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Abstract 

Demand forecasting performance is subject to the uncertainty underlying the time 

series an organisation is dealing with. There are many approaches that may be used to reduce 

demand uncertainty and consequently improve the forecasting (and inventory control) 

performance. An intuitively appealing such approach that is known to be effective is demand 

aggregation. One approach is to aggregate demand in lower-frequency ‘time buckets’. Such 

an approach is often referred to, in the academic literature, as temporal aggregation. Another 

approach discussed in the literature is that associated with cross-sectional aggregation, which 

involves aggregating different time series to obtain higher level forecasts. 

This research discusses whether it is appropriate to use the original (not aggregated) 

data to generate a forecast or one should rather aggregate data first and then generate a 

forecast. This Ph.D. thesis reveals the conditions under which each approach leads to a 

superior performance as judged based on forecast accuracy. Throughout this work, it is 

assumed that the underlying structure of the demand time series follows an AutoRegressive 

Integrated Moving Average (ARIMA) process. 

In the first part of our1 research, the effect of temporal aggregation on demand 

forecasting is analysed. It is assumed that the non-aggregate demand follows an 

autoregressive moving average process of order one, ARMA(1,1). Additionally, the 

associated special cases of a first-order autoregressive process, AR(1) and a moving average 

process of order one, MA(1) are also considered, and a Single Exponential Smoothing (SES) 

procedure is used to forecast demand. These demand processes are often encountered in 

practice and SES is one of the standard estimators used in industry. Theoretical Mean Squared 

Error expressions are derived for the aggregate and the non-aggregate demand in order to 

contrast the relevant forecasting performances. The theoretical analysis is validated by an 

extensive numerical investigation and experimentation with an empirical dataset. The results 

indicate that performance improvements achieved through the aggregation approach are a 

                                                 

1 The use of the words “our” and “we” throughout the thesis is purely conventional. The work presented in 

this Ph.D. thesis is the result of research conducted by the author alone, albeit with support from an academic 

institution and a supervisory team. 
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function of the aggregation level, the smoothing constant value used for SES and the process 

parameters.  

In the second part of our research, the effect of cross-sectional aggregation on demand 

forecasting is evaluated. More specifically, the relative effectiveness of top-down (TD) and 

bottom-up (BU) approaches are compared for forecasting the aggregate and sub-aggregate 

demands. It is assumed that that the sub-aggregate demand follows either a ARMA(1,1) or a 

non-stationary Integrated Moving Average process of order one, IMA(1,1) and a SES 

procedure is used to extrapolate future requirements. Such demand processes are often 

encountered in practice and, as discussed above, SES is one of the standard estimators used in 

industry (in addition to being the optimal estimator for an IMA(1) process). Theoretical Mean 

Squared Errors are derived for the BU and TD approach in order to contrast the relevant 

forecasting performances. The theoretical analysis is supported by an extensive numerical 

investigation at both the aggregate and sub-aggregate levels in addition to empirically 

validating our findings on a real dataset from a European superstore. The results show that the 

superiority of each approach is a function of the series autocorrelation, the cross-correlation 

between series and the comparison level.  

Finally, for both parts of the research, valuable insights are offered to practitioners and 

an agenda for further research in this area is provided. 

Keywords: demand forecasting; temporal aggregation; cross-sectional aggregation; 

stationary processes; nonstationary processes; single exponential smoothing 
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Chapter 1 Introduction and Problem Statement 

This chapter provides the overall academic perspective, the objectives of this work and 

the steps required to conduct the research and meet the objectives. First, some key terms in 

the area of demand aggregation and forecasting are defined. Then, the business context, the 

research background and an overview of the research and its objectives are presented before 

discussing the methodological approach employed for the purposes of this work. We elaborate 

on all these issues later on in the thesis in chapters 2 - 4. The structure of this PhD thesis is 

presented at the end of the chapter. 

To attain a unified understanding of concepts related to this research work, it is 

necessary to take a step back and provide the definition of some key terms. 

1. Definitions 

In this section, a brief description of the key terms and phrases used in this research 

work is provided. These are the terms that are being used  all along this thesis and specifically 

in chapters 3 and 4. 

 Time series 

Makridakis et al (1998) defined a time series as a sequence of observations over time. 

A time series is an ordered sequence of observations. Although, the order is usually through 

time, particularly in terms of some equally spaced time intervals, the ordering may also be 

taken through other dimensions, such as space (Harvey, 1993). Time series occur in a variety 

of fields such as agriculture, business and economics, engineering, geophysics, medical 

science, social science, etc. For example in the business context, annual production levels, 

monthly spare parts demand, weekly inventory levels and daily sales all constitute examples 

of  time series. In this thesis, we focus on (weekly) demand time series. With regards to the 

../AMEDMENTS/Amendments_20131007.doc#_ENREF_76
../AMEDMENTS/Amendments_20131007.doc#_ENREF_40
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empirical data used for the purposes of our research an important qualification needs to be 

made. Sales figures are being used as a proxy for demand. Demand itself may not necessarily 

equal the sales, in case of requests not being satisfied due to stock outs. That is, demand 

would equal the (achieved) sales plus the lost (or backordered) sales. However, it is 

reasonable to use this approximation and a necessary condition. 

 Stationary time series 

A stationary time series is one whose properties do not depend on the time at which 

the series is observed (Makridakis et al., 1998). For a stochastic process to be stationary the 

expected value of the time series, the variance and the autocovariance of any lag k does not 

depend on time (Harvey, 1993). The most general class of stationary models for forecasting a 

time series is the class of Autoregressive Moving Average (ARMA) processes. 

 Non-Stationary time series 

Many applied time series, particularly arising from economic and business areas are 

non-stationary. Non-stationary time series can occur in many ways. They could have non-

constant means, time varying variances and/or autocovariances, or all of these properties 

occurring simultaneously. Trend, seasonality and cyclical time series are types of non-

stationary time series (Wei, 2006). One of the typical non-stationary class of models is the 

AutoRegressive Integrated Moving Average (ARIMA) one. A non-stationary time series can 

be divided in two parts: i) Homogeneous time series ii) Non-homogenous time series. In the 

former case, the mean is time-dependent. By computing the differences between consecutive 

observations, a homogeneous non-stationary time series can be converted to a stationary one. 

This is known as differencing. However, many non-stationary time series are non-

homogenous. The non-stationarity of these series is not due to their time-dependent expected 

value, but rather to their time-dependent variance and autocovariance. 

 Forecasting methods 

A forecasting method is a procedure for estimating the future observations. It depends 

largely on what data is available. If there is no data available, or if the available data is not rel-

evant to the forecasts, then qualitative forecasting methods must be used. There are well-

developed structured approaches to obtaining good forecasts without using historical data 

../AMEDMENTS/Amendments_20131007.doc#_ENREF_76
../AMEDMENTS/Amendments_20131007.doc#_ENREF_40
../AMEDMENTS/Amendments_20131007.doc#_ENREF_88
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(Hyndman and Athanasopoulos, 2013). In contrast, quantitative forecasting can be applied 

when two conditions are satisfied: 

1. Numerical information (data) about the past is available, 

2. It is reasonable to assume that some aspects of the past patterns will continue into 

the future (i.e. there are no structural changes). 

There is a wide range of quantitative forecasting methods, often developed within spe-

cific disciplines for specific purposes. Each method is associated with specific properties, 

accuracy levels and costs (of implementation) all of which must be considered when choosing 

between them. Most quantitative forecasting problems relate to either time series data (col-

lected at regular intervals over time) or cross-sectional data (collected at a single point 

in time). Quantitative forecasting methods are divided in two general categories: 1) time 

series model ii) explanatory models. An explanatory model is very useful because it incorpo-

rates information about other variables, rather than only historical values of the variable to be 

forecast. However, there are several reasons a forecaster might select a time series model 

rather than an explanatory model. First, the system may not be understood, and even if it was 

understood it may be extremely diffi cult to measure the relationships assumed to govern its 

behaviour. Second, it is necessary to know or forecast the various predictors in order to be 

able to forecast the variable of interest, and this may be too difficult. Third, the main concern 

may be only to predict what will happen rather than explaining precisely why something 

happens. Finally, the time series model may give more accurate forecasts than an explanatory 

or mixed model (Hyndman and Athanasopoulos, 2013).  

 Estimator selection 

In order to evaluate the impact of each aggregation approach on the forecasting 

performance, an estimator needs to be selected and used for extrapolation purposes. In this 

study, Single Exponential Smoothing (SES), also referred to as Exponentially Weighted 

Moving Average (EWMA) method, is used to estimate the future demand. SES is a very 

popular forecasting method in industry as it is intuitively appealing, easy to understand and 

has minimal computer storage requirements. Moreover, it is optimal for a non-stationary 

Integrated Moving Average process of order one, ARIMA(0,1,1). Although its application 
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implies a non-stationary behavior of the demand, sufficiently low smoothing constant values 

introduce minor deviations from the stationarity assumption whilst the method is also 

unbiased. SES’s estimator relies upon exponentially smoothed forecasts of the demands. The 

estimate is updated in each period. For any time period t, the updating procedure of SES’s 

method is presented below: 

  11 1   ttt fdf   (‎1-1) 

where dt-1 is the demand in period t-1, ft is the forecast of period t and  is the 

smoothing constant. 

For any   between zero and one, the weights attached to the observations decrease 

exponentially as we go back in time, hence the name “exponential smoothing”. If  is small 

(i.e., close to zero), the weights are spread across the observations to the very distant past. 

If   is large (i.e., close to one), more weight is given to the more recent observations and the 

weights decline sharply to zero for relatively recent observations. At the extreme case 

where  =1, SES becomes a naïve method, i.e. the very last actual demand is the forecast for 

the next time period. 

In this research work, we rely upon the use of the SES method rather than a popular 

alternative (the moving average (MA)) or any optimal forecasting method (arising under the 

ARIMA structure), although these forecasting methods can be considered in the next steps of 

research. There are two reasons that support the choice of the SES method: 

i) On average, SES tends to outperform the MA method, as observed in an empirical 

comparison of their performance in the M3 forecasting competition (as reported by 

Makridakis and Hibon (2000)). In addition, SES corresponds to an intuitively appealing 

underlying model, whereas MA does not. It is also important to note that under the stationary 

assumption, Brown (1963) showed the correspondence between SES and MA 

(correspondence between the smoothing constant value and the length of the moving 

average).  
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ii) In practice, the decision makers may not want to spend too much time and effort 

examining and defining the characteristics of the data-generating process prior to determining 

the forecasting model, as is required by ARIMA. Besides, in a production planning 

framework, forecasts are required on a periodic basis, sometimes as often as on a daily or 

even hourly basis. Typically, forecasting is done simultaneously for several different, but 

related items in computerized systems with minimal human intervention. Therefore, it is quite 

impractical to determine the optimal ARIMA model for each item in each updating period. 

However, it is useful to determine the amount of gain or loss by using an optimal forecasting 

method instead of SES. This issue will be considered in the next steps of research. 

 Accuracy measure 

An accuracy measure is a measure applied for judging the efficiency of a forecasting 

method. Forecast accuracy relates to a comparison between the forecast and the. actual values. 

Thhere are many accuracy measures discussed in the literature that may be used to report 

performance (Hyndman and Koehler, 2006). However, such measures are not necessarily 

mathematically tractable making it impossible to use them for theoretical analysis. In this 

research work, the variance of forecast error or equivalently the Mean Square Error (MSE) 

(for unbiased estimation procedures) is utilised as the only accuracy metric. Although we do 

wish to contrast performances on empirical data, the aim of this work is to understand the 

underlying reasons as to why one method performs better than another. To do so, a theoretical 

comparison needs to be undertaken and the MSE is the only available metric. Additionally, 

the MSE is similar to the variance of the forecast errors (which consists of the variance of the 

estimates produced by the forecasting method under concern and the variance of the actual 

demand) but not quite the same since any potential bias of the estimates may also be taken 

into account. Since SES provides unbiased estimates for the processes considered in this work 

the variance of forecast errors is equal to the MSE, i.e.  MSE = Var(Forecast Error). 

 Demand Aggregation 

An aggregation process consists of deriving a low frequency representation of the 

process from a high frequency formulation; this derivation can be exerted through time or 

through individuals. 
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Aggregation across time, also called temporal aggregation, refers to the process by 

which a low frequency time series (e.g. quarterly) is derived from a high frequency time series 

(e.g. monthly) (Nikolopoulos et al., 2011). As shown in Figure ‎1-1 and Figure ‎1-2, this is 

achieved through the summation (bucketing) of every m periods of the high frequency data, 

where m is the aggregation level. There are two different types of temporal aggregation: non-

overlapping and overlapping. In the former case (Figure ‎1-1) the time series are divided into 

consecutive non-overlapping buckets of time where the length of the time bucket equals the 

aggregation level. The aggregate demand is created by summing up the values inside each 

bucket. The number of aggregate periods is [N/m], where N is the number of the original 

periods, m the aggregation level and the [x] operator returns the integer part of x. As a 

consequence the number of periods in the aggregate demand is less than the original demands. 

 

Figure  1-1: Non-overlapping temporal aggregation (from weekly to monthly data) 

The overlapping case (Figure ‎1-2) is similar to a moving window technique where the 

window’s size equals to the aggregation level. At each period, the window is moved one step 

ahead, so the oldest observation is dropped and the newest is included. It is observed that the 

number of overlapping aggregate periods is higher than those of the non-overlapping and 

equals to N-m+1. Therefore, the information loss in negligible as compared to the non-
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overlapping case. This is an important observation in terms of data availability and for the 

cases where little history of data is available. 

 

Figure  1-2: Overlapping temporal aggregation (from weekly to monthly data) 

 

In this research, only the case of the non-overlapping temporal aggregation is 

considered. The overlapping temporal aggregation is an issue left for further research. In the 

next section, the effect of temporal aggregation on the structure of time series is reviewed. 

Often, for the purpose of having comparable forecasts using the temporal aggregation 

approaches as compared to the classical non-aggregation approaches, if the comparison is 

undertaken at the disaggregate level, then the aggregate forecasts should be disaggregated to 

the original level (by dividing them on the aggregation level). Furthermore, if the comparison 

is conducted at the aggregate level, then the original forecasts should be multiplied by the 

aggregation level. This is illustrated in Figure ‎1-3 and 1-4 in the case of weekly and monthly 

forecasts.   
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Figure  1-3: Comparison at disaggregate level 

 

Figure  1-4: Comparison at aggregate level 
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Another type of aggregation referred to as cross-sectional (or hierarchical or 

contemporaneous) aggregation occurs when the aggregation takes place across a number of 

Stock Keeping Units (SKU) at one specific time period to reduce variability (Silvestrini and 

Veredas, 2008). Existing approaches to cross-sectional forecasting usually involve either a 

bottom-up (BU) or a top-down (TD) approach (or a combination of the two). When 

forecasting at the aggregate level is of interest, the former involves the aggregation of 

individual SKU forecasts to the group level whereas the latter relates to forecasting directly at 

the group level (i.e. first aggregate requirements and then extrapolate directly at the aggregate 

level).  

 

 

 

 

 

 

 

 

 

Figure  1-5: Schematic diagram of TD (left) and BU (right) approaches 

When the emphasis is on forecasting at the subaggregate level, then BU relates to 

direct extrapolation at the subaggregate level whereas TD involves the disaggregation of the 

forecasts produced directly at the group level. An important issue that has attracted the 

attention of many researchers as well as practitioners over the last few decades is the 

effectiveness of such cross-sectional forecasting approaches. As illustrated by Figure ‎1-5 

these approaches work as follows: The TD approach consists of the following steps: i) 

subaggregate demand items are aggregated; ii) the forecast of aggregate demand is produced 
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by applying SES at the aggregate level, and iii) the forecast is subaggregated back to the 

original level by applying an appropriate disaggregation method, if a subaggregate forecast is 

needed. In the BU approach: i) subaggregate demand forecasts are produced directly for the 

subaggregate items; ii) the aggregate forecast is obtained by combining individual forecasts 

for each SKU, i.e. potentially a separate forecasting model is used for each item in the product 

family (Zotteri et al., 2005). These approaches are presented schematically in Figure ‎1-5. The 

presentation style follows that adopted by Mohammadipour et al (2012).  

2. Business Context 

Demand forecasting is the starting point for most planning and control organizational 

activities. Moreover, one of the most important challenges facing modern companies is 

demand uncertainty (Chen and Blue, 2010). The existence of high variability in demand for 

fast moving and slow/intermittent moving items (items with a high ratio of zero observations) 

pose considerable difficulties in terms of forecasting and stock control. Deviations from the 

degree of variability accommodated by the Normal distribution often render standard 

forecasting and inventory theory inappropriate (Chen et al., 2000; Syntetos and Boylan, 2005; 

Wemmerlov and Whybark, 1984).  

There are many approaches that may be used to reduce demand uncertainty and thus to 

improve the forecasting (and inventory control) performance of a company. An intuitively 

appealing such approach that is known to be effective is demand aggregation (Chen et al., 

2007). One possibility is the Temporal Aggregation. Another aggregation approach often 

applied in practice is the Cross-sectional Aggregation (as discussed in the previous section). 

Such an approach is equivalent to aggregating data for one single SKU across a number of 

depots or stock locations. Natural, practically useful, associated forms of aggregation also 

involve geographical consolidation of data or aggregation across markets.  

Although no empirical studies exist that document the extent to which aggregation 

takes place in practical settings, this is an approach that is known to be popular amongst 

practitioners because of its intuitive appeal. In practical terms, the benefit depends on the type 

of aggregation and of course the data characteristics. Cross-sectional aggregation for example 

usually leads to variance reduction. This is due to the fact that fluctuations in the data from 
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one time series may be offset by the fluctuations present in another time series (Widiarta et 

al., 2009). Contrary to cross-sectional aggregation, in temporal aggregation, variance is 

increased. However, it is shown that temporal aggregation can reduce the coefficient of 

variation of demand. In any case, the implied benefit coupled with the ease of implementing 

such approaches renders them a popular choice in industry. 

Demand data may be broadly categorized as intermittent and fast. Aggregation of 

demand in lower-frequency ‘time buckets’ enables the reduction of the presence of zero 

observations in the former case or, generally, reduces uncertainty in the latter. Intermittent 

demand items (such as spare parts) are known to cause considerable difficulties in terms of 

forecasting and inventory modelling. The presence of zeroes has significant implications 

because of the following three reasons. First, the difficulty in capturing underlying time series 

characteristics and fitting standard forecasting models. Second, the difficulty in fitting 

standard statistical distributions, such as the Normal. Third, deviations from standard 

inventory modelling assumptions and formulations. These concerns collectively render the 

management of these items a very difficult exercise. Temporal aggregation is known to be 

applied widely in military settings (very sparse data), the after sales industry (service parts) 

etc. Recent empirical studies in this area (Babai et al., 2012; Nikolopoulos et al., 2011) have 

resulted in some very promising findings pointing out also the need for more theoretical 

analysis. Although the area of forecasting with temporal aggregation in an intermittent 

demand context is a very interesting one both from an academic and practitioner perspective, 

in this research only the most often occurring cases of fast demand items are considered. 

Analysis in an intermittent demand context is an important avenue for further research and 

this issue is discussed in more detail in the last chapter of this Ph.D. thesis. 

In addition to the demand uncertainty reduction associated with the temporal 

aggregation approach discussed above, there is another important issue that relates to the 

forecast horizon that renders aggregation a very promising approach. The “forecast horizon” 

determines how far into the future the estimate projections must be. As a general rule, the 

further into the future we look, the more clouded our vision becomes and consequently long 

range forecasts are less accurate than short range forecasts. This is also one of the areas where 

the temporal aggregation may improve the forecast accuracy, because as we look further into 
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the future, the long term view becomes more important and the temporal aggregation 

approach may utilize this information more effectively than the classical approaches.  

From an academic perspective the emphasis to date has been mainly on the cross-

sectional aggregation. Moreover, most inventory forecasting software packages support the 

aggregation of data although this would typically cover cross-sectional aggregation only. The 

consideration of temporal aggregation has been somewhat neglected by software 

manufacturers and academics alike despite the potential opportunity for adding more value to 

real world practices. In this work, the objective is to advance the current state of knowledge in 

the area of demand forecasting temporal aggregation (and extend the existing theory on cross 

sectional aggregation). 

In the above discussions, the effect of temporal aggregation on a single SKU is 

considered. However, in reality there are often many related time series that can be organized 

hierarchically and aggregated at several different levels in groups based on products, 

customers, geography or other features (Hyndman et al., 2011). The hierarchical level at 

which forecasting is performed depends on the function the forecasts are fed into. With 

regards to products (or SKUs) in particular, forecasting at the individual SKU level is required 

for inventory control whereas product family forecasts may be required for Master Production 

Scheduling. Forecasts across a group of items ordered from the same supplier may be required 

for the purpose of consolidating orders. Forecasts across the items sold to a specific large 

customer may determine transportation and routing decisions etc.  

TD and BU forecasting approaches are extremely useful towards improving the 

accuracy of forecasts and plans when leveraged within an S&OP (Sales and Operations 

Planning) process (Lapide, 2006). The S&OP is a multi-functional process that involves 

managers from all departments (Sales, Customer Service, Supply Chain, Marketing, 

Manufacturing, Logistic, Procurement and Finance), where each department requires different 

levels of demand forecasts (Lapide, 2004). For example, in marketing (Dekimpe and 

Hanssens, 2000), forecasting of revenues by product groups and brands is needed; sales 

departments deal with sales forecasts by customer accounts and/or sales channels; supply 

chain managers request SKU level forecasts, while finance requires forecasts that are 

aggregate into budgetary units in terms of revenues and costs (Bozos and Nikolopoulos, 

2011). In order to produce the required forecasts, demand and/or forecasts should be 
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aggregated and/or disaggregated to various levels. This involves the application of both TD 

and BU or a combination of them (Lapide, 2004, 2006). 

3. Research Background 

Aggregation has been widely discussed in the academic literature since as early as the 

1950s (Quenouille, 1958). It is seen as a means to manage the demand fluctuation and reduce 

the degree of uncertainty. It has been shown by Theil (1954), Yehuda and Zvi (1960), and 

Aigner and Goldfeld (1974) that demand uncertainty can be effectively reduced through 

appropriate demand aggregation and forecasting. In the literature of supply chain planning 

and demand planning, demand aggregation is known as a ‘‘risk-pooling’’ approach to reduce 

demand fluctuation for more effective material/capacity planning(Chen and Blue, 2010). In 

the area of temporal aggregation, there are both theoretical and empirical investigations 

discussed in the literature. However, most of these contributions may be found in the 

Economics discipline. Amemiya and Wu (1972) evaluated the effect of non-overlapping 

temporal aggregation when the original series follows an autoregressive process of order p, 

AR(p) process. By considering the ratio of MSE of non-aggregate and aggregate prediction (3 

linear predictors were considered) at the aggregate level, they have shown that the aggregate 

approach outperforms the non-aggregate one. Tiao (1972) investigated the effect of non-

overlapping temporal aggregation on a non-stationary process of the Integrated Moving 

Average IMA(d,q) form. A conditional expectation was applied to obtain one step ahead 

forecasts at the aggregate level based on the non-aggregate and aggregate series. 

Subsequently, the efficiency of the aggregate forecasts was defined as the ratio of the variance 

of the forecast error of the non-aggregate to the aggregate series when the aggregation level is 

large. It was shown that when  d=0 and the aggregation level in very high, then the ratio 

under concern equals one and the comparative benefit of using the non-aggregate forecasts is 

increased with d.  

 Few recent pieces of research have evaluated the effect of temporal aggregation on 

forecasting and stock control by means of empirical analysis. Nikolopoulos et al. (2011) 

empirically analysed the effects of temporal aggregation on forecasting intermittent demand 

requirements and they have proposed a methodology termed as ADIDA (Aggregate 

Disaggregate Intermittent Demand Approach to forecasting). It was shown that the ADIDA 
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methodology may indeed offer considerable improvements in terms of forecast accuracy. In 

addition, Babai et al. (2012) have extended the study discussed above (Nikolopoulos et al., 

2011) by means of considering the inventory implications of the ADIDA framework through 

a periodic order-up-to-level stock control policy. The researchers concluded that a simple 

technique such as temporal aggregation can be as effective as complex mathematical 

intermittent forecasting approaches. 

To the best our knowledge, the only papers directly relevant to our work are those by 

Amemiya and Wu (1972) and Tiao (1972) for the AR and the MA process respectively. These 

works focused on characterizing the aggregate demand series in addition to evaluating the 

forecast performance. However, the results presented in these works remain preliminary in 

nature while their experimental setting may also be criticized in terms of the estimation 

procedures considered. In addition, no empirical results were obtained. Therefore, the lack of 

conditions that may determine the superiority of each approach in demand forecasting is 

obvious. It is not clear when the aggregation approach provides more accurate forecasts than 

the non-aggregation one and vice versa. Consequently, the motivation behind this part of the 

research study was the lack of the theoretical analysis regarding the effect of temporal 

aggregation on demand forecasting. In this research, analytical evaluation is applied to 

identify the superiority conditions of each approach. The research starts with the simple first 

order ARMA type process as discussed earlier in section 1.2. However, the analysis can be 

conducted for higher order processes and it this will be considered in the future. 

 In the area of cross-sectional aggregation, most of the forecasting literature has looked 

at the comparative performance of the TD and the BU approaches. The findings with regards 

to the performance of these approaches are mixed. 

Some authors like Theil (1954), Grunfeld and Griliches (1960), Schwarzkopf et al. 

(1988), and Narasimhan et al., 1985(1985) argued that TD outperforms the BU approach. On 

the other hand another authors such as Orcutt et al. (1968) , Edwards and Orcutt (1969), Dunn 

et al. (1976), Dangerfield and Morris(1988) and Gross and Sohl (1990) found that the BU 

approach performs better; and finally some other authors like Barnea and Lakonishok (1980), 

Fliedner (1999) and Widiarta et al.(2007, 2008, 2009)  take a contingent approach and analyse 

the conditions under which one approach produces more accurate forecasts than the other. 
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In this PhD thesis, the effectiveness of the BU and the TD approaches is evaluated. 

The research conducted by Widiarta et al. is extended to consider a more general stationary 

demand process ARIMA(1,0,1) and a non-stationary ARIMA(0,1,1) process. Moreover, the 

comparison is undertaken at both subaggregate and aggregate levels. Additionally, the 

superiority of each approach is examined by a real data set. 

4. Research Overview 

Aggregation enables forecasters to obtain forecasts at various levels across time and 

individual items. Depending on the level of forecasting, we may either provide the forecasts 

and then aggregate them or we may first aggregate the original series to obtain the aggregate 

demand and then produce the aggregate forecast. In the latter case, a disaggregation may be 

required to obtain the disaggregate forecast. In this research the impact of aggregation on 

demand forecasting is evaluated. To show the effect of aggregation on demand forecasting, 

two different types of aggregation are considered: i) temporal aggregation and ii)  cross 

sectional aggregation. Our research overview is summarized in the Figure ‎1-6. 

The mathematical analysis is complemented by a numerical investigation to validate 

the theoretical results which is also used in order to conduct a sensitivity analysis by some 

constraining assumptions considered in the analytical evaluation. Next, the findings are 

validated empirically (by means of simulation on a dataset provided by a European 

superstore) and by doing so some very much required empirical evidence in the area of 

demand aggregation is offered. Finally, important managerial insights are derived and 

tangible suggestions are offered to practitioners dealing with inventory forecasting problems. 

Based on the research background and motivations, six objectives have been 

formulated for this research: 

1. To evaluate analytically the effect of non-overlapping temporal aggregation on 

forecasting when the basic series follows a stationary ARMA type process. 

2. To identify the conditions under which the temporal aggregation approach 

outperforms the non-aggregation one and vice versa. 
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3. To determine the optimal aggregation level that maximizes the benefits of the 

temporal aggregation approach.  

4. To examine the effectiveness of the BU and the TD approaches to forecast 

subaggregate and aggregate demand in a stationary and a non-stationary environment. 

5. To analyse the effect of the control and the process parameters on the superiority of 

each approach in both temporal and cross-sectional aggregations. 

6. To test the empirical validity and utility of the theoretical and simulation results on a 

large set of real world data. 

 

 

Aggregation type 

 

Demand process 

 

Forecasting method 

 

Accuracy measure 

 

Comparison level 

 

Objective 

 

Figure  1-6: Research Overview 

Research study 
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Evaluate the effectiveness of the 
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5. Methodology 

The research follows three research methods, namely mathematical analysis, 

simulation and empirical investigation. The relationship between the three methods is 

illustrated in Figure ‎1-7.  

 

Figure  1-7: Methodology 

Firstly, the mathematical analysis is applied to examine the superiority of the aggregation 

approach and to disclose the conditions under which this approach provides more accurate 

results than the classical approach. The Simulation study is used for the following reasons:  

 To test and validate the results of theoretical analysis. 

 To relax the assumptions considered in the mathematical evaluation. 

Finally, the findings of this PhD thesis are to be tested on real empirical data to assess 

the practical validity and applicability of the main results of the study. Therefore, empirical 

analysis would help us to test the applicability of the results in real situations.   

6. Thesis Structure 

The  PhD thesis is structured as follows: 
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In Chapter 2, an overview of demand forecasting by aggregation is presented. 

Different types of aggregation, i.e. temporal and cross-sectional aggregation are discussed and 

the effect of aggregation on process structure is described. 

In Chapter 3, the effect of non-overlapping temporal aggregation on demand 

forecasting is examined when the underlying series follow a stationary process. For each 

process under consideration, the theoretical MSE is derived at both the disaggregate and the 

aggregate level of comparison. Then, the MSE results are compared to identify the conditions 

under which each approach outperforms the other. Next a simulation analysis is conducted to 

examine the results of the theoretical evaluation followed by an empirical investigation. 

In Chapter 4, the effects of cross-sectional aggregation on demand forecasting is 

evaluated. It is assumed that the underlying series follow either a stationary or a non-

stationary process. An analytical evaluation is first considered followed by simulation to test 

and validate the theoretical results. Additionally, some assumptions are relaxed compared to 

the theoretical analysis. The results are complemented by an empirical analysis to validate the 

findings on a real demand data set.  

Finally, the findings from each chapter are summarized and the conclusions of this 

thesis are discussed in chapter 5. Managerial implications and limitations of the research are 

described, along with opportunities for future research.  
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Chapter 2 State of the art 

The first chapter summarized the research works conducted in this study. It outlined 

the research through a summary of the research background and problems, expected results, and 

designated methodology. This chapter aims to provide an overview of the literature on 

forecasting by temporal and cross-sectional aggregation. 

1. Introduction 

Demand forecasting is the starting point for most planning and control organizational 

activities. In general practice, accurate demand forecasts lead to efficient operations and high 

levels of customer service, while inaccurate forecasts inevitably lead to inefficient, high cost 

operations and/or poor levels of customer service. In many organizations, one of the most 

important actions that may be taken to improve the efficiency and the effectiveness of the 

decision making process is to improve the accuracy of the demand forecasts. 

When developing the demand forecasting, the practitioners need to determine in which 

level they should produce the forecast. Forecasters need to properly identify what is the 

objective of the forecasting process, in terms of time bucket (i.e., forecasts are produced on a 

daily level, weekly or on monthly one), and set of items the demand refers to (i.e., single item 

or group of items). The choice of the appropriate level of forecasting depends on the decision-

making process the forecast is expected to support. For instance, forecasting at the individual 

SKU level is required for supply chain management, while cumulative aggregate forecast may 

be used for budgeting or plant design. In many organizations, several managers from all 

departments (Sales, Customer Service, Supply Chain, Marketing, Manufacturing, Logistic, 

Procurement and Finance) are involved in generating forecast, where each department 

requires different levels of demand forecasts (Lapide, 2004).  
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In addition, one of the most important factors that influence the accuracy of forecasts 

is demand variability. Demand dispersion and uncertainty are among the most important 

challenges facing modern companies (Chen and Blue, 2010). These issues have been 

addressed in the academic literature for many years. The existence of high dispersion in 

demand for fast moving and slow/intermittent moving items (items with a high ratio of zero 

observations) pose considerable difficulties in terms of forecasting and stock control. 

Deviations from the degree of variability accommodated by the Normal distribution often 

render standard forecasting and inventory theory inappropriate (Chen et al., 2000; Syntetos 

and Boylan, 2005; Wemmerlov and Whybark, 1984).  

There are many approaches that may be used to reduce the demand dispersion and 

provide the different forecast level and consequently improve the forecasting (and inventory 

control) performance of a company. An intuitively appealing such strategy that is known to be 

effective is demand aggregation (Chen et al., 2007). One approach is to aggregate demand in 

lower-frequency ‘time buckets’, thereby reducing the presence of potential zero observations 

(in case of intermittent demand) or generally reduce dispersion in case of fast moving 

demand. Such an aggregation strategy is often referred to, in the academic literature, as 

Temporal Aggregation (Nikolopoulos et al., 2011). Another aggregation strategy discussed in 

the literature is the Cross-Sectional Aggregation(also referred to as hierarchical), which 

involves aggregating different time series to obtain higher level forecasts(Silvestrini and 

Veredas, 2008). Existing approaches to cross-sectional forecasting usually involve either a 

bottom-up (BU) or a top-down (TD) approach (or a combination of the two). Although the 

concept of aggregation is very simple but it plays a very important role in supply chain 

management(Bonomo, 2003). An interesting question raised when applying aggregation to 

forecast demand is how exactly does that affect the demand dispersion. The relevant impact 

relies entirely upon the type of aggregation – cross-sectional versus temporal. Cross sectional 

aggregation usually leads to variance reduction. This is due to the fact that fluctuations in the 

data from one Stock Keeping Unit (SKU) are offset by fluctuations in the data from other 

SKUs (Widiarta et al., 2009). Contrary to cross sectional aggregation, in temporal 

aggregation, variance is increased. Schluter and Trede (Schluter and Trede, 2011) have shown 

that for certain types of data generation processes, both the mean and variance of the data 

increase through temporal aggregation. However, it is easy to show that temporal aggregation 
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can reduce the coefficient of variation of demand and this issue is further discussed later in 

our paper. 

Aggregation has been widely discussed in the academic literature since as early as the 

1950s (Quenouille, 1958). In a production planning framework, many researchers have 

focused on the effectiveness of cross-sectional aggregation and especially on the bottom-up 

and top-down approaches. However there are fewer studies focusing on the effects of 

temporal aggregation. Moreover, and although most inventory forecasting software packages 

support aggregation of data, this would typically cover cross-sectional aggregation only; the 

consideration of temporal aggregation has been neglected by software manufacturers despite 

the potential opportunity for adding more value to their customers. 

In the following sections, the existing researches conducted in the area of temporal and 

cross-sectional aggregation are presented. 

2. Temporal Aggregation 

In this section, the effect of the temporal aggregation on the process structure 

discussed in the literature reviewed. Then, the impact of temporal aggregation on demand 

forecasting discussed in the literature is presented. 

2.2.1 Temporal aggregation identification process 

An original time series model is presented in terms of basic time unit ݐ. Although the 

original form of the model can be used to produce the forecasts, however in some cases the 

time frequency of the observed data may not be the same as the assumed time unit ݐ. For these 

cases a temporally aggregate data may be used, so it is necessary to know the effect of 

aggregation on model structure of the data processes. The orders of the low frequency model 

(i.e. monthly) from those of the high frequency model (i.e. weekly) can be determined by 

temporal aggregation. i.e, If the high frequency model is an ARIMA(1,0,1), what is the low 

frequency model? Second, once the orders are inferred, the parameters of the low frequency 

model is derived from the high frequency ones, rather than estimating them.  
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The analysis of temporal aggregation starts with the work of Amemiya and Wu 

(1972). It is shown that if the original variable follows a pth order autoregressive process, 

ARIMA( p,0,0), then the non-overlapping aggregates follow a mixed autoregressive moving 

average (ARIMA) model of the (p,0,q*). Tiao (1972) has investigated the effect of non-

overlapping temporal aggregation on a non-stationary process of the Integrated Moving 

Average ARIMA (0,d,q) form, where d is the integrated parameter and q is the moving 

average parameter. It is shown that the aggregate process is of the ARIMA (0,d,q*). Brewer 

(1973) studied the effects of non-overlapping temporal aggregation on ARIMA (p,0,q) 

processes. It is shown that aggregating such processes results in ARMA processes with 

autoregressive order p and moving average order r, ARMA (p,0,r). The effect of the non-

overlapping temporal aggregation on ARIMA(p,d,q) process is evaluated by Weiss (1984) . It 

is seen that the temporally aggregate process is also follow an ARIMA(p,d,r) process. Wei 

(1979) studied the aggregation effect on univariate multiplicative seasonal time series models. 

