
HAL Id: tel-00980490
https://theses.hal.science/tel-00980490

Submitted on 7 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logical foundations of games with imperfect
information : uniform strategies

Bastien Maubert

To cite this version:
Bastien Maubert. Logical foundations of games with imperfect information : uniform strategies. Other
[cs.OH]. Université de Rennes, 2014. English. �NNT : 2014REN1S001�. �tel-00980490�

https://theses.hal.science/tel-00980490
https://hal.archives-ouvertes.fr

ANNÉE 2014

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1
Mention : Informatique

École doctorale Matisse

présentée par

Bastien MAUBERT

préparée à l’unité de recherche IRISA – UMR6074
Institut de Recherche en Informatique et Systèmes Aléatoires ISTIC

UFR Informatique et Électronique

Fondations logiques

des jeux à information

imparfaite : stratégies

uniformes.

Thèse soutenue à Rennes
le 17 Janvier 2014

devant le jury composé de :

Joseph Y. HALPERN
Professeur, Cornell University / Président

Christof LÖDING
Professeur associé, RWTH Aachen / Rapporteur

Ramaswamy RAMANUJAM
Professeur, IMSc Chennai / Rapporteur

Dietmar BERWANGER
Chargé de recherche, CNRS-ENS Cachan / Examinateur

Thomas BOLANDER
Professeur associé, DTU Lyngby / Examinateur

Cătălin DIMA
Professeur, Université Paris-Est Créteil / Examinateur

Sophie PINCHINAT
Professeur, Université Rennes 1 / Directrice de thèse

Guillaume AUCHER
Chaire INRIA-Université Rennes 1 / Co-directeur de thèse

He who turns himself into a beast gets rid of the pain of being a man.
Samuel Johnson

Remerciements

First of all I would like to thank all those who honoured me by participating in my jury:
many thanks to Christof Loeding and Ramanujam for accepting the task of reviewing my
work, and to Dietmar Berwanger, Thomas Bolander, Cătălin Dima and Joe Halpern for
taking the time to read it and examine my defence. Joe, I am especially grateful that you
managed to include this hook in Britany in your tight schedule, and that you did us the
great favour of presiding the defence.

Bien évidemment je remercie du fond du coeur Sophie Pinchinat, sans qui je n’en se-
rais clairement pas là. J’ose croire que je ferais quelque chose d’intéressant aussi, mais
ça n’aurait peut-être rien à voir avec l’informatique. Ce qui est sûr c’est que ce que je
fais actuellement me plaît énormément, et c’est en grande partie grâce à l’enthousiasme,
à l’énergie et au dévouement que Sophie démontre chaque jour pour la recherche que j’y
ai pris goût et que j’ai pu finir cette thèse. Bien entendu Guillaume Aucher a aussi joué
un grand rôle durant ces trois années. Outre les fenêtres qu’il ma ouvertes vers le monde
des philosophes, sa passion, sa rigueur scientifique et son perfectionnisme m’ont beaucoup
appris. Je voudrais aussi remercier très chaleureusement François Schwarzentruber. Ensei-
gner avec lui fut une expérience exceptionnelle. François est un génie de l’enseignement,
même s’il jugera toujours que ses cours sont pourris. Et surtout, merci pour cet optimisme
implacable, cette bonne humeur inébranlable, et cette touche de folie inénarrable.

Mais il n’y a pas que LogicA dans la vie, et je tiens à remercier aussi toutes les personnes
que j’ai cotoyées pendant ces années à l’IRISA, et qui font que c’est un endroit merveilleux
pour travailler : que ce soit les gens de Sumo, de Celtique, les assistants, que j’ai beaucoup
embêtés mais qui ont toujours été parfaits, les filles de la cafète, toujours le sourire aux
lèvres et le mot pour rire, et tous les autres que j’ai certainement oubliés. J’espère retrouver
un endroit où travailler est si agréable.

Je remercie aussi infiniment toute ma famille, et spécialement mes parents, qui m’ont
toujours encouragé dans toutes mes entreprises (excepté du point de vue vestimentaire et
capillaire peut-être). Même si vous ne pouviez pas être là pour la soutenance on pensait
beaucoup à vous, avec Daddy, Mémé et Tata Zabeth, qui m’ont fait un immense plaisir
en venant y assister, et que je remercie encore une fois. Et Mamie, je sais que tu aurais
aimé être là, alors tu as le droit à un merci spécial aussi :-) Et un gros bisou au frangin
et à la frangine ! Merci d’être venus à la fête post-soutenance, ça comptait beaucoup pour
moi que vous soyiez là.

Bien sûr je dis un grand merci à tous les potes, Renaud, Clémence, Bartek, Fab, Roumy,
Loic, Chloé, Marine, Toupet, Damien, Marie, Nils, Vincent, Sim, Marco, La Piechte, Léa,
Harmonie, Pépé, Beber, AD, FX, Jean, Mesnard, Fanny, Raton, Maël, Thibaut, Jerem,
Coco, François, Loulou, Pépette, Victor, Victor, Bret, Papa, Mouton, Anne, Pamela,
Laura, Reda, ceux que je vois tous les jours comme ceux que je ne vois que trop rare-
ment, ceux qui sont venus à la soutenance comme ceux qui n’ont pas pu (pour diverses
raisons. . .). Il va sans dire que si toutes ces années à Rennes ont été aussi magiques c’est
grâce à vous tous, et à plein d’autres encore (m’en voulez pas).

Et pour terminer, merci Ketsia, pour tout.

Contents

Résumé long en français iii
0.1 Contexte . iii
0.2 Contribution . ix

1 Introduction 1
1.1 Context . 1
1.2 Contribution and structure of the document 6

2 Preliminaries 11
2.1 Main complexity classes . 11
2.2 Words and trees . 12
2.3 Two-player games . 13
2.4 Logics . 17
2.5 Automata . 19
2.6 Rational relations . 25

3 Uniform strategies 29
3.1 Uniform strategies . 29
3.2 Games with imperfect information . 32
3.3 Games for logics of imperfect information 34
3.4 Games with opacity condition . 40
3.5 Conclusion and related work . 41

4 Strictly-uniform strategies 45
4.1 Undecidability for rational relations . 45
4.2 Intermezzo: jumping tree automata . 49
4.3 The special case of recognizable relations . 53
4.4 Conclusion and related work . 60

5 Fully-uniform strategies 63
5.1 Main results . 64
5.2 Information set automaton . 66
5.3 Upper bounds . 71
5.4 Lower bounds . 79
5.5 Conclusion and related work . 80

i

ii Contents

6 Generalization to several relations 83
6.1 Extending the language . 84
6.2 Strictly-uniform strategies . 84
6.3 Fully-uniform strategies . 87
6.4 Mixing strict and full quantifiers . 90
6.5 Application of our results and related work 93
6.6 Conclusion . 96

7 Epistemic protocol synthesis 97
7.1 DEL, ETL and regular structures . 98
7.2 Merging frameworks . 104
7.3 Epistemic protocol synthesis . 111
7.4 Conclusion and perspectives . 122

8 Conclusion and perspectives 125

A Proof of Proposition 20 129

Bibliography 137

Index 145

Résumé long en français

0.1 Contexte

La théorie des jeux est un domaine de recherche riche, vaste et dynamique, dont l’ob-
jet est l’étude mathématique rigoureuse de la prise de décisions stratégiques. L’appellation
standard “théorie des jeux” recouvre en fait une grande variété de formalismes différents.
Cependant, les ingrédients principaux d’une théorie des jeux sont toujours un ensemble de
joueurs, une description de l’information et des actions disponibles pour chaque joueur à
chaque point de décision, les gains pour chaque joueur dans chaque résultat possible, et un
concept de solution qui décrit ce qu’est une solution désirable. Ces concepts de solutions
font toujours référence à la notion de stratégie, c’est à dire à des fonctions assignant aux
joueurs, pour chaque situation possible, quel coup jouer. Les caractéristiques et les hypo-
thèses faites sur ces différents ingrédients varient selon l’objet étudié. Quand le domaine
a émergé durant la première moitié du XXème siècle avec les travaux de Von Neumann et
Morgenstern, les problèmes étudiés étaient surtout d’ordre économique. Par conséquent,
les premiers travaux considérèrent des jeux avec certaines caractéristiques, et en particulier
des jeux à durée finie. Dans de tels jeux, les joueurs prennent des décisions (simultanément
ou à leur tour) un nombre fini de fois, après quoi un résultat est atteint. Cependant le
paradigme des jeux, au fil du siècle dernier, a suscité l’intérêt de nombreuses sciences telles
que la philosophie, les sciences politiques, la biologie, les mathématiques fondamentales et,
plus récemment, la logique et l’informatique. La diversité des objectifs et des systèmes étu-
diés a donné lieu à une taxonomie complexe des jeux : forme normale/extensive, somme
nulle/non-nulle, information parfaite/imparfaite, information complète/incomplète, tour
par tour/concurrent, durée finie/infinie. . .

Dans cette thèse nous considérons les jeux joués sur des graphes (où un noeud est appelé
position et une arête un coup), et plus précisément nous nous intéressons aux propriétés
qui caractérisent une “bonne” stratégie. La propriété la plus évidente est qu’une bonne
stratégie devrait être gagnante (i.e. elle assure le joueur qui la suit de toujours gagner) pour
une condition de gain donnée, dont la forme dépend du type de jeu considéré. Mais dans
certains cas, des contraintes supplémentaires sont imposées pour restreindre l’ensemble des
stratégies disponibles pour un joueur. Nous décrivons certaines de ces propriétés qui ont
émergé et/ou pris beaucoup d’importance en informatique théorique et en logique pour
l’informatique. Tout d’abord, nous rappelons les motivations principales pour considérer
en informatique des jeux à durée infinie.

iii

iv Résumé long en français

Jeux à durée infinie

Une tâche qui a reçu une attention considérable au long des dernières décennies est
la vérification des systèmes critiques. En effet, alors qu’on assigne à des systèmes auto-
matiques la responsabilité d’effectuer des tâches de plus en plus complexes, et dans des
domaines – tels que l’avionique ou les centrales électriques – où des fautes peuvent avoir
des conséquences tragiques, le besoin de développer des méthodes pour garantir la “cor-
rection” de tels systèmes est indéniable. Une des approches les plus employées et le model
checking. Cela consiste à représenter les systèmes à vérifier par des abstractions mathé-
matiques adaptées (appelées modèles), exprimer les propriétés à vérifier dans un certain
langage logique, et développer des algorithmes qui vérifient automatiquement qu’une for-
mule donnée est vraie sur un modèle donné. Selon le type de propriété considéré, on
utilise différentes logiques et différents types de modèles. Prenons l’exemple d’une cen-
trale électrique. Une propriété simple qui est attendue est : “Dans tous les comportements
possibles, la centrale n’explose jamais”. Pour exprimer de telles propriétés temporelles des
systèmes/programmes, les logiques temporelles ont été étudiées intensivement. Les logiques
temporelles classiques sont LTL, introduite par Pnueli (1977) et qui traite de propriétés du
temps linéaire, CTL, étudiée initialement par Clarke and Emerson (1981) et qui considère
des propriétés du temps arborescent, et CTL

∗, qui fut introduite par Emerson and Halpern
(1983) et combine le pouvoir d’expressivité de LTL et CTL. Des algorithmes efficaces pour
le model checking de ces logiques ont été développés, et ont mené au développement d’ou-
tils maintenant largement utilisés dans l’industrie – voir e.g. Vardi (2008) pour un bref
survol historique. Une approche en quelque sorte duale au model checking, la synthèse
de programme, s’appuie aussi sur ces logiques temporelles : au lieu de vérifier qu’un pro-
gramme donné vérifie certaine propriété, le but est, à partir d’une spécification logique, de
synthétiser automatiquement (le squelette d’) un programme qui, par construction, vérifie
cette spécification. Un travail fondateur dans cette approche, pour des spécifications CTL,
est dû à Clarke and Emerson (1981).

A noter que toutes ces logiques temporelles – LTL, CTL et CTL
∗ – sont des fragments du

µ-calcul modal de Kozen (1983). Le µ-calcul est d’une grande importance, car il représente
en un sens le pendant logique des automates alternants sur les objets infinis (Muller and
Schupp, 1987), qui sont des machines très puissantes qui fournissent des procédures de
décision pour de nombreuses logiques temporelles. A l’inverse des automates classiques sur
les mots finis, les automates travaillant sur des objets infinis ont des exécutions infinies, et
nécessitent des conditions d’acceptation adaptées. Les plus importantes sont les conditions
d’acceptation de Büchi, Rabin, Street, Muller et parité. Le µ-calcul est plus étroitement
lié à la condition de parité, car c’est elle qui vient le plus naturellement lorsqu’on traduit
des formules du µ-calcul vers les automates d’arbres alternants. A leur tour, ces automates
de parité sont intimement liés aux jeux à durée infinie. En particulier, les jeux à durée
infinie et condition de gain de parité fournissent une procédure de décision naturelle pour
tester la vacuité du langage des automates d’abres de parité, et donc la satisfiabilité des
formules de logiques temporelles. Ces connections donnent lieu à une théorie puissante des
automates, logiques et jeux à durée infinie (Grädel et al., 2002).

Les jeux à durée infinie sont aussi un outil très naturel pour représenter et raisonner
à propos de systèmes qui interagissent. De tels systèmes sont communs, et peuvent être
aussi simples qu’un protocole de communication entre une imprimante et ses utilisateurs.

Contexte v

Pour revenir à l’exemple de la centrale électrique, considérons un système (un contrôleur)
chargé de contrôler la centrale. Une propriété souhaitable est : “Quoiqu’il se passe dans
la centrale, le contrôleur peut toujours réagir pour assurer que la centrale n’explose pas”.
Cette propriété met en jeu une alternance entre deux entités actives : à chaque fois que
quelque chose se passe dans la centrale, le contrôleur doit pouvoir prendre des mesures
appropriées, auxquelles la centrale peut réagir, et ce indéfiniment. Ce genre de propriété,
bien qu’exprimable dans le µ-calcul modal, peut être capturé de manière bien plus intuitive
par la notion de stratégie gagnante dans un jeu à durée infinie. Dans l’exemple, nous
voulons assurer que le contrôleur a une stratégie gagnante contre la centrale, où la condition
de gain pour le contrôleur est d’empêcher que la centrale n’explose.

Au final, les jeux à durée infinie sont un outil intuitif et puissant pour non seulement
tester la vacuité des automates de parité, et donc résoudre les problèmes de satisfiabilité des
logiques temporelles, mais aussi exprimer des propriétés complexes de systèmes, mettant en
jeu une alternation entre différentes entités. Ces deux aspects font des jeux à durée infinie
des objets centraux de l’informatique théorique moderne. Cependant, afin de capturer bon
nombre de situations du monde réel, il manque aux modèles que nous avons considéré pour
l’instant l’aspect information imparfaite.

Jeux à information imparfaite

Dans la vie de tous les jours il est courant de prendre des décisions sans avoir en
main toutes les informations pertinentes – pensons par exemple au jeu de Poker. En in-
formatique, cette situation peut se rencontrer quand certaines variables d’un système sont
internes/privées. Dans notre exemple de centrale électrique, le contrôleur peut n’avoir accès
qu’à la température interne du réacteur mais pas à la pression, à cause d’un équipement
endommagé. En théorie des jeux, ceci est modélisé en rassemblant dans des ensembles
d’informations les situations qu’un joueur ne peut pas différencier. Durant une partie, le
joueur ne connaît pas forcément la situation courante, et ne peut donc pas baser sa stra-
tégie dessus. Cela mène à imposer qu’une stratégie pour ce joueur doit assigner le même
coup à jouer dans chaque situation d’un même ensemble d’informations. Cette contrainte
a des conséquences profondes sur l’existence de stratégies gagnantes et le problème de
décider cette existence. Par exemple, tandis que les jeux ω-réguliers à deux joueurs et
information parfaite sont déterminés, i.e. il y a toujours une stratégie gagnante pour l’un
des deux joueurs, ce n’est plus le cas lorsqu’on ajoute l’aspect information imparfaite.
De plus, alors que par essence les conditions ω-régulières sont évaluées sur des parties
individuelles, indépendamment des autres parties résultant d’une stratégie, l’information
imparfaite engendre la nécessité de considérer des ensembles de parties, afin de vérifier
qu’une stratégie est consistente sur les ensembles d’informations. La solution classique
est de rassembler toutes les parties indistingables en procédant à une construction par
sous-ensembles, réduisant ainsi le problème à la résolution d’un jeu à information parfaite
équivalent (Reif, 1984). Plus récemment, un algorithme basé sur les antichaines a été déve-
loppé (Chatterjee et al., 2006; Berwanger et al., 2010), qui évite cette coûteuse construction
par sous-ensembles en utilisant une représentation succinte des ensembles d’informations.

Dans les jeux à information imparfaite, l’information disponible pour un joueur est
souvent représentée par une capacité observationnelle : le joueur ne voit pas les positions
directement, mais en perçoit une abstraction, appellée observations, et différentes positions

vi Résumé long en français

peuvent partager la même observation. Pour cette raison, certains travaux (Chatterjee
et al., 2006) utilisent le terme de stratégie basée sur les observations pour désigner les stra-
tégies soumises à la contrainte de jouer le même coup dans des situations indistingables.
D’autres travaux (Berwanger and Doyen, 2008; Berwanger et al., 2010) définissent les stra-
tégies directement sur les observations au lieu de les définir sur les positions. Parce que ces
stratégies doivent être définies “uniformément” sur les ensembles d’informations, elles sont
quelquefois appelées stratégies uniformes dans la communauté des logiques stratégiques
(van Benthem, 2001, 2005; Jamroga and van der Hoek, 2004). Nous emploierons parfois le
terme stratégies à information imparfaite pour désigner ce type de stratégies.

Dans les jeux extensifs, où les stratégies sont définies sur les séquences de positions,
décrire comment chaque position est observée par le joueur n’est, en général, pas suffisant
pour caractériser les ensembles d’informations. Il est aussi nécessaire de spécifier quelles
sont les capacités mémorielles du joueur. Cela amène à distinguer entre mémoire parfaite
et mémoire imparfaite. Dans le premier cas, le joueur se souvient de l’intégralité des ob-
servations qu’il a reçues au cours d’une partie, alors que dans le second cas il oublie une
partie de l’information. Un joueur à mémoire imparfaite peut-être sans mémoire, i.e. il ne
se souvient de rien et prend ses décisions uniquement en fonction de l’observation de la
position courante. Il peut aussi avoir une mémoire bornée, ce qui signifie qu’il peut stocker
une certaine quantité finie d’information ; ou il peut avoir une mémoire non bornée, mais
oublier quand même des parcelles d’information.

Tandis que les jeux à information imparfaite et mémoire parfaite ont fait l’objet de
nombreux travaux (Reif, 1984; Chatterjee et al., 2006; Berwanger and Doyen, 2008; Ber-
wanger et al., 2010), le cas de la mémoire imparfaite a reçu beaucoup moins d’attention
depuis que des paradoxes concernant leur interprétation ont été soulevés (Piccione and
Rubinstein, 1997). Néanmoins, la mémoire imparfaite permet de modéliser des problèmes
pertinents : typiquement, certaines unités informatisées n’ont qu’un espace mémoire très li-
mité et ne peuvent se souvenir de parties arbitrairement longues. De plus, un article récent
plaide en faveur d’une étude systématique des jeux avec mémoire imparfaite (Berwanger
et al., 2012).

Il est important de remarquer que les hypothèses faites sur la mémoire d’un joueur,
l’existence de stratégies gagnantes à information imparfaite et la difficulté de décider cette
existence sont étroitement liées. La mémoire donne du pouvoir : en effet, un joueur sans
mémoire peut perdre un jeu dans lequel un joueur à mémoire parfaite posséderait une
stratégie gagnante, grâce à l’information supplémentaire dont il dispose. Cependant, don-
ner plus de mémoire aux joueurs peut aussi augmenter la complexité de résoudre les jeux.
Par exemple, les jeux à information imparfaite avec trois joueurs à mémoire parfaite sont
indécidables (Peterson et al., 2001; Berwanger and Kaiser, 2010), alors que les mêmes jeux
sont trivialement décidables pour des joueurs sans mémoire.

Jeux sémantiques pour les logiques à information imparfaite

Nous avons vu que dans les jeux à information imparfaite, les stratégies sont soumises à
une certaine contrainte d’ “uniformité” : elles doivent jouer le même coup dans les différentes
situations d’un même ensemble d’informations. Les logiques à information imparfaite, qui
ajoutent des notions de dépendence et/ou indépendance à la logique du premier ordre,
fournissent un second exemple de contrainte sur les stratégies admissibles. Rappelons que

Contexte vii

la sémantique des formules de la logique du premier ordre peut être donnée par un jeu
entre deux joueurs, le Vérificateur et le Contradicteur. Pour la logique d’indépendence de
Hintikka and Sandu (1989), on obtient une sémantique de jeu naturellement en ajoutant
de l’information imparfaite dans la sémantique de jeux de la logique du premier ordre, et
en utilisant la notion habituelle de stratégies à information imparfaite. Cependant, cela ne
fonctionne plus pour la Logique de Dépendence, introduite plus récemment par Väänänen
(2007). A la place, Väänänen définit une contrainte ad hoc sur les stratégies autorisées
pour le Vérificateur, et il appelle cette contrainte une “contrainte d’uniformité”. Cette
contrainte ressemble à celle des stratégies à information imparfaite et rend aussi ces jeux
non-déterminés, raison pour laquelle Väänänen a d’abord qualifié les jeux obtenus de jeux
à information imparfaite. Cependant il n’est pas clair que ces jeux puissent être définis en
termes de jeux à information imparfaite au sens classique du terme.

Ce problème est bien connu dans la communauté Logique de Dépendence. Récemment,
un certain nombre d’autres logiques à information imparfaite ont été étudiées (Grädel and
Väänänen, 2013; Galliani, 2012; Engström, 2012). Toutes ajoutent à la logique du premier
ordre de nouveaux atomes qui capturent des notions de la théorie des dépendences dans
les bases de données. Elles ont aussi en commun que leur sémantique peut être définie
naturellement en ajoutant, dans le jeu sémantique de la logique du premier ordre, des
contraintes sur les stratégies du Vérificateur. Comme pour la Logique de Dépendence, ces
jeux ne sont pas à proprement parler des jeux à information imparfaite, et afin d’étudier
les propriétés de ces jeux sémantiques, Grädel (2013) a récemment introduit une notion
de jeux d’atteignabilité du second ordre. Ces jeux généralisent les jeux sémantiques des
logiques de l’information imparfaite, et ils sont qualifiés de second ordre car, comme pour
les stratégies à information imparfaite, les contraintes sur les stratégies concernent des
ensembles de parties résultant des stratégies.

Conditions de gain épistémiques

Les conditions de gain impliquant des aspects épistémiques fournissent un troisième
exemple de propriétés de stratégies qui concernent des ensembles de parties, et qui sont
aussi intrinsèquement liées à l’information imparfaite. De telles conditions de gain (ou ob-
jectifs) sont prédominants dans le domaine florissant des systèmes multi-agents. Reprenons
l’exemple de la centrale électrique. Supposons que la stratégie du contrôleur n’était pas
gagnante. Maintenant la centrale a explosé, et une mission doit être envoyée pour chercher
des survivants, sécuriser le lieu et le nettoyer. Parce que la centrale était nucléaire, il est
impossible d’envoyer des humains, aussi une équipe de robots est-elle déployée. Pour ac-
complir leur mission, les robots doivent interagir et prendre des décisions sous information
imparfaite. En effet, ils ne connaissent pas la configuration exacte du site, et leurs capteurs
peuvent être endommagés par les radiations. Mais en plus de ces aspects que nous avons
déjà évoqués, ils doivent être capables de raisonner à propos de leurs connaissances, ainsi
que celles des autres robots et d’éventuels survivants. Par exemple, un robot doit pouvoir
être capable de raisonner en ces termes : “Je crois que cet humain est peut être en vie, donc
je vais le secourir”, ou “Je sais que cet humain est mort, donc je continue à chercher des
survivants”. De plus, leurs objectifs eux-mêmes peuvent inclure des aspects épistémiques.
Par exemple : “Je dois mettre au point une stratégie qui m’assure que le robot médical,
au bout d’un certain temps, obtiendra la connaissance du fait que cet humain est en vie”.

viii Résumé long en français

Les systèmes logiques traitant de l’incertitude sont légion. Les premiers travaux s’in-
téressaient à la représentation et le raisonnement à propos de la connaissance dans un
contexte statique (Sato, 1977; Lehmann, 1984; Fagin et al., 1991). Ces logiques épisté-
miques ont ensuite été étendues, dans le contexte des systèmes distribués, pour étudier les
intéractions entre connaissance et temps ; les logiques obtenues forment la famille des Lo-
giques Temporelles Épistemiques (ETL) (Parikh and Ramanujam, 1985; Ladner and Reif,
1986; Halpern and Vardi, 1989; Fagin et al., 1995; van der Meyden and Shilov, 1999; Dima,
2008). Une autre approche pour introduire du dynamisme dans la logique épistémique est
la Logique Épistémique Dynamique (DEL), qui peut être vue comme une adaptation de la
logique propositionnelle dynamique (PDL) au contexte épistémique, et où les actions sont
des évènements informatifs (Baltag et al., 1998; van Ditmarsch et al., 2007; van Benthem,
2011). Le problème de synthétiser des protocoles avec des objectifs épistémiques et tempo-
rels a aussi reçu une certaine attention (van der Meyden and Vardi, 1998; van der Meyden
and Wilke, 2005). Plus récemment, les Logiques Épistémiques Temporelles ont été com-
binées avec les Logiques du Temps Alternant (Alur et al., 2002) dans le but de raisonner
à propos de la connaissance, du temps et d’aspects stratégiques dans un langage logique
unifié ; les logiques résultantes sont appelées Logiques Épistémiques du Temps Alternant
(van der Hoek and Wooldridge, 2003; Jamroga and van der Hoek, 2004; Dima et al., 2010).
Ces logiques très expressives contiennent donc, en plus d’opérateurs temporels et d’opé-
rateurs épistémiques, des opérateurs qui permettent de quantifier sur des stratégies avec
des conditions de gain impliquant temps, connaissance et capacités stratégiques.

Clairement, les stratégies avec des conditions de gain épistémiques sont un autre
exemple de stratégies qui doivent prendre en compte des ensembles de parties, quoique
pas de la même manière que les stratégies à information imparfaite ou les stratégies pour
les logiques à information imparfaite. Notons que dans toutes ces logiques, comme pour
les jeux à information imparfaite classiques, les hypothèses faites sur les capacités obser-
vationnelles des agents sont cruciales. Plusieurs propriétés qui caractérisent les capacités
des agents sont habituellement considérées : mémoire parfaite, sans mémoire, synchrone,
asynchrone, pas de miracles. . . Différentes combinaisons de ces hypothèses donnent des ré-
sultats différents pour les logiques correspondantes, et ces résultats sont en général prouvés
au cas par cas.

Point sur la situation et problème de recherche

Comme nous l’avons décrit, il semble que dans un nombre croissant de domaines, des
propriétés de stratégies impliquant des ensembles de parties jouent un rôle centrale, la
plupart du temps à cause de l’information imparfaite. Cependant nous rappelons que pour
le cas de la Logique de Dépendence et autres logiques à information imparfaite, il n’est
pas clair que les contraintes imposées sur les stratégies puissent être définies en termes
d’information imparfaite.

Le tableau global est complexe, surtout parce que le temps et la connaissance sont
essentiellement orthogonaux. Pour comprendre dans quelle mesure la connaissance et le
temps sont effectivement orthogonaux, il est utile de voir les stratégies come des arbres
infinis : le temps, lié à l’ordonnancement des positions rencontrées dans les parties (les
branches) et aux branchements (les choix), concerne la dimension verticale des arbres. La
connaissance, en revanche, relie différentes parties qui partagent la même information, et

Contribution ix

concerne donc la dimension horizontale.
A notre connaissance, il n’existe pas d’étude approfondie de contraintes sur les stra-

tégies impliquant cette dimension horizontale. Dans cette thèse nous proposons d’étudier
en profondeur une notion générale de stratégies soumises à des contraintes impliquant des
ensembles de parties. Le but est de clarifier le tableau, de mieux comprendre la complexité
de résoudre les jeux avec des contraintes horizontales sur les stratégies, et de développer
des techniques génériques qui dépendent le moins possible d’hypothèses particulières faites
sur les capacités observationnelles et mémorielles des agents.

0.2 Contribution

Parce que notre intérêt principal n’est pas la concurrence mais plutôt les propriétés des
stratégies, nous choisissons de travailler dans le cadre simple des jeux à deux joueurs joués
en tour par tour sur des graphes. Néanmoins, toute la théorie que nous développons peut
être adaptée à des modèles plus sophistiqués, tels que les structures de jeux concurrents
(de Alfaro et al., 1998; de Alfaro and Henzinger, 2000). Nous commençons par rappeler
dans le Chapitre 2 un certain nombre de définitions et de résultats connus sur les classes
de complexité, les jeux à durée infinie, la logique propositionnelle et du premier ordre, les
automates sur des objets infinis, et certaines classes de relations sur les mots représentables
de manière finie.

Dans le Chapitre 3 nous définissons une notion générale de stratégies uniformes. Les
propriétés d’uniformité des stratégies sont exprimées dans un langage logique, L;, qui est
essentiellement CTL

∗ augmentée de deux quantificateurs sur les parties reliées, ; et ; .
Les motivations pour choisir ce langage sont les suivantes.

Premièrement, L; est proche des logiques temporelles épistémiques classiques (l’opé-
rateur de connaissance K de ces logiques est un cas particulier de nos quantificateurs ; et
;), ce qui nous permet d’exprimer les propriétés d’uniformité de manière intuitive. Nous
illustrons cet aspect en montrant que les trois types de propriétés horizontales discutées
plus haut se reformulent aisément sous forme de stratégies uniformes. Deuxièmement, bien
que L; ne contienne pas le µ-calcul, cette logique combine l’expressivité des logiques du
temps linéaire et du temps arborescent. De plus, nous contenter de CTL

∗ comme base pour
la dimension verticale de nos propriétés d’uniformité nous permet de nous concentrer sur la
dimension horizontale, qui est l’objet principal de notre étude. Troisièmement, utiliser une
logique temporelle classique nous permet de bénéficier des techniques automates connues
pour aborder le problème de synthétiser des stratégies uniformes.

A propos de l’introduction de nos deux quantificateurs ; et ; , il existe dans la litté-
rature deux approches différentes pour donner la sémantique de la connaissance quand des
stratégies sont en jeu. Dans van der Meyden and Vardi (1998) et van der Meyden and Wilke
(2005) par exemple, le but est de synthétiser des stratégies qui vérifient quelque objectif
temporel et épistémique. Dans ces travaux, la sémantique de l’opérateur de connaissance
suggère que lorsqu’une stratégie est fixée, tous les agents connaissent la stratégie, et par
conséquent ils ne considèrent plus possibles des séquences d’évènements qui ne suivent
pas cette stratégie. D’un autre côté, dans les Logiques Épistémiques du Temps Alternant,
la sémantique de la connaissance ne dépend pas des stratégies prises, ce qui implique
que les agents ne connaissent pas les stratégies. Il semble que les hypothèses menant à

x Résumé long en français

ces différentes sémantiques de la connaissance ne sont habituellement pas explicitées. Par
l’introduction des deux quantificateurs ; et ; , nous tentons de clarifier cette idée. Intui-
tivement, le quantificateur strict ; correspond au premier cas, où les agents connaissent
la stratégie, tandis que le quantificateur plein ; modélise des agents qui ignorent la stra-
tégie, comme dans le second cas. Les noms “strict” et “plein” reflètent le fait que la portée
du quantificateur strict ; est restreinte aux parties suivant la stratégie, tandis que le
quantificateur plein ; porte sur la totalité des parties possibles dans le jeu. Ces deux
quantificateurs, et notre volonté d’étudier des propriétés des stratégies très générales, font
que la sémantique de L; est quelque peu originale à deux égards.

La première originalité concerne la sémantique du quantificateur plein, ; . Comme
pour CTL

∗, une formule de L; est interprétée sur un arbre. De par l’utilisation que nous
faisons de nos formules, à savoir exprimer des propritétés d’uniformité de stratégies, ces
arbres sont amenés à représenter des stratégies dans un jeu. Cependant, pour donner
la sémantique du quantificateur plein ; , il faut aussi représenter l’ensemble des parties
possibles dans un jeu. Pour cela chaque modèle comporte, en plus d’un arbre, une forêt
(ensemble d’arbres) appelé l’univers.

La seconde originalité concerne les relations donnant la sémantique de nos quantifica-
teurs ; et ; . Usuellement dans ETL, la sémantique de l’opérateur de connaissance K
est une quantification universelle sur les histoires reliées à l’histoire courante par quelque
relation binaire. Les modèles les plus généraux autorisent des relations arbitraires entre
les histoires, et nous suivons cette approche. Cependant, tous les travaux dont nous avons
connaissance qui considèrent des questions algorithmiques où les modèles font partie de
l’entrée du problème (essentiellement model-checking), se restreignent à des relations gé-
nérées finiment. Dans la plupart des cas, une relation d’équivalence est donnée sur les
positions de l’arène (ou les états du modèle). Cette relation représente les observations
d’un agent, et elle est étendue sur les histoires selon certaines hypothèses faites sur les
capacités de l’agent – mémoire parfaite/imparfaite, synchrone/asynchrone (Halpern and
Vardi, 1989). Au lieu de cela, lorsque nous étudions le problème de synthétiser des straté-
gies uniformes, nous considérons des relations reconnues finiment. Plus précisément, nous
considérons la classe des relations rationnelles, qui sont les relations reconnaissables par
des automates à deux bandes, aussi appelés transducteurs (Eilenberg, 1974; Berstel, 1979).
Il est intéressant de noter que la plupart des relations considérées en logique épistémique
temporelle, et notamment celles générées finiment, évoquées plus haut, sont reconnues par
des tranducteurs assez simples. De plus, les relations rationnelles ne sont pas forcément
des relations d’équivalence, ce qui permet de capturer, par exemple, des relations utilisées
en révision des connaissances et pour modéliser la plausibilité, avec des axiomatisations
K45 ou KD45 (Fagin et al., 1995).

Après avoir donné la syntaxe et la sémantique de L;, nous définissons notre notion de
stratégies uniformes, puis nous l’illustrons en revisitant plusieurs notions de la littérature.
Dans certains cas, comme pour les stratégies à information imparfaite ou les stratégies pour
les logiques à information imparfaite, le quantificateur strict est nécessaire. Cependant nous
montrons que capturer des stratégies avec des conditions de gain épistémiques requiert par-
fois l’emploi du quantificateur plein. Nous abordons ensuite notre problème principal, qui
est la synthèse de stratégies uniformes. Pour ce faire, nous considérons d’abord séparé-
ment les deux types de quantificateurs, le strict et le plein, car leurs propriétés diffèrent

Contribution xi

et mènent à employer des techniques différentes. Cette séparation donne les Chapitres 4
et 5 respectivement.

Nous commençons dans le Chapitre 4 avec les propriétés d’uniformité exprimées dans
L; mais n’utilisant que le quantificateur strict. Les stratégies soumises à ce type de pro-
priétés sont appelées stratégies strictement uniformes. Le problème que nous considérons
consiste à, étant données une arène de jeu, un transducteur reconnaissant une relation
binaire entre les parties, et une formule de L; sans quantificateur plein représentant une
propriété d’uniformité, décider s’il existe une stratégie uniforme pour le joueur 1. Nous
prouvons que, sans surprise, l’existence de stratégie strictement uniforme est indécidable
pour la classe des relations rationnelles. Plus précisément, nous prouvons en encodant le
problème de l’existence de stratégie distribuée dans les jeux de sûreté à information impar-
faite à trois joueurs (Peterson et al., 2001; Berwanger and Kaiser, 2010), que l’existence de
stratégie strictement uniforme est indécidable même pour les relations d’équivalence recon-
nues par des transducteurs synchrones. Dans le but de mieux comprendre la complexité de
ce problème, nous introduisons la notion d’automates d’arbres bondissants. Ces automates
sont équipés d’une relation binaire sur les mots, et ils étendent les automates d’arbres
alternants classiques en autorisant des sauts entre des noeuds reliés dans l’arbre d’entrée.
Le problème de l’existence de stratégie strictement uniforme se réduit au problème de la
vacuité des automates d’arbres bondissants, ce qui implique l’indécidabilité de ce dernier
problème pour des automates équipés de relations rationnelles.

Néanmoins, nous établissons que si les automates d’arbres bondissants sont équipés
de relations reconnaissables, une sous classe de relations rationnelles qui, informellement,
ne considèrent qu’une information bornée sur chacune des branches, alors ces automates
peuvent être simulés par des automates d’arbres à deux sens classiques (Vardi, 1998).
De ce résultat nous obtenons une procédure de décision pour l’existence de stratégies
strictement uniformes pour la classe des relations reconnaissables. De plus, nous prouvons
que ce problème est 2-Exptime-complet, c’est à dire qu’il n’est essentiellement pas plus
complexe que tester la satisfiabilité de CTL

∗ (Emerson, 1990), ou que résoudre des jeux avec
de simples conditions de gain LTL (Pnueli and Rosner, 1989). Enfin, grâce aux techniques
classiques pour extraire d’un automate d’arbre une représentation finie d’un modèle, notre
procédure de décision permet de synthétiser une stratégie uniforme lorsqu’il en existe une.

Dans le Chapitre 5 nous tournons notre attention vers le problème de la synthèse de
stratégies pleinement uniformes, c’est à dire de stratégies dont les propriétés d’uniformité
sont spécifiées dans L; mais en n’utilisant que le quantificateur plein. Nous prouvons que
le problème est décidable mais nonélémentaire pour la classe complète des relations ration-
nelles. Plus précisément, nous établissons que le problème est k-Exptime-complet pour les
propriétés d’uniformité avec une profondeur d’imbrication de quantificateurs ; d’au plus
k (2-Exptime-complet si k ≤ 2). Notre procédure de décision repose sur l’introduction
d’automates d’ensembles d’informations, que nous utilisons comme outils pour calculer des
ensembles d’informations définis par des relations rationnelles. Les automates d’ensembles
d’informations encapsulent une partie de la difficulté technique de notre procédure. Ils nous
permettent aussi d’identifier une sous-classe de relations rationnelles (K45NM) pour la-
quelle la complexité du problème de l’existence de stratégies pleinement uniformes s’écroule
de nonélémentaire à 2-Exptime-complet. Ce résultat est intéressant car, premièrement,
K45NM contient encore la plupart des relations habituellement considérées en logique

xii Résumé long en français

épistémique temporelle et jeux à information imparfaite, et la complexité du problème
pour cette classe de relations est, comme dans le cas décidable des stratégies strictement
uniformes, la même que celle de résoudre les jeux LTL.

Après avoir établi ces résultats pour les stratégies strictement uniformes et pleinement
uniformes dans le cas d’une relation, nous étendons notre langage dans le Chapitre 6 pour
considérer plusieurs relations ;i et leurs quantificateurs associés, ; i et ; i. Nous appelons
nL; le langage étendu pour n relations. Nous montrons d’abord que tous nos résultats
de décidabilité et de complexité établis dans le cas d’une relation tiennent toujours pour
plusieurs relations, sauf dans un cas. En effet, décider l’existence de stratégies pleinement
uniformes pour la classe de relations K45NM n’est plus 2-Exptime-complet mais devient
nonélémentaire dès que deux relations sont autorisées. Nous établissons des bornes de
complexité précises, à savoir que le problème est h-Exptime-complet pour des proprié-
tés d’uniformité de profondeur d’alternation entre différents quantificateurs d’au plus h
(2-Exptime-complet si h ≤ 2). Nous identifions aussi un fragment de nL; qui permet
d’utiliser des quantificateurs stricts et pleins dans la même formule, et pour lequel l’exis-
tence de stratégie uniforme est encore décidable, et a essentiellement la même complexité
que s’il n’y avait que des quantificateurs pleins. Ce cadre généralisé à plusieurs relations
capture aisément plusieurs problèmes de la litérature. En particulier, nous montrons que
nos résultats fournissent une preuve unifiée de plusiseurs résultats connus sur le model-
checking des logiques temporelles épistémiques, pour différentes capacités des agents ; en
fait, le model checking de ces logiques est décidable pour toutes relations d’indistingabi-
lité rationnelles. Nous décrivons aussi comment la résolution de jeux à plusieurs joueurs,
information imparfaite et objectifs temporels et épistémiques peut être réduite à un pro-
blème de stratégie uniforme dans un jeu à deux joueurs, avec une propriété d’uniformité
impliquant un quantificateur strict pour chaque joueur du jeu original.

Une autre application de nos résultats concerne le sujet florissant de la synthèse de
protocoles épistémiques qui, grossièrement, vise à synthétiser des protocoles (ou straté-
gies) dans des situations où l’information et la connaissance jouent un rôle crucial dans
le comportement du système et/ou dans les objectifs des agents impliqués. Dans le Cha-
pitre 7 nous considérons d’abord le problème de planification épistémique (Bolander and
Andersen, 2011; Löwe et al., 2011; Aucher and Bolander, 2013), qui est un cas particulier
de problème de planification dans le cadre de la Logique Épistémique Dynamique. Etant
donnés une représentation de la situation épistémique initiale, un ensemble d’évènements
épistémiques possibles et un objectif sous forme de formule épistémique, le problème de
planification épistémique consiste à synthétiser une séquence finie d’évènements qui, lors-
qu’on l’exécute dans la situation initiale, mène à une situation épistémique qui satisfait
l’objectif. Ce problème est indécidable pour plusieurs agents, mais restreindre le type d’évè-
nements autorisés donne un problème qui a récemment été prouvé décidable (Yu et al.,
2013). Nous réduisons cette variante à un problème de stratégie uniforme, et obtenons
une preuve alternative de décidabilité ainsi que des bornes supérieures de complexité. De
plus, notre approche nous permet de synthétiser sans coût supplémentaire un automate
fini qui engendre tous les plans solution du problème. Pour terminer, nous considérons une
notion de protocole épistémique et son problème de synthèse associé, qui généralise la pla-
nification épistémique selon plusieurs directions. Premièrement, les plans ne sont plus des
séquences d’évènements finies mais infinies. Deuxièmement, nous cherchons un protocole,

Contribution xiii

i.e. un arbre d’évènements (ou un ensemble de plans), au lien d’un seul plan. Troisième-
ment, l’objectif n’est plus de type accessibilité, mais peut être une quelconque formule
temporelle épistémique (avec des opérateurs de connaissance stricts et pleins). Une fois de
plus, nos résultats sur les stratégies uniformes nous permettent de résoudre ce problème
général et de synthétiser des protocoles épistémiques.

Notes

Une première version de notre notion de stratégies uniformes et une étude de son
expressivité ont été publiées dans Maubert and Pinchinat (2012). Une partie des résultats
présentés dans les Chapitres 3 et 5 a aussi été publiée dans Maubert and Pinchinat (2014)
et Maubert et al. (2013). Ce dernier travail a été mené en collaboration avec Laura Bozzelli,
à qui est dûe la preuve de bornes inférieures décrite en Appendice A. A noter que dans ces
travaux, notre langage de spécification des propriétés d’uniformité était basé sur LTL au
lieu de CTL

∗ comme c’est le cas ici. Nous avons choisi de passer de LTL à CTL
∗ car cela

accroît clairement l’expressivité, comme l’atteste la capacité de capturer e.g. le module
checking de Kupferman and Vardi (1997), sans affecter nos résultats.

Dans le Chapitre 3, nous illustrons l’utilisation du quantificateur plein avec l’exemple
des jeux à condition d’opacité. Ce sont des jeux avec une condition de gain épistémique
particulière qui ont fait l’objet d’une étude antérieure, qui a mené à deux publications :
nous avons introduit ces jeux dans Maubert and Pinchinat (2009) et étudié leur complexité
dans Maubert et al. (2011).

Les résultats du Chapitre 4 ont aussi été publiés dans Maubert and Pinchinat (2013).
La plupart des résultats des Chapitres 3, 4, 5 et 6 ont été acceptés pour publication dans
une édition spéciale d’Information and Computation pour le 1er Workshop International
sur le Raisonnement Stratégique (SR 2013), qui s’est tenu à Rome en Mars 2013.

Finalement, nous présentons dans le Chapitre 7 quelques applications de nos méthodes
dans le cadre de la Logique Épistémique Dynamique. Durant cette thèse, nous avons
aussi mené d’autres travaux dans ce domaine, en collaboration avec Guillaume Aucher et
François Schwarzentruber.

Nous décrivons informellement l’idée de ces travaux. DEL permet d’exprimer des pro-
priétés :

1. d’une situation épistémique initiale,

2. d’un évènement informatif qui se produit dans cette situation, et

3. de la situation résultant de l’occurence de cet évènement.

Le problème des séquents DEL est le suivant. Étant données trois formules (une pour
chaque point), est-il vrai que, si une situation épistémique initiale vérifie la première for-
mule et qu’un évènement vérifie la seconde, alors la situation résultante vérifiera la troi-
sième ? Nous avons prouvé que ce problème est décidable en produisant une méthode
tableau pour la validité des séquents DEL. Nous avons aussi établi que le problème est
NExptime-complet. Ces résultats ont été publiés dans Aucher et al. (2011). Nous avons
ensuite généralisé cette méthode tableau au cas d’une séquence de n évènements, ainsi
qu’au cas de relations d’accessibilités sérielles ou réflexives dans les modèles. Ces résultats
ont été publiés dans Aucher et al. (2012).

xiv Résumé long en français

Chapter 1

Introduction

1.1 Context

Game theory is a rich, vast and dynamic field of research, which aims at the rigorous
mathematical study of strategic decision making. Though the standard designation “game
theory” actually covers a wide range of different formalisms, the main ingredients of any
game theory are always a set of players, a description of the information and actions
available to each player at each decision point, the payoffs for each player in each possible
outcome, and a solution concept describing what is a desirable solution. Solution concepts
always refer to strategies, i.e. functions that prescribe to a player what move should be
made in each possible situation. The characteristics and assumptions made on these in-
gredients vary depending on the object of study. When the field emerged during the first
half of the 20th century, with the work of Von Neumann and Morgenstern, it was mostly
directed towards economic concerns. Therefore, studies initially focused on games with
particular features, one of them being finite duration. In such games, players make deci-
sions (either simultaneously or in turn) a finite number of times, after which an outcome is
reached. Along the past century however, the game theoretic paradigm raised interest in a
number of fields such as philosophy, political science, biology, pure mathematics and, more
recently, logics and computer science. The variety of purposes and systems under study
lead to a whole intricate taxonomy of games – normal/extensive form, zero/nonzero sum,
perfect/imperfect information, complete/incomplete information, turn-based/concurrent,
finite/infinite duration. . .

In this thesis we are interested in games played on graphs (where a node is called a
position and an edge is a move), and especially in the properties that characterize “good”
strategies. The most obvious property is that a strategy should be winning (i.e. it ensures
that the player who follows it always win) for some winning condition, the form of which
depends on the type of game considered. But in some settings, additional constraints are
imposed to limit the set of allowed strategies that a player can use. We describe some
of these properties of strategies that have emerged and/or gained much importance in
theoretical computer science and logics for computer science. First, we recall one of the
main motivations for considering games of infinite duration in computer science.

1

2 Introduction

1.1.1 Infinite duration games

One task that has received a tremendous amount of attention over the past decades is
that of verifying critical systems. Indeed, as automatic systems are given the responsibility
to perform more and more complex tasks, and in domains – such as avionics or power plants
– where the consequences of faults can be tragic, the need to develop methods to ensure the
“correctness” of such systems cannot be questioned. One of the most successful approaches
to this end is model checking. In this approach, systems to be verified are represented by
suitable mathematical abstractions (called models), properties to be ensured are expressed
in some logical language, and algorithms are developed to automatically check that a given
model verifies a given formula. According to the type of properties considered, different
logics and models are used. Let us take the example of a power plant. One simple property
that should be verified by the plant is: “In all possible behaviours, the power plant never
explodes”. To express such properties of systems/programs involving temporal aspects,
temporal logics have been intensively studied. Classic temporal logics are LTL, that was
introduced by Pnueli (1977) and deals with properties of linear time, CTL, first studied by
Clarke and Emerson (1981) and concerned with branching time properties, and CTL

∗, also
called the full branching time logic, that was introduced by Emerson and Halpern (1983)
and combines the expressive power of both LTL and CTL. Efficient algorithms for the
model checking of these logics have been developed, and have led to the development of
tools now widely used in the industry – see e.g. Vardi (2008) for a brief historical overview.
Based on these temporal logics, an approach somehow dual to model checking is called
program synthesis: instead of checking that a given program verifies some property, the
aim is, given a logical specification, to automatically synthesize a (skeleton of a) program
that verifies this specification by construction. A foundational work in this trend, for CTL

specifications, is due to Clarke and Emerson (1981).
Note that all these temporal logics – LTL, CTL and CTL

∗ – are fragments of the
modal µ-calculus of Kozen (1983). µ-calculus is of great importance, as it is in a sense
the logical counterpart of alternating automata on infinite objects (Muller and Schupp,
1987), which are very powerful machines that provide decision procedures for many logics
of programs. Note that unlike classic automata on finite words, automata working on
infinite objects have infinite runs, and they need adapted acceptance conditions. The
most important ones are Büchi, Rabin, Street, Muller and parity acceptance conditions.
µ-calculus is more closely related to the parity condition, as translating µ-calculus formulas
into alternating tree automata naturally leads to using the parity condition. In turn,
these parity alternating tree automata are deeply related to games of infinite duration.
In particular, infinite-duration games with parity winning condition provide a natural
decision procedure for testing the language nonemptiness of parity tree automata, and
thus the satisfiability of temporal logics formulas. These connections lead to a powerful
theory of automata, logics and infinite games (Grädel et al., 2002).

Infinite duration games also provide a very natural way to model and reason about
systems that interact. Such systems are very common, and can be as simple as a commu-
nication protocol between a printer and its users. Back to the example of the power plant,
consider a system in charge of controlling the plant (a controller). One desirable property
is the following: “Whatever happens in the plant, the controller can always take actions to
ensure that the plant never explodes”. This property involves alternation between two en-

Context 3

tities taking actions: every time something happens in the plant, the controller must have
the possibility to take appropriate measures, to which the plant may react, so long and so
forth. This kind of property, though expressible in the modal µ-calculus, can be captured
much more intuitively in terms of winning strategies in an infinite duration game. In the
example, we want to ensure that the controller has a winning strategy against the plant,
where the winning condition for the controller is to prevent the plant from exploding.

In the end, infinite duration games are an intuitive and powerful tool not only for
testing the emptiness of parity tree automata, and thus solving satisfiability problems for
temporal logics, but also for expressing complex properties of systems that involve alter-
nation between several entities. These two aspects make infinite duration games central
in modern computer science. However, in order to capture many real-world situations, the
models we have discussed so far lack the imperfect information aspect.

1.1.2 Games with imperfect information

In everyday life it is common to make decisions without having all the relevant informa-
tion in hand – consider for instance Poker games. In computer science this situation occurs
for example when some variables of a system are internal/private. In our power plant ex-
ample of Section 1.1.1, the controller may only have access to the temperature inside the
reactor but not to the pressure, because of some damaged equipment. In game theory, this
is modeled by gathering situations that a player cannot distinguish in information sets.
During a play, the player cannot tell which situation in the current information set is the
actual one, and therefore she cannot base her strategy on the exact current situation. This
leads to requiring that a strategy must assign the same move to every situation inside an
information set. This constraint has deep impacts on the existence of winning strategies,
and the problem of deciding this existence. For example, while ω-regular two-player games
with perfect information are determined, i.e. there is always a winning strategy for one of
the players, this is no longer the case for games with imperfect information. Also, while
in essence ω-regular conditions are evaluated on individual plays, independently of other
plays that result from a strategy, turning to imperfect-information games raises the need
to deal with sets of plays to check that a strategy is consistent over information sets. The
classic solution is to gather all indistinguishable plays by performing a powerset construc-
tion, thus reducing the problem to solving an equivalent perfect-information game (Reif,
1984). More recently, an algorithm based on antichains has been developed (Chatterjee
et al., 2006; Berwanger et al., 2010), that avoids the costly powerset construction by using
succinct representations of information sets.

In extensive games with imperfect information, the information available to a player is
often represented by some observational ability : the player does not see positions, but only
has access to an abstraction of these, so-called observations, and several positions can share
the same observation. For this reason, some works (Chatterjee et al., 2006) use the term
observation-based strategies to refer to strategies submitted to the constraint of playing
the same move in indistinguishable situations. Other works (Berwanger and Doyen, 2008;
Berwanger et al., 2010) define strategies directly on observations instead of positions.
Because these strategies must be defined “uniformly” over information sets, this kind of
strategies is also referred to as uniform strategies in the community of strategic logics (van
Benthem, 2001, 2005; Jamroga and van der Hoek, 2004). We may also sometimes refer to

4 Introduction

these strategies as imperfect-information strategies.
In extensive games, where strategies are defined on sequences of positions, describing

how each position is observed by a player is, in general, not sufficient to characterize
information sets. One needs in addition to specify what the player’s memory abilities are.
This yields the distinction between perfect recall and imperfect recall. In the former, the
player remembers the whole history of the observation she had of a play so far, while in
the latter the player forgets part of the information. A player with imperfect recall can be
memoryless, i.e. she does not remember anything and takes decisions only according to the
observation of the current position. She can also have bounded memory, which means that
she can remember a certain finite amount of information; or she can have an unbounded
memory, but she does not perfectly remember the history and loses pieces of information.

While games with imperfect information and perfect recall have been studied inten-
sively (Reif, 1984; Chatterjee et al., 2006; Berwanger and Doyen, 2008; Berwanger et al.,
2010), the case of imperfect recall has received much less attention since paradoxes con-
cerning the interpretation of such games were raised (Piccione and Rubinstein, 1997).
Nonetheless, relevant problems may be modeled with imperfect recall: typically, particu-
lar computing resources have very limited memory and cannot remember arbitrarily long
histories. Furthermore, a recent work has advocated the relevance of a systematic study
of games with imperfect recall (Berwanger et al., 2012).

It is important to notice that the assumptions made on the memory of the player,
the existence of observation-based winning strategies, and the difficulty of deciding this
existence are tightly related. Memory gives power to the players: indeed, a memoryless
player may lose a game where a player with perfect recall, having more information, may
possess a winning strategy. But giving more memory to the players may also increase
the complexity of solving games. For example, solving imperfect-information games with
three players and perfect recall is undecidable (Peterson et al., 2001; Berwanger and Kaiser,
2010), while the problem is trivially decidable for memoryless players.

