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M. Pablo Belzarena, Professeur, Universidad de la República, Uruguay (Co-Directeur de thèse)
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Abstract

Providing end-to-end quality-assured services implies many challenges, which go beyond
technical ones, involving as well economic and even cultural or political issues. In this thesis
we first focus on a technical problem and then intent a more holistic regard to the whole
problem, considering at the same time Network Service Providers (NSPs), stakeholders
and buyers’ behaviour and satisfaction.

One of the most important problems when deploying interdomain path selection with
Quality of Service (QoS) requirements is being able to rely the computations on metrics
that hold for a long period of time. Our proposal for solving that problem is to compute
bounds on the metrics, taking into account the uncertainty on the traffic demands. In
particular, we will explore the computation of the maximum end-to-end delay of traversing
a domain considering that the traffic is unknown but bounded. Since this provides a
robust QoS value for traversing the NSP or Autonomous System (AS), without revealing
confidential information, we claim that the bound can be safely conceived as a metric to
be announced by each AS to the entities performing the path selection, in the process
of interdomain path selection. We show how the maximum delay value is obtained for
an interdomain bandwidth demand and we propose an exact method and a numerical
approximation method for computing it, neither of which rely on a complex monitoring
infrastructure. Simulations with real data that illustrate the problem and validate our
results are also presented.

In the multidomain context economics and policies become more complex. In this re-
gard, AS alliances or federations are envisaged to emerge in the near future as a means of
selling end-to-end quality-assured services through interdomain networks. This collabora-
tive paradigm mainly responds to the ever increasing Internet traffic volumes that requires
assured quality, and constitutes a new business opportunity for NSPs. However, current In-
ternet business rules are not likely to satisfy all involved partners in this emerging scenario.
How the revenue is shared among NSPs must be agreed in advance, and should enforce
economic incentives to join an alliance and remain in it, so that the alliance remains stable.

Inspired by this scenario, we propose a complete framework for selling interdomain
quality-assured services, and subsequently distributing revenues, in an AS alliance context.
We state the problem as a network utility maximization problem with QoS constraints
and show that a distributed solution can be carried out.

With respect to the revenue sharing problem, we formally formulate the properties the
revenue sharing method should fulfil and argue why the existing methods are not suitable.
We propose a family of solutions to the revenue sharing problem such that the economic
stability and efficiency of the alliance in the long term is guaranteed. The proposed method
is based on solving a series of Optimization Problems and considering statistics on the
incomes.
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We then move to a more holistic approach and consider the interactions with the
monitoring plane and the buyers’ behaviour. We propose a simple pricing scheme and study
it in detail, in order to use QoS monitoring information as feedback to the business plane,
with the ultimate objective of improving the seller’s revenue. In our framework, assured-
quality Services are sold through first-price auctions, and in case of failure, a percentage
of the price paid for the service is given back to the buyers. We derive the expression for
the willingness to pay and we model the pricing problem through a Stackelberg game. We
solve the game to show that the equilibrium that maximizes the seller’s revenue implies
reimbursing 100% in case of failures.

The previous study is built upon a strong symmetry hypothesis, that is, buyers are
assumed to be symmetric, and so do services in sale. In order to relax this assumption we
present a simulative approach and evaluate the proposed pricing scheme with its aid. Re-
sults of simulations are shown in different scenarios, which in particular have shown results
that are coherent with the analytical ones. That is to say, that in the evaluated scenarios
reimbursing 100% provides more revenue to the seller than when no reimbursement is in
place.

Key words: Interdomain Quality of Service, Alliances, Bandwidth Auctions,

Revenue Sharing, Pricing, Reimbursement
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Résumé

La mise en place de services réseau avec qualité garantie en interdomaine soulève de
nombreux défis qui vont bien au-delà des seuls aspects techniques. De fait, les problèmes
concernent bien sûr des aspects techniques comme l’établissement de chemins avec qualité
garantie de bout en bout et l’interopérabilité des différents domaines, mais également des
aspects économiques voir même culturels ou politiques. Dans cette thèse l’ambition est de
traiter de la qualité de service en interdomaine d’une manière holistique, en prenant en
compte certains aspects techniques mais aussi les aspects économiques de ce sujet.

Nous nous intéressons d’abord à un problème technique soulevé par la mise en place
de chemins avec qualité de service en interdomaine. Puis nous traitons de problématiques
économiques, en considérant les conflits d’intérêts entre différents acteurs comme les four-
nisseurs de services de réseau (NSP, Network Service Provider) qui doivent collaborer pour
fournir une qualité de bout en bout, et les acheteurs de chemins avec qualité garantie. Cas
acheteurs sont typiquement des diffuseurs utilisant les services d’opérateurs de réseaux
(OTT, Over the Top).

Un problème important quand on s’intéresse à la sélection d’un chemin interdomaine
avec des contraintes de qualité de service (QoS), est de disposer de métriques sur lesquelles
baser les calculs, par exemple un délai de traversée pour chaque domaine, et que la valeur
de ces métriques reste stable pendant un laps de temps suffisamment long, typiquement
la durée de l’accord sur le niveau de service (SLA, Service Level Agreement).

On pourrait en premier lieu penser qu’il suffit d’une simple mesure pour obtenir la
valeur de la métrique de QoS considérée. Cependant, cela reste une approche très näıve,
étant donné que le trafic qui traverse le réseau peut présenter des changements brusques
qui se traduisent par des changements inattendus de la valeur de QoS.

Mesurer le délai de traversée d’un réseau est une tâche complexe en soi. Différentes
techniques peuvent être trouvées dans la littérature. Ces techniques se basent en général
sur des mesures passives, c’est-à-dire que des paquets de données sont estampillés avec
une information temporelle et sont plus tard envoyés vers un collecteur qui va les traiter.
D’autres techniques de mesure se basent sur des mesures actives, où des paquets introduits
spécifiquement pour les mesures sont envoyés sur le chemin dont on veut mesurer la per-
formance. Ces dernières ont plusieurs désavantages, notamment le fait qu’elles utilisent de
la bande passante pour la métrologie et qu’elles nécessitent la mise en place de solutions
de synchronisation précises pour l’horodatage. Une telle architecture de mesure peut donc
être assez complexe et onéreuse à mettre en oeuvre.

De plus, comme nous l’avons déjà signalé, même si il est techniquement possible de
faire des mesures de performance telles que des mesures de délais, la valeur obtenue n’est
pas nécessairement stable pendant une durée suffisamment longue pour que l’on puisse
se baser sur cette métrique pour le calcul de chemin. En effet cette instabilité résulte de
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l’incertitude intrinsèque sur l’état du réseau et sur les variations de la demande de trafic.

Notre proposition pour traiter ce problème est de faire un calcul basé sur des bornes
de ces métriques. Ces bornes prennent en compte les incertitudes qui existent dans les
demandes de trafic. Plus précisément, nous traitons le problème du calcul de la valeur
maximale du délai de traversée d’un domaine Internet, en considérant que le trafic dans
le domaine est inconnu mais borné. Étant donné que cette valeur donne une métrique de
QoS au niveau de la traversée d’un domaine ou NSP, sans révéler d’information confiden-
tielle, nous considérons que cette borne peut être considérée sans aucun risque comme une
métrique à être annoncée par chaque NSP aux autres NSPs, qui vont s’en servir pour faire
des calculs dans le contexte de la sélection de chemins interdomaines. Nous montrons com-
ment définir formellement le problème de détermination de la valeur maximale du délai et
nous proposons une méthode exacte pour trouver cette valeur. Ensuite, nous proposons
une méthode approximative qui permet de trouver une valeur arbitrairement proche de la
valeur exacte et qui a l’avantage de consommer un temps de calcul beaucoup moins élevé
que la méthode exacte. Des résultats des simulations qui utilisent des données de réseaux
réels (Abilène, GEANT, OTIP) sont également présentés.

Dans un contexte interdomaine les aspects économiques et politiques de l’interconnexion,
et en particulier de l’interconnexion avec QoS, sont particulièrement complexes. A cet
égard, on envisage l’émergence d’alliances ou de fédérations de NSPs comme une organ-
isation pouvant permettre la vente de services de qualité garantie à travers des réseaux
multidomaines tels que l’Internet. Ce paradigme collaboratif répond principalement à un
besoin croissant de qualité de service d’une partie du trafic Internet, ce qui représente une
nouvelle niche économique pour les NSPs. Cependant, les règles économiques qui régissent
actuellement l’Internet ne sont probablement pas intéressantes pour les différents acteurs.
En particulier, la façon dont le revenu de ces alliances sera partagé parmi leurs membres
doit être définie au préalable, et ce mode de partage doit encourager les NSPs, du point
de vue économique, à rejoindre l’alliance et à y rester. Autrement dit, les alliances doivent
être conçues pour être stables et de façon à inciter les membres de l’alliance à augmenter
la part de bande passante qu’ils consacrent à l’alliance.

Inspirés par ce scénario, nous proposons une architecture complète pour permettre la
vente de services de qualité garantie dans des réseaux interdomaine et pour ensuite faire le
partage de revenus, dans des contextes d’alliances de NSPs. Nous formalisons le problème
de la vente de services comme un problème de maximisation d’utilité de réseau (Network
Utility Maximization problem) avec contraintes de qualité de service et nous montrons
que ce problème peut être résolu de façon distribuée.

En ce qui concerne le partage des revenus, nous commençons par énoncer de façon
formelle les propriétés qu’une telle méthode devrait satisfaire. Nous cherchons une méthode
qui partage exactement la totalité des revenus, ce qui dans le jargon est couramment ap-
pelé la propriété d’efficacité (efficiency). En même temps, nous souhaitons que la méthode
garantisse la stabilité de l’alliance en termes économiques, ce qui fait référence au fait que
la méthode de répartition doit garantir que chaque NSP recevra une somme supérieure ou
égale à celle qu’il recevrait s’il faisait partie d’une autre alliance. Ce concept est bien connu
dans le domaine de la théorie des jeux coopératifs, l’ensemble des répartitions qui vérifient
cette propriété est appelé le coeur (core). Bien évidemment nous cherchons également
une méthode qui soit équitable, et la notion d’équité doit être bien définie. Nous cher-
chons également une méthode qui encourage le bon comportement des NSPs. A titre
d’illustration, un exemple est d’encourager, au travers de la méthode de répartition, les
NSPs à fournir plus de ressources à l’alliance.
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Nous montrons que les méthodes existantes ne répondent pas entièrement à nos at-
tentes. En conséquence de quoi, nous proposons une famille de solutions au problème du
partage des revenus qui vérifie la stabilité de l’alliance du point de vue économique et
telle que son efficacité soit assurée dans le long terme. La méthode proposée se base sur la
résolution de problèmes d’optimisation et considère des statistiques sur les revenus. Nous
étudions ensuite par des simulations exhaustives le comportement de la méthode vis-à-vis
des autres propriétés mentionnées ci-dessus.

Ensuite nous adoptons une approche plus holistique en considérant les interactions
entre la couche de mesure de la qualité de service et la couche économique, et les effets
que les décisions économiques ont sur le comportement des acheteurs. Plus précisément,
nous proposons un schéma de tarification pour la vente de services avec qualité qui est
simple et nous l’étudions en détail. Ce schéma propose de faire la vente des services en
utilisant les enchères de premier prix et en assurant l’acheteur d’être remboursé d’un
certain pourcentage du prix payé pour le service si la qualité de service n’est pas atteinte.
Dans les ventes par des enchères de premier prix les acheteurs soumettent leurs offres et
l’objet est attribué au plus offrant. Le prix à payer pour le service est alors la valeur de
l’offre. Ce mécanisme peut être généralisé à la vente de plusieurs objets. Dans ce cas là,
les offres les plus élevées remporteront l’enchère et chaque gagnant paye la valeur de son
offre.

L’utilisation des enchères de premier prix dans notre contexte fournit d’abord une
façon simple de fixer le prix des services qui ne sont pas encore des services courants dans
le marché, et dont par conséquent on ne connâıt pas le prix. Cette méthode permet de
modéliser le comportement des acheteurs que l’on considère dans notre contexte comme
agissant de manière rationelle. De plus, la mise en oeuvre de ce schéma de tarification dans
un réseau reste assez simple, ce qui motive également le choix des enchères de premier prix
parmi d’autres types d’enchères.

Dans l’étude de notre schéma de tarification nous commençons par trouver l’expression
mathématique de la volonté de payer (willingness to pay) des acheteurs. Cette expression
vérifier des propriétés que l’on peut attendre de manière intuitive, notamment le fait que
la volonté de payer des acteurs augmente si la valeur du remboursement augmente, et que
pour un pourcentage de remboursement inférieur ou égal à 100% leur volonté de payer
diminue si la probabilité de défaillance du service augmente. Ensuite nous modélisons le
problème de remboursement, l’objectif étant de trouver le pourcentage de remboursement
qui maximise le revenu du vendeur, tout en tenant compte de la façon dont les acheteurs
réagissent à cette valeur. Pour cela nous utilisons la théorie des jeux et nous modélisons
les relations entre acheteurs et vendeur comme un jeu de Stackelberg, dont on montre
qu’il s’agit d’un jeu à somme nulle, c’est-à-dire que les intérêts des acheteurs sont opposés
à ceux du vendeur. Finalement, nous trouvons l’équilibre du jeu et nous montrons que
rembourser 100% maximise le revenu du vendeur.

Nous pouvons tirer davantage de conclusions qui méritent d’être soulignées de l’étude
précédente. D’abord, quand on fixe le pourcentage de remboursement à une valeur plus
petite que 100% le phénomène connu comme “market for lemons” apparâıt. Dans ce cas
les acheteurs ne font pas confiance à la qualité des services offerts de sorte que leur volonté
de payer diminue et qu’à la limite le marché disparâıt. Si par contre le pourcentage de
remboursement est établi à une valeur plus élevée que 100%, les acheteurs ne donnent pas
d’importance à la qualité de service. En effet, dans ce dernier cas, si le service n’atteint la
qualité attendue, les acheteurs seront remboursés que ce qu’ils ont payé pour le service.
Ce phénomène est connu comme le “moral hazard” dans le domaine de l’économie, et a
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lieu quand ceux qui prennent la décision, dans ce cas là les acheteurs, ne sont pas ceux
qui vont souffrir des conséquences de ce choix. Par contre ces deux phénomènes n’ont pas
lieu quand le pourcentage de remboursement est fixé à 100%.

L’étude présentée ci-dessus est développée sous l’hypothèse forte d’acheteurs symétriques,
ce qui signifie que tous les acheteurs suivent un même modèle de valuation du service. Cette
hypothèse n’est pas toujours réaliste. Ainsi, des acheteurs peuvent utiliser le service de
diverses façons voire avoir des business models variés, ce qui fera qu’ils valorisent le ser-
vice de façon différente. En outre, l’étude précédente n’est développée que pour un type
de service, ce qui ne représente pas le cas plus réaliste où un fournisseur a plusieurs ser-
vices à offrir, avec, par exemple, différents niveaux de performance. Cela nous conduit
à relaxer certains hypothèses dans l’étude de notre schéma de tarification. Notamment
nous considérons des acheteurs qui ne sont plus symétriques, et des services qui peuvent
avoir une probabilité de défaillance différente, et par conséquent un pourcentage de rem-
boursement différent. Relaxer ces hypothèses nous conduit à une difficulté: l’impossibilité
d’obtenir des résultats analytiques dans le cas général. En réponse à cela nous prouvons
d’abord certains propriétés que la volonté de payer vérifie dans le cas général. Puis nous
proposons une méthode basée sur de la simulation pour déterminer la volonté de payer.
Cette méthode se base sur des estimations de moyennes par la méthode de Monte Carlo et
sur des maximisations en utilisant la méthode du recuit simulé. Le schéma de tarification
est étudié dans différents scénarios non symétriques à l’aide de la méthode proposée. Dans
tous les cas évalués les résultats obtenus sont cohérents avec le cas symétrique, c’est à
dire que rembourser 100% maximise les revenus du vendeur. De même, des phénomènes
comme le “market for lemons” sont également observés dans nos résultats.

Davantage d’hypothèses devraient être relaxées pour arriver à une étude véritablement
holistique de la problématique adressée par cette thèse. Une synthèse de possibles travaux
futurs est proposée pour conclure, telles que des études expérimentales qui enrichiraient
le comportement des acheteurs face à des services de réseau avec qualité garantie.

Mots clés : Qualité de service interdomaine, alliances, enchères de bande

passante, partage de revenue, tarification, remboursement.
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Resumen

La provisión de servicios de red con calidad garantizada de extremo a extremo implica
varios desaf́ıos, que se extienden más allá de los técnicos, involucrando aspectos tanto
económicos como culturales y hasta incluso poĺıticos. En esta tesis primero abordamos
el aspecto técnico y luego intentamos una mirada más hoĺıstica al problema en su con-
junto, considerando al mismo tiempo proveedores de red (NSPs, por su sigla en inglés),
accionistas, y el comprador o usuario, considerando su comportamiento y satisfacción.

Uno de los problemas más importantes cuando se desea implementar la selección de
camino interdominio con calidad de servicio (QoS, por su sigla en inglés) es el poder contar
con métricas en las cuales basar los cálculos, y que estas métricas sean válidas durante un
peŕıodo de tiempo suficiente. Nuestra propuesta para atacar este problema es computar
una cota a estas métricas. Esta cota tiene en cuenta las variaciones que pueden haber
en el tráfico por la red, siendo éstas desconocidas a priori. En particular, exploramos el
cálculo del retardo máximo de atravesar un NSP o sistema autónomo (AS), sin revelar
información confidencial del AS. Esta métrica puede ser anunciada por cada AS para
hacer posible el cómputo de caminos interdominio con calidad de servicio. Mostramos
cómo formular el problema de obtener el retardo máximo para una demanda de ancho de
banda y proponemos un método exacto para obtener dicho valor. A su vez proponemos
un método numérico que provee una aproximación de dicho valor con un menor tiempo
de cómputo. Ninguno de estos dos métodos, tanto el exacto como el aproximado, requiere
de una infraestructura de monitoreo compleja. Finalmente ilustramos el problema y la
solución con simulaciones que utilizan datos obtenidos de redes reales.

Cuando varios dominios o ASes interactúan entre śı, los aspectos económicos y las
poĺıticas a aplicar se vuelven más complejas. En este sentido, se prevé que las alianzas
o federaciones de ASes emerjan en el futuro próximo, de manera tal de que faciliten la
venta de servicios con calidad de extremo a extremo a través de redes interdominio. Este
paradigma colaborativo responde principalmente al constante crecimiento del tráfico de
Internet que requiere calidad de servicio, y a su vez constituye una oportunidad de negocio
para los NSPs. Sin embargo, las leyes que ŕıgen actualmente el mercado de interconexión de
Internet no son necesariamente atractivas para todos los actores que participaŕıan de este
escenario emergente. Por ejemplo, cómo las ganancias de la colaboración serán repartidas
entre todos los NSPS tiene que ser acordado de antemano, y la manera de hacer dicho
reparto debeŕıa fomentar a los NSPs a formar alianzas y permanecer en ellas. En otras
palabras, se busca alianzas estables.

Inspirados por este escenario, proponemos un esquema completo para la venta de
servicios con calidad asegurada en redes multidomino, y un método para el reparto de las
ganancias que de estas ventas resulten, en el contexto de alianzas de ASes. Planteamos
el problema como un problema de maximización de utilidades de la red (Network Utility
Maximization problem) con requerimientos de calidad de servicio y mostramos que una
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solución distribuida a este problema puede ser construida.

Con respecto al reparto de las ganancias, formulamos formalmente el problema, es-
tablecemos las propiedades que un método de reparto debeŕıa tener en este contexto y
mostramos por qué los métodos existentes no son apropiados. Proponemos una familia
de soluciones al problema de reparto de ganancias tal que la estabilidad en términos
económicos de la alianza sea garantizada. El método propuesto se basa en la resolución
de una serie de problemas de optimización y estad́ısticas en las ganancias de la alianza.
Exploramos luego otras propiedades que este método provee.

Luego adaptamos una mirada más hoĺıstica y estudiamos una interacción entre el
plano de monitoreo y el comportamiento de los compradores. Proponemos un método de
tarificación simple y lo estudiamos en detalle. El mismo utiliza información de monitoreo
de la calidad de servicio como realimentación al plano de negocios, y tiene como objetivo
mejorar la ganancia del vendedor. En el método que proponemos, los servicios de calidad
garantizada son vendidos a través de subastas de primer precio, y en caso de que el
servicio no alcance la calidad esperada un porcentaje de lo que se pagó por el servicio
es reembolsado al comprador. Deducimos la expresión de la voluntad de pagar para los
compradores y modelamos el problema de tarificación a través de un juego de Stackelberg.
Luego resolvemos el juego para mostrar que el equilibrio del mismo, que maximiza la
ganancia del vendedor, implica reembolsar 100 % en caso de fallas.

El estudio anterior supone la fuerte condición de simetŕıa de los compradores, es de-
cir que para derivar resultados anaĺıticamente los compradores son modelados todos de la
misma manera, lo que en particular significa que valoran el servicio a comprar de la misma
forma. Con el objetivo de levantar esta hipótesis poco realista realizamos el mismo estudio
con un abordaje basado en simulaciones, lo que permite sacar conclusiones sobre com-
pradores no necesariamente simétricos. En particular mostramos que escenarios diversos
arrojan resultados coherentes con los resultados anaĺıticos. Es decir, que en los escenar-
ios evaluados un reembolso de 100% provee más ganancia al vendedor que no establecer
ninguna poĺıtica de reembolso.

Palabras clave: Calidad de Servicio interdominio, alianzas, subastas de an-

cho de banda, reparto de ganancias, tarificación, reembolso
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Chapter 1

Introduction

1.1 Motivation

Internet traffic consumption tendencies are evolving along two main axis. On the one hand,
the continuous growth in terms of volume as well as in terms of Quality of Service (QoS)
demanding applications, such as telepresence, video or gaming [21,22]. On the other hand,
the need for QoS connectivity from end-to-end across several domains or Autonomous
Systems (ASes), which possesses political, economic and technical issues [114].

Indeed, according to recent studies [21], the applications which are envisioned to have
the greatest increase are those with real time characteristics, thus those needing special
quality in order to be delivered in a proper way across heterogeneous networks. In addition,
emerging technologies such as telepresence or cloud computing not only generate large vol-
umes of traffic with real time requirements, but are also used to interconnect sites around
the globe. As a consequence, in addition to a QoS capable network, this kind of services
require an end-to-end QoS enabled chain crossing heterogeneous carrier networks [114].

At the same time, there is a need for Network Service Providers (NSPs) to find new
business cases and technology for fulfilling customer needs and maximizing revenues. More-
over, nowadays, the focus of telecommunication market is on best effort content. In order to
meet customer expectations telecommunications companies are forced to invest in capac-
ity, without getting sufficient return on these investments to have sustainable businesses.
The ever evolving features provided by the handset terminals, and the growing number
of connection capable equipments, constitute more evidence in favour of the forecast of
Internet traffic increase.

In this scenario, current Internet business rules for domain interconnection may not
be able to provide a sustainable economy for all actors in the value chain (Application
Providers, Network Service Providers, etc.). Indeed, these rules (peering agreements) are
not aware of the QoS capabilities of the domains and most of them are based on a traffic-
symmetry assumption that may no longer be valid in evolving services (for instance HD
video on demand, which intrinsically produces asymmetric traffic flows and is foreseen as
one of the services that is going to grow the most [21]).

Furthermore, customer-providers agreements are based on a per-traffic consumption
charging mechanism, while a common way of pricing for Internet connection to end users
is a monthly flat rate. At the same time, other actors, e.g.Application Providers or the
so-called Over the Top Providers (OTTs) receive revenues on a per bandwidth-consumed
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basis, relying their services on the existent network infrastructure but not remunerating
NSPs adequately [96]. All together, there is a disagreement between money flow and traffic
flow.

Even if the necessity of a QoS market from the point of view of providers has been
identified, and if benefits from the point of view of the users can be expected (through
a wide variety of quality assured enhanced services), the QoS market can not still be
said to have succeeded. A possible issue that has been identified as the cause of this, is
the fact that there is a lack of transparency between providers and clients, driving high
quality out of the market place. A similar problem has been identified decades ago, in
the so-called market for lemons [23] phenomenon. In the connectivity market, this means
that since buyers are not sure about the quality of the service they could get, they are
not encouraged to pay for a differentiated service, even if quality could ultimately results
satisfactory. The bad quality services leave the good ones out of the market.

Besides this economic context, technical issues related to interdomain QoS provisioning
are not negligible at all. The interconnection of heterogeneous network poses technical
challenges itself. Though best-effort traffic has overcome these issues, that is not the case
when providing QoS. Even if several standards and protocols for Traffic Engineering have
been developed such as MPLS-TE [11] and DiffServ [10], and their intedomain flavours such
as the PCE hierarchy framework in [17], interdomain MPLS-TE framework [14] and its
companion signalling protocol RSVP-TE [15], when it comes to interdomain each AS still
has its own rules, and respecting markings, priorities or tags is not mandatory. In addition,
the lack of end-to-end coordination results in an inefficient routing under congestion, with
overloaded paths and underused ones at the same time. This lack of coordination stems as
well from the fact that multidomain coordination is delicate, having to deal with scalability
and confidentiality issues.

As already mentioned, over-provisioning has been typically the way to address Traffic
Engineering in complex interdomain scenarios. However, that relied on a premise that may
no longer be true: the bottleneck at access networks. With the advent of big pipes to the
final user, as Fiber-to-the-Home initiatives [5] and the ubiquitous presence of connectivity-
capable terminals, the validity of this assumption is seriously questionable. The context
asks thus for more complex Traffic Engineering techniques enabling a smarter use of re-
sources.

Taking into account the previous considerations many companies and academic groups
are analysing future scenarios so as to meet the end-to-end requirements and business mod-
els. As a possible architecture to provide these services, the ASes alliances or federations
have emerged (see for instance [4]). In this kind of interconnection market there exists a
cooperation of infrastructure, policies and incentives for rational usage of resources and
agreements for providing end-to-end QoS. At the same time, interesting issues arise, such
as priorities and revenue sharing [124].

This collaborative paradigm aims to handle the difficulties stated above. Firstly, to
provide a sustainable way to the proper development of the connectivity market, where
business rules are revisited in order to meet the interests of all involved actors. Secondly,
to establish trustworthy communities selling verifiable quality assured services (ASQ), so
as to overcome the lack of transparency on the provided QoS driving quality goods out of
market. Thirdly, to provide coordination principles in order to overcome poor traffic con-
gestion management, technical interconnection difficulties, to allow for traffic monitoring
and automatic, seamlessly quality-assured end-to-end path computation and establish-
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ment.

To sum up, the emergence of NPSs alliances, a collaborative framework where NSPs
work together in order to provide end-to-end quality assured services, is likely to take place
in few years to come. This new paradigm is expected to enable new business opportunities,
providing a trustworthy marketplace with an increase in geographical coverage and number
of clients, and making it possible to perform interdomain monitoring and to coordinate
traffic routing and forwarding policies. In few words, the alliances are expected to work
upon the synergy of several NSPs.

In this thesis we shall work in this context, addressing the problem from the engineering
standpoint, while considering both economic and technological aspects of this emerging
scenario.

1.2 Work Context: the ETICS Project

This thesis was developed in the context of the ETICS project [4]. ETICS (Economics and
Technologies for Inter-Carrier Services) is a European research project, which is supported
by the European Commission within the 7th Framework Program of the European Union.
ETICS aims to create a new ecosystem of innovative QoS-enabled interconnection models
between NSPs allowing for a fair distribution of revenue shares among all the actors of
the service delivery value-chain. To achieve these objectives, ETICS has focused on the
analysis, specification and implementation of new network control, management and ser-
vice plane technologies for the automated end-to-end QoS-enabled service delivery across
heterogeneous carrier networks.

The participation in the ETICS project has provided us the opportunity to have rich
exchanges and fruitful discussions with several industrial and academic partners.

1.3 Thesis’ Contributions

This thesis has studied subjects related to the provisioning of end-to-end QoS. As afore-
mentioned, the solutions in this regard must deal with at least both technical and economic
aspects. We have assumed the working scenario of a multidomain alliance, and derived our
contributions tailored to that scenario. Figure 1.1 presents in a schematic way the topics
this thesis has addressed, where darker-red boxes indicate the topics on which contribu-
tions have been provided. In the lower layer, closer to the network, Traffic Engineering
takes place to perform interdomain quality assured paths.
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Figure 1.1: Layer diagram of the subjects addressed by the Thesis.

On top of this technical layer, the multidomain overlay alliance is built. We have worked
on a call admission control mechanism, over the already established paths by the lower
layer. This accounts for the bandwidth allocation mechanisms.

On top of it, and thus at a layer closer to the business plane, we develop studies related
to revenue sharing within the alliance and a pricing scheme based on first price auctions
and reimbursement, which interacts with the monitoring plane. The bound on the delay
tool has been conceived as a transversal tool to all planes. In particular, we shall presented
it as a tool aiding the Traffic Engineering mechanisms, as we shall shortly comment on.
However, its use could be exploited up to the business plane. We shall now summarize
each of the main contributions.

1.3.1 Part I: A tool for Interdomain Traffic Engineering

Traffic Engineering techniques for interdomain QoS have as main objective to establish
end-to-end paths that can guarantee the quality needed by the service to deliver. The
decisions of these techniques are mainly based on QoS metrics related to each domain,
which are exchanged during the computation process. Different mechanisms have been
proposed for the selection and establishment of interdomain QoS-constrained tunnels, that
mainly rely on RSVP-TE [12] and the PCE architecture [8] (e.g. [17, 43, 121, 124]), or in
the de facto interdomain routing protocol BGP. These mechanisms are based on metrics
announced by each AS but no specification about how those metrics are computed or
obtained is provided. Even if retrieving such information from an available monitoring
infrastructure were possible, the announced metrics have to hold for some period of time,
ideally as long as the service is provided. That is to say, measured values could not be
enough since they can not be guaranteed to hold for a certain period of time.

Rather than relying on measured values, that can abruptly change if traffic anomalies
arise, we propose to rely on robust bounds for such metrics. In that sense, we present a
means to compute a bound on the end-to-end delay of traversing a domain, considering
that the traffic varies within a given uncertainty set. This provides a robust and a verifiable
quality of service value for traversing the AS, without revealing confidential information.
Consequently, the bound can be safely conceived as a metric to be announced by each AS
in the process of interdomain path selection.

We state the problem of computing the maximum delay for an interdomain bandwidth
demand and show that it turns to be a non-convex optimization problem, thus it is not
easy to solve. We reformulate the problem and propose both an exact method to solve it,
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and a numerical approximation method, neither of which rely on a complex monitoring
infrastructure. We prove that the numerical approximating method provides a solution
arbitrary close to the exact solution, while presenting lower computational cost than the
exact one.

1.3.2 Part II: An Overlay Alliance

Inspired by nowadays tendencies described in Section 1.1, we propose a complete frame-
work for selling interdomain quality assured services, and subsequently distributing rev-
enues, in an AS alliance context. Finally, we propose to use feedback from monitoring
to the business plane, through a pricing mechanism that reimburses the buyer in case of
service disruption.

The problem of selling services is stated as a resource allocation problem, where the
revenue of the whole alliance is maximized, while end-to-end QoS requirements are re-
spected. This is formulated as a classical network utility maximization (NUM) problem
to which we incorporate end-to-end QoS constraints. We propose as an application the
use of first-price bandwidth auctions, which allows to determine the utility functions to
be maximized by the NUM problem. We show that a distributed algorithm can be carried
out to solve the bandwidth allocation problem.

Regarding revenue sharing, we study the case where bandwidth is allocated such that
the revenue of the whole alliance is maximized, that is through the NUM problem, and we
formally formulate the properties the revenue sharing method should fulfil in the context
of multidomain alliances. Some of these usually sought properties are Stability, Efficiency,
Fairness and Monotonicity in the resources. Stability, for instance, implies that no sub-
group of NSPs within the alliance will have economic incentives to break up the alliance.
We shall argue that it is reasonable to consider this property as mandatory, since it
constitutes the essence of the creation and sustainability of an alliance. Regarding Fairness,
it can be conveniently defined related to some measurement of revenue produced by each
member of the alliance, but its theoretical principles should be agreed on by all members of
the alliance. We propose a formal definition of fairness based on the revenue contribution
of each NSP to the alliance. In addition to providing the already mentioned properties,
through an appropriate revenue sharing mechanism, the alliance can provide incentive
to its members to improve the features they dedicate to it, for instance, capacity. This
property is usually referred to as Monotonicity in the resources.

We review existing revenue sharing methods and argue on why they are not suitable
to our problem. In particular, maybe one of the most famous revenue sharing methods
provided by coalitional game theory, the Shapley value [138], is not adequate for our
needs, since it does not guarantee one of the aforementioned properties: the stability of
the alliance. We propose a family of solutions to the revenue sharing problem such that
the economic stability and efficiency of the alliance in the long term is guaranteed. The
proposed method is based on solving a series of Optimization Problems and considering
statistics on the incomes. We as well evaluate the behaviour of the method and whether
further properties are fulfilled by it through simulation studies. In particular, we propose
a choice for the objective function of the aforementioned involved Optimization Problems
and show through simulations that that function provides with Monotonicity and Fairness.

The dissertation closes with a proposition of a pricing scheme that makes it possible
to use QoS monitoring information as feedback to the business plane, with the ultimate
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objective of improving the seller’s revenue. In this study we assume an NSP alliance where
collaboration among NSPs is tight and where a Network Performance Monitoring infras-
tructure is in place, i.e. the monitoring plane. In case that the monitoring plane detects
that the service has failed, the buyer is reimbursed a certain, pre-announced, percentage
of what he has paid for the service. Once more, we propose to sell AQS through first-price
auctions, which allows both to determine the market price of the quality-assured good and
to have guidelines to model the buyers’ behaviour towards failures and reimbursement. In
order to study this pricing scheme, we model buyers willingness to pay as a function of
the quality expected by them (the service probability of failure assumed by them) and the
percentage of reimbursement (announced by the seller).

Regarding the seller’s standpoint, that is the alliance’s interests, we assess the seller’s
outcome with respect to the expected revenue and find the optimal percentage of reim-
bursement, that is to say the percentage of reimbursement that maximizes the alliance’s
expected revenue. The analysis is split into two different cases, namely when buyers per-
form some level of service monitoring or have some knowledge about service performance
(complete information), and when they do not. The latter is an asymmetric information
situation, where the seller has more knowledge about the service than buyers have. We
model the pricing problem in this asymmetric case through a Stackelberg game [150], where
the seller initially announces a percentage of reimbursement and buyers bid according to
it.

We show that when buyers are uncertain about the performance of the service they
plan to buy, and assuming they act rationally, setting the percentage of reimbursement
equal to 100% maximizes the seller’s revenue. In addition, in that case, we show that
if percentage of reimbursement is to be set to a value smaller than 100%, the market
for lemons phenomenon appears, where the bids decrease until market disappearance.
Conversely, if the percentage of reimbursement is set to a value greater than 100%, the
so-called moral hazard behaviour is observed, where buyers take the risk of assuming a
very good service performance, since in case of failure the seller would bear the costs. In
both cases the seller’s expected revenue diminishes. Setting the reimbursement equal to
100% overcomes these problems, and the resulting outcomes for seller and buyers are the
same as when there is complete information.

Finally, we also provide a simulator that computes an approximate of the best bidding
strategies when a number of the assumptions of the previous model are relaxed. The
simulator makes it possible to evaluate the proposed pricing scheme in diverse scenarios,
more realistic ones, where buyers are allowed to value the service on sale in a different way.
A friendly graphical interface was developed, which allows to easily obtain an estimation
of the best bidding strategies.

We present the application of the simulator to three different case studies and find
for them the optimal percentage of reimbursement. In particular for all studied scenarios
we obtain results that coincide with the theoretical ones, i.e. the seller’s expected revenue
when reimbursing 100% is greater than when no reimbursement is in place.

1.4 Document Structure

The remaining of this dissertation is organised as follows.

Part I is dedicated to the technical aspects related to intedomain path selection and
provisioning. More precisely, Chapter 2 presents the study for computing a bound on the
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delay as a tool for interdomain path selection mechanisms.

Part II is devoted to the overlay alliance aspects. Chapter 3 acts as introduction to
this second part, introducing the overlay NSP alliance: the working scenario for the rest of
the thesis. Chapter 3 also presents the bandwidth allocation problem, whose objective is
to allocate bandwidth in the overlay alliance such that the revenue of the whole alliance is
maximised, while end-to-end QoS constraints are respected. In this regard, we formulate
the problem as a NUM problem with per-service end-to-end constraints. We show that a
distributed solution to solve that optimization problem is possible. The chapter presents
as well an introduction to bandwidth auctions, and its use in the NUM problem.

Chapter 4 deals with the revenue sharing mechanism to be used within the alliances,
when services are sold as in Chapter 3. The chapter discusses the properties the revenue
sharing method should fulfil in order to be attractive for all the NSPs member of the
alliance, from an economic point of view. Different existing methods are reviewed, which
rely on the coalitional game theory literature. Finally a novel method is proposed. Tools
of convex optimization are used to formulate the problem. Chapter 4 also discusses imple-
mentation considerations related to the scalability and confidentiality of the method, in
the particular context of NSP alliances.

Chapter 5 and Chapter 6 close the document, by putting together ideas used through-
out the thesis to consolidate a pricing scheme for AQS goods. It presents the pricing scheme
based on first-price auctions and reimbursement, in case of not fulfilment of the quality.
The proposed mechanism analyses buyers’ willingness to pay through their bidding strate-
gies, and interacts with the monitoring plane in order to determine if reimbursement must
take place, i.e. if an SLA violation is detected. In particular, Chapter 5 is dedicated to
an analytical analysis where simplifying assumptions are made. Chapter 6 in turn, relaxes
some of those assumptions and presents a simulative approach. The simulative approach
is applied to the study of the proposed pricing scheme in three different scenarios.

Part III is dedicated to the conclusions of the thesis and perspectives. Finally, further
proofs and simulations are presented in Part IV, in Appendix A to Appendix C.





Part I

A Tool for Interdomain Quality of Service





Chapter 2

Computing a Bound on the Delay as a Tool
for Traffic Engineering Techniques

2.1 Introduction

As stated in Chapter 1, there is increasing interest in value-added services, such as video-
conferencing or other bandwidth-on-demand services. In this context QoS and how to
guarantee it becomes a crucial issue for all involved actors, i.e. the NSP, the Service
Provider (SP) and the Customer. This is especially difficult when the service traverses
several domains, or ASes. In this case, QoS must be provided by all the ASes involved,
which raises several technical, economic and political issues. Concerning the technical
aspects, achieving scalability, preserving confidentiality and providing interoperability is
paramount in any solution [157].

