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Abstract

Demand forecasting performance is subject to the uncertainty underlying the time
series an organisation is dealing with. There are many approaches that may be used to reduce
demand uncertainty and consequently improve the forecasting (and inventory control)
performance. An intuitively appealing such approach that is known to be effective is demand
aggregation. One approach is to aggregate demand in fesjeency ‘time buckets’. Such
an approach is often referred to, in the academic literature, as temporal aggregation. Another
approach discussed in the literature is that associated withsaossnal aggregation, which

involves aggregating different time series to obtain higher level forecasts.

This research discusses whether it is appropriate to use the original (not aggregated)
data to generate a forecast or one should rather aggregate data first and then generate a
forecast. This Ph.D. thesis reveals the conditions under which each approach leads to a
superior performance as judged based on forecast accuracy. Throughout this work, it is
assumed that the underlying structure of the demand time series follows an AutoRegressive
Integrated Moving Average (ARIMA) process.

In the first part of our research, the effect of temporal aggregation on demand
forecasting is analysed. It is assumed that the non-aggregate demand follows an
autoregressive moving average process of order one, ARMA(1,1). Additionally, the
associated special cases of a first-order autoregressive process, AR(1) and a moving average
process of order one, MA(1) are also considered, and a Single Exponential Smoothing (SES)
procedure is used to forecast demand. These demand processes are often encountered in
practice and SES is one of the standard estimators used in industry. Theoretical Mean Squared
Error expressions are derived for the aggregate and the non-aggregate demand in order to
contrast the relevant forecasting performances. The theoretical analysis is validated by an
extensive numerical investigation and experimentation with an empirical dataset. The results

indicate that performance improvements achieved through the aggregation approach are a

! The use of the words “our” and “we” throughout the thesis is purely conventional. The work presented in
this Ph.D. thesis is the result of research conducted by the auther albeit with support from an academic

institution and a supervisory team.



function of the aggregation level, the smoothing constant value used for SES and the process

parameters.

In the second part of our research, the effect of cross-sectional aggregation on demand
forecasting is evaluated. More specifically, the relative effectiveness of top-down (TD) and
bottom-up (BU) approaches are compared for forecasting the aggregate and sub-aggregate
demands. It is assumed that that the sub-aggregate demand follows either a ARMA(1,1) or a
non-stationary Integrated Moving Average process of order one, IMA(1,1) and a SES
procedure is used to extrapolate future requirements. Such demand processes are often
encountered in practice and, as discussed above, SES is one of the standard estimators used in
industry (in addition to being the optimal estimator for an IMA(1) process). Theoretical Mean
Squared Errors are derived for the BU and TD approach in order to contrast the relevant
forecasting performances. The theoretical analysis is supported by an extensive numerical
investigation at both the aggregate and sub-aggregate levels in addition to empirically
validating our findings on a real dataset from a European superstore. The results show that the
superiority of each approach is a function of the series autocorrelation, the cross-correlation

between series and the comparison level.

Finally, for both parts of the research, valuable insights are offered to practitioners and

an agenda for further research in this area is provided.

Keywords: demand forecasting; temporal aggregation; cross-sectional aggregation;

stationary processes; nonstationary processes; single exponential smoothing
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Chapter 1  Introduction and Problem Statement

This chapter provides the overall academic perspective, the objectives of this work and
the steps required to conduct the research and meet the objectives. First, some key terms in
the area of demand aggregation and forecasting are defined. Then, the business context, the
research background and an overview of the research and its objectives are presamted befo
discussing the methodological approach employed for the purposes of this work. We elaborate
on all these issues later on in the thesis in chapters 2 - 4. The structure of this PhD thesis is
presented at the end of the chapter.

To attain a unified understanding of concepts related to this research work, it is

necessary to take a step back and provide the definition of some key terms.

1. Definitions

In this section, a brief description of the key terms and phrases used in this research
work is provided. These are the terms that are being used all along this thesis and specifically

in chapters 3 and 4.
= Time series

Makridakis et al (1998) defined a time series as a sequence of observations over time.
A time series is an ordered sequence of observations. Although, the order is usually through
time, particularly in terms of some equally spaced time intervals, the ordering may also be
taken through other dimensions, such as space (Harvey, 1993). Time series occur in a variety
of fields such as agriculture, business and economics, engineering, geophysics, medical
science, social science, etc. For example in the business context, annual production levels,
monthly spare parts demand, weekly inventory levels and daily sales all constitute examples

of time series. In this thesis, we focus on (weekly) demand time series. With regards to the
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empirical data used for the purposes of our research an important qualification needs to be
made. Sales figures are being used as a proxy for demand. Demand itself may not necessarily
equal the sales, in case of requests not being satisfied due to stock outs. That is, demand
would equal the (achieved) sales plus the lost (or backordered) sales. However, it is

reasonable to use this approximation and a necessary condition.
= Stationary time series

A stationarytime seriesis one whose pragties do not depend on the timéwhich
the seriess observed (Makridakist al., 1998). For a stochastic process to be stationary the
expected value of the time series, the variance and the autocovariance of lampésgnot
depend on time (Harvey, 1993). The most general class of stationary models for forecasting a

time series is the class of Autoregressive Moving Average (ARMA) processes.
» Non-Stationary time series

Many applied time series, particularly arising from economic and business areas are
non-stationary. Non-stationary time series can occur in many ways. They could have non-
constant means, time varying variances and/or autocovariances, or all of these properties
occurring simultaneously. Trend, seasonality and cyclical time series are types-of non
stationary time series (Wei, 2006). One of the typical non-stationary class of models is the
AutoRegressive Integrated Moving Average (ARIMA) one. A non-stationary time series can
be divided in two parts: i) Homogeneous time series ii) Non-homogenous time series. In the
former case, the mean is time-dependent. By computing the differences between consecutive
observationsa homogeneous non-stationary time series can be converted to a stationary one.
This is known as differencing. However, many non-stationary time series are non-
homogenous. The non-stationarity of these series is not due to their time-dependent expected

value, but rather to their time-dependent variance and autocovariance.
» Forecasting methods

A forecasting method is a procedure for estimating the future observations. It depends
largely on what data is available. If there is no data available, or if the available data is not rel-
evant to the forecasts, then qtative forecasting methods must be used. There are well-

developed structured approaches to obtaining good forecasts without using historical data
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(Hyndman and Athanasopoulos, 2013). In contrast, tgaave forecasting can be applied

when two conditions are satisfied:
1. Numerical infomation (data) about the past is available,

2. It is reasonable to assume that some aspects of the past patterns will continue into

the future (i.e. there are no structural changes).

There is a wide range of quéative forecasting methods, often developed within spe-
cific disciplines for specific purposes. Each method is associated with specifietpsp
accuacy levels and costs (of implementation) all of which must be considered when choosing
between them. Most quatative forecasting problems relate to either time series data (col-
lected at regular intervals over time) or cross-sectional data (collected at a single point
in time). Quatitative forecasting methods are divided in two general categories: 1) time
series model ii) explanatory models. An explanatory model is very useful because it incorpo-
rates infomation about other variables, rather than only historical values of the variable to be
forecast. However, there are several reasons a forecaster might select a time series model
rather than an explanatory model. First, the system may not be understood, and even if it was
understood it may be extremely filifult to measure the relationships assumed to govern its
behaviour. Second, it is nesary to know or forecast the various predictors in order to be
able to forecast the variable of interest, and this may be thoutkif Third, the main concern
may be only to predict what will happen rather than explaining precisely why something
happens. Finally, the time series model may give more accurate forecasts than an explanatory

or mixed model (Hyndman and Athanasopoulos, 2013).
= Estimator selection

In order to evaluate the impact of each aggregation approach on the forecasting
performance, an estimator needs to be selected and used for extrapolation purposes. In this
study, Single Exponential Smoothing (SES), also referred to as Exponentially Weighted
Moving Average (EWMA) method, is used to estimate the future demand. SES is a very
popular forecasting method in industry as it is intuitively appealing, easy to understand and
has minimal computer storage requirements. Moreover, it is optimal for a non-stationary

Integrated Moving Average process of order one, ARIMA(0,1,1). Although its application
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implies a non-stationary behavior of the demand, sufficiently low smoothing constant values
introduce minor deviations from the stationarity assumption whilst the method is also
unbiasedSES’s estimator relies upon exponentially smoothed forecasts of the demands. The
estimate is updated in each period. For any time péyide updating procedure of SES’s

method is presented below:

f=ad_, +(1-a)f (1-1)

where d..; is the demand in periottl, f; is the forecast of periot and « is the

smoothing constant.

For anya between zero and one, the weights attached to the observations decrease
exponetally as we go back in time, hence the name “exponential smootmg”. If « is small
(i.e., close to zero), the weights are spread across the observations to the very distant past.
If ais large (i.e., close to one), more weight is given to the more recent observations and the
weights decline sharply to zero for relatively recent observations. At the extreme case
wherea =1, SES becomes a naive method, i.e. the very last actual demand is the forecast for

the next time period.

In this research work, we rely upon the use of the SES method rather than a popular
alternative (the moving average (MA)) or any optimal forecasting method (arising under the
ARIMA structure), although these forecasting methods can be considered in the next steps of

research. There are two reasons that support the choice of the SES method:

I) On average, SES tends to outperform the MA method, as observed in an empirical
comparison of their performance in the M3 forecasting competition (as reported by
Makridakis and Hibon (2000)). In addition, SES corresponds to an intuitively appealing
underlying model, whereas MA does not. It is also important to note that under the stationary
assumption, Brown (1963) showed the correspondence between SES and MA
(correspondence between the smoothing constant value and the length of the moving

average).
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i) In practice, the decision makers may not want to spend too much time and effort
examining and defining the characteristics of the data-generating process prior to determining
the forecasting model, as is required by ARIMA. Besides, in a production planning
framework, forecasts are required on a periodic basis, sometimes as often as on a daily or
even hourly basis. Typically, forecasting is done simultaneously for several different, but
related items in computerized systems with minimal human intervention. Therefore, it is quite
impractical to determine the optimal ARIMA model for each item in each updating period.
However, it is useful to determine the amount of gain or loss by using an optimal forecasting

method instead of SES. This issue will be considered in the next steps of research.
= Accuracy measure

An accuracy measutis a measure applied for judging the efficiency of a forecasting
method. Forecast accuracy relates to a comparison between the forecast and the. actual values.
Thhere are many accuracy measures discussed in the literature that may be used to report
performance (Hyndman and Koehler, 2006). However, such measures are not necessarily
mathematically tractable making it impossible to use them for theoretical analysis. In this
research work, the variance of forecast error or equivalently the Mean Square Error (MSE)
(for unbiased estimation procedures) is utilised as the only accuracy metric. Although we do
wish to contrast performances on empirical data, the aim of this work is to understand the
underlying reasons as to why one method performs better than another. To do so, a theoretical
comparison needs to be undertaken and the MSE is the only available metric. Additionally,
the MSEis similar to the variance of the forecast errors (which consists of the variance of the
estimates produced by the forecasting method under concern and the variance of the actual
demand) but not quite the same since any potential bias of the estimates may also be taken
into account. Sinc8ESprovides unbiased estimates for the processes considered in this work

the variance of forecast errors is equal toMI8E, i.e. MSE = VgForecast Erro).
= Demand Aggregation

An aggregation process consists of deriving a low frequency representation of the
process from a high frequency formulation; this derivation can be exerted through time or

through individuals.
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Aggregation across time, also calleinporal aggregationrefers to the process by
which a low frequency time series (e.g. quarterly) is derived from a high frequency time series
(e.g. monthly) (Nikolopoulos et al., 2011). As showrFigure 1-1 and Figure 1-2, this is
achieved through the summation (bucketing) of evenyeriods of the high frequency data,
wherem is the aggregation level. There are two different types of temporal aggregation: non-
overlapping and overlapping. In the former cadsSgyre 1-1) the time series are divided into
consecutive non-overlapping buckets of time where the length of the time bucket equals the
aggregation level. The aggregate demand is created by summing up the values inside each
bucket. The number of aggregate periodsNAM[, whereN is the number of the original
periods,m the aggregation level and thg] [operator returns the integer part xf As a

conseqguence the number of periods in the aggregate demand is less than the original demands.
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Figure 1-1: Non-overlapping temporal aggregation (from weekly to monthly data)

The overlapping casé&igure 1-2) is similar to a moving window technique where the
window’s size equals to the aggregation level. At each period, the window is moved one step
ahead, so the oldest observation is dropped and the newest is included. It is observed that the
number of overlapping aggregate periods is higher than those of the non-overlapping and

equals toN-m+1. Therefore, the information loss in negligible as compared to the non-
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overlapping case. This is an important observation in terms of data availability and for the
cases where little history of data is available.
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Figure 1-2: Overlapping temporal aggregation (from weekly to monthly data)

In this research, only the case of the non-overlapping temporal aggregation is
considered. The overlapping temporal aggregation is an issue left for further research. In the

next section, the effect of temporal aggregation on the structure of time series is reviewed.

Often, for the purpose of having comparable forecasts using the temporal aggregation
approaches as compared to the classical non-aggregation approaches, if the comparison is
undertaken at the disaggregate level, then the aggregate forecasts should be disaggregated to
the original level (by dividing them on the aggregation level). Furthermore, if the comparison
is conducted at the aggregate level, then the original forecasts should be multiplied by the
aggregation level. This is illustrated figure 1-3 and1-4in the case of weekly and monthly
forecasts.
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Another type of aggregation referred to asoss-sectional (or hierarchicabr
contemporaneous) aggregatiaccurs when the aggregation takes place across a number of
Stock Keeping Units (SKU) at one specific time period to reduce variability (Silvestrini and
Veredas, 2008). Existing approaches to cross-sectional forecasting usually involve either a
bottom-up (BU) or a top-down (TD) approach (or a combination of the two). When
forecasting at the aggregate level is of interest, the former involves the aggregation of
individual SKU forecasts to the group level whereas the latter relates to forecasting directly at

the group level (i.e. first aggregate requirements and then extrapolate directly at the aggregate

level).
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Figure 1-5: Schematic diagram of TD (left) and BU (right) approaches

When the emphasis is on forecasting at the subaggregate level, then BU relates to
direct extrapolation at the subaggregate level whereas TD involves the disaggregation of the
forecasts produced directly at the group level. An important issue that has attracted the
attention of many researchers as well as practitioners over the last few decades is the
effectiveness of such cross-sectional forecasting approaches. As illustrafeguby 1-5
these approaches work as follows: The TD approach consists of the following steps: i)

subaggregate demand items are aggregated; ii) the forecast of aggregate demand is produced
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by applying SES at the aggregate level, and iii) the forecast is subaggregated back to the
original level by applying an appropriate disaggregation method, if a subaggregate forecast is
needed. In the BU approach: i) subaggregate demand forecasts are produced dirthetly fo
subaggregate items; ii) the aggregate forecast is obtained by combining individual forecasts
for each SKU, i.e. potentially a separate forecasting model is used for each item in the product
family (Zotteri et al., 2005). These approaches are presented schemati€aliyren1-5. The
presentation style follows that adopted by Mohammadipour et al (2012).

2. Business Context

Demand forecasting is the starting point for most planning and control organizational
activities. Moreover, one of the most important challenges facing modern companies is
demand uncertainty (Chen and Blue, 2010). The existence of high variability in demand for
fast moving and slow/intermittent moving items (items with a high ratio of zero observations)
pose considerable difficulties in terms of forecasting and stock control. Deviations from the
degree of variability accommodated by the Normal distribution often render standard
forecasting and inventory theory inappropriate (Chen et al.,; Z6@etos and Boylan, 2005
Wemmerlov and Whybark, 1984).

There are many approaches that may be used to reduce demand uncertainty and thus to
improve the forecasting (and inventory control) performance of a company. An intuitively
appealing such approach that is known to be effective is demand aggregation (Chen et al.,
2007). One possibility is th&@emporal AggregationAnother aggregation approach often
applied in practice is th€ross-sectional Aggregatiofas discussed in the previous section).

Such an approach is equivalent to aggregating data for one single SKU across a number of
depots or stock locations. Natural, practically useful, associated forms of aggregation also

involve geographical consolidation of data or aggregation across markets.

Although no empirical studies exist that document the extent to which aggregation
takes place in practical settings, this is an approach that is known to be popular amongst
practitioners because of its intuitive appeal. In practical terms, the benefit depends pe the ty
of aggregation and of course the data characteristics. Cross-sectional aggregation fa exampl
usually leads to variance reduction. This is due to the fact that fluctuations in the data from
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one time series may be offset by the fluctuations present in another time series (Widiarta et
al., 2009). Contrary to cross-sectional aggregation, in temporal aggregation, variance is
increased. However, it is shown that temporal aggregation can reduce the coefficient of
variation of demand. In any case, the implied benefit coupled with the ease of implementing

such approaches renders them a popular choice in industry.

Demand data may be broadly categorized as intermittent and fast. Aggregation of
demand in lowefrequency ‘time buckets’ enables the reduction of the presence of zero
observations in the former case or, generally, reduces uncertainty in the latter. Intermittent
demand items (such as spare parts) are known to cause considerable difficulties in terms of
forecasting and inventory modelling. The presence of zeroes has significant implications
because of the following three reasons. First, the difficulty in capturing underlying time series
characteristics and fitting standard forecasting models. Second, the difficulty in fitting
standard statistical distributions, such as the Normal. Third, deviations from standard
inventory modelling assumptions and formulations. These concerns collectively render the
management of these items a very difficult exercise. Temporal aggregation is known to be
applied widely in military settings (very sparse data), the after sales industry (service parts)
etc. Recent empirical studies in this area (Babai et al.,; 20k&lopoulos et al., 2011) have
resulted in some very promising findings pointing out also the need for more theoretical
analysis. Although the area of forecasting with temporal aggregation in an intermittent
demand context is a very interesting one both from an academic and practitioner perspective,
in this research only the most often occurring cases of fast demand items are considered.
Analysis in an intermittent demand context is an important avenue for further research and

this issue is discussed in more detail in the last chapter of this Ph.D. thesis.

In addition to the demand uncertainty reduction associated with the temporal
aggregation approach discussed above, there is another important issue that relates to the
forecast horizon that renders aggregation a very promising approach. The “forecast horizon”
determines how far into the future the estimate projections must be. As a general rule, the
further into the future we look, the more clouded our vision becomes and consequently long
range forecasts are less accurate than short range forecasts. This is also onea¥ Wieceze

the temporal aggregation may improve the forecast accuracy, because as we look further into
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the future, the long term view becomes more important and the temporal aggregation

approach may utilize this information more effectively than the classical approaches.

From an academic perspective the emphasis to date has been mainly on the cross-
sectional aggregation. Moreover, most inventory forecasting software packages support the
aggregation of data although this would typically cover cross-sectional aggregation only. The
consideration of temporal aggregation has been somewhat neglected by software
manufacturers and academics alike despite the potential opportunity for adding more value to
real world practices. In this work, the objective is to advance the current state of knowledge in
the area of demand forecasting temporal aggregation (and extend the existing theory on cross

sectional aggregation).

In the above discussions, the effect of temporal aggregation on a single SKU is
considered. However, in reality there are often many related time series that camizdrga
hierarchically and aggregated at several different levels in groups based on products,
customers, geography or other features (Hyndman et al., 2011). The hierarchical level at
which forecasting is performed depends on the function the forecasts are fed into. With
regards to products (or SKUSs) in particular, forecasting at the individual SKU level is required
for inventory control whereas product family forecasts may be required for Master Production
Scheduling. Forecasts across a group of items ordered from the same supplier may be required
for the purpose of consolidating orders. Forecasts across the items sold to a specific large

customer may determine transportation and routing decisions etc.

TD and BU forecasting approaches are extremely useful towards improving the
accuracy of forecasts and plans when leveraged within an S&OP (Sales and Operations
Planning) process (Lapide, 2006). The S&OP is a multi-functional process that involves
managers from all departments (Sales, Customer Service, Supply Chain, Marketing,
Manufacturing, Logistic, Procurement and Finance), where each department requires different
levels of demand forecasts (Lapide, 2004). For example, in marketing (Dekimpe and
Hanssens, 2000), forecasting of revenues by product groups and brands is needed; sales
departments deal with sales forecasts by customer accounts and/or sales channels; supply
chain managers request SKU level forecasts, while finance requires forecasts that are
aggregate into budgetary units in terms of revenues and costs (Bozos and Nikolopoulos,

2011). In order to produce the required forecasts, demand and/or forecasts should be
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aggregated and/or disaggregated to various levels. This involves the application of both TD
and BU or a combination of them (Lapide, 2004, 2006).

3. Research Background

Aggregation has been widely discussed in the academic literature since as early as the
1950s (Quenouille, 1958). It is seen as a means to manage the demand fluctuation and reduce
the degree of uncertainty. It has been shown by Theil (1954), Yehuda and Zvi (1960), and
Aigner and Goldfeld (1974) that demand uncertainty can be effectively reduced through
appropriate demand aggregation and forecasting. In the literature of supply chain planning
and demand planning, demand aggregation is known as a ‘‘risk-pooling’” approach to reduce
demand fluctuation for more effective material/capacity planning(Chen and Blue, 2010). In
the area of temporal aggregation, there are both theoretical and empirical investigations
discussed in the literature. However, most of these contributions may be found in the
Economics discipline. Amemiya and Wu (1972) evaluated the effect of non-overlapping
temporal aggregation when the original series follows an autoregressive process @f order
AR(p) process. By considering the ratio of MSE of non-aggregate and aggregate prediction (3
linear predictors were considered) at the aggregate level, they have shown that the aggregate
approach outperforms the non-aggregate one. Tiao (1972) investigated the effect of non-
overlapping temporal aggregation on a non-stationary process of the Integrated Moving
Average IMA@,q form. A conditional expectation was applied to obtain one step ahead
forecasts at the aggregate level based on the non-aggregate and aggregate series.
Subsequently, the efficiency of the aggregate forecasts was defined as the ratio of the variance
of the forecast error of the non-aggregate to the aggregate series when the aggregation level is
large. It was shown that whewnl=0 and the aggregation level in very high, then the ratio
under concern equals one and the comparative benefit of using the non-aggregate f®recasts

increased withd.

Few recent pieces of research have evaluated the effect of temporal aggregation on
forecasting and stock control by means of empirical analysis. Nikolopoulos et al. (2011)
empirically analysed the effects of temporal aggregation on forecasting intermittent demand
requirements and they have proposed a methodology termed as ADIDA (Aggregate

Disaggregate Intermittent Demand Approach to forecasting). It was shown that the ADIDA
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methodology may indeed offer considerable improvements in terms of forecast accuracy. In
addition, Babai et al. (2012) have extended the study discussed above (Nikolopoulos et al.,
2011) by means of considering the inventory implications of the ADIDA framework through
a periodic order-upe-level stock control policy. The researchers concluded that a simple
technique such as temporal aggregation can be as effective as complex mathematical

intermittent forecasting approaches.

To the best our knowledge, the only papers directly relevant to our work are those by
Amemiya and Wu (1972) and Tiao (1972) for the AR and the MA process respectively. These
works focused on characterizing the aggregate demand series in addition to evaluating the
forecast performance. However, the results presented in these works remain preliminary in
nature while their experimental setting may also be criticized in terms of the estimation
procedures considered. In addition, no empirical results were obtained. Therefore, the lack of
conditions that may determine the superiority of each approach in demand forecasting is
obvious. It is not clear when the aggregation approach provides more accurate forecasts than
the non-aggregation one and vice versa. Consequently, the motivation behind this part of the
research study was the lack of the theoretical analysis regarding the effect of temporal
aggregation on demand forecasting. In this research, analytical evaluation is applied to
identify the superiority conditions of each approach. The research starts with the simple first
order ARMA type process as discussed earlier in section 1.2. However, the analysis can be

conducted for higher order processes and it this will be considered in the future.

In the area of cross-sectional aggregation, most of the forecasting literature has looked
at the comparative performance of the TD and the BU approaches. The findings with regards

to the performance of these approaches are mixed.

Some authors like Theil (1954), Grunfeld and Griliches (1960), Schwarzkopf et al.
(1988), and Narasimhan et al., 1985(1985) argued that TD outperforms the BU approach. On
the other hand another authors such as Orcutt et al. (1968) , Edwards and Orcutt (1969), Dunn
et al. (1976), Dangerfield and Morris(1988) and Gross and Sohl (1990) found that the BU
approach performs better; and finally some other authors like Barnea and Lakonishok (1980)
Fliedner (1999) and Widiarta et al.(20@0D08, 2009) take a contingent approach and analyse
the conditions under which one approach produces more accurate forecasts than the other.


../AMEDMENTS/Amendments_20131007.doc#_ENREF_6
../AMEDMENTS/Amendments_20131007.doc#_ENREF_61
../AMEDMENTS/Amendments_20131007.doc#_ENREF_61
../AMEDMENTS/Amendments_20131007.doc#_ENREF_3
../AMEDMENTS/Amendments_20131007.doc#_ENREF_83
../AMEDMENTS/Amendments_20131007.doc#_ENREF_82
../AMEDMENTS/Amendments_20131007.doc#_ENREF_39
../AMEDMENTS/Amendments_20131007.doc#_ENREF_71
../AMEDMENTS/Amendments_20131007.doc#_ENREF_59
../AMEDMENTS/Amendments_20131007.doc#_ENREF_60
../AMEDMENTS/Amendments_20131007.doc#_ENREF_24
../AMEDMENTS/Amendments_20131007.doc#_ENREF_13
../AMEDMENTS/Amendments_20131007.doc#_ENREF_27
../AMEDMENTS/Amendments_20131007.doc#_ENREF_22
../AMEDMENTS/Amendments_20131007.doc#_ENREF_22
../AMEDMENTS/Amendments_20131007.doc#_ENREF_38
../AMEDMENTS/Amendments_20131007.doc#_ENREF_91
../AMEDMENTS/Amendments_20131007.doc#_ENREF_92
../AMEDMENTS/Amendments_20131007.doc#_ENREF_93

B.Rostami-Tabar, 2013, Chapter 1 27

In this PhD thesis, the effectiveness of the BU and the TD approaches is evaluated.
The research conducted by Widiarta et al. is extended to consider a more general stationary
demand process ARIMA(1,0,1) and a non-stationary ARIMA(0,1,1) process. Moreover, the
comparison is undertaken at both subaggregate and aggregate levels. Additionally, the

superiority of each approach is examined by a real data set.

4. Research Overview

Aggregation enables forecasters to obtain forecasts at various levels across time and
individual items. Depending on the level of forecasting, we may either provide the forecasts
and then aggregate them or we may first aggregate the original series to obtain the aggregate
demand and then produce the aggregate forecast. In the latter case, a disaggregation may be
required to obtain the disaggregate forecast. In this research the impact of aggregation on
demand forecasting is evaluated. To show the effect of aggregation on demand forecasting,
two different types of aggregation are considerng¢dtemporal aggregation an@ cross

sectional aggregation. Our research overview is summarized Figiine 1-6.

The mathematical analysis is complemented by a numerical investigation to validate
the theoretical results which is also used in order to conduct a sensitivity analysis by some
constraining assumptions considered in the analytical evaluation. Next, the findings are
validated empirically (by means of simulation on a dataset provided by a European
superstore) and by doing so some very much required empirical evidence in the area of
demand aggregation is offered. Finally, important managerial insights are derived and
tangible suggestions are offered to practitioners dealing with inventory forecasting problems.

Based on the research background and motivations, six objectives have been

formulated for this research:

1. To evaluate analytically the effect of non-overlapping temporal aggregation on
forecasting when the basic series follows a stationary ARMA type process.
2. To identify the conditions under which the temporal aggregation approach

outperforms the non-aggregation one and vice versa.
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3. To determine the optimal aggregation level that maximizes the benefits of the

temporal aggregation approach.

4. To examine the effectiveness of the BU and the TD approaches to forecast

subaggregate and aggregate demand in a stationary and a non-stationary environment.

5. To analyse the effect of the control and the process parameters on the superiority of

each approach in both temporal and cross-sectional aggregations.

6. To test the empirical validity and utility of the theoretical and simulation results on a

large set of real world data.

Aggregation type

Demand process

Forecasting method

Accuracy measure

Comparison level

Objective

Research study

Temporal Aggregation

Cross-sectional Aggregation

ARMA(1,1), MA(1), AR(1)

ARMA(L,1), IMA(L)

SES

SES

MSE (the Variance of forecast erjor

MSE (the Variance of forecastrror)

Aggregate level, Disaggregate levq

Aggregate level, Disaggregate levq

Identify the superiority conditions
of the aggregation and the non-

aggregation approaches

Evaluate the effectiveness of the

BU and the TD approaches

Figure 1-6: Research Overview
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5.  Methodology

The research follows three research methods, namely mathematical analysis,
simulation and empirical investigation. The relationship between the three methods is

illustrated inFigure 1-7.

1. Mathematical
Analysis

2 Sinulation Study |/ 3. Empirical Analysis

Figure 1-7: Methodology

Firstly, the mathematical analysis is applied to examine the superiority of the aggregation
approach and to disclose the conditions under which this approach provides more accurate

results than the classical approach. The Simulation study is used for the following reasons:
e To test and validate the results of theoretical analysis.
e To relax the assumptions considered in the mathematical evaluation.

Finally, the findings of this PhD thesis are to be tested on real empirical data to assess
the practical validity and applicability of the main results of the study. Therefore, empirical
analysis would help us to test the applicability of the results in real situations.

6. Thesis Structure

The PhD thesis is structured as follows:
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In Chapter 2, an overview of demand forecasting by aggregation is presented.
Different types of aggregation, i.e. temporal and cross-sectional aggregation are discussed and

the effect of aggregation on process structure is described.

In Chapter 3, the effect of non-overlapping temporal aggregation on demand
forecasting is examined when the underlying series follow a stationary process. For each
process under consideration, the theoretical MSE is derived at both the disaggregate and the
aggregate level of comparison. Then, the MSE results are compared to identify the conditions
under which each approach outperforms the other. Next a simulation analysis is conducted to

examine the results of the theoretical evaluation followed by an empirical investigation.

In Chapter 4, the effects of cross-sectional aggregation on demand forecasting is
evaluated. It is assumed that the underlying series follow either a stationary or a non-
stationary process. An analytical evaluation is first considered followed by simulation to test
and validate the theoretical results. Additionally, some assumptions are relaxed compared to
the theoretical analysis. The results are complemented by an empirical analysis to validate the

findings on a real demand data set.

Finally, the findings from each chapter are summarized and the conclusions of this
thesis are discussed in chapter 5. Managerial implications and limitations of the research are

described, along with opportunities for future research.
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Chapter 2  State of the art

The first chapter summarized the research works conducted in this ktadgined
the research through a summary of the research background and problems, expatsecdmd
designated methodologylhis chapter aims to provide an overview of the literature on

forecasting by temporal and cross-sectional aggregation.

1. Introduction

Demand forecasting is the starting point for most planning and control organizational
activities. In general practice, accurate demand forecasts lead to efficient operations and high
levels of customer service, while inaccurate forecasts inevitably lead to inefficient, high cost
operations and/or poor levels of customer service. In many organizations, one of the most
important actions that may be taken to improve the efficiency and the effectiveness of the

decision making process is to improve the accuracy of the demand forecasts.

When developing the demand forecasting, the practitioners need to determine in which
level they should produce the forecast. Forecasters need to properly identify what is the
objective of the forecasting process, in terms of time bucket (i.e., forecasts are produced on a
daily level, weekly or on monthly one), and set of items the demand refess. tgifigle item
or group of items). The choice of the appropriate level of forecasting depends on the decision-
making process the forecast is expected to support. For instance, forecasting at the individual
SKU level is required for supply chain management, while cumulative aggregate forecast may
be used for budgeting or plant design. In many organizations, several managers from all
departments (Sales, Customer Service, Supply Chain, Marketing, Manufacturing, Logistic
Procurement and Finance) are involved in generating forecast, where each department

requires different levels of demand forecasts (Lapide, 2004).
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In addition, one of the most important factors that influence the accuracy of forecasts
iIs demand variability. Demand dispersion and uncertainty are among the most important
challenges facing modern companies (Chen and Blue, 2010). These issues have been
addressed in the academic literature for many years. The existence of high dispersion in
demand for fast moving and slow/intermittent moving items (items with a high ratio of zero
observations) pose considerable difficulties in terms of forecasting and stock control.
Deviations from the degree of variability accommodated by the Normal distribution often
render standard forecasting and inventory theory inappropriate (Chen et aj. S06€i0s
and Boylan, 200BWemmerlov and Whybark, 1984).

There are many approaches that may be used to reduce the demand dispersion and
provide the different forecast level and consequently improve the forecasting (and inventory
control) performance of a company. An intuitively appealing such strategy that is known to be
effective is demand aggregation (Chen et al., 2007). One approach is to aggregate demand in
lower-frequency ‘time buckets’, thereby reducing the presence of potential zero observations
(in case of intermittent demand) or generally reduce dispersion in case of fast moving
demand. Such an aggregation strategy is often referred to, in the academic literature, as
Temporal AggregatiofNikolopoulos et al., 2011). Another aggregation strategy discussed in
the literature is theCross-Sectional Aggregation(also referred to as hierarchicafich
involves aggregating different time series to obtain higher level forecasts(Silvestrini and
Veredas, 2008). Existing approaches to cross-sectional forecasting usually involve either a
bottom-up (BU) or a top-down (TD) approach (or a combination of the two). Although the
concept of aggregation is very simple but it plays a very important role in supply chain
management(Bonomo, 2003). An interesting question raised when applying aggregation to
forecast demand is how exactly does that affect the demand dispersion. The relevant impact
relies entirey upon the type of aggregatiencross-sectional versus temporal. Cross sectional
aggregation usually leads to variance reduction. This is due to the fact that fluctuations in the
data from one Stock Keeping Unit (SKU) are offset by fluctuations in the data from other
SKUs (Widiarta et al., 2009). Contrary to cross sectional aggregation, in temporal
aggregation, variande increased. Schluter and Trede (Schluter and Trede, 2011) have shown
that for certain types of data generation processes, both the mean and variance of the data

increase through temporal aggregation. However, it is easy to show that temporal aggregation
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can reduce the coefficient of variation of demand and this issue is further discussed later in

our paper.

Aggregation has been widely discussed in the academic literature since as early as the
1950s (Quenouille, 1958). In a production planning framework, many researchers have
focused on the effectiveness of cross-sectional aggregation and especially on the bottom-up
and top-down approaches. However there are fewer studies focusing on the effects of
temporal aggregation. Moreover, and although most inventory forecasting software packages
support aggregation of data, this would typically cover cross-sectional aggregation only; the
consideration of temporal aggregation has been neglected by software manufacturers despite
the potential opportunity for adding more value to their customers.

In the following sections, the existing researches conducted in the area of temporal and

cross-sectional aggregation are presented.

2.  Temporal Aggregation

In this section, the effect of the temporal aggregation on the process structure
discussed in the literature reviewed. Then, the impact of temporal aggregation on demand

forecasting discussed in the literature is presented.

2.2.1 Temporal aggregation identification process

An original time series model is presented in terms of basic time.uithough the
original form of the model can be used to produce the forecasts, however in some cases the
time frequency of the observed data may not be the same as the assumed tink®uttiese
cases a temporally aggregate data may be used, so it is necessary to know the effect of
aggregation on model structure of the data processes. The orders of the low frequency model
(i.e. monthly) from those of the high frequency model (i.e. weekly) can be determined by
temporal aggregation. i.e, If the high frequency model is an ARIMAL), what is the low
frequency modé& Second, once the orders are inferred, the parameters of the low frequency

model is derived from the high frequency ones, rather than estimating them.
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The analysis of temporal aggregation starts with the work of Amemiya and Wu
(1972). It is shown that if the original variable follows'8 order autoregressive process,
ARIMA(p,0,0, then the non-overlapping aggregates follow a mixed autoregressive moving
average (ARIMA) model of thep(0,9*). Tiao (1972) has investigated the effect of non-
overlapping temporal aggregation on a non-stationary process of the Integrated Moving
Average ARIMA (0,d,9 form, whered is the integrated parameter agds the moving
average parameter. It is shown that the aggregate process is of the ARUME)( Brewer
(1973) studied the effects of non-overlapping temporal aggregation on ARMY)(
processes. It is shown that aggregating such processes results in ARMA processes with
autoregressive ordgy and moving average order ARMA (p,0,r). The effect of the non-
overlapping temporal aggregation on ARIMA4,9 process is evaluated by Weiss (1984) . It
is seen that the temporally aggregate process is also follow an ARJWA(process. Wei
(1979) studied the aggregation effect on univariate multiplicative seasonal time series models.
It is revealed that for an ARIMA process of ordew,gx(2.0,0)s, the corresponding
aggregate process is an ARIMA of orgew,» x(2,D0,{)s. Brewer(1973) also presented a
generalization of the results for ARMA models with exogenous varighRBMAX models), it is
shown that the temporally aggreg&eIMAX( p, d, 9(k) model is an ARIMAXp, d, n(a).

Teles et al (19990wved that temporal aggregation changes the order of a fractionally
integrated ARFIMA process to an ARFIMA(dgo), while leaving the value af unchanged
Additionally, Souza and Smith (2004) showed that A&t Fractionally IMA (ARFIMA)

models temporal aggregation results in bias reduction.

Drost and Nijman (1993) considered the effct of temporal aggregation on the ARMA
models with symmetric GARCH errors, ARMA(Q-GARCH(P,Q). it is revealed that the
aggregate model follows an ARMA¢) with weak GARCHR,R. they have also considered
the ARCH and GARCH type models. It is shown that the temporal aggregation of an
ARCHY(q) is an GARCH(q,q), it is also seen that the temporally aggregate GARCH(1,q) is an
GARCH(q,q).