1.1.3 Semantic games for logics of imperfect information

We have seen that in games with imperfect information, strategies are submitted to
some “uniformity” constraint: they must assign the same move to the different situations of
a same information set. A second example of a constraint on admissible strategies, which
is related to the first one, comes from logics of imperfect information. These logics add
notions of dependence and/or independence in first-order logic, and their semantics can
be given by two-player games with special constraints on the strategies. Recall that the
semantics of first-order logic formulas can be given by a two-player game between a Verifier
and a Falsifier. For the Independence Friendly logic of Hintikka and Sandu (1989), one
obtains a natural game semantics by adding imperfect information in the semantic games
of first-order logic, using the classic notion of imperfect-information strategies. However,
this does not work for the more recent Dependence Logic, introduced by Väänänen (2007).
Instead, Väänänen defines an ad hoc constraint on the strategies allowed for the Verifier,
and he calls this constraint a “uniformity requirement”. This constraint is reminiscent
of imperfect-information strategies and makes these games undetermined, which is why
Väänänen originally qualified these semantic games as imperfect-information games. How-
ever, it is not clear whether these games can be defined in terms of imperfect-information

Context 5

games in the usual acceptation of the notion.
This issue is well-known in the community of Dependence Logic. Recently, a number

of other logics of imperfect information have been studied (Grädel and Väänänen, 2013;
Galliani, 2012; Engström, 2012), that add in first-order logic new atoms capturing notions
from database dependence theory. They all have in common that their semantics are
naturally given by adding some constraints on strategies in the semantic games of first-
order logic. Like for Dependence Logic, these games are not exactly games with imperfect
information, and in order to study their properties, Grädel (2013) recently introduced a
notion of second-order reachability games. These games generalize the semantic games
for logics of imperfect information, and they are called second order because, like for
imperfect-information strategies, the constraints on strategies concern sets of plays in the
outcome.

1.1.4 Epistemic winning conditions

Yet another property of strategies that concerns sets of plays, and is also intrinsically
based on imperfect information, concerns winning conditions involving epistemic aspects.
Such objectives are predominant in the thriving topic of multi-agent systems. We illustrate
this by returning to our power plant example. Assume that the strategy of the controller
was not winning. Now the plant has exploded, and a mission must be carried out to
look for survivors, secure the place and clean it. Because it was a nuclear power plant, we
cannot send humans and a team of robots is deployed. To achieve their mission, the robots
must interact and take decisions under imperfect information. Indeed, they do not know
the exact configuration of the site, and their sensors may be damaged by radiations. But
in addition to these features that we already discussed, they must be able to reason about
their knowledge as well as the other robots and possible survivors’ one. For example, a
robot should be able to reason in the following terms: “I believe that this human may still
be alive, therefore I rescue him”, or “I know for sure that this human is dead, therefore
I continue searching for survivors”. Moreover, their objectives themselves may include
epistemic aspects. For example: “I need to devise a strategy to make sure that the medical
robot eventually knows that this human is alive”.

Logical systems concerned with uncertainty are many. The first works on the matter
were concerned with representing and reasoning about knowledge in a static setting (Sato,
1977; Lehmann, 1984; Fagin et al., 1991). These epistemic logics have then been extended,
in the context of distributed systems, to study interactions between knowledge and time;
logics of this kind form the family of Epistemic Temporal Logics (ETL) (Parikh and
Ramanujam, 1985; Ladner and Reif, 1986; Halpern and Vardi, 1989; Fagin et al., 1995;
van der Meyden and Shilov, 1999; Dima, 2008). Another approach to add dynamics
in epistemic logic is Dynamic Epistemic Logic, which can be seen as an adaptation of
propositional dynamic logics to the epistemic setting, and where actions are informative
events (Baltag et al., 1998; van Ditmarsch et al., 2007; van Benthem, 2011). The problem of
synthesizing protocols with epistemic temporal objectives has also received some attention
(van der Meyden and Vardi, 1998; van der Meyden and Wilke, 2005). More recently,
Epistemic Temporal Logics have been combined with Alternating-time Temporal Logic
(Alur et al., 2002) in order to reason about knowledge, time and strategies in a unified
language. These very expressive logics are called Alternating-time Temporal Epistemic

6 Introduction

Logics (van der Hoek and Wooldridge, 2003; Jamroga and van der Hoek, 2004; Dima
et al., 2010). In addition to temporal and epistemic operators, they contain operators that
quantify over strategies verifying some property involving time, knowledge and strategic
abilities.

Obviously, strategies with epistemic objectives are another instance of strategies that
must deal with sets of plays, yet not in the same manner as imperfect-information strategies
or strategies for logics of imperfect information. In all these logics, like for classic games
with imperfect information, the assumptions made on the observational power of agents are
crucial. A number of properties are usually considered to characterize different capabilities
of agents: perfect recall, memoryless, synchronous, asynchronous, no miracles. . . Different
combinations of these assumptions yield different results for the corresponding logics, and
results are usually proven on a case-by-case basis.

1.1.5 Review of the situation and research problem

As shown above, there seems to be a growing number of domains where properties
of strategies involving sets of plays are central, most of the time because of imperfect
information. However, recall that in the case of Dependence Logic and other logics of
imperfect information, it is not clear how the constraint imposed on strategies can be
defined in terms of imperfect information.

The whole picture is intricate, mainly because time and knowledge are essentially or-
thogonal, as we show below. This orthogonality yields a complex theoretical universe to
reason about. In order to understand to which extent knowledge and time are indeed or-
thogonal, viewing strategies as infinite trees is helpful: time is about the vertical dimension
of the trees as it relates to the ordering of encountered positions along plays (branches)
and to the branching in the tree. On the contrary, knowledge is about the horizontal
dimension, as it relates plays carrying the same information.

To the best of our knowledge, there is no thorough study of general constraints on
strategies involving this horizontal dimension. In this thesis we propose to study in depth
a general notion of strategies with constraints involving sets of plays. The aim is to
clarify the picture, to better understand the complexity of solving games with horizontal
constraints on strategies, and to develop generic techniques that depend as little as possible
on particular assumptions made on observational and memory abilities of agents.

1.2 Contribution and structure of the document

Even though studying strategic abilities of multiple players is a central concern in
game theory and multi-agent systems, we choose to initiate this study of general horizontal
constraints of strategies in the simple framework of turn-based games played on graphs
between two players, in which we will study the existence of “good” strategies for one
of these players. However, the notions we define may be adapted to more sophisticated
models such as concurrent game structures (de Alfaro et al., 1998; de Alfaro and Henzinger,
2000), and in addition we will see that some strategic problems concerning multiple players
can be expressed already in our two-player setting (see Section 6.5.2).

We first recall in Chapter 2 various definitions and known results concerning complexity
classes, infinite games, propositional and first order logics, automata on infinite objects

Contribution and structure of the document 7

and classes of finitely representable relations on words.

In Chapter 3 we define a general notion of uniform strategies. The uniformity properties
of strategies are expressed in a logical language, L;, which is CTL

∗ augmented with two
quantifiers over related plays, ; and ; . The motivations for choosing this language are
the following.

First, L; is close to classic Epistemic Temporal Logics (the knowledge operator K of
these logics is a particular case of our quantifiers ; and ;), which allows us to express uni-
formity properties in an intuitive manner. This is illustrated in Chapter 3, where we show
that the three kinds of horizontal properties discussed in Sections 1.1.2, 1.1.3 and 1.1.4
are easily rephrased as uniform strategies. Second, even though L; does not contain the
full µ-calculus, it still combines the full expressiveness of linear-time and branching-time
logics. Settling for CTL

∗ as basis for the vertical dimension of our uniformity properties
allows us to focus on the horizontal dimension, which is the major object of our study.
Third, using a classic temporal logic, we can benefit from well-known automata techniques
to tackle the problem of synthesizing uniform strategies.

Concerning the introduction of our two quantifiers, ; and ; , note that there are, in the
literature, two distinct approaches to give the semantics of knowledge when strategies are
involved. In van der Meyden and Vardi (1998) and van der Meyden and Wilke (2005) for
example, the aim is to synthesize strategies that verify some epistemic temporal objective.
In these works, the semantics of the knowledge operator suggest that when a strategy
is fixed, all the agents know the strategy, and therefore they no longer consider possible
sequences of events that do not follow this strategy. On the other hand, in Alternating-
time Temporal Epistemic Logics, the semantics of the knowledge do not depend on the
strategies taken, implying that the agents do not know the strategies. It seems that the
assumptions leading to these definitions of knowledge are usually not made explicit. The
introduction of the two quantifiers ; and ; is an attempt to clarify this idea. Intuitively,
the strict quantifier ; corresponds to the first case, where agents know the strategy, while
the full quantifier ; models agents who ignore the strategy, as in the second case. The
names “strict” and “full” reflect the fact that the range of the strict quantifier ; is restricted
to the outcomes of a strategy, while the full quantifier ; ranges over the full set of possible
plays in the game. Because of these two quantifiers and our will to study very general
properties of strategies, the semantics of L; is somewhat original, in two regards.

The first originality concerns the semantics of the full quantifier, ; . As for CTL
∗,

L; formulas are interpreted on trees. Because we use formulas to specify properties of
strategies, these trees are meant to represent strategies in some game. However, giving
the semantics of the full quantifier ; requires to represent the set of all possible plays in
the game. To this aim, each model contains, in addition to a tree, a forest (set of trees)
called the universe.

The second originality concerns the binary relations that give the semantics of our
quantifiers ; and ; . Classically in ETL, the semantics of the knowledge operator K
is a universal quantification over histories related to the actual one. The most general
frameworks allow for arbitrary relations between histories, and we follow this approach.
However, in all the works that we know of that consider algorithmic questions where the
models are part of the problem’s input (mostly model checking), only finitely generated
relations are considered. In most cases, an equivalence relation on the positions of the

8 Introduction

arena (or the states of the model) is given. This relation represents the observations
of some agent, and it is extended to histories according to certain hypothesis made on
the agent’s abilities – perfect/imperfect recall, synchronous/asynchronous (Halpern and
Vardi, 1989). In contrast, when we study the problem of synthesizing uniform strate-
gies, we consider finitely recognized relations. More precisely, we consider the class of
rational relations, which are relations recognized by two-tape automata also called finite
state transducers (Eilenberg, 1974; Berstel, 1979). Noticeably, most equivalence relations
used in epistemic temporal logics, and in particular the finitely generated ones above de-
scribed, are recognized by fairly simple transducers. Additionally, rational relations need
not be equivalences, but they also encompass e.g. relations used in belief revision, and for
modelling plausibility, with K45 or KD45 axiomatization (Fagin et al., 1995).

After giving the syntax and the semantics of L;, and after defining our notion of uni-
form strategies, we illustrate it by revisiting several notions from the literature. Some of
these, like imperfect-information strategies and strategies for logics of imperfect informa-
tion, require the use of the strict quantifier. We show that, however, capturing strategies
with epistemic objectives sometimes necessitates the full quantifier instead. We then turn
to the study of our main problem, which is the synthesis of uniform strategies. To do so, we
first consider separately the two kinds of quantifiers, strict and full, as they have different
properties and require different techniques. This yields Chapters 4 and 5 respectively.

We start in Chapter 4 with uniformity properties expressed in L; but using the strict
quantifier only. Strategies subject to this kind of properties are called strictly-uniform
strategies. The strictly-uniform strategy problem consists in, given a game arena, a trans-
ducer accepting some binary relation between plays, and a uniformity property expressed
in L; without full quantifiers, deciding whether Player 1 has a uniform strategy. We estab-
lish that, unsurprisingly, the strictly-uniform strategy problem is undecidable for rational
relations. More precisely, we prove by encoding the distributed strategy problem in safety
games with imperfect information (Peterson et al., 2001; Berwanger and Kaiser, 2010), that
the strictly-uniform strategy problem is undecidable even for equivalence relations recog-
nized by synchronous transducers. In order to better understand the complexity of the
problem, we introduce the notion of jumping tree automata. These automata are equipped
with some binary relation over words, and they extend classic alternating tree automata by
allowing for jumps in the input tree between related nodes. The strictly-uniform strategy
problem reduces to the nonemptiness problem for jumping tree automata, which entails
the undecidability of the latter problem for automata equipped with rational relations.

Nonetheless, we establish that if jumping tree automata are equipped with recogniz-
able relations, a subclass of rational relations that basically only challenge a bounded
amount of information in each branch, then they can be simulated by classic two-way tree
automata (Vardi, 1998). From this result we derive a decision procedure for the strictly-
uniform strategy problem with recognizable relations. Moreover, we prove the problem
to be 2-Exptime-complete, i.e. it has the same complexity as testing the satisfiability of
CTL

∗ (Emerson, 1990), or solving games with simple LTL winning conditions (Pnueli and
Rosner, 1989). Finally, classic techniques to extract a finitely represented model of a tree
automaton allow us to synthesize a uniform strategy whenever one exists.

In Chapter 5 we turn our attention to the problem of synthesising fully-uniform strate-
gies, i.e. strategies whose properties are specified in L; but using the full quantifier only.

Contribution and structure of the document 9

We prove that the problem is decidable but nonelementary for the whole class of ratio-
nal relations. More precisely, we establish that the problem is k-Exptime-complete for
uniformity properties that involve up to k nested ; quantifiers – 2-Exptime-complete if
k ≤ 2. Our decision procedure relies on the introduction of information set automata, that
we use as a tool to compute information sets defined by rational relations. Information
set automata encapsulate a part of the technical difficulty of our procedure, and they also
enable us to identify a subclass of rational relations (K45NM) for which the fully-uniform
strategy problem collapses to 2-Exptime-complete. This result is of interest as, first,
K45NM still contains most relations considered in Epistemic Temporal Logics and games
with imperfect information, and the complexity of the problem for this class of relations
is, as in the decidable case for strictly-uniform strategies, the same as solving LTL games.

After establishing these results for strictly-uniform and fully-uniform strategies in the
case of one relation, in Chapter 6 we extend our language to allow for several relations
;i and corresponding quantifiers ; i and ; i. We call nL; the extended language for n
relations. We show that all our results still hold when several relations are allowed, ex-
cept for one case. Indeed, the fully-uniform strategy problem with K45NM relations is no
longer 2-Exptime-complete, but it becomes nonelementary already for two relations. The
precise complexity of the problem is h-Exptime-complete for uniformity properties whose
depth of alternation between different quantifiers is at most h – 2-Exptime-complete if
h ≤ 2. We also identify a fragment of nL; that allows for both strict and full quantifiers
in the same formula and for which the uniform strategy problem is still decidable, and
has the same complexity as with only full quantifiers. Several problems from the litera-
ture fit in this generalized setting. In particular, we show that several known results on
model checking logics of knowledge and time, for different abilities of agents, find a unified
proof in our work; in fact the model checking of such logics is decidable for all rational
indistinguishability relations. We also describe how solving games with several players,
imperfect information and epistemic temporal objectives can be reduced to solving a uni-
form strategy problem in a two-player game, where the uniformity property involves a
strict quantifier for each player of the original game.

Another application of our results concerns the thriving topic of epistemic protocol
synthesis, which basically aims at synthesizing protocols (or strategies) in situations where
knowledge and information play a crucial role in the behaviour of the system and/or in the
objectives of the agents involved. In Chapter 7 we first consider the epistemic planning
problem (Bolander and Andersen, 2011; Löwe et al., 2011; Aucher and Bolander, 2013),
which is an instance of planning problem in the framework of Dynamic Epistemic Logic
(DEL). Given a representation of the initial epistemic situation, a set of possible epistemic
events and an objective epistemic formula, the epistemic planning problem consists in
synthesizing a finite sequence of events that, when triggered from the initial situation,
yields a situation that verifies the objective epistemic formula. The problem for several
agents is undecidable, however, a restriction on the allowed type of events yields a problem
that has recently been proved decidable (Yu et al., 2013). We reduce this version of the
problem to a uniform strategy problem, providing an alternative decidability proof as well
as accurate upper bounds on the time complexity of the problem. Also, our approach
allows us to synthesize at no cost a finite automaton that generates all the solution plans
of the problem. We finally consider a notion of epistemic protocol and its associated

10 Introduction

synthesis problem, which generalizes epistemic planning in several directions. First, plans
are no longer finite but infinite series of events. Second, we look for a protocol, i.e. a
tree of events (or a set of plans), instead of a single plan. Third, the objective is no
longer reachability-like, but can be any temporal epistemic formula (with strict and full
knowledge operators). Once again, our results on uniform strategies enable us to solve
this general problem and synthesize epistemic protocols.

The contributions are discussed at the end of each chapter, along with related work
and future research. We summarize these conclusions at the end of the document.

Notes

An early version of our notion of uniform strategies and a study of its expressivity have
been published in Maubert and Pinchinat (2012). Also, part of the results presented in
Chapters 3 and 5 have been published in Maubert and Pinchinat (2014) and Maubert et al.
(2013). The latter work was done in collaboration with Laura Bozzelli, and the hardness
proof described in Appendix A is due to her. Note that in these works our language to
specify uniformity properties was based on LTL, instead of CTL

∗ as is the case here. We
decided to switch from LTL to CTL

∗ because, while it clearly increases expressivity, as
exemplified by the ability to capture e.g. module checking (Kupferman and Vardi, 1997),
allowing for the full branching time logic leaves our results unchanged.

In Chapter 3, we illustrate the use of the full quantifier with the example of games with
opacity condition. These are games with a particular epistemic winning condition that was
the object of an earlier study, which led to two publications: we introduced these games
in Maubert and Pinchinat (2009) and studied their complexity in Maubert et al. (2011).

Also, the results of Chapter 4 have been published in Maubert and Pinchinat (2013).
Most of the results of Chapters 3, 4, 5 and 6 have been accepted for publication in a
special edition of Information and Computation following the 1st International Workshop
on Strategic Reasoning, that was held in Rome in March 2013.

Finally, we present in Chapter 7 some applications of our methods in the framework
of Dynamic Epistemic Logic. More work on this topic has been carried out during this
thesis, in collaboration with Guillaume Aucher and François Schwarzentruber.

We describe informally the idea of these works. Roughly speaking, DEL enables to
express properties of:

1. an initial epistemic situation,

2. an informative event occurring in this situation, and

3. the resulting situation after the event has occurred.

The DEL sequent problem is the following. Given three formulas (one for each point),
is it true that if an initial situation verifies the first formula and an event verifies the
second, then the resulting situation will verify the third formula? We proved that this
problem is decidable by providing a tableau method for the validity of DEL sequents. We
also established that the problem is NExptime-complete. These results were published
in Aucher et al. (2011). The tableau method was then generalized to the case of a series
of n events, and also extended to the case where accessibility relations in the models are
serial, and to the case where they are reflexive. These results were published in Aucher
et al. (2012).

Chapter 2

Preliminaries

In this chapter we remind various classic notions and we fix some notations that we
will use throughout this thesis. In the first section we pose some elementary definitions of
complexity theory, and in the second one we fix some definitions for finite words, infinite
words and infinite trees, which are ubiquitous in this thesis. The third section contains
the definitions of game arenas, strategies and strategy trees. We also recall some classic
results concerning infinite duration parity games. In the next section we briefly recall
propositional and first order logics. The fifth section defines automata, both for words
and trees, as we extensively use automata as tools to solve the problems addressed in this
work. We also remind some central theorems concerning automata on infinite trees. The
last section is about multi-tape word automata, also called finite state transducers, and
their connections with various classes of relations that are at the heart of our results.

We start with some very basic notations concerning sets and relations. ∅ denotes the
empty set; for two sets A and B, |A| is the cardinal of A, 2A is the powerset of A, i.e. the
set of all subsets of A, A⊎B is the disjoint union of A and B, and A×B is the Cartesian
product of A and B, i.e. the set of pairs (a, b) with a ∈ A and b ∈ B; this generalizes to the
product of n sets. A n-ary relation R between n sets A1, . . . , An is a subset of A1×. . .×An.
For a binary relation R ⊆ A× B, two elements a ∈ A and b ∈ B are said to be R-related
if (a, b) ∈ R, which we may write aR b. When it is clear which relation is concerned,
we may just say that a and b are related. For a relation R ⊆ A × B and an element
a ∈ A, R(a) denotes the set of elements in B related to a, i.e. R(a) = {b ∈ B | aR b}.
Similarly, for an element b in B, R−1(b) = {a ∈ A | aR b}. More generally, for a n+1-ary
relation R ⊆ A1 × . . .×An+1 with n ≥ 1, and a tuple (a1, . . . , an) ∈ A1 × . . .×An, we let
R(a1, . . . , an) = {a ∈ An+1 | (a1, . . . , an, a) ∈ R}. Finally, for two relations R1 ⊆ A × B
and R2 ⊆ B×C, the composition R1 ◦R2 ⊆ A×C of the relations is defined by R1 ◦R2 =
{(a, c) | a ∈ A, c ∈ C, ∃b ∈ B such that (a, b) ∈ R1 and (b, c) ∈ R2}.

2.1 Main complexity classes

Computational complexity theory is about measuring, classifying and comparing the
difficulty of computational problems. Roughly speaking, a problem is “hard” if the best
algorithm to solve it requires a lot of resources for its execution. The two resources used by
an algorithm that are most often considered are the time of computation and the memory

11

12 Preliminaries

space required. Of course, for a given algorithm, these quantities may depend on the size
of the input. In this work, we will usually define the size of a graph as its number of edges,
the size of a logical formula as the number of symbols, and the size of an input as the sum
of the sizes of its elements.

We now define some of the main space and time complexity classes. For convenience,
we introduce iterated exponential functions as follows:

Definition 1. For all k, n ∈ N, exp0(n) = n and expk+1(n) = 2expk(n).

We will classically note Pspace for the class of problems solvable in polynomial space,
and for each k ∈ N we let k-Exptime be the class of problems that can be solved in time
expk(nc) for some constant c ∈ N (n is the size of the input).

We also define the class Elementary of elementary problems, i.e. problems that can
be solved by an algorithm of worst-case time complexity a tower of exponentials of bounded
height:

Elementary =
⋃

k∈N

k-Exptime.

If a problem is decidable but not elementary it is nonelementary.
Note that in this work we will often define decision problems as the set of their positive

instances, i.e. the set of instances for which the answer to the problem is yes.

2.2 Words and trees

In all this work, when we talk about an alphabet Σ we mean a finite set of symbols.

Finite and infinite words

For an alphabet Σ, Σ∗ is the set of all finite words over Σ, ǫ denotes the empty word,
Σ+ = Σ∗ \ {ǫ} is the set of nonempty finite words and Σω is the set of infinite words.
For a finite word w we note |w| its length. For a nonempty finite word w = a1 . . . an,
last(w) = an is its last symbol. For two finite words w = a1 . . . an and w′ = b1 . . . bm,
w · w′ = a1 . . . anb1 . . . bm is the concatenation of w and w′. A finite word w is a prefix of
a word w′, written w 4 w′, if there exists a word w′′ such that w · w′′ = w′. Finally, for a
word w = a1 . . . an, we note w = an . . . a1 its mirror word.

Infinite trees

A tree alphabet Υ is a finite set of directions. A tree is a subset of Υ+ that is closed
for nonempty prefixes, and such that all words in the tree start with the same direction,
called the root. Note that in many works, the root of a tree is the empty word ǫ. However,
when considering trees that represent strategies in a game, it is convenient for us to see
their root as the initial position of the game. This justifies our slightly unusual definition.
We also define forests which, intuitively, can be seen as unions of trees. Finally, because
the games we define in the next section have only infinite plays, we consider leafless trees
and forests, hence the last point of the following definition.

Two-player games 13

Definition 2. Given a tree alphabet Υ, a Υ-tree τ , or tree for short when Υ is clear from
the context, is a set of words τ ⊆ Υ+ such that:

1. there is a one symbol word r = τ ∩Υ, called the root, such that r 4 x for all x ∈ τ ,

2. if x · d ∈ τ and x 6= ǫ, then x ∈ τ , and

3. if x ∈ τ then there exists d ∈ Υ such that x · d ∈ τ .

A Υ-forest, or forest when Υ is understood, is defined likewise, removing Point 1.

The following notions of nodes, children, parents and branches, that we define for trees,
are similar for forests. The elements of a tree τ are called nodes. If x 6= ǫ and x · d ∈ τ ,
we say that x · d is a child of x, and that x is the parent of x · d. We will write x · ↑ for the
parent of a node x: (x · d) · ↑ = x. Note that the root has no parent. The arity of a node
x, written arity(x), is the number of children of x. If all nodes have arity at most k, then
τ is a k-ary tree. Note that Υ-trees are |Υ|-ary trees.

A branch is an infinite sequence λ = x0x1 . . . of nodes such that for all i, xi+1 is a
child of xi. For a branch λ = x0x1 . . . and an integer i ≥ 0, λ[i] = xi is the i-th node on
the branch, and λi denotes the i-th suffix xixi+1xi+2 . . . Given a node x of a tree τ , we
let Branches(x) be the set of branches λ = x0x1 . . . that start in node x, i.e. such that
x0 = x. Branches(τ) is the set of all branches in τ .

We classically allow nodes of trees and forests to carry additional information. Given a
labelling alphabet Σ and a tree alphabet Υ, a Σ-labelled Υ-tree, or (Σ,Υ)-tree for short, is
a pair t = (τ, ℓ), where τ is a Υ-tree and ℓ : τ → Σ is a labelling. For a node x = d1d2 . . . dn
in τ , we define its node word w(x) made of the sequence of labels from the root to this
node: w(x) = ℓ(d1)ℓ(d1d2) . . . ℓ(d1 . . . dn). The notion of (Σ,Υ)-forest U = (u, ℓ) is defined
likewise. Note that we use forests to represent the universe in the semantics of L; (see
Section 3.1.1), hence the notations U and u.

We finish this section by defining, given a forest and a node in the forest, the tree to
which this node belongs, i.e. the set of nodes in the forest that have the same root.

Definition 3. Let u be a Υ-forest, and let x = d1 . . . dn be a node of u. We define the tree
ux as the “greatest” tree in the forest u that contains the node x: ux = {y ∈ u | d1 4 y}.
Similarly, given a (Σ,Υ)-forest U = (u, ℓ) and a node x ∈ u, Ux = (ux, ℓx), where ux is as
above and ℓx is the restriction of ℓ to the tree ux.

Note that ux verifies Point 1 of Definition 2, hence it is indeed a tree.

2.3 Two-player games

We present the notions of arenas, plays and strategies for the classic framework of
two-player turn-based games played on graphs.

Arenas

A game arena, or arena for short, is a tuple G = (V,E, Vι, vι), with a set of positions
V = V1 ⊎V2 partitioned between positions belonging to Player 1 (V1) and those belonging
to Player 2 (V2). E ⊆ V ×V is a relation between positions, describing the possible moves
between positions, Vι ⊆ V is a set of starting positions and vι ∈ Vι is the initial position.

14 Preliminaries

Vι has no role in the dynamics of the game, it rather is a lever to tune the range of our full
quantifier, as explained in Section 3.1.2. We may omit it from the description of an arena
when it is not relevant. We will assume that in every position v ∈ V there is at least one
possible move, i.e. E (v) 6= ∅. We say that Player i owns a position v if v ∈ Vi (i ∈ {1, 2}).
Also, when there is no ambiguity we may write v → v′ instead of v E v′.

We will often consider game arenas with additional information attached to positions,
hence the following definition. Given an alphabet Σ, a Σ-labelled game arena, is a tuple
G = (V,E, Vι, vι, µ), where (V,E, Vι, vι) is a game arena and µ : V → Σ is a labelling
function. µ is extended naturally to sequences of positions: µ(v1 . . . vn) = µ(v1) . . . µ(vn).

Concretely, in this work, the alphabet will be the set of possible valuations over some
finite set of atomic propositions AP , i.e. Σ = 2AP . The propositions in AP represent the
relevant information for the uniformity properties one wants to state. If the game models
interacting systems, this information can be the values of some (Boolean) variables, or the
state of some communication channels. In games with imperfect information, it can be
the current observation or what action has just been played.

At last, we define the size of a labelled game arena as its number of moves: |G| = |E |.

Plays and paths

In a (labelled or unlabelled) arena, the player owning the initial position vι chooses a
next position v such that vι → v, then it is to the player owning v to choose an accessible
next position, and this process continues for ever, forming an infinite sequence of positions
called a play. Formally, we define the set of (infinite) plays Playsω ⊆ V ω as the set of
infinite words π = v0v1 . . . such that v0 = vι and, for each i ≥ 0, vi → vi+1. We also define
the notion of partial play : a finite sequence of positions ρ = v0v1 . . . vn is a partial play if
it is the prefix of a play, and we note Plays∗ the set of all partial plays.

Finally, since we will be led to consider sequences of positions that do not start in the
initial position of the arena, we define for each position v the sets Pathsω(v) and Paths∗(v).
They are respectively the set of infinite paths and finite paths starting in v, and are defined
like we defined Playsω and Plays∗, except that the first position has to be v instead of
vι. In particular, Plays∗ = Paths∗(vι) and Playsω = Pathsω(vι). We also define, for
V ′ ⊆ V , Paths∗(V ′) = ∪v∈V ′Paths∗(v) and Pathsω(V ′) = ∪v∈V ′Pathsω(v) as the sets of
all finite and infinite paths starting in V ′. Paths∗ = Paths∗(V) and Pathsω = Pathsω(V)
are thus the sets of all possible (respectively, finite and infinite) paths in the arena. For
an infinite path π = v0v1 . . . and an integer i ≥ 0, we use the two following notations:
π[i] := vi is the i-th position of the path, and π[0, i] = v0 . . . vi is the i-th prefix of π; we
use similar notations for finite paths.

Strategies

We define two notions of strategies, deterministic and nondeterministic, and a few
other notions related to strategies.

Deterministic strategies: A deterministic strategy for Player i is a partial function
σ : Plays∗ → V that maps a partial play ending in a position of Player i to some accessible
position: for every partial play ρ such that last(ρ) ∈ Vi, last(ρ)Eσ(ρ). A play follows or

Two-player games 15

is induced by a deterministic strategy for Player i if in this play, every time it is Player i’s
turn to play, she chooses the next position as prescribed by the strategy. Formally, given
a strategy σ for Player i, a play π ∈ Playsω follows, or is induced by σ, if for all j ≥ 0
such that π[j] ∈ Vi, π[j + 1] = σ(π[0, j]). A deterministic strategy is memoryless if its
definition only depends on the last position of partial plays.

Nondeterministic strategies: Instead of assigning a unique possible move in each
situation, a nondeterministic strategy, or generalized strategy proposes several possibilities.
We define such a strategy for Player i as a partial function σ : Plays∗ → 2V \ {∅}, that
maps each partial play ending in a position of Player i to a nonempty set of next positions
allowed by the arena: for every partial play ρ such that last(ρ) ∈ Vi, σ(ρ) ⊆ E(last(ρ)). A
play π ∈ Playsω is induced by a nondeterministic strategy σ for Player i if, for all j ≥ 0
such that π[j] ∈ Vi, π[j + 1] ∈ σ(π[0, j]).

Remark 1. Most of the time in this thesis we consider deterministic strategies. As a result
we consider understood that, when not otherwise specified, “strategy” means “deterministic
strategy”. Also all our decision procedures have exactly the same complexity for deter-
ministic and nondeterministic strategies, and with the same techniques exactly, therefore
we will only mention it for our first decision procedure (see Remark 8, page 59).

Outcomes: The outcome of a (deterministic or generalized) strategy σ, noted Out(σ) ⊆
Playsω, is the set of all (infinite) plays that are induced by σ.

Remark 2. In this work, our main concern will be to synthesize strategies whose outcomes
verify some properties. For this reason, and because the way a strategy is defined on
partial plays that are not induced by this strategy does not affect the outcome, we do not
require strategies to be defined on these plays. The kind of strategies we consider thus
corresponds to what is often referred to as plans in classic game theory.

Finite memory strategies: In general, for a player to follow a strategy she may have
to remember arbitrarily long sequences of positions as a play goes on. We will sometimes
be interested in strategies that can be implemented with finite memory capabilities.

Definition 4. A memory structure is a tuple M = (Σ,M, δ,mι) where Σ is a finite set of
events, M is a set of memory states, mι is the initial memory state, and δ : M × Σ→M
is a total function called memory update function, which is extended to finite sequences of
events the usual way, i.e. δ(m, ǫ) = m and δ(m, e1 . . . en+1) = δ(δ(m, e1 . . . en), en+1).

Definition 5. Let G = (V,E, Vι, vι) be a game arena, and let σ be a deterministic strategy
for Player 1. σ is a finite memory strategy if there is:

• a finite memory structure M = (V,M, δ,mι) over the set of positions, and

• a mapping σM :M × V → V ,

such that for every partial play ρ = ρ′ · v in the domain of σ, letting m = δ(mι, ρ
′), it

holds that σ(ρ) = σM(m, v).

Note that if M can be chosen with only one memory state, then σ is a memoryless
strategy.

16 Preliminaries

The definition of a finite memory generalized strategy is the same, except that the
mapping σM has 2V \ {∅} as codomain instead of V .

Strategies as trees: It will often be convenient to see a finite path in a game as a node
in a tree, a strategy as a tree and, more generally, the set of finite paths as a forest. To
make this correspondence clear, take a finite Σ-labelled game arena G = (Σ, V,E, Vι, vι, µ)
and a position v ∈ V . Observe that the set Paths∗(v) is a V -tree rooted in v. Also, letting
ℓ : x · v′ 7→ µ(v′) denote its natural labelling inherited from the arena, (Paths∗(v), ℓ) is a
Σ-labelled V -tree. Because the labelling of the tree is implicitly given by the labelling of
the arena, we will often omit it and see directly Paths∗(v) as a labelled tree. Similarly,
for V ′ ⊆ V , Paths∗(V ′) can be seen as a (Σ, V)-forest that contains one tree per starting
position in V ′, and each finite path ρ in Paths∗(V

′) is a node in the forest; also, observe
that its node word is its sequence of labels: w(ρ) = µ(ρ). In the same fashion, a strategy
for Player i can be seen as a subtree of Plays∗ (seen as a (Σ, V)-tree) obtained by pruning
some moves of Player i. Formally, a deterministic strategy tree t = (τ, ℓ) for Player i is a
Σ-labelled V -tree with root vι such that for every x ∈ τ , letting v = last(x), it holds that:

1. if v ∈ Vi, then x has a unique child x · v′ with v′ ∈ E(v), and ℓ(x · v′) = µ(v′)

2. if v ∈ V3−i, then x has one child x · v′ for each v′ ∈ E(v), and ℓ(x · v′) = µ(v′).

Every deterministic strategy σ defines a unique deterministic strategy tree that we
shall write tσ.

In the case of nondeterministic strategies, the definition of nondeterministic strategy
trees is the same as for deterministic strategy trees, except that in Point 1, x can have
more than one child, representing the possible next positions allowed by the strategy.

Remark 3. Strategy trees correspond exactly to strategies that are defined only on plays
induced by the strategy, the relevance of which is justified in Remark 2, page 15.

Parity games and memoryless determinacy

A parity game G = (G, C) is a game arena G = (V,E, Vι, vι) together with a colouring
function C : V → N with finite codomain, that assigns a colour or priority to each
position. A play π is winning for Player 1 if the least priority seen infinitely often in π is
even. Otherwise it is winning for Player 2.

Given a parity game G = (G, C), a strategy σ for Player i is a winning strategy if
Player i wins all the plays induced by σ.

A game is said to be determined if one of the two players has a winning strategy. We
state a fundamental result of parity games played on (possibly infinite) graphs.

Theorem 1 (Zielonka (1998)). Every parity game is determined, and the player that has
a winning strategy has a memoryless one.

Solving a two-player game means to decide whether Player 1 has a winning strategy.
In case the game graph is finite, the following complexity bound is well known.

Theorem 2 (Emerson and Lei (1986); McNaughton (1993); Zielonka (1998)). Solving a
parity game with n positions, m edges and l colours can be done in time O(m · nl).

Logics 17

2.4 Logics

Throughout this work, AP will denote a finite nonempty set of atomic propositions.
Though we will always use only a finite number of such propositions in each instance of
the problems we consider, this number cannot be bounded. For this reason we do not fix it
once and for all, but we will always assume that it is big enough to contain all the atomic
propositions needed.

2.4.1 Propositional logic

We start with basic propositional logic, or boolean logic.

Syntax

To distinguish propositional logics’ formulas from other logics’ formulas, we denote
them by α, β . . . For a set of atomic propositions AP , the syntax of propositional logic is
defined by the following grammar:

α ::= p | ¬α | α ∨ α,

where p is in AP . The set of well-formed boolean formulas over AP is denoted by B(AP).
As usual, we define the following abbreviations: α ∧ β := ¬(¬α ∨ ¬β), α→ β := ¬α ∨ β,
α↔ β := α→ β ∧ β → α, true := p ∨ ¬p and false := p ∧ ¬p for some p ∈ AP .

Semantics

A boolean formula is evaluated in a valuation for the atomic propositions. A valuation
ν ⊆ AP is a subset of the atomic propositions, with the meaning that the propositions in
ν are true, and the others are false.

The satisfaction of a boolean formula α by a valuation ν, noted ν |= α, is defined by
induction over formulas: ν |= p if p ∈ ν, ν |= ¬α if it is not true that ν |= α and ν |= α∨β
if ν |= α or ν |= β.

2.4.2 First-order logic

We recall the syntax and semantics of first-order logic. Concerning semantics we not
only give the classic Tarski’s semantics, but also the game semantics, as in Section 3.3 we
will consider some variants of these games, in the context of logics of imperfect information.

Syntax

First-order logic is basically propositional logic with, instead of atomic propositions,
relations or predicates over variables that range over some domain, and with the possibility
of quantifying over those variables. Note that the full syntax of first-order logic allows for
constant and function symbols, but since for each formula that uses them there is an
equivalent formula that does not, and because they are not relevant for our study, we
choose to present the simple version that uses only variables and predicates. Let Var be
some set of variable symbols.

18 Preliminaries

The syntax is as follows:

ϕ ::= R(x1, . . . , xn) | ¬ϕ | ϕ ∨ ϕ | ∃xϕ,

where R is a n-ary relation symbol, and x, x1, . . . , xn are variable symbols in Var.
For a first-order formula ϕ, we define Sub(ϕ) as the set of subformulas of ϕ. We say

that a variable x is free in a formula ϕ if there is at least one occurence of x in ϕ that is
not bounded by a quantifier. We let Free(ϕ) be the set of free variables in ϕ. Also, we let
Var(ϕ) be the set of variables that appear in ϕ.

Tarski’s semantics

To give a truth value to a first-order formula, we first need a set of possible values for
the variables, and an interpretation for each relation symbol that appears in the formula.
Formally an interpretation or model for a formula is a pair M = (D, I), where D is
a nonempty set of values called the domain, and I is a function that maps each n-ary
relation symbol R of the formula to an actual n-ary relation I(R) ⊆ Dn.

Then, if there are free variables in the formula, we also need to give them a value.
Given a formula ϕ and a model M = (D, I), a variable assignment for ϕ is a partial
function s : Var(ϕ)→ D, that must be defined at least on Free(ϕ). Given an assignment
s for ϕ, a variable x ∈ Var(ϕ) and a value a ∈ D, s[a/x] : Var(ϕ)→ D is the assignment
that maps x to a, and is equal to s on Var(ϕ) \ {x}.

Now, given a formula ϕ, a model M = (D, I) and an assignment s for ϕ, we can
inductively define the truth value of ϕ in the model M with assignment s:

M, s |= R(x1, . . . , xn) if (s(x1), . . . , s(xn)) ∈ I(R)

M, s |= ¬ϕ if it is not the case that M, s |= ϕ

M, s |= ϕ ∨ ψ ifM, s |= ϕ orM, s |= ψ

M, s |= ∃xϕ if there is a ∈ D such thatM, s[a/x] |= ϕ

Game semantics

An equivalent way of defining the truth of a formula is by means of a game played
between two players, the Verifier and the Spoiler. Given a formula Φ, a modelM = (D, I)
and an assignment sι for Φ, we define the game arena GΦM,s = (V,E, vι), where the set
of positions is V = Sub(Φ) × (Var(Φ) → D) × {Ve, Sp} and the initial position is vι =
(Φ, sι,Ve). In a position (ϕ, s,X), if X = Ve (resp. X = Sp), then Verifier (resp. Spoiler)
is currently in charge of proving the subformula ϕ to be true in the modelM with variable
assignment s. When ϕ is a disjunction, X chooses one of the disjuncts; if it is an existential
quantification on variable x, she chooses a value in D for x, and if it is a negation then
the player in charge changes. A play ends when an atomic formula is reached. Formally,
the moves are as follows. In a position (ϕ, s,X), if

ϕ = R(x1, . . . , xn), X wins if (s(x1), . . . , s(xn)) ∈ I(R)

ϕ = ¬ψ, the next position is (ψ, s,X ′), where X ′ is the opponent of X

ϕ = ψ1 ∨ ψ2, X chooses a subformula ψi and moves to (ψi, s,X) (i ∈ {1, 2})

ϕ = ∃xψ, X chooses a value a ∈ D and moves to (ψ, s[a/x], X).

Automata 19

Proposition 1. For a first-order formula ϕ, a model M and an assignment s, M, s |= ϕ
if and only if Verifier has a winning strategy in GϕM,s.

Note that positions associated with atomic formulas have no successor, and all plays
are finite, which does not match the definition of games given in Section 2.3. However it
is straightforward to transform these semantic games into games of infinite duration with
a very simple parity condition.

For all the logics that we consider, the size of a formula ϕ, noted |ϕ|, is defined as its
number of symbols.

2.5 Automata

For an alphabet Σ, we call a subset of Σ∗ a word language, and a subset of Σω is an
ω-word language. Similarly, for a tree alphabet Υ and a labelling alphabet Σ, a set of
(Σ,Υ)-trees is an ω-tree language. We recall the fundamental notion of word automata,
both for finite and infinite words, and we also define nondeterministic, alternating and
two-way automata on infinite trees.

2.5.1 Automata on finite words

A nondeterministic word automaton is a tuple A = (Σ, Q,∆, qι, F), where Σ is an
alphabet, Q is a finite set of states, ∆ ⊆ Q × Σ × Q is a transition relation and F is a
set of accepting states. If ∆(q, a) is nonempty for every q ∈ Q and a ∈ Σ we say that A
is complete. A run of A over a word w = a1 . . . an ∈ Σ∗ is a sequence of states q0 . . . qn
such that q0 = qι and for each i ∈ {0, . . . , n − 1}, (qi, ai+1, qi+1) ∈ ∆. A run q0 . . . qn is
accepting if qn ∈ F , and we say that a word w is accepted by A if there is an accepting run
of A over w. The language accepted by a word automaton A consists in the set of words
accepted by A, and it is written L(A). It is well known that the set of languages accepted
by nondeterministic word automata is precisely the set of regular word languages. We
shall also use the notion of trace: a word w is a trace of the automaton A if there is a
run, not necessarily accepting, of A over w. We will note T (A) the set of traces of a word
automaton A.

When the transition relation of a word automaton A verifies |∆(q, a)| ≤ 1 for each state
q and letter a, we say that A is deterministic. In this case we may represent the transitions
of the automaton by means of a partial function δ : Q×Σ→ Q instead of a relation ∆: for
each state q and letter a, if ∆(q, a) = {q′} then we let δ(q, a) = q′, and if ∆(q, a) = ∅ then
δ(q, a) is left undefined. We will also use the classic extension of δ to words by letting,
for each state q, δ(q, ǫ) = q and, for each word w and letter a, δ(q, w · a) = δ(δ(q, w), a)
when this is defined. Since every nondeterministic word automaton can be turned into an
equivalent deterministic one (when we talk of equivalent automata we refer to language
equality), we have the classic result that deterministic automata also accept the set of
regular word languages. For an introduction to word automata and regular languages, see
Hopcroft et al. (2003).

20 Preliminaries

2.5.2 Automata on infinite words

The notion of word automaton is extended to the case of infinite words by introducing
more involved acceptance conditions suited for infinite runs. Several such acceptance
conditions exist: Büchi, co-Büchi, Rabin, Streett, Muller and parity. For nondeterministic
word automata they all define the same set of ω-word languages, namely ω-regular word
languages. In this work we shall only use the parity condition.

A parity word automaton is a tuple A = (Σ, Q,∆, qι, C), where Σ, Q, ∆ and qι are
as for nondeterministic finite word automata, and C : Q → N is a colouring function
assigning an integer called colour or priority to each state of the automaton. Runs of
parity word automata are defined as for finite word automata, except that they are here
infinite sequences of states. A run is said to be accepting if the least priority seen infinitely
often during this run is even. The notions of acceptance of a word and accepted languages
are similar to the case of finite word automata.

Again, a parity word automaton is deterministic if, given a current state and a let-
ter, the transition relation allows at most one successor state. For all acceptance condi-
tions except Büchi and co-Büchi, deterministic infinite word automata accept the same
ω-languages as nondeterministic ones. Thomas (1990) is a good introduction to the theory
of automata on infinite words.

2.5.3 Automata on infinite trees

Let Υ be a tree alphabet and let Σ be a labelling alphabet. We recall the notions
of nondeterministic, alternating, and two-way alternating tree automata on infinite Σ-
labelled Υ-trees. For an introduction to the theory of automata on infinite trees see
Thomas (1990) for nondeterministic tree automata, Löding (2014) for alternating tree
automata, and Vardi (1998) for two-way alternating tree automata.

First, note that automata on infinite trees use the same acceptance conditions as
automata on infinite words (Büchi, co-Büchi, Rabin, Streett, Muller and parity). However,
these conditions do not all define the same set of ω-tree languages, as they do for ω-word
languages. Indeed, while Rabin, Street, Muller and parity tree automata all recognize
the same ω-tree languages, which are the ω-regular tree languages, Büchi and co-Büchi
tree automata recognize strictly less languages, and in particular they are not closed for
complementation.

In this work we only consider parity acceptance condition, as Büchi condition is not
enough for our purposes, and parity is more convenient to handle than Street, Rabin or
Muller conditions.

Definition of tree automata

For a set X, B+(X) is the set of positive boolean formulas over X, i.e. formulas built
with elements of X as atomic propositions and using only connectives ∨ and ∧. As usual,
we also allow for formulas true and false, and ∧ has precedence over ∨. Elements of
B+(X) are denoted by α, β . . .

Definition 6. Let Dir ⊆ Υ ∪ {ǫ, ↑} be a set of transition directions. A Dir-parity tree
automaton, or Dir -automaton for short, is a tuple A = (Σ, Q, δ, qι, C) where Σ is a finite

Automata 21

alphabet, Q is a finite set of states, qι ∈ Q is an initial state, C : Q → N is a colouring
function, and δ : Q× Σ→ B+(Dir ×Q) is a transition function.

We define the size of a Dir -automaton A = (Σ, Q, δ, qι, C) as the sum of the sizes
of formulas in its transition function, plus the number of colours used in the acceptance
condition:

|A| =
∑

q∈Q

∑

a∈Σ

|δ(q, a)|+ |C(Q)|.

Let DirA = Υ and Dir↑ = DirA ∪ {ǫ, ↑} denote the set of transition directions used
respectively by alternating and two-way alternating tree automata.

Definition 7. DirA-automata are alternating tree automata and Dir↑-automata are two-
way alternating tree automata, or two-way tree automata for short.

Before formally defining the acceptance of a tree by an automaton, we informally
describe the behaviour of a Dir -automaton in a state q reading a node of a tree labelled
with a. Recall that the transition function gives a formula δ(q, a) ∈ B+(Dir × Q). The
automaton has to choose a (possibly empty) set of pairs {[d1, q1], . . . , [dn, qn]}, where for
each i, di ∈ Dir and qi ∈ Q, such that this set seen as a valuation over Dir × Q verifies
δ(q, a). Then, for each 1 ≤ i ≤ n, the automaton sends a copy of itself in direction di
in the input tree, where it continues in state qi. So while the automaton is executed on
a tree, it may actually spawn many parallel executions, and all these executions must be
accepting, according to the parity acceptance condition, for the input tree to be accepted.
For example, if Υ = {1, 2}, consider that the transition of a two-way tree automaton in
state q, when reading a, is δ(q, a) = [1, q1] ∧ [↑, q2] ∨ [1, q3] ∧ [1, q2]. It means that the
two-way automaton has two options. The first one is to send to the first child of the
current node a copy of itself in state q1, and send to the parent of the current node a copy
of the automaton in state q2. The second option is to send two copies of itself to the first
child, one in state q3 and one in state q2.

Two-way tree automata can send copies of themselves in all directions, including the
parent of the current node and the current node itself, thus staying in place. Alternating
tree automata can only send copies to the children of the current node, but there is
no further restriction on how these copies are sent. In particular, an alternating tree
automaton can send several copies of itself in different states to the same child of the
current node, thus launching several different executions on the same subtree.

Nondeterministic tree automata are obtained by forbidding this kind of behaviour. The
transitions of such automata are classically given by a relation ∆ ⊆ Q×Σ×Q|Υ|, and we
shall sometimes adopt this vision. 1 For a nondeterministic automaton, we call a transition
an element of its transition relation.

In the formalism of Definition 6 however, an alternating tree automaton is nondeter-
ministic if each formula in δ is a disjunction of conjunctions of atoms, such that each
disjunct has exactly one atomic conjunct for each direction in Υ. A disjunct thus rep-
resents a possible transition, and each transition assigns exactly one state to each child
of the current node. For example, if Υ = {1, 2}, δ(q, a) = [1, q1] ∧ [2, q2] ∨ [1, q2] ∧ [2, q1]

1. In this case we assume that the finite tree alphabet Υ is ordered.

22 Preliminaries

can be part of the transition function of a nondeterministic tree automata, while δ(q, a) =
[1, q1] ∧ [2, q2] ∨ [1, q2] ∧ [1, q1] cannot, as the second disjunct sends two copies of the
automaton to the same child.

Enforcing several different executions to take place and succeed when reading an input
can be seen as universal choices, dual to existential choices of nondeterminism. The
alternation between existential and universal choices in alternating tree automata makes
it very natural to define the acceptance of a tree by means of two-player games, as we do
below.

Note that in most works, tree automata take as input labellings of the complete input
tree Υ∗. In Vardi (1995), the transition function depends on the arity of the current
node, and it forbids to use in the transition formulas directions in which there is no child.
Instead, we allow the automaton to try and send a copy in some state q in a direction
where there is no node. It should just be specified for each state q whether this behaviour
is accepted or rejected (take two copies of each state if necessary). Our automata can
then be simulated by standard automata on the complete tree Υ∗. A Σ-labelled Υ-tree
is represented by a Σ ∪ {⊥}-labelling of the complete tree Υ∗, where ⊥ represents absent
nodes. The transition relation is just slightly modified such that when in a state q, if the
current node of the complete tree is labelled by ⊥, then the automaton sends copies in
state q⊥ in all directions. q⊥ is accepting or rejecting depending on what was specified for
q. If q⊥ is rejecting it rejects immediately, and if it is accepting, it accepts provided all
the subtree is also labelled by ⊥.

The previous discussion is due to the possibility for tree automata to send copies of
themselves in specific directions. However, most of the time in this work, the ability to
identify the precise child of the current node in which an automaton must send a copy
is unnecessary, and specifying instead that the automaton must send a copy in at least
one child or in all children is enough. Therefore, because it simplifies the presentation,
and unless otherwise mentioned, we replace the set of transition directions DirA for al-
ternating tree automata with the set of abstract directions {3,�}. [3, q] means that the
automaton nondeterministically chooses a child of the current node to which it sends a
copy in state q, while [�, q] sends a copy in state q to all the children of the current node.
To illustrate the discussion of the previous paragraph, see that [3, q] could be replaced
by

∨
d∈Υ[d, q], where q rejects when sent to an unexisting node, and dually [�, q] has the

same meaning as
∧
d∈Υ[d, q], where q accepts when sent to an absent node. Such abstract

directions in alternating automata have been used to define alternating automata working
on graphs (Bojanczyk, 2002; Piterman and Vardi, 2004). When studying logics that do not
distinguish the different successors of a node, like CTL

∗, such abstract directions are also
sometimes considered; in Kupferman et al. (2000) for example, alternating tree automata
using these abstract directions are called symmetric.

Acceptance game

As announced, and following a classic approach (Muller and Schupp, 1987; Löding,
2014), acceptance of a tree by a Dir -automaton is defined on a two-player parity game
between Eve (the proponent) and Adam (the opponent). Let t = (τ, ℓ) be a (Σ,Υ)-tree,
let xι ∈ τ , and let A = (Σ, Q, δ, qι, C) be a Dir -automaton for some set of transition
directions Dir . We define the parity game GxιA,t = (V,E, vι, C

′): the set of positions is

Automata 23

V = τ ×Q× B+(Dir ×Q), the initial position is (xι, qι, δ(qι, xι)), and a position (x, q, α)
belongs to Eve if α is of the form α1 ∨ α2 or [3, q′]; otherwise it belongs to Adam. Moves
in GxιA,t are defined by the following rules; for clarity we shall abuse notations, and for a
node x of t and a state q of A we write δ(q, x) for δ(q, ℓ(x)).

(x, q, α1 † α2)→ (x, q, αi) where † ∈ {∨,∧} and i ∈ {1, 2},
(x, q, [#, q′])→ (y, q′, δ(q′, y)) where # ∈ {3,�} and y is a child of x,
(x, q, [ǫ, q′])→ (x, q′, δ(q′, x)) and
(x, q, [↑, q′])→ (y, q′, δ(q′, y)) where y is x’s parent.

These moves read as follows. Because Eve owns positions of the form (x, q, α1 ∨ α2)
and Adam owns those of the form (x, q, α1∧α2), the first rule means that Eve chooses the
disjuncts and Adam chooses the conjuncts in the transition formula. Note that neither
the current node in the tree nor the state of the automaton changes while an atom is not
reached. Again, because Eve owns positions of the form (x, q, [3, q′]) and Adam those of
the form (x, q, [�, q′]), the second rule means that when # = 3 (resp. # = �), Eve (resp.
Adam) chooses a child to which the automaton sends a copy in state q′ (recall that in our
definition of trees, a node always has at least one child). Concerning the two last rules,
positions of the form (x, q, [ǫ, q′]) and (x, q, [↑, q′]) all belong to Adam, but this is arbitrary.
In the first case, the only possible move is to stay in place and switch to state q′, while in
the second case the only possible move is to send the state q′ to the parent node.

Positions of the form (x, q, true) and (x, q, false) are sink positions 2, winning for Eve
and Adam respectively. Positions of the form (r, q, [↑, q′]) where r is the root of the input
tree are also sink positions as the root of a tree has no parent; they are winning for Adam.
The colouring is inherited from the one of the automaton: C ′(x, q, α) = C(q), except for
sink positions, which are assigned an even (resp. odd) priority if they are winning for Eve
(resp. Adam).

A tree t rooted in r is accepted by A if Eve has a winning strategy in GrA,t, and we
denote by L(A) the set of trees accepted by A.

In case concrete directions DirA = Υ are allowed (instead of abstract directions 3 and
�), then the evaluation game GxιA,t is modified as follows. Positions of the form (x, q, [d, q]),
where d ∈ Υ, have only one possible next position and arbitrarily belong to Adam. The
corresponding moves are:

(x, q, [d, q′])→ (x · d, q′, δ(q′, x · d)) if x · d ∈ t.

If x ·d /∈ t, then (x, q, [d, q′]) is a sink position. It is either accepting or rejecting depending
on q′ (recall the discussion of Page 22).

Simulation theorems

The most important result about alternating tree automata is that they can be simu-
lated by nondeterministic tree automata. This comes at the price of an exponential blowup
in the number of states, however the number of parities only grows linearly.

2. It is more common to let them be deadlocks, but we equivalently make them sink positions to fit
our definition of game arenas.

24 Preliminaries

Theorem 3 (Muller and Schupp (1995)). Let A be an alternating parity tree automaton
with n states and l colours. There is a nondeterministic parity tree automaton that accepts
the same language, and has no more than 2O(n·l·log(n·l)) states and O(n · l) colours.

A similar result holds for two-way alternating tree automata.

Theorem 4 (Vardi (1998)). Let A be a two-way alternating parity tree automaton with
n states and l colours. There is a nondeterministic parity tree automaton that accepts the
same language, and has no more than 2O(n·l·log(n·l)) states and O(n · l) colours.

