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Abstract

An important matter in the field of building physics is the questioning of how well
buildings sustain ageing, and how their overall efficiency evolves over their lifetime.
Many causes for degradation are carried by moisture transfer through these porous
materials. Indeed, infiltrated water may transport chemicals, alter mechanical proper-
ties, and cause freeze thaw damage or mould development. It may also affect thermal
properties and energetic efficiency, as well as the health and comfort of the occupants.
The understanding of how moisture transfer properties evolve during the lifespan of
building materials is however far from complete. The pore structure of a material itself
may change over time, or be altered by cracks and defects caused by mechanical load-
ing and aggravated by moisture-induced degradation. All sizes of fractures may have a
strong impact on heat and moisture flow in the building envelope, and their influence
is to be accounted for in any long-term performance assessment, not only of building
and building components, but of any built structure in general. A considerable amount
of work has already been performed in order to allow predicting the hygrothermal be-
haviour of buildings over longer periods of time. However, an accurate prediction of all
ranges of damage in a building component, from microscopic to macroscopic cracks,
supposes an extensive knowledge of all damage-inducing, time-varying boundary con-
ditions of the problem during the simulation time. This also implies high computa-
tional costs, as well as important needs for material characterisation.

As a complement to these predictive methods, a new approach was undertaken,
combining experimental characterisation of crack patterns and numerical simulations
of coupled heat and moisture transfer. First, a preliminary study was conducted, con-
sisting of measurements of the water vapour permeability of diffusely damaged con-
struction materials. This allowed identifying the experimental and numerical require-
ments of the remainder of the work, which aimed at providing measurements of frac-
ture network geometries for their explicit modelling in heat and moisture transfer sim-
ulations. Digital image correlation and acoustic emission monitoring were then per-
formed during the degradation of cementitious materials, in order to obtain quantita-
tive data on crack pattern geometries, and to assess the possibilities for damage mon-
itoring at the building scale. The optical technique, along with an appropriate image
processing procedure, was found suitable for providing precise measurements of frac-
ture networks. A method was also proposed for the interpretation of acoustic emission
recordings in terms of damage quantification, localisation and identification.

Then, a new model for coupled heat and moisture modelling in cracked porous me-
dia was developed, that allows including such measurements of fracture patterns into
a finite element mesh, and simulating flow accordingly. This model was validated on
the basis of experimental measurements: digital image correlation was performed dur-
ing the fracturing of concrete samples, in which moisture uptake was then monitored
using X-ray radiography. A good accordance was found between experimental and nu-
merical results in terms of 2-dimensional moisture concentration distributions. The
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validated code was then used for the simulation of test cases, in order to assess the hy-
grothermal performance of damaged multi-layered building components subjected to
real climatic conditions. The consequences of fractures on the moisture accumulation
in walls, on the amplitude of sorption/desorption cycles and on the thermal perfor-
mance, were observed.

KEYWORDS: building materials, fractured porous media, characterisation, non de-
structive testing, coupled heat and moisture transfer, modelling, durability
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Résumé

Les transferts d’humidité dans les matériaux de construction ont une influence
importante sur leur durabilité et sur les performances hygriques et thermiques des
bâtiments. De nombreux mécanismes d’endommagement chimiques et physiques
de ces matériaux sont en effet dus à l’infiltration d’eau. En conséquence, leur struc-
ture poreuse peut évoluer au cours du temps, et des fissures microscopiques comme
macroscopiques peuvent s’y développer. La description des matériaux à l’échelle mi-
croscopique est cependant une source d’erreur importante dans les codes de simu-
lation actuels des transferts d’humidité et de chaleur, notamment en raison du fait
que les milieux sont considérés comme homogènes, et que les effets du vieillissement
des matériaux sont négligés. Il importe donc de trouver un moyen d’inclure les ef-
fets de l’endommagement dans les simulations de transferts d’humidité et de chaleur
à l’échelle du bâtiment. Des méthodes existent pour la prédiction du comportement
de milieux soumis à des sollicitations hygriques et mécaniques, mais supposent que
l’ensemble des facteurs extérieurs influant sur l’endommagement soient connus tout
au long des simulations.

Une nouvelle méthodologie est proposée ici pour compléter ces approches prédic-
tives, en combinant des mesures expérimentales d’endommagement avec la simula-
tion de transferts couplés d’humidité et de chaleur. Une étude préliminaire a d’abord
été menée, consistant à mesurer la perméabilité vapeur équivalente d’éprouvettes de
mortier multi-fissurées. Cette démarche a permis d’identifier les besoins expérimen-
taux et numériques de la suite du travail, visant à modéliser les écoulements dans un
réseau discret de fissures sur la base de leur caractérisation. Une méthodologie ex-
périmentale combinant corrélation d’images numériques et émissions acoustiques a
ensuite été développée, permettant de disposer de cartographies d’endommagement
et de proposer une démarche pour la mesure de réseaux de fissures dans les matériaux
de construction en place. La méthode optique, associée à une procédure de traite-
ment d’images, a permis de disposer de données précises de la géométrie de réseaux
de fissures. De plus, une méthode a été proposée pour permettre l’interprétation des
mesures d’émissions acoustiques en termes de quantification, localisation et identifi-
cation des phénomènes d’endommagement.

Un code de simulation a ensuite été écrit, permettant d’intégrer ces mesures de
fissuration dans la modélisation des écoulements couplés d’humidité et de chaleur
en milieu poreux. Ce modèle a été validé sur la base de mesures expérimentales : la
corrélation d’images numériques a été appliquée durant la fracturation d’éprouvettes
de béton, dans lesquelles l’infiltration d’eau a ensuite été suivie par radiographie aux
rayons X. Les résultats numériques obtenus sont en bonne conformité avec les mesures
expérimentales en termes de prédiction de la concentration d’eau en deux dimensions.
Enfin, la méthodologie a été appliquée à une série de cas test, dans le but de modéliser
les performances hygrothermiques de parois multi-couches, incluant des matériaux
endommagés, soumises à des conditions climatiques réelles. On a ainsi pu estimer les
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conséquences potentielles de l’endommagement sur l’accumulation d’eau dans des
parois, sur l’amplitude des cycles de sorption et de séchage, ainsi que sur les transferts
thermiques.

KEYWORDS: matériaux de construction, milieux poreux fracturés, mesures non de-
structives, caractérisation, transferts couplés humidité et chaleur, modélisation
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Synthèse
Introduction

Les transferts d’humidité dans les matériaux de construction ont une influence im-
portante sur leur durabilité, sur les performances hygriques et thermiques des bâti-
ments et sur la santé des occupants. Cependant, les codes de calcul pour les transferts
couplés dans les parois se basent généralement sur des hypothèses d’homogénéité et
d’isotropie des matériaux, et négligent les effets de leur vieillissement. L’évolution des
propriétés de transfert de ces matériaux au cours de leur cycle de vie est encore mal
comprise, et n’est pas incluse dans les codes de simulation actuels.

Les fractures sont présentes dans les matériaux cimentaires dès leur mise en place
[BAZ 82]. Leur endommagement progressif est ensuite causé par un ensemble de fac-
teurs mécaniques (chargement), physiques (gradients thermiques) ou chimiques (cor-
rosion, carbonatation). L’effet des fractures sur les transferts d’humidité est connu.
Des développements récents [MOO 09] permettent de coupler une modélisation mé-
canique à la modélisation des transferts d’humidité et de chaleur, afin de prédire les
écoulements dans un milieu soumis à un chargement mécanique. Cependant, la di-
versité des causes d’endommagement rend la prédiction des réseaux de fissures micro-
scopiques et macroscopiques difficile sur le long terme. C’est pourquoi une démarche
alternative est proposée dans le travail présenté ici : on cherche à modéliser les trans-
ferts couplés sur la base de la mesure expérimentale des réseaux de fractures, plutôt
que sur leur prédiction.

Dans un premier temps, on a mesuré les perméabilités équivalentes d’éprouvettes
fissurées de mortier fibré pour déterminer à quelle échelle d’observation les fractures
doivent être considérées dans une simulation à l’échelle de l’enveloppe. Ensuite, la
fissuration du matériau a été suivi par corrélation d’images et émissions acoustiques
afin de mettre en place une procédure de caractérisation non destructive in situ des
fractures dans les matériaux de construction. Ces données de fracturation, combinées
à des mesures d’infiltration d’eau par rayons X dans des éprouvettes de béton frac-
turé, ont servi au développement et à la validation d’un modèle éléments finis pour
les transferts couplés humidité/chaleur en milieu poreux fracturé. Ce modèle, une fois
validé, a enfin été utilisé pour la simulation de parois multi-couches afin d’estimer
l’effet de l’apparition de fractures sur les performances de l’enveloppe du bâtiment.
L’ensemble de cette procédure vide à permettre l’estimation des propriétés hygrother-
miques in situ des composants d’une paroi sur la base de la détection des fractures
suivie de simulations numériques. La démarche peut notamment servir à identifier les
besoins de rénovation énergétique d’une enveloppe.

Chapitre 2 : étude préliminaire

La représentation d’un milieu poreux fracturé pour la modélisation des transferts
hygriques peut suivre deux principales stratégies : une approche continue consistant
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à assigner au matériau des propriétés macroscopiques équivalentes, et une approche
discrète consistant à représenter individuellement chaque fracture et leur impact sur
les écoulements. Dans la première partie du travail, on a cherché à déterminer si
l’approche continue était adéquate pour caractériser les fissures des matériaux de con-
struction endommagés, en vue de la modélisation des transferts d’humidité. La dé-
marche complète est exposée dans [ROU 12a].

Une formulation de mortier d’enduit fibré pour l’isolation thermique par l’extérieur
a été élaborée sous la forme de plaques de dimensions 300x100x10 mm. Ce matériau a
été conçu pour développer un endommagement progressif sous la forme de microfis-
sures avant l’initiation d’une fracture macroscopique [CHA 10b]. La méthode de car-
actérisation hygrique est résumée en figure 1.

Uniaxial mass flow

Climatic chamber

Weighing sensor

Data

acquisition

Mortar
Insulation

Figure 1: Dispositif expérimental de l’étude préliminaire

Après maturation, les éprouvettes ont été endommagées par un chargement en
traction uniaxiale. La partie centrale en a été ensuite extraite pour être placée sur
des dispositifs de suivi de masse en continu, à l’intérieur d’une enceinte climatique
recréant des cycles d’humidité pendant 3 à 7 jours entre 33% et 75% d’humidité rel-
ative. Les profils de prise d’eau ainsi mesurés permettent de calculer la perméabil-
ité à la vapeur d’eau de chaque éprouvette, endommagée ou intacte, à partir d’une
méthode inverse consistant à ajuster une solution analytique de l’équation de trans-
fert d’humidité sur les profils expérimentaux.

La procédure a été répétée sur un ensemble d’éprouvettes présentant divers degrés
d’endommagement diffus (défini de manière similaire à [PIJ 09]). La perméabilité à la
vapeur d’eau en fonction de cet endommagement, normée sur la valeur mesurée du
matériau intact, est présentée en figure 2.

On constate une légère augmentation de la perméabilité à la vapeur des éprou-
vettes avec l’endommagement, du fait de microfissures parcourant le milieu poreux et
facilitant le déplacement de l’eau. En revanche, la dispersion des valeurs mesurées de
perméabilité pour une même valeur d’endommagement indique qu’une description
macroscopique des fissures ne permet pas une prédiction précise des écoulements.
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Figure 2: Mesures de perméabilité vapeur relative en fonction de l’endommagement
diffus d’éprouvettes de mortier fibré

Une caractérisation plus avancée est donc nécessaire pour permettre une modélisa-
tion des transferts couplés humidité/chaleur en tenant compte des caractéristiques
géométriques réelles des fractures (approche discrète mentionnée ci-dessus).

Chapitre 3 : mesures non destructives

L’étude préliminaire a permis d’identifier les besoin expérimentaux et numériques
de la suite du travail, visant à modéliser les écoulements dans des réseau discret de fis-
sures sur la base de leur mesure expérimentale. La caractérisation des fractures et de
l’endommagement des matériaux de construction peut notamment se faire par méth-
odes optiques ou acoustiques. Une procédure a été mise en place, consistant à coupler
les méthodes de corrélation d’images numériques et de mesure d’émissions acous-
tiques, dans le but de remplir deux objectifs principaux : disposer de cartographies
d’endommagement pour alimenter un modèle de prédiction des écoulements, et per-
mettre l’interprétation de signaux acoustiques pour la mesure de réseaux de fissures
dans des matériaux de construction en place. La démarche de cette étude expérimen-
tale est exposée dans [ROU 13].

La formulation de mortier fibré étudiée précédemment a de nouveau été soumise
à un chargement en traction uniaxiale. La fissuration du matériau a été suivie con-
jointement par une caméra CCD à focale fixe et 4 capteurs acoustiques placés autour
de la zone d’endommagement entre les entailles. La figure 3 montre un schéma de la
procédure.

Les images obtenues par la caméra tout au long de l’essai ont ensuite été traitées
par le logiciel Icasoft pour la corrélation d’images numériques. La technique permet le
calcul du champ de déformations sur l’ensemble de la surface visible de l’éprouvette
[HIL 06]. Les capteurs acoustiques sont connectés à un système d’acquisition MIS-
TRAS. Les formes d’ondes enregistrées peuvent être décrites sur la base de plusieurs
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Figure 3: Dispositif expérimental pour le suivi d’endommagement du mortier fibré

descripteurs permettant la classification des signaux [GOD 06].
La figure 4(a) montre un exemple de cartographie de déformations obtenue en ap-

pliquant l’algorithme de corrélation d’images numériques à partir d’une image prise
au pic de chargement d’une éprouvette de mortier.

x (mm)

y 
(m

m
)

 

 

10 20 30 40 50 60 70

−20

−10

0

10

20

0

2

4

6

8

x 10
−3

(a)

0 2 4 6
0

20

40

60

80

100

120

ε / ε
peak

T
ot

al
 fr

ac
tu

re
 le

ng
th

 (
m

/m
2 )

 

 
(1)
(2)
(3)
(4)

(b)

Figure 4: Exemple de cartographie de l’endommagement, et partitionnement des
échelles de fissuration

L’image montre un réseau de microfissures indiquées par des valeurs élevées de
la déformation longitudinale (fort gradient de déplacement entre deux éléments ad-
jacents de la grille). Le dispositif utilisé permet de détecter les fissures apparentes
jusqu’à l’ordre de grandeur de 10−6 m, sur une zone d’observation de l’ordre de 10−2

à 10−1 m. Ces cartographies peuvent servir de base pour quantifier l’ensemble des
échelles d’endommagement : les fissures visibles peuvent être mesurées par traite-
ment d’image sur toutes les cartographies de déformations prises au long d’un es-
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sai. On peut ainsi suivre l’évolution de la longueur totale de fractures par intervalle
de largeur d’ouverture, en fonction de la déformation globale ǫ. La figure 4(b) montre
un exemple de cette évolution, pour des fractures de largeur (1) inférieure à 5 µm, (2)
entre 5 et 10 µm, (3) entre 10 et 50 µm et (4) supérieure à 50 µm. On peut ainsi, à tout
moment du chargement d’une éprouvette, connaître la distribution des largeurs de fis-
sures. On voit, entre autres observations, que les fissures microscopiques se dévelop-
pent d’abord, puis ont tendance à se refermer lors du passage d’une fracture macro-
scopique se propageant dans le milieu pour les fortes valeurs de la déformée ǫ. Ces
mesures remplissent le premier objectif de cette partie de l’étude : on dispose d’un
moyen d’acquérir l’ensemble des paramètres géométriques de réseaux de fractures en
cours d’endommagement.
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Figure 5: Quantification de l’endommagement et prédiction de la fracturation par
émissions acoustiques

Après avoir développé cette méthodologie pour quantifier automatiquement les
réseaux de fissure par traitement d’images, on a cherché à mettre en relation ces ré-
sultats avec les mesures acoustiques. La figure 5(a) montre la relation entre la sur-
face spécifique de fracture observée par corrélation d’images (issue de la procédure de
traitement d’images), et le nombre cumulé de signaux acoustiques localisés, à chaque
instant des essais portant sur une série d’éprouvettes. La bonne correspondance entre
les deux techniques permet d’établir que les mesures acoustiques, après une phase de
calibration, peuvent être un outil efficace pour la quantification de l’endommagement
à toutes les échelles. La localisation en deux dimensions des sources acoustiques,
grâce à l’utilisation de plusieurs capteurs, peut par ailleurs fournir des cartographies
d’endommagement similaires à celles obtenues par méthodes optiques.

Une tentative d’identification des mécanismes d’endommagement sur la base des
formes d’ondes mesurées a par ailleurs été menée. En particulier, l’analyse des dis-
tributions d’amplitudes des signaux acoustiques permet de distinguer les émissions
causées par des microfissures ou par des fractures macroscopiques. La figure 5(b)
montre l’évolution d’un indice prédictif I b [SHI 94] basé sur cette analyse, permettant

11



d’anticiper la transition entre un régime de microfissuration diffuse (valeur I b élevée)
et l’initiation d’une fracture macroscopique dans le matériau (chute soudaine de la
valeur I b).

Des pistes ont été avancées pour permettre la quantification et la localisation de
l’endommagement, ainsi que l’identification des échelles de fissuration, par mesures
acoustiques. Après calibration de ces mesures sur la base de résultats optiques, on
peut ensuite envisager l’utilisation des émissions acoustiques de façon autonome à
l’échelle de l’enveloppe, dans le but d’obtenir une cartographie des perméabilités à
l’eau des matériaux.

Chapitre 4 : suivi et modélisation de l’infiltration d’eau

Une fois la procédure pour la caractérisation non destructive de fissures établie, il a
fallu développer et valider un modèle permettant d’inclure ces mesures de fissuration
dans des simulations de transferts couplés. Le travail présenté dans cette section a été
réalisé au département génie civil de l’université technique de Copenhague (DTU Byg)
et est présenté dans [ROU 12b]. La démarche expérimentale est résumée sur la figure
6.

x

y

140 mm

50 mm

Figure 6: Disposition des éprouvettes de béton pendant le chargement et le suivi
d’infiltration d’eau

Des éprouvettes de béton (ciment Portland Aalborg à 330 kg/m3) renforcé par des
fibres d’acier ont été fracturées et suivies par corrélation d’images. La démarche de
traitement d’images prédédemment développée a permis d’extraire les principales pro-
priétés géométriques de l’ensemble des fissures ainsi générées. Les éprouvettes ont
ensuite été placées au contact d’une surface d’eau à l’intérieur d’un appareil de radio-
graphie aux rayons X, permettant d’y observer la cartographie de la concentration en
eau pendant son infiltration dans le milieu poreux et les fractures. L’ensemble de ces
mesures constitue un jeu de données suffisant pour valider un modèle de prévision des
écoulements en milieu poreux fracturé. Un exemple est donné sur la figure 7(a) mon-
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trant la superposition des fractures mesurées (lignes de niveau) et de la distribution de
la concentration d’eau (normalisée) pendant l’essai.

En plus de ces mesures, une caractérisation hygrique de cette formulation de béton
a été réalisée. L’isotherme de sorption a été mesurée dans le domaine hygroscopique
par dessiccateurs et dans le domaine sur-hygroscopique (humidité relative supérieure
à 97%) par extracteurs. La diffusivité liquide a été calculée par méthode de Boltz-
mann appliquée à des profils d’infiltration par capillarité, mesurés par rayons X dans
des éprouvettes non fracturées. Ces mesures constituent une caractérisation hygrique
complète du matériau.

Une fois les données de validation et de caractérisation disponibles, un code de
calcul par éléments finis a été développé, dont la base théorique suit la procédure
présentée par [JAN 07]. Ce modèle a été écrit de sorte à pouvoir inclure des mesures
de réseaux de fissures dans un maillage éléments finis, et prédire les transferts couplés
d’humidité et de chaleur en conséquence : un tenseur de perméabilité anisotrope est
assigné aux parties du maillage correspondant aux fractures. Leur contribution aux
phénomènes de sorption comme de séchage est prise en compte. La procédure de
développement du code de calcul est résumée en annexe B.

(a)
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1

(b)

Figure 7: (a) Mesure par rayons X et (b) simulation de la concentration en eau dans une
éprouvette fracturée de béton, 10 minutes après contact avec une surface d’eau

Le modèle a ensuite été utilisé pour recréer les conditions des mesures effectuées
sous rayons X. Un exemple est présenté en figure 7, montrant une bonne correspon-
dance entre les mesures et les prédictions de profils d’humidité en deux dimensions.
Ainsi, le modèle développé permet une bonne prévision des écoulements en milieux
poreux fracturés, sur la base de la caractérisation de leurs réseaux de fissures. Par
ailleurs, une étude de sensibilité au maillage a été menée, permettant d’établir avec
quelle densité les fissures doivent être discrétisées pour fournir une bonne prédiction
quantitative des écoulements.
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Chapitre 5 : application du modèle

Le code de calcul a été validé pour le cas de transferts isothermes d’humidité en
milieu poreux fracturé. La dernière partie de l’étude a consisté à l’appliquer pour
l’estimation des conséquences potentielles de l’endommagement sur les performances
hygrothermiques des matériaux à l’échelle de l’enveloppe.

Tout d’abord, les performances du modèle pour les simulations de transferts cou-
plés d’humidité et de chaleur ont été mises à l’épreuve: ses résultats ont été comparés à
ceux obtenus par 6 autres instituts dans la simulation des benchmarks du projet Ham-

stad. On a pu constater que le modèle est en mesure de simuler correctement le com-
portement de parois multi-couches soumises à des conditions climatiques variables.

Le modèle a ensuite été appliqué à la simulation à long terme de parois types. Un
ensemble de géométries de parois a été défini dans le but de remplir trois objectifs :
estimer les conséquences des fissures sur l’accumulation d’humidité dans une paroi
et sur ses propriétés thermiques ; déterminer si ces conséquences sont aggravées en
présence de matériaux isolants sensibles à l’humidité dans la paroi ; montrer dans
quelle mesure une isolation thermique par l’extérieur avec un enduit hygrophobe per-
met de corriger les problèmes de durabilité causés par les fissures. Ces parois sont
montrées en figure 8. Trois cas ont été définis : un mur non isolé, un mur isolé par
l’intérieur et un mur isolé par l’extérieur. Dans chaque cas, les calculs ont été menés
avec des matériaux intacts, ou avec une couche de béton fracturé.
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Figure 8: Définition des cas de simulation

Des données climatiques mesurées à Lyon ont ensuite été intégrées au code de cal-
cul pour la simulation du comportement de chaque enveloppe pendant plusieurs mois
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Figure 9: Comportement hygrique et thermique d’une paroi isolée par l’intérieur pen-
dant le mois de février

avec un pas de temps de 10 minutes. Les phénomènes d’ensoleillement, de vent et de
pluie ont été pris en compte pour l’expression des échanges entre l’environnement et
la paroi à tout instant des simulations. Une étude de sensibilité aux conditions cli-
matiques a d’abord été menée, dans le but de déterminer les conditions des calculs
ultérieurs : les temps de calcul étant relativement longs pour la simulation de parois
endommagées, il a fallu réduire le nombre de cas à traiter. Les simulations sont alors
menées pour des parois orientées vers l’ouest pendant les mois de février et juillet.

Un exemple de résultat obtenu par une simulation mensuelle est montré en figure
9. Le comportement de la paroi isolée par l’intérieur, non fracturée, est montré par les
lignes noires, et le comportement de la même paroi intégrant une couche fracturée de
béton est montré par les lignes bleue et rouge. On constate que la présence de fissures
implique de brusques hausses de concentration d’eau dans la paroi en cas d’averse :
cette eau s’infiltre en profondeur dans le matériau, dont le temps de séchage est très
élevé. Une accumulation d’eau a alors lieu dans la paroi. Ce phénomène, additionné à
une augmentation de l’amplitude des cycles journaliers de sorption et de désorption,
est une atteinte potentiellement importante à la durabilité du matériau. De plus, on
observe une légère influence de cette accumulation d’eau sur les transferts thermiques
à travers la paroi, étant donné que la conductivité thermique du béton augmente en
présence d’eau.
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Introduction

Background

While matters such as building durability and thermal comfort have long been taken in
consideration in the design process of buildings, the reduction of their energetic con-
sumption has gained a critical importance with the rising environmental concerns.
Indeed, buildings are responsible for nearly 40% of the primary fuel consumption in
France, and are a potentially important contribution to the overall reduction in fos-
sil fuel consumption. This explains a rapidly increasing interest in building physics
studies over the past few decades. The field of building physics includes a set of meth-
ods and techniques designed to enhance the overall performance of buildings in terms
of energy efficiency, durability and sustainability, feasibility and cost reduction, indoor
air quality, health and comfort. . . Studies can for instance include elements of fluid me-
chanics, civil engineering, material sciences, and often stand at the boundary between
these fields.

An important matter in the domain is the questioning of how well buildings sus-
tain ageing, and how their overall efficiency evolves over their lifetime. All types of
construction materials are subjected to either biological, physical or chemical degra-
dation processes. Many of these causes for degradation are carried by moisture trans-
fer through these porous materials. Indeed, infiltrated water may transport chemicals
such as chloride ions or carbon dioxide, alter mechanical properties, and cause freeze
thaw damage or mould development. It may also affect the thermal properties and en-
ergetic efficiency, as well as the health and comfort of the occupants. All these issues
justify the current increasing interest in the hygrothermal performance assessment of
structures. The modelling of coupled heat and moisture transfer in construction mate-
rials is now a common practice, and can be integrated into the larger frame of building
scale simulations.

Any analysis of moisture transfer requires dependable moisture transfer proper-
ties, for the characterisation of which various experimental techniques can be imple-
mented. Lab measurements are commonly carried as to provide necessary material
parameters for transfer simulations at the building scale. However, the understand-
ing of how these properties evolve during the lifespan of building materials is far from
complete. The pore structure of a material itself may change over time, or be altered by
cracks and defects caused by mechanical loading and aggravated by moisture-induced
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degradation. Several years after their installation, building materials such as concrete
present signs of ageing in the form of fractures, caused by a large variety of factors,
and covering a wide range of sizes, from microscopic to macroscopic cracks. All these
types of fractures can have a strong impact on heat and moisture flow in the building
envelope, and their influence is to be accounted for in any long-term performance as-
sessment, not only of building and building components, but of any built structure in
general.

As in any other scientific field, knowledge is gradually gained by conducting exper-
imental investigations, which serve as a basis for the development of numerical mod-
els. These models can then be used to investigate in conditions that cannot be reached
in laboratory studies. This methodology has been conducted during the last century
for the understanding of the thermodynamics of deformable porous media. Although
the understanding of chemical degradation processes is still undergoing improvement,
new methods are being proposed for the numerical implementation of models and the
reduction of computational costs, allowing increasingly comprehensive simulations
for the service-life prediction of construction materials and building components.

Objectives and outline

A considerable amount of work has been recently performed in order to allow pre-
dicting the hygrothermal behaviour of buildings over longer periods of time, on the
basis of a set of equations describing the coupled mechanical, hygric and thermal be-
haviour of porous materials. However, such a fully predictive approach has limita-
tions: indeed, an accurate prediction of all ranges of damage in a building compo-
nent, from microscopic to macroscopic cracks, supposes an extensive knowledge of all
damage-inducing, time-varying boundary conditions of the problem during the sim-
ulation time. Such requirements can be met for life-cycle analyses and studies per-
formed ahead of the building design. This is however not the case when consider-
ing simulating the hygrothermal behaviour of existing buildings, of which causes for
degradation have not been monitored over time.

The present work aims at offering a complement to predictive methods. A new ap-
proach is proposed, based on experimental damage monitoring and numerical trans-
fer simulations. The objectives of such an approach are:

• to summarise and complete the current knowledge in the field of flow and trans-
port in damaged porous media,

• to observe the effects of damage on the microstructure of construction materials,

• to propose a methodology which allows identifying which existing building com-
ponents are in need for renovation,

• to reduce characterisation needs and computational costs for numerical simula-
tions.
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In order to answer this questioning, a combined experimental and numerical method-
ology has been undertaken, in an attempt to relate microstructural observations to
their consequences at the building scale. The study is centered on the development
of a numerical tool for the hygrothermal performance assessment of existing building
components, on the basis of the characterisation of their damage and fracture pat-
terns rather than their prediction. Non-destructive techniques for damage monitor-
ing were implemented during the degradation of cementitious materials, as to obtain
quantitative data on crack pattern geometries. These geometries were then included
into a newly developed simulation model for coupled heat and moisture modelling in
cracked porous media. The model was then applied to a series of specified cases, in
order to give an estimate of the potential consequences of cracking on the hygric and
thermal performance of building components.

The work is presented as such: a bibliographic overview was assembled in Chap.
1, describing the general principles of heat and moisture transfer in damaged porous
media, and the existing methods for damage and fracture monitoring and prediction.
Chapter 2 presents an experimental investigation on the influence of diffuse dam-
age on the water vapour permeability of fibre-reinforced mortar. The aim of this ex-
ploratory part of the work was to identify the needs for further damage characterisa-
tion and the methods to be used in transfer simulations. Chapter 3 then exposes the re-
sults of non-destructive damage monitoring techniques applied to the cracking of the
same material. A methodology is proposed as to calibrate acoustic emission measure-
ments as a tool for damage quantification, localisation, identification and prediction.
Furthermore, quantitative measurements of fracture networks were performed, that
can be supplied into a numerical model for heat and moisture transfer simulation in
cracked porous media. Chapter 4 describes the development of such a model, and the
procedure for the automated detection and implementation of crack measurements
into its frame. The model was validated on the basis of X-ray radiography, by moni-
toring the moisture infiltration in fractures and comparing these measurements with
the predictions of the code. Chapter 5 then shows the application of the model to case
studies, as to investigate the effects of fractures on the hygrothermal performance of
multi-layered building facades. The main results of the work, as well as suggestions
and guidelines for future research, are then summed up in a conclusive section.

Frame of the work

The work presented in this manuscript has been performed in the frame of the RENOV-
BAT project, a cooperation between the CETHIL and MATEIS laboratories of the Uni-
versity of Lyon. It is a continuation of previous projects of the same cooperation, deal-
ing with hygroscopic materials and their interaction with the environment, the most
recent of which being the Ph.D. of J. Kwiatkowski [KWI 09]. The experimental equip-
ment used in the first part of the study, covered by Chap. 2 and 3, is part of the MATEIS
lab: the most notable assistance concerning this part of the project was brought by
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Geneviève Foray in terms of material elaboration and characterisation, and by Nathalie
Godin who helped analysing acoustic emission recordings. Monika Woloszyn and
Jean-Jacques Roux of the CETHIL lab contributed to the numerical side of the work by
helping identify the requirements and applications of the developed simulation code.
Funding was provided for this project by the Rhône-Alpes region through the ARC En-
ergies (Communauté de Recherche Académique).

In addition to this cooperation, a key contribution was that of the Department of
Civil Engineering of the Technical University of Denmark (DTU Byg). The work covered
by Chap. 4 was performed in this institute by the author, with the help of Carsten Rode
and Kurt K. Hanssen on the experimental processes, and of Hans Janssen who helped
in the development process of the numerical model.
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Chapter 1

Heat and moisture transfer in fractured
building materials

As a first step of the work, a bibliographic study was carried, as to estimate the current

state of the art on the subject of the hygrothermal performance of damaged and

fractured porous media. The present chapter summarises such an overview. A short

survey was conducted on the basics of flow in porous media, on the derivation of the

transport equations, on the detection and prediction of fractures, and on their influence

on flow in porous media. This overview allowed establishing the structure of the

remainder of the work.

Contents
1.1 General principles of flow in porous media . . . . . . . . . . . . . . . . . . 26

1.1.1 Derivation of the conservation equations . . . . . . . . . . . . . . . . 26

1.1.2 Water movement and storage in porous materials . . . . . . . . . . . 27

1.1.3 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.2 Conservation equations for building physics applications . . . . . . . . . 31

1.2.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2.2 Balance equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2.3 Transport and storage coefficients . . . . . . . . . . . . . . . . . . . . 34

1.2.4 Boundary transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.3 Hygrothermal behaviour of fractured porous media . . . . . . . . . . . . 38

1.3.1 Fracture and damage identification . . . . . . . . . . . . . . . . . . . 38

1.3.2 Permeability measurements of fractured porous media . . . . . . . 40

1.3.3 Hydromechanical coupling phenomena . . . . . . . . . . . . . . . . 40

1.3.4 Models for flow and transport in fractured porous media . . . . . . 41

1.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

25



1. Heat and moisture transfer in fractured building materials

The importance of moisture transfer in the overall performance of buildings has
already been underlined. Modelling is now common practice in the design process, in
order to ensure that a given building meets all energy, comfort and durability criteria.
Such an analysis can be performed prior to the construction as part of the design pro-
cess, or after several years of use in order to identify an eventual need for renovation.
However, only a fraction of new buildings are studied each year, and the performance
of most existing ones could be enhanced through a thermal renovation.

The field of building physics simulation revolves around interactions between the
environment and the constructions, represented as a group of zones and components.
Simulations can run from the scale of the material microstructure to entire districts.
The complexity of the phenomena at stake has generated a large variety of models and
numerical methods, which can be combined for simulations including coupling effects
between scales.

A widespread method for building scale simulations is the use of zonal models
[KAL 07] which allow assembling a representation of a building as a group of compo-
nents. Each of these components can be represented with various levels of complexity.
For instance, the air volume of a room can either be represented by one node or by
more complex CFD simulations, which can then be coupled to the multizonal model
in order to study the interactions with the surrounding components. HAM modelling,
although often restricted to the scale of hygroscopic building materials, can therefore
be integrated in such a frame [STE 10] in order to estimate the interactions between
the envelope and indoor air [QIN 09, QIN 12].

The present chapter is ordered as follows : in Sec. 1.1, the general principles of
heat and moisture transfer in porous building materials are summed up. A brief lit-
erature survey addresses the matters of the scales of observation and the underlying
mechanisms of heat and moisture transfer. In a second section 1.2, the full expression
of the transport equations for anisotropic coupled transfer is displayed and discussed
under the current simplification hypotheses. Sec. 1.3 then describes how fractures can
influence the flow, and how they can be included in simulations.

1.1 General principles of flow in porous media

1.1.1 Derivation of the conservation equations

At the microscopic scale, a porous material is composed of a solid skeleton and of var-
iously sized voids, filled with one or more fluid phases, each of which can be a mixture
of several components. Bulk properties such as the mass density present high local
fluctuations and discontinuities at interfaces between phases. In order to properly de-
scribe multi-phase flow at the scale of a building component, one first has to define
an averaging region, i.e. the size of representative elementary volume (REV) in which
quantities can be considered continuous [WHI 69].

The most commonly used theory for the derivation of the macroscopic conser-
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General principles of flow in porous media

vation equations is the averaging procedure introduced by Hassanizadeh and Gray
[HAS 79a, HAS 79b]. This procedure consists in applying averaging theorems to the
microscopic balance law of a thermodynamical property or quantity ψ in a phase α.
When neglecting exchanges between phases, the general form of the resulting equa-
tion is:

∂

∂t
〈ρ〉αψα+∇·

(
〈ρ〉αvαψ

α)
−∇· iα = 〈ρ〉α

(
f
α
+ gα

)
(1.1)

where the 〈·〉α and ·α operators respectively depict a volume and mass average op-

erators [HAS 79a], vα is the phase velocity and iα, f
α

and gα are the surface flux
vector, external supply and net production rate of the quantity ψ

α. Eq. 1.1 can be
formulated into the conservation equations of mass, momentum, energy and en-
tropy by appropriately setting the values of ψα and of these variables. One can re-
fer to [HAS 79b, HAS 86a] for a full derivation of these equations. This frame was
also the basis for the development of studies on the deformation of porous media
[LEW 87, COU 04] under mechanical, thermal and hygric loads.