Stram and Wei (1986) studied the relationship between the autocovariance function of
disaggregate and aggregate proessthey have shown that the autocovarinace function of

the latter can be computed based on the autocovariance function of former; in particular the
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autocovariance function after aggregation is a function of the aggregation level and

autocovariance function before aggregation.

Table 2-1 summarized the effect of the non-overlapping temporal aggregation on the

structure of the process.
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Table 2-1: the effect of the nonverlapping temporal aggregation on process’s structure

Aggregate Reference
Non-aggregate process 0ol Parameters
—_p— (Brewer, 1973)
ARIMA (p,0,9 ARMA (p, q%) q* ={p+1+ qul}
m—1 11 (Amemiya and Wu, 1972)
ARIMA (p,0,9 ARMA (p, g¥) q* {( Sr(mer )
q-1] (Wei, 2006)
ARIMA (0,0,9) MA (no) n,<d = [1+ -
—d-1 (Tiao, 1972)
ARIMA (0,d, g IMA (d, o) nosq*:[d +14 qT}
i _ — ] Weiss, 1984
ARIMA (p, d, 9 ARIMA (p, d, B r =| (M 1)+(dr:l)(m D+q ( )
[(p+2)(Mm-1)+d(m-1)+q]] (Wei, 1979)
ARIMA(p,d.d (P.D,Qs  ARIMA(p,d) (P.D,Rs I = —
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R:{(m D)s*k+(Q—P—D)s}

m

First, if m < g there is still some seasonality in the
temporally aggregate process. Secondyig a multiple
of s, the seasonal cycle remains constant. Last,isf
equal or larger thag seasonality vanishes.

ARIMAX( p, d, 9(K)

ARIMAX(p, d, D(a)

(Brewer, 1973)

r >[(p+d+1)k(k—1)+q}

. {(p+d +1)(k—1)+m—1+d}[(v+ d)(k—1)+a)}

Kk k
Qe [(p+d +1)(k—1)+m—1+d}errol
k
ARFIMA( p,d,0 ARFIMA( p,dgo) - (Teles et al., 1999)
ARCH(q) GARCH(q,q) - (Drost and Nijman, 1993)
GARCH(1, q) GARCH(q, q) - (Drost and Nijman, 1993)
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{(p+1)(m—1)+q

|

(Drost and Nijman, 1993)

ARIMA(p,0,9- ARMA(p,r) with weak R= r‘+£r(r +1)
GARCHP,Q GARCHR,R 2
r =maxP,Q)
INAR(1) INARMA(1,1) (Brannas et al., 2002)
INMA(1) INMA(1) (Brannas et al., 2002)
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Luiz et al.(1992) evaluated the effect of overlapping temporal aggregation where thal orig
series follows an ARIMA process. It is found that the temporally aggregate process of an
ARIMA(p,d,q) is an ARIMA(P,d,Q). To the best of our knowledge this is the only research
dealing with the impact of overlapping temporal aggregation on the structure of the ARIMA

type process.

Table 2-2: the effect of the ovétpping temporal aggregation on process’s structure

ARIMA(p,d,q) ARIMA(P,d,Q) P<p andQ<gq+m-1  (Luiz etal., 1992)

Although many studies consider the case of fast moving items or continuous-valued
time series, integer time series have received less attention in a temporal aggregation context.
Brannas et al(2002) first studied the non-overlapping temporal aggregation of an Integer
Auto-Regressive process of order one, INARIMA(1,0,0), It is shown that the aggregate series
follows an Integer Auto-Regressive Moving Average process of order one, INARIMA (1,0,1).
Additionally, it is observed that the non-overlapping temporal aggregation of an Integer
moving average process of order one, INARIMA(0,0,1) is an INARIMA(0,0,1).

Table 2-3: theeffect of temporal aggregation on integer ARIMA type process’s structure

Non-aggregate Reference
process Aggregate process Type

(Mohammadipour and

INARMA (p,0,9 INARMA (p,0,9  Overlapping Boylan, 2012)

INARMA(1,0, 0 INARMA(1,0, 0 Overlapping (Brannas et al., 2002)

INARMA(1,0,0 INARMA(1,0, ) Non-overlapping (Brannas et al., 2002)

INARMA(O0,0, J INARMA(O0,0, Non-overlapping (Brannas et al., 2002)
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Brannas et al.(2002) evaluated the effect of overlapping temporal aggregation for the
INARIMA(1,0,0) process, it is seen that the aggregate process also follow an
INARIMA(1,0,0) process. The effect of overlapping temporal aggregation on
INARIMA( p,0,0 process is evaluated by Mohammadipour and Boylan (2012). It is shown
that the overlapping temporally aggregate of an INARIBMA(Q process is also an
INARIMA( p,0,9 one.

In the next section we provide a review of the studies that apply temporal aggregation

approach in the area of demand forecasting.

2.2.2 Demand forecasting by temporal aggregation

In the supply chain and demand planning literature, demand aggregation is generally
known as a 'rislpooling” approach to reduce demand fluctuation for more effective
material/capacity planning (Chen and Blue, 2010). Demand uncertainty may considerably
affect forecasting performance with further detrimental effects in production planning and
inventory control. It has been shovwey Theil (Theil, 1954), Yehuda and Zvi (Yehuda and
Zvi, 1960), Aigner and Goldfeld (Aigner and Goldfeld, 1974) that demand uncertainty can be

effectively reduced through appropriate demand aggregation and forecasting.

Most of the literature that deals with temporal aggregation may be found in the
Economics discipline. The analysis of temporal aggregation starts with the work of Amemiya
and Wu (Amemiya and Wu, 1972). They assumed that the original variable foIIp%s a
order autoregressive process, AR([BY considering the ratio of MSE of disaggregate and
aggregate prediction (3 linear predictors were considered) at the aggregate level, they have
shown that the MSE of disaggregate forecasts is greater than that of the aggregate ones, i.e.
the aggregation approach outperforms the non-aggregation one. Tiao (Tiao, 1972) has
investigated the effect of non-overlapping temporal aggregation on a non-stationary process
of the Integrated Moving Average IMA(g) form. They applied a conditional expectation to
obtain one step ahead forecasts at the aggregate level based on the disaggregate aed aggregat
series. Subsequently, the efficiency of the aggregate forecasts was defined as the ratio of the

variance of the forecast error of the disaggregate to the aggregate series when the aggregation
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level is large. They have shown that wiaeD the ratio under concern equals to 1 and the
comparative benefit of using the disaggregate forecasts is increasird) with

Athanasopoulos et al. (2011) have looked at the effects of non-overlapping temporal
aggregation on forecasting accuracy in the tourism industry. They conducted an empirical
investigation using366 monthly series and some forecasting methods tested in the M3
competition data (Makridakis and Hibon, 2000), namely Innovations state space models for
exponential smoothing (labeled ETS), the ARIMA methodology, a commercial software
(Forecast Pro), damped trend (Gardner and McKenzie, 1985), the Theta method and naive.
The monthly series were aggregate to be quarterly, and the quarterly seriefininene
aggregate to be yearly. Subsequently, they compared the accuracy of the forecasts made
before and after aggregation. They considered one and two step-ahead forecasts and three
statistical measures were used to compare the results: Mean Absolute Percentage Error
(MAPE), Mean Absolute Scaled ErroMASE and Median Absolute Scaled ErrdndASBE.

The aggregate forecasts at the yearly level (whether produced from monthly or quatgerly d
were found to be more accurate than the forecasts produced from the yearly data directly. This

study provided considerable empirical evidence in support of temporal aggregation.

Luna and Ballini (2011) have used a non-overlapping aggregation approach to predict
daily time series of cash money withdrawals in the neural forecasting competitiod, NN5
Each time series consestof 735 daily observations which have been used to forégadily
steps ahead for two sets of 11 and 111 time series. Daily samples were aggregate to give
weekly time series and then an adaptive fuzzy rule-based system was applied to §rovide
step-ahead forecasts (thus aggregation eatlthe forecast horizon frors6é to 8 steps). Two
different aggregation approaches were evaluated for this purpose: the historical top-down
(TD-H) approach and the daily top-down (TD-DM) approach, where the main difference
between the two was the disaggregation procedure. In the former case aggregate forecasts
were dis-aggregate based on historical percentages. In the latter case, the daily estimations
were‘corrected by multiplying them by the associated weekly estimation and dividing by the

sum of the seven daily estimated samples. The symmetric MAMBRE and the Mean

Z http://www.neural-forecasting-competition.com/NN5/
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Absolute Error MAE) were used to compare the results. The researchers showed that the
aggregate forecasts produced by the two approaches performed similarly or better than those
given by the daily models directly. The reduction of a forecast horizon from 56 to 8 steps

ahead would be intuitively expected to lead to performance improvement.

The effect of temporal aggregation on demand forecasting for integer time series have
received less attention comparing to continues time series. Willemain et al.(1994) empirically
explored the effects of temporal aggregation on forecasting intermittent demand considering
the application ofCroston’s method(Croston, 1972) that has been specifically developed for
such demand patterns. The researchers considéesimpirical data sets 0905 daily
observations; the aggregation level was considered to be a week. Results were reported by
considering thdvAPE and the researchers showed a significant reduction in forecasting errors

when weekly demand aggregate data were used instead of daily data.

Mohammadipour and Boylan (2012) have studied theoretically the effects of
overlapping temporal aggregation of INARMA processes. They showed that the aggregation
of an INARMA process over a given horizon results in an INARMA process as well. The
conditional mean of the aggregate process was derived as a basis for forecasting. A simulation
experiment was conducted to assess the accuracy of the forecasts produced using the
conditional mean of the aggregation approach for three INARMA processes
INARIMA(1,0,0), INARIMA(0,0,1) and INARIMA(1,0,1), against that of the non-
aggregation approach. The simulation results showed ithaihost cases, the aggregation
approach provides forecasts with smaller MSEs than non-aggregation ones. The performance
of these forecasts was also tested by using two empirical datasets. The first one was from the
Royal Air Force (RAF, UK) and consisted of the individual demand histories of 16,000 SKUs
over a period of 6 years (monthly observations). The second data set consisted of the demand
history of 3,000 SKUs from the automotive industry (over a peob@4 months). The

outcome of the empirical investigation confirmed the simulation results.

Nikolopoulos et al. (2011) have empirically analysed the effects of non-overlapping
temporal aggregation on forecasting intermittent demand requirements. groposed
approach, called Aggregate-Disaggregate Intermittent Demand Approach (ADIDA), was
assessed 08,000 SKUs containing’ years history § monthly demand observatign®rm

the Royal Air Force (RAF, UK), by means of employing three methdds/e, Croston and
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Syntetos-Boylan Approximation (SBA)(Syntetos and Boylan, 2005). The aggregation level
was varied from2 to 24 months. Comparisons were performed at the original series level
(disaggregate demand) and the results showed that the proposed ADIDA methodology may
indeed offer considerable improvements in terms of forecast accuracy. The main conclusions
of this study were: (1) the ADIDA may be perceived as an important me#ibomproving
mechanism(2) an optimal aggregation level may exist either at the individual series level or
across series; (Jetting the aggregation level equal to the lead time length plus one

review period L+7 (which is the time bucket required for periodic stock control
applications) shows very promising results. Spithourakis et al.(Spithourakis Georgios P. et

al., 2011) extended the application of the ADIDA approach to fast-moving demand data. The
method’s performance was tested on 1,428 monthly time series of thd3-Competition by

using the Naive, SES, Theta, Holt and damped forecasting methods. The empirical results

confirmed the previous findings reported by Nikolopoulos et al.(Nikolopoulos et al., 2011).

Finally, Babai et al. (2012) have also extended the study discussed above
(Nikolopoulos et al., 2011) by means of considering the inventory implications of the ADIDA
framework through a periodic order-tpdevel stock control policy. Three forecasting
methods, SES, Croston and SBA were used and the demand was assumed to be negative
binomially distributed. Performance was reported through the inventory holding and backlog
volumes and costs, for three possible targets Cycle Service Levels (CSL): 90%, 95% and
99%. For high CSLs, the aggregation approach has been shown to be more efficient but for
low CSLs it was outperformebly the classical one when Croston’s method was used. For
SES, the aggregation approach outperforms the classical approach even for low CSLs. The
researchers concluded that a simple technique such as temporal aggregatiom as

effectiveascomplex mathematical intermittent forecasting approaches.

3.  Cross-sectional aggregation

In this section, the effect of cross-sectional aggregation on the process structure is
summarized. Then, the effectiveness of cross-sectional aggregation approaches on demand

forecasting in the literature is reviewed.
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2.3.1 Cross-sectional aggregation identification process

When dealing with the impact of the cross-sectional aggregatidirecasting, it’s
necessary to infer the characteristics of the aggregate data from the original subaggregate
data. i.e, If the subaggregate series followA&RIMA process, it is possible to investigate

whether the aggregate observed series followsRIMA process as well.

(Granger and Morris, 1976) showed that the cross-sectional aggregatibh of
uncorrelated ARVIA (p,0,9 processes is also an ARIMAQ,)) process. As a special case the
showed that the sum of two uncorrelated ARMA processes, ARMAd;) and ARMA

(p,.0,) is also an ARMA (p; + p,, K), whereK < max(p; + g, Po+0y) -

Anderson (1975) stated that the sumNofndependent Moving Average processes:
MA( q,;), MA(q,)...MA(q,).is an MA (q) process as well. It is seen by Harvey (1993) that

when the subaggregate items follow and ARIMA(1,0,0) process, the aggregate data may
follow an ARIMA(1,0,0), ARIMA(2,0,0) or ARIMA(2,0,1) process. Zaffaroni (2007) showed
that the sum of two independent strong GARCH(l,l) processes is weak GARLH(2,2

Table 2-4: aggregate process of cross-sectional aggregation

Sub-aggregate  Aggregate Parameter Reference
process process
N (Granger and Morris
< _ :
X< P 1976)

ARIMA (p,0,q)  ARIMA(X,0,))
y<maxx—p, +0)

AR(1) If d1=¢2

AR(1)+ AR(1)
AR(2) If g1=-0» (Harvey, 1993)
ARMA(2,1) otherwise

MA(q;) MA(q) g < max(Qy,qp-.ee.eo- g,) (Anderson, 1975)

GARCH(1,1) GARCH(2,2) Whena+ 1= oo+ o (zaffaroni, 2007)
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2.3.2 Demand forecasting by cross-sectional aggregation

Demand forecasting for sales and operations management often concerns many items,
perhaps hundreds of thousands, simultaneously. The conventional forecasting approach is to
extrapolate the data series for each SKU individually. However, most businesses have natural
groupings of SKUs; that is, the SKUs may be aggregate to get higher levels of forecasts
across different dimensions such as product families, geographical area, customer type,
supplier type etc (Chen and Boylan, 200Buch an approach enables the potential
identification of time series components such as trend or seasonality that may be hidden or not
particularly prevalent at the individual SKU level. Group approaches for example are known
to offer considerable benefits towards the estimation of seasonal indices (Chen and Boylan
2008). Most of the forecasting literature in this area has looked at the comparative
performance of the top-down (TD) and the bottom-up (BU) approach. The findings with

regards to the performance of these approaches are mixed.

Many researchers have provided evidence in favour of the TD approach. Gross and
Sohl (1990) for example, numerically found that the TD approach (in conjunction with an
appropriate disaggregation method) provided better estimates than BU forecasting in two out
of three product lines examined. Fliedner (1999) evaluated by means of simulation the
forecast system performance at the aggregate level resulting from varying degresess of ¢
correlation between two subaggregate time series. The subaggregate items were assumed to
follow a Moving Average process of order one, MA(1) and the forecasting methods
considered were SES and the Simple Moving Average (SMA). This research showed the
forecast performance at the aggregate level to benefit from the TD approach. Barnea and
Lakonishok (1980) examined the effectiveness of BU and TD on forecasting corporate
performance. They reported that positive cross-correlation contributes to the superiority of
forecasts based on aggregate data (TD).

On the other hand, Orcutt et al. (1968) and Edwards and Orcutt (1969) argued that
information loss is substantial when aggregating and therefore the bottom-up approach

provides more accurate forecasts. Dangerfield and Morris (1992) and Gordon et al. (1997)
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used a subset of the M-competiffodata (Makridakis et al., 1982) to examine the
performance of TD and BU approaches on subaggregate demand forecasting. They found that
forecasts by th&U approach were more accurate in most situations especially when items
were highly correlated or when one item dominated the aggregate series. Weatherford et al.
(2001) evaluated the performance of BU and TD appesichobtain the required forecasts

for hotel revenue management. The data they considered was perceived as very typical within
the hotel industry. Thegxperimented with four different approaches (fully subaggregate d,
aggregating by rate category only, aggregating by length of stay only, and aiggréya

both rate category and length of stay) to get detailed fosdmastay of arrival, length of stay

and rate category and length of stay for revenue management. The results of their study
showed that a purely subaggregate forecast strongly outperformed even the best aggregate

forecast.

Some authors take a contingent approach and analyse the conditions under which one
method produces more accurate forecasts than the other. Shlifer and Wolff (1979) evaluated
analytically the superiority of BU and TD on forecasting sales for specific and entire market
segments. They mentioned that BU is preferable for the purpose of forecasting the aggregate
series. In addition, they found that increasing the number of SKUs favours TD. However,
when the comparison was performed at the subaggregate level, they found that TD often
results in larger forecast error than BU. Litkepohl (1984) showed that it might be preferable
to forecast aggregate variables using a TD approach when a time series is generated by a
multivariate ARMA process and the statistical properties of the subaggregate items are
known. However, if the processes used for forecasting are estimated from a given set of time
series data then the BU approach outperformed TD. Widiarta et al. (2007) studied analytically
the conditions under which one approach outperforms the other for forecasting the item level
demands when the subaggregate items follow a first-order autoregressive [AR(1)] process
with the same autoregressive parameter for all the items and when SES is used to extrapolate
future demand requirements. They found that the superiority of each approach is a function of
the autoregressive parameter. Widiarta et al. (2008, 2009) also evaluated analytically the

effectiveness of TD and BU approaches at the subaggregate and aggregate level, rgspectivel

% The M Competition is an empirical forecast accuracy comparison exercise aattooly Prof. Makridakis.
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They showed that when all subaggregate items follow an MA(1) process with identical
moving average parameters, there is no difference in the relative performance of TD and BU
forecasting as long as the optimal smoothing constant is used in both approaches.
Subsequently, they conducted a simulation analysis considering non-identical process
parameters for subaggregate items and concluded that there is significant difference between
the two approaches. The superiority of each approach was a function of the moving average
parameter, the cross-correlation and the proportion of a subaggregate cafsponen
contribution to the aggregate demaiikwanathan et al. (2008) used a simulation study to
investigate the effectiveness D andBU approaches in estimating the aggregate data series
when the subaggregate items are intermittent. The study reveals that low variability of the
inter-demand intervals favours the BU appro&aating Croston’s method (Croston, 1972)).
However, when demand sizes and inter-demand intervals of the subaggregateeséighly

variable and aggregation encompasses many itBihperforms best.

4. Discussion on the literature review

In this chapter, an overview of the literature on the demand forecasting by aggregation
approach is given. The overview presented by classifying the literature into two parts:
temporal and cross-sectional aggregation approaches.

In the first part, the theoretical and empirical investigations in the area of temporal
aggregation are discusses. The former mainly focused on the structureagfjringate time
series and the relationship between the aggregate and disaggregate process parameters.
latter evaluated the effect of the temporal aggregation on demand forecasting in terms of
forecast accuracy measures and stock control metrics. According to the literature, temporal
aggregation approach may provide more accurate forecasts than classical one in the fast and
slow moving environments. However, the conditions under which one approach may
outperform other one are not discussed in the literature. It is not clear when disaggregate data

should be used and where it is better to use the aggregate data to produce the forecast.

To the best of our knowledge, the only papers directly relevant to our work are those
by Amemiya and Wu (1972) and Tiao (1972) for the AR and MA process respectively. In

both cases the researchers investigated the forecast performance of temporal aggregation
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strategies under an (Auto-Regressive Integrated Moving Aversige)lA-type framework.
However, the results presented in these two papers remain preliminary in nature while the
experimental setting may also be criticized in terms of the estimation procedures considered.
In addition, no empirical results were provided. Important as they are, both papeesifatus

characterizing the aggregate demand series rather than the forecast performance.

In this research work, the conditions under which aggregation and non-aggregation
approaches yield more accurate forecasts are determined by analytical itieestigia work
considers the case of ARIMA(1,0,1) and its special cases ARIMA(0,0,1) and ARIMA(1,0,0)
processes and as such some of the theoretical results presented in the above discussed
research are of direct relevance to our analysis. Our work differs from these works though and
extends them in some very significant ways: i) optimal estimators are seldom used in practice
not only due to the computational requirements that are typically prohibitive but also the lack
of understanding on the part of the managers of their functionality. In addition, there is
evidence to support the fact that simple forecasting methods (such as SES that is used in our
work) perform at least as good as more complex theoretically coherent alternatives
(Makridakis and Hibon, 2000); ii) a difficulty associated with aggregation methods is the fact
that a disaggregation mechanism is also required since very often forecasts are needed at the
original/disaggregate demand level. Both papers consider a comparison at the aggregate level
which addresses only part of the forecasting problem. Consideration of a comparison at the
original demand level, which is the case considered in this work, addresses another part of the
problem and is an important extension of the research already beirfy ilpme empirical
analysis has been undertaken in both papers in contrast with this work were the theoretical

findings are empirically validated; )vthe analysis is complemented by means of further

4 An important assumption in our analysis is that we start with datateas disaggregate as our required
forecasting output. However, and as one of the referees correctly poittdteadegree of aggregation of the
forecasting output does not necessarily need to match with the existimgstducture (which may be more
aggregate or more disaggregate than the forecasts driving decikimgjn The degree of aggregation of the
forecasting output (i.e. the forecast we use to make decisions) is yacualhction of the decision making
problem forecasting tries to support. On the contrary inputs to theafsting process are very often driven by

existing data structures. Although the two may indeed match soesetinis is not always the case.
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numerical investigations to identify the optimum aggregation level and smoothing constant

values that require to be used.

In the second part, the comparative performance of the BU and TD approaches to
forecast subaggregate and aggregate demand is reviewed. Most of the researches in this area
Is based on the simulation and the empirical analysis. However, there are few work focused

on the effectiveness of BU and TD by analytical investigation.

To the best of our knowledge, the only papers directly relevant to our work are those
by Widiarta et al.(200,72009) and Sbrana and Silvestrini (2013). Widiarta et al. evaluated
analytically the effectiveness of the TD and BU approaches under the assumption of an AR(1)
comparing at subaggregate level(Auto-Regressive process of order 1) and MA(1) process
comparing at aggregate level respectively. Sbrana and Silvestrini identify the condition of
superiority of Bu and TD compared at aggregate level when the demand process follow and

ARIMA(0,1,1) process with non identical parameters.

In summary what can be concluded from the cross-sectional literature is both BU and
TD approaches appear to be associated with superior performance. This superiority depends

on the structure of the series and cross-correlation related assumptions.

In this work the relative effectiveness of the BU and TD approach for forecasting is
evaluated. It is recognized that forecasts may be equally required at both the aggregate and
sub-aggregate level and as such comparisons are performed at both levels. In addition, a more
general univariate stationary and a non-stationary demand pee@dsisoth aggregate and
subaggregate levels are studied. Moreover, the analysis is complemented by means of an

empirical investigation using real data.
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Chapter 3  Temporal aggregation

In chapter 2, an overview of the literature on demand forecasting by aggregation is
provided, additionally the necessity of conduction more research work in the area of demand
aggregation is discussed. In this chapter the effect of temporal aggregation on demand
forecasting by means of the analytical, simulation and empirical investigateraluated
The conditions under which temporal aggregation may improve the accuracy of the demand
forecasts are identifiedthe effects of temporal aggregation on forecasting when the
underlying series follows a first order Autoregressive Moving Average process,
ARIMA(1,0,1) Autoregressive process of order one, ARIMA(1,0,0) and a Moving Average
process of order one, ARIMA(0,0,1) is studied. Furthermore, the forecasting method is the
Single Exponential Smoothing (SES). These assumptions bear a significant degree of realism.
As it is discussed later in the chapter there is evidence to support the fact that demand often
follows the stationary processes assumed in this work (48% of the empirical series available
in our research follow such processes). Moreover, SES is a very popular forecasting method
in the industry (Acar and Gardner, 2Q0Xzardner, 1990, 2006aylor, 2003). Although its
application implies a non-stationary behavior of the demand, sufficiently low smoothing
constant values introduce minor deviations from the stationarity assumption whilst the method

is also unbiased.

In this chapter the variance of the forecast error (or equivalently, by considering an unbiased
estimation procedure, the mean square error) obtained based on the aggregate demand to that
of the non-aggregate demaisdanalytically compared. Comparisons are performed at both
disaggregate and aggregate demand leves mathematically shown that the ratio of the

Mean Squared Error (MSE) of the latter approach to that of the former is a function of the
aggregation level, the process parameters and the exponential smoothing constant. The
mathematical analysis is complemented by a numerical investigation to test and validate the

results. Next, the theoretical results are validated empirically (by means of simulation on a
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dataset provided by a European superstore) and by doing so some very much needed
empirical evidence in the area of temporal aggregation aredffer

To the best of our knowledge, the only works directly relevant to our work are those by
Amemiya and Wu (1972) and Tiao (1972) for the AR and MA process respectively. In both
cases the researchers investigated the forecast performance of temporal aggregatios strategie
under an (Auto-Regressive Integrated Moving Avera@gR)MA -type framework. However,

the results presented in these two papers remain preliminary in nature while the experimental
setting may also be criticized in terms of the estimation procedures considered (Zotteri and
Kalchschmidt, 2007). In addition, no empirical results were provided. Important as they are,
both works focusd on characterizing the aggregate demand series rather than the forecast

performance as explained in the chapter 2.

This study attempts to fill this gap and provides helpful guidelines to select the
appropriate approach under such demand processes. The work discussed in this chapter can be
extended to analysemore general cases such as ARINAL0, ARIMA(0,0,9 or even
ARIMA(p,0,g) processes. However, the analysis and presentation of such results would
become too complex. Since the main objective of this research is to obtain some key
managerial insights, the analyss restricted to the ARIMA(1,0,1), ARIMA(1,0,0) and
ARIMA (0,0,1) processes only.

Considerable part of this chapter has been published in Rostami-Tabar et al
(2013a)and Rostami-Tabar et al (2013c).

This chapter is organized as follows. In sectigntheoretical analysis of temporal
aggregation for autoregressive moving average process order one, ARIMA(1,0,1) and its
special cases moving average order one, ARIMA(0,0,1) and autoregressive order one,
ARIMA(1,0,0) is evaluated. In sectio the results of the theoretical evaluation obtained in
sub-sectionl is presented. In sectio® the simulation investigation to test and validate the
results of the mathematical analys@sused. Next, a real data set to validate the results of
theoretical and simulation parts in practis@pplied in sectiod. Finally the conclusions are

given in sectiorb.
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1. Theoretical Analysis

In this section the variance of the forecast errors generated by considering the
disaggregate and the aggregate demswdérived. Comparisons are performed at the original
disaggregate and aggregate level. to that end, the aggregation approach works as follows:
firstly buckets of aggregate demand are created based on the aggregation levBESisen
applied to this aggregate data to produce the aggregate forecasts, now if the comparison is
undertaken at aggregate level then the aggregate forecast is maintained , however, ® compar
at disaggregate level the aggregate forecasts are disaggregate by dividmgp lproduce
forecasts at the original level. In addition other disaggregation mechanisms could have been
considered (Nikolopoulos et al., 2011) but the one employed for the purposes of this research
is viewed as realistic from a practitioneperspective and seen as a reasonable approach
when dealing with stationary demands. Note that in order to ensure that the forecasting
horizon is the same in both the aggregate and the disaggregate cases, the aggfegate

forecast is updated in each period when the aggregate series are rebuilt.

The comparisons result in the development of theoretical rules that indicate under
which conditions the forecasting the aggregate demand is theoretically expected to perform
better than the forecasting of the disaggregate demand. These theoretical rules are a function
of the aggregation level, the control, and the process parameters. The cut-off values to be
assigned to the parameters are the outcome of a numerical analysis to be conducted based on
the theoretical results. Having obtained the cut-off values, we can then specify regions of

superior performance of the aggregation approach over the non-aggregation one.

In this study the variance of the forecast error is used as a forecast accuracy measure
as it is the only theoretically tractable measure. MI&E is similar to the variance of the
forecast errors (which consist of the variance of the estimates produced by the forecasting
method under concern and the variance of the actual demand) but not quite the same since any

potential bias of the estimates may also be taken into account (Syntetos., 20015ESnce
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provides unbiased estimate@lue to the stationarity of the time series considered in this
work) the variance of forecast errors is equal toMi&E, i.e. MSE=Var(Forecast Error).

For each process under consideration the ratio of the MSE before aggred&ieR) (
to the MSE after aggregatioMSEa,) is calculated. A ratio that is lower than one implies that
the aggregation approach does not add any value. Conversely, if the ratio is greater than one,

aggregation approach performs better than the classical one.

3.1.1 Notation and assumptions

For the remainder of the research the notations are denoted by:

m: Aggregation level, i.e. number of periods considered to build the block of aggregate
demand.

n: total number of periods available in the demand history.
t: Time unit in the original disaggregate time serieg, 2, ...,n.
T: Time unit in the aggregate time serigs./,2, ..., [n/m] .

di: Disaggregate demand in peribd

D+: Aggregatedemand in period

&, :Independent random variables for disaggregate demand in periodmally distributed
with zero mean and variane€

&7 Independent random variables for aggregate demand in pEriodrmally distributed
with zero mean and varianeg?

f, : Forecast of disaggregate demand in petitice forecast produced ifl for the demand in
t.

® Obviously other forecasting methods may also provide unbiased estinmatess the stationary demand
processes considered in this research but those are not considered asltfs# igrbeyond the scope of ghi

research.
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Fr : Forecast of aggregate demand in pefipthe forecast produced Tl for the demand in
T.

a : Smoothing constant used in Single Exponential Smoothing method before aggregation,
O<a<l

S . Smoothing constant used in Single Exponential Smoothing method after aggregation,
0<pB<1

MSEsa: Theoretical Mean Squared Errdd$E) before aggregation

MSEaa : Theoretical Mean Squared Errdd$E) after aggregation

7« - Covariance of lag of disaggregate demang, = CO\(dt,dtfk)
7« : Covariance of lag of aggregate demang, = Co\D;, D, )

¢ . Autoregressive parameter before aggregatj&]m,l

¢ : Autoregressive parameter after aggregatighsx< 1

6 : Moving average parameter before aggregatigr; 1

¢': Moving average parameter after aggregatigns 1

u - Expected value of disaggregate demand in any time period
' Expected value of aggregate demand in any time period

It is assumed that the disaggregate demand setiiesfollows a first order

autoregressive moving average, ARIMA(1,0,1)tsispecial cases moving average order, one
ARIMA (0,0,1) and an autoregressive data generation process (DGP) order one,
ARIMA(1,0,0). In the following the characteristics of each process under consideration are

discussed to provide the information based on the nature of the processes.

An ARIMA(1,0,1) process can be mathematically written in petriasl 3-1):
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d, = 41— @)+ &, +¢d,_, — O, where|g| <1, || <1 (3-1)

When the demand follows an ARIMA(1,0,1) process the auto-covariance and
autocorrelation functions are(Box et al., 2008):

(1—2¢9292)02 (0
o
Vi = (¢_‘9)1;¢‘9)62 |k|:1, (3-2)
1-¢
& s K >1
(6-0M1-90) 4
p(K)=1 1—2¢6 + 62 (3-3)
@, k| >1

For different combinations of the process parameters, the resulting underlying
structure changes considerablyable 3-1 presents the autocorrelation structure for different
process parameters which helps to better understand the process and can be useful to interpret

the results of the forthcoming analysis.

Table 3-1: Autocorrelation of ARIMA(1,0,1) process

Group Process parameter Autocorrelation

1 0<¢ <1, -1<6<0 Always positive , O<Autocorrelation lagl<1,

2 -1<¢ <0, -1<6<0 Oscillate between positive and negative values

3 -1<¢ <0, 0<6<1 Oscillate between positive and negative values

4 0<¢<1, 0<&1 For ¢> 6 Always positive, O<Autocorrelation lagl<1

5 0<¢<1, 0<&<1 For ¢< 8 Always negative, -0.5<Autocorrelation lagl<
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Figure 3-1: Sample autocorrelation of ARIMA(1,0,1) process wifen0.8 and ¢=0.9.

Figure 3-1 and3-2 present the behaviour of the ARIMA(1,0,1) process for groups one
and two presented ifiable 3-1. In Figure 3-1it can be seen that the autocorrelation is highly
positive not only for lag 1 but also for higher lags and decays exponentially. In addition it is
observed that the process shape is changing slowly and there is no fluctuation between time

periods.
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In Figure 3-2 the process shape is changing almost at each period and there are more
fluctuations which makes the series more irregular than random serigsxafisbe noted that
the autocorrelation decays exponentially and oscillates between positive and negative values

and it tends to become zero for higher lags.

w - o ¥ - 0
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o : > ” “u“ 0 ’ i “
' | | | I
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Time Period
Sample ACF: ARIMA(1,0,1)
m | L
O
% """ L""I""T""I"'I"I:'T"I"T"I""""""I""T"
<, WTF ---------------------------------------
o -

Figure 3-2: Sample autocorrelation of ARIMA(1,0,1) process wierD.8 and ¢=-0.7.
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An ARIMA(0,0,1) process is a special case of a more geddR#1A(1,0,1) process where
the autoregressive process is equal to zerg=i0e This process can be mathematically shown

as 3-4):
d, = u+ ¢, — O, where|6| <1, (3-4)

When the demand follows an ARIMA(0,0,1) process, the autocovariance and

autocorrelation functions are (Wei, 2006):

(L+6%)0? k=0
ne=y —0o° [K=1, (3-5)
0 K >1
(1+6?)
kl=1
pk)=1— g~ M=1 (3-6)
0 k| >1

(1)

-0.1

-0.2

Autocorrelation , p

-03
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Figure 3-3: Autocorrelation of ARIMA(0,0,1) process
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Figure 3-4: Sample autocorrelation and the process shape of ARIMA(0,0,1) proces®when
-0.9.

Figure 3-3 shows that the autocorrelations for an ARIMA(0,0,1) process varies
between-0.5 and +0.5 for high positive and high negative values of the moving averag
parametem, respectivelyln addition the autocorrelation is equal to zero for lags greater than

one.

In Figure 3-4 the behavior of the ARIMA(0,0,1) process is presented when the
moving average parameter is relatively highs seen that for thig value, the autocorrelation

function is close to +0.5 and the process is changing slowly. However, the rate of changing is
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slowerin the case of ARIMA(1,0,1) process where autocorrelation is high, this is natural as
the autocorrelation function for the ARIMA(0,0,1) is much smaller than ARIMA(1,0,1)

process.

When the moving average parameter takes positive values the process shape becomes
more irregular compare téigure 3-4. The autocorrelation function is negative for lagl and it
equals to zero for higher lags as showFigure 3-5.

o~ e o n o al n ""‘n n Y oo g “""’I
b R dar W n‘l?n I ““ﬂ..'.'”"“" P i T ydd T ! [ “ﬁ!"':* i
S ) ,.lll I .I ) Lﬁ' i) I*I' WY ‘:'51 1 1 4
¥ —— | |
0 50 100 150

Time

ACF

-0.5

Figure 3-5: Sample autocorrelation and the process shape of ARIMA(0,0,1) procesgwhen
0.9.
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Finally the Autoregressive process order one, ARIMA(1,0,0) can be represented as
(3-7) which is a special case of the ARIMA(1,0,1) process whebe

dt = ,u(l— ¢) Té + ¢ dt—l' (3-7)

When demand follows an ARIMA(1,0,0) process the following properties exist (Wei,
2006):

2
(o}

k=0
Yk = 1'¢2 : (3-8)
#r, k=1
p(k)={p |K>1 (3-9)

It’s clear from (3-9) that when the autoregressive paramegttakes positive values,
the autocorrelation is always positive not only for lagl but also for higher lags periods. It
exhibits a smooth exponential decay as showkigare 3-6 for high positive values.

When the autoregressive parametelis negative, the autocorrelation function is

decays exponentially and oscillates between positive and negative values. The process shape
is irregular as can be seenFigure 3-7
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Figure 3-6: Sample autocorrelation and the process shape of ARIMA(1,0,0) process when

¢=0.9.
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Sample ACF: ARIMA(1,0,0)

ACF
05
l
I
-

-0.5
|

Figure 3-7: Sample autocorrelation and the process shape of ARIMA(1,0,0) procesgwhen
-0.9.

Them periods non-overlapping aggrégaemandD,; can be expressed as a function

of the disaggregate demand series as follows
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m

D =D .d gymy kK=12,... (3-10)

=1

The forecasting method considered in this study is the Single Exponential Smoothing
(SES); this method is being applied in very many companies and most managers use this
method in a production planning environment due to its simplicity (Gardner, 1990). Using

SES, the forecast of demand in pertogroduced at the end of peribd is

-1

k
f, = Za(l— a) d_., (3-11)

k=1

It is further assumed that the standard deviation of the error ter&ad)) (3-7), and
(3-10) above is significantly smaller than the expected value of the demand, so when demand
is generated the probability of a negative value is negligible. Constraniragd 6 to lie
between -1 and 1 in3{4), @-7), and 8-10) means that the process is stationary and

invertible.