It is revealed that for an ARIMA process of order ݏ(ܳ,�,ܲ)×ݍ,�,݌, the corresponding 

aggregate process is an ARIMA of order ݎ,�,݌ ×(ܲ,�,ܳ)s*. Brewer(1973) also presented a 

generalization of the results for ARMA models with exogenous variables (ARMAX models), it is 

shown that the temporally aggregate ARIMAX( p, d, q)(k) model is an ARIMAX(p, d, r)(a). 

Teles et al (1999) sowed that temporal aggregation changes the order of a fractionally 

integrated ARFIMA process to an ARFIMA( p,d,∞), while leaving the value of d unchanged. 

Additionally, Souza and Smith (2004) showed that for AR Fractionally IMA (ARFIMA) 

models temporal aggregation results in bias reduction. 

Drost and Nijman (1993) considered the effct of temporal aggregation on the ARMA 

models with symmetric GARCH errors, ARMA(p ,q)-GARCH(P,Q). it is revealed that the 

aggregate model follows an ARMA(p,r) with weak GARCH(R,R). they have also considered 

the ARCH and GARCH type models. It is shown that the temporal aggregation of an 

ARCH(q) is an GARCH(q,q), it is also seen that the temporally aggregate GARCH(1,q) is an 

GARCH(q,q). 

Stram and Wei (1986) studied the relationship between the autocovariance function of 

disaggregate and aggregate processes. They have shown that the autocovarinace function of 

the latter can be computed based on the autocovariance function of former; in particular the 
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autocovariance function after aggregation is a function of the aggregation level and 

autocovariance function before aggregation. 

Table ‎2-1 summarized the effect of the non-overlapping temporal aggregation on the 

structure of the process. 
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Table  2-1: the effect of the non-overlapping temporal aggregation on process’s structure 

Non-aggregate process 
Aggregate 
process Parameters 

Reference  

ARIMA (p,0,q) ARMA (p, q*) 


 
m

pq
pq

1
1*  

(Brewer, 1973)  

ARIMA (p,0,q) ARMA (p, q*) 


 
m

pm
q

)1)(1(
*  

(Amemiya  and Wu, 1972)  

ARIMA (0,0,q) MA (n0) 


 
m

q
qn

1
1*

0  
(Wei, 2006)  

ARIMA (0,d, q) IMA (d, n0) 


 
m

dq
dqn

1
1*

0  
(Tiao, 1972)  

ARIMA (p, d, q) ARIMA (p, d, r) 


 
m

qmdmp
r

)1)(1()1(
 

(Weiss, 1984)  

ARIMA( p,d,q) (P,D,Q)s ARIMA( p,d,r) (P,D,R)s 
  


 

m

qmdmp
r

)1()1(1 (Wei, 1979)  
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    
 

m

sDPQksDP
R

*
 

First, if m < s, there is still some seasonality in the 

temporally aggregate process. Second, if m is a multiple 

of s, the seasonal cycle remains constant. Last, if m is 

equal or larger than s, seasonality vanishes. 

ARIMAX( p, d, q)(k) ARIMAX( p, d, r)(a) 

  


 
k

qkdp
r

)1(1
 

    


 


 
k

kdv

k

dmkdp
r

)1(1)1(1

 
dv

k

dmkdp
a 


  1)1(1

 

(Brewer, 1973) 

 

 

 

 

 

 

ARFIMA( p,d,q) ARFIMA( p,d,∞) - (Teles et al., 1999)  

ARCH(q) GARCH(q,q) - (Drost and Nijman, 1993)  

GARCH(1, q) GARCH(q, q) - (Drost and Nijman, 1993)  
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ARIMA( p,0,q)-
GARCH(P,Q) 

ARMA(p,r) with weak 
GARCH(R,R) 

  


 
m

qmp
r

)1(1
 

 1
2

1  rrrR  

 QPr ,max  

(Drost and Nijman, 1993)  

INAR(1) INARMA(1,1) - (Brannas et al., 2002)  

INMA(1) INMA(1) - (Brannas et al., 2002)  
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Luiz et al.(1992) evaluated the effect of overlapping temporal aggregation where the original 

series follows an ARIMA process. It is found that the temporally aggregate process of an 

ARIMA(p,d,q) is an ARIMA(P,d,Q). To the best of our knowledge this is the only research 

dealing with the impact of overlapping temporal aggregation on the structure of the ARIMA 

type process. 

 

Table  2-2: the effect of the overlapping temporal aggregation on process’s structure 

ARIMA(p,d,q) ARIMA(P,d,Q) P ≤ p  and Q ≤ q+m-1 (Luiz et al., 1992) 

 

Although many studies consider the case of fast moving items or continuous-valued 

time series, integer time series have received less attention in a temporal aggregation context. 

Brannas et al(2002) first studied the non-overlapping temporal aggregation of an Integer 

Auto-Regressive process of order one, INARIMA(1,0,0), It is shown that the aggregate series 

follows an Integer Auto-Regressive Moving Average process of order one, INARIMA (1,0,1). 

Additionally, it is observed that the non-overlapping temporal aggregation of an Integer 

moving average process of order one, INARIMA(0,0,1) is an INARIMA(0,0,1). 

 

Table  2-3: the effect of temporal aggregation on integer ARIMA type process’s structure 

Non-aggregate 
process 

Aggregate process Type 
Reference 

INARMA (p,0, q) INARMA (p,0, q) Overlapping 
(Mohammadipour and 

Boylan, 2012) 

INARMA( 1,0, 0) INARMA( 1,0, 0) Overlapping (Brannas et al., 2002) 

INARMA( 1,0, 0) INARMA( 1,0, 1) Non-overlapping (Brannas et al., 2002) 

INARMA( 0,0, 1) INARMA( 0,0, 1) Non-overlapping (Brannas et al., 2002) 
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Brannas et al.(2002) evaluated the effect of overlapping temporal aggregation for the 

INARIMA(1,0,0) process, it is seen that the aggregate process also follow an 

INARIMA(1,0,0) process. The effect of overlapping temporal aggregation on  

INARIMA( p,0,q) process is evaluated by Mohammadipour and Boylan (2012). It is shown 

that the overlapping temporally aggregate of an INARIMA(p,0,q) process is also an 

INARIMA( p,0,q) one. 

In the next section we provide a review of the studies that apply temporal aggregation 

approach in the area of demand forecasting. 

2.2.2 Demand forecasting by temporal aggregation 

In the supply chain and demand planning literature, demand aggregation is generally 

known as a 'risk-pooling’ approach to reduce demand fluctuation for more effective 

material/capacity planning (Chen and Blue, 2010). Demand uncertainty may considerably 

affect forecasting performance with further detrimental effects in production planning and 

inventory control. It has been shown by Theil (Theil, 1954), Yehuda and Zvi (Yehuda and 

Zvi, 1960), Aigner and Goldfeld (Aigner and Goldfeld, 1974) that demand uncertainty can be 

effectively reduced through appropriate demand aggregation and forecasting. 

Most of the literature that deals with temporal aggregation may be found in the 

Economics discipline. The analysis of temporal aggregation starts with the work of Amemiya 

and Wu (Amemiya  and Wu, 1972). They assumed that the original variable follows a pth 

order autoregressive process, AR(p). By considering the ratio of MSE of disaggregate and 

aggregate prediction (3 linear predictors were considered) at the aggregate level, they have 

shown that the MSE of disaggregate forecasts is greater than that of the aggregate ones, i.e. 

the aggregation approach outperforms the non-aggregation one. Tiao (Tiao, 1972) has 

investigated the effect of non-overlapping temporal aggregation on a non-stationary process 

of the Integrated Moving Average IMA(d,q) form. They applied a conditional expectation to 

obtain one step ahead forecasts at the aggregate level based on the disaggregate and aggregate 

series. Subsequently, the efficiency of the aggregate forecasts was defined as the ratio of the 

variance of the forecast error of the disaggregate to the aggregate series when the aggregation 
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level is large. They have shown that when d=0 the ratio under concern equals to 1 and the 

comparative benefit of using the disaggregate forecasts is increasing with d. 

Athanasopoulos et al. (2011) have looked at the effects of non-overlapping temporal 

aggregation on forecasting accuracy in the tourism industry. They conducted an empirical 

investigation using 366 monthly series and some forecasting methods tested in the M3 

competition data (Makridakis and Hibon, 2000), namely Innovations state space models for 

exponential smoothing (labeled ETS), the ARIMA methodology, a commercial software 

(Forecast Pro), damped trend (Gardner and McKenzie, 1985), the Theta method and naïve. 

The monthly series were aggregate to be quarterly, and the quarterly series were further 

aggregate to be yearly. Subsequently, they compared the accuracy of the forecasts made 

before and after aggregation. They considered one and two step-ahead forecasts and three 

statistical measures were used to compare the results: Mean Absolute Percentage Error 

(MAPE), Mean Absolute Scaled Error (MASE) and Median Absolute Scaled Error (MdASE). 

The aggregate forecasts at the yearly level (whether produced from monthly or quarterly data) 

were found to be more accurate than the forecasts produced from the yearly data directly. This 

study provided considerable empirical evidence in support of temporal aggregation. 

Luna and Ballini  (2011) have used a non-overlapping aggregation approach to predict 

daily time series of cash money withdrawals in the neural forecasting competition, NN52. 

Each time series consisted of 735 daily observations which have been used to forecast 56 daily 

steps ahead for two sets of 11 and 111 time series. Daily samples were aggregate to give 

weekly time series and then an adaptive fuzzy rule-based system was applied to provide 8-

step-ahead forecasts (thus aggregation reduced the forecast horizon from 56 to 8 steps). Two 

different aggregation approaches were evaluated for this purpose: the historical top-down 

(TD-H) approach and the daily top-down (TD-DM) approach, where the main difference 

between the two was the disaggregation procedure. In the former case aggregate forecasts 

were dis-aggregate based on historical percentages. In the latter case, the daily estimations 

were ‘corrected’ by multiplying them by the associated weekly estimation and dividing by the 

sum of the seven daily estimated samples. The symmetric MAPE (sMAPE) and the Mean 

                                                 

2 http://www.neural-forecasting-competition.com/NN5/ 

http://www.neural-forecasting-competition.com/NN5/
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Absolute Error (MAE) were used to compare the results. The researchers showed that the 

aggregate forecasts produced by the two approaches performed similarly or better than those 

given by the daily models directly. The reduction of a forecast horizon from 56 to 8 steps 

ahead would be intuitively expected to lead to performance improvement. 

The effect of temporal aggregation on demand forecasting for integer time series have 

received less attention comparing to continues time series. Willemain et al.(1994) empirically 

explored the effects of temporal aggregation on forecasting intermittent demand considering 

the application of Croston’s method(Croston, 1972) that has been specifically developed for 

such demand patterns. The researchers considered 16 empirical data sets of 905 daily 

observations; the aggregation level was considered to be a week. Results were reported by 

considering the MAPE and the researchers showed a significant reduction in forecasting errors 

when weekly demand aggregate data were used instead of daily data. 

Mohammadipour and Boylan (2012) have studied theoretically the effects of 

overlapping temporal aggregation of INARMA processes. They showed that the aggregation 

of an INARMA process over a given horizon results in an INARMA process as well. The 

conditional mean of the aggregate process was derived as a basis for forecasting. A simulation 

experiment was conducted to assess the accuracy of the forecasts produced using the 

conditional mean of the aggregation approach for three INARMA processes: 

INARIMA(1,0,0), INARIMA(0,0,1) and INARIMA(1,0,1), against that of the non-

aggregation approach. The simulation results showed that, in most cases, the aggregation 

approach provides forecasts with smaller MSEs than non-aggregation ones. The performance 

of these forecasts was also tested by using two empirical datasets. The first one was from the 

Royal Air Force (RAF, UK) and consisted of the individual demand histories of 16,000 SKUs 

over a period of 6 years (monthly observations). The second data set consisted of the demand 

history of 3,000 SKUs from the automotive industry (over a period of 24 months). The 

outcome of the empirical investigation confirmed the simulation results. 

   Nikolopoulos et al. (2011) have empirically analysed the effects of non-overlapping 

temporal aggregation on forecasting intermittent demand requirements. Their proposed 

approach, called Aggregate-Disaggregate Intermittent Demand Approach (ADIDA), was 

assessed on 5,000 SKUs containing 7 years history (84 monthly demand observations) form 

the Royal Air Force (RAF, UK), by means of employing three methods: Naïve, Croston and 
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Syntetos-Boylan Approximation (SBA)(Syntetos and Boylan, 2005). The aggregation level 

was varied from 2 to 24 months. Comparisons were performed at the original series level 

(disaggregate demand) and the results showed that the proposed ADIDA methodology may 

indeed offer considerable improvements in terms of forecast accuracy. The main conclusions 

of this study were: (1) the ADIDA may be perceived as an important method self-improving 

mechanism; (2) an optimal aggregation level may exist either at the individual series level or 

across series; (3) setting the aggregation level equal to the lead time length plus one 

review period L+1 (which is the time bucket required for periodic stock control 

applications) shows very promising results. Spithourakis et al.(Spithourakis  Georgios P. et 

al., 2011) extended the application of the ADIDA approach to fast-moving demand data. The 

method’s performance was tested on 1,428 monthly time series of the M3-Competition by 

using the Naïve, SES, Theta, Holt and damped forecasting methods. The empirical results 

confirmed the previous findings reported by Nikolopoulos et al.(Nikolopoulos et al., 2011). 

Finally, Babai et al. (2012) have also extended the study discussed above 

(Nikolopoulos et al., 2011) by means of considering the inventory implications of the ADIDA 

framework through a periodic order-up-to-level stock control policy. Three forecasting 

methods, SES, Croston and SBA were used and the demand was assumed to be negative 

binomially distributed. Performance was reported through the inventory holding and backlog 

volumes and costs, for three possible targets Cycle Service Levels (CSL): 90%, 95% and 

99%. For high CSLs, the aggregation approach has been shown to be more efficient but for 

low CSLs it was outperformed by the classical one when Croston’s method was used. For 

SES, the aggregation approach outperforms the classical approach even for low CSLs. The 

researchers concluded that a simple technique such as temporal aggregation can be as 

effective as complex mathematical intermittent forecasting approaches. 

3. Cross-sectional aggregation 

In this section, the effect of cross-sectional aggregation on the process structure is 

summarized. Then, the effectiveness of cross-sectional aggregation approaches on demand 

forecasting in the literature is reviewed. 
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2.3.1 Cross-sectional aggregation identification process 

When dealing with the impact of the cross-sectional aggregation on forecasting, it’s 

necessary to infer the characteristics of the aggregate data from the original subaggregate 

data. i.e, If the subaggregate series follow an ARIMA process, it is possible to investigate 

whether the aggregate observed series follows an ARIMA process as well. 

 (Granger and Morris, 1976) showed that the cross-sectional aggregation of N 

uncorrelated ARIMA(p,0,q) processes is also an ARIMA(x,0,y) process. As a special case the 

showed that the sum of two uncorrelated ARMA processes, ARMA (p1 ,q1) and ARMA 

( p2,q2 ) is also an ARMA (p1+ p2, K), where ),max( 1221 qpqpK  . 

Anderson (1975) stated that the sum of N independent Moving Average processes: 

MA( q1), MA( q2 )…MA( qn ),is an MA (q) process as well. It is seen by Harvey  (1993) that 

when the subaggregate items follow and ARIMA(1,0,0) process, the aggregate data may 

follow an ARIMA(1,0,0), ARIMA(2,0,0) or ARIMA(2,0,1) process. Zaffaroni (2007) showed 

that the sum of two independent strong GARCH(l,l) processes is weak GARCH(2,2). 

 

Table  2-4: aggregate process of cross-sectional aggregation 

Sub-aggregate 
process 

Aggregate 
process 

Parameter 
Reference 

ARIMA(pi,0,qi) ARIMA( x,0,y) 
  N

i ipx
1

 

 ii qpxy  max  

(Granger and Morris, 
1976) 

AR(1)+ AR(1) 

 

AR(1) If 1=2  

(Harvey, 1993) AR(2) If 1=-2 

ARMA(2,1) otherwise 

MA(qi) MA(q) ).........,max( 21 qqqq n  (Anderson, 1975) 

GARCH(1,1) GARCH(2,2) When 1+1=2+2 (Zaffaroni, 2007) 
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2.3.2 Demand forecasting by cross-sectional aggregation 

Demand forecasting for sales and operations management often concerns many items, 

perhaps hundreds of thousands, simultaneously. The conventional forecasting approach is to 

extrapolate the data series for each SKU individually. However, most businesses have natural 

groupings of SKUs; that is, the SKUs may be aggregate to get higher levels of forecasts 

across different dimensions such as product families, geographical area, customer type, 

supplier type etc (Chen and Boylan, 2007). Such an approach enables the potential 

identification of time series components such as trend or seasonality that may be hidden or not 

particularly prevalent at the individual SKU level. Group approaches for example are known 

to offer considerable benefits towards the estimation of seasonal indices (Chen  and Boylan 

2008). Most of the forecasting literature in this area has looked at the comparative 

performance of the top-down (TD) and the bottom-up (BU) approach. The findings with 

regards to the performance of these approaches are mixed. 

Many researchers have provided evidence in favour of the TD approach. Gross and 

Sohl (1990) for example, numerically found that the TD approach (in conjunction with an 

appropriate disaggregation method) provided better estimates than BU forecasting in two out 

of three product lines examined. Fliedner (1999) evaluated by means of simulation the 

forecast system performance at the aggregate level resulting from varying degrees of cross 

correlation between two subaggregate time series. The subaggregate items were assumed to 

follow a Moving Average process of order one, MA(1) and the forecasting methods 

considered were SES and the Simple Moving Average (SMA). This research showed the 

forecast performance at the aggregate level to benefit from the TD approach. Barnea and 

Lakonishok (1980) examined the effectiveness of BU and TD on forecasting corporate 

performance. They reported that positive cross-correlation contributes to the superiority of 

forecasts based on aggregate data (TD).  

On the other hand, Orcutt et al. (1968) and Edwards and Orcutt (1969) argued that 

information loss is substantial when aggregating and therefore the bottom-up approach 

provides more accurate forecasts. Dangerfield and Morris (1992) and Gordon et al. (1997) 
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used a subset of the M-competition3 data (Makridakis et al., 1982) to examine the 

performance of TD and BU approaches on subaggregate demand forecasting. They found that 

forecasts by the BU approach were more accurate in most situations especially when items 

were highly correlated or when one item dominated the aggregate series. Weatherford et al. 

(2001) evaluated the performance of BU and TD approaches to obtain the required forecasts 

for hotel revenue management. The data they considered was perceived as very typical within 

the hotel industry. They experimented with four different approaches (fully subaggregate d, 

aggregating by rate category only, aggregating by length of stay only, and aggregating by 

both rate category and length of stay) to get detailed forecasts by day of arrival, length of stay 

and rate category and length of stay for revenue management. The results of their study 

showed that a purely subaggregate forecast strongly outperformed even the best aggregate 

forecast. 

Some authors take a contingent approach and analyse the conditions under which one 

method produces more accurate forecasts than the other. Shlifer and Wolff (1979) evaluated 

analytically the superiority of BU and TD on forecasting sales for specific and entire market 

segments. They mentioned that BU is preferable for the purpose of forecasting the aggregate 

series. In addition, they found that increasing the number of SKUs favours TD. However, 

when the comparison was performed at the subaggregate level, they found that TD often 

results in larger forecast error than BU. Lütkepohl (1984) showed that it might be preferable 

to forecast aggregate variables using a TD approach when a time series is generated by a 

multivariate ARMA process and the statistical properties of the subaggregate items are 

known. However, if the processes used for forecasting are estimated from a given set of time 

series data then the BU approach outperformed TD. Widiarta et al. (2007) studied analytically 

the conditions under which one approach outperforms the other for forecasting the item level 

demands when the subaggregate items follow a first-order autoregressive [AR(1)] process 

with the same autoregressive parameter for all the items and when SES is used to extrapolate 

future demand requirements. They found that the superiority of each approach is a function of 

the autoregressive parameter. Widiarta et al. (2008, 2009) also evaluated analytically the 

effectiveness of TD and BU approaches at the subaggregate and aggregate level, respectively. 

                                                 

3 The M Competition is an empirical forecast accuracy comparison exercise introduced by Prof. Makridakis.  

http://www.ms.ic.ac.uk/iif/Data/index.htm
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They showed that when all subaggregate items follow an MA(1) process with identical 

moving average parameters, there is no difference in the relative performance of TD and BU 

forecasting as long as the optimal smoothing constant is used in both approaches. 

Subsequently, they conducted a simulation analysis considering non-identical process 

parameters for subaggregate items and concluded that there is significant difference between 

the two approaches. The superiority of each approach was a function of the moving average 

parameter, the cross-correlation and the proportion of a subaggregate component’s 

contribution to the aggregate demand. Viswanathan et al. (2008) used a simulation study to 

investigate the effectiveness of TD and BU approaches in estimating the aggregate data series 

when the subaggregate items are intermittent. The study reveals that low variability of the 

inter-demand intervals favours the BU approach (using Croston’s method (Croston, 1972)). 

However, when demand sizes and inter-demand intervals of the subaggregate series are highly 

variable and aggregation encompasses many items, TD performs best. 

4. Discussion on the literature review 

In this chapter, an overview of the literature on the demand forecasting by aggregation 

approach is given. The overview presented by classifying the literature into two parts: 

temporal and cross-sectional aggregation approaches. 

In the first part, the theoretical and empirical investigations in the area of temporal 

aggregation are discusses. The former mainly focused on the structure of the aggregate time 

series and the relationship between the aggregate and disaggregate process parameters. The 

latter evaluated the effect of the temporal aggregation on demand forecasting in terms of 

forecast accuracy measures and stock control metrics. According to the literature, temporal 

aggregation approach may provide more accurate forecasts than classical one in the fast and 

slow moving environments. However, the conditions under which one approach may 

outperform other one are not discussed in the literature. It is not clear when disaggregate data 

should be used and where it is better to use the aggregate data to produce the forecast.  

To the best of our knowledge, the only papers directly relevant to our work are those 

by Amemiya and Wu (1972) and Tiao (1972) for the AR and MA process respectively. In 

both cases the researchers investigated the forecast performance of temporal aggregation 
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strategies under an (Auto-Regressive Integrated Moving Average) ARIMA-type framework. 

However, the results presented in these two papers remain preliminary in nature while the 

experimental setting may also be criticized in terms of the estimation procedures considered. 

In addition, no empirical results were provided. Important as they are, both papers focused on 

characterizing the aggregate demand series rather than the forecast performance.  

In this research work, the conditions under which aggregation and non-aggregation 

approaches yield more accurate forecasts are determined by analytical investigation. this work 

considers the case of ARIMA(1,0,1) and its special cases ARIMA(0,0,1) and ARIMA(1,0,0) 

processes and as such some of the theoretical results presented in the above discussed 

research are of direct relevance to our analysis. Our work differs from these works though and 

extends them in some very significant ways: i) optimal estimators are seldom used in practice 

not only due to the computational requirements that are typically prohibitive but also the lack 

of understanding on the part of the managers of their functionality. In addition, there is 

evidence to support the fact that simple forecasting methods (such as SES that is used in our 

work) perform at least as good as more complex theoretically coherent alternatives 

(Makridakis and Hibon, 2000); ii) a difficulty associated with aggregation methods is the fact 

that a disaggregation mechanism is also required since very often forecasts are needed at the 

original/disaggregate demand level. Both papers consider a comparison at the aggregate level 

which addresses only part of the forecasting problem. Consideration of a comparison at the 

original demand level, which is the case considered in this work, addresses another part of the 

problem and is an important extension of the research already being done4; iii) no empirical 

analysis has been undertaken in both papers in contrast with this work were the theoretical 

findings are empirically validated; iv) the analysis is complemented by means of further 

                                                 

4 An important assumption in our analysis is that we start with data that are as disaggregate as our required 

forecasting output. However, and as one of the referees correctly pointed out the degree of aggregation of the 

forecasting output does not necessarily need to match with the existing data structure (which may be more 

aggregate or more disaggregate than the forecasts driving decision making). The degree of aggregation of the 

forecasting output (i.e. the forecast we use to make decisions) is actually a function of the decision making 

problem forecasting tries to support. On the contrary inputs to the forecasting process are very often driven by 

existing data structures. Although the two may indeed match sometimes, this is not always the case. 



B.Rostami-Tabar, 2013, Chapter 2  49 

 

numerical investigations to identify the optimum aggregation level and smoothing constant 

values that require to be used. 

In the second part, the comparative performance of the BU and TD approaches to 

forecast subaggregate and aggregate demand is reviewed. Most of the researches in this area 

is based on the simulation and the empirical analysis. However, there are few work focused 

on the effectiveness of BU and TD by analytical investigation. 

To the best of our knowledge, the only papers directly relevant to our work are those 

by Widiarta et al.(2007, 2009) and Sbrana and Silvestrini (2013). Widiarta et al. evaluated 

analytically the effectiveness of the TD and BU approaches under the assumption of an AR(1) 

comparing at subaggregate level(Auto-Regressive process of order 1) and MA(1) process 

comparing at aggregate level respectively. Sbrana and Silvestrini identify the condition of 

superiority of Bu and TD compared at aggregate level when the demand process follow and 

ARIMA(0,1,1) process with non identical parameters. 

In summary what can be concluded from the cross-sectional literature is both BU and 

TD approaches appear to be associated with superior performance. This superiority depends 

on the structure of the series and cross-correlation related assumptions. 

In this work the relative effectiveness of the BU and TD approach for forecasting is 

evaluated. It is recognized that forecasts may be equally required at both the aggregate and 

sub-aggregate level and as such comparisons are performed at both levels. In addition, a more 

general univariate stationary and a non-stationary demand processes at both aggregate and 

subaggregate levels are studied. Moreover, the analysis is complemented by means of an 

empirical investigation using real data. 
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Chapter 3 Temporal aggregation 

In chapter 2, an overview of the literature on demand forecasting by aggregation is 

provided, additionally the necessity of conduction more research work in the area of demand 

aggregation is discussed. In this chapter the effect of temporal aggregation on demand 

forecasting by means of the analytical, simulation and empirical investigation is evaluated. 

The conditions under which temporal aggregation may improve the accuracy of the demand 

forecasts are identified. the effects of temporal aggregation on forecasting when the 

underlying series follows a first order Autoregressive Moving Average process, 

ARIMA(1,0,1) Autoregressive process of order one, ARIMA(1,0,0) and a Moving Average 

process of order one, ARIMA(0,0,1) is studied. Furthermore, the forecasting method is the 

Single Exponential Smoothing (SES). These assumptions bear a significant degree of realism. 

As it is discussed later in the chapter there is evidence to support the fact that demand often 

follows the stationary processes assumed in this work (48% of the empirical series available 

in our research follow such processes). Moreover, SES is a very popular forecasting method 

in the industry (Acar and Gardner, 2012; Gardner, 1990, 2006; Taylor, 2003). Although its 

application implies a non-stationary behavior of the demand, sufficiently low smoothing 

constant values introduce minor deviations from the stationarity assumption whilst the method 

is also unbiased. 

In this chapter the variance of the forecast error (or equivalently, by considering an unbiased 

estimation procedure, the mean square error) obtained based on the aggregate demand to that 

of the non-aggregate demand is analytically compared. Comparisons are performed at both 

disaggregate and aggregate demand level. It is mathematically shown that the ratio of the 

Mean Squared Error (MSE) of the latter approach to that of the former is a function of the 

aggregation level, the process parameters and the exponential smoothing constant. The 

mathematical analysis is complemented by a numerical investigation to test and validate the 

results. Next, the theoretical results are validated empirically (by means of simulation on a 
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dataset provided by a European superstore) and by doing so some very much needed 

empirical evidence in the area of temporal aggregation are offered.  

To the best of our knowledge, the only works directly relevant to our work are those by 

Amemiya and Wu (1972) and Tiao (1972) for the AR and MA process respectively. In both 

cases the researchers investigated the forecast performance of temporal aggregation strategies 

under an (Auto-Regressive Integrated Moving Average) ARIMA-type framework. However, 

the results presented in these two papers remain preliminary in nature while the experimental 

setting may also be criticized in terms of the estimation procedures considered (Zotteri and 

Kalchschmidt, 2007). In addition, no empirical results were provided. Important as they are, 

both works focused on characterizing the aggregate demand series rather than the forecast 

performance as explained in the chapter 2. 

This study attempts to fill this gap and provides helpful guidelines to select the 

appropriate approach under such demand processes. The work discussed in this chapter can be 

extended to analyse more general cases such as ARIMA(p,0,0), ARIMA(0,0,q) or even 

ARIMA( p,0,q) processes. However, the analysis and presentation of such results would 

become too complex. Since the main objective of this research is to obtain some key 

managerial insights, the analysis is restricted to the ARIMA(1,0,1), ARIMA (1,0,0) and 

ARIMA (0,0,1) processes only. 

Considerable part of this chapter has been published in Rostami-Tabar et al 

(2013a)and Rostami-Tabar et al (2013c). 

This chapter is organized as follows. In section ‎1, theoretical analysis of temporal 

aggregation for autoregressive moving average process order one, ARIMA(1,0,1) and its 

special cases moving average order one, ARIMA(0,0,1) and autoregressive order one, 

ARIMA(1,0,0) is evaluated. In section ‎2 the results of the theoretical evaluation obtained in 

sub-section ‎1 is presented. In section ‎3 the simulation investigation to test and validate the 

results of the mathematical analysis is used. Next, a real data set to validate the results of 

theoretical and simulation parts in practice is applied in section ‎4. Finally the conclusions are 

given in section ‎5. 
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1. Theoretical Analysis 

In this section the variance of the forecast errors generated by considering the 

disaggregate and the aggregate demand is derived. Comparisons are performed at the original 

disaggregate and aggregate level. to that end, the aggregation approach works as follows: 

firstly buckets of aggregate demand are created based on the aggregation level. Then SES is 

applied to this aggregate data to produce the aggregate forecasts, now if the comparison is 

undertaken at aggregate level then the aggregate forecast is maintained , however, to compare 

at disaggregate level the aggregate forecasts are disaggregate by dividing by m to produce 

forecasts at the original level. In addition other disaggregation mechanisms could have been 

considered (Nikolopoulos et al., 2011) but the one employed for the purposes of this research 

is viewed as realistic from a practitioner’s perspective and seen as a reasonable approach 

when dealing with stationary demands. Note that in order to ensure that the forecasting 

horizon is the same in both the aggregate and the disaggregate cases, the aggregate SES 

forecast is updated in each period when the aggregate series are rebuilt.  

The comparisons result in the development of theoretical rules that indicate under 

which conditions the forecasting of the aggregate demand is theoretically expected to perform 

better than the forecasting of the disaggregate demand. These theoretical rules are a function 

of the aggregation level, the control, and the process parameters. The cut-off values to be 

assigned to the parameters are the outcome of a numerical analysis to be conducted based on 

the theoretical results. Having obtained the cut-off values, we can then specify regions of 

superior performance of the aggregation approach over the non-aggregation one.  

In this study the variance of the forecast error is used as a forecast accuracy measure 

as it is the only theoretically tractable measure. The MSE is similar to the variance of the 

forecast errors (which consist of the variance of the estimates produced by the forecasting 

method under concern and the variance of the actual demand) but not quite the same since any 

potential bias of the estimates may also be taken into account (Syntetos., 2001). Since SES 
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provides unbiased estimates5 (due to the stationarity of the time series considered in this 

work) the variance of forecast errors is equal to the MSE, i.e.  MSE=Var(Forecast Error). 

For each process under consideration the ratio of the MSE before aggregation (MSEBA) 

to the MSE after aggregation (MSEAA) is calculated. A ratio that is lower than one implies that 

the aggregation approach does not add any value. Conversely, if the ratio is greater than one, 

aggregation approach performs better than the classical one. 

3.1.1 Notation and assumptions 

For the remainder of the research the notations are denoted by: 

m: Aggregation level, i.e. number of periods considered to build the block of aggregate 
demand. 

n: total number of periods available in the demand history. 

t: Time unit in the original disaggregate time series. t=1,2,…,n. 

T: Time unit in the aggregate time series. T=1,2,…,  mn  . 

dt: Disaggregate demand in period t 

DT: Aggregate demand in period T 

:t Independent random variables for disaggregate demand in period t, normally distributed 

with zero mean and variance 2  

T  : Independent random variables for aggregate demand in period T, normally distributed 

with zero mean and variance 2   

ft : Forecast of disaggregate demand in period t, the forecast produced in t-1 for the demand in 
t. 

                                                 

5 Obviously other forecasting methods may also provide unbiased estimates under the stationary demand 

processes considered in this research but those are not considered as their analysis is beyond the scope of this 

research. 
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FT : Forecast of aggregate demand in period T, the forecast produced in T-1 for the demand in 
T. 

α : Smoothing constant used in Single Exponential Smoothing method before aggregation, 

10   

β : Smoothing constant used in Single Exponential Smoothing method after aggregation, 

10  
 

MSEBA : Theoretical Mean Squared Error (MSE) before aggregation 

MSEAA : Theoretical Mean Squared Error (MSE) after aggregation 

k  : Covariance of lag k of disaggregate demand,  kttk ddCov  ,   

k   : Covariance of lag k of aggregate demand,  kTTk DDCov  ,  

 : Autoregressive parameter before aggregation, 1
 

   : Autoregressive parameter after aggregation, 1  

  : Moving average parameter before aggregation, 1
 

  : Moving average parameter after aggregation, 1  

  : Expected value of disaggregate demand in any time period 

   : Expected value of aggregate demand in any time period 

It is assumed that the disaggregate demand series td  follows a first order 

autoregressive moving average, ARIMA(1,0,1) or its special cases moving average order one, 

ARIMA (0,0,1) and an autoregressive data generation process (DGP) order one, 

ARIMA(1,0,0). In the following the characteristics of each process under consideration are 

discussed to provide the information based on the nature of the processes. 

An ARIMA(1,0,1) process can be mathematically written in period t as (‎3-1): 



B.Rostami-Tabar, 2013, Chapter 3  55 

 

  .1,1,1 11    wheredd tttt  (‎3-1) 

When the demand follows an ARIMA(1,0,1) process the auto-covariance and 

autocorrelation functions are(Box et al., 2008): 
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For different combinations of the process parameters, the resulting underlying 

structure changes considerably. Table ‎3-1 presents the autocorrelation structure for different 

process parameters which helps to better understand the process and can be useful to interpret 

the results of the forthcoming analysis. 

Table  3-1: Autocorrelation of ARIMA(1,0,1) process 

Group Process parameter Autocorrelation 

1 0< <1, -1<<0 Always positive , 0<Autocorrelation lag1<1, 

2 -1< <0, -1<<0 Oscillate between positive and negative values 

3 -1< <0, 0<<1 Oscillate between positive and negative values 

4 0< <1, 0<<1 For > Always positive, 0<Autocorrelation lag1<1 

5 0< <1, 0<<1 For < Always negative, -0.5<Autocorrelation lag1<0 
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Figure  3-1: Sample autocorrelation of ARIMA(1,0,1) process when = -0.8 and =0.9. 

 

Figure ‎3-1 and 3-2 present the behaviour of the ARIMA(1,0,1) process for groups one 

and two presented in Table ‎3-1. In Figure ‎3-1 it can be seen that the autocorrelation is highly 

positive not only for lag 1 but also for higher lags and decays exponentially. In addition it is 

observed that the process shape is changing slowly and there is no fluctuation between time 

periods. 
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In Figure ‎3-2 the process shape is changing almost at each period and there are more 

fluctuations which makes the series more irregular than random series. As it can be noted that 

the autocorrelation decays exponentially and oscillates between positive and negative values 

and it tends to become zero for higher lags. 

 

Figure  3-2:  Sample autocorrelation of ARIMA(1,0,1) process when = 0.8 and =-0.7. 
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An ARIMA(0,0,1) process is a special case of a more general ARIMA(1,0,1) process where 

the autoregressive process is equal to zero i.e =0. This process can be mathematically shown 

as (‎3-4): 

,1,1    whered ttt  (‎3-4) 

When the demand follows an ARIMA(0,0,1) process, the autocovariance and 

autocorrelation functions are (Wei, 2006): 
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Figure  3-3: Autocorrelation of  ARIMA(0,0,1) process 
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Figure  3-4: Sample autocorrelation and the process shape of ARIMA(0,0,1) process when = 

-0.9. 