In most building physics applications, only three equations are considered: mass
conservation of the liquid and gas phases, and energy conservation: by assuming a lo-
cal thermal equilibrium between phases, one does not need to express separate energy
conservation equations for each phase [HAS 86a]. The liquid and gaseous momentum
balances do not need to be explicitely calculated as their displacements can be mod-
elled through Darcy’s and Fick’s laws [HAS 86b], which are recalled below.

On the scale of the REV, permeable porous materials are characterised by macro-
scopic parameters describing their transport properties and equilibrium potentials, for
both hydraulic and thermal processes. These material characteristics can either be de-
termined experimentally or estimated through structural models, and are necessary
for subsequent building physics simulations including the concerned materials.

1.1.2 Water movement and storage in porous materials

1.1.2.1 Sorption isotherm

The equilibrium moisture content of a material is the concentration of water that is
either adsorbed or condensed in its porous network once a steady state is reached. It is
mostly a function of the ambient relative humidity (RH), but also of the wetting history
of the material and the temperature. Its profile versus values of RH is the sorption
isotherm, which entirely characterises the moisture storage capacity of the material.

The moisture storage mechanism in porous media follows several phases from low
to high RH’s. At first, water molecules are adsorbed to the pore surface by van der Waals
forces. The layer of adsorbed molecules thickens with increasing RH. In this interval of
humidity, materials with high specific surfaces present higher increases of volumetric
moisture content. At higher values of RH, the quantity of adsorbed water reaches the
point at which smaller pore spaces can be filled by capillary condensation. A meniscus
is then formed at the interface between the gas a liquid phases, of which pressures,
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1. Heat and moisture transfer in fractured building materials

respectively denoted pg and pl obey the Young-Laplace law:

pg −pl = 2σH (1.2)

where σ is the surface tension (σ = 73 ·10−3 N.m−1 for water) and H the mean curva-
ture of the meniscus. For instance, in a cylindrical pore of radius r , with a water/solid
contact angle of θ:

H =
cosθ

r
(1.3)

The pressure jump at the gas/liquid interface arises, caused by the difference in the
surface tension of the wetting and non-wetting fluids, is denoted as capillary pressure
pc :

pc = pl −pg (1.4)

According to this definition, the capillary pressure has a negative value for unsaturated
conditions. Although this convention does not meet general consensus, its purpose is
to guarantee physical consistency in the expression of the moisture flow, which occurs
in the opposite direction of the pressure gradient.

The gas phase in contact with the water meniscus is a mixture of air and water
vapour. As water coexists in two adjacent phases, the condition for equilibrium is that
its partial pressure pv follows Kelvin’s law:

pv

ps
=φ= exp

(
pc MH2O

ρl RT

)
, (1.5)

where ps is the water vapour saturation pressure in air, φ is the relative humidity, MH2O

andρl are the molar mass and density of water, and R is the universal gas constant. The
Clausius-Clapeyron relation is commonly used to approximate the vapour saturation
pressure:

∂ps

∂T
=

LlvMH2O

RT 2 ps , (1.6)

where Llv is the evaporation latent heat of water. Eq. 1.6 is assumed to hold for usual
atmospheric conditions to which buildings are submitted. Eq. 1.5 discloses the equiv-
alence between water vapour pressure and capillary pressure.

Fig. 1.1 shows the general shape of the sorption isotherm of two hygroscopic con-
struction materials. The slope is higher over the hygroscopic range, near saturated
conditions, due to an increasing concentration of capillary condensed water. The
equilibrium moisture content of some materials can show an important hysteresis be-
haviour, i.e. a difference between sorption and desorption curves. This is due to the
presence of remaining water in the material after drying, due to the presence of ad-
jacent pores of different diameters. When this effect is important, a hysteresis model
must be used to estimate the moisture content and capacity at a given value of relative
humidity, as a function of eventual previous alternating processes of adsorption and
desorption [MUA 74, MUA 76a, CAR 05a, DER 07]. The use of these models result in
history-dependent sorption laws.
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Figure 1.1: Examples of sorption and desorption isotherms (based on data from
[KUM 02])

Experimental measurements of the equilibrium moisture content are now
widespread : the sorption isotherm can be measured in the hygroscopic range with the
desiccator method or climatic chamber method [ISOa], and in the over-hygroscopic
range with the pressure plate method. In the present work, these techniques have been
performed on concrete and mortar samples, and their procedures and results are dis-
cussed in Chap. 2 and 4 along with moisture flow measurements. These results are
then approximated by the analytical laws recalled in Sec. 1.2.3.

1.1.2.2 Moisture transport

Similarly to moisture storage mechanisms, the movement of water in porous me-
dia undergoes two main stages. In the hygroscopic range, the displacement of wa-
ter molecules is mostly caused by diffusion phenomena in the gaseous phase, driven
by gradients of vapour pressure. The resulting pressure variations in the pore net-
work causes local increases or decreases of the adsorbed layer of water molecules.
The ability of a material to resist these diffusion phenomena is characterised by
its water vapour permeability. This parameter can be experimentally measured ei-
ther by means of the standardised cup method [ISOb] or by transient techniques
[CRA 75, ARF 00, GAR 06, AND 08, GAR 10, ROU 12a]. More information on such meth-
ods is provided in Sec. 2.2.

Liquid flow in unsaturated porous media occurs under the effect of capillary pres-
sure gradients. Where a meniscus is formed, “the movement of the fluid-fluid interface
is governed by the balance of the forces exerted by the two fluids on the interface and
the forces present within the interface” [HAS 93]. A simple measure for the ability of
a material to resist or allow water infiltration is the so-called water absorption coef-
ficient, or sorptivity [GUM 80, VEJ 09]. While this coefficient can be seen as a useful
parameter to define free water suction of a building material, it is not sufficient for the
prediction of flow in an unsaturated medium. For this purpose, the observation of two-
dimensional moisture concentration distributions is preferred. This can be done using
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1. Heat and moisture transfer in fractured building materials

gravimetric methods [DRC 03] or techniques such as nuclear magnetic resonance, γ-
ray attenuation, capacitance method or X-ray projection [CER 02]. More information
on such methods is provided in Sec. 4.1.3.

1.1.2.3 Network models

It can be argued that measurements of the moisture transport and storage properties
of porous construction materials are time-consuming and do not offer a full compre-
hension of pore networks. Alternative approaches for the computation of the transport
properties have been proposed.

The principle of network models is the construction of a porous network as an en-
semble of simple interconnected geometries, in the prospects of deriving its transport
or storage properties. The pore structure is approximated by a lattice of interconnected
tubes, of which transport properties can be derived by calculating the Poiseuille flow
[FAT 56]. Xu et al. [XU 97a] proposed a model for reconstructing multiscale porous
structures on the basis of mercury intrusion porosimetry data. This method was ap-
plied to the prediction of transport properties of a series of materials [XU 97b, QUE 98].
Roels et al. [ROE 01] then proposed predicting the porosimetry results, by using image
analysing techniques on SEM micrographs. By applying an earlier developed multi-
scale network model [CAR 99], the authors show how imaging techniques may serve as
a basis for the derivation of transfer [CAR 01] or storage properties [CAR 02] of porous
media.

An alternative approach relies on a more simplified description of the medium:
bundle of tubes models [BUR 53] propose a formulation of moisture properties, based
on the sole knowledge of the pore-size distribution function. These models, though
more simple than fully comprehensive network models, are semi-empirical and re-
quire some adjustments as to fit with the considered materials [SCH 10].

1.1.3 Heat transfer

Heat transfer in permeable porous solids is caused by conduction, convection and ra-
diation exchanges. The importance of each of these phenomena is greatly influenced
by the nature of the considered material.

Conduction is the main cause of heat transfer in materials with relatively low poros-
ity. At the scale of the REV, these materials are characterised by a macroscopic (or effec-
tive) thermal conductivity. Numerous models are available for its estimation, although
most of them can only cover a specific type of porous structure [PRO 76]. One can for
instance cite parallel or series models, the Maxwell-Eucken equation [LEV 81], the ef-
fective medium theory [CAR 05b], or a combination of these models [WAN 06]. The
macroscopic thermal conductivity is greatly influenced by the nature of the fluid fill-
ing the voids of the porous network. As the conductivity of water is much higher than
that of air, the moisture content of a building material is known to influence its overall
conductivity [MNA 06]. This is one of the motivation behind the coupled resolution
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of the transport equations for heat and moisture in such materials. The local heat ca-
pacity is a function of the local moisture content as well, but its estimation is more
straightforward as it can be approached by a simple volume averaging.

Convection processes also occur inside the porous material, as well as on its exter-
nal surface in case of air movement. Internal convection is caused by the heat carried
by the air and water flowing in the material, and to the latent heat of the water vapour
which can condensate on the pore surfaces. This phenomenon appears in the expres-
sion of the convective heat flux as explained in Sec. 1.2. External convection is the
exchange of heat between the material and the ambient air.

The radiative heat exchange is composed of the short-wave and long-wave radia-
tion exchanges between the surface, the atmosphere and the ground [JAN 07]. They
are particularly important in case of solar exposure of a building facade. Radiation
exchanges may also occur inside a porous material between pore surfaces. This phe-
nomenon is of higher relative importance in highly porous insulation materials with
high specific areas, in which conduction transfer can be very low. It is however not
considered in the present study, which is focused on cementitious materials.

1.2 Conservation equations for building physics applica-
tions

Heat, air and moisture transfer modelling in building materials has gone through stan-
dardisation during the past decade. This has been the purpose of the Hamstad project
[HAG 04, HAG 02b], which established a platform for the assessment of HAM simu-
lation tools in building physics. The project includes a set of benchmarks [HAG 02a]
designed to allow the validation of models for the prediction of flow in various com-
binations of materials and climatic conditions. It is however focused on the case of
isotropic materials, of which transport and storage properties do not evolve over time.

The present section recapitulates the hypotheses allowing a simplified and accu-
rate modelling of HAM transfer and formulates the transport equations which are to
be implemented into the simulation code. A further mention to the Hamstad project
is made in Sec. 5.1, as the benchmark cases are to be used for the validation of a simu-
lation tool.

1.2.1 Hypotheses

All subsequent mentions to multi-phase flow in porous media in the present manus-
cipt refer to building materials filled with a liquid phase only composed of water, and
a gaseous phase which is a mixture of dry air and water vapour. The expressions of the
transport equations for heat, air and moisture are based on several assumptions, al-
lowed by the operating conditions of buildings and the nature of the materials at stake.

• Temperatures remain in a relatively narrow range. Therefore, moisture storage
is temperature-independent and the sorption isotherm is to be measured only
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once at a reference temperature. Also, no ice is formed on the material surfaces
nor in the pores, allowing neglecting the thermal and mechanical effects of water
solidification.

• Climatic loads are simplified. Radiative heat transfer to and from a building
facade is represented by an equivalent temperature which combines air temper-
ature, long wave and short wave solar radiation. The expression of hygric loads
caused by wind-driven rain is simplified as well.

• No hysteresis effects are considered.

• No chemical reactions are considered. Transport of salt, chloride ions or carbon
dioxyde is therefore not calculated.

• Damage processes are not modelled. Although the influence of cracks on the
flow is the main interest of this work, their initiation and propagation is not ex-
plicitely simulated, as stated earlier. Instead, fracture geometries are to be mea-
sured experimentally and then included into the simulation code.

1.2.2 Balance equations

HAM transport in building physics is a strongly coupled process. This means that the
evolution of a variable field (pressure or temperature) is influenced by the state of other
fields. The causes of coupling are the following:

• temperature and moisture concentration dependency of the transport coeffi-
cients,

• convective heat and water transport in gas and liquid phases,

• moisture dependency of heat storage,

• water movement driven by temperature gradients.

1.2.2.1 Air

Although often neglected in hygrothermal simulations of building components, air
transfer can contribute markedly to the drying or wetting of hygroscopic materials
through convective phenomena. Assuming the absence of fluctuations in air density,
its conservation equation simply reads:

−∇·ga = 0, (1.7)

The air flow ga [kg.m−2.s−1] is driven by a gradient of air pressure. In case of laminar
flow, this term reads:

ga =−Ka∇pa (1.8)

where Ka is the unsaturated air permeability of the material.
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1.2.2.2 Moisture

The mass conservation equation for water relates the temporal variations of its volu-
metric content w to the moisture flow in either vapour or liquid phase, respectively
denoted gv and gl :

∂w

∂t
=−∇·

(
gv +gl

)
(1.9)

Water vapour transfer is caused by both diffusive and convective phenomena. The
former follows Fick’s law and is driven by a gradient of vapour pressure, while the latter
is proportional to the air flow. Assuming water vapour obeys the ideal gas law,

gv =−δp∇pv +
pv

ρa Rv T
ga (1.10)

where δp is the water vapour permeability of the material, and Rv is the specific gas
constant of water, i.e. the universal gas constant divided by water’s molar mass. Liquid
transport is driven by a gradient of capillary pressure, according to Darcy’s law:

gl =−Kl∇pc (1.11)

where Kl is the liquid permeability of the material. In practical applications, only one
pressure variable is used as a potential for moisture transfer. In order to guarantee the
applicability of Eq. 1.9, the equivalence between ∇pv and ∇pc must be established.
This equivalence can be formulated thanks to the Young-Laplace, Kelvin and Clausius-
Clapeyron laws (Eq. 1.2, 1.5 and 1.6, respectively):

∇pv =
pv

ρl Rv T
∇pc +

pv

ρl Rv T 2

[
ρl Llv +pc

(
T

σ

∂σ

∂T
−1

)]
∇T (1.12)

The derivation of this equation is not trivial, and has been detailed in appendix A.1. For
simplification purposes, we can assume a negligible dependency of the surface tension
to the temperature, i.e. ∂σ/∂T = 0.

The left term of Eq. 1.9 represents temporal variations of the volumetric moisture
content and can be decomposed as a function of the potentials pc and T .

∂w

∂t
=

∂w

∂pc

∂pc

∂t
+
∂w

∂T

∂T

∂t
(1.13)

The term ∂w/∂pc is the slope of the moisture retention curve and can be referred to as
moisture capacity. The last term ∂w/∂T is often neglected as the equilibrium moisture
content is considered temperature-independent.

An alternative way to write Eq. 1.9 is to use w as the driving potential for moisture
transfer, which in the isothermal case reads:

∂w

∂t
=−∇· (−Dw∇w) (1.14)

where Dw is the moisture diffusivity of dimension [m2.s−1]. Its expression follows from
Eq. 1.9 to 1.12:

Dw =
1

∂w/∂pc

[
Kl +δp

pv

ρl Rv T

]
(1.15)
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Capacity Permeability
Heat

(
cmρm

)
λ

Air Ka

Moisture ∂w/∂pc Kl ; δp

Table 1.1: Recapitulation of material properties required for HAM modelling

1.2.2.3 Heat

The energy balance equation reads:

∂E

∂t
=−∇·

(
qcond +qconv

)
(1.16)

where E is the internal energy:

E = cmρmT +cl wT (1.17)

where the subscripts m and l respectively indicate properties of the raw material and
of water. The conductive heat transfer follows Fourier’s law:

qcond =−λ∇T (1.18)

where λ is the thermal conductivity, function of both the temperature and the moisture
content. The convective heat transfer is driven by the flow of each fluid phase and of
water vapour:

qconv = caT ·ga +cl T ·gl + (cv T +Llv)gv (1.19)

1.2.3 Transport and storage coefficients

From the balance equations 1.7, 1.9 and 1.16, it appears that a total of six material prop-
erties (transport and storage coefficients) need to be identified for modelling purposes.
These variables are summed up in table 1.1.

The moisture retention curve is commonly described using van Genuchten func-
tions [GEN 80]. These functions are flexible and depend on parameters which allow
fitting with experimental measurements as to describe retention characteristics of var-
ious pore network geometries. In order to describe the retention curve arising from a
heterogeneous porous medium with several pore sizes, Durner [DUR 94] proposed su-
perimposing unimodal van Genuchten functions as to form a multimodal expression:

w
(
pc

)
= wsat

∑

i

li

[
1+

(
αi |pc |

)ni
]−mi (1.20)

where wsat is the water concentration in the capillary saturated material, and i covers
the number of subsystems. The set of parameters (l ,α,m,n) can be estimated by fit-
ting Eq. 1.20 on measurements. The number of modes is directly related to the level of
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heterogeneity of the pore structure. Conductivity estimations for materials with het-
erogeneous pore systems can follow the general form of Mualem’s model [MUA 76b]
for the prediction of the relative hydraulic conductivity of soils [PRI 06]:

Kl = Ksat sτ




∫s

0
h (s)−q ds

∫1

0
h (s)−q ds




2

(1.21)

where h is the pressure head, or capillary suction height, commonly used as driving
potential in the field of soil sciences:

h =−
pc

ρl g
(1.22)

The introduction of Eq. 1.20 into 1.21 results in:

Kl = Kl,sat sτ




∑

i

liαi

(
1−

(
1− s

1/mi

i

)mi
)

∑

i

liαi




2

(1.23)

where Kl,sat is the water permeability of the saturated material, p and q are material
parameters. The variable s denotes the non-dimensional saturation degree of the ma-
terial s = w/wsat , and si are the subcurves of the retention function:

si =
wi

wsat
= li

[
1+

(
αi |pc |

)ni
]−mi (1.24)

The main asset of this formulation is its flexibility, allowing an accurate description
of most materials for their implementation in building physics or soil science simula-
tions. By using prescribed values of the parameters p and q [GEN 80], one can circum-
vent the need for a tedious measurement of the moisture permeability. However, this
derivation is not always accurate, and the set of parameters (l ,α,m,n) used in Eq. 1.23
often differs from that of Eq. 1.20 [ROU 12b].

According to Luckner et al. [LUC 89], the air permeability can be expressed in a
similar fashion, by substituting the saturation permeability for that of air Ksat,a and the
liquid saturation degree by a nonwetting fluid saturation variable s∗:

Ka = Ka,sat sτ∗




∑

i

liαi

(
1−

(
1− s

1/mi

∗i

)mi
)

∑

i

liαi




2

(1.25)

The saturation permeabilities of both liquid and air phases can be related through the
definition of the intrinsic permeability K

[
m2

]

K = Kl,sat
ηl

ρl

= Ka,sat
ηa

ρa
(1.26)

which is a material property. This theoretically allow characterising the unsaturated air
permeability on the sole basis of the knowledge of the unsaturated liquid permeability.
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1.2.4 Boundary transfer

Ambient or atmospheric boundary conditions can be implemented into HAM sim-
ulations with various levels of complexity. Basic approaches characterise heat and
moisture exchange with the environment through simple convective transfer imposed
as boundary conditions. The past decade has seen an increasing implementation of
weather data (wind, rain and solar radiation) into simulation codes, and the develop-
ment of mathematical formulations allowing integrating them into the calculations.

The general expressions of boundary heat and moisture flows are [HAG 04, JAN 07]:

q = α
(
Teq −T

)
·n+cl Ta gl,r + (cv Ta +Llv)gv

g = gv + gl,r =β
(
pv,a −pv

)
·n+ gl,r

(1.27)

where α and β denote the heat and mass surface transfer coefficients, gl,r denotes
an incoming liquid flow in the form of rain and Teq denotes the equivalent temperature,
which combines the temperature of the ambient air Ta , short wave solar radiation and
long wave ground radiation. More details on the terms and coefficients of Eq. 1.27 are
given below.

1.2.4.1 Surface transfer coefficients

Convective heat exchange between the surface and the atmosphere is described by the
surface transfer coefficients α and β, which respectively denote the resistance of the
air surface layer to heat and moisture transfer. α can be estimated from the dimen-
sionless Nusselt number, usually calculated using correlation formula based on the
air velocity [VDI 10]. Literature shows that the transfer coefficient can increase up to
tenfold from an indoor surface exposed to natural convection [AWB 98] to an external
surface exposed to wind [LOV 96]. Because of the similarity in the basic mechanisms
of heat and mass exchange at a material boundary, it is also possible to relate it to the
moisture transfer coefficient. The Chilton-Colburn analogy allows estimating one of
the exchange coefficients from the other:

β

α
=

Dv,a

Rv Tλa
Le2/3 ≈ 7.45×10−9 (1.28)

where Dv,a is the diffusivity [m2.s−1] of water vapour in air and Le is the non dimen-
sional Lewis number, which represents the ratio of thermal to mass diffusivity.

1.2.4.2 Wind-driven rain

The contact of rain with the material occurs either in case of tilted surfaces (e.g. roofs)
or of wind providing a horizontal component to raindrop trajectories. In case of im-
portant wind and precipitation, rainfall can be a significant source of moisture income
on a facade. Because of the complexity of the phenomena at stake, it is difficult to
precisely estimate the quantity of water impacting a given surface, depending on the
building geometry, its position and environment, the wind speed and direction, the
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horizontal rainfall and the distribution of raindrop sizes. The literature on the field of
wind-driven rain (WDR) is therefore quite large, as reviewed by Blocken and Carmeliet
[BLO 04].

A common way to inclure WDR into HAM simulations is the use of semi-empirical
models relating the surface moisture source term gl,r to the horizontal rainfall intensity
Rh, the local wind speed U , and the angle of the facade to the wind direction θ:

gl,r =αWDRRhU cosθ (1.29)

The coefficient αWDR represents the ratio of rain drops of given size distribution im-
pacting the facade. This WDR coefficient can be expressed by semi-empirical models
such as Straube and Burnett’s [STR 00], as to fit previous measurements.

The ratio of WDR to horizontal rainfall, or catch ratio, can also be estimated by
means of Computational fluid dynamics (CFD). Choi [CHO 93, CHO 94] introduced a
methodology for determining it: first, the steady-state wind-flow pattern around the
building is calculated, using Reynolds-averaged Navier-Stokes equations with a k-ǫ
turbulence model. The raindrop trajectories are then calculated from this wind-flow
pattern, and the amount of raindrops impacting a given facade allows estimating its
catch ratio.

According to a recent comparison of these two modelling approaches [BLO 10],
semi-empirical models, while coarser than CFD models, can provide appropriate re-
sults while having a much lower computational cost.

1.2.4.3 Radiative heat exchange

In addition to the convective heat exchange between a surface and the ambient air,
radiative processes can be accounted for. These processes include direct and diffuse
solar radiation, as well as long-wave radiative exchange between the surface and its
environment. A simplified way to include these phenomena in calculations is the use
of an equivalent boundary temperature, which is the surface temperature at which the
heat transfer rate due to the temperature difference across the wall is the same as the
rate due to the combined effects of convection, conduction and radiation.

α
(
Teq −T

)
=α (Ta −T )+κIsol +σǫILW (1.30)

where κ and ǫ are the solar absorption coefficient and long-wave emmissivity of the
material, and σ is the Boltzmann constant. Isol and ILW respectively depict the short-
wave and long-wave radiative exchange between the surface and its environment.
Short-wave radiation consists pf direct and diffuse solar irradiance. Long-wave radi-
ation is exchanged between the facade and the ground, nearby buildings and sky. The
radiation balance in a given urban setting is however highly complex, as is shown by
studies on the radiative exchange in urban canyons [HAR 04].
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1.3 Hygrothermal behaviour of fractured porous media

Multiphase flow in cracked porous materials has long drawn interest in the fields of
geology, petrology and aquifer study. In these lines of research, it is indeed crucial
to dispose of reliable methods for the characterisation of fractures and fracture net-
works, and for flow and transport measuring and modelling, from small to large scales
of cracking. A review on flow and transport in cracked geological media was given
in 2002 by Berkowitz [BER 02]. However, little interest had been given to the case of
fractured construction materials until the early 1990’s [KER 91, SAM 92]. Subsequent
studies on the subject were mostly motivated by the effects of water on the durability of
concrete structures under tension [SAM 92, GER 96, ALD 99, LIM 00], as it accelerates
deterioration processes.

The present section is an overview of the existing methods for heat and moisture
flow modelling and monitoring in such aged structures. The first requirement in such
studies is the gathering of fracture geometries, either by means of a predictive ap-
proach (fracture modelling) or by experimental characterisation.

1.3.1 Fracture and damage identification

1.3.1.1 Fracture mechanics of cementitious materials

Many construction materials, such as concrete and mortar, are quasi-brittle materials.
In such a material subjected to stress, micro-cracks first form at the location of initial
voids and defects. Under further loading, the deformations concentrate in a narrow
zone of high local stress, and a macroscopic crack initiates and propagates through
the material. The historical development of failure modelling separates continuous
and discontinuous approaches, respectively for the description of diffusely damaged
media and macroscopic fractures.

The prediction of macroscopic crack propagation in brittle and quasi-brittle mate-
rials originates in the theory of linear elastic fracture mechanics (LEFM) [IRW 57]. The
numerical implementation of fracture mechanics theories is usually carried by means
of the finite element method [HIL 76], or more recently the extended finite element
method (XFEM), which allows incorporating discontinuities in displacement fields
[MEL 96, BEL 01], predicting crack growth independently from the finite element mesh
[MOE 99], and including interactions between two sides of a crack [DOL 00, WEL 01] in
the calculations.

Continuum damage mechanics propose constitutive laws to include the loading
history of a material to its stress-strain behaviour. Several formulations have been
elaborated for the case of quasi-brittle building materials under different types of load-
ing [BAZ 83, MAZ 89, MES 98, FIC 99, LEM 00]. Rather than explicitly modelling micro-
cracks, these theories represent isotropic or anisotropic damage by a set of scalar or
tensorial parameters.
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1.3.1.2 Characterisation of fracture patterns

Alternatively to the prediction of damage and failure, cracks can be identified and
quantified by a variety of experimental techniques. These techniques can be imple-
mented either during mechanical tests, in which case they are referred to as damage
monitoring, or afterwards, by means of destructive or non-destructive methods. The
main asset of damage measurements over modelling approaches is the fact that they
provide the exact geometries of crack patterns and do not require an extensive under-
standing of all factors generating them.

One of the earliest attempts at cracks observation in concrete was performed by
Slate and Olsefski [SLA 63], who used X-rays to observe cracks caused by drying or
compressive loading. X-ray radiography and tomography provide mappings of the
absorptivity of a material, which is related to its atomic number and allows seg-
regating cracks and voids from the solid skeleton. Examples of X-ray tomography
implementations include microstructural observations for permeability calculations
[QUE 98, BEN 00], three-dimensional fracture observation [LAN 03] or propagation
monitoring [LAN 07]. The technique is however limited by a heavy computational cost,
and only applies to relatively small samples. The detection of pre-existing cracks can
be facilitated by impregnation techniques [HOR 96] allowing their automatic detection
and quantification [AMM 00] by microscopic examinations.

Other non-destructive imaging techniques can be mentioned for two-dimensional
damage monitoring: electronic speckle pattern interferometry [JIA 94, SHA 99] and
digital image correlation [SUT 83] consist in measuring in-plane displacements on
specimen surfaces. The latter has been used for the estimation of stress intensity fac-
tors near crack tips [RET 05, ROU 06] or the identification of elastic properties [HIL 06]
or damage laws [LEP 10], among other uses. The technique has been shown suitable
to the observation of local displacements of brittle building materials such as concrete
[CHO 97, COR 07].

A third category of damage monitoring methods includes the recording of acous-
tic emissions (AE). In a material under loading, elastic waves are emitted as a conse-
quence of crack initiation and propagation. Recording and analysis of acoustic activity
is of great importance in the fields of seismology and civil engineering. Among others,
it has been used for damage estimation of concrete [OHT 01, COL 03, SUZ 04], identi-
fication of damage mechanisms [PHI 98, GOD 04, ELA 07, OHN 10], estimation of frac-
ture energy [MUR 10, VID 11] or failure prediction [SHI 94].

Among these damage monitoring techniques, AE is the most suitable for in situ

applications at the building scale. However, it suffers from an important drawback
in comparison to optical or radiography techniques, as soundwaves do not directly
translate into the geometric parameters of the cracks. An attempt at overcoming this
issue was made in this study, and is presented in Chap. 3.
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1.3.2 Permeability measurements of fractured porous media

Fractures are known to accelerate moisture ingress in porous materials, because of
capillary suction phenomena, and because they reduce the overall tortuosity of the
porous network. The main motivation behind the first quantitative studies of the
transport properties of concrete under mechanical loading was the fact that moisture
ingress directly impacts its durability and structural integrity. Authors of these stud-
ies proceeded by applying compressive loading on concrete disks and recording their
permeability during loading or after unloading. A review was written by Hoseini et al.

[HOS 09] on this matter: the effect of parameters such as temperature [CHO 07], mix
composition [KER 91], presence of fibres [RAP 02] or size of the aggregates [SAM 92]
was studied.

Two phases are generally noticed during the loading process. In the pre-peak
phase, variations of transport propertries are moderate: Choinska et al. [CHO 07] no-
ticed a slight decrease of permeability under low compressive stress values, followed by
a higher increase of up to fivefold as the peak stress is approached [SUG 96, LIM 00].
While an initial drop can be caused by the consolidation of the porous network under
compressive loading, the permeability increase, starting aroung 80% of the peak stress
has also been seen by bending or tensile tests [LAW 02, RAP 02]. When the loading is
carried beyond the peak stress and a macroscopic fracture of crack-opening displace-
ment (COD) over 50 µm is formed, the transport properties of the specimen increase
drastically. The increase of permeability as a function of the COD was measured by
[GER 96, WAN 97, ALD 99], and can span over several orders of magnitude.

1.3.3 Hydromechanical coupling phenomena

While cracking has a notorious effect on the permeability of building materials, their
moisture content also affects their mechanical properties. There is therefore a strong
coupling between hydraulic and mechanical phenomena, particularly in rock-like and
cement-based materials. The mechanics of saturated porous media were first studied
by Biot [BIO 41, BIO 55], and later extended to non-saturated materials. The basis for
the interaction between fluid and solid lies in the theory of poromechanics [COU 04],
accounting for the effects of the pore pressure on the effective stress applied in a con-
tinuum.

This theory is now commonly used to improve estimates for the lifetime of con-
crete structures by accounting for the hydraulic contribution in its degratation. For
instance, Bary et al. [BAR 00] studied the effect of hydrostatic pressure on the fracture
mechanics of concrete. They showed the coupled effects of crack formation, accelerat-
ing the imbibition of concrete by fluid which therefore increasingly acts on the matrix.
Meschke and Grasberger [MES 03, GRA 04] simulated the opening of microcracks in a
concrete wall undergoing drying, and its rewetting including the influence of cracks
on moisture transport. Benboudjema et al. [BEN 05] proposed a fully coupled hydro-
mechanical model accounting for the creep mechanisms of drying concrete. These
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Hygrothermal behaviour of fractured porous media

examples demonstrate the possibility of a strongly coupled numerical methodology
for the service life prediction of building materials: models for damage evolution and
fracture mechanics can be associated with models for flow and transport in porous
networks and fractures, while coupling terms such as the Biot coefficient ensure the
mutual dependence of both phenomena.

1.3.4 Models for flow and transport in fractured porous media

While it is clear that the evolution of the transport properties of damaged porous ma-
terials depends on numerous factors (composition, type of loading, temperature...), a
common observation is generally shared: as fracture mechanics separate diffuse dam-
age from localised cracks, the hygrothermal behaviour of a material under stress is
highly dependent of matters of scales. Flow and transport modelling therefore must
follow different approaches for the cases of diffusely damaged media and fractured
ones. This matter is schematically shown on Fig. 1.2.

(a) (b) (c)

Figure 1.2: (a) Diffusely damaged medium, (b) discrete fracture network, (c) mixed
medium

In order to deal with such variety of possible crack geometries and dimensions,
models for fluid flow in saturated or non-saturated, isotropic or anisotropic, damaged
or fractured porous media, can generally be separated into two main categories.

Continuum models consist in prescribing equivalent macroscopic transport prop-
erties. Fissures are not explicitely modelled, but their effect on the flow is accounted
for at a higher scale. This approach is appropriate if a REV can be defined at a scale
smaller than that of the problem of interest, such as in the case of a dense network of
small cracks. The equivalent permeability of a diffusely damaged porous medium, il-
lustrated on Fig. 1.2 (a), can also be approximated by semi-empirical models, which
consist in the approximation of experimental measurements by an analytic formula.
Several authors [BAR 00, PIC 01, PIJ 09] suggested power laws or exponential regres-
sions for the expression of the increase in gas permeability with the damage value,
which held for strain values below yield strain, i.e. for non-localised damage.

Discrete fracture networks, Fig. 1.2 (b), are sets of cracks of which dimensions are
not significantly lower than that of the scale of observation. The volume-averaging
method no longer holds, and the influence of each crack on flow and transport needs
to be explicitly accounted for. These models allow a higher level of detail in the consid-
eration of longiudinal and transverse flow in fractures. However, computational limita-
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1. Heat and moisture transfer in fractured building materials

tions may arise for flow modelling at larger scales. Also, their implementation requires
an extensive knowledge of the crack network geometry.

wetting fluid non-wetting fluid
u

Figure 1.3: Illustration of water infiltration in a fracture

The most simple representation of a fracture for the derivation of its hydraulic and
thermal properties, consists of two parallel plates of given aperture u (see Fig. 1.3).
The saturated water permeability of this configuration is found using the Poiseuille
equation [SNO 69].

Kfs =
ρl u2

12ηl

(1.31)

where ηl is the viscosity of water. Two methodologies can be followed in order to in-
clude cracks in simulations of moisture uptake.

The first method is a fully coupled approach, in which the same finite-element
mesh is used for flow and transport modelling in both the fracture and the porous
network. For this type of approach, the FE mesh must be adapted to the geometry
of the cracks [REI 06], and strategies have been proposed for its automated refine-
ment with crack propagation [SCH 06]. Segura and Carol [SEG 04] assigned a type of
double-nodded, zero-thickness elements to the crack, allowing an explicit formula-
tion of longitudinal and transverse flows, and of exchange terms between the matrix
and the fracture. They later used this formulation for the expression of a fully coupled
hydro-mechanical model [SEG 08a] for the prediction of flow in fracturing geomateri-
als.

The second method is a staggered approach, in which the transport equations for
flow and transport are iteratively solved in the porous matrix and in the fracture. Be-
tween each iteration, the capillary pressure corresponding to the calculated pressure
field in the crack is imposed as boundary condition at the matrix-fracture interface.
This approach was followed by Roels et al. [ROE 03b, ROE 06b], who followed the
progress of the moisture front in a fracture by combining a quasi-static pressure equa-
tion and a Darcian flux equation. An important asset of the staggered approach is the
fact that it allows emancipating the FE mesh from the crack geometry: the extended (or
generalised) finite element method (XFEM), based on the partition of unity method
[MEL 96], allows including discontinuities in the problem field by adding degrees of
freedom to a set of nodes surrounding the cracks [DOL 00, WEL 01]. This method al-
lows accounting for crack propagation without modification of the mesh [MOE 99].
It was applied in recent studies for the modelling of hygrothermal damage processes
[MOO 09], moisture uptake [ALF 10] and heat transfer [MOO 11] in fractured porous
media.

Both monolithic and staggered approaches allow accounting for moving fractures
and including all coupled hydromechanical effects at the interfaces between fractures
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and matrix. Some authors argue that the staggered approach is more effective in terms
of computational costs [ROE 03b, MOO 09, ALF 10], although Segura and Carol found
the monolithic approach more appropriate in case of strong coupling or non-linear
discontinuity behaviour [SEG 08b].