In this chapter we focus on point-to-point services with QoS requirements. In this
case the service may be abstracted to a QoS guaranteed tunnel (for instance an MPLS
tunnel [14]). The path might cross those domains through which destination is reached
and whose combination of QoS parameters fulfils the service requirements.

In a NSP collaborative framework, as, for instance, the NSPs alliances, to be introduced
in Chapter 3, carriers are envisioned to work together in order to achieve a common
interest. In this scenario QoS values related to each domain are exchanged, and Traffic
Engineering decisions are taken after them. Different mechanisms have been proposed for
the selection and establishment of interdomain QoS-constrained tunnels, that mainly rely
on RSVP-TE [12] and the PCE architecture [8] (e.g. [17,43,121,124]). These mechanisms
are based on metrics announced by each AS but they do not specify how to compute such
metrics. In any case, the announced metrics must hold for some period of time, ideally as
long as the service is provided. Hence, ASes would be interested in being able to provide
QoS values that are guaranteed to hold for a certain period of time.

Other approaches providing methods for end-to-end QoS can be found in the literature.
For instance, some propose extensions to the de facto standard interdomain routing pro-
tocol BGP (see for instance [125]). Others propose ad-hoc functions to BGP, like [93,154].
These are based on self-adaptive methods and perform routing decisions at the edge routers
level in order to maintain certain QoS parameters below some given bounds. They monitor
the network state obtaining feedback which acts as an input to the self-adaptive engine.
These methods are conceived to work in a pure BGP network. However, we are interested
in the case of explicitly signaled tunnels, like the PCE-based mechanisms, since they are

11
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Figure 2.1: Scenario

more suitable in the context we are working on. For instance, we seek a method that
strictly achieves the QoS needed and not only soft QoS. In addition, for reasons explained
below, we seek for a method with light dependence on monitoring.

We shall focus on services for which available bandwidth and end-to-end delay are
critical parameters. The latter is composed of the sum of the delays introduced by each
transit AS and the terminal ones, from source to destination. As illustrated in Fig. 2.1,
where we show a situation with two terminal ASes and one transit AS, the delay in each
of the ASes depends on the traffic already present in the AS (t∗ flows in Fig. 2.1), the
topology, the routing configuration, and the traffic coming from the new tunnel (flow σ in
Fig. 2.1).

Naively, we may think that the problem of choosing the delay value to advertise can be
reduced to simply advertising the current one. However, this presents two main problems,
as commented in the following.

Monitoring the delay is itself a complex task. Several techniques have been proposed
in the literature, mainly based on passive measurements, where some data packets are
timestamped and sent to a collector (see for instance [68, 118]), or on active ones, where
probe packets are sent along the network and the delay is inferred from the one experienced
by the probe packets (see for instance [18, 52, 131]). These techniques present several
drawbacks, just to mention the

most common of them, they usually present issues of bandwidth consumption and need
for synchronization, for instance, based on specific equipment as GPS devices. Moreover, all
techniques need for a monitoring architecture, which can become complex when accuracy
is needed [54].

In addition, even if we were able to accurately measure the delay, the announced
value, as mentioned above, should hold for a certain period of time. In this scenario the
complexity is mainly due to the existence of uncertainty. This uncertainty can be classified
into two types: network state uncertainty and traffic uncertainty.

Uncertainty in network state refers to the situation where the topology changes or is
partially known. This may be due to information arriving out of date or not synchronized
to the entity performing the computation, or simply to link failures. In the literature
some approaches have been proposed for performing QoS routing under this kind of un-
certainty [66,91,105]. However, in this chapter we assume that the topology does
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not change, and considering this uncertainty is out of the scope of the present thesis.

On the other hand, we consider uncertainty in the traffic. This refers to the fact that
the flows traversing the domain are not perfectly known. Knowing exactly the volumes of
these flows, which we shall call Origin Destination traffic flows, requires a measurement
infrastructure that is not always present, or could be expensive to implement. Techniques
based on flow-level measurements, like Netflow [13] are very expensive for routers in terms
of computational cost, while their sample-based version can lead to errors in traffic volume
estimation. Techniques based on SNMP data considerably reduce the CPU load on routers.
In that case, the measured data consists of volumes of traffic traversing the different links of
the network. In order to estimate the Origin Destination traffic volumes an ill-posed linear
inverse problem has to be solved, though several methods exist in the literature for doing so,
for example [51,146,159]. Moreover, traffic uncertainty is not only related to the complexity
on measuring the Origin Destination flows, but also to the fact that traffic may change
rather frequently. There can be several reasons for these changes, for instance, external
routing modification, the presence of unexpected events such as network equipment failures
outside the domain, large-volume network attacks or flash crowd occurrences [142].

In summary, in this chapter we aim to find a valid end-to-end QoS metric. Thus, two
approaches could compete. Either we follow a dynamic approach, in which network state
is continuously monitored and the metric value is updated, or we use a robust approach, in
which a bound for the metric is provided. Reactive approaches make it possible to tightly
follow the variations of the traffic but they require a monitoring infrastructure to be present
and some sophisticated algorithms to process the measurement data. Moreover, reactive
approaches are able to detect variations in the traffic demand such as abrupt changes but
they are not able to forecast them [50]. On the contrary, proactive mechanisms provide
pessimistic values of QoS metrics but they are able to provide metrics values which should
hold for a given period of time since in that case uncertainty is taken proactively into
account.

In this thesis we employ the proactive approach and consider the situation where traffic
variation is the principal cause of delay variation. Thus, we shall focus on the computation
of a bound for the end-to-end delay of traversing an AS through a particular path as a
function of the AS parameters we mentioned before: the routing configuration, the traffic
demands and the traffic injected through the new tunnel. We assume that the topology
and the routing configuration are fixed. However, we consider that traffic is non-static,
and that it is contained in a so-called uncertainty set [42]. The question of how to choose
this set is discussed later on in this chapter.

In this context, we provide an exact method an approximate solution for solving the
problem, which renders a solution arbitrarily close to the exact solution and lower com-
putation complexity than the exact one. These solutions do not require any complex
monitoring infrastructure to be deployed.

The obtained value can be afterwards advertised in the context of ASes path selection,
since it is a QoS parameter bound that does not introduce confidentiality vulnerabilities.
The latter refers to the fact that no topology information is delivered, just the delay of
traversing the AS, where the AS is seen from the outside as a black box.

The remainder of this chapter is organized as follows. Section 2.2 introduces the as-
sumptions and notations and formally states the problem. In Section 2.3 we show an exact
solution to the problem and evaluate it through simulations. Section 2.4 presents an ap-
proximate solution with lower computational complexity than the exact one. Section 2.4.1



14 CHAPTER 2. MAXIMUM DELAY COMPUTATION

shows numerical results. Finally, a summary of the chapter is provided in Section 2.5. The
results shown in this chapter are based on [30,31].

2.2 Maximum Delay Problem Statement

In this section we formally present the problem of finding the maximum end-to-end delay
experienced by a bounded amount of traffic traversing an AS through a particular path.
As mentioned before, we will consider that traffic varies within an uncertainty set.

2.2.1 Assumptions and Notations

First, let us introduce the notations that are going to be used throughout the chapter and
state some assumptions. The network is compounded of n nodes and of a set L of links,
L = {l1 . . . l|L|}, where the notation |·| refers to the cardinality of the set. Traffic demands
are represented by the so-called traffic matrix TM = {tmi,j}, where tmi,j is the mean
amount of traffic from node i to node j. We shall use as well the term Origin Destination
(OD) flows to refer to them. We reorder every traffic demand and rewrite the OD flows
(tmi,j) in vector form as t, t = {tk}, k = 1 . . . n(n− 1). The amount of traffic coming from
the interdomain injected into the new tunnel will be σ.

The link load Y = {yi}i∈L is a vector containing in the i-th entry the load on link li
without considering σ. With these definitions we can see that Y = R.t where R, a |L|×m
matrix (m = n(n−1)), is the routing matrix, which means that Ri,j = 1 if flow j traverses
link i, and 0 otherwise.

The flow that carries σ will traverse the AS from an origin to a destination node
following a certain path. We will call this path P . We will equally refer to the set of links
that belong to that path as P , in this case P is a subset of L.

The mean link delay is approximated by the M/M/1 model, that is to say Dl =
K

cl−yl
,

where cl is the capacity of the link l and K the mean packet size. We then obtain the
delay of a path as the sum of the mean delay of the links it traverses:

DelayP =
∑

l∈P

K

cl − yl
. (2.1)

The propagation delay may be ignored in our formulation since it does not change
with the load and may be added as a constant later on. Moreover, the M/M/1 model
is used for illustrating the procedures towards a solution. In fact, any convex function
may be used instead. For instance, the interested reader should consult [87] for a method
to obtain a good convex approximation of the delay function based on measurements.
The same procedures explained in this chapter should be then repeated but with the new
function. We will as well ignore the constant K in the following formulations, for the sake
of notations simplification.

2.2.2 Modelling Traffic Uncertainties

As mentioned above, we will not make any assumptions on the traffic matrix except that
it always belongs to a certain uncertainty set. In particular we will follow the approach
presented in [42] and define the uncertainty set as a polytope formed by the result of the
intersection of several half-spaces. Consequently, all constraints can be written as At ≤ b,
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Figure 2.2: Example of a polytope definition using known statistical values.

where A is a certain matrix that can be defined according to different models, and b is a
given bound. We now present four examples of polytope definition.

The Hose Model. This particular case of the general polytope definition was presented
in [57] in the context of VPN services specification. The model establishes bounds in the
ingress and egress points of a network. It is suitable for the case of VPN, where the ingress
and egress values are easily known, but no detailed information regarding the network is
available. However, in the context of interdomain path selection, we would like to have a
smaller polytope, which is obtained with more detailed information, which would allow us
to have a tighter bound.

Links Capacity Model. This model results from the application of bounds on the total
traffic traversing the different links of the network. Its definition can vary from a simple
static one, imposing the physical constraints, i.e. links capacity, to a more dynamic one,
allowing the constraints to be obtained from historical metrics. In the latter, the constraints
can be written as Rht ≤ b, where b = {bi}i∈L is the vector of an historical link load and Rh

is the routing matrix at the moment when the measurements were taken. This approach
is used for example in [75] where a polyhedral definition of the traffic matrix is preferred
to its estimation because of non stationary artefacts and estimation errors.

The Links Capacity Model with historical bounds, for instance considering the maxi-
mum observed link load, provides more detailed information than the Hose Model, along
with dynamism, while it is still simple to obtain. The polytope can be frequently updated
but does not require complexity for its computation.

Known Statistical Values. If statistical values such as the mean, the variance and the
covariance of link loads are known, we can compute the variance ellipsoid as {w = ̺ +
α | αTΩα ≤ 1} where ̺ is the expected value of the link loads, and Ω its covariance matrix.
Therefore, the variables w describe an ellipsoid. Several half-planes tangent to the ellipsoid
can be defined in order to obtain linear constraints. Fig. 2.2 illustrates this example. The
polytope can then be written as A×R× t ≤ b, were R is the routing matrix and A and b
define the polytope in which the ellipsoid is inscribed.

Prediction Based Model. Yet another alternative for computing tighter polytopes are
prediction based mechanisms. In this case the polytope is defined through imposing bounds
on the value of traffic demands which are based on traffic prediction. The prediction of
future demands is based on past observations. For example artificial intelligence methods
such as neural networks or time series analysis can be used in order to forecast the future
values of the traffic demand; see for example [63] for prediction based on a seasonal ARIMA
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model. These mechanisms provide a more dynamic polytope, which must be updated
according to predictions but involves more complexity. The result is a tighter polytope
that provides, in turn, a tighter bound.

The choice of the model for defining the polytope implies a trade-off between com-
plexity and tightness of the bound. As we have shown above, simpler approaches could be
used providing looser bounds, or more complex ones, needing in addition to be updated
frequently, to provide tighter bounds. In the remainder of the chapter we shall use the
Links Capacity Model and the Known Statistical Values one, though the solutions pro-
vided are still valid for any other model. We shall consider historical maximums for the
bounds, thus measurements have to be carried out. These measurements can be performed
using SNMP, which is a widely deployed protocol. Since the value needed is just the overall
network interface traffic volume, we can safely assume that these values are going to be
available on any AS.

2.2.3 Mathematical Formulation

For the path traversed by the new tunnel the maximum link delay is going to be computed
allowing the flows t to vary within a polytope. Therefore, we will work with a maximization
problem with linear constraints. In order to have a more compact notation of the problem
we shall define the m-dimensional column vector wl, l ∈ P , as wl = {wl,i} = Rl,i/cl.

The optimization problem is described by Problem (2.1), where A and b define the
polytope.

Problem 2.1

max
t

∑

l∈P

1

cl

1

1− wT
l t− σ/cl

s.t. At− b ≤ 0.

Please note that if some additional linear constraints must be taken into account they
can be integrated in the definition of the polytope At ≤ b. Example of such constraints
can be wT

l t + σ/cl < 1, for l ∈ P , which simply states that there should be enough link
capacity in order to accommodate all the traffic, including the new tunnel.

The objective function in the maximization problem defined by Problem (2.1) is not
a concave function, consequently, the problem is not a convex one. On the contrary, the
problem is the maximization of a convex function over a polytope. This is a very difficult
problem, all the more so since the objective function is not strictly convex.

Intuitively we can see that the function is not strictly convex due to the difference
between the number of links and the number of OD flows. Indeed, while the number of
links grows linearly with the number of nodes in the network, the number of OD flows
squares with the number of nodes in the network. This means that for different values of
the vector t the objective function of Problem (2.1) can have the same value, while its
gradient remains always non-negative.

More formally, we state the following proposition.

Proposition 2.1 The function f(t), objective function of Problem (2.1), is a convex func-
tion over the set T = {t ∈ R

m|A× t ≤ b}, but not a strictly convex one.
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Proof We explore if the following inequality holds [110]

f(t1) ≥ f(t2) +∇f(t2)T (t1 − t2), t1, t2 ∈ T. (2.2)

Applying the definition of f to Equation (2.2) we obtain the following inequality for
t1, t2 ∈ T :

∑

l∈P

1/cl
1− wT

l t1 − σ/cl
≥
∑

l∈P

1/cl
1− wT

l t2 − σ/cl
+
∑

l∈P

1/cl × wT
l (t1 − t2)

(1− wT
l t2 − σ/cl)2

. (2.3)

Let us now define gl(t), an auxiliary function in order to simplify the notations, as

gl(t) = 1− wT
l t− σ/cl, t ∈ T. (2.4)

Substituting the latter definition in Equation (2.3) and performing some regular math
operations we obtain the following inequality

∑

l∈P

1/cl
(gl(t2)− gl(t1))

2

gl(t1)gl(t2)2
≥ 0, t1, t2 ∈ T. (2.5)

Each term on Inequality (2.5) is either zero or greater than zero for all t1, t2 ∈ T .
Therefore, the function f is convex over T . It remains to show if the function is strictly
convex or not. Which is equivalent to showing if there exist t1 and t2 ∈ T such that
< wl, t2 − t1 > is equal to zero for all l ∈ P , that is to say, having all vectors wl, l ∈ P
orthogonal to the vector (t2 − t1), or not. Since the vectors wl do not form a basis of Rm

it is possible to find t1 and t2 ∈ T such that their difference is orthogonal to all vectors
wl, l ∈ P .

Proposition (2.1) shows that f is a convex function, but not a strictly convex one. In
the following section we reformulate the problem and show a way to find its solution.

2.3 Finding the Exact Solution

2.3.1 Formulation

We now state the problem in a different way and propose a method to find the exact
solution. We aim to formulate the problem in such a way that the objective function
is strictly convex and the dimension of the problem is reduced. For doing so we shall
decompose the vector t over a particular basis of Rm.

The procedure consists in decomposing the vector t over the vectors wl, l ∈ P , and
their orthogonal complement. We define matrixW1 as an m by |P | matrix, whose columns
are the vectors wl, with l ∈ P , and W2, an m by (m − |P |) full rank matrix such that it
verifies

W T
1 W2 = 0. (2.6)

In other words, the columns ofW2 form a basis of the space orthogonal to the one spanned
by the columns of W1.

Provided that the columns of W1 are as well linearly independent, the columns of the
matrix W defined after W1 and W2 as

W = [W1W2] = [w1, . . . , wl, . . . , w|P |, . . . wm] (2.7)
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represent a basis of Rm.

We shall decompose vector t over the defined basis using the auxiliary variables z ∈ R

|P |

and h ∈ R

m−|P | as

t =W1z +W2h. (2.8)

Multiplying both sides of Equation (2.8) by wT
l , and using Equation (2.6) we obtain

wT
l t = wT

l W1z = νTl z, (2.9)

where we have defined νTl = wT
l W1, for all l ∈ P . Note that both νl and z are column

vectors of dimension |P |.
Equation (2.9) will directly lead us to rewriting the objective function of Problem

(2.1) as a function of z. We shall now redefine the polytope by writing it in the basis W .
For doing so, the change of variables defined by Equation (2.8) needs to be done in the
constraints of Problem (2.1). This leads to defining a new matrix denoted D and computed
as AW . The polytope over the new basis can be compactly written as D[zT hT ]T ≤ b.

All in all, Problem (2.1) can be rewritten in the form of Problem (2.2). Please note
that the objective function depends only on the variable z.

Problem 2.2

max
z

∑

l∈P

1/cl
1

1− vTl z − σ/cl

s.t D

(
z
h

)

≤ b.

Let us call the objective function of Problem (2.2) as J(z) and the new polytope as H
(i.e. H = {[zT hT ]T ∈ R

m : D[zT hT ]T ≤ b}). Let us as well define the polytope Hz as

Hz = {z ∈ R

|P | | ∃ h ∈ R

m−|P | : D[zT hT ]T ≤ b}. (2.10)

Let W1 = span{w1 . . . w|P |}, where span refers to the set of all linear combinations of
vectors w1 . . . w|P |. Clearly Hz is the projection of H onto W1.

Since H is a convex polytope by definition, it is easy to check that Hz is also a convex
polytope. More precisely, Hz is the convex hull of the projection of the extreme points of
H onto W1 [49].

Then, since J(z) does not depend on h, Problem (2.2) can be represented in the space
W1 as follows:

Problem 2.3

max
z

J(z)

s.t. z ∈ Hz.

The following statement summarizes our development of the problem.

Proposition 2.2 The optimization problem defined by Problem (2.1) is equivalent to the
one defined by Problem (2.3).
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We now show that J(z) is a strictly convex function over Hz, which will in turn allow us
to prove that the solution of Problem (2.3) is attained at an extreme point of the polytope
Hz.

Proposition 2.3 The objective function of Problem (2.2), J(z), is a strictly convex func-
tion over the set Hz defined as in Equation (2.10).

Proof We define λl(z) as

λl(z) = (1− νTl z − σ/cl)
−2, ∀l ∈ P (2.11)

and matrix Λ as
Λ(z) = diag(λ1, . . . , λ|P |). (2.12)

For all z ∈ Hz and l ∈ {1 . . . |P |}, λl(z) > 0. Thus, Λ(z) is a positive-definite matrix1.

In addition, we can check that [ν1 . . . ν|P |] = W T
1 W1 is also a positive-definite matrix.

Thus, the Hessian of J(z), which is

∇2J(z) = (W T
1 W1)Λ(z)(W

T
1 W1) (2.13)

is as well a positive-definite matrix.

We are now able to show that the solution to Problem (2.3) is attained at an extreme
point of Hz.

Theorem 2.1 The solution to Problem (2.3) is attained at an extreme point of the polytope
Hz, defined by Equation (2.10).

Proof We prove by contradiction that the maximum of J(z) over Hz must be reached at
an extreme point of Hz. Since, by Proposition (2.3), J is a strictly convex function, the
following inequality holds [110]:

J(h1) > J(h2) +∇J(h2)T (h1 − h2), ∀ h2, h1 ∈ Hz. (2.14)

Now, let h̄2 ∈ Hz be an optimal point of Problem (2.3). Therefore, h̄2 is a strict
maximum, since J is strictly convex, and, for all h1 ∈ Hz \ {h̄2}, we must have:

J(h1)− J(h̄2) < 0. (2.15)

Together with Inequality (2.14), we get

∇J(h̄2)T (h1 − h̄2) < 0, ∀h1 ∈ Hz \ {h̄2}. (2.16)

By contradiction we suppose that h̄2 is not an extreme point of Hz. Then there exists
µ ∈ R

|P | such that ||µ|| > 0 and h̄2+µ, h̄2−µ ∈ Hz. By letting h1 = h̄2−µ and h1 = h̄2+µ
at a time, we would get:

∇J(h̄2)Tµ < 0 and −∇J(h̄2)Tµ < 0, (2.17)

which is not possible.

Problem (2.3) allows us to work with a strictly convex function, and to reduce the
dimension of the feasible region, in some cases, considerably. In order to find the solution,
we need to be able to perform the projection of a polytope, and afterwards enumerate
its extreme points. Methods for doing so are available (see for instance [76]), although
these can be computationally expensive tasks. In the following subsection we explore this
solution by performing simulations in a real topology.

1A n× n real symmetric matrix M is positive-definite if zTMz > 0 for all non-zero vectors z, z ∈ R

n.
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2.3.2 Simulations

In order to assess the proposed method we now present some simulation studies. The simu-
lations are carried out using two different research networks. Namely, the Abilene network,
whose topology, historical traffic demands and routing matrix are available from [158], and
the GÉANT network [20]. In order to compute the polytope projection and enumerating
its extreme points we use the MPT library [7] and the ET library [86], distributed along
with the former.

2.3.2.A The Abilene Network

The Abilene network consists of 30 internal links and 12 routers, all exchanging traffic
among them. Fig. 2.3 shows a traffic trace of the Abilene Network. This example shows
how the traffic matrix is prone to sudden traffic variations. Fig. 2.3a shows the traffic
for some OD flows corresponding to 2016 consecutive measurements (where each color
corresponds to one OD flow), while Fig. 2.3b shows the link load (each color corresponds
to the load of a certain link).

For illustrative purposes we compute results for three different types of services. Namely,
a VoIP service with 1 Mbps of bandwidth, a broadcast quality HDTV service with 19.4
Mbps and a VPN service with a demand of 270 Mbps. We compute the maximum delay
suffered by a flow traversing the AS through a particular path and carrying each one of
these services at a time. The path is chosen arbitrarily, from one origin to one destination
node. This choice and its impact on the delay are out of the scope of the present thesis.

In the first place, we define the polytope using the Links Load model introduced in
Subsection 2.2.2. That is to say, the polytope is defined by imposing bounds on each link
load, which are based on the maximum values obtained historically.

The values obtained for the defined path and the three services are shown in Fig.2.4a
(dotted line) along with the current delay value. The current delay value corresponds to
a value obtained instantaneously. For this particular case the maximum delay value is
approximately 3 times more than the current one which illustrates the weakness of the
current value as a metric on which rely. We will come back to this kind of comparisons
later on this section.

In the second simulation, we define the polytope based on the Known Statistical Values
model, introduced in Subsection 2.2.2. We compute the variance ellipsoid using a historical
traffic trace (the same trace used for the first simulation) and we approximate the ellipsoid
by a polytope, by intersecting several half spaces tangent to it. The maximum delay of
traversing the AS is computed for the same path used in the previous simulation.

The results are shown in Fig. 2.4a (dashed line) for a flow traversing the same path as
in the previous simulation and carrying the three defined services, one at a time. We can
see that in this case the bound obtained is smaller than the one obtained in the first place
and closer to the instantaneous value.

We now compare the two bounds with the real delay suffered by the path during the
two weeks after the computation of the polytopes, in all the cases assuming an interdomain
bandwidth demand of 1 Mbps. The results are shown in Fig. 2.4b which illustrates the
behaviour of the bounds with respect to the real values. We can see that there is a trade-off
between assuring a delay value for most of the time, by using a big polytope, or having a
tighter bound most of the time, but having delays that outstrip the bound. Nevertheless,



2.3. FINDING THE EXACT SOLUTION 21

Mon Tue Wed Thu Fri Sat Sun
0

1

2

3

4

5

6x 10
5 Traffic volume for some OD flows, 1 week

Time (days)

T
ra

ffi
c 

(b
ps

)

(a) Traffic volume per OD flow.

Mon Tue Wed Thu Fri Sat Sun
0

1

2

3

4

5

6x 10
5 Traffic volume for some links, 1 week

Time (days)

T
ra

ffi
c 

(b
ps

)

(b) Link load.

Figure 2.3: Example of traffic variation in the Abilene network, one week of traffic.

the polytope could be reduced in a safe way if we had additional information, for example
by using as well the hose model which imposes bounds to the traffic coming from other
clients, which may be limited by a contract and traffic shaping.

These results were computed on a recent machine with good computational power (two
processors Intel Xeon X5660 2.80GHz, 24GB of RAM). The time consumed to perform
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Figure 2.4: Simulations in the Abilene network.

the computation of all demands for one path varied between 4 and 38 minutes, which
for a moderately sized network is rather high. In fact, even if in several topologies we
were able to find the exact solution through these means, it is still an open question
whether there exists an algorithm for enumerating all extreme points of a polytope of an
arbitrary dimension in polynomial running time [80]. Through the following simulations
we empirically explore the time consumed by the method in a larger network.

2.3.2.B The GÉANT Network

In order to test the proposed solution on a larger topology, we use the GÉANT network.
This network is compounded of 23 nodes and 74 links. Thus, we can define up to 506
independent OD flows. As we have already mentioned, the computation complexity of the
proposed solution is likely to grow with the dimension of the network (i.e. the number of
links in the path and the number of OD flows in the network). The simulations with this
network aid as to assessing the performance of the method when the number of OD flows
grows. We perform the simulations considering several subsets of OD flows, containing
each of them 170, 200, 230 and 260 OD flows. The polytope is defined using the Links
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Figure 2.5: Computation time as a function of the number of OD flows considered on the GÉANT
Network.

Load model and historical data. Results in this case were computed on a regular computer
(Intel Pentium Dual-core 1.86GHz, 2GB of RAM).

Fig. 2.5 shows the time consumed by each phase of the procedure, that is to say obtain-
ing the polytope in the new basis, projecting the polytope and finding its extreme points.
We can see that in all the cases, when we increase the number of OD flows considered, the
task that consumes most of the time is the projection of the polytope.

The procedure has shown rather high computational times, though it was still feasible
in all the tests. It is because of this that we think of this method as of great aid when
developing approximate, but less time consuming, methods, since it provides the ground
truth, thus a validation tool for such methods. In the following section, we present an
approximate method that can be used as an alternative to the exact one introduced in
this section when its computational time becomes excessive.

2.4 Finding an Approximate Solution

In Section 2.3 we have presented a method that allows to find the exact solution. Nev-
ertheless, we have pointed out that its complexity remains open. In this sense, we now
present a method that provides an approximate solution to Problem (2.1), while reducing
the computational time. More precisely, we present a numerical method based on the ap-
proximation of the objective function by a piecewise linear function. This method provides
a value that is arbitrarily close to the exact solution (up to some controlled error).

Let us introduce the method with a detailed description of the procedure to design
it. First of all, we transform each link’s delay function, K

cl
1

1−yl/cl−σ/cl
, into a piecewise

linear function over yl. For this, we partition each function’s domain into ηl subintervals
and approximate the function in each subinterval by its first order Taylor polynomial. We
shall note the subintervals of link l as ∆l,j, j = 1 . . . ηl.

Secondly, we obtain the delay of the path, as before, by summing up the delay on each
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link belonging to it. Therefore, we obtain a maximization problem similar to Problem
(2.1) but now with a piecewise linear objective function. Let us use the indicator function,
defined as

1∆(z) =

{

1 if z ∈ ∆

0 otherwise.
(2.18)

Then, the new problem can be written as in Problem (2.4), where α and β are taken from
the Taylor polynomial of the original function.

Problem 2.4

max
t

∑

l∈P

ηl∑

j=1

(
αl,jw

T
l t+ βl,j

)
1∆l,j

(wT
l t)

s.t. At− b ≤ 0.

The next step is to redefine Problem (2.4) in order eliminate the indicator function and

to obtain a linear objective function. To do so, we decompose Problem (2.4) into
∏

l∈P

ηl

problems, each of them having a linear function as objective one. This linear function
stems from the consideration of one of the linear functions that compound each link delay’s
approximation, and summing them up. Let us now use the index j(l), j(l) = 1 . . . ηl, for
all l ∈ P , to denote the linear function chosen for link l, corresponding to subinterval ∆l,j.
In order to consider each linear function only on the corresponding domain we introduce
new constraints to the problem. That is to say, the solution has to be restricted to belong
to the original polytope and at the same time to the set {t ∈ R

m|wT
l t ∈ ∆l,j}. It can be

readily proved that this set is equivalent to imposing restrictions on the load on each link.
Thus, it is itself a polytope. We represent the intersection of the original polytope and the
new one, which is also a polytope, in the matrix form as the set {t ∈ R

m|A∗t ≤ b∗}, where
the matrix A∗ and the vector b∗ define the intersection polytope.

Finally, in order to have a problem equivalent to Problem (2.4) we consider all com-
binations of linear functions for each link, find the maximum over t for each combination
and keep the combination which leads to the greatest value of the objective.

The mathematical formulation of the equivalent problem can be seen in Problem (2.5),
where the maximum on j(1), j(2), . . . , j(|P |) means that we consider the maximum ob-
tained when we let each value j(l) vary between 1 and ηl.

Problem 2.5

max
j(1),j(2)...j(|P |)







max
t

∑

l∈P

αj(l)w
T
l t+ βj(l)

s.t. A∗t− b∗ ≤ 0.

As we have claimed above, this method leads to a solution that is arbitrary close to
the exact solution of the original problem (Problem (2.1)). The following theorem proves
such statement.

Theorem 2.2 The solution to Problem (2.5) provides a solution that can be made arbi-
trarily close to the solution to Problem (2.1).

Proof Let us call the original function, i.e. the objective function of Problem (2.1), as f(t)
and the piecewise linear approximation of f as f̃ . Let t̃f and tf be the values at which the
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Figure 2.6: Difference between function e and its approximation ẽ.

maximum of f̃ and f are attained respectively. Let us as well note the feasible region of
Problem (2.1) as T .

We set the hypothesis that for a given real positive ǫ, the approximation of f can be
made such that the difference between f and f̃ is bounded by ǫ. That is to say that

f(t)− f̃(t) ≤ ǫ ∀t ∈ T. (2.20)

Under the conditions of Equation (2.20) and with the definitions of t̃f and tf provided
above we can prove that

f(tf )− f(t̃f ) ≤ ǫ. (2.21)

Let us first prove that Equation (2.20) holds for the case of the M/M/1 model mean
delay function. Please note that for other functions this is an hypothesis to be checked
before applying the algorithm. We provide a constructive proof showed in the following.
For the sake of simplicity on the notations we will not include σ in the formulation, but
the whole procedure can be reproduced in an analogous way considering σ.

Let e(y) = 1
1−y be such that f(t) =

∑

l∈P
1
cl
e(wT

l t), t ∈ T . Let us note the partition of
the domain of e over y ([0, 1)) as the set of subsets ∆i where

∆ = {∆i : i = 1 . . . η}. (2.22)

Let ẽ be the piecewise linear approximation of e over each one of the subsets defined in
(2.22), such that the following inequality holds

|e(y)− ẽ(y)| ≤ ǫ
∑

l∈P 1/cl
= δ ∀y ∈ ∆. (2.23)

This will ensure that Equation (2.20) holds since f̃(t) =
∑

l∈P 1/cl ẽ(w
T
l t).

Consider the graphic displayed in Fig. 2.6. Let us note ∆i as ∆i = [yi−1, yi], with
y0 = 0. We define zi ∈ ∆i as the linearization point of function e in ∆i. Let us define ǫi−1

and ǫi as the difference between e and ẽ at each yi−1 and yi respectively. That is to say

ǫi−1 = e(yi−1)− ẽ(yi−1) and ǫi = e(yi)− ẽ(yi), i = 1 . . . η. (2.24)

It is not difficult to see that the maximum of the difference between e and ẽ will be attained
at either yi−1 or yi, i ∈ 1 . . . η.

Given yi−1 fixed, let zi increase from yi−1. We define yi such that ǫi = δ. As zi in-
creases, yi and ǫi−1 increase. Therefore, the maximum subinterval size under the constraint
ǫi−1, ǫi ≤ δ is achieved when

ǫi−1 = ǫi = δ. (2.25)
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Hence, given yi−1 and δ, we can find a value zi imposing that

e(yi−1)− ẽ(yi−1) = δ. (2.26)

Once zi is known, we can compute yi by imposing

e(yi)− ẽ(yi) = δ. (2.27)

All in all, it appears that e can be approximated over its domain by means of a piecewise
linear function. Thus, f(t) =

∑

l∈P 1/cle(w
T
l t) can be approximated by means of a sum

of piecewise linear functions, and this approximation, which we note as f̃(t), is such that
Equation (2.20) holds for all t ∈ T .

We have provided a constructive proof of Equation (2.20). We are now able to show that
Equation (2.21) holds. Indeed, let again t̃f and tf be the values at which the maximum of f̃
and f are attained respectively. The following inequalities are obtained straightforwardly
from the definition of the maximum

f̃(t̃f ) ≥ f̃(tf ) (2.28)

f(tf ) ≥ f(t̃f ). (2.29)

We are interested in finding a bound to the difference f(tf ) − f(t̃f ) which can be
rewritten as in the following equation

f(tf )− f(t̃f ) =

≤0
︷ ︸︸ ︷

f̃(t̃f )− f(t̃f ) +

≤0
︷ ︸︸ ︷

f̃(tf )− f̃(t̃f ) +

≤ǫ
︷ ︸︸ ︷

f(tf )− f̃(tf ). (2.30)

Equation (2.30) immediately leads to the inequality f(tf )−f(t̃f) ≤ ǫ, which completes
the proof. Please note that in Equation (2.30) we have used the fact that f(t) is greater
than f̃(t) for all t ∈ T , which is true since f̃ is the piecewise linear approximations of a
convex function.

Problem (2.5) can be solved computationally by performing a loop of
∏

l∈P ηl iterations.
Please note that the problem solved on each iteration is a linear one, which is very easy
to solve.

In order to obtain the partition needed to define the piecewise linear function, we pro-
pose to iteratively compute the subintervals such that within each of them the maximum
difference between the approximate function and the original one is a given ǫ, at most.
This constructive procedure corresponds to the one shown in the proof of Theorem (2.2).

In order to reduce the number of iterations, we pre-compute the maximum value that
the load can achieve at each link according to the constraints imposed by the polytope.
Table 2.1 shows the number of subintervals needed to define the piecewise linear function,
for different percentage errors and maximum link utilization (LU). This gives an idea of
the complexity of the procedure. For example, for a 6-link length path, at most 46 ≈ 4000
linear problems need to be resolved for obtaining a result with 10% of error, thus the
numerical complexity is still feasible.
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Error (ǫ)

LU 1 % 10 %

60% 5 2
80% 9 3
90% 12 4

Table 2.1: Number of subintervals needed to define the piecewise linear function.

2.4.1 Numerical Results

In order to assess the results of the numerical approximation method we shall first use
the Abilene network topology as before. We will as well use one of the polytopes used
before, so as to be able to compare results afterwards. In particular we shall use the
polytope computed after the links model. As optimization software we use CPLEX [6].
We shall secondly perform further simulation studies on the GÉANT network topology, so
as to be able to have more information about computation time. All results shown in this
subsection are obtained using the same machine used for computing the results over the
Abilene network in Subsection 2.3.2 (two processors Intel Xeon X5660 2.80GHz, 24GB of
RAM).

We compute the maximum delay for the four paths and three interdomain demands
used in Subsection 2.3.2, using the numerical approximation method. The results along
with the exact solutions are displayed in Fig. 2.7, where the bars indicate the maximum
error (10% in this case). Overall, the computation of each of the aforementioned values
takes in mean 2.28 seconds. The maximum link utilization (imposed by the topology)
was between 30% and 80%. These computation times are dramatically smaller than the
ones necessary for obtaining the exact solution (approximately a 1000× decrease) while
providing a very tight bound.

The previous simulations allowed us to validate the approximate method and show
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interdomain demand for different allowed error and maximum link utilization between 80 and 90%.
Bound computed for four different paths over the Abilene network.

that its computational time is much smaller than the one obtained through the exact
method. We shall now explore this computational time when varying different parameters
of the problem, namely the error, the maximum links’ load and the number of links in the
path.

The computation time depends on the accuracy needed by the application, which is not
established a priori since it is a decision to be taken by each AS. It depends, in addition,
on the maximum link utilizations allowed by the polytope along with the topology, and
on the number of links in the path.

In order to asses the impact of the accuracy in the time consumed by the procedure
we repeat the simulations allowing a maximum error of 5% and of 2%. The mean time
needed for computing the maximum delay over one path for one interdomain demand is of
1 and 7.9 seconds, for obtaining a solution within 5% and 2% of error respectively, which
implies approximately a 90× decrease for the 2% error, with respect to the exact method.

The previous results were obtained using historical traffic demands over the Abilene
Network. This implies that the maximum link load, imposed by the polytope, is between 30
and 80%, as mentioned before. We now present further simulation results using synthetic
data to define the polytope, so as to obtain results on a scenario with higher maximum
link utilizations.

Fig. 2.8 shows the ratio of the time consumed for computing the delay bound through
the Approximate Method to the time consumed by the Exact Method. The bound was
computed for one interdomain demand of 19.4 Mbps for a polytope imposing maximum
link utilizations between 80 an 90% and three different values of errors (i.e. ǫ). This was
repeated for the same four different paths presented above. Results of these simulations
show that the time consumed by the Approximate Method is much less than the one
consumed by the Exact Method. In the worst case, that is, ǫ = 2% and the 4th shortest
path, the time consumed by the approximate method is of 19 minutes while the time
consumed by the Exact Method is of 38 minutes.
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errors and maximum link utilization between 20 and 90%. Bound computed for different paths
over the GÉANT network.

Finally, we explore the influence on the computation time of the number of links in
the path. For doing so, we use the GÉANT network, whose topology is larger than the
Abilene’s topology. Fig. 2.9 shows the computational time for one interdomain demand
of 19.4 Mbps from an origin to a destination node, through different paths. Results are
presented for a link utilization between 20% and 90% and different values of the allowed
error. Is it worth clarifying that the topology does not allow to have high link utilizations
in all links at the same time, since there are a number of bottleneck links on it. Results
show that the computation time is not very sensitive to the path-length. For the case
of a 11-link path, which greatly exceeds the maximum path length on a domain, is of
approximately 7 minutes, providing a value within the 2% of error.

