline Pt textured surface at 300 K with
the following dimensions l1 = 11.76Å, l2 = 19.6Å, l3 = 7.84Å, h = 5.88Å and used MD
method to determine the accommodation parameters with Ar atoms associated to model
(A.1 - A.3, Appendix I) αx = 0.96, αy = 0.83.

Assuming that the �uid near the wall is not too far from equilibrium, we can make the
following approximation

∫

Ω′

f−(v′)dv′ ≃
∫

Ω
f+(v)dv = ρ/2 , (5.14)

where ρ is the total number density of the wall density function f̄ . The latter is de�ned
from f− and f+ as follows

f̄ = f− in Ω′ , f̄ = f+ in Ω . (5.15)

Next, we consider that, to some extent, the normal velocity component vz in f+ is indepen-
dent of the tangential velocity vt = (vx, vy) and v′z in f− is independent of v′

t = (v′x, v
′
y).

Accounting for (5.14), the tangential momentum vector �uxes (5.6) can be estimated by

Φ−
t ≃ mg c̄z

∫

Ω′

v′
tf

−(v′)dv′ , Φ+
t ≃ mc̄z

∫

Ω′

vtf
+(v)dv ,

ρ

2
c̄z =

∫

Ω′

|v′z|f−(v′)dv′ =
∫

Ω′

|vz|f+(v)dv . (5.16)

The last equality of (5.16) implies that the wall does not accumulate. Using the de�nition
of gas velocity at the wall

ρus =

∫

Ω
f+vtdv +

∫

Ω′

f−v′
tdv

′ , (5.17)

we can deduce that

Φ−
t +Φ+

t = mgρc̄zus . (5.18)

Combining (5.10) and (5.18,5.13) leads to the following expression of the slip velocity

us = Mτ , M =
1

ρmg c̄z
N . (5.19)

It is interesting to note that the second rank tensor M, is similar to the interfacial mobility
tensor in the tensorial slip theory [100]. In the case of Newtonian �uid of viscosity η, we
obtain the generalized slip equation for anisotropic surface using the concept of slip length
tensor b

b = ηM . (5.20)
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We note that the viscosity η is related to the mean thermal speed c̄ and the mean free
path λ [4]

η =
1

2
ρmg c̄λ , c̄ =

√

8kT

πmg
, (5.21)

while c̄z can be estimated from (5.16) by considering f̄ (hence f+, f−) close to Maxwellian

c̄z =

√

2kT

πmg
. (5.22)

As a result of (5.20), (5.19) and (5.11), tensor b becomes simpli�ed into the simple form

b = λN = λ

[

(2− αx)/αx 0
0 (2− αy)/αy

]

. (5.23)

It is interesting to remark that (5.23) is consistent with a rather heuristic and less rig-
orous approach presented in Appendix II. These results are the generalization of earlier
works [12, 51] concerning isotropic surfaces. Another interesting feature of b is that it
is independent of temperature 1 and the choice of the kernel form (A.1 - A.3, Appendix
I). Finally, it is reduced to Maxwell's slip model when the behavior is isotropic, i.e αx = αy.

Tensor b can be made dimensionless with a characteristic length, for example the channel
height H,

b̄ =
b

H
. (5.24)

and using the Knudsen number Kn,

b̄

Kn
= N , with Kn =

λ

H
. (5.25)

In Ref [121], a slip model associated directly to the kernel form (A.1 - A.3, Appendix I)
was proposed. The obtained expression is still rather complex and still depend on the tem-
perature T even if the variations along the tangential directions x, y are neglected. The gas
temperature T must also be solved from the NSF equations combined with the separate
temperature jump model. As shown by previous works [63, 64, 95], the gas temperature
pro�le exhibits some anomalies that can not be described by available analytical solu-
tions and even by compressible NSF equations. Furthermore, when the surface is isotropic
αx = αy, Maxwell's model can not be recovered from the model proposed in Ref. [121].

We must also say that the slip models are based on the validity of NSF equations at
the wall which is not true. However, as shown in previous works and our MD results in
the later section, these models can describe reasonably well the slip e�ects near the wall.
Furthermore, errors can be dealt with using empirical coe�cients or higher order models,
etc...