1.4 Outcome

It emerges from the above literature survey that coupled heat and mass transfer mod-
elling in porous building materials, based on principles of mechanics and thermody-
namics of porous media, is now a widespread tried and tested practice. This practice
has been supported by numerous contributions for the experimental characterisation
of hygrothermal transport and storage properties of materials, models for the expres-
sion of flow and transport, and numerical implementation of the transport equations.
Moreover, theories developed in the course of the last few decades have expressed the
coupled effects of material degradation and hygrothermal processes, allowing for the
service life prediction of construction materials.

However, limitations remain in the numerical simulations of the hygromechani-
cal degradation of building materials. In the current state of research, long-term sim-
ulations of building components do not include the effects of material ageing. In-
versely, current applications of full hygro-thermo-mechanical modelling often lie on
the manual input of fractures in the problem field [ROE 03b, REI 06, RET 07, SEG 08b,
ALF 10, MOO 11], which does not reflect the complexity of real crack patterns. Indeed,
a numerical simulation of the ageing of a building component over years of service
life, including coupled hydromechanical effects and progressive damage modelling,
would require an extensive knowledge of all environmental factors which may influ-
ence material degradation. The above mentioned cases are suitable for the service life
prediction of construction materials. A complementary approach is required for the
hygrothermal performance estimation of existing, already damaged building compo-
nents.

An alternative methodology is proposed in the present study, in order to achieve a
first step towards the integration of damage effects in heat and moisture transfer sim-
ulations at the building scale. A mixed approach is followed to this aim, using experi-
mental measurements of crack patterns as an input for a numerical model for coupled
heat and moisture flow. The structure of the manuscript follows the four successive
steps of the reasoning behind this aim:

• First, we need to determine whether a continuum model is suited for the de-
scription of damage in hygrothermal models. A methodology was established to
quantify the evolution of water vapour permeability in diffusely damaged mate-
rials, by applying inverse methods on profiles of mass uptake.

• Having identified the need for quantitative description of crack patterns, we
tested and implemented non-destructive techniques for their characterisation
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1. Heat and moisture transfer in fractured building materials

during mechanical loading of samples. The target was to assess the capacity of
optical methods to provide detail measurements of crack patterns, and to lay the
foundations for the interpretation of the acoustic activity of building materials.

• Then, we developed a numerical model, which can integrate experimental mea-
surements of fractures as input for heat and moisture transfer modelling. An
experimental procedure was conducted for the validation is such a model: dig-
ital image correlation was performed during the fracturing of concrete samples,
in which moisture uptake was then monitored using X-ray radiography.

• Finally, we used validated model in order to determine whether cracks may have
an impact on the thermal performance of a building. Test cases were conducted,
modelling intact or damaged multi-layer building facades during several months
of simulation including climatic data.

Each of these four steps is the subject of one chapter of the present manuscript. The
organisation of the study is summarised on Fig. 1.4. The work was aimed at constitut-
ing a whole. All chapters are complementary, but since they concern entirely different
concepts, they can be read separately without major issues of comprehension.
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Chapter 2

Influence of diffuse damage on the
water vapour permeability

The first part of the work aimed at completing the knowledge on transfer in diffusely

damaged media, by measuring their water vapour permeability. An experimental

procedure was developed for this purpose, and completed by two new methods for

transient hygric characterisation. This leads to the conclusion that microcracks may

significantly increase moisture content fluctuations of building components. It is also

established that further crack characterisation will be required in the rest of the work.
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2. Influence of diffuse damage on the water vapour permeability

As previously described, two stages of cracking occur in quasi-brittle construc-
tion materials such as mortar and concrete: diffuse damage develops in a relatively
large area before the initiation and propagation of a macroscopic fracture. The general
methodology for including the effects of degradation on the moisture permeability of
such a material is twofold: an equivalent permeability is assigned to diffusely damaged
areas, while larger fractures, of much higher permeability, are explicitely represented
in the calculations. The present first step of the work is a preliminary study, of which
target is the following: we need to identify whether an accurate prediction of heat and
moisture flow in damaged and fractured building components can be obtained by us-
ing continuum models (assigning equivalent values of permeability), or if it requires
accounting for discrete fracture networks.

Equivalent continuum models can be suited for damaged building components
with a high number of well-distributed microcracks. Recent studies have shown the
consequences of diffuse micro-cracking on the intrinsic permeability of concrete dur-
ing mechanical loading or after unloading. The liquid and gaseous conductivity of ce-
mentitious materials can be significantly increased before the formation of a macro-
scopic fracture. However, moisture transport in building materials is not only caused
by the displacement of a continuous liquid phase which can appear in case of rain, but
is also caused by water vapour gradients and sorption processes in the hygroscopic
range. The complete understanding of the influence of damage on these processes
requires experimental characterisation to support numerical modelling.

A complete experimental setup, starting from material elaboration up to mechan-
ical loading and hygric characterisation, has been developed. Coupled with appropri-
ate numerical tools, this methodology allowed estimating the effects of damage on the
water vapour transfer properties of a glass fibre-reinforced mortar. The present chap-
ter starts with the outline of the methodology. Two methods are then described and
for the estimation of hygric transport properties based on transient measurements of
mass uptake in the mortar samples. The results are then displayed and discussed. The
methodology and main findings of this chapter were presented in [ROU 12a].

2.1 Experimental methodology

2.1.1 Material

The material used for all tests is a commercial formulation (Lafarge, MAITE mono-
composant) used for external thermal insulation composite systems. It is a Portland
cement mortar including dry redispersable polymer systems with a water to dry ma-
terial weight ratio of 0.16 and reinforced with 1% weight of glass fibres. This material
belongs to the category of engineered cementitious composites [LI 03]. The addition
of polymers in mortar and concrete-like materials has been extended during the last
decade, and an increasing number of studies are being focused on their impact on
the microstructure and physical properties of such composites [JEN 05, JEN 06, SIL 06,
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WET 12].
While cement particles are dissolved and hydrated, polymers are dispersed in the

liquid phase, and form a continuous solid network with the formed hydrates and the
unreacted cement or fillers. Earlier studies [CHA 10a] proved that during tensile load-
ing, the material shows a non-brittle behaviour, developing progressive diffuse crack-
ing before the formation of a main macroscopic fracture. The sand and cement were
mixed with water for a minute before incorporation of the glass fibres and two more
minutes of mixing. The paste was then moulded into prismatic samples of 500 g and
approximately 300×100×10 mm, and kept two days at a 90% relative humidity to pre-
vent excessive water loss of the cement paste. The samples were then unmoulded and
kept for 21 days of maturation at 50%RH: the mechanical behaviour of fibre-reinforced
mortar resulting from this maturation procedure are known [CHA 10b].

After maturation, and prior to its mechanical and hygric characterisation, the
porous structure of the material was observed by mercury intrusion porosimetry (MIP)
and scanning electron microscopy (SEM). The material has an open porosity of ap-
proximately 40% and an average density of 1450 kg.m−3.
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Figure 2.1: Pore intrusion (dots) and extrusion (circles) diameter distributions mea-
sured by mercury intrusion porosimetry.

Fig. 2.1 shows the mercury intrusion profile (below), measured by applying a pres-
sure of up to 400 MPa, and accessing pore diameters of down to 3 nm. The upper curve
is the extrusion profile from this point. As exhibited by the intrusion profile, the per-
colation threshold of this pore network is located around 4 µm. This means than most
cavities are larger than this threshold, and are connected by channels of 1 to 10 µm
diameter. An important part of the pore volume is also present at smaller scales, as the
slope of the intrusion profile is still important near the limit of mercury porosimetry.
The extrusion profile presents an important hysteresis behaviour caused by the ink
bottle effect: mercury can only leave large cavities by flowing through smaller chan-
nels. This observation confirms the fact that the material includes several superim-
posed scales of pores.
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2. Influence of diffuse damage on the water vapour permeability

Figure 2.2: SEM overview of the material

Figure 2.3: SEM observation of the material including dispersed polymers
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SEM observations can confirm this multiscale nature: Fig. 2.2 and 2.3 display im-
ages captured with two levels of magnification. The first image illustrates the hetero-
geneity of the material including aggregates, cement paste and large circular pores.
Smaller pores are visible with a higher magnification (Fig. 2.3), along with dispersed
polymer systems.

All results presented in Sect. 2.3 concern three series of 16 samples. Since the con-
ditions of sample manufacturing, ambient humidity and temperature in the laboratory
can differ from one day to another, all comparisons of samples, in terms of hygric or
mechanical properties, were made between samples of the same production series.
This was to make sure that the measured differences in permeability were not due to
outside factors.

2.1.2 Mechanical characterisation

After maturation, the prismatic samples were damaged by tensile loading beyond their
limit of elasticity, using a 5 kN force cell imposing a constant displacement speed of 1
mm/min. An optical extensometer was used for monitoring the deformation rate ǫ in
the direction of loading.

As a first step, the full tensile response of the mortar was observed with a full me-
chanical loading for the estimation of the peak strain (see left side of Fig. 2.4). Re-
peated observations, earlier confirmed by stereocorrelation [CHA 10a] showed that
a macroscopic fracture initiates during the strain-softening phase subsequent to the
peak strain ǫpeak.
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Figure 2.4: Stress-strain profiles on a full tensile loading (left) and on three tests inter-
rupted before peak strain (right): (a) E0 = 2750 MPa, (b) Ee = 1170 MPa, (c) Ee = 859
MPa, (d) Ee = 782 MPa

In order to apply diffuse microscopic damage on the samples before hygric charac-
terisation, tensile loading on the tested samples was manually interrupted before the
peak strain, as shown on the right side of Fig. 2.4. The diffuse damage induced by this
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2. Influence of diffuse damage on the water vapour permeability

mechanical loading was characterised by a single scalar value D, defined as the relative
change in their Young modulus [MAZ 89]:

D = 1−
Ee

E0
(2.1)

where E0 is the initial elastic modulus of a sample and Ee is its effective modulus after
unloading, as shown with dotted lines on Fig. 2.4. D spans from 0 for undamaged
materials to 1 for fully fractured samples, although this value is not reached within the
frame of this study.

Among the tested series of samples, the value of the scalar damage reached with
tensile loading spans from 0 (samples kept intact) to 0.7 (before peak stress). Higher
damage is difficult to reach without causing a macroscopic crack initiation, i.e. the
appearance of a localised crack of over 50 µm aperture, in which case an equivalent
permeability cannot be defined over the surface of the sample. After unloading, the
central part of each plate was used for hygric characterisation in a climatic chamber.

2.1.3 Hygric characterisation

Samples of dimensions 100×100×10 mm were extracted from the plates after unload-
ing, and covered with aluminium tape on all faces but one, as to insulate them from
moisture. Only the upper face was left unsealed, so that mass transfer could be consid-
ered unidimensional in all tests. The samples were then placed on up to eight weighing
systems inside a climatic chamber, continually recording their mass without the need
to take them out of the chamber, thus avoiding disturbances in the ambient humidity
level. The systems can measure mass with a precision of 10−3g, and were set to provide
averaged values of 20 consecutive weighings every 10 seconds to reduce noise effects
in the results. This procedure was developed as part of the Humibat project [DOU 08].

The inside of the chamber is ventilated by a fan in order to ensure a homogeneous
distribution of RH and temperature. This homogeneity was confirmed prior to the
test by a series of distributed probes. The ability of the chamber to recreate a stepwise
change in relative humidity in isothermal conditions was assessed as well. The average
recorded time for the relative humidity to stabilise after a change in the set point was
14 min. The maximal deviation of temperature from its expected value was 0.4 K. The
experimental setup is schematically summarised on Fig. 2.5.

The hygric characterisation of the fibre-reinforced mortar was conducted inside
the climatic chamber according to two different pre-programmed variations of rela-
tive humidity as shown on Fig. 2.6. Each of these programs served as basis for the
estimation of the water vapour permeability of the material, as explained in the fol-
lowing section. In both cases, a constant humidity of 50% is imposed during the first
48 h, in order to reduce the mass uptake rate before the start of the stepwise variations.
Although equilibrium is not strictly reached, the mass variations at the end of these
48 h are negligible in comparison to the uptake rate after a sudden change in hygric
boundary conditions.
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Figure 2.5: Sketch of the sample extraction from the loaded plates and Hydrodyn ex-
perimental setup developed in MATEIS

The first program followed the Nordtest protocol [ROD 03], which was originally
proposed for the definition and experimental characterisation of the moisture buffer-
ing capacity of building materials. The purpose was to produce successions of high
and low humidity phases, similar to either outdoor or indoor conditions in buildings,
and to observe the rate and amplitude of the variations of moisture content in the ma-
terials. In this case, the chamber imposed cycles consisting of a high humidity step (8
h at 75% relative humidity) and a longer low humidity step (16 h at 33% RH) at a con-
stant temperature of 23◦C (see Fig. 2.6). These 24 h sequences were repeated over up
to 5 days, until two successive days of measurement presented the same variations of
moisture content. The recorded mass uptake in a mortar sample during steps of higher
humidity was used as basis for the estimation of its permeability, as described in Sect.
2.2.2.1. This approach also gave a direct outline of the behaviour of the material in
ambient humidity conditions approaching in situ building conditions.

The second program shown on Fig. 2.6 was a single step from 50 to 75% relative hu-
midity. The recorded mass uptake as a response to this step was interpreted following
Sect. 2.2.2.2. This program allows estimating the permeability, and moreover gave a
theoretical value of the equilibrium water content and the surface transfer coefficient,
as explained below.

Both methods are based on the assumption that the equilibrium moisture content
of the material was not affected by damage. In order to confirm this hypothesis, the
total mass uptake from 50% to 75%RH was measured in intact and damaged samples,
in addition to the measurements of water vapour permeability. Hysteresis effects be-
tween the sorption and desorption profiles were not considered, since all permeability
estimations were based on sorption measurements.
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Figure 2.6: Relative humidity programs inside the climatic chamber, respectively
method 1 (left) and 2 (right)

2.2 Water vapour permeability characterisation

2.2.1 Principle and notations

The mass conservation equation for water was formulated earlier (see Eq. 1.9). The
term of hygric characterisation refers to the use of experimental techniques for the
estimation of the moisture transport and storage properties of a material, which are
required for the implementation of this equation:

• The moisture capacity ∂w/∂pc is the slope of the moisture retention curve
w

(
pc

)
, which indicates the equilibrium concentration of water in the pore net-

work for each value of capillary pressure or relative humidity.

• The transfer properties are the liquid permeability Kl (see Darcy’s law, Eq. 1.11),
and the vapour permeability δp (see Fick’s law, Eq. 1.10). Alternatively, the term
of moisture diffusivity Dw can be chosen, integrating transfer in both phases (see
Eq. 1.15).

This target of this step of the work is to observe the effects of damage on the water
vapour permeability of variously damaged mortar samples. Experimental conditions
were thus set so as to simplify the estimation of δp :

• moisture transfer is one-dimensional,

• measurements occur in isothermal conditions, without air transfer in the mate-
rial,

• no continuous liquid phase forms in the pore network,

• a narrow range of relative humidity is observed, in which hygric properties are
constant.
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Under these assumptions, the moisture conservation equation can be significantly
simplified:

ξ

ps

∂pv

∂t
=∇·

(
δp∇pv

)
(2.2)

where ξ = ∂w/∂φ is the slope of the sorption isotherm, or moisture capacity (φ being
the relative humidity). The vapour exchange at the surface of a sample is described by
the convective mass transfer coefficient β :

δp

(
∇pv ·n

)
=β

(
pv,a −pv

)
(2.3)

where pv,a is the ambient water vapour pressure and n the normal vector of the sur-
face. The convective coefficient β characterises the boundary layer at the surface of
the sample and is a function of multiple parameters such as the moisture concentra-
tion, the air velocity or the presence of turbulence.

The standardised methodology for vapour permeability characterisation is to mea-
sure the one-dimensional water vapour flow rate across a specimen of given thickness,
by setting different values of water vapour pressure on both its sides [ISOb]. The “cup
method” consists in a cylindrical material sample put on top of a cup, in which the rel-
ative humidity is set by a saturated saline solution. The cup is placed inside a climatic
chamber keeping a constant RH on the other side of the sample, and successive weigh-
ings of the system give the moisture flow rate across the sample, from which the per-
meability is derived. An extended description of the equipment is given by [KWI 09].
This method can provide the permeability independently from the sorption isotherm
and is relatively simple to implement. It is however hardly flexible as it only allows
measurements in certain pre-set values of RH given by the available saline solutions.
Furthermore, measurements can take several weeks or months, since moisture equi-
librium must be reached at each point.

This drawback can be overcome by transient techniques, that do not require reach-
ing equilibrium. These methods are based on analyses of the mass uptake rate of
a specimen shortly after a stepwise change in ambient relative humidity. The

p
t-

type methods [CRA 75, GAR 06, AND 08] are based on the assumption that changes
in mass in the initial phase of the adsorption or desorption, are proportional to the
square root of time. Other methods rely on the analytical resolution of the transport
equation, under certain assumptions concerning the boundary and initial conditions
[GAR 06, GAR 10]. Anderberg and Wadsö [AND 08] also propose extrapolating uptake
profiles as to estimate the equilibrium moisture content at the end of the step.

Two methods were implemented here, adapted from these existing techniques as
to appropriately cope with the experimental procedure described above. The first
method is of the

p
t-type and allows measuring the permeability without knowledge of

the sorption isotherm. The second method is based on an analytical resolution of the
simplified moisture transport equation and allows measuring not only the permeabil-
ity, but the equilibrium moisture content and convective transfer coefficient as well.
The results provided by both methods, along with the equations they are based on, is
summarised in Tab. 2.1.
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Method 1 Method 2
Type

p
t Analytical resolution

Results
permeability permeability

(no absolute value) equilibrium moisture content
surface transfer coefficient

Equation 2.7 2.10

Table 2.1: Description of the hygric characterisation methods

2.2.2 Transient methods implementation

2.2.2.1 Method 1: square root of time

The notion of moisture buffer value (MBV) of a building material was introduced as
part of the Nordtest project [ROD 03] which aimed at finding an appropriate mea-
sure for the adsorption and release of moisture by hygroscopic materials subjected to
daily environmental fluctuations. The MBV is connected to the moisture effusivity bm ,
which is an indicator of the rate of moisture intrusion after a sudden change of bound-
ary conditions:

bm =

√
δp

∂w

∂pv
=

√
δpξ

ps
(2.4)

Shortly after a stepwise change in ambient relative humidity, a fairly accurate approxi-
mation is to consider the instantaneous mass uptake rate in a specimen gm as propor-
tional to the ratio of effusivity to the square root of time [ROD 03]:

gm ∝
bmp

t
(2.5)

where t is the elapsed time since the change in the moisture boundary condition. Eq.
2.5 holds as long as the moisture penetration depth does not exceed the sample thick-
ness. In the present study, time steps of 8 h are performed and this assumption is
considered valid in regards to the expected value of the permeability and the sample
thickness.

Eq. 2.5 is made possible under the assumption that relatively small humidity steps
are considered, and that the moisture resistance caused by the boundary layer at the
surface of the material is small in comparison to the water vapour resistance of the ma-
terial itself. Under these hypotheses, it is possible to find a relation of proportionality
between the measured mass uptake ∆m of a sample during a humidity timestep after
a time t and its permeability δp :

∆m

S
=

∫t

0
gmdτ∝

√
δpξ

ps

p
t (2.6)
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where S is the exposed surface of the sample. This surface of contact with the envi-
ronment is prevailing over the volume of the sample for the mass uptake rate, as long
as the sample thickness exceeds the moisture penetration depth for the fluctuations at
stake. Equation 2.6 states a relation of proportionality: absolute values of permeability
cannot be estimated by this procedure but relative variations could be measured by
comparing several samples. If we express the ratio of expression 2.6 for two material
specimens represented by subscripts 1 and 2, the relation yields:

δp,1

δp,2

ξ1

ξ2
=

(
∆m1

∆m2

S2

S1

)2

(2.7)

It is therefore possible to estimate the relative evolution of the permeability with the
development of damage compared to its value for the intact material, by supposing
that the slope of the sorption isotherm ξ is not influenced by the presence of fractures.
This is consistent with the usual observation that cracks do not participate in the mois-
ture retention of a material, especially one with relatively high porosity as is the case
in this study. In method 1, the permeability is computed using Eq. 2.7 after the mass
uptake recorded during each period of high humidity of the Nordtest protocol (see Fig.
2.6), assuming that the moisture content distribution is close to homogeneous at the
end of a low humidity step. This method however only allows estimating ratios be-
tween permeabilities of several samples, rather than their absolute values.

2.2.2.2 Method 2: analytic resolution of the transport equation

A second procedure is proposed for the derivation of δp from mass uptake measure-
ments, which theoretically also allows for a simultaneous estimation of all three pa-
rameters needed for mass transfer simulations: permeability δp , moisture capacity ξ

and convective mass transfer coefficient at the surface of the sample hp . The method
is based on an analytical resolution of the moisture transport equation under the fol-
lowing assumptions:

• the moisture transfer is one-dimensional

• the permeability and moisture capacity are constant in the observed humidity
range

• coupling terms induced by air and heat transfer are neglected

The second hypothesis restricts the procedure to a limited interval of relative humid-
ity, which must also not exceed a certain value above which the sorption isotherm be-
comes strongly non-linear. In the present case, this interval is 50%-75%. As a conse-
quence of these simplifications, the Eq. 2.2 becomes:

∂w

∂t
= δp

psat

ξ

∂2w

∂x2
(2.8)
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Equation 2.8 is similar to one-dimensional heat transfer through solids and can be an-
alytically solved [POL 05, GAR 10] for a sample of thickness L, exposed on one surface
and insulated on the other, and initially placed at a uniform moisture content w0 :

m =
L∫

0

(w (x, t )−w0)dx (2.9)

m = L ξ∆φ

[
1−

∞∑

k=1

2 sin2δk

δk (δk + sinδk cosδk )
exp

(
−δ2

k

δp

ξ

psat t

L2

)]
(2.10)

where m is the mass increase by unit surface of the sample since the beginning of the
humidity step ∆φ. This formulation is summed over a series of increasing numbers δk

defined after the hygric Biot number Bi. This number is defined similarly to its thermal
equivalent (see for instance [POL 05]) as a measure of the comparative influence of the
surface transfer resistance to diffusion phenomena across the sample of width L:

Bi

δk

= tanδk (2.11)

Bi =
hp L

δp
(2.12)

The δk numbers are of decreasing influence on the result of the expression 2.10 and
a sufficiently accurate result can be reached by considering only the first five terms of
the series. The entire procedure for the derivation of Eq. 2.10 is shown on appendix
A.2.

A Levenberg-Marquardt algorithm [MAR 63] is then applied for the estimation of
the transport properties by correlating the non-linear Eq. 2.10 with mass uptake mea-
surements by the least-squares method. This algorithm is based on the iterative reso-
lution of the following system of equations:

[
Jt J

]
n un+1 = Jt

n

[
mexp,i −m (un , ti )

]
(2.13)

where the subscript n indicates the iteration, mexp,i is a series of experimental mea-
surements at the time coordinates ti , u is the vector of the parameters

(
δp ,ξ,hp

)
and J

is the matrix of the derivatives of m with respect to u:

Ji , j =
∂m (u, ti )

∂u j
(2.14)

The expressions of ∂m/∂δp , ∂m/∂hp and ∂m/∂ξ required in this expression can all be
derived analytically from Eq. 2.10.

This procedure requires a sufficient input of mass measurements mexp,i , preferably
evenly spaced in time. It theoretically allows the calculation of all parameters influenc-
ing the water uptake rate of the specimen, but might lack of accuracy when attempting
a simultaneous estimation of all three, due to the approximations. These matters will
be addressed in Sec. 2.3.2.2.
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2.3 Results and discussion

Each of the two methodologies presented in Sec. 2.2.2 was applied with its correspond-
ing humidity program in order to simultaneously measure the permeability of sample
series. The advantages of each method are compared and summed up as a conclusion.

2.3.1 Equilibrium moisture content

In order to confirm the assumption under which fractures have a negligible impact
on the sorption isotherm of fibre-reinforced mortar, the equilibrium weight of intact
and damaged specimen was measured at two humidity points (50 and 75%RH). The
samples were first placed in a stable 50%RH environment until complete equilibrium
was reached (defined as two identical consecutive weighings at 48 h time interval). The
same measurements were then performed at 75%RH. The results are displayed in Table
2.2.

∆w [kg.m−3] ∆̃w [kg.m−3]

D = 0 (8 samples) 6.27 0.63

D > 0 (6 samples) 6.12 0.47

Table 2.2: Average value ∆w and standard deviation ∆̃w of the equilibrium moisture
content variation from 50%RH to 75%RH

These results do not form a full characterisation of the sorption isotherm, but con-
firm the original hypothesis, under which the moisture retention capacity of the ma-
terial is not impacted by cracks. Indeed, the porosity of the studied material being
relatively high, its specific area was globally not impacted by smeared cracks. These
measurements also allow an other assumption: the total mass uptake under 75%RH
is quite low and allowed assuming that no continuous liquid phase has appeared in
the porous network, thus validating the present methodology for the estimation of the
water vapour permeability.

2.3.2 Water vapour permeability

2.3.2.1 Method 1: square root of time

After a stepwise rise in ambient relative humidity, the permeability of the samples
placed in the climatic chamber is proportional to the square of the slope of mass up-
take versus square root of time. Such a mass uptake during one of the high humidity
steps of the Nordtest protocol is shown for two samples in Fig. 2.7, along with the cor-
responding linear approximations.
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Figure 2.7: Profiles of mass uptake versus square root of time in two samples after a
stepwise increase of humidity

Each time the humidity program was started, some of the scales in the chamber
were occupied by non-damaged samples and the remaining scales by variously dam-
aged samples. Each one is characterised by the ratio of its mass uptake rate to the mean
mass uptake rate of the intact samples during high humidity phases of the Nordtest
protocol. After 48 h at 50%RH, the protocol runs during 5 days. The value of the relative
permeability is computed in all samples based on all high humidity steps of 75%RH.
The result for each sample, displayed on Fig. 2.8, is the averaged permeability over
these five consecutive mass uptake measurements.
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Figure 2.8: Average relative permeability calculated with method 1 (crosses) and
method 2 (circles); the vertical lines show the standard deviation of method 1 over the
series of measurements.

According to this definition, the value of the averaged relative permeability was set
to 1 for D = 0. Each point of Fig. 2.8 represents one of the samples, and its relative
permeability presented on the graph is the mean value for all the high humidity steps
it has been subjected to. The progressive wetting and drying steps of a same series of
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measurements may have an influence on the gap in mass uptake between intact and
damaged samples, though such a trend was not captured here.

A trend can be observed, showing a potential permeability increase of up to 50%
in the material before macroscopic fracture propagation. Although the uncertainties
are quite high due to the high heterogeneity of the material and the characterisation
of damage by a single value for the entire surface of the sample, measurements have
shown an increase of permeability for the earlier stages of damage, followed by a de-
creasing trend for higher values of D. A possible explanation for this behaviour is a
damage process occurring in two phases: at first, a smeared pattern of microscopic
cracks, perpendicular to the exposed surface, extends through the porous network, in-
creasing its connectivity and allowing a faster vapour adsorption in the intact parts
of the material. At further loading stages, the exposed crack surface reaches a maxi-
mum value, thus no longer involving an increase in permeability. The observed subse-
quent decrease of permeability with increasing damage, though seemingly contradic-
tory, can be explained by the propagation of a macroscopic fracture causing the closure
of neighboring cracks, thus reversing the process of increasing pore network connec-
tivity. The crack development in this material under compression has previously been
analysed by [ELA 07] and showed similarities with such observations.

Since damage has induced an increase of up to 50% in water vapour permeability,
finite volume simulations were run in order to find out whether such an increase could
imply a significant change in the daily moisture content fluctuations of the material
submitted to the Nordtest protocol, even when considering the sorption isotherm un-
changed. The transport equation for moisture transfer was implemented into a simple
algorithm using 1-D finite volume method with an implicit temporal discretisation.
The setup of the simulations was the same as in the experiments (see Fig. 2.5). The hu-
midity profile within the material was computed at each time step and summed over
the domain, as to obtain the total water content per unit surface versus the time of the
simulation. Results of these simulations are shown on Fig. 2.9 for a 24 h phase. Results
are displayed as a mass uptake by unit surface.

The procedure is as follows: the mass profile of a raw sample (D = 0, crosses) is
approximated by setting a value of δp by trial and error. The simulations are based on
the previously measured value of ξ from 50 to 75%RH, and on an empirical value from
50 to 33%RH: this lower value of ξ was set so that the mass profile of the undamaged
sample fitted the measurements. Therefore, eventual hysteresis effects are expected to
be included by the setting of the lower value of ξ. Once a close fit was reached for the
intact sample, the permeability was raised by 50% in order to simulate mass uptake in
a damaged sample, which was compared to the measured mass profile in a sample of
relative permeability of 1.5 (D = 0.57, circles).

Both simulations and experiments confirmed an increase of 50% in permeability,
caused by microcracking, results in a 20% higher amplitude of the daily moisture fluc-
tuations (denotes ∆m on Fig. 2.9). It must be noted that such an increase in the am-
plitude of fluctuations was reached although the equilibrium moisture content was
considered unchanged by any amount of damage imposed to the material.
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Figure 2.9: Mass measurements during one day of the Nordtest program and corre-
sponding profiles computed by finite volume simulations

2.3.2.2 Method 2: analytic resolution of the transport equation

In addition to the study of adsorption during daily humidity cycles, the permeability
was also estimated by attempting to coincide Eq. 2.10 with the measured mass uptake
during a high humidity step. For this purpose, the climatic chamber program imposed
a single 24 h stage of 75% relative humidity, following a supposed equilibrium state of
50%RH. These measurements are then used as an input for the Levenberg-Marquardt
algorithm presented in Sect. 2.2.2.2 for an estimation attempt of

(
ξ,hp ,δp

)
. Although

the surface transfer coefficient hp is not a material property, its value is unknown for
the present experimental configuration (ventilated climatic chamber). For the sake of
this methodology, the slope of the sorption isotherm ξ is considered constant in this
humidity interval. This assumption is reasonable in regards to the relatively low mea-
sured value of the equilibrium moisture content at 75%RH. The procedure for calcu-
lating transfer properties consists in three steps:

1. The algorithm is first run considering all three parameters as unknown.

2. The slope of the sorption isotherm ξ is set to a known value, as it was previously
measured in this humidity range, and the algorithm is then run considering the
two remaining parameters as unknown.

3. The surface transfer coefficient is set to its average value calculated at step 2, and
the algorithm was then finally run for the calculation of the permeabilityδp only.

The first step, simultaneous estimation of all parameters, resulted in estimates of
the moisture capacity ξ far from their measured values. Such an estimation of the
moisture equilibrium content based on only 24 h of measurements was found inac-
curate. A similar method for simultaneous approximation of the sorption isotherm
and permeability based on a stepwise change in relative humidity was recently pre-
sented by [AND 08]: the diffusion coefficient can be estimated within the first hours
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of measurements from the slope of the mass uptake curve versus square root of time.
The sorption isotherm however is obtained from extrapolation of the equilibrium mass
before it is reached, and an early interruption of the measurements usually leads to an
inaccurate estimation. Similar results are found in this study, as trying to calculate
ξ from only 24 h of mass uptake measurements results in erroneous estimates of the
sorption isotherm.

The second step corrects this fault by setting the value of ξ for all samples, that
has been measured prior to the tests. The algorithm is then used for the estimation
of the surface transfer coefficient and the moisture permeability. This simplification
is made possible by the fact that the slope of the sorption isotherm is assumed to be
undisturbed by the presence of cracks and therefore is not considered a function of D.
Five samples were used for this step of the calculation. An increase in the water vapour
permeability with increasing values of D could be noticed, although different values of
β were also obtained for all samples.

The climatic chamber in which the samples are placed is well ventilated and it is
likely that the surface transfer coefficient should have similar values on all samples, as
it is not a material property. The recorded values of β have an average of 3.0× 10−8

[kg.Pa−1.m−2.s−1] and a standard deviation of 6.33×10−9 [kg.Pa−1.m−2.s−1]. Therefore,
it cannot be stated that the second step of the calculations results in an accurate esti-
mation of the permeability.

The third step of the calculations is based on this average calculated value of β, and
is run with δp as the only unknown variable. Results of this last step are shown on Table
2.3 and Fig. 2.10. They were also included in Fig. 2.8 for comparison with method 1.

D 0 0.401 0.497 0.689 0.697

δp (×10−13 [kg.Pa−1.m−1.s−1]) 8.46 10.63 10.79 9.23 9.96

Table 2.3: Final computed values of the moisture permeability

These computations result in the same observations as in method 1: the water
vapour permeability increases with moderate values of D and tends to decrease for
higher values, but a clear trend cannot be observed.

2.4 Conclusion

Two methods were presented for the estimation of the influence of mechanical dam-
age on the water vapour permeability of fibre-reinforced mortar. The main asset of
these methods is to enable comparing multiple samples in which the adsorption rate
is measured at the same time, without a prior knowledge of the equilibrium moisture
content.

The first method, based on alternative low and high humidity steps, gave a direct
estimate of the behaviour of the material placed in realistic climatic hygric conditions
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Figure 2.10: Mass uptake of damaged and undamaged samples during the first humid-
ity step and fitting of the water vapour permeability

and allows to compare the permeability of several samples which sorption isotherm
is not necessarily known. The second method is directly based on the resolution of
the one-dimensional moisture transport equation and also allowed the estimation of
the convective mass transfer coefficient in addition to the moisture diffusivities of the
samples.

In both cases, a trend can be noticed in an increase in water vapour permeability for
earlier stages of damage, followed by a plateau for medium values of D and a decrease
at higher values. This can be explained by the fact that the first signs of damage occur
quickly once the applied stress exceeds the elastic strength of the material, causing
a drop in the global tortuosity of the porous network. Further loading then seemed
to increase the width of these discontinuities rather than their number, which might
explain a slower increase in permeability. At a further point in the loading process, the
stress distribution within the material tends to concentrate on a single crack tip which,
when propagating, will close neighboring microcracks. This caused previously opened
paths for moisture to close and may explain the observed decreasing tendency for the
vapour permeability at high values of damage. Loading stages beyond the peak strain
have not been investigated here, but it is expected that the water vapour permeability
is far less influenced by macroscopic fractures than the liquid conductivity, which can
rise on several orders of magnitude between intact and cracked samples.

The increase rate of δp with the damage value is most likely to be influenced by the
nature of the material itself, as the degradation of the elastic modulus can be caused
by various forms of microstructural dislocations or, in the case of cementitious materi-
als, of interfacial debondings. The particular formulation of mortar used in this study
was specifically designed as to be less brittle as standard cement paste and to present
an important diffuse damage before failure. The observable increase in water vapour
permeability might therefore occur differently for other cementitious materials. Such
results are also to be related to measurements of liquid permeability of fractured con-
crete, of which aim and conclusions are similar[CHO 07, HOS 09]: the effects of mi-
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crocracking on transport coefficients, although not negligible, depend on the material
and on the type of loading.