The Approximate Method has shown, through extensive simulation studies, to present
low computation times in most of the cases. The methods proposed in this chapter are
conceived to be used by each AS in order to obtain a value of a metric to announce in
the process of Interdomain Path Selection. The announced bound is supposed to hold for
a long period of time, for instance, several hours. In this context, the time consumed by
the Approximate Method is considered totally acceptable. However, we have not focused
our work on optimizing the computation time, which could be, for instance, diminished
through parallelizing the code, since its nature allows it (it solves an optimization problem
over several independent feasible regions).

2.5 Summary

In this chapter we have presented a means to compute a bound on the end-to-end de-
lay. The method considers uncertainties in the traffic traversing the AS, which have been
modelled as a polytope. Therefore, it is a value that the AS can guarantee for a certain
period of time. The problem was mathematically stated and different solutions were pro-
vided. A method for finding the exact solution was given, and an alternative approximate
method was proposed, as a remedy for the high computational cost of the former. Such
approximate method renders rather than a value of the delay, an interval to where the
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exact maximum delay is guaranteed to belong. The latter was theoretically proven and
numerically validated. Both methods were tested over real topologies using measurement
and synthetic data. The Approximate method was shown, through simulations, to pro-
vide acceptable computation time on several scenarios. All together, we have proposed
a method to enhance PCE-based interdomain path selection mechanisms, which can be
implemented with low computation complexity and little monitoring infrastructure.



Part II

An Overlay Alliance





Chapter 3

The Alliance Model and Bandwidth
Allocation

3.1 Introduction

This chapter acts as introduction to the remaining of the document. Its objective is twofold,
we introduce the NSP alliance model, which is the framework used throughout the re-
maining of the dissertation, and the bandwidth allocation mechanism, used in order to
sell enhanced services on top of the alliance infrastructure. In NSPs alliances, NSPs are
no longer competitors but they work together in a collaborative way. For the alliance to
make economic and technical sense, several aspects need to be agreed on. In particular,
coordination principles regarding bandwidth allocation must be put in practice, revenue
or penalty sharing must be in place as well as policies assuring QoS.

In our framework, the alliance sells end-to-end quality assured bit pipes to intermediate
actors like brokers or Over-the-top providers (OTT), which will in turn resell them to the
final user, by providing their own services through a quality assured path. We propose
a selling mechanism that is conceived to allocate bandwidth so that the revenue of the
whole alliance is maximized, while fulfilling end-to-end QoS requirements. The mechanism
is based on solving a problem that has its roots on a Network Utility Maximization (NUM)
problem, widely used in network congestion control.

We shall introduce as a particular use case of the proposed allocation mechanism,
a bandwidth-auctions based mechanism, which uses first-price auctions as a means of
discovering the buyers willingness to pay for the services on sale. This wilingness to pay will
determine the utility functions to be maximized. A similar mechanism has been proposed in
[41], where the classical NUM problem is solved to allocate bandwidth on a network where
utilities come from the offered bids. We shall extend this application to the interdomain
case and consider in addition end-to-end QoS constraints. This original modification of
the NUM problem is one of the main contributions of this chapter.

In addition, our aim is to be able to solve the allocation problem in a distributed way.
We shall argue that at the allocation stage a decentralized mechanism is needed, since,
among other reasons, this stage is likely to occur at a time-scale where centralization is
not scalable. The classical NUM problem with separable objective functions and capacity
constraints is easily shown to be solved in a decentralized way. However, when end-to-
end delay constraints are introduced, a priori it is not straightforward to decouple the
problem. Nevertheless, in this chapter we shall show that even when including end-to-end

33



34 CHAPTER 3. THE ALLIANCE MODEL AND BANDWIDTH ALLOCATION

QoS constraints a decentralized solution can be found, which constitutes the second major
contribution of the chapter.

The chapter is organized as follows. Section 3.2 introduces in more detail the NSP
alliances, its motivation and general characteristics. Section 3.3 provides the mathematical
model of such alliances. In Section 3.4 we propose our approach for interdomain bandwidth
allocation with QoS constraints. Section 3.5 is dedicated to the particular application
based on first-price auctions, presents a brief introduction to auctions mechanism and
reviews previous work concerning network bandwidth auctions. Section 3.6 shows the
results of simulative studies of the bandwidth allocation mechanism and comments on
implementation considerations. Finally, Section 3.8 summarises the chapter. The results
shown in this chapter are based on [27].

3.2 Mutidomain Alliances

In different contexts where services must be provided throughout several geographical re-
gions, with high availability and assured quality, collaboration arises as a viable way to
reach the requirements of high-demanding clients without the need of ubiquitous deploy-
ment of redundant infrastructure. This statement is valid in a wide set of cases, beyond
the Internet connectivity provisioning one. Indeed, it happens in the legacy telephony net-
work, in cloud computing clusters, or even in railway companies and airlines. Consider as
an example the case of railway companies. Such companies would not deploy a network
to reach all destinations, neither would they constraint their service offer to their own
country or area. On the contrary, companies work together sharing their networks. This
collaboration ranges from merely network interconnection to common coordination and
cooperation principles. The former occurs already in the Internet, the network of networks,
for best-effort traffic, while examples of the latter are airline alliances. Of course, different
entities would be willing to collaborate as long as the cost of their interconnection does
not exceed the revenues due to the cooperation.

Coming back to NSPs, in addition to benefits such as, for instance, services’ offer
diversification, increase of the regions reached by those services, increase of the available
resources and back-up paths, one of the main motivations for an alliance is the increase
of the revenue of the NSPs that belong to it. This revenue increase comes from the fact
that given a collaborative environment, services can be sold (or what is the same in this
context, resources can be allocated) so as to maximize the revenue of the alliance as a
whole, and moreover, possibly increase it with respect to what all its members would earn
by acting by themselves.

In one word, synergy is one of the main attractions for the creation of an alliance,
though it must be noticed that it is not achievable by the joint effort per se. Indeed,
in order to provide higher revenues, coordination principles must be set in place, so as
to allow for optimum resource allocation, along with the use of an appropriate revenue
sharing mechanism, which guarantees that each member’s share is at least equal or greater
than what he would obtain by acting alone. We address the problem of resource allocation
in this chapter, while we shall take care of the revenue sharing one later on in Chapter 4.

From an economic standpoint, an alliance might as well be a means to foster the
market of ASQ goods. As it has been identified in [2], one possible reason for the lack
of QoS market in the current Internet is that buyers are not sure about the quality they
would get. A well-reputed alliance, with transparent QoS monitoring mechanisms, would
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provide a trustworthy marketplace for quality-assured services, reactivating the market
and increasing buyers willingness to pay. These ideas are highly related to the market for
lemons theory, which states that when buyers are not sure about the quality of the good,
the market for quality services disappears. We shall comment more on this phenomenon
in Chapter 5 and Chapter 6.

As mentioned in Chapter 1, there exists concrete evidence of potential implementa-
tion of these conceptual ideas. For instance, different levels of collaboration are expected
to emerge in the near future as proposed by the ETICS project [4]. ETICS proposes
three different levels of collaboration through what they call the community paradigm: a
technology-agnostic economic and business layer on which NSPs collaborate to sell end-
to-end ASQ goods. These three levels of communities have received the names of open
association, federation and alliance. The range of options aims to cover different context
on which several business models or mechanisms could arise, taking into account different
degree of willingness to collaborate, trust or market maturity [2]. Among the different lev-
els, the open association is the community type that asks for the least collaboration, and
the alliance is the one that states the tightest collaboration, with common coordination
and business principles and even a mandatory monitoring infrastructure.

The community concept, though defined at the business layer, implies consequences
on the technical lower layers. In particular, a complete set of rules defining each level of
collaboration is provided in [2]. We shall reproduce here, for convenience, some of them
related to the alliance community, which depict to what extent collaboration is envisaged:

1. Alliance members are prohibited from selling ASQs bypassing the alliance.

2. Each member commits to the resources contributed to the alliance; deviation from
the agreed resource contribution will result in penalties for the underperforming
NSP.

3. The validity (duration and expiration period), allocation of each NSP’s contributed
resources and the respective price updates, traffic engineering and policy decisions
adhere to the alliance rules.

4. Routing, admission control and resource allocation are regulated by the alliance so
that the alliance agreed optimization goals are met.

5. All members of the alliance agree on a common coordination model, which might
necessitate a centralised facilitator.

In this remaining of this thesis we propose to work in an alliance context closely related
to the ETICS’s alliance concept introduced above. Indeed, we assume an important degree
of collaboration and trust among NSPs. However, this trust may be represented in some
cases by a centralized entity, and we shall not ask NSPs to disclose confidential information
among them but only ask them to trust information to the centralized entity. We shall
assume, that a common coordination principle exists in order to sell services, and that
common business policies related to revenue sharing rules in particular are agreed. Our
community concept is as well technology-agnostic, in order to ease the trading of network
resources. This gives the name of overlay alliance. In addition, a monitoring infrastructure
is assumed to be in place.
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3.2.1 A Word on Interdomain Path Computation

The overlay alliance sells services over already established quality-assured paths. Taking
into account that our objective is to remain independent of a specific technology and a
specific procedure to enable the path computation and provisioning, we shall only briefly
comment on this.

The whole cycle of computation and provisioning of interdomain quality-assured ser-
vices has been specified by the ETICS project, a detailed description is provided in [3]. In
particular, the ETICS project has adopted the hierarchical Path Computation Element
architecture (H-PCE) [17] to perform interdomain quality-assured path computation. The
H-PCE is a a recent standard that allows the selection of an optimum domain sequence
and the optimum end-to-end path, through the use of a hierarchical relationship between
domains.

In a typical deployment of this architecture, each domain computes internally its in-
ternal interdomain network routes, that is to say, the routes within the domain that are
going to be used for carrying the interdomain traffic. The Service PCE, a centralized PCE
instance, combines Traffic Engineering indicators about the interdomain network topology
(obtained from the H-PCEs instances in each NSP) together with service-layer information
about prices and customers to compute a sequence of domains.

Once the sequence of domains is determined, the Backward-Recursive PCE-based Com-
putation (BRPC) model [16] is used, where the path computation request is forwarded
along the NSP chain and the end-to-end path is computed.

Communication among entities is enabled by the PCE communication Protocol (PCEP).
In order to support path computation relying not only in technical aspects but also in busi-
ness ones, for instance, considering pricing information, some modifications to the standard
protocol should be performed.

3.3 The Alliance Model

In this section we shall introduce the mathematical model of the alliance used throughout
the remaining of the document. The overlay alliance sells services over already established
quality-assured paths, which we shall call simply as QoS pipe or path. In this scenario, the
capacity dedicated by each NSP to sell by this means is a portion of their already deployed
capacity. That is to say, NSPs have their infrastructure through which traditional services
are sold following the best-effort paradigm and they decide to dedicate some portion of
their capacity to the alliance.

3.3.1 Topology Abstraction

An important aspect is to be able to find a suitable model that represents the interdomain
topology. For that purpose, we propose to perform some level of topology aggregation or
abstraction. This abstraction has to be done mainly because of confidentiality and scalabil-
ity issues. Abstracting the topology allows as well to have tractable problem formulations.

Different approaches could be used to keep different degree of topology information in
the model. For instance, the topology aggregation methods proposed in the ATM frame-
work [19] to solve the problems of scalability. In such framework three levels of topology
aggregation are proposed: a simple node one called Symmetric-point, a Star one and a
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Full-mesh one. In the first case, the domain is abstracted to a simple node. In the star
topology, the nodes in the aggregated topology are the border nodes of the domain and
they are connected by links through a middle point. In the full mesh topology, the nodes
of the aggregated topology are as well the border nodes of the domain, and there is one
link representing each path between an origin-destination pair. Some methods to compute
the equivalent cost of the links have been proposed (see [74, 151] and references therein).
Yet another possibility to model a domain in an interdomain network is presented in [77],
where an approach similar to the full-mesh one is used, but each path is modelled as a
link between an origin-destination pair and an interdomain link. In [67], each domain is
abstracted to a logical node and links to their neighbours nodes with capacity. Their jus-
tification is that for commercial issues bandwidth on interdomain links will always be the
bottleneck, and not internal domain nodes.

As far as our problem is concerned, the mathematical formulation would be exactly the
same either considering a more complete topology or a more aggregated one. The question
should be then posed over which aggregation method is used, and how this information is
updated. These two aspects typically imply a trade-off between scalability and accuracy
of the aggregation. Since topology abstraction can be studied separately from the problem
tackled in this thesis we leave it out of the scope, while any of the existing methods could
be used. Hereafter we will use the simplest approach, which is the Symmetric point scheme.

3.3.2 Definitions and Notations

Let us now introduce some notations so as to formally represent the scenario described
above. As aforementioned we shall use the Symmetric point scheme to abstract the NSPs
topologies, thus each NSP belonging to the alliance is abstracted to a node indexed by n
with an equivalent capacity of cn. The complete set of nodes is denoted by N . We shall
hereafter indistinctly refer to a NSP as node or NSP.

The QoS pipes on sale are the ones in the set S and are indexed by s. The constraint
on the delay on path s (i.e. the maximum admissible delay) is denoted by Ds. We assume
that the routes within the alliance are fixed and single-path. We represent these routes
with the |N | × |S| matrix R. The entry Ri,j is equal to 1 if the route of pipe j traverses
node i and is equal to zero otherwise. We denote pipe’s s route as r(s). The bandwidth
allocated to pipe s (i.e. the amount of traffic sold to the buyers associated to path s) is
denoted by as. Vector a is defined as a = {as}s∈S . Each path s has a utility function
associated to it, which is called Us(as). We assume that Us(as) is known and, as usual in
this context, it is a strictly concave function of the bandwidth. We shall address later on
in this chapter a way to determine these utilities.

Please note that the QoS pipes are defined by an ingress and egress point along with
an amount of bandwidth and a maximum delay. This implies that two QoS pipes are
considered different even if they share exactly the same physical path but provide different
delay bounds or amount of bandwidth.

On top of this alliance ASQs goods or services are to be sold in a coordinated way.
Our proposed mechanism for such purposes is provided in the following section.
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3.4 Bandwidth Allocation with end-to-end QoS Constraints

We assume that for each QoS pipe there is a group of users or buyers interested in getting
a portion of bandwidth on that pipe. The amount of money this group is willing to pay
as a function of the amount of bandwidth is the so-called utility function. The objective
is to sell the available resources in such a way that the revenue of the whole alliance is
maximized while the end-to-end constraints are respected. In particular, we shall work
with the end-to-end delay, but other additive metrics could be as well easily considered.

Let us first state some additional assumptions. The delay introduced by each node in a
path is an increasing convex function of the bandwidth carried by all the paths traversing
the node. We assume that this function can be somehow learnt or estimated by the NSP,
and we provide an example to model it later on in this chapter. The delay function of
node n is denoted as fn and is a function of the total traffic traversing the node, that is
fn(
∑

s∈S Rn,sas) where a = {as}s∈S , for brevity we shall also refer to it as fn(a).

We shall address the resource allocation problem following the approach proposed in
the seminal work of Kelly [79]. In such work, a Network Utility Maximization (NUM)
problem is proposed to solve the resource allocation in such a way that a global network
utility function is maximized while links capacities are respected. In our case we apply the
same principle to our model of interdomain network and consider in addition end-to-end
quality constraints. Indeed, in our scenario the amount of traffic sold to all paths must be
such that the revenue perceived by the alliance is maximized, while the QoS constraints
are fulfilled. This is formalized in the following bandwidth allocation problem:

Problem 3.1

max
as

∑

s:s∈S

Us(as)

s.t.
∑

n:n∈r(s)

fn(a) ≤ Ds, ∀s ∈ S.

Remark 3.1 In Problem (3.1) we have not included a capacity constraint which is assumed
to be taken into account in fn. Indeed, if fn is a barrier function (i.e. it approaches infinity
as the bandwidth approaches the capacity) we can safely ignore any capacity constraint.

Remark 3.2 Problem (3.1) does not consider either the cost of selling bandwidth on the
different paths. However, we can model this situation by defining a cost function of the
allocated bandwidth κs(as) for each service s ∈ S and modifying the objective function in
Problem 3.1 by

∑

s∈S [Us(as)− κs(as)]. This function could be, for instance, compounded
by the cost of using the different interdomain links in the path. Provided the cost function
is strictly convex, the new problem would be analogous to Problem 3.1. For the sake of
notations simplicity we shall not consider the cost function hereafter.

A classical way to solve such convex optimization problem is to look for a saddle point
of its Lagrangian, which in this case is given by:

L(a, λ) =
∑

s:s∈S



Us(as) + λs ·



Ds −
∑

n:n∈r(s)

fn(a)







 , (3.1)

where λ = {λs}s∈S is the vector of Lagrange multipliers.
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In the context of the multidomain alliance we envisage that the services are to be sold in
a quite dynamic way. In order to gain in scalability we need to solve Problem (3.1) with the
least coordination possible, and not relying on central computations if possible. We shall
thus seek for a distributed solution. For such purpose we explore the associated primal-
dual gradient dynamics. A priori, it could seem not straight forward to find a distributed
solution, since in contrast to the formulation in the classical NUM problem, each term
s of the sum in Equation (3.1) is not a separable function of as. The distribution in the
NUM problem is straight forward since the utility function is assumed to be a separable
function of its arguments and the constraints are linear. However, we shall show that the
distributed solution is still possible in our case.

Indeed, computing the partial gradients of Equation (3.1) we obtain:

∂L

∂as
=



U
′

s(as)−
∑

n:n∈r(s)

∑

v:n∈r(v)

λvf
′

n(a)



 (3.2)

∂L

∂λs
=



Ds −
∑

n:n∈r(s)

fn(a)



 (3.3)

We shall propose an iterative approach, in which each iteration is indexed by variable
t. Let us define ȧs = das

dt ≡ ∂L
∂as

and λ̇s = dλs

dt ≡ ∂L
∂λs

. Applying a gradient-projection
algorithm where the primal and dual variables are iteratively updated in the direction of
the respective partial gradient renders the following iterations:

at+1
s = [ats + γsȧs]

+ (3.4)

λt+1
s = [λts − αsλ̇s]

+ (3.5)

where [·]+ = max{0, ·}, αs, γs are positive step sizes and signs were appropriately chosen
to find the saddle point of Equation (3.1) (maximum in a and minimum in λ).

The previous manipulation makes it possible to decouple the problem. Indeed, updates
(3.4,3.5) are performed iteratively on each edge router of a pipe, which we call the source.
Every source sends an initial value for λs and as through route r(s). Each node receives
all the values and computes the delay, the derivative of the delay times the sum of the
multipliers it has received and sends them back to the source. All these values can be
accumulated in two sums in the way back to the source, thus only two values are needed
to be sent along the return path on each iteration. Once the source receives such values
it proceeds to update the value in λs and in as. This is repeated iteratively in the control
plane and it is run prior to any resource allocation.

The following theorem states the convergence of the algorithm.

Theorem 3.1 Convergence of the primal-dual algorithm. Given Problem (3.1) let
∑

s Us(as)
be a strictly concave function and fn(a)∀n ∈ N convex functions. Then the iterations
ats, λ

t
s ∀s ∈ S as defined in Equation (3.4) and Equation (3.5) respectively converge asymp-

totically to the solution to Problem (3.1).

The proof can be performed in an analogous way as introduced in [59, 60]. Note that
the problem can be written as max

∑

s Us(as) s.t. gs(a) ≤ 0, ∀ s ∈ S, where gs(a) =
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∑

n∈r(s) fn(a)−Ds. The proposed primal-dual laws are proved to converge to the optimum
of this general problem, provided that Us is strictly concave and gs convex, both ∀ s, and
for a ∈ R

|S|, see [60]. In our case, the rate vector a ∈ R

|S|
+ . An extension of the proof can

be readily done by carefully considering the cases when the projection in a coordinate of
a gets active (i.e. [as]

+ = 0, s ∈ S), as detailed in [59].

We shall provide a proof directly adapted from [59], which relies on the Krasovskii’s
method reviewed for convenience in Appendix A. The proof can be as well carried out
using a classical quadratic Lyapunov function as shown previously in [33].

Let us first introduce the following notations.

U ′(a) = {U ′
s(as)}s∈S (3.6)

G(a) = {gs(a)}s∈S (3.7)

D = {Ds}s∈S (3.8)

Hence, the updates can be expressed by the following dynamics.

ȧ =K

[
∂L

∂a

]+

= K
[
U ′(a)−∇Gλ

]+
, (3.9)

λ̇ =Γ

[

−∂L
∂λ

]+

= Γ [G−D]+ , (3.10)

where K = diag{ks}s∈S and Γ = diag{γs}s∈S are diagonal matrix with positive step
sizes.

The dual of Problem (3.1) with the notation introduced above can be expressed as

Problem 3.2

min
λ≥0

D(λ)

where D is defined as:

D(λ) = max
x

{
∑

s∈S

Us(as)−
∑

s∈S

λs(Gs(a)−Ds)

}

, (3.12)

We state the following proposition proved in [116], that will aid as in the proof of
Theorem (3.1).

Proposition 3.1 Let λ̂ be a vector such that the set Mλ̂ = {λ ≥ 0 : D(λ) ≤ D(λ̂)} is
nonempty. Then Mλ̂ is bounded.

We shall now present a proof of Theorem (3.1).
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Proof We choose a Lyapunov function V as in the Krasovskii Method (KM), in the state
z = (aT , λT )T , for the system ż = F (z). We shall first assume that there are no projections.

Let us define the following

Q = 1/2

[
K−1 0
0 Γ−1

]

(3.13)

V (z) = żTQż (3.14)

We shall now prove that the expression in the KM is negative semidefinite.

V̇ (z) = żT

[(
∂F

∂z

)T

Q+Q

(
∂F

∂z

)]

ż (3.15)

∂F

∂z
=

[
K[diag{U ′′

s (s)}s∈S −∇2G(a)λ] −K∇G(a)
Γ∇G(a) 0

]

(3.16)

Thus,

V̇ (z) = żT
[
diag{U ′′

s (s)}s∈S −∇2G(a)λ 0
0 0

]

ż (3.17)

Since U(as) ∀s is assumed to be strictly concave and G(a) is the sum of concave
functions (fn(a) ∀n are convex) then the matrix in (3.17) is negative semidefinite and
V̇ ≤ 0 over the trajectories.

The above is true for the case where there are no active projections, we will study the
case of active projections in the following.

Let σ = (σa, σλ) represent the subset of services which have the projections active. We
can write the Lyapunov function as:

V (σ, z) =
1

2

∑

s/∈σa

ks

(

U
′

s(as)−
∑

s

∂G(a)

∂as
λs

)2

+
1

2

∑

s/∈σλ

γs (Gs(a)−Ds)
2 (3.18)

For any interval where σ is constant, the expression of V̇ in Equation (3.17) is still
valid, since it means only that there are less terms in Equation (3.18). Therefore V is also
decreasing in the situation where there are active projections and where σ is constant. It
remains to rule out the case of projection switch.

At switching times, a new term is added or deleted from the expression (3.18). If a
term is deleted, V decreases and we are in LaSalle’s conditions, that is V (t−) ≥ V (t+). If
a term is added there is no discontinuity.

We are in the conditions of the LaSalle Generalized Invariance Principle (LGP). We
shall now show that any trajectory satisfying conditions i or ii of LGP must be an equi-
librium.

Imposing condition i. we see from Equation (3.17) and the fact that Us is strictly
concave ∀ s ∈ S that V̇ = 0 implies ȧ = 0. Thus, a is at equilibrium, say â.

We now look at the dual variable when a = â. We shall study λ̇ from its definition
in Equation (3.10). If Gs(â) −Ds < 0 for any given s ∈ S, the corresponding projection



42 CHAPTER 3. THE ALLIANCE MODEL AND BANDWIDTH ALLOCATION

must be active, that is λs = 0, otherwise, λs would converge linearly to zero, producing a
discontinuity of V when the projection becomes active, violating ii. in LGP.

Finally, we shall see that Gs(â) − Ds > 0 for any given s ∈ S is not possible either.
If Gs(â) − Ds > 0, the corresponding multiplier grows linearly in time. In addition, the
dual problem is maxλ≥0 D(λ(t)), where D is defined as in Equation (3.12). Hence, λ(t) is
moving within the optimum of :

D(λ(t)) =
∑

s∈S

Us(âs)−
∑

s

λs(Gs(â)−Ds),

and D is strictly decreasing.

From Proposition (3.1) we know that λ(t) ∈ Mλ(0) ∀t ≥ 0. In addition, Mλ(0) is a
bounded set. Thus, λ can not increase linearly with t, and hence Gs(â) −Ds > 0 is not
possible.

Therefore, the invariant set has λ at an equilibrium λ̂ as well, which must satisfy either
λ̂s = 0 or Gs(â)−Ds = 0, the complementary slackness conditions.

3.5 Interdomain Bandwidth Auctions

We now discuss an application that fits to the model proposed before. In particular, we
propose to use a first-price auction mechanism to sell quality-assured services and max-
imize the alliance’s revenue. Let us first briefly introduce the main ideas of the trading
mechanisms based on auctions, then review how these ideas have been applied to the band-
width allocation problem and finally propose a means to integrate the use of bandwidth
auctions to our NUM problem.

3.5.1 Generalities of Auctions Mechanisms

An auction is a trading mechanism where the price is set through bids. Many flavours of
these mechanisms exist, being characterized by two main rules. Namely, they are charac-
terized by the rule that determines which bid wins the auction, and the rule that states
how the price is determined. Besides, the mechanisms can differ in the way bids are sub-
mitted, namely sealed-bid auctions or open auctions. In the latter the bids can be collected
in an ascending order or the selling price can be decreased until a bidder decides to pay
the price. Besides, bidders may bid for obtaining one object, or submit multiple bids for
obtaining multiple objects (multi-bid).

Auctions have been used for trading during ages. While the oldest recorded use of
auctions dates from the Roman Empire period, it is still widely used as a trading means.
Nowadays, they are typically used for selling antiquities, artworks and by governments to
allocate, for instance, the exploitation of natural resources or the usage of electromagnetic
spectrum for communications. Their somehow open and transparent character has made
them attractive for those purposes.

Typically, the objective of an auction mechanism is either to maximize the social wel-
fare or to maximize the seller’s revenue. Auctions maximizing seller’s revenue are referred
to as optimal and those maximizing social welfare are referred to as efficient.

In an auction mechanism, the bid is modelled as a function of the valuation the bidder
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attaches to the good, and this valuation is in the general case kept secret to each bidder.
For that reason, auctions can be seen as a game with incomplete information, where the
equilibrium depends on the auctions’ rules stated above, as we shall present in detail in
Chapter 5 and Chapter 6 for the First-price auctions case.

A usually sought property for mechanisms seeking welfare maximization, is the so-
called incentive compatibility property. An auction is incentive compatible if bidders reveal
their true valuations.

Probably the most well known auction mechanism is that one where an auctioneer
announces ascending selling prices (also called asks) and bidders raise their hands if they
are willing to pay the ask. The Auction finishes when nobody is ready to further increase
the payment. This is the so-called English auction. Another well-known mechanism is the
Dutch auction, where the mechanism is similar to the English one but the selling prices
are announced in descending order and the object is sold as soon as a buyer is ready to
pay the priced announced by the auctioneer. These constitutes examples of open auctions.

In sealed auctions, bidders privately submit their bids to the auctioneer, who deter-
mines, according to already agreed on rules, who wins the auction (generally the highest
bid as in first-price or second-price auctions) and the amount to be paid (typically the
value of the winning bid for the first-price auction and the second-highest bid for the
second-price auction).

Second-price auctions, which have also received the name of Vickrey auctions [149],
can be proved to provide welfare maximization and incentive compatibility. The extension
to multi-unit auctions, like the Vickrey-Clark-Groves (VCG) (see e.g. [53]) mechanisms,
as well keep this property of incentive compatibility, and are the only type of auctions
that keep this property when extended from single unit to multi-unit.

In first-price auctions, seller’s revenue maximization is sought and the implementation
for allocating network resources is much less complex than in second-price auctions, as we
shall see in the following subsection. Although first-price auctions do not provide incentive
compatibility, since the winning bidder pays his or her bid and it is thus more rewarding
to submit a bid that is smaller to their true valuation for the service, they are suitable to
our problem, where the objective is to maximize seller’s revenue and keep implementation
complexity low. It is for these reasons that in this thesis we shall focus on first-price
auctions, as commented in the following subsection.

Related work of network bandwidth auctions and further justification for our choice is
provided in the following subsection, while a more detailed introduction to auction theory
and its application to telecommunication networks can be found in [53].

3.5.2 Related Work: Network Bandwidth Auctions

We shall now review the literature related to bandwidth allocation and in particular to
network bandwidth auctions for that purpose, keeping in mind that our aim is to propose
an allocation mechanism that allows for a scalable implementation, maximizing the seller’s
revenue and assuring end-to-end QoS constraints. Another important aspect of bandwidth
allocation in our scenario is how to handle the multi-period. That is to say, that bandwidth
is allocated at given periods, but chances are that some services finish before others, and
consequently the capacity available at each period that the allocation is carried out may
vary. A trade-off between allocating all capacity in the present period and not allocating
capacity waiting for future higher bids exists. In the former, if all capacity is allocated,
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the risk is of not being able to sell that capacity to future, possibly higher, bids. In the
latter, the risk is of not receiving such higher bids and having in the end idle capacity. We
shall review related work paying attention to this aspect as well.

The literature addressing these topics is very rich, we thus not pretend to exhaustively
cover all related work. Indeed, several works in the literature have proposed bandwidth
network auctions for solving the bandwidth allocation problem, most of them seek bids’
truth revealing mechanisms, that is to say, they seek mechanism that incentivisze the
buyers to reveal their true valuation (incentive compatibility) and thus allowing to allo-
cate the object efficiently (i.e. to that one that values it the most). These proposals are
mainly based on second-price auctions and derivatives from that mechanism, like the VCG
mechanism.

A first proposal appeared in an unpublished paper by Mac Kie-Mason in 1995 [97],
where second-price auctions are used at packet level in order to allocate resources in a
multiservice network. The mechanism is simple, however it cannot provide end-to-end
guarantees for users’ traffic.

In [88] the Progressive Second Price (PSP) mechanism was introduced, where several
rounds of bids occur till convergence is reached. The authors proved analytically that the
method can converge to an equilibrium where incentive compatibility is assured. However,
this mechanism presents a high convergence time and significant signalling overhead. In
addition, since the mechanism actually presents several equilibria, the one achieved in
practice may not provide incentive compatibility as argued in [100].

In [129] the problem of resource allocation is analysed, assuming that connections
have a long duration. The approach is based on second-price auctions. In order to address
the multiperiod case the same authors propose in [127] a second chance scheme, which
means that all bidders compete in the auction (new connections and ongoing previously-
established connections) but the previous one have a second chance to bid in case they do
not win the bid.

In [98] a proposal based on multi-bid auctions is made, which is based on second-price
auctions and provides incentive compatibility and efficiency, and better convergence time
and less overhead than previous methods. However, the proposal is derived under the
assumptions of an over-provisioned backbone and an access network with tree topology,
which does not fit our case. In addition, the multi-period imposes that the connections of
users already in the network may change from period to period, which is not our desire.

In [56] a mechanism based on descending price auctions (i.e. Dutch auctions) with a
VCG like payment rule is proposed for allocating the bandwidth of the network. The mech-
anism provides almost efficient allocation and incentive compatibility. The mechanism is
applicable to any general topology network and the authors claim that its implementation
complexity is lower than that one of the mechanism in [98]. However, users are supposed
to place bids at all links on the path through which they need the bandwidth. A similar
approach is proposed by the authors to address the multiperiod case; users are requested
to submit bids not only for all links in the path but for all timeslots in which they want to
reserve bandwidth. We consider that this approach is not suitable to our scenario, where
the customer is not expected to have any knowledge about the topology supporting the
service he or she wants to buy.

In [45] a proposal based on second-price auction that allows for a distributed imple-
mentation is presented. Actually, the decentralized part consists of collecting the bids at
the edge routers, and then sending to a centralized entity performing the optimization
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some few parameters that can rebuild an approximate utility function. No considerations
of end-to-end delay are present in the admission of traffic, thing that we do in this chapter.

In [143] the implementation complexity shortcomings of previous second-price-based
proposals were addressed and a double-sided auctioning mechanism (bids and asks are
allowed) for bandwidth allocation in interdomain network allowing distributed implemen-
tation is proposed. The trade-off is not fulfilling efficiency neither incentive compatibility.
This work does not present QoS constraints, thus it is not suitable for our problem.

In the aforementioned cases the objective is welfare maximization and that is the reason
why mechanism which provide incentive compatibility are sought. On the contrary, few
works are based on First-price auctions. However, when seller maximization is sought it
becomes reasonable to prioritize optimality rather than efficiency, if the latter supposes a
higher, or even prohibitive, implementation complexity. For instance, in [41] the proposal
is to work with First-price auctions. In that case, the authors claim that the complexity of
the mechanism based on second-price auctions is not justified, since their objective is to
maximize the seller’s revenue. Indeed, the implementation complexity when using First-
price auctions is much smaller than the one when using Second-price auctions, and thus
more suitable to our multidomain case. Moreover, in [99] it is shown that VCG mechanisms
can hardly be applied on multidomain networks.

In addition, the Revenue Equivalence Theorem (see e.g. [84]) states that under certain
assumptions (mainly risk-neutral symmetric bidders, definitions which we shall see in
Chapter 5) all types of auctions have the same expected revenue for the seller.

Regarding how the multi-period case is tackled, in most of previous work either the
issue is not addressed, either second chances schemes, as introduced in [127] and adopted
as well in [98], are proposed. In those schemes, at every new allocation period the services
which are already being carried out compete among new ones, and have a second chance
to bid if they loose. Our aim is, however, to guarantee that the service is not going to
be interrupted, while not compromising too much the seller’s revenue. In [41], the issue is
addressed in both senses, that is to say guaranteeing the services are not interrupted, and
guaranteeing the seller to maximise his revenue in the long term, by proposing policies
that consider future bids and statistics on the bids. While we do not focus on this point,
this approach is applicable to our case.

For the reasons exposed above, our auctions proposal is to use fist-price auctions.
The idea is aligned with the one in [41]. However, we consider a multidomain federation
scenario rather than a single domain and we incorporate an end-to-end QoS constraint
rather than only considering capacity constraints. With respect to this last aspect [135]
states a similar problem, but its context and the way it is solved differ significantly from
ours.

3.5.3 Application: Network Utility Maximization with QoS constraints and
First-Price Auctions

We now introduce the use of first price auctions along with the NUM problem. Let us
associate to each pipe a service to be sold which has a certain bandwidth σs and an
assured delay Ds (for instance, this service can be a VoD movie). Several instances of a
service are sold through the same pipe. These services are sold by means of first-price
network bandwidth auctions.

We shall first consider the case of one-shot bandwidth auctions. That is to say, that
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b1s + b2s + b3s + b4s + b5s

Us(as)

σs 2σs 3σs 4σs 5σs
as

Figure 3.1: Example of an utility function for service s built-up with the ordered bids received for
service s.

the whole capacity available for providing the services is allocated at one certain moment.

Let us introduce some new notations. For each service s there areMs buyers or bidders,
which participate in the auction for obtaining an instance of the service. Each of the Ms

buyers bids b
(i)
s which we order as

b(1)s ≥ b(2)s ≥ · · · ≥ b(Ms)
s . (3.19)

The resource allocation decision is to find which of these bids to accept, so as to maximize
the revenue of the whole alliance while the per-route delay remains smaller than a given
bound, under a first-price auction. Since for each s all bids are for the same bandwidth and
delay constraint, the optimal solution is accepting the highest bids per service. We define
the variable ψs,i which is equal to 1 if bid i for service s is accepted, and zero otherwise.
Then, defining the variable ms as the number of bids accepted for service s we have the
following equality:

Ms∑

i=1

b(i)s ψs,i =

ms∑

i=1

b(i)s . (3.20)

Accepting ms bids would render a total accepted rate of as where as = σsms. Thus, the
utility per service can be defined as a function of as as

Us(as) =

as/σs∑

i=1

b(i)s . (3.21)

Equation (3.21) is defined for discrete values of as (the multiples of σs). We extend it
to a piecewise linear concave function of as by linear interpolation. An example of this
obtained utility function for a service s with bandwidth σs is shown in Fig. 3.1.

All together, we can write the allocation problem as follows:

Problem 3.3

max
as

∑

s∈S

Us(as)

s.t.
∑

n:n∈r(s)

fn(a) ≤ Ds, ∀s ∈ S, as/σs ∈ Z.
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In Problem (3.3) the objective function is concave but not strictly concave (as in
Problem (3.1)) and an integer restriction has been added. These two changes need to
be addressed carefully. Indeed, since integer programming is NP hard, we have strong
indication of the difficulty of this problem, not easy to overcome even allowing for central-
ized computation. We will thus accept a sub-optimal allocation which involves solving the
convex relaxation, and rounding off to satisfy the integer constraints.

Besides, the not strictly concavity of the utility function may lead to two problems.
The maximum might not be unique, and oscillations may appear. Regarding the former,
it would occur in the case of non strictly convex constraints when the solution, for each
as would be a set {as ∈ R+ : [as/msσs] ∈ [0, 1]}, where notation [·] means the integer
part. However, this problem is readily overcome when rounding down in order to have
integer values of as ∀s ∈ S. Regarding the convergence of the algorithm, Theorem (3.1)’s
hypothesis ask for strict concavity in Us and convexity in gs, ∀s ∈ S. Since Us is now a
piece-wise linear concave function, the oscillations in the accepted bandwidth can occur
at points where the derivative of the utility function does not exist (that is at multiples
of σs for each s ∈ S). This means that oscillations merely imply accepting one bid more
or one bid less. In consequence, they have not a big impact on the result.

In any case, removing oscillations is possible through different methods. For instance,
the objective function could be modified, as in the so-called proximal method, proposed
in [44] and used in [41,94], which changes the objective function so as to make it strictly
concave while keeping unchanged the optimum.

With respect to the constraints, so far we have assumed that the delay function fn
is a somehow learnt convex function of the bandwidth, and more precisely a function of
the bandwidth traversing the node, that is fn(a) = fn(

∑

s∈S:n∈r(s) as). We have as well
assumed that it is a barrier function, that is to say, that it approaches infinity when the
bandwidth traversing the node approaches its equivalent capacity. Indeed, any function
verifying such conditions is suitable. For instance, one can model each node as a M/M/1
queue and assume the delay of traversing such node as the average delay of the queue. In
such case the delay function takes the form:

fM/M/1
n (a) =

K

cn −
∑

s:n∈r(s)

as
, (3.22)

where we have assumed a mean packet size equal to K. In Section 3.6 we shall present
some simulation studies where the M/M/1 model is assumed.