3.1.2 MSE derivation at disaggregate level

In this section théISE of the one-step-ahead forecasts resulted from the disaggregate
and aggregate demand data is derived. This section is divided into two sub-sections. First, the
MSE before aggregation is calculated based on the direct forecast resulted from disaggregate
demand. Then, théVISE after aggregation is configured, so the aggregate forecast is

disaggregate by dividing them by aggregation lenel
3.1.2.IMSE Before Aggregation,MSEga

In order to calculate th®ISEsa, the forecasting method, SES, is directly applied to
disaggregate demand data to produce one-step-ahead forecasts.
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The analysis begins by deriving tHdSEsx for the ARIMA(1,0,1) process. As
discussed above tMSEz4 is

MSE,, = Var(ForecastError)

_var(d, — f,)=Var(d, )+ Var(f, )~ 2Co(d,, 1, ), (3-12)

Subsequently, the three parts 8t12) should to be determined: i) variance of the
demand, ii) variance of the forecast, and iii) the covariance between the demand and the

forecast.

The evaluation oMSEsa is begun by defining the covariance between the demand and

the forecast as follows:

Co\d,, f,)=Coud,, Y all-a)'d, ,) = aCov(dt,21 o), ) =
k=1
(3-13)
a(Cov(d,,d, )+ (1 a)Coud,,d, ,) + (1— a) Cov(d,.d, ,) +..),

Considering thatCovd,,d, ,)=0for all k > 1 and by substituting3¢2) in (3-13), the

covariance between demand and its forecast is obtained:

ay,

Cov(d,, f,)=ay, + a(l— a)(/ﬁyl + a(l— a)2¢27/1 +,...=—1 (3-14)
1-¢+ag
The variance of the forecast is calculated as follows:
Var(f,)=Var(ad,_, +(1-a)f,_,)=a?Var(d, ,) 319
3-15

+(@-a)’Var(f, ,)+2a(l-a)Covd, 4, f, ,).
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By considering the fact that the process is stationary, it is knéav(if, ) =Var(f, , )
and Co\d,, f,)=Co\d, ,, f_,) for all k values and by substitutin@-@) and 8-14) into
(3-15) the following is obtained:

_ay, 20‘(1_0‘)71
vartt) =5, (2-a)l-g+ap)’

(3-16)

The equations 3(2), 3-14) and 8-16) is substituted in3¢12), these substitutions
coupled with the fact that, =Var(d, , ) reveals th&SEsa as follows:

MSE,;,

o’ ((1—2¢9+92) a(¢—6’)(1—¢9)) (3-17)

T1-05z| 1-47  (-¢°Ji-g+ap)
As a special case, whefr0 the ARIMA(1,0,1) becomes the ARIMA(0,0,1) process

which is called MA(1) as well. Therefordy substitutingg=0 in (3-17) the MSEsa for
ARIMA(0,0,1) process is obtained iB-(8):

Yo—Qy.
MSE,, = m : (3-18)

Autoregressive order one, ARIMA(1,0,0) or AR(1) is a special case of the
ARIMA(1,0,1) process wher=0. Therefore, theMSEs4 for the ARIMA(1,0,0) process is
obtained by substituting=0 in (3-17):

MSEBA _ ( 7/0(1_ ¢) (3_19)

1- 050 )1- ¢ + ag)
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3.1.2.2MSE after Aggregation, MSEaa

In this section, the derivation of tihSE of the forecasts for the aggregation approach
is determined. Disaggregate demand is first aggregate to yield high frequency demand. Then,
the aggregate forecasts are provided based o8EBéorecasting method. Finally, one-step-
ahead estimates at the original level are given by the disaggregation of such forecasts. This
disaggregation is conducted by dividing the aggregate forecast by the aggregation. level
The MSEua is defined as

F 1 2 1 2
MSE,, :Var(dt —HTJ :Var(dt)+?Var(FT)—a CoVd,, F;)=7, +RVar(FT)—a Covd,. F). (3-20)

By applying SES, the aggregate forecast for pefiaidefined as

Fr=>80-p) Dry. (3-21)

w k-1
k=1

In this section, theMISEaa is derived for an ARIMA(1,0,1) demand process. When the

disaggregate series follows an ARIMA(1,0,1) process, the aggregate series also follows an

ARIMA(1,0,1) process but with different parameter values (Sariaslan, 2tdd) 1972). The

autocovariance function of an ARIMA(1,0,1) process after aggregation is given:

_ N’ 12
1-240'+0" ,

k=0
- ¢!_9! 1_¢10! B ]

Bra=0¢""r  [K>1

From Appendix A and Based on Wei (2006) the relationship between the
autocovariance function of the disaggregate and the aggregate demand for an ARIMA(1,0,1)

process is obtained as follows:
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m-1
my, +7/1(22(m—k)¢klj k=0
k=1
r_ mkk’1+m k-1 Z"ij ki=1.
y 71(; ¢ k;( g (3-23)
71(¢m(k—l) i 2¢(k—l)m+l +.“+m¢km—1 +(m_1)+¢km + o+ ¢(k+1)m—2) |k| >1
¢I=¢m . (3-24)

By considering 8-23) , the autocorrelation function after aggregation is given as
following:

7l(i k¢k—l + i(k _1)¢2ij
/(k) 7/{( o 1k:2 |k| =1 (3 25)
pP\K)j=—= ~ _ . -
7o m70+71(22(m_k)¢k 1)
k=1
$Pis K[ >1

From (B-4) and (C-4) in Appendix A and B respectively, the covariance between

disaggregate demand and aggregate forecast is giv8a2i).(Additionally, the variance of
the aggregate forecast is given 327):

_ Br. xl_ " )
CO\(dt,FT)—l_¢m+ﬂ¢m g (3-26)

B 2B1-B)r,
Var(F; )= > 5" AN g ) (3-27)
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Now, the equations3¢26) and 8-27) are substituted ir8{20). Then, the equations
(3-23) and B8-2) are substituted in that result. Finally, tMSE of the forecast after

aggregation is given as follows:

[l
((¢—9X1—¢0)sz(m12(m_k)¢k_1j
p

L 1_¢2 k=1
m? 2—

(3-28)

As a special case, whe0 the ARIMA(1,0,1) process becomes an ARIMA(0,0,1)
process which is also called MA(1), therefore M8Exa for the ARIMA(0,0,1) process is
obtained by substituting=0 in (3-28) :

e
m

(3-29)

fy, +2mBy, = 2%y, 2y
2-p3 m |

To obtain theMSEsa for the ARIMA(1,0,0) or AR(1) proces#=0 is substitutedn
(3-28), therefore, thBISEsA for the ARIMA(L,0,0) process is:
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. ﬂ((mgdm—kwn 2ﬂ(1—ﬂ)[@k¢k+gk¢mjj
e 25 T A7)

MSE,, = .
S AA 7/0 (3_30)

A
m(1-¢"+pg"  1-¢

3.1.3 MSE derivation at aggregate level

In this section, the variance of the error of the cumulativetep-ahead forecast is
derived. Firstly, theVISE of the forecasts resulted from the disaggregate demandviaig,,
is calculated. Then, the aggregate demand is used to calculate the aggregate forecasts and,
consequently, thMISEsa is obtained.

3.1.3.1IMSE Before Aggregation,MSEga

The analysis begins by deriving tMSEsa for the ARIMA(1,0,1) process. THASE
of the forecasts for the non-aggregation approach is derived as follows: Firstly, one step ahead
demand forecasts are obtained based orSEfemethod. Then, the results are multiplied by
the aggregation leveh. This results in cumulativerstep-ahead estimates at the aggregate
level. TheMSEs, is defined by:

MSE,, =Var(D; —mf )=Var(D; )+m*Var(f,)— 2mCo\Dy, f, ), (3-31)

In this section, thMSEsa is derived for an ARIMA(1,0,1) demand process.

As it is defined in 8-16), the variance of the disaggregate forecast is:
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Var( ft) — 0{7/0 + 26[(1— a))/l

2—-a (2-a)l-g+agp)’ (3-32)

From (D-4) in Appendix D, the covariance between aggregate demand and
disaggregate forecast is given as follows:

_an|a-¢)+el-4m?)
Cour, )= A= S (3-33)

When the disaggregassries follows an ARIMA(1,0,1) process, the aggregate series
also follows an ARIMA(1,0,1) process but with different parameter values (Brewer; 1973

Sariaslan, 2010). The aggregate demand is represented as follows:

D, = 4'Q—¢')+&; +¢' D, —0';_,, where|@| <1,

¢I

<1. (3-34)
The relationship between the disaggregate and the aggregate process parameters is
given in 38-23).

By considering thaty, :Var(DT) and substituting 3-16) ,3-33) and 8-23) into

(3-31) the following equation is given

_ & AV 2[ @Yo 205(1_05)71
MSE,, = my, +;/l(;2(m K)gp j+ m (2_0{ + (2—a)(1—¢+a¢)j

_ 2may, [(1— ¢)+¢(1— ¢m_1)]
1-¢g)1-¢+ag)

(3-35)

Finally, by substituting3-2) into 3-35), theMSEsa is obtained:
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( miL- 240 +92)]+[(¢—<9)(1—¢9)](m212(m_k)¢k_1J

l—¢2 1—¢2 7
MSE,, = o2 + M2 {1‘2¢‘9 +92}+ ( 2mall—a) £(¢—149_)(;;¢9)j (3-36)

2—a\ 1-¢° 2—a)l-¢+ag)
) 2ma[(1—¢)+¢(1—¢"“'1)][(¢— o)1 w)j
(1-¢)1-¢+ag) 1-¢°

As a special case, by substitutiggO in (3-36) theMSEsa for the ARIMA(0,0,1)

process is given as follows:

MSE,, = m(1+ 492)02 —~2(m-105? + mz[a(l‘f‘ 92)0'(22—_20505)(1— a)oo” ] +2mabo?.  (3-37)

The MSEsa for the ARIMA(1,0,0) process is obtained by substituék@ in (3-36):

IR (R < PV I all+p-aple® | 2mago’((L-g)+gl-¢m)
S5 = 75 e S8 m2[(Z—a)(l—¢+a¢>(1—¢2)j o pragfe) %0

3.1.3.2MSE after Aggregation, MSEaa

In this section, thMSE of the cumulativen step ahead forecast is obtained from the

aggregate demand data.

In this section, ThMSEan is calculated for the ARIMA(1,0,1) process. TM&Ea is
defined as:

MSE,, =Var(D; —F; )=Var(D; )+ Var(F, )—Co\D; ,F; ), (3-39)

From (C-3) and (C-4) in Appendix C, respectively, the covariance between the

aggregate demand and its forecast is given as follwing:



B.Rostami-Tabar, 2013, Chapter 3 73

Cov(D,,F, )= 1_5—7:&]5 (3-40)

By . 280~

ValF )= s PN g + )

(3-41)

Now by considering that, :Var(DT )and substituting3-40) and 8-41)in (3-39), the

MSE., is obtained as follows:

2re 2Py,

MSE,, = . 42
PRy I PRy (Y (5:42)
By substituting 8-23) and 8-24) into 38-42), the following equation is given:
Z[m?/o + 71(”2 2(m— k)¢kl]J zﬂ[ﬂ(zml k¢kil + Zm:(k _1)¢2Wk jJ 3.43
MSE,, = 1 _ = =2 (49
2-5 (2-pYa-¢"+ Bg")
Finally, by substituting3-2) into 8-43), theMSExa becomes:
2( m(1_12¢92+ ‘92) + (mz_l 2(m— kwk—lj( (¢ _f)(lz W)J}
MSE,, = -9 kel - - ¢ _
~# (3-44)

zﬁ(g kg ™ + kZ:(k —1)¢ZM) [(¢ —9)1- w)]
(2- Bla-9" + po") A

The MSExa for the ARIMA(O,0,1) process is obtained by substituga@ in (3-44):
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MSE,, - B(mli+ 6% )o? — 2Am-1)052 ) - 280-5¥0" 5 po®
2-p (3-45)

+m(1+9)0 m 16’0‘

The MSExa for the ARIMA(1,0,0) process is obtained by substitugr@ in (3-44):

. ﬂ[m+m212(m k)qﬁj
, (m+22(m—k)¢kj+ k2 5
MSE 1‘_’¢2 “ i . (3-46)
AL- B Zk¢ +Zk¢mkj Zﬁ(;k¢k+;k¢m"j
n

(2—/3)(1—¢ + Bp") 1-¢" + Bg"

2.  Comparative analysis

The effectiveness of temporal aggregation as compared to non-aggregation may be
assessed by analyzing the ratio of their variance of the forecast error or, equivalently, their
MSEs. Recall from sectiod, that a value oMSE,,/MSE,, greater than one implies that the

aggregation approach is superior to the non-aggregation one, whereas a value that is lower

than one implies the opposite. A ratio value equal to one means that performance is the same.

In section3.2.1, the impact of the aggregation lewalthe smoothing constant values,

a and g, the moving average parametér, and the autoregressive parameteron the ratio
of MSE,,/MSE,, is investigated by varying their values. In sect®@.2, the conditions

under which one approach outperforms the other are analytically determined. Finally in Sub-

section3.2.3 the determination of the optimum aggregation level is considered.

3.2.1 Impact of the parameters— sensitivity analysis

In this Sub-section the effect of the parametersa,f , 6, and ¢ on the ratio

MSE,,/MSE,, is analysed. Note than, «,f , are control parameters often set by the
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forecaster, wherea®) and ¢ are parameters associated with the underlying demand

generation process (process parameters). Therefore, it is interesting to know which values of
the control parameters lead to a ratio higher v for any given values of the process
parameters. In real world settings, data could typically be aggregate as waeKlyf(om

daily data, yearlyro=4) from quarterly, monthlyng=4) from weekly, quarterlyng=3) from

monthly, semi-annuallynf=6) from monthly and annuallyn=12) from monthly data or it

may also be aggregate at some other level to reflect relevant business concerns (e.g. equal to
the lead time length). Given the considerable number of control parameter combinations, it is

natural that only some results may be presented here.

3.2.1.1Comparison at dsaggregate level

In this sub-section, the impact of the parameters on the ratio is evaluated when

comparingatthe disaggregate level.

3.2111 Autoregressive Moving Average Process Order One, ARIMA(1,0,1)

In this sub-section the effect of the parameters ,/,6 and ¢ on the ratio of
MSE,,/MSE,, is evaluated when the non-aggregate demand follows an ARIMA(1,0,1)

process.We attempt to intuitively explain the effect of these parameters on the ratio. The

aggregation leveln between 2 and 24; 09< < 09with increments of 0.1;- 09<¢ <09
with increments of 0.10<«a <1 with increments of 0.05 an@< £ <1 with increments of

0.05is considered.

Figure 3-8 presents the impact of the parameters on the ratMSH,, /MSE,, for m =
2, 12, =01, and g =0.01,0.05,moreover Figure3-9 shows this impact fom = 2, 12,
a=03 /=01 and a =05 /=02 when the non-aggregate demand series follows an
ARIMA(1,0,1) process. Shaded areas represent a behavior in favor of the non-aggregation
approach. It is seen that the superiority of each approach is a functigrpqQ?), & and S .
The analysis shows that for a fixed value of the smoothing constants, increasing the

aggregation level improves the accuracy of the aggregation approach. Additionally, for a
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fixed aggregation leveh and smoothing constant before aggregatiqrincreasings values

decreases the performance of the aggregation approach.
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Figure 3-8: Impact of m, 8, ¢ ,« and £ on the ratio of MSE« = 0.1, # = 0.01(top)

a = 014 = 0.05(Bottom)
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In both Figure3-8 and(3-9), it is revealed that for high positive values of the moving
average paramete? and for high negative values of the autoregressive paramgténg
aggregation approach always vyields more accurate forecasts than the non-aggregation
approach. However, whe#l takes negative values angltakes positive values, the non-
aggregation approach outperforms the aggregation one. By referfiafl®3-1 it is obvious
that the latter case corresponds to the high positive autocorrelation. Meanwhile, in the former
one, the autocorrelation is not always positive and it osscilitates between positive and
negative values. Therefore, for a high positive autocorrelation the aggregation approach does
not work and the non-aggregation approach provides more accurate results. This is generally
true despite the varying of the control parameters. Thus, the aggregation approach in not

recommended when autocorrelation is highly positive and associated with smaller values of

generally smaller or equal ¢o. The analysis shows that even for high values of the

aggregation level the area in which aggregation does not work remains almost unchanged.

Generally, a9 gets more negative anglgets positive in the ARIMA(1,0,1) process,
the correlation between two consecutive dendhmg@ts larger. Note that for the
ARIMA(1,0,1) process the autocorrelation spans all time lags (not only lag 1). Therefore, for

highly positive values ofy and highly negative values @ the correlation between the

consecutive and non-consecutive periods becomes extremely positive. As a result, when the
demand series are high positive correlated no level of aggregation can improve the accuracy

of forecasts.

In Appendix E, it is revealed that the non-overlapping temporal aggregation approach
reduces the demand variability of the ARIMA(1,0,1) process. Additionally, by increasing

aggregation level more reduction in coefficient of variation can be obtained.

It can be shown that applying non-overlapping temporal aggregation decreases the
value of the autocorrelation function. Moreover, increasing the aggregation level leads to
more reduction in autocorrelation and it becomes close to zero for high valoesAsfa
result, the aggregate series becomes similar to a white noise process and it is almost random.

Therefore, for the aggregate series, the smaller value of the smoothing cghstganerally

smaller thane , should be selected.
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When the disaggregate process follows an ARIMA(1,0,1), the aggregation approach
can reach the more accurate results when the aggregatiomteigehigh and the smoothing

constant after aggregatioff is low and smaller thamx, generally for high positive

autocorrelation , aggregation approach is not recommended.

The presented results in this section show that the selection of control parameters
influences the superiority of each approach and this superiority is a function of all parameters
m, a, f, 6 andg, therefore in the sectio®.2.2 we determine theoretically the conditions
under which each approach outperforms another one when the disaggregate demand series
follows an ARIMA(1,0,1) process.

3.21.1.2 Moving average process order one, ARIMA(0,0,1)

Figure 3-10 presents the impact of the control paramefer on the ratio of
MSE,,/MSE,, for m= 2, 12 andx = 0105, when the disaggregate demand series follows an

ARIMA(0,0,1) process. Shaded areas represent a behavior in favor of the non-aggregation

approach.

The results show that for a fixed value @f by increasing the aggregation level, the
aggregation approach provides more accurate forecasts than the non-aggregation one. On the
other hand, when considering a fixed value of the aggregation level, incrgasigults in a
deterioration of the aggregation approach. If the selected smoothing constant value after
aggregationf, is considerably higher than the smoothing constant usetthe original
datap, then the aggregation approach is not preferable. Alternatively, the aggregation

approach may produce more accurate forecasts ufitages highly negative values.

In the particular case where the smoothing constant parameters before and after

aggregation are identicak(= g), the aggregation approach outperforms the non-aggregation

one in all cases, except those associated with high negative valugghafh positive
autocorrelation). Moreover, even in those cases, when increasing the aggregation level the

performance of the aggregation approach is improved.
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MSE,, /MSE ,

MSE,, /MSE , |

Figure 3-10: Impact of mé, « and  on the MSHatio fora = 0.1 (top) anda = 05

(bottom)

The impact of the smoothing paramefiesind the aggregation levalis quite intuitive
similar to the ARIMA(1,0,1) process. In fact, it is obvious that the coefficient of variation
(CV) of the non-overlapping temporally aggregate demand is smaller than the CV of the
original (disaggregate demand) and it can be shown that by increasing the aggregation level
the coefficient of variation of demand is further reduced. This means that high aggregate order
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series are associated with less dispersion than low aggregate order series. In addition, by
considering the autocovariance function before and after aggregation for the ARIMA(0,0,1)
process, it is seen that the application of the non-overlapping temporal aggregation decreases
the value of the autocorrelation function. Additionally, increasing the aggregation level leads

to a higher reduction in the autocorrelation which eventually becomes zero for high
aggregation level. That is, the aggregate series has a tendency towards a white noise process
in which case small values of the smoothing constant lead to sii&Es.Therefore, setting

p to be small g should be smaller tham ) in conjunction with high aggregation levels
provides an advantage to the aggregation approach. This is confirmed by the results presented
in Figure 3-10.

MSE,, /MSE ,

Figure 3-11: Impact of control parameters for ARIMA(0,0,1) process on the MSE

ratio

It should be noted that even if the selegfdd smaller thaw , there are some cases in
which the aggregation approach is not preferable. This can be attributed to the potential high
positive autocorrelation between demand periods. For negative value®, dhe
autocorrelation is positive; for positive valueséithe autocorrelation is negative and for the

white noise process, the autocorrelation is zero. An aggregation of highly positive
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autocorrelated series does not add as much value as aggregating series with less positive
autocorrelation. However, for very high aggregation level, the aggregation approach may

outperform the non-aggregation one even for high positive autocorrelation.

When the non-aggregate items follow an ARIMA(0,0,1) proces$,gats more
negative, the correlation between two consecutivecreases. Faan ARIMA(0,0,1) process
the only autocorrelation is autocorrelation lag 1 and for other lags , it is equal to zero. The

value of autocorrelation lag 1 is varying between -0.5 and 0.5.

{— 05<p<05 |K=1
p= (3-47)

0 K>1"

It can be observed that the maximum positive autocorrelation of lagl for an
ARIMA(0,0,1) process is around 0.5 while this value almost equals to one for an
ARIMA(1,0,1) process. These examples show that the performance superiority of each
approach is a function of all the control and the process parameters. The selection of the
control parameters: , andm, influence the effectiveness of the aggregation approach in
conjunction with the consideration of the process parameters. In sub-seé&idri.2 the
conditions under which each approach produces more accurate forecasts for a fixed value

of o are identified.
3.21.1.3 Autoregressive process order one, ARIMA(1,0,0)

When the non-aggregate demand series follows an ARIMA(1,0,0) process, the impact
of the control parameters), «, f on the ratio ofMSE,,/MSE,,for m = 2, 12 and
a = 0105 is presented as can be seen in Fig8fg2 Similar to the cases of the
ARIMA(1,0,1) and the ARIMA(0,0,1) processas,can be seen that the superiority of each
approach is a function of all the control and the process parameters. The results show that for
a fixed value ofx , increasing the aggregation level results in an improvement in the accuracy

of the aggregation approach. Conversely, for a fixed aggregation level, incr¢gasiesgults
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in a deterioration of the performance. In additigh,should be generally smaller than in

order for the aggregation approach to produce more accurate forecasts.

Figure 3-12 shows that for highly positive values of the autoregressive parameter

¢ the aggregation approach does not work well and the non-aggregation approach provides

more accurate results. This is generally true regardless of the values employed by the other

control parameters. Therefore, the aggregation approach is not recommended in such cases.

When the smoothing constant parameters before and after aggregation are identical
(.,e. = /), the aggregation approach outperforms the non-aggregation one in all cases,
except those associated with highly positive valuespofln those exceptional cases the
comparative performance of the two approaches is insensitive to the increase of the
aggregation level and even for very high aggregation levels, no improvement is observed for
the aggregation approach. The impact of the smoothing parafieterd the aggregation
level m on the ratio is similar to that reported for the ARIMA(0,0,1) and ARIMA(1,0,1)

processes.

When ¢ is positive for an ARIMA(1,0,0) process, the series is 'slowly changing' or

can be considered as a positively autocorrelated process. In addition, when the non-aggregate
demand follows an ARIMA(1,0,0) process, the autocorrelation spans all time lags (not only

lag 1). Therefore, for highly positive values @f the correlation between the consecutive and

non-consecutive periods becomes very high as can be obtai@em)in

p(k)=¢*, for all k. (3-48)

For instance, for lagl,the autocorrelation values vary between -1 andL{]p(l)< +1.

It can be seen that the maximum positive autocorrlation of lagl is around +1 for
ARIMA(1,0,0) process. Consider a case where the autocorrelation = 8..sag=0; clearly
no level of aggregation improves the accuracy of forecasting. For a high positive correlated

series no level of aggregation may improve the accuracy of forecasts.
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Figure 3-13: Impact of control parameters for ARIMA(1,0,0) process on the MSE

ratio

Hence, when the non-aggregate demand follows an ARIMA(1,0,0) process, the
aggregation approach may lead to an improvement in accuracy when the aggregation level,

is high and the smoothing constant after aggregatios small. However, for highly positive
values of the autoregressive paramgiethe aggregation approach is not recommended

(especially wherp is bigger thaw ).

What may be concluded at the end of this sub-section is that if the demand data is
highly positive autocorrelated then the non-aggregation approach works better than the
aggregation oneln those cases the non-aggregation approach better exploits the very
important recent information (i.€;) (though it is more prone to noise). On the contrary, when
the autocorrelation is less positive or negative, then the recent demand information is not that
crucial. Thus, a longer term view of the demand is preferable (if one properly selects how to
use long term demand information througland ). Moreover, the aggregation performance
under the ARIMA(0,0,1) is slightly different than the ARIMA(1,0,1) and the ARIMA(1,0,0)
due to the nature of these processes. Positive autocorrelation under an ARIMA(1,0,1) or

ARIMA(1,0,0) process, with a maximum value equal to +1, is potentially higher than that
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associated with an ARIMA(0,0,1) process (with a maximum value equal to 0.5). It should be
reiterated that for the ARIMA(0,0,1) process, the autocorrelation is limited only for to lagl,
whereas for the ARIMA(1,0,1) and the ARIMA(1,0,0) processes, the autocorrelation spans
over more lags and is not limited to lagl. Theaders the range of outperformance of the
non-aggregation approach larger under the ARIMA(1,0,0) and ARIMA(1,0,1) pescéss
sub-section3.2.2 the conditions under which each approach outperforms the other one are

theoretically determined when comparison is undertaken at the disaggregate level.

3.2.1.2Comparison at aggregate level

In this sub-section, the effect of control and process parameters on the NM&aaf
MSEaa is evaluated when the comparison is undertaken at the aggregate level.

3.21.2.1 Autoregressive Moving Average Process Order One, ARIMA(1,0,1)

Figure 3-14 and Figure3-15 present the impact of the control and the process
parameters on the ratio oMSE,/MSE, for m = 2, 12 , =01, 4=001 and
a = 01, g =0.05 when the non-aggregate demand series follows an ARIMA(1,0,1) process.

Shaded areas represent a behavior in favor of the non-aggregation approach. These
figures show that the aggregation approach provides more accurate results when the forecast
horizon is long. Moreover, for short horizons, the aggregation approach performs extremely
well when @ is positive andp takes negative values. Alternatively, the aggregation approach
does not perform better than the non-aggregation one whtakes negative values ard
takes highly positive values. The outperformance of the non-aggregation approach can be
attributed to the high positive autocorrelation value as explained above. The results show that
the effect of the smoothing constant values before and after aggregation on the superiority of
each approach is similar to the case of comparing at the disaggregate level. When considering
a fixed value of the aggregation level, increagirgsults in a deterioration of the aggregation
approach. For the aggregate data, the responsiveness of the stable forecasting method
deteriorates the performance because the differences between the observations are small and

low g leads to better forecasts.
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Figure 3-14:Impact of m, €, ¢ ,« and f on the ratio of MSE:
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Figure 3-15:Impact of m, @, ¢ ,« and f on the ratio of MSEw = 0.3, 5 = 0.1(top)

a = 054 = 02(bottom)

The results show that by increasing the aggregation levéte performance of the
aggregation approach is improved. for higher values of the aggregation level, the aggregation
approach always outperforms the non-aggregation one regardless of the values of the moving

average and the autoregressive parameters. Whereas, when the comparison is considerd at the
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disaggregate level, for highpositive autocorrelation, no level of aggregation improves the

forecast accuracy.

the farther into the future the estimation is calculated, the fereceorsasociated with
the original data become larger compared to the temporally aggregateherepproaches based
on the temporally aggregate data benefit more by increasirigré@ast horizonln these cases a
longer term view on demand becomes vital and the aggregation approach utilizes this

information much better than the non-aggregation one.

In the particular case where the smoothing constant parameters before and after

aggregation are identicak & ), the results are similar teigure 3-14andFigure 3-15

These examples show that the performance superiority of each approach is a function
of all the control and the process parameters. The selection of the control parameters

and m, influence the effectiveness of the aggregation approach in conjunction with the the

process parameters.

3.21.2.2 Moving average process order one, ARIMA(0,0,1)

Figure 3-16 presents the impact of the control parameters on the raMmsgf, /MSE,, for m

= 2, 12 anda = 0105 when the non-aggregate demand series follows an ARIMA(0,0,1)
process. Shaded areas represent a behavior in favor of the non-aggregation approach. The
results show that for a fixed value af, by increasing the aggregation levwel the
aggregation approach provides more accurate forecasts than the non- aggregation one. On the
other hand, when considering a fixed value of the aggregation level, incr@gassgts in a
deterioration of the aggregation approach. If the selected smoothing constant value after
aggregation,f, is considerably higher than the smoothing constant used with the original
datag, then the aggregation approach is not preferred. Alternatively, the aggregation
approach yields a more accurate forecast. However, W@hakes highly negative values the
benefits of the aggregation approach is not as much as positive values. It is obvious from
Figure 3-16 and Figure 3-17 that there is always a value gffor which the aggregation

approach outperforms the non-aggregation one.
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In the particular case where the smoothing constant parameters before and after
aggregation are identical (i.ex =), the aggregation approach outperforms the non-

aggregation one in all cases.

MSE,, / MSE, ,

Figure 3-17: Impact of control parameters for ARIMA(0,0,1) process on the MSE

ratio

The impact of the smoothing paramej@r and the aggregation leveh, is quite

intuitive and similar to the case of the ARIMA(1,0,1) process. Therefore, sefting be
small (f should be smaller than) in conjunction with high aggregation levels provides an

advantage to the aggregation approach. This is confirmed by the results presé&igedein
3-16andFigure 3-17.

The weakness of the aggregation approach for negative val@e=nfbe attributed to
the potentidly high positive autocorrelation between demand periods. For negative values of
0, the autocorrelation is positive; for positive valuegddhe autocorrelation is negative and
for the white noise process, the autocorrelation is zero. Aggregatiarhighly positively

correlated series doesn't add as much value as the aggregate series with less positive
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autocorrelation. Hence, when the non-aggregate demand follows an ARIMA(1,0,0) process,
the aggregation approach leads to an improvement in accuracy when the aggregatiom level,

is high and the smoothing constant after aggregatios small.

3.2.1.2.3 Autoregressive process order one, ARIMA(1,0,0)

Figure 3-18 presents the impact of the control parametersr, f on the ratio of
MSE,,/MSE,, for m= 2, 12 anda = 0105, when the non-aggregate demand series follows

an ARIMA(1,0,0) process. it is easy to see that the superiority of each approach is a function

of all control and process parameters.

The results show that for a fixed valuemf increasing the aggregation level results in
accuracy improvements of the aggregation approach. Conversely, for a fixed aggregation
level, increasingf results in a deterioration of the performance. In addit@nshould be
generally smaller tharx in order for the aggregation approach to produce more accurate

forecasts.

When the smoothing constant parameters before and after aggregation are identical
(.,e. = /), the aggregation approach outperforms the non-aggregation one in all cases
except when the aggregation level is low and associated with highly positive valges of
Moreover, by increasing the aggregation level the performance of the aggregation approach is
improved and for the higher aggregation level, the aggregation approach always performs
better.
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MSE, /MSE,
MSE, /MSE, |

Figure 3-19: Impact of control parameters for ARIMA(1,0,0) process on the MSE

ratio

The impact of the smoothing paramej@rand the aggregation leved on the ratio is
similar to those reported for the ARIMA(0,0,1) process. Figi#8 shows that even if the
selecteds is smaller tham , there are some cases in which the aggregation approach is not

preferred. This is when the autoregressive paramgetiEkkes high positive values. In general,

the benefits achieved by the aggregation approach are fewer for highly positive vafues of
than negative values @f Hence, when the non-aggregate demand follows an ARIMA(1,0,0)
process, the aggregation approach leads to an improvement in accuracy when the aggregation

level, m, is high and the smoothing constant after aggregétisrsmall.

What can be concluded at the end of this sub-section in forecasting the aggregate level
is that if the forecast horizon is long then the aggregation approach is always preferred.
Because in these cases a longer term view on demand is very important and the aggregation

approach utilizes this information better than the non-aggregation one. By increasing the
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forecast horizon, the forecast error associated with the adbaagpiproach increases as well.
However, when the forecast horizon is short, the superiority of each approach depends on the
aggregation level and the autocorrelation values. If the demand data is highly positive
autocorrelated then the non-aggregation approach works better than the aggregation one. In
those cases the non-aggregation approach better exploits the very important recent
information (i.e.d;). On the contrary, when the autocorrelation is less positive or negative, the
recent demand information is not as crucial. Thus, a longer term view of the demand is

becomes important. Therefore, the aggregation approach is preferred.

Moreover, the aggregation performance under the ARIMA(1,0,1), the ARIMA(0,0,1)
and the ARIMA(1,0,0) processes is slightly different due to the nature of these processes. In
fact, the positive autocorrelation in the the ARIMA(1,0,1) and the ARIMA(1,0,0) is higher
than that in the ARIMA(0,0,1) which makes larger the range of the outperformance of the
non-aggregation approach in the the ARIMA(1,0,1)and the ARIMA(1,0,0) pexess

In sub-sectiorB.2.2 the conditions under which each approach outperforms the other
one are theoretically determined when comparison is undertaken at the aggregate level.
3.2.2 Theoretical Comparison

Having conducted a sensitivity analysis in sub-se@i@rl, now the conditions under

which each approach outperforms the other one are analytically identified.

3.2.2.1Comparison at dsaggregate level

In this sub-section the conditions under which the aggregation and the non-aggregation
approaches perform better are identified when the comparison is undertaken at the

disaggregate level.
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3.2.2.11 Autoregressive Moving Average Process Order One, ARIMA(1,0,1)
In this sub-section the conditions under which each approach outperforms the other
one are analytically identified when the non-aggregate demand process is an ARIMA(1,0,1).

The ratio of MSE,,/MSE,, is obtained by dividing3-17) into 3-28):

(p—0)1-¢0)
1- ¢2
1-gp+ap

() )

2-p

a
1 | @-200+06%) (
1-052| 1-¢°

MSE;,/MSE,, =

[(1—2¢9+92)]+1 ((¢—9)(1—¢¢9]

1-4°

(3-49)

s [i kg "+ i(k —1)¢2ij

k=1 k=2

(2-pL-¢" +ag)

This ratio is a function of the aggregation lavelthe autoregressive parametér,
moving average parameté?, and the smoothing constant parameters before and after
aggregation,a andf . Considering that the aggregation level may only get integer values
greater than or equal to two, the goal is to determine the fatbat enables the aggregation

approach to perform better. The entire range of possible valuessaonsidered.

To show the conditions under which the aggregation approach outperforms the non-
aggregation one, the equatic49) is set greater than 1, i ®ISE,, /MSE,, >1, From this

statement the following result can be obtained:

THEOREM 1-3: If the time series of the non-aggregate demand follows an
ARIMA(1,0,1) process and-1<f <1 and-1<¢<0, then:
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uIf S < p,, the aggregation approach provides more accurate forecast.
«If B = p,, both approaches perform equally.

=Otherwise, the non-aggregation approach works better.
Where g, defined in (F-4).
PROOF: the proof of Theorem 1-3 is given in Appendix F.

Note that for the presented rangeddind ¢ (-1<6<1 and-1<¢<0) g, is always

positive, consequently choosing < g, guarantees thathe aggregation approach always

outperforms the non-aggregation one in this region. Heheeyalue of f; reflects a cut-off point
that may be used in practice for the selection of the smoothing constant value to be used for
the aggregate series. The cut-off point reflects all the qualitative discussion provided in the

previous sub-section as to when aggregation outperforms the non-aggregation approach.

If the time series of the original demand follows an ARIMA(1,0,1) process and the
moving average and the autoregressive parameters safisfy) <land 0<¢<1, then the

conditions under which each approach works betterbe obtained. These conditions are
summarizedn the following selection procedure (discussed in Table 1):

Table 3-2: Selection procedure for the ARIMA(1,0,1) process, Comparison at

disaggregate level

1. The procedure is begun by calculatingdefined in (F-3), IfA < 0then the non-aggrega
approach is always superior, otherwise the valueg, ahd f,defined in (F-4) and (55)
are calculated.

2.1f B, e (0,1), the value off; and according to the values £if and 2 the following rules
are obtained:

= If B, << p,,then the aggregation approach works better.
= If g =p, = p,then both approaches are identical.

= If g> p,or p< pB,then non-aggregate strategy works better. Otherwise, go to 3




B.Rostami-Tabar, 2013, Chapter 3 98

3. If B, ¢(01), the value off, is calculated:
» If g<p,, then the aggregation approach works better.
= If g=p,, then both approaches are identical.

= If B> p,, then nonaggregation approasbrks better.

Where S, defined in (F-5).

PROOF: The details of the selection procedure are given in Appendix G.

3.2.2.1.2 Moving average process order one, ARIMA(0,0,1)

The ratio of theMSEa to MSEsa When the non-aggregate demand follows an
ARIMA(0,0,1) process is a function of the moving average parameter, the smoothing constant
before and after aggregation (andg ), and the aggregation level. The cut-off points for the
value off should be determined. This enables the aggregation approach to perform better.
The entire range of possible values fwris considered but the smoothing constant is a
parameter that is set to its optimal value by practitioners, normally by minimizing Ske
From @3-17) it is clear thatMSE;, is monotonically increasing iz as the derivative of
MSE,, is positive for all values of in (-1, 1). HenceMSE;, can be minimized by having
the smallest possible value of which makes sense for a stationary process. Howéver,

should be noted that in this theoretical analysis the issue of initialization of the forecasting
process is disregarded. This is an important issue to be mentioned (since with very low
a values a bad initialization implies inaccurate estimates of the future demand as the forecast

will basically be kept constant) but one that is not considered as part of this research.