These results confirmed the prognosis formulated at the end of the bibliographic
study: the use of a single macroscopic damage variable may only allow a coarse de-
scription of diffusely damaged media and their permeability. Such a simple description
of damage cannot properly capture all geometrical properties of the cracks, that may
influence moisture and heat flows. These properties become essential for the mod-
elling of flow in macroscopic fracture networks that may develop in construction ma-
terials. To this aim, a reliable crack characterisation technique at the building scale
must be found: this is the subject of the following part of the manuscript.
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Chapter 3

Non-destructive damage monitoring

Digital image correlation (DIC) and acoustic emission (AE) monitoring were

simultaneously performed during tensile loading tests of fibre reinforced mortar

samples. The full-field displacement mappings obtained by DIC revealed all ranges of

cracks, from microscopic to macroscopic, and an image processing procedure was

conducted as to quantify their evolution in the course of the degradation of the samples.

The comparison of these measurements with the acoustic activity of the material

showed a fair match in terms of quantification and localisation of damage. It is shown

that after such a calibration procedure, AE monitoring can be autonomously used for

the characterisation of damage and fractures at larger scales.
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The importance of fracture and damage observation techniques for the under-
standing and prediction of fluid flow has already been underlined. Establishing a pro-
cedure for reliable measurements of crack patterns is essential to the present work,
as the upcoming transfer simulations will rely on experimental fracture data rather
than on damage modelling and failure prediction. An important requirement of these
measurements is to provide damage mappings as well as geometrical characteristics
of macroscopic fractures, in order to allow implementation of either continuum or
discrete models. In the following, we chose the terms of damage monitoring to de-
scribe measurements taking place during material degradation, and of crack detec-
tion if measurements are performed after degradation. As previously reviewed in Sec.
1.3.1.2, three main classes of methods can be considered: post-damage imaging, dis-
placement mapping, and acoustic emission.

Imaging techniques for crack detection include X-ray radiography and tomogra-
phy [SLA 63, TOD 04] for three-dimensional fracture observation [LAN 03] or propa-
gation monitoring [LAN 07]. The detection of pre-existing cracks can be facilitated by
impregnation techniques [HOR 96] allowing their automatic detection and quantifica-
tion [AMM 00] by microscopic examinations. While these techniques may have a good
resolution and precision, they are limited in terms of specimen size and thus not appli-
cable at the building scale. Another possible method for such large scale applications is
the recording of elastic wave velocities, which can for instance be applied to durability
studies or to repair work assessments [SHI 09].

Displacement mapping techniques are applicable to damage monitoring, and con-
sist in measuring local displacements of a sample during its deformation. Electronic
speckle pattern interferometry [JIA 94, SHA 99] and digital image correlation (DIC)
[SUT 83] are optical non-destructive techniques and can be used for the observation
of the progressive crack development, or more generally of two-dimensional strain
mapping. Optical methods have also been recently extended to three-dimensional dis-
placement and strain fields [ORT 09, CHA 10a].

A third category of damage monitoring methods includes the recording of acoustic
emissions (AE). In a material under loading, elastic waves are emitted as a consequence
of crack initiation and propagation. Recording and analysis of acoustic activity is of
great importance in the fields of seismology and civil engineering. Among others, it has
been used for damage estimation of concrete [OHT 01, COL 03, SUZ 04], identification
of damage mechanisms [PHI 98, GOD 04, GOD 06, ELA 07, OHN 10, MOM 12], estima-
tion of the fracture energy [MUR 10] or failure prediction [SHI 94, MOM 10, MAI 12].

The present step of the study aims at investigating which technique may be appli-
cable for in situ damage identification in building components. Acoustic emission and
other wave propagation measurement techniques are the most preferable methods for
large scale damage monitoring, but the interpretation of recorded waveforms requires
preliminary studies. Digital image correlation and acoustic emission recording were
simultaneously performed during tensile loading of fibre reinforced mortar samples.
The methodology aims at correcting the downsides of two techniques by combining
them: the applicability of optical techniques hardly extends to field studies, while the
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interpretation of AE measurements is difficult without a view of the crack evolution.
A methodology is presented, which allows interpreting acoustic signals on the basis
of a previous characterisation. Mortar samples were loaded by uniaxial tension while
the local displacements of their surface were monitored by a camera, and the acous-
tic activity was recorded by sensors placed around the damaged area. By correlating
the data gathered by the two techniques during this lab experiment, it is possible to
interpret field AE measurements with more clarity. The main target is therefore to cal-
ibrate the AE technique, so that it can be autonomously used for damage monitoring
of building components [ROU 13].

3.1 Methodology

3.1.1 Experimental setup

The experimental setup is based on the same formulation of fibre reinforced mortar
as in the preliminary study. Its elaboration process is described in Sec. 2.1.1. The
prismatic samples were notched as to ensure stress concentration on a relatively small
area during mechanical loading, on which the observation was focused. Tensile load-
ing was applied along the vertical axis, using a 5 kN force cell imposing a constant
displacement speed of 1 mm/min. The tests were carried out until complete failure of
the specimen. The setup of the samples and of the observation equipment is displayed
on Fig. 3.1.

Figure 3.1: Experimental setup for tensile loading and damage monitoring

The experimental setup includes a CCD camera with a fixed 2.8 focal ratio, focused
on the surroundings of the notch. Because of the shallow depth of field of the camera in
this configuration, the focus is manually fixed as to prevent an automatic adjustment
of the lens during the tests. The camera was positioned as to cover an observation
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zone of 101×67 mm with a spatial resolution of 22 µm/pixel. A non-uniform speckle
pattern was applied on the specimen surface with a black paint spray as to facilitate
the procedure of the correlation algorithm: this ensures that the initial gray-scale level
distribution is close to random. Pictures were taken at time intervals of 5 or 10 seconds
in order to allow computation of the displacement mappings during successive stages
of loading. The camera was used as an optical extensometer to monitor the macro-
scopic strain in the direction of loading. The material presents some ductility before
the peak of loading [ROU 12a], followed by a strain-softening behaviour during which
crack propagation is slowed by the presence of fibres. This behaviour enabled the pro-
gressive damage monitoring by acoustic and optical measurements.

In addition to the optical monitoring apparatus, four Micro-80 acoustic sensors
were placed around the monitored area of the specimen, continuously recording the
AE activity during damage and fracture propagation. The sensors form a 80×70 mm
(height×width) area and are connected via pre-amplifiers to a MISTRAS data acquisi-
tion system. They have a diameter of 8 mm, and are characterised by the position of
their center. The settings of the AE recording setup are detailed below.

The methodology has been applied on a series of samples, 6 of which showed suit-
able for data interpretation (i.e. stress concentration and fracture occured in the ob-
servation area). Results are presented in two parts: first, the ability of digital image
correlation for the observation of fracture patterns is assessed (Sec. 3.2). Strain map-
pings are calculated by the DIC algorithm and a procedure is explained for observing
the evolution of crack size distributions during tensile tests. In the second part (Sec.
3.3), these optical measurements serve as a basis for the interpretation of AE record-
ings. Measurements performed on all samples were used to establish the ability of AE
to quantify, locate and identifty damage and fractures.

3.1.2 Digital image correlation

Optical techniques such as DIC are non-destructive and therefore do not disturb even-
tual further testing on the samples. DIC provides a full map of the deformations at
the surface of a specimen and allows following the fracture development without re-
striction of number or size of the cracks. It also presents the advantage of being easily
implemented into most experimental setups, requiring no strict operating conditions
or time consuming preparation, nor does it require gauges in contact with the speci-
men which might interfere with the experiment. The technique enables full field mea-
surements of the local displacements of a sample’s surface. It has been used for the
estimation of stress intensity factors near crack tips [RET 05, ROU 06] or the identifi-
cation of elastic properties [HIL 06] or damage laws [LEP 10], among other uses. The
technique has also been proven suitable for the observation of local displacements of
brittle building materials such as concrete [CHO 97, COR 07, ROU 12b], and of crack-
ing due to drying shrinkage in coating mortar [MAU 12]. The principle of DIC is briefly
summed up below. For a more complete view of its theory and applications, one can
refer to a recent book on the subject [SUT 09].
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The principle of digital image correlation is the conservation of the optical flow be-
tween two pictures of a specimen, taken at different stages of its deformation [SUT 83]:
it lies on the assumption that two consecutive images contain the same total amount
of each gray-scale level, and are only distinguished by their spatial distributions. The
planar displacement u (x) at each pixel of coordinates x of a surface is defined as:

g (x+u)= f (x) (3.1)

where f is the distribution of gray-scale level, or the texture, of a reference image, typ-
ically taken at the start of the mechanical loading, and g is that of a deformed image.
Eq. 3.1 means that the gray-scale level of a pixel of coordinates x on the initial image f

is equal to that of a pixel of coordinates x+u on the final image g , i.e. that this pixel has
been displaced by a vector u. The exact displacement field u(x) can generally not be
explicitely calculated without additional assumptions of regularity. In the prospects of
the numerical resolution of Eq. 3.1, the functional φ, operating on displacement fields,
is defined:

φ (v) =
Ï(

g (v+x)− f (x)
)2 dx (3.2)

where v is an approximation of the solution u, and is constructed as a linear combina-
tion of functions vi :

v (x) =
∑

Ni (x) vi (3.3)

where Ni are chosen basis functions (typically bilinear functions of x). The target is
to determine the best possible approximation by minimising the value of φ on all el-
ements of the grid. Assuming a certain smoothness of the investigated displacement
field, g is replaced by its first-order Taylor expansion in Eq. 3.2, resulting in:

[Ï(
∇g (v+x)⊗∇g (v+x)

)
:
(
N j ⊗Ni

)
dx

]
vi =

Ï(
f (x)− g (x)

)
∇g (x) Ni (x)dx (3.4)

Since f , g and Ni (x) are known, Eq. 3.4 is a linear system of unknowns vi , from
which the approximate displacement field v can be obtained. Understandably, the
choice of the basis functions Ni (x) is important for a good approximation of the dis-
placement field, and several options have been presented in the literature for different
types of mechanical tests. In the present case, the computation of the displacements
is achieved with the Icasoft software1, which uses bilinear finite element shape func-
tions. The displacement field is analysed by dividing the image into grid elements,
each of which is assigned two displacement components in the decomposition of Eq.
3.3. The result of Eq. 3.4 is a rough estimate of the real solution, since it only computes
an integer number of pixels for the displacement fields. Subpixel displacements can
be determined by interpolating the displacement fields between elements of the grid
with bilinear or spline functions [HIL 06].

The result of the algorithm is an approximation of the displacement field u of each
point of the surface. While gradients of u define the strain fields, a local displacement

1Icasoft Digital Image Correlation Software - http://icasoft.insa-lyon.fr/
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jump indicates a discontinuity that appeared after the reference image was taken: in
quasi-brittle materials, it translates as a crack of measurable aperture.

3.1.3 Acoustic emission

3.1.3.1 Principle

In a material under loading, elastic waves are emitted as a consequence of microstruc-
tural dislocations or crack propagation suddenly releasing stored energy. An AE hit
occurs as a signal captured by a sensor exceeds a pre-set threshold value of amplitude.
The successive peaks of amplitude shape the waveform of the signal, as long as they
occur within a small enough time frame. Three timing parameters (peak definition
time, hit definition time and hit lockout time) are set for distinguishing signals from
an uninterrupted AE stream. The result of the measurement procedure is a set of tem-
porally separated AE hits being captured during the recording process. In the present
study, the interpretation of these measurements is threefold: we investigated how AE
signals can be used for damage quantification, localisation and identification.

Quantitative damage estimations consist in measuring the mechanical degrada-
tion state of a material sample on the basis of the number of recorded AE signals, or
on their generation rate. Ohtsu and Watanabe [OHT 01] performed such a diagnostic
procedure on concrete samples and established a relationship between the AE emis-
sion rate and damage evolution. Similar analyses were later carried out by Suzuki and
Ohtsu [SUZ 04], among others.

It is also possible to locate the source of a signal by placing several sensors in con-
tact of a specimen. When the propagation speed of AE waves in the given material
is known, the different arrival times of a same hit at each sensor enables the localisa-
tion. The source can be located on a 1D axis with two sensors, on a plane with three
and in 3D with four. Examples of 2D or 3D crack and damage localisation include
[GRA 07, OHN 10] and generally employ more sensors than strictly necessary, for ac-
curacy purposes. In the following, the term of AE event denotes a hit received by all
sensors placed on the sample.

3.1.3.2 Settings

The propagation speed of acoustic waves in each material sample was measured prior
to the tests with the lead breaking procedure: a repeatable AE wave is generated on
the specimen surface by breaking pencil leads and measuring the difference in arrival
times between sensors. This method also allows measuring the attenuation of the ma-
terial, i.e. the amplitude decrease of a wave per unit length. The average measured
values of the propagation speed and attenuation coefficient are shown on Tab. 3.1,
along with the settings of the AE recording system.

During mechanical tests, four AE sensors were placed on the specimen as shown
on Fig. 3.1, forming a 80×70 mm area. The acquisition system records the waveform
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Preamplifier gain 40 dB

Threshold of detection 32 dB

Peak definition time 50 µs

Hit definition time 100 µs

Hit lockout time 1000 µs

Propagation speed 2313440 mm.s−1

Attenuation 0.25 dB.mm−1

Table 3.1: Settings of the AE acquisition system

of all AE hits received by all sensors. When a signal is captured by three or more sen-
sors within a small enough time frame, a localisation algorithm is run as to calculate
the 2-dimensional coordinates of its source. In case of a signal captured by four sen-
sors, the calculation is repeated for all combinations of three, and the final result is
the averaged value of all combinations. The following usual assumptions are made for
simplifications purposes: the specimen thickness is neglected, AE propagation speed
is uniform and constant (not influenced by damage). Because of these assumptions,
and of the heterogeneity of the material, uncertainties are expected in the results of the
localisation process.

3.1.3.3 2D signal localisation

Principle

The present paragraph describes the numerical procedure for the localisation of
AE sources, based on the arrival time of the emitted waves at each sensor placed on a
sample surface. Fig. 3.2 serves as a pictural support for the following explanations.

When a hit is detected by two sensors, the distance from the source M to each of
these sensors, A and B, is related to the difference between the two arrival times of the
wave tA and tB

MB−MA = (tB − tA) V (3.5)

where V is the propagation speed of AE waves in the medium, and was measured prior
to the tests. This is the equation of a hyperbola branch of parameters a, b, c and ec-
centricity e defined as such:

a =
(tB − tA) V

2
; b =

√
c2 −a2 ; c = AB ; e =

c

a
(3.6)

assuming the wave reaches A before B. If the AB segment forms an angle θ with the
first coordinate axis and its midpoint is denoted I, as is pictured on Fig. 3.2(a), the
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M

θ

A

I

B

(a) (b)

Figure 3.2: Localisation of an AE source after a signal has been captured by 2 sensors
(a) or 3 (b)

hyperbola branch can be described by means of the following parametric equations:

(
x

y

)
=

(
xI

yI

)
+

(
cosθ −sinθ

sinθ cosθ

)(
−a cosh t

b sinh t

)
(3.7)

Therefore, if an AE wave is detected by only two sensors, its source can not be precisely
located, as it can range over an entire branch of the hyperbola (the minus sign in the
last term of Eq. 3.7 indicates that it can only belong on the branch surrounding the first
sensor). The spatial coordinates of the source

(
x, y

)
are expressed after one parameter

t , that is only bounded by the size of the specimen. However, if the wave is captured by
three sensors, Eq. 3.5 can be written twice, defining two hyperbola branches, of which
intersection indicates the origin of the AE signal as shown on Fig. 3.2(b).

(
xI1

yI1

)
+

(
cosθ1 −sinθ1

sinθ1 cosθ1

)(
−a1 cosh t1

b1 sinh t1

)
=

(
xI2

yI2

)
+

(
cosθ2 −sinθ2

sinθ2 cosθ2

)(
−a2 cosh t2

b2 sinh t2

)
(3.8)

Accuracy assessment

An accuracy test of the signal localisation algorithm was performed prior to the me-
chanical loading tests. First, the isotropy of the material in regards to the propagation
speed was confirmed. Then, sensors were placed on a specimen surface and pencil
leads were broken on a set of test points. Five lead breaks were performed on each of
the five test points. Pencil breaks have a high energy release and are easily distinguish-
able from background noise: weaker events were filtered out, and stronger ones were
localised. The results are shown on Fig. 3.3.

The accuracy of the localisation algorithm is estimated by comparing the exact ori-
gins of the signals (the test points) with the computed ones: the overall precision of the
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Figure 3.3: Accuracy testing of the localisation procedure

results is satisfactory but irregular. Acoustic waves generated in the center of the moni-
tored area are the most accurately located. Inversely, signals originating from the sides
of the monitored area are found with less precision. The material is indeed heteroge-
neous and the propagation speed may exhibit local variations due to variable pore and
grain sizes [ROU 12a]. The accuracy of the algorithm is however considered sufficient
for the purpose of the study.

3.2 Imaging results

All material samples were loaded as described above and pictures of their surfaces were
taken at time intervals of 5 or 10 seconds during loading. For purposes of clarity, the
procedure for extracting the crack size distributions from the optical measurements
is illustrated with one of the samples (later labeled as sample 1). The results are then
displayed for all samples on Fig. 3.7.

The correlation algorithm works by applying Eq. 3.4 to the reference image f (taken
at the beginning of the loading process) and the deformed image g (taken during load-
ing), in order to compute the displacement field over a grid on the specimen surface.
Fig. 3.4 shows the image of the sample surface from the CCD camera shortly after crack
initiation, before its input into the correlation algorithm. The calculation area of the
DIC algorithm is delimited by the notches and shown by the red dotted line.

The influence of the grid size on the accuracy of the subpixel interpolation algo-
rithm has been studied by many authors (see for instance [BES 06, HIL 06]). With the
settings of the present work, i.e. a grid composed of 8×8 pixel elements, performance
estimations show a possible accuracy of 10−1 to 10−2 pixel for the computation of the
displacement fields: in the present case, the displacement uncertainty is under 1 µm.
An example of strain mapping resulting from the correlation procedure is shown on
Fig. 3.5, on which the gray scale levels indicate the local value of the longitudinal strain
in the direction of loading.
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Figure 3.4: Original picture in 8-bit gray scale showing the input area of the DIC algo-
rithm
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Figure 3.5: Example of a longitudinal strain mapping

This local strain value is the gradient of displacement between adjacent pixels.
Since the material is quasi-brittle, locally high values indicate the presence of cracks.
These cracks originate from the tips of the notches (y = 0 mm, x = 0 or 70 mm) and
spread on a relatively large area of over 40 mm height. The present example shows the
state of the sample surface shortly after the initiation of a macroscopic fracture (see
Fig. 3.5(a)). The displayed strain mapping (Fig. 3.5(b)) therefore includes cracks of a
wide range of apertures.

On the basis of these full field strain mappings, a methodology is proposed and
implemented to measure the aperture and total length of all cracks appearing on the
sample surface: successive thresholds were applied on each strain mapping, as to only
display cracks exceeding certain values of aperture. Image processing of the resulting
profiles allowed measuring the total developed crack length in each width interval. An
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example of this procedure is shown on Fig. 3.6
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Figure 3.6: Image processing procedure for the measurement of crack size distribu-
tions: thresholds of 2 µm (left) and 5 µm (right)

Fig. 3.6(a) and 3.6(b) show the strain mapping 3.5 once it has been thresholded
as to only display discontinuities of over 2 µm and 5 µm, respectively. The appearing
patterns were processed by topological skeletonisation in order to reveal cracks as tor-
tuous linear paths: the skeleton of a shape is a thin version that is equidistant to its
boundaries, and preserves its main geometrical properties, such as its length, connec-
tivity and direction. The ImageJ software was used for this process. As an example,
its applicaton to the distributions showed on Fig. 3.6(a) and 3.6(b) are respectively on
Fig. 3.6(c) and 3.6(d). The resulting paths are measurable, and the substraction of the
total visible crack length of Fig. 3.6(c) by that of Fig. 3.6(d) gives the amount of cracks
of which aperture w is in this interval. The procedure was performed on each succes-
sive strain mapping of each specimen, for a set of threshold values allowing separating
microcracks from larger fractures: 3, 5, 10, and 50 µm. The results are shown on Fig.
3.7.

These results are displayed as total visible crack length in each aperture interval,
per square meter of specimen surface, as a function of the progression of the mechani-
cal loading process. This progression is quantified by ǫ/ǫpeak, where ǫpeak indicates the
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(c) Sample 3
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(d) Sample 4
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(e) Sample 5
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(f) Sample 6

Figure 3.7: Visible fracture length per square meter of sample surface : (1) 3 ≤ w < 5
µm, (2) 5≤ w < 10 µm, (3) 10≤ w < 50 µm, (4) w ≥ 50 µm
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value of peak strain. The observation was limited to crack apertures exceeding 3 µm,
as smaller strain values may be difficult to distinguish from the background noise of
the mappings. Two observations can be made on the basis of these profiles:

• Smaller crack ranges always appear first during loading. The development of
successive ranges of aperture follows the same order, from smaller to larger
cracks. While this observation was to be expected, the clear visualisation of this
succession indicates the validity of the methodology for quantifying cracks by
ranges of size.

• In most samples, the smaller ranges of fissures reach a maximum around
ǫ/ǫpeak = 3 to 4, before decreasing. This phenomenon is caused by the presence
of a macroscopic fracture, that initiates around ǫ = ǫpeak. The opening of this
fracture causes neighboring cracks to close, decreasing the total length of the
smaller scales.

In addition to these results, a specific fracture area Afrac was defined as such:

Afrac (t ) =
∑

i

w i li (t ) (3.9)

where the subscript i ranges over the number of aperture subsystems measured by the
image processing procedure. w i is the mean crack width of the corresponding subsys-
tem and li its specific length, i.e. the ordinate of Fig. 3.7. The specific fracture area is
therefore a summation of the visible lengths of all intervals, weighted by their respec-
tive openings. For the purpose of this calculation, the amount of aperture subsystems
is greater than that displayed on Fig. 3.7: ranges were defined between values of 2, 3, 5,
10, 50 and 100 µm. Afrac is non-dimensional and represents the ratio of visible sample
surface occupied by cracks. The purpose of defining this quantity is the comparison of
DIC and AE results, as explained below.

These measurements show that digital image correlation allows measuring all ge-
ometrical characteristics of cracks that may influence fluid flow in a construction ma-
terial. With a relatively simple experimental setup, and the appropriate set of tools for
image processing, the progressive opening and closing of discontinuities can be quan-
tified without restriction of number or density. Although it is limited to 2-dimensional
observations in the present case, the technique is therefore suitable to serve as a basis
for the understanding of acoustic signals recordings. The following section shows how
DIC can be used for the calibration of AE measurements, so that this technique can be
autonomously used for damage monitoring of building components.

3.3 Interpretation of acoustic emission

3.3.1 Damage quantification

First, an attempt of global damage quantification was made on the basis of the total AE
activity. This activity is represented by the number of localised AE events, i.e. signals
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received by three or more sensors. Noise effects are therefore expected to be reduced,
as low-energy, non-localisable AE hits are not accounted for. Fig. 3.8 depicts the cu-
mulative number of AE events and the loading profile of each sample.

Acoustic signals start emitting before the peak of loading at a slow rate. The
recorded acoustic energy in this interval is low, and few signals can be captured as
the material’s acoustic attenuation is relatively high (approximately 0.25 dB.mm−1).
These signals are emitted as a consequence of the previously observed microcracking.
The profiles of cumulative AE events then increase significantly after peak strain: on
all tests, high AE rates can be seen to occur simultaneously with sudden stress drops
caused by crack propagation.

As a consequence of this observation, an attempt was made to correlate the total
amount of visible fractures, previously observed by optical measurements, with the
cumulated AE activity at each time of loading. For all available data points, the value
of Afrac was compared with the cumulated AE activity at the corresponding time of the
test. Fig. 3.9 shows this comparison over all strain mappings captured during loading
of all samples, representing a total of 83 data points.

It has already been found [OHT 01, SUZ 04] that the AE rate can give a quantita-
tive indication on the damage level of construction materials. This is confirmed in the
present case: the profile of fracture specific surface Afrac versus cumulated AE events
N can be roughly approximated by a power law (see Fig. 3.9), resulting in a correla-
tion coefficient of R2 = 0.9236 between the results of both techniques (DIC and AE).
Such an agreement is quite satisfactory, considering that the two techniques rely on
very different physical principles. A connection was established between the amount
of cracks appearing on the surface of the specimen and the rate at which elastic waves
are released in the medium under tension. This observation confirms that AE can be
used for damage quantification of building components with fair accuracy, once it has
been calibrated by a method such as digital image correlation.

3.3.2 Damage localisation

The previous section addressed the matter of global damage quantification, and
showed a connection between the cumulated number of AE events and the total open-
ing of fractures. The resulting empiric evolution law, however, does not separate or
identify cracks of different sizes, nor does it allow their localisation. The present sec-
tion addresses the latter question by applying the localisation procedure, of which ac-
curacy was previously assessed. In addition to the set of variables describing its wave-
form, each AE signal is assigned one temporal and two spatial coordinates. All localised
sources were then superimposed with the strain mappings computed by the DIC algo-
rithm. Fig. 3.10 shows the example of five successive stages of a sample, indicated on
its loading profile 3.10(a).

The first image (Fig. 3.10(b)) depicts the sample surface at the stress peak, at the
time of initiation of a macroscopic crack. The red dots depict all AE sources that have
been located from the beginning of the test. As can be seen on Fig. 3.8, the cumulative
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Figure 3.8: Stress-strain profiles and cumulative AE signal distributions
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Figure 3.9: Fracture specific surface versus number of recorded acoustic events, and
power law approximation

number of AE events is still low at this point. A moderate concentration of signals orig-
inates from a relatively large area around the fracture process zone, and occurs mostly
ahead of the crack tip. After this point of the loading process, a higher emission rate
is recorded during macroscopic crack expansion. Fig. 3.10(c) to 3.10(f) show the state
of the sample surface during its propagation. This propagation generates significantly
higher concentrations of AE signals, that follow the crack trajectory.

The spatial correlation of both techniques is quite satisfying : most AE sources were
located in areas of high strain, and their progress through the width of the sample is co-
ordinated with the optically recorded crack propagation. The localisation procedure is
however not flawless, as showed in the previous paragraph. This can explain the im-
perfect match between spots of high AE concentration and crack patterns. An other
possibility is the fact that DIC only captures discontinuities that appear on the speci-
men surface, while AE sources originate from the entire volume. This matter is however
minimised by the small thickness of the sample.

These measurements were carried out on all tested samples, and led to similar re-
sults. An important outcome of this procedure is the observation that AE signals seem
to occur in two phases during the entire damage and fracture process. First, a mod-
erate number of spatially scattered waves can be recorded as the material undergoes
microcracking, distributed over a relatively large area. Then, during the propagation of
a macroscopic crack, AE signals are captured at a much higher rate. Although the sig-
nal concentration is higher, their spatial distribution is still scattered, possibly because
of the local variation of the AE wave propagation speed, which were not accounted for.
Distributed signals continue to be emitted ahead of the crack tip. It must be recalled
that most crack patterns appearing on the optical measurements have an aperture in
the order of a few micrometers: AE monitoring allows the observation of crack far be-
low the visible range.
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Figure 3.10: AE sources localisation (dots) and strain mapping (black and white pat-
terns)
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3.3.3 Damage identification

Signal localisation has added geometrical informations to the quantitative estimation
of damage. In addition to informing on the global degradation state of the material, it
has been shown that the AE technique may indicate where damage occurs, and give an
estimate of the trajectory of the main cracks. However, it does not provide a complete
understanding of damage mechanisms so far. The separation between microcracks
and larger fractures has been graphically showed and translates into different concen-
trations of signals, but these observations do not allow their systematic separation.

For this purpose, the waveforms of the recorded AE events were studied in an at-
tempt at identifying damage mechanisms. The waveform of a signal is the recording of
the amplitude fluctuations of the sensor picking it up. A schematic example of one is
shown on Fig. 3.11.

Signal duration

Amplitude
Peak time

Threshold

Figure 3.11: Scheme of an AE waveform

A signal is defined between the first and the last points at which the amplitude
exceeds the threshold of detection (shown by red circles), for as long as the time in-
terval between successive hits does not exceed the hit definition time (of 100µs in the
present case). The signal generally shows a steep increase in amplitude, followed by a
longer decay. Theresulting waveform can be described by means of several variables,
or descriptors, such as its average frequency, peak time, amplitude, duration, num-
ber of counts. . . Different crack mechanisms are expected to generate different types of
waveforms: attempting to identify these mechanisms on the basis of the descriptors is
the target of signal classification.

Two methods were followed for identifying the damage mechanisms from the
waveforms of the signals. First, we show how the evolution of signal amplitude distri-
butions allow crack scale scattering and specimen failure time prediction. A more thor-
ough classification was then conducted, sampling groups of signals exhibiting similar
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waveforms, in order to observe their spatial distribution in the material.

3.3.3.1 I b analysis

AE amplitude is associated with the magnitude of the fracture, since the emitted en-
ergy depends on the crack opening displacement. Microcracks that develop before
stress concentration and material failure are therefore expected to generate AE waves
of smaller amplitude than larger fractures. This assumption can be made to study the
development of the fracture process of concrete and rock-like materials.

In the field of seismology, the b-value serves as a predictive tool for material failure
and is defined as the ratio of AE events of small to large amplitude:

log10 N = a−b A (3.10)

where N is the number of signals, among a number of recently detected AE waves,
exceeding a given amplitude A. At any time during the development of damage, the
parameters a and b are defined by linear approximation of the current N versus A pro-
file. High b-values therefore indicate a prevalence of microcracks, while lower values
indicate their coalescence into macrocracks. An improved value of this indicator, or
I b-value, was proposed by [SHI 94] and applied by [COL 03, AGG 11], among others, to
study the fracture behaviour of concrete:

I b =
log10 N

(
µ−α1σ

)
− log10 N

(
µ+α2σ

)

(α1 +α2)σ
(3.11)

where µ and σ are the averaged value and standard deviation of the AE amplitude
among the group of recent hits, α1 and α2 are filtering parameters (both were set to
0.5 in the present study). At any given time, N

(
µ−α1σ

)
indicates the number of re-

cent events, of which amplitude exceeds µ−α1σ (similarly, N
(
µ+α2σ

)
indicates the

number of recent events of which amplitude exceeds µ+α2σ). The definition of the I b-
value is similar to that of the b-value, with an additional filtering of non-representative
signals of very high or low amplitude that might disturb the results.

At all times of a test, the I b-value is calculated from the amplitude distribution of
the 200 latest consecutive signals. In order not to filter out waves of smaller amplitude,
the procedure was applied on the basis of all recorded AE hits rather than of the lo-
calised events. Fig. 3.12 shows the I b profiles superimposed with the loading curves of
the fibre reinforced mortar samples.

As already mentioned, and seen by other authors [SHI 94, SHI 01], the evolution
I b is strongly related to the type of fracture. A common observation [COL 03, AGG 11]
is that it starts at higher values as the first signs of damage are in the form of diffuse
microcracking, generating mostly AE waves of low amplitude. Shortly before the initi-
ation of a macroscopic fracture, these cracks aggregate: the energy release increases,
decreasing the slope of the amplitude distribution. This results in a sudden drop of the
I b-value shortly before the maximum stress, that acts as a warning for the specimen
failure. Such a drop can be seen on most samples of which the I b profiles are shown on
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Figure 3.12: Loading and I b-value profiles of fibre reinforced mortar
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Interpretation of acoustic emission

Fig. 3.12. In the case of the present material, a decrease of the value under 0.03 to 0.04
is a fair indicator for crack initiation. This trend is however not always clear: indeed,
the material has a high acoustic attenuation and the number of low-energy signals,
detected before macro-fracturing, may be low.

As can be seen on Fig. 3.10, the time of drop of the I b indicator corresponds to
the time at which AE sources start concentrating in a narrow band close to the point
of macro-crack initiation. This observation indicates that, in addition to a quantitative
estimation of damage, AE allows the separation of fissures according to their size, as
well as the time and position of failure.

3.3.3.2 Signal classification

In addition to the peak amplitude, an AE waveforms exhibit a number of parameters
that can be used for their classification. Indeed, as the energy release depends on the
type of crack, grouping AE events in classes of similar patterns may allow identifying
different damage mechanisms.

Two parameters are generally used for crack classification in concrete and rock-like
materials : the rise angle RA, or ratio of peak amplitude to rise time, and the average fre-
quency AF, or the ratio of number of counts to duration. Crack modes of concrete can
be identified on the basis of these two criterions: tensile cracks have a low RA and high
AF, while shear cracks have higher RA and lower AF. [IWA 97, SHI 01, OHN 10]. Crack
classification in composite systems however requires a more systematic approach. The
material under study includes Portland cement reinforced with dispersed polymer sys-
tems and glass fibres. As samples undergo tensile loading, AE waves may not only origi-
nate from tensile or shear cracking of the cement matrix, but also from fibre debonding
or the yielding of polymer bridges. A more complete classification methodology was
conducted in an attempt at separating potential classes of damage mechanisms. This
approach aims at being generalisable to new reinforced building materials such as en-
gineered cementitious composites [LI 03], which are increasingly used in construction.

The classification procedure follows the unsupervised clustering methodology de-
scribed by Moevus et al. [MOE 08]. The waveform of each AE event is described by 18
parameters, or descriptors. The correlation matrix of these features was calculated in
order to only select a representative set of descriptors and removing redundant ones.
Five descriptors were kept: average frequency, number of counts to the peak, rise fre-
quency, signal energy, and rise angle. A principal component analysis [JOH 02] was
performed in order to define uncorrelated features by linear combinations of the se-
lected descriptors [MOE 08]. A k-means algorithm [MAC 67, LIK 03] was then applied:
coordinates of cluster centers are first randomly initialised, then each pattern is as-
signed to the nearest cluster. For this purpose, an Euclidean distance is defined in the
space of the features found by principal component analysis. The new cluster centers
are then computed and the calculation is iterated as such until convergence.

The k-means algorithm is not a reproductible procedure and was conducted sev-
eral times for each number of clusters until an optimal solution was found. The qual-
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3. Non-destructive damage monitoring

ity of a classification is estimated by means of the Davies-Bouldin index [DAV 79]. The
procedure was performed on all samples, and the results shown on Fig. 3.13 and dis-
cussed below concern the sample 1.
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Figure 3.13: AE classification results

The optimal clustering was achieved with 4 classes, resulting in a Davies-Bouldin
index of 0.39. From these calculations, it cannot be confirmed that the identified
classes match with either tensile or shear cracks, or with other possible degradation
mechanisms. The understanding of all damage processes in the composite material
would require a more extensive study. As a consequence, the distinction between clus-
ters is not clear and does not allow a thorough interpretation of the results.

x (mm)

y 
(m

m
)

0 10 20 30 40 50 60 70

−20

−10

0

10

20

(a)

0 50 100 150 200 250 300
0

500

1000

1500

2000

Time (s)

C
um

ul
at

iv
e 

A
E

 e
ve

nt
s

 

 

Cluster1

Cluster2

Cluster3

Cluster4

(b)

Figure 3.14: 3.14(a) Spatial distribution and 3.14(b) cumulative number of AE events
by cluster

Some observations are however possible: the clusters labeled 3 and 4 include a
large majority of the signals, and mainly differ in terms of amplitude distributions, as
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Conclusion

shown on Fig. 3.13(a). It is possible, yet not ensured, that they respectively depict mi-
cro and macro-cracks. This assumption is confirmed by the spatial distributions of the
signals: class 3 signals, of lower energy, are scattered in a relatively large area, while
higher energy class 4 signals are concentrated along the trajectory of the macro-crack
(see Fig. 3.14(a)). Moreover, the emission of class 3 signals starts before initiation of
the macroscopic fracture (see Fig. 3.14(b)), and continues during the entire degrada-
tion process, while class 4 signals are nearly exclusively emitted during macro-crack
propagation.