Figure ‎3-3 shows that the autocorrelations for an ARIMA(0,0,1) process varies 

between –0.5 and +0.5 for high positive and high negative values of the moving average 

parameter , respectively. In addition the autocorrelation is equal to zero for lags greater than 

one. 

In Figure ‎3-4 the behavior of the ARIMA(0,0,1) process is presented when the 

moving average parameter is relatively high. It is seen that for this  value, the autocorrelation 

function is close to +0.5 and the process is changing slowly. However, the rate of changing is 
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slower in the case of ARIMA(1,0,1) process where autocorrelation is high, this is natural as 

the autocorrelation function for the ARIMA(0,0,1) is much smaller than ARIMA(1,0,1) 

process. 

When the moving average parameter takes positive values the process shape becomes 

more irregular compare to Figure ‎3-4. The autocorrelation function is negative for lag1 and it 

equals to zero for higher lags as shown in Figure ‎3-5. 

 

Figure  3-5: Sample autocorrelation and the process shape of ARIMA(0,0,1) process when = 

0.9. 
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Finally the Autoregressive process order one, ARIMA(1,0,0) can be represented as 

(‎3-7) which is a special case of the ARIMA(1,0,1) process where =0. 

  .1 1 ttt dd   (‎3-7) 

When demand follows an ARIMA(1,0,0) process the following properties exist (Wei, 

2006): 
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    .1 kk k  (‎3-9) 

 

It’s clear from (‎3-9) that when the autoregressive parameter  takes positive values, 

the autocorrelation is always positive not only for lag1 but also for higher lags periods. It 

exhibits a smooth exponential decay as shown in Figure ‎3-6 for high positive values. 

When the autoregressive parameter  is negative, the autocorrelation function is 

decays exponentially and oscillates between positive and negative values. The process shape 

is irregular as can be seen in Figure ‎3-7 
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Figure  3-6: Sample autocorrelation and the process shape of ARIMA(1,0,0) process when 

=0.9. 

 

. 
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Figure  3-7: Sample autocorrelation and the process shape of ARIMA(1,0,0) process when = 

-0.9. 

   

The m periods non-overlapping aggregate demand TD  can be expressed as a function 

of the disaggregate demand series as follows 



B.Rostami-Tabar, 2013, Chapter 3  64 

 

   m

l
lmktkT kdD

1
)1( ,...2,1  (‎3-10) 

 The forecasting method considered in this study is the Single Exponential Smoothing 

(SES); this method is being applied in very many companies and most managers use this 

method in a production planning environment due to its simplicity (Gardner, 1990). Using 

SES, the forecast of demand in period t  produced at the end of period t-1 is 
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    (‎3-11) 

It is further assumed that the standard deviation of the error term in (‎3-4), (‎3-7), and 

(‎3-10) above is significantly smaller than the expected value of the demand, so when demand 

is generated the probability of a negative value is negligible. Constraining   and   to lie 

between -1 and 1 in (‎3-4),  (‎3-7), and (‎3-10) means that the process is stationary and 

invertible. 

3.1.2 MSE derivation at disaggregate level 

In this section the MSE of the one-step-ahead forecasts resulted from the disaggregate 

and aggregate demand data is derived. This section is divided into two sub-sections. First, the 

MSE before aggregation is calculated based on the direct forecast resulted from disaggregate 

demand. Then, the MSE after aggregation is configured, so the aggregate forecast is 

disaggregate by dividing them by aggregation level m. 

3.1.2.1 MSE Before Aggregation, MSEBA 

In order to calculate the MSEBA, the forecasting method, SES, is directly applied to 

disaggregate demand data to produce one-step-ahead forecasts. 
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The analysis begins by deriving the MSEBA for the ARIMA(1,0,1) process. As 

discussed above the MSEBA  is 

        ,,2 tttttt
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  (‎3-12) 

Subsequently, the three parts of (‎3-12) should to be determined: i) variance of the 

demand, ii) variance of the forecast, and iii) the covariance between the demand and the 

forecast.  

The evaluation of MSEBA is begun by defining the covariance between the demand and 

the forecast as follows: 
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(‎3-13) 

Considering that 0),( ktt ddCov for all k > 1 and by substituting (‎3-2) in (‎3-13), the 

covariance between demand and its forecast is obtained: 
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The variance of the forecast is calculated as follows: 
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By considering the fact that the process is stationary, it is known    ktt fVarfVar   

and    ktkttt fdCovfdCov  ,,  for all k  values and by substituting (‎3-2) and (‎3-14) into 

(‎3-15) the following is obtained: 
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The equations  (‎3-2), (‎3-14) and (‎3-16) is substituted in (‎3-12), these substitutions 

coupled with the fact that  ktdVar 0  reveals the MSEBA as follows:   
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As a special case, when =0 the ARIMA(1,0,1) becomes the ARIMA(0,0,1) process 

which is called MA(1) as well. Therefore, by substituting =0 in (‎3-17) the MSEBA for 

ARIMA(0,0,1) process is obtained in (‎3-18): 

.
5.01
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
BAMSE  (‎3-18) 

Autoregressive order one, ARIMA(1,0,0) or AR(1) is a special case of the 

ARIMA(1,0,1) process when =0. Therefore, the MSEBA for the ARIMA(1,0,0) process is 

obtained by substituting =0 in (‎3-17): 
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3.1.2.2 MSE after Aggregation, MSEAA 

In this section, the derivation of the MSE of the forecasts for the aggregation approach 

is determined. Disaggregate demand is first aggregate to yield high frequency demand. Then, 

the aggregate forecasts are provided based on the SES forecasting method. Finally, one-step-

ahead estimates at the original level are given by the disaggregation of such forecasts. This 

disaggregation is conducted by dividing the aggregate forecast by the aggregation level m. 

The MSEAA is defined as 
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By applying SES, the aggregate forecast for period T is defined as 

  .1
1

1
kT

k

k
T DF 



    (‎3-21) 

In this section, the MSEAA is derived for an ARIMA(1,0,1) demand process. When the 

disaggregate series follows an ARIMA(1,0,1) process, the aggregate series also follows an 

ARIMA(1,0,1) process but with different parameter values (Sariaslan, 2010; Tiao, 1972). The 

autocovariance function of an ARIMA(1,0,1) process after aggregation is given: 
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  From Appendix A and Based on Wei (2006) the relationship between the 

autocovariance function of  the disaggregate and the aggregate demand for an ARIMA(1,0,1) 

process is obtained as follows: 
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(‎3-23) 

.m   (‎3-24) 

By considering (‎3-23) , the autocorrelation function after aggregation is given as 

following: 

 
 
  .

1

1

2

1

1

1

1

1
10

1 2

21
1

0
















 



 










 



 

k

k

kmm

kk

k

k

m

k

k

m

k

m

k

kmk

k






  (‎3-25) 

From (B-4) and (C-4) in Appendix A and B respectively, the covariance between 

disaggregate demand and aggregate forecast is given in (‎3-26). Additionally, the variance of 

the aggregate forecast is given in (‎3-27): 
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Now, the equations (‎3-26) and (‎3-27) are substituted in (‎3-20). Then, the equations 

(‎3-23) and (‎3-2) are substituted in that result. Finally, the MSE of the forecast after 

aggregation is given as follows: 
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(‎3-28) 

 

As a special case, when =0 the ARIMA(1,0,1) process becomes an ARIMA(0,0,1) 

process which is also called MA(1), therefore the MSEAA for the ARIMA(0,0,1) process is 

obtained by substituting =0 in (‎3-28) : 
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To obtain the MSEBA for the ARIMA(1,0,0) or AR(1) process, =0 is substituted in 

(‎3-28), therefore, the MSEBA for the ARIMA(1,0,0) process is: 
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(‎3-30) 

3.1.3 MSE derivation at aggregate level 

In this section, the variance of the error of the cumulative m-step-ahead forecast is 

derived. Firstly, the MSE of the forecasts resulted from the disaggregate demand data, MSEBA, 

is calculated. Then, the aggregate demand is used to calculate the aggregate forecasts and, 

consequently, the MSEAA is obtained. 

3.1.3.1 MSE Before Aggregation, MSEBA 

The analysis begins by deriving the MSEBA for the ARIMA(1,0,1) process. The MSE 

of the forecasts for the non-aggregation approach is derived as follows: Firstly, one step ahead 

demand forecasts are obtained based on the SES method. Then, the results are multiplied by 

the aggregation level m. This results in cumulative m-step-ahead estimates at the aggregate 

level. The MSEBA is defined by: 

       ,,22
tTtTtTBA fDmCovfVarmDVarmfDVarMSE   (‎3-31) 

In this section, the MSEBA is derived for an ARIMA(1,0,1) demand process. 

As it is defined in (‎3-16), the variance of the disaggregate forecast is: 
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From (D-4) in Appendix D, the covariance between aggregate demand and 

disaggregate forecast is given as follows: 
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When the disaggregate series follows an ARIMA(1,0,1) process, the aggregate series 

also follows an ARIMA(1,0,1) process but with different parameter values (Brewer, 1973; 

Sariaslan, 2010). The aggregate demand is represented as follows: 

  .1,1,1 11    whereDD TTTT  (‎3-34) 

The relationship between the disaggregate and the aggregate process parameters is 

given in (‎3-23). 

By considering that  TDVar0  and substituting (‎3-16) ,(‎3-33) and (‎3-23) into 

(‎3-31) the following equation is given:  
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Finally, by substituting (‎3-2) into (‎3-35), the MSEBA is obtained:   
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As a special case, by substituting =0 in (‎3-36) the MSEBA for the ARIMA(0,0,1) 

process is given as follows: 
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The MSEBA for the ARIMA(1,0,0) process is obtained by substituting =0 in (‎3-36): 
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3.1.3.2 MSE after Aggregation, MSEAA 

In this section, the MSE of the cumulative m step ahead forecast is obtained from the 

aggregate demand data. 

In this section, The MSEAA  is calculated for the ARIMA(1,0,1) process. The MSEAA  is 

defined as: 

       ,, TTTTTTAA FDCovFVarDVarFDVarMSE   (‎3-39) 

 From (C-3) and (C-4) in Appendix C, respectively, the covariance between the 

aggregate demand and its forecast is given as follwing: 
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Now by considering that  TDVar0 and substituting (‎3-40) and (‎3-41) in (‎3-39), the 

MSEAA  is obtained as follows: 

   .
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



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AAMSE  (‎3-42) 

By substituting (‎3-23) and (‎3-24) into (‎3-42), the following equation is given:   
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(‎3-43) 

Finally, by substituting (‎3-2) into (‎3-43), the MSEAA becomes:   
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(‎3-44) 

The MSEAA for the ARIMA(0,0,1) process is obtained by substituting =0 in (‎3-44): 
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 (‎3-45) 

The MSEAA for the ARIMA(1,0,0) process is obtained by substituting =0 in (‎3-44): 
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  (‎3-46) 

2. Comparative analysis 

The effectiveness of temporal aggregation as compared to non-aggregation may be 

assessed by analyzing the ratio of their variance of the forecast error or, equivalently, their 

MSEs. Recall from section ‎1, that a value of AABA MSEMSE greater than one implies that the 

aggregation approach is superior to the non-aggregation one, whereas a value that is lower 

than one implies the opposite. A ratio value equal to one means that performance is the same. 

In section ‎3.2.1, the impact of the aggregation level, m, the smoothing constant values, 

 and , the moving average parameter,  , and the autoregressive parameter,  , on the ratio 

of AABA MSEMSE  is investigated by varying their values. In section ‎3.2.2, the conditions 

under which one approach outperforms the other are analytically determined. Finally in Sub-

section ‎3.2.3 the determination of the optimum aggregation level is considered. 

3.2.1 Impact of the parameters – sensitivity analysis 

In this Sub-section the effect of the parameters m,  ,  ,  , and   on the ratio 

AABA MSEMSE is analysed. Note that m,  ,  , are control parameters often set by the 
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forecaster, whereas   and   are parameters associated with the underlying demand 

generation process (process parameters). Therefore, it is interesting to know which values of 

the control parameters lead to a ratio higher than one, for any given values of the process 

parameters. In real world settings, data could typically be aggregate as weekly (m=7) from 

daily data, yearly (m=4) from quarterly, monthly (m=4) from weekly, quarterly (m=3) from 

monthly, semi-annually (m=6) from monthly and annually (m=12) from monthly data or it 

may also be aggregate at some other level to reflect relevant business concerns (e.g. equal to 

the lead time length). Given the considerable number of control parameter combinations, it is 

natural that only some results may be presented here.  

3.2.1.1 Comparison at disaggregate level  

In this sub-section, the impact of the parameters on the ratio is evaluated when 

comparing at the disaggregate level. 

3.2.1.1.1 Autoregressive Moving Average Process Order One, ARIMA(1,0,1) 

In this sub-section the effect of the parameters m, , ,  and   on the ratio of 

AABA MSEMSE is evaluated when the non-aggregate demand follows an ARIMA(1,0,1) 

process. We attempt to intuitively explain the effect of these parameters on the ratio. The 

aggregation level, m between 2 and 24, 9.09.0   with increments of 0.1, 9.09.0    

with increments of 0.1, 10   with increments of 0.05 and 10    with increments of 

0.05 is considered. 

Figure ‎3-8 presents the impact of the parameters on the ratio of AABA MSEMSE for m = 

2, 12, 1.0 , and 05.0,01.0 ,moreover Figure ‎3-9 shows this impact for m = 2, 12, 

1.0,3.0   , and 2.0,5.0    when the non-aggregate demand series follows an 

ARIMA(1,0,1) process. Shaded areas represent a behavior in favor of the non-aggregation 

approach. It is seen that the superiority of each approach is a function of m,  , ,  and  . 

The analysis shows that for a fixed value of the smoothing constants, increasing the 

aggregation level improves the accuracy of the aggregation approach. Additionally, for a 
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fixed aggregation level m and smoothing constant before aggregation  , increasing   values 

decreases the performance of the aggregation approach. 

                                   m=2 m=12 

  

  

Figure ‎3-8: Impact of  m,  ,  , and  on the ratio of MSE: 01.0,1.0   (top)  

 05.01.0   (Bottom) 
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                                   m=2 m=12 

  

  

Figure ‎3-9: Impact of  m,  ,  , and  on the ratio of MSE: 1.0,3.0   (top)  

 2.05.0   (bottom) 
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In both Figure ‎3-8 and (‎3-9), it is revealed that for high positive values of the moving 

average parameter  and for high negative values of the autoregressive parameters , the 

aggregation approach always yields more accurate forecasts than the non-aggregation 

approach. However, when  takes negative values and  takes positive values, the non-

aggregation approach outperforms the aggregation one. By referring to Table ‎3-1 it is obvious 

that the latter case corresponds to the high positive autocorrelation. Meanwhile, in the former 

one, the autocorrelation is not always positive and it osscilitates between positive and 

negative values. Therefore, for a high positive autocorrelation the aggregation approach does 

not work and the non-aggregation approach provides more accurate results. This is generally 

true despite the varying of the control parameters. Thus, the aggregation approach in not 

recommended when autocorrelation is highly positive and associated with smaller values of  

generally smaller or equal to . The analysis shows that even for high values of the 

aggregation level the area in which aggregation does not work remains almost unchanged.  

Generally, as θ gets more negative and  gets positive in the ARIMA(1,0,1) process, 

the correlation between two consecutive demand dt gets larger. Note that for the 

ARIMA(1,0,1) process the autocorrelation spans all time lags (not only lag 1). Therefore, for 

highly positive values of    and highly negative values of , the correlation between the 

consecutive and non-consecutive periods becomes extremely positive. As a result, when the 

demand series are high positive correlated no level of aggregation can improve the accuracy 

of forecasts.  

In Appendix E, it is revealed that the non-overlapping temporal aggregation approach 

reduces the demand variability of the ARIMA(1,0,1) process. Additionally, by increasing 

aggregation level more reduction in coefficient of variation can be obtained. 

 It can be shown that applying non-overlapping temporal aggregation decreases the 

value of the autocorrelation function. Moreover, increasing the aggregation level leads to 

more reduction in autocorrelation and it becomes close to zero for high values of m. As a 

result, the aggregate series becomes similar to a white noise process and it is almost random. 

Therefore, for the aggregate series, the smaller value of the smoothing constant   , generally 

smaller than  , should be selected. 
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When the disaggregate process follows an ARIMA(1,0,1), the aggregation approach 

can reach the more accurate results when the aggregation level, m, is high and the smoothing 

constant after aggregation   is low and smaller than  , generally for high positive 

autocorrelation , aggregation approach is not recommended. 

The presented results in this section show that the selection of control parameters 

influences the superiority of each approach and this superiority is a function of all parameters 

m,  ,  ,   and , therefore in the section ‎3.2.2 we determine theoretically the conditions 

under which each approach outperforms another one when the disaggregate demand series 

follows an ARIMA(1,0,1) process. 

3.2.1.1.2 Moving average process order one, ARIMA(0,0,1) 

Figure ‎3-10 presents the impact of the control parameter   on the ratio of 

AABA MSEMSE for m = 2, 12 and 5.0,1.0 , when the disaggregate demand series follows an 

ARIMA(0,0,1) process. Shaded areas represent a behavior in favor of the non-aggregation 

approach.  

The results show that for a fixed value of  , by increasing the aggregation level, the 

aggregation approach provides more accurate forecasts than the non-aggregation one. On the 

other hand, when considering a fixed value of the aggregation level, increasing   results in a 

deterioration of the aggregation approach. If the selected smoothing constant value after 

aggregation, , is considerably higher than the smoothing constant used in the original 

data, , then the aggregation approach is not preferable. Alternatively, the aggregation 

approach may produce more accurate forecasts unless  takes highly negative values. 

In the particular case where the smoothing constant parameters before and after 

aggregation are identical (   ), the aggregation approach outperforms the non-aggregation 

one in all cases, except those associated with high negative values of  (high positive 

autocorrelation). Moreover, even in those cases, when increasing the aggregation level the 

performance of the aggregation approach is improved.  
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                                     m=2 m=12 

  

  

Figure ‎3-10: Impact of m, ,  and   on the MSE ratio for 1.0  (top) and 5.0  

(bottom)   

The impact of the smoothing parameter  and the aggregation level m is quite intuitive 

similar to the ARIMA(1,0,1) process. In fact, it is obvious that the coefficient of variation 

(CV) of the non-overlapping temporally aggregate demand is smaller than the CV of the 

original (disaggregate demand) and it can be shown that by increasing the aggregation level 

the coefficient of variation of demand is further reduced. This means that high aggregate order 
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series are associated with less dispersion than low aggregate order series. In addition, by 

considering the autocovariance function before and after aggregation for the ARIMA(0,0,1) 

process, it is seen that the application of the non-overlapping temporal aggregation decreases 

the value of the autocorrelation function. Additionally, increasing the aggregation level leads 

to a higher reduction in the autocorrelation which eventually becomes zero for high 

aggregation level. That is, the aggregate series has a tendency towards a white noise process 

in which case small values of the smoothing constant lead to smaller MSEs. Therefore, setting 

 to be small ( should be smaller than  ) in conjunction with high aggregation levels 

provides an advantage to the aggregation approach. This is confirmed by the results presented 

in Figure ‎3-10. 

 

m=2 m=12 

 

 

Figure ‎3-11: Impact of control parameters for ARIMA(0,0,1) process on  the MSE 

ratio  

It should be noted that even if the selected  is smaller than , there are some cases in 

which the aggregation approach is not preferable. This can be attributed to the potential high 

positive autocorrelation between demand periods. For negative values of , the 

autocorrelation is positive; for positive values of  the autocorrelation is negative and for the 

white noise process, the autocorrelation is zero. An aggregation of highly positive 
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autocorrelated series does not add as much value as aggregating series with less positive 

autocorrelation. However, for very high aggregation level, the aggregation approach may 

outperform the non-aggregation one even for high positive autocorrelation. 

When the non-aggregate items follow an ARIMA(0,0,1) process, as θ gets more 

negative, the correlation between two consecutive dt increases. For an ARIMA(0,0,1) process 

the only autocorrelation is autocorrelation lag 1 and for other lags , it is equal to zero. The 

value of autocorrelation lag 1 is varying between -0.5 and 0.5. 

.
10

15.05.0







k

k  (‎3-47) 

It can be observed that the maximum positive autocorrelation of lag1 for an 

ARIMA(0,0,1) process is around 0.5 while this value almost equals to one for an 

ARIMA(1,0,1) process. These examples show that the performance superiority of each 

approach is a function of all the control and the process parameters. The selection of the 

control parameters   ,  and m, influence the effectiveness of the aggregation approach in 

conjunction with the consideration of the process parameters. In sub-section ‎3.2.2.1.2 the 

conditions under which each approach produces more accurate forecasts for a fixed value 

of  are identified. 

3.2.1.1.3 Autoregressive process order one, ARIMA(1,0,0) 

When the non-aggregate demand series follows an ARIMA(1,0,0) process, the impact 

of the control parameters m,  ,    on the ratio of AABA MSEMSE for m = 2, 12 and 

5.0,1.0  is presented as can be seen in Figure ‎3-12. Similar to the cases of the  

ARIMA(1,0,1) and the ARIMA(0,0,1) processes, it can be seen that the superiority of each 

approach is a function of all the control and the process parameters. The results show that for 

a fixed value of  , increasing the aggregation level results in an improvement in the accuracy 

of the aggregation approach. Conversely, for a fixed aggregation level, increasing   results 
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in a deterioration of the performance. In addition,   should be generally smaller than   in 

order for the aggregation approach to produce more accurate forecasts. 

Figure ‎3-12 shows that for highly positive values of the autoregressive parameter 

 the aggregation approach does not work well and the non-aggregation approach provides 

more accurate results. This is generally true regardless of the values employed by the other 

control parameters. Therefore, the aggregation approach is not recommended in such cases.  

When the smoothing constant parameters before and after aggregation are identical 

(i.e.   ), the aggregation approach outperforms the non-aggregation one in all cases, 

except those associated with highly positive values of  . In those exceptional cases the 

comparative performance of the two approaches is insensitive to the increase of the 

aggregation level and even for very high aggregation levels, no improvement is observed for 

the aggregation approach. The impact of the smoothing parameter   and the aggregation 

level m on the ratio is similar to that reported for the ARIMA(0,0,1) and ARIMA(1,0,1) 

processes. 

When   is positive for an ARIMA(1,0,0) process, the series is 'slowly changing' or 

can be considered as a positively autocorrelated process. In addition, when the non-aggregate 

demand follows an ARIMA(1,0,0) process, the autocorrelation spans all time lags (not only 

lag 1). Therefore, for highly positive values of  , the correlation between the consecutive and 

non-consecutive periods becomes very high as can be obtained in (‎3-48) . 

  ., kallfork k   (‎3-48) 

For instance, for lag1,the autocorrelation values vary between -1 and +1,   .111    

It can be seen that the maximum positive autocorrlation of lag1 is around +1 for 

ARIMA(1,0,0) process. Consider a case where the autocorrelation = 1, say, dt+1=dt=0; clearly 

no level of aggregation improves the accuracy of forecasting. For a high positive correlated 

series no level of aggregation may improve the accuracy of forecasts. 
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                                     m=2 m=12 

  

  

Figure ‎3-12: Impact of  m,  , and  on the MSE ratio for 1.0  (top) and 

5.0  (bottom) 

 

 

 



B.Rostami-Tabar, 2013, Chapter 3  85 

 

m=2 m=12 

  

Figure ‎3-13: Impact of control parameters for ARIMA(1,0,0) process on  the MSE 

ratio  

Hence, when the non-aggregate demand follows an ARIMA(1,0,0) process, the 

aggregation approach may lead to an improvement in accuracy when the aggregation level, m, 

is high and the smoothing constant after aggregation   is small. However, for highly positive 

values of the autoregressive parameter , the aggregation approach is not recommended 

(especially when   is bigger than ).  

What may be concluded at the end of this sub-section is that if the demand data is 

highly positive autocorrelated then the non-aggregation approach works better than the 

aggregation one. In those cases the non-aggregation approach better exploits the very 

important recent information (i.e. dt) (though it is more prone to noise). On the contrary, when 

the autocorrelation is less positive or negative, then the recent demand information is not that 

crucial. Thus, a longer term view of the demand is preferable (if one properly selects how to 

use long term demand information through m and ). Moreover, the aggregation performance 

under the ARIMA(0,0,1) is slightly different than the ARIMA(1,0,1) and the ARIMA(1,0,0) 

due to the nature of these processes. Positive autocorrelation under an ARIMA(1,0,1) or 

ARIMA(1,0,0) process, with a maximum value equal to +1, is potentially higher than that 
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associated with an ARIMA(0,0,1) process (with a maximum value equal to 0.5). It should be 

reiterated that for the ARIMA(0,0,1) process, the autocorrelation is limited only  for to lag1, 

whereas for the ARIMA(1,0,1) and the ARIMA(1,0,0) processes, the autocorrelation spans 

over more lags and is not limited to lag1. This renders the range of outperformance of the 

non-aggregation approach larger under the ARIMA(1,0,0) and ARIMA(1,0,1) processes. In 

sub-section ‎3.2.2 the conditions under which each approach outperforms the other one are 

theoretically determined when comparison is undertaken at the disaggregate level. 

3.2.1.2 Comparison at aggregate level 

In this sub-section, the effect of control and process parameters on the ratio of MSEBA/ 

MSEAA is evaluated when the comparison is undertaken at the aggregate level. 

3.2.1.2.1 Autoregressive Moving Average Process Order One, ARIMA(1,0,1) 

Figure ‎3-14 and Figure ‎3-15 present the impact of the control and the process 

parameters on the ratio of AABA MSEMSE  for m = 2, 12 , 01.0,1.0    and 

05.0,1.0    when the non-aggregate demand series follows an ARIMA(1,0,1) process.  

Shaded areas represent a behavior in favor of the non-aggregation approach. These 

figures show that the aggregation approach provides more accurate results when the forecast 

horizon is long. Moreover, for short horizons, the aggregation approach performs extremely 

well when  is positive and  takes negative values. Alternatively, the aggregation approach 

does not perform better than the non-aggregation one where  takes negative values and  

takes highly positive values. The outperformance of the non-aggregation approach can be 

attributed to the high positive autocorrelation value as explained above. The results show that 

the effect of the smoothing constant values before and after aggregation on the superiority of 

each approach is similar to the case of comparing at the disaggregate level. When considering 

a fixed value of the aggregation level, increasing  results in a deterioration of the aggregation 

approach. For the aggregate data, the responsiveness of the stable forecasting method 

deteriorates the performance because the differences between the observations are small and 

low  leads to better forecasts. 
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                                   m=2 m=12 

  

  

Figure ‎3-14: Impact of  m,  ,  , and  on the ratio of MSE: 

01.0,1.0   (top)  05.01.0   (bottom) 

                                   m=2 m=12 



B.Rostami-Tabar, 2013, Chapter 3  88 

 

  

  

Figure ‎3-15: Impact of  m,  ,  , and  on the ratio of MSE: 1.0,3.0   (top)  

 2.05.0   (bottom) 

 

The results show that by increasing the aggregation level, m the performance of the 

aggregation approach is improved. for higher values of the aggregation level, the aggregation 

approach always outperforms the non-aggregation one regardless of the values of the moving 

average and the autoregressive parameters. Whereas, when the comparison is considerd at the 
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disaggregate level, for highly positive autocorrelation, no level of aggregation improves the 

forecast accuracy.  

the farther into the future the estimation is calculated, the forecast errors associated with 

the original data become larger compared to the temporally aggregate one. The approaches based 

on the temporally aggregate data benefit more by increasing the forecast horizon. In these cases a 

longer term view on demand becomes vital and the aggregation approach utilizes this 

information much better than the non-aggregation one. 

In the particular case where the smoothing constant parameters before and after 

aggregation are identical (   ), the results are similar to Figure ‎3-14 and Figure ‎3-15.  

These examples show that the performance superiority of each approach is a function 

of all the control and the process parameters. The selection of the control parameters   ,  

and m, influence the effectiveness of the aggregation approach in conjunction with the the 

process parameters. 

3.2.1.2.2 Moving average process order one, ARIMA(0,0,1) 

Figure ‎3-16 presents the impact of the control parameters on the ratio of AABA MSEMSE for m 

= 2, 12 and 5.0,1.0  when the non-aggregate demand series follows an ARIMA(0,0,1) 

process. Shaded areas represent a behavior in favor of the non-aggregation approach. The 

results show that for a fixed value of  , by increasing the aggregation level m, the 

aggregation approach provides more accurate forecasts than the non- aggregation one. On the 

other hand, when considering a fixed value of the aggregation level, increasing  results in a 

deterioration of the aggregation approach. If the selected smoothing constant value after 

aggregation,  , is considerably higher than the smoothing constant used with the original 

data, , then the aggregation approach is not preferred. Alternatively, the aggregation 

approach yields a more accurate forecast. However, when  takes highly negative values the 

benefits of the aggregation approach is not as much as positive values. It is obvious from 

Figure ‎3-16 and Figure ‎3-17 that there is always a value of  for which the aggregation 

approach outperforms the non-aggregation one. 
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                                     m=2 m=12 

  

  

Figure ‎3-16: Impact of m, ,  and   on the MSE ratio for 1.0  (top) and 5.0  

(bottom)   
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In the particular case where the smoothing constant parameters before and after 

aggregation are identical (i.e.   ), the aggregation approach outperforms the non-

aggregation one in all cases. 

m=2 m=12 

 

Figure ‎3-17: Impact of control parameters for ARIMA(0,0,1) process on  the MSE 

ratio  

The impact of the smoothing parameter , and the aggregation level m, is quite 

intuitive and similar to the case of the ARIMA(1,0,1) process. Therefore, setting   to be 

small (  should be smaller than ) in conjunction with high aggregation levels provides an 

advantage to the aggregation approach. This is confirmed by the results presented in Figure 

‎3-16 and Figure ‎3-17. 

The weakness of the aggregation approach for negative values of  can be attributed to 

the potentially high positive autocorrelation between demand periods. For negative values of 

, the autocorrelation is positive; for positive values of  the autocorrelation is negative and 

for the white noise process, the autocorrelation is zero. Aggregation of a highly positively 

correlated series doesn't add as much value as the aggregate series with less positive 
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autocorrelation. Hence, when the non-aggregate demand follows an ARIMA(1,0,0) process, 

the aggregation approach leads to an improvement in accuracy when the aggregation level, m, 

is high and the smoothing constant after aggregation   is small.  

3.2.1.2.3 Autoregressive process order one, ARIMA(1,0,0) 

Figure ‎3-18 presents the impact of the control parameters m,  ,    on the ratio of 

AABA MSEMSE for m = 2, 12 and 5.0,1.0 , when the non-aggregate demand series follows 

an ARIMA(1,0,0) process. it is easy to see that the superiority of each approach is a function 

of all control and process parameters. 

The results show that for a fixed value of  , increasing the aggregation level results in 

accuracy improvements of the aggregation approach. Conversely, for a fixed aggregation 

level, increasing   results in a deterioration of the performance. In addition,   should be 

generally smaller than   in order for the aggregation approach to produce more accurate 

forecasts. 

When the smoothing constant parameters before and after aggregation are identical 

(i.e.   ), the aggregation approach outperforms the non-aggregation one in all cases 

except when the aggregation level is low and associated with highly positive values of  . 

Moreover, by increasing the aggregation level the performance of the aggregation approach is 

improved and for the higher aggregation level, the aggregation approach always performs 

better. 
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                                     m=2 m=12 

  

  

Figure ‎3-18: Impact of  m,  , and  on the MSE ratio for 1.0  (top) and 

5.0  (bottom) 
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m=2 m=12 

 

Figure ‎3-19: Impact of control parameters for ARIMA(1,0,0) process on  the MSE 

ratio  

 

The impact of the smoothing parameter   and the aggregation level m on the ratio is 

similar to those reported for the ARIMA(0,0,1) process. Figure  3-18 shows that even if the 

selected  is smaller than , there are some cases in which the aggregation approach is not 

preferred. This is when the autoregressive parameter   takes high positive values. In general, 

the benefits achieved by the aggregation approach are fewer for highly positive values of  

than negative values of . Hence, when the non-aggregate demand follows an ARIMA(1,0,0) 

process, the aggregation approach leads to an improvement in accuracy when the aggregation 

level, m, is high and the smoothing constant after aggregation  is small. 

What can be concluded at the end of this sub-section in forecasting the aggregate level  

is that if the forecast horizon is long then the aggregation approach is always preferred. 

Because in these cases a longer term view on demand is very important and the aggregation 

approach utilizes this information better than the non-aggregation one. By increasing the 
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forecast horizon, the forecast error associated with the classical approach increases as well. 

However, when the forecast horizon is short, the superiority of each approach depends on the 

aggregation level and the autocorrelation values. If the demand data is highly positive 

autocorrelated then the non-aggregation approach works better than the aggregation one. In 

those cases the non-aggregation approach better exploits the very important recent 

information (i.e. dt). On the contrary, when the autocorrelation is less positive or negative, the 

recent demand information is not as crucial. Thus, a longer term view of the demand is 

becomes important. Therefore, the aggregation approach is preferred. 

Moreover, the aggregation performance under the ARIMA(1,0,1), the ARIMA(0,0,1) 

and the ARIMA(1,0,0) processes is slightly different due to the nature of these processes. In 

fact, the positive autocorrelation in the the ARIMA(1,0,1) and the ARIMA(1,0,0) is higher 

than that in the ARIMA(0,0,1) which makes larger the range of the outperformance of the 

non-aggregation approach in the the ARIMA(1,0,1)and the ARIMA(1,0,0) processes.  

In sub-section ‎3.2.2 the conditions under which each approach outperforms the other 

one are theoretically determined when comparison is undertaken at the aggregate level. 

3.2.2 Theoretical Comparison 

Having conducted a sensitivity analysis in sub-section ‎3.2.1, now the conditions under 

which each approach outperforms the other one are analytically identified.  

3.2.2.1 Comparison at disaggregate level  

In this sub-section the conditions under which the aggregation and the non-aggregation 

approaches perform better are identified when the comparison is undertaken at the 

disaggregate level. 
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3.2.2.1.1 Autoregressive Moving Average Process Order One, ARIMA(1,0,1) 

In this sub-section the conditions under which each approach outperforms the other 

one are analytically identified when the non-aggregate demand process is an ARIMA(1,0,1). 

The ratio of AABA MSEMSE  is obtained by dividing (‎3-17) into (‎3-28) :  
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(‎3-49) 

This ratio is a function of the aggregation levelm , the autoregressive parameter   , 

moving average parameter  , and the smoothing constant parameters before and after 

aggregation,  and . Considering that the aggregation level may only get integer values 

greater than or equal to two, the goal is to determine the value  that enables the aggregation 

approach to perform better. The entire range of possible values for  is considered. 

To show the conditions under which the aggregation approach outperforms the non-

aggregation one, the equation (‎3-49) is set greater than 1, i.e. 1AABA MSEMSE , From this 

statement the following result can be obtained: 

THEOREM 1-3: If the time series of the non-aggregate demand follows an 

ARIMA(1,0,1) process and 11    and 01   ,  then:  
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 If 1  , the aggregation approach provides more accurate forecast.  

 If 1  , both approaches perform equally.  

 Otherwise, the non-aggregation approach works better. 

Where 1  defined in (F-4). 

PROOF: the proof of Theorem 1-3 is given in Appendix F. 

Note that for the presented range of  and  ( 11    and 01   ) 1  is always 

positive, consequently choosing 1   guarantees that the aggregation approach always 

outperforms the non-aggregation one in this region. Hence, the value of 1 reflects a cut-off point 

that may be used in practice for the selection of the smoothing constant value to be used for 

the aggregate series. The cut-off point reflects all the qualitative discussion provided in the 

previous sub-section as to when aggregation outperforms the non-aggregation approach.  

 

If the time series of the original demand follows an ARIMA(1,0,1) process and the 

moving average and the autoregressive parameters satisfy 11   and  10  , then the 

conditions under which each approach works better can be obtained. These conditions are 

summarized in the following selection procedure (discussed in Table 1): 

Table ‎3-2: Selection procedure for the ARIMA(1,0,1) process, Comparison at 

disaggregate level 

1. The procedure is begun by calculating   defined in (F-3), If 0 then the non-aggregate 

approach is always superior, otherwise the values of 1 and 2 defined in (F-4) and (F-5) 

are calculated. 