5.2.3 Poiseuille �ow analytical solutions

We consider con�ned gas �ows between two immobile parallel textured walls. The (dimen-
sionless) slip tensors of each wall are denoted respectively b̄+ (upper wall) and b̄− (lower

1The temperature dependence of the slip model can be expressed via the temperature dependence of

αx, αy
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wall). The �ows can be driven by either pressure di�erence or external force �eld. As
shown in previous works [49, 51, 95, 122] relevant to isotropic surfaces, Poiseuille parabolic
solution can describe well the velocity pro�le even in nano-size channel and at high Knud-
sen number. These results suggest that we can adopt the following equation for the case
under consideration [100]

u =
H2

4η

{

1

2

[

1−
(

2z

H

)2
]

I+ J+

(

2z

H

)

K

}

g . (5.26)

with g being the driving force, equivalent to the pressure gradient or the external body
force. For MD simulation cases studied in the later section, the �uid is subject to a gravity
like �eld γ and the driving force g can be evaluated as average mass density mgρ0 times γ

g = mgρ0γ (5.27)

Tensors J,K are de�ned by

J = C−D(I+C)−1D , K = (I+C)−1D ,

C = b̄+ + b̄− , D = b̄+ − b̄− . (5.28)

The �rst term of (5.26) is the usual no-slip Poiseuille pro�le, the second constant term
corresponds to slip-driven plug �ow and the third term corresponds to a linear shear stress
�ow [100].

The general formulation (5.26,5.28) does not require that the two wall surfaces are aligned
and their slip tensors b̄+ and b̄− are not necessarily diagonal in the current basis.

In the case where the slip tensors b̄+, b̄− are diagonal in the basis Oxy, J,K are also
diagonal in the same base and their components admit the expressions

Jx =
b
+
x + b

−
x + 4b

+
x b

−
x

1 + b
+
x + b

−
x

, Jy =
b
+
y + b

−
y + 4b

+
y b

−
y

1 + b
+
y + b

−
y

,

Kx =
b
+
x − b

−
x

1 + b
+
x + b

−
x

, Ky =
b
+
y − b

−
y

1 + b
+
y + b

−
y

. (5.29)

If the relation (5.23) holds, we can rewrite the previous expression as follows

Jx =
Kn(N+

x +N−
x ) + 4Kn2N+

x N
−
x

1 + Kn(N+
x +N−

x )
,

Jy =
Kn(N+

y +N−
y ) + 4Kn2N+

y N
−
y

1 + Kn(N+
y +N−

y )
.

Kx =
Kn(N+

x −N−
x )

1 + Kn(N+
x +N−

x )
,

Ky =
Kn(N+

y −N−
y )

1 + Kn(N+
y +N−

y )
. (5.30)

These analytical expressions will be examined in the later section with the Molecular
Dynamics method.
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5.3 Molecular dynamics models

In this section, we described the Molecular Dynamics method to simulate gas �ows in a
nanochannel. The gas atoms are placed in a rectangular box of dimension L×B×H along
x, y, z directions and subject to a uniform force �eld γ parallel to the plane xOy. We assume
that the interaction between the gas atoms and the walls (normal to the z direction) can
be described by the anisotropic kernel (A.1 - A.3, Appendix I). The following parameters
associated to the kernel are used

αx = 0.96 , αy = 0.83 , αz = 0.9 , Tw = 300K . (5.31)

It is noted that the values of αx, αy correspond to the tangential accommodations coe�-
cients for Ar and a nanotextured Pt wall at Tw = 300K with dimensions described in Fig.
5.1 and in Ref. [117]. In Ref. [117], these values are obtained from MD simulations of
beam scattering experiment.