This procedure, and the corresponding results, are an introduction to the possi-
bilities of AE clustering. Although the nature of the material (highly porous compos-
ite of high acoustic attenuation) renders the interpretation of the measurements diffi-
cult, it is possible, with such a methodology, to identify the damage mechanisms. This
has already been done on ceramic composites [MOE 08] and concrete [OHN 10] with
promising results.

3.4 Conclusion

In the purpose of extending the use of non destructive damage observation applied
to building materials, the present study consisted in the simultaneous use of digital
image correlation and acoustic emission for the monitoring of progressive damage de-
velopment in a formulation of fibre reinforced mortar under tensile loading. The aim
was to assess the ability of AE to provide quantitative measurements of the crack net-
works, and to calibrate it with the support of an optical technique. In the course of the
presented methodology, the following results were obtained:

• Digital image correlation, associated with an automated image processing pro-
cedure, allowed a precise two-dimensional mapping of damage patterns, from
micro-cracks to macroscopic fractures.

• The cumulative number of captured AE signals is a fair quantitative indicator of
the total developed crack area.

• Before propagation of a macroscopic fracture, a moderate number of AE signals
are emitted in a large area ahead of the crack tip. High concentrations of AE sig-
nals are then emitted along the crack trajectory, in fair accordance with damage
mappings performed by digital image correlation.

• The time and position of initiation of a macro-crack can be anticipated by means
of a simple indicator. The waveforms of the AE signals can be interpreted for
separating different scales of degradation.

The methodology can however be improved: a better localisation can be reached by ac-
counting for the variations of the AE propagation speed in the damaged material. This
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3. Non-destructive damage monitoring

is partially possible with preliminary measurements performed in a diffusely dam-
aged medium, but may be more challenging after fracture initiation and a highly non-
uniform distribution of cracks. Furthermore, a more thorough interpretation of the AE
waveforms may provide a better interpretation of the signals and a better understand-
ing of the degradation mechanisms of the material.
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Chapter 4

Moisture uptake monitoring and
modelling in a discrete fracture network

After having established reliable methods for experimental measurements of crack

patterns, the next step of the study is the development of a simulation code that can

account for these measurements into simulations of coupled heat and moisture

transfer. An experimental study was conducted in order to validate such a model:

digital image correlation was performed during the fracturing of concrete samples, in

which moisture uptake was then monitored using X-ray radiography. Moreover, a full

hygric characterisation of the material was conducted. A simulation code was then

developed, integrating fracture geometries into a finite-element mesh. A good

accordance was then found between experimental and numerical results in terms of

2-dimensional moisture concentration distributions.
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4. Moisture uptake monitoring and modelling in a discrete fracture network

It has been established in Chap. 2 that a continuous description of damage can-
not reach a satisfying accuracy in case of advanced degradation of a material, and
that fractures must be explicitely accounted for. Then, Chap. 3 aimed at investigat-
ing the potential non destructive techniques for damage monitoring and detection at
the building scale. A methodology was proposed for enabling acoustic emissions to
provide crack measurements for use in flow simulations. The next logical step is the
central piece of the work: a simulation code was developed and validated, that in-
tegrates damage and fracture measurements as an input for heat and moisture flow
modelling.

The requirements of the simulation code were twofold:

• Fractures measured by one of the tested characterisation techniques must be
automatically read and included in a FE mesh, refined according to their geome-
tries. This includes non-trivial tortuous patterns, possibly with intersections and
multiple junctions.

• The model must allow long-term simulations of coupled heat and mass transfer
in a multi-layered wall.

The use of the model supposes that it has been validated in regards to both these
points. The second requirement is addressed in Chap. 5. The first one is the subject of
the present chapter: a set of experimental measurements must be gathered, that en-
sures the validity of moisture flow simulations in a porous medium including fractures
of any number, sizes and connectivity.

To this aim, a complete experimental and numerical setup was developed. A stan-
dard formulation of concrete, reinforced with steel fibres, was used. Concrete is a com-
posite material made of porous, permeable cement paste binding aggregates of various
sizes with very low permeability. Therefore, in such a material, fractures caused by me-
chanical loading have a tortuous shape and variable aperture due to the presence of
aggregates or initially distributed shrinkage cracks. Digital image correlation was per-
formed during the fracturing of the concrete specimen, in which moisture uptake was
then monitored by X-ray radiography. In addition the sorption isotherm of the mate-
rial was measured by dessiccators and extractors. This experimental setup provided a
complete characterisation and validation data set, that was used for the development
of the simulation code.

The present chapter is organised as follows: Sec. 4.1 describes the recording of a
complete data set for the validation of a simulation code for isothermal moisture flow
modelling in fracture networks. This data set is made of two types of measurements:
crack geometries, which are to be integrated in the simulated porous medium, and
moisture content distributions, that allow comparing the predicted and real fluid in-
filtration in the aforementioned crack patterns. Then, Sec. 4.2 summarises the exper-
imental procedure for the complete hygric characterisation of the observed formula-
tion of concrete, and shows its results. These measurements are essential for operating
the model. Finally, the development of the code is described in Sec. 4.3. The model has
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Observation of moisture uptake in cracked concrete

been used to recreate the conditions of the experimental setup: these numerical results
have then been confronted to the X-ray radiography measurements. Finally, a short
mesh-sensitivity analysis has been conducted: simulations have been run with several
densities of fracture discretisation. The quality of the flow prediction is estimated on
the basis of the total quantity of capillary adsorbed water, as to propose guidelines for
this discretisation.

The experimental work herein described, as well as a large part of the numerical
procedure, were performed at the Department of Civil Engineering of the Technical
University of Denmark (DTU Byg). The methodology and main findings were pre-
sented in [ROU 12b].

4.1 Observation of moisture uptake in cracked concrete

4.1.1 Experimental methodology

A formulation of steel fibre reinforced concrete was prepared, based on the proportions
shown in table 4.1, using Aalborg portland cement with a water to cement ratio of 0.5.
It followed the proportions from previous studies [PEA 10] performed at the Technical
University of Denmark. The steel fibres have a length of 12.5 mm and a diameter of
0.4 mm. Their purpose was to allow the interruption of the mechanical loading before
complete failure of the specimen, and to ensure their post-crack cohesion in order to
use them for subsequent moisture uptake tests.

Water/cement ratio 0.5

Cement 3.465 kg

Sand 0-4 mm 8.043 kg

Aggregates 4-8 mm 11.580 kg

Steel fibres 0.2 kg

Table 4.1: Concrete proportions

The mixture was cast in prismatic forms of dimensions 350×100×100 mm, and first
wrapped in plastic sheets during 48h after casting as to initially maintain a high rela-
tive humidity (RH), then stored during 28 days in a stable environment of 50% RH. After
maturation, the edges of the beams were removed since their cement/aggregate ratio
is not representative of the average volumetric distributions of the material. Smaller
samples of dimensions 140×50×15 mm were cut out from the beams and notched
in their middle as depicted in Fig. 4.1. The purpose of the notch is to ensure stress
concentration and fracture initiation in a concentrated area on which the observation
could be focused.
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4. Moisture uptake monitoring and modelling in a discrete fracture network
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Figure 4.1: Setup of the samples during mechanical loading (above) and capillary up-
take experiments (below). The arrows respectively show the directions of the tensile
loading and moisture uptake, the dotted lines respectively show the DIC and X-ray ob-
servation zones

The specimen were loaded by uniaxial tension with a 10 kN force cell imposing a
constant longitudinal displacement speed of 0.5 mm/min in the direction shown in
Fig. 4.1. A reference picture of the surface was taken with the camera before loading.
The tests were then manually interrupted after initiation of a macroscopic fracture. A
total of 15 samples was tested and 6 were kept for the moisture uptake measurements.
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Figure 4.2: Complete (dotted line) and interrupted (continuous line) tensile loading
profile of steel fibre reinforced concrete

Fig. 4.2 shows the response to tensile loading of two specimen of steel fibre re-
inforced concrete, one of which was fully fractured whereas the other was interrupted
before complete failure. The profiles are normalised over their maximal stress and peak
displacement. The material shows a quasi-brittle behaviour until its tensile strength is
reached. After an important drop in the stress profile indicating fracture initiation, co-
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Observation of moisture uptake in cracked concrete

hesive forces still apply between both sides of the main crack where its aperture is still
low [HIL 76]. In order to dispose of partially fractured specimen, the tests were inter-
rupted during this stage of the loading, and a second picture of the sample surface was
taken with the camera after unloading. The DIC algorithm was then run by compar-
ing this deformed image with the reference image, revealing the local displacements
on the sample surface after loading, and thus the crack patterns (see Sec. 3.1.2 for an
introduction to the technique).

The fractured specimen were then kept in a 45◦C oven until their water content
stabilised at a nearly entirely dry state. Prior to a water uptake test, the sides of each
sample were insulated with impermeable tape in order to avoid 3-dimensional hygric
effects such as evaporation. Their lower side was put in contact with a water surface
as shown on Fig. 4.1 and the upper side was left open as to avoid entrapping of the
air initially contained by the porous network as the water front rises inside the sample.
The water content distribution was monitored during the uptake by 2-dimensional X-
ray radiography applied on an observation zone centered on the main fracture orig-
inating from the notch. These measurements, superimposed with DIC displacement
mappings, form a complete validation set for moisture uptake in a material including
a non-trivial fracture network. The applied procedures for obtaining this data set are
detailed below.

4.1.2 Fracture observation

The camera was used with similar settings as in the previous part of the study (see Sec.
3.1). Pictures of the sample surface were however not taken during the entire course of
loading: only the final state of the specimen was observed.

Unlike the previous display of damage in fibre-reinforced mortar (see Fig. 3.5), the
results are shown here as contour lines of the displacement field in the direction of the
loading: this representation was found more appropriate in case of a single predomi-
nant macroscopic fracture. Each line of Fig. 4.3(b) represents a difference of 5 µm of
the displacement field in the x (horizontal) direction. A local concentration of the con-
tour lines indicates a steep local difference in the displacement, and therefore locates
a fracture.

The mechanical loading of the sample was interrupted before its entire failure. The
main fracture can be seen on Fig. 4.3(a) originating from the notch in the middle of the
upper boundary, and propagating downwards. This crack exhibits a tortuous shape
and secondary discontinuities can be seen propagating from it, mostly along the ce-
ment/aggregate interfaces. The horizontal contour lines on both sides of the main
crack do not indicate the presence of fractures, but are caused by the notch on the up-
per side of the sample: as the crack expands, both sides of the sample tend to slightly
rotate around the third axis in opposite directions, causing a gradient of horizontal
displacement along the vertical coordinate. With further loading, the main fracture
(shown by the higher concentration of contour lines) expands and tends to cause the
surrounding cracks to close. It can therefore be expected that the moisture content
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Figure 4.3: (a) Picture of a specimen surface after mechanical loading, (b) surface dis-
placement mapping of a concrete sample from Digital Image Correlation (5 µm/line)

distributions observed during water uptake tests will be influenced by the state of the
sample when mechanical loading is interrupted.

The performance of DIC leads to the same observations as earlier. Cracks of un-
der 10 µm aperture can be detected on a relatively large area of observation. In terms
of spatial resolution, other techniques such as electronic speckle pattern interferom-
etry or micro-tomography have been found to detect cracks of under 1 µm opening
[SHA 99]. The spatial resolution of DIC is mostly a matter of the physical pixel size, i.e.
of the settings of the camera (spatial position, focal length). A compromise must be
found between searching for smaller crack apertures and covering a large enough ob-
servation area. The technique also provides the shape and tortuosity of all fractures, as
well as the local variations of their aperture. All of these parameters are likely to have
an influence on the moisture flow inside the fractures [VAN 03] and in the surrounding
porous material. DIC therefore has the potential to be a significant improvement to the
moisture flow prediction in comparison to an arbitrary choice of the fracture geometry.

4.1.3 X-ray radiography

The observation of the two-dimensional moisture concentration distributions in
porous building materials is now a common procedure in the characterisation of their
hygric properties. This can be done using gravimetric methods [DRC 03] or tech-
niques such as nuclear magnetic resonance, γ-ray attenuation, capacitance method
or X-ray projection [CER 02]. Several purposes can be served by these methods: ex-
trapolation of the liquid conductivity from transient one-dimensional moisture up-
take tests [CAR 04], observation of local variations of the flow speed due to fractures
[ROE 06a] or of the infiltration of chemicals, studies of reinforcement corrosion in con-
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crete [PEA 10]. . . In the recent years, these techniques have been increasingly used in
material sciences, and new operating methods were presented for their optimisation
and for a more efficient interpretation of their results.

4.1.3.1 Principle

The principle of X-ray radiography is summed up on Fig. 4.4. A photon beam is gen-
erated on one side of a specimen, and a camera placed on its other side detects the
amount of transmitted photons. In the case of building materials, this allows measur-
ing the concentration of water or other chemicals.

Source Source Source

Detector Detector Detector

d

dw

Figure 4.4: Measurement procedure of the moisture concentration by X-ray radiogra-
phy

If the intensity of the source is denoted I0, the intensity I transmitted by a sample
of thickness d is expressed by Beer’s law:

I = I0 exp
(
−µd

)
(4.1)

where µ is the attenuation coefficient of the material. This coefficient indicates the
probability of a photon to interact with the material (and to not reach the camera)
per unit length. It is a function of the photon energy, the density and effective atomic
number of the material. In case of a moisture uptake experiment, the local water con-
centration inside a specimen can be considered as an additional layer of thickness dw

and attenuation coefficient µw . The measured intensity across a wet sample Iwet can
then be expressed as separately attenuated by the dry material and this water layer.

Iwet = Idry exp
(
−µw dw

)
= I0 exp

(
−µd −µw dw

)
(4.2)

The moisture content w is related to this fictitious moisture thickness by:

w =
ρw dw

d
(4.3)
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The water concentration inside the porous medium can therefore be derived from the
intensities measured through the material before and after its contact with water:

∆w =−
ρw

µw d
ln

(
Iwet

Idry

)
(4.4)

where ∆w is the increase in water content from the initial state, which is not necessar-
ily entirely dry. The linear attenuation coefficient of water is considered unknown at
first and will be determined by coinciding the X-ray intensity transmitted by a water-
saturated concrete sample with the measured capillary moisture content.

The procedure of the experiment is as follows: the sample is initially placed in a
container and a first image is taken to measure the dry intensity Idry. Water is then
poured into the container as to be in contact with the bottom surface of the sample.
Measurements of intensity transmitted by the wet material Iwet follow regularly as the
moisture front rises inside the material.

According to Eq. 4.4, the result w shown at one location of the 2-dimensional plane
of observation is the average of the water mass per volume over the thickness of the
sample. If the material is considered homogeneous in comparison with its dimen-
sions and the size of the observation zone, w will reach a homogeneous distribution
at saturation. However, concrete is a highly heterogeneous material, and the speci-
men of the study have a thickness of only a few times the size of the largest aggregates.
The assumption of homogeneity can therefore not be made here. Aggregates have a
much lower equilibrium moisture content than cement paste, and the observation of
the local water concentration does not depict the actual wetting state of a specimen
correctly. This is corrected for by considering the non-dimensional water content s, or
saturation degree of the liquid phase:

s =
ln

(
Iwet/Idry

)

ln
(
Isat/Idry

) (4.5)

where Isat is the recorded intensity transmitted by a capillary saturated sample. This
definition implies that a series of measurements must be carried on until saturation
of the specimen in order to normalise the water content between an initial and a final
state.

4.1.3.2 Settings

The moisture profile tests were performed with the GNI X-Ray system at DTU Byg.
The following parameters must be set before running moisture concentration mea-
surements in concrete samples:

• The position and motion of the camera during measurements

• The X-ray intensity and energy of the source

• The number of recorded images at each location and integration time
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• The warm-up and stabilisation time of the X-ray source

The intensities are recorded by the camera as 16-bit images showing up to 65535
greyscale levels. The size of each image is 252×256 pixels covering an area of 12×12
mm, i.e. with a pixel size of 50 µm. The X-ray source and the camera can be displaced
following a pre-programmed path, which allows the user to visualise larger areas by
assembling images taken at several adjacent locations. The entire observation zone
for each series of measurements covers a square area of 3×3 images, centered on the
main fracture of the specimen, as schematically shown on Fig. 4.5. This setup allows
including the entire height of the sample between the water front and the notch, and
covering a large enough area as to capture the evolution of the water front within sev-
eral hours of measurements. Attempting to cover larger observation areas may imply
longer acquisition times, and a possibility for the moisture front to evolve while it is
recorded.

Figure 4.5: Observation area of the X-ray apparatus and course of the camera

The energy of the X-ray source is set as to ensure a good resolution of the water con-
tent profiles. According to [ROE 06a], the resolution of moisture content Rw is defined
as one greyscale step of an image and is mainly a function of the sample thickness for
each type of material.

Rw =−
ρw

µw d
ln

(
Idry −1

Idry

)
(4.6)

The drawback of a high energy is a possible instability of the source which as a conse-
quence would make longer integration times necessary. A fair compromise was found
at E = 85 keV, which coincides with the energy suggested by [ROE 06a] for ceramic
brick samples of similar thickness and density. This results in an average resolution
of Rw < 0.5 kg·m−3. The intensity I0 was set to 70 µA. The X-ray tube was set to warm-
up for 200 seconds and stabilise for 600 seconds to minimise variations in this incident
intensity.

Since non-negligible fluctuations in the intensity of the X-ray source are expected
during the measurements, each image of the assembling is the averaged intensity mea-
sured over a series of images of the same location, each of which taken with a given
camera integration time. The number of picture must be set as a compromise to max-
imise precision and keep the measurement time low. The integration time must be set
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as to maximise the standard deviation of the greyscale levels and avert saturation on
either side of the spectrum. The system was set as to record 40 images on each part
of the grid with and integration time of 1500 ms. The entire acquisition of the obser-
vation area, including the time of displacement of the camera and source between the
locations, therefore lasts around 10 minutes. Such a time interval between the first and
the last images of a series is not problematic here because of the low permeability of
concrete, and all images can be considered taken at the same time.

The X-ray receptor exhibits a constant response, or dark current, during periods
when it is not actively being exposed to the photon beam. As a consequence, images
recorded by the camera while no X-rays are being produced by the tube, must be sub-
stracted from the measurements, in order to remove the influence of the dark current.
This operation is illustrated on Fig. 4.6. Dark current measurements must be carried in
the course of the entire monitoring procedure, as its amplitude may vary in the course
of the day. This means that the X-ray source must be switched on and off repeatedly
between measurements.

Figure 4.6: Elimination of the dark current from X-ray measurements

Following this procedure, each X-ray image of a concrete sample is the result of the
averaging, assembling and analysing of 360 original images, and 360 dark current im-
ages, processed by a batch code written in the ImageJ software. Additional information
on the principle and operating procedure of the GNI X-ray system at DTU-Byg can be
found in a previous thesis written at the department [PEA 10].

4.1.3.3 Results

Moisture content distributions

The moisture infiltration was recorded in all fractured concrete specimen. The pro-
cedure for one of the samples is as follows: first, the sample was placed inside a con-
tainer in the X-ray system, so that its position in respect to the camera was known. A
reference image was then taken, as well as dark current recordings, covering the ob-
servation area of the dry specimen. Water was then poured into the container as to
slightly exceed the bottom sample surface. Measurements of transmitted X-ray inten-
sities were then performed during 24 hours, alternated with dark current recordings.
A final measurement was performed once the observation area reached saturation, in
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Observation of moisture uptake in cracked concrete

order to dispose of the saturated intensity profile Isat required for the use of Eq 4.5.
Once processed, the measured intensities resulted in successive moisture content dis-
tributions over the observation area. These distributions are shown on Fig. 4.7 for one
of the treated samples.

Fig. 4.7(a), 4.7(c) and 4.7(e) show successive moisture content distributions calcu-
lated using Eq. 4.4. The intensity Idry is given by the reference image of the dry sample,
while the mappings of Iwet are given by the recordings of the wet sample. The X-ray at-
tenuation coefficient of water was set to µw = 12.17 m−1. Justification for this value is
given in Sec. 4.2.2, as it has been determined in the process of hygric characterisation.
The origin of the horizontal axis on the figures was set at the position of the notch on
the upper side of the sample, from which the crack can be seen originating.

The displayed sample exhibits a single macroscopic crack, originating from the
notch and propagating downwards. The crack filled with water within a few seconds
after wetting. Moisture then spreaded from both the fracture and the bottom water
surface into the surrounding porous material. However, as earlier mentioned, con-
crete is a highly heterogeneous material: its components (aggregates, cement paste,
steel fibres. . . ) have different physical properties, particularly resulting in local vari-
ations of the X-ray attenuation coefficient µ. Moreover, the moisture permeability of
the cement paste is significantly higher than that of the aggregates, resulting in highly
heterogeneous moisture concentration distributions. The thickness of the samples is
not large enough to be considered representative of the heterogeneous medium. This
matter is solved by applying Eq. 4.5 to calculate non-dimensional saturation distribu-
tions, respectively shown on Fig. 4.7(b), 4.7(d) and 4.7(f). This results in a better view of
both moisture fronts (originating from the crack and from the bottom), although some
irregularities remain.

DIC and X-ray superposition

In order to ensure that the present data set is suitable for the validation of the trans-
fer model, we must ensure the spatial correlation between the fracture positions lo-
cated by digital image correlation and the moisture distributions monitored by X-ray
radiography. This target is addressed by Fig. 4.8.

Similarly to Fig. 4.3(b), the displacement fields, computed over a grid at the sur-
face of the specimen, are shown by contour lines, each of which indicates a difference
of 5 µm of the displacement field in the x (horizontal) direction. Each image of Fig.
4.8 shows the first moisture concentration mapping obtained on each of the tested
concrete samples. Most samples exhibit a fair accordance between the early moisture
concentration patterns and the shape of the main macroscopic crack. In some cases,
moisture can be seen to have taken additional paths which do not coincide with the
displacement gradients measured by DIC. Indeed, this optical technique is based on
the observation of the sample surface and cannot capture the 3-dimensional shape of
the cracks, while the local water content measured by X-ray is averaged over the sample
thickness. These observations underline the applicability of DIC as a mean to predict
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Figure 4.7: Successive X-ray mappings of the moisture concentration (left) and satura-
tion (right) distributions
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Figure 4.8: Superposition of DIC displacement mappings (contour lines) and moisture
content distributions on 5 cracked concrete samples
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4. Moisture uptake monitoring and modelling in a discrete fracture network

preferential moisture paths, but also show its limitations. Some of these limitations
can be overcome by the use of 3-dimensional crack observation techniques.

The crack geometries are to be implemented into the finite element code, of which
accuracy is to be assessed by comparison with the X-ray moisture content mappings.
In addition to this procedure, the moisture transport and storage properties of undam-
aged concrete must be measured in order to supply the code with the necessary infor-
mation for flow prediction. The methodology and results of these measurements are
presented in the following section.

4.2 Hygric characterisation of concrete

The assumptions on which the balance equations for heat and moisture in porous me-
dia have been based, were formulated in Sec. 1.2. One of these hypotheses is the ther-
mal non-dependency of the moisture storage and transport properties of the mate-
rial. These properties were therefore measured on the entire humidity range for one
value of the temperature. The conservation equation for isothermal moisture transfer
in building materials was written in Eq. 1.9 and is recalled here as to show the quanti-
ties of interest of the characterisation procedure:

∂w

∂pc

∂pc

∂t
=∇·

(
Kw∇pc

)
(4.7)

This equation is written as to include water vapour and liquid moisture transfer into a
single term, driven by a gradient of capillary pressure and a total moisture permeability
Kw :

Kw = Kl +δp
pv

ρl Rv T
(4.8)

The full hygric characterisation of porous building materials includes measure-
ments of the retention curve ∂w/∂pc and of the permeability Kw , in both hygroscopic
and over-hygroscopic ranges. In the hygroscopic range, moisture transfer mostly oc-
curs through diffusion or advection phenomena of water in the gaseous phase. The
over-hygroscopic range represents higher concentrations of water in the material,
where transfer in the liquid phase prevails. The modelling work is aimed at covering
both cases.

The transport and equilibrium properties of concrete are to be measured during
wetting, as opposed to previous studies concerning the drying of several formulations
of concretes and cement pastes [BAR 99]. The procedures for experimental characteri-
sation of storage and transport properties are explained below: the moisture retention
curve was characterised by weighing samples placed in stable humidity conditions.
The permeability was measured following the Boltzmann technique [CAR 04], which
requires the monitoring of moisture concentration distributions in the material dur-
ing capillary uptake.
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4.2.1 Sorption isotherm

4.2.1.1 Equipment and procedure

The complete profile of moisture content w versus capillary pressure pc was measured
using two separate methods in order to cover the entire humidity range: desiccators
and pressure plates. A common hypothesis, already assumed in the preliminary study,
is the fact that fractures have little contribution to the storage capacity of a porous
material. Under this assumption, the sorption isotherm was measured on a series of
non-cracked samples, and considered valid for all states of damage.

Desiccators

The sorption isotherm of concrete was measured in the hygroscopic range between
11% and 97% relative humidity using the desiccator method presented in the ISO-
12571 standard [ISOa]. The procedure, summed up on Fig. 4.9, consists in placing
small material samples in constant conditions of relative humidity and recording their
equilibrium mass compared to that of their dry state.

Figure 4.9: Experimental setup for sorption isotherm measurements in desiccators

A total of 12 initially oven-dried samples of 40×10×2 mm were placed in weigh-
ing cups distributed inside 7 desiccators. The bottom of each desiccator was filled
with saturated aqueous solutions listed in Tab. 4.2, in order to recreate pre-set val-
ues of relative humidity. Once the cups were placed and their lids were removed, the
air pressure inside the desiccators was lowered as to accelerate the sorption process.
Successive weighings were then performed, opening the desiccators and covering the
cups with lids as to insulate the samples during their exposure to ambient air. Equilib-
rium is considered reached when the same results are obtained from two consecutive
weighing performed at an interval of 48 hours.
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N◦ Product Relative humidity (%)

1 LiCl 11

2 MgCl2.6H2O 33

3 NaBr 53

4 NaCl 75

5 KCl 86

6 KNO3 93

7 K2SO4 97

Table 4.2: Values of relative humidity in the desiccators

Container 1 Container 2

Pressure (bar) RH (%) Pressure (bar) RH (%)

0.665 99.95 4 99.70

1.38 99.90 5.6 99.59

2.05 99.85 8 99.41

2.7 99.80 10 99.26

3.4 99.75 12 99.12

Table 4.3: Values of capillary pressure in the pressure plates

Pressure plates

Neither climatic chambers nor the acqueous solutions used in desiccators allow
generating stable humidity conditions in the over-hygroscopic range (RH > 97%, pc <
4×106 Pa). A suction technique based on the use of pressure plates was therefore used
for complementary measurements of the retention curve near the saturation state of
the concrete samples. The principle of this suction technique is as follows: water-
saturated samples are placed in a container. Moisture is forced out by an applied
pressure through a porous ceramic plate and collected outside the container. When
equilibrium is reached, i.e. no more water is extracted, the samples are taken out of
the containers and weighed. The equilibrium moisture content, related to the applied
(capillary) pressure, is calculated from the difference with the mass of the saturated
specimen. The procedure is then repeated with increasing values of the pressure. A
more thorough description of the pressure plate apparatus can be found in [KRU 96].

A total of six samples, of average dimensions 75×50×10 mm, was placed in two sep-
arate containers. Each of the containers was successively prescribed increasing values
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Hygric characterisation of concrete

of pressure as to cover the near-saturation humidity range. These values are summed
up in Tab. 4.3.

4.2.1.2 Results

The samples used for the dessiccator method are initially oven-dried, whereas the
pressure plate method proceeds by extracting water from initially vacuum-saturated
samples. Therefore, the former method provides the sorption curve for the hygro-
scopic range, while the latter provides the desorption curve for the over-hygroscopic
range. This was corrected for by subtracting the recorded difference between capillary
and vacuum saturation contents to the desorption (extractors) measurements. This
difference being relatively low, the assumption could be made that the result is a full
sorption curve.
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Figure 4.10: Moisture retention curve of concrete: measurements and approximation
by van Genuchten’s model

The results of the two procedures explained above is a set of 17 measurement points
on the w versus pc profile, each of which is the averaged value of the moisture con-
tent recorded on several samples. This profile is shown on Fig. 4.10. A Levenberg-
Marquardt algorithm (see Sec. 2.2.2.2) was then used in order to approach these mea-
surements with a van Genuchten model [GEN 80]. The multimodal expression of this
model was given earlier (see Eq. 1.20) and was used here in its monomodal form:

w = wsat

[
1+

(
α|pc |

)n]−m
(4.9)

where the saturation moisture content and the parameters m, n and α are given in Tab.
4.4.

Since the hysteresis effects are not considered in the present study, these param-
eters form a complete characterisation of the sorption isotherm of concrete, covering
the hygroscopic range and the near-saturated state. The sorption profile can be seen
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m n α (Pa−1) wsat (kg.m−3)

0.2191 1.2566 6.165×10−7 101.44

Table 4.4: Coefficients of the sorption isotherm approximation for concrete

to be relatively high at low values of relative humidity, confirming the fact that the ma-
terial presents an important proportion of small pores. The derivative of the profile,
∂w/∂pc , is the moisture capacity of Eq. 4.7, and is required for the following character-
isation of the unsaturated permeability profile.

4.2.2 Moisture permeability

4.2.2.1 Procedure

After determination of the moisture storage properties, the study now focuses on the
transport coefficients. For this purpose, the recording of moisture content distribu-
tions is required. The full unsaturated permeability profile is estimated using the Boltz-
mann transformation method. Any technique capable of determining moisture con-
tent profiles is suitable for this methodology [ROE 04]. In the present case, the X-ray
projection equipment was used. The method, more extensively described by [CAR 04],
is briefly summed up here.

The method is based on an alternative expression of the one-dimensional moisture
conservation equation. If water infiltration is assumed to occur in the x direction, the
Boltzmann variable λ is defined as

λ=
x
p

t
(4.10)

which reduces Eq. 1.14 to an ordinary (non-partial) differential equation:

−
λ

2

dx

dλ
=

d

dλ

(
Dw

dw

dλ

)
(4.11)

with the initial and boundary conditions

t = 0 ⇒ λ→∞ and w = w0

x = 0 ⇒ λ= 0 and w = wB

(4.12)

These conditions describe the operating conditions of the experiment: a material sam-
ple of initial moisture content w0 is placed at the time t = 0 in contact with a water
surface on its side described by x = 0. This surface moisture content is denoted wB .
The X-ray system records successive w-λ profiles, from which the moisture diffusivity
can be derived after integration of Eq. 4.11 using the conditions 4.12:

Dw =−
1

2

∫w

0
λdw

∂w/∂λ
(4.13)
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4.2.2.2 Results

Moisture uptake in a non-damaged concrete sample was monitored by X-ray projec-
tion following the same procedure as described above (see Sec. 4.1.3). Six successive
intensity mappings were recorded after contact of the sample with water. Because of
the high heterogeneity of concree, the observation area for this series of measurements
is slightly wider than that of cracked specimen (i.e. 5 cm width), in order to capture a
representative section of the medium. An example of the resulting moisture content
distributions is shown on Fig. 4.11(a)
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Figure 4.11: (a) X-ray mapping of moisture concentration; (b) superposition of succes-
sive moisture content profiles (error bars) and spline interpolation

These distributions were averaged over the width of the observation area and the
thickness of the sample. After application of the Boltzmann transformation, the result-
ing w-λ profiles were superimposed and displayed on Fig. 4.11(b). This graph shows
the average value of all profiles at a discrete set of values of λ, as well as the corre-
sponding error bars. It can be seen that despite a non-negligible scatter due to the het-
erogeneity of the material, the profiles coincide appropriately. All profiles were then
assembled as one average distribution, which was then smoothed and approached by
a cubic spline interpolation. After this operation, it is possible to apply Eq. 4.13 in or-
der to obtain the evolution of the moisture diffusivity Dw versus the concentration w ,
shown on Fig. 4.12(a).

As stated by [CAR 04], a boundary moisture content wB must be assigned at the
inflow surface in order to satisfy the Boltzmann boundary conditions. This value allows
defining a boundary layer located at low values ofλ in which the moisture content may
exceed capillary saturation. In the present case, it was set to the value of w at which the
maximal moisture diffusivity is reached (showed by the red dotted line on Fig. 4.12(a)).
The moisture diffusivity was first computed based on one-dimensional concentration
profiles resulting from an arbitrary value of the photon attenuation coefficient of water
µw . This coefficient was then arranged so that wB matched the known value of the
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Figure 4.12: (a) Moisture diffusivity and (b) permeability profiles, including Durner
model interpolation

capillary saturation content wsat , resulting in a value of µw = 17.12 m−1. This has been
accounted for in the aforementioned graphs.

The computed diffusivity profile was finally translated into the moisture perme-
ability through the previously measured sorption isotherm:

Kw = Dw
∂w

∂pc
(4.14)

which was then interpolated by means of a multimodal Durner model [PRI 06]:

Kw = Kl,sat sτ




∑

i

liαi

(
1−

(
1− s

1/mi

i

)mi
)

∑

i

liαi




2

(4.15)

si =
wi

wsat
= li

[
1+

(
αi |pc |

)ni
]−mi (4.16)

The parameters of this model applied to concrete are given in Tab. 4.5 and the resulting
unsaturated moisture permeability profile is displayed on Fig. 4.12(b)

m n α (Pa−1) l Ksat (s) τ

0.6148 2.5963 5.5383×10−7 0.5062
2.2182×10−13 -4.6975

0.1913 1.2366 2.2493×10−8 0.4938

Table 4.5: Coefficients of the multi-modal approximation of the moisture retention
profile
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Measurements of the transport and storage properties of non-damaged concrete
have been performed, covering the entire range of relative humidity, and thus allow-
ing modelling all transport phenomena of water in this material. These measurements
have been interpolated by analytical expressions that may be implemented into a sim-
ulation code. All experimental data are therefore gathered for attempting the predic-
tion of flow in fractured samples of concrete and validating these simulations in a two-
dimensional frame.

4.3 Moisture flow modelling

The application of numerical simulation codes for coupled heat and moisture flow
modelling is now a standard procedure in the study of porous construction materials
and in their integration into the building envelope. Starting from originally simple cal-
culation tools, methods of increasing complexity have been developed as to include
effects of moisture buffering, mould growth, ageing. . . The last decade has seen the
standardisation of the general expression of the heat and moisture conservation equa-
tions, and of the corresponding transport and storage coefficients [HAG 04, JAN 07].
The general framework of such models is the finite-element method (FEM). It is privi-
leged for its applicability to a wide variety of problems, and its capacity to be extended
as to allow their complexification.

A review on methods for fluid flow in porous media including discrete fracture net-
works was given in Sec. 1.3.4, identifying two separate approaches: fully coupled,
and staggered. The coupled approach uses the same finite-element mesh for flow
and transport modelling in the fractures and in the porous network, and the transport
equations for both media are simultaneously solved. In the staggered approach, the
transport equations for flow and transport are iteratively solved in the porous matrix
and in the fracture, and boundary conditions are imposed at the interface, account-
ing for the variations of the pressure fields. One of the advantages of the staggered
approach is that the FE mesh can be defined independently from the fractures by us-
ing the extended finite-element method, allowing including crack expansion without
remeshing.