2. If  1,02  , the value of β1 and according to the values of β1 and β2 the following rules 

are obtained: 

 If 12   , then the aggregation approach works better.  

 If 21   then both approaches are identical. 

 If 1  or 2  then non-aggregate strategy works better.  Otherwise, go to 3. 
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3. If  1,02  , the value of 1  is calculated: 

 If 1  , then the aggregation approach works better. 

 If 1  , then both approaches are identical. 

 If 1  , then nonaggregation approach works better. 

 

Where 2 defined in (F-5). 

PROOF: The details of the selection procedure are given in Appendix G. 

3.2.2.1.2 Moving average process order one, ARIMA(0,0,1) 

The ratio of the MSEBA to MSEAA when the non-aggregate demand follows an 

ARIMA(0,0,1) process is a function of the moving average parameter, the smoothing constant 

before and after aggregation (  and ), and the aggregation level. The cut-off points for the 

value of  should be determined. This enables the aggregation approach to perform better. 

The entire range of possible values for  is considered but the smoothing constant is a 

parameter that is set to its optimal value by practitioners, normally by minimizing the MSE. 

From (‎3-17) it is clear that BAMSE  is monotonically increasing in   as the derivative of  

BAMSE  is positive for all values of   in (-1, 1).  Hence, BAMSE  can be minimized by having 

the smallest possible value of  , which makes sense for a stationary process. However, it 

should be noted that in this theoretical analysis the issue of initialization of the forecasting 

process is disregarded. This is an important issue to be mentioned (since with very low 

 values a bad initialization implies inaccurate estimates of the future demand as the forecast 

will basically be kept constant) but one that is not considered as part of this research. 

To show the conditions under which the aggregation approach outperforms the non-

aggregation approach, the ratio is set greater than one, 1AABA MSEMSE . From this inequality 

the following result can be obtained: 
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THEOREM 2-3: If the time series of the non-aggregate demand follows an 

ARIMA(0,0,1) process,  then:  

 If 1  , the aggregation approach provides more accurate forecasts.  

 If 1  , both strategies perform equally.  
 Otherwise, the non-aggregation approach works better. 

where 

   
  ,

222
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( 3-50) 

 

and 

 
.

2

1 2


 

  ( 3-51) 

PROOF: the proof of Theorem 2-3 is given in Appendix H. 

 

The results demonstrate that, for a given values of  and m, there always exists a value 

of  such that the aggregation approach outperforms the non-aggregation one. Hence, the 

value of 1 reflects a cut-off point that may be used in practice for the selection of the 

smoothing constant value to be used for the aggregate series. 

3.2.2.1.3 Autoregressive process order one, ARIMA(1,0,0) 

A similar procedure is followed by setting the ratio MSEBA to MSEAA greater than 1 for 

an ARIMA(0,0,1) process. This is conducted to identify the conditions under which the 
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aggregation approach performs better. These conditions are summarized by the selection 

procedure presented in Appendix I when autoregressive parameter  satisfies 11   . 

As discussed earlier the smoothing constant is often set by practitioners to its optimal 

value, so it is more interesting to discuss the cases where such a value is considered. To do so, 

the value that minimizes the MSEBA is determined. Following that a value of the smoothing 

constant after aggregation that leads to more accurate forecasts is calculated. The optimal 

value of  is given in (‎3-52) that can be obtained by solving the first derivative of (‎3-19): 

 
.

311

131213*





 

  (‎3-52) 

where 0  is a very small positive value.  

By considering the optimal value of the smoothing constant before aggregation, two 

different cases should be considered. From 1AABA MSEMSE  and (‎3-52) the following results 

can be obtained. 

Case 1. 131  . In this case,    213*   

THEOREM 3-3: If the time series of the non-aggregate demand follows an ARIMA(1,0,0) 

process, where 131   and the optimal smoothing constant,    213*  , is used to 

determine the non-aggregate demand forecast, then the non-aggregation approach always 

provides more accurate forecast than the aggregation one, regardless of the smoothing 

constant parameter after aggregation, β, and the aggregation level, m. 

PROOF: the proof of Theorem 3-3 is given in Appendix J. 

Case 2. 311   . In this case *  is a very small positive number. 

THEOREM 4-3. If  the time series of the non-aggregate demand follows an ARIMA(1,0,0) 

process, where 311    and the optimal smoothing constant used to determine the non-

aggregate demand forecast, 05.0*  , then: 
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 If β < β1 the aggregation approach provides more accurate forecast. 

 If β = β1 both strategies perform equally.  

 Otherwise, the non-aggregation approach works better. 

Where 
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   ( 1 , 2 , and   are given in Appendix I) 

PROOF: The proof of Theorem 4-3 is given in Appendix J. 

Similar to the case of the ARIMA(0,0,1) process, the above results provide a cut-off 

point that may be used in practice for the selection of the smoothing constant in order to 

obtain an outperformance of the aggregation approach when ARIMA(1,0,0) processes are 

considered. Obviously, as the cut-off point increases for high aggregation levels, it is clear 

that this implies a considerable range of the smoothing constant of the aggregate series where 

there is a benefit of using the aggregation approach. Hence, these results provide a 

comprehensive way of managing the process of forecasting of ARIMA(1,0,0) processes when 

the autoregressive parameter is known and when the intention is to optimize the smoothing 

constant for the non-aggregate series. 

3.2.2.2 Comparison at aggregate level 

In this sub-section the superiority conditions of each approach are identified when the 

comparison is undertaken at the aggregate level. 

3.2.2.2.1 Autoregressive Moving Average Process Order One, ARIMA(1,0,1) 

The ratio of the MSEBA to MSEAA when the non-aggregate demand follows an 

ARIMA(1,0,1) process is a function of the moving average parameter, , the autoregressive 
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parameter, , the smoothing constant before and after aggregation (  and ), and the 

aggregation level, m. The objective is to determine the value  that enables the aggregation 

approach to perform better. 

      
      

         
      

 
      






























 






 








 





















































 















 




 














2

1 2

21

2

1

1

1

2

2

2

1

2

2

2

22

1

1

1

22

2

1

1

12

12

2

1

1
2

1

21
2

1

1

11

112

1

1

12

12

1

21

2

2
1

1

1

21





































mm

m

k

m

k

kmk

m

k

k

m

m

k

k

AA

BA

kk

km
m

m

mm

km
m

MSE

MSE

 

(‎3-54) 

To show the conditions under which the aggregation approach outperforms the non- 

aggregation approach, the ratio is set to greater than one, 1AABA MSEMSE . From this 

statement the following results can be obtained: 

If the time series of the basic demand follows an ARIMA(1,0,1) process and the 

moving average and the autoregressive parameters satisfy 11   and  10  , the 

conditions under which each approach works better are obtained. These conditions are 

summarized as follows: 

Table ‎3-3: Selection procedure for the ARIMA(1,0,1) process, Comparison at 

aggregate level 

1. The procedure is begun by calculating   defined in (K-2), If 0 then the non-

aggregation approach is always superior, otherwise the values of 1 and 2 defined in (K-

3) and (K-4) are calculated. 

2. If  1,02  , the value of β1 and according to the values of β1 and β2 the following rules 
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are obtained: 

 If 12   , then the aggregation approach works better.  

 If 21   then both approaches are identical. 

 If 1  or 2  then non-aggregation approach works better.  Otherwise, go to 3. 

3. If  1,02  , the value of 1  is calculated: 

 If 1  , then the aggregation approach works better. 

 If 1  , then both approaches are identical. 

 If 1  , then non-aggregation approach works better. 

 

 

PROOF: The details of the selection procedure are given in Appendix K. 

 

THEOREM 5-3: If the time series of the non-aggregate demand follows an 

ARIMA(1,0,1) process and 11    and 01   ,  then:  

 If 1  , the aggregation strategy provide more accurate forecast.  

 If 1  , both strategies perform equally.  

 Otherwise, the non-aggregation strategy works better. 

where 1  is defined as: 

 

 



m

mmm

1 2

2+2-)-(1-2


  

 and,,,  are defined in Appendix K. 

PROOF: the proof of Theorem 5-3 is given in Appendix L. 
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Theorem 5-3 show that when the autoregressive and the moving average parameters satisfies 

11    and 01   , then for a given value of the smoothing constant,, and the 

aggregation level, m, there is always a value of  for which the aggregation approach provides 

more accurate forecasts. 

3.2.2.2.2 Moving average process order one, ARIMA(0,0,1) 

The ratio of the MSEBA to MSEAA when the non-aggregate demand follows an 

ARIMA(0,0,1) process is a function of the moving average parameter, , the smoothing 

constant before and after aggregation (  and ), and the aggregation level, m. The 

superiority conditions can be obtained by following the same procedure as Appendix K where 

the autoregressive parameter is equal to zero. 

       









 



















2

12

2

12

2

1
21

2

2
2 m

MSEMSE AABA  (‎3-55) 

By setting the equation (‎3-55) to greater than one, the following results can be obtained: 

THEOREM 6-3: If the time series of the non-aggregate demand follows an 

ARIMA(0,0,1) process,  then for a given values of  and  :  

 If 1  , the aggregation approach provides more accurate forecasts.  

 If 1  , both strategies perform equally.  

 Otherwise, the non-aggregation approach works better. 

 
where 

 
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Proof: Theorem 6-3 can be obtained by substituting =0 in Appendix L. 

Theorem 6-3 says that there is always a value of  for which the aggregation approach 

outperforms the non-aggregation one.  

 

THEOREM 7-3 If the non-aggregate time series follows an ARIMA(0,0,1) process 

and the smoothing constant under the aggregation approach is smaller or equal to the non-

aggregation one(), then aggregation approach always outperforms the non-aggregation 

one(i.e. MSEBA > MSEAA). This is true regardless of the aggregation level, m and the process 

parameter. In addition, when the smoothing constants under the both approaches are set 

small (, <0.01), then both aggregation and non-aggregation approaches perform equally. 

PROOF: the proof of Theorem 7-3 is given in Appendix M. 

3.2.2.2.3 Autoregressive process order one, ARIMA(1,0,0) 

The superiority conditions of each approach when the non-aggregate demand follows 

an ARIMA(1,0,0) process can be obtained by setting the following equation greater than one. 
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 (‎3-56) 

Similar to the case of comparison at disaggregate level, by considering the optimal value of 

the smoothing constant before aggregation, two different cases are considered. 
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THEOREM 8-3 If  the time series of the non-aggregate demand follows an ARIMA(1,0,0) 

process when 311   , then there is always a value of  in order to the aggregation 

approach outperforms the non-aggregation one: 

 If β < β1 the aggregation approach provides more accurate forecast. 

 If β = β1 both strategies perform equally.  

 Otherwise, the non-aggregate approach works better. 

Where 

 



m

mmm

1 2

2+2-)-(1-2


  

Proof: These conditions can be achieved by substituting =0  and 311    in the 

Appendix K. 

If the autoregressive parameter satisfies 311   , then there is always a value of  

for which the aggregation approach works better than the non-aggregation one. 

 

THEOREM 9-3 If  the time series of the non-aggregate demand follows an ARIMA(1,0,0) 

process when 311    and the smoothing constant under the aggregation approach is 

smaller than non-aggregation one(<), then aggregation approach always outperforms the 

non-aggregation one. This is always true regardless of the aggregation level, m. In addition, 

when the smoothing constants under the both approaches are set to small values (,<0.01), 

then the difference in the performance of the aggregation and non-aggregation approaches is 

insignificant. 

PROOF: the proof of Theorem 9-3 is given in Appendix N. 

 

If  the time series of the non-aggregate demand follows an ARIMA(1,0,0) process 

when 131  , then the ratio of MSEBA/MSEAA may be smaller, greater than or equal to one 
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depending on the values of the smoothing constants( and ), aggregation level, m and the 

autoregressive parameters. The conditions under which each approach works better can be 

obtained by substituting =0 and 131  in the procedure discussed in sub-section 

‎3.2.2.2.1 where the case of the ARIMA(1,0,1) is considered. 

3.2.3 Optimal aggregation level 

The objective of this section is to identify the optimal aggregation levels that 

maximize the ratio or equivalently minimize the MSEAA for each demand process under 

consideration. To do so, the ratio of MSEBA to MSEAA for the whole range of the control 

parameters is evaluated. 

3.2.3.1 Comparison at disaggregate level 

In this part the aggregation level that leads to more error reduction is determined when 

the comparison is undertaken at disaggregate level. 

3.2.3.1.1 Autoregressive Moving Average Process Order One, ARIMA(1,0,1) 

A numerical investigation to determine the optimal aggregation level is conducted 

since from (‎3-49) it is clear that the calculation of the first derivative is infeasible. two 

examples are presented: i) the whole range of  where =0.9,  = 0.3, and  = 0.2; ii) the 

whole range of  where =-0.5,  = 0.3, and  = 0.2. In the latter case for some values of  

and  =-0.5 ( Figure ‎3-20b) the ratio is smaller than one and consequently aggregation does 

not work. Thus, in these cases it is not necessary to discuss the optimal aggregation level. 

The results show that by increasing the aggregation level, the performance of the 

aggregation approach improves. Additionally, a higher aggregation level results in higher 

values of the ratio and consequently more benefits for the aggregation approach. 
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a) =0.3,=0.2,=0.9 b)  =0.1,=0.01,=-0.4 

Figure  3-20: MSE ratio for different values of m for an ARIMA(1,0,1) process 

3.2.3.1.2 Moving average process order one, ARIMA(0,0,1) 

In order to obtain the optimal aggregation level when the non-aggregate demand series 

follows an ARIMA(0,0,1), the following theorem is considered. 

 THEOREM 10-3: If the non-aggregate demand series follows an ARIMA(0,0,1) 

process, then the optimal aggregation level is the highest level in any considered range. 

Supposing that aggregation is to be tested in a range [uu 21, ], where u1and u2are the lower 

and upper bound, respectively. In addition, they are positive integer numbers. The optimal 

aggregation level is always u2 . 

PROOF: A calculation of the first derivative of MSEAA with respect to m shows that MSEAA is 

a decreasing function of m. This can be shown by a numerical analysis for m  2 as well. This 

means that the ratio MSEBA/MSEAA is an increasing function of m. Therefore, a higher value of 

the aggregation level results in a higher value of the ratio MSEBA / MSEAA. 
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3.2.3.1.3 Autoregressive process order one, ARIMA(1,0,0) 

A numerical investigation is conducted to obtain the optimal aggregation level where 

the subaggregate process follows an ARIMA(1,0,0) as the calculation of the first derivative is 

infeasible. Two examples are considered: i) the whole range of  where  = 0.15 and  = 0.1; 

ii) the case 2 discussed in 5.2.2 with an optimal value of . 

Figure 3a shows that the value of the aggregation level that maximizes the MSE ratio 

changes when varying the control parameter values. For negative and lower positive values of 

, i.e. 311   , the forecast accuracy of the aggregation approach increases with the 

aggregation level while for higher positive values of , i.e. 131  , this is not true. Let us 

analyse the two different cases in which the optimal smoothing constant values are considered 

for MSEBA. 

 

 

a) ARIMA(1,0,0) process where 11    
b)  Case 2, ARIMA(1,0,0) process where 

33.01    

Figure  3-21: MSE ratio for different values of m ARIMA(1,0,0) process at disaggregate level 



B.Rostami-Tabar, 2013, Chapter 3  110 

 

Case 1. 131  . In this case the optimal smoothing constant parameter 

   213*    is used and it is seen in sub-section 5.2.2 that the MSE ratio is always lower 

than 1.  

Case 2. 311   . In this case a very small smoothing constant value, 05.0*   , is 

used. The MSE ratio for different aggregation levels is shown in Figure ‎3-21b for 

311   and a numerical example of  and   values where  <   . This figure shows 

that the aggregation approach is associated with more accurate results for higher aggregation 

levels.  

3.2.3.2 Comparison at aaggregate level 

In this part the optimal aggregation level that maximizes the ratio of MSEBA / MSEAA is 

identified when the comparison is undertaken at the aggregate level.  

3.2.3.2.1 Autoregressive Moving Average Process Order One, ARIMA(1,0,1) 

Similar to the case of comparison at disaggregate level, here two examples are 

presented to evaluate the impact of the aggregation level on the ratio as the derivation of 

(‎3-54) to determine the optimal m is not feasible: i) the whole range of  where =0.7,  = 

0.1, and  = 0.01; ii) the whole range of  where =-0.4,  = 0.1, and  = 0.01.  

As it is shown in Figure ‎3-22a and b, the higher ratio of MSEBA / MSEAA is associated 

with higher aggregation level. 



B.Rostami-Tabar, 2013, Chapter 3  111 

 

  

a) =0.1,=0.01,=-0.4 b)  =0.1,=0.01,=0.7 

Figure  3-22: MSE for different values of m, ARIMA(1,0,1)process compared at aggregate 

level 

3.2.3.2.2 Moving average process order one, ARIMA(0,0,1) 

By considering (‎3-55) the values of the MSEBA / MSEAA by varying the aggregation 

level can be determined. Figure ‎3-23a and b show the impact of the aggregation level on the 

ratio for the whole range of  when =0.1,=0.1 and =0.1,=0.05. It is shown that higher 

aggregation level is associated with higher ratio. 
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a) =0.1,=0.1 b)  =0.1,=0.05 

Figure  3-23: MSE for different values of m, ARIMA(0,0,1) process comparison at aggregate 

level 

3.2.3.2.3 Autoregressive process order one, ARIMA(1,0,0) 

 Figure ‎3-23a and b present the impact of aggregation level on the ratio for the whole 

range of  when =0.3,=0.1 and =0.1,=0.05. The results show that a higher value of the 

ratio is achieved by higher aggregation level. 

 

 

a) ( 1.0,3.0   ) b)  ( 05.0,1.0   ) 
Figure  3-24: MSE for different values of m, ARIMA(1,0,0) process comparison at aggregate 

level  

3. Simulation investigation 

In this sub-section a simulation experiment based on the theoretically generated data is 

considered. In this part of the work, simulation analysis is used to test and validate the 

theoretical results discussed in section ‎2. 
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3.3.1 Simulation design 

Different autoregressive moving average, ARMA type processes are to test the 

mathematical findings. an ARIMA(1,0,0) process, an ARIMA(0,0,1) process and a mixed 

ARIMA(1,0,1) process are considered. These processes are analysed in section ‎1. The 

disaggregate demands are generated randomly in each period subject to the parameters 

described in Table ‎3-4. The value of   is set quite smaller than   to avoid the generation of 

negative sub-aggregate values. To generate the demands in each period t that follow 

ARIMA(1,0,1), ARIMA(0,0,1) and ARIMA(1,0,0), the error termst  are first generated 

randomly. The simulation experiment is designed and run in Matlab 7.10.0. For each 

parameter combination described in Table ‎3-4 a demand series of 1000 observations is 

generated and 100 replications are introduced. 

Table  3-4: Parameters of the simulation experiment 

     ,      
N° 

Replications 

N° Time 

Periods 

400 20 0.01: 0.99 -0.9 : +0.9 -0.9 : +0.9 100 1000 

The generated series is divided into two parts. The first part (within sample) consists 

of 450 time periods and is used in order to initialize the SES estimates. The second part 

consists of 550 time periods and is used for the evaluation of the performance (out-of-

sample). The values of the smoothing constants before and after aggregation (, ) is varied 

from 0.05 to 0.95 with a step increase of 0.05. For non-aggregation approach, the SES is 

applied directly to get 550 one-step ahead forecasts and then the variance of the forecast error. 

is calculated. In order to obtain the forecasts generated by the aggregation approach, first the 

non-overlapping buckets of aggregate data are created based on a specified aggregation level 

and then SES method is applied to these aggregate data to get the aggregate forecast. the 

procedure is explained for the aggregation level equals to two, for higher aggregation level the 

same procedure is followed. The calculation is begun from the 450nd observation in the initial 

(within sample) part, the observations are summed backwards in buckets of two (2), resulting 

in an aggregate series consisting of 225 aggregate observations. The average of the aggregate 

series is obtained and is used as the SES’s forecast for the first bucketed period 1. SES is then 
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applied all the way up to producing a forecast for bucket 226 which gives a forecast for 

periods 451 and 452. Then the buckets of 2 periods from period 451 backwards are created. 

Thus, another 225 buckets are created and the very first observation (period 1 in the original 

data) is not used anymore. The average of these buckets is calculated , it is used as the SES’s 

forecast for the first bucket, then the SES method is applied until the point that a forecast for 

bucket 227 (periods 452 and 453) is produced. In the next period, the buckets are created 

backwards from period 452 ending up with 226 buckets and continue like this until obtain the 

forecasts for 550 periods ahead. Now, if the forecast at the disaggregate level is needed the 

aggregate forecasts is divided by the aggregation level to get the disaggregate forecast 

resulted from the aggregate data.  

Finally, the value of the variance of the forecast error before aggregation is divided by 

the variance of the forecast error after aggregation, to obtain the ratio of MSEBA to MSEAA. 

verification is the process to make sure that no programming error has been 

made(Kleijnen and Groenendaal, 1992). This can be tested by calculating intermediate results 

manually and comparing them with the results obtained by the program. This is called 

tracing(Kleijnen and Groenendaal, 1992). Eyeballing or reading through the code and looking 

for bugs is another way of verification(Kleijnen and Groenendaal, 1992). The following steps 

are conducted to verify the simulation model: 

 The MATLAB codes are read through to make sure that the correct logic and 

functions have been used.  

 The intermediate and also the final results are compared for a limited number of 

replications (e.g. 10 replications) with MS Excel.  

3.3.2 Simulation Result 

The simulation results are presented in this sub-section. As discussed in chapter 1, the 

objective of the simulation analysis I temporal aggregation is to test and validate the results of 

mathematical evaluation. In section ‎2 he conditions under which aggregation and non-

aggregation approaches may outperform each other are discussed. In the following the results 
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of simulation analysis are presented for these conditions to compare them with mathematical 

analysis. 

Although a simulation investigation is conducted for all scenarios discussed in the 

theoretical part but the results of the more general case, ARMA(1,0,1) process are only 

presented, which has the characteristics of both ARIMA(1,0,0) and ARIMA(0,0,1) process. 

Figure ‎3-25 presents the impact of the parameters on the ratio of AABA MSEMSE when 

comparing at disaggregate level for m = 2, 12, 1.0 , and 05.0,01.0 . Shaded areas 

represent a behavior in favor of the non-aggregation approach.  

The simulation results shows that for positive values of  and negative values of  , 

non-aggregation approach produce more accurate results compared to aggregation approach, 

however the aggregation approach can provide more accuracy forecasts when  is negative 

and  is positive. In addition, it is seen that increasing the aggregation level improve the 

forecasting accuracy when the aggregation approach outperforms the non-aggregation one.  

However, by increasing the smoothing constant after aggregation the performance of 

the aggregation approach deteriorates. 

In Figure ‎3-26 the results of simulation analysis for comparison at the aggregate level 

are presented for the same parameters used in the previous case. Shaded areas represent a 

behavior in favor of the non-aggregation approach. As can be observed in Figure ‎3-26, there 

is less benefits for the aggregation approach when  takes negative values and  has positive 

values, and it is seen that for lower aggregation level values, the non-aggregation approach 

outperforms the aggregation one. However, for higher values of the aggregation level, the 

aggregation approach outperforms the non-aggregation one regardless of the values of the  

 

 

 

autoregressive and the moving average parameters. In addition, by increasing the 

aggregation level the accuracy of the aggregation approach improves. 
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                                   m=2 m=12 

 

 

 

 

Figure ‎3-25: Impact of  m,  ,  , and  on the ratio of MSE compared at disaggregate 

level: 01.0,1.0   (top) , 05.01.0   (bottom) 

 



B.Rostami-Tabar, 2013, Chapter 3  117 

 

 

m=2 m=12 

  

  

Figure ‎3-26: Impact of  m,  ,  , and  on the ratio of MSE compared at aggregate level: 

01.0,1.0   (top) , 05.01.0   (bottom) 

The simulation results presented in both Figure ‎3-25 and Figure ‎3-26 generally 

confirm the results of the theoretical analysis when the underlying series follow an 

ARIMA(1,0,1) demand process at both disaggregate and aggregate level of comparison. 
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4. Empirical analysis 

In this section the empirical validity of the main theoretical findings of this research 

are assessed. In the following sub-section the details of the empirical data available for the 

purposes of the investigation along with the experimental structure employed in this work are 

provided. In sub-section ‎3.4.2 the actual empirical results are presented. 

3.4.1 Empirical Dataset and Experiment Details 

The demand dataset available for the purposes of this research consists of weekly sales 

data over a period of two years for 1,798 SKUs from a European grocery store. The Forecast 

package in R is used to identify the underlying ARIMA demand process for each series and 

estimate the relevant parameters. It is found that more than 48% of the series may be 

represented by the processes considered in our research. In particular, 30.26% of the series 

(544 series) is found to be ARIMA(1,0,0), 12.96% (233 series) to be ARIMA(0,0,1) and 

5.06%(91 series) to be ARIMA(1,0,1), (Other popular processes identified are: 

ARIMA(0,0,0) (16.3%) and ARIMA(0,1,1) (23.7%). This analysis provides some empirical 

justification on the frequency of stationary, and in particular ARIMA(0,0,1) and 

ARIMA(1,0,0) processes in real world practices. 

In Table  3-5 and 3-6 and 3-7 the characteristics of the SKUs relevant to this study are 

summarized by indicating the estimated parameters for ARIMA(1,0,1), ARIMA(0,0,1) and 

ARIMA(1,0,0) processes. To facilitate a clear presentation, the estimated parameters are 

grouped in intervals and the corresponding number of SKUs is given for each such interval.  

The average  and  value per interval is also presented for the processes respectively. 

This categorization allows comparing the empirical results with the theoretical findings. It 

should be noted that the   parameter values are all but one negative and the  parameter 

values are all but one positive for the ARIMA(0,0,1)  and the ARIMA(1,0,0) processes 

respectively. For the ARIMA(1,0,1) process, the   parameter values are positive or negative 

and all  parameters are positive, but whole parameters lead to a positive autocorrelation. As 

such, the data do not cover the entire theoretically feasible range of the parameters. Some 

studies (Erkip et al., 1990; Lee et al., 1997b; Lee et al., 2000)  that have considered empirical 
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ARIMA(1,0,0) processes, have reported that it is common to have positive correlation/high 

value of autoregressive parameters in the consumer product industries which is also the case 

in the dataset used in our research. Replication of our findings in bigger datasets is certainly 

an avenue for further research. 

 

Table  3-5: Processes present in the empirical data set, ARIMA(1,0,1) process 

θ intervals  intervals 
Average of 

θ 
Average of  

Average 

lag1Autocorrelation 
No. of SKUs 

[0.1,0.5[ [0.6,1[ 0.356 0.771 0.5211 23 

[0.5,0.9[ [0.6,1[ 0.605 0.838 0.3260 39 

[-0.2,-0.5[ [0.1,0.5[ -0.328 0.347 0.5631 29 

 Total number of SKUs:   91 

 

 

Table  3-6: Processes Present in the Empirical Data Set, ARIMA(0,0,1) process 

θ intervals Average of θ No. of SKUs 

[-.8,-.7[ -0.7252 1 

[-.7,-.6[ -0.6329 9 

[-.6,-.5[ -0.5393 39 

[-.5,-.4[ -0.4471 72 

[-.4,-.3[ -0.3509 57 

[-.3,-.2[ -0.2520 48 

[-.2,-.1[ -0.1989 6 

[0,1[ 0.2831 1 

Total number of SKUs: 233 
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Table  3-7: Processes Present in the Empirical Data Set, ARIMA(1,0,0) process 

b) ARIMA(1,0,0)  

ø intervals Average of ø No. of SKUs 

[-.1,0[ -0.2240 1 

[.1,.2[ 0.1981 2 

[.2,.3[ 0.2534 84 

[.3,.4[ 0.3549 125 

[.4,.5[ 0.4479 127 

[.5,.6[ 0.5512 121 

[.6,.7[ 0.6433 63 

[.7,.8[ 0.7352 18 

[.8,.9[ 0.8256 3 

Total number of SKUs: 544 

 

The data series is divided into two parts. The first part (within sample) consists of 62 

time periods and is used in order to initialize the SES estimates. The second part consists of 

the remaining 41 time periods and is used for the evaluation of the performance (out-of-

sample).  

The values of the smoothing constants are varied from 0.05 to 0.95 with a step 

increase of 0.05. In the classical (non-aggregate) approach, first the 41 one-step ahead 

forecasts are calculated for each series and then the variance of the forecast error is we 

calculated. 

to obtain the forecasts via the aggregation approach, firstly the non-overlapping 

buckets of aggregate data are created based on a specified aggregation level and then the SES 

method is applied to these aggregate data. 

Aggregation level = 2: Starting from the 62nd weekly observation in the initial (within 

sample) part, the observations are summed backwards in buckets of two (2), resulting in a bi-

weekly series consisting of 31 aggregate observations. The average of aggregate series is 
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obtained and it is used as the SES’s forecast for the first bucket period 1. SES is then applied 

all the way up to producing a forecast for bucket 32 which is then divided by 2 (the 

aggregation level, m=2) and it gives a forecast for periods 63 and 64. The forecast for period 

64 is dropped and those of 63 is recorded (they are equal anyway). Then the buckets of 2 

periods from period 63 backwards are created. Therefore, another 31 buckets are created and 

the very first observation (period 1 in the original data) is not used anymore. The average of 

these buckets are calculated (they are different from those created before), that average is used 

as the SES’s forecast for the first bucket, the forecasting process is continues using SES until 

the point that a forecast for bucket 32 (periods 64 and 65) is obtained. The forecast for period 

64 is kept and so on. In the next period, the buckets are created backwards from period 64 

ending up with 32 buckets and continue like this until obtain the forecasts for 41 periods 

ahead. 

Aggregation level = 3 . . . 24: Similarly, the same procedure is followed with time 

buckets of up to 24 periods. At this point there are 2 aggregate biweekly observations 

(2×24=48), thus 14 weekly observations at the start of the original series remain unused. 

Finally, the value of the variance of the forecast error before aggregation is divided by 

the variance of the forecast error after aggregation to obtain the ratio of MSEBA to MSEAA. 

3.4.2 Empirical Results 

In this section the results of empirical investigation compared at both disaggregate and 

aggregate level for all processes under consideration are presented. 

3.4.2.1 Comparison at disaggregate level 

In the first part, the validity of mathematical results are evaluated by real data set when 

the non-aggregate demand follow an ARIMA(1,0,1) process and the comparison is conducted 

in the disaggregate level. The empirical results show that when the optimal smoothing 

constant values  and  are used, then for all values of aggregation level m the non-

aggregation approach outperforms the aggregation one. This is in agreement with our findings 

as the real data set presented in Table ‎3-5 takes positive autocorrelation, not only for lag1 but 
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it spans over longer lags. According to the theoretical findings when the autocorrelation is 

positive the non-aggregation approach performs better and no level of aggregation improve 

the performance of the aggregation approach. As it is shown in Figure ‎3-27, for all values of 

m the MSEBA is lower than MSEAA. It should be noted that the results is presented based on the 

RMSE(root mean square error) which is similar to MSE. The MSE reduction can be as high as 

8% for the aggregation approach. 

 

Figure  3-27: Empirical results compared at disaggregate level, ARIMA(1,0,1) process 

In sub-sections ‎3.2.2.1.2 and 3 the conditions under which the aggregate forecasts may 

perform better than the non-aggregate are analytically examined by the ratio of MSEBA to 

MSEAA. The cut-off points of the smoothing constant of the aggregate series  that should be 

used (i.e. any value of   that is lower than the cut-off point 1 implies an outperformance of 

the aggregation approach) have also been determined for both the ARIMA(0,0,1) and 

ARIMA(1,0,0) process. In the following figures the results of the empirical analysis for these 

processes are presented. Additionally, the degree to which they validate the theoretical 

findings is investigated. 
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In Figure ‎3-28, the cut-off point 1  is presented for a fixed values of  and m when the non-

aggregate demand of the SKUs follows an ARIMA(0,0,1) process. Please recall that the cut-

off point 1  is the value below which any  value implies that the aggregation approach 

outperforms the non-aggregation one. Note that the results for   0.5 are only presented 

since this range is viewed as realistic for the stationary processes considered in this work.  

Figure  3-28: Cut-off points of  implying an outperformance of the aggregation approach for 

different values of  and m compared at disaggregate level, ARIMA(0,0,1) process 

The empirical results show that for a low aggregation level m=2, the cut-off point is 

relatively low since 1 =0.2 for a relatively high  value equal to 0.5. In that case, the MSE 

reduction when  =0.05 is equal to 8.89% and the MSE ratio decreases for higher values of 

 . Obviously, the cut-off value considerably increases when the aggregation level increases. 

For example, when we consider the aggregation level m=12, the cut-off point may go up to 

1 =0.8 for  value equal to 0.5. In that case the MSE reduction when  =0.05 is equal to 

12.13%. This shows the considerable region where the aggregation approach outperforms the 

non-aggregation one for high aggregation levels. Hence, increasing the aggregation level 
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improves the performance of the aggregation approach and the best results can be achieved 

for small values of  and high aggregation levels m. These empirical results generally 

confirm the theoretical findings. 

 

Figure ‎3-29: Cut-off points of  implying an outperformance of the aggregation approach for 

different values of  and m compared at disaggregate level, ARIMA(1,0,0) process with -

1<  0.33. 

Figure ‎3-29 shows the cut-off point 1  for fixed values of  and m when the SKUs 

have a non-aggregate demand that follows an ARIMA(1,0,0) process with -1<  0.33. The 

empirical results show that for a low aggregation level m=2, low   values should be selected 

in order to have an outperformance of the aggregation approach. For example when an 

aggregation level m=2 is used, the cut-off point 1 =0.33 for an  value equal to 0.5 and the 

MSE reduction when  =0.05 is equal to 12.45%. The cut-off points considerably increase 

when the aggregation level increases. Figure ‎3-29 shows also that for an  value equal to 0.5 

and when the aggregation level m=12, the cut-off point 1 is almost equal to 1, which means 

that the aggregation approach always outperforms the non-aggregation one in that case. That 
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results also in a MSE reduction equal to 15.11% that decreases for higher values of  . 

However, it should be noted that for the SKUs where 0.33 < < 1, the empirical results show 

that when the optimal value of   is used for all values of   and m, the non-aggregation 

approach outperforms the aggregation one.  

The empirical analysis confirms overall the results of the theoretical evaluation both 

for all processes under consideration. What can be concluded here is that there is a 

considerable range of the values of the smoothing constant of the aggregate series that implies 

a benefit of using the aggregation approach. This benefit can also be substantial for high 

aggregation levels and low smoothing constants. Note that such analysis can be utilized as an 

indicator on when the aggregation approach should be used and which parameters lead to the 

outperformance of this approach. 

3.4.2.2 Comparison at aggregate level 

In this part the validity of the findings in forecasting the aggregate demand is tested by 

real data sets. In sub-sections ‎3.2.1.2 and ‎3.2.2.2 the superiority conditions of the aggregation 

and non-aggregation approaches are identify when a cumulative m step ahead forecast is 

required. It is shown that for positive autocorrelation associated with low aggregation level, 

non-aggregation approach works better but by increasing the aggregation level the 

performance is improved even for high positive autocrrelation. 

Figure ‎3-30 shows the results of both aggregation and non-aggregation approaches for 

different values of aggregation level m when the optimal smoothing constants before and after 

aggregation is used and the non-aggregate demand series follow an ARIMA(1,0,1) process. 

The results show that for the aggregation level m up to six, the MSEBA is smaller than MSEAA. 

However, as m takes higher values than six, the latter becomes smaller. Therefore, the 

empirical results show that when the non-aggregate demand follow an ARIMA(1,0,1) process 

and autocorrelation is positive (refer to Table  3-5) then for lower values of m(m6) the non-

aggregation approach works better. However for m>6, aggregation approach outperforms the 

non-aggregation one. 
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Figure  3-30: Empirical results compared at aggregate level, ARIMA(1,0,1) process 

 

Figure  3-31: Cut-off points of  implying an outperformance of the aggregation approach for different 

values of  and m compared at aggregate level, ARIMA(0,0,1) process. 
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Figure  3-32: Cut-off points of  implying an outperformance of the aggregation approach for different 

values of  and m compared at aggregate level, ARIMA(1,0,0) process with -1<<0.33. 