Although (A.1 - A.3) are the constraint equations for the phase density f at the wall,
we shall implement an analogous boundary conditions for MD methods that can mimic
the e�ects of the former. From the composition of the scattering kernel B, we can say
that µi is the percentage of the molecules whose re�ection mechanism is governed by the
elementary kernel Bi. During MD simulations, when a gas atom crosses the wall boundary,
we consider that it collides with the wall. Then, the same molecule is reinserted at the
wall boundary with the same x, y coordinates and its velocity is reassigned on the basis of
di�erent elementary processes. At each collision event, a random number X with uniform
distribution between [0, 1] is generated. Depending on the value of X and the arriving
velocity v′, we shall decide the re�ection mechanism Bi and generate the post collision
velocity v accordingly, for example:
- If 0 < X < µ0 then the re�ection is specular (kernel B0): vx = v′x, vy = v′y, vz = −v′z.
- If µ0 < X < µ0+µxy then the re�ection is specular along z, di�usive along x, y direction
(kernel Bxy): vx, vy ∼ N (0,

√

kTw/mg), vz = −v′z.
- If µ0 + µxy < X < µ0 + µxy + µxz then the re�ection is specular along y, di�usive along
x, z direction (kernel Bxz) vx ∼ N (0,

√

kTw/mg), vz ∼ R(
√

kTw/mg) and vy = v′y.
- etc...
considering that the total sum of µi equals 1 (see A.2, Appendix I).

Here N (0,
√

kTw/mg) is the normal distribution with zero mean and standard deviation
√

kTw/mg and R(
√

kTw/mg) is the Rayleigh distribution with parameter
√

kTw/mg. In
addition to the previously described wall boundary conditions along the z direction, the
simulation box is periodic along the x, y directions.

It is clear that the described anisotropic collision mechanism is a generalization of Maxwell's
original mechanism. Here the specular and di�usion re�ections are applied to three veloc-
ity components for di�erent proportions of atom µi in order to reproduce the momentum
relative changes (5.7). Furthermore, due to a considerable molecular portion re�ecting
di�usively at the wall temperature Tw, these boundary conditions correspond to a thermal
wall allowing energy exchange. As the results, thermostats are no longer needed during
MD simulation. A rather similar thermal wall approach can be found in Ref [49].

In our simulations, the interaction force between two gas molecules at distance r is gov-
erned by the Lennard-Jones potential :
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V (r) = 4ϵ

[

(σ

r

)12
−

(σ

r

)6
]

, (5.32)

with cuto� distance rc = 2.5σ. For Argon, the reference energy ϵ and length σ are respec-
tively ϵ = 1.67× 10−21 J and σ = 0.341 nm. The global number density is kept constant,
ρ0 = 0.035σ−3 while the number of the molecules N , the acceleration γ and others geo-
metric parameters like L, B, H are changed as shown in Table 5.1.

Table 5.1: Input data of MD simulations

N(atoms) L(σ) B(σ) H(σ) Kn γ(ϵ/mσ)
74088 128.4 128.4 128.4 0.05 0.001
27000 91.7 91.7 91.7 0.07 0.001
8000 61.1 61.1 61.1 0.104 0.001
4400 61.1 61.1 33.6 0.19 0.001

During the simulations, the Leapfrog-Verlet integration algorithm is employed and the av-
eraging procedure starts only when the �ow is stabilized, i.e. after about 106 time steps
of 2 fs. The total computational time is 2 × 108 time steps. The height of the channel
is divided into 100 layers to determine accurately the distribution of local stream velocity
u. The �ow direction determined by the angle φ made between the �ow direction n (also
the direction of γ) and the x axis is also varied from 0◦ to 90◦ to examine the anisotropy
e�ect of the channel. The global mean free path λ used in the analysis is calculated by the
formula

λ =
1√

2πρ0σ2
. (5.33)

5.4 Results

5.4.1 Walls with identical slip tensors

We consider �rst the case where the two walls are identical and aligned, b
+

= b
−

= b.
This simpli�cation leads to the following expression of J and K,

J = 2b , K = 0 . (5.34)

The MD simulation results con�rm the parabolic velocity pro�le along the �ow direction
for most part of the channel, as predicted by (5.26). Another interesting aspect that agrees
with (5.26) and some previous studies [123, 124] is that we observe the small transversal
velocity pro�le. The latter seems to vanish at principal directions φ = 0◦, 90◦ and maximal
at φ = 45◦ (see Fig. 5.3). We will show that these properties cannot be recovered by the
isotropic slip theory.