To finalize this section let us say a word on multi-period allocations. We have shown so
far how to allocate bandwidth through auctions in a distributed manner and in one-shot. A
more realistic scenario would be considering that the allocation occurs for a given period
of time, and that the allocation mechanism occurs periodically. Indeed, for selling the
services we repeat the process described above in a periodic fashion. Every period of time
T , bids are collected and bandwidth is allocated. As mentioned in subsection 3.5.2, most
previous work on multi-period auctions (e.g. [56]) allow future bidders to compete with
incumbent ones, albeit given the latter some advantage (e.g. [127]). A different approach
(e.g. [41]) is to impose the condition that once bandwidth has been allocated in an auction,
the successful bidder has a reservation for the duration of his or her connection. We shall
not present the specific solution for the multi-period auctions problem since any of the
previous proposals can be adopted. However, because of the nature of the services the
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alliance is expected to sell, we consider that the proposals that avoid connection or service
interruption are the more appropriated to our problem.

3.6 Simulations

We now revisit the services examples of Chapter 2. Namely, a VPN service, a VoIP service
and a HDTV Internet service. For illustrative purposes we shall refer to concrete services
even if the alliance might just sell QoS pipes to brokers or intermediate buyers, without
distinguishing which services are carried by those pipes. The set of services available is
thus S = {V PN, V oIP,HDTV } and their characteristics are the following ones: σV PN =
270Mbps, DV PN = 200ms, σHDTV = 19.4Mbps, DHDTV = 300ms and σV oIP = 1Mbps,
DV oIP = 150ms. The alliance topology and services routes are shown in Fig. 3.2a. For
each service 60 buyers bid for obtaining a chunk of bandwidth. We assume random bids
and proceed as explained in Section 3.5 to build the utility functions. More precisely, for
each service, bids are independently drawn from a common exponential distribution. The
means of the exponential distributions for the different services are such that the VPN
service is the one getting the highest bids, followed by the HDTV service. The VoIP service
is the one with the smallest offers, the less demanding in terms of amount of bandwidth
but the most demanding with respect to the end-to-end delay. The utility functions are
shown in Fig. 3.2b, where for convenience in the display they are plotted as functions of
the number of bid instead of as functions of the bandwidth.

We then solve the allocation problem through the iterations in Equation (3.4) and
Equation (3.5). Fig. 3.2c and Fig. 3.2e show the evolution of the primal and dual variables
respectively. We can observe that both variables have converged by 2000 iterations. We
can check that when the algorithm converges the delay bounds are respected for all the
services. Moreover, the necessary Karush–Kuhn–Tucker conditions for the optimum can be
checked. That is to say, at the optimum the following conditions hold: 1) the Lagrangian
multipliers are all greater than or equal to zero, 2) the delay for each service is smaller than
or equal to the corresponding delay bound, and 3) the so-called complementary slackness
condition, for each service at least one of the following occurs: a) the Lagrangian multiplier
is equal to zero, or b) the delay is equal to the bound. All conditions can be readily verified
to occur once the iterations on Fig. 3.2 have converged. In particular, we observe that for
the VoIP and the VPN services the delay is equal to the bound, while for the HDTV
service the delay is lower than the bound for such service, but the corresponding Lagrange
multiplier is equal to zero.
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(b) Utility functions.
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(c) Evolution of the rate (i.e. as) for each service.
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(d) Detail of the rate for the HDTV service.
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(e) Evolution of the Lagrange multipliers.
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(f) Evolution of the delay.

Figure 3.2: Bandwidth auctions with QoS constraints, one-shot allocation. Simulation example.

3.7 Implementation Considerations

The proposed mechanism allows to allocate bandwidth respecting end-to-end QoS con-
straints and in such a way that the revenue of the alliance is maximized. The use of
auctions provides a flexible pricing mechanism suitable for new services, where market
price is not necessarily known. In that regard, we claim that from the theoretical view-
point the proposed mechanism is appealing. We now briefly comment on implementation
issues. As stated in Chapter 1, the multidomain scenario poses new problems that are not
experienced in the context of the intradomain one. For instance, political aspects, such as
confidentiality and trust among domains, technical aspects, such as interoperability and
scalability, and economic ones as, for instance, business models’ coordination and revenue
sharing.

In the NSP alliance context, it is reasonable to considered that the NSPs tell the truth
and fulfil their common interests. Nevertheless, they might ask for confidentiality, privacy
on committed agreements and freedom on pricing [123].
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We claim that the proposed framework introduced in this chapter preserves confiden-
tiality. Indeed, the bandwidth allocation is performed in a distributed fashion, where the
values of the delay of traversing the NSPs and its derivative are passed from one NSP to
another being accumulated in a sum. This makes that the QoS metrics of each domain are
not propagated along the routes, only the second node in a route knows this information
about the source node, and for the remaining of the nodes information is not separable by
domain. In addition, the disclosure of domain topology information is not needed at all.

Pricing can be freely defined at the per service level for the premium services, through,
for instance, the so-called reserve prices (a minimum acceptable value for bids imposed by
the seller). For best-effort traffic, prices can still be defined at a per NSP level.

Finally, the proposed solution appears to scale well. For the rate allocation only a few
bytes in the forward and backward direction are needed during a preallocation iteration
phase. These are the values of the primal and dual variables in Equation (3.2) and Equation
(3.3) for the forward path, and the values of the delay and its derivative of traversing each
NSP in the way back to the source. The latter can be accumulated along the route, thus
only two values per service need to be sent back to the source node. Nevertheless, we have
not focused on optimizing the convergence time of the algorithm, such as for instance
considering an adaptive step value for updating the primal and dual variables.

3.8 Summary

In this chapter we have introduced two key aspects that define our working scenario. First,
we have formally introduced the concept of NSP overlay Alliances. We have discussed their
pertinence when selling end-to-end assured quality services, and we have presented a math-
ematical representation for the alliance, which relays on a topology abstraction. Second, we
have proposed a means for allocating bandwidth in such alliances with the main objective
of maximizing the alliance’s revenue. We have stated the problem of network bandwidth
allocation as a network utility maximization problem with end-to-end QoS constraints,
which constitutes one of the main contributions of this chapter. We have then shown that
a distributed solution to that problem can be performed. We have then discussed the per-
tinence of using first-price auctions for selling enhanced network services and proposed its
usage along with the network utility maximization problem. Regarding implementation,
we have argued that the proposed method is scalable and preserves confidentiality. Finally,
we have shown the results of simulation studies which demonstrate the behaviour of the
proposed selling mechanism.



Chapter 4

Splitting Revenues

4.1 Introduction and Motivation

In every cooperative task, burdens and profits are naturally expected to be shared in a
fair way among all the involved actors. Besides, the means of sharing, whichever costs
or revenues, is as well a means to influence the actors’ behaviours. These two general
statements, are valid in many contexts, and are arguable motivations for a revenue sharing
method tailored to our particular context. Indeed, NSPs will collaborate only if the revenue
share obtained from such collaboration is attractive from their point of view. Regarding
the revenue sharing persuasive power, consider the following simple example to highlight
its importance. For instance, if the NSP responsible from bringing more clients to the
alliance is compensated adequately, all NSPs would dedicate efforts to attract clients
towards the alliance, which in the end would result in higher revenues for the alliance. The
aspects discussed in this chapter are motivated by both a fair and a right-incentive provider
revenue sharing method, for our particular context. This particular context, determined by
the overlay NSPs alliances and the bandwidth allocation method introduced in Chapter 3,
makes the revenue sharing a challenge, since existing methods can not be applied directly
and must be carefully revised. The main reason why these methods are not suitable for our
case is because their good properties relay on specific properties of the revenue function,
which in our problem do not hold. For instance, the so-called Shapley value, a well known
revenue sharing method, does not guarantee that members have incentive to collaborate
and remain in the alliance since our revenue function is not a convex function of the
capacities. Moreover, the intersection of solutions that provide both incentive properties
and fairness in the broad sense is not always clear. In this chapter we aim to find such
intersection, while seeking as well implementable solutions.

In the sense commented above, this chapter provides the following contributions: for-
mal representation of the problem and discussion of the desired properties, evaluation of
existing methods which concludes that none of them are suitable for our problem, guide-
lines for a new method, and a solution proposal. The method is validated through simula-
tion studies. Our studies are motivated by their application in the NSPs alliance context.
However, it is worth highlighting that the conclusions derived in this chapter apply to
much broader situations. Indeed, they are valid for every context where the resources are
allocated solving a NUM-like problem.

This chapter is organized as follows. Section 4.2 introduces additional notation used
throughout the chapter and states the desired properties for the revenue sharing mecha-
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nism. We then present related work, which is split into two sections. Section 4.3 reviews
the most common sharing rules used in the economics field, and argue on why they are
not useful for our problem, while Section 4.4 comments on related work in the networking
field. In Section 4.5 we present a new method, which provides a solution that guarantees
stability and efficiency in economic terms. Simulation results that demonstrate the correct
behaviour of the proposed method are shown in Section 4.5.1.C and Section 4.5.2.C along
with some implementation considerations. Finally, a summary of the chapter is presented
in Section 4.6. Further simulation results that support the conclusions of this chapter are
provided in Appendix B. This chapter is based on the results published in [29].

4.2 Problem Description

4.2.1 Definitions and Notations

The notation needed to represent the NSPs alliance, and the services sold on top of it
has already been introduced in Chapter 3. We now introduce extra notations in order to
represent the revenue sharing problem. The set of nodes N is here as well referred to as
the grand coalition and sub-groups of nodes receive the name of sub-coalitions or sub-
alliances. The revenue function associates to each sub-coalition Q ⊆ N with capacities cQ

and utility functions U = {Us}s∈S , a real value V (Q, cQ, U), where cQ is the capacities
vector restricted to sub-coalition Q, that is:

cQn = cn if n ∈ Q ; cQn = 0 otherwise. (4.1)

In our framework, services are sold according to the NUM problem introduced in
Chapter 3. For clarity’s sake and ease on the intuition of the results we shall only consider
capacity constraints, instead of considering in addition end-to-end QoS constraints. The
revenue function V is thus given by the solution of Problem (4.1), which states that services
are sold (i.e. bandwidth is allocated) in such a way that the revenue of the alliance is
maximized, while respecting the capacity constraints.

Problem 4.1

max
a

∑

s∈S

Us(as)

s.t. Ra ≤ cQ

We also accept the notation V (Q) to indicate the total revenue of coalition Q ⊆ N ,
where the capacities and utility functions are implicit or V (Q, c) when utility functions
are implicit by context.

We define the contribution vn of node n ∈ N to the alliance as vn = V (N)−V (N \{n})
and we shall refer to the contributions vector v defined as v = {vn}n∈N . The total revenue
is shared among all the nodes in N according to the sharing function Φ(N, c, U) which
computes a revenue sharing vector {Φn}n∈N , where Φn is n’s share. This function depends
on the coalition N , the capacities c and the utility functions U . For convenience and
brevity, we shall also use the shorter notation x to denote the revenue sharing vector,
where x ∈ R

|N | is a column vector containing on each component xn, n ∈ N , the revenue
share of node n, when the values of N , c and U are implicit by context.
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4.2.2 Desired Properties of the Revenue Sharing Mechanism

We shall now comment on the properties that are usually seek for a revenue sharing mech-
anism and highlight those pertinent for the NSP alliances scenario. Generally speaking,
two main objectives motivate the properties. First, to provide with fair and sensible al-
locations. Second, to provide to the NSPs the right incentives to remain in the alliance
and contribute to it. The properties discussed below, are usually discussed in cost/revenue
sharing problems, with slightly different definitions (see for instance [47], [72], [112]). We
select from them the ones that we believe are of more relevance to our problem, argument
on why they are relevant and formally define them.

First, the mechanism should distribute all the alliance’s revenue among its members,
that is what we call efficiency, which is defined as

Efficiency. Φ(N, c, U) = x is efficient if

∑

n:n∈N

xn = V (N). (4.2)

In order to assure the sustainability of the alliance, the mechanism should not provide
incentives to any sub group of NPSs to break the grand coalition. That is to say, no sub-
coalition should have economic incentives to form a smaller coalition outside the alliance,
since this would lead to instabilities in the alliance. This is the so-called stability property.

Stability. Φ(N, c, U) = x is stable if

∑

n:n∈Q

xn ≥ V (Q), ∀Q ⊆ N. (4.3)

The stability definition requires the shares to be such that, for every possible sub-
coalition, the sum of the shares of the nodes belonging to that sub-coalition are as least
as large as the revenue that sub-coalition would perceive. This property is also usually
referred as the stand alone property. Please note that this definition also implies that the
revenue perceived by each node n ∈ N in the coalition is not less than the revenue it could
achieve alone, i.e. xn ≥ V ({n}), ∀n ∈ N . The set of points that verify Equation (4.3)
constitutes the so-called core set in the context of Coalitional Game Theory. The reader
is referred to [140] for more details on the core concept and coalitional game theory.

We shall now focus on the incentives provided by the revenue sharing mechanism.
Regarding resources, the mechanism should provide the right incentives to the nodes to
increase their resources towards the coalition. In our model, these resources are considered
in the capacity. We formally define this property as follows.

N-resource-monotonicity. Φ(N, c, U) is N-resource-monotonic if given c and ĉ two vec-
tors of capacities, such that ĉk ≥ ck and ĉn = cn ∀n 6= k then Φn(N, ĉ, U) ≥ Φn(N, c, U)
∀n ∈ N .

N-resource monotonicity provides incentives to a NSP to increase its capacity, while
NSPs not increasing their capacity have no incentive to discourage such increase, which
makes it a very compelling property.
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The aim is to have a rule that satisfy the property for any given alliance, which
is intuitively a very hard task. As a consequence, we shall also admit a less restrictive
property, which we simply call resource-monotonicity, and only ask for a non-decrease on
the revenue of that NSP increasing its capacity. More formally:

Resource-Monotonicity. Given c and ĉ two vectors of nodes capacities, such that ĉn = cn
∀n ∈ N \ {n} and ĉn ≥ cn, Φ is resource-monotonic if Φn(N, ĉ, U) ≥ Φn(N, c, U).

The resource-monotonicity property means that if an NSP increases its capacity then
its revenue will as well increase or remain the same. This property is usually referred as
to resource incentive, or monotonicity in the resources, in the context of coalitional game
theory. We shall herein simply refer to it as Monotonicity.

Regarding incentives, the monotonicity property still provides incentives to a NSP
to increase its capacity towards the alliance. In the context of coalitional game theory,
N-resource-monotonicity is usually asked so as to guarantee that no player would have
incentives to block some other player’s action towards the increase of the revenue of the
whole alliance. In particular, if we ask simply for Monotonicity and not for N-Resource-
Monotonicity, it could happen that some NSPs in the alliance have no interest in the
capacity increase of other NSPs. However, even if the capacity increase of one NSP could
decrease some other’s NSP revenue, we claim that this situation could act itself as an
incentive to NSPs to remain competitive in terms of their resource contribution towards
the alliance.

Beyond resources, sharing criteria could be provided with respect to the utility func-
tions. In the context of industrial operations, for instance, an arguable desirable objective
is to reward for efficiency, that is if two process are carried out in a same machine, and
the marginal revenue/cost of one is greater/smaller than the one of the other process,
revenue/cost shares should respect this order [155]. In our context, we could extend this
concept by considering the marginal revenue produced by a node with respect to its capac-
ity when utility functions change. We capture this in the property that we name Revenue-
monotonicity. More formally, let U (1) and U (2) be two vectors of revenue functions. The
revenue-monotonicity property is defined as follows.

Revenue-monotonicity. A revenue sharing rule Φ is revenue-monotonic if given two dif-

ferent vectors of utility functions U (1) and U (2) then for any n ∈ N verifying ∂V (N,c,U (1))
∂cn

≥
∂V (N,c,U (2))

∂cn
the revenue shares verify Φn(N, c, U

(1)) ≥ Φn(N, c, U
(2)).

The intuition behind this property is that if the marginal revenue due to n is greater
with utility functions U (1) than with utility functions U (2), then the revenue share with
one and other vector of utility functions should respect this order. Intuitively, this rule
provides the right incentives in our case. Indeed, if the utility functions increase, then the
revenue of the whole alliance increases, or remains the same. However, in our problem
the revenue function is not differentiable along the whole values of c, so the applicability
of this property is limited. The alliance as a whole has a clear incentive in the increase
of the utility functions, since this increases the total revenue. However, the pertinence of
this property as an incentive to nodes might be questionable, since utility functions are
something exogenous in the model, thus the NSPs’ influence on the utility functions can be
argued to be limited, or at least not captured by our model. For these reasons we shall not
consider this property as mandatory, though it is interesting to evaluate it when possible.
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Finally, another interesting property related to monotonicity is the one that evaluates
the influence of new members entering the alliance, usually referred as to population
monotonicity.

Population-monotonicity. Given capacity vector c, a revenue sharing rule Φ is population
monotonic if ∀S, T ⊆ N such that S ⊂ T , Φn(T, c

T , U) ≥ Φn(S, c
S , U) ∀n ∈ S.

A population-monotonic revenue sharing rule guarantees that the entrance of a new
NSP to the alliance does not reduce the revenue of each of the NSPs already there. How-
ever, we focus on the study of fixed alliances, and not on the dynamics of how to build
them. The alliance could be set in place for reasons further to the ones captured by the
revenue function, such as business agreements and geographical coverage. Thus, we shall
not consider this property as mandatory for a sharing rule. It is rather a property that
should be checked whether it is verified or not given a particular alliance.

We now focus on fairness. We want the mechanism to be fair in the sharing. There is
not a general consensus in the literature regarding the notion of fairness. Moreover, the
properties enumerated before can as well be interpreted as fairness. Indeed, the stability
property states that every sub-coalition will get an aggregate share of at least the sub-
coalition’s revenue. The monotonicity property, besides providing incentives to increase
capacity, can as well be interpreted as a fairness one. Indeed, if one NSP makes an effort
to improve its capacity towards the alliance, then it deserves to be rewarded adequately.

In addition to the properties stated so far, we propose some common in the literature
and intuitive rules that should be fulfilled. We base our definitions on the contribution
of each node, defined for node n as vn = V (N) − V (N \ {n}). If vn ≥ vj then xn ≥ xj ,
which is usually known as order preserving. If the previous inequalities are interpreted as
strictly, that is if vn = vj implies xn = xj this has received the name of equal treatment
of equals and is probably one of the oldest stated fairness rules, which was in particular
a legacy of Aristotle [38]. In addition we propose vn = 0 then xn = 0, which we shall call
no free-riders and can be seen as a particular case of the so-called dummy property in the
context of coalitional game theory. All in all, we define fairness as follows.

Fairness. Φ is fair if it is order preserving, guarantees equal treatment of equals and no
free-riders.

The choice of the contribution vector to evaluate fairness is important. Some classical
rules of revenue or cost sharing propose fairness criteria based on the resources or costs
of each agent. However, in our case, we base the fair principle in the contribution of each
NSP in terms of revenue rather than in terms of capacity, since what is important in the
alliance is not only the capacity provided by each NSP but as well its position in the
topology. Vector v is a measure that takes into account both relevant components, namely
the capacity and the position in the topology.

4.3 State-of-the-Art Sharing Methods

We now present existing revenue sharing techniques, which have been proposed in the
field of economics. A detailed review can be found in [72]. We also comment on why these
techniques are not suitable for our problem.
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(a) Topology A. (b) Topology B.

Figure 4.1: Example topologies.

4.3.1 The Shapley Value

The Shapley value, proposed by Lloyd Shapley in 1953 [138], is probably the most well
known technique to perform revenue sharing in an association or coalition. It has been
widely used in the literature for its good properties, which we shall review in the follow-
ing. The Shapley value provides a closed-form expression to compute the share of each
agent in a cooperative context. Intuitively, it can be interpreted as computing the average
contribution of each agent to the coalition. Let us formalize this in what follows.

With our notations, the Shapley value for player n ∈ N is defined as:

xshn =
1

|N |!
∑

Q⊆N\{n}

|Q|!(|N | − |Q| − 1)! [V (Q∪ {n})− V (Q)] . (4.4)

From Equation (4.4) we can see that indeed agent n’s share depends on [V (Q ∪ {n})
−V (Q)], n’s contribution to sub-coalition Q ⊆ N . To see the intuition behind the formula
for node n, imagine that what we are computing is n’s contribution to all possible sub-
coalition Q ⊆ N , and averaging over all the different sequences according to which the
grand coalition can be formed. More precisely, suppose the grand coalition is built up
from the empty set adding nodes uniformly at random. When the turn comes to add node
n, compute its contribution to the sub-coalition formed by all previously added nodes,
let us call that previous sub-coaliton as Q. The contribution of node n to Q is the same
regardless the order on which Q is built. We thus multiply n’s contribution to Q by all
the possible ways on which Q can be formed, that is by |Q|!. Analogously, we multiply
that result by the (|N | − |Q| − 1)! possible ways of choosing the remaining of the nodes.
Finally, we sum over all possible sub-coalitions Q, and take the average by dividing by the
number of possible orderings of all nodes, that is |N |!.

We present now a concrete, simple example of the computation of the Shapley value
in the case we are studying. Consider Topology A in Fig. 4.1a, capacities are equal to 1
unit for all nodes and services of 1 unit of bandwidth are sold. Consider as well that the
utility functions are such that V (N) = V ({2, 3}) = 5, V ({1, 3}) = 2.
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The Shapley value for node 1 is given by:

xsh1 =
1!1!

3!
[V ({1, 2}) − V ({2})] + 1!1!

3!
[V ({1, 3}) − V ({3})]

+
2!1!

3!
[V (N)− V ({2, 3})]

=
1

6
0 +

1

6
2 +

1

3
0 =

1

3
.

Analogously, for node 2 we obtain xsh2 = 11
6 , and for node 3 xsh3 = 17

6 .

We now introduce some useful definitions that will characterize the Shapley value. A
Pre-imputation is the set of payoff vectors such that the sum of all xn is equal to V (N).
A Dummy player is a player whose contribution to the coalition is the same as the one
he would achieve on his own. With these definitions the axioms of Symmetry (if n and j
contribute the same to any coalition then xn = xj), Dummy player (if n is a dummy player
then xn = V ({n})) and Additivity (Φn(N, c, U

(1)+U (2)) = Φn(N, c, U
(1))+Φn(N, c, U

(2))
∀n ∈ N) are introduced. The Shapley value is the only sharing rule verifying all three
axioms, as proved by Shapley [138].

In addition to verifying the Symmetry, Dummy player, and Additivity properties stated
above, the Shapley value is Efficient (it shares the total revenue), Fair according to its own
definition of fairness, and Resource-monotonic. Fairness is defined in terms that for any
two players n, j ∈ N , n’s contribution to j is equal to j’s contribution to n, that is
Φn(N, c, U) − Φn(N \ {j}, c, U) = Φj(N, c, U) − Φj(N \ {n}, c, U).

Recalling the previous example, we can readily verify that the solution obtained is
Efficient, that is xsh1 + xsh2 + xsh3 = 2+11+17

6 = 5 = V (N). We can as well verify that the
solution is Fair according to the previous definition. Take for instance nodes 1 and 2, we
have Φ1(N, c, U)−Φ1(N \ {2}, c, U) = 1

3 − 1 = −2
3 and Φ2(N, c, U) −Φ2(N \ {1}, c, U) =

11
6 − 2.5 = −2

3 .

In the following theorem we prove that the Shapley value applied to our problem
provides Resource-monotonicity.

Theorem 4.1 Incentive for improving capacities. Let (N,V, c) be a coalitional game where
the set of nodes N are the players, c represents the equivalent capacities of the nodes in N
and V is the revenue function defined by Problem (4.1). If n ∈ N increases its capacity then
its revenue share (i.e. Φn) will be not decreased. That is, letting ĉ represent the capacities
of the nodes where n’s capacity is increased, Φn(N, ĉ, U) ≥ Φn(N, c, U), where Φn(N, c, U)
is the Shapley value of node n given the game (N,U, c).

Proof By definition of Shapley value Φn(N, ĉ, U) = 1
|N |!

∑

Q⊆N\{n}

|Q|!(|N |−|Q|−1)![V (Q∪

{n}, ĉ)− V (Q, ĉ)], where V (Q, ĉ) as defined above represents the worth function for sub-
coalition Q when the capacities are given by ĉ.

Φn(N, ĉ, U) =
1

|N |!
∑

Q⊆N\{n}

|Q|!(|N | − |Q| − 1)![V (Q ∪ {n}, ĉ)− V (Q, c)],

holds since the revenue function of any coalition without node n is the same, regardless
the capacity of node n. By subtracting n’s revenue share with and without increasing its
capacity we have:

Φn(N, ĉ, U)−Φn(N, c, U) =
1

|N |!
∑

Q⊆N\{n}

|Q|!(|N |−|Q|−1)![V (Q∪{n}, ĉ)−V (Q∪{n}, c)].
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We now determine if the inequality V (Q ∪ {n}, ĉ) ≥ V (Q ∪ {n}, c) ∀Q ⊆ N \ {n} holds.
Indeed, V is the solution to Problem (4.1), which is the maximization of a concave function
with convex constraints. By increasing the capacity we relax such problem, thus doing so
yields to greater or equal solutions, which concludes the proof.

In spite of fulfilling the aforementioned compelling properties, the Shapley value is
not suitable for our problem, as it does not always provide stable solutions. That is to
say, shares computed through the Shapley value do not always fulfil inequalities given by
Equation (4.3). Nonetheless, its great popularity in previous work is due to the fact that
it is proven that it provides with stable solutions when the revenue function is a convex
function of c (see e.g. [140]), which occurs in many cases. Moreover, when the revenue
function is convex the Shapley value provides with stable, efficient and N-monotonic solu-
tions (see e.g. [72]). Examples where the Shapley value is adopted as the solution concept
to a sharing problem in the networking context are commented in Section 4.4.

As for our problem, the revenue function V is not a convex one and solutions through
Shapley value can lie outside the core. This can be seen, for instance, in simple examples as
the previous one. We have computed the revenue share in that example through Shapley
vale, which renders xsh = (1/3, 11/6, 17/6). We shall show in Section 4.5 that the core in
that example is {x = (0, 3− ǫ, 2 + ǫ) : ǫ ∈ R, 0 ≤ ǫ ≤ 3}. Hence xsh does not belong to it.

4.3.2 The Proportional Share

One of the simplest way to perform the revenue sharing is to split revenues proportionally
to some contribution measurement. In our case, as explained above, vector v = {vn}n∈N
where, we recall, vn = V (N)−V (N\{n}), quantifies this contribution. Using the definitions
introduced in Section 4.2 we can write the proportional share as:

xprn =
vn

∑

n′∈N v
′
n

V (N). (4.5)

For a concrete example, consider again Topology A in Fig. 4.1a and that the utility
functions are such that V (N) = V ({2, 3}) = 5, V ({1, 3}) = 2. The proportional share for
node 1 gives:

xpr1 =
V (N)− V ({2, 3})

∑

n∈N V (N)− V (N \ {n})V (N)

=
5− 5

(5− 5) + (5− 2) + (5− 0)
5 = 0.

Analogously we obtain, xpr2 = 15
8 and xpr3 = 25

8 .

The proportional share a priori seems to be a very attractive distribution rule. It fulfils
the properties of Efficiency and Fairness and it is very simple to compute. However, it has
the drawback that it does not always guarantee Stability, as we shall show later on this
chapter.

4.3.3 The Aumann-Shapley Rule

The Aumann-Shapley Rule for cost sharing [34] was introduced by Shapley and Aumann
in 1974, and can be applied analogously for a revenue sharing problem. The idea of this
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rule is to compute the revenue share of node n ∈ N as its average marginal revenue along
a certain path going from capacity equal to 0 to cn. More precisely, the share for node
n ∈ N according to this rule is defined as:

xasn =

∫ cn

0
∂nV (N,

t

cn
c)dt = cn

∫ 1

0
∂nV (N, tc)dt, (4.6)

where the notation ∂nV (N, c) means the first order derivative of V at c with respect to
cn. Please note that in Equation (4.6) we have used the alternative notation for V where
its dependency on the sub-coalition and the equivalent capacities is explicitly mentioned.

In first place, it must be noticed that the derivative of V with respect to cn is not
defined for all values of cn. Indeed, consider a simple topology with only one service
crossing several nodes, as Topology B shown in Fig 4.1b and consider that all nodes have
the same capacity. Let ĉ be that capacity. If a given node n increases its capacity, the
other nodes will act as bottlenecks and the revenue will not change, while if n reduces its
capacity then it will itself become the bottleneck and the revenue will decrease. Hence, the
derivative of V takes different values at both sides of ĉ and it is not defined at cn = ĉn.
What is even more important, this rule does not fulfil the Monotonicity property, this is
due to the characteristics of our revenue function. Furthermore, this rule applied to our
problem could even provide incentives to reduce capacity, since nodes are incentivized to
be the bottlenecks.

We now present a concrete example. Consider Topology B given by Fig. 4.1b and that
the capacity of all nodes but node 1 are equal to a value cmax, and node 1’s capacity is
equal to cmin, with cmin < cmax. Consider that the utility function is a linear function of
the admitted bandwidth, with slope U1. Thus V (N) = U1cmin. In this case the Aumman-
Shapley rule gives to node 1:

xas1 =

∫ cmin

0
U1dt = U1cmin.

Analogously, we can compute the share for every node n ∈ {2 . . . N}. Since the deriva-
tive of V with respect to cn is zero ∀n ∈ {2 . . . N}, as the revenue is determined by cmin,
which is limiting the admitted bandwidth, xasn = 0.

From this simple example we can readily see that this rule applied to our scenario can
provide the wrong incentives. Indeed, every node except node 1 is interested in decreasing
its capacity so as to become the bottleneck, as this would give that node a non-null share.

4.3.4 The Friedman-Moulin Rule

This rule was proposed by Friedman and Moulin in 1999 [64]. We introduce the operator
∧, which is defined for two vectors r and q ∈ R

|N | as q∧r = min(qn, rn) n ∈ N and column
vector e, which is of dimension |N | and has all its components equal to one. This rule is
similar to the Aumman-Shapley one, in terms that it integrates marginal revenues, but
in this case the integration is done through a different path. According to the Friedman-
Moulin rule, the share for node n ∈ N is calculated as:

xfmn =

∫ cn

0
∂nV (N, t · e ∧ c)dt. (4.7)

This rule can not be applied in our context since V is not derivable along the whole
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path, for the same reasons explained above.

4.4 Sharing Techniques Used in the Networking Field

The literature related to sharing rules is extremely vast. However, it has been mainly a
domain of study of economists, from which we have reviewed the main results and solution
concepts in the previous section. Approaches similar to ours, which we shall shortly present
to be based on choosing a point from the stable and efficient set by optimizing some
objective function, have been discussed before, see for instance [73, 78]. However, the
discussion there remains for general games, which not necessarily apply to our particular
kind of game, where the revenue is determined by a NUM problem.

In this Section we aim, rather than to comment on sharing rules literature, to review
how this issue has been addressed in the networking field, which solutions have been
adopted from the economics field and tailored for particular networking problems, more
closely related to our problem. In other words, we shall focus on applications rather than
on tools.

As aforementioned, the Shapley value is probably the most widely used method for
sharing costs or revenues in a collaborative context. So is the case in the networking field.
For instance, the Shapley value has been used in [96], where the proposal is to change the
Internet economics by business contracts whose payment is determined by the Shapley
value. And also in [113], where the aim is to optimize the routing within an alliance of
NSPs and the revenue is shared by means of Shapley value. More recently, it has also been
used in [141] for splitting cost savings among several domains.

Yet another interesting usage of the Shapley value is proposed in [111], where a content
delivery network takes advantage of a peer-to-peer architecture and peers are encourage to
collaborate by having a reduction in their connectivity fees. These reductions are computed
using the Shapley value. A fluid approximation is shown to apply when the number of peers
becomes large, which makes it possible to easily compute the reductions.

It is only in contexts where stability is desired and where the Shapley value does not
provide solutions in the stability set that different methods are used. A very interesting
approach was proposed quite recently in [47] to share the costs of providing connections
with guaranteed capacity. The problem treated there is quite different from ours, moreover
their cost function is linear with the capacity. However, compelling properties are discussed,
such as monotonicity, stability, which have nourished our discussion of desirable properties
in Section 4.2.

In [112] a cost sharing rule for sharing the cost of a set of non-redundant services
is proposed. In particular an application to share the costs of connectivity in a network
among its users is presented. Such rule could be readily adapted so as to be applied to our
revenue sharing problem. Indeed, the share of an NSP n would be composed by summing
up per-services shares for those services passing through NSP n. Each per-service being
defined by evenly splitting the revenue due to the service, among the NSPs in the route
of such service. However, we have shown through an example that this rule applied to our
problem does not provide Monotonicity.

This chapter has intentionally not discussed bargaining approaches. Bargaining pro-
cesses model classical economic problems in which players negotiate in order to collectively
choose an outcome, in situations where there is no consensus about which the best out-
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come is (see for instance [119]). Formalizing the output of this problem is not an easy
task, since there is a plethora of actions that a player could take throughout the process,
and a wide variety of ways to carry out the negotiation, involving different sequential or-
der on which the players play and time-frames on which they take decisions or the game
ends. In particular, according to the bargaining power, preferences and impatience of the
different players, different outputs could be obtained. Bargaining situations lie in the core
of the interests of game theory, discipline which has provided different formalizations of
such problems, among which the solution concepts derived first by Nash in 1950 [115] and
then by Rubinstein in 1982 [133] are seminal papers. Both of these solutions deal with two
players problems, and generalizations to more players, even if they have been proposed
(e.g. [85]), are not trivial.

In particular, in the NSPs alliance scenario, several players (i.e. NSPs) should negotiate
to agree on an outcome (i.e. revenue share). In order to be able to unambiguously predict
the output of a bargaining process, the preferences of the NSPs, over all possible shares
should be determined. In [67] a revenue sharing method for NSPs that work jointly to pro-
vide and end-to-end service is proposed and is based on a bargaining problem. However,
the bargaining power there is arbitrarily defined, granting some claimed pertinent prop-
erties. They propose to trade the optimal pricing by a distributed allocation and revenue
sharing mechanism. That is to say, that the revenue of the alliance is not maximized, in
exchange of allowing for a decentralized revenue sharing mechanism. The method is said
to provide monotonicity, however no discussion about stability is presented. It is a very
interesting proposal in line with our interest but however in a different scenario. In our
scenario, the NSPs’ bargaining powers are not clearly stated and would be very difficult
to establish. Indeed, a NSP has interests in receiving at least a certain revenue, and so do
the different sub-coalitions of NSPs, but knowing the preferences of each NSP’s towards
different revenue shares is, at least, not easy. On the other hand, in our framework, trust
is assumed among NSPs and a central trusted entity can be assumed to be in place. Thus,
a more straightforward solution seems to be relaying on this centralized trusted entity to
compute the revenue sharing solution, so as to combine all NSPs interests in the best way
possible.

4.5 The Proposed Method

Having seen that existing techniques are not suitable for our problem, we shall now pro-
pose a new method to perform the revenue sharing in our specific scenario. We focus on
two properties: Stability and Efficiency. Nevertheless, we shall present a flexible method
which allows to include further properties. We first study the set of possible solutions and
following we focus on how to choose a point belonging to that set. For clarity’s sake, we
consider this set of solutions in a simple scenario, which we call the one-shot scenario.
In this scenario services are sold through what we call a service selling phase and rev-
enue sharing is performed right afterwards. In the one-shot scenario we consider given
utility functions, and its random nature is not considered. We shall later on move to a
multi-period scenario, in which several service selling phases occur and revenue sharing is
performed once over the revenues of all the periods. Each service selling phase occurs for
independent realizations of the utility functions, and we shall discuss different approaches
that work with statistics on the utilities.
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4.5.1 One-Shot Scenario

We now study the problem assuming that service selling is performed and revenue sharing
occurs right afterwards.

4.5.1.A The Feasible Solutions Set

In order to have stability in the coalitions inequality (4.3) must hold, that is
∑

n:n∈Q xn ≥
V (Q), ∀Q ⊆ N . Let us enumerate all the possible sub-coalitions Q ∈ N and index them
using index j = 1 . . . 2|N |. We rewrite inequality (4.3) as a linear system as:

Qx ≥ v̂, (4.8)

where Q = {Qj,n} is a 2|N | × |N | matrix that indicates which nodes belong to each
sub-coalition (i.e. Qj,n = 1 if node n belongs to sub-coalition j and 0 otherwise) and
v̂ = {V (Qj)}j=1...2|N| is the vector that indicates in the j-th component the revenue of
sub-coalition j.

We must consider at the same time the Efficiency property, which we write as the
vector representation of Equation (4.2):

eTx = V (N). (4.9)

We refer to the set of points verifying Equation (4.8) and Equation (4.9) as to the
feasible set. Depending on the alliance topology and the utility functions, the feasible set
might determine a unique point, a non empty set included in R|N |, or an empty set. The
following examples show two cases where the two latter situations occur.

An empty feasible set. Consider Topology C shown in Fig. 4.2. The capacities of all
nodes are equal to 1 unit. The three services illustrated on the mentioned figure are sold,
each one of them is defined for 1 unit of bandwidth. Nodes’ capacities are all equal to 1
unit, and the utility values for the one unit of bandwidth of each service are U1(1) = 5,
U2(1) = 4 and U3(1) = 2. Thus, the revenue of the sub-coalitions are V (N) = V ({1, 2}) =
5, V ({2, 3}) = 4 and V ({1, 3}) = 2.

Figure 4.2: Topology C.

In order to achieve stability the total revenue (5 monetary units) must be split in such
a way that every route receives at least what they would receive alone. It is not difficult to
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see that this is not possible at the same time for all routes, since the following inequalities
must hold: x1 +x2 ≥ 5, x1 +x3 ≥ 2, x2 +x3 ≥ 4 and x1 +x2 +x3 = 5. Hence, the feasible
set is empty.

It is interesting to remark that for different values of the utility functions, and the
same topology, the feasible set could be non-empty.

A feasible region. Consider now Topology A shown in Fig. 4.1a. The capacities are again
equal to 1 unit for all nodes and we sell services of 1 unit of bandwidth. Utility functions
are now U1(1) = 5 and U2(1) = 2. Thus, V (N) = V ({2, 3}) = 5 and V ({1, 3}) = 2. A
feasible solution must fulfil x1 + x3 ≥ 2, x2 + x3 ≥ 5 and x1 + x2 + x3 = 5. The vectors x
that satisfy all equations are {x = (0, 3 − ǫ, 2 + ǫ) : ǫ ∈ R, 0 ≤ ǫ ≤ 3}, which corresponds
to a segment in R2.