As a result, nondeterministic, alternating and two-way parity tree automata all define
the same set of tree languages, which are the ω-regular tree languages.

Nonemptiness of tree automata

The nonemptiness problem consists in deciding whether the language of a given au-
tomaton is empty or not. A classic approach to solve this problem for nondeterministic
parity tree automata is by means of parity games. The idea is that in each state of the
automaton, the first player guesses the labelling of the current node and the transition to
take in the automaton, and the second player chooses a direction in which to proceed.

Definition 8. Given a nondeterministic parity tree automaton A = (Σ, Q,∆, qι, C) over
Σ-labelled Υ-trees, define its nonemptiness parity game GA = (V,E, vι, C

′), where:

• V = Q ∪∆, V1 = Q, V2 = ∆,

• if (q, a, q1, . . . , q|Υ|) ∈ ∆, then q → (q, a, q1, . . . , q|Υ|) and for each i ∈ {1, . . . , |Υ|},
(q, a, q1, . . . , q|Υ|)→ qi,

• vι = qι, C ′(q) = C(q) and C ′((q, a, q1, . . . , q|Υ|)) = C(q).

Fact 1. L(A) 6= ∅ if, and only if, Player 1 has a winning strategy in GA.

Combining Fact 1 with Theorem 2 gives the following complexity bound.

Theorem 5 (Löding (2014)). Let A be a nondeterministic tree automaton over (Σ,Υ)-
trees with n states, m transitions, and l colours. Let d = |Υ| be the maximal arity of trees.
The nonemptiness problem for A can be solved in time O(d ·m · (n+m)l).

We simplify this expression by remarking that for nondeterministic tree automata with
n states working over (Σ,Υ)-trees, the size m of the transition relation ∆ ⊆ Q×Σ×Q|Υ|

is bounded by |Σ| · n|Υ|+1.

Proposition 2. Let A be a nondeterministic tree automaton over (Σ,Υ)-trees with n
states and l colours. Let d = |Υ| be the maximal arity of trees. The emptiness problem for
A can be solved in time (|Σ| · nO(d))O(l).

Proof. By Theorem 5, the emptiness problem can be solved in time O(d ·m · (n +m)l),
wherem is the number of transitions. As observed above, we have m ≤ |Σ|·nd+1. Denoting
the time complexity by θ, there is some constant k such that:

θ ≤ k · d · |Σ| · nd+1 · (n+ |Σ| · nd+1)l

≤ k · d · |Σ| · nd+1 · (2 · |Σ| · nd+1)l

≤ (2 · k · d · |Σ| · nd+1)l+1

θ ≤ (|Σ| · nO(d))O(l)

Rational relations 25

Note that the last inequality only holds if n is strictly greater than 1, but testing the
emptiness of an automaton with one state is trivially done in constant time.

Regular trees

We finish this section with a result crucial for program synthesis, which is that every
nonempty ω-regular tree language contains a finitely generated tree.

Definition 9. A (Σ,Υ)-tree t = (τ, ℓ) is regular if there is a deterministic finite state word
automaton T = (Υ, Q, δ, qι, F) and a state labelling ℓT : Q→ Σ such that L(T) = τ , and
for every node x ∈ τ , ℓ(x) = ℓT (δ(qι, x)).

Theorem 6 (Hossley and Rackoff (1972)). Every nonempty ω-regular tree language con-
tains a regular tree.

Moreover, classic algorithms for testing the nonemptiness of nondeterministic tree au-
tomata are constructive, and in case the language of the tested automaton is not empty,
they provide the description of a finite automaton generating some regular tree in the lan-
guage (see Pnueli and Rosner (1989) for the case of Rabbin tree automata). Concerning
parity tree automata, recall that the language of a nondeterministic parity tree automaton
A is nonempty if, and only if, Player 1 has a winning strategy in the nonemptiness par-
ity game GA (Fact 1). Because parity games are memoryless determined (Theorem 1), if
Player 1 has a winning strategy then she has a memoryless one. Most algorithms that solve
parity games on finite graphs compute such a strategy when it exists. We describe how,
from a memoryless winning strategy for Player 1, one can build a finite word automaton
and a state labelling that generate a regular tree in L(A).

Definition 10. Let A be a nondeterministic parity tree automaton working over (Σ,Υ)-
trees, and let A⊥ = (Σ ∪ {⊥}, Q,∆, qι, C) be the equivalent automaton working on the
complete tree Υ∗. Recall that the special symbol ⊥ denotes missing nodes. Let GA⊥ =
(V,E, vι, C) be the nonemptiness game for A⊥, and assume that Player 1 has a memoryless
winning strategy σ. To simplify presentation assume that Υ = {1, . . . , k}. We build the
word automaton T = (Υ, QT , δT , qTι , F

T) and the state labelling ℓT , where:

• QT = Q = V1,

• qTι = qι,

• for q ∈ QT and d ∈ Υ, if σ(q) = (q, a, q1, . . . , qk) then δT (q, d) = qd and ℓT (q) = a,

• F T = {q | ℓT (q) 6=⊥}.

Define τ = L(T), and for x ∈ τ let ℓ(x) = ℓT (δ
T (qTι , x)).

Fact 2. t = (τ, ℓ) is a regular tree, and t ∈ L(A).

2.6 Rational relations

Relations over finite words are infinite objects in general, and manipulating them re-
quires finite representations. Rational languages is a classic example of a class of (poten-
tially) infinite languages of words that can be finitely represented, and the corresponding

26 Preliminaries

notion concerning relations is the one of rational relations. The class of rational relations
is very rich as we shall see, and like regular languages they are recognized by finite state
machines called transducers, which allows to address algorithmic issues involving these
relations. We define finite state transducers and recall basic results concerning rational
relations as well as some subclasses of interest. Much more information concerning these
matters can be found in Berstel (1979).

As in this work we only consider binary rational relations, we will not define transducers
for relations of arbitrary arity but just for binary ones. One way to see such a transducer
is to picture a nondeterministic automaton with two tapes. Given two input finite words,
one on each tape, the automaton reads them according to a set of possible transitions,
and when it has reached the end of both words, it accepts the pair if it is in an accepting
state. Notice that the transducer in general does not have to progress at the same pace
on both tapes.

Another way to see a transducer which will be useful is to consider that the first tape
is an input tape and the second is an output tape. The transducer reads an input finite
word on its input tape and writes out a finite word on its output tape. This machine being
in general nondeterministic, it may have several outputs for a given input word.

Definition 11. A Finite State Transducer (FST) is a tuple T = (Σ,Γ, Q,∆, qι, F), where
Σ is an input alphabet and Γ an output alphabet, Q is a finite set of states, qι ∈ Q is the
initial state, F ⊆ Q is a set of accepting states, and ∆ ⊆ Q× (Σ ∪ {ǫ})× (Γ ∪ {ǫ})×Q is
a finite set of transitions. The transducer is called synchronous if ∆ ⊆ Q× Σ× Γ×Q.

Intuitively, (q, a, b, q′) ∈ ∆ means that the transducer can move from state q to state
q′ by reading a and writing b (both possibly ǫ, except for synchronous transducers).

We also define the extended transition relation ∆∗ ⊆ Q × Σ∗ × Γ∗ × Q, which is the
smallest relation such that:

• for all q ∈ Q, (q, ǫ, ǫ, q) ∈ ∆∗, and

• if (q, w,w′, q′) ∈ ∆∗ and (q′, a, b, q′′) ∈ ∆, then (q, w · a, w′ · b, q′′) ∈ ∆∗.

For q, q′ ∈ Q, w ∈ Σ∗ and w′ ∈ Γ∗, the notation q−[w/w′]→ q′ means that (q, w,w′, q′) ∈
∆∗. The relation recognized by T is:

[T] := {(w,w′) | w ∈ Σ∗, w′ ∈ Γ∗, ∃q ∈ F, qι −[w/w′]→ q}.

In other words, a pair (w,w′) is in the relation recognized by T if there is an accepting
execution of T that reads w and writes w′.

We classically define the composition of two transducers:

Definition 12. Let T1 = (Σ,Γ, Q1,∆1, q1ι , F
1) and T2 = (Γ,Ω, Q2,∆2, q2ι , F

2) be two
FST. The composition of T1 and T2 is the FST T1◦T2 = (Σ,Ω, Q1×Q2,∆, (q1ι , q

2
ι), F

1×F 2),
where, for q1, q′1 ∈ Q

1, q2, q
′
2 ∈ Q

2, a ∈ Σ ∪ {ǫ} and c ∈ Ω ∪ {ǫ}, ((q1, q2), a, c, (q′1, q
′
2)) ∈ ∆

if

• there is b ∈ Γ such that (q1, a, b, q
′
1) ∈ ∆1 and (q2, b, c, q

′
2) ∈ ∆2, or

• (q1, a, ǫ, q
′
1) ∈ ∆1, c = ǫ and q′2 = q2, or

• (q2, ǫ, c, q
′
2) ∈ ∆2, a = ǫ and q′1 = q1.

Rational relations 27

The following is folklore:

Fact 3. For a transducer T1 over alphabets Σ and Γ and a transducer T2 over alphabets
Γ and Ω, [T1 ◦ T2] = [T1] ◦ [T2], and |T1 × T2| = O(|T2| × |T2|).

Definition 13 (Rational and regular relations). Let Σ and Γ be two alphabets. A binary
relation ; ⊆ Σ∗ × Γ∗ is rational if there is a finite state transducer T such that [T] = ;.
A binary relation is regular if it can be recognized by a synchronous transducer. 3

Rat and Reg are respectively the set of rational relations and the set of regular relations.
We will often consider transducers that have the same alphabet Σ for input and output,
and in this case we shall just talk about transducers over Σ and omit the output alphabet
in the description of the transducer. The size of a transducer T = (Σ,Γ, Q,∆, qι, F) is its
number of transitions: |T | = |∆|.

We define the following notion of identity transducer, which we may use from time to
time.

Definition 14. Given a word automaton A, we define the synchronous transducer TA
that accepts the identity relation over L(A). Formally, if A = (Σ, Q,∆, qι, F), we let
TA = (Σ,Σ, Q,∆′, qι, F), where ∆′ = {(q, a, a, q′) | (q, a, q′) ∈ ∆}.

We turn to another subclass of rational relations, known as recognizable relations.

Definition 15 (Recognizable relations). Let Σ and Γ be two alphabets. A binary relation
; ⊆ Σ∗×Γ∗ is recognizable if there are two finite families of regular languages L1, . . . ,Ln ⊆

Σ∗ and L′1, . . . ,L
′
n ⊆ Γ∗ such that ; =

n⋃
i=1
Li × L

′
i.

We note Rec the set of recognizable relations. The following inclusions are well-known
(Frougny and Sakarovitch, 1993): Rec (Reg (Rat.

While in general transducers that recognize rational or regular binary relations have
to parse the two input words in parallel, a recognizable relation can be recognized by a
finite word automaton that starts by reading entirely the first word (or its mirror), and
then the second one, before deciding whether these two words are related or not.

The following fact is folklore:

Fact 4. A relation ; ⊆ Σ∗×Γ∗ is recognizable if, and only if, the language {u#v | u ; v}
is regular, where # /∈ Σ ∪ Γ is a fresh symbol.

Given a recognizable relation ;, we write B; = (Σ ∪ {#}, Q;, δ;, sι, F;) for the
minimal deterministic word automaton of the language {u#v | u ; v} (Fact 4).

This terminates the preliminaries of this thesis, and we now turn to the definition and
study of uniform strategies.

3. These definitions are normally theorems, the real definitions are in terms of rational/regular subsets
of the monoid Σ∗ × Γ∗. We choose to take these definitions instead as we are not interested in algebraic
considerations.

28 Preliminaries

Chapter 3

Uniform strategies

In this chapter we present our notion of uniform strategies. We first introduce the
logical language L;, which is an extension of CTL

∗ with two new quantifiers. Roughly
speaking, the strict quantifier ; universally quantifies over all related plays in the strategy,
while the full quantifier ; universally quantifies over all related plays in the arena. We
then define the notion of uniform strategies, where uniformity properties are L; formulas.
We illustrate this concept by rephrasing various concepts of the literature in terms of
uniform strategies. First, we show that the classic imperfect-information strategies can be
easily described in our setting. We then describe semantic games for logics of imperfect
information, as well as their generalization called second-order reachability games. They
are different from imperfect-information games, but they still strongly rely on a certain
kind of constraints on strategies that involve sets of related plays. We show how we capture
this sort of strategies as well. In both these examples we only use the strict quantifier, as
these properties on strategies only concern plays in the outcome of strategies. Finally we
show with an example that winning strategies for games with epistemic temporal winning
condition are easily characterized as uniform strategies. Moreover, the example that we
choose illustrates the use of the full quantifier to capture the knowledge of a player who
does not know the strategy. It is also a simple example where considering the knowledge
of a player who does not know the strategy comes naturally.

3.1 Uniform strategies

In this section we first define the logic L;, which can be seen as a generalization of
logics of knowledge and branching time, with arbitrary relations between nodes of trees
and two different semantics for the “knowledge-like” quantifiers. We then define our notion
of uniform strategies, where the uniformity constraints are expressed in this logic.

3.1.1 The logic L
;

As justified in Section 1.2, we choose to represent uniformity properties of strategies
by formulas from a logical language, that we call L;. In order to talk about the dy-
namics of strategy trees (the vertical dimension), L; contains the classic operators of the
full branching time logic CTL

∗, and as for CTL
∗ a state formula is interpreted in a node

29

30 Uniform strategies

of a labelled tree. In order to manage the horizontal dimension, the logic also contains
quantifiers ; and ; , that universally quantify over “related” nodes of labelled trees (rep-
resenting paths in a game arena). The semantics of L; is therefore parameterized by a
binary relation ; between nodes of trees.

The difference between the two quantifiers ; and ; lies in the domain over which they
range. Sometimes one wants to quantify only over those related paths that are inside the
strategy under consideration. This is the role of ;, called the strict quantifier. On the
other hand it is sometimes natural to consider related paths that are not generated by the
strategy, and that do not even start in the initial position of the game. This is achieved by
; , called the full quantifier; its semantics is parameterized by a forest of labelled trees
called the universe, and it quantifies over all ;-related nodes in this universe. We now
present the syntax and semantics of L;. We recall that AP is some finite set of atomic
propositions.

Syntax

The set of well-formed L; formulas is given by the following grammar:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Aψ | ;ϕ | ;ϕ

Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where p ∈ AP . Classically, we define true as p ∨ ¬p, false as ¬true, and we define
the Boolean conjunction ∧ for both types of formulas. Also, for each path formula ψ, we
write Eψ for the state formula ¬A¬ψ, Fψ for trueUψ, Gψ for ¬F¬ψ and for each state
formula ϕ, we write ;ϕ for ¬;¬ϕ and ; ϕ for ¬ ;¬ϕ.

Like for first-order logic, for a formula ϕ ∈ L;, we define its size |ϕ| as the number of
symbols it contains, and Sub(ϕ) as the set of subformulas of ϕ.

For example, the intended meaning of the L; state formula AGp → ;p evaluated
at the root of some labelled tree t, is that at every node x of t that is labelled with the
atomic proposition p, it holds that all the nodes of the tree related to x are also labelled
with p. The meaning of AGp→ ;p would be that for every node x of the tree t labelled
with p, it holds that all the nodes in the universe related to x are labelled with p.

Semantics

Let Υ be a finite set of directions, and let Σ = 2AP be the set of possible valuations
(for some finite set AP of atomic propositions). As we said, like for CTL

∗, an L; state
formula (resp. path formula) is interpreted in a node (resp. branch) of a Σ-labelled Υ-tree,
but the semantics is parameterized by, first, a binary relation ; between finite words over
Σ, and second, a forest of Σ-labelled Υ-trees which we see as the universe.

Let ; be a binary relation over Σ∗ and U be a (Σ,Υ)-forest. For two nodes x, y ∈ U
we let x ; y denote that w(x) ; w(y) (that is their node words are related by ;).

Given a (Σ,Υ)-tree t = (τ, ℓ), we define the semantics of L; as follows, where x ∈ τ
is a node and λ is a branch in τ . ;,U , t, x |= ϕ means that the L; state formula ϕ
holds at the node x of the labelled tree t, in the universe U and with relation ;; similarly,
;,U , t, λ |= ψ means that the L; path formula ψ holds on the branch λ of t, in universe
U and with relation ;. Since the relation and the universe will always be clear from the

Uniform strategies 31

context, we will omit them and simply write t, x |= ϕ and t, λ |= ψ. The semantics of L;

is as follows:

t, x |= p if p ∈ ℓ(x)

t, x |= ¬ϕ if t, x 6|= ϕ

t, x |= ϕ1 ∨ ϕ2 if t, x |= ϕ1 or t, x |= ϕ2

t, x |= Aψ if for all λ ∈ Branches(x), t, λ |= ψ

t, x |= ;ϕ if for all y ∈ t such that x ; y, t, y |= ϕ

t, x |= ;ϕ if for all y ∈ U such that x ; y, Uy, y |= ϕ 1

t, λ |= ϕ if t, λ[0] |= ϕ

t, λ |= ¬ψ if t, λ 6|= ψ

t, λ |= ψ1 ∨ ψ2 if t, λ |= ψ1 or t, λ |= ψ2

t, λ |= Xψ if t, λ1 |= ψ

t, λ |= ψ1Uψ2 if there exists i ≥ 0 such that t, λi |= ψ2 and
for all 0 ≤ j < i, t, λj |= ψ1

We shall use the notation t |= ϕ for t, r |= ϕ, where r is the root of t. In particular,
t |= Aψ if every branch of t that starts at the root satisfies ψ. Also, for a 2AP -labelled
game arena G = (V,E, Vι, vι, µ), a position v ∈ V and a state formula ϕ ∈ CTL

∗, v |= ϕ
classically means Paths∗(v) |= ϕ.

Remark 4. For convenience, we will sometimes define the relation ; directly on nodes
instead of their labellings, i.e. on Υ∗ instead of Σ∗. In these cases, we will assume that for
each of the finitely many directions d ∈ Υ there is an atomic proposition pd ∈ AP , and
we will consider trees for which the label of a node x = d1 . . . dn contains pd if, and only
if, dn = d. Under this assumption the relation can be equivalently defined on Σ∗.

3.1.2 Uniform strategies

Let G = (V,E, Vι, vι, µ) be a finite 2AP -labelled game arena for some finite set AP . Let
us note Σ = 2AP , and let ; be a binary relation over Σ∗. Finally, let ϕ be an L; formula.
The universe, i.e. the range of the full quantifier, is determined by the set Vι of possible
starting positions. We let U be the (Σ, V)-forest of all paths in the arena starting from a
position in Vι: U = Paths∗(Vι).

Definition 16 (Uniform strategies). A strategy σ is (;, ϕ)-uniform if the strategy tree
of σ satisfies ϕ, i.e. tσ |= ϕ.

In the rest of the chapter we illustrate our concept by showing how it captures various
notions from the literature. In particular it subsumes the two notions that have previously
been called “uniform strategies” in different communities: imperfect-information strategies
and strategies in the game semantics of Dependence logic.

1. Remember that Uy is the biggest tree in U that contains y (see Definition 3).

32 Uniform strategies

3.2 Games with imperfect information

We first define in our setting a classic formalism of two-player turn-based games with
imperfect information. We show that the standard notion of imperfect-information strat-
egy (or observation-based strategy), and hence the essence of imperfect information, is
a quite simple instance of our uniform strategies. We also remark that we can capture
these strategies with the same L; formula for any assumptions on the observational power
and memory abilities of the player: we just have to choose the adequate binary relation
between plays.

We consider the framework of two-player imperfect-information games studied for ex-
ample in Reif (1984); Chatterjee et al. (2006); Berwanger and Doyen (2008). In these
games, Player 1 only partially observes the positions of the game, such that some posi-
tions are indistinguishable to her, while Player 2 has perfect information (the asymmetry
is due to the fact that we consider all possible outcomes of a strategy, and to the focus
being on the existence of strategies for Player 1; this setting is also sometimes referred to
as one and a half player games with imperfect information). Arenas are directed graphs
with actions on edges. The game is played in rounds : in each round, if the position is
a node v, Player 1 chooses an available action a, and Player 2 chooses a next position v′

reachable from v through an a-edge.
We reformulate this framework in a way that fits our definition of game arenas by

putting Player 1’s actions inside the positions. Intuitively, in a position v, Player 1 choosing
an action a is simulated by a move to position (v, a), after what Player 2 chooses a position
v′ reachable from v through a.

Formally, we define an imperfect-information game arena as a structure Gimp = (G, obs),
where G = (V,E, {vι}, vι, µ) is a labelled perfect-information game arena in which the po-
sitions of the two players are of a different nature: there is a finite set Act of actions
such that V2 = V1 × Act. So positions in V1 are of the form v while positions in V2 are
of the form (v, a). The additional component obs : V1 → Obs is an observation function
mapping positions of Player 1 to a nonempty finite set Obs of observations. For a position
(v, a) ∈ V2, we let (v, a).act = a denote the action it contains. The players must strictly
alternate: E ⊆ V1×V2∪V2×V1. Also, because a move of Player 1 represents her choosing
an action and not changing of position, we add the following requirement that v E (v′, a)
implies v = v′; and because a game starts with Player 1 choosing an action, the initial po-
sition vι is in V1. We add the classic requirement that the same actions must be available
in indistinguishable positions: for all v, v′ ∈ V1, if obs(v) = obs(v′) then for all a ∈ Act,
v E (v, a) if and only if v′ E (v′, a). This reflects the assumption that a player is able to
distinguish positions with different alternatives of actions.

We assume that AP contains a proposition pa for each action a ∈ Act and a proposition
po for each observation o ∈ Obs, and we also assume that it contains a special proposition
p1 that marks positions of Player 1: µ(v) = {p1, pobs(v)} for v ∈ V1 and µ(v, a) = {pa} for
(v, a) ∈ V2.

We now define the observational equivalence relation ≈, which relates partial plays that
are indistinguishable to Player 1. This relation depends on Player 1’s assumed capacities.
Following a classic approach (e.g. Reif (1984); Chatterjee et al. (2006); Berwanger and
Doyen (2008)), we suppose that Player 1 has synchronous perfect recall, meaning that
she remembers the whole sequence of observations she makes during a play, and that she

Games with imperfect information 33

knows how many moves have been made. We also assume that she remembers her own
actions. This leads to the following definition: we first extend the observation function to
partial plays, by letting

obs(v0(v0, a1)v1 . . . (vn−1, an)) = obs(v0)a1obs(v1) . . . an and
obs(v0(v0, a1)v1 . . . (vn−1, an)vn) = obs(v0)a1obs(v1) . . . anobs(vn),

and two plays are observationally equivalent if they have the same observation:

for ρ, ρ′ ∈ Plays∗, ρ ≈ ρ
′ if obs(ρ) = obs(ρ′).

Observe that if ρ ≈ ρ′ and ρ ends in V1, then so does ρ′.

Definition 17. A strategy σ for Player 1 is observation-based if for all partial plays
ρ, ρ′ ∈ Out(σ) that end in V1, if ρ ≈ ρ′ then σ(ρ).act = σ(ρ′).act.

Remark 5. As justified in Remark 2, we are not interested in how strategies are defined
on partial plays not in the outcome. For this reason, in this definition we only consider
plays that follow the strategy.

Observation-based strategies as uniform strategies

First, let us define the L; formula

SameAct := AG(p1 →
∨

a∈Act

;EXpa),

which, if ; is the observation relation of Player 1, holds of a (deterministic) strategy of
Player 1 if whenever it is her turn to play, the action a chosen by the strategy is the same
in all related partial plays.

It remains to define the binary relation ; over 2AP that relates observationally equiv-
alent plays. Notice that for a partial play ρ, the projection of its node word w(ρ) on
2AP\{p1} is exactly obs(ρ). Therefore, two plays are observationally equivalent if, and only
if, their node words are identical. Writing Id for the identity relation over 2AP , we obtain
the following result.

Proposition 3. A strategy σ for Player 1 is observation-based if, and only if, it is
(Id, SameAct)-uniform.

First, observe that formula SameAct does not involve any full quantifier, so that the
set of possible starting positions Vι (only used to define the range of full quantifiers) is
indifferent here. Now to understand why it is the strict quantifier that we need in SameAct,
consider Figure 3.1, which represents the (first levels of) the unraveling of some imperfect-
information arena with two actions, a and b. Circles represent positions of Player 1, squares
positions of Player 2, and each position contains its propositional valuation, except for
those propositions representing observations, rather represented with colours: Player 1
confuses positions v1 and v2, as well as positions v3 and v4. Finally, blue arrows represent
the observational equivalence relation ≈ (self loops are omitted). Let x1 (resp. x2) be the
node ending in v1 (resp. v2), and notice that x1 ≈ x2.

34 Uniform strategies

p1

pa

p1

pa pb

p1

pa pb

pb

p1

pa pb

p1

pa pb

AXpbAXpb

vι

v1 v2 v3 v4

Figure 3.1: An example of strategy in an imperfect-information arena.

The yellow subtree is a strategy tree of Player 1 on which we evaluate SameAct. Since
this strategy is not observation-based – it plays different actions in x1 and x2 – it should
not verify SameAct. Therefore, because x1 is a node of the strategy that verifies p1, for
each action c ∈ {a, b}, ;EXpc should not hold in this node. And indeed the only successor
of x1 in the strategy tree is labelled by pb while the only successor of x2 in the strategy tree
is labelled by pa. If we replaced in SameAct the strict quantifier by the full one, according
to the semantics of ; , nodes v1 and v2 would be seen as nodes of the full tree unfolding
of the arena, and as such both have two successors, one with pa and one with pb, which
makes that the formula holds. In fact, by using the full quantifier we would lose track of
the strategy under evaluation, and the formula would be true of any strategy.

In this example we assume that Player 1 has perfect recall, and that she can observe her
own actions, which determines the definition of ≈. It is easy to see that we may capture the
same notion of observation-based strategy for any other assumptions on the player’s ca-
pacities (like asynchronicity, imperfect recall. . .), by simply replacing the identity relation
Id in Proposition 3 with an appropriate one.

3.3 Games for logics of imperfect information

Logics of imperfect information, as they are called, usually come with game semantics
that require strategies to be coherent in some sense. These constraints capture the se-
mantics of particular features of these logics, and we show that coherent strategies are all
instances of our notion of uniform strategies.

Games for logics of imperfect information 35

3.3.1 Context

Logics of imperfect information start with the introduction of branching quantifiers
by Henkin (1961), and continue with the independence-friendly (IF) logic of Hintikka
and Sandu (1989). Both introduce into first-order logic some notion of dependence or
independence between quantified variables. While it is believed that IF logic does not
have a Tarski-style semantics in the classic sense, Hodges (1997) gives a compositional
semantics that defines the satisfaction of an IF formula, not by an assignment for free
variables, but rather by a set of assignments. However, a more intuitive way of defining
the semantics of both logics is by means of games with imperfect information. These
games are the same as the classic evaluation games for first-order logic, with the only
difference that the notions of dependence/independence are very naturally captured by
adding imperfect information, hence the name of logics of imperfect information.

Recently, Väänänen started a new trend in logics of imperfect information. In his
Dependence Logic (Väänänen, 2007) he proposes, instead of stating dependencies or in-
dependencies at the level of quantifiers, to express dependencies directly with a new kind
of atomic formulas. These dependence atoms are of the form dep(x1, . . . , xn, y), and mean
that variable y only depends on variables x1, . . . , xn or, in other words, that the value
of y is completely determined by the values of variables x1, . . . , xn. The compositional
semantics of Dependence Logic, just like Hodges’ semantics for IF logic, is given in terms
of sets of assignments that Väänänen calls teams. He also gives two game semantics. One
is of perfect information but refers explicitly to teams by putting them in positions of the
arena, making the game quite different from the classic semantic games for first-order logic
or IF logic. The second game semantics, however, is based on the classic arena of these
games (see Section 2.4.2), but in order to capture the semantics of his dependence atoms
he has to add a constraint on the strategies allowed for Verifier, and he calls this constraint
a “uniformity requirement”. This constraint makes the game undetermined, reason why
Väänänen calls it a game with imperfect information, though it is not clear whether it can
be defined in terms of imperfect-information games in the usual acceptation.

Inspired by Dependence Logic, a number of other logics of imperfect information have
been defined and studied (Grädel and Väänänen, 2013; Galliani, 2012; Engström, 2012), all
consisting in first-order logic with additional atomic formulas with team semantics. They
all have semantic games with various uniformity requirements, and in a very recent work
Grädel (2013) introduced second-order reachability games, which generalize the semantic
games for logics with team semantics.

In this section we first describe the example of Dependence logic before turning to the
general second-order reachability games.

3.3.2 Dependence Logic

We first give the syntax and the classic compositional team semantics of Dependence
Logic. Then we describe how adding to the game semantics of first order logics a par-
ticular uniformity constraint on the strategies of Verifier provides a game semantics for
Dependence Logic. Finally we show how this constraint on strategies is an instance of
uniformity property in our sense.

36 Uniform strategies

Syntax and semantics

As already said, Dependence Logic has the same syntax as first-order logic, with addi-
tional atomic formulas of the form dep(x1, . . . , xn, y):

ϕ ::= dep(x1, . . . , xn, y) | R(x1, . . . , xn) | ¬ϕ | ϕ ∨ ϕ | ∃xϕ

Given a model M = (D, I), we will call team a set of assignments. For a team X,
a variable x and a function f : X → D, X[f/x] is the team {s[f(s)/x] | s ∈ X}, and
X[D/x] is the team {s[a/x] | a ∈ D and s ∈ X}.

Dependence Logic is a three valued logic: some formulas may be neither true nor false
in a given model and team. For this reason we define two semantics, one for truth (|=+)
and one for falsity (|=−). The definition is by mutual recursion:

M, X |=+ dep(x1, . . . , xn, y) if for any pair of assignments s, s′ ∈ X such that s(xi) =
s′(xi) for all 1 ≤ i ≤ n, it holds that s(y) = s′(y)

M, X |=− dep(x1, . . . , xn, y) if X = ∅

M, X |=+ R(x1, . . . , xn) if (s(x1), . . . , s(xn)) ∈ I(R) for all s ∈ X

M, X |=− R(x1, . . . , xn) if (s(x1), . . . , s(xn)) /∈ I(R) for all s ∈ X

M, X |=+ ¬ϕ ifM, X |=− ϕ

M, X |=− ¬ϕ ifM, X |=+ ϕ

M, X |=+ ϕ ∨ ψ if there are two teams Y and Z such that Y ∪ Z = X, M, Y |=+ ϕ and
M, Z, |=+ ψ

M, X |=− ϕ ∨ ψ ifM, X |=− ϕ andM, X |=− ψ

M, X |=+ ∃xϕ if there is f : X → D such thatM, X[f/x] |=+ ϕ

M, X |=− ∃xϕ ifM, X[D/x] |=− ϕ

So a dependence atom dep(x1, . . . , xn, y) is true in a team if whenever two assignments
agree on the values of the first variables, they must also agree on the value of the last one.
This can be seen as reflecting the existence of a functional dependence between the value
of y and the values of the other variables. The negation of this definition makes that a
dependence atom can only be false 2 in the empty team. But it can also be neither true
nor false: for example dep(x), which means that x is constant, is not true in any team that
assigns it at least two different values, but it is not false neither. This three-valued aspect
can be alternatively seen as the nondeterminacy of the game semantics we now present.

Semantic game

As we said the semantic game arena is very close to the one for first-order logic described
in Section 2.4.2. One notable difference though is that in the case of Dependence Logic,
different occurrences of a same subformula must be distinguished. Indeed, dep(x)∨dep(x)
is not equivalent to dep(x), and evaluating whether a strategy verifies the formula requires
to know which instance of the atom is hit with which assignments. So we will assume,
though we keep it implicit, that syntactic subformulas can be identified, for example with
an occurrence number. In addition, in order to “instantiate” the initial team in which the

2. Here “false” refers to falsity (|=−), and not the negation of truth (6|=+)

Games for logics of imperfect information 37

vι

dep(x) ∨ dep(x)
{x 7→ 0}

dep(x)
{x 7→ 0}

dep(x)
{x 7→ 0}

dep(x) ∨ dep(x)
{x 7→ 1}

dep(x)
{x 7→ 1}

dep(x)
{x 7→ 1}

dep(x) ∨ dep(x)
{x 7→ 2}

dep(x)
{x 7→ 2}

dep(x)
{x 7→ 2}

Figure 3.2: Evaluation game for the Dependence Logic formula Φ = dep(x) ∨ dep(x) in
the team X = {{x 7→ 0}, {x 7→ 1}, {x 7→ 2}}

formula is evaluated we will add an extra position in which Spoiler starts to play and can
choose any of the assignments in the initial team.

Formally, for a Dependence logic formula Φ, a model M = (D, I) and a team X, we
define the game GΦM,X = (V,E, vι), where V = Sub(Φ)× (Free(Φ)→ D)×{Ve, Sp} ∪ {vι},
vι belongs to Spoiler, and the moves are as follows. For each s ∈ X, vι E (Φ, s,Ve), and in
a position (ϕ, s,Pl) where Pl ∈ {Ve, Sp},

if ϕ = dep(x1, . . . , xn, y), then Pl wins,

if ϕ = R(x1, . . . , xn), Pl wins if (s(x1), . . . , s(xn)) ∈ I(R),

if ϕ = ¬ψ, the next position is (ψ, s,Pl ′), where Pl ′ is the opponent of Pl ,

if ϕ = ψ1 ∨ ψ2, Pl chooses a subformula ψi and moves to (ψi, s,Pl),

if ϕ = ∃xψ, Pl chooses a value a ∈ D and moves to (ψ, s[a/x],Pl).

Figure 3.2 represents the evaluation game for the formula Φ = dep(x) ∨ dep(x) on a
model M with domain D = {0, 1, 2}, in a team X = {{x 7→ 0}, {x 7→ 1}, {x 7→ 2}}.
The two different syntactic subformulas are distinguished with colours, one is in blue and
the other in red. Also, in yellow is depicted a possible strategy for Verifier. In the initial
position Spoiler chooses one of the assignments in X, and then Verifier chooses one of the
two disjuncts and reaches a terminal position (one that contains an atomic formula). A
strategy of Verifier, in this example, represents how she splits the team X into two teams
Y and Z, trying to make the disjunction true. Remember that dep(x) means that x has
a constant value, so Verifier must try to split X into two teams, in both of which x is
constant. Clearly this is not possible: there is necessarily one team that assigns at least
two different values to x, soM, X 6|=+Φ. For example, the yellow strategy forms the teams
Y = {{x 7→ 0}, {x 7→ 1}} for the blue dependence atom, and Z = {{x 7→ 2}} for the red
one, and clearly M, Y 6|=+dep(x).

38 Uniform strategies

But the fact that a team made of several branches of a strategy verifies or not a
dependence atom cannot be captured by classic winning conditions on individual plays.
This is the reason why, to capture this semantics, a specific uniformity requirement is
imposed on strategies for Verifier.

Definition 18. A strategy σ for Verifier is uniform in the sense of Väänänen (2007)
if, for every two plays ρ, ρ′ ∈ Out(σ) that end in the same (syntactically speaking)
atomic dependence subformula, letting last(ρ) = (dep(x1, . . . , xn, y), s,Ve) and last(ρ′) =
(dep(x1, . . . , xn, y), s

′,Ve), if s and s′ agree on x1, . . . , xn, then they also agree on y.

The following expected property holds:

Proposition 4. Given Φ a formula of Dependence Logic, M a model and X a team,
M, X |=+ Φ iff Verifier has a winning uniform strategy in GΦM,X .

Expressing the uniformity requirement in L;

We show how our framework captures this particular notion of uniform strategy, in
the case where the domain is finite. Let Φ be a Dependence Logic formula, M = (D, I)
a model and X a team. We decorate GΦM,X with atomic propositions as follows. We
assume that we have one atomic proposition pa ∈ AP for each value a of the domain,
and we mark a terminal position of the form (dep(x1, . . . , xn, y), s,Ve) with the atomic
proposition ps(y). Then we define the binary relation on partial plays ; as follows: ρ ; ρ′

if ρ and ρ′ end in terminal positions with the same dependence atom dep(x1, . . . , xn, y),
and with assignments that agree on x1,. . . ,xn. On Figure 3.2, dashed arrows represent
;-related plays.

Remark 6. Note that for the sake of clarity we defined ; on partial plays instead of
(2AP)

∗
. However, as described in Remark 4, by labelling each position v with an atomic

proposition pv, one can rephrase relation ; as a binary relation over (2AP)∗.

Finally we define the following L; formula:

AgreeOnLast := AG

∧

a∈D

pa → ;pa,

which says that whenever the strategy hits a dependence atom (only these positions can
be labeled by some pa), all related nodes in the strategy tree must be labeled with the
same proposition, i.e. they must agree on the value a of the last variable. Since related
nodes are those that have the same dependence atom and agree on all the first variables,
it is obvious that the following holds:

Proposition 5. A strategy σ for Verifier is uniform in the sense of Väänänen if, and only
if, it is (;, AgreeOnLast)-uniform.

Once again it is the strict quantifier that must be used here: the team on which a
dependence atom is to be evaluated is made of the assignments in terminal positions that
contain this dependence atom and are in the strategy tree. So the quantification must be
restricted to those related plays that are induced by the strategy, which is precisely the
semantics of the strict quantifier. In the example, using the full quantifier would make us
lose track of the splitting made by the strategy of Verifier at the level of the disjunction.

Games for logics of imperfect information 39

3.3.3 Second-order reachability games

In the last few years, a number of logics of imperfect information have been studied,
which are all extensions of first order logic with additional atomic formulas with second
order features. These logics all have team semantics, and more interestingly they also all
have game semantics with uniformity constraints on strategies. Examples of these addi-
tional atomic formulas are independence atoms (Grädel and Väänänen, 2013), inclusion,
exclusion and equiextension atoms (Galliani, 2012), inspired by concepts from database
dependency theory. In order to establish general properties of these logics’ semantic games,
Grädel introduced recently (Grädel, 2013) a notion of games with second-order reachability
winning condition. These games capture and generalize the various uniformity constraints,
or consistency criteria as they are called in Grädel (2013), found in the semantic games
for the imperfect-information logics above-mentioned. We present these games and show
how in turn our uniform strategies capture these games in the case of finite arenas.

Definition

Second-order reachability games are two-player games played on graphs, that have
several particular features. First, they have a set of possible initial positions instead of
a unique one, but this can be simulated by letting Player 2 choose the initial position.
Therefore, we assume here that they have only one initial position. More interestingly, the
graph is acyclic, thus there is a set of terminal positions that have no successor, and all
plays are finite; also, in order to capture a generalized version of existential quantification
in logics of imperfect information, they consider generalized strategies for Player 1. But
the most important particularity is that the winning condition is a set of sets of terminal
positions, and a strategy is said to be consistent winning if the set of terminal positions
it hits is a winning set.

More formally, a second-order reachability game is a tuple GSO = (V,E, vι,W) where
(V,E, vι) is an acyclic two-player game arena, and letting T be the set of positions without
any successor, called terminal positions, the winning condition W ⊆ 2T is a set of winning
sets for Player 1. For a generalized strategy σ of Player 1, note last(σ) = {last(ρ) | ρ ∈
Out(σ)} (remember that, in these games, all plays are finite).

Definition 19. A generalized strategy σ for Player 1 is a consistent winning generalized
strategy if last(σ) ∈W .

Recasting as uniform strategies

We show that, when considering finite arena, the winning condition of second-order
reachability games can be expressed as a uniform property in our framework. First, we
transform terminal positions into sink positions, and we mark them with a proposition pt.
Assume also that each position v is labelled with a proposition pv that identifies it. For a
set of positions S ⊆ V , we define the formula

∇S :=
∧

v∈S

;pv ∧ ;

∨

v∈S

pv,

which means that the set of related positions in the strategy tree is exactly S (recall that
we assume V to be finite here). Now if we let ; relate all partial plays that end with

40 Uniform strategies

terminal positions, and if we define the formula

ReachWinningSet := AGpt →
∨

S∈W

∇S ,

it is clear that:

Proposition 6. A generalized strategy σ for Verifier is consistent winning if and only if
it is (;, ReachWinningSet)-uniform.

Once again, it is the strict quantifier that must be used here as we want to gather the
set of terminal positions in the strategy.

For the moment we have given several examples of strategy concepts which rely on
some uniformity requirements and can be rephrased in our framework. However, all of
them are of a nature that requires using the strict quantifier; the following section shows
that some relevant problems can be captured only by the full quantifier.

3.4 Games with opacity condition

We have seen with the previous examples that when the desired property only concerns
plays that follow the strategy, the appropriate quantifier to represent it is the strict one.
Games with opacity condition as studied in Maubert et al. (2011) give an example of a
problem that intrinsically requires the full quantifier. They also illustrate that the notion
of uniform strategies enables us to express winning conditions with epistemic features.

Games with opacity condition are based on two-player imperfect-information arenas
with a particular winning condition, called the opacity condition, which involves the knowl-
edge of the player with imperfect information. In such games, some positions are “secret”,
in the sense that they reveal some critical information. The player with imperfect infor-
mation (Attacker) aims at obtaining the certainty that the current position is secret, while
his opponent (Defender) wants to maintain him under uncertainty.

Assume that a proposition pS ∈ AP marks the secret positions. Let Gimp = (G, obs)
be an imperfect-information arena (see Section 3.2), with a distinguished set of positions
S ⊆ V1 that denotes the secret. Let G = (V,E, Vι, vι, µ) be the arena with µ−1({pS}) =
S (positions labelled by pS are exactly positions in S), and let ≈ be the observational
equivalence relation for Attacker, defined as in Section 3.2. Again, we assume that actions
and observations are denoted by atomic propositions.

After a partial play ρ, the knowledge or information set I(ρ) of Attacker is the set of
positions that she considers possible according to her observation of ρ. Formally, for each
play ρ ∈ Plays∗ such that last(ρ) ∈ V1, we let

I(ρ) := {last(ρ′) | ρ′ ∈ Plays∗, ρ ≈ ρ
′}.

Here it is assumed that Attacker knows the initial position. For this reason, we let Vι =
{vι}, and in the definition of information sets, only equivalent plays are considered, instead
of all equivalent paths in the arena. We could consider instead that Attacker has incomplete
information and does not know the exact initial position; to do so we would just define Vι
and information sets differently.

Conclusion and related work 41

An infinite play π is winning for Defender if Attacker never knows the secret, i.e. for
all finite prefix ρ of π, not all the positions considered possible by Attacker after ρ are in
the secret, i.e. I(ρ) * S.

We define the formula

NeverKnowsS := AG¬ ;pS ,

which says that in all plays, Attacker never knows the secret. It can easily be shown that:

Proposition 7. A strategy for Defender is winning iff it is (Id, NeverKnowsS)-uniform.

We give an intuitive explanation of why the full quantifier is the correct one here.
According to the definition of Attacker’s information sets, she considers that all obser-
vationally equivalent plays are possible, even those that are not induced by Defender’s
strategy. In other words, given a tree representing a strategy for Defender, evaluating
whether Attacker knows the secret in some node requires to consider equivalent nodes
outside the strategy tree, which is precisely what the full quantifier achieves. Notice that,
intuitively, this definition of Attacker’s knowledge implies that she “ignores” Defender’s
strategy. This assumption is natural in this precise setting, and corresponds to the fact
that the imperfect information arises from the Attacker not seeing exactly which positions
are chosen by Defender.

We describe a slightly different setting, where Attacker still does not see what is the
precise current position, but where she knows Defender’s strategy. To avoid the informa-
tion sets to be reduced to singletons we also assume here that Attacker does not know the
initial position, but only its observation. Note that in this case we cannot consider De-
fender’s strategies to be only defined on plays starting in the initial position, as this would
reveal the initial position to Attacker. Instead, a strategy for Defender must be defined on
(at least) all plays that start in any of the positions that Attacker confuses with the initial
position. It is then no longer represented by a tree but rather by a forest. We now refine
Attacker’s information sets with the knowledge of Defender’s strategy. Formally, given a
strategy σ for Defender, the refined information set Iσ is defined inductively as follows:

Iσ(vι) = {v | obs(v) = obs(vι)} and

Iσ(ρ · a · v) = {σ(ρ
′ · a) | ρ′ ∈ Iσ(ρ) and obs(v) = obs(σ(ρ′ · a))}.

Informally, at each step, Attacker only considers possible those observationally equivalent
plays that may have been induced by Defender’s strategy from one of the plays she previ-
ously considered possible. In this setting, the appropriate quantifier to model Attacker’s
knowledge is the strict one.

Note that, here again, we could capture any observational power and memory abilities
of Attacker by simply varying the binary relation over plays. Moreover, we consider here a
simple example of epistemic temporal objective, which is the formula AG¬ ;pS , but our
framework allows to capture any objective expressible in CTL

∗ with knowledge.

3.5 Conclusion and related work

In this chapter we defined the logic L; and used it to specify uniformity properties
of strategies. Then, we demonstrated the relevance of our notion by capturing all the

42 Uniform strategies

motivating examples of strategies with “horizontal” constraints that we described in the
introduction of this document. Uniform strategies capture many more problems as, unlike
what is usually done in games with imperfect information and epistemic temporal logics,
we do not restrict to particular equivalence relations corresponding to precise assumptions
on players’ abilities. Instead, we allow for arbitrary binary relations between plays, which
may not even be equivalence relations.

We have also seen with the last example that the full quantifier ; can be used to
model the knowledge of a player (or an agent) who does not know the strategy played by
his opponent, while the strict quantifier ; captures the knowledge of a player who knows
the strategy being played. Up to our knowledge, the question of whether a player knows
or not a strategy, though crucial when interpreting knowledge in strategic situations, has
surprisingly been discussed only once, in a recent publication (Puchala, 2010).

In this work, Puchala considers two-player turn-based games with imperfect informa-
tion, where the players have perfect recall and observe their own actions. He first gen-
eralizes the classic powerset construction for solving such games with ω-regular winning
condition to the setting of asynchronous perfect recall, where repetitions of identical ob-
servations are deleted. He then studies the problem of deciding the existence of a winning
strategy for Player 1 when the winning condition is given in the logic of linear time and
knowledge, with knowledge operators for both Player 1 and Player 2. The semantics of the
knowledge operators he considers assumes that neither player knows Player 1’s strategy.
Because it seems unrealistic to assume that a player ignores his own strategy, Puchala
makes the following remark. In the setting that he considers, where players have perfect
recall and observe their own actions, Player 1 always distinguishes between plays that
follow his strategy and plays that do not. Defining Player 1’s knowledge independently
of his strategy is therefore consistent with the intuition that a player should know her
own strategy: the semantics it yields is the same as if his knowledge was restricted to his
strategy.

Then, to justify the relevance of the semantics for Player 2’s knowledge, Puchala ad-
vocates, like we do, that the case where Player 2 knows Player 1’s strategy and the case
where she ignores it can both be relevant, depending on the situation one wants to model.
Puchala gives the example of a network server interacting with a user, and claims that it
may be impossible for the user to know the server’s protocol.

With this semantics where knowledge does not depend on the chosen strategy, Puchala
proves that one can decide whether Player 1 has a winning strategy, both in the syn-
chronous and asynchronous settings. In Chapters 5 and 6 we generalize this result to the
case where the indistinguishability relations are arbitrary rational relations.

One may argue that the assumption of Player 2 not knowing Player 1’s strategy is
not satisfactory as in general, Player 2 may have at least as much computational power
as Player 1, and therefore she could make the same strategic calculations and guess what
strategy Player 1 will play. However, this supposes that Player 2 knows Player 1’s objective,
which may not always be the case. But more importantly, in general there is no unicity
of a winning strategy, therefore even if Player 2 could compute all winning strategies of
Player 1, she could not be sure of which one Player 1 would play. It is therefore not
possible in general for Player 2 to know Player 1’s strategy, unless Player 1 shares this
knowledge.

Conclusion and related work 43

We have not discussed whether Player 2 knows his own strategy or not. In Puchala’s
framework, the case is symmetric to that of Player 1, and Player 2 also always can tell
the difference between a play that follows his strategy and one that does not, so that the
question can be discarded. However, in general, for example where players have imperfect
recall and may forget some of their own actions, the matter must be considered. In our
framework, we can only either restrict the quantification to Player 1’s strategy (with the
strict quantifier), or quantify over all related plays in the arena (with the full quantifier).
This is a shortcoming that should be addressed in future work, but the right approach to
do so is not clear. However, we believe that studying in detail the properties of our strict
and full quantifiers may be an interesting first approach to formalize and study the matter
of “who knows who does what”.

We now start the study of the main problem that we consider in this thesis, which is the
synthesis of uniform strategies. We start in the next chapter with uniformity properties
expressed in L; but using only the strict quantifier.

44 Uniform strategies

Chapter 4

Strictly-uniform strategies

In this chapter, we consider the restriction of L; to formulas that only use strict
quantifiers and no full quantifiers, and we call this fragment SL;. We investigate the
problem of deciding the existence of a strictly-uniform strategy, i.e. a uniform strategy
for some uniformity property in SL;. The input of a decision problem must be finite.
Because the binary relations over words used in the semantics of L; are infinite objects
in general, we choose to consider the rich class of rational relations, representable by finite
state transducers (see Section 2.6). We first show that when the whole class of rational
relations is allowed for the semantics of our quantifiers, the existence of a strictly-uniform
strategy is undecidable. Then, in an attempt to understand the inherent difficulty of the
problem, we introduce the notion of jumping tree automata that generalize alternating
tree automata by allowing jumps between nodes of different branches in the input tree.
The jumps “implement” the ; quantifiers, and we prove that the satisfiability problem for
SL; reduces to the non-emptiness of jumping tree automata. It is then easy to see that
deciding the existence of a strictly-uniform strategy also reduces to the non-emptiness of
these automata, by taking the product of an automaton that accepts trees representing
strategies in the arena with the jumping automaton that accepts models of the formula. We
establish that for recognizable relations, jumping tree automata can be transformed into
equivalent two-way tree automata, whose non-emptiness problem is decidable in Exptime

(Vardi, 1998). This yields decidability and a tight 2-Exptime upper bound complexity
for the strictly-uniform strategy problem with recognizable relations.

4.1 Undecidability for rational relations

We start with the formal definition of the strictly-uniform strategy problem (SUS for
short). Let SL; denote the language of strict uniformity constraints, i.e. the sub-
language of L; where the full quantifier (;) is not allowed. The decision problem that
we consider is the following. Remark that we use notation Φ instead of ϕ for the input
formula.

45

46 Strictly-uniform strategies

Definition 20.

SUS :=





(G, T,Φ)

G is a finite 2AP -labelled arena,
T is a transducer over 2AP ,

Φ ∈ SL;, and
there exists a ([T],Φ)-uniform strategy for Player 1 in G.





It can be proven, by reduction of the Post Correspondence Problem, that SUS is
undecidable, but we propose here the stronger result, that we prove in the remaining of
the section:

Theorem 7. The strictly-uniform strategy problem is undecidable for the class of regular
equivalence relations.

Because the class of rational relations contains the class of regular equivalence relations,
undecidability of SUS follows.

Corollary 1. SUS is undecidable.

We now prove Theorem 7. We reduce the distributed strategy problem for three-player
imperfect-information games with safety objectives, as addressed by Peterson et al. (2001);
Berwanger and Kaiser (2010). We present the problem as stated in Berwanger and Kaiser
(2010), in which two players with imperfect information (Player A and Player B) play
against nature (the third player). Let ActA (resp. ActB) be a finite set of available actions
for Player A (resp. Player B), and ObsA (resp. ObsB) be a finite set of observations
for Player A (resp. Player B). We assume that ActA and ActB are disjoint and we write
Act = ActA ×ActB.

A finite three-player imperfect-information game with safety objective is a tuple Gimp3 =
(V,E, vι, oA, oB). V is a finite set of positions with a designated subset Bad ⊆ V of “bad”
positions that Player A and Player B should avoid. E ⊆ V ×Act×V is a set of transitions
and oX : V → ObsX is an observation function (X ∈ {A,B}). In each round, Player X
chooses an action cX ∈ ActX , which gives an action profile x = (cA, cB), and nature
chooses a next position in E (v, x) = {v′ | (v, x, v′) ∈ E }. We suppose that all actions are
allowed in every position: for all v ∈ V , a ∈ ActA and b ∈ ActB, we have E (v, (a, b)) 6= ∅.
The observation functions are extended to partial plays ρ = v0x0v1 . . . xn−1vn by letting
oX(ρ) = oX(v0)oX(v1) . . . oX(vn). Note that actions are not observed.

A strategy for Player X is a partial mapping σX : (V · Act)∗ · V → ActX that assigns
an action to each partial play. It must be observation-based: for any partial plays ρ and
ρ′ such that oX(ρ) = oX(ρ

′), σX(ρ) = σX(ρ
′). A distributed strategy is a pair (σA, σB) of

strategies for Player A and Player B. The outcome of a distributed strategy is the set of
infinite plays that follow both σA and σB, and a distributed strategy is winning if no play
in the outcome ever visits a position in Bad.

It is well known (Peterson et al., 2001; Berwanger and Kaiser, 2010) that the follow-
ing problem is undecidable : given a three-player imperfect-information game with safety
objective, does there exist a winning distributed strategy?

We explain how to reduce it to SUS. We fix an imperfect-information arena Gimp3 =
(V,E , vι, oA, oB) with observations ObsA and ObsB and bad states Bad, and we build a
labelled game arena G = (V ′,E ′, V ′

ι , v
′
ι, µ) in which Player 1 plays for both Player A and

Undecidability for rational relations 47

v v′
a, b

v
a

pa

a

b
pb

v′

pbad

Figure 4.1: Encoding in G a transition (v, (a, b), v′) of Gimp3 , with v′ ∈ Bad. Colours
represent the observations of Player A and Player B.

Player B, and Player 2 plays for nature. Figure 4.1 shows how each transition in Gimp3 is
transformed into a widget in G.

The set of positions V ′ = V A
1 ⊎ V

B
1 ⊎ V2 is split into three: in positions of V A

1 = V ,
Player 1 simulates moves of Player A, in positions of V B

1 = V × ActA, Player 1 simulates
moves of Player B, and in positions of V2 = V × ActA × ActB, Player 2 simulates moves
of nature. Hence for all v, v′, a, b, we have (v, (v, a)) ∈ E ′, ((v, a), (v, a, b)) ∈ E ′, and if
(v, (a, b), v′) ∈ E then ((v, a, b), v′) ∈ E ′. For each action c ∈ ActX , pc labels positions
in which the last move was Player 1 simulating the choice of action c by Player X. In
addition, “bad” positions are marked with proposition pbad. Formally, we consider the
set of atomic propositions {pc | c ∈ ActA ∪ ActB} ∪ {pbad}, and we label the arena
as follows: if v ∈ Bad, µ(v) = {pbad}, µ(v, a) = {pa, pbad} and µ(v, a, b) = {pb, pbad};
otherwise, µ(v) = ∅, µ(v, a) = {pa} and µ(v, a, b) = {pb}. We let v′ι = vι, and we let
V ′
ι = {v′ι} though it is indifferent here as we will not use the full quantifier ; . Finally,

the observation functions are defined on this new arena as follows: for a partial play
ρ = v0(v0, a0)(v0, a0, b0)v1 . . ., we note oX(ρ) = oX(v0)oX(v1) . . .