Next let us look further into the quantitative aspect of the results. The velocity pro-
�les along the �ow direction and the transversal direction are �tted respectively with
parabolic and constant equation to determine the �tted slip velocities at the walls. These
numerically computed values will be compared with analytical solution issued from (5.26)
while accounting for (5.23,5.25,5.30). We remark that some deviations from the analytical
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Figure 5.2: Schematic of the Knudsen layer and real and �tted slip velocities.

solution is observed in a small region near the wall (the Knudsen layer) and the real slip
velocities can be di�erent from the �tted velocities (see Fig. 5.2). The former are com-
puted directly by averaging molecular velocity before and after collision with the walls,
also considered in this work. However, for the sake of convenience, the terminology "slip
velocities" without pre�x (�tted or real) is used to refer to the �tted velocities when no
comparison is made between these two quantities.

According to (5.26), the dependence of dimensionless slip lengths on the �ow orientation
can be expressed by the relation

Ls(φ)

H
= bx cos

2 φ+ by sin
2 φ (5.35)

or

Ls(φ)

H
= Kn

(

2− αx

αx
cos2 φ+

2− αy

αy
sin2 φ

)

(5.36)

if the simpli�ed quantitative relation (5.25) is used. From Fig. 5.4, both analytical solu-
tions and numerical solutions at di�erent Kn show the same trend of Ls in function of φ.
All MD data can be �tted perfectly with (5.35) showing excellent agreement with tensorial
slip theory. On the other hand, expression (5.36) based on the quantitative estimation of
bx, by shows good agreement with MD results in slip �ow regime Kn < 0.1 with average
errors less than 5%. At higher Kn, considerable discrepancy is observed. The former have
been reported in numerous works concerning the original Maxwell slip model and di�erent
correction coe�cients (either empirically or theoretically based) have been proposed to
deal with these issues [12, 19, 49].

Regarding the ratio between the slip velocities in transverse and longitudinal directions
usm/usn, its dependency on the �ow direction is given by (5.26):

usm
usn

=
(by − bx) sinφ cosφ

bx cos2 φ+ by sin
2 φ

(5.37)
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Figure 5.3: Longitudinal and transverse velocity pro�les un, um for di�erent values of φ
and Kn = 0.104. The velocities are normalized with umax - the velocity at z = 0 for case
φ = 90◦.
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Figure 5.4: Dimensionless slip length Ls/H as a function of φ at di�erent Kn. Points are
MD data which are �tted with solid lines corresponding to the analytical expression (5.35).
The dashed lines represents quantitative estimation (5.36) based on αx, αy.
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Figure 5.5: Ratio of transverse and longitudinal components of �tted slip velocity as a
function of φ for various Kn. Points are MD data, the solid and dashed lines are analytical
expressions (5.37) and (5.38)

using bx, by parameters from the �t of Ls by equation (5.35), or

usm
usn

=

(

2−αy

αy
− 2−αx

αx

)

sinφ cosφ

2−αx

αx
cos2 φ+

2−αy

αy
sin2 φ

(5.38)

using the approximation (5.25). It is clear that this ratio always vanishes by assuming
isotropy. For anisotropic surfaces, it is a function of φ and only vanishes when φ = 0◦, 90◦.

Fig. (5.5) shows �tted slip velocities obtained from MD simulations in comparison with
analytical predictions (5.37) and (5.38). Again, MD results agree very well with the analyt-
ical expression (5.37) and less well with the quantitative expression (5.38). More precisely,
(5.38) overestimate the �tted transverse �ow velocity. However, when we look into the real

slip velocities in Fig. (5.6), there is a very good agreement and more interestingly, the
ratio is quasi independent of Kn as predicted by (5.38).