4.5.1.B The Choice of a Point within the Feasible Solutions Set

We have seen in the previous subsection that configurations with no solution can exist, in
this case we claim that the coalition for those utility functions should not exist as such,
since there is no revenue sharing method that can make it stable. This decision could be
made based on mean utility functions, as we shall comment on the Multi-shot scenario in
the following section. Therefore, we focus our attention on the case where constraints (4.8)
and (4.9) determine a region. In order to choose a point from such region we formulate
the following Optimization Problem:

Problem 4.2

min
x

f(x)

s.t. Qx ≥ v̂, eTx = V (N),

where f(x) is a convex function. Please note that we can dispense with the restriction
of non negative revenue shares, since it is already considered by the Stability property.
Indeed, the constraints Qx ≥ v̂ include constraints of the form xn ≥ V ({n}), ∀n ∈ N and
by definition V ({n}) is non negative. Problem (4.2) constitutes a family of methods which
can be tuned to cover additional properties by considering different objective functions. We
now introduce different objective functions. We shall explore the properties they provide
in the following subsection through simulations.

Projections. One possible natural approach is to consider either the Shapley value or
the Proportional share and project either of these vectors onto the feasible set. The
method would inherit the good properties of the Shapley value or the Proportional share
as appropriate, when the share is already in the feasible set, and otherwise it would re-
turn the closest value. In those cases the objective functions of Problem (4.2) would be
f(x) = ||x − xsh||2 or f(x) = ||x − xpr||2, where the square of the norm is considered in
order to have a quadratic programming optimization problem.

Another possibility is to project the contributions vector v onto the feasible set. In-
tuitively this would behave well as a sharing rule, since we are choosing the closest point
to the contributions vector. Please note that the proportional share is actually a linear
transformation of the contributions vector. However, the projection onto a polytope is not
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a linear transformation so the results of projecting contributions vector v and the Propor-
tional share need not to be the same. In this case, the objective function takes the form
f(x) = ||x− v||2.

Equalization of the shares. Yet another candidate to the objective function is the square
of the Euclidean norm of the revenue share vector, that is f(x) = ||x||2. Considering this
function would intuitively provide with more even shares among the nodes. On the other
hand, this function does not keep any record of the nodes’ contributions to the revenue,
thus monotonicity and fairness are likely not to be fulfilled.

Weighted sums. Another intuitive candidate for the objective function is one that shares
proportional to either the capacity or the contributions vector. We shall consider thus the
sum of the shares weighted by either, the capacity or the contribution of each node. This
comes to a linear objective function and in order to have a convex function we consider
the opposite of the weighted sum, that is f(x) = −cTx or f(x) = −vTx. Intuitively this
criterion would give more share to highest weights.

The impact of the choice of the objective function is evaluated through simulations in
the following subsection.

Regarding implementation aspects, the proposal is to have a central trusted entity
computing the revenue shares. This entity must know the utility functions for each service
and the topology of the alliance, at the NSP level. We shall comment more on this in
Section 4.8, the Multi-period scenario.

4.5.1.C Simulations

Simulations were performed with two different objectives, namely to further show the need
of a new revenue sharing method, and to evaluate the proposed method. Illustrative results
are shown in this chapter, while exhaustive simulative studies evaluating the proposed
method’s behaviour are shown in Appendix B. The simulations presented in this chapter
were performed on a regular computer with a i5 processor of 2.67GHz and 3.6 GB of RAM
memory. The optimization problems were solved using CPLEX through AMPL.

The need of the new revenue sharing method We shall consider the topologies in Fig.
4.3, where cn = 10 for all nodes n and the amount of bandwidth of each service σs = 5
for all services s, all values being expressed in some coherent unit. Tabel 4.1a shows the
utility in some monetary unit, say $, for carrying 5 and 10 units of bandwidth, where the
sum of the underlined values corresponds to the revenue of the alliance (that is, the sum
is the solution to Problem (4.1)).

Revenue shares were computed using the Shapley value, defined by Equation (4.4) and
the proportional share, defined by Equation (4.5). These values were afterwards projected
into the feasible set. That is to say, Problem (4.2) was solved setting f(x) = ||x − xsh||
and f(x) = ||x − xpr||. Results are shown in Table 4.1b (where notation x∗⊥ stands for
the projection of * into the feasible set), along with the value of the contribution vn for
each node. Topologies 2 and 3 constitute examples where the Proportional share does not
lie into the feasible region, so do topologies 1 and 3 for the case of the Shapley value.
We can easily verify this by noting that projections are different to the original vectors.
Consequently, as aforementioned, such methods are not suitable for our problem.
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(a) Topology 1. (b) Topology 2.

(c) Topology 3.

Figure 4.3: Topologies used throughout the simulation studies.

The impact of the objective function We now explore through simulations the use of
the different objective functions introduced above. By construction, all solutions verify
the Efficiency and Stability properties. Hence, we are interested in evaluating their be-
haviour with respect to the Fairness and Monotonicity properties. We shall thus divide
the simulation studies into those two cases.

Fairness evaluation. Consider topologies in Fig. 4.3 and the Utility functions shown
in Table 4.2. Capacity nodes are equal to 10 and services bandwidth is 5, all values in a
coherent unit. We compute the revenue share in these scenarios with the proposed method
and the objective functions introduced above. Results are shown in Fig. 4.4, along with
the Shapley value and the Proportional share, all values normalized.

Fig. 4.4 should be read as follows. On the right-hand side of the figure the Proportional
share and the Shapley value are shown as reference values to ease the interpretation of
the results. These values are normalized, thus the Proportional share coincides with the
contributions vector. The Proportional shares are stacked up in descending order, bottom-
up from the highest contribution to the lowest. This same order is respected in all bars
and in the legend. On the left-hand side of the figure each bar corresponds to the stacked
shares computed with the proposed method and with different objective functions. Shares
are as well stacked up following the order imposed by the Proportional share.

Fig. 4.4a shows that considering the weighted sums as objective functions does not
provide Fairness. Indeed, the equals treatment of equals property is not verified. We can
readily see that, while the contributions of nodes 3 and 4 are the same, their shares
differ significantly since node 3 is getting all the revenue and node 4 receives no revenue.
Moreover, with a linear objective function Problem (4.2) does not necessarily have a unique
solution, which is the case in this example. Indeed, since the criterion is linear, it can be
proved that the minimum is found at a vertex of the feasible set. Any vertex minimizing
−∑(x1+x2+x3+x4) or −

∑
(x1+2x2+8x3+8x4) for the cases weighted by the capacities

and by the contributions respectively, is a solution to the revenue sharing problem (i.e. a
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(a) Results for Topology 1.
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(b) Results for Topology 2.
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(c) Results for Topology 3.

Figure 4.4: Revenue sharing with the proposed method and different objective functions. Evalua-
tion of the Fairness property.
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Utility ($)

Service Us(5) Us(10) Us(5) Us(10) Us(5) Us(10)

s1 1 2 5 9 7 8
s2 6 9 7 11 2 3
s3 - - 11 16 5 8
s4 - - 12 18 5 8
s5 - - - - 6 11

Topology 1 Topology 2 Topology 3

(a) Utility values

Revenue Share (%)
Topology xsv⊥ xsv xpr⊥ xpr vn

1

0.284 0.278 0.280 0.280 7
0 0.018 0 0 0

0.358 0.352 0.360 0.360 9
0.358 0.352 0.360 0.360 9

2

0.175 0.175 0.200 0.211 12
0.353 0.353 0.344 0.333 19
0.297 0.297 0.256 0.246 14
0.175 0.175 0.200 0.211 12

3

0.130 0.183 0.077 0.105 2
0.023 0.076 0.077 0.105 2
0.039 0.106 0.039 0.053 1
0.039 0.106 0.039 0.053 1
0 0.014 0 0 0
0 0.014 0 0 0
0 0.036 0 0 0

0.769 0.465 0.768 0.684 13

(b) Results using existing methods and its projections into
the feasible set.

Table 4.1: Revenue sharing, one-shot scenario. Illustration of the need of a new sharing method.

Utility ($)

Service Us(5) Us(10) Us(5) Us(10) Us(5) Us(10)

s1 5 7 6 10 2 4
s2 3 6 20 27 2 3
s3 18 31 5 7
s4 10 16 6 8
s5 8 16

Topology 1 Topology 2 Topology 4

Table 4.2: Utility functions for simulations evaluating the Fairness property.

solution to Problem (4.2)). In this case, for instance, for the capacity weighted function, the
vectors (0, 0, 8, 0), (0, 0, 0, 8), (1, 2, 0, 5) and (1, 2, 5, 0) are all examples of feasible solutions,
of which Fig. 4.4a only shows the former. However, none of them gives the same share to
node 3 and node 4, so fairness in not fulfilled with any of those solutions. We discard the
use of linear functions since they neither provide with a unique solution nor they provide
fairness.
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Fig. 4.4b shows that function f(x) = ||x||2 does not provide with Fairness either. In
this case is the property order preserving that is not verified. Indeed, while, for instance,
node 1’s contribution is greater than node 4’s contribution, they all receive the same share.
We observe as well that, as commented above, considering this objective function tends
to equalize the shares.

Fig. 4.4c shows that the no free riders property is verified by all the considered func-
tions, while it is not respected by the Shapley value. Indeed, only nodes 8, 3 and 4 have
positive contributions, while all nodes receive some non null share according to the Shapley
value. The solutions computed through the proposed method with any of the considered
objective functions respect the no free riders properties.

In addition, results with all three topologies show that projecting the Shapley value,
the Proportional share, and the contributions vector, behave well with respect to our
definition of Fairness. In all cases order preserving, no free riding and equal treatment of
equals is fulfilled.

With respect to the projection of the contributions vector, it could be surprising that for
nodes with strictly positive contribution, the rule may assign a null share, while Stability
and Fairness are fulfilled. This is the case, for instance, for node 1 and node 2 in Topology
1, whose results are shown in Fig. 4.4a. However, take for instance node 1, if it would
have a strictly positive revenue when acting alone, that is if V ({1}) > 0, a strictly positive
share would be assured through the Stability property. In other words, even if its share is
null, it would not get more revenue by acting alone and being in the alliance is thus not
detrimental to it.

As a consequence of the previous simulations we discard the use of weighted sums
as objective functions, since as shown above they provide neither a unique solution nor
Fairness. Following simulations focus on the objective functions that involve the projection
of the Shapley value, the Proportional share, or the contributions vector. In particular we
shall evaluate the results when the capacities of the nodes increase, one at a time. In other
words, we evaluate the Monotonicity property as defined in Section 4.2.2.

Monotonicity evaluation. Consider Topology A shown in Fig. 4.1a where nodes capac-
ities are equal to one unit. Services of one unit of bandwidth are sold. Consider the utility
functions shown in Table 4.3. Results for the different objective functions when varying the
capacity of node 3 are shown in Fig. 4.5, along with the normalized contribution vector.
Please note that in this case shares are stacked up bottom-top starting from node 3, then
node 1 and finally node 2. This allows to easily check the change in node 3’s share when
its capacity increases.

This simple example shows that f(x) = ||x−xpr||2, f(x) = ||x||2 and f(x) = ||x−xsh||2
do not provide monotonicity. Indeed, as long as node 3 is the bottleneck of both services,
its share increases when its capacity increases. Once node 3 is no longer the bottleneck, the
increase in its capacity produces, of course, an increase in the total revenue, but however
a decrease in its own share. However, the projection of the contributions vector, that is
when f(x) = ||x− v||2, passes this monotonicity test. Further simulative studies showing
the fulfilment of the monotonicity property when using f(x) = ||x − v||2 are provided in
Appendix B.

All in all, we have shown that the objective function of the proposed revenue sharing
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Utility ($)

Service Us(1) Us(2)

s1 4 8
s2 4.4 5

Topology A.

Table 4.3: Utility functions for simulations evaluating the Monotonicity property.
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(a) Projection of the contributions vector and the proportional share, along with the normalized contribu-
tions vector.
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(b) Projection of the Shapley value and minimization of the Euclidian norm of the revenue share vector,
along with the normalized contributions vector.

Figure 4.5: Revenue sharing with the proposed method and different objective functions. Evalua-
tion of the monotonicity property.
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Objective function f(x)

Property ||x||2 ||x− xsh||2 ||x− xpr||2 ||x− v||2 −vTx −cTx
Stability � � � � � �

Efficiency � � � � � �

F
a
ir
n
es
s Eq. treat. of eq. × ∼̌ ∼̌ ∼̌ × ×

Order preserving × ∼̌ ∼̌ ∼̌ × ×
No free riders ∼̌ ∼̌ ∼̌ ∼̌ ∼̌ ∼̌
Monotonicity × × × ∼̌ ∼̌ ×

Table 4.4: Summary of the properties provided by the proposed method according to the objective
function. (�) fulfilment, (×) no fulfilment, (∼̌) no counter example found.

problem, that is of Problem (4.2), has a great influence in the properties fulfilled by the
revenue shares obtained by the proposed method. Table 4.4 summarizes the evaluated
functions and the obtained results. It is important to say that the results shown in this
subsection and summarized in Table 4.4 are supported by further extensive simulative
studies, some of them are presented in Appendix B. In particular, those properties that
are marked as no counter example found, respond to those extensive simulative studies
and not only the cases presented in this chapter.

Results allow to conclude that the projection of the contributions vector, that is con-
sidering f(x) = ||x− v||2, presents the desired properties. Indeed, Stability and Efficiency
are verified by construction, and Monotonicity and Fairness were verified in a variety of
conducted simulative studies.

4.5.2 Multi-period Scenario

We shall now focus on the multi-period scenario, that is to say, when several phases of
service selling occur. We shall assume that, provided that the revenue sharing rule assures
the discussed properties, NSPs do not leave or enter the alliance during the multi-period.
In other words, alliance formation and dissolution occurs in a much longer time-scale.
However, the utility functions vary in a much shorter time-scale. A new period thus implies
new utility functions, that is different values for Us, s ∈ S. This necessarily leads to a
different feasible set. Finding on each period a valid revenue sharing vector would involve
performing a great number of computations, besides to a great exchange of information
among the domains and the central entity solving the revenue sharing. In other words,
the multi-period case may pose the problem of scalability thus, we face the challenge of
providing a scalable approach. One could naively propose as a solution to compute the
revenue sharing once, and then simply keep the sharing proportion for the subsequent
revenue sharing phases. However, if we were to use the same proportion for a new service
selling instance, then the new revenue sharing vector can lie within the new feasible set
or outside of it, which leads us to discard that option. In order to illustrate this situation
we present a simple example. Consider Topology D in Fig.4.6. All nodes have capacity
of 1 and all services have bandwidth equal to 1. Consider first that utility functions are

U (1) = {U (1)
s }, s = 1, 2, 3 with U

(1)
1 = U

(1)
2 = 1 and U

(1)
3 = 5. The optimal allocation is

thus selling all the capacity to service 3 and the total revenue is V ({1, 2}, c, U (1)) = 5.
Besides, V ({1}, c, U) = V ({2}, c, U) = 1 and the contributions vector v is v = (4, 4).
The feasible set for this situation is illustrated in Fig. 4.7a and is indicated by the thick
line. Computing the revenue shares with the proposed method and with the criterion of
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projecting the contributions vector v onto the feasible set, we obtain x = (2.5, 2.5), which
is indicated with a red cross in Fig. 4.7a. This corresponds to 50% of the revenue for
each NSP. Consider now that in a subsequent service selling phase utility functions U (2)

are such that V ({1, 2}, c, U (1)) = 7, V ({1}, c, U (2)) = 1 and V ({2}, c, U (2)) = 4. The new
feasible set is indicated with a thick line in Fig. 4.7b. If the same revenue share proportion,
that is 50% for each NSP indicated by the dotted line in Fig. 4.7b, is kept for this phase,
the resulting revenue share lays outside the new feasible set.

Figure 4.6: Topology D.

All together, in order to provide a scalable solution, we are motivated to perform
the revenue sharing on a longer time-scale than the service selling phase, and work with
statistics of the utilities received during the several service selling phases considered for a
given revenue sharing phase. In the following we shall discuss two different approaches to
work with such statistics.
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(b) The feasible set with utility functions U (2).

Figure 4.7: Example of two subsequent Revenue Sharing phases for Topology D with different
utility functions.
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4.5.2.A Approach 1.

In order to model the multi-period situation, let us introduce the assumption that the
utility functions are concave random functions. This is the case, for instance, if utility
functions are built after the bids received for buying the services through a first price
auction mechanism, as the one introduced in Chapter 3. Provided this, we can represent
the utility functions of several service selling phases occurred during a certain period
of time by their mean over that period of time. As usually, notation E represents the
expectation of a random variable. We define the mean utility function as:

U s(as) = E{Us(as)}, (4.10)

which is still a non-decreasing concave function of as,∀s ∈ S. Finally, we redefine the
revenue function V by Problem 4.3, and call it V.

Problem 4.3

max
a

∑

s∈S

U s(as)

s.t.Ra ≤ cQ.

The procedure then continues as in the one-shot scenario, solving the revenue sharing
problem, that is solving Problem 4.2 to chose one point within the feasible set. The dif-
ference with the one-shot case is that now in order to compute the feasible set, that is to
say to compute v̂, function V instead of V is used.

This approach mechanism makes it possible to perform the computation only once in a
while (e.g. monthly). In addition, the amount of information exchanged is also kept small,
since the only information that has to be transmitted to the central entity on each revenue
sharing phase is the mean of the utilities over that period, that can span many service
selling phases. However, a pertinent question is whether this approach still guarantees the
desired properties. In particular we shall discussed in the second approach the fulfilment
of the stability property.

4.5.2.B Approach 2.

Usually, providers’ decisions are based on mid-term or long term behaviours, mainly to
keep network stability. Likewise, the interest of the providers to remain in the alliance
would be based on its economic stability in the long term. That is, they would likely be
interested in remaining in an alliance that is economically attractive in the long term. In
order to consider such situation, we compute the long term feasible set, computed based
on the expectation of the revenues of each sub-coaliton, and obtain the revenue sharing
from such set. This is summarized on Problem (4.4).

Problem 4.4

min
x

f(x)

s.t. Qx ≥ E{v̂}, eTx = E{V (N)}.

Please note that E{v̂} is obtained by computing the expectation of the output of
the problem defining the revenue function, that is Problem (4.1), for each sub-coalition
Q ⊆ N .
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The raised question reduces then to answering if the point chosen by Problem (4.3) lies
within the feasible set of Problem (4.4) or not. Unfortunately this is not necessary true.
Indeed, as shown in [101], where relationships between stochastic non-linear programming
problems are demonstrated, the following inequality applies:

E{V (Q)} ≥ V(Q),∀Q ⊆ N, (4.11)

which means that the feasible set of Approach 2 is contained in the one of Approach 1.
However, we have no indication about the tightness of the bound, thus we shall evaluate
the impact of using either of both approaches by simulation, in the following section.

Please note that Approach 1 has a lower computational complexity than Approach 2.
Indeed, in Approach 1, 2|N | NUM problems must be solved in order to determine the feasi-
ble solutions set. On the other hand, Approach 2 needs to solve, for each selling phase, 2|N |

NUM problems in order to determine the feasible solutions set. The following subsection
presents simulation studies that compare the results obtained using both approaches and
evaluates the computational time consumed by both approaches.

4.5.2.C Multi-Period Simulations

We now compute the solution according to Approach 1 and Approach 2. In both cases, a
number of 50 service selling phases were performed before a revenue sharing (RS) phase
and the projection of the contributions vector v was used as criterion. Simulations were
performed on a regular computer with a i5 processor of 2.67GHz and 3.6 GB of RAM
memory.

Results for Topology 2 are shown in Fig. 4.8a. For this topology, on every RS phase
the results obtained using both approaches are almost the same. Same thing occurs for
all the simulations performed, in particular for the one over Topology 3, whose results for
selected nodes are shown in Fig. 4.8b.

Further simulative studied are available in Appendix B, where the behaviour seen in
this Chapter are as well observed. In particular, for all the considered topologies and utility
functions both approaches provide very similar results.

We now evaluate the computation time consumed by each approach. We shall consider
a simple topology with only one service defined, as Topology B illustrated in Fig. 4.1b,
and linearly increase the number of nodes in the service’s path. Since NSPs alliances are
likely to have no more than 10 nodes, considering, for instance, that the average AS path
in the Internet is of 4 ASs [55], we have increased the number of nodes up to 8 nodes, and
evaluated if at that scale the computation time is affordable.

Results show that for both approaches the time consumed by the method increases
exponentially with the number of nodes in the network. This is related to the Stability
property, since for taking it into account we consider all sub-coalitions of nodes (i.e. 2|N |

cases). For a topology of 8 nodes, Approach 1 consumed on the average 2 ms while Ap-
proach 2 consumed 135 ms. However, Approach 2 is still feasible, moreover considering it
is proposed to be performed off-line and in a long time-scale. Besides, the computation of
the feasible set can be performed in a completely parallel fashion.

All in all, we can claim that Approach 2 provides with a solution that fulfils the sought
properties with affordable computation time.
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(a) Results for Topology 2.
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(b) Results for Topology 3.

Figure 4.8: Comparison of the accumulated revenue share for each NSP when using Approach 1
(-) and Approach 2 (+).

4.6 Summary

In this chapter we have addressed the problem of revenue sharing in the context of NSP
alliances. We have focused on the case where the income of the alliance is determined
by the output of a NUM problem. This particular scenario poses new challenges. Indeed,
previous results for performing revenue sharing were found to be inappropriate applied to
this case.

The desired properties for the revenue sharing in an NSP alliance have been formally
stated and a new method has been proposed. This method is conceived for providing eco-
nomic stability and efficiency to the alliance and it is flexible enough to be adapted to
fulfil additional properties. The method is based on solving optimization problems and
considers statistics on the income. In addition, implementation concerns have been dis-
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cussed and scalability has been resolved through a centralized long-scale revenue sharing
phase. Two different approaches were discussed for working with statistics of the income.
The method’s proper behaviour has been evaluated through extensive simulation stud-
ies showing both to fulfil further properties as incentives to the NSPs to increase their
resources and fairness, and to run in affordable time.





Chapter 5

Feedback from Network Monitoring to the
Business Plane: A Pricing Scheme based on
First-price Auctions with Reimbursement

5.1 Introduction

As we have mentioned in Chapter 1, an expansion in service types and quality levels is
expected in the near future [21]. Tele-presence, tele-medicine, online gaming and teleconfer-
encing are a few examples of future enhanced services. In order to provide these services, in
addition to intrinsic networking requirements such as scalability, confidentiality and tech-
nical aspects, market implications and customers’ behaviour must be taken into account.
Therefore, holistic and interdisciplinary approaches are needed. Such approaches have en-
riched the Networking and Internet Economics research fields over the past few decades,
as recent research results show. The proposals range from interdomain Quality of Service
(QoS) path composition and Service Level Agreement negotiations, such as in [37,122], to
higher layers issues, such as modelling user reactions to changes in Internet pricing [117]
or net-neutrality analysis, see for instance [25]. The enlargement of the service offer also
aims to create new market opportunities and target different kinds of user profiles. The
real space for this new market has been identified as an issue to be studied, along with
how users are expected to react to it. In this regard, quality of experience (QoE) and its
influence on willingness to pay has gained importance and has put the end user back in
stage [128,136].

In this context, traditional flat rates, where end users pay a single fee for Internet
access regardless of usage, have to be revisited, not in order to eliminate them, but rather
to identify enhanced services where special pricing (per-service, per-amount-of-bandwidth,
per-level-of-quality, etc.) could be needed. Moreover, the mere existence of services with en-
hanced quality presupposes differentiated pricing, since otherwise every user would choose
the highest level of quality, which is sustainable from neither a technical nor an economic
point of view. In this regard, several pricing schemes for enhanced network services have
been proposed (see [53] for a survey), including some based on QoS [126,156].

The justification of new pricing schemes for enhanced services is quite unquestionable
from the point of view of the network service providers. But would buyers accept differ-
entiated pricing? Our intuition is that they would be ready to pay more for services that
are assured without question to be delivered in high quality.

77
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On the other hand, in today’s networks, failures, while less and less frequent, still do
occur, producing a negative effect on buyers’ willingness to pay. Moreover, several studies
have shown experimentally that user satisfaction has a positive effect on willingness to
pay (e.g. [70]). A failure in this context could account for a QoS threshold violation, such
as a bound on the delay, a jitter value, or even a service interruption. Intuition also says
that, while potential failures have a negative impact on willingness to pay, reimbursement
should have a positive one.

It is in this context that we propose a pricing scheme for assured-quality service selling
where buyers can make bids to obtain a quality-assured bit pipe, henceforth referred as
to the service, and can be reimbursed if ultimately the service fails. We shall show that
this reimbursement scheme, under the main assumption of symmetric buyers with private
values, incentivizes buyers not to decrease their willingness to pay due to possible failures,
which in the end results in an increase in the expected seller’s revenue. Moreover, we show
that reimbursing 100% overcomes problems like the market for lemons and moral hazard,
which we show would arise when rational buyers are uncertain about service performance.

In particular, a first-price sealed auction mechanism is proposed for selling services.
Auctions make it possible both to find the market price of services that are not yet widely
deployed, since services’ market price is revealed as part of the mechanism, and to have
guidelines to model willingness to pay.

In our framework, the seller could be, for example, an alliance of domains who sells
a pipe for transit traffic with guaranteed quality. Buyers could be, for instance, other
domains who need to buy transit, or content providers who need bandwidth with quality
guarantees in order to properly deliver their enhanced services. Hereafter, we shall simply
refer to sellers and buyers.

The proposed pricing scheme assumes the existence of a monitoring infrastructure,
which would be the one triggering the reimbursement process. The research and industry
community has somehow agreed that for QoS provisioning a monitoring infrastructure is
essential. Examples of this are found in recent projects (e.g. [4]), in recent standardisation
activities (e.g. [18]), and a wide variety of conducted research, for instance [40,137]. In this
sense, our pricing scheme proposes using the existence of the monitoring infrastructure at
the business plane, providing an economic justification for monitoring.

The remainder of this chapter is organized as follows. In Section 5.2 we review the
related literature. In Section 5.3 we clearly state the model, assumptions and definitions
required. In Section 5.4 we study buyers’ willingness to pay in the context of first-price
auctions, which is given by so-called best bidding strategies. In Section 5.5, we study the
problem from the seller’s standpoint in order to derive the best percentage of reimburse-
ment. In particular we present the pricing game modelled through a Stackelberg game.
Finally, a summary of the chapter is provided in Section 5.6. This chapter is based on [28].

5.2 Related Work

In Chapter 3 we have addressed the bandwidth allocation problem and presented band-
width auctions as mechanisms that make it possible to determine the price of the services
in sale. In particular the use of first-price auctions mechanisms was proposed. A review
of related work was presented and supporting reasons for the choice of this particular
mechanism were given in Section 3.5.2. In this section we shall focus on work related to
the specific topics of this chapter: reimbursement schemes and pricing games. Economic
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literature provides a vast yet fertile field for mechanisms based on first-price auctions.
Equilibrium or best bidding strategies have been studied under different assumptions.
The basic bidding model was introduced in [149], where results for equilibrium bidding
strategies with independent private values were shown for valuations drawn from a uni-
form distribution. More detail was later provided in [132]. Further results relaxing some
assumptions were derived in [92,130] and instructive and complete summaries can be found
in [84] and [109]. However, none of these results consider either failures or reimbursements.

Moreover, regarding reimbursement policies, the literature closely related to our sce-
nario is rather limited. Nevertheless, some related proposals have been made. Perhaps the
closest work is that one proposed by Tuffin et al. in [145]. In such work, a simple pricing
model for communication networks is presented in which reimbursement occurs if a certain
delay threshold is exceeded. Prices are fixed by the seller such that for a given amount
of reimbursement, his or her own revenue is maximized. The authors model demand such
that it is proportional to the probability that the utility exceeds a given cost. This cost
is a function of the price paid, the cost of waiting and the negative cost in case the delay
threshold is exceeded, which corresponds to a reimbursement. A certain shape for the
utility’s probability distribution function is assumed in order to draw conclusions and per-
form simulations. The authors show through simulations that this mechanism increases
the seller’s revenue compared to the case with no reimbursement. The idea behind this
method is the same as ours, though buyers’ side is modelled in a very different way, since
in that work the price is fixed by the seller, while in our work the price is determined
through the auction mechanism.

Yet another approach is proposed in [46], where second-price auctions are used for
buying one unit of a computing resource. Winning buyers pay and with a certain proba-
bility will indeed need the service. If winners do not use the service, they receive a refund
of a percentage of the payment. The authors propose a simulative approach to determine
the best refund strategy, and define a correlation between the valuation of the object and
the probability of not using it. They conclude that different correlations result in different
percentages of optimal reimbursement. The scenario is quite different to ours, but the logic
behind the mechanism is very similar to our proposal. However, in this chapter we focus
on analytical results, both for computing the dependency of the willingness to pay on the
probability of failure and reimbursement, and to compute the seller’s revenue and optimal
percentage of reimbursement. In addition, we focus on first-price auctions.

Other reimbursement schemes have also been studied in another, non-networking con-
text. A particular case is services that have the peculiarity that they can be returned
afterwards and will still possess some value for the seller (see for instance [102]). This is
not the case in the network scenario, in which the service no longer has any value to the
seller once it has been used. Another similar widely studied case is that one of assurances,
which as well differs significantly from our context.

With respect to the study of the optimum percentage of reimbursement, we shall
model the pricing game through a Stackelberg game, which are very suitable for modelling
pricing situations, where the network or the seller typically acts as leader and the users
or buyers act as followers. This kind of game has been widely used in the literature
to design revenue-maximizing network policies. For example, [39, 139] where an Internet
packet-pricing scheme is proposed for monopolistic service providers and large numbers of
users, or [26], where a pricing scheme for differentiated services is proposed, or yet [144],
where a user loyalty model to Internet service providers is proposed and applied in a
game-theoretical framework in order to derive optimal Internet access pricing strategies.
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In addition, this kind of hierarchical game has also been studied for pricing along with
power control in wireless networks, see for instance [24,61,153] and for spectrum sharing
in such networks [152].

5.3 The model

Let us begin by describing our working scenario and introducing the notations, definitions
and assumptions needed to model it. We are studying a situation where quality-assured
services are sold over an interdomain network. Such services could be, for instance, video
on demand, a VPN service interconnecting two remote sites or a network game. In all
cases, the service can be abstracted to a certain amount of bandwidth guaranteed between
two sites through an overlay network, and with certain quality parameters associated with
it. We shall call this abstraction an object. The quality parameters associated with the
object could be given, for instance, by values of the delay, the jitter, the percentage of
packet failures, the percentage of service availability, etc.

Objects are sold via a first-price sealed auction mechanism. The following assumptions
are made regarding this mechanism. We first assume a single-object case, that is to say
that M bidders or buyers compete to buy one object. We then move to the case of multi-
object, single-unit demand. In other words,M bidders compete to buyK identical objects,
and each bidder is interested in buying one single unit of such objects. Each bidder i
assigns a valuation Xi to the object and we assume that the Xis are independently and
identically distributed according to a common distribution function F . This is the so-
called symmetric model, since all bidders’ valuations are distributed according to the same
distribution function. At the moment of bidding, bidder i knows the realization xi of his
or her valuation but does not know the valuation attached to the object by other bidders,
and this knowledge would not affect his or her own valuation, which is the so-called private
values model.

Conversely, we assume that the service has no value to the bidder if it fails. Please note
that actually bidders could attach a negative value to the service when it fails, rather than
a null one. This would be the case, for instance, if the failure causes losses to the buyer’s
business. This could be easily modelled by considering a negative deterministic valuation
in case of failure. For clarity’s sake, we shall not consider this artefact in the model, though
doing so would not change the methodology applied to address the problem.

Bidders are assumed to be risk-neutral, as they seek to maximize their expected profits.
Bidder i’s bid is denoted by bi and it is obtained according to a bidding strategy called
βi. That is to say, bidder i’s bid is determined as bi = βi(xi). Finally, we assume a
discriminatory payment rule, which means that the winning bidder pays his bid. We shall
generally simplify notation and refer to x as the realization of the valuation of any given
bidder.

The service has an associated probability of failure, denoted by θ in our framework. If
indeed the service fails, money is given back. The amount of money returned is proportional
to what has been paid for the object and the coefficient of proportionality is represented by
q ≥ 0, which could a priori be greater than one. We shall as well refer to q as a percentage
of reimbursement.

The percentage of reimbursement associated with the object is always announced to
the bidders before they announce their bids, and it is the same value for all bidders. Bidders
have their own estimations regarding the probability of failure of a service, which will have
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an impact on the value of the bid they submit. This estimation could, a priori, be based
on service performance perception. Buyers could even perform their own measurements on
historical observations in order to estimate the probability of failure, or they could infer
it from the percentage of reimbursement announced. But we shall address this issue later
on. For the moment let us denote the probability of failure assumed by the bidders at the
moment of placing their bid as θ̃, which is not necessarily equal to θ.

5.4 The Optimal Bidding Strategy

In order to determine how the willingness to pay for a service is affected by the probability
of failure θ̃ and the percentage of reimbursement q, we study the optimal bidding strategy
under such conditions, under the assumptions of Section 5.3, first for a single object on
sale and then for multiple objects.

5.4.1 The Single-Object Case

The single-object case models the situation in which the total available capacity, along
with quality guarantees, is to be allocated to one single client, i.e. to the winning bidder.
We shall show that in this case and under the assumptions of Section 5.3, a symmetric
equilibrium exists, that is to say an equilibrium where all bidders adopt the same best
strategy. Theorem (5.1) formally states this along with the mathematical expression for
the best bidding strategy.

Theorem 5.1 The Symmetric Equilibrium, Single Object Case. Given a set of M symmet-
ric bidders whose valuations Xi, i = 1 . . .M are identically and independently distributed
(i.i.d.) from a probability distribution F (x), the bidding strategy that maximizes each bid-
der’s payoff in a first-price sealed auction mechanism for a single object which is assumed
to fail with probability θ̃ and for which a percentage q of the amount paid is given back if
it actually fails, is the same for all bidders and is given by:

β(x) =
1− θ̃

1− qθ̃
E[Y

(1)
M−1|Y

(1)
M−1 ≤ x], (θ̃, q) ∈ D, (5.1)

where Y
(1)
M−1 is a random variable defined as the maximum over M − 1 i.i.d. random

values from distribution F and D = {θ̃ ∈ [0, 1), q ≥ 0 : qθ̃ < 1}.

Proof Let us first assume that a symmetric equilibrium exists, meaning that all bidders
follow the same strategy, βi = β, i = 1 . . .M . Any bidder’s payoff P̃ can thus be expressed
as a function of his or her bid b as in Equation (5.2), where β(x) = b and 1e is equal to 1
if event e occurs, and 0 otherwise.

P̃ = 1win(x1not failure − b(1− q1failure)), (5.2)

Now let G be the cumulative distribution function of the maximum valuation over
M − 1 valuations i.i.d. according to F , which we shall denote as Y

(1)
M−1. The notation in

Y
(1)
M−1 means that we are selecting the highest value, indicated by superscript 1, among

a sample of size M − 1, indicated by subscript (M − 1). Please note that Y
(1)
M−1 is then
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the (M − 1)− th order statistics of a sample of (M − 1) i.i.d. values according to F . The
expectation of a bidder i’s payoff can be expressed as:

E{P̃ |Xi = xi} = G(β−1(bi))(xi(1− θ̃)− bi(1− qθ̃)). (5.3)

In Equation (5.3) we have used the fact that the probability of winning the auction is

Pwin(bi) = P(bi > max
j 6=i

bj) = P(β(xi) > max
j 6=i

β(Xj))

= P(xi > max
j 6=i

Xj) = G(xi), (5.4)

where symmetric equilibrium is assumed, and in the last equality, the assumption is made
that β is a strictly increasing function of x. Please note that in the reasoning above we
have used θ̃ and not θ, since we are looking at the problem from the buyer’s point of view.
Since the previous reasoning is valid for any bidder, in what follows subscript notation is
avoided.

Finding the bidding strategy β that maximizes Equation (5.3) reduces to setting its
derivative with respect to b equal to zero and imposing b = β(x). The derivative of the
expected payoff with respect to b is shown in Equation (5.5), where we have introduced
the notation g(x) = G′(x) and where we have applied the well-known formula for the
derivative of the inverse function.

g(β−1(b))

β′(β−1(b))
(x(1− θ̃)− b(1− qθ̃))−G(β−1(b))(1 − qθ̃) = 0, (5.5)

Under the assumption of symmetric equilibrium β−1(b) = x holds. Applying this equal-
ity to Equation (5.5) we obtain:

xg(x)(1 − θ̃)− g(x)β(x)(1 − qθ̃)−G(x)β′(x)(1 − qθ̃) = 0 (5.6)

The study must be divided into two cases, namely qθ̃ < 1 and qθ̃ ≥ 1. We assume as
well that β(0) = 0.

qθ̃ < 1. First consider θ̃ 6= 1. In this case Equation (5.6) can be rewritten as:

β′(x) + β(x)
g(x)

G(x)
− x

g(x)

G(x)

1− θ̃

1− qθ̃
= 0 (5.7)

whose solution is

β(x) = −e−S(x)

∫ x

0
eS(z)T (z)dz, (5.8)

where:

S(x) =

∫ x

0

g(z)

G(z)
dz = logG(x) and T (x) = −x g(x)

G(x)

1− θ̃

1− qθ̃
.

Hence, operating we obtain:
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β(x) =
1

G(x)

∫ x

0
zg(z)dz

1− θ̃

1 − qθ̃

= E[Y
(1)
M−1|Y

(1)
M−1 ≤ x]

1− θ̃

1− qθ̃
, (5.9)

where the last equality comes directly from the definition of conditional expectation.

Consider now θ̃ = 1. Equation (5.5) reduces to

g(β−1(b))

β′(β−1(b))
(−b(1− qθ̃))−G(β−1(b))(1 − qθ̃) = 0, (5.10)

which results in

−g(x)
G(x)

=
β′(x)

β(x)
. (5.11)

Integrating Equation (5.11) on both sides we obtain

β(x) =
κ

G(x)
, (5.12)

where κ is a real constant of integration.

In order to verify whether the assumption of symmetric bidding functions holds, we
suppose, without loss of generality, that all bidders but one bid with the same optimal
bidding function found above. We shall check if it is also optimal for the remaining bidder
to bid according to this function.