 

Figure  3-33: Cut-off points of  implying an outperformance of the aggregation approach for different 

values of  and m compared at aggregate level, ARIMA(1,0,0) process with 0.33<<1. 
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Figure ‎3-31 presents the results of empirical analysis compared at aggregate level when 

the non-aggregate demand follows an ARIMA(0,0,1) process. It is shown that there is always 

a value of smoothing constant after aggregation  for which the aggregation approach 

outperforms non-aggregation one. The cut-off point 1  is determined for fixed values of 

 and m when the non-aggregate demand of the SKUs follows an ARIMA(0,0,1) process. 

The results show that for high values of aggregation level, the aggregation approach 

outperforms the non-aggregation one for a wide range of  values. 

Figure ‎3-32 shows the cut-off point 1  for fixed values of   and m when the non-

aggregate SKUs follow an ARIMA(1,0,0) process with -1<  0.33. As it is discussed above, 

for these autoregressive values the autocorrelation is not highly positive. For these range of  

there is always a value of  for which the aggregation approach outperforms the non-

aggregation one. The results show that the cut-off points considerably increase when the 

aggregation level increases. Figure ‎3-32 shows also that for an   value greater than and equal 

to 0.2 and when the aggregation level m=12, the cut-off point 1 is almost equal to 1, which 

means that for these values aggregation approach always performs better. The MSE reduction 

associated with these values and the smoothing constant after aggregation =0.01 can be as 

high as 50%. 

In Figure ‎3-33, the forecast results of SKUs with 0.33 < < 1 are presented. The 

empirical results show that when the optimal value of   and  is used, then for lower value 

of m, the MSEBA is smaller than the MSEAA. However, as the aggregation level increases the 

latter becomes smaller than the former one and consequently the non-aggregation approach 

outperforms the aggregation one. The results show that for the aggregation level m smaller 

than or equal to seven the non-aggregation approach performs better, but for the values of m 

greater than seven, the aggregation approach outperforms the non-aggregation one. These 

results confirm the results of analytical evaluation presented in sub-sections ‎3.2.1.2.3 and 

‎3.2.2.2.3. 
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5. Conclusion 

In this chapter the impact of temporal aggregation on demand forecasting has been 

evaluated by theoretical, simulation and empirical investigation. The evaluations were based on 

the consideration of the Mean Squared Error (MSE) before and after aggregation (MSEBA / 

MSEAA) and comparisons were undertaken at both disaggregate and aggregate demand level. 

It is assumed that the demand follow an ARIMA(1,0,1), ARIMA(0,0,1) and ARIMA(1,0,0) 

process and a Single Exponential Smoothing is used as a forecasting method. The conditions 

under which the aggregation approach outperforms the non-aggregation are identified.  

The results show that when the autocorrelation is highly positive in the original series 

the non-aggregation approach may outperform the aggregation one. In general there are fewer 

benefits for the aggregation approach with high positive autocorrelation than the series with 

low positive or negative autocorrelation. This is an intuitive finding since when the 

autocorrelation is highly positive, at any time the most recent demand information is vital. 

Therefore, in that case the disaggregate process works better as it fully exploits such recent 

information. However, on the contrary, for low positive autocorrelation or negative 

autocorrelation, the recent demand information is not that crucial then a more long term view 

on demand is preferable. As discussed above it can be obtained by selecting high aggregation 

levels and low smoothing constants. This is also an important empirical insight since 

managers may know what to expect (in terms of any potential gains) based on the 

autocorrelation levels present in their series. 

When the demand process follow either an ARIMA(1,0,1) or an ARIMA(1,0,0) 

process associated with high positive autocorrelation, and the comparison is undertaken at 

disaggregate level, the results show that non level of aggregation improve the accuracy so the 

non-aggregation approach always outperforms the aggregation one. However, when 

comparing is undertaken at aggregate level, for low aggregation level the non-aggregation 

approach may outperforms the aggregation one, but for higher values of aggregation level, the 

aggregation approach always provide more accurate forecasts. 

It is also found that the performance of the aggregation approach improves as the 

smoothing constant value employed at the aggregate series reduces and the aggregation level 

increases. This is true for both comparison at disaggregate and aggregate level. 
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Chapter 4  Cross-Sectional Aggregation 

In chapter 3, the effect of the non-overlapping temporal aggregation on demand 

forecasting is analysed. In this chapter the effectiveness of cross-sectional approach on 

demand forecasting is evaluated. An important decision involved in the forecasting process is 

the determination of the degree of aggregation that forecasts should refer to with respect to the 

number of products involved. The hierarchical level at which forecasting is performed it 

depends on the function the forecasts are fed into. There are several examples with regards to 

products (or Stock Keeping Units - SKUs) in particular: i) forecasting at the individual SKU 

level is required for inventory control, ii ) product family forecasts may be required for Master 

Production Scheduling, iii ) forecasts across a group of items ordered from the same supplier 

may be required for the purpose of consolidating orders, and iiii ) forecasts across the items 

sold to a specific large customer may determine transportation and routing decisions etc. 

One intuitively appealing approach to obtain higher level forecasts is by cross-

sectional (also referred to as hierarchical) aggregation, which involves aggregating different 

items (i.e. aggregating the requirements for different items usually in one specific period) to 

reduce variability. Existing approaches to the cross-sectional forecasting usually involve 

either a bottom-up (BU) or a top-down (TD) approach (or a combination of the two). When 

forecasting at the aggregate level is of interest, the former involves the aggregation of 

individual SKU forecasts to the group level whereas the latter relates to forecasting directly at 

the group level (i.e. first aggregate requirements and then extrapolate directly at the aggregate 

level). When the emphasis is on forecasting at the subaggregate level, then the BU approach 

relates to direct extrapolation at the subaggregate level whereas the TD involves the 

disaggregation of the forecasts produced directly at the group level. An important issue that 

has attracted the attention of many researchers as well as practitioners over the last few 

decades is the effectiveness of such cross-sectional forecasting approaches. 
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TD and BU forecasting approaches are extremely useful towards improving the 

accuracy of forecasts and plans when leveraged within an S&OP (Sales and Operations 

Planning) process (Lapide, 2006). The S&OP is a multi-functional process that involves 

managers from all departments (Sales, Customer Service, Supply Chain, Marketing, 

Manufacturing, Logistic, Procurement and Finance), where each department requires different 

levels of demand forecasts (Lapide, 2004). For example, in marketing, forecasting of revenues 

by product groups and brands is needed, sales departments deal with sales forecasts by 

customer accounts and/or sales channels. Supply chain managers request SKU level forecasts, 

while finance department requires forecasts that are aggregate into budgetary units in terms of 

revenues and costs (Bozos and Nikolopoulos, 2011). 

In this chapter, the relative effectiveness of the BU and TD approach for forecasting is 

evaluated. It is recognized that forecasts may be equally required at both the aggregate and 

subaggregate level, and as such comparisons are performed at both levels. the effectiveness of 

the two approaches is analytically studied when the underlying series follows either a 

stationary first order Autoregressive Moving Average process ARIMA(1,0,1) or a non-

stationary Integrated Moving Average process of order one, ARIMA(0,1,1), and the 

forecasting method is the Single Exponential Smoothing (SES) which is the optimal estimator 

for the ARIMA(0,1,1) process (Box et al., 2008).  

The assumptions bear a significant degree of realism. An ARMA(Autoregressive 

Moving Average) model often fits demand data better than an autoregressive or moving 

average model alone, since typically demand contain structurally both moving average and 

autoregressive characteristics (Duc et al., 2008). The ARMA process have been found to fit 

demand for long lifecycle goods such as fuel, food products, machine tools, etc (Chopra and 

Meindl, 2001; Nahmias, 1993). It has also been shown that the ARMA demand processes 

occur naturally in multi-stage supply chains (Gaur et al., 2005; Zhang, 2004). There is also 

considerable evidence to suggest that inventory demand is non-stationary and thus relevant 

processes should be assumed for representing their underlying structure. Tunc et al. (2011) 

stated that non-stationary stochastic demands are very common in all industrial settings 

associated with seasonal patterns, trends, business cycles, and limited-life items such as the 

high-tech industry (Chien et al., 2008; Graves and Willems, 2000, 2008) and grocery 

distribution (Erkip et al., 1990; Lee et al., 1997a; Martel et al., 1995). There is also some 
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evidence that demand may follow an ARIMA(0,1,1) process in particular (which is the 

process considered in this study). This process has often been found to be useful in inventory 

control problems and econometrics (Box et al., 2008). In addition, Mahajan and Desai (2011) 

stated that retailers often face a non-stationary demand that follows an ARIMA(0,1,1) 

process. 

Moreover, SES is a very popular forecasting method in industry (Acar and Gardner, 

2012; Gardner, 1990, 2006; Taylor, 2003). In terms of the practical relevance of this research 

we refer to a set of SKUs where a large proportion of them follow an ARIMA(1,0,1) or an  

ARIMA (0,1,1) processes. This is not an untypical scenario as demonstrated by analysis of 

empirical datasets including our own empirical investigation. 

The mathematical analysis is complemented by a numerical experiment to evaluate in 

detail the conditions under which one approach outperforms the other. Such an experiment 

also allows the introduction of non-identical process parameters of the subaggregate series 

and the comparison at the subaggregate level when the subaggregate items follow an 

ARIMA(0,1,1) process. In addition, an empirical investigation is also conducted to assess the 

validity of the results on real data from a European superstore. 

Considerable part of this chapter is presented in Rostami-Tabar et al (2013d) and 

Rostami-Tabar et al(2013b). 

The remainder of this chapter is structured as follows. In section ‎1 the assumptions and 

notations used in this study are described, In addition an analytical evaluation of the variance 

of the forecast error related to both the BU and TD approaches is conducted. In section ‎2 the 

analytical results are presented. Next a simulation study is conducted following the simulation 

results in section ‎3. Finally, an empirical investigation is conducted in Section ‎4 and the 

chapter concludes in Section ‎5. 

1. Theoretical analysis 

In this section the variance of the forecast error associated with the TD and BU 

approaches is derived. Comparisons may be performed at both the aggregate and the 

subaggregate level although in this theoretical analysis for the ARIMA(0,1,1) process, the 
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comparisons are performed only at the former level since results regarding the latter are 

intractable. However, in the simulation study following the theoretical analysis, various 

assumptions are relaxed and the results for the ARIMA(0,1,1) and the ARIMA(1,0,1) 

processes are presented. The comparison is undertaken at both subaggregate and aggregate 

level.  

When forecasting at the aggregate level is of interest, the former involves the 

aggregation of individual SKU forecasts to the group level whereas the latter relates to 

forecasting directly at the group level (i.e. first aggregate requirements and then extrapolate 

directly at the aggregate level). When the emphasis is on forecasting at the subaggregate level, 

then the BU relates to direct extrapolation at the subaggregate level whereas the TD involves 

the disaggregation of the forecasts produced directly at the group level. 

4.1.1 Notation and assumptions  

For the remainder of the paper, the following notations are used: 

di,t: Subaggregate demand i in period t 

i,j: Correlation between the error term of subaggregate item i and j (cross-correlation) 

Dt: Aggregate demand in period t 

:, kti  Independent random variable for subaggregate demand i in period t, normally 

distributed with zero mean and variance 2  

kt : Independent random variable for aggregate demand in period t, normally distributed 

with zero mean and variance 2   

fi,t : Forecast of subaggregate demand in period t, the forecast produced in t-1 for the demand 
in t. 

Ft : Forecast of aggregate demand in period t, the forecast produce in t-1 for the demand in t. 

αi: Smoothing constant used in the Single Exponential Smoothing method for each 
subaggregate demand in the BU approach, 10  i  

TD: Smoothing constant used in the Single Exponential Smoothing method for aggregate 
demand in TD approach, 1 0 TD   
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pi: the relative weight of subaggregate item i 's contribution to the aggregate family, 

where .1
1  N

i ip  

VBU: Variance of Forecast Error of the BU approach 

VTD : Variance of Forecast Error of the TD approach 

i  : Moving average parameter of subaggregate demand i, 1i  

i  : Autorgressive parameter of subaggregate demand i, 1i  

  : Moving average parameter of aggregate demand, 1  

  : Expected value of sub-aggregate demand i in any time period 

   : Expected value of aggregate demand in any time period 

It is assumed that all the subaggregate demand series tid ,  follow either a first order 

autoregressive moving average, ARIMA(1,0,1), or a first order Integrated Moving Average 

process, ARIMA(0,1,1). This can be mathematically written in period t by (1) and (2) 

respectively: 

Nidtd tiititiiti ,,2,11,,1,,     ( 4-1) 

  .1 1,1,, ttiitiiiiti dd     (‎4-2) 

From (1) it is clear  that  the demand  in  the  next  period is  the  demand  in the  

current period  plus  an error  term. By expanding ( 4-1) we have: 

1,2,1,,, iitiitiitiiti td      ( 4-3) 

where ii  1 . It should be noted that only under this condition on iα , SES is 

optimal as it provides the minimum mean square forecasts for the ARIMA(0,1,1) process. 
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Here the smoothing constant values are considered as a control parameter determined by 

forecasters that varies between zero and one. Obviously, since 10  i , under this condition 

i (only for ARIMA(0,1,1) process) only takes the values between zero and one and does not 

cover the whole range of -1i1. However, the theoretical analysis is still valid for the whole 

range of -1i1. In addition, in the simulation analysis this assumption to cover the whole 

range of -1i1 are relaxed when the value of the smoothing constant is fixed. 

 

Figure  4-1: Sample autocorrelation of ARIMA(0,1,1) process when = -0.9. 
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When the underlying process follows an ARIMA(0,1,1) process, as  moves from +1 

toward -1 the resulting underlying structure changes considerably. When 0.5< <-1, the 

autocorrelation is highly positive and it spans all time lags (not only lag 1). For example, for  

=-0.9 the autocorrelation is very close to +1 with smooth exponential decay by increasing the 

lags (see Figure ‎4-1). As we move up towards i+1 the autocorrelation reduces but still 

remains positive and for high positive values of i it becomes close to zero meaning that the 

series are random (see Figure ‎4-2).   

 

Figure  4-2: Sample autocorrelation of ARIMA(1,0,1) process when = 0.9. 

 



B.Rostami-Tabar, 2013, Chapter 4  137 

 

However, the behaviour of the ARIMA(1,0,1) process is different with those of the 

ARIMA(0,1,1) process by changing the parameters. For different combinations of the process 

parameters, the resulting underlying structure changes considerably. 

When the demand follows an ARIMA(1,0,1) process the auto-covariance function is 

(Box et al., 2008): 
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  

,

1

1
1

1

0
1

21

1,

2

2

2

2

2

,




















 k

k

k

kii

i

i

iiii

i
iii

ki








  

(‎4-4) 

When the demand follows an ARIMA(1,0,1) process the auto-covariance and 

autocorrelation functions are(Box et al., 2008). When the demand follows an ARIMA(1,0,1) 

process the auto-covariance and autocorrelation functions are(Box et al., 2008). 

When the demand follows an ARIMA(1,0,1) process the auto-covariance and 

autocorrelation functions are(Box et al., 2008): 
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(‎3-2) 
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(‎3-3) 

For different combinations of the process parameters, the resulting underlying 

structure changes considerably. Table ‎3-1 presents the autocorrelation structure for different 
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process parameters which helps to better understand the process and can be useful to interpret 

the results of the forthcoming analysis 

For different combinations of the process parameters, the resulting underlying 

structure changes considerably. Table ‎3-1 presents the autocorrelation structure for different 

process parameters which helps to better understand the process and can be useful to interpret 

the results of the forthcoming analysis. 

It is assumed that all the subaggregate demand process parameters are identical 

(
N  321
). This assumption is considered only for the purpose of the theoretical 

analysis and, as above, it is also relaxed in the simulation part of this work. The concerned 

assumption implies that the aggregate demand also follows the same process as subaggregate 

items. If  
N  321  then the sum of the subaggregate items is not necessarily the 

same process (Lütkepohl, 1984). 

The aggregate demand in period t, tD  can be expressed as the sum of the demands of 

the subaggregate items, i.e.   N

i tit dD
1 , . 

The forecasting method considered in this study is the Single Exponential Smoothing 

(SES). This method is being applied in many companies. Due to its simplicity, It has been 

specifically applied in an inventory production planning environment (Gardner, 1990). Using 

SES, the forecast of subaggregate demand i in period t  produced at the end of period t-1 is 

  .,1 ,

1

1
, kti

k

k
iiti df 



    ( 4-5) 

The forecast of subaggregate item i in period t for the ARIMA(0,1,1) process can be 

expressed as a function of the error terms as follows: 

1,2,1,, iitiitiiiti tf      ( 4-6) 
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It is further assumed that the standard deviation of the error term in ( 4-1) and (‎3-7) 

above is significantly smaller than the expected value of the demand. Thus, when demand is 

generated, the probability of a negative value is negligible. 

4.1.2 Variance of forecast error at aggregate level 

The variance of forecast error corresponding to the TD (VTD) and the BU(VBU)  

approaches for both a non-stationary ARIMA(0,1,1) and a stationary ARIMA(1,0,1) 

processes at the aggregate level are calculated. 

4.1.2.1 Integrated moving average process order one, ARIMA(0,1,1) 

The analysis is begun by deriving the VBU, which is defined as follows: 

 
 


 


   

N

i
titi

N

i
ti

N

i
ti

N

i
titBU fdVarfdVarfDVarV

1
,,

1
,

1
,

1
,  ( 4-7) 

By substituting ( 4-3) and ( 4-6) in ( 4-7) the following is given: 




 
N

i
tiBU VarV

1
,  ( 4-8) 

Since   2
, itiVar    and   jijitjtiCov  ,,, ,  , the variance of the BU approach is: 

 

 
 1

1 1
,

1

2 2
N

i

N

ij
jiji

N

i
iBUV   ( 4-9) 

Now the variance of the forecast error for the TD approach is derived. As discussed 

above, it is shown that when the subaggregate items follow an ARIMA (0,1,1) process, the 
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aggregate family demand also follows an ARIMA (0,1,1) process (Lütkepohl, 1984).The 

family aggregate process is defined as follows: 

  111   tttt DtD   ( 4-10) 

where =1-. 

Considering   N321  results in the same theta also in the aggregate demand so, 

  . Now by considering TD  1 and   , it is obvious that the optimal 

smoothing constant for the aggregate demand is  1TD , which is equal to the optimal 

smoothing constant for  the subaggregate process.  

The aggregate demand and its forecast can be expressed as a function of the error 

terms as following: 

121    TDtTDtTDtt tD   ( 4-11) 

Knowing that  N

i
tit

1
, , the following is obtained 

      

 
 1

1 1
,,

1
, ,2

N

i

N

ij
tjti

N

i
tit CovVarVar   

( 4-12) 

The aggregate forecast is 

121    TDtTDtTDt tF   ( 4-13) 

The variance of the TD forecast error is defined as: 

 ttTD FDVarV   ( 4-14) 
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By substituting ( 4-11) and ( 4-13) into ( 4-14), the variance of TD approach is: 

 tTD VarV    ( 4-15) 

By substituting ( 4-12) into ( 4-15) we have: 

 

 
 1

1 1
,

1

2 2
N

i

N

ij
jiji

N

i
iTDV   ( 4-16) 

4.1.2.2 Autoregressive moving average process order one, ARIMA(1,0,1) 

In this part, the variance of forecast error of the BU approach at the aggregate level is 

calculated when the subaggregate items follow a stationary ARIMA(1,0,1) process. The VBU  

can be obtained as follows: 

   
    



 





1

1 1 ,,,,1 ,,

1 ,1 ,1 ,

,2
N

i

N

ij tjtjtiti

N

i titi

N

i ti

N

i ti

N

i titBU

fdfdCovfdVar
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 (‎4-17) 

Subsequently, the two parts of (‎4-17) should to be determined: i) the variance of 

forecast error for subaggregate item i which is calculated in (‎4-33) , ii) the covariance of the 

forecast error between subaggregate i and j.  

The covariance of the forecast error between subaggregate i and j in period t,  tjtjtiti fdfdCov ,,,, ,   is as follows: 

       tjtitjtitjtitjtitjtjtiti ffCovdfCovfdCovddCovfdfdCov ,,,,,,,,,,,, ,,,),(,   
(‎4-18) 
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Now by substituting (P-1), (P-2), (P-3) and (P-5) in Appendix P into (‎4-18), the 

following is obtained: 

 
       





















jij

jij

iji

jji
ji

ji

jij

i

iji

j
tjtjtiti fdfdCov













1

1

1

1

111

1

11
,

11
0

11
0,,,,

 (‎4-19) 

Finally by substituting (‎4-33) and (‎4-19)  into (‎4-17), the variance of the forecast error 

of the BU approach at aggregate level is: 
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(‎4-20) 

by substituting (‎3-2) , k and k   defined in (P-1) in Appendix P into (‎4-20) and 

assuming that    N21 ,   N21  and   N21 , VBU is 

simplified as : 
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i iBUV  (‎4-21) 

Now, the derivation of the variance of forecast error for the TD approach at the 

aggregate level is preceded. All subaggregate items are aggregate to produce one-step-ahead 

estimates at the top level based on SES. The VTD is defined as 
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       ttttttTD FDCovFVarDVarFDVarV ,2  (‎4-22) 

Assuming  1=2=…=N=,  and 1=2=…=N=, the aggregate family demand also 

follows an ARIMA(1,0,1) process with the following characteristics. the aggregate series can 

be defined as 

  .ˆˆ1 111 ,   ttt

N

i tit DdD   (‎4-23) 

where   N
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(‎4-24) 

The evaluation of VTD is begun by defining the variance of demand in (‎4-24). The 

covariance between the aggregate demand and its forecast is:  
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(‎4-25) 

Then by substituting (‎4-24) into (‎3-13) the following is given: 

.
1

ˆ
),( 1


tt FDCov  (‎4-26) 

Finally, the variance of forecasts can be calculated as:  
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By considering the fact that the process is stationary, it is clear that    ktt FVarFVar   

and    ktkttt FDCovFDCov  ,,  for all k  and by substituting (‎4-24) and (‎3-14) into (‎3-15) and 

then by substituting     
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1 11

22 2ˆ N

i

N

ij jiij

N

i i  ,  the following is obtained: 
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Finally by considering )(ˆ0 tDVar  and substituting (‎3-14) and (‎3-16) into (‎4-22), the 

variance of forecast error for TD approach is obtained: 
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(‎4-29) 

4.1.3 Variance of forecast error at subaggregate level 

In this sub-section, the variance of the forecast error consistent with the TD (VTD) and 

the BU approach (VBU) for the stationary ARIMA(1,0,1) process at the subaggregate level is 

calculated. It should be noted that the results regarding the non-stationary ARIMA(0,1,1) 

compared at subaggregate  level are theoretically intractable. However, in the simulation 

study following the theoretical analysis various assumptions are relaxed and the results for the 

ARIMA(0,1,1) process at both levels of comparison are presented. 
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4.1.3.1 Autoregressive moving average process order one, ARIMA(1,0,1) 

In this part, the variance of forecast error of BU approach at subaggregate level is 

calculated, so VBU is defined as: 

   N

i
titiBU fdVarV

1
,, (‎4-30) 

Similar to (‎3-14) and (‎3-16), the variance of forecast and the covariance between the 

subaggregate demand and its forecast is: 
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Now the variance of forecast error by considering  tii dVar ,0,  and (‎4-31) and (‎4-32) 

can be obtained as follows: 
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Finally, by substituting (‎4-33) into (‎4-30) and considering this assumption that 

1=2=…=N , 1=2=…=N and 1=2=…=N the following is obtained: 

          



 N

i
iBUV

1

2

2

2

112

12112 


(‎4-34) 
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Now the variance of the forecast error of the TD approach is derived when the 

comparison is undertaken at subaggregate level. The variance of forecast error for the TD 

approach, VTD is defines as follows: 

         
 N

i
tiititi

N

i
titiTD FdCovpFVarpdVarFpdVarV

1

2
,

1
, ,2  (‎4-35) 

The covariance between subaggregate items i and aggregate forecast in period t is: 

    NiDdCovFdCov kt

k

k
TDTDtitti ,...,2,1,1,,

1

1
,, 



  



   (‎4-36) 

By substituting     N

i ktikt dD
1 ,  into (‎4-36) and assuming that 1=2=…=N=, and 

1=2=…=N=, the value of  tti FdCov ,,  is derived through recursive substitutions. Recall 

that   2
,, , iktiktiCov   ,   jiijktjktiCov   ,, , ,   0,0, ,,  kallforCov ktiti   

and   0,0, ,,  kallforCov ktjti   

       NiFdCov
N

j
jiji

TD

TD
tti ,...,2,1,

11

1
,

1
2, 





  


 (‎4-37) 

Now, by substituting (‎3-2), (‎3-16) and (‎4-37) into (‎4-35) the following is given: 

     2
1

2

2

2

1121

21







  TDTD

N

i
iTDV  

where 

 

 

(‎4-38) 
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         
     

 
 


 










N

i

N

j
jijiiTDTD

N

i

N

ij jiij

N

i i

N

i
iTDTD

p

p

1 1

1

1 11

2

1

2222

122

2211




 

2. Theoretical Comparison 

In this section, the conditions under which each approach outperforms the other one 

are analytically identified. The ratio of the variance of forecast error corresponding to the TD 

approach (VTD) to the variance of the forecast error associated with the BU approach (VBU) is 

calculated. A ratio that is lower than one, implies a benefit in favour of the TD approach. 

Conversely, if the ratio is greater than one, then the BU approach performs better (and if the 

ratio is equal to one, both strategies perform the same). 

4.2.1 Comparison at aggregate level 

In this sub-section, for each process under consideration the ratio of VTD to VBU is 

derived. The comparison is undertaken at the aggregate level. 

4.2.1.1 Integrated moving average process order one ARIMA(0,1,1) 

Proposition1. If all the subaggregate demand items follow an ARIMA(0,1,1) process 

with identical moving average parameters (
N  321
) and the optimal smoothing 

constant value is used to forecast both the subaggregate and aggregate demand, then the 

performance of the TD and BU approaches for forecasting aggregate demand is identical (VTD 

= VBU). 

Proof: 

The effectiveness of the TD and the BU approaches can be compared by evaluating 

the ratio of the corresponding variances of forecast error (i.e. by dividing ( 4-9) and ( 4-16)): 
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 ( 4-39) 

4.2.1.2 Autoregressive moving average process order one ARIMA(1,0,1) 

The ratio of the VTD to VBU when the subaggregate demand items follow an ARIMA(1,0,1) 

process is obtained by dividing (‎4-21) to (‎4-29) : 

              




21112

21112
222

222

TDTD

TDTD

BU

TD

V

V
 (‎4-40) 

This ratio is a function of the moving average parameter ( ), the autoregressive 

parameter ( ), and the smoothing constants (  and TD ). From (‎4-21) and (‎4-29) it is 

obvious that the optimal values of  and TD  are equal. Hence, both  BUV  and TDV can be 

minimized by having the equal value of  and TD . 

Proposition 2: If the time series of the all sub-aggregate demand follows an 

ARIMA(1,0,1) process when N  21  and N  21  , both the TD and the 

BU strategies perform equally as long as  the smoothing constants used for forecasting the 

subaggregate demands and the aggregate demand are set optimal. 

PROOF: By substituting ( TD  ) in (‎4-40), it is easy to demonstrate 

that 1BUTD VV . 

These findings are in agreement with the results reported by Widiarta et al. (2009) 

which theoretically shows that there is no significant difference between the TD and BU 

approaches on forecasting aggregate demand when all subaggregate items follow an MA(1) 

process with identical process parameters. 
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4.2.2 Comparison at subaggregate level 

In this part, the variance of the forecast error provided by the BU and the TD 

approaches are compared at the subaggregate level when the subaggregate demands follow an 

ARIMA(1,0,1) process. As explained above the comparison at the subaggregate level for the 

ARIMA(0,1,1) is not traceable. 

4.2.2.1 Autoregressive moving average process order one ARIMA(1,0,1) 

The ratio of VTD to VBU comparing at the subaggregate level is given by dividing 

(‎4-38) into (‎4-34). It should be noted that it is difficult to analyse the parameters with many 

subaggregate items, therefore the following analysis is restricted to a family with two SKUs to 

obtain the meaningful insights. In addition, it is assumed that 21    , therefore the 

following is given: 

          












12

12112

21
2

2
R

BU

TD

V

V

 

(‎4-41) 

where 

                 


TDTD

TDTDTDTD
R

pp




12

212111 2
2

2
1

222
12

 

THEOREM 4-1: If the time series of all subaggregate demand follows an 

ARIMA(1,0,1) process when 15.0 21   and 01 21   , then the BU outperforms 

the TD approach regardless of the cross-correlation 12, the relative weight of each 

subaggregate item pi , and the smoothing constant values. 

PROOF: Proof in Appendix Q. 
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THEOREM 4-2: If the time series of all sub-aggregate demand follows an 

ARIMA(1,0,1) process when i) 5.1 21    and 11 21    and ii)  the smoothing 

constants used for forecasting the subaggregate demands under the BU and TD approach are 

set small( 01.0, TD ), then the maximum difference between the BU and the TD to 

forecast the subaggregate forecasts is 1%, 0.99VTD/VBU 1.01. 

PROOF: Proof in Appendix R. 

COROLLARY 4.1 when the smoothing constants are set equal to 0.05, 0.15 and 0.3 in 

Theorem 2 above, then the ratio of VTD/VBU takes the values presented in Table ‎4-1 . 

Table  4-1: The ratio of VTD/VBU for different control parameters and 5.1 21    

, 11 21    

=TD=0.05 =TD =0.15 =TD =0.3 

0.95VTD/VBU 1.1 0.85VTD/VBU 1.3 0.72VTD/VBU 1.6 

 

COROLLARY 4.2 If the time series of all sub-aggregate demand follows an 

ARIMA(1,0,1) process when i) 15.0 21    and 10 21    ii)  the smoothing 

constants are set equal to 0.01, 0.05, 0.15 and 0.3 in Theorem 5 above, then the ratio of 

VTD/VBU takes the values presented inTable ‎4-2. 

Table  4-2: The ratio of VTD/VBU for different control parameters and 15.0 21    

, 10 21    

=TD =0.01 =TD =0.05 =TD =0.15 =TD =0.3 

0.99VTD/VBU 1.99 0.95VTD/VBU 5.85 0.87VTD/VBU 14.81 0.77VTD/VBU 26.4 

 

The results of Theorem 1 show that when   is negative and  takes high positive 

values then the BU approach always provides more accurate forecasts than the TD one 

regardless of the values of the smoothing constant, the correlation between subaggregate 
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items, and the proportional weights. While, for the other process parameter combinations, the 

superiority is a function of the control and the process parameters. 

When the demand follows an ARIMA(1,0,1) process, it is discussed that for the 

negative values of  and the positive values of , the autocorrelation is highly positive, 

therefore when the autocorrelation is highly positive the BU outperforms the TD approach. 

When the autocorrelation is positive, successive values of dt are positively correlated and the 

process will tend to be smoother than the random series. When the aggregate forecasts are 

disaggregate, the performance of the TD approach is deteriorated by the disaggregation 

process. However, the BU is not affected by that. Therefore, in these cases the BU approach 

outperforms the TD one. 

3. Simulation study 

In this section, a simulation study is performed to evaluate the relative performance of 

the TD over the BU approach under more realistic assumptions. In particular the following 

scenario for both the ARIMA(1,0,1) and the ARIMA(0,1,1) processes are considered. A 

simulation investigation is conducted to discuss the effectiveness of the BU and the TD 

approaches compared at the subaggregate and the aggregate level for non-identical 

(12…N, 12…N) process parameters. In both approaches, the search procedure is 

performed in the whole range of -1i1 and -1i1. 

4.3.1 Simulation design 

The presentation of the results and the analysis of the parameters on the ratio of VTD / 

VBU becomes complex when many SKUs in the simulation experiments are considered. 

Therefore, the simulation analysis is restricted to a family of two SKUs to obtain the 

meaningful insights. This is in concordance with most of the earlier papers using simulation 

approaches as they have also restricted the number of items to two (Dangerfield and Morris, 

1992; Fliedner, 1999; Widiarta et al., 2008, 2009). The parameter values for our simulation 

experiment are presented in Table 1. 

 



B.Rostami-Tabar, 2013, Chapter 4  152 

 

Table  4-3: Parameters of the simulation experiment 

i  2
i  TDi  ,  

i  
i  ij  

N° 

Replications 

N° Time 

Periods 

400 900 0.01: 0.99 -0.9 : +0.9 -0.9 : +0.9 -0.9: +0.9 100 1000 

The subaggregate demands in each period are generated randomly subject to the 

parameters described in Table ‎4-3. The value of 
i  is set quite smaller than 

i  to avoid the 

generation of negative subaggregate values. Experiments have also been conducted with other 

values of 
i  and 

i  but they are not reported here as they lead to the same insights. 

 To generate the demands in each period t, the error terms t,1  and t,2 with a cross-

correlation coefficient of 12  are first generated randomly then the equations ( 4-1) and (‎3-7) 

are used to generate the correlated subaggregate demands. The generated demand is initialized 

at the value of the mean plus an error term. The simulation experiment is designed and run in 

Matlab 7.10.0. For each parameter combination described in Table 4 demand series of 1000 

observations is generated and 100 replications are introduced. 

The generated demand is split for each series at both the subaggregate and aggregate 

level, into three parts. The first part (within sample) consists of 200 time periods and is used 

in order to initialise the estimates. The second part containing 250 periods is used to 

determine the optimal smoothing constant (i.e. the smoothing constant used in the estimation 

procedure that minimises the mean square error - MSE). The search procedure to find the 

smoothing constant that minimises the MSE is performed in the whole range [0,1], with a step 

increase equal to 0.01. A grid search to minimise the   is conducted, however we don’t use a 

continuous optimisation as this is not the main focus of our work and the sensitivity to the  

value is not that high. Note that for the BU approach, the smoothing constants are optimized 

for each item individually. Finally, in order to evaluate the performance of the two forecasting 

approaches, the value of the variance of the forecast error for the last 550 periods of the 

simulation (out-of-sample) is calculated. It should be noted that the initialization data of each 

series have been used to calculate the proportion pi which is used to disaggregate the 

aggregate forecast. 
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The relative benefit of one forecasting approach over the other is measured by VTD 

/VBU. As previously discussed, a ratio lower than one implies that the TD approach 

outperforms the BU one whereas a ratio greater than one implies the opposite.  

4.3.2 Simulation results 

In this sub-section, the results of simulation study are presented when the comparison 

is undertaken at both subaggregat and aggregate level. 

4.3.2.1 Comparison at the Aggregate Level 

First, the relative performance of the BU and TD approaches at the aggregate level is 

analysed when the subaggregate process parameters are not necessarily identical. For each 

experiment, the ratio of the variance of forecast error is calculated as 

     2

1 ,i tittt fDVarFDVar . 

The simulation results show that when the process parameters are identical there is no 

difference between the BU and the TD approach for both the ARIMA(1,0,1) and the 

ARIMA(0,1,1) processes. Whereas, when the process parameters are not identical, which is 

more realistic, the results are different. 

 Figure ‎4-3 presents the relative performance of the BU and the TD approaches at the 

aggregate level forecasting when the subaggregate demand items follow an ARIMA(0,1,1) 

process with different values of the moving average parameter (i.e. 12).  

It is seen that as the cross-correlation coefficient changes from -0.9 toward +0.9 the 

ratio of VTD/VBU is being reduced. The ratio is higher than or equal to one, when the cross-

correlation is negative, when it equals zero, and when it takes low positive values. However, 

the ratio is smaller than one only if the cross-correlation is (highly) positive. 

The detailed results show that when the moving average parameters, 1 and 2, take 

negative values (High positive autocorrelation), the performance of the BU and the TD 

approaches is always identical regardless of the values of the cross-correlation.  
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When the cross-correlation is positive the superiority of each approach depends on the 

value and the sign of the moving average parameters, 1 and 2. The TD approach 

outperforms the BU one only when the cross-correlation is (highly) positive and the moving 

average parameters take high values and have opposite signs, i.e. either 1<0 and 2>0 or 

1>0 and 2<0. Note that as the cross-correlation decreases the superiority of the TD 

approach decreases too. For less positive cross-correlation the ratio of VTD/VBU becomes equal 

or greater than one which means that BU is preferable. In these cases TD outperforms BU 

with a forecast error variance reduction that can go up to 15% when the cross-correlation is 

very high. By decreasing the cross-correlation to 0.5, the maximum benefit of the TD 

approach decreases to 5% and it tends toward zero when the cross-correlation tends towards 

zero as well. However, under a negative cross-correlation, the BU outperforms the TD 

approach. 