The specificities of the present work allowed developing a relatively simple numer-
ical model while fully integrating the complexity of fracture networks. Simulations are
run in already damaged media for the evaluation of their hygrothermal properties af-
ter ageing. Fracture positions and geometries are set prior to the simulations, which
removes the need to include hydromechanical effects or fracture models, as well as the
possibility of crack expansion. As a consequence, the following methodology is pre-
ferred: a finite-element frame is developed, integrating the conservation equations for
coupled heat and moisture transfer in anisotropic porous media. A methodology for
the automated processing of optical recordings of fracture geometries was then under-
taken, that gives crack networks in the form of a set of segments. These segments are
integrated into the finite-element mesh, which is automatically refined accordingly.
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Specific transport properties are then attributed at the nodes located on fracture seg-
ments. This is a fully coupled approach, that allows including the description of longi-
tudinal and transverse transport properties of cracks.

4.3.1 Model description

4.3.1.1 Finite-element frame

The FEM simulation code is based on the previously mentioned heat and moisture
balance equations (see Sec. 1.2.2), which can be expressed as follows [JAN 07] :

cmm
∂pc

∂t
+cmh

∂T

∂t
−∇·

(
kmm∇pc +kmh∇T

)
= 0 (4.17)

chh
∂T

∂t
+chm

∂pc

∂t
−∇·

(
khh∇T +khm∇pc

)
= 0 (4.18)

where cxx are the terms of hygric or thermal capacity, and kxx are the terms of perme-
ability or conductivity. This notation encompasses the effects of one field on the other
by explicitely expressing the coupling terms. Here is a summary of all coefficients:

cmm =
∂w

∂pc

cmh = 0

chh = cmρm +cl w

chm = cl T
∂w

∂pc

kmm = Kl +δpGP

kmh = δpGT

khh = λ+ (cv T +Llv)δpGT

khm = cl T Kl + (cv T +Llv)δpGP

(4.19)

where the terms GP and GT originate from the translation of the vapour pressure gra-
dient into capillary pressure and temperature gradients, previously explicited in Eq.
1.12:

∇pv =GP∇pc +GT ∇T ⇒





GP =
pv

ρl Rv T

GT =
pv

ρl Rv T 2

[
ρl Llv +pc

(
T

σ

∂σ

∂T
−1

)] (4.20)

The numerical implementation of Eq. 4.17 and 4.18 was performed by the finite-
element method, following [JAN 07]. The Galerkin weighted-residual method was used
for the spatial discretisation over a triangular mesh of Lagrange-type quadratic ele-
ments. The temporal discretisation follows the implicit scheme. As the storage and

112



Moisture flow modelling

transport coefficients of the equations are functions of the field variables pc and T , the
discretised system is strongly non-linear: the solution of each time step is approached
iteratively, and a Newton-Raphson iterative scheme was used as to accelerate the con-
vergence. Finally, a dynamic time stepping was implemented, adapting the size of each
time step according to the number of iterations of the previous step. A more thorough
explanation of this procedure for the numerical implementation of the model is given
in appendix B.

4.3.1.2 Integration of fracture networks

The present section describes the undertaken methodology for simulating flow in the
measured fracture networks with the finite-element model. The first step into this pro-
cedure is the integration of crack geometries into the FE grid, and is illustrated on Fig.
4.13 with the example of one of the tested concrete samples.

(a) (b)

(c) (d)

Figure 4.13: (a) DIC displacement mapping, (b) skeletonised and (c) discretised frac-
ture network, (d) close-up of an adapted finite-element mesh
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The crack integration procedure consists of four steps:

1. The displacement mapping at the surface of the specimen is computed with the
DIC algorithm, by comparing the reference image of the initial state of the sam-
ple with the image taken after mechanical loading and unloading. This reveals
displacement gradients in the form of contour lines (see Fig. 4.13(a)) indicating
the presence of fractures and their local aperture.

2. A threshold is applied on strain mappings as to reveal the cracked surface in the
form of a binary image. This step in similar to the procedure of Sec. 3.2. The
resulting patterns are treated by topological skeletonisation, revealing crack net-
works as shown on Fig. 4.13(b).

3. These networks are discretised as a set of segments of given position, length and
aperture (see Fig. 4.13(c)).

4. The finite-element mesh is generated over the observation area (see Fig. 4.13(d)).
Nodes are added along the fracture segments, discretising each one into smaller
elements. The mesh is then readjusted so that these segments match the edges
of the surrounding elements.

The present model therefore belongs to the category of mesh-adapting models. Cracks
are explicitly modelled in the primary FE mesh, as opposed to staggered approaches
[ROE 06b, RET 07, ALF 10, MOO 11] in which transport equations are solved separately
in the fractures and in the porous medium. For such a fully coupled analysis, frac-
ture elements can be double-nodded for a full account of transverse diffusion mech-
anisms through the interfaces [SEG 04]. A less comprehensive formulation is however
privileged here for simplification purposes. Another potential of improvement of the
current methodology is the fact that the current mesh is not optimised near the dis-
continuities, resulting in possible stretched element shapes (see Fig. 4.13(d)). This can
be improved by envisaging more advanced refinement strategies [SEC 03, SCH 06].

4.3.1.3 Fracture flow

Once integrated into the FE mesh, specific transport properties are attributed to frac-
ture nodes. This matter is illustrated on Fig. 4.14. The expression of the liquid water
permeability Kl of these nodes is replaced by a permeabiliy tensor k f such as:

k f = RT

(
kf ,l 0

0 kf ,t

)
R (4.21)

in which kf ,l and kf ,t are the respective values of the longitudinal and transverse frac-
ture permeability, and R is the rotation matrix for directing the permeability tensor in
the direction of the crack:

R =
(

cosθ sinθ

−sinθ cosθ

)
(4.22)
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Transverse flow

Longitudinal flow

kf

Figure 4.14: Fracture discretisation and expression of the longitudinal and transverse
flow

where θ is the angle of the crack segment with the coordinate system, or the average
value of the angle in case of a node located at the intersection between several seg-
ments. The expression of the longitudinal permeability in a water-saturated crack of
aperture u results from the analytical solution of the Navier-Stokes equations for flow
between two parallel plates:

kf ,l =





ρl

ηl

u2

12
if

∣∣pc

∣∣≤ 2σ

u

k∗
f ,l if

∣∣pc

∣∣> 2σ

u

(4.23)

A critical capillary pressure is defined according to the occupancy criterion [VAN 03],
derivated from the Young-Laplace equation (Eq. 1.2). This value separates fracture
segments filled with water, of which permeability is set to ksat

f ,l = ρl u2/12ηl , from non-

saturated segments of permeability k∗
f ,l. This non-saturated longitudinal fracture per-

meability was simplified to a logarithmic interpolation as to reach a computational
value of zero (namely 10−17 s) at dry conditions. The profile of kf ,l is shown on Fig. 4.15
with the example of a crack of aperture u = 2×10−6 m.

In the formulation of the occupancy criterion (Eq. 4.23), the influence of the wa-
ter/air contact angle is neglected. Some authors however argue that its value may differ
between the cases of water suction and drainage [VAN 03]. This formulation of the lon-
gitudinal fracture permeability kf ,l directly impacts the transport coefficients kmm and
khm of Eq. 4.17 and 4.18. Transverse flow in the cracks, as well as effects of the resis-
tance of the crack/matrix interfaces to moisture flow, were neglected: this involves that
the transverse permeability kf ,t written in the k f tensor was set to the same value as in
the surrounding porous medium.

This formulation has been chosen for its relatively simple implementation into
the developed finite-element frame. It suffers however from an important drawback,
caused by the fact that values of permeability are added onto the primary mesh. When
calculating the element permeability matrices of the triangular elements surrounding
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Figure 4.15: Fracture discretisation and expression of the longitudinal and transverse
flow

a crack (Eq. B.15), the permeability of the primary nodes are interpolated to the Gauss
integration points (Eq. B.33). This results in a mesh-dependent smoothing of the value
of permeability around cracks. As a consequence, the calculated capillary pressure
distributions are expected to slightly deviate from the real solutions during the filling
and draining of fracture segments. The importance of this mesh-dependency is to be
estimated in a sensitivity analysis, shown in Sec. 4.3.2.2.

The above described procedure, although it does not encompass an extensive de-
scription of flow mechanisms at the smaller scales, is considered satisfactory for its
accurate description of the real fracture geometries and its relatively simple imple-
mentation. Moreover, the concept can be extended as to include the effects of the
longitudinal and transverse thermal conductivities of fractures. Further possibilities
for the improvement of the code include:

• a more comprehensive description of the unsaturated permeability and stor-
age capacity of fractures segments as function of their aperture and rugosity
[VAN 03],

• the optimisation of the mesh refinement strategy near the integrated fractures
[SCH 06],

• the integration of the transverse fracture flow [SEG 04].

These simplifications are expected to have little impact on the simulation results, but
may influence the overall performance of the code. This will be discussed after the
display of the results.

4.3.2 Results and discussion

Simulations were set to recreate the operating conditions of the moisture uptake ex-
periments performed in the X-ray system (Sec. 4.1.3).
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• initial conditions of a dry sample: pc =−5×108 Pa, T = 20◦ C

• isothermal transfer

• constant capillary pressure (pc = −103 Pa) prescribed on the bottom boundary,
and upper boundary open to air: RH = 50%, T = 20◦ C, α = 7 W.m−2, α = 3×
10−8 s.m−1

Results are displayed in the present section concerning one of the tested samples,
of which crack pattern is shown on Fig. 4.13 and moisture infiltration on Fig. 4.8(c).
This example was chosen as to show the correct prediction of flow in a non-trivial set
of crack branches resulting in a non-rectilinear moisture front. A triangular mesh of
70×70 nodes was generated on the observation area of 4 cm side. The size of the el-
ement edges is therefore of roughly 0.6 mm per element, although this size varies due
to the non-structured nature of the mesh. After generation of this primary mesh, the
measured fracture geometries were superimposed, and fracture segments were discre-
tised with a 0.3 mm distance between nodes.

4.3.2.1 Moisture content distributions

A qualitative overview of moisture content distributions computed by the simulation
code is first provided. These results are shown in two parts: first (Fig. 4.16), the early
water infiltration is shown in the crack network. Then (Fig. 4.17), the predicted uptake
is compared to the X-ray mappings of moisture content as to validate the model.

Fig. 4.16 shows the non-dimensional saturation level of the two-dimensional con-
crete specimen, as well as the discretised fracture segments (red lines), during the first
minute after initiation of the wetting phase. The suction of water by the crack segment
reaching the bottom surface, and all interconnected segments, can be seen to occur
promptly. The code therefore takes good account of the anisotropy of the material,
and handles all fracture geometries well, including intersections and isolated cracks.
After this first phase of wetting, the moisture front expands in the surrounding porous
medium at a slower pace, as is displayed on Fig. 4.17.

The comparative results of the moisture concentration monitoring and modelling
are shown as two consecutive measurements of the saturation distributions for the
same sample. The displacement field at the surface of the sample is shown as contour
lines on the upper left image. The simulations show a fair accuracy in the shape and
evolution of the moisture fronts from the bottom water surface and from the fractures.
At earlier stages of wetting, it is visible on both simulations and experiments that the
shape and tortuosity of the cracks has a noticeable impact on the shape of the moisture
fronts (Fig. 4.17(a) and 4.17(b)). The crack width shows no noticeable impact on the
moisture flow in the neighbouring porous material: because concrete has a low perme-
ability, the flow inside the fracture occurs at a much smaller time scale than through
the porous network. Therefore, the moisture saturation of a water-filled crack does not
appear affected by the migration of moisture through its walls to the porous network.
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Figure 4.16: Non-dimensional moisture content distributions after (a) 10, (b) 15, (c) 20
and (d) 60 seconds of wetting
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4.3.2.2 Mesh sensitivity and validation

The model has been shown to properly account for the presence of fractures in the
finite-element mesh. This qualitative overview of the results is now completed by
quantitative information. More specifically, simulations are confronted with the mea-
surements in terms of the total amount of water adsorbed by the material sample. This
criteria is applied for assessing the importance of the discretisation density of the frac-
ture segments: a basic mesh sensitivity analysis is performed.

Because of the very high moisture permeability of cracks in comparison to that
of the surrounding porous material, it is clear that the density of the discretisation
has an impact on the quality of the simulations. As described earlier, nodes are dis-
tributed along fracture segments with a given density, herein referred to as the density
of crack discretisation, or fracture refinement. The distance between these nodes must
be smaller than that between nodes of the primary FE mesh, as illustrated on Fig. 4.18.

(a) (b)

Figure 4.18: Close-up of the mesh resulting from a crack discretisation of (a) 3×10−4 m
and (b) 7×10−4 m

Given a set of node coordinates, the edges of the elements are generated by Delau-
nay triangulation. If the distance between fracture nodes is small enough, these points
are necessarily each other’s natural neighbor, and an element edge is systematically
generated along each crack segment. This is shown on Fig. 4.18(a), in which the frac-
ture refinement was set to 0.3 mm while the average distance between primary nodes
is 0.6 mm. If however the fracture refinement is coarser than that of the initial mesh,
parts of the cracks will not be located along element edges, as shown by Fig. 4.18(b).
This has important consequences on the calculations: in these cases, the interpolation
of the moisture permeability to the Gauss-Legendre integration points (see Eq. B.31)
will not account for the presence of the fracture.

The influence of the density of crack discretisation on the solution is studied. Start-
ing from a same density of the initial mesh, a series of simulations were run, each one
with a different value of the distance between fracture nodes: 0.1, 0.3, 0.5 and 0.7 mm.
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The total amount of absorbed water in the observation area of all simulations is showed
versus the square root of time on Fig. 4.19.
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Figure 4.19: Quantity of absorbed water by capillary uptake versus square root of time
for several densities of crack discretisation

The continuous line shows the results of a reference calculation of capillary uptake
in the non-damaged porous medium. The evolution of mass uptake versus square root
of time is nearly linear, as is expected from one-dimensional free moisture uptake. The
absorption rate of water is higher in the presence of cracks (dotted lines), but seems to
be influenced by the mesh density.

• If the crack discretisation density is finer than that of the original FE mesh
(1×10−4, 3×10−4 and 5×10−4 m per segment), a steep increase of moisture con-
tent occurs at small simulation times (0 ≤

p
t ≤ 10 s1/2), during water migration

in the main fracture (see Fig. 4.16). Once this fracture is filled, moisture diffusion
continues at a nearly linear rate. The slope is higher than in the non-damaged
simulation, as the moisture front extends not only from the bottom water sur-
face, but also from the sides of the crack (see Fig. 4.17(b) and 4.17(d)).

• If the fracture refinement is coarser than the original mesh (7×10−4 m per seg-
ment) the main crack is not fully integrated in the mesh (see Fig. 4.18(b)): the
moisture uptake rate is decreased, although it remains higher than in the non-
fractured case.

The current procedure for crack integration in a FE mesh therefore implies the exis-
tence of a threshold value for the distance between fracture nodes. The automated
Delaunay triangulation as it is applied does not allow explicitely setting the edges of
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4. Moisture uptake monitoring and modelling in a discrete fracture network

the elements, and this threshold must be respected for a full integration of cracks in
the final mesh.

The simulations performed with finer discretisation densities however do not fully
coincide. The phase of water suction in the fractures, i.e. the time interval of highest
uptake rate, seems to always initiate with a delay, which is not reproducible. Moreover,
this delay increased by simulating capillary uptake with a high fracture refinement of
1×10−4 m. This behaviour seems counterintuitive and could be explained by the dis-
torsion of the triangular elements near the fracture, occuring when the crack refine-
ment is high in compaison to the density of the surrounding mesh (see Fig. 4.20).

Figure 4.20: Close-up of the mesh resulting from a crack discretisation of 1×10−4 m

The interpretation of the simulation results yields an additional observation. On
Fig. 4.19, the red circles show the total experimentally measured moisture content,
which have been recorded by X-ray radiography as shown on Fig. 4.17(a) and 4.17(c).
Although this moisture content is slightly underestimated by the simulations (likely
because of the underestimation of the fracture suction rate), the slope between the
two measurement points is very well captured by the calculations. This means that
moisture diffusion in the porous medium is accurately predicted once the cracks are
filled with water.

4.3.2.3 Calculation time

During water suction by a fracture, the moisture content distributions undergo very
fast local variations. As a result, convergence may only be reached in case of very
small time steps, in the order of 0.1 s. The highest computational cost therefore origi-
nates from this first phase of wetting: with the current settings, using a standard desk-
top computer, the first minute of simulation time (during the fracture flow) requires
around four hours of calculations. Once the main fracture is filled, the variations of
moisture content are slower because of the relatively low permeability of concrete:
the time step automatically increases as a smaller number of iterations is necessary
to reach convergence. The computational cost is then significantly reduced.
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Conclusion

The fracture discretisation density has little impact on the computational cost of
the problem. Indeed, the number of additional nodes, even in case of high refinement,
is low in comparison to that of the primary mesh.

4.3.2.4 Discussion

This set of simulation results, compared to moisture content distribution measure-
ments by the X-ray radiography technique, leads to a twofold conclusion concerning
the proposed methodology. First, the numerical integration of fracture anisotropy was
successfull, and crack geometries were properly accounted for in the geometry of the
problem. Moreover, the prediction of moisture ingress in the porous medium once
the fractures are filled with water are accurate in terms of shape of the moisture con-
tent distributions, as well as in terms of quantitative estimation of the total moisture
content. However, as earlier mentioned, the addition of an extra permeability to the in-
tegration points yields mesh-sensitive results: unaccuracies remain in the prediction
of fracture flow and of moisture diffusion towards the porous medium. The valida-
tion of the simulation code in regards to isothermal moisture flow in fractured porous
materials is therefore incomplete, but problems are restricted to the short-term part
of moisture uptake simulations. Moreover, the calculation of the flow inside the frac-
tures leads to computational difficulties because of their very high liquid permeability,
which can locally rise by up to six orders of magnitude between adjacent elements of
the mesh.

Another possibility for calculating the progress of the moisture front in a fracture is
the moving front technique [HVI 98] that separates a 1D discrete model for flow inside
the fracture with the model for the porous matrix, and solves the equations iteratively.
This method was found to improve convergence but was only applied to a simplified
crack geometry [ROE 03b]. The methodology chosen in the present work was aimed at
being directly applicable to any given network of interconnected fractures of all sizes
and orientations. Moreover, it allows an unambiguous implementation of the non-
saturated permeability of fractures, as well as their contribution in the drying of speci-
men. It is expected that the convergence problems may be partially solved by applying
more advanced mesh refinement strategies [SCH 06], which may also reduce compu-
tational costs.

4.4 Conclusion

The target of the work presented in this chapter was the development and the val-
idation of a simulation code for coupled heat and moisture transfer, which enables
the user to integrate measured fracture geometries, and predicts the resulting flow.
Cracked samples of concrete have been submitted to moisture uptake measurements
by X-ray radiography, after their fracture patterns were observed by digital image cor-
relation. Moisture uptake was monitored as to confirm the ability of computer vision
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to predict the moisture uptake paths in the earlier stages of wetting. The water in-
filtration from the fractures to the surrounding porous material was then observed.
These moisture content profiles were then approached by finite-element moisture up-
take modelling based on the measurements of deformation fields at the surface of the
samples. The moisture characterisation of concrete was performed, in order to supply
the model with the necessary parameters for moisture transfer prediction. The experi-
mental methodology was carried on a series of samples and provided a complete data
set for the validation of the simulation code. A good agreement was found between
measurements and modelling results in terms of 2D moisture content distributions,
and of total quantity of absorbed water.

Several possibilities can be considered for the improvement and the extension of
this procedure. First, in order to be applicable to the case of fracture observations per-
formed at larger scales, a new method must be implemented for the input of crack
geometries obtained from other measurement techniques. The previous chapter in-
vestigated how Acoustic Emission can be used to this aim. Since this technique allows
a 3-dimensional localisation of sources of damage, the model can be extended for 3D
modelling of flow in fractures. For the validation of such a model, 3D monitoring of
water uptake by X-ray tomography can be considered. Further possible improvements
of the simulation code include the refinement of the FE mesh and the account of trans-
verse flow in fractures.
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Chapter 5

Application of the simulation code

The last step of the study is the application of the previous results to the estimation of

the long-term consequences of cracking at the scale of building components.

Measurements of a fracture network were integrated into simulations of multi-layered

facades, subjected to realistic climatic conditions. The impact of cracks on the

hygrothermal performance of these facades was estimated by comparing these results

with the behaviour of non-damaged walls. Moisture infiltration and accumulation is

visualised, allowing durability assessments.
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Long-term simulations of the hygrothermal performance of building components
are now a common practice for the assessment of moisture related damage and the
identification of potential durability issues. These considerations can moreover be in-
tegrated into the larger frame of building-scale simulations [CRA 00, KAL 07] in order
to account for the all environmental factors impacting damage on a given facade. The
effects of ageing on the transport and storage properties of materials, as well as the
presence of discontinuities such as fractures, is however not accounted for in such nu-
merical studies: this is the motivation of the present work, as was announced in the
beginning of the manuscript. Simulations of flow in materials undergoing damage or
crack propagation have been already conducted by several authors as to recreate lab
measurements [ROE 03b, MOO 09, ALF 10]. They were however not applied to large
time intervals or confronted with the hygric and thermal boundary conditions of an
existing building. To the author’s knowledge, no existing code conciliates a precise
knowledge of fracture geometries with long-term hygrothermal performance assess-
ments.

The target of the last step of the work is to show how the presented methodology
can lead to hygrothermal performance and durability assessments of any type of frac-
tured building component. It is the logical conclusion of the two previous steps, re-
spectively the investigation of experimental methods for damage quantification, and
the development of the simulation code enabling the user to integrate such measure-
ments into a finite-element frame.

First, Sec. 5.1 shows how the developed model has been validated in regards to
coupled heat and mass transfer in multi-layered walls, under severe climatic loads.
Then, in Sec. 5.2, the conditions of a series of simulations are laid, which have been
defined in order to illustrate the potential impact of cracks of the moisture infiltration
and heat loss of simple wall geometries. Finally, the results of these simulations are
presented in Sec. 5.3.

5.1 Non-isothermal validation

In the previous chapter, we mentioned two specifications required from the simulation
code. The first requirement is the possibility of including fracture measurements into
simulations of moisture flow, and is the main subject of the previous chapter. The sec-
ond specification of the model is allowing long-term simulations of coupled heat and
mass transfer in a multi-layered wall. For complexity reasons, acquiring a complete
set of experimental measurements for the validation of a model in regards to coupled
heat and mass transfer under climatic loads, and during long simulation time spans,
was not undertaken. Instead, the capacity of the model to handle these conditions,
without the presence of fractures, was assessed by comparison with results of other
simulation codes.

The Hamstad project was initiated by the European Union to develop a platform
for the assessment of computational HAM modelling in building physics. The first
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package of the project [ROE 03a] addressed material characterisation, while the second
package [HAG 02b] established a standard methodology of HAM modelling, in order to
provide an alternative to the Glaser method for calculation, prediction and evaluation
of the moisture performance of the building enveloppe. As part of this work package,
a series of benchmarks were proposed [HAG 02a] in order to cover various combina-
tions of climatic loads and of materials, and to deal with resulting phenomena: internal
condensation, moisture movement caused by thermal gradients, effect of water on the
thermal conductivity. . .

The project served as a set of guidelines for the development of the simulation code.
These guidelines can be summed up by the following requirements: it must enable
heat and mass transfer simulations of multi-layered walls, including materials covering
wide ranges of hygric and thermal properties, under possibly severe climatic loads. The
model was tested and validated with four of the five benchmarks of the project. The
exception is the third benchmark, dealing with air transfer, which the model was not
set to handle. The following paragraphs illustrates this validation with the example of
the fourth benchmark, which is the most demanding part of the work package.

5.1.1 Benchmark description

The considered benchmark (response analysis) deals with the one-dimensional mois-
ture movement inside a wall with a hygroscopic finish. The simulation time is 5 days,
during which highly changing climatic conditions are imposed, successively generat-
ing moisture condensation, redistribution and evaporation [HAG 04]. The boundary
conditions are prescribed in the form of heat and moisture flows, given in Eq. 1.27.
Hourly values of the external and internal air temperature and vapour pressure are
given, as well as an equivalent external temperature including the influence of solar
radiation (see Eq. 1.30), and the liquid inflow caused by rain (see Eq. 1.29). The case is
complicated by capillary active materials of very high moisture permeability. The ther-
mal conductivity and hygric parameters of such materials can be strongly influenced
by the moisture content.

Moisture transfer is a strongly non-linear phenomenon and the resolution of Eq.
4.17 and 4.18 involves important mathematical difficulties. The considered bench-
mark case being particularly demanding, the numerical results obtained by the partic-
ipants may differ, although the simulation codes apply the same transport equations.
A statistical approach is used for the evaluation of the solution, based on the analogy
with a t-distribution. A band of acceptance is defined as the range within which results
are considered acceptable:

x − tp
σxp

n
≤µ≤ x + tp

σxp
n

(5.1)

where x and σx are the main value and standard deviation of the sample set, n is the
number of observations and tp is a function of n and the confidence grade p, defined
as the risk the band of acceptance does not contain the true numerical solution. For
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a given value of p, an increase of the number of participants reduces tp and narrows
the band of acceptance, as the probability of knowing the real solution of the problem
increases. In the following display of the results, the confidence interval was set to
p = 1%, i.e. a 99% chance that the band contains the correct solution, resulting in a
value of tp = 3.71.

Although the simulation case is one-dimensional, the HAM simulation code was
only developed for 2D cases: a quasi-1D mesh was therefore generated with a nar-
row rectangular geometry and two insulation boundary conditions. The density of
the mesh is an important parameter of the simulations: indeed, very important gradi-
ents of capillary pressure can be present at the moisture front in case of nearly water-
saturated areas generated by rain, and due to moisture redistribution across the inter-
face between the two layers. The mesh was made of quadratic triangular elements of
roughly 1 mm edges. Moreover, the high moisture permeability of both materials in-
volves a fast advance of the moisture front: the adaptative time stepping method finds
its use by decreasing the time step to the order of seconds at the beginning of rain
showers, or at sudden changes of the external equivalent temperature.

5.1.2 Results

The benchmark exercise was undertaken by 6 participants [HAG 02a]: Chalmers Uni-
versity of Technology, University of Leuven, Technical University of Dresden, Technion
Institute of Technology, National Research Council of Canada, and Fraunhofer Insti-
tute of Building Physics. The results obtained in these institutes were compared in
terms of temporal evolution of the field variables at given locations in the wall, and of
spatial distributions at given times of simulation. The results of the presented model
are shown on Fig. 5.1 to 5.4, respectively depicting the evolution of the moisture con-
tent and of the temperature, at the inner and outer surfaces of the facade, during the
five days of simulation.
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Figure 5.1: Moisture content at the outer surface
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Figure 5.2: Moisture content at the inner surface
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Figure 5.3: Temperature at the outer surface

On each graph, the red continuous line shows the distribution obtained by the
current model, while the dotted lines show the average distribution of the other six
participants, as well as the limits of the 99% confidence interval. During the entire
time of simulation, the external air temperature and vapour pressure, and the internal
equivalent temperature, are constant. The variations of the other boundary conditions
roughly occur in three main successive stages.

• The first phase lasts from 0 to 49 hours of simulations: a drop of the equivalent
external temperature to −2◦C generates condensation on the external wall sur-
face, and the moisture content of the internal layer rises due to an increase of
internal vapour pressure.

• The second phase lasts from 50 to 66 hours: all temperatures are constant, and
two closely successive rain showers occur. The first rain shower generates a sud-
den rise of the external surface moisture content to the state of saturation. After
the rain stops, this concentration decreases as the material dries, and because of
moisture redistribution. Shortly after the second rain shower, the moisture front
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Figure 5.4: Temperature at the inner surface

reaches the second material layer (hygroscopic finish) and the moisture content
of the internal surface rises as well.

• The third phase lasts from 67 to 120 hours. Square-wave fluctuations of the ex-
ternal equivalent temperature between 10 and 50◦C occur alternating with rain
showers. Because of the high mositure diffusivity of the load bearing material,
these rain showers prevent the internal layer from drying. Temperature vari-
ations quickly affect the external surface temperature, and affects the internal
surface temperature with some delay.

The performance of the proposed model during these solicitations offers a fair ac-
cordance with the statistical analysis based on the previous results of the other partic-
ipants. The calculated moisture content distributions mostly stay within the band of
acceptance. However, the evolution of the external and internal surface temperature
diverges slightly from the expected values when the ambient thermal load is impor-
tant. This implies a light overestimation of the moisture condensation at the internal
layer during the first phase of the simulation protocol. This stage of the simulation
is particularly sensitive to the expression of the coupling between heat and moisture
transfer, particularly to the value of the latent heat of evaporation Llv, of which influ-
ence appears on Eq. 1.6, 1.12, 1.19 and 1.27.

The simulation code can therefore be considered appropriately able to predict cou-
pled heat and moisture transfer in multi-layered facades, under heavy climatic loads,
during longer times of simulation. Along with the validation of water infiltration in
fractures, presented in the previous chapter, the conditions are met for the application
of the model to a set of simulation cases. This is the subject of the next part of the
study: the simulation cases are described in Sec. 5.2, and the results of the calculations
are displayed in Sec. 5.3.
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5.2 Definition of the simulation cases

The last step of the study is the application of the validated model to the evaluation of
the hygrothermal performance of building components integrating fractured material
layers. For this purpose, a series of simulations has been performed, so that the com-
parison of their results gives an estimate of how fractures may influence phenomena
such as moisture accumulation and heat loss. The present section is the description of
these simulation cases: first, the building components and materials are presented in
Sec. 5.2.1.1. Then, Sec. 5.2.2 describes the choice of boundary conditions and climatic
data, and further settings of the model are detailed in Sec. 5.2.3.

These simulation cases have been defined in order to answer a threefold question-
ing:

• to estimate the consequences of fractures on the moisture accumulation and
heat loss of a standard wall,

• to find whether these consequences are aggravated by the infiltration of moisture
towards insulation materials,

• to illustrate how outer insulation including hygrophobic materials can correct
the flaws generated by fractures.

5.2.1 Geometry

5.2.1.1 Components and materials

The setup of the simulated walls is shown on Fig. 5.5 and the corresponding materials
are listed in Tab. 5.1 along with the reference for their properties.

Three facades have been defined: a simple non-insulated wall with an internal fin-
ishing layer (case 1), a similar wall including inner insulation (case 2) and one including
outer insulation (case 3). In all cases, the load-bearing material is a layer of concrete
of 20 cm, and a gypsum board of 1.25 cm thickness is added at the internal surface.
Case 2 includes a 10 cm layer of interior insulation (fibreboard), and case 3 includes
an outer insulation made of 1 cm hygrophobic coating (fibre-reinforced mortar) and
10 cm insulation (mineral wool). The moisture transport and storage properties of
concrete and mortar have been previously characterised. Their thermal properties,
as well as all transport and storage properties of the other materials, were taken from
databases or from the literature: [HAG 02a, KUM 02] for the gypsum board and fibre
board, [JIR 06, PAV 09] for the mineral wool. To each case is assigned an equivalent
wall, in which the concrete layer integrates a network of fractures, as shown on the
bottom of Fig. 5.5. This network is the same as that of Sec. 4.3.2, except the dimen-
sions of the cracks have been increased in proportion to the thickness of the material
layer.
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Figure 5.5: Definition of the simulation cases

Case Material Thickness Properties

1
Concrete 20 cm Sec. 4.2

Gypsum board 1.25 cm [HAG 02a, KUM 02]

2

Concrete 20 cm Sec. 4.2

Fibre board 10 cm [HAG 02a]

Gypsum board 1.25 cm [HAG 02a, KUM 02]

3

Mortar 1 cm 2.3

Mineral wool 10 cm [JIR 06, PAV 09]

Concrete 20 cm Sec. 4.2

Gypsum board 1.25 cm [HAG 02a, KUM 02]

Table 5.1: Materials used in each simulation case
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5.2.1.2 Mesh

The most mathematically challenging phenomenon occuring in the presented sim-
ulations is moisture transfer in the liquid phase, which generates steep gradients of
capillary pressure and of the related transport and storage coefficients. Therefore, the
main factor for the determination of the mesh density of a component is its liquid per-
meability. More specifically, the abruptness of the permeability profile, and of the re-
tention curve, is key: the mesh density of a material must be high enough to ensure
a sufficient smoothness of their local variations. A multi-layered wall therefore con-
sists of several concatenated mesh densities. The fracture segments have the highest
saturated moisture permeability, and are discretised with intervals of 3× 10−4 m. A
non-structured triangular mesh is applied on the surrounding porous medium, inte-
grating the crack geometry as described in Sec. 4.3.1.2. The distance between nodes
is the set according the each material’s moisture permeability, and ranges from 1 mm
for gypsum board to 3 mm for concrete. In simulating the undamaged walls (case 1, 2
and 3), a quasi-1D mesh was generated with a narrow rectangular geometry and two
insulation boundary conditions. The walls including a fractured concrete layer (case
1f, 2f and 3f) were modelled in 2D with a height of 20 cm. As an illustration, the mesh
used for the simulation case 1f is displayed on Fig. 5.6.

Although the current settings of the meshing procedure allow including any frac-
ture geometry into the finite-element mesh and predicting flow accordingly, some im-
provements remain to be made for its optimisation. For instance, the current algo-
rithm does not allow a progressive increase of the mesh density near fractures: the
mesh is therefore fully refined in the entire material layer that includes fracture seg-
ments. This involves high mesh densities in locations where they are not required, and
consequently increases the computational time. The current code also does not al-
low simultaneously using triangular and square-shaped finite-elements: a triangular
non-structured mesh is applied on the non-fractured material layers as well.

5.2.2 Boundary conditions

The exterior boundary conditions of the problem are implemented after climatic data
files measured in Lyon (France) during the year 2011. The following quantities are
available as instantaneous measurements recorded with time steps of one minute: al-
titude and azimuth of the sun, diffuse and direct horizontal irradiance, wind speed
and direction, relative humidity, horizontal rainfall intensity and dry bulb tempera-
ture. The relative humidity and air temperature can be directly used in the expression
of the boundary heat and moisture flows (see Eq. 1.27), and the other measurements
were used to calculate further necessary parameters: convective transfer coefficients,
equivalent temperature and wind-driven rain. As the effect of the facade orientation in
these calculations is significant, four one-year climate files with time steps of 10 min-
utes were generated, each one corresponding to a different orientation (north, east,
south and west).
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Figure 5.6: Generated mesh for the simulation case 1f

For simplification purposes, the interior boundary conditions of all simulation
cases are constant: RH = 75%, T = 20◦C, α = 7 W.m−2.K−1, β = 3× 10−8 s.m−1. Al-
though a large part of the moisture income towards building materials originates from
the indoor humidity level, influenced by the occupants, this matter has been simplified
here.