Consider first the case of θ̃ 6= 1. Bidder 1’s expected payoff (P̃i) if he or she bids β(z)
when his or her value is actually x is:

P̃i(β(z), x) = G(z)(x(1 − θ̃)− β(z)(1 − qθ̃)). (5.13)

Hence, the difference with the bidder’s expected payoff if bidding β(x) is:

P̃i(β(z), x) − P̃i(β(x), x) =

G(z)(x(1 − θ̃)− β(z)(1 − qθ̃))−
G(x)(x(1 − θ̃)− β(x)(1 − qθ̃))

= (1− θ̃)x(G(z)−

−G(x)) + (1− θ̃)

∫ x

z
vg(v)dv

= (1− θ̃)x(G(z) −G(x)) + (1− θ̃)

[

G(v)v |xz −
∫ x

z
G(v)dv

]

= (1− θ̃)

[

G(z)(x − z) +

∫ z

x
G(v)dv

]

, (5.14)

where we have used integration by parts. It remains to be determined if Equation (5.14)
is negative for any value of z. If it were to be negative, then bidder 1’s expected payoff by
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(a) z < x (b) z > x

Figure 5.1: Illustration of the components of Equation (5.14).

bidding something different from β(x) would not be greater than the payoff obtained if he
were to bid β(x).

We graphically show that indeed, Equation (5.14) is strictly negative ∀z 6= x. Consider
Fig. 5.1, where two different cases are distinguished. When z < x, as illustrated in Fig.
5.1a, the shaded area corresponds to −

∫ z
x G(v)dv and the dotted area corresponds to

G(z)(x − z). The shaded area is greater than the dotted area for any G (we recall that
G is a distribution function, thus it is always non-decreasing). Hence, Equation (5.14) is
negative for any z < x.

Likewise, when z > x, which corresponds to the situation in Fig. 5.1b, the dotted area
corresponds to the term

∫ z
x G(v)dv and the shaded area to the opposite of G(z)(x−z). The

shaded area is always greater than the dotted one, thus Equation (5.14) is again strictly
negative. All together, we obtain that Equation (5.14) is negative for any value of z 6= x,
which means that there is no other bid leading to a greater payoff than bidding β(x). We
conclude that the assumption of symmetric equilibrium holds for the case (θ̃, q) ∈ D.

Consider now the case q < 1 and θ̃ = 1. β is given by Equation (5.12), where κ is such
that β(0) = 0. But since G(0) = 0, it follows that there is no value of κ, either than the
trivial κ = 0, verifying β(0) = 0. We have obtained a contradiction, hence we conclude
that the assumption of a symmetric equilibrium is not possible, and no equilibrium exists
for this case.

qθ̃ ≥ 1. In this case we notice that the expected payoff, given in Equation (5.3), is always
increasing with b, thus there is no equilibrium.

5.4.2 Multi-Object, Single-Demand Case

The multi-object scenario corresponds to the case where the available capacity is split into
several identical bandwidth chunks, each with certain quality guarantees, and each to be
assigned to a different client. Single demand means that each client is interested in exactly
one of these chunks or services. Let us assume that the auction mechanism is launched for
selling K objects. The only thing that changes with respect to the single-object case is
the probability of winning the auction, which in this case corresponds to the probability
of being among the K highest bids.
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Theorem 5.2 The Symmetric Equilibrium, Multiple-Object Single-Demand Case. Con-
sider a set of M symmetric bidders whose valuations Xi, i = 1 . . .M are i.i.d. from a
probability distribution F (x). Consider a mechanism implemented through a first-price
sealed auction for selling K identical objects, which are assumed to fail with a probability
θ̃ and for which a percentage q of the amount paid is given back if the service actually
fails. Consider that each bidder is interested in a single object.

In such conditions, the bidding strategy that maximizes each bidder’s payoff is the same
for all the bidders and is given by:

β(x) = E[Y
(K)
M−1|Y

(K)
M−1 ≤ x]

1− θ̃

1− qθ̃
, θ̃, q ∈ D, (5.15)

where Y
(K)
M−1 is a random variable defined as the K-th highest value among (M − 1)

i.i.d. values according to F , and where D = {θ̃ ∈ [0, 1), q ≥ 0 : qθ̃ < 1}.

Proof Since β is assumed to be an increasing function of xi, and we assume a symmetric
equilibrium, i.e. bi = β(xi)∀ i, the probability of winning for bidder i is equal to the
probability that his valuation xi is among the K highest valuations.

Considering this probability of winning the auction the proof is analogous to the single
object case. Hence, the symmetric equilibrium for the optimal bidding strategy is readily
generalized to the multi-object scenario and is given by Equation (5.15).

5.4.3 Bidding Behaviour Remarks

The best bidding strategy deserves a closer look. First, it is interesting to note that it fol-
lows some intuition. Indeed, according to Theorem (5.1) and Theorem (5.2), β increases
when the percentage of reimbursement does so, and when the percentage of reimburse-
ment is less than 100%, β decreases when the probability of failure increases. This means
that buyers decrease their bids when they assume that services fail frequently unless the
percentage of reimbursement is greater than or equal to 100%, which is quite intuitive. It
means as well that for the same level of failures, the higher the percentage of reimburse-
ment, the higher the bid, which is also consistent with intuition.

This behaviour is shown in Fig. 5.2 for different values of (θ̃, q) ∈ D, where α, defined

as α = 1−θ̃
1−qθ̃

, is the multiplying factor on the best bidding strategy.

Let us finalize this section with two illustrative examples.

Buyers with uniformly distributed valuations. Consider a situation where there are M
buyers whose valuations are uniformly distributed on [0, 1] and there is a single service for
sale. In this case F (x) = x, G(x) = xM−1 and the optimal bidding strategy is given by
Equation (5.16), which is valid for (θ̃, q) ∈ D.

β(x) =
1− θ̃

1− qθ̃

M − 1

M
x. (5.16)

It is worth noting that for different values of q and θ̃, bidders either shade their valua-
tions, announce their true valuation, or overbid. We say that they shade their valuations
when the bid is smaller than the valuation, as occurs in the case with no reimbursements
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Figure 5.2: Contour Lines of function α, the multiplying factor of the best bidding strategy, for
different assumed probabilities of failure θ̃ and percentage of reimbursement q.

and no failures. Conversely, we say that bidders overbid when their bids are greater than
their valuations. In contrast, in cases with no failures, bidders always shade their bids.

Two buyers with exponentially distributed valuations. Suppose that we have two bid-
ders whose valuations are i.i.d. from an exponential distribution of parameter λ. The best
bidding strategy can be directly obtained by considering F (x) = 1 − exp(−λx) and the
result of Theorem (5.1).

We first observe that β(x) can be rewritten as

β(x) =
1− θ̃

1− qθ̃

(

x−
∫ x

0

G(z)

G(x)
dz

)

(5.17)

Indeed, let us, again, for convenience note α = 1−θ̃
1−qθ̃

.

β(x) = α
1

G(x)

∫ x

0
zg(z)dz

=
α

G(x)

(

G(x)x−
∫ x

0
zg(z)dz

)

= α

(

x−
∫ x

0

G(z)

G(x)
dz

)

, (5.18)

where the second equality is obtained by integrating by parts.

Since we have only two bidders, G(x) = F (x). Thus
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β(x) = α

(

x−
∫ x

0

1− exp(λz)

1− exp(λx)
dz

)

=
α

λ
− αx · exp(−λx)

1− exp(−λx) (5.19)

5.5 Expected Seller’s Revenue

We shall now study the problem from the seller’s standpoint, with the ultimate objective
of finding the optimal value of the percentage of reimbursement q. For these purposes, we
shall study the seller’s outcome. Since there are some uncertainties at each transaction,
namely whether the service will fail or not, as well as the intrinsic uncertainty of the selling
price due to the auction mechanism in place, we shall model the seller’s outcome through
his or her expected revenue. We recall that there are K units of the same object for sale.
There are M ≥ K bidders, who participate in a first-price auction to obtain one object.
Let us order their bids as:

b(1) ≥ b(2) ≥ · · · ≥ b(M), (5.20)

which are obtained as b(i) = β(x(i)), where x(i) represents the ordered bidders’ valuation
and β is given by Theorem (5.2).

The services are allocated to the K highest bids; thus the money paid can be expressed
as a function of K and the valuations x = (x(1), . . . , x(M)) as:

I(K,x) =
K∑

i=1

b(i) =
K∑

i=1

β(x(i))

=

K∑

i=1

E[Y
(K)
M−1|Y

(K)
M−1 ≤ x(i)]

1− θ̃

1− qθ̃
. (5.21)

In order to simplify the notations henceforth let us introduce function u(K,x) defined
as:

u(K,x) =

K∑

i=1

E[Y
(K)
M−1|Y

(K)
M−1 ≤ x(i)]. (5.22)

According to our proposed pricing scheme, if failures take place the seller will give
money back. Let us assume that failures occur for all service at the same time. This model
accounts for failures given by an equipment failure or congestion for example. Then the
seller’s revenue given that the bidders’ valuations are x = (x(1), . . . , x(M)), is:

R(K,x)

=I(K,x)1no failure + (1− q)I(K,x)1failure (5.23)

Since valuations and failure events are independent, the mean seller’s revenue given
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the bidders’ valuations x is:

R̄(K,x)

=I(K,x)(1 − qθ) = u(K,x)
1− θ̃

1− qθ̃
(1− qθ). (5.24)

Please note that if we were to assume that failures do not occur for all objects at the
same time, it is easy to check that we would also obtain Equation (5.24) for the expected
seller’s revenue.

Finally, the ex ante expected seller’s revenue, that is the seller’s expected revenue
taking into account the randomness of valuation’s vector X , is obtained as

E{R̄(K,X)} = E{u(K,X)} 1− θ̃

1 − qθ̃
(1− qθ), (5.25)

where the expectation is over the valuations Xi, and X = (X(1), . . . ,X(M)) is the
vector of valuations Xi, i ∈ {1, . . . ,M} sorted in non-increasing order.

Hence, the seller’s expected revenue can be tuned through the value of q. However,
the value of θ̃, which also influences the seller’s expected revenue, is determined by the
buyers. We shall divide the following study into three parts, each of which makes different
assumptions about the buyers’ behaviour.

5.5.1 Complete Information

We shall first assume that buyers have complete information about the services’ perfor-
mance. The information can be obtained, for instance, through a monitoring infrastructure
available for buyers’ consultation, or from knowledge obtained through previous observa-
tions. In our model, this situation is translated into θ̃ = θ. We shall refer to this scenario as
complete information because it supposes that seller and buyers have the same information
regarding the probability of failures.

Hence, the expected seller’s revenue becomes, regardless the value of q, equal to:

E{R̄(K,X)} = E{u(K,X)}(1 − θ). (5.26)

According to Equation (5.26), the seller has incentives to keep the probability of failure
low, which is quite intuitive.

5.5.2 Asymmetric Information with Naive Buyers

We shall now consider the situation where buyers have no means of determining the
probability of failure on their own. We refer to this situation as asymmetric with respect
to the information, since the seller has more knowledge about service performance than
buyers do. In this situation, the seller can announce the probability of failure, along with
the percentage of reimbursement. We shall assume that buyers will take the value of the
probability of failure announced by the seller as granted. We have called buyers in this
situation as naive, risking to be using a too strong characterization. This should be rather
interpreted as opposed to the rational buyers case, which we shall introduce following in
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Figure 5.3: Variation of the seller’s expected revenue as a function of reimbursement q for a real
probability of failure θ = 0.1 and for different values of probability of failure assumed by the buyers.

Subsection 5.5.3, and the term naive should only be interpreted as buyers being seller’s
announcements takers

It can be readily derived from the seller’s expected revenue in Equation (5.25), that
this expected revenue increases with q when θ̃ is greater than θ.

Indeed, let us define Bθ : D → R

+ as:

Bθ(q, θ̃) =
1− θ̃

1− qθ̃
(1− qθ), (5.27)

where D = {θ̃ ∈ [0, 1), q ≥ 0 : qθ̃ < 1}.
According to Equation (5.25), the behaviour of the seller’s revenue is driven by Equa-

tion (5.27), which is shown in Fig. 5.3. The seller could take advantage of this behaviour
by announcing a probability of failure higher than the real one, and setting reimbursement
at a value greater than 100%. In other words, negative marketing could be used, with a
higher probability of failure being announced than the real one, with the goal of fooling
naive buyers for the seller’s benefit.

However, the negative marketing policy could be disadvantageous for the seller as
well, for at least two reasons. First, if in the end buyers disregard sellers announcement
with respect to the probability of service and assume some other value convenient for
them, seller’s revenue could diminish, to a value even lower than the revenue obtained
when reimbursing 100%, as illustrated by Fig. 5.3. Second, the seller could be judged
by buyers as untrustworthy, which could lead to losses not captured in our model. This
situation demonstrates again that the seller’s revenue depends on buyers’ behaviour. In
the following subsection we shall anticipate this behaviour in the case of asymmetric
information by supposing that buyers act rationally.
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5.5.3 Asymmetric Information with Rational Buyers

Let us now consider the case where buyers are uncertain about the probability of failure
of the service they wish to buy and where they act rationally, seeking to maximize their
payoffs. The seller’s ultimate objective is still to set the value of q such that his or her
revenue is maximized. We shall show that these two objectives, namely maximizing seller’s
and buyers’ payoff, are conflicting, thus rather than finding an optimum we shall look for
an equilibrium setting. Let us formalize this in what follows.

We recall that the dynamics of the proposed pricing mechanism implies that the seller
announces a percentage of reimbursement q for a service which fails with probability θ.
After the announcement, buyers bid to obtain this service, assuming that the probability
of failure is θ̃, a priori not necessarily equal to θ, and being aware of the value of q. The
dynamics of service selling naturally impose an order: the seller announces a value of q
and the buyers follow. Each side of the market, seller and buyers, take an action seeking
to maximize their own utilities.

This kind of interaction is conveniently modelled by Stackelberg games [150], intro-
duced by von Stackelberg in 1934. In a two sided Stackelberg game there is a leader that
plays first, in our case the seller, and the follower, in our case the buyers, who plays
next knowing the leader’s move. We have already introduced the seller’s utility, that is
the seller’s expected revenue in Equation (5.25). Let us now introduce the utility of the
buyers, that is the bidder’s expected payoff.

5.5.3.A Bidders’ Expected Payoff

We now derive the buyer’s expected payoff considering their payoff when bidding according
to the best bidding strategy, given by Theorem (5.2). Following the same reasoning as for
deriving the best bidding strategy in Section 5.4 a bidder’s payoff is:

P = 1win(x1not failure − β(x)(1 − q1failure)), (5.28)

where β is expressed in Equation (5.15) and the failure event refers to the real event
of failure.

Computing expectations over the event of winning or not and the event of real failures,
and replacing β by its definition we obtain the following expression for the real expected
payoff of each bidder:

E{P |X = x} = G(x) (5.29)

·
[

x(1− θ)− E[Y
(K)
M−1|Y

(K)
M−1 ≤ x]

1− θ̃

1− qθ̃
(1− qθ)

]

.

In Equation (5.29) we have considered a given realization of X. Let us now consider
the expected payoff prior to having knowledge of this realization, by computing the so
called ex ante expected payoff as:
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E{P} = E{E{P |X = x}} = E{G(X)X} · (1− θ)

− E{
∫ X

0
vg(v)dv} 1− θ̃

1 − qθ̃
(1− qθ), (5.30)

where the expectation is over the valuations.

5.5.3.B The Pricing Game

It can be readily noticed from the expected seller’s revenue and buyers’ payoff in Equations
(5.25) and (5.30) respectively, which we have reproduced in Table 5.1 for convenience, that
seller’s objective and buyers’ objective comes to respectively maximizing and minimizing
Bθ(q, θ̃). They thus have opposing objectives, so the optimal reimbursement value would
be an equilibrium in the following pricing game.

Best Bidding
β(x) = E[Y

(K)
M−1|Y

(K)
M−1 ≤ x] 1−θ̃

1−qθ̃Strategy

Seller’s
E{R̄} = E{u(K,X)}Bθ(q, θ̃)Expected Revenue

Buyers’ E{P} = E{G(X)X} · (1− θ)

Expected Payoff −E{
∫ X
0 vg(v)dv}Bθ(q, θ̃).

Bθ(q, θ̃) =
1−θ̃
1−qθ̃

(1− qθ), (q, θ̃) ∈ {θ̃ ∈ [0, 1), q ≥ 0 : qθ̃ < 1}

Table 5.1: Summary of derived expressions.

Problem 5.1 The Pricing Game is a zero-sum static Stackelberg game where:

• The leader is the seller and the buyers are followers

• The leader’s set of available actions is {q : q ∈ R

+}

• The follower’s set of available actions is the set {θ̃ ∈ [0, 1) : 0 ≤ θ̃ < 1
q}

• The leader’s utility is Bθ(q, θ̃) and the follower’s utility is −Bθ(q, θ̃)

In Problem (5.1) we have assumed that all buyers would play the same θ̃. This comes
directly from the fact that buyers are symmetric.

We shall solve Problem (5.1) through the so-called backward induction method, that
is to say that the maximization is solved first at the follower’s level and this result is in
turn used to solve the equilibrium at the leader’s level. Let us formalize this solution in
the following Theorem.

Theorem 5.3 The game formulated in Problem (5.1) has as a solution the set {(q, θ̃) ∈
R× R : q = 1, 0 ≤ θ̃ < 1}.

Proof Note that Problem (5.1) can be reformulated as the following bi-level optimization
problem.

max
q
Bθ(q, θ̃) (5.31)

s.t. q ≥ 0, θ̃ ∈ argmin
θ̃′∈[0,1):qθ̃′<1

Bθ(q, θ̃
′)
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Figure 5.4: Variation of Bθ as a function of θ̃ for a real probability of failure θ = 0.1 and for
different values of reimbursement. Rational buyers select θ̃ such that it minimizes Bθ.

In order to solve Problem (5.31), the backward induction method is applied. Hence,
we first solve the second level optimization. As usual, in order to solve

min
θ̃∈[0,1)

Bθ(q, θ̃) (5.32)

s.t. 0 ≤ θ̃ < 1/q, q ≥ 0

the minimum is found at the values of θ̃ where the first derivative of Bθ(q, θ̃) with
respect to θ̃ is equal to zero or at the border of Bθ’s domain. The first derivative of Bθ

with respect to θ̃ is

∂Bθ(q, θ̃)

∂θ̃
=

q − 1

(1− qθ̃)2
(1− qθ), (5.33)

and there is no value of θ̃ that renders it equal to zero. Hence, given that Bθ is a
continuous function, the minimum, or infimum, must be reached at the border of its
domain. Three cases must be distinguished, namely:

• 0 ≤ q < 1: The infimum is attained at θ̃ = 1

• q = 1: Function Bθ is constant for all θ̃ ∈ [0, 1)

• 1 < q: The infimum is attained at θ̃ = 0 and it is a minimum

This behaviour is shown in Fig. 5.4, where Bθ is plotted as a function of θ̃ for different
values of q.

Finally, the solution to the second level optimization is incorporated to Problem (5.31)
obtaining the following equivalent problem

max
q

{Bθ(q, 1 − ǫ)1q<1 +Bθ(1, θ̃)1q=1 +Bθ(q, 0)11<q}, (5.34)
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Figure 5.5: Variation of the seller’s expected revenue as a function of reimbursement q for a real
probability of failure θ = 0.1 and a probability of failure estimated by rational buyer’s θ̃ equal to
their best response for each q. The seller selects q such that it maximizes Bθ.

which, evaluating Bθ, can be expressed as

max
q

{ ǫ

1− q(1− ǫ)
(1− qθ)10≤q<1 + (1 − qθ)11≤q} (5.35)

and where ǫ is an arbitrarily small positive real number. It is easy to see that the
solution to the seller’s problem is attained at q = 1, which concludes the proof. Fig. 5.5
shows the behaviour of Bθ for the different cases considered in Problem (5.35), which
illustrates this result.

5.5.3.C Remarks and Interpretations

Interesting interpretations can be derived from the analytical results obtained above.

First, let us highlight the intuition behind the obtained results. If the seller announces
a rather small percentage of reimbursement, buyers will, to some extent, tend to believe
that the service fails a lot, and estimate the probability of failure θ̃ close to 1. This is
the so-called market for lemons phenomenon, introduced by Akerlof in 1970 [23]. The
market for lemons states that when buyers are uncertain about the quality of the goods
to buy, the market for high quality goods is reduced until it disappears. Indeed, this is
what happens according to the theoretical analysis presented above: buyers assume that
quality is very bad, which causes the value of the bids to approach zero.

Conversely, if the seller announces a high percentage of reimbursement, greater than
100%, buyers would intuitively assume that failures are not frequent, and thus estimate
the probability of failure θ̃ close to 0. We obtain here the so-called moral hazard behaviour.
That is to say, that the buyers take a risk, by considering θ̃ small (theoretically equal to
zero), because if a failure were to occur it would be the seller who would bear the cost,
through a high reimbursement. This behaviour is observed in many contexts where one
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of the players taking a decision is not the one bearing the responsibility for this decision.
See, for instance, [104] for details on this phenomenon.

All in all, a reimbursement of 100% overcomes the problems that arise when there is
asymmetric information. In addition, setting q = 1 provides the following three properties,
worth highlighting.

Credibility. When the percentage of reimbursement is 100%, and this value is an-
nounced to the buyers along with a given probability of failure, then buyers can safely
trust the announced probability of failure. Indeed, according to the expression of the
seller’s expected revenue shown in Equation (5.25) and illustrated through Fig. 5.3, when
q is set to 1, the seller’s expected revenue is constant. The seller thus has no incentives
to announce a misleading value for the probability of failure in order to take advantage of
naive buyers.

Insensitivity to the buyers’ network performance assumption. At the setting q = 1, the
seller’s expected revenue is insensitive to the probability of failure assumed by the buyers.
This can be directly seen setting q equal to 1 in Equation (5.25), which thus renders
E{R̄} = E{u(K,X)}(1−θ), which is constant for any value of θ̃. In particular, the seller’s
expected revenue is the same that he would obtain in the complete information case.

The analogous interpretation from the buyer’s standpoint is translated into the follow-
ing statement.

No value of information. At the setting q = 1, knowing the real probability of failure
has no value to the buyer from the point of view of his or her payoff. Each buyer expected
payoff is the same as when having complete information. This is readily derived from the
buyers’ expected payoff in Equation (5.30), which shows that when setting q = 1, the
buyer’s expected payoff is not affected by the assumed probability of failure θ̃. Of course
this knowledge could be valuable for the buyers for further reasons not captured in the
model.

5.6 Summary

In this chapter we have proposed a pricing scheme where Assured-Quality Services over
data networks are sold via first-price auctions and where in case of failures buyers are
reimbursed a certain percentage of what they have paid to obtain the service. The per-
centage of reimbursement is announced by the seller before the service is sold. Under these
conditions and with certain symmetry assumptions among buyers, we have analytically
derived the best bidding strategy, which presents an intuitive behaviour. Indeed, for the
same level of assumed probability of failure, the higher the percentage of reimbursement,
the higher the bid. In addition, for any given percentage of reimbursement lower than
100%, the higher the assumed probability of failure, the lower the bid.

We have modelled the pricing problem, for the case where there is asymmetric in-
formation about the service and buyers are rational, as a Stackelberg game and shown
that there is an equilibrium setting that maximizes seller’s revenue, which is given by a
reimbursement equal to 100%. In such equilibrium, the market for lemons effect and the
moral hazard one are overcome and seller’s expected and buyers’ expected payoff are the
same as when having complete information.

In particular our results show that, under the same level of failures, reimbursing 100%
provides more revenue in expectation than no reimbursement at all. It must be noted that,
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since the model assumes the existence of a monitoring infrastructure, this output should
be compared to the cost of the monitoring infrastructure in order to conclude if the overall
balance is positive.





Chapter 6

The Proposed Pricing Scheme when
Relaxing the Symmetry Assumption

6.1 Introduction

In Chapter 5 we have proposed a pricing scheme and derived our analysis of it on the
assumption of symmetry among buyers. Under this assumption, the valuations that buyers
attach to the service on sale are equally modelled for all of them. However, in real scenarios
not all buyers would necessarily value the service in the same way. Moreover, the valuation
they attach to a service could be determined by many firm-dependent factors as, for
instance, the buyers’ business model, cultural characteristics or geographic localisation,
among others.

In addition, in Chapter 5 a single type of service is on sale and over a single route. Our
ultimate objective is to be able to apply the pricing scheme introduced in Chapter 5 to
the allocation mechanism introduced in Chapter 3. That is to say, to allocate bandwidth
solving a NUM problem, such that the revenue of the alliance is maximized and the
end-to-end QoS constraints are fulfilled, and where utility functions are obtained through
first-price auctions with reimbursement. Failures in this case would account, for instance,
for service disruption due to equipment failure, busy servers, etc. We shall refer to this
situation as to the network case. The problem altogether is extremely complex, as we shall
show, mainly because analytical results for the best bidding strategies or buyers’ expected
payoffs are not available. We shall thus keep some assumptions of Chapter 5, namely that
services are sold over the same route and for the same amount of bandwidth, and provide
guidelines on how the problem could be addressed when these assumptions are as well
relaxed.

Thus, in this chapter we address the pricing scheme proposed in Chapter 5, where
the assumption of symmetric buyers and single service type is relaxed. These relaxations
render already the problem rather complex. The main difficult of relaxing the symmetric
bidders assumption stems from the fact that the differential equation solved in Chapter 5
for finding the best bidding strategy becomes a system of differential equations, which in
the general case does not have a closed-form solution. Moreover, in the network case, for
instance, even the expected payoff of each buyer may not have a closed-form expression.
However, the existence of the optimum bidding strategies was proven in similar, though
simpler, cases by Lebrun in 1999 [90], Bajari in 2001 [36] and, Maskin and Riley in 2003
[108].

97
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This chapter is the sequel to Chapter 5, and presents a simulative approach to draw
conclusions about the optimum percentage of reimbursement when buyers are asymmetric
and services with different probability of failure and percentage of reimbursement are
offered. Its structure is as follows. In Section 6.2 we formalize the model. Section 6.3
studies the best bidding strategies in this asymmetric situation. That section first addresses
a simpler case, that one of asymmetric bidders but only one single unit of a single service
on sale. This case, though without reimbursement, has been studied in the literature, and
we provide there a brief review of works proving the existence and uniqueness of the best
bidding strategies. We then present same properties of the best bidding strategies that
hold as well when failures and reimbursement are in place. The section continues with the
proposal of a numerical method to obtain an approximation of the best bidding strategies,
where we allow for asymmetric bidders, multiple services with different probability of
failure and different percentage of reimbursement. This method is used in Section 6.4
to compute the buyers expected payoff and the seller’s expected revenue. Section 6.4
also states the Stackelberg reimbursement game, which allows to determine the optimal
percentage of reimbursement for each service. Simulation results are presented in Section
6.5 for two particular case studies. A third case study is presented in Appendix C. Finally,
a summary of the chapter is presented in Section 6.6.

6.2 The augmented model

Let us slightly update the model introduced in Chapter 5 so as to adapt it to the asym-
metric case. Indeed, we shall allow for buyers with different characteristics and for services
with different characteristics.

Let S be the set of the offered services. Each service s ∈ S is characterized by a
probability of failure θs and a percentage of reimbursement qs. In order to be able to
provide some analytical results we shall consider that all services are delivered over the
same route of domains, and provide the same amount of bandwidth. For each service
s there is a set Ms of buyers interested in that service. The total number of buyers is
M = |⋃s∈S Ms|. Each buyer i ∈ Ms bids for the service s assuming a probability of

failure θ̃i,s. As in Chapter 5, the real probability of failure θs is not necessary equal to
the probability of failure assumed by a buyer θ̃i,s for that service. We shall assume that
θ̃i,s, θs ∈ [0, 1). Herein, we shall note q = {qs, s ∈ S}, θ̃ = {θ̃i,s, i ∈ Ms, s ∈ S} and
subscript −i shall be used to refer to all buyers in M but i. Each buyer i bids for getting
one unit of service and attaches to that service s a positive valuation Xi,s. We assume
that the Xi,ss are independently and identically distributed according to the distribution
functions Fi,s, i = 1 . . .M . A realization of the random variable Xi,s is denoted as xi,s. We
shall generally simplify notation and refer to x as the realization of the valuation of any
given bidder for a given service, when the context is clear.

Bidder i’s bid is denoted as bi,s. We shall assume that there is enough capacity to sell
K any services and that the K highest bids win the auction. Thus, all buyers in the set M
compete for getting one of the K units. Please note that the assumption that all services
provide the same bandwidth allow us to select the winning buyers only based on the bid
and not solving a NUM-like problem. Again as in Chapter 5, we assume a discriminatory
payment rule, which means that the winning buyers pay their bids.

As in Chapter 5, bidders are assumed to be risk-neutral, as they seek to maximize their
expected payoffs, which are linear functions of their valuation and bid. More precisely, given
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a valuation xi,s and a bid bi,s bidder i’s payoff is xi,s(1− θ̃i,s)− bi,s(1− qsθ̃i,s) if he or she
wins the auction and 0 otherwise. Bidder i’s expected payoff is thus,

P̃i(βi,s(Xi,s)|Xi,s = xi,s) = Pwin(bi,s)[xi,s(1− θ̃i,s)− bi,s(1− qsθ̃i,s)], (6.1)

where notation Pwin(bi,s) refers to i’s probability of winning when his or her bid is
bi,s and where the other buyers bidding functions are implicitly β−i, with β−i(X−i) =
{βj,s(Xj,s)}j 6=i.

Bidder i’s bid is computed as a function of his or her valuation xi,s according to the best
bidding strategy βi,s. The best bidding strategy is for each bidder i = 1 . . . M , the function
bi,s = βi,s(x), βi,s : [0, x

max
i ] → R+ that maximizes i’s expected payoff, where the expected

payoff is given by Equation (6.1). Please note that each βi,s is defined over a different
support [0, xmax

i ] for each i, which corresponds to Fi,s’s support, where x
max
i ∈ R

+.

The best biding strategies are thus, the Bayesian-Nash equilibrium of the game with
incomplete information defined by the model introduced above. More precisely, they con-
stitute a Nash equilibrium of the game with incomplete information where the buyers
are the players, their expected payoffs given by Equation (6.1) are their utilities, the sets
[0, xmax

i ] are the signals, types, or valuations space, the functions Fi,s define the probability
distribution over the valuations, the set of actions is R+ and βi,s are the strategies. We
discuss the existence of such equilibria in the following section. Throughout this chapter
when we talk about equilibrium strategies they should be understood in that way.

6.3 Best Bidding Strategies

First-price auctions have been widely studied, and used in the networking field as reviewed
in Chapter 3. However, when bidding behaviour is studied bidders are usually assumed
to be symmetric, which is the same simplifying assumption on which results in Chapter 5
are derived. When this assumption is dropped, the symmetric equilibrium does not hold,
which means that in order to find the best bidding strategies, instead of solving a first
order differential equation as in Chapter 5, a system of ordinary differential equations
must be solved. As pointed out in Section 6.1, this is a complex task, all the more so since
the analytical expression of the expected payoff may not be available when we consider
multiple services and asymmetric buyers. Next subsection provides more detail on this
and formally formulates the problem.

6.3.1 Problem Formulation

We now formally formulate the problem of finding the best bidding strategies under the re-
laxed assumptions. We shall first introduce the single-object, single-service-type case, and
then introduce the multiple-object, multiple-service-type case. Always with asymmetric
bidders.

6.3.1.A The Single-Object and Single-Service-Type Case

In order to illustrate how hard the problem we are facing is, we shall first formulate it for
the simplified scenario of a single object and a single type of service, and show that even
in this case a closed-form expression for the best bidding strategies may not exist. In our
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model, single-object means K = 1, and since there is a single service type, we can save
subscripts in s.

The probability of winning the auction for any given buyer i that submits a bid b can
be expressed as:

Pwin(b) =
∏

j 6=i

Fj(β
−1
j (b)) =

∏

j 6=i

Fj(φj(b)), (6.2)

where φj(b) is defined as the inverse of βj .

The expected payoff for buyer i is thus as follows:

P̃i(βi(Xi)|Xi = xi) =
∏

j 6=i

Fj(φj(b))[xi(1− θ̃i)− b(1− qθ̃i)]. (6.3)

Let us, for convenience, define αi =
1−θ̃i
1−qθ̃i

. Imposing the first order condition to find

a maximum of the expected payoff P̃i with respect to b for each bidder, and combining
those equations we obtain:

φ′i(b) =
Fi(φi(b))

(M − 1)fi(φi(b))







2−M

φi(b)αi − b
+

M∑

k=1,k 6=i

1

φk(b)αk − b






, i = 1 . . .M (6.4)

Equations (6.4) constitute a system of first order ordinary differential equations (ODE).
Even though the solution to such system can not be expressed as a closed-form in most
of the cases, its existence and uniqueness has been proved, under mild conditions of the
distribution functions Fi, for the case with no reimbursement (i.e. αk = 1) and numer-
ical methods for solving it have been proposed before. Subsections 6.3.2.A and 6.3.3.A
respectively review those works.

6.3.1.B The Multiple-Object, Multiple-Service-Type Case

Our scenario is more general than the single-object, single-service-type case, and conse-
quently more complicated. If we consider K units over one path, the probability of winning
can not be expressed as simply as in the previous case.

The problem is still to find the function βi,s, i = 1 . . .M such that it maximizes each
bidder’s expected payoff, given by Equation (6.1), and where the probability of winning
does not necessarily present an analytical expression.

We now present two asymmetric scenarios that remain simple enough in order to be
solved analytically.

Proposition 6.1 Best bidding strategies for two bidders with uniform valuations and two
different services. Consider two bidders whose valuations are uniformly distributed on
[0, xmax]. Bidder one bids for obtaining a service which he or she estimates fails with
probability θ̃1,1 and for which a reimbursement equal to q1 is announced. Bidder 2 bids
for a service whose characteristics are θ̃2,2 6= θ̃1,1 and q2. Only one of the services can be
allocated. Then, the best bidding strategies are given by:

βi(x) =
1−

√

1− α2
i kix

αikix
, i = 1, 2, (6.5)
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where

αi =
1− θ̃i,s

1− qsθ̃i,s
, (i, s) = (1, 1), (2, 2), (6.6)

ki =
α2
j − α2

i

(xmaxαiαj)2
, i, j = 1, 2, i 6= j. (6.7)

Proof Please see Appendix C.

Analogously, the scenario presented in the following preposition can be derived:

Proposition 6.2 Best bidding strategies for two bidders with uniform valuations on two
different intervals and one service. Consider two bidders whose valuations are uniformly
distributed on [0, xmax

i ], i = 1, 2. Consider there is one service on sale that fails with
probability θ̃ and for which reimbursement is q. The best bidding functions are given by:

βi(x) =
1−

√
1− α2kix

αkix
, i = 1, 2, (6.8)

where

α =
1− θ̃

1− qθ̃
, (6.9)

ki =
1

(xmax
1 )2

− 1

(xmax
j )2

, i, j = 1, 2, i 6= j. (6.10)

Proof The proof is completely analogous to the one of Proposition (6.1).

As we shall see in the following subsection, the existence of a solution to the system
of differential equations for particular cases has been proved, however in the case with
multiple-object, multiple-service-type, with or without reimbursement, the proof remains
open. We shall thus adopt, in Subsection 6.3.3, a simulative approach in order to explore
this case. But first let us review the works related to the existence on the equilibrium and
show some properties the best bidding strategies fulfil in the reimbursement case.

6.3.2 Characterization of the Equilibrium Strategies

For the single-object scenario, and when no reimbursement policy is in place, the literature
studying optimal bidding strategies is rich. In particular, much work has focused on the
study of the existence and uniqueness of the best bidding strategies, which we review in
the following subsection.

6.3.2.A Related Work: Existence and Uniqueness of the Equilibrium Strategies for
the Single-Object no Reimbursement Case

The existence and uniqueness of an equilibrium bidding strategy on sealed single-unit first-
price auctions with M bidders was proved independently by Lebrun [89, 90], Bajari [36]
and, Maskin and Riley [108]. The model in all these studies is very similar, they study
the sealed single-unit first-price auctions with independent private values. Bidders have
private information, i.e. their valuation or types, which are known only to each of them
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and are drawn from different distribution functions, which accounts for the asymmetry.
All of them ask for the distribution functions to be defined over the same domain.

In [89,90], it is also shown that the bidding functions are strictly increasing functions
of the valuation and that the maximum bid for all the bidders is given by a value that is
the same for all of them. More specifically, they prove that the equilibrium is the solution
of a system of first order ordinary differential equations with border conditions, and these
border conditions are values of the bids at the upper extreme of the valuations’ domain.

Bajari proves, in [36], the existence and uniqueness of the equilibrium by assuming that
the inverse of the bidding functions are continuously differentiable. Maskin and Riley have
studied the existence in [106] and the uniqueness in [108], proving that the inverse functions
are indeed differentiable. In [108], the distribution functions are not initially required to be
defined over the same domain. However, this assumption is introduced when deriving the
uniqueness of the equilibrium, though the authors claim that their results can be readily
extended if that assumption is relaxed. In the proofs of Lebrun and Bajari the bidders
are modelled as risk-neutral, and thus they try to maximize a linear discontinuous payoff
function (the same model we have assumed). In the work of Maskin and Reily they adopt
a broader model and buyers are allowed to have payoffs other than linear. However, a
number of hypothesis are required over these payoffs. One of such hypothesis asks that
the payoffs are the same for the same valuation. In our case this is not necessarily true,
since bidders’ payoffs depend as well on the percentage of reimbursement qs of the service
and the probability of failure θ̃i,s assumed by the bidder. The consequence of this is that,
unless for the two bidders case, the maximum bid is not necessarily the same for all bidders.

We shall not attempt to extend the proofs of existence and uniqueness of the equilib-
rium to our reimbursement case, which are quite involved. However, we shall state some
theoretical properties that the equilibrium, if it exists, fulfils in our scenario and we later
on explore its existence through simulations.

6.3.2.B Properties of the Best Bidding Strategies for the Reimbursement Case

We have mentioned it above, in the asymmetric case the best bidding strategies might not
have a closed-form expression. There are, though, some properties about their behaviour
that can be proved provided some assumptions hold.

When there is no reimbursement, the bidding strategies of asymmetric bidders under
mild conditions of their valuations’ distributions functions, have been proved to be strictly
increasing [90, 108]. Also, if the upper end of their domain is the same, then the bidding
strategies at this end take the same value for all the buyers. The previous properties under
some conditions, still hold in the scenario with reimbursement. Besides, we have proved,
in Chapter 5, that for symmetric buyers symmetric equilibrium holds. This is also true
for those symmetric bidders within an asymmetric group. The following lemmas formalize
these statements.

Lemma 6.1 Non-decreasing best bidding strategies in the single-object single-service-type
case. At equilibrium, the strategies are non decreasing functions of the valuations.

Proof The proof can be readily adapted from that one provided in [107] for the single-
object and no reimbursement case. We shall save subscript s since there is only one service
on sale. Let bi be the equilibrium bid of bidder i for a given realization of his or her
valuation xi. That is, bi = βi(xi). For convenience let us call the payoff of bidder i if he or
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she wins the auction as ui, that is:

ui(bi, xi) = xi(1− θ̃)− bi(1− qθ̃). (6.11)

Let us call hi(b−i) to the joint density distribution of the bids of every buyer but i.