When the 1 and 2 values are positive, the ratio is almost equal to one for high 

positive cross-correlation and greater than one for less positive and negative cross-correlation. 

In the latter case the ratio of VTD / VBU is increased as 1 takes low values and 2 is high and 

vice versa. 

Figure ‎4-4 presents the effect of the BU and the TD approaches on the demand 

forecasting in the aggregate level (top) when the subaggregate items follow an ARIMA(1,0,1) 

process with different values of the moving average and the autoregressive parameter (i.e. 

12, 12). 

The results show that as the cross-correlation coefficient moves from -0.9 toward +0.9 

the ratio of VTD/VBU is reduced as well. The ratio is always higher than or equal to one when 

the cross-correlation is negative, when it equal zero, and when it takes low positive values. 

Thus, for these cases the BU approach provides more accurate forecasts. 

The ratio may become smaller than one only if the cross-correlation is highly positive. 

In this case, the superiority is a function of the moving average and the autoregressive 

parameters. Therefore, the TD approach may outperform the BU approach when the cross-

correlation is highly positive.  
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a)1=0.9 b) 1=0.5 

  

c) 1=0.1 d) )1=-0.9 

  

e) 1=-0.5 f) 1=-0.1 

Figure  4-3: Relative performance of the TD and the BU approaches in forecasting aggregate 

demand under different combinations of 1, 2 and 12 for an ARIMA(0,1,1) demand process. 
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a) 1=-.8; 1=.9; 2&3 b) 1=.9; 1=-.9; 1&5 

  

c) 1=.4; 1=.9; 4&5 d) 1=-.9; 1=.7;3&4 

  

e) 1=-.9; 1=-.75; 2&5 f) 1=-.9; 1=-.75; 2&4 

Figure  4-4 : Relative performance of the TD and the BU approaches in forecasting aggregate 

demand under different combinations of 1, 2 and 12 for an ARIMA(1,0,1) process. 
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The results show that when two subaggregate items take high positive autocorrelation, 

the ratio is almost equal to one regardless of the values of the cross-correlation. For example, 

when 1=0.9,1=-0.8 and 2=-.8, 2=-0.3 ( case 1 in table 1) and1=0.4, 1=-0.1,and 2=0.9, 

2=0.3, ( case 1 and 4 in table 1). However, when two subaggregate items take opposite 

autocorrelation values, one with high positive and the other with negative autocorrelation, the 

ratio may become smaller than one and consequently the TD outperforms the BU approach. 

For instance when 1=0.4,1=0.9 and 2=0.55, 2=0.15 ( case 4 and 5 in table 1), the forecast 

error variance reduction can go up to 9% when the cross-correlation is very high. This is also 

true when 1=0.8,1=-0.9 and 2=0.1, 2=0.6( case 4 and 1 in table 1) for this case the 

variance of the forecast error reduction may go up to 3%. 

In both stationary and non-stationary cases, when both subaggregate items take high 

positive autocorrelation, the BU and the TD approaches perform equally. One possible 

explanation is for a high positive autocorrelation values, the optimal value of the smoothing 

constant is set at the highest value in the given range which is equal to 0.99 for both TD and 

BU approaches. When the smoothing constant for the BU and the TD approaches is equal and 

the same procedure of forecasting is used, the BU and the TD approaches perform equally. 

When the cross-correlation coefficient is negative, the BU approach performs better. 

Performance differences are further inflated when the autocorrelation values have opposite 

signs in which case the variance reduction achieved by the BU approach can be as high as 

400% for the stationary ARIMA(1,0,1) and 500% for the non-stationary ARIMA(0,1,1) for 

highly negative cross-correlation. For negative cross-correlation, the pair of series moves in 

the opposite direction (i.e. if one increases the other decreases), therefore the subaggregate 

demand series have different patterns of evolution. A combination of different patterns of 

variation and an opposite autocorrelation values leads to a large forecast error for the TD 

approach and consequently large values of VTD / VBU for high negative cross-correlation. In 

these cases it is better to forecast subaggregate requirements separately and then aggregate 

them to get the aggregate forecast. 

When the two moving average parameters take opposite signs under both processes, 

this means that one series has positive autocorrelation while the other has a low 

autocorrelation (series with random fluctuations). In addition, when the cross-correlation is 
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positive there is a tendency for the pair of series to move together in the same direction, so the 

demand series have the same pattern. When using the TD, all subaggregate are summed up 

series to get an aggregate one, so the fluctuations from one series may be cancelled out by 

others resulting in a less random series that have a lower forecast error. Therefore TD 

performs better that BU when the series have the same pattern associated with different 

autocorrelation.  

In summary, when the subaggregate items follow an ARIMA(0,1,1) process and the 

goal is to forecast at the aggregate demand level, then the following results are achieved: i) 

the superiority of TD and BU approaches is affected by cross-correlation and autocorrelation, 

ii ) if items have different patterns of fluctuation(negative cross-correlation), the ratio of 

VTD/VBU is smaller than or close to one for lower autocorrelation values, therefore the BU 

approach is preferred. ii i) if the items follow the same patterns of fluctuation (high positive 

cross-correlation) and they have different autocorrelation patterns, one has a very high 

autocorrelation while the other has a lower autocorrelation values, the TD approach may 

outperforms the BU on, iv) if the autocorrelation of all items is highly positive, the 

performance of BU and TD is always identical, and v) when the autocorrelation for all items 

is low, BU generally dominates TD, although for highly positive cross-correlation the 

difference is very low.  

The findings are somehow in agreement with some of the earlier studies in this area by 

Barnea and Lakonishok (1980) and Fliedner (1999) (although we do note that our results are 

not directly comparable to these studies as we analyse a non-stationary case). The analysis of 

Barnea and Lakonishok (1980) based on empirical analysis showed that positive cross-

correlation contributes to the superiority of forecasts based on aggregate data (TD), which is 

also the case in our study.  

 Fliedner (1999) used a simulation study to compare the performance of TD and BU in 

forecasting aggregate series where the two subaggregate items follow an MA(1) process. He 

found that TD dominated BU regardless of the values of the cross-correlation coefficient. 

They have not reported the values of 1 and 2 used in their study, so our interpretation is that 

this work considered only the opposing signs for 1 and 2. Should this be the case then these 

findings are in agreement with ours. 
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4.3.2.2 Comparison at Subaggregate Level 

In this sub-section the relative performance of the TD and the BU approaches in 

forecasting subaggregate demand is evaluated when the moving average parameters are not 

necessarily identical. The simulation structure in terms of within and out-of-sample 

arrangements is as discussed in the previous sub-section. Under the BU approach, the 550 one 

step-ahead forecasts are generated for each item individually using the optimal smoothing 

constant. Under the TD approach, the sum of all subaggregate demand is calculated to obtain 

the aggregate series, then the aggregate forecast is provided and finally it is multiplied by the 

proportional contributory weight of each subaggregate item to obtain the subaggregate 

forecast. For each experiment, the ratio of the variance of forecast error is calculated as: 

      2

1 ,,

2

1 , *
i titii titi fdVarFpdVar   . 

Figure ‎4-5 shows the ratio of the variance of forecast error of the TD over the BU 

approach at the subaggregate level for different values of 1, 2 , 12  when the subaggregate 

items follow an ARIMA(0,1,1) process with non-identical moving average parameters 

(12). The results show that when the subaggregate items follow an ARIMA(0,1,1) process, 

the BU approach always outperforms the TD in forecasting the subaggregate items regardless 

of the 12  and the process parameters. 

In Figure ‎4-5 it is shown that by moving from a cross-correlation of -0.9 toward +0.9 

the ratio of VTD/VBU always remains greater than 1 regardless of the cross-correlation 

coefficient and the moving average parameters. When the cross-correlation and the moving 

average parameters, 1, 2, are highly positive, i.e. 10.99, 20.99 and 120.99, the ratio of 

VTD/VBU becomes close to one.  

Figure ‎4-5a shows also that the BU approach outperformsthe TD one by a maximum 

of about 80% for highly negative cross-correlation. Additionally, the rate of superiority of BU 

becomes very high when 1 and 2 are not highly positive (see Figure ‎4-5b, c, d).  
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a)1=0.9 b) 1=0.1 

  

c) 1=0.1 d) 1=-0.9 

  

e) 1=-0.5 f) 1=-0.1 

Figure  4-5: Relative performance of TD and BU approaches in forecasting subaggregate 

items under different values of 1 ,2, ,12 for an ARIMA(0,1,1) process. 
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a) 1=.9; 1=-0.7;1&4 b) 1=0.9; 1=-0.9; 1&3 

  

c) 1=0.9; 1=-0.85; 1&2 d) 1=0.9; 1=0.3;2&4 

  

e) 1=0.9; 1=0.4; 4&5 f) 1=-0.95; 1=0.85; 3&5 

Figure  4-6 : Relative performance of TD and BU approaches in forecasting subaggregate 

items under different values of 1 ,2, ,12 for an ARIMA(1,0,1) process. 
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In Figure ‎4-6 the ratio of the variance of forecast error of the TD over the BU 

approach is presented at the subaggregate level when the subaggregate items follow an 

ARIMA(1,0,1) process with non-identical moving average and autoregressive parameters 

(12 and 12). The results show that the ratio of VTD/VBU is greater than or very close to 

one regardless of the values of the cross-correlation. When at least one of the subaggregate 

items takes high positive autocorrelation (case 1 and 4 in Table 1) the ratio is greater than one 

and consequently the BU approach outperforms the TD one. Additionally, by moving from 

high negative to high positive cross-correlation, the ratio is generally reduced. However, when 

none of the subaggregate items in the family take high positive autocorrelation, the difference 

between the BU and the TD approaches is insignificant. 

The superiority of the BU at the subaggregate level can be attributed to the potentially 

high positive autocorrelation between demand periods. This makes it much more difficult to 

apportion the resulting aggregate forecast, Ft, to each item in the family based on the 

historical demand proportion, pi. As a result, the performance of the TD approach is affected 

adversely. The performance of the BU approach, however, is not affected as it forecasts the 

demand for each item individually. 

By comparing the results presented in Figure ‎4-5 and Figure ‎4-6, it is seen that the 

ratio of VTD/VBU for the non-stationary process is much bigger than those of the stationary 

process. The difference of the ratio under the non-stationary ARIMA(0,1,1) and the stationary 

ARIMA(1,0,1) process can be attributed to the nature of these processes. When the 

subaggregate items follow an ARIMA(0,1,1) process, the autocorrelation is always highly 

positive and it spans all lags(not only lag one) except for very high positive values of the 

moving average parameters, however for an ARIMA(1,0,1) process the value of 

autocorrelation is lower and not always positive. 

The findings are in accordance with those previously reported in the academic 

literature. Widiarta et al.(2007) argued that when the subaggregate time series follows an 

AR(1) process and the value of the autocorrelation is high, there is a sharp worsening in the 

relative performance of the TD approach. Gordon et al.(1997) and Dangerfield and Morris 

(1992) used the empirical data from the M-competition database and indicated that the BU 

dominated the TD approach when forecasting the subaggregate time series. Weatherford et 
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al.(2001) showed that a purely subaggregate forecast (BU) strongly outperformed even the 

best aggregate forecast (TD) at the subaggregate level. 

These results generally confirm the findings although it must be noted that (as we 

mentioned in the previous sub-section) there is not a direct comparison between these studies 

and ours due to the consideration of a non-stationary ARIMA(0,1,1) time series process. 

Contrasting our results with those reported by Widiarta et al.(2007, 2009) on stationary 

MA(1) and AR(1) processes,  it is revealed that the rates of superiority of the BU approach 

when the process is non-stationary is much higher than the stationary case. When the demand 

follows a stationary AR(1) process, the maximum ratio of VTD/VBU is around 6 and is obtained 

with series with high positive autocorrelation, while this ratio for the IMA(1,1) process is 

higher than 50. 

4. Empirical analysis 

In this section, the empirical validity of the results are assess. First, the details of the 

empirical data available for the purposes of our investigation along with the experimental 

structure employed in our work are provided. Then, the results of empirical in investigation is 

presented. 

4.4.1 Empirical dataset and experiment details 

The demand dataset available for the purposes of this research consists of 103 weekly 

sales observations (i.e. it spans a period of two years) for 1,798 SKUs from a European 

grocery store. The Forecast package in R is used to identify the underlying ARIMA demand 

process for each series and estimate the relevant parameters. It is found that more than 23% of 

the series (424 series) may be represented by the ARIMA(0,1,1) and more than 5% of the 

series (91 series) represented by ARIMA(1,0,1).  It should be noted that for more than 80% of 

SKUs (73 SKU) the autocorrelation is relatively high positive. As such, the data does not 

cover the entire theoretically feasible range of the parameters. the characteristics of the SKUs 

relevant to this study are summarized by indicating the estimated parameters for the 

ARIMA(0,1,1) and ARIMA(1,0,1) process in Table  4-4 and 4-5, respectively. 
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 Table  4-4: The empirical data set for ARIMA(0,1,1) 

Group θ intervals Average of θ No. of SKUs 

1 [0.1,0.3[ 0.2097 4 
2 [0.3,0.4[ 0.3652 8 
3 [0.4,0.5[ 0.4656 17 
4 [0.5,0.6[ 0.5591 32 
5 [0.6,0.7[ 0.6561 67 
6 [0.7,0.8[ 0.7503 108 
7 [0.8,0.9[ 0.8467 141 
8 [0.9,1] 0.9534 47 

Total number of SKUs: 424 

 

Table  4-5: The empirical data set for ARIMA(1,0,1) 

θ intervals  intervals Average of θ Average of  
Average 

lag1Autocorrelation  
No. of SKUs 

[0.1,0.5[ [0.6,1[ 0.356 0.771 0.5211 23 
[0.5,0.9[ [0.6,1[ 0.605 0.838 0.3260 39 
[-0.2,-
0.5[ 

[0.1,0.5[ 
-0.328 

0.347 0.5631 
29 

 Total number of SKUs:   91 

 

To facilitate a clear presentation, the estimated parameters are grouped in intervals and 

the corresponding number of SKUs is given for each such interval. The average   value per 

interval is also presented for the process. This categorisation allows us to compare the 

empirical results with the theoretical findings. It should be remarked that the   parameter 

values are all positive, except for two SKUs, and most of them take highly positive values. As 

such, the data do not cover the entire theoretically feasible range of the parameters. The data 

series is divided into three parts. The first part (within sample) consists of 20 time periods and 

is used in order to initialize the SES estimates. The second part consists of 27 time periods 

which are used to determine the optimal smoothing constant (optimisation part); the values of 

the smoothing constant are varied from zero to one with a step increase of 0.01. The 

remaining 56 time periods are used to evaluate the performance of each approach (out-of-

sample). In TD approach the aggregate forecast is disaggregate by using the proportion of 

each item in the family, which is calculated based on the historical demand in the initial part. 
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4.4.2 Empirical results 

The empirical results presented in Table ‎4-6 are shown for the same  intervals. It can 

be seen that when the smoothing constant values are optimised for both the BU and the TD 

approaches, the variance ratio is greater than one regardless of whether the comparisons are 

undertaken at the aggregate or subaggregate level. This means that the BU approach provides 

more accurate both aggregate and subaggregate forecasts than the TD when demand follows 

an ARIMA(0,1,1) process and SES is the forecasting method. However, when the smoothing 

constants used for the BU and the TD approaches are equal, the ratio of VTD/VBU equals one in 

the case of aggregate demand forecasting. 

Table ‎4-6: The empirical ratio of VTD/VBU for an ARIMA(0,1,1) process 
  Comparison Level 

Group θ intervals Aggregate Subaggreg
ate 

1 [0.1,0.3[ 1.0032 2.0173 
2 [0.3,0.4[ 1.0536 1.9984 
3 [0.4,0.5[ 1.0097 1.8994 
4 [0.5,0.6[ 1.0006 1.5554 
5 [0.6,0.7[ 1.0356 1.3719 
6 [0.7,0.8[ 1.0070 1.1311 
7 [0.8,0.9[ 1.0158 1.0284 
8 [0.9,1] 1.0403 1.0660 

           Average 1.0232 1.5085 

As discussed above the moving average parameter , for most SKUs considered in this 

research, is highly positive. More than 85% of the SKUs have a moving average parameter 

greater than 0.6 (see Table  4-4). In addition, the subaggregate cross-correlation coefficients 

between SKUs vary between -0.5 and +1; however most of them are positive. 

The average of variance of forecast error reduction may be as high as 2% when the 

comparison is performed at the aggregate level, while 50% variance error reduction may be 

achieved for the comparison at the subaggregate level. By referring to the detailed results of 

the simulation study we see that for this range of moving average parameter values, 0<<1, 

the BU approach performs better than the TD at both comparison levels. 

In Table ‎4-6 it is seen that when comparisons are undertaken at the aggregate level the 

ratio is close to one for all ;; this is confirmed by the simulation results where the moving 
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average parameters are positive and the cross-correlation is not highly negative (please refer 

to sub-section ‎4.3.2.1).  

 

Table ‎4-7: The empirical ratio of VTD/VBU by considering the aggregation between 

different groups (intervals of   values) 

Comparison 
Level 

Group 1,
2,3 

4 5 6 

Aggregate  8 
1.

2133 
1.

1563 
1.

0728 
1.

0329 
Subaggregate  8 1.

4389 
1.

3201 
1.

2653 
1.

1175 

 

With regards to the subaggregate level comparisons, the results show that the ratio is 

greater than one and is increasing by moving from higher values of   toward lower values. In 

addition for highly positive values of   and highly positive cross-correlation the ratio 

becomes close to one. In Table ‎4-6 the results are presented assuming that SKUs fall within a 

particular interval of   values. In Table 4, the aggregation of items across different possible 

(ranges of) values is considered and the impact of the parameters on the superiority of each 

approach is evaluated. 

To do so a category containing groups 1, 2 and 3 that includes 29 SKUs is created. 

This is regarded as a category with the lowest values of  . By moving from this category to 

groups 4, 5 and 6 the value of  increases. These groups with group 8 that represent the 

highest value of  are aggregate. The ratio of VTD/VBU  is presented in Table ‎4-7. The results 

indicate that when the moving average parameters are different (Group 1,2,3 with 8) then the 

ratio is high, additionally as the  values increase (tending towards the values covered by 

group 8) the ratio decreases. This implies that when the groups of SKUs with low and high   

values are aggregate, then there is a greater benefit of using the BU approach in terms of 

accuracy. This is exactly what is observed in the simulation results for 2 SKUs (one 

associated with a small and one with a high  value. These empirical results generally confirm 
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the findings of the theoretical and the simulation study when the subaggregate items follow an 

ARIMA(0,1,1) process. 

 

Table  4-8: The empirical results for ARIMA(1,0,1) 
    Comparison Level 

θ intervals  intervals Average of θ Average of  Subaggregate level Aggregate level 
[0.1,0.5[ [0.6,1[ 0.356 0.771 1.23 1.031 
[0.5,0.9[ [0.6,1[ 0.605 0.838 1.10 1.008 
[-0.2,-
0.5[ 

[0.1,0.5[ 
-0.328 

0.347 1.17 
1.02 

 Average:  1.13 1.01 

 

The empirical results for the ARIMA(1,0,1) process are presented in Table  4-8.  It is 

shown that when the smoothing constant values are optimised for both the BU and the TD 

approaches, the variance ratio is greater than one regardless of whether the comparison is 

undertaken at the aggregate or subaggregate level. In addition, in the aggregate demand 

forecasting, the ratio of VTD/VBU is close to one. As it is explained above, for the moving 

average and autoregressive parameters values presented in Table  3-5, the autocorrelation is 

positive. For positive autocorrelation the difference between BU and TD approaches 

compared at subaggregate level is insignificant. These results generally confirm the analytical 

and the simulation results presented in Sub-sections ‎4.2.1‎4.2.2 and Section ‎3 for the 

ARIMA(1,0,1) process. 

5. Conclusion 

In this chapter, the effectiveness of the bottom-up and top-down approaches is 

analytically evaluated to forecast the aggregate and the subaggregate demand when the 

subaggregate series follow either a first order integrated moving average ARIMA(0,1,1) or an 

auroregressive moving average process order one, ARIMA(1,0,1). Forecasting is assumed to 

be relying upon a Single Exponential Smoothing (SES) procedure and the analytical results 

were complemented by a simulation experiment at both the aggregate and subaggregate level 

as well as experimentation with an empirical dataset from a European superstore. Some 

empirical pieces of work discussed in section 2 confirm such a statement and provide support 
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for the frequency with which ARIMA(1,0,1) and/or ARIMA(0,1,1) processes are encountered 

in real world applications. In addition, SES is a most commonly employed forecasting 

procedure in industry and its application implies a non-stationary behaviour (SES is optimal 

for an ARIMA(0,1,1) process). In summary, the problem setting considered is a very realistic 

one. Analytical, simulation and empirical developments are based on the consideration of the 

variance of forecast error for TD and BU approaches and comparisons are undertaken at both 

subaggregate and aggregate level. The conditions under which one approach outperforms the 

other are identified. 

It is found that when the subaggregate items follow an ARIMA(0,1,1) process, then 

BU outperforms TD to provide the subaggregate forecasts. However, to forecast the aggregate 

demand, the superiority of BU and TD approaches depends on the autocorrelation and cross-

correlation values. For the less positive and negative cross-correlation values, BU performs 

better that or equally to TD. Additionally, when the cross-correlation takes high positive 

values, TD may outperform BU. TD works better if the cross-correlation is highly positive 

associated with combination of high autocorrelation vs. low autocorrelation subaggregate 

items. In addition, it is shown that for all identical moving average process parameter the 

performance of BU and TD is equal in forecasting aggregate demand. This is true as well 

when the smoothing constant used for all the subaggregate items and the aggregate level is set 

to be identical (=TD). 

It is shown that, when all subaggregate items follow an ARIMA(1,0,1) process with 

identical moving average  and autoregressive  parameters, then the BU and TD approaches 

performs equally to forecast aggregate demand. However, when the process parameters are 

not identical, the results are different and depend on the autocorrelation and cross-correlation 

values. The simulation results show that for negative cross-correlation, BU approach provides 

more accurate results than TD. However, by increasing the cross-correlation values, the 

performance of BU decreases and those of TD increases. TD approach may provide more 

accurate forecasts that BU for high positive cross-correlation. TD is always preferable for 

high positive cross-correlation associated with high vs. low autocorrelation values. 

When the comparison is undertaken at subaggregate level, if there is at least one 

subaggregate item in the family with high positive autocorrelation, then BU outperforms TD. 
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However, when thre is no subaggregate item in the family with high positive autocorrelation, 

the difference between BU and TD is insignificant.  

 The results of comparison at subaggregate and aggregate level for ARIMA(1,0,1) and 

ARIMA(0,1,1) processes are slightly different. This could be attributed to the nature of the 

subaggregate process. For an ARIMA(0,1,1) process, the autocorrelation is always positive, 

moreover for most moving average parameters it is highly positive. However, for an 

ARIMA(1,0,1) process, the autocorrelation spans between -1 and +1, additionally it is highly 

positive only for a small range of process parameters. 
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Chapter 5  Conclusions and Future Research 

In this chapter, the main contributions and conclusions of this PhD thesis are given in a 

concise form. Additionally, the limitations of the work are identified and further research 

avenues are suggested. 

This chapter is divided into four sections. First, the main contributions from this PhD 

thesis are presented. Second, the main conclusions resulted for each aggregation approach 

considered are summarized. Third, the managerial insights arising from this research are 

discussed. Finally, the limitations and some areas of future research are considered. 

The overall goal of this research project is to analyse the impact of aggregation on 

demand forecasting. In other words, this research discusses whether it is appropriate to use 

disaggregate data to generate a forecast or whether one should aggregate data first and then 

provide a forecast. 

In order to address the above issues and meet the objectives discussed in chapter 1, the 

following questions have been answered: 

1. Under which conditions are the forecasts resulted from the temporally aggregate data 

preferred over those resulted from the disaggregate data? 

2. Is there any optimal aggregation level for which the aggregation approach leads to the 

minimum variance of the forecast error? 

3. Under which conditions does the BU outperforms the TD and vice versa? 

4. What is the impact of the control and the process parameters on the superiority of each 

approach in both temporal and cross-sectional aggregation? 

In this PhD research, all of the above questions have been answered and the 

contributions of this thesis are summarized in the following section. 
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1. Contributions of the Thesis 

5.1.1 Temporal aggregation 

The contributions of this PhD research concerning temporal aggregation are as 

follows: 

 The superiority conditions of the aggregation and the non-aggregation approaches are 

identified. The cut-off point values are determined for given values of the aggregation 

level and the smoothing constant associated with the original demand series. This 

results in some theoretical rules showing the performance of each approach at the 

disaggregate and aggregate level of comparison. 

 The performance of the aggregation approach is generally found to improve as the 

aggregation level increases. The rate of improvement though, is lower for the 

ARIMA(1,0,1) and the ARIMA(1,0,0) processes compared to the ARIMA(0,0,1) 

process. In all processes, the optimal aggregation level is the highest one in any given 

aggregation level range. 

 The performance of the aggregation approach improves as the smoothing constant 

value employed at the aggregate series reduces. Our analytical results show that as the 

level of aggregation increases, the auto-correlation of the series reduces necessitating 

the employment of low smoothing constant values. 

  In general, it is found that for high levels of positive autocorrelation in the original 

series, the aggregation approach may be outperformed by the non-aggregation one: 

o when comparing at the disaggregate level and where the autocorrelation is 

extremely positive, (i.e. high positive values of  in the ARIMA(1,0,0) process 

or high negative values of  and high positive values of  in the ARIMA(1,0,1) 

process), no level of aggregation improves the forecast accuracy. 

Consequently, the non-aggregation approach always provides more accurate 

forecasts. This is an intuitive finding since at any time period the most recent 
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demand information is ‘precious’. In such a case the disaggregate approach 

works better as it fully exploits such recent information. 

o However, when comparison is undertaken at the aggregate level, even for 

extreme positive values of the autocorrelation, the aggregation approach may 

outperform the non-aggregation one depending on the aggregation level. For 

lower values of the aggregation level, the non-aggregation approach works 

better. Nevertheless, by increasing the aggregation level, the aggregation 

approach outperforms the non-aggregation one. This is because the comparison 

is undertaken at the aggregate level where the cumulative m step ahead 

forecast is required. As the aggregation level and consequently the forecast 

horizon increases, the forecast accuracy resulting from the non-aggregation 

approach deteriorates and yields to a superiority in favour of the aggregation 

approach. 

 For low positive or negative autocorrelation values, the aggregation approach is 

preferred regardless of the comparison level. When the autocorrelation is negative or 

less positive then the recent demand information is not that crucial, and then a more 

long term view on demand is preferred. This can be achieved as discussed above by 

selecting high aggregation levels and the low smoothing constants. 

 Following from the above discussion, our analysis suggests that there are shades of 

aggregation (at one extreme no data aggregation) and shades of responsiveness of the 

forecast parameters ( , ). Our findings suggest that the dominant solutions are either 

pure white (disaggregate data and responsive parameters) or pure black (aggregate 

data and stable forecasting algorithms with low ). This is, up to a certain extent, an 

expected outcome given the hypothesized stationarity but: i) it is not obvious and to 

the best of our knowledge has never been shown before; ii) it sheds light to the general 

trade-off between stable forecast parameters (low smoothing constant values) that 

filter noise rather effectively but fail to react to changes in demand quickly and 

responsive forecast parameters (relatively higher smoothing constant values) that 

however are noise sensitive.  
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5.1.2 Cross sectional aggregation 

The main contributions regarding cross-sectional aggregation can be summarized as 

follows: 

 When the process parameters for all subaggregate items are identical, there is no 

significant difference between TD and BU approaches in forecasting the aggregate 

level as long as the optimal smoothing constant is used for both approaches. 

Moreover, the TD and BU approaches perform equally when the smoothing constants 

used for all the subaggregate items and the aggregate demand are set identical.  

 When the subaggregate items are highly auto-correlated, the BU and TD approaches 

perform equally regardless of the cross-correlation values. 

 TD performs better than BU in providing aggregate forecasts when the cross-

correlations between subaggregate items are (highly), the autocorrelation of one item 

is positive whereas the other one is negative. 

 BU may outperform TD when considering aggregate forecasts when the subaggregate 

items follow different patterns of fluctuation (negative cross-correlation). The TD 

appears not to be very accurate when the subaggregate items consist of different 

patterns. 

 BU outperforms TD in providing subaggregate forecasts, when the autocorrelation of 

at least one item in the family is positive and the smoothing constant is set to its 

optimal value for both approaches, regardless of the cross-correlation, the 

disaggregation weights, and the values of the process parameters. The degree of 

superiority of the BU approach for the non-stationary case is much higher compared to 

the stationary one when comparing at subaggregate level. 

 It is found that for the negative or the less positive autocorrelation, both BU and TD 

approaches perform almost equally in forecasting subaggregate demand when the 

optimal smoothing constants are used. 

 The performance of BU is generally improved as the cross-correlation decreases, 

moving from positive toward negative values. Whereas, the performance of TD 

deteriorates as the cross-correlation decreases. For highly negative cross-correlation 
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values BU is always preferred. This is generally true for the comparison at the 

aggregate and the subaggregate levels. 

 The benefits achieved by BU and TD approaches for the non-stationary demand 

process is higher than those associated with the stationary processes in terms of the 

forecast accuracy.  

2. Managerial implications 

5.2.1 Temporal aggregation 

Our discussions with practitioners have revealed a misconception that temporal 

aggregation reduces variability, something that is clearly not the case. Although it is true that 

the non-overlapping temporal aggregation approach reduces the coefficient of variation 

leading to lower uncertainty. Practitioners have also expressed concerns with regards to the 

intuitively appealing loss of information associated with temporal aggregation. However, this 

concern is conditioned to short demand histories. Should long demand series be available the 

loss of information resulting from aggregation is outweighed by the benefits of uncertainty 

reduction. 

 When applying temporal aggregation, practitioners should always opt for the highest 

possible aggregation level. However, it is important to note that consideration of high 

aggregation levels is subject to data availability. Although, this progressively becomes 

less of an issue in modern business settings. Clearly, aggregation may not constitute a 

viable option when short demand histories are available. Tremendous recent 

developments in terms of computing storage capacity facilitate the accumulation of 

very lengthy series. Although, we have come across situations/companies where only 

a few years’ data is stored. In such cases aggregation may not be further considered. 

Long historical data series do not only allow for the more accurate estimation of the 

series’ components but also permit the application of temporal aggregation 

approaches. 
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 The performance of aggregation improves as the smoothing constant value employed 

at the aggregate series reduces. This is an important finding from a practitioner’s 

perspective since managers may set such values conveniently low to maximize the 

benefits derived from the aggregation approach. The smoothing constant value after 

aggregation should be generally set smaller than the smoothing constant before 

aggregation and specific rules and cut-off points have been offered for making such 

decisions. 

 For high levels of positive autocorrelation in the original series, the non-aggregation 

approach outperforms the aggregation one in disaggregate level forecasting. This is an 

intuitive finding since at any time the most recent demand information is so precious 

in that case that the disaggregate approach works better as it fully exploits such recent 

information. However, on the contrary, for the low positive or negative autocorrelation 

when the recent demand information is not that crucial then a more long term view on 

demand is preferable, which can be obtained as discussed above by selecting high 

aggregation levels and low smoothing constants. This is also an important empirical 

insight since managers may know what to expect (in terms of any potential gains) 

based on the autocorrelation levels present in their series.  

 When a long range forecast is required, the forecaster should apply the aggregation 

approach to provide the forecast. This is because a more long term view on demand is 

preferable and the aggregation approach utilizes better this information. As a general 

rule, the farther into the future we look, the more clouded our vision becomes and the 

non-aggregation approach will be less accurate than aggregation one. 

5.2.2 Cross sectional aggregation  

In practice, there are many series that are hierarchically organized and can be 

aggregated at several different levels based on products, geography or some other features. 

TD and BU forecasting approaches are extremely useful towards improving the accuracy of 

forecasts on different levels. For instance, in S&OP (Sales and Operations Planning) process, 

each department requires different levels of demand forecasts that can be achieved by 

applying TD and BU approaches.  
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When the practitioners require different hierarchical level of forecasts, choosing 

between BU or TD approaches depends on the autocorrelation, the cross-correlation and the 

comparison level. 

 When the practitioners require demand forecasts at the SKU level, the autocorrelation 

values should be considered. If there is at least one series in the family with high 

positive autocorrelation then it would always be preferable to use the BU approach. In 

addition, the BU approach performs better when the series are associated with 

different patterns of fluctuation (negative cross-correlation).  

 However, when the autocorrelation is less positive or negative, there is no difference 

between using BU and TD. 

When the aggregate demand forecast is required, the values of cross-correlation and 

autocorrelation should be calculated.  

 If the subaggregate items follow the same patterns of fluctuation (high positive cross-

correlation) associated with different autocorrelation values (high vs. low), then TD 

would be applied.  

 However, when the individual items are associated with different patterns of evolution 

BU is preferable. Additionally, if the autocorrelation values are negative for all 

subaggregate items, then the BU approach should be used.  

 If the autocorrelation is positive for all subaggregate items, then both BU and TD 

perform equally. In addition, if one uses the same value of smoothing constants for 

both BU and TD, then both approaches perform equally as well. 

3. Limitations and future research 

In this section, suggestions for future research are discussed from theoretical, simulation and 

empirical perspectives. Throughout this research some assumptions are considered that can be 

relaxed in future studies. 
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In Chapter 3, the effect of temporal aggregation on demand forecasting was discussed. 

In this research the case of non-overlapping temporal aggregation is considered when the 

disaggregate data follow a stationary demand processes and when the Single Exponential 

Smoothing forecasting method is used. Given the current under-consideration of temporal 

aggregation in inventory forecasting software solutions and given its value as a promising 

uncertainty reduction time series transformation approach that this PhD has revealed, research 

into any of the following areas would appear to be merited: 

 Expansion of the analytical evaluation discussed in this work on higher order 

stationary processes and more importantly on non-stationary processes is a very 

important issue both from an academic and practitioner perspective. 

 In this study, the Autoregressive Moving Average, ARMA type processes were 

assumed for the demand processes. This is a relevant assumption for fast moving 

items. The analytical and empirical consideration of Integer ARMA (INARMA) 

processes offers a great opportunity for advancements in the area of aggregation. Such 

processes bear a considerable relevance to intermittent demands where the benefits of 

aggregation may be even higher due to the reduction of zero observations. 

 In this work, the effect of non-overlapping temporal aggregation on demand 

forecasting is analysed. Another important extension can be the consideration of the 

overlapping temporal aggregation. 

 In this research, Single Exponential Smoothing is applied as a forecasting method; one 

natural extension is the consideration of other popular forecasting methods. 

 This study is focused on forecasting and not inventory control. The extension of the 

work described in this research to cover inventory/implication metrics would allow a 

linkage between forecasting and stock control. 

 Research on more extensive datasets (as well as analysis of empirical forecasting 

performance on measures other than the MSE) should allow a better understanding of 

the difficulties and benefits associated with aggregation. 
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In this research, the effectiveness of BU and TD approaches is evaluated to forecast 

the subaggregate and aggregate level. The case of stationary and non-stationary demand 

processes in conjunction with the SES forecast method is considered. Naturally, there are 

many other avenues for further research and the following possibilities should be very 

important in terms of advancing the current state of knowledge in the area of cross-sectional 

aggregation. 

 In this research demand is assumed to be structured based on ARIMA type processes. 

The evaluation of the BU and TD approaches when the subaggregate items follow an 

Integer ARMA (INARMA) processes is an interesting subject for future work. 

 The interface between (and the potential of combining) temporal and cross-sectional 

aggregation has received minimal attention both in academia and industry and is an 

issue that we will explore in the next steps of our research. 

 Expansion of the work discussed in this research for other popular forecasting 

methods such as optimal forecast method, trend exponential smoothing and damped 

trend exponential smoothing models is an important issue. 

 Extending the analysis in this research to consider n levels hierarchical structures 

would be an interesting development. 