To show the conditions under which the aggregation approach outperforms the non-

aggregation approach, the ratio is set greater thanM®g,, /MSE,, >1. From this inequality

the following result can be obtained:
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THEOREM 2-3: If the time series of the non-aggregate demand follows an
ARIMA(0,0,1) process, then:

«If B < p,, the aggregation approach provides more accurate forecasts.
=sIf =}, both strategies perform equally.
=Otherwise, the non-aggregation approach works better.

where

(— (M2 + m(L+ 02) + 2m8) ++/ (M7 + mL+ 6?) + 2ma) ] + 826 - 2m9)m277j

B, = (3-50)
' 220 - 2mo) ’
and
2
y = a(1+6) _ (3-51)
2—a

PROOF: the proof of Theorem 2-3 is given in Appendix H.

The results demonstrate that, &ogiven values otx andm, there always exists a value
of £ such that the aggregation approach outperforms the non-aggregatioHeaoe,.the
value of pjreflects a cut-off point that may be used in practice for the selection of the

smoothing constant value to be used for the aggregate series.

3.2.2.1.3 Autoregressive process order one, ARIMA(1,0,0)

A similar procedure is followed by setting the rati&Esa to MSEaa greater than 1 for
an ARIMA(0,0,1) process. This is conducted to identify the conditions under which the
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aggregation approach performs better. These conditions are summarized by the selection

procedure presented in Appendix | when autoregressive paragrestgsfies-1< ¢ < +1.

As discussed earlier the smoothing constant is often set by practitioners to its optimal
value, so it is more interesting to discuss the cases where such a value is considered. To do so,
the value that minimizes thdSEs is determined. Following that a value of the smoothing
constant after aggregation that leads to more accurate forecasts is calculated. The optimal

value of is given in 8-52) that can be obtained by solving the first derivativedfq)

o {(3¢ ~1)/2¢ Y3<g<1 (3.52)

o ~1<¢<1Y3

where @ > 0 is a very small positive value.

By considering the optimal value of the smoothing constant before aggregation, two

different cases should be considered. Fa8E,, /MSE,, >1 and @-52) the following results

can be obtained.
Case 1 ¥3<g¢<1. In this caseq” = (3p—1)/2¢

THEOREM 3-3: If the time series of the non-aggregate demand follows an ARIMA(1,0,0)
process, wherd/3< ¢ <1 and the optimal smoothing constaat, = (3¢ —1)/2¢, is used to

determine the non-aggregate demand forecast, then the non-aggregation approach always
provides more accurate forecast than the aggregation one, regardless of the smoothing

constant parameter after aggregatfrand the aggregation leve,

PROOF: the proof of Theorem 3-3 is given in Appendix J.
Case 2 -1<¢<13. Inthis case: is a very small positive number.

THEOREM 4-3. If the time series of the non-aggregate demand follows an ARIMA(1,0,0)

process, where-1< ¢ <1/3 and the optimal smoothing constant used to determine the non-

aggregate demand forecaat, < 0.05, then:
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» If p<p1the aggregation approach provides more accurate forecast.
= If §=p1 both strategies perform equally.

= Otherwise, the non-aggregation approach works better.

Where

- _((l_¢mxl_¢)§1 + 2(1_¢)§2 - 4m¢(1—¢m)— 2m2¢"‘(1—¢)77 + m2(1_ ¢"‘X1_ ¢))+ JA '

z 2Ap"(1-p)z, - A1-9)z, + 2mp(L— g™ )+ MPg" (1 ¢)n)

(3-53)

(&,6,,mand A are given in Appendix |)

PROOF: The proof of Theorem 4-3 is given in Appendix J.

Similar to the case of the ARIMA(0,0,1) process, the above results provide a cut-off
point that may be used in practice for the selection of the smoothing constant in order to
obtain an outperformance of the aggregation approach when ARIMA(1,0,0) processes are
considered. Obviously, as the cut-off point increases for high aggregation levels, it is clear
that this implies a considerable range of the smoothing constant of the aggregate series where
there is a benefit of using the aggregation approach. Hence, these results provide a
comprehensive way of managing the process of forecasting of ARIMA(1,0,0) processes when
the autoregressive parameter is known and when the intention is to optimize the smoothing

constant for the non-aggregate series.
3.2.2.2Comparison at aggregate level

In this sub-section the superiority conditions of each approach are identified when the

comparison is undertaken at the aggregate level.
3.2221 Autoregressive Moving Average Process Order One, ARIMA(1,0,1)

The ratio of theMSEa to MSEaa When the non-aggregate demand follows an

ARIMA(1,0,1) process is a function of the moving average param@téne autoregressive



B.Rostami-Tabar, 2013, Chapter 3 102

parameter,$, the smoothing constant before and after aggregationa(dg), and the
aggregation leveln. The objective is to determine the vaflighat enables the aggregation

approach to perform better.

(m(l— 240 +92)J+((¢—9)(1—¢9)J(§2(m_ k)¢“)

1-¢° 1-¢° =

MSE, _| , m’a [1—2¢9+92J+ 2m?a(l-a) ((¢—9)(1—¢9)j

MSE, | 2-al 1-¢2 2-a)il-g+ap)l 1-4°

_Zma[(1—¢)+¢(1—¢m1)]((¢—9)(1—¢9)]
L-¢1-g+ag) 1-¢°

2{”‘(1‘12_?92) {”k”z’:z(m_k)(,sk—l][(vﬁ—f_)(;j@)n (3-54)

2-p

Zﬂ(g kp ™t +kzrj;(k—1)¢mkj ((¢_9)(1—¢9)}
(2-pa-¢"+ ") 1-¢*

To show the conditions under which the aggregation approach outperforms the non-
aggregation approach, the ratio is set to greater than MB&,, /MSE,, >1. From this

statement the following res can be obtained:

If the time series of the basic demand follows an ARIMA(1,0,1) process and the
moving average and the autoregressive parameters satlsh <land O<g¢<1, the
conditions under which each approach works better are obtained. These conditions are

summarized as follows:

Table 3-3: Selection procedure for the ARIMA(1,0,1) process, Comparison at

aggregate level

1. The procedure is begun by calculatimg defined in (K-3, If A<Othen the non-
aggregation approadh always superior, otherwise the valuesgand S,defined in (K-
3) and (K-4) are calculated.

2.1f B, e (0,1), the value off; and according to the values gif and 2 the following rules




B.Rostami-Tabar, 2013, Chapter 3 103

are obtained:

= If g, <p < p,,then the aggregation approach works better.

» If g=p, = p,then both approaches are identical.

= If g> p,or g< pB,then non-aggregation approach works bet@therwise, go to 3.
3. If B, (01), the value ofg, is calculated:

» If g<p,, then the aggregation approach works better.

= If g=p,, then both approaches are identical.

= If B> p,, then non-aggregation approach works better.

PROOF: The details of the selection procedure are given in Appendix K.

THEOREM 5-3: If the time series of the non-aggregate demand follows an
ARIMA(1,0,1) process and-1<f <1 and-1<¢ <0, then:

uIf S < p,, the aggregation strategy provide more accurate forecast.
=If =}, both strategies perform equally.

=Otherwise, the non-aggregation strategy works better.

where g, is defined as:

_(2p™ -w(1-g™) -2pp™ +28)+ A

P 2™

V,n, &, and A are defined in Appendix K.

PROOF: the proof of Theorem 5-3 is given in Appendix L.
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Theorem 5-3 show that when the autoregressive and the moving average parameters satisfies
—-1<0<1 and -1<¢<0, then for a given value of the smoothing constangnd the

aggregation leveln, there is always a value gffor which the aggregation approach provides

more accurate forecasts.
3.2.2.22 Moving average process order one, ARIMA(0,0,1)

The ratio of theMSEa to MSEaa When the non-aggregate demand follows an
ARIMA(0,0,1) process is a function of the moving average paramétehe smoothing
constant before and after aggregatiom @ndf), and the aggregation levein. The
superiority conditions can be obtained by following the same procedure as Appendix K where

the autoregressive parameter is equal to zero.

(00072 o i) 2l

24

b

2-p

MSE,, /MSE,, = (3-55)

By setting the equatior8{55) to greater than one, the following results can be obtained:

THEOREM 6-3: If the time series of the non-aggregate demand follows an
ARIMA(0,0,1) process, then for a given valuesxadnd 4

uIf B < p,, the aggregation approach provides more accurate forecasts.
=If =}, both strategies perform equally.

=Otherwise, the non-aggregation approach works better.

where

=2 2m(1+ 6?)

+ 0?4 2m +am2(1+82)_2am2(1—a)c9
(m(l 0?)+2mad S a) j
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Proof: Theorem 6-3 can be obtained by substitugii@in Appendix L.

Theorem 6-3 says that there is always a valyé fof which the aggregation approach

outperforms the non-aggregation one.

THEOREM 7-3 If the non-aggregate time series follows an ARIMA(0,0,1) process
and the smoothing constant under the aggregation approach is smaller or equal to the non-
aggregation ong¢l<e), then aggregation approach always outperforms the non-aggregation
one(i.e. MSEa > MSEaa). This is true regardless of the aggregation lawednd the process
parametef. In addition, when the smoothing constants under the both approaches are set

small(«, <0.01), then both aggregation and non-aggregation approaches perform equally.

PROOF: the proof of Theorem 7-3 is given in Appendix M.
3.2.2.2.3 Autoregressive process order one, ARIMA(1,0,0)

The superiority conditions of each approach when the non-aggregate demand follows

an ARIMA(1,0,0) process can be obtained by setting the following equation greater than one.

m-1

m+ ¢(Z 2(m— k)¢k_1j + (Zm_zz) +

a2all-a)  2magli-g)+l-g)
(2-a)1-¢+ag) (1-¢)1-¢+ag)

2(m+ ¢(§2(m— k)¢k‘1D 2ﬂ¢[k§m;, kg + kzm:(k - 1)¢2rwj

MSE,,/MSE,, = (3-56)

2- 4 (2- - _'“2+ﬂ¢m)

Similar to the case of comparison at disaggregate level, by considering the optimal value of

the smoothing constant before aggregatidwo different cases are considered.
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THEOREM 8-3 If the time series of the non-aggregate demand follows an ARIMA(1,0,0)

process when-1< ¢ <13, then there is always a value gfin order to the aggregation

approach outperforms the non-aggregation one:

» If §<p1the aggregation approach provides more accurate forecast.
» |If §=p1 both strategies perform equally.

= Otherwise, the non-aggregate approach works better.

Where

g - (2™ - W(1- ™) - 2™ +2&)+ /A
' 2™

Proof: These conditions can be achieved by substitdtiig and —1< ¢ <1/3 in the
Appendix K.

If the autoregressive parameter satisfigs ¢ <1/3, then there is always a value Bf

for which the aggregation approach works better than the non-aggregation one.

THEOREM 9-3 If the time series of the non-aggregate demand follows an ARIMA(1,0,0)
process when-1< ¢ <13 and the smoothing constant under the aggregation approach is
smaller than non-aggregation ofie(), then aggregation approach always outperforms the
non-aggregation one. This is always true regardless of the aggregationrieielddition,

when the smoothing constants under the both approaches are set to smalloyg81),

then the difference in the performance of the aggregation and non-aggregation approaches is

insignificant.

PROOF: the proof of Theorem 9-3 is given in Appendix N.

If the time series of the non-aggregate demand follows an ARIMA(1,0,0) process

when /3< ¢ <1, then the ratio oMSE;/MSExs may be smaller, greater than or equal to one
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depending on the values of the smoothing constaras( 5), aggregation levein and the
autoregressive parameters. The conditions under which each approach works better can be

obtained by substituting?=0 and 1/3<¢ <1in the procedure discussed in sub-section

3.2.2.2.1 where the case of the ARIMA(1,0,1) is considered.

3.2.3 Optimal aggregation level

The objective of this section is to identify the optimal aggregation levels that
maximize the ratio or equivalently minimize thdSEsa for each demand process under
consideration. To do so, the ratio MiISEa to MSE\ for the whole range of the control

parameters is evaluated.

3.2.3.1Comparison at disaggregate level

In this part the aggregation level that leads to more error reduction is determined when

the comparison is undertaken at disaggregatd.lev

3.2311 Autoregressive Moving Average Process Order One, ARIMA(1,0,1)

A numerical investigation to determine the optimal aggregation level is conducted
since from B8-49) it is clear that the calculation of the first derivative is infeasible. two

examples are presented: i) the whole rangeé where 6=0.9, « = 0.3, andg = 0.2; ii) the
whole range o where@=-0.5, « = 0.3, andg = 0.2. In the latter case for some valuegjof

and 6=-0.5 ( Figure 3-2() the ratio is smaller than one and consequently aggregation does

not work. Thusjn these cases it is not necessary to discuss the optimal aggregation level.

The results show that by increasing the aggregation level, the performance of the
aggregation approach improves. Additionally, a higher aggregation level results in higher

values of the ratio and consequently more benefits for the aggregation approach.
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Figure 3-20: MSE ratio for different values of m for an ARIMA(1,0,1) process

3.2.3.1.2 Moving average process order one, ARIMA(0,0,1)

In order to obtain the optimal aggregation level when the non-aggregate demand series

follows an ARIMA(0,0,1), the following theorem is considered.

THEOREM 10-3: If the non-aggregate demand series follows an ARIMA(0,0,1)
process, then the optimal aggregation level is the highest level in any considered range.

Supposing that aggregation is to be tested in a ramgaJ], where y;and upare the lower

and upper bound, respectively. In addition, they are positive integer numbers. The optimal

aggregation levab alwaysuys .

PROOF: A calculation of the first derivative ®filSExaa With respect tan shows thaMSEa is
a decreasing function of. This can be shown by a numerical analysigviar 2 as well. This
means that the ratfddSE4/MSEaa is an increasing function oh. Thereforea higher value of

the aggregation level results in a higher value of the k8&sa/ MSEa.
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3.2.3.1.3 Autoregressive process order one, ARIMA(1,0,0)

A numerical investigation is conducted to obtain the optimal aggregation level where
the subaggregate process follows an ARIMA(1,0,0) as the calculation of the first derivative is

infeasible. Two examples are considered: i) the whole rangevberea = 0.15 andg = 0.1;

i) the case 2 discussed in 5.2.2 with an optimal value of

Figure 3a shows that the value of the aggregation level that maximizes the MSE ratio

changes when varying the control parameter values. For negative and lower positive values of
¢, i.e—~1<¢<13, the forecast accuracy of the aggregation approach increases with the
aggregation level while for higher positive valuesgpi.e. 1/3<¢ <1, this is not true. Let us

analyse the two different cases in which the optimal smoothing constant values are considered
for MSEza.
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b) Case 2, ARIMA(1,0,0) process where

a) ARIMA(1,0,0) process wherel< ¢ <1
-1<¢<033

Figure 3-21: MSE ratio for different values of m ARIMA(1,0,0) process at disaggregate level
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Case 1 13<¢<1. In this case the optimal smoothing constant parameter
o =(3p-1)/2¢ is used and it is seen in sub-section 5.2.2 thaMBE ratio is always lower

than 1.

Case 2 —1< ¢ <¥3. In this case a very small smoothing constant valie; 0.05 , is

used. TheMSE ratio for different aggregation levels is shown kigure 3-21b for

-1<¢<¥3and a numerical example ef and B values whereg< «. This figure shows

that the aggregation approach is associated with more accurate results for higher aggregation

levels.

3.2.3.2Comparison at aaggregate level

In this part the optimal aggregation level that maximizes the ratSigs / MSEua is

identified when the comparison is undertaken at the aggregate level.

3.23.21 Autoregressive Moving Average Process Order One, ARIMA(1,0,1)

Similar to the case of comparison at disaggregate level, here two examples are
presented to evaluate the impact of the aggregation level on the ratio as the derivation of
(3-54) to determine the optimal is not feasible: i) the whole range @fwhere8=0.7, o =
0.1, andp = 0.01; ii) the whole range @fwhere6=-0.4, « = 0.1, andg = 0.01.

As it is shown inFigure 3-22a and b, the higher ratio MSEs;a/ MSEaa is associated

with higher aggregation level.
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Figure 3-22: MSE for different values of m, ARIMA(1,0,1)process compared at aggregate

level

3.2.3.2.2 Moving average process order one, ARIMA(0,0,1)

By considering 3-55) the values of thMSEsx / MSExa by varying the aggregation
level can be determineé@figure 3-23a and b show the impact of the aggregation level on the
ratio for the whole range af when ¢=0.1,6=0.1 and ¢=0.1,4=0.05. It is shown that higher

aggregation level is associated with higher ratio.
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a) a=0.1,4=0.1 b) ¢=0.1,4=0.05

Figure 3-23: MSE for different values ah, ARIMA(0,0,1) process comparison at aggregate

level

3.2.3.2.3 Autoregressive process order one, ARIMA(1,0,0)

Figure 3-23 and b present the impact of aggregation level on the ratio for the whole

range of¢ when=0.3,4=0.1 ando=0.1,4=0.05. The results show that a higher value of the

ratio is achieved by higher aggregation level.
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Figure 3-24: MSE for different values of m, ARIMA(1,0,0) process comparison at aggregate
level

3.  Simulation investigation

In this sub-section a simulation experiment based on the theoretically generated data is
considered. In this part of the work, simulation analysis is used to test and validate the

theoretical results discussed in secon
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3.3.1 Simulation design

Different autoregressive moving average, ARMA type processes are to test the
mathematical findings. an ARIMA(1,0,0) process, an ARIMA(0,0,1) process and a mixed
ARIMA(1,0,1) process are considered. These processes are analysed in $edtion
disaggregate demands are generated randomly in each period subject to the parameters

described inrable 3-4. The value ofo is set quite smaller thap to avoid the generation of
negative sub-aggregate valuéBo generate the demands in each periothat follow

ARIMA(1,0,1), ARIMA(0,0,1) and ARIMA(1,0,0),the error terms, are first generated

randomly. The simulation experimemg designed and run in Matlab 7.10.0. For each
parameter combination described Tiable 3-4 a demand series of 1000 observations is

generated and 100 replications are introduced.

Table 3-4: Parameters of the simulation experiment

N° N° Time

Hoo a,f 0 ¢ o _
Replications Periods
400 20 0.01: 0.99 -0.9:+0.9 -0.9:+0.9 100 1000

The generated seriés divided into two parts. The first part (within sample) consists
of 450 time periods and is used in order to initialize $tESestimates. The second part
consists of 550 time periods and is used for the evaluation of the performanad- (out-
sample). The values of the smoothing constants before and after aggregafipis (varied
from 0.05 to 0.95 with a step increase of 0.05. For non-aggregation approach, the SES is
applied directly to get 550 one-step ahead forecasts and then the variance of the forecast error.
is calculated. In order to obtain the forecasts generated by the aggregation approach, first the
non-overlapping buckets of aggregate data are created based on a specified aggredation leve
and then SES method is applied to these aggregateadgtt the aggregate forecast. the
procedure is explained for the aggregation level equals to two, for higher aggregation level the
same procedure is followed. The calculation is begun from th¥ dB6ervation in the initial
(within sample) part, the observations are summed backwards in buckets of two (2), resulting
in an aggregate series consisting of 225 aggregate observations. The average of the aggregate

series is obtained and is used as the’Steecast for the first bucketed period 1. SES is then
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applied all the way up to producing a forecast for bucket 226 which gives a forecast for
periods 451 and 452. Then the buckets of 2 periods from period 451 backwards are created
Thus, another 225 buckets are created and the very first observation (period 1 in the original
data) is not used anymore. The average of these buckets is calculated , it is used as the SES
forecast for the first bucket, then the SES method is applied until the point that a forecast for
bucket 227 (periods 452 and 453) is produced. In the next period, the buckets are created
backwards from period 452 ending up with 226 buckets and continue like this until obtain the
forecasts for 550 periods ahead. Now, if the forecast at the disaggregate level is needed the
aggregate forecasts is divided by the aggregation level to get the disaggregate forecast
resulted from the aggregate data.

Finally, the value of the variance of the forecast error before aggregation is diyided b

the variance of the forecast error after aggregation, to obtain the rMiBEf, to MSEa.

verification is the process to make sure that no programming error has been
made(Kleijnen and Groenendaal, 1992). This can be tested by calculating intermediate results
manually and comparing them with the results obtained by the program. This is called
tracing(Kleijnen and Groenendaal, 1992). Eyeballing or reading through the code and looking
for bugs is another way of verification(Kleijnen and Groenendaal, 1992). The following steps

are conducted to verify the simulation model:

e The MATLAB codes are read through to make sure that the correct logic and

functions have been used.

e The intermediate and also the final results are compared for a limited number of

replications (e.g. 10 replications) with MS Excel.

3.3.2 Simulation Result

The simulation results are presented in this sub-section. As discussed in chapter 1, the
objective of the simulation analysis | temporal aggregation is to test and validate the results of
mathematical evaluation. In secti¢h he conditions under which aggregation and non-

aggregation approaches may outperform each other are discussed. In the following the results
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of simulation analysis are presented for these conditions to compare them with mathematical

analysis.

Although a simulation investigation is conducted for all scenarios discussed in the
theoretical part but the results of the more general case, ARMA(1,0,1) process are only
presented, which has the characteristics of both ARIMA(1,0,0) and ARIMA(0,0,1) process.

Figure 3-25 presents the impact of the parameters on the rat\SH,, /MSE,, when
comparing at disaggregate level for= 2, 12, « = 01, and £ =0.01,0.05. Shaded areas

represent a behavior in favor of the non-aggregation approach.

The simulation results shows that for positive valueg ahd negative values @f,
non-aggregation approach produce more accurate results compared to aggregation approach,
however the aggregation approach can provide more accuracy forecast® wsheegative
and @ is positive. In addition, it is seen that increasing the aggregation level improve the

forecasting accuracy when the aggregation approach outperforms the non-aggregation one.

However, by increasing the smoothing constant after aggregation the performance of

the aggregation approach deteriorates.

In Figure3-26 the results of simulation analysis for comparison at the aggregate level
are presented for the same parameters used in the previous case. Shaded areas represent a
behavior in favor of the non-aggregation approach. As can be observed in F~2ffyrihere
is less benefits for the aggregation approach whiakes negative values agchas positive
values andit is seen that for lower aggregation level values, the non-aggregation approach
outperforms the aggregation one. However, for higher values of the aggregation level, the

aggregation approach outperforms the non-aggregation one regardless of the values of the

autoregressive and the moving average parameters. In addition, by increasing the

aggregation level the accuracy of the aggregation approach improves.
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Figure 3-25:Impact of m, €, ¢ ,«a and f on the ratio of MSE compared at disaggregate
level: a = 01, 8 = 0.01(top) , a = 0.15 = 0.05(bottom)
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m=2 m=12
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Figure 3-26:Impact of m, €, ¢ ,« and f on the ratio of MSE compared at aggregate level

a =01, f=0.01(top) , & = 0.13 = 0.05(bottom)

The simulation results presented in both FigBr85 and Figure3-26 generally
confirm the results of the theoretical analysis when the underlying series follow an
ARIMA(1,0,1) demand process at both disaggregate and aggregate level of comparison.
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4.  Empirical analysis

In this section the empirical validity of the main theoretical findings of this research
are assessed. In the following sub-section the details of the empirical data available for the
purposes of the investigation along with the experimental structure employed in this work are

provided. In sub-sectioB.4.2 the actual empirical results are presented.

3.4.1 Empirical Dataset and Experiment Details

The demand dataset available for the purposes of this research consists of weekly sales
data over a period of two years for 1,798 SKUs from a European grocery store. The Forecast
package in Rs used to identify the underlying ARIMA demand process for each series and
estimate the relevant parametersisltfound that more than 48% of the series may be
represented by the processes considered in our research. In particular, 30.26% of the series
(544 seriepis found to be ARIMA(1,0,0), 12.96% (233 series) to be ARIMA(0,0,1) and
5.06%(91 series) to be ARIMA(1,0,1), (Other popular processes identified are:
ARIMA(0,0,0) (16.3%) and ARIMA(0,1,1) (23.7%). This analysis provides some empirical
justification on the frequency of stationary, and in particular ARIMA(0,0,1) and

ARIMA(1,0,0) processes in real world practices.

In Table 3-5and3-6 and3-7 the characteristics of the SKUs relevant to gtusly are
summarized by indicating the estimated parameters for ARIMA(1,0,1), ARIMA(0,0,1) and
ARIMA(1,0,0) processes. To facilitate a clear presentation, the estimated parameters are

grouped in intervals and the corresponding number of SKUs is given for each such interval.

The average® and ¢ value per interval is also presented for the processes respectively.
This categorization allows comparing the empirical results with the theoretical findings. It
should be noted that thé parameter values are all but one negative andstb@ameter
values are all but one positive for the ARIMA(0,0,1) and the ARIMA(1,0,0) processes
respectively. For the ARIMA(1,0,1) process, thgparameter values are positive or negative
and all ¢ parameters are positive, but whole parameters lead to a positive autocorrelation. As
such, the data do not cover the entire theoretically feasible range of the parameters. Some
studies (Erkip et al., 199Qee et al., 1997 ee et al., 2000that have considered empirica
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ARIMA(1,0,0) processes, have reported that it is common to have positive correlation/high
value of autoregressive parameters in the consumer product industries which is also the case
in the dataset used in our research. Replication of our findings in bigger datasets is certainly

an avenue for further research.

Table 3-5: Processes present in the empirical data set, ARIMA(1,0,1) process

] _ Average of Average
6 intervals ¢ intervals Average ofg _ No. of SKUs
0 laglAutocorrelation
[0.1,0.5] [0.6,1] 0.356 0.771 0.5211 23
[0.5,0.9] [0.6,1] 0.605 0.838 0.3260 39
[-0.2,-0.5[ [0.1,0.5] -0.328 0.347 0.5631 29
Total number of SKUs: 91

Table 3-6: Processes Present in the Empirical Data Set, ARIMA(0,0,1) process

0 intervals Average of9 No. of SKUs
[-.8,-.7[ -0.7252 1
[-.7,-.6[ -0.6329 9
[-.6,-.5[ -0.5393 39
[-.5,-.4] -0.4471 72
[-.4,-.3[ -0.3509 57
[-.3,-.2] -0.2520 48
[-.2,-.1] -0.1989 6

[0,1] 0.2831 1

Total number of SKUs: 233
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Table 3-7: Processes Present in the Empirical Data Set, ARIMA(1,0,0) process

b) ARIMA(1,0,0)

@ intervals Average ofg No. of SKUs
[-.1,0[ -0.2240 1
[.1,.2 0.1981 2
[.2,.3[ 0.2534 84
[.3,.4] 0.3549 125
[.4,.5] 0.4479 127
[.5,.6[ 0.5512 121
[.6,.7] 0.6433 63
[.7,.8] 0.7352 18
[.8,.9[ 0.8256 3

Total number of SKUs: 544

The data seriess divided into two parts. The first part (within sample) consists of 62
time periods and is used in order to initialize 8teSestimates. The second part consists of
the remaining 41 time periods and is used for the evaluation of the performance (out-of-

sample).

The values of the smoothing constants are varied from 0.05 to 0.95 witlp a ste
increase of 0.05. In the classical (non-aggregate) approach, first the 41 one-step ahead
forecasts are calculated for each series and then the variance of the forecast weeror is

calculated.

to obtain the forecasts via the aggregation approach, firstly the non-overlapping
buckets of aggregate data are created based on a specified aggregation level and then the SES

method is applied to these aggregate data.

Aggregation levet 2: Starting from the 69 weekly observation in the initial (within
sample) part, the observations are summed backwards in buckets of two (2), resulting in a bi-

weekly series consisting of 31 aggregate observations. The average of aggregate series is
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obtained andt is used as the SESforecast for the first bucket period 1. SES is then applied

all the way up to producing a forecast for bucket 32 which is then divided by 2 (the
aggregation leveln=2) and it gives a forecast for periods 63 and 64. The forecast for period

64 is dropped and those of 63 is recorded (they are equal anyway). Then the buckets of 2
periods from period 63 backwards are created. Therefore, another 31 buckets are created and
the very first observation (period 1 in the original data) is not used anymore. The average of
these buckets are calculated (they are different from those created before), that average is used
as the SES forecast for the first bucket, the forecasting process is continues using SES until
the point that a forecast for bucket 32 (periods 64 and 65) is obtained. The forecast for period
64 is kept and so on. In the next period, the buckets are created backwards from period 64
ending up with 32 buckets and continue like this until obtain the forecasts for 41 periods

ahead.

Aggregation level = 3 . . . 24: Similarly, the same procedure is followed with time
buckets of up to 24 periods. At this point there are 2 aggregate biweekly observations

(2x24=48), thus 14 weekly observations at the start of the original series remain unused.

Finally, the value of the variance of the forecast error before aggregation is diyided b

the variance of the forecast error after aggregation to obtain the r8iSEf to MSEaa.

3.4.2 Empirical Results

In this section the results of empirical investigation compatédth disaggregate and

aggregate level for all processsunder consideration are presented.

3.4.2.1Comparison at disaggregate level

In the first part, the validity of mathematical results are evaluatedal data set when
the non-aggregate demand follow an ARIMA(1,0,1) process and the comparison is conducted
in the disaggregate level. The empirical results show that when the optimal smoothing
constant valuesx and g are used, then for all values of aggregation lewethe non-
aggregation approach outperforms the aggregation one. Thiagseement with our findings

asthe real data set presented in Tebgtakes positive autocorrelation, not only for lagl but
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it spans over longer lags. According to the theoretical findings when the autocorrelation is
positive the non-aggregation approach performs better and no level of aggregation improve
the performance of the aggregation approdchit is shown inFigure 3-27, for all values of

mthe MSEza is lower tharMSEaa. It should be noted that the results is presented based on the
RMSEHEroot mean square error) which is similaM&E TheMSEreduction can be as high as

8% for the aggregation approach.
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Figure 3-27: Empirical results compared at disaggregate level, ARIMA(1,0,1) process

In sub-section8.2.2.1.2 and 3 the conditions under which the aggregate forecasts may
perform better than the non-aggregate are analytically examined by the raliSEpf to
MSExa. The cut-off points of the smoothing constant of the aggregate $@tiest should be
used (i.e. any value gf that is lower than the cut-off poin, implies an outperformance of
the aggregation approach) have also been determined for both the ARIMA(0,0,1) and
ARIMA(1,0,0) process. In the following figures the results of the empirical analysis for these
processes are presented. Additionally, the degree to which they validate the theoretical

findings is investigated.
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In Figure 3-28, the cut-off pointf; is presented foa fixed values of andm when the non-
aggregate demand of the SKUs follows an ARIMA(0,0,1) process. Please recall that the cut-

off point f, is the value below which anygvalue implies that the aggregation approach

outperforms the non-aggregation one. Note that the resulta f00.5 are only presented

since this range is viewed as realistic for the stationary processes considered in this work.
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Figure 3-28: Cut-off points of implying an outperformance of the aggregation approach for

different values o* and m compared at disaggregate level, ARIMA(0,0,1) process

The empirical results show that for a low aggregation lewe, the cut-off point is
relatively low sincef,=0.2 for a relatively highx value equal to 0.5. In that case, the MSE
reduction wheng =0.05 is equal to 8.89% and the MSE ratio decreases for higher values of
. Obviously, the cut-off value considerably increases when the aggregation level increases.
For example, when we consider the aggregation lewdl2, the cut-off point may go up to
S1=0.8 for o value equal to 0.5. In that case the MSE reduction whe0.05 is equal to

12.13%. This shows the considerable region where the aggregation approach outperforms the

non-aggregation one for high aggregation levels. Hence, increasing the aggregation level
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improves the performance of the aggregation approach and the best results can be achieved

for small values of gand high aggregation levels. These empirical results generally

confirm the theoretical findings.
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Figure 3-29: Cut-off points of gimplying an outperformance of the aggregation approach for
different values ofx andm compared at disaggregate Iev&RIMA(1,0,0) process with -
1<¢$<0.33.

Figure 3-29 shows the cut-off poiny, for fixed values ofa andm when the SKUs
have a non-aggregate demand that follows an ARIMA(1,0,0) process wihk-033. The
empirical results show that for a low aggregation lene2, low £ values should be selected
in order to have an outperformance of the aggregation approach. For example when an
aggregation levein=2 is used, the cut-off poing;=0.33 for an« value equal to 0.5 and the
MSE reduction whens=0.05 is equal to 12.45%. The cut-off points considerably increase

when the aggregation level increases. Fig89 shows also that for an value equal to 0.5
and when the aggregation levet12, the cut-off poing; is almost equal to 1, which means

that the aggregation approach always outperforms the non-aggregation one in that case. That
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results also in a MSE reduction equal to 15.11% that decreases for higher valges of
However, it should be noted that for the SKUs where 083 &, the empirical results show
that when the optimal value af is used for all values off andm, the non-aggregation

approach outperforms the aggregation one.

The empirical analysis confirms overall the results of the theoretical evaluation both
for all processes under consideration. What can be concluded here is that there is a
considerable range of the values of the smoothing constant of the aggregate series that implies
a benefit of using the aggregation approach. This benefit can also be substantial for high
aggregation levels and low smoothing constants. Note that such analysis can be utilized as an
indicator on when the aggregation approach should be used and which parameters lead to the

outperformance of this approach.

3.4.2.2Comparison at aggregate level

In this part the validity of the findinga forecasting the aggregate demand is telsyed
real data sets. In sub-sects$2.1.2 ancB.2.2.2 the superiority conditions of the aggregation
and non-aggregation approaches are identify when a cumutatistep ahead forecast is
required. It is shown that for positive autocorrelation associated with low aggregation level,
non-aggregation approach works better but by increasing the aggregation level the

performance is improved even for high positive autocrrelation.

Figure 3-30 shows the results of both aggregation and axgynegation approaches for
different values of aggregation levalwhen the optimal smoothing constants before and after
aggregation is used and the non-aggregate demand series follow an ARIMA(1,0,1) process.
The results show that for the aggregation lewelp to six, theMSEsa is smaller thatMSEaa.
However, asm takes higher values than six, the latter becomes smaller. Therefore, the
empirical results show that when the non-aggregate demand follow an ARIMA(1,0,1) process
and autocorrelation is positive (refer to TaB#e) then for lower values aih(ms<6) the non-
aggregation approach works better. Howeverrfor6, aggregation approach outperforms the

non-aggregation one.
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Figure 3-30: Empirical results compared at aggregate level, ARIMA(1,0,1) process
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Figure 3-31: Cut-off points of implying an outperformance of the aggregation approach for different

values ofe ard m compared at aggregate level, ARIMA(0,0,1) process.
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Figure 3-32: Cut-off points off implying an outperformance of the aggregation approach for different

values ofa and m compared at aggregate level, ARIMA(1,0,0) process withk@al33.
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Figure 3-33: Cut-off points off implying an outperformance of the aggregation approach for different

values ofe andm compared at aggregate level, ARIMA(1,0,0) process with @3B<
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Figure 3-31presents the results of empirical analysis compared at aggregate level when
the non-aggregate demand follows an ARIMA(0,0,1) process. It is shown that there is always
a value of smoothing constant after aggregattbior which the aggregation approach

outperforms non-aggregation one. The cut-off poffjtis determined for fixed values of

aandm when the non-aggregate demand of the SKUs follows an ARIMA(0,0,1) process.
The results show that for high values of aggregation level, the aggregation approach

outperforms the non-aggregation one for a wide rangkvafues.

Figure 3-32 shows the cut-off poin3; for fixed values ofe andm when the non-
aggregate SKUs follow an ARIMA(1,0,0) process with ¢1<0.33. As it is discussed above,

for these autoregressive values the autocorrelation is not highly positive. For these range of
there is always a value f@f for which the aggregation approach outperforms the non-
aggregation one. The results show that the cut-off points considerably increase when the
aggregation level increasddgure 3-32 shows also that for an value greater than and equal

to 0.2 and when the aggregation lemel12, the cut-off poing; is almost equal to 1, which
means that for these values aggregation approach always performs better. The MSE reduction
associated with these values and the smoothing constant after aggr@gatioh can be as

high as 50%.

In Figure 3-33 the forecast results of SKUs with 0.33 < 1 are presented. The

empirical results show that when the optimal valuexond g is used, then for lower value

of m, the MSEsa is smaller than th&1SE.a. However, as the aggregation level increases the
latter becomes smaller than the former one and consequently the non-aggregation approach
outperforms the aggregation one. The results show that for the aggregatiom awelller

than or equal to seven the non-aggregation approach performs better, but for the values of
greater than seven, the aggregation approach outperforms the non-aggregation one. These
results confirm the results of analytical evaluation presented in sub-se8tibth.2.3 and
3.2.2.2.3.
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5. Conclusion

In this chapter the impact of temporal aggregation on demand forgcédsten been
evaluated by theoretical, simulation and empirical investigafibie. evaluations were based on
the consideration of the Mean Squared Error (MSE) before and after aggreys&Bs (
MSExa) and comparisons were undertaken at both disaggregate and aggregate demand level.
It is assumed that the demand follow an ARIMA(1,0,1), ARIMA(0,0,1) and ARIMA(1,0,0)
process and a Single Exponential Smoothing is used as a forecasting method. The conditions

under which the aggregation approach outperforms the non-aggregation are identified.

The results show that when the autocorrelation is highly positive in the original series
the non-aggregation approach may outperform the aggregation one. In general there are fewer
benefits for the aggregation approach with high positive autocorrelation than the series with
low positive or negative autocorrelation. This is an intuitive finding since when the
autocorrelation is highly positive, at any time the most recent demand information is vital.
Therefore, in that case the disaggregate process works better as it fully exploits such recent
information. However, on the contrary, for low positive autocorrelation or negative
autocorrelation, the recent demand information is not that crucial then a more long term view
on demand is preferable. As discussed above it can be obtained by selecting high aggregation
levels and low smoothing constants. This is also an important empirical insight since
managers may know what to expect (in terms of any potential gains) based on the

autocorrelation levels present in their series.

When the demand process follow either an ARIMA(1,0,1) or an ARIMA(1,0,0)
process associated with high positive autocorrelation, and the comparison is undertaken at
disaggregate level, the results show that non level of aggregation improve the accuracy so the
non-aggregation approach always outperforms the aggregation one. However, when
comparing is undertaken at aggregate level, for low aggregation level the non-aggregation
approach may outperforms the aggregation one, but for higher values of aggregation level, the
aggregation approach always provide more accurate forecasts.