Since bi is the equilibrium bid, i’s expected payoff when bidding bi must be greater
than or equal to i’s expected payoff when bidding any other bid, say b̂i. Thus,

∫

b−i≦bi

ui(bi, xi)hi(b−i)db−i ≥
∫

b−i≦b̂i

ui(b̂i, xi)hi(b−i)db−i. (6.12)

Notation
∫

b−i≦bi
·db−i means the multiple integral of · with respect to bi, ∀ i 6= j, where

the domain of integration should be interpreted as 0 ≤ bj ≤ bi, ∀j 6= i.

Let now b̂i < bi. To conclude the proof it suffices to prove that

∫

b−i≦bi

∂ui(bi, xi)

∂xi
hi(b−i)db−i >

∫

b−i≦b̂i

∂ui(b̂i, xi)

∂xi
hi(b−i)db−i, (6.13)

since if Inequality (6.13) holds, we can integrate both sides of it with respect to xi from
xi to x

′
i, with x

′
i > xi, and sum up the result of the left-hand term with the left-hand term

of Inequality (6.12) and do the same with the right-hand sides, to find that Inequality
(6.12) holds strictly for x′i > xi, that is:

∫

b−i≦bi

ui(bi, x
′
i)hi(b−i)db−i >

∫

b−i≦b̂i

ui(b̂i, x
′
i)hi(b−i)db−i. (6.14)

Let us now prove that Equation (6.13) holds. The left-hand term in Inequality (6.13)
is equal to:

∫

b̂i≦b−i≦bi

∂ui(bi, xi)

∂xi
hi(b−i)db−i +

∫

b−i≦b̂i

∂ui(bi, xi)

∂xi
hi(b−i)db−i. (6.15)

Since bi is a best response, b̂i must win with strictly lower probability than bi. In
addition, by definition of ui,

∂ui(bi,xi)
∂xi

> 0 (we recall that θ̃i ∈ [0, 1)). These two facts allow
us to conclude that the first term in Expression (6.15) is strictly positive.

On the other hand, since ∂2ui(b,xi)
∂xibi

is positive and we have assumed b̂i < bi, the second
term in Expression (6.15) is at least as large as the right-hand of Inequality (6.13).

All in all, we have that Inequality (6.13) holds and thus Inequality (6.14) holds. Let b′i
be the best bidding strategy for bidder i when his or her valuation is x′i. Thus i’s expected
payoff when bidding b′i must verify

∫

b−i≦b′i

ui(b
′, x′i)hi(b−i)db−i ≥

∫

b−i≦bi

ui(bi, x
′
i)hi(b−i)bx−i (6.16)

>

∫

b−i≦b̂i

ui(b̂i, x
′
i)hi(b−i)db−i, ∀b̂i ≤ bi,

where the first inequality comes from the fact that b′i is the equilibrium bid for valuation
x′i and the second from Inequality (6.14).
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We want to prove that b′i ≥ bi. Suppose by contradiction that b′i < bi. Then we can
evaluate Inequality (6.14) at b′i obtaining:

∫

b−i≦b′i

ui(b
′, x′i)hi(b−i)dx−i >

∫

b−i≦b′
ui(b

′
i, x

′
i)hi(b−i)db−i, (6.17)

a contradiction, which concludes the proof.

The previous lemma is also valid for the multiple-object, multiple-service-type case.

Indeed, redefine hi(b−i) as the joint density function of random variable B
(K)
−i,M−1, which

indicates the K-th highest bid over theM−1 bids from all bidders but bidder i. Please not

that we have used the same notation as in Chapter 5 and B
(K)
−i,M−1 is also the (M −K)-th

order statistics over (M − 1) bids drawn from the bids distributions of buyers other than

i. Redefine as well the domain of integration as b
(K)
−i,M−1 ≦ bi. The proof then follows as in

the single-object, single-service-type case.

The following lemma states a border condition for the system of differential equations
given by Equations (6.4), when bidders have the same upper valuation.

Lemma 6.2 Symmetric highest bid when bidders have the same upper valuation. If all bid-
ders have the same upper maximum valuation, that is xmax

i,s = xmax and there is a single-

object and single-service type, that is, θ̃i,s = θ̃, qs = q, i = 1 . . .M , then βi(x
max
i ) = bmax,

i = 1 . . .M .

Proof The proof can be readily extended from the case presented in [108], where no
failures neither reimbursement are considered. Indeed, if all bidders have the same upper
valuation, and if there is only one services both assumptions required in [108] hold, and
the proof follows directly. We shall reproduce it here.

Let us define the following quantities

pj(b) = logFj(φj(b)) (6.18)

c(b, x) = −log(x(1− θ̃)− b(1− qθ̃)) (6.19)

Finally we define the logarithmic payoff as:

ej(b, x) =
∑

i 6=j

pj(b)− c(b, x). (6.20)

It can be readily seen that the best bidding strategies, those maximizing the expected
payoff given by Equation (6.1), are as well maximizers of the logarithmic payoff given by
Equation (6.20).

Let bmax
j = βj(x

max). Without loss of generality we order the buyers’ bids as

bmax
1 ≥ . . . ≥ bmax

M . (6.21)

Then we can evaluate buyer 1’s logarithmic expected payoff if he or she were to bid
bmax
M obtaining:
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e1(b
max
M , xmax) =

M∑

j=2

pj(b
max
M )− c(bmax

M , xmax) ≤
M∑

j=2

pj(b
max
1 )− c(bmax

1 , xmax) (6.22)

= −c(bmax
1 ) = e1(b

max
1 , xmax),

where the first equality comes form the definition of ei(·) in Equation (6.20), the inequality
comes from the fact that if bmax

1 is the optimum strategy, then the payoff when bidding
anything different than bmax

1 must be smaller. We have also used in the last equality the
fact that pj(b

max
1 ) = logFj(x

max) = 0.

Let us now assume that bmax
1 is strictly greater than bmax

M . In this case, p1(b
max
M ) < 0,

since φ1(b
max
M ) is strictly lower than xmax, and pM (bmax

M ) = 0. We then apply the definition
of the logarithmic expected payoff toM and combine it with these facts and with the result
of Equation (6.22) to obtain:

eM (bmax
M , xmax) =

M−1∑

j=1

pj(b
max
M )− c(bmax

M , xmax)

= p1(b
max
M ) +

M∑

j=2

pj(b
max
M )− c(bmax

M , xmax) (6.23)

< −c(bmax
1 , x̄) = eM (bmax

1 , xmax),

where in the last equality we have used, again, that pj(b
max
1 ) = logFj(x

max) = 0. Then,
bmax
M is not the best strategy for M when his or her valuation is xmax, a contradiction.

In particular, the previous lemma is generalized for every two-bidder single-object
auction.

Lemma 6.3 Symmetric highest bid for the two-bidders single-object multiple-service-type
auction. In a first-price two-bidders single-object first price auction xmax

1 = xmax
2 = xmax.

Proof Suppose without loss of generality that in equilibrium bidder 1’s highest bid bmax
1

is greater than bidder 2’s highest bid bmax
2 , then bidder 1 would for sure win the object if

bidding any value slightly greater than bmax
2 , and would have a greater payoff by decreasing

his bid up to slightly above bmax
2 . Thus, bidding bmax

1 is not an optimum, a contradiction.

Lemma 6.4 Symmetric Equilibrium for symmetric buyers. Buyers whose valuations are
drawn from the same distribution and who bid for obtaining the same service, of which
they estimate the same probability of failure have the same best bidding strategy.

Proof The proof is immediate. Indeed, those buyers whose valuations are drawn from the
same distribution and bid for obtaining the same service, of which they estimate the same
probability of failure, are undistinguishable and would solve the same expected payoff,
thus the same equilibrium strategy.

6.3.3 Computation of the Equilibrium

We now focus on the computation of the best bidding strategies when no closed-form is
available. We shall first review existing methods and then propose an algorithm tailored
for our particular scenario.
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6.3.3.A Related Work: Numerical Methods for Computing the Best Bidding Strate-
gies without Reimbursement

Several works have focused on proposing numerical methods to find the best bidding
strategies, though all of them correspond to the case without failures and without reim-
bursement. We following review such proposals with the idea in mind to evaluate if they
are suitable to be adapted to the reimbursement multiple-object multiple service type case.

Methods for Computing Nash Equilibria in Bayesian Games by solving the underlying
ODE system As aforementioned, single-unit first-price auctions with asymmetric bid-
ders have, under some conditions on their distribution functions, a unique Bayesian Nash
Equilibrium. This equilibrium is the solution to a system of first order differential equa-
tions (ODE) with boundary conditions, which in the general case does not have a closed
form solution. Different methods were proposed to obtain numerical approximations of
such solution.

A widely used numerical method is the so-called backward shooting method. The sys-
tem of differential equations, which we have introduced in previous subsection in Equation
(6.4), along with the border conditions poses two main problems. One is that it does not
behave well near the origin, since the condition φi(0) = 0 renders an indetermination.
Indeed we get 0

0 in the right-hand of Equation (6.4). Second, a border condition is given as
well at the upper extreme point of the domain, but the point at which it is attained, i.e. the
value of the bid at that upper extreme point, is unknown. The backward-shooting method
assumes a point at which that border condition is attained and checks back to see if the
condition at the origin is fulfilled. This method was proposed by Marshall in [103] and
was used, for instance, in [65, 92, 106]. However, recently in [62] the backward-shooting
method was shown to be unstable for the case of large number of buyers (for instance
more than 20 buyers). In [62] an alternative, novel method is proposed, which is based on
a boundary-value method and is said to overcome the backward-shooting methods insta-
bility shortcomings. In this method the system of differential equations is transformed so
as to obtain one that can be solved by standard methods as the fix-point method or the
Newton method, similarly to the first algorithm in [36], on which we shall comment below.

Still for the case of sealed first-price single-unit auctions, a sound summary of three
numerical algorithms to approximate the inverse of the bidding strategies is presented by
Bajari in [36]. The first algorithm proposed in that work is based on a proposal by Maskin
and generalized by Riley and Li, in an unpublished work at that moment, later appeared
in [92]. The algorithm consists on guessing an initial condition to the system of differential
equations, and then using standard techniques to solve the system. The problems pointed
out in the previous paragraph about the bad behaviour of the system at the origin are
not encountered by them since they add the hypothesis that the valuations distributions
functions are bounded away from 0 in the lower extreme of their common domain. The
method was shown by the authors to present slow convergence. The second algorithm,
which had been used previously in [35], starts by assuming that bidders bid their valuation
and iteratively adapt the inverse of the bidding strategies according to best responses,
which are computed sequentially by all bidders. The method was shown to perform well
with the distribution functions considered by the authors. The idea behind this algorithm
is very similar to the algorithm we shall finally propose for our problem, which we shall
introduce in the following subsection. However, since this second algorithm is considered in
a much simpler scenario than ours (single-object, single-service-type and no reimbursement
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case) at each iteration analytical expressions are available to compute the updates and
this is not the case in our general scenario. The third algorithm approximates the inverse
of the bidding functions by parametric functions and searches the parameters such that
the system of differential equations, along with its border conditions, is approximately
satisfied. The parametric function can be, for instance, a high order polynomial. The
algorithm is said to obtain fast results with good initial values.

The methods described above assume that the probability of winning has a known
expression, provided that buyers’ valuations distribution functions are known. However,
in more general configurations, as the multple-object multiple-service-type case, this is not
the necessarily true. That is to say, even if valuations distributions functions are known,
the probability of winning remains unknown. Nevertheless, the probability of winning, can
be approximated, for instance by Monte-Carlo techniques as shall be presented later on
in this chapter, and as proposed by the following method.

Bajari’s third algorithm is closely related to the concept of Constrained Strategic
Equilibrium (CSE) introduced by Armantier et al. [32]. In the CSE method, the bidding
strategies are restricted to a set with certain properties and the equilibrium is searched
restricted to that set. The authors show that a sequence of CSE solutions approximates the
equilibrium in a Bayesian game (it is not restricted to first-price auctions) and they provide
an algorithm to compute the solution. In order to implement this mechanism, the idea is
to parametrize the proposed bidding strategies and solve a system with respect to the
parameters instead of with respect to the bidding strategy. The algorithm is not restricted
to single-unit first-price auctions but can be applied as well, for instance, to multi-unit
first-price auctions. This makes of this algorithm an attractive one to be adopted for our
scenario, though its implementation is rather involved.

Learning Techniques A different approach is to make the players or agents (the buyers
in our framework) of the Bayesian game defined by the auction mechanism to learn how
to play their best bid. The literature regarding learning in multi-agent systems is wide.
However, very few works were found about learning in Bayesian games. A good review is
available in [48].

In [71] a learning approach is proposed to find the equilibrium bidding strategy in
first-price discrete auctions (auctions with discrete bid space). They model the problem
as a repeated game in strategic form. They repeat the first-price auction assuming, at the
beginning of each repetition, a sampled set of valuations. They show that after sufficient
long time the players’ bids are in the equilibrium of the one-shot auction. Although this
constitutes a very interesting proposal the model is quite different from ours’, for instance,
they consider a discrete bid space, though we shall not adopt their approach.

A Q-learning technique is used in [148] to learn in a double-auction scenario. However,
the choice of the technique and the simulations performed are not clearly presented, and
no information about convergence is provided. In addition, a stochastic modelling is used
in [120] for an adaptive agent to increase his or her payoff in a continuous double auction
scenario.

Other techniques Finally, an algorithm to compute the best bidding strategies where no
assumptions are made about initial knowledge of the probability of winning was proposed
by Holenstein, reported in [69]. However, no publications were found. The algorithm esti-
mates the best bidding strategy for each player, by iteratively adapting it, such that the
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expected payoff of each player is maximized, in a way similar to Bajari’s second algorithm
introduced above. This algorithm is flexible, easy to implement, and assumes no previous
knowledge about probabilities of winning. These are the main reasons why we shall adopt
this approach and tailor it to our particular scenario. In particular, we need to adapt it
to the reimbursement case and the multi-unit auction. Additional improvements, such as
a different approach to update bidding strategies, have been done and are presented in
detail in the following subsection.

6.3.3.B The Proposed Algorithm for Computing the Best Bidding Strategies

We propose an algorithm that makes it possible to find an approximation of the best
bidding strategies in the multiple-object, multiple-service-type with reimbursement case.
Roughly speaking, the algorithm is based on a centralized, iterative procedure, which
imitates the real bidding process. It relies on the Monte Carlo method to compute ap-
proximations of the probability of winning the auction, and on the Simulated Annealing
mechanism to optimize the involved payoffs.

6.3.3.B.1 Description For the sake of clarity let us first assume that the probability
of winning the auction is a known function of the submitted bid, we shall relax this
assumption later on.

The main logic of the algorithm is described by the diagram in Fig. 6.1, where β̂i and
β̂−i represent the approximate bidding functions (and not particular bid values). For each
buyer i, in turn, a valuation x is sampled and the best response to x, considering that
other buyers’ bidding functions are β̂−i, is computed. In more detail, this best response is
computed as the value bi that maximizes buyer i’s expected payoff with respect to his or
her bid for valuation x. The bidding functions of the other buyers are assumed fixed at
their current approximation β̂−i, which allows to compute the probability of wining and
thus the expected payoff. For the obtained value of b, the bidding function of the current
buyer, that is β̂i, is updated in a way that we shall explain later on. This is repeated in
turn for all buyers, and until convergence of the strategies. In order to be as general as
possible, each bidding function is approximated by a piecewise linear function.

We now further explain each of the steps of the algorithm.

Maximization of the Bidder’s Expected Payoff. In order to maximize each buyer’s
expected payoff an iteration as well takes place, which is based on the Simulated Annealing
method. The Simulated Annealing method is a probabilistic method designed to find the
global optimum of a function that may possess several optima. It works by emulating the
physical process of a solid that is slowly cooled till it is frozen, which occurs at a level of
minimum energy. The method was originally proposed by [82] and [147] for finding global
minimum, but it can be readily adapted to find a maximum.

A priori, any well-known optimization method could be used. However, since the func-
tion to optimize may have local maxima, we propose to use a Simulated Annealing ap-
proach, whose convergence may be slower in some cases compared to a classical gradient
method, but it does not get stuck at local maxima.

The pseudo-code of the Simulated Annealing procedure adapted to our maximization
problem can be seen in Pseudo-code 6.1. At each step of the iteration the optimum can-
didate is perturbed and its performance evaluated. As the temperature T gets colder, the
acceptance rate of new worse solutions becomes smaller.
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x=sampleValuation

bi=argmaxExpectedPayoff(xi ,β̂−i,θ̃i,s,qs)

β̂i=updateStrategy(xi ,b,β̂i)

i = i+ 1

i = 1

i < M

i = M

Strategies have not converged

Strategies have converged

Figure 6.1: Schematic representation of the algorithm

The routine expected payoff computes a mean on the payoff for valuation xi, bid bi
and assuming that other bidders bid according to the current estimation of their bidding
strategies β̂−i and considering the randomness on other bidders’ valuations.

Assessing the Probability of Winning the Auction. We shall now relax the assumption
that the probability of winning the auction is known. In that case, one can estimate the
probability of winning via the Monte Carlo method. To consider these cases, we slightly
modify the algorithm, and in the main loop, shown in Fig. 6.1, we first estimate buyer i’s
expected payoff as a function of his or her bid bi, and for a given valuation xi and strategies
of the other buyers β̂−i. This function is then used at every iteration of the Simulated
Annealing maximization, shown in Pseudo-code 6.1. The expected payoff depends on the
probability of winning which is computed using the Monte Carlo method as we explain in
the following paragraph.

To allow the algorithm to be suitable to the multiple-object and multiple-service-
type case, we propose to use a classical Monte Carlo simulation method to evaluate the
probability of winning as a function of the bids. That is, for a value bi, the bid of bidder
i, we run a number of MC independent auctions and determine at each auction if bidder
i has won or not. Finally, we take the frequency of the winning events over all the events.
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Pseudo-code 6.1: Maximization of bidder i’s expected payoff via Simulated Annealing.

input: xi,β̂−i

bi = initialize_bid()

T=initialize_temperature()

ep=expected_payoff(xi,bi,β̂−i)

while not converged

b̃i = bi+N(0,σ) %randomly perturb the bid

new_ep=expected_payoff(xi,b̃i,β̂−i)

sample Z from uniform[0,1] distribution

ratio=min(1,exp((new_ep-ep)/T))

if ratio > Z

bi=b̃i
ep=new_ep

T=cool(T) % T decreases exponentially

evaluate convergence

output: bi

Since our working assumptions are that all services have the same bandwidth and are
offered over the same route, there is no need on solving the allocation problem at each
experiment. Indeed, the probability of winning can be found by computing the probability
density function of the K-th highest bid over M − 1 i.i.d. draws from the corresponding
distributions.

Pwin(bi) ≃
1

MC

MC∑

k=1

1

bi≥b
(K)
k,M−1

, (6.24)

where b
(K)
k,M−1 is the K-th highest bid off all bidders but i’s bid, computed each bid

as bj = β̂j(x
{k}
j ), ∀j 6= i and x

{k}
j a sample drawn from j’s distribution Fj,s in the k-th

repetition of the Monte Carlo method. In order to obtain a better approximation of the
probability of winning a density kernel approximation can be used, for instance with a

Gaussian kernel. In that case, the density probability function of random variable B
(K)
k,M−1,

which we call k(b), can be approximated as in Equation (6.25).

k(b) ≃ 1

MC

MC∑

k=1

1√
2πh

exp






−
(

b− b
(K)
k,M−1

)2

2h2




 . (6.25)

In both cases, as MC becomes larger the accuracy of the estimator becomes better.

Updating the Bidding Strategy. Finally, let us describe in more detail the way the
bidding strategies are approximated and updated at the end of each iteration of the main
loop. We assume that the algorithm starts with no knowledge about the bidding strate-
gies except their support, which is the valuations’ distribution function support. In order
to model this, we consider piecewise linear functions. Each bidding function’s support is
partitioned into a given number of subintervals, over which the bidding function is ap-
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proximated by a linear function. We inicialize the bidding strategies assuming the bid is
equal to the valuation, that is β̂i(x) = x. At each iteration t, for each buyer i a new pair
(xti, b

t
i) is obtained, with the sample valuation xti belonging to a certain subinterval ρ. The

linear function at subinterval ρ is updated to the linear function that best fits the latest
samples obtained for that subinterval.

More formally, let ∆i = {∆i,1 . . .∆i,ρmax
i

} denote the partition of buyer i’s bidding
function support, where ρmax

i is the number of subintervals into which i’s support is
partitioned. Then, the bidding function for buyer i at iteration t can be expressed as in
Equation (6.26), where αt

i,ρ and γti,ρ are the coefficients of the linear function that best
fits the latest T samples obtained for buyer i at subinterval ∆i,ρ, ρ ∈ {1 . . . ρmax

i } during
previous iterations. The least squares method is used for computing those coefficients.

β̂ti,s(x) =

ρ
max
i∑

ρ=1

(
αt
i,ρx+ γti,ρ

)
· 1∆i,ρ(x) (6.26)

At the end of each iteration of the main loop, αt
i,ρ and γti,ρ are updated.

Evaluating the Strategies Convergence. In order to evaluate the strategies’ convergence
we compare for each subinterval the linear function obtained for that subinterval when
considering the previous T samples and the one obtained when considering the actual
sample together with the previous T − 1 samples. We assess the difference between both
approximations at the extreme points of the subinterval and if the maximum of that
difference is smaller than a bound, we assume that the approximation for the corresponding
subinterval has converged.

6.3.3.B.2 Validation Convergence and validation of the designed and implemented al-
gorithm has been successfully carried out through extensive simulative studies. Those cases
where analytical results are available provide us with a benchmark against which the ac-
curacy of the developed algorithm can be measured. These cases are not only limited to
symmetric buyers but also include some asymmetric cases with 2 different kinds of buyers
as the case stated in Proposition (6.1). In addition, when no analytical solution is avail-
able, theoretical properties of the approximate solution can still be verified. Namely, we
can verify those properties stated in Section 6.3.2.B. We now present different scenarios
in order to validate the algorithm.

We first focus on symmetric scenarios. As explained in Chapter 5, in a symmetric
scenario buyers are assumed to be symmetric, which leads to a symmetric equilibrium, in
which all buyers’ bidding functions are equal and can be explicitly computed.

Scenario 1 considers 4 symmetric bidders whose valuations are drawn from the uni-
form distribution on the interval [0, 1] and one service on sale. In Fig. 6.2 algorithm’s
output is plotted along with the exact solution for this scenario and different amounts of
reimbursement and probabilities of failure. In all the cases we observe an accurate result.

Scenario 2 considers as well symmetric bidders whose valuations are drawn from a
uniform distribution on the interval [0, 1], but in this case 2 services are on sale (i.e. K=2)
and the number of bidders is either 3 or 6. Fig. 6.3 shows the algorithm’s output along
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(b) θ̃ = 0.8, q = 0, K = 1
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(c) θ̃ = 0.5, q = 0.5, K = 1
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(d) θ̃ = 0.8, q = 1, K = 1

Figure 6.2: Simulated and exact best bidding strategies for Scenario 1: 4 bidders, valuations
uniformly distributed on [0, 1], 1 service on sale (i.e. K=1).

with the exact solution, for the two number of buyers considered, different percentages
of reimbursement and probabilities of failure. For all cases the simulated results are good
approximations of the exact functions.

Scenario 3 shows another symmetric situation, now for two buyers whose valuations
are independently drawn from an exponential distribution and one service on sale. Results
of the algorithm along with the exact expression for the bidding functions are shown
in Fig. 6.4 for different values of the distribution’s parameter λ, different amounts of
reimbursements and probabilities of failure.

Scenario 4 considers 2 buyers that compete for one service, the valuations of both of
them are drawn from a uniform distribution, for one of them over the interval [0, 1] and
for the other one over the interval [0, 0.5]. Thus, Scenario 4 is an asymmetric case, but in
which the exact solution can still be derived (see Proposition (6.2)). A comparison of the
exact formula and the algorithm’s output is shown in Fig. 6.5.
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(a) θ̃ = 0, q = 0, N = 3.
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(b) θ̃ = 0.2, q = 0.5, N = 3.
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(c) θ̃ = 0, q = 0, N = 6.
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(d) θ̃ = 0.3, q = 0.5, N = 6.

Figure 6.3: Simulated and exact best bidding strategies for Scenario 2: different number of bidders,
valuations uniformly distributed on [0, 1], 2 services on sale.

Finally, let us present some scenarios where an analytical expression is not available.
We shall use the results of the lemmas in Section 6.3.2.B as guidelines to validate the
results. Scenario 5 considers two of these cases. Results are shown in Fig. 6.6, and show
that indeed the bidding functions are non decreasing, and that for symmetric bidders the
obtained bidding functions coincide.

The results shown throughout this subsection allow to validate the algorithm design
and implementation in several scenarios. We now comment on the algorithm’s performance
regarding its computational cost.

6.3.3.B.3 Enhancements and Code Acceleration As aforementioned, the procedure
relies on several Monte Carlo iterations, which renders the computational cost very ele-
vated. The error obtained when approximating via Monte Carlo methods decreases with
the root of the number of iterations. Hence, there is a trade-off between accuracy and
running time. Having an accurate result may rapidly turn performance into an issue.

In order to tackle these potential computational problems, we have relied on PYTHRAN
[9], an open-source static compiler for the Python language that makes it possible to turn
a high level interpreted language into a static lower-level language, namely from Python
to C++. The performance boost for our application reaches from x50 speed-up when com-
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(a) λ = 1, θ̃ = 0, q = 0, K = 1.
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(b) λ = 1, θ̃ = 0.8, q = 1, K = 1.
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(c) λ = 0.5, θ̃ = 0, q = 0, K = 1.

0 1 2 3 4 5
valuation

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Bi
d

Buyer 1
Buyer 2
Exact Solution

(d) λ = 0.5, θ̃ = 0.8, q = 1, K = 1.

Figure 6.4: Simulated and exact best bidding strategies for Scenario 3: 2 bidders, valuations
exponentially distributed, one service on sale.
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(a) θ̃ = 0, q = 0.
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(b) θ̃ = 0.5, q = 0.5.

Figure 6.5: Simulated and exact best bidding strategies for Scenario 4: 2 bidders, uniform valuations
with different supports, one object.

pared to the original version. As the translation is completely automated, the performance
improvement comes without code maintainability drawback.

The results presented above to validate the algorithm’s implementation were computed
on a regular computer with the following specifications. Intel R©CoreTM i5 CPU M 480 @
2.67GHz × 4 with 3.5 GB of RAM memory running Ubuntu 12.04 Operative System.
The average computation time for each one of the scenarios presented above are shown
in Table 6.1, for both the Python implementation, and the C++ code. Results show that
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K = 1.

Figure 6.6: Simulated best bidding strategies for Scenario 5: asymmetric general cases.

Implementation

Scenario C++ Python Ratio

1a. 8.28 425.60 51,40

1b. 6.93 414.91 59,87

1c. 8.58 421.64 49,14

1d. 8.59 422.70 49,21

2a. 6.43 354.14 55,10

2b. 6.30 344.10 54,62

2c. 13.03 681.79 52,32

2d. 13.33 654.40 49,10

3a. 10.14 733.90 72,38

3b. 8.65 700.00 80,92

3c. 16.27 1136.20 69,83

3d. 15.78 1067.90 67,67

4a. 8.87 777.18 87,62

4b. 3.98 232.04 58,30

5a. 25.83 1388.20 53,74

5b. 24.75 2379.10 96,13

Table 6.1: Average consumed time (seconds) to compute the best bidding strategies.

the speed-up is of at least 50x.

In order to further tackle the trade-off between the quality of the approximation
through Monte Carlo and the computational cost, variance reduction techniques could
be used, such as the importance sampling technique (see e.g. [134]). In that technique,
samples are drawn from an auxiliary distribution which has to be carefully chosen in order
to indeed result in a variance reduction of the estimator. However, the choice of this in-
strumental distribution and how to sample from it might not be easy from the theoretical
point of view.

A graphical user interface was developed enriching the best bidding strategy compu-
tation algorithm and providing a user-friendly tool, as shown in Fig. 6.7. In particular, in
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Figure 6.7: The First-Price auctions best bidding strategy simulator graphical interface.

Fig. 6.7 the approximate best bidding functions for two symmetric buyers whose valuations
are uniformly distributed is shown along with the exact solution.

6.4 Approximate Expected Seller’s Revenue

In Chapter 5, with the aid of analytical results for the best bidding strategy, we have de-
rived the expected seller’s revenue considering three different scenarios, namely symmetric
information, asymmetric information with naive buyers, and asymmetric information with
rational buyers. For each of those different scenarios we have derived the optimal percent-
age of reimbursement q. In this chapter we focus on a case where no analytical results
are available. We need thus to adapt the way we evaluate the expected seller’s revenue
to a simulative approach. For clarity’s sake we shall focus our explanation on the asym-
metric information with rational buyers scenario. That is, we recall, the scenario where
buyers determine the estimated probability of failure θ̃i,s such that their payoff is maxi-
mized. However, we shall see that from the results provided by this simulative approach,
conclusions can be drawn for any of the three different scenarios.

Given valuation xi,s bidder i’s expected payment is given by

pi,s = ProbWin×AmountPaid

= Pwin(βi(xi,s))βi(xi,s). (6.27)
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The ex ante payment is obtained taking the expectation of Equation (6.27), that is:

EXi,s
{pi,s(xi,s)} =

∫ xmax
i,s

0
pi,s(xi,s)fi,s(xi,s)dxi,s (6.28)

The seller’s ex ante expected revenue due to bidder i is Exi,s
{pi,s(xi,s)} if there is no

failure, and Exi,s
{pi,s(xi,s)}(1− qs) if there is a failure. Failures occur with probability θs,

thus the ex ante expected revenue due to buyer i is Exi,s
{pi,s(xi,s)}(1− qsθs). Finally, the

total seller’s ex ante expected revenue is simply the sum of the revenue due to each buyer,
that is:

R̄ =

M∑

i=1

EXi,s
{pi,s(xi,s)}(1− qsθs) (6.29)

Let us now compute the bidder’s expected payoff, in an analogous way as we have
performed it in Chapter 5. Bidder i’s real mean payoff (that is considering the event of
real failures) when his or her valuation is xi,s is:

Pi,s(xi,s) = Pwin(βi,s(xi,s))[xi,s(1− θs)− βi,s(xi,s)(1− qsθs)] (6.30)

We obtain the ex ante expected payoff by computing the expectation of Pi,s(xi,s)
defined in Equation (6.30) with respect to random variable xi,s obtaining:

P̄i,s = EXi,s
{Pi,s(Xi,s)} =

∫ xmax
i,s

0
Pi,s(xi,s)fi,s(xi,s)dxi,s (6.31)

Since in the asymmetric case we are considering that there are not necessarily analytical
expressions for the probability of winning and for the best bidding strategies, we are
not able to compute Equation (6.29) and Equation (6.31) analytically . We shall rather
compute approximate values, using the Monte Carlo method. Let us call R̄MC and P̄MC

i,s

the approximate ex ante expected revenue and ex ante expected payoff respectively. We
compute those approximate expressions as:

R̄MC =
1

MC

MC∑

k=1

M∑

i=1

Pwin
(

β̂i,s(x
{k}
i,s )

)

β̂i,s(x
{k}
i,s )(1− qsθs), (6.32)

P̄MC
i =

1

MC

MC∑

k=1

Pwin
(

β̂i,s(x
{k}
i,s )

) [

x
{k}
i,s (1− θs)− β̂i,s(x

{k}
i,s )(1 − qsθs)

]

, (6.33)

where MC is the number of iterations of the Monte Carlo method, Pwin is given by
Equation (6.25), the best bidding strategies β̂i,s are the approximate of βi,s obtained with

the algorithm described in the previous section, and x
{k}
j,s is the sample drawn from j’s

distribution Fj,s in the k-th repetition of the Monte Carlo method.

For given values of q, θ, θ̃ we can thus assess R̄MC and P̄MC
i,s for each bidder by sampling

MC valuations, each of them called x
{k}
i,s and estimating β̂i,s with the aid of the algorithm

presented in the previous section.
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The ultimate objective is, we recall, to find the optimal percentages of reimbursement
qs. For such purposes, we have introduced in Chapter 5 the pricing game. In few words, the
pricing game in Chapter 5 is a Stackelberg game where the leader (i.e. the seller) proposes
a value of qs for each service and the followers (i.e. the buyers) choose the value of θ̃i,s
that maximizes their expected payoff for the value of qs announced by the leader. The
vector θ̃ composed by the choices of θ̃i,s of all the buyers constitutes a Nash Equilibrium
of a game where the buyers are the players, θ̃i,s ∈ [0, 1) is their space of actions and the
ex ante expected payoffs are their utilities.

The backward induction method proposed in Chapter 5 to solve the pricing problem
implies first solving an optimization problem to find the value of θ̃ maximizer of the
buyers’ payoffs as a function of q, and with this value of θ̃ going back to solve the seller’s
optimization problem to determine the optimal q. In order to adapt such methodology to
simulations we define a grid for qs s ∈ S between 0 and a positive value qmax

s , and for each
qs a grid for θ̃i,s, i = 1 . . .M between 0 and min{1, 1/qs}. Please note that following the
indications of Chapter 5, we shall exclude value 1 for the probability of failure and limit it
to 1/qs, which are necessary conditions for an equilibrium as we have seen in Chapter 5.
Let us denote the function that receives as an argument an interval and returns a discrete
set of values within that interval as Grid(·).

We reformulate the pricing game for the asymmetric case and adapt it to simulations
in Problem (6.1).

Problem 6.1 The Pricing Game is a static Stackelberg game where:

• The leader is the seller and the buyers are followers

• The leader’s set of available actions is {q = {qs}s∈S : qs ∈ Grid([0, qmax
s )}

• Each follower i’s set of available actions is the set {θ̃i,s ∈ Grid([0,min(1, 1
qs
))}

• The leader’s utility is R̄MC and the followers’ utilities are P̄MC
i,s

For each (M+|S|)-tuple (θ̃1 . . . θ̃M , q1 . . . q|S|) the approximate seller’s expected revenue

R̄MC and approximate buyers’ expected payoff P̄MC
i,s are computed. Finally, the solution

to the Pricing game stated in Problem (6.1), is that one that provides the seller with the
maximum expected revenue at the Nash equilibrium of the buyers. Please note that due
to discretization, the procedure does not necessarily provide the optimal value of q but
rather the maximum among the considered values. However, it allows us to gain intuition
about whether the analytical results are still valid in asymmetric scenarios or not.

Computing the pure Nash equilibria can be a computational hard task when the num-
ber of bidders and types of services increase (see e.g. [58]). In consequence, for this stage,
a high performance code is of paramount importance, all the more so because the best
bidding strategies are to be updated for each (M + |S|)-tuple (θ̃1 . . . θ̃M , q1 . . . qS) that
has to be evaluated. The PYTHRAN tool, introduced in Subsection 6.3.3.B.3, allows us
to obtain an overall high performance C++ code. In the following section we apply this
simulative approach to two different case studies.

6.5 Case studies

We now evaluate our pricing scheme proposed in Chapter 5 and extended in the present
chapter in two asymmetric cases. A third scenario is provided in Appendix C.
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(a) Scenario illustration.
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(b) Simulated best bidding strategies. q = 0, θ̃i = 0, i = 1 . . . 4.

Figure 6.8: Case study with one class of service and non-homogeneous buyers.

6.5.1 Non-Homogeneous Buyers Scenario

In this scenario we shall consider one type of service and buyers that value the service
differently. This could account, for instance, for firms that have different business models.
Since there is only one type of service on sale we drop sub-index s. The scenario is depicted
in Fig. 6.8a. We shall consider two classes of buyers, say A and B, each one with 2 buyers.
Buyers 1 and 2 belong to class A and have valuations which are distributed according to a
uniform law on the interval [0, 1]. Buyers 3 and 4 belong to class B and have exponentially
distributed valuations with a parameter λ = 0.5. This means that buyers in class A value
the service between 0 and 1 with equal probability, while buyers belonging to class B
can attach any positive valuation to the service, though higher valuations have lower
probabilities. Finally, the service on sale fails 20% of the time (i.e. θ = 0.2).

The approximate best bidding strategies obtained with the algorithm introduced in
Section 6.3.3 when the buyers assume that the service does not fail (i.e. θ̃i = 0) and
when there is no reimbursement (i.e. q = 0) are shown in Fig. 6.8b. Please note that the
results verify the theoretical properties proved in Subsection 6.3.2.B. Indeed, the bidding
functions are increasing with the valuations and for buyers belonging to the same class
they coincide.

We proceed as explained in Section 6.4 to compute the approximate buyers’ expected
payoff and approximate seller’s expected revenue, that is we approximate them by Monte
Carlo, for different values of q and θ̃i. We shall consider q ∈ {0, 1} and θ̃i ∈ {0, 0.2, 0.8}
for i = 1 . . . 4. We recall that we assume that buyers whose valuations’ are drawn from the
same distribution function and that buy the same service, estimate the same probability
of failure of the service. Hence, a symmetry argument can be readily applied to each class
to conclude that buyers of class A would assume the same θ̃i at the Nash equilibrium, and
likewise for class B. Thus, since we know that at equilibrium rational buyers belonging to
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0 0.2 0.8

0 0.07,-0.04 0.07,0.01 0.09,0.03

0.2 0.1,0.0 0.1,0.01 0.12,0.03

0.8 0.19,0.02 0.19,0.02 0.19,0.03

(a) Buyers’ Expected Payoff, q = 0.

0 0.2 0.8

0 0.45 0.4 0.34

0.2 0.36 0.33 0.27

0.8 0.11 0.1 0.07

(b) Seller’s Expected Revenue, q = 0.

Table 6.2: Non-homogeneous buyers scenario. Expected outcomes for different values of θ̃ and
q = 0.

0 0.2 0.8

0 0.1,-0.04 0.1,-0.09 0.1,0.01

0.2 0.1,-0.06 0.1,0.01 0.1,0.01

0.8 0.1,0.01 0.1,0.0 0.1,0.0

(a) Buyers’ Expected Payoff, q = 1.

0 0.2 0.8

0 0.36 0.74 0.33

0.2 0.38 0.33 0.34

0.8 0.35 0.37 0.34

(b) Seller’s Expected Revenue, q = 1.

Table 6.3: Non-homogeneous buyers scenario. Expected outcomes for different values of θ̃ and
q = 1.

the same class have as optimum the same value of probability of failure, we only evaluate
those cases. In particular, in this scenario that means that we have to evaluate 32 options
instead of 34. Results for the approximate buyers’ expected payoff and seller’s expected
revenue are shown in Table 6.2 and Table 6.3, for q = 0 and q = 1 respectively.