Clearly, since Player 1 plays for the coalition {A,B}, we expect each branch of her
strategy to satisfy the following path formula:

ψSafe := G¬pbad

We want to enforce that when Player 1 simulates a move of Player X, her choice is only
based on Player X’s observation. To do so, we define the symmetric and transitive relation
; over V ′∗ that relates two sequences of positions if they end in positions belonging to
the same player, and are observationally equivalent for this player:

; :=

{
(ρ, ρ′)

last(ρ) ∈ V A
1 and last(ρ′) ∈ V A

1 and oA(ρ) = oA(ρ
′), or

last(ρ) ∈ V B
1 and last(ρ′) ∈ V B

1 and oB(ρ) = oB(ρ
′)

}

The following path formula states that whenever Player 1 simulates a move of Player X,
she chooses the same action in all plays observationally equivalent for Player X:

ψObs := G

∧

c∈ActA∪ActB

Xpc → ;AXpc

We get the following reduction:

48 Strictly-uniform strategies

Lemma 1. There is a winning distributed strategy in Gimp3 if, and only if, there is a
(;,A(ψObs ∧ ψSafe))-uniform strategy for Player 1 in G.

Proof. A partial play ρ in G is called complete if ρ ∈ (V A
1 ·V

B
1 ·V2)

∗ ·V A
1 , i.e. it corresponds

to a sequence of complete rounds in Gimp3 . We define a bijection f between partial plays
in Gimp3 and complete partial plays in G. For a partial play

ρ = v0(a0, b0)v1 . . . vn−1(an−1, bn−1)vn

in Gimp3 , we define

f(ρ) = v0(v0, a0)(v0, a0, b0)v1 . . . vn−1(vn−1, an−1)(vn−1, an−1, bn−1)vn

for the corresponding partial play in G. So for a complete partial play

ρ = v0(v0, a0)(v0, a0, b0)v1 . . . vn−1(vn−1, an−1)(vn−1, an−1, bn−1)vn

in G, we have

f−1(ρ) = v0(a0, b0)v1 . . . vn−1(an−1, bn−1)vn.

We also define a surjective mapping g from the set of all partial plays in G to partial
plays in Gimp3 . If ρ is a complete partial play in G, g(ρ) = f−1(ρ). If it is not complete,
g(ρ) = f−1(ρ′), where ρ′ is the longest prefix of ρ that is a complete partial play.

Take a winning distributed strategy (σA, σB) in Gimp3 . We define the strategy σ for
Player 1 in G:

σ(ρ) =

{
σA(g(ρ)) if last(ρ) ∈ V A

1

σB(g(ρ)) if last(ρ) ∈ V B
1

First remember that in a tree representing a strategy for Player 1, each node where it
is her turn to play has a unique child. Now because σA and σB are observation-based, it
is easy to see that all branches of tσ verify ψObs, and because (σA, σB) is winning in Gimp3 ,
all branches of tσ verify ψsafe, hence σ is (;,A(ψObs ∧ ψSafe))-uniform.

Now take a (;,A(ψObs ∧ψSafe)-uniform strategy σ in G. We define σA and σB. Take
ρ ∈ (V · Act)∗ · V a partial play in Gimp3 , and assume that last(ρ) = v, σ(f(ρ)) = (v, a)
and σ(f(ρ) · (v, a)) = (v, a, b). Then we let σA(ρ) = a and σB(ρ) = b.

Because σ is (;,A(ψObs ∧ ψSafe))-uniform, σA and σB are observation based, and
(σA, σB) is a winning distributed strategy.

We show that ; is regular. Consider the synchronous transducer TA,B of Figure 4.2.
State qι is the initial state (ingoing arrow), qA1 and qB2 are final states (doubly circled).
Transducer TA,B works as follows: before reading a word w, the transducer guesses whether
we are interested in Player A or Player B’s observation. In the first case it goes to the
left, reads w and writes a word w′ observationally equivalent for Player A (remember that
actions are not observed). The pair (w,w′) is accepted if w (and w′) indeed ends in a
position where it is Player A’s turn to play. The second case is symmetric. Note that ;

is not reflexive – words ending in V2 are related to no word – but its reflexive closure ∼ is
also regular (plug in TA,B the synchronous transducer for the identity relation). Lemma 1
would also hold for ∼, which concludes the proof of Theorem 7.

Intermezzo: jumping tree automata 49

qι

qA1

qA2qA3

qB1

qB2qB3

with oA(v) = oA(v
′) with oB(v) = oB(v

′)

v/v′ v/v′

(v, a)/(v′, a′)

(v, a, b)/(v′, a′, b′)

v/v′ (v, a)/(v′, a′)

(v, a, b)/(v′, a′, b′)

v/v′

Figure 4.2: The synchronous transducer TA,B.

Remark 7. The game G that we build is a two-player safety game with imperfect infor-
mation and an unusual indistinguishability relation. Indeed, just like in classic perfect-
information two-player safety games, Player 1 must play the same moves in equivalent
situations. This is the classic requirement for strategies in imperfect-information games.
The only difference with the classic setting is that the indistinguishability relation is not
the extension to finite plays of an equivalence relation on positions. Instead, it alternates
between two classic perfect-recall synchronous relations, the one of Player A and the one of
Player B. This shows that allowing for more general relations than those usually considered
in two-player games with imperfect information may quickly lead to undecidability.

We have established the negative but not surprising result that the strictly-uniform
strategy problem is undecidable for rational relations. Now, in order to grasp the difficulty
of the problem, we define and study an extension of alternating tree automata that captures
the semantics of SL;.

4.2 Intermezzo: jumping tree automata

Let Υ be a tree alphabet, and let Σ be a labelling alphabet. We define and study jump-
ing tree automata (JTA) over Σ-labelled Υ-trees. Jumping tree automata extend classic
alternating tree automata with the possibility to send copies of themselves to arbitrary
nodes in the input tree, as long as they are related to the current node by some binary
relation over Σ∗ that equips the automaton.

More precisely, because in general, given a current node of an input tree, there can be
infinitely many related nodes, we only allow jumping automata to send a copy to some
related node or to all related nodes. To do so, we introduce two new transition directions,
; and ;, and we let Dir; = DirA ∪ { ; , ;} be the set of transition directions for JTA.
Recall that DirA is the set of transition directions used by alternating tree automata.

50 Strictly-uniform strategies

Definition 21. A Dir;-automaton equipped with a binary relation ; ⊆ Σ∗ × Σ∗ is a
jumping tree automaton (JTA). 1

Note that for the moment we do not discuss how the binary relation is represented.
Remember also that for convenience we consider that alternating tree automata work with
the set of abstract directions DirA = {3,�} instead of Υ, that [3, q] sends a copy in state
q to some child, and [�, q] sends a copy in state q to all children. However, all the results
we establish in this chapter also hold in the more general case where concrete directions
are allowed.

As in Section 2.5.3, we define the acceptance of a (Σ,Υ)-tree t = (τ, ℓ) in a designated
node xι ∈ τ by a jumping tree automaton A as a two-player game between Eve (the
proponent) and Adam (the opponent). We repeat the whole definition even though only the
rule for jumps is new. Let t = (τ, ℓ) be a (Σ,Υ)-tree, let xι ∈ τ , and let A = (Σ, Q, δ, qι, C)
be a jumping tree automaton equipped with a relation ;⊆ Σ∗×Σ∗. We define the parity
game GxιA,t = (V,E, vι, C

′): the set of positions is V = τ × Q × B+(Dir × Q), the initial
position is (xι, qι, δ(qι, ℓ(xι))), and a position (x, q, α) belongs to Eve if α is of the form
α1 ∨ α2, [3, q′] or [; , q′]; otherwise it belongs to Adam. Moves in GxιA,t are defined by the
following rules. For clarity we shall abuse notations, and for a node x of t and a state
q of A we write δ(q, x) for δ(q, ℓ(x)). Also, for two nodes x, y ∈ τ , we write x ; y for
w(x) ; w(y), i.e. the node words of x and y are related by ;.

(x, q, α1 † α2)→ (x, q, αi) where † ∈ {∨,∧} and i ∈ {1, 2},
(x, q, [#, q′])→ (y, q′, δ(q′, y)) where # ∈ {3,�} and y is a child of x, and
(x, q, [;, q′])→ (y, q′, δ(q′, y)) where ; ∈ { ; , ;} and x ; y.

The meaning of the last rule (for the others, see Section 2.5.3) is the following. Because
Eve owns positions of the form (x, q, [; , q′]) and Adam owns those of the form (x, q, [;, q′]),
this rule means that when ; = ; (resp. ;), Eve (resp. Adam) chooses a node related
to the current one by ;, and sends in this node a copy of the automaton in state q′. If
there is no node y such that x ; y, then (x, q, [;, q′]) is a sink position, winning for Adam
(resp. Eve) if ; = ; (resp. ; = ;). Once again positions of the form (x, q, true) and
(x, q, false) are sink positions, winning for Eve and Adam respectively, and the colouring
is inherited from the one of the automaton: C ′(x, q, α) = C(q), except for sink positions,
which are assigned an even (resp. odd) priority if they are winning for Eve (resp. Adam).

Most of the time the starting node xι will be the root r of the tree, and in this case we
simply write GA,t instead of GrA,t. A tree t is accepted by A if Eve has a winning strategy
in GA,t, and we denote by L(A) the set of trees accepted by A.

We first prove that, just like alternating automata, the class of JTA is closed by
complementation. To this aim, for a formula α ∈ B+(Dir; ×Q) we define its dualization

α̃ by induction as follows: t̃rue = false, f̃alse = true, α̃ ∨ β = α̃ ∧ β̃, α̃ ∧ β = α̃ ∨ β̃,

[̃3, q] = [�, q], [̃�, q] = [3, q], and, as expected, [̃ ; , q] = [;, q] and [̃;, q] = [; , q].

Definition 22. Let A = (Σ, Q, δ, qι, C) be a jumping tree automaton. We define the

complement of A by Ã = (Σ, Q, δ̃, qι, C̃), where C̃(q) = C(q) + 1, and δ̃(q, a) = δ̃(q, a).

1. See Definition 6 for the definition of Dir -tree automata.

Intermezzo: jumping tree automata 51

Lemma 2. Eve wins Gxι
Ã,t

if, and only if, Eve loses GxιA,t.

Proof. The arenas of both games are isomorphic, and if a position belongs to Eve in GxιA,t
then its counterpart in Gxι

Ã,t
belongs to Adam, and vice versa. Also, a play is winning for

a player in one game if and only if its counterpart in the other game is winning for the
opponent. From this we have that a winning strategy for a player in one game gives a
winning strategy for its opponent in the other, and because parity games are determined,
the result follows.

We now establish that JTA capture SL;.

Proposition 8. Let ϕ be an SL; formula, and let ; be a binary relation over (2AP)∗.
There exists a jumping tree automaton Aϕ over alphabet 2AP , equipped with ;, with two
colours and of size 2O(|ϕ|) such that t ∈ L(Aϕ) if, and only if, t |= ϕ.

Proof. The construction is a simple adaptation of Kupferman et al. (2000), that inductively
builds an alternating tree automaton for a CTL

∗ formula. Notice that because it simplifies
the proof, we dually consider as inductive cases Eψ and ;ϕ instead of Aψ and ;ϕ.

ϕ = p: Aϕ has one state qι, and δ(qι, a) = true if p ∈ a, false otherwise.

ϕ = ¬ϕ′: Aϕ = Ãϕ′ .

ϕ = ϕ1 ∨ ϕ2: Let Aϕi
= (Σ, Qi, δi, qi, Ci) be the automaton for ϕi, with Q1 ∩ Q2 = ∅.

Then Aϕ = (Σ, {qι} ∪ Q1 ∪ Q2, δ, qι, C), where qι /∈ Q1 ∪ Q2, δ(q, a) = δi(q, a) if
q ∈ Qi, δ(qι, a) = δ(q1, a)∨ δ(q2, a), C(q) = Ci(q) if q ∈ Qi (the colour of qι does not
matter as in any execution of Aϕ qι is seen only once).

ϕ = Eψ, with ψ a path formula: Let max(ϕ) = {ϕ1, . . . , ϕn} be the set of maximal
state sub-formulas of ϕ. In a first step we see these maximal state sub-formulas
as atomic propositions and we work on the alphabet Σ′ = 2max(ϕ). Let Aψ =
(Σ′, Q,∆, qι, C) be a nondeterministic parity word automaton (with two colours) that
accepts exactly the models of ψ, where formulas of max(ϕ) are seen as propositions.
This automaton is of size exponential in |ψ| (Vardi and Wolper, 1994). We define
the nondeterministic parity tree automaton A′

ϕ = (Σ′, Q, δ′, qι, C) that guesses a
branch on which it simulates Aψ. Formally, for q ∈ Q and a ∈ Σ′, we let δ′(q, a) =∨
q′∈∆(q,a)[3, q

′]. A′
ϕ accepts exactly the Σ′-labelled trees that verify ϕ.

Now from A′
ϕ we build the automaton Aϕ over Σ. This automaton simulates A′

ϕ

and checks that the assumptions made by A′
ϕ on the truth of formulas in max(ϕ) are

consistent with the input tree. This is achieved by starting additional copies of the
automata associated to formulas in max(ϕ). Formally, let Aϕi

= (Σ, Qi, δi, qi, Ci)

be the automaton for ϕi, let Ãϕi
= (Σ, Q̃i, δ̃i, q̃i, C̃i) be its complement, and assume

w.l.o.g that all the state sets are pairwise disjoint. We define the alternating tree
automaton Aϕ = (Σ, Q∪

⋃
iQi∪Q̃i, δ, C), where the colours of states are unchanged,

and δ is defined as follows. For states in Qi (resp. Q̃i), δ agrees with δi (resp. δ̃i),
and finally for q ∈ Q and a ∈ Σ, we let

δ(q, a) =
∨

a′∈Σ′

(δ′(q, a′) ∧
∧

ϕi∈a′

δi(qi, a) ∧
∧

ϕi /∈a′

δ̃i(q̃i, a)).

52 Strictly-uniform strategies

ϕ = ; ϕ′, with ϕ′ a state formula: Let Aϕ′ = (Σ, Q, δ′, q′ι, C) be the jumping automa-
ton associated to ϕ′. We simply define Aϕ = (Σ, Q ∪ {qι}, δ, qι, C), where qι /∈ Q,
δ(q, a) = δ′(q, a) if q ∈ Q, and δ(qι, a) = [; , q′ι].

A simple proof by induction establishes the size of the automaton and the fact that it
works with only two colours. The following lemma states the correction of the construction,
which finishes the proof.

Lemma 3. Take a formula ϕ ∈ SL;, a labelled tree t = (τ, ℓ) and an initial node xι ∈ τ .
Then Eve wins GxιAϕ,t

iff t, xι |= ϕ.

The proof is by induction on ϕ. First remind that since the evaluation games of
jumping automata are parity games, if a player has a winning strategy then she has a
memoryless one (Zielonka, 1998).

ϕ = p: The only position of GxιAϕ,t
is (xι, qι, true) if p ∈ ℓ(xι), (xι, qι, false) otherwise.

Hence Eve wins if t, xι |= p, Adam wins otherwise.

ϕ = ¬ϕ′: We have Aϕ = Ãϕ′ . By induction hypothesis, Eve wins GxιAϕ′ ,t
iff t, xι |= ϕ′, and

by Lemma 2, Eve wins Gxι
Ãϕ′ ,t

iff she loses GxιAϕ′ ,t
, hence Eve wins GxιAϕ,t

iff t, xι |= ¬ϕ′.

ϕ = ϕ1 ∨ ϕ2: The initial position of GxιAϕ,t
belongs to Eve, and she can move either to the

initial position of GxιAϕ1 ,t
or to the one of GxιAϕ2 ,t

, hence Eve wins GxιAϕ,t
iff she wins

GxιAϕ1 ,t
or GxιAϕ2 ,t

. By induction hypothesis, Eve wins GxιAϕi
,t iff t, xι |= ϕi, hence she

has a winning strategy in GxιAϕ,t
iff t, xι |= ϕ1 ∨ ϕ2.

ϕ = Eψ: Suppose that t, xι |= Eψ. There is a path π ∈ Paths(xι) such that t, π |= ψ.
Again, let max(ϕ) be the set of maximal state sub-formulas of ϕ, and let w′ ∈ Σ′ω

be the word that agrees with π on the state formulas in max(ϕ). By definition,
Aψ has an accepting execution on w′. Now in GxιAϕ,t

, Eve can guess the path π,
the corresponding word w′ and the accepting execution of Aψ. Assume that in a
node x of π, in a state q ∈ Q, Adam challenges Eve on some ϕi ∈ max(ϕ) that she
assumes to be true in x, i.e. Adam chooses a transition δi(qi, a). Note that in the
evaluation game this means that Adam moves to position (x, q, δi(qi, a)). Because
we have assumed that Eve guesses w′ correctly, we have that t, x |= ϕi. By induction
hypothesis, Eve has a winning strategy from the initial position of GxAi,t

, which is
(x, qi, δi(qi, a)). Now because (x, qi, δi(qi, a)) and (x, q, δi(qi, a)) contain the same
node x and transition formula δi(qi, a), a winning strategy in a position is also a
winning strategy in the other, and therefore Eve wins Adam’s challenge. Idem when
Adam challenges her on some ϕi assumed not to be true in a node x: we have that
t, x 6|= ϕi, and by induction hypothesis Eve wins Gx

Ãϕi
,t
.

Now if Eve wins GxιAϕ,t
, then there must be a path π in Paths(xι) and a word w′ ∈ Σ′ω

such that w′ agrees with π on the formulas in max(ϕ), and such that there is an
accepting run of Aψ on w′. Hence t, π |= ψ, and t, xι |= ϕ.

ϕ = ; ϕ′: The initial position of GxιA
;ϕ′ ,t

belongs to Eve, and the possible successors are

the initial positions of the games GyAϕ′ ,t
with x ; y. Eve thus wins GxιA

;ϕ′ ,t
iff there is

a y such that x ; y and she wins GyAϕ′ ,t
. The result follows by induction hypothesis.

The special case of recognizable relations 53

We prove that JTA are adequate machines for the decision problem SUS:

Proposition 9. Let (G, T,Φ) be an instance of SUS. There is a jumping tree automaton
A equipped with [T] such that σ is a ([T],Φ)-uniform strategy if, and only if, tσ ∈ L(A).
Moreover, A can be chosen of size |A| = |G|2 + 2O(|Φ|) and with only two colours.

Proof. Let d be the maximum branching degree in G, and let V be the set of positions.
Assuming that positions of G are uniquely identified by atomic propositions, one can
build from G a nondeterministic tree automaton AG (using concrete transition directions
Dir = {1, . . . , d}) that accepts the set of 2AP -labelled {1, . . . , d}-trees that represent a
strategy for Player 1 in G. AG has |V | states and at most |V | · |G| ≤ |G|2 transitions (see
Kupferman et al. (2001), pp. 9-10). Note that this argument works for both deterministic
and generalized strategies. Then, by Proposition 8, one can build a JTA Aϕ equipped
with [T] that accepts the 2AP -labelled {1, . . . , d}-trees that verify Φ. This automaton is
of size |AΦ| = 2O(|Φ|) and uses two colours. Because of their alternating feature, JTA are
trivially closed by language intersection, and therefore one can build in time linear in the
sizes of AG and AΦ a JTA that accepts precisely the strategy trees that verify Φ.

The following is a direct consequence of Theorem 7 and Proposition 9.

Corollary 2. The emptiness problem for jumping tree automata with regular equivalence
relations is undecidable, hence also for rational relations.

4.3 The special case of recognizable relations

We have seen that SUS is undecidable for regular relations (Theorem 7). We establish
that when restricted to recognizable relations the problem becomes decidable and, more
precisely, 2-Exptime-complete. To achieve this result we prove that JTA equipped with
recognizable relations can be effectively transformed into equivalent two-way tree automata
of linear size; this implies that the emptiness problem for JTA with recognizable relations
is decidable in exponential time. We start with a technical result that allows the transition
function of tree automata to test whether the current node is the root of the input tree
or not. This is of no interest for one-way automata, but we need this feature in order to
simulate JTA with two-way tree automata.

4.3.1 Root-testing two-way tree automata

We slightly extend the definition of two-way tree automata in the following fashion.

Definition 23. A root-testing two-way alternating parity tree automaton is a tuple A =
(Σ, Q, δ, qι, C) where Σ, Q, qι, C are as for standard two-way parity tree automata, and
δ : Q× Σ× {true, false} → B+(Dir↑ ×Q) is a root-testing transition function.

The intended meaning is that when a root-testing two-way tree automaton is in a state
q and reads a label a, the transition formula is given by δ(q, a, true) if the current node
is the root of the input tree, and δ(q, a, false) otherwise.

54 Strictly-uniform strategies

The acceptance game for an input Σ-labelled tree t = (τ, ℓ) is defined as in Section 2.5.3,
with the following modification of the rules. Let r be the root of t, x be a node of t, and
let q be a state of the automaton:

(x, q, α1 † α2)→ (x, q, αi) where † ∈ {∨,∧} and i ∈ {1, 2},
(x, q, [#, q′])→ (y, q′, δ(q′, y, false)) where # ∈ {3,�} and y is a child of x 2,
(x, q, [ǫ, q′])→ (x, q′, δ(q′, x, bool)) where bool=true if x = r, false otherwise,
(x, q, [↑, q′])→ (y, q′, δ(q′, y, bool)) where y is x’s parent, and

bool=true if y = r, false otherwise.

Note that it is still the case that if x is the root, then the position (x, q, [↑, q′]) is a sink
position winning for Adam.

We describe how a root-testing two-way automaton can be simulated by a standard
two-way tree automaton of linear size.

Proposition 10. Let A be a root-testing two-way alternating tree automaton. There is
a standard two-way alternating tree automaton A′ such that L(A) = L(A′) modulo a
relabelling of the roots. A′ can be constructed in linear time.

Proof. Let A = (Σ, Q, δ, qι, C) be a root-testing two-way alternating tree automaton. Con-
sider a relabelling of Σ-labelled trees over alphabet Σ ∪ Σ#, where Σ# is a disjoint copy
of Σ (a typical element is a# with a ∈ Σ) used to label the roots of trees. For a Σ-labelled
tree t, let t# denote the Σ ∪ Σ#-labelled tree that is obtained by replacing the label a of
t’s root with a#. We say that a (Σ∪Σ#)-labelled tree is well-formed if the root, and only
the root, is labelled over Σ#. Checking whether a (Σ ∪ Σ#)-labelled tree is well-formed
can be performed by a simple deterministic tree automaton Awf with three states: the
initial state that expects a label in Σ#, another state that expects a label in Σ, and a
rejecting state reached if the tree is not well formed. It is then easy to define a standard
two-way tree automaton A# over alphabet Σ ∪ Σ# that accepts the same language as A,
modulo the special labelling of roots. We first define a two-way tree automaton A′

that
simulates A by assuming that the input tree is well-formed: A′

= (Σ ∪ Σ#, Q, δ#, qι, C)
where δ#(q, a) = δ(q, a, false) for a ∈ Σ, and δ#(q, a#) = δ(q, a, true) for a# ∈ Σ#. It
should be clear that the behaviour of A′

over well-formed Σ∪Σ#-labelled trees simulates
the behaviour of A over Σ-labelled trees. Taking the conjunction of A′

and Awf yields a
two-way alternating tree automaton A# such that L(A#) = {t# | t ∈ L(A)}, and the size
of A# is linear in the size of A.

By Proposition 10, all the standard operations on two-way tree automata – especially
simulation by nondeterministic automata, Vardi (1998) – can be adapted to root-testing
two-way tree automata at no additional cost. In the following we will therefore feel free
to let the transition function of two-way tree automata test whether the current node is
the root or not.

4.3.2 Simulation of JTA by two-way automata

This section is dedicated to the proof of the following proposition. Remember that if a
relation ; is recognizable, we let B; be the minimal deterministic word automaton that
recognizes it (see Fact 4).

2. y cannot be the root as it is some child of x.

The special case of recognizable relations 55

Proposition 11. If A is a jumping tree automaton equipped with a recognizable relation
; and l colours, then there is a two-way tree automaton Â of size O(|A| · |B;|), with O(l)
colours, such that L(A) = L(Â).

The idea of the proof is as follows: when JTA A goes down along a branch of a tree,
Â behaves likewise. The critical points are the jump instructions of A, say in a node x
of the tree. In such a situation, Â stops behaving like A and enters a jump mode that
simulates this jump: Â triggers automaton B; and goes up to the root while running B;

on the reversed branch. When reaching the root, B; has read w(x), the mirror of the
node word of x, and Â feeds B; with the # symbol. Then Â goes down along some or
all (depending on the jump: respectively existential or universal) branch(es) of the tree
while still running B;. Each time B; reaches a node y, it has read w(x)#w(y), and if
it is currently in a final state then by Fact 4 it means that x ; y; the automaton then
(existentially or universally) chooses to continue or to exit the jump mode, in which case
Â resumes the simulation of A.

Formally, assume A = (Σ, Q, δ, qι, C) and B; = (Σ ∪ {#}, Q;, δ;, sι, F;). Elements
of Q; are denoted s, s′ . . . to avoid confusion with states of the JTA A. We define a
two-way automaton Â = (Σ, Q̂, δ̂, q̂ι, Ĉ) that is equivalent to the jumping automaton A
equipped with ;. The set of states is Q̂ = Q̂A ∪ Q̂↑ ∪ Q̂↓, where:

• Q̂A = Q is used to simulate A outside jumps.

• Q̂↑ = {↑;
, ↑;} ×Q×Q; is used to go up to the root when in jump mode.

• Q̂↓ = {↓;
, ↓;} ×Q×Q; is used to go down the tree until jump mode ends.

States in Q̂↑ ∪ Q̂↓ are used in jump mode. They keep track of three things: first, it is
important to identify the existential or universal feature of the jump, e.g. we distinguish
from ↑

;
and ↑; in Q̂↑. Second, we must remember the A state where the standard

simulation will resume after the jump mode ends. Third, as the jump mode triggers
transitions of B;, we must keep track of its current state.

The initial state is q̂ι = qι, and we now define the parity condition Ĉ. Let M denote
the maximum colour assigned by C in A. We write M0 (resp. M1) for the least even
(resp. odd) integer strictly above M 3. For all q ∈ Q, s ∈ Q;, we let Ĉ(q) = C(q),
Ĉ((↑; , q, s)) =M , and

Ĉ((↓; , q, s)) =

{
M0 if ; = ;

M1 otherwise (i.e. ; = ;)
(4.1)

New colours M0 and M1 for states in Q̂↓ are introduced to punish the player in charge of
the jump if she happens to never terminate it and remain forever in the jump mode.

Before defining the transition relation, we introduce a mapping F : B+(Dir; ×Q)→
B+(Dir↑ × Q̂), by induction over the formulas:

• F(true) = true, F(false) = false

• F(α † β) = F(α) † F(β), for † ∈ {∨,∧}

• F([#, q]) = [#, q], for # ∈ {3,�}

• F([;, q]) = [ǫ, (↑; , q, sι)], for ; ∈ { ; , ;}

3. Formally, M0 = M + 2− (M mod 2) and M1 = M + 1 + (M mod 2).

56 Strictly-uniform strategies

We can now define the transition relation δ̂ : Q̂×Σ→ B+(Dir↑× Q̂), where ; ∈ { ; , ;}:

1. δ̂(q, a) = F(δ(q, a)) if q ∈ Q̂A

2. δ̂((↑; , q, s), a) =

{
[↑, (↑; , q, δ;(s, a))] if not at the root,

[ǫ, (↓; , q, δ;(s, a ·#))] otherwise

3. δ̂((↓; , q, s), a) =

{
[ǫ, q] † [#, (↓; , q, δ;(s, a))] if δ;(s, a) ∈ F;

[#, (↓; , q, δ;(s, a))] otherwise,

where (†,#) = (∨,3) if ; = ; , (∧,�) otherwise (i.e. if ; = ;).

Notice that the size of the two-way tree automaton Â is |Â| = O(|A|× |B;|), and that
it uses l + 2 colours, where l is the number of colours in A.

Point 1 means that for states in Q̂A = Q, the transition function is identical to the one
of A, except that an atom of the form [;, q] becomes [ǫ, (↑; , q, sι)], which initiates a jump
mode in Â. When Â reaches a state (↑; , q, sι) ∈ Q̂↑, it initiates the recognizer B; (the
sι component), and starts going back to the root, remembering if the jump is existential
or universal (the ↑; component), and also remembering in which state the simulation of
A shall be resumed when the jump mode terminates (the q component).

Point 2 concerns the case where the current state is (↑; , q, s) ∈ Q̂↑, meaning that Â
is in the first phase of a jump mode – existential or universal depending on ;. Â is thus
going back to the root of the input tree, feeding B; with the labels it sees on its way.
The current state of B; (before reading the label of the current node) is s ∈ Q;, and
q ∈ Q is the state in which the simulation of A shall be resumed when the jump mode
ends. The transition function tests whether the current node is the root of the tree (see
Section 4.3.1). In either case, the transition is deterministic. If the root has not yet been
reached, B; reads the labelling a of the current node, and Â goes to the parent node in
state (↑; , q, δ;(s, a)). If the current node is the root, the automaton stays at the root
but goes to state (↓; , q, δ;(s, a ·#)). ↓; indicates that the automaton enters the second
phase of the jump mode. Observe that B; reads both the label of the root (that has not
been read yet) and the special symbol # that signals the start of the second word (see
Fact 4). At this point, one can prove that if the jump mode was initiated in some node x
of the input tree, then δ;(s, a ·#) = δ;(sι, w(x) ·#).

Point 3 concerns the second phase of a jump mode. Assume that the current state of
Â is (↓; , q, s), and assume that the current jump mode was initiated in node x of the input
tree. In the second phase, if ↓; is ↓

;
(resp. ↓;), then Eve (resp. Adam) chooses step by

step a downward path in the tree. The player in charge aims at finding a node y such that
x ; y and where resuming the execution of A in state q would be winning for her. Let y
denote the current node, labelled by a. One can prove that δ;(s, a) = δ;(sι, w(x)#w(y)).
Again there are two cases:

If δ;(s, a) is an accepting state, then x ; y by Fact 4. The player in charge (deter-
mined by ;) can choose either to terminate the jump mode by choosing atom [ǫ, q], or
to continue looking for a “better” related node by choosing atom [#, (↓; , q, δ;(s, a))].
In the first case, the next move is deterministic and resumes normal simulation of A
in state q at node y. In the second case, B; reads the label a of y, and the player
in charge chooses a child of y.

If δ;(s, a) is not accepting, then the player in charge cannot choose to terminate the

The special case of recognizable relations 57

jump mode, but she chooses a child of the current node y to which the automaton
goes, and B; reads the label a of y. Observe that if there is no y such that x ; y
then the player in charge of the jump can never terminate it, and Equation (4.1)
ensures that she loses. This faithfully simulates the semantics of jumping automata
in such cases.

We now show the correctness of Â’s definition by comparing the acceptance games of
the two automata on some input tree t = (τ, ℓ). Write G = GA,t and Ĝ = G

Â,t
(keeping

only reachable positions), and let V̂A (resp. V̂↑ and V̂↓) be the set of positions in Ĝ whose
state component belongs to Q̂A (resp. Q̂↑ and Q̂↓). We consider the bijection f : V → V̂A
defined by f(x, q, α) = (x, q,F(α)).

From the above discussion, it is clear that to each move in G of the form (x, q, [;, q′])→
(y, q′, α) can be associated a unique jump mode v̂1 . . . v̂n in Ĝ, where v̂1 = f(x, q, [;, q′])
and v̂n = f(y, q′, α), which first goes back to the root of the tree before the player in
charge of the jump goes down to y and terminates the jump. Similarly, to each finite jump
mode in Ĝ corresponds a jump move in G. Concerning the rest of the game, we state the
following lemma which follows directly from the definition of Â.

Lemma 4. Let (x, q, α) and (y, q′, α′) be positions in V . If α 6= [;, q′], then

• (x, q, α) ∈ V belongs to Eve in G iff f(x, q, α) ∈ V̂A belongs to Eve in Ĝ.

• (x, q, α)→ (y, q′, α′) iff f(x, q, α) →̂ f(y, q′, α′).

Finally, Eva has a winning strategy in G if, and only if, she has one in Ĝ, hence
L(A) = L(Â). This concludes the proof of Proposition 11.

4.3.3 Decidability of SUS for recognizable relations

From Proposition 11, we first get that for each jumping tree automaton equipped with
a recognizable relation there is a nondeterministic tree automaton of exponential size that
recognizes the same language.

Corollary 3. Let A be a jumping tree automaton over alphabet Σ equipped with a recog-
nizable relation ; and using l colours. Let na (resp. nb) be the number of states in A
(resp. B;). Letting m = na · nb · l, one can build a nondeterministic tree automaton A′

with 2m log(m) states and O(m) colours such that L(A) = L(A′).

Proof. By Proposition 11 there is an equivalent two-way tree automaton Â of size O(|A| ·
|B;|) with O(l) colours. More precisely, its number of states is in O(nanb). Therefore, by
Theorem 4, Â can be turned into an equivalent nondeterministic tree automaton A′ with
2nanbl log(nanbl) states and O(nanbl) colours.

It follows from Corollary 3 and Proposition 2 that the nonemptiness problem for jump-
ing automata with recognizable relation is decidable in exponential time.

Corollary 4. Let A be a jumping tree automaton over alphabet Σ equipped with a recog-
nizable relation ; and using l colours. Let na (resp. nb) be the number of states in A
(resp. B;), let d be the maximal arity of trees (d = |Υ| for Υ-trees), and let m = nanbl.
The non-emptiness problem for A can be decided in time |Σ|O(m) · 2O(d m2 log(m)).

58 Strictly-uniform strategies

The latter result allows us to solve the strictly-uniform strategy problem for recogniz-
able relations, that we now formally define.

Definition 24.

SUSRec :=





(G,B;,Φ)

G is a finite 2AP -labelled arena,
; is a recognizable relation on (2AP)∗,

Φ ∈ SL;, and
there exists a (;,Φ)-uniform strategy for Player 1 in G.





The size of an instance (G,B;,Φ) of SUSRec is the sum of the sizes of its components,
plus the number of atomic propositions used: |(G,B;,Φ)| = |G|+ |B;|+ |Φ|+ |AP |.

We establish that SUSRec is 2-Exptime-complete. Note that for the upper bound we
could simply invoke Proposition 9 to obtain a jumping automaton of exponential size that
accepts tree unfoldings of uniform strategies, and use Corollary 4 to test the emptiness of
its language. This gives a decision procedure that is doubly exponential in the size of the
formula and exponential in the size of the arena, hence it provides the 2-Exptime upper
bound. It is however possible to obtain a decision procedure that is only polynomial in
the size of the arena – though still doubly-exponential in the size of the formula. This will
be crucial for some results that we establish in Chapter 6.

Proposition 12. Given an instance (G,B;,Φ) of SUSRec, deciding whether (G,B;,Φ)

is a positive instance can be done in time (|G|d · 2|AP |+d |B;| log(|B;|))2
O(|Φ|)

, where d is the
maximum branching degree in |G|.

Proof. Denote by V the set of positions of G, let d be its maximum branching degree,
and assume that each position v ∈ V is identified by an atomic proposition pv. By
Proposition 8, we can build a jumping tree automaton Aϕ over alphabet 2AP , equipped
with ;, with two colours and na = 2O(|Φ|) states that accepts the (2AP , {1, . . . , d})-
tree models of Φ. Let nb be the number of states in B. By Corollary 3, we obtain an
equivalent nondeterministic tree automaton A′

Φ with 2O(nanb log(nanb)) states, and O(na)
colours. Then with the same argument as in the proof of Proposition 9, we build from
G a nondeterministic tree automaton AG with |V | states and |V | · |G| transitions that
accepts the set of strategy trees for Player 1 in G. The acceptance condition of AG is
very simple: it has a sink state which is rejecting, and the evaluation game is a safety
game where Eve should avoid this rejecting state. It is therefore simple to define the
product automaton AG,Φ = AG ×A

′
Φ, which is a nondeterministic parity tree automaton

with n = |V | · 2O(nanb log(nanb)) states and l = O(na) colours. By Proposition 2, testing
the non-emptiness of a nondeterministic parity tree automaton over d-ary Σ-labelled trees
with n states and l colours can be done in time θ = (|Σ| · nO(d))O(l). Here Σ = 2AP , and
replacing n and l with their expressions we get:

θ = (2|AP | · (|V | · 2O(nanb log(nanb)))O(d))O(na)

θ ≤ (2|AP | · |V |d · 2d nanb log(nanb)))O(na)

≤ 2O(|AP |·na) · |G|O(d·na) · 2O(d n2
anb log(nanb))

The special case of recognizable relations 59

Because na = 2O(|Φ|), we have

n2anb log(nanb) = 2O(|Φ|) · nb ·O(|Φ|) + 2O(|Φ|) · nb log(nb)

≤ 2O(|Φ|) · nb · 2
O(|Φ|) + 2O(|Φ|) · nb log(nb)

≤ 2 · 2O(|Φ|) · nb log(nb)

n2anb log(nanb) ≤ 2O(|Φ|) · nb log(nb)

We finally obtain:

θ ≤ 2|AP |·2O(|Φ|)
· |G|d·2

O(|Φ|)
· 2d·2

O(|Φ|)·nb·log(nb)

θ ≤ (|G|d · 2|AP |+d |B;| log(|B;|))2
O(|Φ|)

Remark 8. Observe that Proposition 12 holds also for the variant of SUSRec in which we
are interested in generalized uniform strategies. In the proof, the automaton AG that
accepts strategy trees for Player 1 checks that a node labelled with a position of Player 2
has a child for every possible successor position in the arena; it also checks that a node
labelled with a position of Player 1 has exactly one child labelled with a possible next
position. For generalized strategies, the automaton just checks the existence of such a
child, without enforcing the unicity; this can be implemented with the same number of
states and transitions as in the case of deterministic strategies.

We can now state the main theorem of this section.

Theorem 8. SUSRec is 2-Exptime-complete.

Proof. The upper bound comes from Proposition 12, and the lower bound is inherited
from the 2-Exptime-hardness of solving CTL

∗ games (Kupferman and Vardi, 1997).

4.3.4 Synthesis of strictly-uniform strategies

We have seen that the problem SUSRec is decidable. In fact the associated synthesis
problem can be solved with the same time complexity. Let (G,B;,Φ) be an instance
of SUSRec, where G = (V,E , Vι, vι, µ). We describe how our decision procedure can be
adapted to synthesize a finite memory uniform strategy if the answer to the decision
problem is positive. Let AG,Φ be the nondeterministic parity tree automaton built in the
proof of Proposition 12. Recall that AG,Φ accepts the set of 2AP -labelled {1, . . . , d}-trees –
where d is the maximum branching degree in G – that represent strategies for Player 1 in
G and verify Φ, i.e. it accepts the set of tree representations of (;,Φ)-uniform strategies.
By Theorem 6, if L(AG,Φ) 6= ∅ – i.e. if there exists a uniform strategy – then there is a
regular tree in the language, i.e. a finitely represented uniform strategy. We describe how
this strategy is built. Testing the emptiness of AG,Φ is done by building the associated
nonemptiness parity game and solving it (see Fact 1). Assume that L(AG,Φ) 6= ∅. Because
parity games are memoryless determined, Player 1 has a memoryless winning strategy σ
in the nonemptiness parity game. From such a memoryless winning strategy, Definition 10
describes how one can build a regular tree t = (τ, ℓ) from σ such that t ∈ L(AG,Φ).

60 Strictly-uniform strategies

Let T = (Υ, QT , δT , qTι , F
T) be the deterministic word automaton of Definition 10 that

verifies L(T) = τ , and let ℓT : QT → 2AP be the state labelling such that, for every
node x ∈ τ , ℓ(x) = ℓT (δ

T (qTι , x)). Remark that T has the same set of states as AG,Φ.
This regular tree can be adapted to provide a finite memory strategy (Definition 5) for
Player 1 in G, and this trategy is uniform. Assume that every position v ∈ G is labelled
with a proposition pv ∈ AP . To each state q ∈ QT we assign a unique position v(q) in
G : v(q) is the only position v ∈ V such that pv ∈ ℓT (q). We build the finite memory
structure M = (V,M = QT , δ,mι = qι) and the mapping σM : M × V → V that
define the uniform strategy. Note that we are in a particular case where each memory
state m encodes the current position v(m), so that we can define the mapping simply as
σM :M → V . The transition function is defined as follows. For m ∈M , let v = v(m) and
note {v1, . . . , vi} = E(v) (i ≤ d). There are two cases.

• If v ∈ V1, because t is a (deterministic) strategy tree, there is a unique direction j ∈
{1, . . . , i} such that δT (m, j) = m′ ∈ F T . We let σM(m) = v(m′), and δ(m, v) = m′.

• If v ∈ V2, again because t is a strategy tree, for every j ∈ {1, . . . , i}, we have that
δT (m, j) = m′ ∈ F T ; we let δ(m, v) = m′, and the definition of σM(m) is irrelevant.

One can check that the strategy tree of the finite memory strategy (M, σM) is t ∈
L(AG,Φ), and therefore (M, σM) is a finite memory uniform strategy. Recall that the
memory structure has the same number of states as AG,Φ, which is |V | × 2O(nanb log(nanb)),
where na = 2O(|Φ|) and nb is the number of states in B;. We obtain that a memory doubly
exponential in |Φ| is enough for strictly-uniform strategies with recognizable relations.

4.4 Conclusion and related work

In this chapter we first proved that the existence of uniform strategies for unifor-
mity properties involving only strict quantifiers is undecidable when the relation for the
strict quantifier can be an arbitrary relation recognized by a finite state transducer. It
remains undecidable even if we restrict to synchronous transducers that recognize equiva-
lence relations. We defined jumping alternating tree automata, that extend alternating tree
automata by allowing for jumps between related nodes of the input tree. This feature en-
ables them to capture the semantics of the strict quantifier, and in fact the strictly-uniform
strategy problem reduces to the nonemptiness problem for jumping tree automata.

We established that, when restricting to recognizable relations, jumping tree automata
can be simulated by classic two-way tree automata, which implies the decidability of their
nonemptiness problem. From this we obtained that the strictly-uniform strategy problem
is decidable for recognizable relations, and we proved that it is 2-Exptime-complete. Also,
relying on classic techniques that, when the language of a tree automaton is not empty,
extract a regular tree in the language, we described how a finite memory uniform strategy
for Player 1 can be synthesized when there is one.

The fact that solving the strictly-uniform strategy problem for recognizable relations
is in 2-Exptime may suggest that for this class of relations, using strict quantifiers in
the uniformity properties is “for free”. Indeed, solving games with LTL winning condition
is already 2-Exptime-complete (Pnueli and Rosner, 1989). We remark however that the
complexity of our decision procedure is doubly exponential in the size of the formula and –

Conclusion and related work 61

for a fixed branching degree – polynomial in the size of the arena, like for LTL games, but
in addition, it is also exponential in the size of the automaton that recognizes the relation.

Perfect recall relations are obviously not recognizable, so that our procedure does
not allow us in general to synthesize observation-based strategies for players with perfect
recall. This is the price to pay for the genericity of the problem considered. However, there
are classes of games where the existence of a winning perfect-recall strategy implies the
existence of a winning strategy defined on information sets. This is the case for two-player
games with ω-regular objectives and (synchronous or asynchronous) perfect recall, and
this is the reason why powerset constructions are possible. In such cases, the powerset
arena provides an automaton that recognizes the equivalence relation gathering plays of a
same information set. Our automata techniques can then be applied.

Also, we believe that the notion of jumping tree automata may be a relevant theoretical
tool to study logics with knowledge. For example, it seems that the jumping tree automata
may be a good candidate for an automata-theoretic counterpart to the µ-calculus with
knowledge. We plan on investigating this question.

It would also be interesting to try to identify a subclass of rational relations that
contains synchronous and asynchronous perfect recall relations, and for which the strictly-
uniform strategy problem would still be decidable. This may give sufficient conditions on
the observational abilities of players for two-player games with imperfect information and
perfect recall to be decidable.

We point out that a notion of jumping word automata has recently been proposed by
Meduna and Zemek (2012). However their notion is not comparable to ours. First, their
automata work on finite words, while ours work on infinite trees. Second, the behaviour
of the two sorts of automata are very different. Our automata can progress in an input
tree like classic alternating automata do, and in addition they have the possibility to
jump inside the tree following some binary relation between nodes. In contrast, jumping
automata in Meduna and Zemek (2012) can nondeterministically choose at each transition
which letter of the input word is read; the letter is then deleted from the input. Due to
this nonstandard behaviour, these automata cannot recognize all regular languages, but
they can recognize some context-sensitive languages. For example, they can recognize the
language of words that have the same number of each letter.

In the next chapter we consider the case where, instead of strict quantifiers, only full
quantifiers are allowed in the uniformity properties.

62 Strictly-uniform strategies

Chapter 5

Fully-uniform strategies

While in the last chapter we focused on the strict quantifier ;, we now turn to the
dual case where only the full quantifier ; is allowed. We consider the decision problem of
the existence of a fully-uniform strategy, but like in the decidable case for strictly-uniform
strategies, our decision procedures can be adapted with no additional cost to effectively
provide a uniform strategy whenever there exists one.

We establish that the existence of a fully-uniform strategy is decidable for the class of
rational relations, and that it is nonelementary. In order to separate different aspects of
the problem, we introduce information set automata. They can be seen as a sort of partial
determinization of finite state transducers, that recognize information sets for any rational
relation between plays of a game. Using these automata, we describe a construction
reminiscent of the classic powerset construction for games with imperfect information
(Reif, 1984). This construction enables us to evaluate and eliminate the innermost ;

quantifiers in the uniformity property. In general, this procedure has to be repeated a
number of time matching the maximum nesting of quantifiers in the formula. This yields
a decision procedure that runs in k-Exptime, where k is the maximum nesting of ;

quantifiers in the uniformity property – 2-Exptime for k ≤ 2. We prove that this decision
procedure is essentially optimal by providing the matching lower bounds.

Then we consider a subclass of rational relations, called K45NM, which consists of
rational relations that verify transitivity, Euclideanity and No Miracles (Halpern and
Vardi, 1989; Pacuit and van Benthem, 2006). For this class of relations, we prove that
the complexity of the fully-uniform strategy problem collapses to 2-Exptime-complete,
which is essentially the same complexity as solving LTL games. In establishing this result
we again take advantage of information set automata. We prove that when a relation is in
K45NM, its associated information set automaton has the particularity that two related
plays take the automaton to information set bisimilar states. This allows us to evaluate
and eliminate all the ; quantifiers with a single powerset construction.

The chapter is organized as follows. We first formally define the problems that we
consider and we state our results. In Section 5.2 we define information set automata and
study their properties. Then we use these automata to describe our decision procedures
and establish the upper bounds of our results. We finish the chapter by establishing the
matching lower bounds.

63

64 Fully-uniform strategies

5.1 Main results

First, let FL; denote the language of full uniformity constraints, i.e. the sublanguage
of L; that does not allow strict quantifiers (;) but only full ones (;).

The ; -depth or nesting depth of a FL; formula ϕ, written d(ϕ), is the maximum
number of nested ; quantifiers in ϕ, defined inductively as follows:

d(p) = 0 d(¬ϕ) = d(ϕ) d(ϕ ∨ ϕ′) = max(d(ϕ), d(ϕ′))
d(Aψ) = d(ψ) d(Xψ) = d(ψ) d(ψUψ′) = max(d(ψ), d(ψ′))

d(;ϕ) = 1 + d(ϕ)

For k ∈ N, we let FLk
;

:= {ϕ ∈ FL; | d(ϕ) ≤ k}.

Definition 25. For each k ∈ N, we let

FUSk :=





(G, T,Φ)

G is a finite 2AP -labelled arena,
T is a transducer over 2AP ,
Φ ∈ FL;, d(Φ) ≤ k, and

there exists a ([T],Φ)-uniform strategy for Player 1 in G.





The fully-uniform strategy problem is formally defined as follows:

Definition 26. The fully-uniform strategy problem is

FUS :=
⋃

k∈N

FUSk.

We let the size of an instance be the sum of the sizes of its components, plus the
number of atomic propositions: |(G, T,Φ)| = |G|+ |T |+ |Φ|+ |AP |.

Theorem 9. FUSk is k-Exptime-complete if k ≥ 2, otherwise it is 2-Exptime-complete.

Corollary 5. The fully-uniform strategy problem is nonelementary.

Before proving this result, we state the second main result of this chapter.
First, remind that K45 is the set of transitive and Euclidean relations 1, which are

“almost” equivalence relations, and are relevant for example in the context of belief revision
and modelling plausibility (Fagin et al., 1995).

We define in our setting the classic notion of No Miracles :

Definition 27. A binary relation ; ⊆ Σ∗ × Σ∗ satisfies the No Miracles property if for
all u, v, w ∈ Σ∗, u ; v implies u · w ; v · w.

We now discuss this definition. The intuitive meaning of the No Miracles property, as
defined e.g. in Pacuit and van Benthem (2006), is that when two situations are indistin-
guishable, they should remain indistinguishable if the same events occur in both of them.
While the No Miracles property is usually defined with respect to a system (roughly a
set of finite histories and a relation between them), here we just consider binary relations

1. We recall that a relation ; is transitive if u ; v and v ; w implies u ; w, and it is Euclidean if
u ; v and u ; w implies v ; w.

Main results 65

over some alphabet. Our motivation is that often, the relation representing the observa-
tional abilities of an agent, or a player, may be defined independently from the dynamics
of the precise arena considered, only with regards to the set of possible positions, or ob-
servations. In other words, the relation may often be defined given only the alphabet,
without restricting to some language over it that would represent the set of possible plays
or histories.

Consider for example the case of synchronous perfect recall. If the set of possible
positions V and the observation function obs : V → Obs, as defined in Section 3.2, are
given, then one can define a transducer that recognizes the synchronous perfect recall
relation over finite sequences of positions: two words in V ∗ are related if they form the
same sequences of observations.

We will see that considering the properties of a relation indepently from the arena is
sometimes relevant: we will establish that the complexity of the fully-uniform strategy
problem is better when the relation defined by the input transducer on Σ∗ verifies the No
Miracles property, even if its restriction to the set of possible plays in the input arena does
not verify it.

Remark 9. We want to remark that the notion of No Miracles as defined for example
in Pacuit and van Benthem (2006) defers from the notion of No Learning considered in
Halpern and Vardi (1989): while the former says that when two indistinguishable runs
of a system are continued with the same events, they remain indistinguishable, the latter
says roughly that when two indistinguishable runs of a system are continued, no matter
how they are continued, they must somehow remain indistinguishable. A system where
different events with different observations can occur in indistinguishable situations will
never verify the latter notion, while it can verify the former.

We note K45NM for the set of rational relations that verify transitivity, Euclideanity
and No Miracles. FUSK45NM is the restriction of FUS to K45NM relations.

Definition 28.

FUSK45NM :=





(G, T,Φ)

G is a finite 2AP -labelled arena,
T is a transducer over 2AP such that [T] ∈ K45NM,

Φ ∈ FL;, and
there exists a ([T],Φ)-uniform strategy for Player 1 in G.





Theorem 10. FUSK45NM is 2-Exptime-complete.

This result is of interest as most relations used to represent uncertainty fall into this
class, like synchronous or asynchronous perfect-recall relations, and in general all equiva-
lence relations induced by alphabetic morphisms. Indeed, notice that here we see relations
as being defined with regards to a particular set of positions (or abstractions thereof), but
without considering the dynamics of any particular game arena. Seen as such, the classic
synchronous and asynchronous perfect recall relations verify our No Miracles property.

We now introduce information set automata, and then we use them to prove the upper
bounds of Theorem 9 and Theorem 10. We prove the lower bounds at the end of the
chapter.

66 Fully-uniform strategies

5.2 Information set automaton

The notion of information set is classic in games with imperfect information. After
a partial play, a player’s information set is the set of positions considered possible by
this player according to what she has observed so far. We introduce a general notion
of information set: informally, given a binary relation over finite words, the information
set of a word is the set of all last letters of related words. We then describe how, when
given a transducer that recognizes a binary relation, one can build a deterministic word
automaton that computes the information set of its input word. We also introduce a
bisimulation relation on states of this automaton, called the information set bisimulation,
and we consider the quotient automaton. We prove that for relations in K45NM, two
related plays take the quotient automaton to the same state. This result is crucial for the
upper bound of Theorem 10.

Definition 29. Let Σ be an alphabet, and let ; ⊆ Σ∗×Σ∗ be a binary relation over Σ∗.
For w ∈ Σ∗, the information set for ; after the word w is:

I;(w) = {a ∈ Σ | w ; w′ · a for some w′ ∈ Σ∗}

For the rest of Section 5.2 we fix a transducer T = (Σ, Q,∆, Qι, F) over some alphabet
Σ, and we note ; = [T]. We describe a powerset construction that transforms T into a
deterministic automaton that computes information sets for ;. Transducers cannot be
determinized in general, but because we only aim at computing information sets we can
afford to forget the output tape, except for the last letter. This allows us to obtain a
deterministic automaton AT , that we call the information set automaton.

Computing information sets in the classic framework of extensive imperfect-information
games (see Section 3.2) is simple: the player only needs to remember the current informa-
tion set, and update it with each newly observed position. In the case of rational relations
in general, information sets cannot be inferred from the new letter and the previous infor-
mation set only, and we have to store more information in states of the automaton.

While reading a word w, we remember two things: first, the set of states q that the
transducer may have reached by nondeterministic runs on input w, and second, for each
such state q, the set Last(q) of all last letters of output words in a run on input w that
ends in q. Therefore, states of AT are pairs of the form (S,Last), with S ⊆ Q and
Last : Q→ 2Σ (recall that Q is the transducer’s set of states).

Definition 30 (Information set automaton). The deterministic information set automaton
for T = (Σ, Q,∆, qι, F) is AT = (Σ, A, δ, αι), where

• A = 2Q × (Q→ 2Σ) is the set of states,

• αι = (Sι, Lastι) is the initial state, with

− Sι = {q | ∃w ∈ Σ∗, qι −[ǫ/w]→ q} and

− Lastι(q) = {a | ∃w ∈ Σ∗, qι −[ǫ/w · a]→ q}

• δ((S,Last), a) = (S′, Last′), with

− S′ = {q′ | ∃q ∈ S, ∃w ∈ Σ∗, q −[a/w]→ q′} and

− Last′(q′) = {a′ | ∃q ∈ S, ∃w ∈ Σ∗, q −[a/w · a′]→ q′, or
q −[a/ǫ]→ q′ and a′ ∈ Last(q)}

Information set automaton 67

First, observe that we do not specify accepting states. This is because AT is not meant
to recognize a set of words, but rather to compute the information set of any possible input.
Second, observe the initial state (Sι, Lastι): Sι is the set of states that can be reached
internally (i.e. by reading nothing) from qι, and for each state q ∈ Sι, Lastι(q) is the set
of letters found at the end of the output tape in runs that internally reach q.

We now detail how for a current state (S,Last) and a new input letter a, we build the
successor state δ((S,Last), a) = (S′, Last′). First, S′ is made of all the states q′ that can
be reached from a state q ∈ S with a transition of the form q −[a/w]→ q′ with w ∈ Σ∗. If
w = w′ · b, then b is added to Last′(q′), otherwise w = ǫ and each b ∈ Last(q) can still
be the last letter on the output tape after reading a and reaching q′, therefore for each
b ∈ Last(q) we let b ∈ Last′(q′). Notice that by definition Last′(q′) = ∅ for each q′ /∈ S′.