It is also found that the performance of the aggregation approach improves as the
smoothing constant value employed at the aggregate series reduces and the aglgnegation

increases. This is true for both comparison at disaggregate and aggregate level.
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Chapter4  Cross-Sectional Aggregation

In chapter 3, the effect of the non-overlapping temporal aggregation on demand
forecasting is analysed. In this chapter the effectiveness of cross-sectional approach on
demand forecasting is evaluated. An important decision involved in the forecasting process is
the determination of the degree of aggregation that forecasts should refer to with respect to the
number of products involved. The hierarchical level at which forecasting is performed it
depends on the function the forecasts are fed into. There are several examples withoregards
products (or Stock Keeping Units - SKUS) in particulquforecasting at the individual SKU
level is required for inventory contral) product family forecasts may be required for Master
Production Schedulingii) forecasts across a group of items ordered from the same supplier
may be required for the purpose of consolidating ordersjiiahdorecasts across the items

sold to a specific large customer may determine transportation and routing decisions etc.

One intuitively appealing approach to obtain higher level forecastsy isross-
sectional (also referred to as hierarchigaggregation which involves aggregating different
items (i.e. aggregating the requirements for different items usually in one specific period) to
reduce variability. Existing approaches to the cross-sectional forecasting usually involve
either a bottom-up (BU) or a top-down (TD) approach (or a combination of the two). When
forecasting at the aggregate level is of interest, the former involves the aggregation of
individual SKU forecasts to the group level whereas the latter relates to forecasting directly at
the group level (i.e. first aggregate requirements and then extrapolate directly at the aggregate
level). When the emphasis is on forecasting at the subaggregate level, then the BU approach
relates to direct extrapolation at the subaggregate level whereas the TD involves the
disaggregation of the forecasts produced directly at the group level. An important issue that
has attracted the attention of many researchers as well as practitioners over the last few

decades is the effectiveness of such cross-sectional forecasting approaches.
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TD and BU forecasting approaches are extremely useful towards improving the
accuracy of forecasts and plans when leveraged within an S&OP (Sales and Operations
Planning) process (Lapide, 2006). The S&OP is a multi-functional process that involves
managers from all departments (Sales, Customer Service, Supply Chain, Marketing,
Manufacturing, LogisticProcurement and Finance), where each department requires different
levels of demand forecasts (Lapide, 2004). For example, in marketing, forecasting of revenues
by product groups and brands is needed, sales departments deal with sales forecasts by
customer accounts and/or sales channels. Supply chain managers request SKU level forecasts,
while finance department requires forecasts that are aggregate into budgetary units in terms of
revenues and costs (Bozos and Nikolopoulos, 2011).

In this chapter, the relative effectiveness of the BU and TD approach for foregasting
evaluated. It is recognized that forecasts may be equally required at both the aggregate and
subaggregate level, and as such comparisons are performed at both levels. the effectiveness of
the two approachess analytically studied when the underlying series follows either
stationary first order Autoregressive Moving Average process ARIMA(1,0,1) or a non-
stationary Integrated Moving Average process of order one, ARIMA(0,1,1), and the
forecasting method is the Single Exponential Smoothing (SES) which is the optimal estimator
for the ARIMA(O,1,1) process (Box et al., 2008).

The assumptions bear a significant degree of realism. An ARMA(Autoregressiv
Moving Average)model often fits demand data better than an autoregressive or moving
average model alone, since typically demand contain structurally both moving average and
autoregressive characteristics (Duc et al., 200B& ARMA process have been found to fit
demand for long lifecycle goods such as fuel, food products, machine tools, etc (Chopra and
Meindl, 2001 Nahmias, 1993). It has also been shown that the ARMA demand processes
occur naturally in multi-stage supply chains (Gaur et al., 286&ng, 2004). There is also
considerable evidence to suggest that inventory demand is non-stationary and thus relevant
processes should be assumed for representing their underlying structure. Tunc et al. (2011)
stated that non-stationary stochastic demands are very common in all industrial settings
associated with seasonal patterns, trends, business cycles, and limited-life items such as the
high-tech industry (Chien et al.,, 2Q00&raves and Willems, 2000, 2008) and grocery
distribution (Erkip et al.,, 1990Lee et al., 1997aMartel et al., 1995). Theris also some
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evidence that demand may follow #&RIMA(0O,1,1) process in particular (which is the
process considered in this study). This process has often been found to be useful in inventory
control problems and econometrics (Box et al., 2008). In addition, Mahajan and Desai (2011)
stated that retailers often face a non-stationary demand that follows an ARIMA(O,1,1)

process.

Moreover, SES is a very popular forecasting method in industry (Acar and Gardner,
2012 Gardner, 19902006 Taylor, 2003). In terms of the practical relevance of this research
we refer to a set of SKUs where a large proportion of them faiowRIMA(1,0,1) or an
ARIMA (0,1,1) processes. This is not an untypical scenario as demonstrated by analysis of

empirical datasets including our own empirical investigation.

The mathematical analysis is complemented by a numerical experiment to evaluate in
detail the conditions under which one approach outperforms the other. Such an experiment
also allows the introduction of non-identical process parameters of the subaggregate series
and the comparison at the subaggregate level when the subaggregate items follow an
ARIMA(0,1,1) process. In addition, an empirical investigation is also conducted to assess the

validity of the results on real data from a European superstore.

Considerable part of this chapter is presented in Rostami-Tabar et al (2013d) and
Rostami-Tabar et al(2013Db).

The remainder of this chapter is structured as follows. In settibe assumptions and
notations used in this study are described, In addition an analytical evaluation of the variance
of the forecast error related to both the BU and TD approaches is conducted. InZ#otion
analytical results are presented. Next a simulation study is conducted following the simulation
results in sectior8. Finally, an empirical investigation is conducted in Sectloand the

chapter concludes in Sectién

1. Theoretical analysis

In this section the variance of the forecast error associated with the TD and BU
approachess derived Comparisons may be performed at both the aggregate and the

subaggregate level although in this theoretical analysis for the ARIMA(0,1,1) prtuoess,
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comparisons are performed only at the former level since results regarding the latter are
intractable. However, in the simulation study following the theoretical analysis, various
assumptions are relaxed and the results for the ARIMA(0,1,1) and the ARIMA(1,0,1)
processes are presented. The comparison is undertaken at both subaggregate and aggregate

level.

When forecasting at the aggregate level is of interest, the former involves the
aggregation of individual SKU forecasts to the group level whereas the latter relates to
forecasting directly at the group level (i.e. first aggregate requirements and then extrapolate
directly at the aggregate level). When the emphasis is on forecasting at the subaggregate level,
then the BU relates to direct extrapolation at the subaggregate level whereas the TD involves

the disaggregation of the forecasts produced directly at the group level.

4.1.1 Notation and assumptions

For the remainder of the paper, the following notations are used:

di«: Subaggregate demanah periodt
p.j: Correlation between the error term of subaggregateiiterd] (cross-correlation)
D.: Aggregate demand in peribd

&, -Independent random variable for subaggregate demand period t, normally

distributed with zero mean and variancgé

£ . Independent random variable for aggregate demand in perimarmally distributed
with zero mean and varianeg?

fi; : Forecast of subaggregate demand in pédritiie forecast produced il for the demand
int.

Fi : Forecast of aggregate demand in petjtle forecast produce trl for the demand in

ai: Smoothing constant used in the Single Exponential Smoothing method for each
subaggregate demand in the BU approd@chy, <1

arp: Smoothing constant used in the Single Exponential Smoothing method for aggregate
demand in TD approacl)<a,, <1
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pi: the relative weight of subaggregate itdfa contribution to the aggregate family,
WhereZiN=1 p =1

Vgu: Variance of Forecast Error of the BU approach

V+p : Variance of Forecast Error of the TD approach

g, - Moving average parameter of subaggregate defmghi 1
¢, . Autorgressive parameter of subaggregate demamfl< 1
¢': Moving average parameter of aggregate demiarid; 1

u - Expected value afub-aggregate demamndn any time period

' Expected value of aggregate demand in any time period

It is assumed that all the subaggregate demand sdrjefollow either a first order

autoregressive moving average, ARIMA(1,0,1), or a first order Integrated Moving Average
process, ARIMA(0,1,1). This can be mathematically written in petidiy (1) and (2)
respectively:

d,=ty +d, ,+&,-6¢&,, i=12..,N (4-1)
di,t =K (1_¢i)_9igi,t—l+¢| di,t—l + & (4-2)

From (1) it is clear that the demand in the next period is the demand in the

current period plus an error term. By expandfd ) we have:

di,t =ty +&, +o&,  TaE .. FOE, (4-3)

where o, =1-6,. It should be noted that only under this conditionqn SES is

optimal as it provides the minimum mean square forecasts for the ARIMA(0,1,1) process.
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Here the smoothing constant values are considered as a control parameter determined by
forecasters that varies between zero and one. Obviously, B#ee<1, under this condition

& (only for ARIMA(0,1,1) process) only takes the values between zero and one and does not
cover the whole range of<#<1. However, the theoretical analysis is still valid for the whole
range of -X4<1. In addition, in the simulation analysis this assumption to cover the whole

range of -X4<1 are relaxed when the value of the smoothing constant is fixed.
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Figure 4-1: Sample autocorrelation of ARIMA(0,1,1) process wifen0.9.
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When the underlying process follows an ARIMA(0,1,1) process) msves from+1
toward -1 the resulting underlying structure changes considerably. Wherg &8k the
autocorrelation is highly positive and it spans all time lags (not only lag 1). For exampgle, for
=-0.9 the autocorrelation is very close+#tbwith smooth exponential decay by increasing the
lags (seeFigure 4-1). As we move up towardé=+1 the autocorrelation reduces but still
remains positive and for high positive valuestoit becomes close to zero meaning that the

series are random (sEeure 4-2).
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Figure 4-2: Sample autocorrelation of ARIMA(1,0,1) process wider0.9.
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However, the behaviour of the ARIMA(1,0,1) process is different with those of the
ARIMA(0,1,1) process by changing the parameters. For different combinations of the process

parameters, the resulting underlying structure changes considerably.

When the demand follows an ARIMA(1,0,1) process the auto-covariance furgtion

(Box et al., 2008):

(1—2¢ie)i+<9i2)0_2 o
1-¢° '
Yo = (¢ -6, )(1;¢‘.‘9i)0i2 k=1,
1-4, (4-4)
BV ik |k|>1

When the demand follows an ARIMA(1,0,1) process the auto-covariance and
autocorrelation functions are(Box et al., 2008hen the demand follows an ARIMA(1,0,1)

process the auto-covariance and autocorrelation functions are(Box et al., 2008).

When the demand follows an ARIMA(1,0,1) process the auto-covariance and

autocorrelation functions are(Box et al., 2008):

(1—2¢.9+2r92)02 (-0
o
Ve = (¢_9)1;¢9)02 |k|:1, (3-2)
1-¢
&y k| >1
-0M1-90) 4
p(K)=1 1-2¢0 + 62 (3-3)

For different combinations of the process parameters, the resulting underlying

structure changes considerablyable 3-1 presents the autocorrelation structure for different
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process parameters which helps to better understand the process and can be useful to interpret

the results of the forthcoming analysis

For different combinations of the process parameters, the resulting underlying
structure changes considerablyable 3-1 presents the autocorrelation structure for different
process parameters which helps to better understand the process and can be useful to interpret

the results of the forthcoming analysis.

It is assumed that all the subaggregate demand process parameters are identical

(6,=6,=06,=...=6,). This assumption is considered only for the purpose of the theoretical

analysis and, as above, it is also relaxed in the simulation part of this work. The concerned
assumption implies that the aggregate demand also follows the same process as subaggregate

items. If g=6,=-6,#...»6, then the sum of the subaggregate items is not necessarily the
same process (Lutkepohl, 1984).

The aggregate demand in peripD, can be expressed as the sum of the demands of
the subaggregate items, ile, = Zitldi,t .

The forecasting method considered in this study is the Single Exponential Smoothing
(SES). This method is being applied in many companies. Due to its simplicity, It has been

specifically applied in an inventory production planning environment (Gardner, 1990). Using
SES the forecast of subaggregate demiaimdperiodt produced at the end of peritd is

fio= iai (l_ O‘i) diws . (4-5)

The forecast of subaggregate itenm periodt for the ARIMA(0O,1,1) process can be

expressed as a function of the error terms as follows:

foo=tu +ae, +ae, ,+...toe, (4-6)
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It is further assumed that the standard deviation of the error terdalip gnd 8-7)
above is significantly smaller than the expected value of the demand. Thus, when demand

generated, the probability of a negative value is negligible.

4.1.2 Variance of forecast error at aggregate level

The variance of forecast error corresponding to the Vi)(and the BU(Vay)
approacks for both a non-stationary ARIMA(0,1,1) anda stationary ARIMA(1,0,1)

processes at the aggregate level are calculated.
4.1.2.1Integrated moving average process order one, ARIMA(0,1,1)

The analysis is begun by deriving tg, which is defined as follows:

i=1 i=1 i=1

Vg, :Var(Dt —i fivtj:Var(ZN: d, —i fivt}:Var(i(diyt - fi )j 4-7)

By substituting 4-3) and 4-6) in @-7) the following is given:

Vg, = Var[ZN: iy J (4-8)

i=1

SinceVar(s,, )=o? andCoMg,,, ¢, )= 2 0,0, , the variance of the BU approach is:

N N-1 N
Vau :Zaiz+22 Z,q’jaiaj (4-9)
i1 =1 j=i+l

Now the variance of the forecast error for the TD approach is derived. As discussed

above, i is shown that when the subaggregate items follovABRHMA (0,1,1) process, the
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aggregate family demand also follows ARIMA (0,1,1) process (Lutkepohl, 1984).The

family aggregate process is defined as follows:
Dt =t/,l' + 8; - (1_ :B)gtlfl + Dt—l (4'10)

wheref=1-4.

Consideringg, =6, =6, =...=6, =0 results in the same theta also in the aggregate demand so,
¢ =6. Now by consideringd' =1—a,p,and @ =6, it is obvious that the optimal
smoothing constant for the aggregate demand.is =1—8, which is equal to the optimal

smoothing constant for the subaggregate process.

The aggregate demand and its forecast can be expressed as a function of the error

terms as following:

’ ! / ! !
D, =tu' + & + oy + Apép +...+ Appéy (4-11)

N
Knowing thats/ = &, , the following is obtaied
i=1

(4-12)
N N-1 N
Var(g])= ZVar(gi 4 )+ 22 ZCO\(Ei € )
i=1 i=1 j=i+1
The aggregate forecast is
Fo=tu' +apél +0mps , +.. .+ apé] (4-13)

The variance of the TD forecast error is defined as:

Vip =Var|D, - F] (4-14)
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By substituting 4-11) and 4-13) into @-14), the variance of TD approach is:

V,, =Varlg!] (4-15)

By substituting 4-12) into @-15) we have:

Vip = ZG +ZZ an (4-16)

i=1 j=i+1

4.1.2.2Autoregressive moving average process order one, ARIMA(1,0,1)

In this part, the variance of forecast error of the BU appraatie aggregate level is

calculated when the subaggregate items follow a stationary ARIMA(1,0,1) procesgg lhe
can be obtained as follows:

Vo, =Var(Dt—ZiN=1fu) Var(zI Ld =Y, )

i=1 It

(4-17)
= Zi'\ilvar(di,t - fi,t)+ 2Zi:1 Zj:HlCO\(di,t - fi,t ' dj,t - fj,t)

Subsequently, the two parts of-17) should to be determined: i) the variance of
forecast error for subaggregate itemvhich is calculated in4¢33)
forecast error between subaggregated,.

, i) the covariance of the

The covariance of the forecast error between subaggregatel j in period t,
Cold,, - f,,.d,, - f;, ) is as follows:

Cowdi’t_fivt’dj,t ) Cov(dlwdjt) CO\’(dlw Jt) CO\(flt’ )"’CO\'(f.t' lt) (4-18)
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Now by substituting (P-1), (P-2), (B-&nd (P-5) in Appendix P into4{18), the

following is obtained:

_ aih oA n
1-¢ +aj¢i 1_¢j +ai¢j (4-19)

( 1 J[aiajlﬁai(l—aj)ajﬂi+aj(1—ai)aj,y]

Codd,, - f,..d,, — f,,)=4

(1_(1_ai )(1—aj)) 1-¢ +a;¢ 1-¢; + ;9

Finally by substituting4-33) and 4-19) into (4-17), the variance of the forecast error

of the BU approacht aggregate level is:

N aiyo 2ai(1_ai )71 20,7,
Ve _Zi_l{yo i 2-qa, ' (2-a J1-4 +ai¢i)+l_¢i + a4 ]l—

_q A ol N (4-20)
1-¢ +a;¢ 1-¢; + ¢,

2 X al-a )i al-a)ai
e ey

l-¢,

0

by substituting §-2) ,4,andl, defined in (P-L in Appendix P into 4-20) and
assuming thatg, =¢, =---=¢, =¢, 6,=60,=---=6y =60 anda, =a, == =a, Vau iS

simplified as :

e [2] e (1467 + 00 - g1+ OF + §0(2- )
Veu = Z(Zizl[ai ]+ ZZizl Zjnlpiiaiaj{ (2—0{)(1—¢2X1—¢+0{¢) (4-21)

Now, the derivation of the variance of forecast error for the TD appratdthe
aggregate level is preceded. All subaggregate items are aggregate to produce-ameastep

estimates at the top level basedSiS . TheVrp is defined as
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V,, =Var(D, — F, )=Var(D, )+Var(F, ) - 2Co\D,,F,) (4-22)

Assuming ¢gi=h=...=h=¢, andé=6=...=6\= 0, the aggregate family demand also
follows an ARIMA(1,0,1) process with the following characteristics. the aggregate series can

be defined as

D, le,t_ 1-¢)+¢D,_, +& —68,,. (4-23)

where ¢, = Z s.tandVaf 8t (Z_l[a ] ZJ PG )

(-200+0°) o | _,
7« =Cov(D,,D ) = ¢ 0{ |k|
(4-24)
@’k—l K >1

The evaluation ol+p is begun by defining the variance of demand4-24). The

covariance between the aggregate demand and its forecast is:

CO\'(Dt F ) =CouF,, Z Qp (1_ Up )kil D, «) = apCovD,, Z (l_ A1p )kil Do) =
k=1 k=1

%o (COV( DDy + (1_ o )COV( D..D,)+ (l_ Xrp )2 Cov(D,,D,,)+ ) J (4-25)
Then by substitutingd¢24) into 8-13) the following is given:
Cov(D,,F,)=—2"1 426

1-¢+a¢

Finally, the variance of forecasts can be calculated as:
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Var(Ft ) =Var(aTD Foa+ (1_ C1p )Fl—l)
=0Uqp Zvar(thl) + (1_ 220 )2Var(FH) + 204, (1_ C1p )CO\(Dt—l’ Ft—l)'

(4-27)
By considering the fact that the process is stationary, it is cleavdRat) =var(F_,)
and co\p,,F,)=covVD,,,F_,) for all k and by substituting4¢24) and 8-14) into @-15) and

then by substituting? — @L[@Zh NS poo, ) the following is obtained:

Var(F,) = aTD(l_ 2¢0 +‘92) ZaTD(l_ aTD)(¢_9)(l_¢‘9)

2] - Jie 4 - 97) (+20)

Finally by considering, =Var(D,) and substituting3-14) and 8-16) into @-22), the

variance of forecast error for TD approach is obtained:

N 2] e (140 + 20— g1+ OF + $20(2 o) (4-29)
VTD - 2(2:i=l[o-i ]+ 2Z‘4i=1 Zj=i+l'0iiaio-l}: (z_aTD)(l_ ¢2X1_¢+ aTD¢)

4.1.3 Variance of forecast error at subaggregate level

In this sub-section, the variance of the forecast error consistent with thérg)tatad
the BU approach\gy) for the stationary ARIMA(1,0,1) process at the subaggregateikvel
calculated. It should be noted that the results regarding the non-stationary ARIMA(0,1,1)
compared at subaggregate level are theoretically intractable. However, in the simulation
study following the theoretical analysis various assumptions are relaxed and the results for the

ARIMA(0,1,1) process at both levels of comparison are presented.
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4.1.3.1Autoregressive moving average process order one, ARIMA(1,0,1)

In this part, the variance of forecast error of BU appraatckubaggregate level is

calculated, so ¥, is defined as:
N
Vay = Zvar(di,t - fi,t) (4-30)
i=1

Similar to 3-14) and 8-16), the variance of forecast and the covariance between the

subaggregate demand and its forecast is:

Cov(d,,, fi,t):l_;iﬁ . (4-31)

Var(fi t)_ Yo n 20, (1_0‘i )71 (4-32)

- 2-q, (2—05i)(1_¢| +0‘i¢|).

Now the variance of forecast error by considerjtrilyg:Var(di't )and @-31) and 4-32)

can be obtained as follows:

Qi Yio 20, (1_ Q; )7/i 1 20,714

Var(di,t - fi,t):7/i,o+2_0!i +(2_ai)(1_¢i +ai¢i)_l_¢i +ai¢i

(4-33)

Finally, by substituting 4-33) into @-30) and considering this assumption that
b= h=...=0\ , h=h=...=d anda= a=...=a the following is obtained:

(A1 )1+ 0% - 240)+ 261+ ¢)) | 2 _
VB“_( (2-a)i-g+ag)l-¢°) ]Z | s
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Now the variance of the forecast error of the TD approach is derived when the
comparison is undertaken at subaggregate level. The variance of forecast error for the TD

approachyqp is defines as follows:

Vg = iZNl:Var(di’t F )= i(\/ar( )+ p,2Var(F, )-2p,Covd, , F, )) (4-35)

i=1

The covariance between subaggregate iieansl aggregate forecast in pertost
- k-1

Covd,,,F,)=Cov d,,,> e, (1-arp) Dt_k} i=12,..N (4-36)
k=1

By substitutingD, _, :ZiN:ldi,t—k into @-36) and assuming thah=@=...=d=¢, and
6= 6=...=6=0, the value b Cold,,,F,) is derived through recursive substitutions. Recall
thatCO\(Ei’t_k Vi ik )= o’, CO\,(gi't_k vk )= P00, CO\(e;"i’t €tk )= 0, for all k>0

andCoMe,,, ;.. )=0, for all k>0

aTD(¢ 9)(1 4 .
CO\'(di,t’Ft) (1 ¢X1 ¢+05TD¢[ Zp“ j i=12...,N (4-37)

Now, by substituting3-2), (3-16) and 4-37) into #-35) the following is given:

-290+0%) v
Vio = l_¢2 iz=1:o-i " (z_aTD)(l_¢+aTD¢)(l_¢2)

where (4-38)
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V= [O‘TD((1+ p)1- 9)2)_ “TD2(¢ +90° - ZH)IZN: p'zj(z:il [O.i2]+ ZZiN:;lZ?:mpu G0 )

Il
JuN

~[200(2- e N9 - O)L- W)]i Ro [i P GiJ

2.  Theoretical Comparison

In this section, the conditions under which each approach outperforms the other one
are analytically identified. The ratio of the variance of forecast error corresponding to the TD
approach Vrp) to the variance of the forecast error associated with the BU appMaghs
calculated. A ratio that is lower than one, implies a benefit in favour of the TD approach.
Conversely, if the ratio is greater than one, then the BU approach performs better (and if the

ratio is equal to one, both strategies perform the same).

4.2.1 Comparison at aggregate level

In this sub-section, for each process under consideration the raig, @b Vgy is

derived. The comparison is undertaken at the aggregate level.
4.2.1.1Integrated moving average process order one ARIMA(0,1,1)

Propositionl. If all the subaggregate demand items follow an ARIMA(0,1,1) process

with identical moving average parametees g, =6, =...=¢,) and the optimal smoothing

constant value is used to forecast both the subaggregate and aggregate demand, then the

performance of the TD and BU approaches for forecasting aggregate demand is idémtical (
= Vgu).

Proof:

The effectiveness of the TD and th& Bpproaches can be compared by evaluating

the ratio of the corresponding variances of forecast error (i.e. by divigh@pand 4-16)):
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~1 (4-39)

4.2.1.2Autoregressive moving average process order one ARIMA(1,0,1)

The ratio of theVyp to Vgy when the subaggregate demand items follow an ARIMA(1,0,1)
process is obtained by dividing-21) to @-29) :

Vip _ (2-a)i- g+ ap)i+ 07 +ar,0- g1+ 6) +¢°6(2-ay, )
Voo (2—arp -+ arpd i+ 02 +ab—g(1+0) +$20(2—a))

(4-40)

This ratio is a function of the moving average paramet®), the autoregressive
parameter ¢), and the smoothing constante (and a;,). From @-21) and 4-29) it is
obvious that the optimal values ofand o, are equal. Hence, botlV,, andV;,canbe

minimized by having the equal value @fand o, .

Proposition 2 If the time series of the all sub-aggregate demand follows an
ARIMA(1,0,1) process whew, =¢, =---=¢,, and g, =6, =---=6,, , both the TD and the

BU strategies perform equally as long as the smoothing constants used for forecasting the

subaggregate demands and the aggregate demand are set optimal.

PROOF:. By substituting @ =ca;,) in (4-40), it is easy to demonstrate
thatV, /Vg, =1.

These findings are in agreement with the results reported by Widiarta et al. (2009)
which theoretically shows that there is no significant difference between the TBUlAnd
approaches on forecasting aggregate demand when all subaggregate items follow an MA(1)

process with identical process parameters.
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4.2.2 Comparison at subaggregate level

In this part, the variance of the forecast error provided by the BU and the TD
approaches are compared at the subaggregate level when the subaggregate demands follow an
ARIMA(1,0,1) processAs explained above the comparisatthe subaggregate level for the
ARIMA(0,1,1) is not traceable.

4.2.2.1Autoregressive moving average process order one ARIMA(1,0,1)

The ratio ofVip to Vgy comparing at the subaggregate level is given by dividing
(4-38) into @-34). It should be noted that it is difficult to analyse the parameters with many
subaggregatigems, therefore the following analysis is restricted to a family with two SKUs to

obtain the meaningful insights. In addition, it is assumed that o, , therefore the

following is given:

Vip _ (L-2¢0 +67)+ v,
Ve ( A1- g1+ 67 - 240 )+ a6(1+ ¢))J (4-41)
(2-a)1-¢+ag)

where

_ (1+ plz)l(aTD ((1+ ¢)(1_ ‘9)2)_ aTD2(¢ +¢0° - Ze)xplz + pg)_ (aTD(¢ - H)(l_ ¢‘9)(2 ~—Oq1p ))J
i (2 —Qp )(1_ P+ aTD¢)

THEOREM 4-1: If the time series of all subaggregate demand follows an
ARIMA(1,0,1) process whe®5< ¢ =¢, <land —1< 6, =6, <0, then the BU outperforms

the TD approachregardless of the cross-correlation p;,, the relative weight of each

subaggregate itep , and the smoothing constant values.

PROOF: Proof in Appendix Q.
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THEOREM 4-2: If the time series of all sub-aggregate demand follows an
ARIMA(1,0,1) process whem) -1<¢ =¢, <5 and-1< 6, =6, <1 andii) the smoothing
constants used for forecasting the subaggregate demands under the BU and TD approach are

set smallgr, o, <0.01), then the maximum difference between the BU and the TD to

forecast the subaggregate forecasts isA98<V1p/Veu<1.01.
PROOF: Proof in Appendix R.

COROLLARY 4.1 when the smoothing constants are set equal to 0.05, 0.15 and 0.3 in

Theorem 2 above, then the ratio\gh/Vey takes the values presented in Table.

Table 4-1: The ratio of Vip/Vgy for different control parameters andi<g¢ =¢,<5

—1<6,=6,<1
a:aTD:O.OS o= 1D =0.15 o= aTD =0.3
0.95<V1p/Veus'1.1 0.85<V1p/Veus'1.3 0.72<V1p/Veus'1.6

COROLLARY 4.2 If the time series of all sub-aggregate demand follows an
ARIMA(1,0,1) process when )05<¢ =¢, <1 and 0<6, =6, <1 ii) the smoothing
constants are set equal to 0.01, 0.05, 0.15 and 0.3 in Theorem 5 above, then the ratio of

V1p/Vpy takes the values presentedable 4-2.

Table 4-2: The ratio ofVrp/Vgy for different control parameters afib< ¢, = ¢, <1

,0<6,=6,<1

o= arp =0.01 o= arp =0.05 o= arp =0.15 o= orp =0.3

0.99<V1p/Vus1.99  0.95<V1p/Veys5.85 0.87<V1p/Veus14.81 0.77<V1p/Veus26.4

The results of Theorem 1 show that wh#nis negative ands takes high positive
values then the BU approach always provides more accurate forecasts than the TD one

regardless of the values of the smoothing constant, the correlation between subaggregate
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items, and the proportional weights. While, for the other process parameter combinations, the
superiority is a function of the control and the process parameters.

When the demand follows an ARIMA(1,0,1) process,sitdiscussed that for the
negative values ot and the positive values af, the autocorrelation is highly positive,
therefore when the autocorrelation is highly positive the BU outperform$DRQhapproach.

When the autocorrelation is positive, successive valuesasedositively correlated and the
process will tend to be smoother than the random series. When the aggregate forecasts are
disaggregate, the performance of the TD approach is deteriorated by the disaggregation
process. However, the BU is not affected by that. Therefore, in these cases the BUhapproac

outperforms thdD one.

3.  Simulation study

In this section, a simulation study is performed to evaluate the relative performance of
the TD over the BU approach under more realistic assumptions. In particular the following
scenario for both the ARIMA(1,0,1) and the ARIMA(0,1,1) processes are considered. A
simulation investigation is conducted to discuss the effectiveness of the BU and the TD
approaches compared at the subaggregate and the aggregate level for non-identical
(Gi=h=... Z0N, hi=dh=... Z¢d\) process parameters. In both approactiessearch procedurg

performed in the whole range ok#&<1 and -X¢<1.

4.3.1 Simulation design

The presentation of the results and the analysis of the parameters on the Vatio of
Veu becomes complex when many SKUs in the simulation experiments are considered.
Therefore, the simulation analysis is restricted to a family of two SKUs to obtain the
meaningful insights. This is in concordance with most of the earlier papers using simulation
approaches as they have also restricted the number of items to two (Dangerfield and Morris,
1992 Fliedner, 1999Widiarta et al., 2008, 2009). The parameter values for our simulation

experiment are presented in Table 1.
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Table 4-3: Parameters of the simulation experiment

) g y ’ N° N° Time
u, o a,a ] , }
' ' P ' ' : Replications Perbds
400 900 0.01: 0.99 -0.9:+0.9 -0.9:+40.9 -0.9: +0.9 100 1000

The subaggregate demands in each period are generated randomly subject to the

parameters described Table 4-3. The value ofs, is set quite smaller thap, to avoid the

generation of negative subaggregate valggperiments have also been conducted with other

values of, and s, but they are not reported here as they lead to the same insights.

To generate the demands in each petjatie error terms,, ands,, with a cross-

correlation coefficient ob,, are first generated randomly then the equatidnt) (and 8-7)

are used to generate the correlated subaggregate demands. The generated demand is initialized
at the value of the mean plus an error term. The simulation expeilsrEgigned and run in
Matlab 7.10.0. For each parameter combination described in Table 4 demand series of 1000

observations is generated and 100 replications are introduced.

The generated demand is split for each series at both the subaggregate and aggregate
level, into three parts. The first part (within sample) consists of 200 time periods and is used
in order to initialise the estimates. The second part containing 250 periods is used to
determine the optimal smoothing constant (i.e. the smoothing constant used in the estimation
procedure that minimises the mean square error - MSE). The search procedure to find the
smoothing constant that minimises the MSerformed in the whole range,{], with a step
increase equal 10.01.A grid search to minimise the is conducted, howevere don’t use a
continuous optimisation as this is not the main focus of our work and the sensitivitydo the
value is not that high. Note that for the BU approach, the smoothing constants are optimized
for each item individuallyFinally, in order ® evaluate the performance of the two forecasting
approaches, the value of the variance of the forecast error for the last 550 periods of the
simulation(out-of-sample)s calculatedlt should be noted that the initialization data of each
series have been used to calculate pheportion p; which is used to disaggregate the

aggregate forecast.
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The relative benefit of one forecasting approach over the other is measuvgd by
/Vgy. As previously discussed, a ratio lower than one implies that the TD approach

outperforms the BU one whereas a ratio greater than one implies the opposite.

4.3.2 Simulation results

In this sub-section, the results of simulation study are presented when the comparison

is undertaken at both subaggregat and aggregate level.
4.3.2.1Comparison at the Aggregate Level

First, the relative performance of the BU and TD approaches at the aggregate level is
analysed when the subaggregate process parameters are not necessarily Eenteah

experiment, the ratio of the variance of forecast error is calculated as

Var(Dt -k )/Var(Dt - Zizzl fi-‘)'

The simulation results show that when the process parameters are identical there is no
difference between the BU and the TD approach for both the ARIMA(1,0,1) and the
ARIMA(0,1,1) processes. Whereas, when the process parameters are not identical, which is

more realistic, the results are different.

Figure 4-3 presents the relative performance of the BU and the TD approaches at the
aggregate level forecasting when the subaggregate demand items follow an ARIMA(0,1,1)

process with different values of the moving average pararfietef), =6,).

It is seen that as the cross-correlation coefficient changes-@@toward+0.9 the
ratio of V1p/Vgy is being reduced. The ratio is higher than or equal to one, when the cross-
correlation is negative, when it egsiaero, and when it takes low positive values. However,

the ratio is smaller than one only if the craserelation is (highly) positive.

The detailed results show that when the moving average parantgtars] &, take
negative values (High positive autocorrelation), the performance of the BU and the TD

approaches is always identical regardless of the values of the cross-correlation.
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When the cross-correlation is positive the superiority of each approach depends on the
value and the sign of the moving average paramew@rsand &. The TD approach
outperforms the BU one only when the cross-correlation is (highly) positive and the moving
average parameters take high values and have opposite signs, i.e£githand >0 or
¢>0 and 6<0. Note that as the cross-correlatidacreases the superiority of the TD
approach decreases too. For less positive cross-correlation the Ntig\ef, becomes equal
or greater than one which means that BU is preferable. In these cases TD outperforms BU
with a forecast error variance reduction that can go up to 15% when the cross-correlation is
very high. By decreasing the cross-correlation to 0.5, the maximum benefit of the TD
approach decreases to 5% and it tends toward zero when the cross-correlation tends towards
zero as well. However, under a negative cross-correlation, the BU outperforni® the

approach.

When the @ and 6 values are positive, the ratio is almost equal to one for high
positive cross-correlation and greater than one for less positive and negative cross-correlation.
In the latter case the ratio Wfp / Vgy is increased a6, takes low values an& is high and

vice versa.

Figure 4-4 presents the effect of the BU and the TD approaches on the demand
forecasting in the aggregate level (top) when the subaggregate items follow an ARIMA(1,0,1)

process with different values of the moving average and the autoregressive pafaeeter
=6, G =dy).

The results show that as the cross-correlation coefficient moves@r@noward+0.9
the ratio ofVrp/Vpy is reduced as well. The ratio is always higher than or equal to one when
the cross-correlation is negative, when it equal zero, and when it takes low positive values.

Thus, for these cases the BU approach provides more accurate forecasts.

The ratio may become smaller than one only if the cross-correlation is highly positive.
In this case, the superiority is a function of the moving average and the autoregressive
parameters. Therefore, the TD approach may outperform the BU approach when the cross-

correlation is highly positive.
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Figure 4-3: Relative performance of the TD and the BU appreathforecasting aggregate

demand under different combinationséf & andp:, for an ARIMA(0,1,1) demand process.
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Figure 4-4 : Relative performance of the TD and the BU appreashforecasting aggregate

demand under different combinationséaf & andp:, for an ARIMA(1,0,1) process.
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The results show that when two subaggregate items take high positive autocorrelation,
the ratio is almost equal to one regardless of the values of the cross-correlation. For example,
when $,=0.9,6,=-0.8 and ¢,=-.8, =-0.3 ( case 1 in table 1) apg=0.4, ,=-0.1,and ¢,=0.9,
6=0.3, ( case 1 and 4 in table 1). However, when two subaggregate items take opposite
autocorrelation values, one with high positive and the other with negative autocorrelation, the
ratio may become smaller than one and consequently the TD outperforBid tygproach.

For instance wheg=0.4,6,=0.9 and ,=0.55, £,=0.15 ( case 4 and 5 in table e forecast
error variance reduction can go up to 9% when the cross-correlation is verylhgis also
true when¢=0.8,6,=-0.9 and #,=0.1, 6=0.6( case 4 and 1 in table IQr this case the

variance of the forecast error reduction may go up to 3%.

In both stationary and non-stationary cases, when both subaggregate items take high
positive autocorrelation, the BU and the TD approaches perform equally. One possible
explanation is form high positive autocorrelation values, the optimal value of the smoothing
constanis setat the highest value in the given range which is equal38for both TD and
BU approaches. When the smoothing constant for the BU and the TD approaches is equal and
the same procedure of forecasting is used, the BU and the TD approaches perfdym equal

When the cross-correlation coefficient is negative, the BU approach performs better.
Performance differences are further inflated when the autocorrelation values have opposite
signs in which case the variance reduction achieved by the BU approach can gjie @&s hi
400% for the stationary ARIMA(1,0,1) and 500% for the non-stationary ARIMA(O,1,1) for
highly negative cross-correlation. For negative cross-correlation, the pair of series moves in
the opposite direction (i.e. if one increases the other decreases), therefore the subaggregate
demand series have different patterns of evolution. A combination of different patterns of
variation and an opposite autocorrelation values léads large forecast error for the TD
approach and consequently large value¥+ef/ Vgy for high negative cross-correlation. In
these cases it is better to forecast subaggregate requirements separately and then aggregate

them to get the aggregate forecast.