According to previous works [125, 126], the ratio of averaged transverse and longitudi-
nal �ow rates is given by

⟨Q⟩m
⟨Q⟩n

=
6(by − bx) sinφ cosφ

1 + 6(bx cos2 φ+ by sin
2 φ)

, (5.39)

where ⟨Q⟩m and ⟨Q⟩n are the averaged �ow rate components along the directions m and
n. This ratio can be obtained by integrating the velocity pro�le across the channel :

⟨Q⟩m =

∫ H
2

−H
2

⟨um(z)⟩dz , ⟨Q⟩n =

∫ H
2

−H
2

⟨un(z)⟩dz . (5.40)
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Figure 5.6: Ratio of transverse and longitudinal components of real slip velocity as a
function of φ for di�erent Kn. Points are MD data and the dashed line is for the analytical
expression (5.38).
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Figure 5.7: Ratio of transverse and longitudinal �ow rate as a function of φ for di�er-
ent values of Kn. Points are MD data, the solid and dashed lines represent analytical
expressions (5.39) and (5.41).
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In the case of simpli�ed model, equation (5.39) can be expressed in terms of accommodation
coe�cients :

⟨Q⟩m
⟨Q⟩n

=
6Kn

(

2−αy

αy
− 2−αx

αx

)

sinφ cosφ

1 + 6Kn(2−αx

αx
cos2 φ+

2−αy

αy
sin2 φ)

. (5.41)

The ratio ⟨Q⟩m
⟨Q⟩n as a function of φ for di�erent values of Kn is plotted in Fig. (5.7). The

results show that the MD data and analytical solutions are closely similar : the ratio is
largest at φ = 45◦ and it approaches zero when φ tends to 0◦ or 90◦. However, there are
some visible discrepancies between the MD data and analytical results especially, at high
Kn number, as it has been explained earlier.

5.4.2 Walls with di�erent slip tensors

In this section, we consider the second case where the two walls are misaligned. The lower
wall position is maintained while the upper wall is rotated with an angle 90◦ in its plane.
In this case we have

b
+
= b

T
, b

−
= b , (5.42)

which leads to the following expression of J,K

Jx = Jy =
by + bx + 4bybx

1 + by + bx
,

Kx = −Ky =
by − bx

1 + by + bx
. (5.43)

If the estimation (5.25) of b from the accommodation coe�cients is adopted, one obtains

Jx = Jy =
Kn(Ny +Nx) + 4Kn2NyNx

1 +Ny +Nx
,

Kx = −Ky =
Kn(Ny −Nx)

1 + Kn(Ny +Nx)
. (5.44)

Normalizing the slip velocities at two walls u+sn, u
−
sn (at z = ±H/2) with the mid stream

velocity un0 (at z = 0) yields

u+sn
un0

=
(Jx +Kx) cos

2 φ+ (Jy +Ky) sin
2 φ

0.5 + Jx cos2 φ+ Jy sin
2 φ

,

u−sn
un0

=
(Jx −Kx) cos

2 φ+ (Jy −Ky) sin
2 φ

0.5 + Jx cos2 φ+ Jy sin
2 φ

. (5.45)

Figure (5.8) shows a good agreement between the analytical solutions and MD results:
the longitudinal velocity pro�le is a shifted parabola. As expected, near the wall where
the Knudsen layer dominates, the velocity distribution tends to deviate from (5.26). The
normalized slip velocities at the upper and lower walls are plotted in Fig.(5.9, 5.10)as a
function of φ . As can be seen, the agreement between MD results of �tted slip velocities
and predicted solutions (5.45) is also observed at small Kn numbers for both two walls.
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Figure 5.8: Normalized longitudinal velocity pro�le for two values of φ with Kn = 0.104.
Points represent MD data and the solid or dashed lines are for the analytical expression
based on (5.26).
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Figure 5.9: Normalized slip velocities at the upper wall as a function of φ for di�erent Kn
numbers. The lines represent the analytical expression (5.45) and the points are MD data.
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Figure 5.10: Normalized slip velocities at the lower wall as a function of φ for di�erent Kn
numbers. The lines represent the analytical expression (5.45) and the points are MD data.

5.4.3 E�ects of Knudsen layer and normal tangential coe�cient αz on
anisotropic �ows

In the micro/nanoscale, the behavior of a gas �ow near the wall is dominated by the e�ect
of gas-surface interactions. This area is called the Knudsen layer : a thermodynamically
nonequilibrium region extending a distance λ from the wall. Although the Navier-Stokes
equations can accurately describe the �ow behavior outside the Kn layer, they fail to pre-
dict the �ow �eld of the Kn layer, especially for high Kn number [127].