Finally, consideration of more extensive empirical datasets that cover the whole range of the 
process parameters should allow a better understanding of the benefits of each approach.  
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Appendices 

Appendix A: The relationship of autocovariance between nonaggregate and 

aggregate demand 

It has been shown that the autocovariance function on nonaggregate and aggregate 

series are related as follows: 
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   Because of this fact that kk     for all k, in 
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






 1

1

0

1

0

.

.

.

.
.

mmk

m

k

A











 (A-3) 

Where Am is a modified matrix A, after deletion and adding required columns.(refer 

to Wei (2006)). different values of the aggregation level m is used to determine the general 

relationships between the autocovariance of non-aggregation and aggregation approach for 
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the demand process under consideration in this study including : ARIMA(1,0,1), 

ARIMA(0,0,1) and ARIMA(1,0,0). The calculation is begun by substituting m=3. 

By substituting m=3 into (A-1), the following is given: 

    23
432

23

22 23211   kkk BBBBBB   (A-4) 

 

Now by considering (A-2) for the ARIMA(1,0,1) process and substituting m=3 in that 

(A-5) is obtained: 





































 



11

0

1

2

3

2

1

0

.
.











A  (A-5) 

Where 
















12321000000000

00012321000000

00000012321000

00000000012321

A  

Then the matrix Am can be calculated by adding and removing corresponding column: 
















123210000000

000123210000

000000123210

000000000243

3A  

Therefore, the following is given: 
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

















































11

1

0

3

2

1

0

.

.

123210000000

000123210000

000000123210

000000000243











 (A-6) 

By substituting (‎3-2) into (A-6) , (A-7) is obtained: 

     109876
13

76543
12

432
11

2100

232

232

2321

243













 (A-7) 

  

By substituting m=4 into (A-1) the following is given: 

    34

2432
34

232 23211   kkk BBBBBBB   (A-8) 

Now by considering (A-2) for the ARIMA(1,0,1) process and substituting m=4 in that 

(A-9) is obtained: 
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











































19

0

1

2

3

4

3

2

1

0

.











A  (A-9) 

Where 


















12343210000000000000000

00001234321000000000000

00000000123432100000000

00000000000012343210000

00000000000000001234321

A  

Then calculate the matrix A4 is calculated as follwos: 


















12343210000000000000

00001234321000000000

00000000123432100000

00000000000012343210

00000000000000002464

4A  

              

So by substituting A4 into (A-9) , the following is obtained : 
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























































19

2

1

0

4

3

2

1

0

.
.

12343210000000000000

00001234321000000000

00000000123432100000

00000000000012343210

00000000000000002464











 (A-10) 

 by substituting (‎3-2) into (A-10), the following equations are obtained: 

   18171615141312
13

10987654
12

65432
11

1
2

1100

23432

23432

234321

2464













 (A-11) 

     

  

By following the same procedure, the relationship between the autocovariance 

function of non-aggregation and aggregation process when m=5 :   

     282726252423222120
15

232221201918171615
14

181716151413121110
13

1312111098765
12

8765432
11

1
3

1
2

1100

2345432

2345432

2345432

2345432

23454321

24685



















 (A-12) 
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By continuing the 

calculations, the general forms can be represented as follows: 

      
  


 


 


1

1

1
10

22
100

2

2322212
m

k

k

m

kmm

mmmm


 

 (A-13) 

  
  


 


  




m

k

m

k

kmk

mmmm

kk

mm

1 2

21
1

122212
11

1

21321


 

 (A-14) 

And finally we have for k>1 we have: 

        211111
1 ...1...2   mkkmkmmkkm

k mm   (A-15) 

Now by considering (‎3-22) the following is given: 





 




2

2

2

3  (A-16) 

From (A-15) the following ratio can be obtained: 

   m

mmm

mmm

m

m 



 






221

1

221
1

2

2

3

21

21




 (A-17) 

Now by comparing (A-16) with (A-17) the relationship between the autoregressive 

parameter before and after aggregation is given: 
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m   (A-18) 

When the demand process follows an ARIMA(0,0,1) process, the relationship between 

the autocovariance function of aggregation and non-aggregation demand can be obtained as 

follows: 

 
.

12

11

100








 mm

 (A-19) 

By following the same procedure the relationship between the autocovariance function 

of the aggregation and the non-aggregation demand of an ARIMA(0,0,1) process can be 

obtained as following: 

  ,2
1

1
00 


  

m

k

kkmm   (A-20) 

,
1

1

2

1
01 


   






m

k

km
m

k

k kk   (A-21) 

,m   (A-22) 

and for all k > 1, we have: 

   ....1...2 1)1(12)1(1)1(
0

  mkkmkmmkmk
k mm   (A-23) 
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Appendix B: Covariance between the disaggregate demand and aggregate 

forecast for ARIMA(1,0,1) process 

The covariance between the disaggregate demand and the forecast of aggregate 

demand can be calculated as follows: 

   
    ...),(1),(1

),()1,(,

2
2

2

1
1

1









 


TtTt

Tt
k

kT
k

tTt

DdCovDdCov

DdCovDdCovFdCov




 

 

(B-1) 

By substituting (‎3-10) into (B-1) we have: 

  
     

    














mmm

mmmm

mtmtmtt

mtmtmtt

mttttTt

ddddCov

ddddCov

ddddCovFdCov

32212
2

22121

32212
2

221

21

...1

...1...

...)...,(1

)...,(1

...,(,








 

 

(B-2) 

By substituting (‎3-2) into (B-2) and some simplifications, we have 

        
           ...11...1

......11

...11

...1,

1
22

11
1

1
0

122

1
0

1

1
0



















mmm

mm

mm

m
Tt FdCov

 (B-3) 

By doing some simple calculation we get 

  








1

1

1
, 1

m

mmTt FdCov  (B-4) 
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Appendix C: Variance of the aggregate forecast for the ARIMA(1,0,1) 

process 

The variance of the aggregate forecast can also be determined like (‎3-16) but with 

different parameters. In order to obtain the value of the variance of the forecast error, we need 

to calculate the covariance between the aggregate demand and its forecast, so we begin by 

deriving the covariance between the aggregate forecast and the demand in period T: 

     
    ...),(1),(1),(

)1,()1,(,

2
2

21

1

1

1

1








 


 
 

TTTTTT

k
kT

k
T

k
kT

k
TTT

DDCovDDCovDDCov

DDCovDDCovFDCov




 (C-1) 

The variance of forecast after aggregation can be derives as: 

           11

1
2

1
2

11

,12

11)(







TT

TTTTT

FDCov

FVarDVarFDVarFVar




 (C-2) 

By substituting (‎3-22) into (C-1) we get 

  





1
, 1

TT FDCov  (C-3) 

Then, By using the fact that    kTT FVarFVar   ,    kTkTTT FDCovFDCov  ,,  for all k≥1 

and fact that   0 kTDVar  for all k (the properties of stationary process) and by substituting 

(C-3) into (C-2), we have 

     









12

12

2
10

TFVar  (C-4) 
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Appendix D: Covariance of the aggregate  demand and non-aggregate 

forecast for ARIMA(1,0,1) process 

The covariance between the aggregate demand and the subaggregate forecast is 

defined as follows: 

       
   
   
     ,...),(1),(1),(

1,...1,

1,)1,(

1,...)1,(,

2
2

21

1

1
1

1

1
1

1

1

1

1

1

1
11

1

1





 


 



 




 





 





 






 


 




 





 







tttttt

k
kt

k
mt

k
kt

k
t

k
kt

k
t

k
kt

k
t

k
kt

k
mttt

k
kt

k
TtT

ddCovddCovddCov

ddCovddCov

ddCovddCov

ddddCovdDCovfDCov







 
(D-1) 

 

By substituting (‎3-2) into (D-1) we get 

 

   
   
   

   
,

...11

...11

...11

,,

2
2

1

5
2

43

4
2

32



























 mmm

tttT fdCovfDCov









 (D-2) 

Now by substituting (‎3-2) into (D-2) we get: 

         
      ,11

1
,

1
...

11
,,

1
1

1
1

1
2

1


























m

tt

m

tttT

fdCov

fdCovfDCov

 

(D-3) 
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By substituting (‎3-14) into (D-2) we get 

              











 

11

11

11

1

1
,

1
1

1
11

mm

tT fDCov
 

(D-4) 

Appendix E: Coefficient of variation before and after aggregation for 

ARIMA(1,0,1) 

When the non-aggregate process follows an ARIMA(1,0,1) process, we show that 

applying the non-overlapping temporal aggregation reduces the coefficient of variation (CV). 

CV is an important measure in an inventory context (Bartezzaghi et al., 1999). We show 

below that the CV decreases as the aggregation levels increases as well. 

The coefficient of variation is defined as the ratio of the standard deviation of demand 

to the mean of demand, the ratio of the coefficient of variation after aggregation to that before 

aggregation is: 

.
0

0









BA

AA

CV

CV  (E-1) 

When the non-aggregate process follows ARIMA(1,0,1) , by substituting  m  and 

(‎3-23) and (‎3-2) into (E-1) we get 
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(E-2) 

Considering that 11    and 2m we can show that C-2 is smaller than 1 and by 

increasing m, the ratio of BAAA CVCV  decreases. 
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Appendix F: Proof of theorem 1-3 

By considering (‎3-49)  and 1AABA MSEMSE , the quadratic function given by (F-1) 

should be negative 
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where 
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 (F-2) 

Moreover, by investigating the sign of (F-1) we can obtain the conditions under which 

AABA MSEMSE  is smaller, equal and greater than one. Now, we verify if the quadratic 

function (F-1) has real roots. To do so, we define the discriminant  of (F-1) as follows 
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Now by using the fact that 11   , 01    , 10   and 2m  , the values 

of the  can be obtained. If 0
 

it means (F-1) has no real roots and if 0 it means (F-1) 

has two real roots. It can shown that   in (F-3) is always positive, therefore (F-1) has two 

different roots called 1 and 2  , where  
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It can be shown that if 0
 

, 2
 

is always smaller than zero and 01   and if 0 , 

2
 

is greater than one and 01   . 

It is know that the sign of the (F-1) between the two roots 1  and 2
 

is opposite to the sign of 

A, where A defined in (F-6) is the sign of the coefficient of 2 , Otherwise it is that the same 

as the sign of A.  
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A   (F-6) 

Now by considering 1 , 2  and A that is positive for 0  and negative for 0 , the sign of 

(F-1) is determined. So we have 

 If 0

 

, 2
 

is always smaller than zero. If 10 
 

then (F-1) is negative in the 

interval [ 2 , 1 ] and it is positive outside this interval. 

 If 0

 

, 2 is greater than one and we can show that 210    thus (F-1) is 

positive in the interval [ 1 , 2 ] and it is negative outside this interval. 
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From the above expressions we can see that when 1  , (F-1) is negative, otherwise when 

1  , it is positive and when 1  , (F-1) is equal to zero. Equivalently  

 If 1  , the ratio of AABA MSEMSE  is greater than one and consequently the 

aggregation approach outperforms the non-aggregation one. 

 If 1  , the ratio of AABA MSEMSE  is equal to one and both approaches perform 

equally. 

 If 1  , the ratio of AABA MSEMSE  is smaller than one and the non-aggregation 

approach outperforms the aggregation approach. 

 

Appendix G: Selection procedure for the ARIMA(1,0,1) process 

Using the fact that 11   , 01   , 10   and 2m the value of the 

discriminant   and the roots 1  and 2  can be defined by (F-3) , (F-4) and (F-5) 

respectively. 

If 0  there are no real roots for (F-1), therefore the sign of (F-1) is equivalent to the sign of 

A defined in (F-6). We can show that when 0 , A is always positive, consequently (F-1) is 

positive which means that AABA MSEMSE  is smaller than one. 

If 0 , (F-1) has two different roots 1  and 2 . By investigating the sign of 1 , 2  and A, 

we can determine the sign of (F-1) and consequently the performance superiority of each 

strategy. 

 If 02 
 

and 01 
 

then (F-1) is negative in the interval [2 , 1 ] and it is positive 

outside this interval. 

 If 12  , it can be shown that 210   .  (F-1) is positive in the interval [1 , 2 ] 

and it is negative outside this interval. 

 If 10 2   , it can be shown that 21    then (F-1) is negative in the interval 

[ 2 , 1 ] and it is positive outside this interval. 
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By considering the above expressions, we have 

 If 02   or 12  , then 

  If 1   , 1AABA MSEMSE . 

  If 1  , 1AABA MSEMSE . 

 If 1  , 1AABA MSEMSE .  

 Otherwise, if 10 2    then 

  If 12    , 1AABA MSEMSE .  

 If  21   , 1AABA MSEMSE . 

 If 2   and 1  , 1AABA MSEMSE . 

 

Appendix H: Proof of theorem 2-3, ARIMA(0,0,1) 

By considering 1AABA MSEMSE  and some simplifications, the quadratic function given by 

(H-1) should be negative 

   2222 2)2)1((22 mmmmm   (H-1) 

where 
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
 

  (H-2) 

Moreover, by investigating the sign of (H-1) we can obtain the conditions under which 

AABA MSEMSE  is smaller, equal and greater than one. Now, we verify if the quadratic 

function (H-1) has real roots. To do so, we define the discriminant  of (H-1) as follows 

    ,228)2)1(( 2222  mmmmm   (H-3) 
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Now we use the fact that 11   , 10   and 2m  to obtain the values of  . 

If 0
 

it means that (H-1) has no real roots and if 0 it means (H-1) has two real roots. 

We can show that   in (H-3) is always positive, therefore (H-1) has two different roots 

denoted by 1 and 2  , where 1 is defined in (F-4) and 
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(H-4) 

It can be shown that if 0
 

, 2
 

is always smaller than zero and 10 1   or 11   

and 0 , 2
 

is greater than one and 10 1   or 11   . 

It is know that the sign of the (H-1) between the two roots 1  and 2
 

is opposite to 

the sign of A, where   mA 22   is the sign of the coefficient of 2 , Otherwise it is that 

the same as the sign of A. Now by considering1 , 2  and A that is positive for 0  and 

negative for 0 , we determine the sign of (H-1). So we have 

 If 0

 

, 2
 

is always smaller than zero. If 10 
 

then (H-1) is negative in the 

interval [ 2 , 1 ] and it is positive outside this interval. 

 If 0

 

, 2 is greater than one and we can show that 210    thus (H-1) is 

positive in the interval [ 1 , 2 ] and it is negative outside this interval. 

From the above expressions we can see that when 1  , (H-1) is negative, otherwise when 

1  , it is positive and when 1  , (H-1) is equal to zero. Equivalently  

 If 1  , the ratio of AABA MSEMSE  is greater than one and consequently the 
aggregation approach outperforms non-aggregation approach. 

 If 1  , the ratio of AABA MSEMSE  is equal to one and both approaches perform 
equally. 

 If 1  , the ratio of AABA MSEMSE  is smaller than one and the non-aggregation 
approach outperforms the aggregation  one. 
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Appendix I: Selection procedure for the ARIMA(1,0,0) process  

Considering 1AABA MSEMSE  is equivalent to having the quadratic function (I-1) negative, 

which subsequently is equivalent to 

                      
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 (I-1) 

For the quadratic function given by (I-1), the value of the discriminant   and the roots 

1  and 2  can be defined as follows: 

                          ,111121218

1112141211
22

21

222
21







mmm

mmmm

mmm

mmm  (I-2) 

             
         ,

1121212

1112141211
2

21

22
21

1 
 


mmm

mmmm

mm

mmm  (I-3) 

             
         ,

1121212

1112141211
2

21

22
21

2 
 
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Where 

  ,2
1

1
1 


  

m

k

kkmm   (I-5) 

,
1
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1
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    .
12

3 2


 

  

(I-7) 

 

We define the coefficient of 2  in (D-1) as follows 

        .112121 2
21   mmm mmA  (I-8) 

if 0 then the non-aggregation approach is always provides more accurate forecasts, 
otherwise  

 If 12   then the aggregation approach works better. 

 If 21   then both approaches are identical. 

 If 1  and/or 2  then the non-aggregation approach works better. 
 

Appendix J: Proof of theorem 3-3 and theorem 4-3 

Case 1. Using the fact that 131  , 2m  and by considering the optimal smoothing 

constant,    213*   used to calculate BAMSE , we can show that the discriminant 

 defined in (I-2) is negative, so there is no real root for (I-1). Consequently, the sign of (I-1) 

is the same as the sign of A defined in (I-2), we can show that the sign of A is always positive, 

therefore (I-1) is always positive and AABA MSEMSE  is smaller than one. Hence, the non-

aggregation approach always works better for the whole range of β and for any value of the 

aggregation level, m. 

Case 2. 311   . Using the fact that 311   , 2m  and by considering the small 

value of the smoothing constant before aggregation, 05.0*  , it is straightforward to show 

that the discriminant   defined in (I-2) is positive, so (I-1) has two different roots denoted by 

1  and 2  defined in(I-3) and (I-4) respectively. 

We can show that the value of β2 is either less than zero or greater than one. Now by 

considering the roots 1 , 2  and the sign of A, where A is defined in (I-8), we can determine 

the sign of (I-1) and consequently show the superiority of each approach. 
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 If 02 
 

and 01  , then (I-1) is negative in the interval [2 , 1 ] and it is positive 

outside this interval. 

 If 12  , we can show that 210    and (I-1) is positive in the interval [1 , 2 ] 

and  it is negative outside this interval.  

Now from the above expressions we can get the following results: 

 If β < β1, then 1AABA MSEMSE . 

 If β = β1, then 1AABA MSEMSE . 

 Otherwise, 1AABA MSEMSE . 

Appendix K: Selection procedure for the ARIMA(1,0,1) process- 

Comparison at the aggregate level  

By considering 1AABA MSEMSE is equivalent to having the quadratic function (K-1) 

negative, which subsequently is equivalent to 
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For the quadratic function given by (K-1), the value of the discriminant   and the 

roots 1  and 2  can be defined as follows: 

      mm2mmm 182+2-)-(1-2  (K-2) 
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 



m

mmm
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
  (K-4) 

the coefficient of 2  in (C-1) is defined as follows: 

. mA   (K-5) 

If the discriminant 0 , there are no real roots for (K-1), therefore the sign of (K-1) is 

equivalent to the sign of A. We can show that when 0 , A is always negative, consequently 

(K-1) is negative which means that AABA MSEMSE  is smaller than one. 

However, If 0 , (K-1) has two different roots 1  and 2 . By investigating the sign 

of 1 , 2  and A, we can determine the sign of (K-1) and consequently the performance 

superiority of each approach. 
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 If 02 
 

and 01 
 

then (K-1) is positive in the interval [2 , 1 ] and it is negative 

outside this interval. 

 If 12  , we can show that 210   .  (K-1) is negative in the interval [1 , 2 ] 

and it is positive outside this interval. 

 If 10 2   , we can show that 21    then (K-1) is positive in the interval [2 , 1 ] 

and it is negative outside this interval. 

By considering the above expressions, the superiority conditions of each approach can be  

obtained by following the selection procedure : 

1. The procedure id begun by calculating   defined in (K-2), If 0 then the non-

aggregation approach is always superior, otherwise the values of 1 and 2 defined in (K-

3) and (K-4) are calculated. 

2. If 02  or 12  , the value of 1  is calculated,  

 If 1  then the aggregation approach works better. 

 If 1  then both approaches are identical. 

 If 1  then the non-aggregation approach works better. 

Otherwise: 

3. The value of 1  is calculated. according to the values of 1 and 2 , the following are 

obtained: 

 If 12   then the aggregation approach works better. 

 If 21   then both approaches are identical. 

 If 1  and 2  then the non-aggregation approach works better. 

 

Appendix L: Proof of theorem 5-3  

This is a special case of Appendix K where  defined at (K-2) is always positive, in 

this case when  11    and 01    the values of 2  is either smaller than zero or 
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greater than one( 02  or 12  ), Therefore we follow the same procedure as Appendix K 

and finally we get: 

 If 1  , the ratio of AABA MSEMSE  is greater than one and consequently the 

aggregation approach outperforms the non-aggregation one. 

 If 1  , the ratio of AABA MSEMSE  is equal to one and both approaches perform 

equally. 

 If 1  , the ratio of AABA MSEMSE  is smaller than one and the non-aggregation 

approach outperforms the aggregation one. 

Appendix M:  Proof of theorem 7-3 for ARIMA(0,0,1) – Comparison at the 

aggregate level 

In order to show that the aggregation approach is always outperforms non-aggregation 

one, we must show that the minimum value (lower bound) of the ratio  AABA MSEMSE  is 

always greater than one, therefore to calculate the minimum value of AABA MSEMSE ,    and 

m should be equal to the smallest possible values of =-1 and m=2. By substituting 

these values in the AABA MSEMSE  , we get 

 
 








 

2

2

2

1
1AABA MSEMSE  (M-1) 

By considering 10    and < it’s‎ obvious‎ that‎ AABA MSEMSE  is always 

greater than one. 

When the smoothing constant values are very small, it is claimed that  the ratio is 

equal to one. Therefore, we must show that   1lim 0,  AABA MSEMSE , by considering (F-

1) the following is given: 
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 
1

2

2

2

1
1lim 0, 




  


  (M-2) 

Appendix N: Proof of theorem 9-3 for an ARIMA(1,0,0) - Comparison at 

aggregate level 

In theorem 9-3 it is claimed that the aggregation approach is always works better that 

the non-aggregation approach. we must show that the minimum value (lower bound) of the 

ratio  AABA MSEMSE  is always greater than one, so to calculate the minimum value of 

AABA MSEMSE with ARIMA(1,0,0) when 311   ,   should be equal to =.33 and 

m=2. By substituting these values in the AABA MSEMSE  , we get: 














 








558.741.4

7622.17822.15644.3

33.67.

1089.08911.0

2

2 2

AABA MSEMSE  (N-1) 

By considering 10    and < we can show that both parts of (N-1) are greater 

than one, therefore, 
AABA MSEMSE  is always greater than one. In addition, when the smoothing 

constant is very small, the ratio is equal to one, we show that   1lim 0,  AABA MSEMSE , 

now by considering (N-1) we have: 

1
558.741.4

7622.17822.15644.3

33.67.

1089.08911.0

2

2
lim

2

0, 









 








  (N-2) 

Appendix O: Proof of theorem 9-3 for an ARIMA(1,0,0) - Comparison at 

aggregate level 

By considering 1AABA MSEMSE is equivalent to having the quadratic function (O-1) 

negative, which subsequently is equivalent to: 
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where 
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For the quadratic function given by (K-1), the value of the discriminant   and the 

roots 1  and 2  can be defined as follows: 

      mm2mmm 182+2-)-(1-2  (K-2) 
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1 2
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  (K-3) 

 
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m

mmm

2 2
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
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We define the coefficient of 2  in (C-1) as follows 
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. mA   (K-5) 

If the discriminant 0 , there are no real roots for (K-1), therefore the sign of (K-1) 

is equivalent to the sign of A. We can show that when 0 , A is always negative, 

consequently (K-1) is negative which means that AABA MSEMSE  is smaller than one. 

If 0 , (K-1) has two different roots 1  and 2 . By investigating the sign of 1 , 2  

and A, we can determine the sign of (K-1) and consequently the performance superiority of 

each approach. 

 If 02 
 

and 01 
 

then (K-1) is positive in the interval [2 , 1 ] and it is negative 

outside this interval. 

 If 12  , we can show that 210   .  (K-1) is negative in the interval [1 , 2 ] 

and it is positive outside this interval. 

 If 10 2   , we can show that 21    then (K-1) is positive in the interval [2 , 1 ] 

and it is negative outside this interval. 

By considering the above expressions, we get the following selection procedure. 

1. The procedure is begun by calculating   defined in (K-2), If 0 then the non-

aggregation approach is always superior, otherwise the values of 1 and 2 defined in (K-

3) and (K-4) are calculated. 

2. If 02  or 12  , the value of 1 is calculated,  

 If 1  then the aggregation approach works better. 

 If 1  then both strategies are identical. 

 If 1  then the non-aggregation approach works better. 

Otherwise: 

3. The value of 1 is calculated. According to the values of 1 and 2 we have 

 If 12   then the aggregation approach works better. 
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 If 21   then both strategies are identical. 

 If 1  and 2  then the non-aggregation approach works better. 

Appendix P: Covariance between demand i,j and forecast i,j 

The covariance between sub aggregate demand i and j defined as following: 
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Similar to (P-1),  ktitjk ddCov  ,, ,  can be calculated where we substitute i by j and 

vice versa. By considering (A-1), the covariance between sub aggregate demand i and sub 

aggregate forecast j is calculated as follows: 

     
    

    ,
1

...11

...),(1),(1),(

)1,()1,(,

1
1

22
11

2,,
2

2,,1,,

1
,

1
,

1
,

1
,,,

iji

j
ijjijjj

tjtijtjtijtjtij

k
ktj

k
jtij

k
ktj

k
jjtitjti

ddCovddCovddCov

ddCovddCovfdCov















 


 
 

 

(P-2) 

Similar to (P-2), the covariance between sub aggregate demand j and sub aggregate 

forecast i is: 
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(P-3) 

The covariance between subaggregate forecast i and j is as follows: 
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Since    1,1,,, ,,  tjtitjti ffCovffCov   and by considering  ktitjk ddCov  ,, ,  and 

substituting (P-1), (P-2), and (P-3) into (P-4), we get 
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Appendix Q: Proof of theorem 4-1  

It’s sufficient to show that the lower bound is greater than or equal to one, we use 

these facts that 11 12   , 15.0 21  pp , By considering the lower bounds of 

11 12    , the value of R  is equal to zero, therefore we rewrite (‎4-41) as follows 
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(Q-1) 

Now by =0.51 and =0 for the interval of  0.5<1=2<1, -1<1=2 0 we can 

calculate the upper bound of the ratio of VTD/VBU , now by substituting these values in (B-1) 

we have 

       


041.115.01
12

12 


BU

TD

V

V
(Q-2) 

Now we can see that the minimum value of VTD/VBU is obtained when the smoothing 

constant   becomes close to zero. Additionally, when=0 the ratio equals to one. 
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Appendix R: Proof of theorem 4-2,  collary 4-1 and collary 4-2 

By using these facts that -11=2 0.5, -11=2<1, 11 12   , 15.0 21  pp , 

the ratio of VTD/VBU  for different values can be calculated from (‎4-41). 

By considering the lower bounds of 11 12    , R  in (‎4-41) is equal to zero, 

therefore (‎4-41) can be rewritten as  

          
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(

(R-1) 

To get the lower bound of (R-1) we need to set  to the minimum value =-0.99, and 

 should be the maximum value, =0.99 for the interval of -1 0.5, -1<1, now we 

substitute these values in (R-1), so we have 

    
099.09403.398.3

299.099.19403.3


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BU

TD

V

V (

(R-2) 

Now by substituting =0.01 into (R-2) it is seen that VTD/VBU=0.99. 

To get the upper bound of MSETD/MSEBU, the maximum values of 15.0 21  pp  

and 11 12    are substituted into (‎4-41), we get 
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(R-3) 

where 
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To get the lower bound of (R-3) , the autoregressive parameters  is set to the 

maximum value =0.5, and the moving average parameter    should be the minimum value, 

=-0.99. Now, by substituting these values in (R-3), the following is given: 

    
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where 

     TDTD

TDTDTDTD
R 

 


125.0

223.297.294.52 2

 

By substituting =TD=0.01 into (R-4), the ratio equals to VTD/VBU=1.01. 

Proof of Collary 5.1. 

By substituting TD==0.05,0.15,0.3 in (R-2) and (R-4) the results presented in Table 

2 can be obtained. 

 

Proof of Collary 5.2. 

By substituting =0.51, =0.99 and =0.99, =0.01 into (R-1) and (R-3) the lower 

and upper bound of  MSETD/MSEBU can be obtained for the interval of  0.5<1=2<1, 

0<1=2<1. Finally, by substituting TD==0.01, 0.05, 0.15, 0.3 into that the results presented 

in Table 3 can be obtained.
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Résumé 

Ce résumé a pour objectif de fournir une vision globale, les principaux objectifs et les 

étapes nécessaires de cette recherche. Nous commençons tout d'abord par définir certains 

termes clés dans le domaine de l’agrégation et de la prévision de la demande afin d’assurer 

une compréhension cohérente des concepts liés à ce travail de recherche. Par la suite, le 

contexte managérial et scientifique, l'aperçu et les objectifs de la recherche sont présentés. 

Enfin, une fois  la démarche  méthodologique adoptée dans ce travail est exposée, nous 

discutons les résultats et les contributions de ce travail. 

1. Définitions 

Une brève description des termes et des expressions clés utilisés dans ce travail de 

recherche est présentée dans les sections suivantes. Il s'agit des éléments appliqués tout au 

long de cette thèse. 

 Les séries chronologiques 

Makridakis et al (1998) définissent une série chronologique comme une séquence 

d'observations ordonnées dans le temps.  

Bien que l'ordre soit généralement sur le temps, l’ordre peut également être considéré 

sur d’autres dimensions, comme l'espace (Harvey, 1993). Les séries chronologiques se 

produisent dans des domaines variés tels que l'agriculture, le commerce, l'économie, 

l'ingénierie, la géophysique, la médecine, les sciences sociales, etc. A titre d'illustration, dans 

le contexte de l'entreprise, le niveau de production annuel, la demande mensuelle de pièces 

détachées, le niveau des stocks hebdomadaires et des ventes quotidiennes sont toutes des 

séries chronologiques. 

 Séries chronologiques stationnaires 

Par série chronologique stationnaire, on entend une série dont les propriétés ne 

dépendent pas du temps durant lequel la série est observée (Makridakis et al., 1998).  
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Pour qu’un processus stochastique soit stationnaire, il faut que l’espérance mathématique de 

la série chronologique, la variance et l'auto-covariance de tout décalage d’ordre k soient 

constantes au cours du temps (Harvey, 1993). La classe la plus générale des modèles 

stationnaires pour la prévision des séries chronologiques est celui des processus autorégressifs 

et à moyenne mobile (ARMA). 

 Séries chronologiques non-stationnaires 

La majorité des séries chronologiques existantes, en particulier dans les secteurs 

économiques et commerciaux sont non-stationnaires. Les séries chronologiques non-

stationnaires peuvent se produire de plusieurs façons. Elles peuvent avoir des moyennes non 

constantes, des écarts et/ou autocovariances variant dans le temps, ou toutes ces propriétés 

simultanément. Les séries chronologiques concernant les tendances, saisonnalités et les séries 

cycliques sont des séries temporelles non-stationnaires (Wei, 2006). L'un des modèles 

typiques non-stationnaires est le processus autorégressifs et à moyenne mobile intégrée 

(ARIMA). Une série chronologique non-stationnaire peut être divisée en deux parties: i) 

séries chronologiques homogènes ii) séries temporelles non-homogène. Dans le premier cas, 

la moyenne est dépendante du temps. En calculant les différences entre les observations 

consécutives, une série chronologique homogène peut être convertie en série stationnaire: 

c'est la différenciation. Cependant, de nombreuses séries chronologiques non-stationnaires 

sont non-homogènes. La non-stationnarité de ces séries ne découle pas des moyennes 

dépendant du temps, mais résulte de la dépendance au temps de leurs variances et 

autocovariances. 

 Méthodes de prévision 

Une méthode de prévision est une procédure pour estimer les observations futures. 

Elle dépend largement de la disponibilité des données. En cas d'indisponibilité, autrement dit 

si les données disponibles ne sont pas pertinentes pour les prévisions, les méthodes de 

prévision qualitatives doivent être utilisées. Il existe des approches structurées mieux 

développées pour l'obtention de bonnes prévisions sans l'aide de données historiques 

(Hyndman and Athanasopoulos, 2013). En revanche, les méthodes quantitatives peuvent être 

appliquées lorsque les conditions suivantes sont remplies: 
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1. Disponibilité des données numériques sur le passé, 

2. Il est raisonnable de supposer que certains aspects des donnés passées vont se 

reproduire dans le futur. 

Il existe un large éventail de méthodes de prévision quantitatives, souvent élaborées 

dans les disciplines spécifiques à des fins spécifiques. Chaque méthode a ses propres 

propriétés, sa précision et son coût qui doivent être considérés au moment de leur choix. 

La plupart des méthodes de prévision quantitatives utilisent soit des séries 

chronologiques (collectées à des intervalles réguliers dans le temps) soit des données 

transversales (collectées à un moment précis). Les méthodes quantitatives de prévision sont 

divisées en deux catégories: 1) modèles de séries chronologiques ii) modèles explicatifs. Un 

modèle explicatif est très utile car il intègre des informations sur d'autres variables, plutôt que 

seulement les valeurs historiques de la variable à prévoir. Cependant, diverses raisons peuvent 

pousser un prévisionniste à sélectionner un modèle de série chronologique plutôt qu’un 

modèle explicatif. Premièrement, le système peut ne pas être compris, et même s'il l'était, il 

peut être extrêmement difficile de mesurer les relations qui déterminent son comportement. 

Deuxièmement, il est nécessaire de connaître ou de prévoir les diverses variables afin d'être en 

mesure d'anticiper sur la variable d'intérêt, et cela peut être très difficile. Troisièmement, la 

préoccupation principale peut être seulement de prévoir ce qui va se passer sans savoir 

pourquoi. En fin de compte, un modèle de séries chronologiques peut donner des prévisions 

plus précises qu'un modèle explicatif ou mixte (Hyndman and Athanasopoulos, 2013). Les 

modèles de séries chronologiques utilisés pour la prévision incluent des modèles ARIMA, le 

lissage exponentiel et les modèles structurels. 

 Sélection de l’estimateur 

Afin d'évaluer l'impact de chaque approche d'agrégation sur la performance de la 

prévision, la sélection d'un estimateur dans un but d'extrapolation s'avère nécessaire. Dans 

cette  étude, le lissage exponentiel simple (SES) est utilisé pour estimer la prévision de la 

demande. Il s'agit d'une méthode de prévision très populaire dans l'industrie car elle est 

intuitivement séduisante, facile à mettre à jour et possède des exigences minimales de 

stockage informatique des données. En outre, elle est optimale pour un processus non-
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stationnaire à moyenne mobile intégrée, IMA(1) ou ARIMA (0,1,1). Bien que son application 

implique un comportement non-stationnaire de la demande, les valeurs suffisamment faibles 

de la constante de lissage (ou coefficient de lissage)  introduisent des écarts mineurs de 

l'hypothèse de stationnarité, tandis que la méthode est aussi impartiale. 

Le lissage exponentiel simple s'appuie sur des prévisions de la demande 

exponentiellement lissées. L'estimation est mise à jour à chaque période. Pour toute période 

de temps t, la procédure d'actualisation de la méthode SES est présentée suivant l'équation ci-

après: 

  11 1   ttt fdf 
                                                                                       (1) 

où dt-1 est la demande à la période t-1, ft est la prévision à la période t et  la constante 

de lissage. 

Le coefficient, compris entre 0 et 1, s’applique à la dernière réalisation. Il s'agit de la 

constante de lissage choisie à ce niveau. Si  est faible (par exemple, proche de zéro), plus de 

poids sera accordé aux observations plus loin dans le passé. Si par contre  est grand (soit 

près d’un), plus de poids sera accordé aux observations plus récentes. Dans le cas extrême ( 

= 1), SES devient la méthode naïve. Dans ce travail de recherche, la méthode SES est préférée 

à la moyenne mobile (MA) et la méthode de prévision optimale, bien que ces méthodes de 

prévision peuvent être envisagées pour les futures recherches. Deux raisons justifient ce choix 

de méthode: 

i) En moyenne, SES a tendance à donner de meilleures performances que la méthode 

MA, comme on l'observe dans une comparaison empirique de leur performance dans la 

compétition de prévision M3 (tel que rapportée par Makridakis and Hibon (2000)). De plus, 

SES correspond à un modèle intuitif séduisant contrairement à MA. 

ii) En pratique, les décideurs ne veulent pas passer trop de temps et d'efforts pour 

examiner et définir les caractéristiques du processus de données avant de déterminer le 

modèle de prévision optimal, comme l'exige ARIMA. Par ailleurs, dans un cadre de 

planification de la production, les prévisions sont tenues sur une base périodique, parfois aussi 

souvent que quotidienne ou même horaire. Typiquement, la prévision est faite simultanément 
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pour plusieurs articles différents dans les systèmes informatiques avec un minimum 

d'intervention humaine. Par conséquent, il est relativement impossible de déterminer le 

modèle ARIMA optimal pour chaque élément à chaque mise à jour. Or, il serait utile de 

déterminer le montant du gain ou de perte en utilisant une méthode de prévision optimale au 

lieu de SES. Nous aborderons cette question dans les travaux futurs. 