When the two moving average parameters take opposite signs under both processes,
this means that one series has positive autocorrelation while the other has a low

autocorrelation (series with random fluctuations). In addition, when the cross-correlation is
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positive there is a tendency for the pair of series to move together in the same direction, so the
demand series have the same pattern. When using the TD, all subaggregate are summed up
series to get an aggregate one, so the fluctuations from one series may be cancejled out b
others resulting in a less random series that have a lower forecast error. Therefore TD
performs better that BU when the series have the same pattern associated with different

autocorrelation.

In summary, when the subaggregate items follow an ARIMA(0,1,1) process and the
goal is to forecast at the aggregate demand level, then the following results are achieved
the superiority of TD and BU approaches is affected by cross-correlation and autocorrelation,
i) if items have different patterns of fluctuation(negative cross-correlation), the ratio of
Vo/Vey is smaller than or close to one for lower autocorrelation values, therefore the BU
approach is preferredii) if the items follow the same patterns of fluctuation (high positive
cross-correlation) and they have different autocorrelation patterns, one has a very high
autocorrelation while the other has a lower autocorrelation values, the TD approach may
outperforms theBU on, iv) if the autocorrelation of all items is highly positive, the
performance of BU and TD is always identical, ajdvhen the autocorrelation for all items
is low, BU generally dominates TD, although for highly positive cross-correlation the

difference is very low.

The findings are somehow in agreement with some of the earlier studies in this area by
Barnea and Lakonishok (1980) and Fliedner (1999) (although we do note that our results are
not directly comparable to these studies as we analyse a non-stationary case). The analysis of
Barnea and Lakonishok (1980) based on empirical analysis showed that positive cross-
correlation contributes to the superiority of forecasts based on aggregate data (TD), which is

also the case in our study.

Fliedner (1999) used a simulation study to compare the performance of TD and BU in
forecasting aggregate series where the two subaggregate itemsdnlM(1) process. He
found thatTD dominatedBU regardless of the values of the cross-correlation coefficient.
They have not reported the valuesfpand &, used in their study, so our interpretation is that
this work considered only the opposing signsdpand & Should this be the case then these

findings are in agreement with ours.
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4.3.2.2Comparison at Subaggregate Level

In this sub-section the relative performance of the TD andBtbeapproaches in
forecasting subaggregate demascavaluated when the moving average parameters are not
necessarily identical. The simulation structure in terms of within and out-of-sample
arrangements is as discussed in the previous sub-section. UnB&r #pgproach, the 550 one
step-ahead forecasts are generated for each item individually using the optimal smoothing
constant. Under the TD approach, the sum of all subaggregate demand is calculated to obtain
the aggregate series, then the aggregate forecast is provided andtfisatyltiplied by the
proportional contributory weight of each subaggregate item to obtain the subaggregate
forecast. For each experiment, the ratio of the variance of forecast error is calculated as:

* var(d, -~ p*F)/Y7 var(d, - f,) -

Figure 4-5 shows the ratio of the variance of forecast error of the TD over the BU
approach at the subaggregate level for different valués, @ , ;12 when the subaggregate
items follow an ARIMA(0,1,1) process with non-identical moving average parameters
(61=6). The results show that when the subaggregate items follow an ARIMA(0,1,1) process,
the BU approach always outperforms the TD in forecasting the subaggregate items regardless

of the p;, and the process parameters.

In Figure 4-5it is shown that by moving from a cross-correlation of -0.9 toward +0.9
the ratio of Vip/Vey always remains greater than 1 regardless of the cross-correlation
coefficient and the moving average parameters. When the cross-correlation and the moving
average parametersg,, &, are highly positivei.e. 6,20.99, 6:20.99 and p,,=0.99 the ratio of

V+o/Vey becomes close to one.

Figure 4-5a shows also that the BU approach outperformsthe TD one by a maximum
of about 80% for highly negative cross-correlation. Additionally, the rate of superiority of BU

becomes very high whefy and & are not highly positive (sdg&gure 4-5b, c, d).
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Figure 4-5: Relative performance of TD and BU approaches in forecasting subaggregate

items under different values 6f ,&, ,p1.for an ARIMA(0,1,1) process.
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Figure 4-6 : Relative performance of TD and BU approaches in forecasting subaggregat

items under different values 61 62, p12 for an ARIMA(1,0,1) process.
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In Figure 4-6 the ratio of the variance of forecast error of the TD over the BU
approach is presented at the subaggregate level when the subaggregate items follow an
ARIMA(1,0,1) process with non-identical moving average and autoregressive parameters
(6126, and ¢ =¢,). The results show that the ratio \6fp/Vgy is greater than or very close to
one regardless of the values of the cross-correlation. When at least one of the subaggregate
items takes high positive autocorrelation (case 1 and 4 in Table 1) the ratio is greater than one
and consequently the BU approach outperforms the TD one. Additionally, by moving from
high negative to high positive cross-correlation, the ratio is generally reduced. However, when
none of the subaggregate items in the family take high positive autocorrelation, the difference

between the BU and the TD approaches is insignificant.

The superiority of the BU at the subaggregate level can be attributed to the potentially
high positive autocorrelation between demand periods. This makes it much more difficult to
apportion the resulting aggregate forecadt, to each item in the family based oreth
historical demand proportiop;. As a result, the performance of the TD approach is affected
adversely. The performance of the BU approach, however, is not affected as it fdrexasts

demand for each item individually.

By comparing the results presentedrigure 4-5 andFigure 4-6, it is seen that the
ratio of Vrp/Vgy for the non-stationary process is much bigger than those of the stationary
process. The difference of the ratio under the non-stationary ARIMA(0,1,1) and the stationary
ARIMA(1,0,1) process can be attributed to the nature of these processes. When the
subaggregate items follow an ARIMA(0,1,1) process, the autocorrelation is always highly
positive and it spans all lags(not only lag one) except for very high positive values of the
moving average parameters, however for an ARIMA(1,0,1) process the value of

autocorrelation is lower and not always positive.

The findings are in accordance with those previously reported in the academic
literature. Widiarta et al.(2007) argued that when the subaggregate time series follows an
AR(1) process and the value of the autocorrelation is high, there is a sharp worsening in the
relative performance of th€D approach. Gordon et al.(1997) and Dangerfield and Morris
(1992) used the empirical data from the M-competition database and indicated that the BU

dominated the TD approach when forecasting the subaggregate time series. Weatherford et
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al.(2001) showed that a purely subaggregate forecast (BU) strongly outperformed even the

best aggregate forecast (TD) at the subaggregate level.

These results generally confirm the findings althougimust be noted that (as we
mentioned in the previous sub-section) there is not a direct comparison between these studies
and ours due to the consideration of a non-stationary ARIMA(O,1,1) time series process.
Contrasting our results with those reported by Widiarta et al.(20009) on stationary
MA(1) and AR(1) processes, it is revealed that the rates of superiority of the BU approach
when the process is non-stationary is much higher than the stationary case. When the demand
follows a stationary AR(1) process, the maximum rativ@fVsy is around 6 and is obtained
with series with high positive autocorrelation, while this ratio for the IMA(1,1) process is
higher than 50.

4.  Empirical analysis

In this section, the empirical validity of the results are assess. First, the details of the
empirical data available for the purposes of our investigation along with the experimental
structure employed in our work are provided. Then, the results of empirical in investigation is

presented.

4.4.1 Empirical dataset and experiment details

The demand dataset available for the purposes of this research consists of 103 weekly
sales observations (i.e. it spans a period of two years) for 1,798 SKUs from a European
grocery store. The Forecast package in R is used to identify the underlying ARIMA demand
process for each series and estimate the relevant paramatefcutid that more than 23% of
the series (424 series) may be represented by the ARIMA(0,1,1) and morfehanthe
series (91 series) represented by ARIMA(1,0J1should be noted that for more than 80% of
SKUs (73 SKU) the autocorrelation is relatively high positive. As such, the datandb
cover the entire theoretically feasible range of the parameters. the charactertbgcSIOUs
relevant to this study are summarized by indicating the estimated parameters for the
ARIMA(0,1,1) and ARIMA(1,0,1) process in Tabded and4-5, respectively.
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Table 4-4: The empirical data set for ARIMA(0,1,1)

Group 0 intervals Average of) No. of SKUs

1 [0.1,0.3] 0.2097 4

2 [0.3,0.4] 0.3652 8

3 [0.4,0.5] 0.4656 17

4 [0.5,0.6] 0.5591 32

5 [0.6,0.7] 0.6561 67

6 [0.7,0.8] 0.7503 108

7 [0.8,0.9] 0.8467 141

8 [0.9,1] 0.9534 47
Total number of SKUs: 424

Table 4-5: The empirical data set for ARIMA(1,0,1)

Average

fintervals  gintervals Average off Average ofp lag1Autocorrelation No. of SKUs
[0.1,0.5] [0.6,1] 0.356 0.771 0.5211 23
[0.5,0.9] [0.6,1] 0.605 0.838 0.3260 39
(gg[z [0.1,0.5] .0.328 0.347 0.5631 29
Total number of SKUs: 91

To facilitate a clear presentation, the estimated parameters are grouped in intervals and
the corresponding number of SKUs is given for each such interval. The avensjae per
interval is also presented for the process. This categorisation allows us to compare the
empirical results with the theoretical findings. It should be reethtkat thed parameter
values are all positive, except for two SKUs, and most of them take highly positive values. As
such, the data do not cover the entire theoretically feasible range of the parameters. The data
seriess divided into three parts. The first part (within sample) consists of 20 time periods and
is used in order to initialize thBESestimates. The second part consists of 27 time periods
which are used to determine the optimal smoothing constant (optimisation part); the values of
the smoothing constant are varied from zero to one with a step increase of 0.01. The
remaining 56 time periods are used to evaluate the performance of each approach (out-of-
sample). In TD approach the aggregate forecast is disaggregate by using the proportion of

each item in the family, which is calculated based on the historical demand in the initial part.
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4.4.2 Empirical results

The empirical results presentedTiable 4-6 are shown for the santintervals. Itcan
be seen that when the smoothing constant values are optimised for both the BU and the TD
approacks the variance ratio is greater than one regardless of whether the comparisons are
undertaken at the aggregate or subaggregate level. This means that the BU approach provides
more accurate both aggregate and subaggregate forecasts than the TD when demand follows
an ARIMA(0,1,1) process and SES is the forecasting method. However, when the smoothing
constants used for the BU and the TD approaches are equal, the k&dvgf, equals one in

the case of aggregate demand forecasting.

Table 4-6: The empirical ratio o¥/+p/Vgy for an ARIMA(0,1,1) process

Comparison Level

Group 0 intervals Aggregate ittjebaggreg
1 [0.1,0.3] 1.0032 2.0173
2 [0.3,0.4] 1.0536 1.9984
3 [0.4,0.5] 1.0097 1.8994
4 [0.5,0.6] 1.0006 1.5554
5 [0.6,0.7] 1.0356 1.3719
6 [0.7,0.8] 1.0070 1.1311
7 [0.8,0.9] 1.0158 1.0284
8 [0.9,1] 1.0403 1.0660
Average 1.0232 1.5085

As discussed above the moving average parameter most SKUs considered in this
research, is highly positive. More than 85% of the SKUs have a moving average parameter
greater than 0.6 (see Tabled). In addition, the subaggregate cross-correlation coefficients

between SKUs vary between -0.5 and +1; however most of them are positive.

The average of variance of forecast error reduction may be as high as 2% when the
comparison is performed at the aggregate level, while 50% variance error reduction may be
achieved for the comparison at the subaggregate level. By referring to the detailed results of
the simulation study we see that for this range of moving average parameter vabgds, 0<

the BU approach performs better than the TD at both comparison levels.

In Table4-6 it is seen that when comparisons are undertaken at the aggregate level the

ratio is close to one for al;; this is confirmed by the simulation results where the moving
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average parameters are positive and the cross-correlation is not highly negative (please refer
to sub-sectio4.3.2.1).

Table 4-7: The empirical ratio ol+p/Vey by considering the aggregation between

different groups (intervals a? values)

Comparison Group 1,
Level 2.3 4 5 6
Aggregate 3 1. 1. 1. 1.
2133 1563 0728 0329
Subaggregate 8 1. 1. 1. 1.
4389 3201 2653 1175

With regards to the subaggregate level comparisons, the results show that the ratio is
greater than one and is increasing by moving from higher valugsatard lower values. In
addition for highly positive values of and highly positive cross-correlation the ratio
becomes close to one. Tiable 4-6 the results are presented assuming that SKUs fall within a
particular interval of¢ values. In Table 4, the aggregation of items across different possible
(ranges of) values is considered and the impact of the parameters on the superiority of each

approach is evaluated.

To do so a category containing groups 1, 2 and 3 that includes 29 SKUs is created.
This is regarded as a category with the lowest valu&s. @y moving from this category to
groups 4, 5 and 6 the value éfincreases. These groups with group 8 that represent the
highest value of) are aggregate. The ratio \6fp/Vsy is presented iffable 4-7. The results
indicate that when the moving average parameters are different (Group 1,2,3 with 8) then the
ratio is high, additionally as th@ values increase (tending towards the values covered by
group 8) the ratio decreases. This implies that when the groups of SKUs with low add high
values are aggregate, then there is a greater benefit of using the BU approach in terms of
accuracy. This is exactly whas observed in the simulation results for 2 SKUs (one

associated with a small and one with a hlalue These empirical results generally confirm



B.Rostami-Tabar, 2013, Chapter 4 167

the findings of the theoretical and the simulation study when the subaggregate items follow an
ARIMA(0,1,1) process.

Table 4-8: The empirical results for ARIMA(1,0,1)

Comparison Level

¢ intervals gintervals Average of Average ofp Subaggregate leve Aggregate level

[0.1,0.5] [0.6,1] 0.356 0.771 1.23 1.031
[0.5,0.9] [0.6,1] 0.605 0.838 1.10 1.008
ég[z [0.1,0.5] .0.328 0.347 1.17 102

Average: 1.13 1.01

The empirical results for the ARIMA(1,0,1) process are presentédbte 4-8. It is
shown that when the smoothing constant values are optimised for both the BU and the TD
approacks the variance ratio is greater than one regardless of whether the comp&rison
undertaken at the aggregate or subaggregate level. In addition, in the aggregate demand
forecasting, the ratio o¥rp/Vgy is close to one. it is explained above, for the moving
average and autoregressive parameters values presented irB-balthe autocorrelation is
positive. For positive autocorrelation the difference between BU and TD approaches
compared at subaggregate level is insignificant. These results generally confirm the analytical
and the simulation results presented in Sub-sextR.14.2.2 and Sectior8 for the
ARIMA(1,0,1) process.

5. Conclusion

In this chapter, the effectiveness of the bottom-up and top-down approaches is
analytically evaluatedo forecast the aggregate and the subaggregate demand when the
subaggregate series follow either a first order integrated moving average ARIMA(0,1In1) or a
auroregressive moving average process order one, ARIMA(1,0,1). Forecasissymed to
be relying upon a Single Exponential Smoothing (SES) procedure and the analytical result
were complemented by a simulation experiment at both the aggregate and subaggregate level
as well as experimentation with an empirical dataset from a European superstore. Some

empirical pieces of work discussed in section 2 confirm such a statement and provide support



B.Rostami-Tabar, 2013, Chapter 4 168

for the frequency with which ARIMA(1,0,1) and/or ARIMA(0,1,1) processes are encountered

in real world applications. In addition, SES is a most commonly employed forecasting
procedure in industry and its application implies a non-stationary behaviour (SES is optimal
for an ARIMA(0,1,1) process). In summary, the problem setting considered is a very realistic
one. Analytical, simulation and empirical developments are based on the consideration of the
variance of forecast error for TD and BU approaches and comparisons are undertaken at both
subaggregate and aggregate level. The conditions under which one approach outperforms the

other are identified.

It is found that when the subaggregate items follow an ARIMA(0,1,1) process, then
BU outperforms TD to provide the subaggregate forecasts. However, to forecast the aggregate
demand, the superiority of BU and TD approaches depends on the autocorrelation and cross-
correlation values. For the less positive and negative cross-correlation values, BU performs
better that or equally to TD. Additionally, when the cross-correlation takes high positive
values, TD may outperform BU. TD works better if the cross-correlation is highly positive
associated with combination of high autocorrelation vs. low autocorrelation subaggregate
items. In addition, it is shown that for all identical moving average process parameter the
performance of BU and TD is equal in forecasting aggregate demand. This is true as well
whenthe smoothing constant used for all the subaggregate items and the aggregate level is set

to be identical o= arp).

It is shown that, when all subaggregate items follow an ARIMA(1,0,1) process with
identical moving averagé and autoregressivgparameters, then the BU and TD approaches
performs equally to forecast aggregate demand. However, when the process parameters are
not identical, the results are different and depend on the autocorrelation and cross-correlation
values. The simulation results show that for negative cross-correlation, BU approach provides
more accurate results than TD. However, by increasing the cross-correlation values, the
performance of BU decreases and those of TD increases. TD approach may proede mor
accurate forecasts that BU for high positive cross-correlation. TD is always preferable for

high positive cross-correlation associated with high vs. low autocorrelation values.

When the comparison is undertaken at subaggregate level, if there is at least one

subaggregate item in the family with high positive autocorrelation, then BU outperforms TD.
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However, when thre is no subaggregate item in the family with high positive autocorrelation,

the difference between BU and TD is insignificant.

The results of comparison at subaggregate and aggregate level for ARIMA(21,0,1) and
ARIMA(0,1,1) processes are slightly different. This could be attributed to the nature of the
subaggregate process. For an ARIMA(O,1,1) process, the autocorrelation is always positive,
moreover for most moving average parameters it is highly positive. However, for an
ARIMA(1,0,1) process, the autocorrelation spans between -1 and +1, additionally it is highly

positive only for a small range of process parameters.
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Chapter 5 Conclusions and Future Research

In this chapter, the maicontributions and conclusiomd this PhD thesis are given in a
concise form. Additionally, the limitations of the work are identified and further research

avenues are suggested.

This chapter is divided into four sections. First, the main contributions from this PhD
thesis are presented. Second, the main conclusions resulted for each aggregation approach
considered are summarized. Third, the managerial insights arising from this research are
discussed. Finally, the limitations and some areas of future research are considered.

The overall goal of this research project is to analyse the impact of aggregation on
demand forecasting. In other words, this research discusses whether it is appropriate to use
disaggregate data to generate a forecast or whether one should aggregate data first and then
provide a forecast.

In order to address the above issues and meet the objectives discussed in chapter 1, the

following questions have been answered:

1. Under which conditions are the forecasts resulted from the temporally aggregate data
preferred over those resulted from the disaggregate data?

2. Is there any optimal aggregation level for which the aggregation approach leads to the
minimum variance of the forecast error?

3. Under which conditions does the BU outperforms the TD and vice versa?

4. What is the impact of the control and the process parameters on the superiority of each

approach in both temporal and cross-sectional aggregation?

In this PhD research, all of the above questions have been answered and the

contributions of this thesis are summarized in the following section.
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1.

Contributions of the Thesis

5.1.1 Temporal aggregation

The contributions of this PhD research concerning temporal aggregation are as

follows:

The superiority conditions of the aggregation and the non-aggregation approaches are
identified. The cut-off point values are determined for given values of the aggregation

level and the smoothing constant associated with the original demand series. This
results in some theoretical rules showing the performance of each approach at the

disaggregate and aggregate level of comparison.

The performance of the aggregation approach is generally found to improve as the
aggregation level increases. The rate of improvement though, is lower for the
ARIMA(1,0,1) and the ARIMA(1,0,0) processes compared to the ARIMA(0,0,1)
process. In all processes, the optimal aggregation level is the highest one in any given
aggregation level range.

The performance of the aggregation approach improves as the smoothing constant
value employed at the aggregate series reduces. Our analytical results shewhihat a
level of aggregation increases, the auto-correlation of the series reduces necessitating

the employment of low smoothing constant values.

In general, it is found that for high levels of positive autocorrelation in the original

series, the aggregation approach may be outperformed by the non-aggregation one:

o when comparing at the disaggregate level and where the autocorrelation is
extremely positive, (i.e. high positive valuesgah the ARIMA(1,0,0) process
or high negative values éfand high positive values gfin the ARIMA(1,0,1)
process), no level of aggregation improves the forecast accuracy.
Consequently, the non-aggregation approach always provides more accurate

forecasts. This is an intuitive finding since at any time period the most recent
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demand information is ‘precious’. In such a case the disaggregate approach

works better as it fully exploits such recent information.

o However, when comparison is undertaken at the aggregate level, even for
extreme positive values of the autocorrelation, the aggregation approach may
outperform the non-aggregation one depending on the aggregation level. For
lower values of the aggregation level, the non-aggregation approach works
better. Nevertheless, by increasing the aggregation level, the aggregation
approach outperforms the non-aggregation one. This is because the comparison
is undertaken at the aggregate level where the cumulativiep ahead
forecast is required. As the aggregation level and consequently the forecast
horizon increases, the forecast accuracy resulting from the non-aggregation
approach deteriorates and yields to a superiority in favour of the aggregation

approach.

For low positive or negative autocorrelation values, the aggregation approach is

preferred regardless of the comparison level. When the autocorrelation is negative or
less positive then the recent demand information is not that crucial, and then a more
long term view on demand is preferred. This can be achieved as discussed above by

selecting high aggregation levels and the low smoothing constants.

Following from the above discussion, our analysis suggests that there are shades of
aggregation (at one extreme no data aggregation) and shades of responsiveness of the
forecast parameterst(, 4). Our findings suggest that the dominant solutions are either
pure white (disaggregate data and responsive parameters) or pure black (aggregate
data and stable forecasting algorithms with |@wThis is, up to a certain extent, an
expected outcome given the hypothesized stationarity but: i) it is not obvious and to
the best of our knowledge has never been shown before; ii) it sheds light to the general
trade-off between stable forecast parameters (low smoothing constant values) that
filter noise rather effectively but fail to react to changes in demand quickly and
responsive forecast parameters (relatively higher smoothing constant values) that

however are noise sensitive.
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5.1.2 Cross sectional aggregation

The main contributions regarding cross-sectional aggregation can be summarized as

follows:

e When the process parameters for all subaggregate items are identical, there is no
significant difference between TD and BU approaches in forecasting the aggregate
level as long as the optimal smoothing constant is used for both approaches.
Moreover, the TD and BU approaches perform equally when the smoothing constants

used for all the subaggregate items and the aggregate demand are set identical.

¢ When the subaggregate items are highly auto-correlated, the BU and TD approaches

perform equally regardless of the cross-correlation values.

e TD performs better than BU in providing aggregate forecasts when the cross-
correlations between subaggregate items are (highly), the autocorrelation of one item
is positive whereas the other one is negative.

e BU may outperform TD when considering aggregate forecasts when the subaggregate
items follow different patterns of fluctuation (negative cross-correlation). The TD
appears not to be very accurate when the subaggregate items consist of different

patterns.

e BU outperforms TD in providing subaggregate forecasts, when the autocorrelation of
at least one item in the family is positive and the smoothing constant is set to its
optimal value for both approaches, regardless of the cross-correlation, the
disaggregation weights, and the values of the process parameters. The degree of
superiority of the BU approach for the non-stationary case is much higher compared to

the stationary one when comparing at subaggregate level.

e Itis found that for the negative or the less positive autocorrelation, both BU and TD
approaches perform almost equally in forecasting subaggregate demand when the

optimal smoothing constants are used.

e The performance of BU is generally improved as the cross-correlation decreases,
moving from positive toward negative values. Whereas, the performance of TD

deteriorates as the cross-correlation decreases. For highly negative cross-correlation
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values BU is always preferred. This is generally true for the comparison at the

aggregate and the subaggregate levels.

The benefits achieved by BU and TD approaches for the non-stationary demand
process is higher than those associated with the stationary processes in terms of the

forecast accu racy.

Managerial implications

5.2.1 Temporal aggregation

Our discussions with practitioners have revealed a misconception that temporal

aggregation reduces variability, something that is clearly not the case. Although it is true that

the non-overlapping temporal aggregation approach reduces the coefficient of variation

leading to lower uncertainty. Practitioners have also expressed concerns with regards to the

intuitively appealing loss of information associated with temporal aggregation. However, this

concern is conditioned to short demand histories. Should long demand series be available the

loss of information resulting from aggregation is outweighed by the benefits of uncertainty

reduction.

When applying temporal aggregation, practitioners should always opt for the highest
possible aggregation level. However, it is important to note that consideration of high
aggregation levels is subject to data availability. Although, this progressively becomes
less of an issue in modern business settings. Clearly, aggregation may not constitute a
viable option when short demand histories are available. Tremendous recent
developments in terms of computing storage capacity facilitate the accumulation of
very lengthy series. Although, we have come across situations/companies where only
a few years’ data is stored. In such cases aggregation may not be further considered.

Long historical data series do not only allow for the more accurate estimation of the
series’ components but also permit the application of temporal aggregation

approachs.
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e The performance of aggregation improves as the smoothing constant value employed
at the aggregate series reduces. This is an important finding from a practitioner’s
perspective since managers may set such values conveniently low to maximize the
benefits derived from the aggregation approach. The smoothing constant value after
aggregation should be generally set smaller than the smoothing constant before
aggregation and specific rules and cut-off points have been offered for making such

decisions.

e For high levels of positive autocorrelation in the original series, the non-aggregation
approach outperforms the aggregation one in disaggregate level forecasting. This is an
intuitive finding since at any time the most recent demand information is so precious
in that case that the disaggregate approach works better as it fully exploits such recent
information. However, on the contrary, for the low positive or negative autocorrelation
when the recent demand information is not that crucial then a more long term view on
demand is preferable, which can be obtained as discussed above by selecting high
aggregation levels and low smoothing constants. This is also an important empirical
insight since managers may know what to expect (in terms of any potential gains)

based on the autocorrelation levels present in their series.

e When a long range forecast is required, the forecaster should apply the aggregation
approach to provide the forecast. This is because a more long term view on demand is
preferable and the aggregation approach utilizes better this information. As a general
rule, the farther into the future we look, the more clouded our vision becomes and the

non-aggregation approach will be less accurate than aggregation one.

5.2.2 Cross sectional aggregation

In practice, there are many series that are hierarchically organized and can be
aggregated at several different levels based on products, geography or some other features.
TD and BU forecasting approaches are extremely useful towards improving the accuracy of
forecasts on different levels. For instance, in S&OP (Sales and Operations Planning) process,
each department requires different levels of demand forecasts that can be achieved by

applying TD and BU approaches.
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When the practitioners require different hierarchical level of forecasts, choosing
between BU or TD approaches depends on the autocorrelation, the cross-correlation and the

comparison level.

e When the practitioners require demand forecasts at the SKU level, the autocorrelation
values should be considered. If there is at least one series in the family with high
positive autocorrelation then it would always be preferable to use the BU approach. In
addition, the BU approach performs better when the series are associated with

different patterns of fluctuation (negative cross-correlation).

e However, when the autocorrelation is less positive or negative, there is no difference

between using BU and TD.

When the aggregate demand forecast is required, the values of cross-correlation and

autocorrelation should be calculated.

¢ If the subaggregate items follow the same patterns of fluctuation (high positive cross-
correlation) associated with different autocorrelation values (high vs. low), then TD
would be applied.

e However, when the individual items are associated with different patterns of evolution
BU is preferable. Additionally, if the autocorrelation values are negative for all

subaggregate items, then the BU approach should be used.

e If the autocorrelation is positive for all subaggregate items, then both BU and TD
perform equally. In addition, if one uses the same value of smoothing constants for

both BU and TD, then both approaches perform equally as well.

3. Limitations and future research

In this section, suggestions for future research are discussed from theoretical, simulation and
empirical perspectives. Throughout this research some assumptions are considered that can be

relaxed in future studies.
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In Chapter 3, the effect of temporal aggregation on demand forecasting was discussed.
In this research the case of non-overlapping temporal aggregation is considered when the
disaggregate data follow a stationary demand processes and when the Single Exponential
Smoothing forecasting method is used. Given the current under-consideration of temporal
aggregation in inventory forecasting software solutions and given its value as a promising
uncertainty reduction time series transformation approach that this PhD has revealed, research

into any of the following areas would appear to be merited:

e Expansion of the analytical evaluation discussed in this work on higher order
stationary processes and more importantly on non-stationary processes is a very

important issue both from an academic and practitioner perspective.

e In this study, the Autoregressive Moving Average, ARMA type processes were
assumed for the demand processes. This is a relevant assumption for fast moving
items. The analytical and empirical consideration of Integer ARMA (INARMA)
processes offers a great opportunity for advancements in the area of aggregation. Such
processes bear a considerable relevance to intermittent demands where the benefits of

aggregation may be even higher due to the reduction of zero observations.

e In this work, the effect of non-overlapping temporal aggregation on demand
forecasting is analysed. Another important extension can be the consideration of the

overlapping temporal aggregation.

¢ In this research, Single Exponential Smoothing is applied as a forecasting method; one
natural extension is the consideration of other popular forecasting methods.

e This study is focused on forecasting and not inventory control. The extension of the
work described in this research to cover inventory/implication metrics would allow a

linkage between forecasting and stock control.

e Research on more extensive datasets (as well as analysis of empirical forecasting
performance on measures other than the MSE) should allow a better understanding of

the difficulties and benefits associated with aggregation.
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In this research, the effectiveness of BU and TD approaches is evaluated to forecast
the subaggregate and aggregate level. The case of stationary and non-stationary demand
processes in conjunction with the SES forecast method is considered. Naturally, there are
many other avenues for further research and the following possibilities should be very
important in terms of advancing the current state of knowledge in the area of cross-sectional

aggregation.

¢ In this research demand is assumed to be structured based on ARIMA type processes.
The evaluation of the BU and TD approaches when the subaggregate items follow an

Integer ARMA (INARMA) processes is an interesting subject for future work.

e The interface between (and the potential of combining) temporal and cross-sectional
aggregation has received minimal attention both in academia and industry and is an

issue that we will explore in the next steps of our research.

e Expansion of the work discussed in this research for other popular forecasting
methods such as optimal forecast method, trend exponential smoothing and damped

trend exponential smoothing models is an important issue.

e Extending the analysis in this research to considéevels hierarchical structures
would be an interesting development.

Finally, consideration of more extensive empirical datasets that cover the whole range of the
process parameters should allow a better understanding of the benefits of each approach.
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Appendices

Appendix A: The relationship of autocovariance between nonaggregate and

aggregate demand

It has been shown that the autocovariance function on nonaggregate and aggregate

series are related as follows:

vy =1+ B+B 4+ B™ F yma (A-1)
This form can btransformed to a matrix form as follow:
7o | Y ()
71 Y (“(m-11)
=A (A-2)
7o
7] | Yk |

where



B.Rostami-Tabar, 2013, Appendices 187

C 0, |
0, C
C
A=
C
C

| Ok C)

and

0,: 1xn vector of zeros

C: 1x(2(m-1)+1) vector of C; whichisthecoifficient of B' inthe
polynomiall+ B +---B™*)°

i [ Yi~tm-1) 7
Y1 Yi-(m-1+1)
. ¥i-im-10+2) . .
=A : Because of this fact that , =y, ¥ (& = ¥y for all k, in
Yo
_‘}T’k_ -rl:mk+':m—1}}-

the matrix A in (A-2), the firstn-1 column corresponding tg_, , y[—(m—1)],....., ¥[-1]

can be deleted by adding them to column corresponding[#o— 1], ....¥[1], ..., 7,

respectively. Therefore, the following is given:

Yo
71

| 7 (mk+(m-1)) |

(A-3)

WhereA, Ay is a modified matripd, after deletion and adding required columns.(refer

to Wei (2006)). different values of the aggregation lewes used to determine the general

relationships between the autocovariance of non-aggregation and aggregation approach for
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the demand process under consideration in this study including : ARIMA(1,0,1),
ARIMA(0,0,1) and ARIMA(1,0,0). The calculation is begun by substitutrg.

By substitutingn=3 into (A-1), the following is given:

v, =(+B+B2)f yy., =(1+ 2B+ 382 + 2B + B* ., (A-4)

Now by considering (A-Rfor the ARIMA(1,0,1) process and substitutimg3 in that
(A-5) is obtained:

' _7/—2—
7o V4
YR (A-5)
Vo .
74
| 711 |
Where
1 23 21 000O0O0O0O0O0O0
A_00012321000000
"l10 0000012321000
00O 0OO0OOOOOO1I 23 21

Then the matriXA,, can be calculated by adding and removing corresponding column:

o O O W
o O+ b
S O NN
o O w o
SO N O
oSO N - O
o w O O
= N O O
N B O O
w O O O
N O O O
=, O O O

Therefore, the following is given:
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#w] 34200000000 0]
vi|lo12321000000" -
72/ /000012321000 (A-6)
7 1000000012321
1711
By substituting 8-2) into(A-6) , (A-7) is obtained:
) ¥im
Yo Yoy Yo =3Yo +4y1+2y,
=4 yi=7.(1+ 2+ 397 + 2¢° + 4*) (A-7)
Yo . vy =70 + 26 +39° +20° +¢7)
'}'rl' ’
~“3' 75 =7(0° + 267 +36° + 24° + 4*°)
. TI:D}
Yo 342000000000 ¥iy
71| _ (012321000000 | :
Vs 000012321000
¥ 000000012321 .
3
Fii1)
By substitutingn=4 into (A-1) the following is given:
r_ 2 3)? _ 2 3 42 )
7. =0+B+B°+B°) y,.,=01+2B+3B*+2B> + B") y,..5 (A-8)

189

Now by considering (A-2) for the ARIMA(1,0,1) process and substitutirg in that

(A-9) is obtained:
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(A-9)

1 2343210000O0O0O0O0O0O0O0O0O0O0O00O0
00001234321000UO0O0O0O0O0O0O0O0O0

0O000O0OO0OOOOOOOOO1I2343210000
0O000O0OO0OOODOOOOOOOOOOI234321
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Where

A=l0 0 00O 0O0O00123432100000O0O00

Then calculate the matriy is calculated as follwos:

46 4200000O0O0O0O0O0O0O0O0O0O00O
012343210000O0O0O0O0O0O0O0O
0000O0123432100000O0©00O0
0O000O0O0OOO0OOO123432100©00
0O000O0OO0OOOOOOOOOOI 234321

A,

'T(—:i}'

.};I:—z}

.}'rl:—l:l

L¥i19) -

Yo

T1:|

=A| Yo

-
r

¥a

¥a

So by substitutind\, into (A-9) , the following is obtained :
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_}/(')_ (4 6 42 0000000O0O0O0O0O0O0O0GO0 0f7
71 012343210000000000O0OQO0|"N
y;=0000012343210000000072 (A-10)
73 0000000001 2343210000
72 |0 0O0OOO0O0DO0DO0DO0OO0OO0OOO1234321 y
L “L/19
by substituting 3-2) into (A-10), the following equations are obtained:
7/(’)=47o+671+4¢71+2¢271
"=y (1+ 20 + 3p% + 49> + 3p* + 29° + ¢°
71 =1L+ 20+ 3¢ + 49° + 39" +24° + §°) AL

75 =1 (0" +20° +39° + 497 +3¢° + 24° + ¢
7, :71(¢12+2¢13+3¢14+4¢1s+3¢16+2¢17+¢18)

Yo ¥
121 ¥
2| =4 s
Vs

_.}}4 T'( 19

}Eﬂ r4642000 0 0000000000007 ¥(o
¥1 012343210000000000000|( ¥c1y

¥2 | =(0000012 3 432100000000
¥ 0000000 0 012343210000

7 L0000 0 0000012343211 W 1s)

By following the same procedure, the relationship between the autocovariance

function of non-aggregation and aggregation process wisn

7c’):57/0+871+6¢71+4¢271+2¢371

7i=72(L+ 20+ 397 + 49° + 54" + 49° + 39° + 247 + §°)

— ¢5+2¢6+3¢7+4¢8+5¢9+4¢10+3¢11+2¢12+¢13)

74 :]/1(¢10+2¢11+3¢12+4¢13+5¢14+4¢15+3¢16+2¢l7+¢18)

. :7/1(¢15+2¢16+3¢17+4¢18+5¢19+4¢20+3¢21+2¢22+¢23)
yL :}/1(¢20+2¢21+3¢22+4¢23+5¢24+4¢25+3¢26+2¢27+¢28)

(A-12)
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Yol [ S5y + 8y +6y; +4y; + 2y,
Y1 i T2y T3y 4y, +5y; 4y, + 3y T2y 15
¥z Yo T 2¥7 + 3¥s T 4¥g + 3V T #ag T 3V T 2V T Vg

= IBy continuing the
¥3 Y11 T 2% + 313 T4y T 0¥ T e T 31y T2 T s y g

Vs Yie T 217 + 3 +Hg + 52y + 421 +3¥a2 + 2¥53 +¥as
Lz - LYoy + 205 +3Y0n + 45s + 5¥os + o +3¥57 + 205 + ¥os-

calculations, the general forms can be represented as follows:

yo =my, +7,(2m=1)+ 24(m—2)+ 2(m—3)? + -+ 26™)

=My, +71(m lz(m_kwk_lj (A-13)
71’=71(1+ 2¢+3¢2 +_.‘+m¢m +(m_1)¢m+1+“_+2¢2m—2 +¢2m—1)

N A-14

zyl(zk¢k—l+2(k_l 2m—kj ( )

And finally we have for k>1 we have:
Ve =7a(@™Y 4 2p06 I L gkt (M=) + g4 4 g6U2) (A1)

Now by considering3-22) the following is given:

Lty (r-16)
V2 V2
From (A-15) the following ratio can be obtained:
Lo L 20 Mg e g7
75 _ e 2p e mp sl A1)

7o Tt 2t mpt s 772

Now by comparing (A-1pwith (A-17) the relationship between the autoregressive

parameter before and after aggregation is given:
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# =g (A-18)

When the demand process follows an ARIMA(0,0,1) process, the relationship between
the autocovariance function of aggregation and non-aggregation demand can be obtained as

follows:

{76 :m70+2(m_1)71 - (A-19)

Yi=7

By following the same procedure the relationship between the autocovariance function
of the aggregation and the non-aggregation demand of an ARIMA(0,0,1) process can be

obtained as following:

76 = yo(m+ m2_12(m— k)¢k] : (A-20)
k=1

V1= 70£Zm: kg + EW”“] , (A-21)

$=9", (A-22)

and for allk > 1, we have:

yh = y0(¢(k’1)””1 +20% ™2 L mg "+ (M=1)g ™ 4L+ ¢("*1)””) . (A-23)
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Appendix B: Covariance between the disaggregate demand and aggregate

forecast for ARIMA(1,0,1) process

The covariance between the disaggregate demand and the forecast of aggregate

demand can be calculated as follows:

Codd,, F; )=Coud,, 3 B(1- ) *D;.,) = ACoW(d,, Dy ;) +

S~ p)Coud,,D; )+ BA- BFCoud,,D; ;) +...  (B-1)
By substituting 8-10) into (B-1) we have:

CoMd,,F; )= pCov(d,,d, , +d, , +...+d,_,
+ p@1-p)Covud,,d, ,, ,+d, o +...+d, )
+ B@- )Y Coud,,d, 51+, oo+t Dy gn) +.n
=L+ 7o+t )+ BA= BN s+ Voo + oot Vo) (B-2)
+ ,B(l— ﬂ)z(y2m+1 + Vomup Tt 73m)+ .-

By substituting 8-2) into (B-2) and some simplifications, we have

Cod,, Fr )= Sy (1+¢+...+ 4™)
+A@1- ,3)¢(m+l)yo(l+ PR ¢m_1)

2 s(2m+1 m-1 B-3
+ pA— Y™y (At p .t g™ )+ . (B-3)
= (Lt gt ot 9™ )x (By, + BA— BY"y, + B B F + ...
By doing some simple calculation we get
Covd, ,F,)=— Pn 1-¢ (B-4)

1-g™+ pp" 1-¢
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Appendix C: Variance of the aggregate forecast for the ARIMA(1,0,1)

process

The variance of the aggregate forecast can also be determine@-& but with
different parameters. In order to obtain the value of the variance of the forecast erroriwe nee
to calculate the covariance between the aggregate demand and its forecast, so we begin by

deriving the covariance between the aggregate forecast and the demand ii:period

CouD  F)=CouDy Y S~ £)Dr.y) = AOOMD: . Y (1~ £)*Dr.y) -

,B(Cov( D;,D;,)+(1- 8)CouD;,D;_,) +(@- 8)* CouD;,D;_,) + ) “y
The variance of forecast after aggregation can be derives as:
Var(F;) =Var(fDr, +(1- f)F; ) = fVar(D; )+ (- g) Var(F; ) ©-2)
+2p(1- B)CouDr ;. Fr )
By substituting 8-22) into (C-1) we get
Cov(D;,F; )= _ P (C-3)

1-¢"+ po’

Then, By using the fact thatar(F; )=Var(F,_,) , coVD;,F,)=Co|Dy ,,F, ) for all k>1
and fact thawvar(D; , )=, for all k (the properties of stationary process) and by substituting

(C-3) into (C-2), we have

_ Bro n Zﬂ(l_ :B)Vi (C-4)

VarlF )= s o pla g + 50
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Appendix D: Covariance of the aggregate demand and non-aggregee
forecast for ARIMA(1,0,1) process

The covariance between the aggregate demand and the subaggregate forecast is

defined as follows:

CoVD;, f,)=CouD;, > all-a)7d,,) = CO\{(dt+dt+l+...+del Y a(l-a)d th
k=1 k=1

©

Cov(d, 3 (1-a) d,,) = Coy g, vi(l— “)kld”J ’ (D-1)

Co MZl a“dtkj+ +Co Zw: d,. )
k=1

k=1

a(Cov(d,,d, )+ (1-a)Coud, d, ,) + (1)’ Coud,.d, ,)+..),
By substituting 8-2) into (D-1) we get

Vo +L=a)y, +@—a)y, +...