Since AT is complete, δ(αι, w) is defined (in the classic way) for all w ∈ Σ∗. We define
the size of an information set automaton as its number of transitions: |AT | = |δ|. Notice
that because AT is complete and deterministic, |δ| = |A| · |Σ|.

Lemma 5. AT is of size 2O(|T |·|Σ|) and can be computed in time 2O(|T |·|Σ|).

Proof. The number of states of AT is |A| = |2Q × (Q → 2Σ)| = 2|Q|(1+|Σ|) = 2O(|T |·|Σ|),
and because |AT | = |Σ| · |A| we have that |AT | = 2O(|T |·|Σ|).

Now for the time complexity: for each state α = (S,Last) and each letter a ∈ Σ, one
has to compute δ(α, a) = (S′, Last′). S′ and Last′ can be computed in quadratic time in
the size of ∆. To do so, for each q in S, one computes Sq,a = {(q′, a′) | ∃w ∈ Σ∗, q−[a/w · a′]→
q′, or q −[a/ǫ]→ q′ and a′ ∈ Last(q)}. S′ and Last′ can be easily reconstructed from
∪q∈SSq,a. For q ∈ S, computing Sq,a can be done by depth-first search in the tree unfolding
of the transducer, by first reading a and then a series of ǫ. A branch of the search is
stopped when there is no more ǫ to read or a state is revisited. So computing Sq,a takes
time O(|∆|). Computing δ(α, a) requires to do this for each q ∈ S, so it takes time
O(|Q| · |∆|) = O(|T |2). Doing so for each α ∈ A and a ∈ Σ yields a time complexity in
O(|A| · |Σ| · |T |2) = O(|AT | · |T |2) = 2O(|T |·|Σ|).

Finally, for every state α = (S,Last) of AT , we define:

α.I :=
⋃

q∈S∩F

Last(q).

We prove that the components S and Last actually capture what they are meant to:

Lemma 6. Let w ∈ Σ∗. If (S,Last) = δ(αι, w), then:

1. S = {q | ∃w′ ∈ Σ∗, qι −[w/w′]→ q}, and

2. for each q ∈ S, Last(q) = {a′ | ∃w′ ∈ Σ∗, qι −[w/w′ · a′]→ q}.

Proof. The proof is done by induction on w.

Case w = ǫ. We have δ(αι, ǫ) = αι = (Sι, Lastι). The result is the mere definition of Sι
and Lastι.

Case w = w1 · a. Letting (S1, Last1) = δ(αι, w1), we have: (S,Last) = δ((S1, Last1), a).
For the left-to-right inclusions of Points 1 and 2, let q ∈ S and a′ ∈ Last(q). By
definition of δ, there is a q1 ∈ S1 and a w′

1 ∈ Σ∗ such that q1 −[a/w′
1]→ q, and either

68 Fully-uniform strategies

w′
1 = w′

2 · a
′ for some w′

2, or w′
1 = ǫ and a′ ∈ Last1(q1). By induction hypothesis

on w1, we have that S1 = {q | ∃w′ ∈ Σ∗, qι −[w1/w
′]→ q}. Since q1 ∈ S1 there exists

w′ ∈ Σ∗ such that qι −[w1/w
′]→ q1, and by transitivity, qι −[w1 · a/w

′ · w′
1]→ q. This

proves the left-to-right inclusion of Point 1. For the left-to-right inclusion of Point 2
we split into two cases for w′

1.

• If w′
1 = w′

2·a
′ for some w′

2, then we have qι−[w1 · a/w
′ · w′

2 · a
′]→ q, which concludes.

• If w′
1 = ǫ, then a′ ∈ Last1(q1). By induction hypothesis on w1 there is some

w′
2 such that qι −[w1/w

′
2 · a

′]→ q1. By transitivity we obtain qι −[w1 · a/w
′
2 · a

′]→ q,
which concludes.

Now for the right-to-left inclusion of Point 1, take q and w′ such that qι−[w1 · a/w
′]→ q.

Necessarily there exist w′
1, w

′
2 and q1 such that qι −[w1/w

′
1]→ q1, q1 −[a/w′

2]→ q and
w′
1 · w

′
2 = w′. By induction hypothesis q1 ∈ S1, so by definition of δ, q ∈ S.

For the right-to-left inclusion of Point 2, take q ∈ S, and take a′ and w′ such
that qι −[w1 · a/w

′ · a′]→ q. Again, necessarily there exist w′
1, w

′
2 and q1 such that

qι−[w1/w
′
1]→ q1, q1−[a/w′

2]→ q and w′
1 ·w

′
2 = w′ · a′. By induction hypothesis q1 ∈ S1.

We distinguish two cases.

• If w′
2 = ǫ, then w′

1 = w′ · a′, hence qι −[w1/w
′ · a′]→ q1. By induction hypothesis,

a′ ∈ Last1(q1), so by definition of δ, because q1 ∈ S1 and q1−[a/ǫ]→ q, we obtain
a′ ∈ Last(q).

• If w′
2 = w′

3 · a
′ for some w′

3, then by definition of δ, because q1 ∈ S1, we have
a′ ∈ Last(q).

We now prove that the information set automaton computes information sets:

Proposition 13. For every word w ∈ Σ∗, δ(αι, w).I = I;(w).

Proof. Let w ∈ Σ∗, and let (S,Last) = δ(αι, w). We remind that I;(w) = {a ∈ Σ |
∃w′ · a ∈ Σ∗, w ; w′ · a} (Definition 29).

We start with the left-to-right inclusion. Let a ∈ (S,Last).I. By definition, a ∈
Last(q) for some q ∈ S ∩F . By Lemma 6, there exists w′ ∈ Σ∗ such that qι −[w/w′ · a]→ q,
and because q ∈ F , we have that (w,w′ · a) ∈ [T] = ;, hence a ∈ I;(w).

For the right-to-left inclusion, take a ∈ I;(w). There exists w′ such that w ; w′ · a.
Since ; = [T], there exists q ∈ F such that qι −[w/w′ · a]→ q. By Lemma 6, q ∈ S, and
a ∈ Last(q). Since q ∈ S ∩ F , a ∈ (S,Last).I.

Information set bisimulation and K45NM relations.

We define a bisimilarity relation over the states of AT , the information set automaton
for T . We call this relation the information set bisimilarity. Informally, two states of
the automaton are information set bisimilar if, for every possible word, reading it starting
from one state or the other leads to states containing the same information set. We use
this notion to establish a property of information set automata for K45NM relations that
is central in our elementary procedure for the fully-uniform strategy with such relations
(see Theorem 10).

Information set automaton 69

Definition 31 (Information set bisimilarity). Two states α, α′ ∈ A are information set
bisimilar, written α -I α′, if for all w ∈ Σ∗, δ(α,w).I = δ(α′, w).I. We call -I the
information set bisimilarity relation. Note that -I is an equivalence relation. For a state
α, [α]-I

denotes the equivalence class of α.

The following lemma is the crucial point that makes the fully-uniform strategy problem
elementary for K45NM relations (Theorem 10). Informally, it states that if a relation is
K45NM, then two related words bring the information set automaton to information set
bisimilar states.

Lemma 7. If ; is a K45NM relation then for all w,w′ ∈ Σ∗, w ; w′ implies that
δ(αι, w) -I δ(αι, w

′).

Proof. Let α = δ(αι, w) and α′ = δ(αι, w
′), and take w′′ ∈ Σ∗. We prove that α and α′

are information set bisimilar, i.e. for all w′′ ∈ Σ∗, δ(α,w′′).I = δ(α′, w′′).I. Take some
w′′ ∈ Σ∗. First, because w ; w′ and ; satisfies No Miracles, w · w′′ ; w′ · w′′.
⊆ : Let a ∈ δ(α,w′′).I = δ(αι, w · w

′′).I. By Proposition 13, a ∈ I(w · w′′), so there
exists u ∈ Σ∗ such that w · w′′ ; u · a. We also have that w · w′′ ; w′ · w′′, and ; is
Euclidean, so w′ · w′′ ; u · a. It follows that a ∈ I(w′ · w′′), and by Proposition 13 again,
a ∈ δ(αι, w

′ · w′′).I = δ(α′, w′′).I.
⊇ : Let a ∈ δ(α′, w′′).I = δ(αι, w

′ · w′′).I. By Proposition 13, a ∈ I(w′ · w′′), so
there exists u ∈ Σ∗ such that w′ · w′′ ; u · a. We have that w · w′′ ; w′ · w′′, and
; is transitive, so w · w′′ ; u · a, and therefore a ∈ I(w · w′′). By Proposition 13,
a ∈ δ(αι, w · w

′′).I = δ(α,w′′).I.

We now show that quotienting the information set automaton AT with -I yields an
automaton that still computes the information sets for T .

Definition 32. The quotient automaton is AT
-I

= (Σ, A-I
, δ-I

, [αι]-I
), where:

• A-I
is the set of equivalence classes of -I ,

• for a ∈ Σ, δ-I
([α]-I

, a) = [δ(α, a)]-I
, and

• [α]-I
.I = α.I.

Lemma 8. AT
-I

is well defined and can be computed in time O(|AT |2).

Proof. For α, α′ ∈ A such that α -I α
′, we have that α.I = α′.I, so the information set

of a state [α]-I
is well defined. Also for α, α′ ∈ A and a ∈ Σ, δ(α, a) -I δ(α

′, a), hence
[δ(α, a)]-I

= [δ(α′, a)]-I
and δ-I

is well defined.
The relation -I can be computed in time O(|AT |2) (Kanellakis and Smolka, 1990),

and from -I the quotient automaton AT
-I

is computed in linear time.

The following lemma is easily proved by induction:

Lemma 9. For all w ∈ Σ∗, δ-I
([αι]-I

, w) = [δ(αι, w)]-I
.

It follows that the quotient automaton still computes information sets correctly:

Proposition 14. For all w ∈ Σ∗, δ-I
([αι]-I

, w).I = δ(αι, w).I.

70 Fully-uniform strategies

Restrained information sets.

In Section 5.3, we use information set automata to solve the fully-uniform strategy
problem. They enable us to compute the set of positions where a formula ϕ should be
evaluated in order to give a formula of the form ;ϕ a truth value. According to the
semantics of the full quantifier, the information set that we aim at computing given a
finite path is the set of last positions of related paths. But in general, given an instance
(G, T,Φ) of the problem, [T] may relate some paths in G to words that do not correspond
to any path. This is due to the fact that, as discussed after Definition 27 (page 64), the
relation, and therefore the transducer T , may be defined independently from the arena G.

We first describe how a simple modification of T enables us to compute the correct
information sets, taking into account only those related words that are actual paths in G.
First, observe that Paths∗ is a regular language, and one can easily derive from G a finite
word automaton that accepts it.

For the rest of this section, we fix a transducer T over some alphabet Σ and a word
automaton A over Σ.

Definition 33. The restriction of T to A is the transducer T |A = T ◦ TA, where TA is
the identity transducer over L(A) (see Definition 14, page 27).

From now on we let ; = [T] and ;A= [T |A].

Lemma 10. It holds that:

1. ;A = ; ∩ (Σ∗ × L(A))

2. for all w ∈ Σ∗, I;A(w) = {a ∈ Σ | ∃w′ · a ∈ L(A) such that w ; w′ · a}.

Proof. Point 1 follows from the definition of T |A, and Point 2 is a consequence of Point 1
and the definition of the information set (Definition 29).

We now establish a variant of Lemma 7. It is clear that transitivity and Euclideanity
are preserved by restriction, i.e. if ; is transitive and Euclidean, so is ;A. It is not the
case however of the No Miracles property. Indeed, assume that ; verifies No Miracles,
and take w,w′ ∈ Σ∗ such that w ;A w′, and let w′′ ∈ Σ∗. By definition, ;A ⊆ ;,
hence w ; w′, and because ; verifies No Miracles, we have that w ·w′′ ; w′ ·w′′. But if
w′ · w′′ /∈ L(A), w · w′′ 6;A w′ · w′′.

So even if ; is in K45NM, it may not be the case of ;A. However, we prove that
for AT |A to reach information set bisimilar states when reading two related words, it is
not necessary for [T |A] = ;A to be in K45NM, but it is sufficient if [T] = ; is. Let
AT |A = (Σ, A, δ, αι) be the information set automaton for T |A.

Lemma 11. If ; is a K45NM relation, then for all w,w′ ∈ Σ∗, w ; w′ implies that
δ(w) -I δ(w

′).

Proof. The proof is almost the same as for Lemma 7, we just have in addition to verify
whether a related word is in L(A) or not.

Let α = δ(αι, w) and α′ = δ(αι, w
′), and take w′′ ∈ Σ∗. We prove that α and α′

are information set bisimilar, i.e. for all w′′ ∈ Σ∗, δ(α,w′′).I = δ(α′, w′′).I. Take some
w′′ ∈ Σ∗. First, because w ; w′ and ; satisfies No Miracles, we have that w·w′′ ; w′ ·w′′.

Upper bounds 71

⊆ : Let a ∈ δ(α,w′′).I = δ(αι, w · w
′′).I. By Proposition 13, a ∈ I;A(w · w

′′), so by
Lemma 10, there exists u ∈ Σ∗ such that u · a ∈ L(A) and w · w′′ ; u · a. We also have
that w · w′′ ; w′ · w′′, and ; is Euclidean, so w′ · w′′ ; u · a. Because u · a ∈ L(A), we
also have that w′ ·w′′ ;A u · a, and therefore a ∈ I;A(w

′ ·w′′). By Proposition 13 again,
a ∈ δ(αι, w

′ · w′′).I = δ(α′, w′′).I.
⊇ : Let a ∈ δ(α′, w′′).I = δ(αι, w

′ · w′′).I. By Proposition 13, a ∈ I;A(w
′ · w′′),

so there exists u ∈ Σ∗ such that u · a ∈ L(A) and w′ · w′′ ; u · a. We have that
w · w′′ ; w′ · w′′, and ; is transitive, so w · w′′ ; u · a, and because u · a ∈ L(A), we
also have that w · w′′ ;A u · a, and therefore a ∈ I;A(w · w

′′). By Proposition 13 again,
a ∈ δ(αι, w · w

′′).I = δ(α,w′′).I.

We now turn to the proofs of Theorems 9 and 10.

5.3 Upper bounds

We establish the upper bounds for Theorem 9 and Theorem 10. We first observe that
in the degenerate case FUS0, the formula Φ ∈ FL0

;
being a CTL

∗ formula, the transducer
is irrelevant, and in fact the problem FUS0 is exactly the problem of solving games with
CTL

∗ winning condition. This problem is known to be 2-Exptime-complete (Kupferman
and Vardi, 1997), and we rephrase the precise upper-bound in our context.

Proposition 15. Let G be a 2AP -labelled arena and Φ ∈ CTL
∗. Letting d be the maximum

branching degree in G, solving the CTL
∗ game (G,Φ) can be done in time (|G|d ·2|AP |)2

O(|Φ|)
.

Proof. The proof is a reformulation of Kupferman and Vardi (1997) and is very similar
to the one of Proposition 12. The only difference is that the formula being here a CTL

∗-
formula and not an L;-formula, we build an alternating automaton that accepts the
models of Φ instead of a jumping automaton.

Remark 10. With the same argument as in Remark 8, the complexity is the same when
generalized strategies are considered.

5.3.1 The general case

Let k > 0 be a positive natural number, and let us fix for this section an instance
(G, T,Φ) of FUSk over a set of atomic propositions AP , where G = (V,E, Vι, vι, µ), and
let us note once more Σ = 2AP and ; = [T]. We describe a powerset construction
that, relying strongly on the information set automaton, builds an instance of FUSk−1 of
exponential size that is equivalent to (G, T,Φ) regarding the existence of uniform strategies.
Iterating this powerset construction yields an equivalent instance of FUS0, which can be
solved in time doubly exponential in the size of the formula (Proposition 15). In addition,
a winning strategy in the latter CTL

∗ game straightforwardly provides a uniform strategy
in the original instance.

Because the semantics of the full quantifier depends only on the universe and the binary
relation, and not on the particular strategy Φ is evaluated on, we can use a bottom-up
evaluation process in the formula before addressing the existence of a strategy. Informally,
like in the classic powerset construction for games with imperfect information (Reif, 1984),

72 Fully-uniform strategies

we build an arena with information sets in the positions, in which formulas of the form
;ϕ can be evaluated positionally if ϕ ∈ CTL

∗. According to the semantics of ; , after a
finite play, the information set that we require is the set of last positions of related finite
paths in the universe.

First, observe that T works on alphabet Σ, hence using AT we would get sets of
valuations instead of sets of positions. We remedy this technical problem by building a
transducer TV that recognizes the relation on V ∗ induced by ;. Formally, TV = TV→Σ ◦
T ◦ TΣ→V , where TV→Σ is a one-state deterministic transducer with |V | transitions that
outputs the valuations of the positions it reads and TΣ→V is its (nondeterministic) inverse
of same size. We obtain [TV] = [TV→Σ] ◦ [T] ◦ [TΣ→V], i.e. [TV] = {(w,w

′) | w,w′ ∈
V ∗ and µ(w) ; µ(w′)}, and |TV | = |TV→Σ| · |T | · |TΣ→V | = O(|T | · |G|2). From now on,
for w,w′ ∈ V ∗, we may write w ; w′ for µ(w) ; µ(w′), i.e. w[TV]w

′.
The second technical problem is, as mentioned before Definition 33, page 70, that

[TV] may relate arbitrary sequences of positions, while the information sets we want to
compute only concern related paths of the universe U = Paths∗(Vι). To fix this, we take
the restriction of TV to U , defining TG = TV |AG (see Definition 33), where AG is a word
automaton that recognizes the regular language U (easily obtained from G). We have that
|TG | = |TV | · |AG | = O(|TV | · |G|) = O(|T | · |G|3). Let ATG = (V,A, δ, αι) be the information
set automaton for TG .

Lemma 12. It holds that:

1. [TG] = [TV] ∩ (V ∗ × U).

2. for all w ∈ V ∗, δ(αι, w).I = {v | ∃ρ · v ∈ U , w ; ρ · v}.

Proof. This is a direct application of Lemma 10 to TG .

We describe the synchronization of the arena G with ATG , which yields an arena Ĝ
that has the same dynamics as G, but in addition computes the information sets required
to evaluate fully-quantified formulas.

Definition 34. Let Ĝ := (V̂ , Ê , V̂ι, v̂ι, µ̂), with

• V̂ = V ×A,

• if (v, α) ∈ V̂ and v → v′, then (v, α) →̂ (v′, δ(α, v′))

• V̂ι = {(v, δ(αι, v)) | v ∈ Vι}

• v̂ι = (vι, δ(αι, vι)) and

• µ̂(v, α) = µ(v)

Each path in G defines a unique path in Ĝ, and vice versa. To avoid confusion we shall
use a “hat” version of each notation when it refers to the powerset arena Ĝ. Consider the
following function:

f : Pathsω(Vι)→ P̂ athsω(V̂ι)

π 7→ π̂ where for each i ≥ 0, π̂[i] = (π[i], δ(αι, π[0, i])).

Clearly, f is a bijection between Pathsω(Vι) and P̂ athsω(V̂ι), i.e. between universes U
and Û . When π is given, we shall write π̂ for f(π), and when π̂ is given, π shall denote
f−1(π̂), and similarly for finite paths.

Upper bounds 73

The next step is to eliminate all subformulas of Φ of the form ;ϕ with d(ϕ) = 0, i.e.
ϕ ∈ CTL

∗. For each such subformula ;ϕ and each position v̂ = (v, α) of Ĝ, we model-
check ϕ in all positions of the information set α.I. Since ϕ holds in all these positions iff
;ϕ holds in (every finite path ending in) v̂, we can mark v̂ with a fresh atomic proposition
p ; ϕ when appropriate. This procedure, which we shall refer to as the marking phase, is
described in Algorithm 1. From now on, Ĝ refers to the powerset arena after its labelling
has been enriched by this marking phase.

1 foreach ;ϕ ∈ Sub(Φ) such that d(ϕ) = 0 do
2 foreach v̂ = (v, α) ∈ V̂ do
3 if ∀v′ ∈ α.I, Paths∗(v′) |= ϕ then
4 µ̂(v̂) := µ̂(v̂) ∪ {p ; ϕ};
5 end
6 end
7 end

Algorithm 1: Marking the positions of Ĝ.

For a state formula ϕ, we define ϕ̂ as the formula obtained by replacing each innermost
subformula of the form ;ϕ′ with p ; ϕ′ , and similarly for path formulas. For example, if
ϕ = ;p ∧AG ;EX ; q, then ϕ̂ = p ; p ∧AG ;EXp ; q.

It just remains to define the transducer T̂ such that ρ ; ρ′ if and only if ρ̂ ;̂ ρ̂′, where
;̂ = [T̂]. By Definition 34, a position (v, α) in Ĝ has the same valuation as the underlying
position v in G, except for the fresh atomic propositions added during the marking phase.
So, letting ÂP be the set AP augmented with these fresh atomic propositions, we just
modify T so that it works on alphabet 2ÂP but ignores these additional propositions. Thus
we define T̂ = T

2ÂP→2AP ◦ T ◦ T2AP→2ÂP , where T
2ÂP→2AP is a one state deterministic

transducer that reads valuations on ÂP and outputs underlying valuations on AP by
erasing fresh propositions, and T

2AP→2ÂP is its inverse. The number of fresh atomic

propositions is bounded by |Φ|, so |T̂ | = O(2|ÂP | · |T | · 2|ÂP |) = |T | · 2O(|AP |) · 2O(|Φ|), and
letting ;̂ = [T̂] we have that for ρ, ρ′ ∈ Paths∗(Vι), ρ ; ρ′ if and only if ρ̂ ;̂ ρ̂′.

Since d(Φ̂) = d(Φ)− 1 = k − 1, (Ĝ, T̂ , Φ̂) is an instance of FUSk−1, and we prove that:

Proposition 16. (G, T,Φ) ∈ FUSk if, and only if, (Ĝ, T̂ , Φ̂) ∈ FUSk−1.

We establish Lemma 13 below, and Proposition 16 follows from the fact that the
bijection f between Pathsω(Vι) and P̂ athsω(V̂ι) induces a bijection between strategy trees
in G and strategy trees in Ĝ.

More precisely, f induces a bijection between the trees of paths in G and those in Ĝ.
For any t ⊆ Paths∗(v) where v ∈ Vι, we define t̂ ⊆ P̂ aths∗(v, δ(αι, v)) by t̂ = {ρ̂ | ρ ∈ t},
with labelling ℓ̂(ρ̂) = µ̂(last(ρ̂)). Notice that a node x ∈ t being a finite path, x̂ is defined.

Lemma 13. For any state formula ϕ ∈ Sub(Φ) and for any labelled tree t ⊆ Paths∗(Vι),
we have: for all x ∈ t, t, x |= ϕ if, and only if, t̂, x̂ |= ϕ̂.

Proof. The proof is done by induction on ϕ. For a branch λ = x0x1 . . ., we let λ̂ = x̂0x̂1 . . .

74 Fully-uniform strategies

Case ϕ = p. Let t ⊆ Paths∗(v) for some v ∈ Vι, and let x ∈ t. Letting x = v0 . . . vn, by
definition of f we have x̂ = v̂0 . . . v̂n, where for 0 ≤ i ≤ n, v̂i = (vi, δ(αι, v0 . . . vi)).
By Definition 34 of Ĝ, v̂n is labelled with the same atomic propositions as vn, except
for the fresh ones added in the marking phase (Algorithm 1). But because p is a
subformula of Φ, it cannot be fresh, thus p is in the label of x if and only if p is in
the label of x̂, and the result follows.

Cases ϕ = ϕ1 ∨ ϕ2 and ϕ = ¬ϕ′. Trivial by induction hypothesis, noting that ϕ̂1 ∨ ϕ2 =
ϕ̂1 ∨ ϕ̂2, and ¬̂ϕ′ = ¬ϕ̂′.

Case ϕ = Aψ0. We prove the following lemma:

Lemma 14. For any path formula ψ ∈ Sub(ϕ), for any labelled tree t ⊆ Paths∗(Vι),
we have: for all λ ∈ Branches(t), t, λ |= ψ if and only if t̂, λ̂ |= ψ̂.

Proof. The proof is by induction on ψ.

Case ψ = ϕ′. Let t ⊆ Paths∗(v) for some v ∈ Vι, and let λ ∈ Branches(t). Let
x = λ[0]. By definition, t, λ |= ϕ′ iff t, x |= ϕ′, and t̂, λ̂ |= ϕ̂′ iff t̂, x̂ |= ϕ̂′.
Furthermore, because ϕ′ is a subformula of ϕ = Aψ0, we have by induction
hypothesis that t, x |= ϕ′ if and only if t̂, x̂ |= ϕ̂′, which concludes.

Cases ψ = ¬ψ′, ψ1 ∨ ψ2, Xψ′, ψ1Uψ2. Trivial by induction hypothesis.

We can now prove the induction case ϕ = Aψ0. Let t ⊆ Paths∗(v) for some v ∈ Vι,
and let x ∈ t. By Lemma 14, for all λ ∈ Branches(t), t, λ |= ψ0 if and only if

t̂, λ̂ |= ψ̂0. Because f induces a bijection between Branches(x) and ̂Branches(x̂),
we obtain that t, x |= Aψ0 if and only if t̂, x̂ |= Aψ̂0. We conclude by noticing that
Aψ̂0 = Âψ0.

Case ϕ = ; ϕ′. Let t ⊆ Paths∗(v) for some v ∈ Vι, and let x ∈ t. Letting x =
v0 . . . vn, we have by definition of f that x̂ = v̂0 . . . v̂n, where for 0 ≤ i ≤ n,
v̂i = (vi, δ(αι, v0 . . . vi)). So v̂n = (vn, αn) where αn = δ(αι, x).

If d(ϕ′) = 0, then ϕ̂ = pϕ. The definition of |= gives this first equivalence:

t̂, x̂ |= pϕ ⇐⇒ pϕ ∈ µ̂(v̂n). (5.1)

Considering the marking phase (Algorithm 1), we have:

pϕ ∈ µ̂(v̂n)⇐⇒ ∀v
′ ∈ αn.I, Paths∗(v

′) |= ϕ′. (5.2)

By Lemma 12, and because αn = δ(αι, x), v′ ∈ αn.I if and only if there is a
node y ∈ U (recall that U = Paths∗(Vι)) such that x ; y and last(y) = v′.
Combining this with Equations (5.1) and (5.2) yields:

t̂, x̂ |= pϕ ⇐⇒ ∀y ∈ U s.t. x ; y, Paths∗(last(y)) |= ϕ′. (5.3)

Observe that for a node y ∈ U , Paths∗(last(y)) is the same tree as the subtree
of Uy rooted in y; also, ϕ′ contains no ; quantifier but is a pure CTL

∗ formula,

Upper bounds 75

hence its evaluation in a node of a tree does not depend on the path leading to
this node, but only on the subtree from this node. From this and Equation (5.3)
we have:

t̂, x̂ |= pϕ ⇐⇒ ∀y ∈ U s.t. x ; y, Uy, y |= ϕ′.

The semantics of ; gives the requested equivalence:

t̂, x̂ |= ϕ̂⇐⇒ t, x |= ϕ.

If d(ϕ′) > 0, then ϕ̂ = ; ϕ̂′. Let y ∈ U . First, because U = Paths∗(Vι), we have
that Uy ⊆ Paths∗(v) for some v ∈ Vι, namely v = y[0]. So by induction
hypothesis, Uy, y |= ϕ′ if and only if Ûy, ŷ |= ϕ̂′. Second, by definition of T̂ ,
x ; y if and only if x̂ ;̂ ŷ. Noticing that Ûy = Ûŷ, we obtain that t, x |= ;ϕ′

if, and only if, t̂, x̂ |= ; ϕ̂′.

Lemma 13 shows that each powerset construction yields an equivalent FUS instance
with a strictly smaller ; -depth, and iterating the process we obtain an equivalent CTL

∗

game that it remains to solve, which is a 2-Exptime-complete problem (Kupferman and
Vardi, 1997) (see also Proposition 15).

We can now establish the upper bound for Theorem 9. For convenience, we introduce
iterated exponential functions as follows:

Definition 35. For all k, n ∈ N, exp0(n) = n and expk+1(n) = 2expk(n).

Proposition 17. Let (G, T,Φ) be an instance of FUSk for some k ≥ 0, and note d the
maximum branching degree in G. Deciding whether (G, T,Φ) ∈ FUSk can be done in time

expk(|G, T,Φ|O(1))
d·|AP |·2O(|Φ|)

.

Proof. The proof is by induction on k.

Case k = 0. Let (G, T,Φ) be an instance of FUS0. FUS0 is exactly the strategy problem
for Player 1 in CTL

∗ games, and by Proposition 15 this problem can be solved in

time (|G|d · 2|AP |)2
O(|Φ|)

, which is less than exp0(|G, T,Φ|)
d·|AP |·2O(|Φ|)

.

Case k + 1. Let (G, T,Φ) be an instance of FUSk+1, with k ≥ 0. By Proposition 16, decid-
ing whether (G, T,Φ) ∈ FUSk+1 is equivalent to deciding whether (Ĝ, T̂ , Φ̂) ∈ FUSk,

which by induction hypothesis can be done in time expk(|Ĝ, T̂ , Φ̂|O(1))
d·|ÂP |·2O(|Φ|)

,
where d is the maximum branching degree in Ĝ. Observe that by construction of
Ĝ, d is also the maximum branching degree in G. Observe also that the number of
fresh atomic propositions used in the marking phase is bounded by |Φ|, thus |ÂP | ≤

|AP |+|Φ| and expk(|Ĝ, T̂ , Φ̂|O(1))
d·|ÂP |·2O(|Φ|)

is in expk(|Ĝ, T̂ , Φ̂|O(1))
d·|AP |·2O(|Φ|)

. We
prove that the instance (Ĝ, T̂ , Φ̂) is of size |Ĝ, T̂ , Φ̂| = 2|G,T,Φ|O(1)

, hence solving it

takes time expk+1(|G, T,Φ|O(1))
d·|AP |·2O(|Φ|)

. We also prove that computing the pow-
erset instance (Ĝ, T̂ , Φ̂) takes time less than 2|G,T,Φ|O(1)

, so that the decision procedure

runs in time expk+1(|G, T,Φ|O(1))
d·|AP |·2O(|Φ|)

.

76 Fully-uniform strategies

First, by Lemma 5, ATG is of size 2O(|TG |·|Σ|), which is also the time needed to
compute it. Because TG works on alphabet Σ = V and is of size |T | · |G|3, we have
that |ATG | = 2O(|TG |·|Σ|) = 2(|G|+|T |)O(1)

. Then, computing Ĝ from G and ATG takes
time |G| · |ATG | = 2(|G|+|T |)O(1)

, which is also the size of Ĝ. Performing the marking
phase requires to model-check at most |Φ| CTL

∗ formulas |G| times. Model-checking
CTL

∗ is in Pspace hence in Exptime, thus the marking phase can be done in time
2(|G|+|Φ|)O(1)

. Finally, we have seen that |T̂ | ≤ |T | · 2O(|AP |) · 2O(|Φ|), and it is also the
time needed to compute it. Summing up everything yields the required results.

By Proposition 17, the complexity bounds are as follows:

• FUS0 can be solved in time |G, T,Φ|d·|AP |·2O(|Φ|)
,

• FUS1 can be solved in time 2|G,T,Φ|O(1)·2O(|Φ|)
(because d ≤ |G| and |AP | ≤ |G, T,Φ|),

• and for k ≥ 2, FUSk can be solved in time expk(|G, T,Φ|O(1)).

This establishes the upper bounds for Theorem 9.

5.3.2 The elementary case

We prove Theorem 10 which considers rational binary relations in K45NM. For such
relations, all the ; quantifiers can be eliminated in the formula with a single powerset
construction.

Consider the marking phase described in Algorithm 1. To evaluate whether ;ϕ holds
in a position v̂ reached after some partial play ρ̂, we have to evaluate formula ϕ in all
paths ρ′ such that ρ ; ρ′. If ϕ does not contain any subformula of the form ;ϕ′, i.e. ϕ
is a CTL

∗ state formula, knowing the last position of each such ρ′ is sufficient to evaluate
ϕ; the information set contained in v̂ provides this information. But if ϕ has subformulas
of the form ;ϕ′, evaluating ϕ in a related path ρ′ requires not only the last position of
ρ′, but also the state δ(αι, ρ′) of ATG after reading ρ′.

In the general case, as described in the proof of Proposition 17, we perform a new
powerset construction, such that information sets are sets of positions of Ĝ (and no longer
of G), i.e. an element of an information set is a pair (v, α) where v is the last position of
a related path, and α the state of ATG after reading this path.

The reason why FUSK45NM is elementary lies in the fact that, as established in Sec-
tion 5.2, if ; is in K45NM and ρ ; ρ′, then δ(αι, ρ) and δ(αι, ρ

′) are information set
bisimilar. To take advantage of this we do not build Ĝ from ATG directly, but we first
quotient it according to Definition 32. Thus in Algorithm 1, when evaluating ;ϕ in a
position v̂ = (v, α) reached after some play ρ̂, we know that for each path ρ′ such that
ρ ; ρ′, δ(αι, ρ′) = δ(αι, ρ) = α, and therefore we know that ϕ should be evaluated in
position v̂′ = (last(ρ′), α) of Ĝ.

Let (G, T,Φ) be an instance of FUSK45NM, note V the set of positions in G and ; = [T]
(recall ; is a K45NM relation). We describe how, with one powerset construction only,
we obtain an equivalent CTL

∗ game.
First, like in the general case, let us define TV the transducer that relates two words in

V ∗ if the corresponding sequences of valuations are related by T , and define TG the restric-
tion of TV that only outputs words in U = Paths∗(Vι): TG = TV |AG , where L(AG) = U .

Upper bounds 77

Now we build the information set automaton ATG for TG and we quotient it by its bisimi-
larity relation -I . Let ATG

-I
= (V,A, δ, αι) be this quotient information set automaton.

We first state that this quotient automaton computes the information we need. It
follows directly from Lemma 12 page 72 and Proposition 14 page 69:

Lemma 15. For all w ∈ V ∗, δ(αι, w).I = {v | ∃ρ · v ∈ U , w ; ρ · v}.

Because ; is a K45NM relation and we consider the quotient automaton of ATG ,
Lemma 11 page 70 gives us:

Lemma 16. For all w,w′ ∈ V ∗, w ; w′ implies that δ(w) = δ(w′).

We define the powerset arena as in Definition 34, except that we synchronize G with
A
TG
-I

instead of ATG . We note it G̃ = (Ṽ , Ẽ , Ṽι, ṽι, µ̃).

The bijection f between U and Ũ is defined as in the general case: for an infinite path
π, f(π) = π̃ where for each i ≥ 0, π̃[i] = (π[i], δ(αι, π[0, i])), and similarly for finite paths
and for trees. To avoid confusion with the general case we denote the image of an object
by f with a tilde instead of a hat (ρ̃, t̃. . .).

For an L; formula ϕ we define its flattening ϕ̃ as the CTL
∗ formula obtained by re-

cursively replacing each subformula ;ϕ′ with p ; ϕ′ , starting from innermost subformulas.
For example,

˜;EX ; q = p ; EXp
; q
.

We describe in Algorithm 2 the new marking procedure, which evaluates all subfor-
mulas of the form ;ϕ, starting with the innermost ones, and at the same time computes
the flattening of Φ. From now on, G̃ refers to the powerset arena after its labelling has
been enriched by this marking phase.

1 Φ̃ := Φ;

2 while d(Φ̃) > 0 do
3 foreach ;ϕ ∈ Sub(Φ̃) such that d(ϕ) = 0 do
4 foreach ṽ = (v, α) ∈ Ṽ do
5 if ∀v′ ∈ α.I, (v′, α) |= ϕ then
6 µ̃(ṽ) := µ̃(ṽ) ∪ {p ; ϕ};
7 end
8 end

9 Φ̃ := Φ̃[p ; ϕ/ ;ϕ]

10 end
11 end

Algorithm 2: Marking the positions of G̃.

Lemma 17. For all state formula ϕ ∈ Sub(Φ), for all v ∈ Vι, for all labelled tree t ⊆
Paths∗(v) and for all x ∈ t, t, x |= ϕ if, and only if, t̃, x̃ |= ϕ̃.

78 Fully-uniform strategies

Proof. The proof is by induction on ϕ; we only treat the case ϕ = ;ϕ′, the others can
be treated exactly as in the proof of Lemma 13. Let t ⊆ Paths∗(v) for some v ∈ Vι, and
take x ∈ t. Note x = v0 . . . vn and x̂ = v̂0 . . . v̂n. Letting αn = δ(αι, x), by definition of f
we have that v̂n = (vn, αn).

Because ϕ = ;ϕ′, ϕ̃ = pϕ. The definition of |= gives this first equivalence:

t̃, x̃ |= pϕ ⇐⇒ pϕ ∈ µ̃(ṽn). (5.4)

Consider the marking phase (Algorithm 2). When ;ϕ′ is evaluated on positions of G̃,
fully-quantified subformulas of ϕ′ (if any) have already been evaluated and replaced with
fresh atomic propositions, so it is actually the flattening ϕ̃′ of ϕ′ that is evaluated in
positions (v′, αn), where v′ ∈ αn.I. This gives us:

pϕ ∈ µ̃(ṽn)⇐⇒ ∀v
′ ∈ αn.I, (v

′, αn) |= ϕ̃′. (5.5)

By Lemma 15, and because αn = δ(αι, x), v′ ∈ αn.I if and only if there is a node y ∈ U
such that x ; y and last(y) = v′. Combining this with equations 5.4 and 5.5 yields:

t̃, x̃ |= pϕ ⇐⇒ ∀y ∈ U s.t. x ; y, (last(y), αn) |= ϕ̃′. (5.6)

Now, by Lemma 16, we have that for all y ∈ U such that x ; y, δ(αι, y) = δ(αι, x) = αn,
and together with the definition of the bijection f this implies that (last(y), αn) = last(ỹ).
With this, Equation 5.6 becomes:

t̃, x̃ |= pϕ ⇐⇒ ∀y ∈ U s.t. x ; y, last(ỹ) |= ϕ̃′. (5.7)

Because ϕ̃′ contains no ; quantifier but is a pure CTL
∗ formula, its evaluation in a node

of a tree does not depend on the path leading to this node, but only on the subtree from
this node. From this and Equation 5.7 we have that:

t̃, x̃ |= pϕ ⇐⇒ ∀y ∈ U s.t. x ; y, Ũỹ, ỹ |= ϕ̃′. (5.8)

By induction hypothesis and because Ũỹ = Ũy, we obtain:

t̃, x̃ |= pϕ ⇐⇒ ∀y ∈ U s.t. x ; y, Uy, y |= ϕ′.

We finally get:

t̃, x̃ |= ;̃ϕ′ ⇐⇒ t, x |= ;ϕ′.

Proposition 18. Deciding (G, T,Φ) ∈ FUSK45NM can be done in time 2|G,T,Φ|O(1)·2O(|Φ|)
.

Proof. Let (G, T,Φ) be an instance of FUSK45NM. As detailed in the proof of Proposi-
tion 17, computing ATG takes exponential time, and by Lemma 8 computing the quo-
tient ATG

-I
takes quadratic time, so computing the powerset arena G̃ can be done in time

2|G,T,Φ|O(1)
, and |G̃| = 2|G,T,Φ|O(1)

. The marking phase requires to perform the model
checking of at most |Φ| CTL

∗ formulas of size O(|Φ|) on all the positions of G̃. The

Lower bounds 79

model checking of a CTL
∗ formula of size m on an arena of size n can be done in time

2O(m)O(n) (Kupferman et al., 2000), so each model checking here can be done in time
2O(|Φ|)O(|G̃, T̃ , Φ̃|), hence Algorithm 2 runs in time 2|G,T,Φ|O(1)

. By Lemma 17, and be-
cause f induces a bijection between the strategy trees in G and those in G̃, solving (G, T,Φ)
is equivalent to solving the CTL

∗ game (G̃, Φ̃). By Proposition 15 this can be done in time

|G̃|d·|AP |·2O(|Φ̃|)
, where d is the maximum branching degree of G̃. Because d is also the

maximum branching degree of G it is bounded by |G|, and by definition |AP | ≤ |G, T,Φ|,
hence solving the CTL

∗ game takes at most time 2|G,T,Φ|O(1)·2O(|Φ|)
. Summing this to the

time required to build the CTL
∗ game yields the result.

Proposition 18 gives the upper bound for Theorem 10. Notice that the complexity is
doubly exponential in the size of the formula, but for a fixed formula the problem falls in
Exptime.

Synthesis of fully-uniform strategies. Regarding the problem of synthesizing uni-
form strategies, both in the general and the elementary case, the final step of the de-
cision procedure consists in solving the final CTL

∗ game, and this is done by deciding
the nonemptiness of a parity tree automaton that accepts the set of winning strategy
trees. Like for the synthesis of strictly-uniform strategies with recognizable relations (see
Page 59), the decision procedure can be adapted to synthesize a finite memory winning
strategy when there is a winning strategy. Assuming that each position v in the original
arena is identified with a dedicated atomic proposition pv enables to keep track, in the
successive powerset constructions, what original position underlies a powerset one. This
way a regular winning strategy in the CTL

∗ game readily gives a fully-uniform strategy in
the initial game. This finite memory strategy has the same number of states as the parity
tree automaton. In the elementary case, this would be doubly exponential in the size of
the formula. In the general case it would be the same for a ; -depth below 2, and above
it would be k-exponential in the size of the original problem.

5.4 Lower bounds

Regarding Theorem 10, we easily have:

Proposition 19. FUSK45NM is 2-Exptime-hard.

Proof. The problem of solving CTL
∗ games, which is 2-Exptime-complete (Kupferman

et al., 2001), readily reduces to FUSK45NM.

We turn to the lower bounds for Theorem 9. First, FUS, like FUSK45NM, contains the
problem of solving CTL

∗ games, which gives the 2-Exptime lower bound for FUS0 and
FUS1. It remains to prove the k-Exptime lower bounds for FUSk with k ≥ 2, which is
done by the following proposition.

Proposition 20. For k ∈ N, FUSk+1 is (k+1)-Exptime-hard even if the FLk+1
;

formula
is assumed to be fixed and the transducer is assumed to be synchronous.

80 Fully-uniform strategies

The proof of Proposition 20, by reduction of the word problem for exp[k]-space bounded
alternating Turing Machines, is due to Laura Bozzelli. Because it is very technical, we do
not include it here, but it can be found in Appendix A.

5.5 Conclusion and related work

In this chapter we proved that the existence of uniform strategies for uniformity proper-
ties that only use the full quantifier can be decided for the whole class of rational relations.
The procedure is however nonelementary, and we proved that the height of the tower of
exponentials matches precisely the number of nested quantifiers in the uniformity prop-
erty. To establish the upper bounds we defined a notion of information set automaton that
computes information sets for rational relations. The proof for the matching lower bounds,
quite involved, is due to Laura Bozzelli. We also established that for rational relations
that verify transitivity, Euclideanity and No Miracles, the uniform strategy problem is
only 2-Exptime-complete. This result relies on a notion of information set bisimulation
in information set automata.

It is important to remark that our framework is closely related to rational graphs as
studied by Morvan (2000); Morvan and Rispal (2005). A graph is rational if its set of nodes
is a regular word language, and each relation between nodes is a rational relation. Rational
graphs thus form a class of infinite graphs that enjoy finite representations. Clearly, a
finite arena together with a rational relation on finite plays is a rational graph with two
relations. The nodes of the graph are the partial plays, which form a prefix-closed regular
language accepted by the game arena. The first relation is the rational relation between
plays that gives the semantics of ; , and the second one, much simpler, is the successor
relation on plays, that relates each partial play to all its extensions by one move. However,
existing results on rational graphs could not help us to solve our uniform strategy problem.
Indeed, the first order theory of rational graphs is known to be undecidable. For instance,
properties like reflexivity, transitivity and symmetry, which are definable by very simple
first order formulas, are undecidable for rational relations (Johnson, 1986). Morvan (2000)
proves that even the formula ∃x, xRx is undecidable on rational graphs.

Restricting to synchronous transducers, i.e. regular relations, yields the class of models
called automatic graphs that have been intensively studied (Khoussainov and Nerode, 1994;
Blumensath and Grädel, 2000, 2004; Khoussainov et al., 2007). The model checking of first-
order logic is decidable on automatic graphs (Blumensath and Grädel, 2004). However,
the existence of a strategy in an infinite-duration game is not expressible in first-order
logic.

The reason why we achieve decidability of the fully-uniform strategy problem for the
class of rational relations is that most of the complexity of this problem is on the vertical
axis, with branching quantifiers, temporal fixpoints and existence of a strategy. On the
horizontal axis, our logic L; can only quantify universally or existentially over immediate
neighbors, like basic modal logic. Moreover, the fact that the semantics of the full quantifier
is, unlike for the strict quantifier, independent of the strategy, allows us to treat both axis
separately.

A related result concerning rational graphs is established by Bekker and Goranko
(2007). They establish that model checking the basic modal logic K with forward and

Conclusion and related work 81

backward modalities on rational graphs is decidable, and they conjecture that it is nonele-
mentary.

A direction that we believe deserves investigation concerns information set automata.
Because they allow for the computation of information sets, they may provide a way to
define a general powerset construction for games with imperfect information and some sub-
class of rational relations. Of course this cannot work for arbitrary rational relations, as
two-player games with imperfect information and safety objectives are already undecidable
for some rational relations (see Remark 7). The two sorts of relations (apart from players
with bounded memory) for which a powerset construction is known are synchronous and
asynchronous perfect-recall (Reif, 1984; Chatterjee et al., 2006; Puchala, 2010). Identi-
fying a class of relations that strictly contains these relations and for which a powerset
construction exists would be interesting as it would give insights on what characteristics
of players make these games decidable. This may also yield results concerning games with
imperfect recall but unbounded memory, the study of which has recently received renewed
attention (Berwanger et al., 2012).

This chapter terminates our study of uniform properties in L;. In Chapter 4 we
focused on the strict quantifier, and in this chapter we studied the full quantifier. We
could combine our techniques to allow for both kinds of quantifiers in a same uniformity
property, but as our framework only allows for one relation we could only get a decidability
result for recognizable relations. We could therefore not exploit the fact that full quantifiers
can be handled for any rational relation. Thus we only combine strict and full quantifiers
in the next chapter, in which we first generalize our framework to several relations.

82 Fully-uniform strategies

Chapter 6

Generalization to several relations

In the previous chapters we only considered one relation between the nodes of trees.
However in the context of multi-agent systems for example, it is very natural to consider
several relations, representing the observational power of each agent (Parikh and Ramanu-
jam, 1985; Fagin et al., 1995). It seems therefore relevant to extend the language L; in
order to allow for several different relations between nodes of trees, and associated quan-
tifiers. In this chapter we extend the notion of uniform strategy to uniformity constraints
involving several relations, and we study how results from Chapter 4 and Chapter 5 con-
cerning the synthesis of uniform strategies generalize to this setting. Note that we only ex-
tend the logic, not the game model. We still consider two-player games, but the uniformity
properties may involve several different relations between plays. However we informally
describe in Section 6.5 how the distributed strategy problem in concurrent games with
imperfect information can be reduced to a uniform strategy problem in two-player arenas.

We establish that, somehow surprisingly, all the results concerning decidability and
complexity are unchanged, except for the case of fully-uniform strategies with K45NM
relations, which is still decidable but no longer elementary when several relations are
involved. In a second time, we describe how the extended setting allows us to establish
a relevant decidability result for a class of uniformity constraints that can use both strict
and full quantifiers in the same formula. Finally, we show how our techniques provide
a new unified proof for a number of results from the literature concerning the model-
checking of epistemic temporal logics. In fact we obtain a very general result concerning
the model-checking problem of such logics for a wide class of epistemic relations.

In this chapter, for each uniform strategy problem that we prove decidable, the associ-
ated synthesis problem can also be solved with the same time complexity. The justification
is alike the case of one relation (see Page 59 for strictly-uniform strategy synthesis and
Page 79 for fully-uniform strategy synthesis). This concerns Theorems 12, 13, 14, 15 and
16.

Note that for no relation, all the logics considered collapse to CTL
∗, and all the problems

that we consider are 2-Exptime-complete. We therefore generalize L; to n relations,
where n is greater than 1.

83

84 Generalization to several relations

6.1 Extending the language

We start by extending the syntax and semantics of L; to handle n relations. For
n ∈ N∗, we call nL; the extended language for n relations, the syntax of which is as
follows:

State formulas: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Aψ | ; iϕ | ; iϕ

Path formulas: ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where p ∈ AP and i ∈ {1, . . . , n}.
The models now include one relation ;i for each pair of quantifiers ; i, ; i. Given

a family of relations {;i}1≤i≤n, a 2AP -labelled forest U (the universe), a 2AP -labelled
tree t, a node x ∈ t and a state formula ϕ ∈ nL;, {;i}1≤i≤n,U , t, x |= ϕ means that ϕ
holds at node x of t in universe U and with relations {;i}1≤i≤n. Again, we shall omit the
relations and the universe when they are understood from the context. The case of path
formulas is similar, replacing a node x ∈ t with a branch λ ∈ Branches(t). The semantics
is unchanged, except for formulas of the form ; iϕ or ; iϕ, for which it naturally becomes:

• t, x |= ; iϕ if for all y ∈ t such that x ;i y, t, y |= ϕ

• t, x |= ; iϕ if for all y ∈ U such that x ;i y, Uy, y |= ϕ

The definition of uniform strategies straightforwardly extends to this language. Let
G = (V,E, Vι, vι, µ) be a finite 2AP -labelled game arena for some finite set AP . Let us note
Σ = 2AP , and let {;i}1≤i≤n be a family of binary relations over Σ∗. Finally, let ϕ be an
nL; formula. The universe U is still the (Σ, V)-forest of all paths in the arena starting
from a position in Vι: U = Paths∗(Vι).

Definition 36. A strategy σ is ({;i}1≤i≤n, ϕ)-uniform if the strategy tree of σ satisfies
ϕ, i.e. tσ |= ϕ.

We also define the sublanguages SnL; and FnL; that generalize respectively SL;

and FL;.

Definition 37. Let SnL; and FnL; be the sublanguages of nL; that use only one
kind of quantifier: respectively, {; i}1≤i≤n quantifiers and { ; i}1≤i≤n quantifiers.

We now study how our results on the synthesis of uniform strategies generalize to the
case of n relations.

6.2 Strictly-uniform strategies

As we started with the study of strictly-uniform strategies in the one relation case, so
do we now in the extended setting. First of all, the undecidability of the strictly uniform
strategy problem for rational relations is straightforwardly transferred.

Definition 38.

nSUS :=





(G, {Ti}1≤i≤n,Φ)

G is a finite 2AP -labelled arena,
each Ti is a transducer over 2AP ,

Φ ∈ SnL;, and
there exists a ({[Ti]}1≤i≤n,Φ)-uniform strategy

for Player 1 in G.





Strictly-uniform strategies 85

Theorem 11. nSUS is undecidable.

However, we prove that the decidability of SUS restricted to recognizable relations also
extends to the case of several relations. To do so, we first adapt our jumping automata of
Section 4.2.

6.2.1 Extended jumping tree automata

Let Υ be a tree alphabet and Σ be a labelling alphabet. Jumping tree automata (JTA)
over (Σ,Υ)-tree naturally extend to operate with several relations. We equip them with
n binary relations over Σ∗, and we allow transition functions to use transition directions
; i and ; i for any i ∈ {1, . . . , n}. We let nDir; = DirA ∪

⋃n
i=1{ ; i, ; i} denote the set

of transition directions for JTA with n relations. Recall that DirA is the set of transition
directions for alternating tree automata, which is normally DirA = Υ. Once again for
clarity of presentation, and because it is (most of the time) sufficient for our needs, we
consider instead the abstract directions DirA = {3,�}. As for JTA with one relation, all
our results also hold in the case where DirA = Υ.

Definition 39. A nDir;-automaton equipped with a family of relations {;i}1≤i≤n over
Σ∗ is a multi jumping tree automaton, or simply jumping tree automaton. 1

Like for the case of one relation, JTA equipped with n relations capture the semantics
of our language with n strict quantifiers, and they capture the strictly-uniform strategy
problem.

Proposition 21. Let ϕ be an SnL; formula, and let {;i}1≤i≤n be a family of relations
over (2AP)∗. There exists a jumping tree automaton Aϕ over alphabet 2AP equipped with
relations {;i}1≤i≤n, with two colours and of size 2O(|ϕ|) such that t ∈ L(Aϕ) if, and only
if, t |= ϕ.

Proof. Similar to Proposition 8, page 51.

Proposition 22. Let (G, {Ti}1≤i≤n,Φ) be an instance of nSUS. There is a jumping tree
automaton A equipped with relations {[Ti]}1≤i≤n such that σ is a ({[Ti]}1≤i≤n,Φ)-uniform
strategy if, and only if, tσ ∈ L(A). Moreover, A can be chosen of size |A| = |G|2 + 2O(|Φ|)

and with only two colours.

Proof. Similar to Proposition 9, page 53.

This result tells us that, like in the case of a single relation, if for some class of relations
the emptiness problem for jumping tree automata is decidable then the strictly-uniform
strategy problem for this class of relation is also decidable. Because nSUS is undecidable
(Theorem 11), the following corollary is immediate.

Corollary 6. The emptiness problem for jumping tree automata equipped with regular
equivalence relations is undecidable, hence it is also undecidable for rational relations.

1. See Definition 6 for the definition of Dir -tree automata.

86 Generalization to several relations

6.2.2 Decidable case

Even though the emptiness of JTA is undecidable for arbitrary rational relations,
we show that, as for the case of a single relation, restraining to recognizable relations
yields decidability via two-way tree automata. Indeed, when all the relations that equip a
jumping automaton are recognizable, one can build an equivalent two-way tree automaton
of linear size, the emptiness of which is decidable in exponential time. Recall that if a
relation ; is recognizable, B; denotes the minimal deterministic word automaton that
recognizes it (see Fact 4, page 27).

Proposition 23. If A is a jumping tree automaton equipped with n recognizable relations
{;i}1≤i≤n and using l colours, then there is a two-way tree automaton Â using O(l)

colours and of size O(|A| ·
∑n

i=1 |B;i
|) such that L(A) = L(Â).

Proof. The proof is similar to Proposition 11, page 55. The only detail is that when the
two-way automaton has to simulate a jump for relation ;i, it triggers the associated
recognizer Bi, and it stops executing it when the jump mode ends. The two-way automa-
ton never needs to execute several Bi at the same time, hence the size of the two-way
automaton.

We now establish two corollaries. The first one, Corollary 7, is a direct consequence
of Proposition 23 and Theorem 4; the second one, Corollary 8, follows from the first one
together with Proposition 2. Let A be a jumping tree automaton over alphabet Σ equipped
with a family of recognizable relations {;i}1≤i≤n and using l colours. Let ma (resp. mi)
be the number of states in A (resp. B;i

), and let m = ma ·
∑n

i=1mi · l.

Corollary 7. One can build a nondeterministic tree automaton A′ with 2m log(m) states
and O(m) colours such that L(A) = L(A′).

Corollary 8. The emptiness problem for A can be decided in time |Σ|O(m) ·2O(d m2 log(m)),
where d is the maximal arity of trees (d = |Υ| for Υ-trees).