 Indicateurs de précision 

Un indicateur de précision est une mesure appliquée afin de juger l'efficacité du 

processus de prévision. Il existe de nombreux indicateurs permettant de mesurer la précision 

des prévisions. Dans le cadre de cette étude, la variance de l'erreur de prévision, aussi appelée 

erreur quadratique moyenne (MSE) est utilisée comme un indicateur de précision. 

Le choix de sélectionner le MSE pour la comparaison théorique des méthodes 

considérées dans cette étude est justifié par le fait que ce dernier est une mesure de la 

précision mathématiquement attrayante. En outre, il  se rapproche de la variance des erreurs de 

prévision (qui se compose de la variance des estimations produites par la méthode de 

prévision et la variance de la demande réelle), mais en diffère par le biais potentiel des 

estimations qui peut également être pris en compte. Étant donné que SES fournit des 

estimations non-biaisées des processus considérés dans ce travail, la variance des erreurs de 

prévision est égale à la MSE, i.e.  MSE = Var (erreur de la prévision) 

 Agrégation de la demande 

Un processus d'agrégation consiste à dériver le modèle de basse fréquence à partir du 

modèle à haute fréquence; cette dérivation peut être exercée dans le temps ou par 

l'intermédiaire des individus. L'agrégation dans le temps, aussi appelée agrégation temporelle, 

fait en particulier référence au processus par lequel une série de temps de basse fréquence (par 

exemple trimestrielle) est dérivée d'une série temporelle à haute fréquence (par exemple tous 

les mois) (Nikolopoulos et al., 2011). Comme montré dans les Figures 1 et 2, ce résultat est 

obtenu grâce à la somme de toutes les m périodes de données à haute fréquence, où m est le 

niveau d'agrégation.  
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Figure 1: L'agrégation temporelle non-cumulée d'hebdomadaire à mensuelle 

 

Figure 2: L'agrégation temporelle cumulée d'hebdomadaire à mensuelle 
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Il existe deux types différents d'agrégation temporelle: non-cumulée et cumulée. Dans 

le premier cas, les séries chronologiques sont divisées en segments consécutifs non-cumulée 

de temps, où la longueur de la tranche de temps est égale au niveau de l'agrégation. La 

demande agrégée est ainsi créée en additionnant les valeurs dans chaque tranche. Le nombre 

de périodes agrégées est [N/m], où N est le nombre de périodes d'origine m, le niveau 

d'agrégation et [x] est la partie entière de x. En conséquence, le nombre de périodes de la 

demande agrégée est inférieur à la demande d'origine. 

Souvent, pour avoir des prévisions comparables entre une approche d’agrégation et 

une approche de non-agrégation, si la comparaison est effectuée au niveau désagrégé, les 

prévisions agrégées doivent être désagrégées au niveau initial (en les divisant par le niveau 

d'agrégation). Par ailleurs, si la comparaison est effectuée au niveau agrégé, dans ce cas les 

prévisions initiales doivent être multipliées par le niveau d'agrégation. Ceci est illustré dans 

les Figure 3 et 4 dans le cas de prévisions hebdomadaires et mensuelles. 

 

Figure 3: Niveau de comparaison désagrégé 
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Figure 4: Niveau de comparaison agrégé 

Un autre type d’agrégation (l'agrégation transversale encore appelée agrégation 

hiérarchique ou contemporaine) se fait au travers d’un certain nombre d'unités de gestion des 

stocks (SKU) à une période de temps précise afin de réduire la variabilité (Silvestrini and 

Veredas, 2008). Les approches existantes de prévision transversale impliquent généralement 

soit une approche ascendante (BU), soit une approche descendante (TD), voire une 

combinaison des deux. Lorsque la prévision au niveau agrégé est en question, cette dernière 

implique l'agrégation des prévisions des unités de gestion des stocks individuelles au niveau 

du groupe, tandis que la deuxième concerne la prévision directement au niveau du groupe (i.e. 

ceci exige premièrement l’agrégation de la demande, puis extrapoler directement la prévision 

au niveau global). Lorsque l'accent est mis sur la prévision au niveau désagrégé, l’approche 

BU concerne l’extrapolation directe au niveau désagrégé alors que TD implique la 

désagrégation des prévisions agrégés produites directement au niveau du groupe. 

Comme l'illustre la Figure 5, L'approche TD se compose des étapes suivantes: i) les 

demandes sous-agrégats sont agrégées; ii) production des prévisions de demande agrégée via 
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la méthode SES au niveau agrégé, et iii) la prévision est désagrégée pour revenir à son niveau 

initial en appliquant une méthode de désagrégation appropriée, si une prévision désagrégée est 

exigée. Dans l'approche BU: i) les prévisions de la demande désagrégée sont produites 

directement pour les articles désagrégés; ii) la prévision agrégée est obtenue en combinant les 

prévisions individuelles pour chaque SKU, soit potentiellement un modèle de prévision séparé 

utilisé pour chaque élément de la famille de produits (Zotteri et al., 2005). Ces approches sont 

présentées schématiquement dans la Figure 5. Nous adoptons ainsi le style de présentation de 

Mohammadipour et al. (2012).  

 

 

 

 

 

 

 

 

 

 

Figure 5: Schéma de TD (gauche) et BU approches (droite) 

 

2. Contexte Managérial 

La prévision de la demande est le point de départ de la plupart des activités de la 

planification et du contrôle des organisations. En outre, l'un des défis les plus importants des 
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sociétés modernes est l’incertitude de la demande (Chen and Blue, 2010). L'existence d'une 

forte variabilité de la demande des articles à grande ou à faible rotation pose des difficultés 

considérables en termes de prévision et de gestion de stock (Chen et al., 2000; Syntetos and 

Boylan, 2005; Wemmerlov and Whybark, 1984). 

Il existe plusieurs approches qui peuvent être utilisées pour réduire l'incertitude de la 

demande et par conséquence améliorer la performance de la prévision (et la gestion des 

stocks) d'une entreprise. Une approche intuitivement attrayante, connue pour être efficace, est 

l’agrégation de la demande (Chen et al., 2007). Une possibilité est l'agrégation temporelle. 

Une autre approche d’agrégation souvent appliquée dans la pratique est l'agrégation 

transversale, c’est-à-dire l’agrégation des données de plusieurs SKUs. Cette approche est 

équivalente aussi à l'agrégation des données d’un seul SKU à travers d’un certain nombre de 

dépôts ou des lieux d'stockage. Naturelles et utiles dans la pratique, des formes d'agrégation 

associées impliquent également la consolidation géographique des données ou le 

regroupement entre les marchés. Bien qu'il n'y ait pas d'étude empirique qui documente la 

mesure dans laquelle l'agrégation a lieu dans un contexte pratique, il s'agit d'une approche qui 

est connue pour être efficace parmi les professionnels en raison de son attrait intuitif. En 

termes pratiques, la prestation dépend du type d'agrégation et bien sûr des caractéristiques des 

données. Une agrégation transversale par exemple conduit généralement à la réduction de la 

variance. Cela est dû au fait que les fluctuations dans les données d'une série chronologique 

peuvent être compensées par les fluctuations présentes dans une autre série (Widiarta et al., 

2009). Contrairement à l'agrégation transversale, dans l'agrégation temporelle la variance 

augmente. Cependant, il peut facilement être montré que l'agrégation temporelle peut réduire 

le coefficient de variation de la demande. Dans tous les cas, l'avantage implicite associé à la 

facilité de mise en œuvre de ces approches les rend un choix populaire dans l'industrie. 

En pratique, la demande peut être classée comme intermittente ou à forte rotation. 

Dans le premier cas, l'agrégation temporelle de la demande entrainerait la réduction de la 

présence d'observations nulles et, plus généralement, la réduction des incertitudes dans le 

second cas. Les articles à demande intermittente (comme pièces de rechange) sont connus 

pour causer des difficultés considérables en termes de prévision et modélisation des stocks. La 

présence de zéros a des implications importantes en raison des trois raisons suivantes. Tout 

d'abord, la difficulté à capturer les caractéristiques des séries chronologiques étudiées et des 
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modèles de prévision standards qui leurs correspondent. Deuxièmement, la difficulté de 

s’adapter à une distribution statistique standard telle que la loi normale. Troisièmement, les 

écarts par rapport aux hypothèses de modélisation de stock standard et leurs formulations.  

Ceux-ci rendent la gestion de ces éléments un exercice très difficile. L’agrégation temporelle 

est connue pour être largement appliquée dans les milieux militaires (données très rares), le 

secteur après-vente (pièces détachées ou de service), etc. Des études empiriques récentes 

(Babai et al., 2012; Nikolopoulos et al., 2011) dans ce domaine ont abouti à des résultats très 

prometteurs en soulignant également la nécessité d'une analyse plus théorique. Bien que le 

domaine de la prévision à l’aide de l'agrégation temporelle dans un contexte de demandes 

intermittentes est très intéressant tant d'un point de vue académique et professionnel, dans 

cette recherche le contexte des demandes à forte rotation, qui reste le contexte le plus 

rencontré, est celui pris en compte. L’analyse dans un contexte de demandes intermittentes est 

une voie intéressante de recherches futures et cette question est abordée avec plus en détail 

dans le dernier chapitre de cette thèse. 

En plus de la réduction de l'incertitude de la demande associée à l'approche de 

l'agrégation temporelle discutée ci-dessus, il y a une question importante dans un processus de 

prévision où l’agrégation temporelle peut être utile. Il est appelé "horizon de la prévision" qui 

détermine la limite de la prévision future. En règle générale, plus on regarde loin dans le futur, 

plus la précision décroît. C'est aussi l'un des domaines où l'agrégation temporelle peut 

améliorer la précision des prévisions, parce que comme nous regardons plus loin dans 

l'avenir, la vision à long terme devient plus importante et la méthode d'agrégation temporelle 

peut utiliser cette information mieux que les approches classiques. Donc, l'approche 

d'agrégation temporelle peut aussi être très efficace lorsque les professionnels ont besoin de 

prévisions à long terme au lieu d'une prévision pour une seule période future. D'un point de 

vue théorique, l'accent à ce jour a été principalement sur l'agrégation transversale. En outre, la 

plupart des logiciels de prévision prend en charge l'agrégation des données, ce serait aussi 

couvrir seulement l’agrégation transversale. La considération de l'agrégation temporelle a été 

quelque peu négligée par les éditeurs de logiciels et les chercheurs malgré la possibilité 

d'ajouter plus de valeur en pratique. Dans ce travail, l'objectif est de faire progresser l'état 

actuel des connaissances dans le domaine de la prévision de la demande à l’aide de 

l’agrégation temporelle. 
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Dans les discussions ci-dessus, l'effet de l'agrégation temporelle sur un seul SKU est 

considéré. Alors qu’en réalité, il y a souvent de nombreuses séries chronologiques qui peuvent 

être organisées de façon hiérarchique et groupées à différents niveaux dans les groupes basés 

sur des références de produits, des clients, de la géographie ou d'autres caractéristiques 

(Hyndman et al., 2011). Le niveau hiérarchique auquel la prévision est effectuée dépend du 

besoin de chaque  fonction. En ce qui concerne les produits (ou références), en particulier, la 

prévision au niveau SKU individuel est nécessaire pour la gestion des stocks, les prévisions de 

la famille de produits peuvent être requises pour le programme directeur de production. Les 

prévisions à travers d’un groupe d'articles commandés auprès du même fournisseur peuvent 

être nécessaires dans le but de regrouper les commandes. Les prévisions à travers des articles 

vendus à un grand client spécifique peuvent impacter le transport, les décisions de routage, 

etc. Une approche a priori intéressante pour obtenir des prévisions de niveau supérieur est 

l’agrégation transversale, ce qui implique généralement soit une approche TD ou une 

approche BU (ou une combinaison des deux). Une question importante qui a attiré l'attention 

de nombreux chercheurs et professionnels au cours de ces dernières décennies est l'efficacité 

de ces approches de prévision transversales. 

Les approches de prévision BU et TD sont extrêmement utiles pour améliorer la 

précision des prévisions et des plans au sein d'un processus S&OP (la planification des ventes 

et des opérations) (Lapide, 2006). Le S&OP est un processus multifonctionnel qui implique 

les gestionnaires de tous les départements (ventes, service client, chaîne logistique, marketing, 

fabrication, achats et finances), où chaque département a besoin de différents niveaux des 

prévisions de la demande (Lapide, 2004). Par exemple, dans le marketing (Dekimpe and 

Hanssens, 2000), la prévision du chiffre d'affaires par groupes de produits et par marques est 

nécessaire. Les services commerciaux traitent avec des prévisions de ventes par les comptes 

clients et/ou des canaux de vente. Les gestionnaires de la chaîne d'approvisionnement 

demandent les prévisions au niveau du SKU, tandis que la finance a besoin de prévisions qui 

sont agrégées dans les unités budgétaires en termes de revenus et de coûts (Bozos and 

Nikolopoulos, 2011). Afin de produire les prévisions requises, la demande et/ou les prévisions 

devraient être agrégés et/ou désagrégés à différents niveaux. Il s'agit de l'application des 

approches TD et BU ou une combinaison des deux (Lapide, 2004, 2006). 
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3. Contexte scientifique 

L'agrégation a été largement discutée dans la littérature académique depuis les années 

1950 (Quenouille, 1958). Elle est considérée comme un moyen de réduire les fluctuations de 

la demande et le degré d'incertitude. Il a été démontré par Theil (1954), Yehuda and Zvi 

(1960), et Aigner and Goldfeld (1974) que l'incertitude de la demande peut être efficacement 

réduite par l'agrégation et une bonne prévision de la demande. Dans la littérature de la 

planification de la chaîne logistique et la planification de la demande, l'agrégation de la 

demande est connue comme un approche de mutualisation des risques pour réduire les 

fluctuations de la demande afin d’avoir une planification des matières/capacité plus efficace 

(Chen and Blue, 2010). Dans le domaine de l'agrégation temporelle, il y a à la fois des études 

théoriques et empiriques discutées dans la littérature. Cependant, la plupart de ces études sont 

dans le domaine de l’économie. Les propriétés du processus agrégé sont fournies sur la base 

des données non-agrégées. De plus, l'effet de l'agrégation temporelle sur la prévision est 

évalué par l’ajustement d'un modèle et de l'estimation des paramètres. Amemiya and Wu 

(1972) ont évalué l'effet de l’agrégation temporelle non-cumulée lorsque la série originale suit 

un processus autorégressif d'ordre p, AR (p). En considérant le ratio des MSE de la prévision 

non-agrégée et agrégée (3 prédicteurs linéaires ont été considérés au niveau agrégé, ils ont 

montré que l'approche d'agrégation performe mieux que l’approche  non-agrégée. Tiao (1972) 

a étudié l'effet de l’agrégation temporelle non-cumulée sur un processus non-stationnaire 

moyenne mobile intégrée d’ordre (p,q), l'IMA (p,q). Une espérance conditionnelle est 

appliquée pour obtenir une prévision à l’horizon d’une période au niveau agrégé basé sur les 

séries non-agrégées et agrégées. Par la suite, l'efficacité des prévisions agrégées a été définie 

comme le ratio de la variance de l'erreur de prévision de la série non-agrégée à la série 

agrégée lorsque le niveau d'agrégation est grand. On montre que lorsque d = 0 et le niveau 

d'agrégation est très grand, alors le ratio en question est égal à un et l'avantage comparatif de 

l'utilisation des prévisions non-agrégées augmente avec d. 

 Peu d'études récentes ont évalué l'effet de l'agrégation temporelle sur la prévision et la 

gestion des stocks par des recherches empiriques. Nikolopoulos et al. (2011) ont 

empiriquement analysé les effets de l'agrégation temporelle sur la prévision de demandes 

intermittentes et ils ont proposé la méthodologie ADIDA. Il est démontré que la méthodologie 

ADIDA peut en effet apporter des améliorations considérables en termes de précision des 
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prévisions. Enfin, Babai et al. (2012) ont également étendu l'étude décrite ci-dessus 

(Nikolopoulos et al., 2011) afin d'examiner les implications  de la méthodologie ADIDA sur 

les stocks en considérant une politique à suivi périodique appelée politique avec niveau de 

recomplètement (ordre-up-to-level). Les chercheurs ont conclu qu'une technique simple 

comme l’agrégation temporelle peut être aussi efficace que les approches mathématiques 

complexes de prévision des demandes intermittentes. 

Au meilleur de notre connaissance, les seuls études directement pertinentes pour notre 

travail sont celles par Amemiya and Wu (1972) et Tiao (1972) pour les processus AR et MA 

respectivement. Ces travaux ont porté sur la caractérisation de la série de la demande agrégée 

en plus de l'évaluation de la performance des prévisions. Cependant, les résultats présentés 

dans ces travaux restent préliminaires alors que le contexte expérimental peut également être 

critiqué en termes des procédures d'estimation considérées. De plus, aucun résultat empirique 

n’a été fourni. Par conséquent, l'absence des conditions qui déterminent la supériorité d’une 

approche, en matière de prévision de la demande, est évidente. Il n'est pas clair si l'approche 

d'agrégation fournit des prévisions plus précises que celle de la non-agrégation, et vice versa. 

Par conséquent, la motivation derrière cette partie de l'étude est l'absence de l'analyse 

théorique en ce qui concerne l'effet de l'agrégation temporelle sur la prévision de la demande. 

Dans cette recherche, l'évaluation analytique est appliquée pour déterminer les conditions de 

supériorité de chaque approche. La recherche est commencée avec le processus simple 

ARMA d’ordre un. Cependant, l'analyse peut être effectuée pour les processus d'ordres 

supérieurs mais les résultats deviennent plus complexes à présenter donc ceci  est considéré 

dans les recherches futures. 

Dans le domaine de l'agrégation transversale, la plupart de la littérature de la prévision 

s'est penchée sur les performances comparées des approches TD et BU. Les conclusions en ce 

qui concerne les performances de ces approches sont mélangées. 

Certains auteurs comme Theil (1954), Grunfeld and Griliches (1960), Schwarzkopf et 

al. (1988), et Narasimhan et al., 1985(1985) ont fait valoir que l'approche TD performe mieux 

que BU, d'autre part, des auteurs comme Orcutt et al. (1968) , Edwards and Orcutt (1969), 

Dunn et al. (1976), Dangerfield and Morris(1988) and Gross and Sohl (1990) ont constaté que 

l'approche BU est performante et enfin quelques autres auteurs comme Barnea and 

Lakonishok (1980), Fliedner (1999) and Widiarta et al.(2007, 2008, 2009)  adoptent une 
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approche contingente et analysent les conditions dans lesquelles une méthode produit des 

prévisions plus précises que les autres. 

Dans cette thèse, l'efficacité de la BU et la TD est évaluée. Les travaux présentés par 

Widiarta et al. sont étendues dans cette thèse en considérant un processus de demande 

stationnaire plus général ARIMA(1,0,1) et un processus non-stationnaire ARIMA(0,1,1). Par 

ailleurs, la comparaison est effectuée tant au niveau désagrégé et agrégé. En outre, la 

supériorité de chaque approche est examinée en utilisant un ensemble de données réelles. 

4. Aperçu de la recherche 

L'agrégation est un moyen efficace pour réduire la variabilité de la demande. De plus, 

il permet aux prévisionnistes d'obtenir différents niveaux de prévisions dans le temps et des 

niveaux hiérarchiques. Selon le niveau des prévisions, nous produisons d'abord les prévisions 

et les agrégeons par la suite soit nous regroupons d’abord les séries originales individuelles 

pour obtenir la demande agrégée et puis de produire la prévision agrégée. Dans ce dernier cas, 

un mécanisme de désagrégation est nécessaire pour obtenir les prévisions désagrégées. Dans 

cette recherche, l'impact de l'agrégation sur la prévision de la demande est évalué. Pour 

montrer l'effet de l'agrégation sur la prévision de la demande, deux types d'agrégation sont 

considérés: i) l'agrégation temporelle et ii)  l'agrégation transversale. Notre aperçu de la 

recherche est résumé dans la Figure 6. 

On suppose que la série chronologique suit un processus de type ARIMA et la 

méthode de prévision est SES. 

Dans l'agrégation temporelle, il est supposé que la demande désagrégée suit un 

processus stationnaire autoregressif moyenne mobile d’ordre un, ARIMA (1,0,1), ce qui veut 

dire que leurs cas particuliers, moyenne mobile d’ordre un, ARIMA (0,0,1) et l’autorégressif 

d'ordre un, ARIMA (1,0,0) sont également considérés. Ensuite, il est discuté si des données 

désagrégées ou des données agrégées doivent être utilisées pour fournir les prévisions 

requises. De plus, les conditions dans lesquelles, une approche performe mieux que l'autre 

sont présentées. 
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Figure 6: Vue d’ensemble de la recherche 
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par une étude numérique pour valider les résultats théoriques. De plus, l’étude numérique est 

appliquée pour évaluer en détail les conditions de supériorité de l'approche en relaxant 

certaines hypothèses considérées dans l'évaluation analytique. Ensuite, les résultats sont 

validés empiriquement (à l’aide des simulations sur un ensemble de données réelles fournies 

par un hypermarché européen). Enfin, des leçons managériales très importantes sont dérivées 

et des suggestions concrètes sont proposées aux professionnels qui s'intéressent aux 

problèmes de prévision et de gestion des stock. 

Dans cette recherche, l'ordre des processus de type ARIMA est limité à un car ce type 

de processus est plus observé dans la littérature pour les séries non-saisonnières, outre 

l'objectif principal qui est de tirer plusieurs éclairages clés pour les managers. Par conséquent, 

nous allons limiter notre attention aux processus AR(1), MA(1) et ARMA(1,1). Toutefois, il 

convient de noter que l'extension du travail à analyser des cas plus généraux tels que AR (p), 

MA (q), voire ARMA (p, q) est faisable, mais l'analyse et la présentation des résultats 

deviendraient complexe. Cette analyse sera examinée dans les travaux futurs. 

L'objectif principal de cette recherche est d'analyser les effets de l'agrégation sur la 

prévision de la demande. Cet effet est examiné par l'analyse mathématique et l’étude de 

simulation. L'analyse est complétée en examinant les résultats sur un ensemble de données 

réelles. Basé sur le contexte scientifique et managérial de la recherche et des motivations, six 

objectifs ont été formulés pour cette recherche: 

7. Evaluer analytiquement l'effet de l’agrégation temporelle non-cumulée sur la prévision 

lorsque la série de base suit un processus stationnaire de type ARMA. 

8. Identifier les conditions dans lesquelles l'approche d'agrégation temporelle performe 

mieux que celle de non- agrégation, et vice versa. 

9. Déterminer le niveau d'agrégation optimale qui maximise les avantages de l'approche 

d'agrégation temporelle. 

10. Examiner l'efficacité des approches BU et TD afin de prévoir la demande désagrégée 

et agrégée dans un environnement stationnaire et non-stationnaire. 

11. Analyser l'effet des paramètres du processus et de contrôle sur la supériorité de 

l'approche dans les agrégations temporelles et transversale. 
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12. Tester la validité empirique et l'utilité des résultats théoriques et de simulation sur un 

large ensemble de données réelles. 

5. Methodologie 

La recherche suit trois méthodes de recherche, l'analyse mathématique, la simulation et 

l’étude empirique. La relation entre les trois méthodes est illustrée dans la Figure 7. 

 

Figure 7: Méthodologie 

Premièrement, l'analyse mathématique est appliquée afin d’examiner la supériorité de 

l'approche d'agrégation et de dévoiler les conditions dans lesquelles cette approche donne des 

résultats plus précis par rapport à l'approche classique. La variance théorique de l'erreur de 

prévision associée à chaque approche est calculée pour tous les processus de la demande à 

l'étude. Ceci est mené afin d'identifier les conditions de la supériorité de chaque approche. 

L'étude de simulation est utilisée pour les raisons suivantes:  

 Pour tester et valider les résultats de l'analyse théorique. 

 Pour relaxer les hypothèses prises en compte dans l'évaluation mathématique. 

Enfin, les résultats de cette thèse sont testés sur des données empiriques réelles pour 

évaluer la validité et l'applicabilité pratique des principaux résultats de l'étude. Par 
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conséquent, l'analyse empirique nous aiderait à tester l'applicabilité des résultats dans des 

situations réelles. 

6. Résultats et contributions 

Dans la première partie de cette étude, l'impact de l'agrégation temporelle sur la 

prévision de la demande a été évalué par l’analyse théorique, la simulation et l'investigation 

empirique. Les évaluations sont basées sur le calcul de l’erreur quadratique moyenne (MSE) 

avant et après l'agrégation (MSEBA / MSEAA) et les comparaisons sont menées à la fois au 

niveau désagrégé et agrégé. Il est supposé que la demande suit un processus stationnaire 

ARIMA(1,0,1), ARIMA(0,0,1) et ARIMA(1,0,0) et un lissage exponentiel simple est utilisé 

comme la méthode de prévision. Les conditions dans lesquelles l'approche d'agrégation 

performe mieux que celle de non-agrégation sont identifiées. 

Les résultats de cette recherche concernant l'agrégation temporelle sont les suivantes: 

 Les conditions de la supériorité des approches de l'agrégation et la non-agrégation sont 

identifiées. Les valeurs des points de rupture sont déterminées pour des valeurs 

données du niveau d'agrégation, et la constante de lissage associée à la série de la 

demande initiale. Il en résulte des règles théoriques montrant la performance de 

chaque approche aux niveaux de la comparaison désagrégée et agrégée. 

 La performance de l'approche d'agrégation se trouve généralement améliorée quand le 

niveau d'agrégation augmente. Le taux d'amélioration cependant, est plus faible pour 

les processus ARIMA (1,0,1) et ARIMA (1,0,0) par rapport à celui de ARIMA(0,0,1). 

Dans tous les processus, le niveau d'agrégation optimal est la valeur la plus élevée sur 

un intervalle donné du niveau d'agrégation. 

 La performance de l'approche d’agrégation s'améliore lorsque la valeur de la  

constante de lissage employée à la série agrégée baisse. Les résultats de l'analyse 

montrent que lorsque le niveau d'agrégation augmente, l'auto-corrélation de la série est 

réduite, ce qui nécessite l'emploi de valeurs faibles des constantes de lissage. 
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  En général, on constate que pour des valeurs d'auto-corrélation positivement élevées 

dans la série originale, la méthode d'agrégation peut être dépassée par celle de non- 

agrégation. 

o lorsque l'on compare au niveau désagrégé et où l'auto-corrélation est 

extrêmement positive, (c.à.d hautes valeurs positives de  dans le processus 

ARIMA (1,0,0) ou des valeurs négatives élevées de   et de valeurs positives 

élevées de  dans le processus ARIMA (1,0,1)), aucun niveau d'agrégation ne 

permet d'améliorer la précision des prévisions. Par conséquent, l'approche non-

agrégation fournit toujours des prévisions plus précises. C'est un résultat 

intuitif car, à tout moment de la période de demande les informations les plus 

récentes sont précieuses. Dans un tel cas, l'approche désagrégée fonctionne 

mieux car elle exploite pleinement ces informations récentes.  

o Toutefois, lorsque la comparaison est effectuée au niveau agrégé, même pour 

des valeurs extrêmement positives de l'auto-corrélation, l'approche 

d'agrégation peut performer mieux que celle de non-agrégation en fonction du 

niveau d'agrégation. Pour les valeurs faibles du niveau d'agrégation, l'approche 

non-agrégation fonctionne mieux. Néanmoins, en augmentant le niveau 

d'agrégation, l'approche agrégation surpasse la non-agrégation. C'est parce que 

la comparaison est effectuée au niveau agrégé où une prévision cumulative sur 

l’horizon de m périodes est nécessaire. Comme le niveau d'agrégation et par 

conséquent l’horizon de prévision augmente, la précision des prévisions 

résultant de l'approche non-agrégation se détériore et cède à une supériorité en 

faveur de l'approche d'agrégation. 

 Pour les valeurs négatives d'auto-corrélation ou les valeurs positives faibles, l'approche 

d’agrégation est préférable quel que soit le niveau de comparaison. Lorsque l'auto-

corrélation de la demande est négative ou positive faible, l'information récente n'est 

pas cruciale, puis une vue à plus long terme sur la demande est préférable. Ceci peut 

être obtenu comme indiqué en sélectionnant un niveau d'agrégation élevé et une valeur 

faible de constante de lissage. 
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Dans la deuxième partie de cette recherche, l'efficacité des approches BU et TD est 

analytiquement évaluée pour prévoir la demande au niveau agrégé et désagrégé quand la 

série désagrégée suit soit un processus moyenne mobile intégrée d’ordre un, ARIMA 

(0,1,1), soit un processus autoregressif moyenne mobile d’ordre un, ARIMA (1,0,1). La 

méthode de prévision appliquée est une procédure de lissage exponentiel simple (SES). 

Les résultats des analyses théoriques ont été complétés par une étude de simulation à la 

fois au niveau agrégé et désagrégé ainsi que l'expérimentation avec un ensemble des 

données empiriques relatives à un hypermarché européen. Les développements sont basés 

sur la détermination de la variance de l'erreur de prévision pour les approches TD et BU. 

Les comparaisons sont menées tant au niveau désagrégé et agrégé. 

Les résultats de cette recherche concernant l'agrégation transversale sont les suivantes: 

 Lorsque les paramètres de processus de tous les articles désagrégés sont identiques, il 

n'y a pas de différence significative entre les approches TD et BU en prévision du 

niveau agrégé tant que la constante de lissage optimale est celle utilisée pour les deux 

approches. En outre, la performance des approches TD et BU est identique lorsque les 

constantes de lissage utilisées pour tous les articles désagrégés et la demande agrégée 

sont identiques. 

 Lorsque l’auto-corrélation  des articles désagrégés est très positive, les approches BU 

et TD affichent la même performance indépendamment des valeurs de corrélation 

croisée. 

 Pour fournir les prévisions agrégées, l’approche TD performe mieux que BU lorsque 

les corrélations croisées entre les articles désagrégés sont (très) positives, la d’auto-

corrélation  d’un article est positivement élevée et celle d’un autre est négative ou 

faible positive. 

 BU peut performer mieux que TD pour fournir les prévisions agrégées lorsque les 

articles désagrégés suivent différents modèles de fluctuation (corrélation croisée 

négative). La TD ne semble pas être très précise quand les articles désagrégés ont des 

profils de demande différents. 

 Pour fournir des prévisions désagrégées, l’approche BU performe mieux que TD 

lorsque l'auto-corrélation d'au moins un élément de la famille est positive et la 
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constante de lissage est fixée à sa valeur optimale pour les deux approches, ceci est 

indépendamment de la corrélation croisée, les poids de la méthode de désagrégation, 

et des valeurs des paramètres du processus. Le degré de supériorité de l'approche BU 

pour les processus non-stationnaires est beaucoup plus élevé par rapport à celui des 

processus stationnaires lorsque l'on compare au niveau désagrégé. 

 On constate que pour l’auto-corrélation négative ou positive faible, les approaches BU 

et TD montrent presque la même performance pour prévoir la demande désagrégée 

lorsque les constantes de lissage optimales sont utilisées. En outre, la différence entre 

ces deux approches peut aller jusqu'à 1%. 

 La performance de BU est généralement améliorée par la diminution de la corrélation 

croisée, passant des valeurs positifs à négatifs. La performance de l’approche TD se 

détériore par la baisse de la corrélation croisée. Pour les valeurs de corrélation croisée 

très négatives, BU est toujours préférée. C'est généralement le cas pour la comparaison 

au niveau agrégé et désagrégé. 

 Les avantages obtenus par les approches BU et TD pour le processus de demande non-

stationnaire sont plus élevés que ceux qui sont associés avec les processus 

stationnaires en termes de précision des prévisions. 

7. Organisation de la thèse 

Au terme de la position esquissée dans ce résumé, la thèse est structurée comme suit: 

Dans le deuxième chapitre, nous présentons un état de l’art sur la prévision de la 

demande par l'agrégation. Différents types d'agrégation, c'est à dire l'agrégation temporelle et 

transversale sont discutées. L'effet de l'agrégation sur la structure du processus est décrit et 

enfin, des travaux menés sur la prévision de la demande en appliquant l’agrégation sont 

discutés. 

Dans le troisième chapitre, l'effet de l’agrégation temporelle non-cumulée sur la 

prévision de la demande est examinée lorsque la série chronologique suit un processus 

stationnaire. Pour chacun des processus considéré dans cette étude, le MSE théorique est 

développé à la fois au niveau de la comparaison désagrégée et agrégée. Ensuite, les résultats 
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de MSE sont comparés afin d'identifier les conditions de supériorité de chaque approche. 

Puis, l'analyse de simulation est menée afin d’examiner les résultats théoriques à la suite de 

l'investigation empirique. 

Nous présentons dans le quatrième chapitre, l'effet de l'agrégation transversale sur la 

prévision de la demande. On suppose que la série suit soit un processus stationnaire soit un 

non-stationnaire. L'évaluation analytique est d'abord considérée suivie d'une étude de 

simulation pour tester et valider les résultats théoriques. De plus, certaines hypothèses sont 

relaxées par rapport à l'analyse théorique. Les résultats sont complétés par une analyse 

empirique utilisant un ensemble de données réelles pour valider les résultats. 

Enfin, dans la dernière partie de cette recherche, nous résumons les résultats de chaque 

chapitre et nous présentons les conclusions de cette thèse. Les implications managériales et 

les limites de la recherche sont décrites, avec les perspectives pour le travail réalisé dans le 

cadre de la thèse. 
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Lexique 

A    
AutoRegressive 
Integrated Moving 
Average (ARIMA) 
processes 

Autoregressive 
moyenne mobile 
intégré 

F  

AutoRegressive 
Moving Average 
(ARMA) processes 

Autoregressive 
moyenne mobile  

Fast moving items Articles à rotation 
rapide  

AutoRegressive (AR) 
processes 

Autoregressive Forecasting Prévision 

Moving Average (MA) 
processes 

Moyenne mobile Forecast horizon Horieon de prévision 

Aggregation level Niveau d’agrégation Forecast accuracy Indicateur de précision 
Aggregate demand Demande agrégée   
Aggregate level Niveau agrégé G  
Aggregation approach Approche d’agrégation Stock control Gestion de stock 
ARCH Conditionnelle 

hétéroscédasticité 
autorégressive  

GARCH Conditionnelle 
hétéroscédasticité 
autorégressive 
généralisée 

    
B  H  
Buckets of time La tranche de temp  High frequency time 

series 
Les séries 
chronologique à haute 
fréquence 

Bottom-up approach approche ascendante   
  I  
C  INARIMA Autoregressive 

moyenne mobile Entier 
Cross-sectional 
aggregation 

Agrégation 
transversale 

  

Customer Service,  Service client L  
Cut-off point  Point de rupture  Low frequency time 

series 
 Les séries 
chronologique à basse 
fréquence 

Cross correlation Corrélation croisée   
Cumulative m step 
ahead forecast 

Prévision cumulée de 
m période d’avenir 

M  

  Mean Square Error 
(MSE) 

Erreur quadratique 
moyenne 

D  Master Production 
Scheduling 

Programme directeur 
de production 

Disaggregate demand Demande désagrégée Material/capacity 
planning 

Planification du 
matériel / capacité 

Disaggregate 
level(subaggregate 
level) 

Niveau désagrégé   

Disaggregation Désagrégation N  
Disaggregation weights Le poid de désaggrégation Non-overlapping  Non-Cumulé 
Non-Stationary  Non-stationnaire   
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Non-aggregation 
approach 

Approche de 
nonagrégation 

  

    
O    
Overlapping  Cumulé   
One step ahead 
forecast 

Prévision d’une 
période d’avenir 

  

    
P    
Procurement Achats   
Product family Famille de produit   
Pattern Schéma   
Practitioner Professionnelle   
Process parameters Paramètres 

de processus 
  

S    
Stationary  Stationnaire   
Single Exponential 
Smoothing 

Lissage exponentielle 
simple 

  

smoothing constant La constante de lissage   
Stock Keeping Units Unité de gestion de 

stock 
  

Slow moving items Articles à rotation lente   
Spare part Pièce détachée   
Sales and Operations 
Planning 

Planification des 
ventes et des 
opérations 

  

Sale Vente   
    
T    
Temporal aggregation Agrégation temporelle   
Time series Séries chronologique   
Top-down approach Approche descendante   
    
U    
Uncertainty Incertitude   
    
V    
Variability  Variabilité   
    
    
    
    
    
    

 

 