Figures (5.11) and (5.12) show the ratio of real and �tted slip velocities for the case B
- walls with di�erent slip tensors. As shown in the �gures, the real slip velocities are about
(0.7 - 0.8) of �tted slip velocities at both two walls. These results agree with previous
studies [128], which indicated that the ratio of these two slip velocities is approximately
equal to 0.8.

Finally, we discuss the validity of slip models based on the two tangential parameters
αx, αy by considering the e�ect of αz on anisotropic �ows and on slip behavior of gas at
the walls. In previous sections, the normal accommodation coe�cient αz was chosen to be
0.9 for modelling anisotropic surfaces. The case A with identical walls was considered and
only αz is varied while others parameters like αx, αy remained unchanged. The variation of
slip length with αz is plotted in Fig.(5.13) for Kn = 0.05 and Kn = 0.104. The slip length
increases slightly as αz increases and the variation is stronger for high Kn. However, the
di�erence between the cases is small (about 2%). We can conclude that slip models based
on the two tangential parameters αx, αy adequately describe the phenomenon.
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Kn numbers.
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Conclusion

A multiscale study of boundary conditions at gas-solid interfaces have been conducted by
using the Molecular Dynamics method to represent dynamic slip phenomena.

In Chapter 2, both pressure and acceleration driven methods are used to simulate gas
�ows in slip and transitional regimes. In the former method, a constant gravity - like force
is applied to the gas particles. The latter method controls the kinetic pressure di�erence
between the inlet and the outlet. The main novelty lies in the modi�cation of the periodic
velocity conditions: the di�erence in squared velocity between the ingoing and outgoing
particles of the simulation domain is maintained constant. Plane Poiseuille �ows were
modeled and the results compared with approximate analytical solutions of the Navier-
Stokes and energy equations reported in the literature.

In Chapter 3, in order to determine which empirical Pt-Ar pairwise potentials proposed
in the archival literature may be used in MD simulations, a new Pt-Ar potential has been
determined from periodic DFT calculations of the interaction between an argon atom and
the solid Pt(111) surface using the CRYSTAL09 code. The energies have then been �t-
ted by a sum of Pt-Ar pairwise inter-atomic van der Waals type terms. The potential
parameters, i.e. the interaction energy and the vertical Pt(111)-Ar harmonic vibrational
frequency, are in good agreement with experimental data [68, 79]. This potential is very
similar to the empirical one determined by Rameseyer et al. [82] and Kulginov et al. [71].
However this last one has the advantage of considering a physically correct repulsive term.
The present and the Kulginov Pt-Ar potentials could be retained for future MD studies
involving the Pt(111)-Ar couple. The tangential momentum accommodation coe�cient
of argon gas colliding with a Pt surface has been determined by MD simulations. Argon
atoms impinged on atomistic Pt surface and the post collision information have been col-
lected in order to compute the directional σdirt (θ, ϕ). We observed that σdirt depends on
the wall model, and on the Pt-Ar pairwise potential. We found that the well depth and
the equilibrium position are the main potential characteristics that in�uence the value of
σdirt . The surface is almost isotropic and the average of σdirt over θ corresponds to the
the gas-solid constant, σt, of the Maxwell model. When averaging over the incident angle
and using the new potential, a 0.42 - σt value has been predicted for a wall temperature
Tw=300 K.
The present multi-scale approach combines the advantages of the two computational meth-
ods: quantum electronic structure and Molecular Dynamics calculations. Since the accom-
modation coe�cient depends on the interaction strength, accurate determinations of the
interaction parameters by accurate approaches are crucial. The Molecular Dynamics ap-
proach can reproduce the dynamics of the system and the collision trajectories, which
allows to accurately compute the TMAC.