From this we obtain that the strictly-uniform strategy problem with multiple relations
is decidable if all the relations are recognizable. In addition, the complexity is not higher
than in the case of a single relation.

Definition 40.

nSUSRec :=





(G, {B;i
}1≤i≤n,Φ)

G is a finite 2AP -labelled arena,
each ;i is a recognizable relation on (2AP)∗,

Φ ∈ SnL;, and
there exists a ({;i}1≤i≤n,Φ)-uniform strategy

for Player 1 in G.





The size of an instance (G, {B;i
}1≤i≤n,Φ) of SUSRec is the sum of the sizes of its compo-

nents, plus the number of atomic propositions: |(G, {B;i
}1≤i≤n,Φ)| = |G|+

∑n
i=1 |B;i

|+
|Φ|+ |AP |.

Proposition 24. Let (G, {B;i
}1≤i≤n,Φ) be an instance of nSUSRec, and let mb =

∑n
i=1mi,

where mi is the number of states in B;i
. Deciding whether (G, {B;i

}1≤i≤n,Φ) is a posi-

tive instance can be done in time (|G|d · 2|AP |+d mb log(mb))2
O(|Φ|)

, where d is the maximum
branching degree in |G|.

Fully-uniform strategies 87

Proof. The proof is similar to Proposition 12, page 58.

This result establishes that the strictly-uniform strategy problem for recognizable re-
lations has essentially the same complexity whether one or several relations are allowed.

Theorem 12. nSUSRec is 2-Exptime-complete.

Proof. The lower bound is inherited from the case of one relation, and Proposition 24
provides the upper bound.

We have established that for strictly-uniform strategies, our decidability and com-
plexity results coincide for the single and the multi relations cases. We now turn to
fully-uniform strategies.

6.3 Fully-uniform strategies

In this section we first prove that the fully-uniform strategy problem for n relations
remains decidable. However, while for the class of rational relations, allowing for several
relations leaves the complexity of the problem unchanged (nonelementary), it is not so
for the class of K45NM relations. Indeed, while the fully-uniform strategy problem is
2-Exptime-complete for a single K45NM relation, alternation between full quantifiers for
different relations makes the problem nonelementary for n relations. However the com-
plexity remains lower than for arbitrary rational relations: it depends on the alternation
between full quantifiers for different relations, rather than the total nesting depth of full
quantifiers.

6.3.1 Rational relations

First, we generalize the notion of ; -depth. The ; -depth of an FnL; formula ϕ,
still written d(ϕ), is the maximum number of nested ; i quantifiers in ϕ, regardless of the
value of i. Formally, d(ϕ) is defined inductively as follows:

d(p) = 0 d(¬ϕ) = d(ϕ) d(ϕ ∨ ϕ′) = max(d(ϕ), d(ϕ′))

d(Aψ) = d(ψ) d(Xψ) = d(ψ) d(ψUψ′) = max(d(ψ), d(ψ′))

d(; iϕ) = 1 + d(ϕ)

We define the following decision problems.

Definition 41. For each k ∈ N, we let

nFUSk :=





(G, {Ti}1≤i≤n,Φ)

G is a finite 2AP -labelled arena,
each Ti is a transducer over 2AP ,

Φ ∈ FnL;, d(Φ) ≤ k, and
there is a ({[Ti]}1≤i≤n,Φ)-uniform strategy

for Player 1 in G.





and the fully-uniform strategy problem is

nFUS :=
⋃

k∈N

nFUSk.

88 Generalization to several relations

As usual, we let the size of an instance be the sum of the sizes of its components plus
the number of atomic propositions: |(G, {Ti}1≤i≤n,Φ)| = |G|+

∑n
i=1 |Ti|+ |Φ|+ |AP |.

Theorem 13. nFUSk is k-Exptime-complete if k ≥ 2, 2-Exptime-complete otherwise.

Proof. The lower bounds are directly inherited from FUSk. For the upper bounds, let
(G, {Ti}1≤i≤n,Φ) be an instance of nFUSk for some k > 0, with G = (V,E, Vι, vι, µ). We
explain informally how to adapt the construction described in Section 5.3.1. From each
transducer Ti (recognizing relation ;i), build the associated information set automaton
ATi , and synchronize the arena G with AT1 , . . . ,ATn . This gives, by synchronous product,
a powerset arena Ĝ of size 2(|G|+|T1|+...+|Tn|)O(1)

in which each innermost subformula of
the form ; iϕ can be evaluated positionally, using the information computed by ATi . A
slight modification of Algorithm 1 marks the positions of Ĝ with the fresh propositions
p ; iϕ where ; iϕ holds (for ; iϕ ∈ Sub(Φ)). This provides an exponential-size instance of
nFUSk−1, which can be proven equivalent 2 to the original one by an easy adaptation of
Proposition 16 (page 73).

The upper bounds are then established by induction on k, like in Proposition 17.

Corollary 9. nFUS is nonelementary.

6.3.2 K45NM relations

We show that the complexity of the fully-uniform strategy problem for K45NM re-
lations rises from 2-Exptime-complete for one relation to nonlementary for n relations.
However, the details show that the complexity remains better than for the case of arbi-
trary rational relations. Recall that in the case of one relation, the properties of K45NM
relations enable us to eliminate all ; quantifiers by a single powerset construction, while
for rational relations one additional powerset construction is needed for each nesting of ;

quantifier. In the case of several relations, the properties of K45NM relations still allow
us to eliminate in one shot all sequences of nested ; i quantifiers, as long as the quanti-
fiers concern the same relation. Nonetheless, each alternation between different quantifiers
requires a new powerset construction.

We inductively define the alternation depth of a formula ϕ ∈ FnL;, noted ad(ϕ), as
follows:

ad(p) = 0 ad(¬ϕ) = ad(ϕ) ad(ϕ ∨ ϕ′) = max(ad(ϕ), ad(ϕ′))

ad(Aψ) = ad(ψ) ad(Xψ) = ad(ψ) ad(ψUψ′) = max(ad(ψ), ad(ψ′))

ad(; iϕ) = 1 +max{ad(; jϕ
′) | ; jϕ

′ ∈ Sub(ϕ) and i 6= j} 3

For a detailed study of the fully-uniform strategy problem with several K45NM relations,
we bound the alternation depth of formulas.

2. In the sense that the first instance is a positive instance if, and only if, the second also is.
3. Classically, max(∅) = 0.

Fully-uniform strategies 89

Definition 42. For each h ∈ N, we let:

nFUS
h
K45NM :=





(G, {Ti}1≤i≤n,Φ)

G is a finite 2AP -labelled arena,
each Ti is a transducer over 2AP

such that [Ti] ∈ K45NM,
Φ ∈ FnL;, ad(Φ) ≤ h, and

there is a ({[Ti]}1≤i≤n,Φ)-uniform strategy
for Player 1 in G.





and

nFUSK45NM :=
⋃

h∈N

nFUS
h
K45NM.

We have proven that for n = 1, the fully-uniform strategy problem is 2-Exptime-
complete (Theorem 10). For n > 1 we establish the following result.

Theorem 14. For n > 1, nFUS
h
K45NM is h-Exptime-complete if h ≥ 2, otherwise it is

2-Exptime-complete.

Proof. Let n > 1, and let (G, {Ti}1≤i≤n,Φ) be an instance of nFUS
h
K45NM for some h >

0. The procedure for FUSK45NM (Section 5.3.2) can be applied iteratively to remove
alternation-free subformulas of the form ; iϕ. Roughly speaking, using the fact that
for each relation ;i, two related paths take the information set automaton ATi in two
information-set bisimilar states, one can recursively evaluate on the first powerset arena G̃
all innermost subformulas of the form ; iϕ, like in Algorithm 2 (page 77), until alternations
are reached.

For example, for a formula ϕ = ; 1 ; 2 ; 2q ∧ ; 1 ; 2 ; 1q, the formula we obtain after
this procedure is

ϕ̃ = ; 1p ; 2 p ; 2 q
∧ ; 1 ; 2p ; 1 q,

where p ; 1 q, p ; 2 q and p ; 2 p ; 2 q
are fresh atomic propositions.

This yields an equivalent instance of nFUS
h−1
K45NM, the size of which is exponential in

|(G, {Ti}1≤i≤n,Φ)|. An induction on h like in Proposition 17 (page 75) gives the desired
upper bounds.

For the lower bounds, the construction presented for FUS in Proposition 30 of the
appendix (Page 130) can be adapted. The behaviour of the transducer T built in the proof
of Lemma 27 (Page 132) shows that the relation it recognizes is not in K45NM. First, we
describe how to obtain K45NM relations by alternating between two transducers that each
recognize a transitive and Euclidean relation. To do so, we make each transducer label
its outputs with a special atomic proposition that identifies the transducer that produced
the output. Say that the first transducer, T0, uses pT0 and T1 uses pT1 . First, observe
that an input ρ labelled by some pTi has necessarily been output by Ti on some input
ρ′, and furthermore a transducer reading ρ can “know” exactly what was this ρ′. Indeed,
the contents of ρ and ρ′ are the same, and we can add finitely many atomic propositions
to mark on an output what was the kind of the input (there are but a finite number of
different kinds of plays). Therefore we can let Ti behave on a pTi-tagged play ρ as it would

90 Generalization to several relations

have behaved on the input ρ′ that originated ρ. This ensures that on a given input of Ti,
all the outputs are related together, so that [Ti] is transitive and Euclidean. On a play
that is tagged by neither pT0 nor pT1 , Ti just behaves normally and tags the outputs with
pTi . On plays tagged with pT1−i

, Ti does the same, but in addition it removes the tag
pT1−i

. In the formulas built in the proof, we alternate between full quantifiers for each
transducer, such that each Ti always receives as input a play that is not tagged with pTi ,
and it therefore behaves normally.

Now, making the relations verify the No Miracles property can be done by adding loops
on accepting states of the transducers with labels a/a for each a in the alphabet but, as
a side effect, insignificant related plays are added. This issue can however be dealt with
by adding two new atomic propositions, valid0 and valid1, used by transducers to signal
which related plays are relevant and which ones are added to achieve the No Miracles
property. More precisely, when Ti reads a partial play, in addition to its normal behaviour
(described above) it also marks each position in the output with validi, except in loop
transitions added for the No Miracles property, that still just copy the input. Making sure
that transducer Ti never takes as input a word already marked with validi ensures that the
relevant outputs of Ti and only them are marked with validi. This is achieved by letting
each transducer erase the marker of the other, by relativising the ; i-quantifications to
validi-marked plays, and specifying in the main formula that the plays in the strategy
must be originally unmarked (see Lemma 27).

Corollary 10. nFUSK45NM is nonelementary.

In the next section we show how techniques for strict and full uniformity can be com-
bined.

6.4 Mixing strict and full quantifiers

The fact that nL; allows for quantifiers over different relations (when n > 1) makes
it possible to define a relevant class of uniformity constraints that combine strict and full
quantifiers. To give the idea, consider an L; formula ϕ that contains no strict quantifier
in the scope of a full quantifier. This means that if ; iϕ

′ ∈ Sub(ϕ), then there is no
formula of the form ;jϕ

′′ in Sub(ϕ′), for any j. If the relations attached to the full
quantifiers in ϕ are rational, then we can iterate powerset constructions and subformula
elimination of Section 5.3 to remove all full quantifiers. Recall that there is a bijection
between plays in an arena and plays in its powerset construction. Because this bijection
preserves relations, the truth of strict quantifiers is also preserved between a tree of the
original arena and a tree of the powerset arena. Therefore, eliminating the full quantifiers
yields an equivalent instance of nSUS. This instance can in turn be solved using jumping
tree automata, provided the relations attached to the strict quantifiers are recognizable.

We let SFnL; be the set of formulas in nL; such that there is no strict quantifier in
the scope of a full quantifier. For example, AG ; 2q ∈ SFnL;, ;1EF ; 2 ; 1p ∈ SFnL;,
but ; 1AX;2p /∈ SFnL;. We start with the general case, where the relations for the
full quantifiers can be arbitrary rational relations.

Mixing strict and full quantifiers 91

6.4.1 Rational relations

The ; -depth, originally defined for FL; formulas and extended to FnL; formulas in
Section 6.3.1, is now extended to SFnL; formulas (and in fact to arbitrary nL; formulas).
The ; -depth of an nL; formula ϕ, still written d(ϕ), simply counts the nesting of full
quantifiers and ignores strict quantifiers. It is defined inductively on formulas as for FnL;

formulas, the new inductive case being: d(; iϕ) = d(ϕ).

Definition 43. For each k ∈ N, we let:

nSFUSk :=








G,
{B;i

}1≤i≤m,
{Ti}m<i≤n,

Φ




G is a finite 2AP -labelled arena, 0 ≤ m ≤ n,
for 1 ≤ i ≤ m, ;i is a recognizable relation,
for m < i ≤ n, Ti is a transducer over 2AP ,

Φ ∈ SFnL;, d(Φ) ≤ k,
if ; iϕ ∈ Sub(Φ), then 1 ≤ i ≤ m,

if ; iϕ ∈ Sub(Φ), then m < i ≤ n, and
letting ;i = [Ti] for m < i ≤ n,

there is a ({;i}1≤i≤n,Φ)-uniform strategy
for Player 1 in G.





and

nSFUS :=
⋃

k∈N

nSFUSk.

Remark 11. An instance (G, {B;i
}1≤i≤m, {Ti}m<i≤n,Φ) of nSFUSk where m = 0 is an

instance of nFUSk. On the opposite, if m = n then it is an instance of nSUS. Also, if
k = 0, there is no full quantifier in Φ, therefore it is also an instance of nSUS.

Theorem 15. nSFUSk is k-Exptime-complete for k ≥ 2, 2-Exptime-complete otherwise.

Proof. The lower bounds are inherited from those of nFUSk.
For the upper bounds, let (G, {B;i

}1≤i≤m, {Ti}m<i≤n,Φ) be an instance of nSFUSk.
If k = 0, then it is an instance of nSUS (see Remark 11) and can be solved in time doubly
exponential (Theorem 12).

If k > 0, first build the powerset arena Ĝ of size 2(|G|+|T1|+...+|Tn|)O(1)
, as done for

nFUSk. Because there is no strict quantifier in the scope of a full quantifier, innermost
formulas of the form ; iϕ can be evaluated and replaced by fresh atomic propositions.
Compared to the case of nFUS, here in addition we have to adapt each recognizer Bi to
work on alphabet 2ÂP , where ÂP is the set of atomic propositions used in the original
instance augmented with the fresh atomic propositions. The automaton B̂i works just like
Bi, by ignoring the fresh atomic propositions in the labellings it reads. Note that B̂i has
the same number of states as Bi.

This procedure yields an equivalent instance of nSFUSk−1. One can check in particular
that, by letting ;̂ iϕ = ; iϕ̂, Lemma 13 (page 73) still holds in this context. The additional
inductive case ϕ = ; iϕ

′ in the proof of Lemma 13 is routine, by using the canonical
bijection between plays of G and plays of Ĝ. Iterating the process k times removes all full
quantifiers. However, all the strict quantifiers from the original formula Φ are unaffected

92 Generalization to several relations

by this procedure. Therefore, while for nFUSk the iterated elimination of full quantifiers
yields an equivalent CTL

∗ game, here we obtain instead an equivalent strictly-uniform
strategy problem. More precisely, the instance we obtain is an instance of nSUSRec, which
is decidable by Theorem 12. Indeed, it is assumed that if ; iϕ ∈ Sub(Φ) then 1 ≤ i ≤ m,
meaning that every strict quantifier ; i in Φ corresponds to a recognizable relation (see
Definition 43 of nSFUSk).

Let (Ĝ, {B̂i}1≤i≤m, Φ̂) be the instance of nSUSRec obtained by the procedure described
above, and let ÂP be its set of atomic propositions. The arena Ĝ is computed in time
expk(|(G, {Ti}m<i≤n,Φ)|O(1)), which is also its size. Let mb =

∑n
i=1mi, where mi is the

number of states in B̂i. Recall that B̂i has a many states as Bi. Also, let d be the maximum
branching degree in |Ĝ|. By Proposition 24, deciding whether (Ĝ, {B̂i}1≤i≤m, Φ̂) ∈ nSUSRec

can be done in time (|Ĝ|d · 2|ÂP |+d mb log(mb))2
O(|Φ|)

≤ (|Ĝ|d · 2|AP |+|Φ|+d mb log(mb))2
O(|Φ|)

,
therefore deciding whether (G, {B;i

}1≤i≤m, {Ti}m<i≤n,Φ) ∈ nSFUSk can be done in time

(expk(|(G, {Ti}m<i≤n,Φ)|O(1))
d
· 2|AP |+|Φ|+d mb log(mb))2

O(|Φ|)
.

To obtain the upper bounds it remains to observe that, as mentioned in the proof
of Proposition 17 (page 75), the definition of our powerset construction ensures that the
maximum branching degrees of the successive powerset arenas remains unchanged, such
that d ≤ |G|.

Corollary 11. nSFUS is nonelementary.

6.4.2 K45NM relations

We also consider the particular case where all the relations involved in full quantifiers
are in K45NM. As for nFUSK45NM, the height of the tower of exponentials in the time
complexity of solving the problem drops from the total nesting depth of full quantifiers to
the alternation depth.

For this, we extend the notion of alternation depth to arbitrary nL; formulas. For
a formula ϕ ∈ nL;, its alternation depth is defined inductively as in Section 6.3.2. The
additional inductive case is as follows: ad(; iϕ) = ad(ϕ).

The problem that we consider is the following restriction of nSFUS.

Definition 44. For each h ∈ N, we let:

nSFUS
h
K45NM :=








G,
{B;i

}1≤i≤m,
{Ti}m<i≤n,

Φ




G is a finite 2AP -labelled arena, 0 ≤ m ≤ n,
for 1 ≤ i ≤ m, ;i is a recognizable relation,
for m < i ≤ n, Ti is a transducer over 2AP

such that [Ti] ∈ K45NM,
Φ ∈ SFnL;, ad(Φ) ≤ h,

if ; iϕ ∈ Sub(Φ), then 1 ≤ i ≤ m,
if ; iϕ ∈ Sub(Φ), then m < i ≤ n, and

letting ;i = [Ti] for m < i ≤ n,
there is a ({;i}1≤i≤n,Φ)-uniform strategy

for Player 1 in G.





and

nSFUSK45NM :=
⋃

h∈N

nSFUS
h
K45NM.

Application of our results and related work 93

Remark 12. For n = 1, an instance (G, {B;i
}1≤i≤m, {Ti}m<i≤1,Φ) of nSFUS

h
K45NM is

either an instance of FUSK45NM if m = 0 or an instance of SUSRec if m = 1. In both
cases the problem can be solved in doubly exponential time (Theorem 10, page 65 and
Theorem 8, page 59 respectively). In particular, the alternation depth of Φ is never more
than 1.

Theorem 16. For n = 1, nSFUS
h
K45NM is 2-Exptime-complete for all h. For n > 1,

nSFUS
h
K45NM is h-Exptime-complete for h ≥ 2, 2-Exptime-complete otherwise.

Proof. The lower bounds are inherited from those of nFUS
h
K45NM. For the upper bounds,

the proof is similar to Theorem 15. The difference is that, as justified in the proof of
Theorem 14, when the relations for the full quantifiers are in K45NM, a number of powerset
constructions equal to the alternation depth of the input formula is sufficient to eliminate
all full quantifiers and obtain an equivalent instance of nSUSRec.

Corollary 12. For n > 1, nSFUSK45NM is nonelementary. Otherwise it is 2-Exptime-
complete.

In the next section we discuss some impacts of the results established in this chapter,
as well as connections with known results from the literature.

6.5 Application of our results and related work

In this section we discuss some known results related to the contributions of this
chapter. We first point out two results from the literature on logics of knowledge and time
that are direct corollaries of our results on uniform strategies. In a second time we discuss
connections with the problem of distributed strategy synthesis with epistemic temporal
objectives.

6.5.1 Model checking knowledge and time

Recall that LTLKn (resp. CTLKn) is LTL (resp. CTL) enriched with n knowledge
operators K1, . . . ,Kn. The models of these logics are usually interpreted systems, i.e.
transition systems with valuations on states, and for each knowledge operator Ki, an
equivalence relation ∼i on states of the system. Each relation is extended to sequences
of states according to assumptions made on the memory of the agents (see, e.g. van der
Meyden and Shilov (1999) for more detail). Almost all studies concern memoryless agents
or synchronous perfect-recall agents. Note that, setting aside the strategic aspect, our
labelled game arenas together with relations on plays can simulate labelled transition
systems.

Theorem 17 (van der Meyden and Shilov (1999)). Model-checking LTLKn with syn-
chronous perfect recall is decidable.

Theorem 18 (Dima (2008)). Model-checking CTLKn with synchronous perfect recall is
decidable.

94 Generalization to several relations

Because our base language is CTL
∗ and synchronous perfect-recall relations are in

K45NM, both problems are easily reduced to nFUSK45NM. Let M be an interpreted
system and let ϕ a formula of either LTLKn or CTLKn. For each epistemic relation ∼i,
let ≃i denote its classic extension to sequences of states according to the perfect recall
synchronous semantics. We define a one-state transducer Ti which has a transition on a
pair of states (s, s′) whenever s ∼i s′. Clearly, Ti recognizes ≃i. Being an equivalence
relation, ≃i is in K45, and one easily checks that it satisfies No Miracles. Then, one
simply sees the model M as an arena whose positions all belong to Player 2. Player 1
has only one trivial strategy in this game, and all possible runs in the model are in the
outcome. So ϕ is true in the model if and only if the only trivial strategy of Player 1 is
({[Ti]}1≤i≤n, ϕ)-uniform (if ϕ ∈ LTLKn, take its universal quantification).

The algorithms given in van der Meyden and Shilov (1999) and Dima (2008) are in
k-Expspace for formulas of knowledge nesting depth k. Our results improve this upper
bound: Theorem 14 gives an h-Exptime upper-bound, where h is the alternation depth
of the formula instead of the total nesting of knowledge quantifiers. Note that for h = 1
we manage to obtain an Exptime upper-bound instead of the 2-Exptime one we have for
nFUS

1
K45NM. The reason is that the automaton AG that recognizes the strategy trees of

Player 1 in the above reduction is trivial as Player 1 never plays. In fact we can combine
this automaton with the hesitant alternating automaton A

Φ̂
that accepts models of the

final CTL
∗ formula, the automaton we obtain is still hesitant, and its emptiness can be

tested in linear time (see Kupferman et al. (2000)). A
Φ̂

being of size exponential in |Φ|,
the result follows. In fact we have the following general result:

Theorem 19. Model-checking CTL
∗
Kn with rational epistemic relations on runs is in k-

Exptime, where k is the modal depth of the formula. If, in addition, the epistemic relations
verify transitivity, Euclideanity and No Miracles, then the problem is in h-Exptime, where
h is the alternation depth of the formula. K45NM relations include, e.g. synchronous and
asynchronous perfect-recall relations.

Note that the same upper bounds for asynchronous perfect recall and distributed
knowledge have also been proved by Aucher (2013).

6.5.2 Distributed strategy synthesis for epistemic temporal objectives

Uniform strategies also naturally capture the synthesis problem from knowledge-based
specifications, as addressed in van der Meyden and Vardi (1998) or van der Meyden and
Wilke (2005). We informally describe how this problem can be reduced to a uniform
strategy problem.

Consider a concurrent game structure G where n players each have imperfect informa-
tion and play against nature. Consider also a specification ϕ ∈ LTLKn that the players
aim at achieving. The problem is to decide whether there is a distributed strategy – one
strategy for each player – such that the specification ϕ is enforced against all behaviours
of nature. The imperfect information is classically defined by a set of observations Oi for
each player i, and a mapping obsi from positions of the game to Oi. Each player’s obser-
vation is assumed to be synchronous perfect recall. Finally, each player plays by choosing
actions from some private set Acti of actions, and of course each player’s strategy must be
observation-based.

Application of our results and related work 95

We reduce this problem to an instance of nSUS. To do so, we build a two-player arena
G′ where Player 1 simulates all the players but nature, which is represented by Player 2.
First, as we do in Section 3.2 for two-player games with imperfect information, we put
the players’ actions inside newly created positions. For each position v and each tuple
of actions (a1, . . . , an), Player 1 can move from v to (v, (a1, . . . , an)). From there, nature
can choose a next position v′ according to the moves allowed in G. Also, each position
(v, (a1, . . . , an)) is labelled with atomic propositions {pa1 , . . . , pan}, and positions where it
is Player 1’s turn to play (of the form v) are labelled with p1. Because strategies must be
observation based, for each player i we define, according to obsi, the rational relation ≃i
over plays of G′, that represents player i’s observation. It remains to constrain Player 1 to
play uniformly with respect to each player i. Recall from Section 3.2 the formula SameAct

that characterizes observation-based strategies for one player. We define, for each i:

SameActi := AG(p1 →
∨

ai∈Acti

; iEXpai).

This formula means that Player 1 simulates player i’s actions in a manner consistent with
obsi. Finally, observe that the knowledge operators in van der Meyden and Vardi (1998)
or van der Meyden and Wilke (2005) have – to use the vocabulary of uniform strategies
– strict semantics. Indeed, the system in which formulas are interpreted is restricted to
behaviors that are induced by the synthesized strategy. Therefore, letting ϕ′ ∈ SnL; be
the formula ϕ where each knowledge modality Ki is replaced with the strict quantifier ; i,
we have:

Proposition 25. The distributed synthesis problem for ϕ in G has a solution if, and only
if, there is a ({≃i}1≤i≤n, ϕ

′ ∧
∧n
i=1 SameActi)-uniform strategy for Player 1 in G′.

van der Meyden and Vardi (1998) establish that the case of one agent with synchronous
perfect recall is decidable; because perfect-recall relations are not recognizable relations,
our contribution does not enable to obtain this result. However, this indicates that there
should be a class of relations other than Rec for which the strictly-uniform strategy prob-
lem is decidable. On the other hand, when more than one agent are involved, the synthesis
problem for LTLKn specifications is undecidable; yet it is well-known that making addi-
tional assumptions on information flows yields decidable cases. For instance van der Mey-
den and Wilke (2005) establish that the problem is decidable in broadcast environments,
where information is exchanged between players by means of public broadcasts only. This
suggests that there should be relations not in Rec for which, under some assumptions
on the connections between relations for each quantifier ; i, nSUS is decidable. It would
be very interesting to identify for what class of relations and which constraints on their
inter-connections this result holds.

Finally, consider the results of Section 6.4 where formulas can involve both strict
and full quantifiers. This setting allows us to express in a single uniformity property
that, for example, a strategy is observation-based (using the strict quantifier), and that it
verifies some epistemic objective concerning the knowledge of players, who either know the
strategy (strict quantifier) or ignore it (full quantifier). In Section 7.3.2 we discuss further
this possibility to reason about the knowledge of agents with different abilities, and we
propose an interpretation of the assumptions made to obtain decidability.

96 Generalization to several relations

6.6 Conclusion

In this chapter we generalized our framework to manage several relations between plays
in a game, instead of only one in the previous chapters. We established that our results
from Chapters 4 and 5 still hold when the uniformity properties of strategies can involve
quantifications for different relations over plays. The only difference concerns the case
of fully-uniform strategies with K45NM relations, for which switching to several relations
raises the complexity of the uniform strategy problem from 2-Exptime to nonelementary
in the alternation depth of the formula. We then proved that techniques from Chapter 4
and 5 can be combined to solve the uniform strategy problem for a class of uniformity
properties involving both strict and full quantifiers. Finally we gave two examples of
frameworks studied in the literature that we can capture in our extended notion of uniform
strategies.

The first one is the model checking of epistemic temporal logics. Because the knowl-
edge modalities in this problem can be expressed with full quantifiers, our contribution
provides an alternative, unified proof of decidability for these logics with synchronous and
asynchronous perfect recall. In fact, we have the more general result that the model check-
ing problem for these logics is decidable for any epistemic relations that are recognizable
by finite state transducers, which is the case of synchronous and asynchronous perfect
recall. In addition, as these relations are instances of K45NM relations, our contribution
provides accurate upper bounds on the time complexity of these problems, in terms of
alternation depth of knowledge modalities.

The second framework that we capture is the distributed strategy synthesis problem
for LTLKn specifications. We described how, using uniformity properties with several strict
quantifiers, we can reduce the problem of solving a concurrent game with n players and
imperfect information to solving a uniform strategy problem in a two-player game arena.

For players having perfect recall, the existence of distributed strategies in such games
is undecidable, and indeed the class of relations for which we have decidability of the
uniform strategy problem with strict quantifiers does not contain perfect recall. However
our contribution shows that we can solve such games with epistemic temporal objectives
if the agents have bounded memory, even if we want the knowledge of the players to be
restricted to the outcomes of the distributed strategy – which forbids powerset construction
techniques.

We finish this thesis with a last application of our results on uniform strategies, in the
context of Dynamic Epistemic Logic.

Chapter 7

Epistemic protocol synthesis

Automated planning, as defined and studied in Ghallab et al. (2004), consists in com-
puting a finite sequence of actions that takes some given system from its initial state to
one of its designated “goal” states. The Dynamic Epistemic Logic (DEL) community has
recently defined and started to investigate a special case of automated planning which is
called epistemic planning (Bolander and Andersen, 2011; Löwe et al., 2011; Aucher and
Bolander, 2013). In DEL, epistemic models and event models permit to represent very
precisely how events that can occur in the world are perceived by the agents involved,
and how the knowledge or beliefs of these agents concerning the world evolves with the
occurrence of events. Given an initial epistemic state of the agents, a finite set of possible
events and an objective property concerning the knowledge of the agents, the epistemic
planning problem consists in computing a finite sequence of available events such that,
after their occurrence, the objective property holds of the new state of the world. We
reformulate the epistemic planning problem as a uniform strategy problem, allowing us
to establish new complexity bounds for this problem, and we generalize it by defining a
notion of epistemic protocol synthesis that we solve thanks to techniques from Chapter 5.

This chapter revolves around three frameworks: Dynamic Epistemic Logic, Epistemic
Temporal Logic (ETL) and regular structures. While DEL and ETL are designed to study
interactions between knowledge and time, and connections between both frameworks have
already been studied (Hoshi and Yap, 2009; van Benthem et al., 2009; Aucher and Herzig,
2011; Wang and Aucher, 2013), we show that the regular structures point of view is
also relevant and we establish correspondences between regular structures and the two
other frameworks. Relying on the well-known embedding of DEL in ETL, we define a
notion of epistemic protocol and the associated epistemic protocol synthesis problem,
which generalizes in several directions the epistemic planning problem. Then we exploit
our connection with regular structures to apply techniques from Chapter 5 and solve our
epistemic protocol synthesis problem. We believe that our approach paves the way to
apply mature and powerful automata techniques to solve problems of protocol synthesis
in the framework of Dynamic Epistemic Logic.

97

98 Epistemic protocol synthesis

7.1 DEL, ETL and regular structures

We start with the presentation of the three frameworks which are dynamic epistemic
logic, epistemic temporal logic and regular structures. For the rest of the chapter we fix
a finite nonempty set of agents Ag. We write m = |Ag| the number of agents (we keep
notation n available for other purposes). Like in previous chapters, AP always denotes
some finite set of atomic propositions.

In this chapter we use both word automata and transducers. To avoid confusions in
notations, we shall denote states of word automata as s, s′ . . . and states of transducers as
q, q′ . . .

7.1.1 Dynamic Epistemic Logic

The epistemic language LEL is simply the language of propositional logic extended
with “knowledge” modalities, one for each agent. Intuitively, Kiϕ reads as “agent i knows
ϕ”. The syntax of LEL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Kiϕ where p ∈ AP and i ∈ Ag.

Representing the world

The semantics of LEL is given in terms of epistemic models. Intuitively, a (pointed)
epistemic model (M, w) represents how the agents perceive the actual world w.

Definition 45. An epistemic model is a tuple M = (W, {Ri}i∈Ag, V) where:

• W is a non-empty finite set of possible worlds,

• Ri ⊆W ×W is an accessibility relation on W for agent i ∈ Ag,

• V : AP → 2W is a valuation function.

We write w ∈ M for w ∈ W , and (M, w) is called a pointed epistemic model. In the
possible worlds semantics as formalized by Hintikka (1962), wRiw

′ means that in world
w agent i considers that w′ might be the actual world. An agent then knows something if
this thing is true in all the worlds that the agent considers as possibly the actual world.

Formally, given a pointed epistemic model (M, w), we define the semantics of LEL by
induction on its formulas:

• M, w |= p if w ∈ V (p)

• M, w |= ¬ϕ if it is not the case that M, w |= ϕ

• M, w |= ϕ ∨ ψ ifM, w |= ϕ orM, w |= ψ

• M, w |= Kiϕ if for all w′ such that wRiw
′,M, w′ |= ϕ.

To illustrate this, consider a very simple situation with two agents, Alice and Bob,
where Alice places a coin in a cup, shakes the cup and puts it upside down on a table.
Assume that Alice and Bob are interested in knowing whether the upside of the coin
is heads or tails. In the initial situation we described, neither Alice nor Bob knows it.
Figure 7.1 represents this initial epistemic situation, with atomic propositions h and t,
meaning respectively heads and tails. The doubly circled world, w, is the actual world:
we assume that the coin is actually on heads. The arrows represent accessibility relations

DEL, ETL and regular structures 99

for Alice and Bob: both of them consider that the two possible worlds may be the actual
one.

w

h

w′

t

A,B A,B

A,B

Figure 7.1: The epistemic model M.

Letting M be the epistemic model in Figure 7.1, it holds that M, w |= h ∧ ¬KAh ∧
¬KBh, meaning that in world w, the coin is on heads but neither Alice nor Bob knows it.

Representing events

One of the great assets of DEL is the ability to describe in detail events and their
occurrence in an epistemic situation. First, there may be conditions that the world must
verify for an event to happen. This is represented by a function assigning to each event
a precondition, represented as an epistemic formula. Because these preconditions are
assumed to be common knowledge among the agents, the occurrence of an event provides
the information that the precondition of this event was true in the world where it occurred.
Second, agents may have different perceptions of the occurrence of an event. This is
represented, like for epistemic models, by an accessibility relation for each agent. But an
event can also modify the world in which it happens, by changing the valuations of the
atomic propositions according to some postconditions. It is often assumed in DEL that
events can only provide information and do not change the facts of the world. Such events
are called epistemic events (Baltag et al., 1998). On the other hand, events that do modify
the worlds in which they occur are called ontic events (see for example van Ditmarsch and
Kooi (2006)). Here we consider ontic events as formalized in van Eijck (2004).

Definition 46. An event model (with ontic events) is a tuple E = (E, {Ri}i∈Ag, pre, post)
where:

• E is a non-empty finite set of possible events,

• Ri ⊆ E× E is an accessibility relation on E for agent i,

• pre : E→ LEL is a precondition function and

• post : E→ AP → LEL is a postcondition function.

We write e ∈ E for e ∈ E, and (E , e) is called a pointed event model, where e represents
the actual event of (E , e). Intuitively, eRi e′ means that while event e is occurring, agent
i considers possible that event e′ is actually occurring. An event e can occur in a world w
of an epistemic model M if, and only if, its precondition is verified, i.e. M, w |= pre(e).
If an event e occurs in a pointed epistemic model (M, w), an atomic proposition p will
be true in the “updated” situation if, and only if, its postcondition is verified in the world
before the event occurs, i.e. M, w |= post(e)(p).

100 Epistemic protocol synthesis

To continue our example, imagine that Alice looks under the cup. Bob sees her doing
so, but does not manage to see if it is heads or tails. This can be represented with the
event model in Figure 7.2. Event e1 is Alice seeing heads, so pre(e1) = h, and e′1 is Alice
seeing tails, so pre(e′1) = t. Alice knows what she observes, so that she does not confuse
the two events, while Bob does not know which of the two events occurs. None of these
two events is ontic, so that for each event, the postcondition is the identity function id :
post(e1)(h) = h, post(e1)(t) = t, and similarly for e′1.

An example of ontic event would be for someone to flip the coin. Figure 7.3 repre-
sents an event model where Alice flips the coin without watching it, and Bob sees her
manipulating the cup but does not know whether she flipped the coin of not. Notice that
models E1 and E2 are similar in structure, however the preconditions and postconditions
are different. In E2, e2 corresponds to Alice flipping the coin. This can happen no matter
what side of the coin is facing up, so pre(e2) = true. However, if it was heads before the
event it will be tail afterwards, and vice versa: post(e2)(t) = h and post(e2)(h) = t. Event
e′2 corresponds to the case where Alice touched the coin but did not flip it: again the
precondition is pre(e′2) = true, and the postcondition is the identity function as nothing
changes. Alice knows which one of the two events occurs, but Bob considers both possible.

h

e1

id t

e′1

id

A,B A,B

B

Figure 7.2: The event model E1.

true

e2

h→ t
t→ h

true

e′2

id

A,B A,B

B

Figure 7.3: The event model E2.

Figure 7.4: Two event models. Inside each event is its precondition, and on the side is its
postcondition.

In general, preconditions and postconditions can be epistemic formulas; however many
interesting and involved situations can be modeled with only propositional pre and post-
conditions. In our example, notice that the preconditions and postconditions are either
true or a unique atomic proposition. In the rest of the chapter, we say that an event
model is propositional if both its preconditions and postconditions are propositional.

Remark 13. For technical reasons, we will assume in the following that an event model
has at least one executable event for every pointed epistemic model. Formally, we assume
that the disjunction of the preconditions of its events is a valid formula. When it is not the
case, we may add in the model an event with trivial precondition and accessible from no
other event in the model. See Remark 14 for more details on the reason of this assumption.

Updating the world

An ontic event has two effects of the world: first, it can modify the physical world
itself, which is formalized by a change of the propositional valuations; second, an event
can carry information impacting the agents’ perception of the world, which is represented

DEL, ETL and regular structures 101

by updating the accessibility relations of the agents. Informally, the update product of an
epistemic model with an event model is a new epistemic model representing the updated
world. A possible world in this model is a pair (w, e) where w is a possible world from the
initial epistemic model, and e is a possible event that can occur in w. The propositional
valuation of a world (w, e) is defined according to the postcondition post(e), and in a
world (w, e), an agent considers the world (w′, e′) possible if in world w she considered
w′ possible, and while event e has occurred she considers possible that event e′ actually
occurred.

Definition 47. Given an epistemic model M = (W, {Ri}i∈Ag, V) and an event model
E = (E, {Ri}i∈Ag, pre, post), the update product ofM and E is the epistemic modelM⊗E =
(W⊗, {R⊗

i }i∈Ag, V
⊗) where:

W⊗ = {(w, e) ∈W × E | M, w |= pre(e)},

R⊗
i (w, e) = {(w

′, e′) ∈W⊗ | w′ ∈ Ri(w) and e′ ∈ Ri(e)},

V ⊗(p) = {(w, e) ∈W⊗ | M, w |= post(e)(p)}

The product of a pointed epistemic model (M, w) with a pointed event model (E , e)
is (M, w)⊗ (E , e) = (M⊗E , (w, e)) ifM, w |= pre(e), and it is undefined otherwise.

Figure 7.5 illustrates the product ofM with E1 from our example. According to precon-
ditions, event e can only occur in world w, and event e′ in w′. Because the postconditions
are the identity function, the valuations do not change before and after the event. Finally,
because Alice can tell the difference between e and e′, she does not confuse (w, e) with
(w′, e′). As a result, one can see that after having observed heads, Alice indeed knows that
the coin is on heads, while Bob did not learn anything.

h

w

t

w′

A,B A,B

A,B

⊗

h

e

id t

e′

id

A,B A,B

B

= h

(w, e)

t

(w′, e′)

A,B A,B

B

Figure 7.5: The update product of M and E1.

7.1.2 Epistemic Temporal Logic

We consider epistemic temporal models as defined in Pacuit and van Benthem (2006).
Two main other approaches have been studied for modeling knowledge and time (see

102 Epistemic protocol synthesis

Parikh and Ramanujam (1985) for the Parikh and Ramanujam framework, and Halpern
and Vardi (1989); Fagin et al. (1995); Halpern et al. (2004) for interpreted systems). They
are all modally equivalent (Pacuit, 2007), and we choose to use the one that resembles
most the models of our language mL;.

Definition 48. An ETL model is a structure H = (Σ, H, {;i}i∈Ag, V), where Σ is a finite
set of events, H ⊆ Σ∗ is a set of histories closed for non-empty prefixes, for each i ∈ Ag,
;i is a binary relation on H, and V : AP → 2H is a valuation function.

Given an ETL model H = (Σ, H, {;i}i∈Ag, V) we may write h ∈ H for h ∈ H.

Remark 14. We assume that every history can be continued, i.e. for all h ∈ H, there is an
event e ∈ Σ such that he ∈ H. This is the counterpart of the assumption in Remark 13 that
for each event model, in every possible situation there is an event that can occur. These
assumptions are here to fit our notion of infinite trees (see Section 2.2) and deadlock-free
game arenas.

We describe how mL; formulas can be given a semantics based on ETL models (recall
that m = |Ag|). Given such a model H = (Σ, H, {;i}i∈Ag, V), we see (H,V) as a (2AP)-
labelled Σ-forest, which plays the role of universe in the semantics of mL;. We may abuse
notations and use H to denote this forest. We evaluate an mL; formula in a 2AP -labelled
Σ-tree. It should be kept in mind that the tree in which we evaluate an mL; formula
will represent some strategy or some protocol, to be defined later. Note that a node x
is a history, thus the meaning of x ;i y is clear for x, y ∈ t. Note also that a branch
λ = x0x1 . . . is an infinite series of histories such that for all i ∈ N, xi+1 = xiei+1 for some
ei+1 ∈ Σ. Now, given a (2AP ,Σ)-tree t ⊆ H, a node x of t and a state formula ϕ ofmL;, we
let t, x |= ϕ denote that {;i}i∈Ag,H, t, x |= ϕ as defined in Section 6.1; we define t, λ |= ψ
similarly for a branch λ ∈ Branches(t) and a path formula ψ. Again, we must remark that
in H relations ;i are defined between histories, while in the semantics of mL; relations
are defined on (2AP)∗. As explained in Remark 4, using atomic propositions that uniquely
identify events and modifying the valuation V accordingly allows us to equivalently define
each relation ;i over (2AP)∗.

For an ETL model H = (Σ, H, {;i}i∈Ag, V), we define the valuation of a history h ∈ H
as ν(h) = {p | h ∈ V (p)}. For a propositional formula α, we shall note h |= α for ν(h) |= α,
and we let JαKH = {h ∈ H | h |= α}.

We now define some properties that, as described in Section 7.2, characterize ETL
models that are generated by DEL models.

Definition 49. Let H = (Σ, H, {;i}i∈Ag, V) be an ETL model. We define the following
properties:

• Propositional Stability (PS): for all e ∈ Σ, for all p ∈ AP , there exists a propositional
formula αep such that {h ∈ H | he ∈ V (p)} = JαepK

H.

• Synchronicity (S): for all h, h′ ∈ H, if h ;i h
′ then |h| = |h′|.

• Perfect Recall (PR): for all he, h′e′ ∈ H, if he ;i h
′e′ then h ;i h

′.

• No Miracles (NM): for all he, h′e′, ge, g′e′ ∈ H, if he ;i h
′e′ and g ;i g

′, then
ge ;i g

′e′.

• Propositional Equivalence Invariance (PEI): for all histories h and h′ in H such that
ν(h) = ν(h′), he ∈ H iff h′e ∈ H.

DEL, ETL and regular structures 103

An ETL model that verifies all these properties is called a simple ETL model.

Observe that No Miracles for ETL models is a variant of the notion defined in Defini-
tion 27 (page 64) for binary relations on words.

Intuitively, Propositional Stability reflects the fact that the truth of atomic propositions
does not evolve completely arbitrarily, but that the “physical” effects of an event are
determined by the current state of the world. More precisely, it says that whether some
proposition p will hold after the occurrence of an event e only depends on the atomic
propositions that currently hold. Propositional Equivalence Invariance means that the
same events can occur in histories that verify the same atomic propositions. Concerning
the notions of Perfect Recall and No Miracles (called Uniform No Miracles in van Benthem
and Liu (2004)), the definitions we take here concern the synchronous setting. For a
discussion on the matter see for example Dégremont et al. (2011).

7.1.3 Regular structures

As discussed in Section 3.5, regular structures are infinite structures that can be rep-
resented by finite machines. They have been studied in depth in, e.g. , Khoussainov and
Nerode (1994); Blumensath and Grädel (2000, 2004); Khoussainov et al. (2007). As we
prove in the next section, they provide an intermediate step between DEL-generated ETL
models (yet to be defined) and our framework for uniform strategies.

A relational structure is a tuple S = (D, {;i}i∈Ag, V) where D is the (possibly infinite)
domain of S, for each i ∈ Ag, ;i ⊆ D × D is a binary relation and V : AP → 2D is a
valuation function. In general relations can be of arbitrary arity, but here we only consider
binary relations. Also, V can alternatively be seen as a set of predicate interpretations for
atomic propositions in AP . Observe that epistemic models and ETL models are instances
of relational structures with unary and binary relations.

Definition 50. A relational structure S = (D, {;i}i∈Ag, V) is a regular structure over a
finite alphabet Σ if its domainD ⊆ Σ∗ is a regular language over Σ, for each i, ;i ⊆ Σ∗×Σ∗

is a regular relation and for each p ∈ AP , V (p) ⊆ D is a regular language. Given
deterministic word automata AS and Ap (p ∈ AP), as well as transducers Ti for i ∈ Ag,
we say that (AS , {Ti}i∈Ag, {Ap}p∈AP) is a representation of S if L(AS) = D, for each
i ∈ Ag, [Ti] = ;i and for each p ∈ AP , L(Ap) = V (p).

Lemma 18. Let S = (D, {;i}i∈Ag, V) be a regular structure. There is a representation
(AS , {Ti}i∈Ag, {Ap}p∈AP) of S such that AS and each Ap share the same underlying labelled
directed graph. Formally, if we note AS = (Σ, Q, δ, sι, F), then for each p ∈ AP , Ap =
(Σ, Q, δ, sι, Fp) for some Fp ⊆ Q.

Proof. First, let us make each Ap a complete automaton by sending missing transitions
to a sink state. AS does not need to be completed as each Ap already recognizes a
sublanguage of L(AS). Then we take the synchronized product of the labelled directed
graphs underlying all these automata. This gives a labelled directed graph on which one
can assign accepting states for each automaton according to the corresponding underlying
states.

104 Epistemic protocol synthesis

Remark 15. From now on we will only consider canonical representations of regular struc-
tures of the form described in Lemma 18. For a representation (AS , {Ti}i∈Ag, {Ap}p∈AP)
of a structure S, where AS = (Σ, Q, δ, sι, F) and for each p ∈ AP , Ap = (Σ, Q, δ, sι, Fp),
it is possible to define for each state s ∈ Q its valuation νS(s) = {p | s ∈ Fp}. Therefore,
we will consider that a canonical representation for a regular structure S is given as a
tuple (AS , {Ti}i∈Ag, νS), where νS is a valuation over AP for the sates of AS , as described
above.

Definition 51. Let (AS , {Ti}i∈Ag, νS) be a (canonical) representation of a regular struc-
ture S over Σ, and let Q be the set of states of AS . A binary relation R ⊆ Q × Q is a
propositional bisimulation if for all (s, s′) ∈ R,

• νS(s) = νS(s
′),

• for all e ∈ Σ, δ(s, e) is defined if, and only if, δ(s′, e) is defined, and

• for all e ∈ Σ, if δ(s, e) = s1 and δ(s′, e) = s′1 are defined, then (s1, s
′
1) ∈ R.

We say that two states s and s′ are propositionally bisimilar, noted s -AP s
′, if there is a

propositional bisimulation R such that (s, s′) ∈ R.

We define a notion of simple regular structure which, as we prove in Section 7.2,
corresponds to the notion of simple ETL model. However, the properties that characterize
these regular structures do not concern the domain or the relations but rather the finite
state machines that recognize them.

We first define the following structural property of automata:

Definition 52. A finite state word automaton A = (Σ, Q, δ, sι, F) is said to be nonempty-
prefix-closed if Q = {sι} ⊎ F , and sι has no incoming transition (notice that sι /∈ F).

Definition 53. Let S = (D, {;i}i∈Ag, V) be a regular structure. A representation
(AS , {Ti}i∈Ag, νS) is simple if, letting Q be the set of states of AS :

1. AS is a nonempty-prefix-closed deterministic automaton with no deadlock 1,

2. for all i ∈ Ag, there is a one-state synchronous transducer T ′
i such that, letting TD

be the transducer recognizing the identity relation on D, Ti = TD ◦ T
′
i ◦ TD,

3. for all s, s′ ∈ Q, if νS(s) = νS(s
′) then s -AP s

′.

S is a simple regular structure if it has a simple representation.

Property 1 just ensures that the domain of the structure is the domain of some ETL
model. Property 2 says that each relation is intrinsically recognized by a very simple
transducer, and it ensures that the relation verifies Synchronicity, Perfect Recall and
No Miracles. Finally, Property 3 ensures both Propositional Equivalence Invariance and
Propositional Stability.

7.2 Merging frameworks

In this section we build bridges between the three frameworks of DEL, ETL and regular
structures. The connections between DEL and ETL (in the synchronous setting) are well

1. Classically, we call deadlock a state with no outgoing transition.

Merging frameworks 105

known (van Benthem et al., 2009; Wang and Aucher, 2013), we just adapt them to the
case of propositional event models with ontic events. As a new result, however, we show
that relational structures generated by propositional DEL models are regular structures.
Using this result, we establish a connection between “DEL-generated” ETL models and
the framework of uniform strategies, which enables us to solve our problem of epistemic
protocol synthesis in Section 7.3.

7.2.1 DEL and ETL

van Benthem and Liu (2004) show how an iterative application of event models to
an initial epistemic model yields a structure that can be seen as an ETL model, and
conversely how ETL models that verify certain properties can be seen as “DEL-generated”,
the meaning of which we now make precise. We focus on a rather simple case where a
single event model is repeatedly applied to some initial epistemic model, but we shall see
that this suffices to model interesting problems.

Definition 54. For an epistemic model M = (W, {Ri}i∈Ag, V) and an event model E =
(E, {Ri}i∈Ag, pre, post), we define the family of epistemic models {MEn}n≥0 by letting
ME0 =M and MEn+1 =MEn ⊗ E . Letting, for each n, MEn = (Wn, {Rn

i }i∈Ag, V
n),

we define the ETL model ME∗ = (Σ, H, {;i}i∈Ag, V), where:

• Σ =W ∪ E,

• H =
⋃
n≥0W

n,

• h ;i h
′ if there is some n such that h, h′ ∈Mn and hRn

i h
′, and

• V (p) =
⋃
n≥0 V

n(p).

A history h ∈ H is thus an element (w, e1, . . . , en) ∈ME
n for some n, that we simply

write we1 . . . en. Note that the set of histories that we define is indeed closed for non-empty
prefixes. Also, because by assumption every event model has at least one executable event
for each possible situation (Remark 13), every history can be continued. Therefore ME∗

is an ETL model (Remark 14).
In the rest of the chapter we shall say that an ETL model is DEL-generated if it is

equal to ME∗ for some epistemic model M and some event model E . If in addition the
event model E is propositional, we shall say that the ETL model is PDEL-generated. Note
that all PDEL-generated models are DEL-generated, but the contraposite does not hold.

Remark 16. Because we will sometimes need to track worlds and events in a DEL-generated
ETL model, we assume that when an epistemic modelM is given, for each world w ∈M
there is an atomic proposition pw ∈ AP such that for every world w′ ∈ M, M, w′ |= pw
if and only if w = w′. In addition we assume that for an event model E , for each event
e ∈ E there is an atomic proposition pe ∈ AP such that the postconditions of E verify:

for all e, e′ ∈ E and w ∈M,

post(e)(pw) = false post(e′)(pe) =

{
true if e = e′,

false otherwise.

As we will always consider a finite number of epistemic and event models at a time,
these assumptions comply with the finiteness of AP .

106 Epistemic protocol synthesis

Lemma 19. Let M be an epistemic model, and let E be an event model. For all w ∈M,
for all e ∈ E and history w0e1 . . . en ∈ME

∗, it holds that:

w0e1 . . . en |= pw if, and only if, n = 0 and w0 = w, and
w0e1 . . . en |= pe if, and only if, n > 0 and en = e.

Proof. The proof is a direct application of the assumption made in Remark 16 and the
definition of ME∗.

The following proposition is a slight modification of the one in van Benthem and
Liu (2004). It was originally stated without ontic events, and with arbitrary preconditions
instead of propositional ones; therefore they use a stronger notion of propositional stability,
and epistemic bisimilarity invariance instead of propositional equivalence invariance.

Proposition 26. Let H be an ETL model. There exist an epistemic model M and a
propositional event model E such that H =ME∗ if and only if H is a simple ETL model
(i.e. satisfies properties PS, S, PR, NM and PEI of Definition 49).

Proof. The proof is a simple adaptation of van Benthem and Liu (2004).
Left-to-right implication. Let M = (W, {Ri}i∈Ag, V) be an epistemic model, let

E = (E, {Ri}i∈Ag, pre, post) be a propositional event model, and let H =ME∗ be the ETL
model over Σ = W ∪ E generated by M and E . By definition of the update product
⊗ and by construction of ME∗, checking that H verifies S, PR and NM is routine. For
propositional stability, take e ∈ Σ, p ∈ AP and h ∈ H. By definition of the update
product, he ∈ V (p) if and only if he ∈ H and h |= post(e)(p). Because preconditions
and postconditions are propositional, we can let αep := pre(e) ∧ post(e)(p), and we have
that {h ∈ H | he ∈ V (p)} = JαepK

H. Propositional Equivalence Invariance comes from the
fact that all preconditions of events in E are propositional: if two histories verify the same
atomic propositions, the same events can extend them.

Right-to-left implication. let H = (Σ, H, {;i}i∈Ag, V) be an ETL model over the
finite set of events Σ that verifies PS, S, PR, NM and PEI. We define the epistemic model
M = (W,R, VM) where the set of worlds W = Σ ∩H is the set of histories of length one,
each Ri is the restriction of ;i to W and VM is the restriction of V to W . The event
model E = (E,R, pre, post) is defined as follows. E = Σ is the set of possible events, and
eRi e

′ if there are he and h′e′ in H such that he ;i h
′e′. Regarding preconditions, since

H verifies Propositional Equivalence Invariance, for each event e, the set {h | he ∈ H}
is closed by propositional equivalence (within H). This set is thus definable by a simple
propositional formula pre(e), and because each h in H can be extended with at least
one event, these formulas can be chosen so that ∨e∈Σpre(e) ≡ true. The event model
E thus verifies the assumption of Remark 13. For the postconditions, because H verifies
propositional stability, for each e ∈ Σ and p ∈ AP there exists a propositional formula αep
such that {h ∈ H | he ∈ V (p)} = JαepK

H. We let post(e)(p) := αep. With M and E thus
defined, we can prove that H =ME∗.

Let us noteME∗ = (Σ, H ′, {;′
i}i∈Ag, V

′). First, it is not hard to see that H = H ′(for
example by induction on the length of histories). Now, let p ∈ AP . We prove that
h ∈ V (p) iff h ∈ V ′(p). For |h| = 1, h ∈ M by definition of ME∗, and the result follows
from the definition of M. Now if h = h′e ∈ H, h′e ∈ V (p) iff h′ |= αep iff h′ |= post(e)(p)
iff h′e ∈ V ′(p).