Vs + (1— a);/4 + (l— a)zys +...
CoMDy, f,)=CoVd,, f,)+a| + : (D-2)

Vm +(1_a)7/m—1 +(1_a)27/m—2 +...

Now by substituting3-2) into (D-2) we get:

_ 8 ¢271 ¢mfl71 _
Co(Dy, f,)=CoMd,, f, )+ 0{(1—¢+a¢)+ (1—¢+a¢)+m+—(l—¢+a¢)j = 03
agy,(1-¢™?)

1-¢+apfi-¢)

CoMd,, f, )+



B.Rostami-Tabar, 2013, Appendices 197

By substituting 8-14) into (D-2) we get

. ___an _ap(-¢™) _an|i-9)+el-¢")
C”(DT’f‘)"(l—¢+a¢) A-g+apfi-¢)  (Q1-¢)1-¢+ap)

(D-4)

Appendix E: Coefficient of variation before and after aggregation for
ARIMA(1,0,1)

When the non-aggregate process follows an ARIMA(1,0,1) process, we show that
applying the non-overlapping temporal aggregation reduces the coefficient of variation (CV).
CV is an important measure in an inventory context (Bartezzaghi et al., 1999). We show

below that the CV decreases as the aggregation levels increases as well.

The coefficient of variation is defined as the ratio of the standard deviation of demand
to the mean of demand, the ratio of the coefficient of variation after aggregation to that before

aggregation is:

(E-1)

When the non-aggregate process follows ARIMA(1,0,1) , by substitutirgm: and
(3-23) and 8-2) into(E-1) we get

\/m(l— 200 + 02 )+ (¢ — 01— g0 mZﬁlz(m— k)¢"‘1j
CVer my(L= 290 + 62) '

CVar (E-2)

Considering that-1< & <1 and m>2we can show that C-2 is smaller than 1 and by

increasingm, the ratio ofCV,,/CV,, decreases.
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Appendix F: Proof of theorem 1-3

By considering 3-49) and MSE,,/MSE,, >1, the quadratic function given by (F-1)

should be negative

¢"(1- ¢)(m70 + nCZ_; 2(m- k)¢“D

_2(1_¢)(y1(g k¢k-1+§;(k_1)¢mkD+2m(1—¢m)yl+m2¢m(1—¢),7 g
(1—¢”‘)(1—¢)(m7o+71 TZ_:Z(m k)¢“n (F-1)
+| + 21~ ¢)(71 quﬁ“ ki(k 1)%”“}] p-2m(1-g)1-¢"
—amfL-g" )71—2m $™ (1 g+ m(1- )14 1)

where

ay, 20y,

2-a (2-a)l-¢+ag) (F-2)

77:

Moreover, by investigating the sign of (F-1) we can obtain the conditions under which

MSE;,/MSE,, is smaller, equal and greater than one. Now, we verify if the quadratic

function (F-1) has real roots. To do so, we define the discriminaniF-1) as follows
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@-pm)a- ¢)(myo+n ZZ(m k' D

A=|+21- ¢)(7/1 Zk¢ _l+Z(k 1)¢2WKB
—am{1— " )]/l—Zm ¢ (1 g)p+ mP(L-p)¥L— 9™ 1)

m—l (F'3)
"2 ¢)[myo+n ZZm K)g* D

k=1

+8(m2 - g)i—gm)y) - 2A1- ¢)(yl Zk¢kl+ki(k_1 ,WD |
+2m(1— g™y, + M2™ (1- ¢ )y

Now by using the fact thatl< @ <1,-1<¢ <0 ,0<a <1l andm=>=2 , the values
of theA can be obtained. IA < 0 it means (F-1) has no real roots and\if Oit means (F-1)
has two real rootdt can shown that in (F-3) is always positive, therefore (F-1) has two

different roots calleds, and S, , where

3
iN

(1—¢"‘)(1—¢){m7 S [ 2m- kw_ln

|2 ¢)(yl Zk¢“+ 2(|<—1)¢sz +/A
i g, 2w gy g gh)

k

Il
i

NgE

=
I

(F-4)

{¢ @0 mr s St |- oa g Bt o St | ]
2mi1- 4" );/1+m¢ - g
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- ¢{m7 e Z Am- k)¢le

-+ 21- ¢)(n(zk¢“+z (k- 1)¢2MD —JA
—4m{l- ™, — 2P Y+ (- gNL- ™)

(F-5)

A ¢)(m7o + n(rni 2(m- kwk_lj]
— 21— ¢)(y1 Zk¢k 1+Z (k- 1)¢2MD+2m(1 ¢, + P (1— B )

It can be shown that i# <0 , S, is always smaller than zero ayf§] >0 and if & > 0,

p, is greater than one angl >0 .

It is know that the sign of the (F-1) between the two rg&tand £, is opposite to the sign of

A, where A defined in (F-6) is the sign of the coefficientf, Otherwise it is that the same
as the sign oA.

oo o[ Sam-ip |
A=
- A1- ¢)(7(2 4 3 -2 D +2m(1—g" ), + M°p" (L gy

(F-6)

Now by consideringg,, £, andA that is positive fop <0 and negative fa# > 0, the sign of

(F-1) is determined. So we have

» If 9<0, p, is always smaller than zero. @< S, then (F-1) is negative in the
interval [, , f;] and it is positive outside this interval.
» If >0, p,is greater than one and we can show tBat 5, < £, thus (F-1) is

positive in the interval p,, 5,] and it is negative outside this interval.
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From the above expressions we can see that yherp,, (F-1) is negative, otherwise when

p > p,, itis positive and whei = g,, (F-1) is equal to zero. Equivalently

» If B<p,, the ratio of MSE,,/MSE,, is greater than one and consequently the
aggregation approach outperforms the non-aggregation one.

» If g=p, the ratio of MSE,,/MSE,, is equal to one and both approaches perform
equally.

» If B> p,, the ratio of MSE,,/MSE,, is smaller than one and the non-aggregation

approach outperforms the aggregation approach.

Appendix G: Selection procedure for the ARIMA(1,0,1) process

Using the fact thatl<@<1,-1<¢<0,0<a <1 and m>2the value of the

discriminant A and the rootsf, and S, can be defined by (F-3) (F-4) and (F-5)

respectively.

If A <O there are no real roots for (F-1), therefore the sign of (F-1) is equivalent to the sign of
A defined in (F-6). We can show that whanx 0, A is always positive, consequently (F-1) is

positive which means thatiSE,, /MSE,, is smaller than one.

If A>0, (F-1) has two different rootg, and S,. By investigating the sign of,, 5, andA,
we can determine the sign of (F-1) and consequently the performance superiority of each

strategy.

= If B, <0 and f; >0 then (F-1) is negative in the intervgb}, ;] and it is positive

outside this interval.
= If B, >1, it can be shown thdd< f; < 5,. (F-1) is positive in the intervald,, f,]

and it is negative outside this interval.

» If 0<p,<1, it can be shown th# > g, then (F-1) is negative in the interval

[ B>, A1] and it is positive outside this interval.
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By considering the above expressions, we have

= If §,<0o0r B, >1,then
o If f<f,, MSE,/MSE, >1.
o If #>B,, MSE,,/MSE,, =1.
olf =/, MSE,,/MSE,, <1.
» Otherwise, if0< S, <1 then
o If B, <fB<p, , MSE,/MSE, >1.
olf f=p =p,, MSE,/MSE, =1.
olf p<p,andp > p,, MSE,,/MSE,, <1.

Appendix H: Proof of theorem 23, ARIMA(0,0,1)

By consideringusE,,/MSE,, >1 and some simplifications, the quadratic function given by

(H-1) should be negative
(20— 2mO) 5% + (MPy + ML+ 62) + 2m0)  — 2mPp (H-1)
where

_a+ab®+2a0

H-2
> (H-2)

Moreover, by investigating the sign of (H-1) we can obtain the conditions under which

MSE;,/MSE,, is smaller, equal and greater than one. Now, we verify if the quadratic

function (H-1) has real roots. To do so, we define the discrimimart(H-1) as follows

A =((mPn + ML+ 62) + 2mo) | + 820 — 2mo)’yy (H-3)
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Now we use the fact thatl< 8 <1, O<a <1 and m> 2 to obtain the values oA .
If A <O it means that (H-1) has no real roots and i Oit means (H-1) has two real roots.
We can show thatn in (H-3) is always positive, therefol#l-1) has two different roots
denoted byg, and g, , whereg, is defined in (F-4) and

— (M’ + mL+ 6%) + 2m6) — \/(in’;z;) M-+ 02)] +820 - 2m9)m2n]

B, = (H-4)

220 - 2m0)

It can be showthat if 8 <0 , S, is always smaller than zero afk g, <lor 1< S,

and o >0, B, is greater than one artl< S, <lorl< pg, .

It is know that the sign of the (H-1) between the two rgtsand S, is opposite to

the sign ofA, where A= (26—2m9) is the sign of the coefficient g8, Otherwise it is that
the same as the sign &f Now by considering,, £, andA that is positive fop <0 and

negative fop >0, we determine the sign of (H-1). So we have

» If <0, B, is always smaller than zero. @< S, then (H-1) is negative in the
interval [, , ;] and it is positive outside this interval.

= If 9>0, B,is greater than one and we can show thatg, < g3, thus (H-1) is
positive in the interval p,, 5,] and it is negative outside this interval.

From the above expressions we can see that wherp,, (H-1) is negative, otherwise when

£ > p,, itis positive and whew = g,, (H-1) is equal to zero. Equivalently

» If B<p,, the ratio of MSE,,/MSE,, is greater than one and consequently the
aggregation approach outperforms non-aggregation approach.

= If g=p,, the ratio of MSE,,/MSE,, is equal to one and both approaches perform
equally.

= If B> p,, the ratio of MSE,,/MSE,, is smaller than one and the non-aggregation
approach outperforms the aggregation one.
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Appendix |: Selection procedure for the ARIMA(1,0,0) process

ConsideringMSE,,/MSE,, >1 is equivalent to having the quadratic function (I-1) negative,

which subsequently is equivalent to

(P (- p), - A1- 92, + 2mpli— ¢ )+m§ (- ¢)77)ﬂ2
+(0-gm)a- ), ¢g’1+)2(1 P)E, — AL g™ |- 2P (- pYy+ mPl- g™ - gl )s  (1-1)
—2m2(1-¢™ |1 ¢

For the quadratic function given by (I-1), the value of the discrimiaand the roots

B, and S, can be defined as follows:

A= (0-¢m)a- 9, + 2A1-g)e, — Amgll-g7) - 2m*p" (- P+ P (L 47 - Pp)f -2
+8p" (- ), - A1 p)E, + 2mgll— g™+ mPg (- gl mE(L- g™ NL-g)n)

- g™ g+ 21— 9z, - amph— g™ )- 2m2gm (- gl mf- g™ - )y )+ V) 0-3)
s gy - A1- ), + 2mgli- ™+ M2 (1 g)y) '

Pr=

- g™l gk + 21— ), - ampla- g™)- 2m2™0- 9y - g™ o phr)-Va) (1-4)

V2= p™a-p)s - 21- p)e, + 2mplL— ™)+ 2™ g)y)
Where
51:(m+miz(m—k)¢kj, (1-5)
k=1
(1-6)

£, {ikyﬁk +§k¢2“kj ,
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B (— 3agp+a+ a2¢) ()
T 2—a\i-g+ap)

We define the coefficient gf#? in (D-1) as follows

A=g"(1-)E, — AL-P), + 2m(l— g™ )+ g™ (1 @)y . (-8)

if A<Othen the non-aggregation approach is always provides more accurate forecasts,
otherwise

= If B, <p < p,then the aggregation approach works better.
» If g=p, = p,then both approaches are identical.
= If B> p,and/or g < B,then the non-aggregation approach works better.

Appendix J: Proof of theorem 3-3 and theorem 4-3

Case 1 Using the fact thdt3<¢ <1, m>2 and by considering the optimal smoothing
constant, " =(3¢—-1)/2¢ used to calculateMSE,,, we can show that the discriminant

A defined in (I-2) is negative, so there is no real root for (I-1). Consequently, the sign of (I-1)
is the same as the signAtlefined in (I-2), we can show that the signAaf always positive,

therefore (I-1) is always positive andsE,,/MSE,, is smaller than one. Hence, the non-

aggregation approach always works better for the whole rangead for any value of the

aggregation leven.

Case 2 —1< ¢ <13. Using the fact that 1< ¢ <1/3, m>2 and by considering the small
value of the smoothing constant before aggregaions 0.05, it is straightforward to show
that the discriminani defined in (I-2) is positive, so (I-1) has two different roots denoted by
p, and S, defined irfl-3) and (I-4) respectively.

We can show that the valud @, is either less than zero or greater than one. Now by
considering the rootg,, £, and the sign oA, whereA is defined in (I-8), we can determine

the sign of (I-1) and consequently show the superiority of each approach.



B.Rostami-Tabar, 2013, Appendices 206

= If B,<0 and g, >0, then (I-1) is negative in the intervaB}, ;] and it is positive

outside this interval.

= |If B, >1, we can show thad < £, < £, and (I-1) is positive in the intervald, 5,]

and it is negative outside this interval.
Now from the above expressions we can get the following results:
» If #<p, thenMSE,,/MSE,, >1.
» |If p=p1, thenMSE,,/MSE,, =1.
» Otherwise,MSE,,/MSE,, <1.
Appendix K: Selection procedure for the ARIMA(1,0,1) process-
Comparison at the aggregate level

By considering MSE,,/MSE,, >1is equivalent to having the quadratic function (K-1)

negative, which subsequently is equivalent to

(- ¢™w)B% + (2¢™¥ - W(1- ¢™)- 26™ + 22)B

K-1
NP T (K-1)

where

(P2 (7 B
¥ - +£n_22(1—2¢9+92]+( Zma(l—a) [(czﬁ—e)(—w)J

1- g2 2-a)l-¢+ap) 1- g2

) 2ma[(l—¢)+¢(1—¢ml)]((¢— o)1 w)}
(1-g)1- 4+ ap) 1-¢7
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. {n(l— 240 +02)+(§2(m_k)¢k_1j((¢—6>)(1—¢9)D

1-¢° =i 1-¢°

gz(gk¢kl+§;(k_l mj((qﬁ—f_)(;w)J

For the quadratic function given by (K-1), the value of the discrimidardnd the

roots 3, and 3, can be defined as follows:

A=(2pm¥ - W (1-g™)-27p™ +2&F +8p™W(1— g™ (¥ 1) (K-2)

(24w - W(1-g™) -2ng™ +2&)+ VA

b= 20™Y (K-3)
p, - e w2 (K-4)

the coefficient of 3 in (C-1) is defined as follows:
A=—9"¥ . (K-5)

If the discriminaniA < 0, there are no real roots for (K-1), therefore the sign of (K-1) is

equivalent to the sign &. We can show that when 0, A is always negative, consequently

(K-1) is negative which means thaisSE,, /MSE,, is smaller than one.

However, If A >0, (K-1) has two different root®, and ,. By investigating the sign

of p,,f, and A, we can determine the sign of (K-1) and consequently the performance

superiority of each approach.
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= If B, <0 and B; >0 then (K-1) is positive in the intervald, , ;] and it is negative
outside this interval.
= If B,>1, we can show thaD< g, < f,. (K-1) is negative in the intervald, f,]

and it is positive outside this interval.

= |If 0<f, <1, we can show that, > 3, then(K-1) is positive in the interval ., , 5]

and it is negative outside this interval.

By considering the above expressions, the supsriconditions of each approach can be

obtained by following the selection procedure :

1. The procedure id begun by calculatingdefined in (K-2), IfA < Othen the non-
aggregation approach is always superior, otherwise the valygsiodl 5,defined in (K-
3) and (K-4) are calculated.

2. If B, <0orp, >1, the value off, is calculated,
= If g < p,then the aggregation approach works better.
= If g = p,then both approaches are identical.

= If B> p,then the non-aggregation approach works better.
Otherwise:

3. The value of g, is calculated. according to the values fand f,, the following are
obtained:

= If B, < p < p,then the aggregation approach works better.
» If g=p, = p,then both approaches are identical.

= If > p,and S < fB,then the non-aggregation approach works better.

Appendix L: Proof of theorem 5-3

This is a special case of Appendix K whetelefined at (K-2) is always positive, in

this case when—-1<8<1 and —-1<¢ <0 the values off, is either smaller than zero or
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greater than onegf, <Oor g, >1), Therefore we follow the same procedure as Appendix K

and finally we get:

» If B<p,, the ratio of MSE,,/MSE,, is greater than one and consequently the
aggregation approach outperforms the non-aggregation one.

» If g=p, the ratio of MSE,,/MSE,, is equal to one and both approaches perform
equally.

= If B> p,, the ratio of MSE,,/MSE,, is smaller than one and the non-aggregation

approach outperforms the aggregation one.

Appendix M: Proof of theorem 7-3 for ARIMA(0,0,1)— Comparison at the

aggregate level

In order to show that the aggregation approach is always outperforms non-aggregation
one, we must show that the minimum value (lower bound) of the (B®E,, /MSE,, ) is
always greater than one, therefore to calculate the minimum valvsgjf, /MSE,,, ¢ and

m should be equal to the smallest possible values of 6=-1 and m=2. By substituting

these values in the MSE,,/MSE,, , we get

-p
(04

MSE,, /MSE,, = [1+ “(12_“)jx 2 (M-1)

By considering 0<a<1 and B<a it's obvious that MSE,,/MSE,, is always

greater than one.

When the smoothing constant values are very small, it is claimed that the ratio is
equal to one. Therefore, we must show ﬁha(;ﬁﬁo(MSEBA/MSEL\A)=1, by considering (F-

1) the following is given:
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M, , (1+ all- “)j x z_g =1 (M-2)

Appendix N: Proof of theorem 9-3 for an ARIMA(1,0,0) - Comparison &
aggregate level

In theorem 9-3 it is claimed that the aggregation approach is always works better that
the non-aggregation approach. we must show that the minimum value (lower bound) of the
ratio (MSE,,/MSE,,) is always greater than one, so to calculate the minimum value of
MSE,, /MSE,, with ARIMA(1,0,0) when-1<¢ <13, ¢4 should be equal to ¢$=.33 and

m=2. By substituting these values in the MSE,,/MSE,, , we get:

(N-1)

— _ 2
MSEBA/MSEAA =(2 ﬁjx(0.8911+ 0.10898>< 3.5644+1.7822x —1.7622x j

2—-« 67+.3% 4.741- .558p

By consideringo<a <1 and B<a we can show that both parts of (N-1) are greater

than one, thereforevise,, /MSE,, is always greatethan one. In addition, when the smoothing
constant is very small, the ratio is equal to one, we shovﬁrﬁ;@,;%o(MSEBA/MSEM)zl,

now by considering (N-1) we have:

: 2—p (08911+0.10893 35644+1.7822 —1.7622°
lim,, ;. X X =1 (N-2)
’ 2—a 67+.33%x 4.741- 55883

Appendix O: Proof of theorem 9-3 for an ARIMA(1,0,0) - Comparison at
aggregate level

By consideringMSE,, /MSE,, <1is equivalent to having the quadratic function (O-1)

negative, which subsequently is equivalent to:
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(- ¢™w)B + (2p™W - W(1-g™)- 26™ + 22)B

0-1
T L () (©-1)

where

({5l S e e )

. _2ma[(1—¢)+¢(1—¢“”)]( ¢ }
(1-g)1-g+ap) (1-4°

(S gm0

k=1 k=2

For the quadratic function given by (K-1), the value of the discrimidardnd the

roots 3, and 3, can be defined as follows:

A=(2pm¥ - ®(1-gm)-27p™ +2&F +8p™W(1— g™ (¥ 1) (K-2)

(24™W - W(1-g™) -27p™ +2&)+ VA

P = 26™

(K-3)

5, -~ (1) 209" +25)+ A
? — 2™

(K-4)

We define the coefficient gf#* in (C-1) as follows
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A=—¢"Y . (K-5)

If the discriminantA <0, there are no real roots for (K-1), therefore the sign of (K-1)
IS equivalent to the sign oA. We can show that when 0, A is always negative,

consequently (K-1) is negative which means #8E,, /MSE,, is smaller than one.

If A>0, (K-1) has two different root®, and g,. By investigating the sign of,, 5,

and A, we can determine the sign of (K-1) and consequently the performance superiority of

each approach.

= |If B,<0 and f; >0 then (K-1) is positive in the intervald,, £;] and it is negative

outside this interval.

= If B,>1, we can show thaD< g, < f,. (K-1) is negative in the intervald, f,]
and it is positive outside this interval.

= |If 0<f, <1, we can show thgt, > S, then(K-1) is positive in the interval§, , 5]

and it is negative outside this interval.
By considering the above expressions, we get the following selection procedure.

1. The procedure is begun by calculatingdefined in (K-2), IfA < Othen the non-
aggregation approach is always superior, otherwise the valygsuodl 5, defined in(K-
3) and (K-4) are calculated.

2. If B, <0orp, >1, the value ofg, is calculated,
= If g < p,then the aggregation approach works better.
= If g = p,then both strategies are identical.

= If g > p,then the non-aggregation approach works better.
Otherwise:

3. The value ofg,is calculated. According to the values gfand S, we have

= If B, < p < p,then the aggregation approach works better.
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» If g=p, = p,then both strategies are identical.

= If g> p,and S < pS,then the non-aggregation approach works better.

Appendix P: Covariance between demand,j and forecasti,j

The covariance between sub aggregate demandj defined as following:

(1_¢|0j1_zjsi +0i0j)(pij0'i0j) k=0
-84,
A =C0\:<diyt,dj't,k)= (géi_tgi)(l_ﬂej)(pij O'in) ‘k‘ =1, (P-1)
1_¢|¢j
A k>1

Similar to (P-1),4, =C0\,(dj’t,di’t_k) can be calculated where we substitubg j and

vice versa. By considering (A-1), the covariance between sub aggregate deamahdub

aggregate forecapts calculated as follows:

Cofd,.. f,,)=Coud, .Y e, 1-a, )} d,, ) =a,Covd,,. S (l-a, ) 'd ) =
k=1

k=1
a,(Cov(d,,,d,,) +1-a,)Coud,,,d,,,) +[L-a, F Covd, . d, ) +)  (P-2)
2
=a]./11 +a, (l—aj )¢5i2,1 +a, (l—aj )2¢i2/1l +..-=]rgjﬁ,

Similar to (P-2), the covariance between sub aggregate depard sub aggregate
forecast is:

a4

CoVd,,, fi,t)=m
j s

(P-3)

The covariance between subaggregate foréeaslj is as follows:
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Codf,, f;,)J=Codeid, , +(1-a;)f y,d, o+, )f, o)

=a,Q; CO\'(di 1 d; ,t—l)+ & (1_ a, )CO\'(di e T ,t—l) (P-4)

Ta; (1_ Q )CO\'(fi 10 d; H)"' (1-« )(l_ a; )CO\(fi e B H)’

Since CO\,(fi,t, f“):CO\(fiH, fj’t_l) and by considering, :CO\,(dj’t,di,H() and

substituting (P-1), (P-2), and (P-3) into (P-4), we get

1 ai(l_aj)ajﬂq aj(l_ai)ajﬂ’{
CO\(fi’t,fj’t)=((1_(l_ai)(l_aj))j[aiajﬂ,o+ 1 drad 1grad J (P-5)

Appendix Q: Proof of theorem 4-1

It’s sufficient to show that the lower bound is greater than or equal to one, we use

these facts thatl< p,,<1, 05<p, +p, <1, By considering the lower bounds of

—-1< p,, <1, the value ofv; is equal to zero, therefore we rewride41) as follows

Vip _ (1- 240 + 0)
Vau ( 20— )L+ 02 — 290 )+ a1+ ¢))J (Q-1)
(2— a)(l— o+ a¢)

Now by ¢=0.51 and 6=0 for the interval of 0.5<¢-¢<1, -1<6,-6,< 0 we can

calculate the upper bound of the ratioveh/Vey , now by substituting these values in (B-1)

we have
Vip _(2—0!)(1—¢+a¢)_ _ N
A (1- 050)x (1+1.04%x) (Q-2)

Now we can see that the minimum valuevef/Vgy is obtained when the smoothing

constantz becomes close to zero. Additionally, whe® the ratio equals to one.
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Appendix R: Proof of theorem 4-2, collary 4-1 and collary 4-2

By using these facts thal<@-¢< 0.5, -1<61-6<1,-1< p,, <1,05< p, + p, <1,
the ratio ofVrp/Vgy for different values can be calculated frof4().

By considering the lower bounds efl< p,,<1, v, in (4-41) is equal to zero,

therefore 4-41) can be rewritten as

Vio _ (1- 200 + 6?)

Vg, ( A1- )1+ 07 - 240)+ a1+ ¢))J
(2-a)l-¢+ag)

(R-1)

To get the lower bound of (R-1) we need to g&t the minimum value=-0.99, and
6 should be the maximum valu@=0.99 for the interval of-1<¢< 0.5, -1<6<1, now we

substitute these values in (R-1), so we have

Vip _ 394031.99- 0.9%)2-a)
Vey 39839403+ 0.09%) (R-2)

Now by substitutingx=0.01 into (R-2) it is seen tha¥rp/Vgy=0.99.

To get the upper bound MSER/MSEsy, the maximum values 005< p, + p, <1

and-1< p,, <1 are substituted intat{41), we get

Vo, (1200 + 02 )+ vy,

Vau ( 21— p)(1+ 6% —240)+ a6(1+ ¢)))
(2-a)l-¢+ag)

(R-3)

where
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v = 2((aTD ((1"' ¢)(1_ 9)2)_ aTD2(¢ +¢0 - 2‘9))_ (aTD (¢ - 0)(1_ ¢9)(2 — U1p )))
" (z_aTD )(1_¢+aTD¢)

To get the lower bound of (R-3) , the autoregressive paramegtesssetto the
maximum valueg=0.5, and the moving average paramet@ishould be the minimum value,

6¢=-0.99. Now, by substituting these values in (R-3), the following is given:

Vie  29701+v,
Ve ((29701-1.485x)
052-a)l+a) (R-4)

where

L 2|(5.940,, — 297012 — 22301, (2— typ))
" O-E(Z —Qp )(1"' aTD)

By substitutinge= arp=0.01 into (R-4), the ratio equals trp/Vgy=1.01.
Proof of Collary 5.1.

By substitutingarp-=0.05,0.15,0.3n (R-2) and (R-4) the results presented in Table

2 can be obtained.

Proof of Collary 5.2.

By substitutingg=0.51, #=0.99 and ¢=0.99, ¢=0.01 into (R-1) and (R-3) the lower
and upper bound oMSEp/MSEsy can be obtained for the interval 6f5<¢-#,<1,
0<6,-6<1. Finally, by substitutingrp==0.01, 0.05, 0.15, 0.8to that the results presented

in Table3 can be obtained.
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Résumé

Ce résumé a pour objectif de fournir une vision globale, les principaux objectifs et les
étapes nécessaires de cette recherche. Nous commeagbmsabord par définir certains
termes cléslans le domaine de 1’agrégation et de la prévision de la demande afin d’assurer
une compréhension cohérente des concepts liés a ce travail de recherche. Par la suite, le
contexte manageérial et scientifique, l'apercu et les objectifs de la recherche sont présentés.
Enfin, une fois la démarche méthodologique adoptée dans ce travail est exposée, nous
discutons les résultats et les contributions de ce travail.

1. Définitions

Une bréve description des termes et des expressions clés utilisés dans ce travail de
recherche est présentée dans les sections suivantes. Il s'agit des éléments appliqués tout au

long de cette these.
» Les séries chronologiques

Makridakis et al (1998) définissent une série chronologigue comme une séquence

d'observations ordonnées dans le temps.

Bien que l'ordre soit généralement sur le tenipsdre peut également étre considéré
sur d’autres dimensions, comme l'espace (Harvey, 1993). Les séries chronologiques se
produisent dans des domaines variés tels que l'agriculture, le commerce, I'‘économie
l'ingénierie, la géophysique, la médecine, les sciences sociales, etc. A titre d'illustration, dans
le contexte de l'entreprise, le niveau de production annuel, la demande mensuelle de piéces
détachées, le niveau des stocks hebdomadaires et des ventes quotidiennes sont toutes des

séries chronologiques.

= Séries chronologiques stationnaires

Par série chronologique stationnaire, on entend une série dont les propriétés ne

dépendent pas du temps durant lequel la série est observée (Malaidakis998).
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Pour qu’un processus stochastique soit stationnaire, il faut quéespérance mathématique de

la série chronologique, la varianet I'auto-covariance de tout décalag®rdre k soient
constantes au cours du temps (Harvey, 1993) classe la plus générale des modéles
stationnaires pour la prévision des séries chronologiques est celui des processus autorégressifs

et & moyenne mobile (ARMA).

= Séries chronologiques non-stationnaires

La majorité des séries chronologiques existantes, en particulier dans les secteurs
économiques et commerciaux sont non-stationnaires. Les séries chronologiques non-
stationnaires peuvent se produire de plusieurs fagons. Elles peuvent avoir des moyennes non
constantes, des écarts et/ou autocovariances variant dans le temps, ou toutes ces propriétés
simultanément. Les séries chronologiques concernant les tendances, saisonnalités et les séries
cycligues sont des séries temporelles non-stationnaires (Wei, 2006). L'un des modeles
typiques non-stationnaires est le processus autorégressifs et a moyenne mobile intégrée
(ARIMA). Une série chronologigue non-stationnaire peut étre divisée en deux parties: i)
séries chronologiques homogenes ii) séries temporelles non-homogene. Dans le premier cas
la moyenne est dépendante du temps. En calculant les différences entre les observations
consécutives, une série chronologique homogene peut étre convertie en série stationnaire
c'est la différenciation. Cependant, de nombreuses séries chronologiques non-stationnaires
sont non-homogéned.a non-stationnarité de ces séries ne découle pas des moyennes
dépendant du temps, mais résulte de la dépendance au temps Sleval&amces et

autocovariances.

» Méthodes de prévision

Une méthode de prévision est une procédure pour estimer les observations futures.
Elle dépend largement de la disponibilité des données. En cas d'indisponibilité, autrement dit
si les données disponibles ne sont pas pertinentes pour les prévisions, les méthodes de
prévision qualitatives doivent étre utilisées. Il existe des approches structurées mieux
développées pour l'obtention de bonnes prévisions sans l'aide de données historiques
(Hyndman and Athanasopoulos, 2013). En revanche, les méthodes quantitatives peuvent étre

appliguées lorsque les conditions suivantes sont remplies:
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1. Disponibilité des données numériques sur le passé,

2. Il est raisonnable de supposer que certains aspects des donnés passées vont se

reproduire dans le futur.

Il existe un large éventail de méthodes de prévision quantitatives, souvent élaborées
dans les disciplines spécifigues a des fins spécifiques. Chaque méthode a ses propres

propriétés, sa précision et son codt qui doivent étre considérés au moment de leur choix.

La plupart des meéthodes de prévision quantitatives utilisent soit des séries
chronologiques (collectées a des intervalles réguliers dans le temps) soit des données
transversales (collectées a un moment précis). Les méthodes quantitatives de prévision sont
divisées en deux catégories: 1) modeéles de séries chronologiques ii) modeles explicatifs. Un
modele explicatif est trés utile car il integre des informations sur d'autres variables, plutét que
seulement les valeurs historiques de la variable a prévoir. Cependant, diverses raisons peuvent
pousser un prévisionniste a sélectionner un modele de série chronologique plutét qu’un
modéle explicatif. Premierement, le systéme peut ne pas étre compris, et méme s'il I'était, il
peut étre extrémement difficile de mesurer les relations qui déterminent son comportement.
Deuxiemement, il est nécessaire de connaitre ou de prévoir les diverses variables afin d'étre en
mesure d'anticiper sur la variable d'intérét, et cela peut étre trés difficile. Troisiemement, la
préoccupation principale peut étre seulement de prévoir ce qui va se passer sans savoir
pourquoi. En fin de compte, un modele de séries chronologiques peut donner des prévisions
plus précises qu'un modele explicatif ou mixte (Hyndman and Athanasopoulos, I2€13).
modéles de séries chronologiques utilisés pour la prévision incluent des modeles ARIMA, le

lissage exponentiel et les modeéles structurels.
= Sélection de I’estimateur

Afin d'évaluer l'impact de chaque approche d'agrégation sur la performance de la
prévision, la sélection d'un estimateur dans un but d'extrapolation s'avere nécessaire. Dans
cette étude, le lissage exponentiel simple (SES) est utilisé pour estimer la prévision de la
demande. Il s'agit d'une méthode de prévision trés populaire dans l'industrie car elle est
intuitivement séduisante, facile a mettre a jour et possede des exigences minimales de

stockage informatique des données. En outre, elle est optimale pour un processus non-
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stationnaire & moyenne mobile intégrée, IMA(1) ou ARIMA (0,1,1). Bien que son application
implique un comportement non-stationnaire de la demande, les valeurs suffisamment faibles
de la constante de lissage (ou coefficient de lissage) introduisent des écarts mineurs de

I'hypothese de stationnarité, tandis que la méthode est aussi impartiale.

Le lissage exponentiel simple s'appuie sur des prévisions de la demande
exponentiellement lissées. L'estimation est mise a jour a chaque période. Pour toute période
de tempg, la procédure d'actualisation de la méthode SES est présentée suivant I'équation ci-

apres:
fi=ad  + (1_ a) fia 1)

ou dq.; est la demande a la périodg, f; est la prévision a la périodet « la constante

de lissage.