In Chapter 4, we have studied the e�ects of temperature, surface textures and anisotropy
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on the σt coe�cient of Ar gas and Pt(100) surface. The computational model is based on
the molecular beam experiments and constructed with the most accurate available poten-
tials and interaction models. Unlike the previous chapter, the multi-body Quantum-Sutton
Chen potential is used for the solid walls. Although its implementation is more costly than
the harmonic spring potential used in Chapter 3, it better reproduces the surface e�ects.
The MD results show that σt is not a simply gas/wall constant, it decreases as the tem-
perature increases and it increases with the roughness of the wall surface. The randomly
rough surface obtained from the atomic deposition simulation is also investigated and we
observed that, in addition to the roughness height, the in-plane random arrangement of the
atoms also plays a signi�cant role on σt values. Concerning the anisotropy e�ect, results
on systems with anisotropic surfaces show that σt varies signi�cantly with orientation.
E�ective σt coe�cients are obtained and compared with models recently reported in the
literature.

The last chapter of the thesis examines the gaseous slip �ows over anisotropic surfaces
from theoretical and numerical points of view. A simpli�ed tensorial slip model based on
tangential accommodation tensor is proposed and confronted with MD simulation results.
In MD model, a special gas wall interaction based on anisotropic scattering kernels is im-
plemented to mimic the surface anisotropy. The numerical results are shown to be in good
agreement with theoretical predictions for the slip �ow regime.

Perspectives

The results presented in this thesis could be completed in several directions

• The new pressure driven method using in Chapter 2 proved to be realistic. Hence,
it could be applied to many extended problems with non constant axial pressure
gradient: �ows around obstacles or in rough channels, for example. The method
appears thus relevant for modeling compressibility e�ects as well as temperature
variations along the �ow direction, a domain still unful�lled by using MD methods.

• With the data obtained from the molecular beam simulations, we will easily deter-
mine the other important coe�cients characterizing the exchange between gas and
surface such as the normal momentum accommodation coe�cient and the energy ac-
commodation coe�cient (σT ). The e�ects of the gas/wall interaction potential and
the morphology of surface on these parameters could be also deduced. On the other
hand, knowing the σT coe�cient facilitate the quanti�cation of the thermal slip in
microchannels that not yet considered in this thesis.

• The current beam simulations model monoatomic gases and �xed solid walls. It is
also interesting to extend for polyatomic gases and moving walls.

• Although molecular dynamics is a very powerful technique, it is limited to small
domains and small time frames. Nowadays, a MD simulation can be performed on
systems containing a billion atoms at best, with dimensions up to micron. A possible
solution to this limitation is to combine molecular dynamics with continuum mechan-
ics. The results presented in this thesis such as the accommodation coe�cients, slip
velocities could be used as boundary conditions at gas/solid interface for the contin-
uum mechanics simulation in remainder region where the continuum description is
appropriate.
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Appendices

Appendix I. Anisotropic scattering kernel

For gas-wall interaction, Dadzie and Meolans [105] proposed an anisotropic scattering
kernel B(v′,v) de�ned by

B(v′,v) =
∑

k

µkBk(v
′,v) , (A.1)

in which

µij = αiαj(1− αk) , µi = αi(1− αj)(1− αk) , µijk = αiαjαk ,

µ0 = (1− αi)(1− αj)(1− αk) , i, j, k = x, y, z , i ̸= j ̸= k ̸= i .

(A.2)

The vectors v′,v are respectively the arriving velocity and the re�ected one and the con-
stants αx, αy, αz are the accommodation coe�cients along the directions x, y, z. The ele-
mentary kernels Bk are given by the following expressions

B0(v
′,v) = δ(vz + v′z)δ(vx − v′x)δ(vy − v′y) ,

Bxy(v
′,v) =

1

πC2
w

δ(vz + v′z)e
−(v2y+v2x)/C

2
w ,

Biz(v
′,v) =

2√
πC3

w

vzδ(vj − v′j)e
−(v2i +v2z)/C

2
w ,

Bxyz(v
′,v) =

2

πC4
w

vze
−(v2x+v2y+v2z)/C

2
w ,

Bi(v
′,v) =

1√
πCw

δ(vz + v′z)δ(vj − v′j)e
−v2i /C

2
w ,

Bz(v
′,v) =

2

C2
w

vzδ(vi − v′i)δ(vj − v′j)e
−v2z/C

2
w ,

i, j = x, y , i ̸= j , Cw =
√

2kBTw/mg ,

(A.3)

with δ being the delta Dirac function, Tw the wall temperature, kB the Boltzmann constant
and mg the molecular mass of gaseous particles.
The boundary conditions for particle distribution function f(v) is then de�ned by

vzf(v) =

∫

Ω′

|v′z|f(v′)B(v′,v)dv′ , Ω′ = R× R× R
− . (A.4)