Merging frameworks 107

Finally, we prove by induction on the common length n of h and h′ that h ;i h
′ iff

h ;′
i h

′. For n = 1 the result follows directly from the definitions of M and ME∗. For
n+1, suppose that he ;i h

′e′. By Perfect Recall, we have that h ;i h
′, and by induction

hypothesis, h ;′
i h

′. Because he and h′e′ are in the domain, we have that h |= pre(e)
and h′ |= pre(e′). And because he ;i h

′e′, by definition of E we have that eRi e′, hence
he ;′

i h
′e′. Now assume that he ;′

i h
′e′. By definition of the update product we have

that, (i) h ;′
i h

′, and (ii) eRi e
′ in E . Point (i) implies by induction hypothesis that

h ;i h
′, and Point (ii) implies by definition of Ri that there are ge and g′e′ in H such

that ge ;i g
′e′. This, together with No Miracles and the fact that h ;i h

′, makes that
he ;i h

′e′.

We also establish that the semantics of LEL is preserved by the translation from DEL
to ETL. To this aim we first define the following mapping from LEL to FmL;:

Definition 55. Given a LEL-formula ϕ, we inductively define the FmL; formula ϕ̃ as
follows:

p̃ = p ¬̃ϕ = ¬ϕ̃ ϕ̃1 ∨ ϕ2 = ϕ̃1 ∨ ϕ̃2 K̃iϕ = ; iϕ̃.

We may abuse vocabulary by talking about the ; -depth d(ϕ) of an LEL formula ϕ,
by letting d(ϕ) = d(ϕ̃), and similarly for alternation depth, ad(ϕ).

Notice that we translate knowledge operators into full quantifiers. Because in the
semantics of DEL it is implicitely assumed that agents do not know more of what happens
than what is represented in the event models, and in particular they do not know what
the protocol that generates a given sequence of events is, the full semantics is the one
that correctly captures the agents’ knowledge. We formalize this idea with the following
lemma.

Lemma 20. LetM and E be respectively an epistemic model and an event model, and let
n ∈ N. For every world (w, e1, . . . , en) ∈ M⊗ E

n, every epistemic formula ϕ ∈ LEL and
every tree t ⊆ME∗ such that we1 . . . en ∈ t,

M⊗En, (w, e1, . . . , en) |= ϕ iff ME∗, t, we1 . . . en |= ϕ̃.

Proof. This follows directly from the definition ofME∗ (Definition 54) and the semantics
of mL; (note that there are no temporal operators in the formulas ϕ and ϕ̃).

Remark 17. In Section 7.3.2 we also consider agents who know the protocol, in which case
their knowledge is captured using the strict semantics. Roughly, for agents who ignore the
protocol, our results on fully-uniform strategies allow us to prove the decidability of the
epistemic protocol synthesis problem – that we define in Section 7.3.2 – with the classic
perfect-recall assumption, inherent to DEL. However, for agents who know the protocol,
our results on strictly-uniform strategies only allow us to prove decidability of the epistemic
protocol synthesis problem if agents have bounded memory.

This achieves the connection between ETL and DEL.

108 Epistemic protocol synthesis

7.2.2 PDEL-generated models and regular structures

We now establish correspondences between PDEL-generated ETL models and regular
structures.

Theorem 20. Let H be an ETL model. H is a simple regular structure if, and only if, it
is PDEL-generated.

The rest of the section is dedicated to the proof of Theorem 20. The left-to-right
implication results from the following lemma together with Proposition 26.

Lemma 21. If S is a simple regular structure, then it is a simple ETL model.

Proof. Let S = (D, {;i}i∈Ag, V) be a simple regular structure, and take a simple rep-
resentation (AS , {Ti}i∈Ag, νS) (see Definition 53). Because AS is nonempty-prefix-closed
(Property 1 of Definition 53), it is not hard to see that D is closed for nonempty prefixes,
and because AS has no deadlock (Property 1 of Definition 53) every element in D can
be extended in D; by Definition 48, S is an ETL model. Because for each i ∈ Ag, ;i

is the restriction to D of the relation recognized by a one-state synchronous transducer
(Property 2 of Definition 53), S verifies Synchronicity, Perfect Recall and No Miracles.
It remains to exploit Property 3 of Definition 53 and prove that S verifies Propositional
Stability and Propositional Equivalence Invariance.

Let AS = (Σ, Q, δ, sι, F). First, observe that for each h ∈ D, s = δ(sι, h) is defined,
s 6= sι and ν(h) = νS(s).

Now, for Propositional Stability, we define for each atomic proposition p ∈ AP and
event e ∈ Σ the set Pred(p, e) = {s | p ∈ νS(δ(s, e))}. Pred(p, e) is the set of states in AS

from which reading e takes AS to a state whose valuation contains p. We clearly have:

{h ∈ D | he ∈ V (p)} = {h ∈ D | δ(sι, h) ∈ Pred(p, e)}.

One can build from the set of valuations {νS(s) | s ∈ Pred(p, e)} a propositional formula
αep that is verified exactly by this set of valuations. Formally, we let:

αep =
∨

s∈Pred(p,e)

∧

p′∈νS(s)

p′ ∧
∧

p′ /∈νS(s)

¬p′.

We prove that {h ∈ D | he ∈ V (p)} = JαepK
S , or equivalently, that:

{h ∈ D | δ(sι, h) ∈ Pred(p, e)} = JαepK
S .

For the left-to-right inclusion, take h ∈ D such that δ(sι, h) ∈ Pred(p, e), and note
s = δ(sι, h). By definition of αep, because s ∈ Pred(p, e) it holds that νS(s) |= αep, and
because ν(h) = νS(s), we have h ∈ JαepK

S .
Now for the right-to-left inclusion, take h ∈ JαepK

S . Writing s = δ(sι, h), we have that
ν(h) = νS(s). By definition of αep, we also have that there exists s′ ∈ Pred(p, e) such
that ν(h) = νS(s

′). Because νS(s) = νS(s
′), we have by Property 3 of Definition 53 that

s -AP s
′. From this and the fact that s′ ∈ Pred(p, e), we conclude that s ∈ Pred(p, e).

For Propositional Equivalence Invariance, take h, h′ ∈ D such that ν(h) = ν(h′).
Letting s = δ(sι, h) and s′ = δ(sι, h

′) we have that νS(s) = ν(h) = ν(h′) = νS(s
′), and

Merging frameworks 109

again because S verifies Property 3 of Definition 53, s -AP s′. This implies that for all
events e, δ(s, e) is defined if, and only if, δ(s′, e) is defined. Because AS has only accepting
states (except for the initial state sι), it follows that if δ(s, e) and δ(s′, e) are defined, they
both belong to F . Finally, he ∈ D if, and only if, h′e ∈ D.

The second lemma below proves the right-to-left implication of Theorem 20.

Lemma 22. IfM is an epistemic model and E is a propositional event model, H =ME∗

is a simple regular structure. It has a simple representation (AH, {Ti}i∈Ag, νH) such that
|AH| ≤ 2|AP | · (|M|+ |E|).

Proof. Let M = (W,R, V) be an epistemic model, let E = (E,R, pre, post) be a proposi-
tional event model, and let H =ME∗ = (Σ, H, {;i}i∈Ag, VH).

Define the word automatonAH = (Σ, Q, δ, sι, F), where Σ =W∪E, F = {sν | ν ⊆ AP}
and Q = F ⊎ {sι}. For a world w ∈ W , we define its valuation as ν(w) := {p ∈ AP | w ∈
V (p)}. We now define δ, which is the following partial transition function:

∀w ∈W , ∀e ∈ E,
δ(sι, w) = sν(w) δ(sι, e) is undefined,

δ(sν , w) is undefined δ(sν , e) =

{
sν′ , with ν ′ = {p | ν |= post(e)(p)} if ν |= pre(e)

undefined otherwise.

It is not hard to see that L(AH) = H, hence H is a regular language. Also AH is
nonempty-prefix closed, and because of Remark 13 it is deadlock-free.

Concerning valuations, take some p ∈ AP . Let Ap = (Σ, Q, δ, sι, Fp), where Fp = {sν |
p ∈ ν}. Clearly, L(Ap) = VH(p), hence VH(p) is a regular language. For a state s ∈ Q,
define νH(s) = {p | s ∈ Fp}.

Observe thatAH has 2|AP | states and less than |W |+|E| transitions per state. Therefore
|AH| ≤ 2|AP | · (|M|+ |E|).

For the relations, let i ∈ Ag and consider the one-state synchronous transducer Ti =
(Σ, Q′ = {q},∆i, s, F

′ = {q}), where ∆i = {(q, w,w
′, q) | wRiw

′} ∪ {(q, e, e′, q) | eRi e
′}.

It is easy to see that ;i = [Ti]∩H ×H. Since [Ti] is a regular relation and H is a regular
language, ;i is a regular relation recognized by T ′

i = TAH
◦ Ti ◦ TAH

. Therefore, ME∗

is a regular structure, and (AH, {T
′
i}i∈Ag, νH) is a representation that verifies Property 1

and Property 2 of Definition 53. It remains to observe that by construction, there are
not two states in AH that have the same valuation, hence (AH, {T

′
i}i∈Ag, νH) also verifies

Property 3, and this concludes the proof.

We obtain as a direct corollary of Theorem 20:

Corollary 13. An ETL model is simple if, and only if, it is a simple regular structure.

7.2.3 PDEL-generated ETL models and game arenas

The correspondence of the last section between simple ETL models – or equivalently
PDEL-generated ETL models, by Proposition 20 – and simple regular structures, though
being interesting in itself, is just a step in our process that aims at computing epistemic
protocols (still to be defined) thanks to uniform strategies techniques. We now use this

110 Epistemic protocol synthesis

connection to define an ultimate translation, from PDEL-generated models to the frame-
work of uniform strategies.

Proposition 27. Let H =ME∗ be a PDEL-generated ETL model, and let wι ∈M be an
initial possible world. There are a labelled game arena G = (V,E, Vι, vι, µ) and transducers
{Ti}i∈Ag over 2AP such that:

1. |G| = 2|AP | · (|M|+ |E|),

2. every Ti has one state,

3. there is a bijection f : H → Paths∗(Vι),

4. the restriction of f to Hwι
2 is a bijection between Hwι and Plays∗, and

5. for every (2AP ,Σ)-tree t ⊆ H, for every node x ∈ t, for every state formula ϕ ∈
mL;, t, x |= ϕ iff f(t), f(x) |= ϕ.

6. Furthermore, if accessibility relations inM and E are reflexive, then for each i ∈ Ag,
[Ti] verifies No Miracles.

Proof. The idea is to build a game arena with only one player, Player 1, who just chooses
events one after another. The arena, as well as the transducers that recognize the relations
;i, are obtained almost directly by our correspondence between PDEL-generated ETL
models and simple regular structures.

Let M = (W, {Ri}i∈Ag, V) be an epistemic model, let E = (E, {Ri}i∈Ag, pre, post)) be
a propositional event model and let H =ME∗ = (Σ, H, {;i}i∈Ag, VH), where Σ =W ∪E.
Also, let wι ∈ M be an initial possible world. By Theorem 20, because H is PDEL-
generated it is a simple regular structure, and more precisely, by Lemma 22 it has a simple
representation (AH, {Ti}i∈Ag, νH) such that |AH| ≤ 2|AP | · (|M|+ |E|) and for each i ∈ Ag,
Ti has one state. Let AH = (Σ, Q, δ, sι, F).

The game arena that we aim at defining is essentially the automaton AH. However, in
the automaton AH the events are on the transitions, while in our formalism game arenas
have unlabelled moves. We therefore take transitions of AH as positions in our game
arena. Formally, we define the one-player labelled game arena G = (V,E, Vι, vι, µ), where:

• V = {(s, e, s′) | s, s′ ∈ Q, e ∈ Σ and s′ = δ(s, e) is defined}

• E = {((s, e, s′), (s′′, e′, s′′′)) | s′ = s′′}

• Vι = {(sι, w, δ(sι, w)) | w ∈W}

• vι = (sι, wι, δ(sι, wι))

• µ(s, e, s′) = νH(s
′).

Notice that G has the same size as AH. In G, a play necessarily starts with the initial
possible world wι, so the initial position is the transition of AH reading wι in its initial
state sι. However, because agents may not know the initial world wι, or in other words ;i

related histories do not necessarily start with wι, we allow the full quantifiers ; i to range
over all paths in the arena that start with some world w ∈W . This is captured by letting
the set of starting positions Vι be the set of transitions of AH reading some possible world
ofM in its initial state.

Because AH is deterministic and H = L(AH), there is a bijection f1 between H and
accepting runs of AH. Now because AH is a nonempty-prefix closed automaton (see

2. The set of histories that start with wι (see Definition 3, page 13).

Epistemic protocol synthesis 111

Definition 52), all runs (on nonempty words) are accepting. Therefore f1 is a bijection
between H and nonempty runs of AH. Now, by construction of G, there is clearly a
bijection f2 between nonempty runs of AH and Paths∗(Vι) – recall that because every
history h ∈ H starts with a world w ∈ W , the only symbols that AH can read in its
initial state are w ∈W . Defining f = f2 ◦ f1 gives the bijection required by Property 3 of
Proposition 27. Property 4 follows directly from the definition of the initial position vι.

The following lemma shows that the labelling of positions in the arena is correct:

Fact 5. For a history h ∈ H, letting v = last(f(h)) ∈ V , we have that ν(h) = µ(v).

Proof. Let h = we1 . . . en ∈ H and note f(h) = (sι, w, s0)(s0, e1, s1) . . . (sn−1, en, sn). By
definition of the arena, we have that sn = δ(sι, h), and because (AH, {Ti}i∈Ag, νH) is a
canonical representation ofH (see Remark 15), we have that ν(h) = νH(δ(sι, h)) = νH(sn).
By definition of the arena, µ(sn−1, en, sn) = νH(sn), therefore µ(sn−1, en, sn) = ν(h),
which concludes.

We can now prove Property 5 of Proposition 27. By Property 2 of Definition 53, for
each i ∈ Ag there is a one-state synchronous transducer T ′

i such that Ti = TH ◦ T
′
i ◦ TH ,

where TH recognizes the identity relation on H. We adapt each T ′
i so that it works on

alphabet 2AP .
First, remember that every world w ∈ M (resp. event e ∈ E) is identified by a

dedicated atomic proposition pw (resp. pe) (see Remark 16).
For each i ∈ Ag, letting T ′

i = (Σ, {qi},∆i, {qi}, {qi}), we can define the transducer

T̃ ′
i = (2AP , {qi}, ∆̃i, {qi}, {qi}), where for all ν, ν ′ ∈ 2AP :

(qi, ν, ν ′, qi) ∈ ∆̃i if

{
pw ∈ ν, pw′ ∈ ν ′ and (qi, w, w′, qi) ∈ ∆i, or

pe ∈ ν, pe′ ∈ ν
′ and (qi, e, e′, qi) ∈ ∆i,

With T̃ ′
i thus defined, one can prove thanks to Lemma 19 and Fact 5 that for two

histories h, h′ ∈ H, letting ρ = f(h) and ρ′ = f(h′), h ;i h
′ if and only if µ(ρ)[T̃ ′

i]µ(ρ
′) 3.

From this, Property 5 of Proposition 27 is easily proved by induction on the formula, and
all cases are routine.

Finally, if the accessibility relations in M and E are reflexive, then for all i ∈ Ag we
have that for all w ∈M and e ∈ E , (qi, w, w, qi) ∈ ∆i and (qi, e, e, qi) ∈ ∆i. Therefore, [T ′

i]

satisfies No Miracles, and thus so does [T̃ ′
i]. This proves Property 6 of Proposition 27.

7.3 Epistemic protocol synthesis

We first recall the definition of the epistemic planning problem as well as the main
results about it. Then, exploiting the connection established in Section 7.2.2 between
PDEL-generated ETL models and regular structures, we manage to resort to our tech-
niques developed for the fully-uniform strategy problem in order to solve the epistemic
planning problem in the case of propositional events. This gives an alternative decid-
ability proof for this problem, it provides upper bounds on its time complexity, and our

3. recall that for a partial play ρ, µ(ρ) is the sequence of labellings of its positions.

112 Epistemic protocol synthesis

decision procedure can synthesize as a by-product a word automaton that represents the
set of all solution plans.

In a second time, relying on the embedding of DEL into ETL, we define a problem
that subsumes the epistemic planning problem and that we call the epistemic protocol
synthesis problem. The same approach that we use for solving the epistemic planning
problem allows us to solve our epistemic protocol synthesis problem. Again, the fact that
our decision procedures for the existence of uniform strategies enable the synthesis of a
uniform strategy when there exists one – see Pages 59 and 79 – , our procedures to decide
the existence of epistemic protocols also synthesize a solution protocol whenever one exists.

7.3.1 Epistemic planning

In the community of Dynamic Epistemic Logic, the problem of epistemic planning
(Bolander and Andersen, 2011; Löwe et al., 2011) is usually defined as follows.

Definition 56 (Epistemic planning problem). Given an initial pointed epistemic model
(Mι, wι), a finite set E of pointed event models and an epistemic goal formula Φ ∈ LEL,
decide if there is a finite series of pointed event models (E1, e1), . . . , (En, en) ∈ E such that
(Mι, wι)⊗ (E1, e1)⊗ . . .⊗ (En, en) |= Φ.

For an instance ((Mι, wι),E,Φ) of the epistemic planning problem we define its size
as the sum of the sizes of its components, plus the number of atomic propositions used:
|((Mι, wι),E,Φ)| = |Mι| +

∑
(E,e)∈E |E| + |Φ| + |AP |, where the size of an epistemic or

event model is the number of edges in its graph.
The epistemic planning problem is undecidable (Bolander and Andersen, 2011; Aucher

and Bolander, 2013). However, Bolander and Andersen (2011) proved that the problem
is decidable in the case of one agent and equivalence accessibility relations in epistemic
and event models. More recently, Aucher and Bolander (2013) and Yu et al. (2013)
proved independently that the one agent problem is also decidable for K45 accessibility
relations. Yu et al. (2013) also proved that restricting to propositional event models
yields decidability of the epistemic planning problem, even for several agents and arbitrary
accessibility relations.

Definition 57. The propositional epistemic planning problem is the restriction of the
epistemic planning problem to instances with only propositional event models.

Theorem 21 (Yu et al. (2013)). The propositional epistemic planning problem is decidable.

Before presenting our notion of epistemic protocol synthesis, we illustrate the tech-
niques involved by giving an alternative proof of Theorem 21.

We start with an alternative definition of the epistemic planning problem which we
believe may be closer to the intuition and easier to work with. The conception we have
of the planning problem, which is also the vision we adopt for our notion of epistemic
protocols in the next section, is the following. When one tries to reach some objective,
one chooses some actions to perform, which triggers events. However, one does not choose
the way these events are perceived by the different agents involved. This is determined by
the nature of these events and the observational capabilities of the agents. Therefore, we
think that the original formulation of the epistemic planning problem may be somehow

Epistemic protocol synthesis 113

misleading. Indeed, it does not ask to find a sequence of events, but a sequence of pointed
event models, thus indicating the way events are perceived. We agree that this is only a
matter of technical presentation, as shows Lemma 23 below, but we find it convenient and
intuitive to present the problem as follows. There is a single event model, which contains all
the possible events. This model may have several unconnected components. We generate
the ETL model that contains all possible sequences of events from every possible initial
world. The relations ;i for each agent i in this model are determined by the accessibility
relations in the single event model. In this “full” generated ETL model, that we call the
universe, we look for a sequence of events (or a protocol in the next section) that verifies
some desired property.

Note that instead of working with pointed event models as is usually done in works
on DEL, Wang and Aucher (2013) also consider a “universal” event model. However, this
work does not study epistemic planning but rather axiomatizations for DEL.

We now define the one-model epistemic planning problem and show that it captures
the standard epistemic planning problem.

Definition 58 (One-model epistemic planning problem). Given a pointed epistemic model
(Mι, wι), an event model E , a set of events E

′ ⊆ E and a goal formula Φ, decide if there
exists a finite series of events e1 . . . en in E

′ such that (Mι, wι)⊗ (E , e1)⊗ . . .⊗ (E , en) |= Φ.
The propositional one-model epistemic planning problem is the restriction of the one-model
epistemic planning problem to propositional event models.

For an instance ((Mι, wι), E ,E
′,Φ) of the one model epistemic problem we define its

size as |((Mι, wι), E ,E
′,Φ)| = |Mι|+ |E|+ |E

′|+ |Φ|+ |AP |.

Lemma 23. The (propositional) epistemic planning problem is linearly reducible to the
(propositional) one-model epistemic planning problem.

Proof. Let ((Mι, wι),E,Φ) be an instance of the epistemic planning problem, and note
E = {(E1, e1), . . . , (En, en)}. Without loss of generality one can assume that for all i, j, Ei∩
Ej = ∅. Define the event model E =

⋃n
i=1 Ei and let E

′ = {e1, . . . , en}. ((Mι, wι), E ,E
′,Φ)

is an instance of the one model epistemic planning problem that has the same size as the
original one. It remains to prove that there is a solution in the original instance if, and only
if, there is one in the latter instance. Because all the event models are disjoint, an event e in
E belongs to a unique Ei and is only related to events from Ei. Therefore, for every pointed
epistemic model (M, w) and every pointed event model (Ei, ei) ∈ E, (M, w)⊗ (Ei, ei) and
(M, w)⊗ (E , ei) are bisimilar, and therefore verify the same epistemic formulas – see e.g.
Blackburn et al. (2006); the result follows.

Finally, observe that if all the event models in E are propositional event models, then
so is E .

We fix an instance ((Mι, wι), E ,E
′,Φ) of the one-model epistemic planning problem,

and we rephrase it in terms of epistemic temporal logic.
Let H be the ETL modelMιE

∗. Recall that we see an ETL model as a labelled forest
which plays the role of the universe in the semantics for mL;. The semantics also requires
a tree in the forest, and because we are looking for a plan/history that starts in wι, we
simply take the tree Hwι , rooted at wι, of all histories in H that start in the world wι.

114 Epistemic protocol synthesis

We want to express the existence of a plan in mL;. The first step is to translate
the LEL formula Φ into mL;, which is done by taking the formula Φ̃ (Definition 55).
Intuitively, we want to say that there exists a branch inHwι such that, after a finite amount
of time, the formula Φ̃ holds, which can be captured by the formula EFΦ̃. However we
must ensure that along this branch, only “allowed” events from E

′ occur before a situation
satisfying Φ̃ is reached (what happens afterwards is irrelevant). We thus define the mL;

formula

ThereIsAPlan(Φ) = E(pwι ∨
∨

e∈E′

pe)U(Φ̃ ∧ (pwι ∨
∨

e∈E′

pe)). (7.1)

This formula’s intended meaning is that either Φ̃ already holds in the initial pointed
epistemic model, or there is a branch in the tree Hwι such that at some point Φ̃ holds,
and up to this point all the events that occur in the branch are from E

′ (except for the
first one which is wι).

Lemma 24. The one model epistemic planning problem ((Mι, wι), E ,E
′,Φ) has a solution

if, and only if, Hwι , wι |= ThereIsAPlan(Φ).

Proof. We start with the left-to-right implication. Suppose that there is a plan e1 . . . en
such that (Mι, wι)⊗ (E , e1)⊗ . . .⊗ (E , en) |= Φ (n can be 0).

Clearly, the history h = wιe1 . . . en is in H =MιE
∗, and because of Remark 14, there is

an infinite branch λ inHwι such that h 4 λ. We prove thatHwι , λ |= (pwι∨
∨
e∈E′ pe)U(Φ̃∧

(pwι∨
∨
e∈E′ pe)). Because λ[0] = wι, it holds thatHwι , λ[0] |= pwι ; also, for each i such that

1 ≤ i ≤ n, λ[i] = ei, hence Hwι , λ
i |= pei (Lemma 19). Because for every i ∈ {1, . . . , n},

ei ∈ E
′, we have that Hwι , λ

i |=
∨
e∈E′ pe. Also, because (Mι, wι)⊗ (E , e1)⊗ . . .⊗ (E , en) |=

Φ, by Lemma 20 we have that Hwι , wιe1 . . . en |= Φ̃, i.e. Hwι , λ
n |= Φ̃, which concludes.

Now for the right-to-left implication, assume that Hwι , wι |= ThereIsAPlan(Φ). There
is an infinite branch λ ∈ Hwι such that Hwι , λ |= (pwι ∨

∨
e∈E′ pe)U(Φ̃ ∧ (pwι ∨

∨
e∈E′ pe)).

Therefore there exists n ≥ 0 such thatHwι , λ
n |= Φ̃, and for every i ∈ {0, . . . , n}, Hwι , λ

i |=
pwι ∨

∨
e∈E′ pe. Note λn = wιe1 . . . en. By Lemma 20, Hwι , λ

n |= Φ̃ implies that (Mι, wι)⊗
(E , e1) ⊗ . . . ⊗ (E , en) |= Φ, and by Lemma 19, ei ∈ E

′ for every i ∈ {1, . . . , n}. Finally,
e1 . . . en is a solution plan.

Now that we have reformulated the one model epistemic planning problem in ETL,
we can invoke the fact that ETL models generated by propositional DEL models are
regular structures to obtain an equivalent fully-uniform strategy problem. This gives us
an alternative proof of Theorem 21.

Proposition 28. Let ((Mι, wι),E,Φ) be an instance of the propositional epistemic plan-
ning problem. There is a 2AP -labelled arena G and transducers {Ti}i∈Ag over 2AP such
that there is a solution plan if, and only if, Player 1 has a ({[Ti]}i∈Ag, ThereIsAPlan(Φ))-
uniform strategy in G.

Proof. Let ((Mι, wι),E,Φ) be an instance of the propositional epistemic planning problem.
By Lemma 23 there is an equivalent propositional one-model epistemic planning problem
((Mι, wι), E ,E

′,Φ) of same size. Letting H =MιE
∗, we have by Lemma 24 that the latter

planning problem admits a solution plan if, and only if, Hwι , wι |= ThereIsAPlan(Φ).

Epistemic protocol synthesis 115

We now reduce the problem of deciding whether Hwι , wι |= ThereIsAPlan(Φ) to a fully-
uniform strategy problem.

Because H is PDEL-generated, by Proposition 27 there exists a labelled game arena
G = (V,E, Vι, vι, µ) and transducers {Ti}i∈Ag over 2AP such that (we recall Properties 1-6
of Proposition 27):

1. |G| = 2|AP | · (|M|+ |E|),

2. every Ti has one state,

3. there is a bijection f : H → Paths∗(Vι),

4. the restriction of f to Hwι
4 is a bijection between Hwι and Plays∗, and

5. for every (2AP ,Σ)-tree t ⊆ H, for every node x ∈ t, for every state formula ϕ ∈ mL;,
t, x |= ϕ iff f(t), f(x) |= ϕ.

6. Furthermore, if accessibility relations inM and E are reflexive, then for each i ∈ Ag,
[Ti] verifies No Miracles.

We have that Hwι , wι |= ThereIsAPlan(Φ) iff f(Hwι), f(wι) |= ThereIsAPlan(Φ), i.e.
Plays∗, vι |= ThereIsAPlan(Φ).

Notice that because ThereIsAPlan(Φ) is an existential linear-time formula, Plays∗, vι |=
ThereIsAPlan(Φ) just means that there exists a play that verifies (pwι ∨

∨
e∈E′ pe)U(Φ̃ ∧

(pwι ∨
∨
e∈E′ pe)). It remains to notice that Player 1 having no opponent in G, a strategy

for her is just an infinite play. Therefore, using the above Properties 3, 4 and 5, one can
easily show the following fact, which terminates the proof of Proposition 28:

Fact 6. The multi-agent planning problem ((Mι, wι),E,Φ) has a solution if, and only if,
Player 1 has a ({[Ti]}i∈Ag, ThereIsAPlan(Φ))-uniform strategy in G.

Because ThereIsAPlan(Φ) is a FmL; formula, we have reduced the propositional
epistemic planning problem to an instance of nFUS (or nFUSK45NM if accessibility relations
are equivalences). By Theorem 13, we derive the decidability of the propositional epistemic
planning problem, as in Theorem 21.

Corollary 14. The propositional epistemic planning problem is decidable.

Moreover, the arena G of Proposition 28 is of size exponential in the size of the epistemic
planning problem’s input (G = 2|AP |(|M| + |E|)), and ThereIsAPlan(Φ) has the same
; -depth and alternation depth as Φ. With these observations, our upper bounds for the
fully-uniform strategy problem give us a max(2, k+1)-Exptime upper bound for objective
formulas of ; -depth k, and max(2, h+ 1)-Exptime for objective formulas of alternation
depth h when the accessibility relations are equivalences. Also our decision procedures
synthesize a uniform strategy which represents a solution plan if any.

However, we can take advantage of the fact that the problem reduces to a degenerate
case in which Player 1 plays alone. First, in this case we obtain an Exptime upper bound,
instead of 2-Exptime, for formulas of ; -depth zero. Moreover, as shown in Theorem 22
below, the powerset arena obtained in our decision procedure after the full quantifiers’

4. The set of histories that start with wι (see Definition 3, page 13).

116 Epistemic protocol synthesis

elimination can be turned into a finite word automaton that accepts exactly the set of
solution plans. Therefore, instead of synthesizing a unique solution plan, we manage to
synthesize all the solution plans, which may be infinitely many.

Theorem 22. The propositional epistemic planning problem is in k + 1-Exptime for
formulas of nesting depth k. If in addition the accessibility relations are equivalences and
the alternation depth is h, then the problem is in h+ 1-Exptime. Moreover, one can build
in the same time a finite word automaton P such that L(P) is the set of all solution plans.

Proof. Let ((Mι, wι),E,Φ) be an instance of the propositional epistemic planning problem
such that d(Φ) ≤ k. By Proposition 28, there is a 2AP -labelled arena G and trans-
ducers {Ti}i∈Ag over 2AP such that there is a solution plan if, and only if, Player 1
has a ({[Ti]}i∈Ag, ThereIsAPlan(Φ))-uniform strategy in G. Moreover (see the proof of
Proposition 28), G and transducers {Ti}i∈Ag satisfy Properties 1-6 of Proposition 27.
Therefore |G| = 2|AP | · (|M| + |E|) and each Ti has one state. Starting from the in-
stance (G, {[Ti]}i∈Ag, ThereIsAPlan(Φ)) of FnLk

;
and using our powerset construction

and ; i elimination procedure (see Theorem 13), we build an equivalent CTL
∗ game

(Ĝ, ̂ThereIsAPlan(Φ)) where Ĝ is of size k-exponential in |G|+
∑

i∈Ag |Ti|+ |Φ|. Because

|G| = 2|AP | · (|M|+ |E|), Ĝ is of size (k+1)-exponential in the input of the epistemic plan-
ning problem. Recall that ThereIsAPlan(Φ) = E(pwι ∨

∨
e∈E′ pe)U(Φ̃ ∧ (pwι ∨

∨
e∈E′ pe)).

We have that ̂ThereIsAPlan(Φ) = E(pwι ∨
∨
e∈E′ pe)U(ϕ∧ (pwι ∨

∨
e∈E′ pe)), where ϕ =

̂̃
Φ

is a propositional formula: in Φ̃, knowledge operators Ki of Φ have become ; i, and in
ϕ formulas of the form ; iϕ

′ have been recursively replaced by p ; iϕ′ . Because there is
no temporal operator in Φ, ϕ is purely propositional. Therefore, ϕ can be evaluated po-
sitionally in Ĝ. Let Ĝ = (V,E, Vι, vι, µ). We define Vϕ = {v ∈ V | µ(v) |= ϕ}. Recall
that there is a natural bijection f between the set of possible histories in H (i.e. the set of
possible plans) and the set of finite paths in G, and there is also a bijection between finite
paths of our successive powerset constructions (see Lemma 17). It is therefore easy to see
that the set of plans that achieve the goal Φ is in bijection with the set of partial plays
in Ĝ that reach Vϕ. The set of plans that only use “allowed” events from E

′ is therefore
in bijection with the set of partial plays in Ĝ that reach Vϕ while remaining in

∨
e∈E′ pe

(see Remark 16). To obtain the automaton that accepts the set of solution plans, it only
remains to cut moves that go through unauthorized events.

Formally, we let A = (E′, Q, δ, sι, F), where:

• Q = V , sι = vι, F = Vϕ, and

• for v ∈ Q and e ∈ E
′, δ(v, e) = v′ if there is v′ ∈ V such that v → v′ in Ĝ and

pe ∈ µ(v
′).

It is now easy to verify that:

L(A) = {e1 . . . en | ∀i, ei ∈ E
′ and (Mι, wι)⊗ (E , e1)⊗ . . .⊗ (E , en) |= Φ}.

Automaton A is built in time linear in the size of Ĝ. We remind that Ĝ is of size (k + 1)-
exponential in general (where k is the modal depth of Φ), and in case the accessibility
relations are equivalences, it is of size (h+1)-exponential where h is the alternation depth
of Φ. The upper bounds follow from the fact that testing the emptiness of L(A) can be
done in time linear in the size of A.

Epistemic protocol synthesis 117

7.3.2 The epistemic protocol synthesis problem

We generalize the notion of epistemic planning in three directions. First, we no longer
consider finite sequences of actions but infinite ones. As a consequence, we need not stick
to reachability objectives as in planning (where the aim is to reach a state of the world
that verifies some formula), and we therefore allow for any epistemic temporal formula as
objective, which is the second generalization. Finally, we no longer look for a single series
of events, but we try to synthesize a protocol, i.e. a set of plans.

Epistemic protocols

We define a notion of epistemic protocol, and we discuss related notions of protocols
in the literature.

Definition 59. Given an ETL model H = (Σ, H, {;i}i∈Ag, V), an epistemic protocol is
a Σ-forest P ⊆ H; it is rooted if it is a tree.

The literature of logics for knowledge and time contains several notions of protocols. In
the community of epistemic temporal logics, what is called a protocol is often the domain
of the model itself (Parikh and Ramanujam, 2003; Pacuit and van Benthem, 2006; Pacuit,
2007; van Benthem et al., 2009), and it represents the set of possible behaviours of some
system. This notion is similar to DEL protocols considered for example in van Benthem
et al. (2009) and Wang and Aucher (2013), which map each possible world of an initial
epistemic model to a forest of events, thus defining a set of possible behaviours in which
DEL formulas are evaluated.

In van der Meyden and Vardi (1998) and van der Meyden and Wilke (2005), a problem
of protocol synthesis from epistemic temporal specifications is studied, which is very close
to the one we consider below. We discussed this work in Section 6.5.2, where we described
it in terms of distributed strategy synthesis in a concurrent game structure. With the
vocabulary of the ETL community, a concurrent game structure is an interpreted envi-
ronment, modeling how the actions of various agents impact this environment and how
these agents observe it, and a (joint) protocol is a (distributed) strategy for the agents.
The aim is then to synthesize a protocol that verifies some epistemic temporal property.
This notion of protocol is different from the former one. Instead of defining the system, it
denotes some sub-behavior of the system that verifies a desired property. This is reminis-
cent of the supervisory control task as defined by Ramadge and Wonham (1987) which,
given a system and a safety property aims at pruning the system’s behaviour so that the
controlled system is safe.

Our notion of protocol is closer to the latter one, though more abstract: it is a subset
of the system, that represents some control of, or strategy in the system which aims at
achieving some property. However, in all the works above mentioned, it is assumed that
the agents have complete information in the sense that they know the protocol. More
precisely, given a protocol, all the agents know what can happen in this protocol, and
they rule out from their beliefs or knowledge behaviours that do not follow this protocol.
We weaken this assumption and consider that some, or even all of the agents may not be
aware of the restriction imposed on the system by the protocol; or maybe that they are
aware of the existence of such a restriction but do not know what it is exactly, because

118 Epistemic protocol synthesis

it is enforced by someone else for example. Therefore, according to their observations,
such agents might very well consider possible some behaviours that are not allowed by
the protocol. However they do have complete information about the system itself, so that
they still rule out behaviours that are not possible in the original system.

One could claim that it makes little sense for an agent not to know the protocol.
Indeed, how can she behave if she does not know what actions are allowed? However we
believe that it can make sense for particular modeling purposes, to consider some passive
agents that only observe the evolution of the world, and therefore do not need to know
what the protocol is. This is the case of DEL agents for example, as discussed before
Lemma 20, page 107.

An example where the agent is active but where it still makes sense to assume that she
ignores the protocol, is found in games with opacity condition as described in Section 3.4.
The system is made of all the possible plays in the game. Fixing a strategy for one of the
players restricts the set of possible behaviours of the system, but there is no reason why
the other player should know what this restriction is, as in general a player does not know
the strategy of her opponent. Note that in this formalism, a strategy for a player does
not restrict what the opponent is entitled to do at each point of a play, so that she can
play without knowing the strategy/protocol. When imperfect information is involved as in
games with opacity condition, and a strategy of Defender is fixed, not only Attacker does
not know at a given point of a play what future behaviours are still possible according
to Defender’s strategy, but also she may not know exactly what has already been played:
among the partial plays she considers possible, Attacker does not know which ones are
ruled out by Defender’s strategy. This is why in Section 3.4, to capture the knowledge of
Attacker, we used the full quantifier of our logic L;, as it represents the knowledge in the
full system, while the strict quantifier represents the knowledge in the system restricted
to the protocol.

Epistemic protocol synthesis

We now define our epistemic protocol synthesis problem. Because the models of our
language are trees we only consider rooted epistemic protocols. It is not clear how to
define the meaning of a forest verifying an mL; formula. Should the formula hold in
at least one tree of the forest, in all the trees, or something in between? In the first two
cases, the results we establish for the epistemic protocol synthesis problem would also hold
for non-rooted protocols. It suffices to turn forests into trees by adding to each forest an
artificial root that branches to all the roots of the forest.

Remember that for an ETL model H = (H, {;i}i∈Ag, V), a labelled tree t ⊆ H and a
formula Φ ∈ mL;, t |= Φ stands for {;i}i∈Ag,U , t, r |= Φ, where U = H is the universe
and r is the root of t (see Section 7.1.2).

Definition 60 (Epistemic protocol synthesis problem). Given an initial pointed epistemic
model (Mι, wι), an event model E and an mL; formula Φ, decide if there is an epistemic
protocol P ⊆MιE

∗ rooted in wι such that P |= Φ.

The size of an instance ((Mι, wι), E ,Φ) of the epistemic protocol synthesis problem is
|((Mι, wι), E ,Φ)| = |Mι|+ |E|+ |Φ|+ |AP |.

Epistemic protocol synthesis 119

Remark 18. Note that we consider a unique event model. We could define the problem
with several event models, but it would make the definition more cumbersome without
really adding anything, as justified in Section 7.3.1. Also, in the definition of the problem,
we allow for arbitrary mL; formulas, and in particular we allow for both strict and full
quantifiers for each agent. We want to stress out that here, using a full quantifier ; i

corresponds to the assumption that agent i does not know the protocol: the set of worlds
it considers possible at some point in time is not refined by the knowledge of what sequences
of events are allowed by the protocol. On the other hand, capturing the knowledge of an
agent who does know the protocol can also be done by using the strict quantifier instead.

Proposition 29. The epistemic protocol synthesis problem is undecidable.

Proof. The epistemic planning problem, which is undecidable, is clearly subsumed by the
epistemic protocol synthesis problem.

We now identify some restrictions that make the epistemic protocol synthesis problem
decidable. First we restrict to propositional event models, which enables us to reduce to a
uniform strategy problem; we make two more assumptions that ensure that the obtained
uniform strategy problem problem is an instance of nSFUS, which is decidable. The first
assumption is that no strict quantifier can occur in the scope of a full quantifier (the
formula is in SFnL;). The second assumption is that strict quantifiers must rely on
recognizable relations. In Definition 54, the definition of the relations in a DEL-generated
model rely on the assumption that the agents have (synchronous) perfect recall. This kind
of relation is not recognizable in general, reason why we discuss a notion of agent with
bounded memory.

Bounded memory

Several notions of agents with bounded memory have been studied in the literature.
A first approach is to consider that the agent’s memory is a fixed-size “window” that
translates along a history. For example, in the DEL framework, Liu (2009) considers a
notion of agent with bounded memory who remembers only the last k events. We consider
a more general notion of memory structure, as studied for example in Dziembowski et al.
(1997) to study the memory required to win games with ω-regular winning conditions.

LetM = (W, {Ri}1≤i≤n, V) be an epistemic model, and let E = (E, {Ri}1≤i≤n, pre, post)
be an event model. Consider an agent i ∈ Ag and assume that all Ri and all Ri are equiv-
alence relations. This assumption enables us to define a meaningful notion of bounded
memory observation relation. We say that agent i ∈ Ag has bounded memory if there is a
finite memory structure Mi = (W ∪ E,M, δ,mι) – see Definition 4 – that represents her
memory. To remain consistent with the observational power of the agent, we assume that
“indistinguishable” events affect the memory of the agent in the same manner. Formally,
for m ∈ M and w, u ∈ W such that wRi u, we require that δ(m,w) = δ(m,u). Similarly,
if e, f ∈ E and eRi f , then δ(m, e) = δ(m, f).

Definition 61 (Bounded memory observation relation). Suppose agent i ∈ Ag has bounded
memory represented by Mi = (W ∪ E,M, δ,mι). We define the bounded memory observa-
tion relation ;Mi

over (W ∪ E)∗ as follows:

For h, h′ ∈ (W ∪ E)∗, h ;Mi
h′ if δ(mι, h) = δ(mι, h

′).

120 Epistemic protocol synthesis

Observe that, as expected, if the agent cannot distinguish two histories with perfect
recall, neither can she with bounded memory. Indeed, thanks to the assumption that
indistinguishable events trigger the same transitions in the memory structure, we have:
;i ⊆;Mi

. Also, ;Mi
is coarser than ;i in general, as histories that are not ;i-related

can lead to the same memory state.
We now prove that ;Mi

is a recognizable relation.

Lemma 25. Suppose agent i ∈ Ag has bounded memory represented by Mi. The bounded
memory observation relation ;Mi

is recognizable. In addition, one can effectively build
from Mi a deterministic word automaton Bi that recognizes ;Mi

, and the size of Bi is
exponential in the size of Mi.

Proof. Let Mi = (W ∪ E,M, δ,mι). For each m ∈M , we define the language Lm = {h ∈
(W ∪ E)∗ | δ(mι, h) = m}. Lm is clearly a regular language as it is accepted by the finite
state automaton Am = (W ∪ E,M, δ,mι, Fm = {m}). We have ;Mi

=
⋃
m∈M Lm × Lm,

therefore ;Mi
is a recognizable relation (see Definition 15).

To build a recognizer from the memory structure Mi, we combine Mi with Mi, which
is the same machine with reversed transitions (hence it is nondeterministic in general).
From Mi and Mi, building a nondeterministic automaton over alphabet W ∪E∪{#} and
of size O(|Mi|

2) that recognizes {h#h′ | h ;Mi
h′} is an easy task. Determinizing this

word automaton yields a recognizer Bi for ;Mi
, whose size is exponential in |Mi|.

From now on, given an initial epistemic modelM and an event model E , if agent i has
bounded memory represented by Mi, then ;i is replaced inME∗ by ;Mi

, and formulas
of the form ; iϕ and ; iϕ are therefore evaluated with regard to ;Mi

.

Definition 62. Let H = ME∗ = {W ∪ E, H, {;i}i∈Ag, V }. Suppose that the set of
agents having bounded memory is Agbm ⊆ Ag, and the memory of each agent i ∈ Agbm

is represented by Mi. Then for a 2AP -labelled tree t ⊆ H, a node x ∈ t and a formula
Φ ∈ mL;, we let t, x |= ϕ mean that {;′

i}i∈Ag,U , t, x |= ϕ, where U = H is the universe,
;′
i = ;Mi

if i ∈ Agbm, and ;′
i = ;i otherwise.

A decidable epistemic protocol synthesis problem

We identify some restrictions on the epistemic protocol synthesis problem that ensure
decidability. More precisely, we show that when:

1. the events are propositional,

2. the agents who “know” the protocol have bounded memory, and their memory struc-
ture is known,

3. the agents who “do not know” the protocol cannot reason about the knowledge of
agents who do,

then the epistemic protocol synthesis problem is decidable. We motivate these assumptions
with the following (semi)-informal discussion.

As already explained in Proposition 27, Assumption 1 enables us to reduce the problem
to a uniform strategy problem. Informally, restricting to propositional event models means
that the conditions for an event to occur cannot depend on the knowledge state of agents,

Epistemic protocol synthesis 121

but only on the facts of the world. This reduces the complexity of the events we can
model, but the class of propositional event models still captures many interesting kinds of
events. For example, the event models in Figure 7.2 and Figure 7.3 are propositional.

For Assumption 2, recall the discussion following our Definition 59 of protocols. When
we say that an agent “knows” the protocol, we mean more precisely that the semantics
of its knowledge is the one of the strict quantifier, i.e. she does not consider possible
histories outside the protocol. On the other hand, an agent who “does not know” the
protocol is an agent whose knowledge has the semantics of the full quantifier. As it is well-
known, letting agents who “know” the protocol have perfect-recall leads to undecidability
as soon as at least two agents are involved – see van der Meyden and Wilke (2005) for
example. However, we have seen that the strict quantifier can be managed if it is associated
with recognizable relations. As Lemma 25 illustrates, the observational ability of agents
with bounded memory can be represented by recognizable relations. Even though it is
often assumed that agents have perfect recall, for example to model the “most powerful”
adversary, in practice all agents we can think of have a bounded memory, even though it
may be very complex to model (especially for humans). Imagine a situation with a team
A of agents (the nice ones) and a team B (the bad ones). Team A aims at designing a
joint protocol so that some property holds, regardless of the behaviour of team B. It is
not too unreasonable to assume that the agents in team A know their memory structure.
Indeed, a robotic agent for example can possess the information of how its memory is
implemented, and it can share it with other members of the team in order to compute the
protocol. Also, assuming that all the agents in the team can be trusted and that no one
reveals the protocol to team B, we can assume that only the agents in team A will “know”
the protocol when executed. Note that undermining this assumption is the strong other
assumption that team B does not have the capability to guess the protocol by themselves.
However there is in general no unicity of a solution protocol, which makes it unlikely for
team B to “guess” which protocol is used by team A. To sum up, this kind of situation
verifies the second assumption.

We turn to Assumption 3. For agents who “do not know” the protocol, our results on
the fully-uniform strategy problem show that we can manage any rational relations for the
semantics of the full quantifier. However, the only case where we know how to manage
both agents knowing the protocol – strict quantifiers – and agents ignoring the protocol –
full quantifiers – is when there is no strict quantifier in the scope of a full quantifier (see
Section 6.4). This can be interpreted as the fact that no agent who ignores the protocol
can reason about the knowledge of an agent who does. We argue that this seems realistic.
Assume that it is common knowledge how each agent observes the world. Assume also
that agent i knows the protocol, agent j ignores the protocol and agent i knows that it is
so. Agent i can reason about the knowledge of agent j by “simulating” not to know the
protocol: when agent i evaluates the knowledge of agent j, she can consider ;j-related
histories 5 that are outside the protocol, even though she knows that they are not possible.
However, even if agent j knew that agent i knows the protocol, she could not “simulate”
the knowledge of the protocol without knowing the protocol itself. Therefore it seems
unrealistic to let agent j reason about the knowledge of agent i.

We now define the problem formally.

5. we have assumed that the agents’ observational abilities are common knowledge.

122 Epistemic protocol synthesis

Definition 63 (Bounded memory epistemic protocol synthesis problem (BMEPS)). Given
an initial pointed epistemic model (Mι, wι), a propositional event model E , a subset of
agents Agbm ⊆ Ag with a memory structure Mi for each i ∈ Agbm, and an SFmL;-formula
Φ such that, if ; iϕ ∈ Sub(Φ) (resp. ; iϕ ∈ Sub(Φ)), then i ∈ Agbm (resp. i ∈ Ag \Agbm),
decide if there is an epistemic protocol P ⊆MιE

∗ rooted in wι such that P |= Φ.

The size of a BMEPS instance is defined as follows: |(M, wι), E , {Mi}i∈Agbm
,Φ| =

|M|+ |E|+
∑

i∈Agbm
|Mi|+ |Φ|+ |AP |.

Theorem 23. BMEPS is decidable. If the ; -depth of the goal formulas is bounded by k,
then the problem is in max(2, k + 1)-Exptime. If, in addition, the accessibility relations
are equivalence relations and the alternation depth of the goal formulas is bounded by h,
then the problem is in max(2, h+ 1)-Exptime.

Proof. Let ((Mι, wι), E , {Mi}i∈Agbm
,Φ) be an instance of BMEPS, where Agbm ⊆ Ag is

the set of agents who have bounded memory. Let H =MιE
∗. By Proposition 27, there is

a labelled game arena G = (V,E, Vι, vι, µ) and transducers {Ti}i∈Ag over 2AP such that:

1. |G| = 2|AP | · (|M|+ |E|),

2. every Ti has one state,

3. there is a bijection f : H → Paths∗(Vι),

4. the restriction of f to Hwι is a bijection between Hwι and Plays∗, and

5. for every (2AP ,Σ)-tree t ⊆ H, for every node x ∈ t, for every state formula ϕ ∈ mL;,
t, x |= ϕ iff f(t), f(x) |= ϕ.

6. Furthermore, if accessibility relations inM and E are reflexive, then for each i ∈ Ag,
[Ti] satisfies No Miracles.

First, build Bi from Mi for each i ∈ Agbm, as described in Lemma 25. Observe that
Point 5 still holds when we consider the semantics for agents with bounded memory, as
we just replace relation [Ti] with ;Mi

for i ∈ Agbm. Next, because Player 1 owns all the
positions in G, there is a one-to-one correspondence between the set of possible protocols
rooted in wι and generalized strategies for Player 1 in G. The problem therefore reduces to
the existence of a ({;′

i}i∈Ag,Φ)-generalized uniform strategy for Player 1 in G, where ;′
i

= ;Mi
if i ∈ Agbm, and ;′

i = [Ti] otherwise. Observe that (G, {Bi}i∈Agbm
, {Ti}i/∈Agbm

,Φ)
is an instance of mSFUS. By Point 1, G is of size exponential in |AP |, by Point 2 each
Ti has one state, and by Lemma 25 each Bi is of size exponential in |Mi|. The instance
(G, {Bi}i∈Agbm

, {Ti}i/∈Agbm
,Φ) of mSFUS is therefore of size exponential in the size of the

original BMEPS instance ((Mι, wι), E , {Mi}i∈Agbm
,Φ). The first part of Theorem 23 then

follows from Theorem 15. Concerning the case where in addition accessibility relations in
the initial epistemic model and the event model are equivalence relations, we have that
for each i ∈ Ag, [Ti] is also an equivalence relation, and by Point 6, [Ti] also satisfies
No Miracles. (G, {Bi}i∈Agbm

, {Ti}i/∈Agbm
,Φ) is therefore an instance of nSFUSK45NM, and

Theorem 16 provides the upper bounds.

7.4 Conclusion and perspectives

In this chapter we first extended existing results concerning connections between dif-
ferent frameworks for the logical study of knowledge and time. While the matter has been

Conclusion and perspectives 123

well studied concerning DEL and ETL, we have established a new bridge between these
frameworks and regular structures. This allowed us to apply the techniques developed in
this thesis for uniform strategies to the epistemic planning problem in the DEL frame-
work. We obtained an alternative proof of a recent decidability result concerning the case
of propositional events, and we also provided accurate upper bounds on the time complex-
ity of this problem. In addition our approach allowed us to synthesize a finite automaton
that generates all the solution plans for this epistemic planning problem.

Then we considered a problem of epistemic protocol synthesis which generalizes the
epistemic planning problem in several regards, by considering infinite trees of events and
epistemic temporal specifications. In addition, the two quantifiers of our language nL;

allow us to distinguish, in the specification of a protocol, between agents who know the
protocol and agents who ignore it. We proved that if agents who know the protocol
have bounded memory, agents who ignore the protocol have rational observation relations,
and they cannot reason about the knowledge of agents who do know the protocol, then
the epistemic protocol synthesis problem can be decided, and a solution protocol can be
synthesized if any.

On the topic of epistemic protocols, a next step would be to apply techniques from con-
trol theory and quantified µ-calculus (Riedweg and Pinchinat, 2003) to synthesize maximal
permissive epistemic protocols. In general such objects only exist for safety objectives, but
recently a weaker notion of permissive strategy has been studied in the context of parity
games (Bernet et al., 2002). A strategy is permissive if it contains the behaviours of all
memoryless strategies, and such strategies always exist in parity games. Similar notions
may be introduced for protocols with epistemic temporal objectives to capture concepts
of “sufficiently permissive” protocols.

124 Epistemic protocol synthesis

Chapter 8

Conclusion and perspectives

In this thesis we have defined and studied in depth a notion of uniform strategies, which
are strategies subject to properties involving sets of plays. We summarize the contribution
of each chapter and discuss perspectives.

In Chapter 3, we defined the logic L; and used it to specify uniformity properties
of strategies. Then, we demonstrated the relevance of our notion by capturing all the
motivating examples of strategies with “horizontal” constraints that we described in the
introduction of this document. In fact we capture very expressive properties of strategies
by allowing for arbitrary binary relations between plays, as long as they are rational. We
have also seen that the full quantifier ; can be used to model the knowledge of a player
(or an agent) who does not know the strategy played by his opponent. The strict quantifier
;, however, captures the knowledge of players who know the strategy. The question of
whether a player knows or not the strategy being played, though crucial when interpreting
knowledge in strategic situations, has surprisingly received very little attention until now.
We believe that studying in detail the properties of our strict and full quantifiers may be
an interesting first approach to formalize and study the matter of “who knows who does
what”.

In Chapter 4, we first proved that the existence of uniform strategies for uniformity
properties involving only strict quantifiers is undecidable for the class of regular equivalence
relations. We defined jumping alternating tree automata, that extend alternating tree
automata by allowing for jumps between related nodes of the input tree. We established
that, when restricting to recognizable relations, jumping tree automata can be simulated by
two-way tree automata. From this we obtained that the strictly-uniform strategy problem
is decidable for recognizable relations, and we proved that it is 2-Exptime-complete. In
addition, the automata techniques that we use allow us to synthesize a uniform strategy
whenever there exists one. We believe that the notion of jumping tree automata may be
a relevant theoretical tool to study logics with knowledge. For example, it seems that
jumping tree automata may be a good candidate for an automata-theoretic counterpart
to the µ-calculus with knowledge. It would also be interesting to try to identify a subclass
of rational relations that contains synchronous and asynchronous perfect recall relations,
and for which the strictly uniform strategy problem would still be decidable. This may

125

126 Conclusion and perspectives

give sufficient conditions on the observational abilities of players for two-player games with
imperfect information and perfect recall to be decidable.

In Chapter 5, we proved that the existence of uniform strategies for uniformity proper-
ties that only use the full quantifier can be decided for the whole class of rational relations.
Our decision procedure relies on a notion of information set automaton that computes in-
formation sets for rational relations. We also established that for rational relations that
verify transitivity, Euclideanity and No Miracles, the uniform strategy problem is only 2-

Exptime-complete. To establish this result we use a notion of information set bisimulation
in information set automata. A direction that we believe deserves investigation concerns
these information set automata. Because they allow for the computation of information
sets, they may provide a way to define a general powerset construction for games with
imperfect information and some subclass of rational relations. The two sorts of relations
(apart from players with bounded memory) for which a powerset construction is known are
synchronous and asynchronous perfect-recall (Reif, 1984; Chatterjee et al., 2006; Puchala,
2010). Identifying a class of relations that strictly contains these relations and for which
a powerset construction exists would be interesting as it would be a second way to obtain
insights on what characteristics of players make these games decidable. This may also
yield results concerning games with imperfect recall but unbounded memory, the study of
which has recently received renewed attention (Berwanger et al., 2012).