5.2.2.1 Convective transfer coefficients

The heat and moisture transfer rate between the ambient air and a porous medium is
governed by the gradient of temperature and humidity, as well as by the local air ve-
locity, the roughness of the material surface and its moisture content [WOR 04]. The
accurate expression of the α and β coefficients denoting convective transfer can there-
fore be problematic, as their values correspond to specific cases. The convective heat
transfer coefficient can be simplified by empirical formula, obtained from large scale
measurements of convective heat transfer at building surfaces [SHA 84, LOV 96]:

α= 1.7 Vloc +5 (5.2)
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where the local air velocity Vloc is a function of the building geometry and the wind
speed and direction, and can also be quantified by empirical models based on CFD
simulations:

Vloc =
{

1.8 U +0.2 if cos(θwind −θwall) ≥ 0

0.4 U +1.7 if cos(θwind −θwall) < 0
(5.3)

where U and θwind are the wind speed and direction, and θwall denotes the facade ori-
entation: θwall = 0 for a wall facing north, θwall = π/2 for a wall facing east, etc. The
moisture convective transfer coefficient can be expressed by the previously mentioned
Chilton-Colburn analogy 1.28:

β

α
=

Dv,a

Rv Tλa
Le2/3 (5.4)

It can be seen that the effects of the environment topography and building geome-
try have been considerably simplified. The use of empirical models for the expression
of the surface transfer coefficients is however common practice [JAN 07]: a possible al-
ternative for a better expression of the boundary transfer is the coupling of the model
with CFD simulations accounting for the environment of the building. Although it is
possible that wind may have an impact on air infiltration in fractures and resulting
advection phenomena, this effect was not specifically studied here and the empirical
approach was considered suitable for answering the previously mentioned goals of the
simulations.

5.2.2.2 Equivalent temperature

As previously explained, the effects of solar radiation are integrated in the expression
of an equivalent temperature at which the heat transfer rate due to the temperature
across the wall is the same as the rate due to the combined effects of convection, con-
duction and radiation. This temperature was introduced in Eq. 1.27 and Eq. 1.30,
recalled here:

α
(
Teq −T

)
=α (Ta −T )+κIsol +σǫILW (5.5)

The long-wave term ILW is the radiative heat exchange between surface, atmosphere,
ground and surrounding buildings, and was neglected in the present study. The ab-
sorbed short-wave radiation Isol consists of the direct irradiance Idir and the diffuse
irradiance Idif . The latter is given in climatic tables and is applicable to all surface ori-
entations. The direct absorbed radiation on each building facade was calculated from
the direct horizontal irradiance as shown on Fig. 5.7. The value of the absorptivity was
set to that of concrete and mortar κ= 0.6, as these materials form the external layers of
the simulated walls.

The left part of Fig. 5.7 shows how the horizontal solar radiation Ihor is related to
the radiation incoming to a vertical surface Iver through the altitude angle of the sun
θalt :

Iver

Ihor

=
1

tanθalt

(5.6)
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Figure 5.7: Calculation procedure of the direct solar radiation

and the right part shows the effect of the facade orientation θwall and of the azimuth of
the sun θazi. The resulting expression of the direct radiation on a facade, as a function
of the parameters given by the climatic tables, is therefore summed up as:

Idir = Ihor
max[cos(θazi −θwall) ,0]

tanθalt
(5.7)

As it was the case for the expression of the surface transfer coefficients, the effects
of the environment was not taken into account: for instance, the simulated wall is not
influenced by eventual trees or other buildings that may protect it from direct sunlight
at certain times of the day. This may cause an overestimation of the incoming heat flow
and of drying phenomena, but was not considered relevant for the current questioning.

5.2.2.3 Wind-driven rain

In the simulated building components, wind-driven rain is the main cause for water
infiltration in fractures and for subsequent moisture accumulation. It is therefore im-
portant to include it in the calculations. It was already mentioned in Sec. 1.2.4.2 that
empirical models can be used for the expression of gl,r . Such models sum up results
of CFD simulations into wind-driven rain coefficient αWDR, which translates the rain
drop size and velocity into an amount of water captured by a building facade. In the
present case, this coefficient was set to a constant value of 0.222 [BLO 04], simplify-
ing Eq. 1.29 into a function of the horizontal rainfall Rh, and of the wind speed and
direction:

gl,r = 0.222 R8/9
h U max[cos(θwind −θwall) ,0] (5.8)

where the value of the horizontal rainfall, originally given in [mm.min−1], is transposed
into [kg.m−2.s−1] for the integration into the simulation code:

Rh

[
kg.m−2.s−1]= ρl

1000×60
Rh

[
mm.min−1] (5.9)
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This expression does not explicitely account for the raindrop size distribution, nor does
it include the impact of the building height and of the wind speed, but its description
of the rain loads is nevertheless considered appropriate for the current study. In addi-
tion to the convective vapour transfer at the surface of the porous medium, the total
boundary moisture flow reads:

gm =β




(
pv,a +

gl,r

β

)

︸ ︷︷ ︸
peq

−pv


 (5.10)

where an equivalent ambient pressure peq is defined, including moisture exchange in
both liquid and gaseous phases. In order to prevent computational difficulties arising
from heavy climatic loads caused by strong rain showers, a maximal theoretical value
of this equivalent pressure was set:

{
peq ≤ 2 ps ⇒ Neumann

peq > 2 ps ⇒ Dirichlet
(5.11)

When the equivalent pressure exceeds a value defined by the saturation vapour pres-
sure ps , the moisture load is switched to a Dirichlet-type boundary condition indicat-
ing moisture saturation at the surface of the material: pc = 10−3 Pa. The mass exchange
is otherwise expressed by a Neumann-type condition (convective transfer gm). This
procedure allows for a better convergence in case of important moisture income. The
temperature of the rain is chosen equal to that of air.

5.2.3 Further settings

5.2.3.1 Time resolution

The presented methodology consists of long-term simulations including highly vari-
able boundary conditions such as sudden rain showers. A compromise must be found
concerning the magnitude of the time step, in order to account for all variations of the
climatic data while avoiding tremendous calculation times. Previous questionings on
the required time resolution for the wind and rain input data in order to obtain accu-
rate calculation results show that time steps of up to 10 min yielded a good agreement
with experimental data [BLO 04]. Hourly or daily time resolutions based on an arith-
metic averaging of the climatic data can however imply important errors: these errors
may be reduced by using a weighted averaging technique [BLO 08].

The climatic tables, available as 1 min input data, were arithmetically averaged to
a time resolution of 10 min. The algorithm includes an adaptative time stepping pro-
cedure, adapting the size of each time step ∆t according to the number of iterations of
the previous step m [JAN 07]:

∆t i+1 = min
[
∆t i min

(mmax

2m
,2

)
,∆tmax

]
(5.12)
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where mmax = 12 is the maximal authorised number of iterations. Should convergence
not be reached at the end of this series of iterations, a new attempt is made with half
the size of the time step. Such a reduction for instance occurs at the beginning of rain
showers, decreasing the time step to the order of seconds. The step then increases
when climatic conditions allow a faster convergence, and is bounded by a maximal
value of tmax = 10 min as to not exceed the climatic input frequency. A full descrip-
tion of the calculation algorithm is given in Sec. B.2 along with the description of the
implementation of the dynamic time stepping procedure.

5.2.3.2 Output

The setup of the simulations, summarising the notations, wall geometry and boundary
conditions, is shown on Fig. 5.8.

Tin = 20°C

RHin = 75%

αin = 7 W.m-2.K-1

βin = 3.10-8 s.m-1

q

gl,r

w

αext,βext 

 

Ta,ext

Teq,ext

RHext

Qout

Qin

Figure 5.8: Simulation setup (left) and definition of the balance quantities (right)

The results presented in the following section are twofold. First, temporal distribu-
tions are used for a qualitative illustration of the differences between several simula-
tion cases. They are graphs showing the evolution, during a month or a year of simu-
lation, of an instantaneous value. These values, illustrated on Fig. 5.8, are the heat flux
towards the inner surface q [W.m−2], and the average moisture content of the wall w

[kg.m−3]:

wtotal =
∑

m w m xm∑
m xm

(5.13)

which is the averaged value of the moisture content of each material layer w m ,
weighted by their thickness xm . The convention for quantifying the heat flow was cho-
sen in order for q to be representative of the heat loss or gain of the inner environment.

The second class of variables used for the display of the results are integrated values
used for quantitative comparisons, shown on the right side of Fig. 5.8. Qout [J.m−2]
and Qin respectively denote the raw total outwards and inwards heat flow, calculated
by integrating the positive or the negative part of q over the inner surface Sint during a
month or a year of simulations:

Qout =
∫

t

[∫

Sint

max
(
q,0

)
dS

]
dt (5.14)
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Qin =−
∫

t

[∫

Sint

min
(
q,0

)
dS

]
dt (5.15)

Qout has been defined as to be a measure for the total heat loss of a wall per unit facade
during a given amount of time. Though it does not directly translate into heating needs
for keeping the inner conditions constant, it can be used as a comparative indicator of
the thermal performance of several facade configurations. Similarly, Qin is the total
heat flow from the wall towards the inner environment.

The moisture balance quantities Gsorp and Gdesorp [kg.m−2] are respectively defined
as the total raw intake and release of water between the wall and both inner and outer
environments. They are calculated by integrating the positive or negative part of g on
both the external Sext and the internal surfaces:

Gsorp =
∫

t

[∫

Sint+Sext

max
(
g,0

)
dS

]
dt (5.16)

Gdesorp =−
∫

t

[∫

Sint+Sext

min
(
g,0

)
dS

]
dt (5.17)

High values of both these quantities denote important moisture content fluctuations,
while an high difference between them denotes an accumulation of moisture in the
wall during the considered period. As both phenomena influence the material degra-
dation, Gsorp and Gdesorp can be used as indicators of the durability of a building com-
ponent.

5.3 Results

The previous section describes many possibilities for calculations by combining all six
walls geometries with all four facade orientations, each one during a year of simula-
tion. While such a long simulation time is possible for the undamaged walls (case 1, 2
and 3), geometries including fractured material layers have a much higher number of
FE nodes and therefore involve much longer computational times. In order to answer
the questioning presented in the introduction of Sec. 5.2 within a reasonable term, the
conditions of the simulations must be chosen as to be representative of the potential
effects of fractures while avoiding redundancy of the results.

5.3.1 Undamaged materials

5.3.1.1 Facade orientation

As previously mentioned, four separate climatic data files were generated, since the
expression of the external boundary conditions depends on the facade orientation.
However, simulating the behaviour of all combinations of simulation cases and facade
orientations was not considered necessary. Instead, a sensibility study of the output to
the orientation was performed: the wall n◦ 1 was simulated during one year using each
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climatic data file. The results of these four calculations were then compared in order
to select one facade orientation, which was then no longer modified for all subsequent
simulations. The dynamic behaviour of all facades is partially shown on Fig. 5.9, show-
ing the temporal evolution of the outwards heat flux q and of the wall moisture content
w . For purposes of clarity, the former distribution is shown during one month, while
the latter is shown during the entire year.
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Figure 5.9: Effect of the facade type on the (a) outwards heat flow and (b) moisture
content

The temporal resolution of Fig. 5.9(a) is 10 min, and that of Fig. 5.9(b) is 4 h. The
observed behaviour matches the expectations on the response of each facade accord-
ing to the climatic solicitations: daily cycles are clearly visible in all cases in the form
of fluctuations of the outwards heat flux (Fig. 5.9(a). These fluctuations have a higher
amplitude on the southern facade due to the direct sunlight, and a lower amplitude on
the northern facade. The averaged moisture content of the wall (Fig. 5.9(b)) exhibits a
general trend of high humidity in the winter period and lower values in summer. In ad-
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dition to this trend, faster variations of low amplitude are visible on the profiles, due to
daily fluctuations of the relative humidity, drying and wetting due to the temperature
variations, and rain.

The general observation that can be made from these distributions is the fact that
the eastern and western facades globally have an intermediate response to the thermal
solicitations, and are more representative of an average behaviour than the northern
and the southern facades. In order to confirm this observation, Fig. 5.10 shows the
balance quantities defined in Eq. 5.14 to 5.17.
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Figure 5.10: (a) Total heat flow and (b) moisture sorption and desorption, during a year
of simulation, as a function of the facade orientation

Fig 5.10(a) shows the comparative values of Qout and Qin resulting from the same
simulation case, exposed to each of the climatic files. Fig. 5.10(b) similarly shows the
values of Gsorp and Gdesorp. The following observations can be drawn:

• As could be anticipated, the northern facade exhibits the highest heat loss Qout

and the lowest heat gain Qin. The southern facade shows the opposite result, and
the eastern and western facades have intermediate responses.

• The sorption/desorption cycles, translated by the quantities Gsorp and Gdesorp,
are higher in the eastern and southern facades.

• The orientation has little influence on moisture accumulation in the wall i.e. the
substraction Gsorp −Gdesorp.

The outcome of this series of simulations is the response of the same multi-layered
wall to different climatic inputs. In order to avoid running all calculations four times,
and to show the effects of cracking in average and representative climatic conditions,
all following simulations took place using the climatic file of the western facade orien-
tation. Indeed, the main purpose of this choice was to observe the average response of
the wall, rather than its behaviour in extreme cases.
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5.3.1.2 Effects of thermal insulation

The last step of the study before simulations of fractured building components is to
ensure the consistency of the effect of thermal insulation on the hygrothermal per-
formance of the wall. The selected climatic data file was implemented into year-long
simulations of the cases 1, 2 and 3 (undamaged components). The results were then
compared as to estimate whether the expectations of the insulating components are
met. The presentation of the results is the same as in the previous paragraph: first, Fig.
5.11 shows the dynamic behaviour of the walls on the basis of the temporal evolution
of q and w .
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Figure 5.11: Effect of the facade orientation on the (a) outwards heat flow and (b) mois-
ture content during a year of simulations

The non-insulated wall (case 1) can be seen to show significantly higher values of
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heat flow, in both winter and summer periods (Fig. 5.11(a)). Its thermal inertia is much
smaller, as can be seen by high daily fluctuations of q. In this regard, the performances
of the inner and outer thermal insulation modules are quite similar. In terms of vari-
ations of the moisture content (Fig. 5.11(b)), the case 2 exhibits yearly fluctuations,
coordinated with those of the case 1. The simulation case 3 offers a steadier profile. In-
deed, the principal source of moisture income to the wall is the exterior environment,
from which this composite is insulated by a layer of hygrophobic coating. These ob-
servations are confirmed by the comparison of the balance quantities, shown on Fig.
5.12.
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Figure 5.12: (a) Total heat flow and (b) moisture sorption and desorption, during a year
of simulation, as a function of the facade type

• Case 1 exhibits a very high value of both Qout and Qin (Fig. 5.12(a)), as well as of
the general amplitude of the moisture content fluctuations, shown by Gsorp and
Gdesorp (Fig. 5.12(b))

• Case 2 shows that the addition of an inside insulation layer considerably de-
creases the heat loss and gain through the wall. However, it only has a small
impact on the amplitude of sorption/desorption cycles, particularly concerning
the concrete layer exposed to the exterior climatic conditions.

• The thermal response of case 3 is very close to that of case 2. However, this out-
side insulation composite includes a hygrophobic coating layer making the wall
practically impermeable to external liquid moisture income: the cycles of suc-
cessive moisture intake and release are considerably reduced. As these cycles are
one of the main causes for material degradation, such an insulation module is
expected to have a positive impact on the durability of the component.

Although most of these observations are not new, they allow ensuring that the results
given by the finite-element model are consistent with the definition of the simulation
cases.
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5.3.2 Fractured materials

The last part of the work consists of simulating the behaviour of building components
including fractured materials, i.e. the simulation cases 1f, 2f and 3f. The geometries of
these components is identical to the previously considered undamaged cases, except
that the load-bearing material layer (concrete) includes a fracture network, which was
taken from previous measurements performed in Chap. 3. The questioning of this nu-
merical study was laid in the form of three targets, the first one of which is to estimate
the consequences of fractures on the moisture accumulation and heat loss of a stan-
dard wall. This is done by comparing the values of the balance quantities (Qout , Qin,
Gsorp and Gdesorp) resulting cases 1 and 1f. The second question is to find whether these
consequences are aggravated by the infiltration of moisture towards insulation mate-
rials: this is done by comparing these two cases with cases 2 and 2f. The last target is
to illustrate how outer insulation may correct the flaws generated by fissures: it is the
purpose of the cases 3 and 3f.

The previous section has set the frame for this last step of the numerical work. On
the basis of year-long simulations of undamaged building components, a climate file
was selected as to be representative of the standard solicitations occuring on a build-
ing facade. This allowed reducing the number of calculations required to answer the
questioning. Furthermore, the hygrothermal behaviour of the walls was only observed
during two separate months of simulations instead of an entire year: a winter month
(february) and a summer month (july). Indeed, a full simulation year of fractured com-
ponents would imply long computational times with the current settings of the model,
and the two selected months are representative of the conditions to which the walls
may be subjected.

5.3.2.1 Dynamic behaviour

First, the dynamic behaviour of the walls is displayed. Each of the following graphs
shows the temporal evolution of w and q for both undamaged and damaged versions
of a wall geometry, during one month of simulation. Fig. 5.13 and 5.14 show the be-
haviour of the non-insulated wall (cases 1 and 1f), while Fig. 5.15 and 5.16 show the
behaviour of the inner insulated wall (cases 2 and 2f), respectively during the winter
and the summer month. The initial conditions of the winter simulations are T = 10◦C

and RH = 75%, and those of the summer simulations are T = 20◦C and RH = 75%.
On each graph, the hygric and thermal behaviour of the undamaged component is

shown by the black lines, while the blue and red lines respectively indicate the evolu-
tion of the moisture content w of the damaged wall and of the thermal flow through its
inner surface q.

The interpretation of Fig. 5.13 leads to the following observations: first, the evolu-
tion of the moisture content, and of the heat loss, during the first period of the simula-
tions, is almost identical whether the concrete layer is fractured or not. This period is
characterised by moderate conditions of humidity and occasional small quantities of
wind-driven rain impacting the building facade: with the present settings of the frac-
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Figure 5.13: Non-insulated wall (february)

ture moisture permeability (see Eq. 4.23 and Fig. 4.15), the presence of cracks do not
significantly accelerate moisture ingress in the vapour phase. A rain shower then oc-
curs (around t = 14 days), causing an abrupt rise in the moisture content of the frac-
tured wall due to water suction in the main fracture. The amount of water captured by
the concrete layer after this rain shower then decreases slowly: although the fracture
contributes to the drying process, an important accumulation of moisture remains in
this material of low permeability. In the present case, this accumulation is aggravated
by frequent rain showers preventing the drying of the wall. The thermal behaviour of
the damaged facade is displayed on Fig. 5.13 as well. The first disparity between cases
1 and 1f in this regard is caused by the sudden moisture content rise which increases
the thermal conductivity of concrete. The profiles of outwards heat flow then coincide
again as the amount of water captured by the case 1f diffuses in a larger area, and have
a smaller impact on the conductivity. Although cracking seems to have little direct con-
sequence on the thermal performance of the wall, the accumulation of moisture over
time may result in larger gaps between the initial and the fractured building compo-
nents. The simulation of the same walls during the summer month (Fig. 5.14) leads to
similar observations. The drying rate of the fractured wall after a rain shower is how-
ever higher because of higher air temperatures.

Fig. 5.15 and 5.16 show the moisture content and heat flow profiles of both inner
insulated walls. The general shape of the hygric behaviour is very close to that of the

145



5. Application of the simulation code

0 5 10 15 20 25 30
0

20

40

60

80

Time (days)

M
oi

st
ur

e 
co

nt
en

t (
kg

.m
−

3 )

 

 

0 5 10 15 20 25 30
−80

−40

0

40

80

O
ut

w
ar

ds
 h

ea
t f

lu
x 

(W
.m

−
2 )

0 5 10 15 20 25 30
−80

−40

0

40

80
1
1f
1f

Figure 5.14: Non-insulated wall (july)

non-insulated facade. The accumulation of water in the fractured case however seems
aggravated. The crack geometry included in the concrete layer indeed nearly reaches
the insulation material, causing possible moisture accumulation inside the wall. The
consequences of cracking on the thermal behaviour therefore seem more important
than in the non-insulated case: first, this configuration has a higher initial thermal
resistance, and the impact of moisture on the thermal conductivity of the materials is
proportionally higher. Second, this impact is lasting because of the slow rate at which
moisture leaves the wall. Alhough the short-term effects of fractures on the heat loss
are limited, it can be expected that longer simulation times result in an aggravation
of moisture accumulation in the insulation layer of this wall configuration, and thus
durably affect its thermal conductivity.

5.3.2.2 Heat and moisture balance

The results of the monthly simulations are summarised by showing the value of the
balance quantities defined in Eq. 5.14 to 5.17. Fig. 5.17 displays the total amount of
adsorbed and released moisture, per unit exposed surface of each wall, during a month
of simulation.

Two main quantities can be related to a durability assessment of a building compo-
nent. First, the values of Gsorp and Gdesorp illustrate the amplitude of the average sorp-
tion/desorption cycles. Secondly, the quantity∆m =Gsorp−Gdesorp (see Fig. 5.17(a)), il-
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Figure 5.15: Wall with inner insulation (february)

lustrates moisture accumulation in the component. Both phenomena are known to ac-
celerate degradation mechanisms: the amplitude of drying/wetting cycles accelerates
the chemically induced degradation suffered by concrete [AND 99] (alkali-silica reac-
tion, steel reinforcement corrosion, carbonation) and accumulated water may cause
frost damage in case of low temperatures, or diffuse towards the entire envelope and
generate mould growth [CLA 99]. In regards to both these parameters (moisture accu-
mulation and wetting/drying cycles), it is clear that the presence of cracks inevitably
accelerates degradation processes. While this observation could be expected, the pre-
sented model allows quantifying these phenomena, allowing more advanced durabil-
ity assessments. The interpretation of Fig. 5.17 furthermore yields the following obser-
vations:

• The aggravation of moisture accumulation due to cracking concerns both non-
insulated and inner-insulated walls equally. In the second case, the infiltration
of water may also reach the insulation material, should cracks form a continuous
path towards this layer. This has important potential repercussions, considering
such materials often do not tolerate moisture accumulation.

• During the summer month, the final moisture balance is negative in the non-
damaged walls 1 and 2 (Gdesorp >Gsorp), and positive in the walls including frac-
tured components 1f and 2f.
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Figure 5.16: Wall with inner insulation (july)
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Figure 5.17: Total moisture sorption and desorption in all simulation cases, during (a)
the winter month and (b) the summer month

• Cracking has very little impact on the hygric performance of the outer-insulated
wall (simulation cases 3 and 3f). This observation shows that the addition of a
protective hygrophobic coating may correct the flaws generated by ageing, and
consequently improve the durability of the structure.
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Figure 5.18: Consequences of cracking on the thermal performance

The thermal balance of the simulations is showed on Fig. 5.18. Each value pre-
sented on this graph is the ratio of the total heat transfer across a damaged facade Q f

to that across the initial wall Q, for each facade type, during a month of simulation.

Q f

Q
=





Qout,f

Qout
(february)

Qin,f

Qin
(july)

(5.18)

As was previously noted, due to the moisture-dependency of the thermal conductiv-
ity of construction materials, cracking may affect heat transfer across the facade. The
direct consequences on the general heat balance at the building scale are however lim-
ited, as shown by the low values of Q f /Q exhibited by Fig. 5.18.

It must be noted that the observations resulting from this series of simulations are
given by specific cases, which have been defined in order to illustrate the potential
effects of cracking on the hygrothermal performance of building components. These
results are therefore to be analysed with caution. Furthermore, the procedure is based
on a number of simplifying hypotheses and flaws: simplification of the climatic load,
imperfect meshing strategy, restriction to 2-dimensional observation. . . However, they
illustrate the impact cracks may have on hygrothermal performances, and justify the
need for the procedure which has been developed in the frame of this work.

5.3.2.3 Calculation time

It was mentioned in Sec. 4.3.2 that very small time steps, under 0.1 s, are required for
convergence during the phase of water suction by a fracture. The initial time step of the
calculations is of 10 min. At the start of a rain shower, convergence cannot be reached
within the prescribed maximum number of iterations: the adaptative time stepping
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procedure automatically reduces the time step until the calculation can proceed. This
implies an important increase of the computational costs.

The geometry of the non-damaged walls is close to one-dimensional: due to a rel-
atively small number of nodes, and to the absence of fracture flow, a year-long simula-
tion can be conducted in less than 24 hours using a standard desktop computer, with
time steps oscillating between 0.87 s and 10 min. The walls including fractured con-
crete are however much more demanding in terms of computational time. With the
presented spatial discretisation settings, the simulation cases 1f and 2f respectively in-
clude 13722 and 16628 nodes. As an example, the simulation of the case 1f during the
winter month involves a total of 4389 time steps, between 0.0014 s and 10 min, for a to-
tal of 9801 iterations. The average time of one iteration is 31 s, and the total calculation
time is approximately 4 days.

Such computational costs make long simulations quite cumbersome: this justi-
fies the restriction of the simulation cases to a single facade orientation, during only
two months. A potential improvement of the procedure can however be easily identi-
fied: the current mesh generation algorithm does not allow a progressive increase of
the mesh density near fractures. This involves the presence of an unnecessarily high
number of nodes, visible on Fig. 5.6. The optimisation of this meshing procedure may
therefore significantly reduce the time of calculation.

5.4 Conclusion

This chapter is centered on the application of the previously developed finite-element
model for heat and moisture flow simulations in fractured porous media.

• The model was validated in regards to coupled transfer on the basis of interna-
tional benchmarks. It was shown suitable for predicting the behaviour of multi-
layered building components under heavy climatic loads.

• A series of simulation cases was defined in order to estimate the consequences
of concrete cracking on the hygrothermal performance of non-insulated and in-
sulated building facades. A climatic file, representative of average conditions in
Lyon, was assigned to the simulations.

• The accumulation of moisture in the wall, as well as the amplitude of the sorp-
tion/desorption cycles, can be directly visualised. This allows comparing the
performance and the durability of a given wall geometry, after integrating mea-
surements of fracture networks.

• Long-term consequences of cracking on the hygrothermal performance of com-
ponents can be estimated.

• Fractures observed in one of the material layers may influence the properties
and the durability of the other layers of the facade, because of moisture infiltra-
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tion. Simulations of inner-insulated walls were performed as an example of this
phenomenon.

• The case of an outer insulation including hygrophobic coating is suggested as a
means to correct the negative impact of cracking and prevent an acceleration of
ageing.

The main advantage of the undertaken procedure is its applicability to a wide range
of facade types. Crack geometries, integrated in the calculations, originate from ex-
perimental measurements and have no restrictions of number and sizes. Because the
mechanical behaviour of the materials is not calculated, the methodology does not
require the superposition of sub-systems in a staggered resolution scheme: the time-
stepping procedure is simplified in comparison to fully predictive approaches. Fur-
thermore, long-term simulations can be performed within reasonable computational
time.
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Summary and outcome

The objective of the work was to propose a methodology for including the effects of
material ageing in simulations of coupled heat and mass transfer at the scale of build-
ing components, in the prospects of identifying their need for renovation. It ensued
from a literature survey (Chap. 1) that the modelling of the hygrothermal behaviour of
building components is now a standardised technique, and that important advances
were recently achieved for modelling the mechanical behaviour of construction ma-
terials undergoing hygric and mechanical solicitations. However, such predictive ap-
proaches, while applicable to life-cycle analyses and studies performed ahead of the
building design, suppose that all causes for degradation are quantified during the en-
tire simulation time. In order to allow assessing the hygrothermal behaviour of materi-
als of which damage patterns are unknown, a combined experimental and numerical
procedure was developed. This procedure consisted in implementing non-destructive
techniques for characterising damage and fracture geometries in construction materi-
als, in order to integrate these measurements into a newly developed simulation code
for coupled heat and moisture transfer modelling in cracked porous media.

Preliminary study

The work started with a preliminary experimental study, which aimed at identifying
further experimental and numerical requirements (Chap. 2). The main questioning
of this first step was to establish whether a continuous description of damaged build-
ing materials with equivalent macroscopic transport properties is suitable for allowing
an accurate prediction of flow. To this aim, an experimental methodology was car-
ried: diffuse damage patterns were generated in samples of a new formulation of fibre
reinforced mortar, which were then placed inside a climatic chamber recreating fluc-
tuations of relative humidity. The water vapour permeability of all samples was then
calculated by applying inverse methods to the mass uptake profiles.

As a result to this procedure, a trend was observed, showing a slight increase of the
water vapour permeability with damage. The reproducibility of these measurements
was however not satisfactory, as large deviations of permeability were exhibited. It was
therefore stated that the description of damage on the basis of a single macroscopic
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variable in order to characterise moisture transport properties may not allow an accu-
rate prediction of flow. This observation led to the following conclusion: an adequate
prediction of coupled heat and moisture flow, accounting for the influence of all scales
of damage and fractures, must be based on a finer knowledge of crack network geome-
tries.

Non-destructive testing

A new experimental methodology was then carried, implementing non-destructive
techniques for damage and fracture characterisation during the mechanical loading
of mortar samples (Chap. 3). The surface displacements of these samples were mea-
sured by digital image correlation, while acoustic sensors were distributed as to moni-
tor the emission activity of the material during the development of damage. The pro-
cedure had two main objectives: first, to establish a reliable method for providing mea-
surements of crack networks to the model for heat and moisture transfer simulations.
Then, to propose a methodology for monitoring and characterising the degradation
state of aged materials at the scale of building components.

The first objective was met on the basis of the imaging results. Digital image cor-
relation, associated with an image processing procedure, allowed visualising the evo-
lution of all ranges of cracks, from microscopic to macroscopic, during the entire me-
chanical loading process. All geometrical characteristics of these cracks can be quanti-
fied through a simple experimental and numerical method. The second objective lies
on the simultaneous use of optical measurements and acoustic emission monitoring:
acoustic measurements are to be calibrated and interpreted on the basis of damage
mappings resulting from digital image correlation, in order to allow their extension
to larger scales of observation. A good match was found between both techniques in
terms of damage quantification and localisation. Furthermore, acoustic emission al-
lows anticipating the initiation of macroscopic cracks.

Model development and validation

The next step of the work was the development of a numerical frame, which allows a
user to include fracture measurements into simulations of heat and moisture trans-
fer in a porous medium (Chap. 4). First, an experimental procedure was carried, in
order to provide a data set for the validation of the model. Concrete samples were frac-
tured and observed by a camera for digital image correlation, then placed in an X-ray
ragiography apparatus for monitoring the resulting capillary moisture uptake. A finite-
element model was then developed as to integrate DIC measurements, explicitely ex-
pressing the moisture transport properties of fractures in a fully coupled scheme.

A satisfactory match was found between moisture content distributions observed
by X-ray radiography, and those predicted by the finite-element model on the basis of
the crack geometry. The mesh density was found to be an important parameter of the
calculations, and guidelines were proposed for a reliable integration of discontinuities
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in the finite-element mesh. These results are a validation of the general methodology
of the work: this mixed experimental and numerical procedure enables the user to
recreate complex mechanisms of moisture flow in non-trivial fracture networks.

Model application

After establishing a reliable methodology for gathering experimental data on damage
and fracture geometries, and developing the numerical frame which integrates these
geometries for the prediction of the flow, the procedure was applied to a set of case
studies (Chap. 5). First, benchmark studies were used in order to validate the model
in regards to coupled heat and moisture transfer in multi-layered walls under severe
climatic loads. Then, a series of examples was defined, in order to illustrate how the
developed methodology can be used for assessing the consequences of material degra-
dation on the hygrothermal performance of building components.

The outcome of these calculations is the possibility to quantify heat and moisture
transfer in multi-layered building components including one or more fractured mate-
rial layers, during long simulation times. Processes related to material degradation,
such as moisture accumulation or sorption/desorption cycles, could be visualised.
This allows assessing the performance and the durability of a given wall geometry,
once its damage and fracture patterns are known. Furthermore, the consequence of
fractures observed in one material layer on the surrounding components can be visu-
alised. This procedure is expected to yield reliable results allowing the identification of
the renovation needs of existing building components.

Recommendations for further research

Multi-scale modelling

As it was noted in the literature survey (see Sec. 1.3.4), models for fluid flow in saturated
or non-saturated, damaged or fractured porous media, can be separated into two main
categories: continuum models prescribing equivalent macroscopic transport proper-
ties, and discrete models explicitely accounting for the presence of discontinuities. The
present work started with the first scale of observation, by measuring the equivalent
water vapour permeability of diffuse damage networks (Chap. 2). The remainder of the
study then focused on the integration of discrete fracture networks into finite-element
calculations. However, real materials tend to exhibit a superposition of several scales of
fissures, from diffuse to localised damage distributions [PIJ 09, MOO 09]. The present
work however did not attempt to superpose multiple scales of cracking. This could
be considered by chosing to explicitely include cracks exceeding a certain aperture
into the finite-element mesh, and assigning equivalent (possibly anisotropic) trans-
port properties to the surrounding, diffusely damaged, porous medium according to
the local value of a damage variable. This supposes a good resolution of the observa-
tion technique used for the quantification of fissures.
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Damage monitoring

One of the announced purposes of the experimental study conducted in Chap. 3 was
to investigate the possibility of applying damage monitoring to field measurements,
in order to gather data that can be related to the moisture permeability. The imple-
mentation of acoustic emission was suggested, and a method was proposed as to cal-
ibrate this technique on the basis of optical measurements in the prospects of its au-
tonomous use at the building scale.

However, important advances remain necessary, should this prospect gain inter-
est. Damage quantification was related to the cumulative number of AE events (or
to the AE generation rate according to other authors [OHT 01]), but not to the evo-
lution of the material’s transport properties. This can for instance be the subject
of experimental studies, measuring the moisture uptake rate related to given num-
bers of AE events. Since signals can be located and separated according to their
waveform in order to separate microscopic fissures from macroscopic fractures, this
could result in three-dimensional permeability mappings including the effects of
all ranges of cracks. Furthermore, newly developed signal classification techniques
[MOE 08, OHN 10, MOM 12] may allow a better understanding of degradation mecha-
nisms.

Three-dimensional extension

The entire work presented here focused on two-dimensional measurements and simu-
lations. This was considered sufficient for developing the experimental and numerical
methodology, and for assessing possible consequences of cracking on the durability
and hygrothermal performance of building components. However, fractures generally
have a three-dimensional shape, and are likely to impact flow in all directions. In or-
der to include these considerations, the developed procedure may be extended to 3D
simulations by adapting the numerical code. In the prospects of its validation, X-ray
tomography can be used to provide three-dimensional measurements of crack pat-
terns and of moisture infiltration. Furthermore, the acoustic emission technique is
directly applicable to volumetric damage observations. This would however involve
a larger complexity of the numerical system and longer computational times: a more
advanced meshing strategy than the one presented in Sec. 5.2 would be necessary for
the extension of the procedure to the 3D case.

Durability assessment

The last part of the study has shown how the developed procedure can lead to quanti-
tative estimations of the moisture accumulation in walls, aggravated by the presence of
cracks. A possible continuation is to relate these results with an estimation of their ef-
fects on the durability of the building components. Indeed, the numerical study leads
to a complete knowledge of the moisture transport and storage in the simulated ma-
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terials. As a consequence, one can consider quantifying the causes for degradation in
these materials: environmentally induced deterioration [BAN 03], infiltration of chem-
icals (chloride ions, carbon dioxide), mould development [CLA 99], freeze-thaw dam-
age. . . The methodology of the present work is therefore a potentially important con-
tribution to the detection of renovation needs and to the improvement of the overall
building performance.
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Effect of hydrophilic admixtures on moisture and heat transport and storage param-
eters of mineral wool. Construction and Building Materials, vol. 20, 2006, p. 425-
434.

166



Bibliography

[JOH 02] JOHNSON M.
Waveform based clustering and classification of AE transients in composite lami-
nates using principal component analysis. NDT &amp; E International, vol. 35, no

6, 2002, p. 367-376.

[KAL 07] KALAGASIDIS A., WEITZMANN P., NIELSEN T., PEUHKURI R., HAGENTOFT C.-
E., RODE C.
The International Building Physics Toolbox in Simulink. Energy and Buildings,
vol. 39, no 6, 2007, p. 665-674.