We use Φ−
j and Φ+

j to denote the incoming �ux at the wall of the momentum j component.
Then

Φ−
j =

∫

Ω′

m|v′z|v′jf−(v′)dv′ , Φ+
j =

∫

Ω
m|vz|vjf+(v)dv , Ω′ = R× R× R

+ . (A.5)
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with f− and f+ being the velocity distribution associated with the incident molecules and
re�ected molecules. Dadzie and Meolans [105] proved the following relation

Φ−
j − Φ+

j

Φ−
j

= αj , j = x, y, z . (A.6)

Their model is based on three parameters αx, αy, αz de�ned along given directions of a
system of coordinate. We are interested in the accommodation coe�cients in an arbitrary
direction. Hence, we consider a family of orthogonal directions (n,m) obtained by rotating
xOy around Oz by an angle φ. Consequently, the n,m-components are related to x, y
components by

Φ±
n = cosφΦ±

x + sinφΦ±
y , Φ±

m = − sinφΦ±
x + cosφΦ±

y . (A.7)

Since αx and αy are accommodation coe�cients, we can deduce the the relation

Φ+
n = (1− αn)Φ

−
n + βnmΦ−

m , Φ+
m = (1− αm)Φ−

m + βnmΦ−
n , (A.8)

with

βnm = (αx − αy) cosφ sinφ ,

αn = αx cos
2 φ+ αy sin

2 φ ,

αm = αy cos
2 φ+ αx sin

2 φ , (A.9)

and compute the accommodation coe�cient along any direction n. For example, by setting
the component Φ−

m = 0 (e.g we beam atoms along direction n only), we can recover the
expression for αn in Eq. (4.8). The ratio between the re�ected components m,n can also
be computed by the expression

Φ+
m/Φ

+
n =

βnm
1− αn

=
(αx − αy) cosφ sinφ

1− αx cos2 φ− αy sin
2 φ

. (A.10)

It is clear that for isotropic model αx = αy, this ratio is always zero for all φ. Thus
for anisotropic surface αx ̸= αy, the ratio Φ+

m/Φ
+
n is a function of φ, only vanishes at

φ = 0◦, 90◦. For example, at φ = 45◦, we obtain

Φ+
m/Φ

+
n =

αx − αy

2− αx − αy
. (A.11)

Appendix II. Slip length tensor

We consider a control surface near and parallel to the immobile wall and study the collisions
at this surface. During a unit period of time, there are N gas atoms crossing the surface:
N− atoms go downward and N+ atoms go upward with tangential velocity v′

t = (v′x, v
′
y)

and vt = (vx, vy). The gas velocity us at the wall can be obtained by the average

mNus = mN+⟨vt⟩+mN−⟨v′
t⟩ . (A.12)

The notation ⟨ ⟩ indicates the average over the atoms. It is clear that mN+⟨vt⟩ and
mN−⟨v′

t⟩ are equivalent to the tangential momentum vector �uxes Φ+
t and Φ−

t . Using the
linear relation (5.8), we can write

mNus = mN−(2I−A)⟨v′
t⟩ . (A.13)
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Since the velocity of a gas atom is unchanged between collisions, it is possible to think
that ⟨v′

t⟩ is equal to the velocity average at one mean free path λ from the wall, hence the
stream velocity uλ at that location. By assuming that N− = N+ = N/2, the slip velocity
us can be deduced as follows

2us = (2I−A)uλ . (A.14)

We remark that the Taylor development of u at the wall yields the expression

uλ = us + λ
∂u

∂z
+
λ2

2

∂2u

∂z2
+ ... . (A.15)

Considering the �rst order λ approximation, i.e uλ = us + λ∂u
∂z , the �nal slip equation

becomes

us = λ(2A−1 − I)
∂u

∂z
= λN

∂u

∂z
, (A.16)

The term standing before ∂u
∂z is equivalent to the slip length tensor b and identical to

(5.23).
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