In Chapter 6, we generalized our framework to manage several relations between plays
in a game. We established that our results from Chapters 4 and 5 still hold in this
extended setting. The only case for which the results are not the same is the one of fully-
uniform strategies with K45NM relations, for which switching to several relations raises
the complexity of the uniform strategy problem from 2-Exptime to nonelementary. We
then proved that techniques from Chapter 4 and 5 can be combined to solve the uniform
strategy problem for a class of properties involving both strict and full quantifiers. Our
contribution provides a unified proof of decidability for the model-checking of epistemic
temporal logics with rational relations. We also described how, using uniformity properties
with several strict quantifiers, we can reduce the problem of solving a concurrent game
with n players and imperfect information to solving a uniform strategy problem in a two-
player game arena. Our contribution shows that we can solve such games with epistemic
temporal objectives if the agents have bounded memory, even if we want the knowledge
of the players to be restricted to the outcomes of the distributed strategy – which forbids
powerset construction techniques. A possible extension of the framework would be in the
direction of strategic logics, with quantifiers over uniform strategies. It would also be
interesting to consider a language that allows the specification at the syntactic level of the
relations attached to each quantifier.

In Chapter 7, we first extended existing results concerning connections between differ-
ent frameworks for the logical study of knowledge and time. While the matter has been
well studied concerning DEL and ETL, we have established a new bridge between these
frameworks and regular structures. This allowed us to apply the techniques developed in
this thesis for uniform strategies to the epistemic planning problem in the DEL frame-

127

work. We obtained an alternative proof of a recent decidability result concerning the case
of propositional events, and in addition our approach allowed us to synthesize a finite au-
tomaton that generates all the solution plans. Then we considered a problem of epistemic
protocol synthesis which generalizes the epistemic planning problem in several regards,
by considering infinite trees of events and epistemic temporal specifications. In addition,
the two quantifiers of our language nL; allow us to distinguish, in the specification of
a protocol, between agents who know the protocol and agents who ignore it. We proved
that when the agents who know the protocol have bounded memory, and when agents who
ignore the protocol cannot reason about the knowledge of agents who do know the proto-
col, then the epistemic protocol synthesis problem can be decided, and a solution protocol
can be synthesized if any. On the topic of epistemic protocols, a next step would be to
apply techniques from control theory and quantified µ-calculus (Riedweg and Pinchinat,
2003) to synthesize maximal permissive epistemic protocols. In general such objects only
exist for safety objectives, but recently a weaker notion of permissive strategy has been
studied in the context of parity games (Bernet et al., 2002). A strategy is permissive if it
contains the behaviours of all memoryless strategies, and such strategies always exist in
parity games. Similar notions may be introduced for protocols with epistemic temporal
objectives to capture concepts of “sufficiently permissive” protocols.

128 Conclusion and perspectives

Appendix A

Proof of Proposition 20

Proposition 20. For k ∈ N, FUSk+1 is (k+1)-Exptime-hard even if the FLk+1
;

formula
is assumed to be fixed and the transducer is assumed to be synchronous.

For each k ∈ N, let exp[k] denote the class of functions f : N→ N such that for some
constant c ≥ 1, f(n) = expk(nc) for all n ∈ N.

Fix k ≥ 0. Proposition 20 is proved by a polynomial-time reduction from the word
problem for exp[k]-space bounded alternating Turing Machines with a binary branching de-
gree and without halting configurations, which is a well-known (k + 1)-Exptime-complete
problem (Chandra et al., 1981). Fix such an alternating Turing Machine M = (A,Q =
Q∃ ∪Q∀, qι, δ, F) over the input alphabet A, where the set of states Q is partitioned into
a set Q∃ of existential states and a set Q∀ of universal states, qι is the initial state, F is
the set of accepting states, and the transition function is of type

δ : Q×A→ (Q×A× {←,→})× (Q×A× {←,→})

(in each step, M overwrites the tape cell being scanned, and the tape head moves one
position to the left – ← – or to the right – →). Fix an input α and let n = |α|.

Note that a configuration ofM, or TM configuration, can be seen as a word α1·(q, a)·α2

in A∗ · (Q × A) · A∗, where α1 · a · α2 denotes the tape content, q the current state, and
the reading head is at position |α1| + 1. A TM configuration is well-formed if it has
length exactly expk(n). Since M is exp[k]-space bounded, without loss of generality, we
can assume that each reachable TM configuration from the fixed input α is well-formed.
In particular, the initial TM configuration is the unique well-formed TM configuration
having the form (qι, α(1))α(2) . . . α(n)# . . .#, where # is the blank symbol. For a TM
configuration C = α1 · (q, a) · α2, the left (resp., right) successor of C is the successor
of C obtained by choosing the left (resp., the right) triple in δ(q, a). A computation tree
of M (over α) is an infinite binary tree whose nodes are labelled by well-formed TM
configurations and that verifies: (i) the root is labelled by the initial TM configuration,
(ii) each node labelled by an existential TM configuration C (i.e., the associated state is
in Q∃) has a unique child, labelled by some successor of C, and (iii) each node labelled
by an universal TM configuration C (i.e., the associated state is in Q∀) has two children,
labelled by the left and right successors of C, respectively. A computation tree of M is
accepting if each infinite branch from the root visits some accepting TM configuration. M
accepts α iff there is an accepting computation tree of M.

129

130 Proof of Proposition 20

Proposition 20 directly follows from the following proposition.

Proposition 30. There is a fixed FLk+1
;

formula ϕ (independent of n and M) such
that one can build – in time polynomial in n and the size of M – a 2AP -labelled arena
G = (V,E, Vι, vι, µ) and a finite-state synchronous transducer T over the alphabet 2AP so
that M accepts α iff Player 1 in G admits a ([T], ϕ)-fully-uniform strategy.

Proof of Proposition 30 We assume that k ≥ 1 (the case k = 0 being simpler). First,
we define a suitable encoding of (well-formed) TM configurations, obtained by using the
following set AP of atomic propositions:

AP := A ∪ (Q×A) ∪ {$1, . . . , $k, $, $acc, 0, 1, L,R, ∃, ∀} ∪ {inc,=, good}

For each cell of a well-formed TM configuration C, we keep track of the content of the
cell together with a suitable encoding of the cell number which is a natural number in
[0, expk(n)− 1]. Thus, for all 1 ≤ h ≤ k, we define the notions of h-block and well-formed
h-block. Essentially, for h < k, well-formed h-blocks are finite words over {$1, . . . , $h, 0, 1}
which encode integers in [0, exph(n)− 1], while well-formed k-blocks are finite words over
A∪(Q×A)∪{$1, . . . , $k, 0, 1} which encode the cells of well-formed TM configurations. In
particular, for h > 1, a well-formed h-block encoding a natural number m ∈ [0, exph(n)−1]
is a sequence of exph−1(n) (h−1)-blocks, where the ith (h−1)-block encodes both the value
and (recursively) the position of the ith-bit in the binary representation of m. Formally,
the set of (well-formed) h-blocks is defined by induction on h as follows:

Base Step: h = 1. The notions of 1-block and well-formed 1-block coincide, and a 1-block
is a finite word bl having the form bl = $1τbit1 . . . bitn$1 such that bit1, . . . , bitn ∈ {0, 1}
and τ ∈ {0, 1} if 1 < k, and τ ∈ A ∪ (Q× A) otherwise. We say that biti (for 1 ≤ i ≤ n)
is the ith bit of bl. The content of bl is τ , and the index of bl is the natural number in
[0, exp1(n) − 1] (recall that exp1(n) = 2n) whose binary code is bit1 . . . bitn. The 1-block
bl is initial (resp., final) if biti = 0 (resp., biti = 1) for all 1 ≤ i ≤ n.

Induction Step: 1 < h ≤ k. An h-block is a finite word bl having the form $h · τ ·
bl0 . . . blj · $h such that j > 0, bl0, . . . , blj are (h − 1)-blocks, and τ ∈ {0, 1} if h < k, and
τ ∈ A ∪ (Q × A) otherwise. Additionally, we require that bl0 is initial, blj is final, and
for all 0 < i < j, bli is not final. The content of bl is τ . The h-block bl is initial (resp.,
final) if the content of bli is 0 (resp., 1) for all 0 ≤ i ≤ j. The h-block bl is well-formed if
additionally, the following holds: j = exph−1(n)−1 and for all 0 ≤ i ≤ j, bli is well-formed
and has index i. If bl is well-formed, then its index is the natural number in [0, exph(n)−1]
whose binary code is given by bit0, . . . , bitj , where biti is the content of the sub-block bli
for all 0 ≤ i ≤ j.

Encoding of (well-formed) TM configurations Let C = C(0) . . . C(j) be a TM
configuration of length at least 2. A TM configuration code (for C) is a word over AP \
{inc,=, good, L,R, ∃, ∀} of the form code = τ · bl0 . . . blj · τ satisfying the following:

• τ = $ if C is not accepting and τ = $acc otherwise;

• for all 0 ≤ i ≤ j, bli is a k-block whose content is C(i);

• bl0 is initial and blj is the unique final k-block.

131

We say that code is initial if C is of the form (qι, α(0))α(1) . . . α(n)# . . .# (note that we
do not require that C is the well-formed initial TM configuration). Moreover, we say that
code is well-formed if additionally, j = expk(n) − 1 (hence, C is well-formed) and for all
0 ≤ i ≤ j, bli is well-formed and has index i. Note that there is exactly one well-formed
TM configuration code associated with a well-formed TM configuration.

Encoding of TM computations We use the four additional symbols L, R, ∃, and ∀
to encode single computations ofM. Intuitively, the symbol ∃ (resp., ∀) is used to delimit
an existential (resp., universal) configuration, while the symbol L (resp., R) is used to
delimit the left (resp., right) successor of a TM configuration. A TM computation code
is an infinite sequence ν of the form ν = code0 · Q0 · dir1 · code1 · Q1 · dir2 . . . such that
for all i ≥ 0, codei is a TM configuration code which is initial if i = 0, diri+1 ∈ {L,R},
and Qi = ∃ if the TM configuration Ci associated with codei is existential, and Qi = ∀
otherwise. The TM computation code ν is well-formed if codei is well-formed for all i ≥ 0,
and ν is accepting if ν visits some accepting configuration code. Moreover, ν is fair if
additionally, Ci+1 is the left successor of Ci if diri+1 = L, and the right successor of Ci
otherwise. Thus, the accepting, fair, and well-formed TM computation codes encode all
the possible accepting TM computations of M over α.

Note that we have not used the symbols in {inc,=, good} in the encoding of TM
computations. These extra symbols are used to mark positions along a TM computation
code and are crucial for the implementation of transducer satisfying Proposition 30. So,
we give the following additional definitions. For a word w over 2AP , the content of w is the
word over 2AP\{inc,=,good} obtained by removing from each letter in w the extra symbols
in {inc,=, good}. An extended TM computation code is an infinite word over 2AP whose
content corresponds to a TM computation code. For an arena with labelling over 2AP and
a play π, the content of π is the content of its labelling µ(π).

Construction of the arena G in Proposition 30 The following is straightforward:

Lemma 26. One can construct in time polynomial in n and the size ofM, a 2AP -labelled
arena G = (V,E, Vι, vι, µ) such that Vι = {vι} and the following holds:

1. for each extended TM computation code ν, there is a play whose labelling is ν;
2. for each partial play ρ, the labelling νρ of ρ is the prefix of some extended TM compu-

tation code; moreover, for each extended TM computation code ν having νρ as prefix,
ρ can be extended to an infinite play whose labelling is ν;

3. the set of positions of Player 2 is the set of positions labelled by proposition ∀.

In the following, let G = (V,E, Vι, vι, µ) be the arena of Lemma 26. Note that in
a position labelled by ∀, Player 2 chooses between a next position labelled with L and
one labelled with R, hence she simulates the universal choices of M; similarly Player 1
simulates the existential choices. Moreover, by Properties 1–3 of Lemma 26, we easily
obtain the following.

Remark 19. M accepts α iff Player 1 has a strategy σ in G such that for all π ∈ Out(σ),
the content of µ(π) is a well-formed, fair and accepting TM computation code.

132 Proof of Proposition 20

Construction of the finite-state transducer T in Proposition 30 Let ρ be a finite
play of G and 1 ≤ h ≤ k. We say that ρ is not tagged if each position along ρ is not labelled
by the extra symbols in {inc,=}. Moreover, we say that ρ is a (h,=)-tagged (resp., (h, inc)-
tagged) play if exactly two positions along ρ are labelled by some proposition in {=, inc},
this proposition is = (resp., inc), and these two positions correspond to the initial positions
of two h-blocks along ρ. Additionally, for a (h, inc)-tagged play, we require that the two
tagged h-blocks are adjacent. Assuming that the two tagged h-blocks bl1 and bl2 are well-
formed, then the tag = is used to check that bl1 and bl2 have the same index, while the
tag inc is used to check that the indices of bl1 and bl2 are consecutive (i.e, bl1 is not final
and the index of bl2 is the index of bl1 plus one).

A ; -propositional FL; formula contains only modality ; , boolean connectives, and
atomic propositions. Let U be the universe of G. Note that since Vι is a singleton
(Lemma 26), U is a tree. For a transducer T , a partial play ρ of G, and a FL; state
formula ϕ, we write ρ |= ϕ to mean that U , ρ |= ϕ with relation [T]. Note that if ϕ is
; -propositional, then for each strategy σ of G and ρ ∈ tσ, tσ, ρ |= ϕ iff U , ρ |= ϕ.

The core result in the proposed reduction is represented by the following lemma.

Lemma 27. One can construct in time polynomial in n and the size of the TMM a syn-
chronous finite-state transducer T over 2AP such that there are two fixed ; -propositional
FLk+1

;
formulas ϕconf and ϕfair over {good}, and for all 1 ≤ h ≤ k, three fixed ; -

propositional FLh
;

formulas ϕh=, ϕhinc, and ϕhbl over {good} so that the following holds.
1. Let ρ be an (h,=)-tagged partial play of G. If the two tagged h-blocks bl1 and bl2 of

ρ are well-formed, then ρ |= ϕh= iff bl1 and bl2 have the same index.
2. Let ρ be an (h, inc)-tagged partial play of G. If the two tagged h-blocks bl1 and bl2 of

ρ are well-formed and bl1 precedes bl2, then ρ |= ϕhinc iff the indices of bl1 and bl2 are
consecutive.

3. Let ρ be a non-tagged partial play ρ of G leading to an h-block bl. If each sub-block
of bl is well-formed, then ρ |= ϕhbl iff bl is well-formed.

4. Let ρ be a non-tagged partial play of ρ leading to a TM configuration code – code
– followed by either an ∃-position or a ∀-position. Then, if each k-block of code is
well-formed, ρ |= ϕconf iff code is well-formed.

5. Let ρ be a non-tagged partial play of G having a suffix whose content has the form
code ·Q · dir · code ′, where Q ∈ {∃, ∀}, dir ∈ {L,R}, and code and code ′ are two TM
configuration codes associated with two TM configurations C and C ′. If code and
code ′ are well-formed, then ρ |= ϕfair iff C ′ is the dir-successor of C.

Proof. The main idea, for each point, is to decompose the verification of a property in
layers implementable with polynomially many states in the transducer, and invoking other
layers thanks to the ; quantifier. Note that for each point of the lemma, the partial plays
considered are of a particular form; a transducer can behave differently in each case by
first guessing what kind of partial play it will read, behave accordingly and at the same
time check that the input indeed is of this form. Thus, for each i = 1, . . . , 5, we describe
(Case i, for short) the behavior of the synchronous transducer T on the plays associated
with Property i, illustrate the construction of the associated fixed ; -propositional FL;

formula, and at the same time, we prove Property i. Also, when we say that the transducer
T reads or write a partial play ρ, we actually refer to its labelling. Case 2 is similar to
Case 1, and Case 4 is similar to Case 3. Thus, here, we illustrate only Cases 1, 3, and 5.

133

Case 1: behavior of T on (h,=)-tagged partial plays ρ, construction of ϕh=, and proof of
Property 1. Let bl1 and bl2 be the two tagged h-blocks of ρ. First, assume that h = 1.
Recall that all 1-blocks are well formed, hence bl1 and bl2 are so. On reading the input ρ,
T nondeterministically guesses an index 1 ≤ j ≤ n and checks that the jth bit of bl1 has
the same value as the jth bit of bl2. The output ρj generated by T on guessing j has the
same content as ρ and its last position is labelled by the proposition good iff the check is
positive. Thus, by setting ϕ1

= := ; good, it holds that bl1 and bl2 have the same index iff
ρ |= ϕ1

=. Hence, Property 1 holds for h = 1. Now, assume that h > 1. On reading the
input ρ, T non-deterministically marks by the symbol =, exactly one (h − 1)-sub-block
bl ′1 of bl1 and one (h− 1)-sub-block bl ′2 of bl2, and checks that bl ′1 and bl ′2 have the same
content. Thus, the associated output ρ′ is an (h − 1,=)-tagged partial play having the
same content as ρ and satisfying the following: the two tagged (h− 1)-blocks of ρ′ are bl ′1
and bl ′2, and the last position of ρ′ is labelled by good iff bl ′1 and bl ′2 have the same content.
Note that this behavior can be implemented by using a number of states polynomial in n
and the size ofM. Assuming that bl1 and bl2 are well-formed, it holds that bl1 and bl2 have
the same index iff for all outputs ρ′ generated by T on reading ρ, whenever the two tagged
well-formed (h− 1)-blocks of ρ′ have the same index, the last position of ρ′ is labelled by
good. Let ϕh= := ; (ϕh−1

= → good). By the induction hypothesis and assuming that bl1
and bl2 are well-formed, it follows that bl1 and bl2 have the same index iff ρ |= ϕh=. Note
that by the induction hypothesis, ϕh= is a fixed ; -propositional FLh

;
formula. Hence,

Property 1 holds for h > 1 as well.

Behavior of T on (h, inc)-tagged partial plays ρ, construction of ϕhinc, and proof of Prop-
erty 2. Let bl1 and bl2 be the adjacent tagged h-blocks of ρ such that bl1 precedes bl2 along
ρ. First, assume that h = 1. Note that bl1 and bl2 are well-formed. Let 1 ≤ j ≤ n be the
position of the least significant (i.e. rightmost) bit of bl1 whose value is 0 (note that since
bl1 and bl2 are adjacent, Lemma 26 and our encoding ensure that such a bit does exists).
On reading ρ, T nondeterministically guesses an index 1 ≤ i ≤ n and checks that the
following condition is satisfied: if i < j, then the ith bit of bl1 has the same value as the
ith bit of bl2; otherwise the ith bits of bl1 and bl2 are distinct. The output ρi generated by
T on guessing i has the same content as ρ and its last position is labelled by good iff the
check is positive. Thus, by setting ϕ1

inc := ; good, it holds that the indices of bl1 and bl2
are consecutive iff ρ |= ϕ1

inc, hence Property 2 holds for h = 1. Now, assume that h > 1.
Let bl0 be the last (h − 1)-sub-block of bl1 whose content is 0 (again, because bl1 and bl2
are adjacent, such a block bl0 does exists). Then, on reading ρ, T non-deterministically
marks by the symbol =, exactly one (h− 1)-sub-block bl ′1 of bl1 and one (h− 1)-sub-block
bl ′2 of bl2, and checks that the following condition is satisfied: (*) if bl ′1 precedes bl0, then
bl ′1 and bl ′2 have the same content; otherwise, bl ′1 and bl ′2 have distinct contents. Thus,
the associated output ρ′ is an (h− 1,=)-tagged partial play having the same content as ρ
and satisfying the following: the two tagged (h − 1)-blocks of ρ′ are bl ′1 and bl ′2, and the
last position of ρ′ is labelled by good iff the above condition (*) is satisfied. Note that
this behavior can be implemented by using a number of states polynomial in n and the
size ofM. Thus, assuming that bl1 and bl2 are well-formed, it holds that the indices of bl1
and bl2 are consecutive iff for all outputs ρ′ generated by T on reading ρ, whenever the
two tagged well-formed (h − 1)-blocks of ρ′ have the same index, the last position of ρ′

is labelled by good. Let ϕhinc := ; (ϕh−1
= → good). Note that by the proof of Property 1,

134 Proof of Proposition 20

ϕhinc is a fixed ; -propositional FLh
;

formula. By Property 1 and assuming that bl1 and
bl2 are well-formed, it follows that the indices of bl1 and bl2 are consecutive iff ρ |= ϕhinc.
Hence, Property 2 holds for h > 1 as well.

Case 3: behavior of T on non-tagged partial plays ρ leading to h-blocks bl, construction of
ϕhbl, and proof of Property 3. First, assume that h = 1. On reading ρ, T simply outputs ρ
itself. Since a 1-block is always well-formed, by setting ϕ1

bl := true, Property 3 holds for
h = 1. Now, assume that h > 1. On reading the input ρ which leads to an h-block bl, T
non-deterministically marks with the symbol inc exactly two adjacent (h− 1)-sub-blocks
bl1 and bl2 of bl, and checks that the last (h − 1)-sub-block is final. Thus, the associated
output ρ′ is an (h−1, inc)-tagged partial play having the same content as ρ and satisfying
the following: the two tagged (h− 1)-blocks of ρ′ are bl1 and bl2, and the last position of
ρ′ is labelled by good iff the last (h − 1)-sub-block of bl is final. Thus, assuming that all
the sub-blocks of bl are well-formed, it holds that bl is well-formed iff for all outputs ρ′

generated by T on reading ρ, the indices of the two tagged well-formed (h−1)-blocks of ρ′

are consecutive and the last position of ρ′ is labelled by good. Let ϕhbl := ; (ϕh−1
inc ∧ good).

Note that by Property 2, ϕhbl is a fixed ; -propositional FLh
;

formula. Then, by Property 2
and assuming that all the sub-blocks of bl are well-formed, it follows that bl is well-formed
iff ρ |= ϕhbl. Hence, Property 3 holds for h > 1 as well.

Behavior of T on the non-tagged partial plays ρ of Property 4, construction of ϕconf, and
proof of Property 4. The behavior of T on this kind of plays is similar to the behavior of
T on non-tagged plays leading to h-blocks, and the proof of Property 4 is similar to the
proof of Property 3. In particular, ϕconf := ; ϕkinc.

Case 5: behavior of T on the non-tagged partial plays ρ of Property 5, construction of ϕfair,
and proof of Property 5. First, we need an additional notation. Let C = u0 . . . uexpk(n)−1

be a well-formed TM configuration and dir = L (resp., dir = R). For all 0 ≤ i ≤
expk(n) − 1, the value u′i of the ith cell of the left (resp., right) M-successor of C is
completely determined by the values ui−1, ui and ui+1 (taking ui+1 for i = exph(n) − 1
and ui−1 for i = 0 to be some special symbol, say ‘⊥’). Let nextdir(ui−1, ui, ui+1) be our
expectation for u′i (this function can be trivially obtained from the transition function δ
of M). Let ρ be a non-tagged partial play of G having a suffix whose content has the
form code · Q · dir · code ′, where Q ∈ {∃, ∀}, dir ∈ {L,R}, and code and code ′ are two
TM configuration codes associated with two TM configurations C and C ′. Assume that
dir = L (the other case is similar). The behavior of T on the input ρ is as follows. T non-
deterministically marks with the symbol ‘=’ exactly one k-block bl of code and one k-block
bl ′ of code ′, and checks that u′ = nextL(u−, u, u+), where u (resp., u′) is the content of bl
(resp., bl ′) and u− (resp., u+) is the content of the k-block that precedes (resp., follows)
bl in code if it exists, and the special symbol ⊥ otherwise. Thus, the associated output ρ′

is a (k,=)-tagged partial play having the same content as ρ and satisfying the following:
the two tagged k-blocks of ρ′ are bl and bl ′, and the last position of ρ′ is labelled by good
iff u′ = nextL(u−, u, u+). Note that this behavior can be implemented by using a number
of states polynomial in n and the size of M. Thus, assuming that code and code ′ are
well-formed, it holds that C ′ is the left M-successor of C iff for all outputs ρ′ generated
by T on reading ρ, whenever the two tagged well-formed k-blocks of ρ′ have the same
index, the last position of ρ′ is labelled by good. Let ϕfair := ; (ϕk= → good). Note that

135

ϕfair is a fixed ; -propositional FLk+1
;

formula. By Property 1 and assuming that code
and code ′ are well-formed, it follows that C ′ is the left M-successor of C iff ρ |= ϕfair.
Hence, Property 5 holds, which concludes the proof of the proposition.

Construction of the fixed FLk+1
;

formula ϕ in Proposition 30 and proof of
Proposition 30 Let T be the synchronous finite-state transducer and ϕconf, ϕfair, ϕ1

bl,
. . ., ϕkbl be the fixed ; -propositional FLk+1

;
formulas satisfying Lemma 27. Then, the

fixed FLk+1
;

formula ϕ is given by ϕ := Aψ, the path formula ψ being defined as follows,
where ϕ′ := $1 ∨ . . . ∨ $k ∨ $ ∨ $acc:

ψ :=

G
(
¬inc ∧ ¬ =

)
∧ GF($ ∨ $acc)︸ ︷︷ ︸

the infinite play corresponds to a non-tagged TM computation code

∧
k∧

h=1

G(($h ∧Xϕ′)→ ϕhbl) ∧ G((∃ ∨ ∀)→ ϕconf)

︸ ︷︷ ︸
the TM computation code is well-formed

∧
G
(
(∃ ∨ ∀) → XG(X(∃ ∨ ∀)→ ϕfair)

)
︸ ︷︷ ︸

the well-formed TM sequence code is fair

∧
F $acc︸ ︷︷ ︸

the fair well-formed TM computation code is accepting

By Remark 19 and Lemma 27, it easily follows thatM accepts α iff there is a strategy
σ of Player 1 in G such that the contents of all the plays in the outcome of σ are accepting,
fair, and well-formed TM computation codes iff there is a strategy σ of Player 1 in G
such that for the relation [T], tσ |= Aψ iff Player 1 has a ([T],Aψ)-uniform strategy in
G, which proves Proposition 30.

136 Proof of Proposition 20

Bibliography

de Alfaro L. and Henzinger T.A. (2000), Concurrent omega-regular games. in LICS,
pp. 141–154.

de Alfaro L., Henzinger T.A. and Kupferman O. (1998), Concurrent reachability
games. in FOCS, pp. 564–575 (IEEE Computer Society).

Alur R., Henzinger T.A. and Kupferman O. (2002), Alternating-time temporal logic.
J. ACM, vol. 49(5): pp. 672–713.

Aucher G. (2013), Infinite Games in Epistemic Temporal Logic via Supervisory Con-
trol Theory. Rapport de recherche RR-8374, INRIA. URL http://hal.inria.fr/

hal-00866155.

Aucher G. and Bolander T. (2013), Undecidability in epistemic planning. in IJCAI.

Aucher G. and Herzig A. (2011), Exploring the power of converse events. in Dynamic
formal epistemology, pp. 51–74 (Springer), doi:10.1007/978-94-007-0074-1_4.

Aucher G., Maubert B. and Schwarzentruber F. (2011), Tableau Method and
NEXPTIME-Completeness of DEL-Sequents. in Methods for Modalities (M4M), vol.
278, pp. 17–30 (Electr. Notes Theor. Comput. Sci.).

Aucher G., Maubert B. and Schwarzentruber F. (2012), Generalized DEL-
Sequents. in JELIA, vol. 7519 of Lecture Notes in Computer Science, edited by L.F.
del Cerro, A. Herzig and J. Mengin, pp. 54–66 (Springer), ISBN 978-3-642-33352-1.

Baltag A., Moss L.S. and Solecki S. (1998), The logic of public announcements, com-
mon knowledge, and private suspicions. in Proceedings of the 7th conference on Theo-
retical aspects of rationality and knowledge, pp. 43–56 (Morgan Kaufmann Publishers
Inc.).

Bekker W. and Goranko V. (2007), Symbolic model checking of tense logics on ra-
tional kripke models. in ILC, vol. 5489 of Lecture Notes in Computer Science, edited
by M. Archibald, V. Brattka, V. Goranko and B. Löwe, pp. 2–20 (Springer), ISBN
978-3-642-03091-8.

van Benthem J. (2001), Games in Dynamic-Epistemic Logic. Bulletin of Economic Re-
search, vol. 53(4): pp. 219–248, doi:10.1111/1467-8586.00133.

137

http://hal.inria.fr/hal-00866155
http://hal.inria.fr/hal-00866155

138 Bibliography

van Benthem J. (2005), The Epistemic Logic of IF Games. The Philosophy of Jaakko
Hintikka, vol. 30.

van Benthem J. (2011), Logical dynamics of information and interaction (Cambridge
University Press).

van Benthem J., Gerbrandy J., Hoshi T. and Pacuit E. (2009), Merging frameworks
for interaction. Journal of Philosophical Logic, vol. 38(5): pp. 491–526, doi:10.1007/
s10992-008-9099-x.

van Benthem J. and Liu F. (2004), Diversity of logical agents in games. Philosophia
Scientiae, vol. 8(2): pp. 163–178.

Bernet J., Janin D. and Walukiewicz I. (2002), Permissive strategies: from parity
games to safety games. ITA, vol. 36(3): pp. 261–275.

Berstel J. (1979), Transductions and context-free languages, vol. 4 (Teubner Stuttgart),
doi:10.1007/978-3-663-09367-1.

Berwanger D., Chatterjee K., Wulf M.D., Doyen L. and Henzinger T.A. (2010),
Strategy construction for parity games with imperfect information. Inf. Comput., vol.
208(10): pp. 1206–1220.

Berwanger D. and Doyen L. (2008), On the power of imperfect information. in
FSTTCS, vol. 2 of LIPIcs, edited by R. Hariharan, M. Mukund and V. Vinay, pp.
73–82 (Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik).

Berwanger D. and Kaiser L. (2010), Information tracking in games on graphs. Journal
of Logic, Language and Information, vol. 19(4): pp. 395–412.

Berwanger D., Kaiser L. and Leßenich S. (2012), Solving counter parity games. in
MFCS, vol. 7464 of Lecture Notes in Computer Science, edited by B. Rovan, V. Sassone
and P. Widmayer, pp. 160–171 (Springer), ISBN 978-3-642-32588-5.

Blackburn P., van Benthem J.F. and Wolter F. (2006), Handbook of modal logic,
vol. 3 (Elsevier).

Blumensath A. and Grädel E. (2000), Automatic structures. in LICS, pp. 51–62 (IEEE
Computer Society), ISBN 0-7695-0725-5.

Blumensath A. and Grädel E. (2004), Finite presentations of infinite structures: Au-
tomata and interpretations. Theory Comput. Syst., vol. 37(6): pp. 641–674.

Bojanczyk M. (2002), Two-way alternating automata and finite models. in ICALP, vol.
2380 of Lecture Notes in Computer Science, edited by P. Widmayer, F.T. Ruiz, R.M.
Bueno, M. Hennessy, S. Eidenbenz and R. Conejo, pp. 833–844 (Springer), ISBN 3-540-
43864-5.

Bolander T. and Andersen M.B. (2011), Epistemic planning for single and multi-agent
systems. Journal of Applied Non-Classical Logics, vol. 21(1): pp. 9–34.

Bibliography 139

Chandra A.K., Kozen D. and Stockmeyer L.J. (1981), Alternation. Journal of the
ACM, vol. 28(1): pp. 114–133.

Chatterjee K., Doyen L., Henzinger T.A. and Raskin J.F. (2006), Algorithms for
omega-regular games with imperfect information, . in CSL, vol. 4207 of Lecture Notes
in Computer Science, edited by Z. Ésik, pp. 287–302 (Springer), ISBN 3-540-45458-6.

Clarke E.M. and Emerson E.A. (1981), Design and synthesis of synchronization skele-
tons using branching-time temporal logic. in Logic of Programs, vol. 131 of Lecture Notes
in Computer Science, edited by D. Kozen, pp. 52–71 (Springer), ISBN 3-540-11212-X.

Dégremont C., Löwe B. and Witzel A. (2011), The synchronicity of dynamic epis-
temic logic. in TARK, edited by K.R. Apt, pp. 145–152 (ACM), ISBN 978-1-4503-0707-
9.

Dima C. (2008), Revisiting satisfiability and model-checking for CTLK with synchrony
and perfect recall. in CLIMA, vol. 5405 of Lecture Notes in Computer Science, edited by
M. Fisher, F. Sadri and M. Thielscher, pp. 117–131 (Springer), ISBN 978-3-642-02733-8.

Dima C., Enea C. and Guelev D.P. (2010), Model-checking an alternating-time tem-
poral logic with knowledge, imperfect information, perfect recall and communicating
coalitions. Electronic Proceedings in Theoretical Computer Science, vol. 25, doi:10.4204.

van Ditmarsch H. and Kooi B. (2006), Semantic results for ontic and epistemic change.
Logic and the Foundations of Game and Decision Theory (LOFT 7), p. 87.

van Ditmarsch H.P., Van der Hoek W. and Kooi B.P. (2007), Dynamic epistemic
logic, vol. 337 (Springer).

Dziembowski S., Jurdzinski M. and Walukiewicz I. (1997), How much memory is
needed to win infinite games? in LICS, pp. 99–110 (IEEE), doi:10.1109/LICS.1997.
614939.

van Eijck J. (2004), Guarded actions. Tech. Rep., Technical Report SEN-E0425, CWI,
Amsterdam.

Eilenberg S. (1974), Automata, languages, and machines, vol. 1 (Elsevier).

Emerson E.A. (1990), Temporal and modal logic. in Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pp. 995–1072 (MIT Press).

Emerson E.A. and Halpern J.Y. (1983), “Sometimes” and “Not Never” revisited: On
branching versus linear time. in POPL, edited by J.R. Wright, L. Landweber, A.J.
Demers and T. Teitelbaum, pp. 127–140 (ACM Press), ISBN 0-89791-090-7.

Emerson E.A. and Lei C.L. (1986), Efficient model checking in fragments of the proposi-
tional mu-calculus (extended abstract). in LICS, pp. 267–278 (IEEE Computer Society).

Engström F. (2012), Generalized quantifiers in dependence logic. Journal of Logic, Lan-
guage and Information, vol. 21(3): pp. 299–324.

140 Bibliography

Fagin R., Halpern J. and Vardi M. (1991), A model-theoretic analysis of knowledge.
Journal of the ACM (JACM), vol. 38(2): pp. 382–428, doi:10.1145/103516.128680.

Fagin R., Halpern J.Y., Moses Y. and Vardi M.Y. (1995), Reasoning about knowl-
edge, vol. 4 (MIT press Cambridge).

Frougny C. and Sakarovitch J. (1993), Synchronized rational relations of finite and
infinite words. Theor. Comput. Sci., vol. 108(1): pp. 45–82.

Galliani P. (2012), Inclusion and exclusion dependencies in team semantics - on some
logics of imperfect information. Ann. Pure Appl. Logic, vol. 163(1): pp. 68–84.

Ghallab M., Nau D.S. and Traverso P. (2004), Automated planning - theory and
practice (Elsevier), ISBN 978-1-55860-856-6.

Grädel E. (2013), Model-checking games for logics of imperfect information. Theoretical
Computer Science, vol. 493: pp. 2–14.

Grädel E., Thomas W. and Wilke T. (editors) (2002), Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001],
vol. 2500 of Lecture Notes in Computer Science (Springer), ISBN 3-540-00388-6.

Grädel E. and Väänänen J.A. (2013), Dependence and independence. Studia Logica,
vol. 101(2): pp. 399–410.

Halpern J.Y., van der Meyden R. and Vardi M.Y. (2004), Complete Axiomati-
zations for Reasoning about Knowledge and Time. SIAM J. Comput., vol. 33(3): pp.
674–703.

Halpern J.Y. and Vardi M.Y. (1989), The complexity of reasoning about knowledge
and time. 1. Lower bounds. Journal of Computer and System Sciences, vol. 38(1): pp.
195–237, doi:10.1145/12130.12161.

Henkin L. (1961), Some remarks on infinitely long formulas. in Infinitistic Methods, War-
saw, pp. 167–183.

Hintikka J. (1962), Knowledge and belief, vol. 13 (Cornell University Press Ithaca).

Hintikka J. and Sandu G. (1989), Informational independence as a semantical phe-
nomenon. Studies in Logic and the Foundations of Mathematics, vol. 126: pp. 571–589.

Hodges W. (1997), Compositional semantics for a language of imperfect information.
Logic Journal of the IGPL, vol. 5(4): pp. 539–563.

van der Hoek W. and Wooldridge M. (2003), Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications. Studia Logica, vol. 75(1):
pp. 125–157, doi:10.1023/A:1026185103185.

Hopcroft J.E., Motwani R. and Ullman J.D. (2003), Introduction to automata the-
ory, languages, and computation - international edition (2. ed) (Addison-Wesley), ISBN
978-0-321-21029-6.

Bibliography 141

Hoshi T. and Yap A. (2009), Dynamic epistemic logic with branching temporal struc-
tures. Synthese, vol. 169(2): pp. 259–281.

Hossley R. and Rackoff C. (1972), The emptiness problem for automata on infi-
nite trees. in 13th Annual Symposium on Switching and Automata Theory, pp. 121–124
(IEEE).

Jamroga W. and van der Hoek W. (2004), Agents that know how to play. Fundam.
Inform., vol. 63(2-3): pp. 185–219.

Johnson J.H. (1986), Rational equivalence relations. Theor. Comput. Sci., vol. 47(3):
pp. 39–60.

Kanellakis P.C. and Smolka S.A. (1990), Ccs expressions, finite state processes, and
three problems of equivalence. Information and Computation, vol. 86(1): pp. 43–68.

Khoussainov B. and Nerode A. (1994), Automatic presentations of structures. in
LCC, vol. 960 of Lecture Notes in Computer Science, edited by D. Leivant, pp. 367–392
(Springer), ISBN 3-540-60178-3.

Khoussainov B., Nies A., Rubin S. and Stephan F. (2007), Automatic structures:
Richness and limitations. Logical Methods in Computer Science, vol. 3(2).

Kozen D. (1983), Results on the propositional mu-calculus. Theor. Comput. Sci., vol. 27:
pp. 333–354.

Kupferman O. and Vardi M.Y. (1997), Module checking revisited. in CAV, vol. 1254
of Lecture Notes in Computer Science, edited by O. Grumberg, pp. 36–47 (Springer),
ISBN 3-540-63166-6.

Kupferman O., Vardi M.Y. and Wolper P. (2000), An automata-theoretic approach
to branching-time model checking. J. ACM, vol. 47(2): pp. 312–360.

Kupferman O., Vardi M.Y. and Wolper P. (2001), Module checking. Inf. Comput.,
vol. 164(2): pp. 322–344.

Ladner R.E. and Reif J.H. (1986), The Logic of Distributed Protocols. in TARK, edited
by J.Y. Halpern, pp. 207–222 (Morgan Kaufmann), ISBN 0-934613-04-4.

Lehmann D. (1984), Knowledge, common knowledge and related puzzles (extended sum-
mary). in Proceedings of the third annual ACM symposium on Principles of distributed
computing, pp. 62–67 (ACM), doi:10.1145/800222.806736.

Liu F. (2009), Diversity of agents and their interaction. Journal of Logic, Language and
Information, vol. 18(1): pp. 23–53.

Löding C. (2014), Automata on infinite trees. in preliminary version for the handbook
Automata: from Mathematics to Applications, edited by J.E. Pin. To appear.

Löwe B., Pacuit E. and Witzel A. (2011), DEL planning and some tractable cases. in
LORI, vol. 6953 of Lecture Notes in Computer Science, edited by H.P. van Ditmarsch,
J. Lang and S. Ju, pp. 179–192 (Springer), ISBN 978-3-642-24129-1.

142 Bibliography

Maubert B. and Pinchinat S. (2009), Games with opacity condition. in Reachability
Problems, vol. 5797 of Lecture Notes in Computer Science, edited by O. Bournez and
I. Potapov, pp. 166–175 (Springer), ISBN 978-3-642-04419-9.

Maubert B. and Pinchinat S. (2012), Uniform strategies. in LOFT 2012, 10th Confer-
ence on Logic and the Foundations of Game and Decision Theory, Sevilla, Spain. URL
http://www.irisa.fr/prive/bmaubert/publications.html.

Maubert B. and Pinchinat S. (2013), Jumping automata for uniform strategies. in
Proceedings of the 33rd Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS’13), edited by A. Seth and N. Vishnoi, Leibniz
International Proceedings in Informatics, pp. 287–298 (Leibniz-Zentrum für Informatik,
Guwahati, India), doi:10.4230/LIPIcs.FSTTCS.2013.287.

Maubert B. and Pinchinat S. (2014), A general notion of uniform strategies. Interna-
tional Game Theory Review, vol. 16(01), doi:10.1142/S0219198914400040.

Maubert B., Pinchinat S. and Bozzelli L. (2011), Opacity issues in games with
imperfect information. in GandALF, vol. 54 of EPTCS, edited by G. D’Agostino and
S.L. Torre, pp. 87–101, doi:10.4204/EPTCS.54.7.

Maubert B., Pinchinat S. and Bozzelli L. (2013), The complexity of synthesizing
uniform strategies. in Proceedings 1st International Workshop on Strategic Reasoning,
vol. 112 of EPTCS, edited by F. Mogavero, A. Murano and M.Y. Vardi, pp. 115–122.

McNaughton R. (1993), Infinite games played on finite graphs. Ann. Pure Appl. Logic,
vol. 65(2): pp. 149–184.

Meduna A. and Zemek P. (2012), Jumping finite automata. International Journal of
Foundations of Computer Science, vol. 23(07): pp. 1555–1578.

van der Meyden R. and Shilov N.V. (1999), Model checking knowledge and time
in systems with perfect recall (extended abstract). in FSTTCS, vol. 1738 of Lecture
Notes in Computer Science, edited by C.P. Rangan, V. Raman and R. Ramanujam, pp.
432–445 (Springer), ISBN 3-540-66836-5.

van der Meyden R. and Vardi M.Y. (1998), Synthesis from knowledge-based specifi-
cations. in CONCUR’98 Concurrency Theory, pp. 34–49 (Springer).

van der Meyden R. and Wilke T. (2005), Synthesis of distributed systems from
knowledge-based specifications. in CONCUR, vol. 3653 of Lecture Notes in Computer
Science, edited by M. Abadi and L. de Alfaro, pp. 562–576 (Springer), ISBN 3-540-
28309-9.

Morvan C. (2000), On rational graphs. in FoSSaCS, vol. 1784 of Lecture Notes in Com-
puter Science, edited by J. Tiuryn, pp. 252–266 (Springer), ISBN 3-540-67257-5.

Morvan C. and Rispal C. (2005), Families of automata characterizing context-sensitive
languages. Acta Inf., vol. 41(4-5): pp. 293–314.

http://www.irisa.fr/prive/bmaubert/publications.html

Bibliography 143

Muller D.E. and Schupp P.E. (1987), Alternating automata on infinite trees. Theoret-
ical computer science, vol. 54(2): pp. 267–276.

Muller D.E. and Schupp P.E. (1995), Simulating alternating tree automata by nonde-
terministic automata: New results and new proofs of the theorems of rabin, mcnaughton
and safra. Theor. Comput. Sci., vol. 141(1&2): pp. 69–107.

Pacuit E. (2007), Some comments on history based structures. Journal of Applied Logic,
vol. 5(4): pp. 613–624.

Pacuit E. and van Benthem J. (2006), The tree of knowledge in action: Towards a
common perspective. Proceedings of Advances in Modal Logic Volume 6, pp. 87–106.

Parikh R. and Ramanujam R. (1985), Distributed processes and the logic of knowledge.
in Logic of Programs, vol. 193 of Lecture Notes in Computer Science, edited by R. Parikh,
pp. 256–268 (Springer), ISBN 3-540-15648-8.

Parikh R. and Ramanujam R. (2003), A knowledge based semantics of messages. Jour-
nal of Logic, Language and Information, vol. 12(4): pp. 453–467.

Peterson G., Reif J.H. and Azhar S. (2001), Lower bounds for multiplayer noncoop-
erative games of incomplete information. Computers & Mathematics with Applications,
vol. 41(7): pp. 957–992.

Piccione M. and Rubinstein A. (1997), The absent-minded driver’s paradox: synthesis
and responses. Games and Economic Behavior, vol. 20(1): pp. 121–130.

Piterman N. and Vardi M.Y. (2004), Global model-checking of infinite-state systems.
in CAV, vol. 3114 of Lecture Notes in Computer Science, edited by R. Alur and D. Peled,
pp. 387–400 (Springer), ISBN 3-540-22342-8.

Pnueli A. (1977), The temporal logic of programs. in FOCS, pp. 46–57 (IEEE Computer
Society).

Pnueli A. and Rosner R. (1989), On the synthesis of an asynchronous reactive module.
in Proc. 16th Int. Coll. on Automata, Languages and Programming, ICALP’89, Stresa,
Italy, LNCS 372, pp. 652–671 (Springer-Verlag), doi:10.1007/BFb0035790.

Puchala B. (2010), Asynchronous omega-regular games with partial information. in
MFCS, vol. 6281 of Lecture Notes in Computer Science, edited by P. Hlinený and
A. Kucera, pp. 592–603 (Springer), ISBN 978-3-642-15154-5.

Ramadge P.J. and Wonham W.M. (1987), Supervisory control of a class of discrete
event processes. SIAM journal on control and optimization, vol. 25(1): pp. 206–230.

Reif J.H. (1984), The complexity of two-player games of incomplete information. Journal
of computer and system sciences, vol. 29(2): pp. 274–301, ISSN 0022-0000, doi:10.1016/
0022-0000(84)90034-5.

144 Bibliography

Riedweg S. and Pinchinat S. (2003), Quantified mu-calculus for control synthesis.
in MFCS, vol. 2747 of Lecture Notes in Computer Science, edited by B. Rovan and
P. Vojtás, pp. 642–651 (Springer), ISBN 3-540-40671-9.

Sato J. (1977), A study of kripke style methods for some modal logic by gentzen’s se-
quential method. Tech. Rep., Technical report, Publication Research Institute for Math-
ematical Science.

Thomas W. (1990), Automata on infinite objects. in Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pp. 133–192 (Elsevier).

Väänänen J.A. (2007), Dependence Logic - A New Approach to Independence Friendly
Logic, vol. 70 of London Mathematical Society student texts (Cambridge University
Press), ISBN 978-0-521-70015-3.

Vardi M.Y. (1995), Alternating automata and program verification. in Computer Science
Today, vol. 1000 of Lecture Notes in Computer Science, edited by J. van Leeuwen, pp.
471–485 (Springer), ISBN 3-540-60105-8.

Vardi M.Y. (1998), Reasoning about the past with two-way automata. in ICALP, vol.
1443 of Lecture Notes in Computer Science, edited by K.G. Larsen, S. Skyum and
G. Winskel, pp. 628–641 (Springer), ISBN 3-540-64781-3.

Vardi M.Y. (2008), From Church and Prior to PSL. in 25 Years of Model Checking, vol.
5000 of Lecture Notes in Computer Science, edited by O. Grumberg and H. Veith, pp.
150–171 (Springer), ISBN 978-3-540-69849-4.

Vardi M.Y. and Wolper P. (1994), Reasoning about infinite computations. Information
and Computation, vol. 115(1): pp. 1–37.

Wang Y. and Aucher G. (2013), An alternative axiomatization of DEL and its appli-
cations. in IJCAI.

Yu Q., Wen X. and Liu Y. (2013), Multi-agent epistemic explanatory diagnosis via
reasoning about actions. in IJCAI, pp. 1183–1190.

Zielonka W. (1998), Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci., vol. 200(1-2): pp. 135–183.

Index

Symbols
ME∗, 103
FUS, 64
FUSK45NM, 65
FUSk, 64
; , 30
; -depth, 64, 85
;, 30
SUS, 45
SUSRec, 58
ad(ϕ), see Alternation depth
d(ϕ), see Nesting depth or ; -depth
nFUS, 85
nFUSK45NM, 87
nFUS

h
K45NM, 87

nSFUS, 89
nSFUSK45NM, 90
nSFUS

h
K45NM, 90

nSFUSk, 89
nSUS, 82
nSUSRec, 84
L;, 30
FL;, 64
FLk

;
, 64

FnL;, 82
nL;, 82
SL;, 45
SFnL;, 88
SnL;, 82
K45NM, 64
mFUSkk, 85

A
Abstract direction, 22
Acceptance condition, 20
Acceptance game, 22
Alphabet, 12
Alternating tree automaton, 20

Alternation depth, 86
Arena, 13
Automaton, 19

B
Bounded memory, 117
Branch, 13

C
Colour, 16
Colouring function, 16, 21
Concrete direction, 23
Consistent winning strategy, 39

D
DEL-generated model, 103
Determinacy, 16
Deterministic strategy, 14
Direction, 12

E
Epistemic model, 96
Epistemic planning problem, 110
Epistemic protocol, 115
Epistemic protocol synthesis problem, 116
ETL model, 100
Euclidean relations, 64
Event model, 97

F
Finite word, 12
Finite memory strategy, 15
Finite path, 14
Finite play, 14
Finite state transducer, 26
FL;, 64
FLk

;
, 64

FnL;, 82
Forest, 12

145

146 Index

FST, see Finite state transducer
Full, 64
Full quantifier, 30
FUS, 64
FUSk, 64
FUSK45NM, 65

G
Game semantics, 18
Generalized strategy, 15

I
Identity relation, 27
Infinite path, 14
Infinite play, 14
Infinite tree, 12
Infinite word, 12
Information set, 65
Information set bisimulation, 68
Information set automaton, 66

K
K45NM, 64

L
L;, 30
Labelled arena, 13
Labelled forest, 12
Labelled tree, 12
LEL, 96

M
Memory structure, 15
Memoryless strategy, 15, 16
nFUS, 85
Mirror, 12

N
Nesting depth, 64, 85
nFUS

h
K45NM, 87

nFUSK45NM, 87
nFUSk, 85
nL;, 82
No Miracles, 64
Node, 13
Node word, 13
Nondeterministic strategy, 15

Nonemptiness problem, 24
Nonempty-prefix-closed automaton, 102
nSFUS, 89
nSFUSK45NM, 90
nSFUS

h
K45NM, 90

nSFUSk, 89
nSUS, 82
nSUSRec, 84

O
Observation-based strategy, 33
Ontic event, 97
Opacity condition, 40
Outcome, 15

P
Parity game, 16
Path, 14
Play, 14
Postcondition, 97
Precondition, 97
Priority, 16
Propositional event model, 98
Propositional bisimulation, 102

Q
Quotient automaton, 68

R
Rational relation, 26
Recognizable relation, 27
Regular, 19, 20
Regular language, 19, 20
Regular relation, 26
Regular structure, 101
Regular tree, 25
Relational structure, 101
Representation, 101
Root-testing two-way tree automata, 53

S
Second-order reachability games, 39
Semantic game, 18
SFnL;, 88
Simple ETL model, 101
Simple representation, 102
SL;, 45

Index 147

SnL;, 82
Spoiler, 18
Strategy, 14
Strategy synthesis, 59
Strategy tree, 16
Strict quantifier, 30
Strictly-uniform strategy, 45
Strictly-uniform strategy problem, 45
SUS, see Strictly-uniform strategy problem
SUS, 45
SUSRec, 58

T
Transducer, 26
Transition direction, 20
Tree, 12
Tree alphabet, 12
Tree automaton, 20
Two-way tree automaton, 20

U
Uniform strategy, 31
Universe, 30
Update product, 99

V
Valuation, 17
Verifier, 18

W
Word, 12
Word automaton, 19

Résumé en français

On trouve dans la littérature de nombreux exemples de jeux où les stratégies souhaitées
sont soumises à des contraintes “transversales” portant sur des ensembles de parties, re-
liées entre elles par quelque relation sémantique. L’exemple le plus fameux est celui des
stratégies dans les jeux à information imparfaite, et les jeux où la condition de gain a un
aspect épistémique en sont d’autres. Cependant, aucune étude approfondie n’a à notre
connaissance été menée sur ce type de contraintes dans leur généralité. C’est ce que nous
nous proposons de commencer dans cette thèse.

Nous définissons donc une notion générale de stratégies uniformes. Les propriétés
d’uniformité des stratégies sont exprimées dans un langage logique qui étend CTL

∗ avec
deux quantificateurs originaux. Ces quantificateurs sont très proches des opérateurs de
connaissance classiques en logique épistémique, et font intervenir des ensembles de par-
ties reliées entre elles par des relations binaires. Nous montrons comment cette notion
de stratégies uniformes capture les exemples connus de la littérature, puis nous étudions
en profondeur le problème de la synthèse de stratégies uniformes, en considérant que les
relations binaires entre les parties sont reconnaissables par des automates finis (relations
rationnelles). Nous établissons plusieurs résultats de décidabilité et de complexité, re-
posant largement sur des techniques d’automates : nous introduisons notamment comme
outils les automates d’arbres bondissants et les automates d’ensembles d’informations.
Par ailleurs, nos résultats permettent d’améliorer des résultats existants et d’en établir de
nouveaux, dans les domaines du model-checking des logiques temporelles et épistémiques,
ainsi que de la planification épistémique.

Summary in English

There are in the literature many examples of games where the desired strategies are submit-
ted to “transversal” constraints involving sets of plays, related by some semantic relation.
The most famous example is strategies for games with imperfect information, and games
where the objective involves some epistemic aspect provide many more examples. Never-
theless, to the best of our knowledge, there has been no thorough study on this type of
constraints in their generality. This is what this thesis intends to start.

Therefore, we define a general notion of uniform strategies. Uniformity properties
of strategies are expressed in a logical language that extends CTL

∗ with two original
quantifiers. These quantifiers are very close to the classic knowledge operators of epistemic
logics, and they involve sets of plays related by binary relations. We show how this notion
of uniform strategies captures the known examples from the literature, and we study
in depth the problem of uniform strategy synthesis, assuming that the binary relations
between plays can be recognized by finite automata (rational relations). We establish
several decidability and complexity results, relying widely on automata techniques: in
particular, we introduce as tools jumping tree automata and information sets automata.
Moreover, our results enable us to improve existing results and establish new ones, in the
domains of model checking epistemic temporal logics, and epistemic planning.

	Résumé long en français
	Contexte
	Contribution

	Introduction
	Context
	Contribution and structure of the document

	Preliminaries
	Main complexity classes
	Words and trees
	Two-player games
	Logics
	Automata
	Rational relations

	Uniform strategies
	Uniform strategies
	Games with imperfect information
	Games for logics of imperfect information
	Games with opacity condition
	Conclusion and related work

	Strictly-uniform strategies
	Undecidability for rational relations
	Intermezzo: jumping tree automata
	The special case of recognizable relations
	Conclusion and related work

	Fully-uniform strategies
	Main results
	Information set automaton
	Upper bounds
	Lower bounds
	Conclusion and related work

	Generalization to several relations
	Extending the language
	Strictly-uniform strategies
	Fully-uniform strategies
	Mixing strict and full quantifiers
	Application of our results and related work
	Conclusion

	Epistemic protocol synthesis
	DEL, ETL and regular structures
	Merging frameworks
	Epistemic protocol synthesis
	Conclusion and perspectives

	Conclusion and perspectives
	Proof of Proposition 20
	Bibliography
	Index