Le coefficienty, compris entre 0 et 1, s’applique a la derniére réalisation. Il s'agit de la
constante de lissagioisie a ce niveau. %iest faible (par exemple, proche de zéro), plus de
poids sera accordé aux observations plus loin dans le passé. Si paracestrgrand (soit
pres d’un), plus de poids sera accordé aux observations plus récentes. Dans le cas extréme («
= 1), SES devient la méthode naive. Dans ce travail de recherche, la méthode SES est préférée
a la moyenne mobile (MA) et la méthode de prévision optimale, bien que ces méthodes de
prévision peuvent étre envisagées pour les futures recherches. Deux raisons justifient ce choix

de méthode:

i) En moyenne, SES a tendance a donner de meilleures performances que la méthode
MA, comme on l'observe dans une comparaison empirique de leur performance dans la
compétition de prévisioM3 (tel que rapportée par Makridakis and Hibon (2000)). De plus,
SES correspond a umodeéle intuitif séduisant contrairement a MA.

i) En pratique, les décideurs ne veulent pas passer trop de temps et d'efforts pour
examiner et définir les caractéristiques du processus de données avant de déterminer le
modéle de prévision optimal, comme l'exige ARIMA. Par ailleurs, dans un cadre de
planification de la production, les prévisions sont tenues sur une base périodique, parfois aussi

souvent que quotidienne ou méme horaire. Typiquement, la prévision est faite simultanément
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pour plusieurs articles différents dans les systémes informatiques avec un minimum
d'intervention humaine. Par conséquent, il est relativement impossible de déterminer le
modele ARIMA optimal pour chaque élément a chaque mise a jour. Or, il serait utile de

déterminer le montant du gain ou de perte en utilisant une méthode de prévision optimale au

lieu de SES. Nous aborderons cette question dans les travaux futurs.

» Indicateurs de précision

Un indicateurde précision est une mesure appliquée afin de juger l'efficacité du
processus de prévision. Il existe de nombreux indicateurs permettant de mesurer la précision
des prévisions. Dans le cadre de cette étude, la variance de l'erreur de prEvisioappelée
erreur quadratique moyenne (MSE) est utilisée comme un indicktguecision.

Le choix de sélectionner le MSE pour la comparaison théorique des méthodes
considérées dans cette étude est justifié par le fait que ce dernier est une mesure de la
précision mathématiquement attrayante. En oilte® rapproche de la variance des erreurs de
prévision (qui se compose de la variance des estimations produitda pethode de
prévision et la variance de la demande réelle), mais en difféere par le biais potentiel des
estimations qui peut également étre pris en compte. Etant donn&Hfiefournit des
estimations non-biaisées des processus considérés dans ce travail, la variance des erreurs de

prévision est égale a la MSke. MSE = Valerreur de la prévision
= Agrégation de la demande

Un processus d'agrégation consiste a dériver le modele de basse fréquence a partir du
modéle a haute fréquence; cette dérivation peut étre exercée dans le temps ou par
l'intermédiaire des individus. L'agrégation dans le temps, aussi appelée agrégation temporelle,
fait en particulier référence au processus par lequel une série de temps de basse fréquence (par
exemple trimestrielle) est dérivée d'une série temporelle a haute fréquence (par exemple tous
les moig (Nikolopoulos et al., 2011). Comme montré dans les Figures 1 et 2, ce résultat est
obtenu grace a la somme de toutesngsériodes de données a haute fréquencen est le

niveau d'agrégation.
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Il existe deux types différents d'agrégation temparat&-cumulée et cumulée. Dans
le premier cas, les séries chronologiques sont divisées en segments consécutifs non-cumulée
de temps, ou la longueur de la tranche de temps est égale au niveau detidagiéma
demande agrégée est ainsi créée en additionnant les valeurs dans chaque tranche. Le nombre
de périodes agrégées edi/M], ou N est le nombre de périodes d'origing le niveau
d'agrégatioret [x] est la partie entiere de En conséquence, le nombre de périodetade

demande agrégée est inférieur a la demande d'origine.

Souvent, pour avoir des prévisions comparables entre une approche d’agrégation et
une approche de non-agrégation, si la comparaison est effeatuéecau désagrégé, les
prévisions agrégées doivent étre désagrégées au niveau initial (en les divisantiyeau
d'agrégation). Par ailleurs, si la comparaison est effectuée au niveau agrégé, dans ce cas les
prévisions initiales doivent étre multipliées par le niveau d'agrégation. Ceci est illustré dans

lesFigure 3 et4 dans le cas de prévisions hebdomadaires et mensuelles.
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Figure 4: Niveau de comparaison agrégeée

Un autre type d’agrégation (l'agrégation transversale encore appelée agrégation
hiérarchique ou contempora)nee fait au traverd’un certain nombre d'unités de gestion des
stocks (SKU) a une période de temps précise afin de réduire la variabilité (Silvestrini and
Veredas, 2008). Les approches existantes de prévision transversale impliquent généralement
soit une approche ascendant®U), soit une approche descendar(feD), voire une
combinaison des deux. Lorsque la prévision au niveau agrégé est en question, cette derniere
implique l'agrégation des prévisionssdmités de gestion des stocks individuebesiveau
du groupe, tandis que la deuxiéme concerne la prévision directement au niveau du groupe (i.e.
ceci exigepremieérement 1’agrégation de la demande, puis extrapoler directement la prévision
au niveau global). Lorsque I'accent est mis sur la prévision au niveau désgppgeche
BU concerne’extrapolation directe au niveau désagrégé alors due implique la
désagrégation des prévisions agrégés produites directement au niveau du groupe.

Comme Tlillustre laFigure 5, L'approchelD se compose des étapes suivantes: i) les

demandes sous-agrégats sont agrégées; ii) production des prévisions de demande agrégée via
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la méthode SES au niveau agrégé, et iii) la prévision est désagrégée pour revenir a son niveau
initial en appliquant une méthode de désagrégation appropriée, si une prévision désagrégée est
exigée. Dans l'approchBU: i) les prévisions de la demande désagrégée sont produites
directement pour les articles désagréges; ii) la prévision agrégée est obtenue en combinant les
prévisions individuelles pour chaque SKU, soit potentiellement un modéle de prévisiagh sépar
utilisé pour chaque élément de la famille de produits (Zotteri et al., .2085)approches sont
présentées schématiquement dartsdare 5. Nous adoptons ainsi le style de présentation de
Mohammadipouetal. (2012).
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Figure 5: Schémale TD (gauche) eBU approches (droite)

2.  Contexte Managérial

La prévision de la demande est le point de départ de la plupart des activités de la

planification et du contréle des organisations. En outre, I'un des défis les plus importants des
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sociétés modernes dsincertitude de la demande (Chen and Blue, 2010). L'existence d'une
forte variabilité de la demande des articles a grande ou a faible rotation pose des difficultés
considérables en termes de prévision et de gestion de stock (Chen et alSy20&@s and
Boylan, 2005Wemmerlov and Whybark, 1984).

Il existe plusieurs approches qui peuvent étre utilisées pour réduire l'incertitude de la
demande et par conséquence améliorer la performance de la prévision (et la gestion des
stockg d'une entreprise. Une approche intuitivement attrayante, connue pour étre efficace, est
I’agrégation de la demande (Chen et al., 2007). Une possibilitagsigation temporelle.

Une autre approchel’agrégation souvent appliquée dans la pratique est l'agrégation
transversale, c’est-a-dire 1’agrégation des données de plusieurs SKUs. Cette approche est
équivalente aussi a l'agrégation des dondéesseul SKU a traversl’un certain nombre de

dépobts ou des lieux d'stockage. Natewdit utiles dans la pratique, des formes d'agrégation
associées impliguent également la consolidation géographique des données ou le
regroupement entre les marchés. Bien qu'il n'y ait pas d'étude empirique qui documente la
mesure dans laquelle I'agrégation a lieu dans un contexte pratique, il s'agit d'une approche

est connue pour étre efficace parmi les professionnels en raison de son attrait intuitif. En
termes pratiquesa prestation dépend du type d'agrégation et bien sir des caractéristiques des
données. Une agrégation transversale par exemple conduit généralement a la réduction de la
variance. Cela est d( au fait que les fluctuations dans les données d'une série chronologique
peuvent étre compensées par les fluctuations présentes dans une autre série (Widiarta et al.,
2009). Contrairement a l'agrégation transversale, dans l'agrégation temporelle la variance
augmente. Cependant, il peut facilement étre montré que l'agrégation temporelle peut réduire
le coefficient de variation de la demande. Dans tous les cas, |'avantage implicite associé a la

facilité demise en ceuvre de cesapproches les rend un choix populaire dans l'industrie.

En pratique, la demande peut étre classée comme intermittente ou a forte rotation.
Dans le premier cas, l'agrégation temporelle de la demande entrainerait la réduction de la
présence d'observations nulles plus généralement, la réduction des incertitudes dans le
second cas. Les articles a demande intermittente (comme pieces de nesbahgennus
pour causer des difficultés considérables en termes de prévision et modélisation des stocks. La
présence de zéros a des implications importantes en raison des trois raisons suivantes. Tout

d'abord, la difficulté a capturer les caractéristiques des séries chronologiques étudiées et des
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modéles de prévision standards qui leurs correspondent. Deuxiémement, la difficulté de
s’adapter a une distribution statistique standard telle daeloi normale. Troisiemement, les
écarts par rapport aux hypotheses de modélisation de stock stendluds formulations.

Ceux<¢i rendent la gestion de ces éléments un exercice tres diffitilgrégation temporelle

est connue pour étre largement appliquée dans les milieux militaires (données trekerares),
secteur aprés-vente (pieces détachées ou de service), etc. Des études empiriques récentes
(Babai et al., 2012Nikolopoulos et al., 2011) dans ce domaine ont abouti a des résultats tres
prometteurs en soulignant égaleminnécessité d'une analyse plus théorique. Bien que le
domaine de la prévisioa I’aide de 1'agrégation temporelle dans un contexte de demandes
intermittentes est tres intéressant tant d'un point de vue acadéatipgrafessionnel, dans

cette recherche le contexte des demandes a forte rotation, qui reste le contexte le plus
rencontré, est celui pris en comptéanalyse dans un contexte de demandes intermittentes est
une voie intéressante de recherches futate®tte question est abordée avec plus en détail
dans le dernier chapitre de cette thése.

En plus de la réduction de lincertitude de la demande associée a l'approche de
I'agrégation temporelle discutée ci-dessus, il y a une question importante dans un processus de
prévision oul’agrégation temporelle peut étre utile. Il est appelé "horizon de la prévision" qui
détermine la limite de la prévision future. En regle générale, plus on regarde loin dans le futur,
plus la précision décroit. C'est aussi I'un des domaineBagrégation temporelle peut
améliorer la précision des prévisions, parce que comme nous regardons plus loin dans
I'avenir,la vision a long terme devient plus importante et la méthode d'agrégation temporelle
peut utiliser cette information mieux que les approches classiddasc, l'approche
d'agrégation temporelle peut aussi étre tres efficace lorsque les professionnels ont besoin de
prévisions a long terme au lieu d'une prévision pour une seule période future. D'un point de
vue théorique, l'accent a ce jour a été principalement sur I'agrégation transversale. En outre, la
plupart des logiciels de prévision prend en charge l'agrégation des données, ceisgrait a
couvrir seulement’agrégation transversale. La considération de l'agrégation temporelle a été
qguelque peu négligée par les éditeurs de logiciels et les chercheurs malgré la possibilit
d'ajouter plus de valeur en pratique. Dans ce travail, I'objectif est de faire prodjetaser
actuel des connaissances dans le domaine de la prévision de la demEade de

I’agrégation temporelle.
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Dans les discussions ci-dessus, l'effet de I'agrégation temporelle sur un seul SKU est
considéréAlors qu’en réalité, il y a souvent de nombreuses séries chronologiques qui peuvent
étre organisées de facon hiérarchigugroupées a différents niveaux dans les groupes basés
sur des références de produits, des clients, de la géographie ou d'autres caractéristiques
(Hyndman et al., 2011). Le niveau hiérarchique auquel la prévision est effectuée dépend du
besoin de chaque fonction. En ce qui concerne les produits (ou références), en particulier, la
prévision au niveau SKU individuel est nécessaire pour la gestion des stocks, les prévisions de
la famille de produits peuvent étre requises pour le programme directeur de production. Les
prévisions a traverd’un groupe d'articles commandés aupres du méme fournisseur peuvent
étre nécessaires dans le but de regrouper les commandes. Les prévisions a travers des articles
vendus a un grand client spécifique peuvent impacter le transport, les décisions de routage
etc. Une approche a priori intéressante pour obtenir des prévisions de niveau supérieur est
I’agrégation transversale, ce qui implique généralement soit une approche TD ou une
approche BU (ou une combinaison des delke question importante qui a attiré I'attention
de nombreux chercheurs et professionnels au cours de ces derniéres décenniesaesé I'effic

de ces approches de prévision transversales.

Les approches de prévisiddU et TD sont extrémement utiles pour améliorer la
précision des prévisions et des plans au sein d'un processus S&OP (la planification des ventes
et des opérations) (Lapide, 2006 S&OP est un processus multifonctionnel qui implique
les gestionnaires de tous les départements (ventes, service client, chaine logistique, marketing,
fabrication, achats et finances), ou chaque département a besoin de différents niveaux des
prévisions de la demande (Lapide, 2004). Par exemple, dans le marketing (Dekimpe and
Hanssens, 2000), la prévision du chiffre d'affaires par groupes de produits et par ngtrques e
nécessaire. Les services commerciaux traitent avec des prévisions de ventes par éss compt
clients et/ou des canaux de vente. Les gestionnaires de la chaine d'approvisionnement
demandent les prévisions au niveau du SKU, tandis que la finance a besoin de prévisions qui
sont agrégées dans les unités budgétaires en termes de revenus et de colts (Bozos and
Nikolopoulos, 2011). Afin de produire les prévisions requises, la demande et/ou les prévisions
devraient étre agrégés et/ou désagreges a differents niveaux. Il s'agpptieatian des
approched D etBU ou une combinaison des deux (Lapide, 2004, 2006).
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3.  Contexte scientifique

L'agrégation a été largement discutée dans la littérature académique depuis les années
1950 (Quenouille, 1958). Elle est considérée comme un moyen de réduire les fluctuations de
la demande et le degré dincertitude. Il a été démontré par (I884), Yehuda and Zvi
(1960), et Aigner and Goldfeld (1974) que l'incertitude de la demande peut étre efficacement
réduite par l'agrégation et une bonne prévision de la demande. Dans la littérature de la
planification de la chaine logistiquet la planification de la demande, l'agrégation de la
demande est connue comme un approche de mutualisation des risques pour réduire les
fluctuations de la demandin d’avoir une planification des matiéres/capacité plus efficace
(Chen and Blue, 2010). Dans le domaine de I'agrégation temporelle, il y a a la fois des études
théoriqueset empiriques discutées dans la littérature. Cependant, la plupart de ces études sont
dans le domainde 1’économie. Les propriétés du processus agrégé sont fournies sur la base
des données non-agrégées. De plus, l'effet de I'agrégation temporelle sur la pestision
évalué par’ajustement d'un modéle et de l'estimation des parameéetres. Amemiya and Wu
(1972) ont évalué I'effet déagrégation temporelle non-cumulée lorsque la série originale suit
un processus autorégressif d'orggeAR (p). En considérant le ratio des MSE de la prévision
non-agrégée et agrégée (3 prédicteurs linéaires ont été considérés au nivgaulsagri
montré que l'approche d'agrégation performe mieux’gpgroche non-agrégée. Tiao (1972)
a étudié Effet de 1’agrégation temporelle non-cumulée sur un processus non-stationnaire
moyenne mobile intégréd’ordre (p,g), I'MA (p,g9). Une espérance conditionnelle est
appliquée pour obtenime prévision a I’horizon d’une période au niveau agrégé basé sur les
séries non-agrégées agrégées. Par la suite, I'efficacité des prévisions agrégées a été définie
comme le ratio de la variance de l'erreur de prévision de la série noneagréaésérie
agrégeée lorsque le niveau d'agrégation est g@ndmontre que lorsqué = O et le niveau
d'agrégation est tres grand, alors le ratio en question est égal a un et |'avcampgetif de

l'utilisation des prévisions non-agrégées augmentedvec

Peu d'études récentes ont évalué l'effet de I'agrégation temporelle sur la petldésion
gestion des stocks par des recherches empiriques. Nikolopoulos et al. (2011) ont
empiriquement analysé les effets de I'agrégation temporelle sur la prévision de demandes
intermittenteetils ont proposé la méthodologie ADIDA. Il est démontré que la méthodologie

ADIDA peut en effet apporter des améliorations considérables en termes de précision des



B.Rostami-Tabar, 2013, Résumé 230

prévisions. Enfin, Babai et al. (2012) ont également étendu I'étude décrite ci-dessus
(Nikolopoulos et al., 2011) afin d'examiner les implications de la méthodologie ADIDA sur

les stocks en considérant une politique a suivi périodique appelée politique avec niveau de
recomplétement (ordre-up-to-level). Les chercheurs ont conclu qu'une technique simple
commel’agrégation temporelle peut étre aussi efficace que les approches mathématiques

complexes de prévision des demandes intermittentes.

Au meilleur de notre connaissance, les seuls études directement pertinentes pour notre
travail sont celles par Amemiya and Wu (1972) et Tiao (1972) pour les processus AR et MA
respectivement. Ces travaux ont porté sur la caractérisation de la série de la demande agrégée
en plus de I'évaluation de la performance des prévisions. Cependant, les résultats présentés
dans ces travaux restent préliminaires alors que le contexte expérimental peut également étre
critiqgué en termes des procédures d'estimation considérées. De plus, aucun résultat empirique
n’a été fourni. Par conséquent, I'absence des conditions qui déternian@ntériorité d’une
approche, en matiére de prévision de la demande, est évidente. Il n'est Ed'abgiroche
d'agrégation fournit des prévisions plus précises que celle de la non-agrégation, essice ve
Par conséquent, la motivation derriére cette partie de I'étude est I'absence de l'analyse
théorigue en ce qui concerne I'effet de I'agrégation temporelle sur la prévisiodeteande.

Dans cette recherche, I'évaluation analytique est appliquée pour déterminer les conditions de
supériorité de chaque approche. La recherche est commencéde gmexressus simple

ARMA d’ordre un. Cependant, l'analyse peut étre effectuée pour les processus d'ordres
supérieurs mais les résultats deviennent plus complexes a présenter donc ceci est considéré

dans les recherches futures.

Dans le domaine de l'agrégation transversale, la plupart de la littérature de la prévision
s'est penchée sur les performances comparées des apaitd3J. Les conclusions en ce

qui concerne les performances de ces approches sont melangées.

Certains auteurs comme Theil (1954), Grunfeld and Griliches (1960), Schwarzkopf et
al. (1988), et Narasimhan et al., 1985(1985) ont fait valoir que I'approche TD performe mieux
gue BU, d'autre part, des auteurs comme Orcutt et al. (1968) , Edwards and Orcutt (1969),
Dunn et al. (1976), Dangerfield and Morris(1988) and Gross and Sohl (1990) ont constaté que
'approche BU est performanteet enfin quelques autres auteurs comme Barnea and
Lakonishok (1980), Fliedner (1999) and Widiarta et al.(2007, 2008, 2G@f)ptent une
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approche contingente et analysent les conditions dans lesquelles une méthode produit des

prévisions plus précises que les autres.

Dans cette these, l'efficacité deBb etla TD est évaluée. Les travaux présentés par
Widiarta et al. sont étendues dans cette these en considérant un processus de demande
stationnaire plus général ARIMA(1,0,1) et un processus non-stationnaire ARIMA(0,1,1). Par
ailleurs, la comparaison est effectuée tant au niveau désagrégé et agrégé. En outre, la

supériorité de chaque approche est examinée en utilisant un ensemble de doneges réell

4.  Apercu de la recherche

L'agrégation est un moyen efficace pour réduire la variabilité de la demande. De plus,
il permet aux prévisionnistes d'obtenir différents niveaux de prévisions dans le temps et des
niveaux hiérarchiques. Selon le niveau des prévisions, nous produisons d'abord les prévisions
et les agrégeons par la suite soit nous regroudttterd les séries originales individuelles
pour obtenir la demande agrégée et puis de produire la prévision agrégée. Dans ce dernier cas,
un mécanisme de désagrégation est nécessaire pour obtenir les prévisions dés@gnégees.
cette recherche, l'impact de l'agrégation sur la prévision de la demande est évalué. Pour
montrer l'effet de I'agrégation sur la prévision de la demande, deux types d'agrégation sont
considérés i) l'agrégation temporelle at) I'agrégation transversale. Notre apercu de la

recherche est résumé ddasigure 6.

On suppose que la série chronologique suit un processus de type A&INMA

méthode de prévision est SES.

Dans l'agrégation temporelle, il est supposé que la demande désagrégée suit un
processus stationnaire autoregressifienne mobile d’ordre un, ARIMA (1,0,1), ce qui veut
dire que leurs cas particuliers, moyemnebile d’ordre un, ARIMA (0,0,1) et I’autorégressif
d'ordre un ARIMA (1,0,0) sont également considérés. Ensuite, il est disiudés données
désagrégées ou des données agrégées doivent étre utilisées pour fournir les prévisions
requises. De plus, les conditions dans lesquelles, une approche performe mieux que l'autre

sont présentées.
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Recherche
Type d’Agrégation Agrégation temporelle Agrégation transversale
Processus de la
ARMA(1,1), MA(1), AR(1) ARMA(1,1), IMA(1)
demande
Méthode de prévision SES SES
Mesure de précision MSE MSE
Niveau de la
. Niveau agrégé, Niveau désagrég Niveau agrégé, Niveau désagrég
comparaison
L Identifier les conditionsle Evaluer l'efficacité des approcheg
Objectif L
supériorité des approches de BU etTD
I'agrégatioret non-agrégation

Figure 6: Vue d’ensemble de la recherche

Dans l'agrégation transversale, I'efficacité des approchestBD, pour fournir des
prévisions désagrégéesagrégées, est analysée. On suppose que la série désagrégée suit soit
un processus stationnaire autoregressifenne mobile d’ordre un, ARIMA(1,0,1) soit un
processus non-stationnaire moyenne mobile intédjkédre un, IMA (1,1). Dans cette partie
de la these, la variance de l'erreur de prévision est utilisée pour comparer la perfoenance d
chaque approche. La variance de l'erreur de preévision est équivaleM&B en considérant
une méthode de prévision non biaisée. Les variances des erreurs de prévision sont obtenues
sur la base de la demande désagrégée et agrégée. Les comparaisons sont effecteées au
de la demande désagrégée et agrégée. Les conditions dans lesquelles chaque approche

surpasse les autres sont mathématiquement identifiées. L'analyse mathématique est complétée
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par une étude numérique pour valider les résultats théoriques. D€ ¢tlude numérique est
appliquée pour évaluer en détail les conditions de supérideitbéapproche en relaxant
certaines hypotheses considérées dans ['évaluation analytique. Ensuite, les résultats sont
validés empiriguement (’aide des simulations sur un ensemble de données réelles fournies

par un hypermarché européen). Enfin, des lecons managériales trés importantes sont dérivées
et des suggestions concretes sont proposées aux professionnels qui s'intéressent aux

problemes de prévision et de gestion des stock.

Dans cette recherche, l'ordre des processus de type ARIMA est limité aaentype
de processus est plus observé dans la littérature pour les séries non-saisonniéres, outre
I'objectif principal qui est de tirer plusieurs éclairages clés pour les managers. Par conséquent,
nous allons limiter notre attention aux processus AR(1), MA(1) et ARMA(1,1). Toutefois, il
convient de noter que I'extension du travail a analyser des cas plus généraux A&s(pjie
MA (q), voire ARMA (p, g) est faisable, mais l'analyse et la présentation des résultats

deviendraient complexe. Cette analyse sera examinée dans les travaux futurs.

L'objectif principal de cette recherche est d'analyser les effets de l'agrégatitn
prévision de la demande. Cet effet est examiné par l'analyse mathénwitigitede de
simulation. L'analyse est complétée en examinant les résultats sur un ensemble de données
réelles. Basé sur le contexte scientifique et managérial de la recherche et des motivations, six

objectifs ont été formulés pour cette recherche:

7. Evaluer analytiquemeitieffet de I’agrégation temporelle non-cumulée sur la prévision
lorsque la série de base suit un processus stationnaire de type ARMA.

8. Identifier les conditions dans lesquelles I'approche d'agrégation temporelle performe
mieux que celle de non- agrégation, eeviersa.

9. Déterminer le niveau d'agrégation optimale qui maximise les avantages de l'approche
d'agrégation temporelle.

10.Examiner l'efficacité des approches BUTD afin de prévoir la demande désagrégée
etagrégée dans un environnement stationnaire es@atinnnaire.

11.Analyser l'effet des parametres du processus et de contrble sur la supériorité de

I'approche dans les agrégations temporelles et transversale.
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12.Tester la validité empirique et l'utilité des résultats théoriques et de simulation sur un
large ensemble de données réelles.
5. Methodologie

La recherche suit trois méthodes de recherche, I'analyse mathématique, la simulation et

I’étude empirique. La relation entre les trois méthodes est illustrée dans la Figure 7.

1. Analyse
math ématicue

2. Etude de simulation |/ \ 3 Analyse empitique

Figure 7: Méthodologie

Premierement, l'analyse mathématique est appligifée d’examiner la supériorité de
I'approche d'agrégatiaat de dévoiler les conditions dans lesquelles cette approche donne des
résultats plus précis par rapport a l'approche classique. La variance théorique de I'erreur de
prévision associée a chaque approche est calculée pour tous les processus de laademande
I'étude. Ceci est mené afin d'identifier les conditions de la supériorité de chaque approche.

L'étude de simulation est utilisée pour les raisons suivantes
e Pour tester et valider les résultats de I'analyse théorique.
e Pour relaxer les hypothéses prises en compte dans I'évaluation mathématique.

Enfin, les résultats de cette thése sont testés sur des données empiriques réelles pour

évaluer la validité et l'applicabilité pratique des principaux résultats de I'étude. Par
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conséquent, I'analyse empirique nous aiderait a tester I'applicabilité des résultats dans des

situations réelles.

6. Résultats et contributions

Dans la premiére partie de cette étude, l'impact de l'agrégation temporelle sur la
prévision de la demande a été évaluélpmalyse théorique, la simulation et l'investigation
empirique. Les évaluations sont basées sur le cdé&llbrreur quadratique moyenne (MSE
avant et aprés l'agrégatioM$Esa / MSEss) et les comparaisons sont menées a la fois au
niveau désagrégé et agrégé. Il est supposé que la demande suit un processus stationnaire
ARIMA(1,0,1), ARIMA(0,0,1) et ARIMA(1,0,0) et un lissage exponentiel simple est utilisé
comme la méthode de prévision. Les conditions dans lesquelles l'approche d'agrégation

performe mieux que celle de non-agrégation sont identifiées.

Les résultats de cette recherche concernant I'agrégation temporelle sont les suivantes:

e Les conditions de la supériterdes approches de I'agrégation et la non-agrégation sont
identifiées. Les valeurs des points de ruptsont déterminées pour des valeurs
données du niveau d'agrégation, et la constante de lissage asslacg&ria de la
demande initiale. Il en résulte des regles théoriques montrant la performance de

chaque approche aux niveaux de la comparaison désagrégée et agrégée.

e La performance de I'approche d'agrégation se trouve généralement améliorék quand
niveau d'agrégation augmente taux d'amélioration cependant, est plus faible pour
les processus ARIMA (1,0,1) et ARIMA (1,0,par rapport a celui de ARIMA(0,0,1).
Dans tous les processis niveau d'agrégation optimal datvaleur la plus élevée sur

un intervalle donné du niveau d'agrégation.

e La performance de l'approché’agrégation s'améliore lorsque la valeur de la
constante de lissage employée a la série agrégée.daasseésultats de l'analyse
montrent que lorsque le niveau d'agrégation augmente, I'auto-corrélation de la série est

réduite, ce qui nécessitemploi de valeurs faibles des constantes de lissage.
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En général, on constate que pour des valeurs d'auto-corrélation positivement élevées
dans la série originale, la méthode d'agrégation peut étre dépassée par celle de non-
agrégation.

o lorsque l'on compare au niveau désagrégé et ou l'auto-corrélation est
extrémement positive, (c.a.d hautes valeurs positiveg diens le processus
ARIMA (1,0,0) ou des valeurs négatives élevéegidet de valeurs positives
élevées de dans le processus ARIMA (1,0,1)), aucun niveau d'agrégation ne
permet d'améliorer la précision des prévisions. Par conséquent, I'approche non-
agrégation fournit toujours des prévisions plus précises. C'est un résultat
intuitif car, a tout moment de la période de demande les informations les plus
récentes sont précieuses. Dans un tel cas, l'approche désagrégée fonctionne

mieux car elle exploite pleinement ces informations récentes.

o Toutefois, lorsque la comparaison est effectuée au niveau agrégé, méme pour
des valeurs extrémement positives de [l'auto-corrélation, I'approche
d'agrégation peut performer mieux que celle de non-agrégatifonction du
niveau d'agrégation. Pour les valeurs faibles du niveau d'agrégation, I'approche
non-agrégation fonctionne mieux. Néanmoins, en augmentant le niveau
d'agrégation, I'approche agrégation surpéss®n-agrégation. C'est parce que
la comparaison est effectuée au niveau agrégé ou une prévision cumulative sur
I’horizon de m périodes est nécessaire. Comme le niveau d'agrégation et par
conséquent ’horizon de prévision augmente, la précision des prévisions
résultant de I'approche non-agrégation se détériore et céde a une supériorité en

faveur de I'approche d'agrégation.

Pour les valeurs négatives d'auto-corrélation ou les valeurs positives faibles, I'approche
d’agrégation est préférable quel que soit le niveau de comparaison. Lorsque l'auto-
corrélation de la demande est négative ou positive faible, I'information récente n'est
pas cruciale, puis une vue a plus long terme sur la demande est préférable. Ceci peut
étre obtenu comme indiqué en sélectionnant un niveau d'agrégation élevé et une valeur

faible de constante de lissage.



B.Rostami-Tabar, 2013, Résumé 237

Dans la deuxieme partie de cette recherche, I'efficacité des approches THV est
analytiguement évaluée pour prévisirdemande au niveau agrégeé et désagrégé quand la
série désagrégée suit sait processus moyenne mobile intégrée d’ordre un, ARIMA

(0,1,1), soit un processus autoregressifjenne mobile d’ordre un, ARIMA (1,0,1). La

méthode de prévision appliquée est une procédure de lissage exponentiel simple (SES).
Les résultats des analyses théoriques ont été complétés par une étude de simulation a la
fois au niveau agrégé et désagrégé ainsi que I'expérimentation avec un ensemble des
données empiriques relatives a un hypermarché eurdpgeéveloppements sont basés

sur la détermination de la variance de I'erreur de prévision pour les appfackeeBU.

Les comparaisons sont menées tant au niveau désagrégé et agrégé.
Les résultats de cette recherche concernant I'agrégation transversale sont les suivantes:

e Lorsque les paramétres de processus de tous les articles désagrégés sont identiques, il
n'y a pas de différence significative entre les approdiiz®t BU en prévision du
niveau agrége tant que la constante de lissage optimale est celle utilisée pour les deux
approches. En outre, la performance des approdbext BU est identique lorsque les
constantes de lissage utilisées pour tous les articles désagrtgdemande agrégée

sont identiques.

e Lorsque I’auto-corrélation des articles désagrégés est trés positive, les appBighes
et TD affichent la méme performance indépendamment des valeurs de corrélation

croisée.

e Pour fournir les prévisionsgrégées, 1’approche TD performe mieux quU lorsque
les corrélations croisées entre les articles désagrégés sont (tres) pdsitivasp-
corrélation d’un article est positivement élevéeet celle d’un autre est négative ou

faible positive.

e BU peut performer mieux quéD pour fournir les prévisions agrégées lorsque les
articles désagrégés suivent différents modeles de fluctuation (corrélation croisée
négative).La TD ne semble pas étre tres précise quand les articles désagrégés ont des

profils de demande différents.

e Pour fournir des prévisiondésagrégées, 1’approche BU performe mieux quélD

lorsque l'auto-corrélation d'au moins un élément de la famille est positive et la



B.Rostami-Tabar, 2013, Résumé 238

constante de lissage est fixée a sa valeur optimale pour les deux approches, ceci est
indépendamment de la corrélation croisée, les poids de la méthode de désagrégation,
et des valeurs des parametres du processus. Le degré de supériorité de I'&hproche

pour les processus non-stationnaires est beaucoup plus élevé par rapport a celui des

processus stationnaires lorsque I'on compare au niveau désagrége.

e Onconstate que poutrauto-corrélation négative ou positive faible, les approaBhks
et TD montrent presque la méme performance pour prévoir la demande désagrégée
lorsque les constantes de lissage optimales sont utilisées. En outre, la différence entre

cesdeux approches peut aller jusqu'a 1%.

e La performance d8U est généralement améliorée par la diminution de la corrélation
croisée, passant des valeurs positifs & négatifs. La performaneppmeche TD se
détériore par la baisse de la corrélation ceiBéur les valeurs de corrélation croisée
tres négativeBU est toujours préférée. C'est généralement le cas pour la comparaison

au niveau agréget désagrége.

e Les avantages obtenus par les approBtest TD pour le processus de demande non-
stationnaire sont plus élevés que ceux qui sont associés avec les processus

stationnaires en termes de précision des prévisions.

7.  Organisation de la these
Au terme de la position esquissée dans ce résumé, la thése est structurée comme suit:

Dans le deuxieme chapitrepus présentons un état de 1’art sur la prévision de la
demande par I'agrégation. Différents types d'agrégation, c'est a dire I'agrégaporelle et
transversale sont discutées. L'effet de I'agrégation sur la structure du processus est décrit et
enfin, des travaux menés sur la prévision de la demande en applitagrégation sont

discutés.

Dans le troisieme chapitrd'effet de 1’agrégation temporelle non-cumulée sur la
prévision de la demande est examinée lorsque la série chronologique suit un processus
stationnaire. Pour chacun des processus considéré dans cetteleetd@E théorique est

développé a la fois au niveau de la comparaison désagrégée et agrégée. Ensuite, les résultats
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de MSE sont comparés afin d'identifier les conditions de supériorité de chaque approche
Puis, l'analyse de simulation estnée afin d’examiner les résultats théoriques a la sude

I'investigation empirique.

Nous présentons dans le quatrieme chapitre, I'effet de I'agrégation transversale sur la
prévision de la demand@n suppose que la série suit soit un processus stationnaire soit un
non-stationnaire. L'évaluation analytigue est d'abord considérée suivie d'une étude de
simulation pour tester et valider les résultats théoriques. De plus, certaines hypothéses sont
relaxées par rapport a l'analyse théorique. Les résultats sont complétés par une analyse

empirique utilisant un ensemble de données réelles pour valider les résultats.

Enfin, dans la derniére partie de cette recherche, nous résumons les résultats de chaque
chapitre et nous présentores tonclusions de cette these. Les implications managériales et
les limites dela recherche sont décrites, avec les perspectives pour le travail réalisé dans le

cadre de la thése.
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Lexique

A

AutoRegressive
Integrated Moving
Average (ARIMA)
processes
AutoRegressive
Moving Average
(ARMA) processes
AutoRegressive (AR)
processes

Moving Average (MA)
processes
Aggregation level
Aggregate demand
Aggregate level
Aggregation approach
ARCH

B
Buckets of time

Bottom-up approach
C

Cross-sectional
aggregation
Customer Service,
Cut-off point

Cross correlation
Cumulativem step
ahead forecast

D
Disaggregate demand

Disaggregate
level(subaggregate
level)
Disaggregation
Disaggregation weights
Non-Stationary

Autoregressive
moyenne mobile
intégré

Autoregressive
moyenne mobile

Autoregressive
Moyenne mobile

Niveau d’agrégation
Demande agrégée
Niveau agrégé
Approche d’agrégation
Conditionnelle
hétéroscédasticité
autorégressive

La tranche de temp

approche ascendante

Agrégation
transversale
Service client
Paint de rupture

Corrélation croisée
Prévision cumulée de
m période d’avenir

Demande désagrégée
Niveau désagrégé
Désagrégation

Le poid de désaggrégation
Non-stationnaire

Fast moving items

Forecasting
Forecast horizon
Forecast accuracy

G
Stock control
GARCH

H
High frequency time
series

I
INARIMA

L
Low frequency time
series

M

Mean Square Error
(MSE)

Master Production
Scheduling
Material/capacity
planning

N
Non-overlapping
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Articles a rotation
rapide

Prévision
Horieon de prévision

Indicateur de précision

Gestion de stock
Conditionnelle
hétéroscédasticité
autorégressive
généralisée

Les séries
chronologique a haute
fréquence

Autoregressive
moyenne mobile Entie

Les séries
chronologiquea basse
fréquence

Erreur quadratique
moyenne
Programme directeur
de production
Planification du
matériel / capacité

Non-Cumulé
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Non-aggregation
approach

O

Overlapping
One step ahead
forecast

P

Procurement
Product family
Pattern

Practitioner

Process parameters

S

Stationary

Single Exponential
Smoothing
smoothing constant
Stock Keeping Units

Slow moving items
Spare part

Sales and Operations
Planning

Sale

T
Temporal aggregation
Time series
Top-down approach

U
Uncertainty

V
Variability

Approche de
nonagrégation

Cumulé
Prévision d’une
pétiode d’avenir

Achats

Famille de produit
Schéma
Professionnelle
Parameétres

de processus

Stationnaire

Lissage exponentielle
simple

La constante de lissag
Unité de gestion de
stock

Articles a rotation lente
Piece détachée
Planification des
ventes et des
opérations

Vente

Agrégation temporelle
Séries chronologique
Approche descendante

Incertitude

Variabilité
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