[KER 91] KERMANI A.
Permeability of stressed concrete. Building Research and Information, vol. 19, 1991,
p. 360-366.

[KRU 96] KRUS M.
Moisture transport and storage coefficients of porous mineral building materials:

Theoretical principles and new test methods. Fraunhofer IRB Verlag, Stuttgart, 1996.

[KUM 02] KUMARAN M., LACKEY J., NORMANDIN N., TARIKU F., VAN REENEN D.
A thermal and moisture transport property database for common building and in-
sulating materials. rapport, 2002, ASHRAE research project 1018-RP.

[KWI 09] KWIATKOWSKI J.
Moisture in buildings, air-envelope interaction. Thèse de doctorat, Institut National
des Sciences Appliquées de Lyon, 2009.

[LAN 03] LANDIS E., NAGY E., KEANE D.
Microstructure and fracture in three dimensions. Engineering Fracture Mechanics,
vol. 70, 2003, p. 911-925.

[LAN 07] LANDIS E., ZHANG T., NAGY E., NAGY G., FRANKLIN W.
Cracking, damage and fracture in four dimensions. Materials and Structures, vol. 40,
2007, p. 357-364.

[LAW 02] LAWLER J., ZAMPINI D., SHAH S.
Permeability of cracked hybrid fiber-reinforced mortar under load. ACI Materials

Journal, vol. 99, 2002, p. 379-385.

[LEM 00] LEMAITRE J., DESMORAT R., SAUZAY M.
Anisotropic damage law of evolution. European Journal of Mechanics - A/Solids,
vol. 19, no 2, 2000, p. 187 - 208.

[LEP 10] LEPLAY P., RÉTHORÉ J., MEILLE S., BAIETTO M.-C.
Damage law identification of a quasi brittle ceramic from a bending test using Digi-
tal Image Correlation. Journal of the European Ceramic Society, vol. 30, no 13, 2010,
p. 2715 - 2725.

167



Bibliography

[LEV 81] LEVY F.
A modified Maxwell-Eucken equation for calculating the thermal conductivity of
two-component solutions or mixtures. International Journal of Refrigeration, vol. 4,
no 4, 1981, p. 223 - 225.

[LEW 87] LEWIS R., SCHREFLER B.
The finite element method in the deformation and consolidation of porous media.
John Wiley and Sons Inc.,New York, NY, 1987.

[LI 03] LI V.
On engineered cementitious composites (ECC) - a review of the material and its ap-
plication. Journal of Advanced Concrete Technology, vol. 1, 2003, p. 215-230.

[LIK 03] LIKAS A., VLASSIS N., VERBEEK J.
The global k-means clustering algorithm. Pattern Recognition, vol. 366, 2003,
p. 451-461.

[LIM 00] LIM C. C., GOWRIPALAN N., SIRIVIVATNANON V.
Microcracking and chloride permeability of concrete under uniaxial compression.
Cement and Concrete Composites, vol. 22, no 5, 2000, p. 353 - 360.

[LOV 96] LOVEDAY D. L., TAKI A. H.
Convective heat transfer coefficients at a plane surface on a full-scale building fa-
cade. International Journal of Heat and Mass Transfer, vol. 39, no 8, 1996, p. 1729 -
1742.

[LUC 89] LUCKNER L., VAN GENUCHTEN M., NIELSEN D.
A consistent set of parametric models for the two-phase-flow of immiscible fluids in
the subsurface. Water Resources Research, vol. 25, 1989, p. 2187-2193.

[MAC 67] MACQUEEN J.
Some methods for classification and analysis of multivariate observations. Proceed-

ings of the 5th Berkeley symposium on mathematical statistics and probability, 1967.

[MAI 12] MAILLET E., GODIN N., R’MILI M., REYNAUD P., LAMON J., FANTOZZI G.
Analysis of acoustic emission energy release during static fatigue tests at intermedi-
ate temperatures on ceramic matrix composites: towards rupture time prediction.
Composites Science and Technology, vol. 72, 2012, p. 1001-1007.

[MAR 63] MARQUARDT D.
An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal of

Applied Mathematics, vol. 11, 1963, p. 431 - 441.

[MAU 12] MAUROUX T., BENBOUDJEMA F., TURCRY P., AÏT-MOKHTAR A., DEVES O.
Study of cracking due to drying in coating mortars by digital image correlation. Ce-

ment and Concrete Research, vol. 42, no 7, 2012, p. 1014-1023.

168



Bibliography

[MAZ 89] MAZARS J., PIJAUDIER-CABOT G.
Continuum damage theory - application to concrete. Journal of Engineering Me-

chanics, vol. 115, 1989, p. 345-365.

[MEL 96] MELENK J. M., BABUSKA I.
The partition of unity finite element method: Basic theory and applications. Com-

puter Methods in Applied Mechanics and Engineering, vol. 139, no 1-4, 1996, p. 289-
314.

[MES 98] MESCHKE G., LACKNER R., MANG H.
An anisotropic elastoplastic-damage model for plain concrete. International Jour-

nal for Numerical Methods in Engineering, vol. 42, 1998, p. 703-727.

[MES 03] MESCHKE G., GRASBERGER S.
Numerical Modeling of Coupled Hygromechanical Degradation of Cementitious
Materials. Journal of Engineering Mechanics, vol. 129, no 4, 2003, p. 383-392, ASCE.
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Effect of moisture on the thermal conductivity of a cementitious composite. Inter-

national Journal of Thermophysics, vol. 27, no 4, 2006, p. 1228 - 1240.

[MOE 99] MOES N., DOLBOW J., BELYTSCHKO T.
A finite element method for crack growth without remeshing. International Journal

for Numerical Methods in Engineering, vol. 46, 1999, p. 131-150.

[MOE 08] MOEVUS M., GODIN N., R’MILI M., ROUBY D., REYNAUD P., FANTOZZI G.,
FARIZY G.
Analysis of damage mechanisms and associated acoustic emission in two SiC/[Si-B-
C] composites exhibiting different tensile behaviours. Part II: Unsupervised acoustic
emission data clustering. Composites Science and Technology, vol. 68, no 6, 2008,
p. 1258-1265.

[MOM 10] MOMON S., MOEVUS M., GODIN N., R’MILI M., REYNAUD P., FANTOZZI G.,
FAYOLLE G.
Acoustic emission and lifetime prediction during static fatigue tests on ceramic-
matrix composite at high temperature under air. Composites Part A: Applied Science

and Manufacturing, vol. 41, 2010, p. 913-918.

[MOM 12] MOMON S., GODIN N., REYNAUD P., R’MILI M., FANTOZZI G.
Unsupervised and supervised classification of AE data collected during fatigue test
on CMC at high temperature. Composites Part A: Applied Science and Manufactur-

ing, vol. 43, 2012, p. 254-260.

[MOO 09] MOONEN P.
Continuous-discontinuous modelling of hygrothermal damage processes in porous
media. Thèse de doctorat, Katholieke Universiteit Leuven, 2009.

169



Bibliography

[MOO 11] MOONEN P., SLUYS L., CARMELIET J.
A continuous-discontinuous approach to simulate heat transfer in fractured media.
Transport in Porous Media, vol. 89, 2011, p. 399-419.

[MUA 74] MUALEM Y.
A conceptual model of hysteresis. Water Resources Research, vol. 3, 1974, p. 514-520.

[MUA 76a] MUALEM Y.
Hysteretical models for prediction of the hydraulic conductivity of unsaturated
porous media. Water Resources Research, vol. 12, 1976, p. 1248-1254.

[MUA 76b] MUALEM Y.
A new model for predicting the hydraulic conductivity of unsaturated porous media.
Water Resources Research, vol. 12, 1976, p. 513-522.

[MUR 10] MURALIDHARA S., PRASAD B. R., ESKANDARI H., KARIHALOO B.
Fracture process zone size and true fracture energy of concrete using acoustic emis-
sion. Construction and Building Materials, vol. 24, no 4, 2010, p. 479-486.

[OHN 10] OHNO K., OHTSU M.
Crack classification in concrete based on acoustic emission. Construction and

Building Materials, vol. 24, no 12, 2010, p. 2339-2346.

[OHT 01] OHTSU M., WATANABE H.
Quantitative damage estimation of concrete by acoustic emission. Construction and

Building Materials, vol. 15, no 5-6, 2001, p. 217-224.

[ORT 09] ORTEU J.-J.
3-D computer vision in experimental mechanics. Optics and Lasers in Engineering,
vol. 47, no 3–4, 2009, p. 282-291.

[PAV 09] PAVLÍK Z., ČERNÝ R.
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Appendix A

Derivations

A.1 Equivalence between pressure gradients

It was stated in section 1.2.2 that it is preferable to only use one pressure variable as
a driving potential for moisture transfer. In order to guarantee the applicability of Eq.
1.9, the equivalence between ∇pv and ∇pc must be established. The derivation of this
equivalence is not trivial, as explained here.

If we wish to only keep the capillary pressure pc and the temperature T as the main
variables of the calculations, the gradient of vapour partial pressure can be expressed
as such:

∇pv =
∂pv

∂pc︸︷︷︸
(a)

∇pc +
∂pv

∂T︸︷︷︸
(b)

∇T (A.1)

The basis for the derivation of this equation lies on Kelvin’s law:

pv = ps exp

(
pc

ρl Rv T

)
(A.2)

which leads to the following expression of the first derivative (a):

∂pv

∂pc
=

ps

ρl Rv T
exp

(
pc

ρl Rv T

)
(A.3)

∂pv

∂pc
=

pv

ρl Rv T
(A.4)

and to the following expression of the second derivative (b):

∂pv

∂T
=

∂ps

∂T
exp

(
pc

ρl Rv T

)
+ps

[
1

ρl Rv T

∂pc

∂T
−

pc

ρl Rv T 2

]
exp

(
pc

ρl Rv T

)
(A.5)

The first term on the right side follows directly from Clausius-Clapeyron’s law:

∂ps

∂T
=

Llv

Rv T 2 ps (A.6)
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A. Derivations

while the other thermal derivative follows from Young-Laplace’s law, expressing the
capillary pressure in a cylindrical tube of radius r :

pc =−
2σcosθ

r
(A.7)

∂pc

∂T
=

1

σ

∂σ

∂T
pc (A.8)

This leads to the following expression for the derivative of the partial pressure to the
temperature:

∂pv

∂T

pv

ρl Rv T 2

[
ρl Ll v +pc

(
T

σ

∂σ

∂T
−1

)]
(A.9)

which, added to Eq. A.4, allows removing the gradient of partial pressure from the
conservation equations, by replacing it with its equivalent

∇pv =
pv

ρl Rv T
∇pc +

pv

ρl Rv T 2

[
ρl Ll v +pc

(
T

σ

∂σ

∂T
−1

)]
∇T (A.10)

A.2 Analytic resolution of the moisture transport equa-
tion

A.2.1 Description of the problem

The present section describes how the moisture transport equation (Eq. 2.10) can be
solved as to give an analytical expression for the mass uptake of a specimen, under
appropriate assumptions and boundary conditions. These assumptions are:

• one-dimensional transfer,

• isothermal conditions,

• constant transport properties in the considered humidity interval,

• transfer only occurs in the gaseous phase.

The resulting transport equation, written with either the vapour pressure p or moisture
content w as driving potential, reads:

∂p

∂t
= a

∂2p

∂x2
(A.11)

where the diffusivity a = δp ps/ξ is considered constant. This equation comes along
with the following initial and boundary conditions:

p
∣∣

t=0 = p1

∂p

∂x

∣∣∣∣
x=0

= 0 (A.12)

δp
∂p

∂x

∣∣∣∣
x=L

= β
(
p2 −px=L

)
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x

L

p(x,t>0)

p(x,t=0)
p1

p2

Figure A.1: One-dimensional moisture transfer in a plate

A layout of the problem is shown on Fig. A.1. The initial vapour pressure in the
material is p1 and a boundary pressure p2 is imposed starting from t = 0. The pressure
field p is a function of the spatial and temporal coordinates x and t , the thickness L,
the initial and boundary pressures p1 and p2, the diffusivity a, the surface transfer
coefficient β and the permeability δp .

A.2.2 Resolution of the transport equation

The methodology for the resolution of Eq. A.11 follows that of [POL 05], and starts with
a change of variable in the aim of a non-dimensional formulation:

θ =
p2 −p

p2 −p1
; u =

x

L
; Fo =

at

L2
; Bi =

βL

δp
(A.13)

where Fo and Bi are the Fourier and Biot numbers, respectively. This results in the
following conservation equation for the non-dimensional pressure θ as a function of
Fo and the position u:

∂θ

∂Fo
=

∂2θ

∂u2
(A.14)
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A. Derivations

with the following boundary conditions:

θ|Fo=0 = 1
∂θ

∂u

∣∣∣∣
u=0

= 0 (A.15)

∂θ

∂u

∣∣∣∣
u=1

= −Biθu=1

A method for the resolution of Eq. A.14 was proposed by Bernoulli, considering θ can
be written as the product of functions of each variable Fo and u:

θ (Fo,u) =Φ (Fo)Ψ (u) (A.16)

The insertion of Eq. A.16 into Eq. A.14 gives:

Φ
′ (Fo)

Φ (Fo)
=

Ψ
′′ (u)

Ψ (u)
(A.17)

where the ′ sign respectively denotes the derivative ofΦ andΨ with respect to Fo and u.
Since each term of this equation only depends on one of these independent variables,
they are both necessarily valid for all values of the parameters, and therefore constant:

Φ
′ (Fo)

Φ (Fo)
=

Ψ
′′ (u)

Ψ (u)
=±δ2 (A.18)

where the constant coefficient δ is unknown at first. From Eq. A.18, we obtain two
separate differential equations of one variable each, for the functions Φ and Ψ. Their
solutions are well-known:

Φ (Fo) = Ã exp
(
±δ2 Fo

)

Ψ (u) = B̃ sin(δu)+C̃ cos(δu) (A.19)

The expression of Φ only makes sense if the exponential function applies to a negative
value. Indeed, a positive sign in front ofδ2 would cause a divergence ofΦ, and therefore
of p, with increasing time. The general form of the solution thus reads:

θ (Fo,u) = [B sin(δu)+C cos(δu)]exp
(
−δ2Fo

)
(A.20)

The boundary condition on the insulated side of the plate specimen involves B = 0.
The second boundary condition then translates into:

∂θ

∂u

∣∣∣∣
u=1

=−Biθu=1 ⇒





−C δ sin(δ) =−BiC cos(δ)
Bi

δ
= tanδ

(A.21)

This relation involves the non-unicity of the solution δ. As shown on Fig. A.2, esti-
matingδ is equivalent to finding the intersection between the functions Bi/δ and tanδ,
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Figure A.2: Determination of the eigenvalues δk (example with Bi = 10)

which results in a series of values δk . Each of these values is calculated iteratively, and
implies an eigenfunction θk :

θk (Fo,u,Bi) = cos(δk u)exp
(
−δ2

k Fo
)

(A.22)

Each of the θk functions satisfies the partial differential equation A.14 and the
boundary conditions of the problem (Eq. A.16). However, they do not satisfy the initial
condition (θk,Fo=0 = 1). The general solution of the problem is a series of these func-
tions, weighted by additionnal coefficients Ck :

θ (Fo,u,Bi) =
∞∑

k=1

Ck cos(δk u)exp
(
−δ2

k Fo
)

(A.23)

This series satisfies the same differential equation and boundary conditions as the in-
dividual functions. The weighing coefficients Ck must be set so that the summation
also satisfies the initial condition of the problem. Their expression is not trivially de-
rived, and is given here without further details:

Ck =
2 sinδk

δk + sinδk cosδk

(A.24)

It can be graphically guessed from Fig. A.2 that the values of the δk coefficients get
closer to multiples of π as the index k increases, meaning that the Ck coefficients grad-
ually decrease: an accurate solution of Eq. A.23 can be reached by restricting the sum-
mation to its first five terms.

Switching back from the results of this derivation to the initial dimensional nota-
tions, we obtain the solution of the moisture conservation equation (Eq. A.11) under
the aforementioned hypotheses:

p (x, t ) = p1 +
(
p2 −p1

)
[

1−
∞∑

k=1

Ck cos
(
δk

x

L

)
exp

(
−δ2

k

δp ps

ξL
t

)]
(A.25)
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The total mass uptake m of a specimen of exposed surface S can be calculated by inte-
grating Eq. A.25 over the spatial coordinate x, for a given value of the temporal coordi-
nate t :

m (t ) = S

(∫L

x=0
w (x, t ) dx −L w1

)
(A.26)

Because we assumed constant hygric properties, the sorption isotherm is considered
linear in the observed humidity range. This simplification allows writing the following
relation for any value of the moisture content w or of the relative humidity φ:

w −w1

φ−φ1
=

w2 −w1

φ2 −φ1
= ξ (A.27)

from which the integration of Eq. A.26 can be performed, resulting in the final expres-
sion for the mass uptake of a specimen:

m =V ξ∆φ

[
1−

∞∑

k=1

2 sin2δk

δk (δk + sinδk cosδk )
exp

(
−δ2

k

δp

ξ

psat t

L2

)]
(A.28)

where V is the sample’s volume and ∆φ is the initially imposed humidity step at the
exposed boundary.
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Appendix B

Finite-element modelling

The present appendix describes the method for the solving of the balance equations
for heat and moisture in porous media (Eq. 4.17 and 4.18). Unless very restricting hy-
potheses, these equations have no analytical solution and a numerical procedure is
required. The finite-element method was used for the discretisation of the transport
equations into a linear system. Special care must be taken as to prevent possible com-
putational difficulties arising from the strongly non-linear nature of the problem. The
following derivations mostly follow the procedure presented by [JAN 07], and use the
same notations.

B.1 Numerical implementation

B.1.1 Weak form

First, the spatial discretisation of the transport equations is presented. For purposes of
clarity, let us describe the first step of the procedure with the example of the isothermal
moisture transport equation:

∂w

∂t
=−∇g (B.1)

Following the Galerkin approach, the weak form of this equation is given by:
∫

Ω

η

[
∂w

∂t
+∇g

]
dΩ= 0 (B.2)

which must hold for all admissible variations η of the moisture content over the do-
main Ω. An integration by parts is applied on the second term of this equation:

∫
η∇g dΩ=

∫[
−∇η ·g+∇·ηg

]
dΩ (B.3)

And the Green-Gauss theorem, over a domain Ω closed by a boundary Γ of outgoing
normal vector n, reads: ∫

Ω

∇·ηg dΩ=
∮

Γ

ηg ·ndΓ (B.4)
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Eq. B.4 is applied on the last term of Eq. B.3, which is then introduced into Eq. B.2.
This results in a new formulation of the weak form of the conservation equation:

∫

Ω

[
η
∂w

∂t
−∇η ·g

]
dΩ=

∮

Γ

−ηg ·ndΓ (B.5)

The same manipulations, applied to the non-isothermal moisture transport equation
(Eq. 4.17), result in:

∫

Ω

[
η

(
cmm

∂pc

∂t
+cmh

∂T

∂t

)
+∇η

(
kmm∇pc +kmh∇T

)]
dΩ

=
∮

Γ

η
(
kmm∇pc +kmh∇T

)
·ndΓ (B.6)

B.1.2 Linearisation and discretisation

B.1.2.1 Spatial discretisation

According the to basic principle of the finite-element method, the computational do-
mainΩ is subdivided into smaller elementΩe . In two dimensions, these elements gen-
erally have a triangular or quadrilateral shape, each of which includes a certain number
of nodes. In each element, the unknown continuous fields pc and T are approximated
by:

pc = Npe
c (B.7)

T = NTe (B.8)

where the vector N contains the interpolation fonctions, or shape functions. pe
c and Te

are vectors containing the nodal values of pc and T at the nodes of the element. The
temporal and spatial derivatives of the discretised expression of the capillary pressure
respectively read:

∂pc

∂t
= N

∂pe
c

∂t
(B.9)

∇pc = Bpe
c (B.10)

where B is a d ×N matrix, d being the number of dimensions of the problem, and N

the number of nodal unknowns of the elements:

Bij =
∂N j

∂xi
(B.11)

where xi denotes the d spatial coordinates. The present work uses six-nodded
quadratic triangular elements. The expression of the shape fonctions of a reference
element are shown in Tab. B.1.

Following the Galerkin finite-element method, the variational field η and its gra-
dient ∇η undergo an identical discretisation. As a consequence, the introduction of
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t

s

6 21

4

3

5
Point Coordinates (si , ti ) Shape function Ni

1 (0;0) L1 (2L1 −1)

2 (1;0) L2 (2L2 −1)

3 (0;1) L3 (2L3 −1)

4 (0.5;0.5) 4L2L3

5 (0;0.5) 4L3L1

6 (0.5;0) 4L1L2

L1 = 1− s − t L2 = s L3 = t

Table B.1: Node coordinates and shape functions of a quadratic triangular element

the discretised fields into the weak form of the conservation equations gives the set of
equations for each element:

Ce
mm

∂pe
c

∂t
+Ce

mh

Te

∂t
+Ke

mmpe
c +Ke

mhTe = Fe
m (B.12)

Ce
hh

∂Te

∂t
+Ce

hm

pe
c

∂t
+Ke

hhTe +Ke
hmpe

c = Fe
h (B.13)

where Ce
xy, Ke

xy are the element capacity and permeability matrices, calculated by inte-
grating the capacity and permeability coefficients of Eq. 4.17 and 4.18, weighted by the
shape functions of the element:

Ce
xy =

∫

Ωe
NT cxyNdΩe (B.14)

Ke
xy =

∫

Ωe
BT kxyBdΩe (B.15)

It must be noted that the matrix multiplication of Eq. B.15 is valid whether kxy is a
scalar or a second order tensor. In order to account for the anisotropy of the material,
one or several permeability terms (especially kmm, see Sec. 4.3.1.2) can be written as a
tensor in this formulation.

In Eq. B.12 and B.13, Fm and Fh denote the element external load vectors:

Fe
m =

∫

Γe
N

(
g ·n

)
dΓe ; Fe

h =
∫

Γe
N

(
q ·n

)
dΓe (B.16)

where q ·n and g ·n are the external heat and mass income to the element, formulated
in Eq. 1.27.

The element matrices are calculated by numerical integration over triangular do-
mains. This is done by means of the two-dimensional Gauss-Legendre quadrature, of
which principle and numerical implementation are detailed below (see Sec. B.1.3).

185



B. Finite-element modelling

B.1.2.2 Temporal discretisation

The temporal derivatives terms of the transport equation are approximated with a fully
implicit finite difference scheme:

∂pe
c

∂t
=

1

∆t

(
pe

c − pe
c

∣∣t
)

(B.17)

where pe
c

∣∣t is the value of pe
c at the previous converged time step, and ∆t is the current

time step. However, several authors have reported mass conservation errors arising
from the fact that the temporal discretisation does not capture the non-linearity of the
problem. A solution for averting this problem was proposed by [CEL 90] and imple-
mented by [JAN 07] into a finite difference temporal discretisation. A mixed form of
the moisture transport equation is written, based on both the moisture content w and
the capillary pressure pc . A better mass conservation is reached iteratively by replac-
ing the expression of the mass storage in the following Eq. B.18 by the expression of Eq.
B.19:

∂w

∂t
=

∂w

∂pc

∣∣∣∣
t+∆t

m

pe
c

∣∣t+∆t

m+1 − pe
c

∣∣t

∆t
(B.18)

∂w

∂t
=

∂w

∂pc

∣∣∣∣
t+∆t

m

pe
c

∣∣t+∆t
m+1 − pe

c

∣∣t+∆t
m

∆t
+

w |t+∆t
m − w |t

∆t
(B.19)

where the subscripts m and m +1 denote two consecutive iterations within the same
time step, and the superscript t indicates a value at the previous converged time step.
Integrating these two equations over an element yields:

∫

Ωe
N
∂w

∂t
dΩ =

1

∆t
Cmm

(
pc

∣∣t+1
m+1 − pc

∣∣t
)

(B.20)
∫

Ωe
N
∂w

∂t
dΩ =

1

∆t
Cmm

(
pc

∣∣t+∆t

m+1 − pc

∣∣t+∆t

m

)
+

1

∆t

∫

Ωe
N

(
w |t+∆t

m − w |t
)

dΩ (B.21)

Accounting for the mass conservation is done by replacing Eq. B.20 by Eq. B.21 in
the set of spatially discretised equations (Eq. B.12 and B.13). Along with the choice
of implicit temporal discretisation (Eq. B.17), this results in the following system of
equations for each element:

[
Ce

mm +∆tKe
mm Ce

mh
+∆tKe

mh

Ce
hm

+∆tKe
hm

Ce
hh

+∆tKe
hh

] t+∆t

m

(
pe

c

Te

) t+∆t

m+1

=∆t

(
Fe

m

Fe
h

) t+∆t

m

+
[

Ce
mm Ce

mh

Ce
hm

Ce
hh

] t+∆t

m

(
pe

c

Te

) t+∆t

m

−
(

Se
m

Se
h

) t+∆t

m

+
(

Se
m

Se
h

) t (B.22)

where Se
m and Se

m are given by [JAN 07]:

Se
m =

∫

Ωe
wNdΩe (B.23)
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Se
h =

∫

Ωe
T

(
cmρm +cl w

)
NdΩe (B.24)

The element matrices of the system B.22 are calculated in all finite elements, and
assembled into a single system of 2n equations, n being the total number of nodes of
the problem:

(
C|t+∆t

m +∆t K|t+∆t
m

)
U|t+∆t

m+1 =∆t F|t+∆t
m + C|t+∆t

m U|t+∆t
m −

(
S|t+∆t

m − S|t
)

(B.25)

where C and K are the total capacity and permeability matrices of the system, and
F and S are the external load and mass conservation vectors. U is the vector of the
unknown nodal values of both the capillary pressure and the temperature.

If the initial and boundary conditions of the problem are known, the solution of
each time step can be found by iteratively solving Eq. B.25. The coefficients are up-
dated at every iteration and the unknown vector U|t+∆t

m+1 is computed by solving the
linear system of equations. Convergence is reached when the following criteria are
met: 




∑
i

(
p i

c

∣∣
m+1 − p i

c

∣∣
m

)2

∑
i p i

c

∣∣2
m

≤ ǫp

∑
i

(
T i

∣∣
m+1 − T i

∣∣
m

)2

∑
i T i

∣∣2
m

≤ ǫT

(B.26)

meaning that the solution does not change significantly between two consecutive it-
erations. In the present work, the convergence criteria ǫp and ǫt are set to 10−5 for the
simulation of non-fractured materials, and to 10−4 for fractured materials, in order to
reduce the computational time.

B.1.2.3 Convergence scheme

Although Eq. B.25 is a simple method for solving the problem, it has been argued
[JAN 07] that convergence problems may arise from the non-linearity of the bound-
ary conditions: indeed, the external load vector F depends on the unknown U. This
matter is addressed by applying the Newton-Raphson iterative scheme. The system of
equation then yields:

(
C|t+∆t

m +∆t K|t+∆t
m +∆t

∂ K|t+∆t
m

∂U
U|t+∆t

m −∆t
∂ F|t+∆t

m

∂U

)
∆U|t+∆t

m+1

=∆t F|t+∆t
m −∆t K|t+∆t

m U|t+∆t
m −

(
S|t+∆t

m − S|t
) (B.27)

in which the solution of the linear system is ∆U|t+∆t
m+1 = U|t+∆t

m+1 − U|t+∆t
m .

Eq. B.27 includes two additional terms, predicting the effects of a variation of U on
the variations of K and F. For simplification purposes, the third-order tensor ∂K/∂U
was neglected. The main contribution of the Newton-Raphson method is the addi-
tion of the second-order tensor ∂F/∂U, which considerably facilitates the convergence.
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B. Finite-element modelling

Similarly to the other coefficients of Eq. B.27, it is first calculated at the elementary level
before assembling in the general system.

∂Fe

∂Ue
=




∫

Γe
N

∂g

∂pc
dΓ

∫

Γe
N
∂g

∂T
dΓ

∫

Γe
N

∂q

∂pc
dΓ

∫

Γe
N
∂q

∂T
dΓ


 (B.28)

where the derivatives of the external flows to the independent variables can be derived
analytically. Supposing that the surface transfer coefficients do not depend on the vari-
ables pc and T :

∂g

∂pc
= −β

pv

ρl Rv T
∂g

∂T
= β

pv

Rv T 2

(
pc

ρl

−Llv

)

∂q

∂pc
= (cv T +Llv)

∂g

∂pc
∂q

∂T
= −α+cvβ

(
pv,a −pv

)
+ (cv T +Llv)

∂g

∂T

(B.29)

B.1.2.4 Adaptative time stepping

As the variations moisture permeability can span over several orders of magnitude be-
tween dry and near-saturated conditions, moisture transfer tends to occur at highly
varying paces. In presence of a liquid phase, moisture content variations are fast and
time steps in the order of seconds are required for convergence. This is particularly the
case for materials of high permeability or fractures that require sub-second time steps.
Since the model is required to cover year-long simulations as well, a constant time step
is not possible for reasons of computational costs. The algorithm therefore includes a
dynamic time stepping procedure, adapting the size of each time step ∆t according to
the number of iterations of the previous step m:

∆t i+1 = min
[
∆t i min

(mmax

2m
,2

)
,∆tmax

]
(B.30)

where mmax is the maximal authorised number of iterations and ∆tmax is the maximal
time step.

B.1.3 Numerical integration

As pointed out earlier, the element matrices are calculated by integration over the sur-
face of the elements Ω

e . As this can not be done analytically, the Gauss-Legendre
quadrature is used for a numerical integration. The principle of the method is the
approximation of the integral of a function f over an n-dimensional domain Ω by
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Numerical implementation

a weighted summation of the value of this function at a set of integration points
[DUN 85]: ∫

Ω

f (x)dΩ=
N∑

i=1
wi f (xi ) (B.31)

where the weights wi and the coordinates of the points xi are independent of the func-
tion f . N is the total number of integration points on the domain: a higher number of
points yields a better approximation of the real solution.

B.1.3.1 Linear element

The external load vectors F are calculated by integration over the edges of the ele-
ments. The one-dimensional quadrature for the numerical integration of a function
f between two nodes of coordinates x1 and x2 reads:

∫x2

x1

f (x)dx =
x2 −x1

2

N∑

i=1
wi f

(x2 −x1

2
xi +

x1 +x2

2

)
(B.32)

In the present work, this summation is performed using 4 quadrature points. The co-
efficients xi and wi are given in Tab. B.2.

xi wi

− 1
35

√
525+70

p
30

(
18−

p
30

)
/36

− 1
35

√
525−70

p
30

(
18+

p
30

)
/36

1
35

√
525−70

p
30

(
18+

p
30

)
/36

1
35

√
525+70

p
30

(
18−

p
30

)
/36

Table B.2: Gauss-Legendre coefficients for 1D integration

B.1.3.2 Triangular element

The capacity matrices, permeability matrices and mass conservation vectors are calcu-
lated by integration over triangular surfaces. In that case, the two-dimensional quadra-
ture reads:

I =
Ï

T
f
(
x, y

)
dxdy =

N∑

i=1
wi F (si , ti ) |Ji | (B.33)

where x and y are the global coordinates, s and t are local coordinates tied to the edges
of the triangle (see Fig. B.1), and |J| is the value of the Jacobian determinant. The
function F is defined so that

f
(
x, y

)
= F

(
s
(
x, y

)
, t

(
x, y

))
(B.34)
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si ti wi

0 0 1/40

1/2 0 1/15

1 0 1/40

1/2 1/2 1/15

0 1 1/40

0 1/2 1/15

1/3 1/3 9/40

Table B.3: Gauss-Legendre coefficients for the unit triangle

The quadrature is performed with 7 points, of which coefficients and local coordinates
in each triangle are given in Tab. B.3.

The global coordinates
(
xi , yi

)
of the integration points can be calculated from their

local coordinates (si , ti ) by:

(
x

y

)
=

[
x1 x2 −x1 x3 −x1

y1 y2 − y1 y3 − y1

]



1

s

t


 (B.35)

where
(
x1, y1

)
,
(
x2, y2

)
and

(
x3, y3

)
are the global coordinates of the tiangle vertices. The

Jacobian matrix reads:

J =



∂x

∂s

∂x

∂t
∂y

∂s

∂y

∂t


=

[
x2 −x1 x3 −x1

y2 − y1 y3 − y1

]
(B.36)

B.2 Algorithm

The presented procedure for the resolution of the transport equations was integrated
into the newly developped HAMDAM simulation code (Heat and Moisture transfer in

DAMaged media) written with the Matlab software, of which general structure is pre-
sented on Fig. B.1.

The code starts with an initialisation module, in which the user sets the conditions
of the simulation:

• Geometry of the problem: size, number of nodes, type of elements (linear or
quadratic triangular);
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Algorithm

Convergence?

m > mmax

and variable time step

Initialisation

Uinit

Δtinit

mmax

t = 0

Beginning of a time step

m = 1

t = t + Δt

Uold = U

Resolution of the system

A = f(U)

b = f(U,Uold)

Unew = U + A \ b

New attempt

U = Uold

m = 1

Δt = Δt / 2

t = t – Δt / 2

Δt < Δtmin

Next iteration

U = Unew

m = m + 1

Next time step

U = Unew

t = t + Δt

Δt = Δtnew

t > tmax

END

STOP

YES

NO

NO

NO

NO

YES

YES

YES

Figure B.1: Algorithm of the finite-element simulation code
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B. Finite-element modelling

• Boundary conditions on each of the 4 edges of the domain: type of boundary
(insulation, constant value or convection), input of constant atmospheric condi-
tions or of a climatic data file;

• Initial conditions: distributions of the initial capillary pressure and temperature
over the domain;

• Temporal setup: choice of the initial, minimal and maximal values of the time
step, of the maximal authorised number of iterations per time step, and of the
total simulation time.

After the complete definition of the problem, the initial solution vector U|t=0 is first
set with the nodal values of the initial capillary pressure and temperature fields. The
algorithm presented on Fig. B.1 then proceeds as follows:

• Beginning of a time step: the number of iterations and time of simulation are
updated. The solution vector of the previous time step is saved for use in the
calculation of the moisture conservation vector.

• Resolution of the system: all element matrices are calculated using the value of
the solution vector calculated at the previous time step U|t and at the previous
iteration of the current time step U|t+∆t

m . These matrices are then assembled into
the equation system B.27 for the calculation of the new solution vector U|t+∆t

m+1 .

• Convergence: the convergence criteria are calculated by comparing U|t+∆t
m+1 with

U|t+∆t
m (see Eq. B.26. This is not performed at the first time step of an iteration.

• If convergence is reached, the solution vector is saved. The amplitude of the
next time step is calculated according to the number of iterations. The code then
proceeds to the beginning of a new time step, unless the end of the simulation
has been reached.

• If convergence is not reached at the end of an iteration, the code proceeds to a
new iteration within the same time step.

• If the number of iterations exceeds the authorised value mmax, and if the user has
chosen the adaptative time stepping procedure, the code considers that conver-
gence may not be reached. A new attempt is made, reducing the amplitude of
the time step by half. If this reduction causes ∆t to reach a value lower than the
authorised minimum ∆tmin, the code stops: it is considered that convergence
cannot be reached with the defined conditions of the problem.

Once the end of the simulation time is reached and the last time step is converged,
the value of the solution vector at each time step, along with the amplitude of the heat
and moisture boundary transfer, are saved. A post-processing module then allows the
user to display and quantify any phenomenon or quantity in relation with the problem.
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