Tables should be interpreted as follows. In Table 6.2a and Table 6.3a the evaluated
values of θ̃i are listed for classes A and B, A corresponding to the rows and B to the
columns. Each entry in the table represents the approximate expected payoff of a buyer
from class A and class B, in that order. Nash equilibrium occurs for the values of θ̃1 = θ̃2
and θ̃3 = θ̃4 which index a cell where both payoffs are highlighted in bold. That is, for
q = 0 equilibrium occurs at θ̃i = 0.8, i = 1 . . . 4 and for q = 1 at the following values of
vector θ̃: (0.8, 0.8, 0, 0), (0.2, 0.2, 0.2, 0.2), (0, 0, 0.8, 0.8) and (0.2, 0.2, 0.8, 0.8).

Once the Nash equilibria for the buyers are found for each value of q, we shall ap-
proximate the seller’s expected revenue at those equilibria. These results are highlighted
in bold in Table 6.2b for q = 0 and in Table 6.3b for q = 1. Finally, we shall choose as the
optimum value of q the one that renders the greatest approximate seller expected revenue.
In this case the optimum is q = 1 and implies that the seller’s expected revenue is ∼ 0.34
units, instead of the 0.07 units that would be earned when there is no reimbursement at
all (i.e. when q = 0).

Results also show that in this case, as in the symmetric buyers case studied in Chapter
5, when buyers assume a probability of failure equal to the real probability of failure, that
is when θ̃i = θ = 0.2 for i = 1 . . . 4, the expected outcomes for buyers and seller are the
same whether reimbursement is set to 0 or to 100%. Indeed, for the buyers we can see
in Table 6.2a that the expected payoff when no reimbursement is in place for the entry
(0.2, 0.2) is (0.1, 0.01), the same value obtained when reimbursement is 100%, as shown in
Table 6.3a for the entry (0.2, 0.2). Likewise, for the seller’s expected revenue, the entries
indexed by (0.2, 0.2) in Table 6.2b for q = 0 and in Table 6.3b for q = 1 are in both cases
0.33 units.

Finally, the market for lemons phenomenon commented in Chapter 5 also arises in this
scenario. Indeed, in Table 6.2a we can see that at the Nash equilibrium buyers assume a
probability of failure equal to 0.8 when reimbursement is set to 0, that is, they assume a
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probability of failure greater than the real one and this diminishes the seller’s expected
revenue.

6.5.2 Non-homogeneous Services Scenario

In this scenario we shall consider that buyers are homogeneous and that two different
services are offered. The service of type A fails 20% of the time, that is θA = 0.2, and
the service of type B 50% of the time, that is θB = 0.5. There is capacity enough for
serving only one service at a time. The scenario is illustrated in Figure 6.9a. Since there
are two different services offered, the optimal reimbursement we are looking for is a vector
q = (qA, qB) corresponding to the reimbursement for each service.

We shall consider four buyers, two who bid for obtaining a service of type A and two
who bid for obtaining a service of type B. Buyer’s valuations are uniformly distributed on
[0, 1]. Their approximate best bidding strategies when qA = 0, qB = 1, θ̃1,A = θ̃2,A = 0.2
and θ̃3,B = θ̃4,B = 0.5. are shown in Fig. 6.9b. Please note that as proved in Subsection
6.3.2.B, the strategies are increasing with the valuations and symmetric buyers assuming
the same probability of failure have the same bidding functions.

We proceed as in the previous scenario to compute the outcomes of buyers and seller.
Results for the buyers’ expected payoffs and for the seller’s expected revenue are shown in
Table 6.4 to Table 6.7, each corresponding to a different reimbursement vector q. Tables
should be read as explained in the previous scenario. The optimal reimbursement in this
scenario is once again reimbursing 100% for both services. In this case, the seller instead
of getting an expected revenue of 0.12, 0.16 or 0.23 units, would obtain 0.39 units by
reimbursing 100%.

Besides, the market for lemons phenomenon is also observable in this scenario. Indeed,
when there is no reimbursement the equilibrium of the buyers strategies occurs at the
highest value of θ̃i, s, that is θ̃i, s = 0.8 in Table 6.4a.

Previous results were obtained on a regular computer with a i5 processor of 2.67GHz
and 3.6 GB of RAM memory running OS Ubuntu 12.04. The time needed to compute all
the results related to the first scenario is on the average 3.5 minutes and for the second
scenario 15 minutes.
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(a) Scenario illustration.
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(b) Simulated best bidding strategies. qA = 0, qB = 1, θ̃1,A = θ̃2,A = 0.2 and θ̃3,B = θ̃4,B = 0.5.

Figure 6.9: Case study with two classes of services and homogeneous buyers.

0 0.2 0.5 0.8

0 0.01,-0.05 0.02,-0.02 0.04,0.02 0.05,0.07

0.2 0.04,-0.04 0.04,-0.02 0.06,0.02 0.08,0.07

0.5 0.08,-0.02 0.09,-0.0 0.09,0.03 0.1,0.07

0.8 0.14,-0.01 0.13,0.02 0.13,0.05 0.13,0.07

(a) Buyers’ Expected Payoff, q = (0, 0).

0 0.2 0.5 0.8

0 0.6 0.53 0.4 0.27

0.2 0.53 0.48 0.36 0.23

0.5 0.4 0.37 0.3 0.17

0.8 0.28 0.23 0.17 0.12

(b) Seller’s Expected Revenue, q = (0, 0).

Table 6.4: Non-homogeneous Services Scenario: θA = 0.2, θB = 0.5. Expected outcomes for differ-
ent values of θ̃ and q = (0, 0).
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0 0.2 0.5 0.8

0 0.01,0.03 0.01,0.03 0.01,0.02 0.01,0.03

0.2 0.04,0.03 0.04,0.03 0.04,0.03 0.04,0.03

0.5 0.09,0.04 0.09, 0.04 0.09,0.04 0.09,0.04

0.8 0.14,0.05 0.14,0.05 0.14,0.05 0.13,0.05

(a) Buyers’ Expected Payoff, q = (0, 1).

0 0.2 0.5 0.8

0 0.45 0.45 0.45 0.45

0.2 0.39 0.39 0.39 0.39

0.5 0.28 0.28 0.28 0.28

0.8 0.16 0.17 0.17 0.16

(b) Seller’s Expected Revenue.

Table 6.5: Non-homogeneous Services Scenario: θA = 0.2, θB = 0.5. Expected outcomes for differ-
ent values of θ̃ and q = (0, 1).

0 0.2 0.5 0.8

0 0.04,-0.05 0.05,-0.02 0.07,0.02 0.08,0.07

0.2 0.04,-0.05 0.05,-0.02 0.07,0.02 0.08,0.07

0.5 0.04,-0.05 0.05,-0.02 0.07,0.02 0.08,0.07

0.8 0.04,-0.05 0.05,-0.02 0.07,0.02 0.08,0.07

(a) Buyers’ Expected Payoff, q = (1, 0).

0 0.2 0.5 0.8

0 0.55 0.47 0.34 0.23

0.2 0.54 0.47 0.35 0.23

0.5 0.54 0.48 0.35 0.23

0.8 0.55 0.47 0.35 0.23

(b) Seller’s Expected Revenue, q = (1, 0).

Table 6.6: Non-homogeneous Services Scenario: θA = 0.2, θB = 0.5. Expected outcomes for differ-
ent values of θ̃ and q = (1, 0).

0 0.2 0.5 0.8

0 0.04, 0.02 0.04,0.03 0.04, 0.03 0.04,0.03

0.2 0.04,0.03 0.04,0.03 0.04, 0.03 0.04,0.03

0.5 0.04,0.03 0.04,0.02 0.04, 0.03 0.04,0.03

0.8 0.04,0.03 0.04,0.03 0.04, 0.03 0.04,0.03

(a) Buyers’ Expected Payoff, q = (1, 1).

0 0.2 0.5 0.8

0 0.39 0.39 0.39 0.39

0.2 0.39 0.39 0.39 0.39

0.5 0.39 0.39 0.39 0.39

0.8 0.39 0.39 0.39 0.39

(b) Seller’s Expected Revenue, q = (1, 1).

Table 6.7: Non-homogeneous Services Scenario: θA = 0.2, θB = 0.5. Expected outcomes for differ-
ent values of θ̃ and q = (1, 1).
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6.6 Summary

In this chapter we have focused on evaluating the pricing mechanism proposed in Chapter
5 when relaxing the assumption about buyers’ symmetry and a single type of service.
When these assumptions are dropped, in the general case, there is no closed-form expres-
sion for the best bidding strategy, which constitutes the main pillar of the theory derived
in Chapter 5. We have proposed a numerical method that makes it possible to obtain an
approximate best bidding strategy when those assumptions are relaxed. The algorithm
is based on the Monte Carlo method, which imposes a trade-off between accuracy and
computational cost. In order to overcome this trade-off, we have used an automatic trans-
lating tool from a high level programming language to native code. The resulting tool
performs at least 50 times faster than the original one. This acceleration has allowed us
to rely on the developed algorithm to compute the optimum percentage of reimbursement
in scenarios with asymmetric buyers and services which fail with different probability.

We have evaluated the pricing scheme through simulations in two different scenarios.
In both cases, results have shown that reimbursing 100% provides greater revenues to the
seller than not reimbursing at all. A third case is shown in Appendix C. These results
verify the theoretical conclusions drawn for the symmetric case in Chapter 5.
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Chapter 7

Conclusion and Perspectives

7.1 Conclusion

In this thesis we have addressed different topics related to the provisioning of Quality of
Service (QoS) in interdomain networks. We have divided our study into two different parts.
The first part has addressed a problem that arises when computing end-to-end QoS paths.
The second part has addressed topics related to multidomain alliances, namely bandwidth
allocation, revenue sharing and pricing.

In the first part, we have focused on a problem related to interdomain quality-assured
path computation. Several methods to compute end-to-end quality-assured paths have
been proposed, mainly based on the Path Computation Element (PCE) framework. How-
ever, most of them need QoS metrics related to each domain, or autonomous system
(AS). How to compute or how to obtain values related to these metrics is typically not
specified by those. In addition, even if a method were available, for instance, end-to-end
monitoring information, anomalies in the traffic occur, and those values might no longer
be accurate when the time comes to stablish the path. We have conceived a means to
compute a bound on the end-to-end delay of traversing an AS as a tool to be used in this
context. The method takes into account the uncertainties in the traffic traversing an AS.
This uncertainty has been modelled as a polytope in the so-called traffic matrix. This is
a robust approach, since the computed value can be announced by the AS in the process
of interdomain path selection and it is guaranteed that the bound will hold for a certain
period of time. The problem of how to compute this bound was mathematically stated
and we have shown that it results to be a non-convex optimization problem, thus standard
optimization tools are not suitable to solve it. We have proposed a reformulation of the
problem and proved that its solution is found at the extreme points of a polytope obtained
by transforming the original polytope, that one that models the traffic uncertainties. In
addition, an alternative approximate method was proposed, as a remedy for the high com-
putational cost of the exact method. The approximate method renders rather than a value
of the delay, an interval to where the real value of the maximum delay is guaranteed to
belong, and this interval can be made arbitrarily small. The latter was theoretically proven
and numerically validated, by comparing the results of the approximate method against
the real maximum. Both methods, exact and approximate, were tested on real topologies
using measurement and synthetic data. The Approximate method was shown, through
simulations, to provide acceptable computational times on several scenarios.

In the second part, we have focused on multidomain alliances. Multidomain or Network
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Service Providers (NSPs) or AS alliances, are an emerging scenario where several ASs get
together in order to provide end-to-end QoS, with the objective of overcoming technical
and business difficulties of end-to-end QoS delivery. For doing so, coordination princi-
ples take place with respect to both technological and economic aspects. For instance,
Traffic Engineering techniques are applied to the whole alliance, a common monitoring
infrastructure exists and common pricing and revenue sharing principles are in place.

In this context, we have proposed a framework for covering the complete cycle for
selling end-to-end quality assured services.

Firstly, we have stated the problem of network bandwidth allocation with QoS con-
straints and an application based on first-price auctions combined with such problem was
proposed as a means to sell quality assured services. In particular, the bandwidth allocation
problem was stated as a Network utility Maximization (NUM)-like problem, where end-
to-end QoS constraints are considered, and where utility functions are obtained through
an auction mechanism. The mechanism, thus, maximizes the revenue of the alliance, while
respecting QoS constraints. We have proved that a distributed solution to the allocation
problem can be carried out.

Secondly, we have addressed the problem of revenue sharing in the context of ASs
alliances, focusing on the case where the income of the alliance is determined by the
output of the aforementioned NUM problem. This particular scenario poses new challenges.
Indeed, existing methods to perform revenue sharing, which have been reviewed in the
thesis, were found to be inappropriate applied to this case. Our contribution in this sense
is twofold. We have formally stated the desired properties for the revenue sharing in the
context of multidomain alliances and we have proposed a new method to compute the
shares. The method is conceived to provide economic stability and efficiency to the alliance
and it is flexible enough to be adapted to fulfil additional properties. It is based on solving
an optimization problem and considers statistics on the revenues. Its proper behaviour
has been evaluated through simulation studies. In particular, we have shown through
simulations that, provided the right choice in the objective function of the optimization
problem is done, the method presents a proper behaviour. Indeed, it has shown through
simulations over several topologies, to provide a fair share and incentives to the ASs
belonging to the alliance to increase their resources towards the alliance.

Thirdly, we have provided insight into a pricing mechanism based on first-price band-
width auctions with reimbursement, which to the best of our knowledge has not been
proposed before. The main contribution with respect to this pricing scheme is twofold.
We have determined the best bidding strategy under a first-price auction mechanism for
network services that are prone to failures and with money-back guarantees; and we have
analytically obtained the optimal reimbursement value when bidders are aware of the
reimbursement policy.

We have addressed the problem of where to set the percentage of reimbursement assum-
ing different situations and buyer behaviours. In particular, we have studied the situation
of rational buyers that are not certain about the probability of failure of the service. In
that scenario, we have modelled the pricing problem as a Stackelberg game and shown
that there is an equilibrium setting that maximizes seller’s revenue, which is given by a
reimbursement equal to 100%. In such equilibrium, the market for lemons effect and the
moral hazard one, which were shown to arise for other percentage of reimbursement either
than 100%, are overcome and seller’s expected and buyers’ expected payoff are the same
as when having perfect information.
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Finally, we have presented a simulative approach in order to evaluate the aforemen-
tioned proposed pricing scheme in scenarios where buyers are asymmetric. This accounts
for more realistic scenarios, where, for instance, buyers value the service on sale in a dif-
ferent way. The proposed simulator finds an approximation to the best bidding strategies
and it is based on an iterative process seeking to maximize each bidder’s expected pay-
off. It relays on the Monte Carlo method to compute expectations and in the Simulated
Annealing method to solve the involved optimizations. We have applied the simulator to
three different scenarios obtaining in all of them results that are coherent with the results
obtained through the analytical analysis, that is, reimbursing 100% was found to provide
more revenues to the seller (i.e. the alliance) than no reimbursing at all.

7.2 Perspectives

The subjects addressed by this thesis need an holistic approach. Indeed, technological
issues arise but also economic ones must be considered, while the interests of different
actors (final users, NSPs, OTTs) may be opposed. However, our approach was rather
compartmentalized into different studies. In order to be able to address the problem we
have needed to decouple it and to state a number of hypothesis. Natural perspectives are,
thus, to relax those hypothesis and to reassemble all the problem. We detail this in what
follows.

With respect to the first part of the thesis, the bound on the delay, we shall explore
the case of having uncertainty on the AS topology in addition to traffic uncertainty. For
instance, taking into account the case of link or node failures, and being able to provide
even in those cases a tight end-to-end delay bound. We shall as well explore the possibility
of building a delay curve as a function of ingress traffic. If the delay can be advertised as
a function of ingress traffic, this would allow to take more sophisticated routing decisions,
leading to lower end-to-end delay values.

As regards the proposed bandwidth allocation mechanism, a straightforward enhance-
ment is considering multipath routes, and showing that even in that case distributed
solutions can be found. In addition, we have assumed throughout the study a delay func-
tion modelled by the average delay of a M/M/1 queue. This model could be enhanced, for
instance through measurements as proposed in [87], through more complex queue models
or even using the maximum delay curve mentioned in the previous paragraph.

With respect to the revenue sharing method there is much to do. We have shown
through exhaustive simulations that the method behaves well with respect to the properties
that we named monotonicity and fairness. The detailed analytical study of these properties
was left for future work. It is a very complicated task, since the problem is mathematically
complex, no closed-form was found for the expression of the revenue sharing and this
renders the proofs hard to derive. In addition, a very interesting challenge is to apply this
method in a real case. In order to compute the revenue sharing, all billing information,
and more, is needed, which could render the task complicated in a real system. Indeed,
billing in telecommunication networks is itself a very complicated task. In our favour, we
have to say that the problem does not need to be solved in real time, which from that
point of view is much more simpler than the billing problem.

Still about the revenue sharing problem, and regarding the reassemble of the whole
problem, we have not considered end-to-end quality constraints in the revenue sharing
problem. It would be very interesting to study the impact of the delay on the obtained
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revenue share. To verify if the properties of the method are still fulfilled, and to what
extent the consideration of those additional constraints impacts the implementation of the
method.

Concerning the proposed pricing scheme, the first thing to be done is to enhance the
model. The probability of failure in our model does not depend on the accepted bandwidth,
it is rather a parameter that can account, for instance, for equipment failures or busy
servers. We would like to enhance this, by, for instance, having a probability of failure
that could account for the probability of exceeding a delay, given that this is a function of
the traffic in the network. In addition to provide a more realistic model, this would add
feedback from the accepted traffic into pricing.

Also with respect to the proposed pricing scheme, we would like to relax the assumption
of independent bidders in order to take into account collusion effects. Collusion can arise
if bidders agree to submit a low bid in order to pay a lower price for the service. In this
case, since there is an agreement among certain buyers, two of the assumed hypothesis
are no longer valid. First, the symmetric buyers one, if some buyers collude but not all,
symmetry among all bidders is no longer true. Second, if buyers agree the independence
among buyers does no longer hold. Simulative approaches are likely to be needed if both
hypothesis are relaxed at the same time.

With respect to the scenario with asymmetric buyers, there are enhancements to be
done to the simulative approach we have presented to approximate the best bidding strate-
gies. Even if the computational cost of the implemented algorithm has been dramatically
decreased though an automatic translation into native code, it could be further decreased,
for instance, through code paralellization. In addition, the method’s performance should
be enhanced to provide a better performance when the number of bidders is increased. A
solution to study in order to tackle both problems convergence time and accuracy of the
results, are the variance reduction methods, since the algorithm relays much on the Monte
Carlo method.

Finally, regarding the proposed pricing scheme, it would be extremely interesting to
contrast the theoretical results with real data about the willingness to pay of buyers that
are proposed to be reimbursed if a failure occurs. Would they indeed act rationally? or are
they naive? Does Quality-of-Experience have more influence on willingness to pay than an
advertised QoS? Experimental results should be gathered in order to study these aspects.

Beyond the aforementioned enhancements of the proposed models and improvements
of the provided solutions, it would be very interesting to study the dynamics of the NSPs
alliances. Throughout the thesis, we have assumed that the alliance was somehow formed,
and we have not deepen on how that occurs. While it is true that NSPs would get together
more because of business reasons and less because of technical ones, some technical aspects
could also have influence on how the alliances are formed. In this sense, it is very interesting
to study the following questions. What would be guidelines to form an alliance? Could they
be form such that the interdomain connections optimize the Internet routing? Can they
lead to a better planned interdomain routing diminishing, for instance, BGP table sizes?
And more related to the business plane: how does the share of each NSP changes when a
NSP joins or leaves the alliance? How would buyers react towards an unstable alliance?
Would they distrust it and a phenomenon similar to the market for lemons arise? Once
more, these questions should be addressed through a multidisciplinary optic, where, for
instance, concepts from game theory, microeconomics and networking are blended.
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Appendix A

Bandwidth Allocation Review of
Preliminaries Results

In this appendix we recall some results from Dynamic Systems that are used for the proof
of the convergence of the primal-dual laws presented in Chapter 3 for the distributed
bandwidth allocation problem.

Definition A.1 Invariant Set. A set M is said to be positively invariant if x(0) ∈ M
implies x(t) ∈M ∀t ≥ 0.

Theorem A.1 Krasovskii [83]. Given ẋ = f(x), x in X ⊂ R

n and a Lyapunov function of
the form:

V (x) = ẋTQẋ.

If a positive definite symmetric matrix Q is found such that
(
∂f

∂x

)T

Q+Q

(
∂f

∂x

)

is negative semidefinite ∀x ∈ X, then V̇ ≤ 0.

Theorem A.2 LaSalle Invariance Principle (see e.g. [81]). Let Ω ⊂ D ⊂ R

n be a compact
positively invariant set w.r.t. ẋ = f(x). Let V : D → R be a continuously differentiable
function such that V̇ (x) ≤ 0 in Ω. Let E ⊂ Ω = {x ∈ Ω|V̇ (x) = 0}. Let M be the largest
invariant set in E, then every solution that starts in Ω tends to M when t→ ∞.

Theorem A.3 LaSalle Generalized Invariance Principle (for Switched Systems) [95]. Given
ẋ = F (σ, x), σ ∈ Σ (finite set), x in X ⊂ R

n and Ω compact invariant set in Σ ×X. If
there exists V : Ω → R such that:

1. For σ fixed, V (σ, x) is continuously differentiable w.r.t. x and V̇ (σ, x) = ∂V
∂x ẋ ≤ 0

2. At switching times, V (σ(t+), x) ≤ V (σ(t−), x). Then:

Any trajectory (σ(t), x(t)) starting from Ω (as t → inf) approaches the largest invariant
set inside the set of points (σ, x) for which:

i. either σ fixed and V̇ (σ, x) = 0, ∀t ≥ 0

ii. or σ changes at time t between σ− and σ+ but V (σ+, x) = V (σ−, x)
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Appendix B

Revenue Sharing, Simulations

In this chapter we present the results of exhaustive simulative studies, which evaluate the
behaviour of the revenue sharing method proposed in Chapter 4. In particular, we focus
on the projection of the contributions vector v into the stable and efficient set. That is to
say, we consider f(x) = ||x − v||2, which is the function that has shown good behaviour
in the simulative results present in Chapter 4. Simulations evaluate the fulfilment of the
monotonicity and fairness properties.

Network topologies were generated using the automatic Internet topology generator
BRITE [1], which automatically generates a graph with directed links and randomly as-
signs capacities, and receives as input the number of nodes and certain parameters for the
algorithms running inside. Over each topology, we have defined an overlay alliance where
services are defined between every couple of nodes, if a path in the topology between those
nodes exists. For those services, the second shortest path between ingress and egress node
has been chosen. The evaluated network topologies are shown in Fig. B.1, while services’
paths and nodes’ capacities are shown in Table B.1. With respect to utility functions, they
ware built up according to the method proposed in Chapter 3, that is to say ordering and
summing up bids. The bids’ values were randomly generated.
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n1

n2

n3

n4

n5

(a) Topology 4.

n4

n5

n6

n2

n1

n3

(b) Topology 5.

n5 n6

n2

n1

n3

n7

n8

n4

(c) Topology 6.

Figure B.1: Networks used on simulations.
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Network Paths Nominal capacities

Topology 4

[n1,n2,n3]

(788,582,483,518,479)

[n1,n2,n4]
[n1,n2,n5]
[n2,n3,n4]
[n2,n3,n5]
[n3,n4,n5]

Topology 5

[n1,n2,n3]

(641 , 630, 1072, 877, 788,181)

[n1,n2,n4]
[n1,n2,n5]
[n1,n2,n6]
[n2,n3,n4]
[n2,n3,n5]
[n2,n3,n6]
[n3,n4,n5]
[n3,n4,n6
[n4,n5,n6]

Topology 6

[n1,n2,n3]

(477,856,807,688,892,380,550,412)

[n1,n2,,n4]
[n1,n2,,n5]
[n1,n2,,n6]
[n2,n3,,n4]
[n2,n3,,n5]
[n2,n3,,n6]
[n3,n4,,n5]
[n3,n4,n6]
[n4,n5,n6]
[n1,n7,n8]
[n1,n2,,n7]
[n1,n2,,n8]
[n2,n3,,n7]
[n2,n3,n8]
[n1,n4,n7]
[n1,n4,n8]
[n1,n5,n7]
[n2,n5,n8]
[n1,n6,n7]
[n1,n6,n8]

Table B.1: Description of the paths for the different evaluated networks shown in Fig.B.1.
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B.1 One-shot Simulations

Over each alliance we have evaluated the revenue share obtained using the proposed
method when varying the capacity of one node at a time. Results are shown in Fig.
B.5 to Fig. B.8. Each figure shows the revenue shares obtained when using the proposed
method with objective function f(x) = ||x − v||2 along with the contributions vector, as
functions of the capacity. In each figure, the capacity of only one nodes varies. Shares are
stacked up, the bottom one being the share corresponding to the node whose capacity is
increasing. The legends respect the same order as the order in which shares are stacked
up. The contributions vector is plotted along with the revenue shares and bars respect the
same order.

B.1.1 Monotonicity evaluation

The monotonicity property was verified in all the alliances for all the evaluated utility
functions. Please note that the results shown in this Appendix correspond to one given
utility function. However, different utility functions lead to different revenue shares. As
mentioned in Chapter 4, the particularities of our alliances make that the results do
not only depend on the topology of the alliance but also on the utility functions. The
monotonicity property was however, verified in all the evaluated cases, further than the
ones shown in this Appendix. Monotonicity can be readily be checked from the results in
Fig. B.5 to Fig. B.8, where for all the cases the share at the bottom of the bars does not
decrease when capacity increases.

B.1.2 Fairness evaluation

Fairness can be evaluated by comparing the revenue share with the contributions vector.
Each figure shows the revenue share results along with the contribution vector, when the
capacity of one node increases while the capacity of all other nodes remain constant. Re-
sults show for all simulations that the revenue shares verify the order preserving property
and the no free riders property. Indeed, the order imposed by the contributions vector
is respected by the obtained shares, and in any case a node whose contribution is zero
receives a non-zero revenue share. With respect to the equals treatment of equals property,
this was verified in all cases, as it can be roughly verified from the figures.
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Figure B.2: Revenue sharing when increasing the capacity of one node at a time for Topology 4
nodes 1 to 3.



140 APPENDIX B. REVENUE SHARING, SIMULATIONS

300 400 500 600 700 800 900
0

10

20

f (x) = ||x-v||2

x

 

 

n4 n1 n2 n3 n5

300 400 500 600 700 800 900
0

0.5

1

c4

v 
(%

)

(a) n4.

300 400 500 600 700 800 900
0

10

20

f (x) = ||x-v||2

x

 

 

n5 n1 n2 n3 n4

300 400 500 600 700 800 900
0

0.5

1

c5

v 
(%

)

(b) n5.

Figure B.3: Revenue sharing when increasing the capacity of one node at a time for Topology 4
nodes 4 and 5.
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Figure B.4: Revenue sharing when increasing the capacity of one node at a time for Topology 5,
nodes 1 to 3.
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Figure B.5: Revenue sharing when increasing the capacity of one node at a time for Topology 5,
nodes 4 to 6.



B.1. ONE-SHOT SIMULATIONS 143

200 300 400 500 600 700 800 900 1000 1100
0

20

40

60

80

f (x) = ||x-v||2

x

 

 

n1 n2 n3 n4 n5 n6 n7 n8

200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

c1

v 
(%

)

(a) n1.

200 300 400 500 600 700 800 900 1000 1100
0

20

40

60

f (x) = ||x-v||2

x

 

 

n2 n1 n3 n4 n5 n6 n7 n8

200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

c2

v 
(%

)

(b) n2

200 300 400 500 600 700 800 900 1000 1100
0

20

40

60

f (x) = ||x-v||2

x

 

 

n3 n1 n2 n4 n5 n6 n7 n8

200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

c3

v 
(%

)

(c) n3

Figure B.6: Revenue sharing when increasing the capacity of one node at a time for Topology 6,
nodes 1 to 3.
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Figure B.7: Revenue sharing when increasing the capacity of one node at a time for Topology 6,
nodes 4 to 6.
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Figure B.8: Revenue sharing when increasing the capacity of one node at a time for Topology 6,
nodes 7 and 8.
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B.2 Multiperiod Simulations

In Chapter 4 we have presented two different approaches to work with the statistics of
the revenue in a multiperiod scenario. The objective of these simulations is to study the
behaviour of both approaches, and to what extent they provide different revenue shares.
We shall use the same topologies as in the previous section, which are shown in Fig.
B.1. Revenue sharing was computed using the proposed method and setting the objective
function to f(x) = ||x − v||2. Before each revenue share, service selling phase was run 30
times. Fig. B.9, Fig. B.10 and Fig. B.11 show the results obtained for Topologies 4, 5 and
6 respectively. In all cases, the differences between the shares for each node according to
Approach 1 and Approach 2 do not vary significantly.
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Figure B.9: RS using Approach 1 (-) and 2 (+), Topology 4.
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Figure B.10: RS using Approach 1 (-) and 2 (+), Topology 5.
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Figure B.11: RS using Approach 1 (-) and 2 (+), Topology 6.





Appendix C

The Proposed Pricing Scheme: Proofs,
Simulations, Validation and Application

In this Appendix we present some additional calculus and simulations related to the pro-
posed pricing scheme applied to the asymmetric case, in Chapter 6.

C.1 Bidding Strategies for Two Bidders and Two Asymmetric

Services.

We present the details of the computation of the best bidding strategy for the case stated by
Preposition (6.1). We recall that the case with one service, two bidders whose valuations
are drawn from two uniform distributions with different supports can be derived in an
analogous way to the case we shall show.

Assume there are two buyers whose valuations are drawn from the same uniform dis-
tribution and who bid to buy each a different service. Thus, each of them might assume
a different probability of failure of the service to buy. Let us call θ̃i,s the probability of
failure assumed by buyer i = 1, 2 for services 1, 2 and qs the percentage of reimbursement
announced for each service s = 1, 2.

Let us define φi(b) = β−1
i (b). The probability that bidder 1 wins the auction if he

submits a bid b is:

Pwin(b1 = b; b2) = P(b > b2) = 1− P(b2 > b) (C.1.1)

= 1− P(φ2(b2) > φ2(b)) = 1− P(X > φ2(b)) = F (φ2(b)),

and analogously for buyer 2. Thus we can write the expected payoff for buyer i = {1, 2}
as:

Pi,s(b, x) = F (φj(b))(x(1 − θ̃i,s)− b(1− qsθ̃i,s)) j 6= i (C.1.2)

The derivative of the expected payoff with respect to b is:

∂Pi,s(b, x)

∂b
= f(φj(b))φ

′
j(b)(x(1− θ̃i,s)− b(1− qsθ̃i,s))−F (φj(b))(1− qsθ̃i,s) j 6= i (C.1.3)

Thus, imposing the first order condition for both buyers we obtain the following system

149



150 APPENDIX C. THE PROPOSED PRICING SCHEME: PROOFS AND SIMULATIONS

of differential equations.

φ′j(b) =
F (φj(b))(1 − qsθ̃i,s)

f(φj(b))(φi(b)(1− θ̃i,s)− b(1− qsθ̃i,s))
j 6= i (C.1.4)

We shall now assume that valuations are uniformly distributed on [0, xmax]. Thus, the
system expressed by Equation (C.1.4) becomes:

φ′j(b) =
φj(b)(1 − qsθ̃i,s)

φj(b)(φi(b)(1 − θ̃i,s)− b(1− qsθ̃i,s)
j 6= i (C.1.5)

Let us define αi =
1−θ̃i,s
1−qsθ̃i,s

for (i, s) = (1, 1), (2, 2). We can rewrite Equation (C.1.5) as

φ′1(b)φ2(b)− φ′1(b)
b

α2
=
φ1(b)

α2
(C.1.6)

φ′2(b)φ1(b)− φ′2(b)
b

α1
=
φ2(b)

α1
(C.1.7)

We derive a border condition and decouple the system given by Equation (C.1.6) and
Equation (C.1.7). Indeed, summing up those equations we obtain

φ′1(b)φ2(b) + φ′2(b)φ1(b) =
bφ′1(b)

α2
+
φ1(b)

α2
+
bφ′2(b)

α1
+
φ2(b)

α1
, (C.1.8)

which can be rewritten as:

∂

∂b
(φ1(b)φ2(b)) =

∂

∂b

[

b

(
φ2(b)

α1
+
φ1(b)

α2

)]

. (C.1.9)

Integrating Equation (C.1.9) we find that φ1(b)φ2(b) = b(φ2(b)
α1

+ φ1(b)
α2

), which is in
particular true at the border of the domain x = xmax. Please note that the integration
constant is zero because φi(0) = 0. In addition, we know that both bidding functions
β1(x

max) = β2(x
max), since if not one bidder could do better by bidding something smaller

(see Lemma (6.3) in Section 6.3.2.B). Let us call this common value bmax. Thus we have
that:

(xmax)2 = bmax

(
xmax

α1
+
xmax

α2

)

, (C.1.10)

from where we can deduce that:

bmax =
(xmax)2

xmax

α2
+ xmax

α1

. (C.1.11)

From Equation (C.1.9) we can as well conclude that

φ1(b) =

bφ2(b)
α1

φ2(b)− b
α2

(C.1.12)
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Injecting Equation (C.1.12) into Equation (C.1.6) and Equation (C.1.7) we obtain the
following decoupled system of first order differential equations:

φ′i(b) = φi(b)

(

φi(b)−
b

αi

)
αi

b2
, i = 1, 2 (C.1.13)

The solution to Equation (C.1.13) can be easily found to be

φi(b) =
2b

(1 + kib2)αi
, i = 1, 2, (C.1.14)

where ki is a constant of integration.

In order to determine ki we shall use the border condition given by Equation (C.1.11),
obtaining:

ki =
α2
j − α2

i

(xmaxαiαj)2
, i 6= j. (C.1.15)

Finally, inverting Equation (C.1.14) we obtain:

βi(x) =
1−

√

1− α2
i kix

αikix
, i = 1, 2, (C.1.16)

where ki is given by Equation (C.1.15).

We have found βi at which the first order derivative of the payoff is null. We still need
to check that indeed it is an equilibrium, which can be readily done.

C.2 Additional Case Study

In this section we shall evaluate the proposed pricing scheme in another asymmetric sce-
nario, enriching the two scenarios shown in Chapter 6. We now consider a scenario with 3
classes of buyers, 2 of them attach to the one service on sale uniformly distributed valua-
tions, each with different supports. The buyers belonging to the third class attach to the
service exponentially distributed valuations. This represents a case, for instance, where
there are some buyers that value the service more than others. In particular we consider
that buyers belonging to the first class attach to the service a valuation on the interval
[0, 1], valuations of buyers belonging to the second class are independently distributed
on the interval [0, 2], and those of buyers belonging to the third class are exponentially
distributed with parameter λ = 1. Which could be interpreted as that clients in the latter
class usually attach a valuation close to 1 but less frequently they can attach any greater
value. We assume that each class has the same number of buyers. The service on sale fails
20% of the time, that is θ = 0.2.

We proceed as explained in Chapter 6. We define a grid for the values of q and for the
values of θ̃i. For each value of q in that grid, buyers’ expected payoffs over the discretized
space of θ̃i are computed. With this values, for each value of q we determine the Nash
equilibrium, that is the values of θ̃i that maximize each bidders’ payoff. Please note that
since the equilibrium bidding strategy among buyers belonging to the same class is the
same, we only need three different values of θ̃i.
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Results are shown in Table C.1. This table should be read as follows. For each column
P̄MC
j rows with the same color on represent settings where the actions of buyers i 6= j are

fixed (the reader can check this against the column in the left). In order to find the Nash
Equilibrium at each column P̄MC

j for each color, the setting that maximizes j’s payoff is
highlighted in bold. Those settings that are highlighted in bold at all columns constitute a
Nash equilibrium. Finally, we compare the expected seller’s revenue at these settings (red
cells) in order to chose the value of q that renders the greatest expected revenue to the
seller. In this scenario, once again the optimum is setting q = 1.

(θ̃1,θ̃2,θ̃3)

(0, 0, 0.2)

(0, 0, 0.9)

(0, 0, 0)

(0, 0.2, 0.2)

(0, 0.2, 0.9)

(0, 0.2, 0)

(0, 0.9, 0.2)

(0, 0.9, 0.9)

(0, 0.9, 0)

(0.2, 0, 0.2)

(0.2, 0, 0.9)

(0.2, 0, 0)

(0.2, 0.2, 0.2)

(0.2, 0.2, 0.9)

(0.2, 0.2, 0)

(0.2, 0.9, 0.2)

(0.2, 0.9, 0.9)

(0.2, 0.9, 0)

(0.9, 0, 0.2)

(0.9, 0, 0.9)

(0.9, 0, 0)

(0.9, 0.2, 0.2)

(0.9, 0.2, 0.9)

(0.9, 0.2, 0)

(0.9, 0.9, 0.2)

(0.9, 0.9, 0.9)

(0.9, 0.9, 0)

(a) Settings

P̄MC
1 P̄MC

2 P̄MC
3

0.01 0.05 0.3

0.01 0.05 0.54

0.0 0.05 0.26

0.01 0.07 0.3

0.01 0.06 0.54

0.0 0.07 0.27

0.01 0.22 0.38

0.01 0.21 0.56

0.01 0.23 0.37

0.01 0.06 0.3

0.01 0.05 0.55

0.01 0.06 0.27

0.01 0.07 0.32

0.01 0.06 0.56

0.01 0.07 0.3

0.01 0.22 0.41

0.01 0.21 0.18

0.01 0.22 0.41

0.01 0.1 0.34

0.01 0.04 0.58

0.01 0.1 0.29

0.01 0.12 0.35

0.01 0.05 0.57

0.01 0.12 0.31

0.01 0.21 0.46

0.01 0.2 0.59

0.01 0.21 0.44

(b) q = 0

R̄MC

0.39

0.11

0.42

0.36

0.11

0.41

0.22

0.07

0.23

0.36

0.1

0.39

0.33

0.1

0.36

0.18

0.11

0.19

0.35

0.05

0.39

0.31

0.05

0.35

0.07

0.04

0.07

(c) q=0

P̄MC
1 P̄MC

2 P̄MC
3

0.01 0.07 0.32

0.01 0.07 0.33

0.01 0.07 0.31

0.01 0.08 0.32

0.01 0.07 0.33

0.01 0.07 0.32

0.01 0.07 0.32

0.01 0.07 0.32

0.01 0.07 0.33

0.01 0.08 0.31

0.01 0.07 0.33

0.01 0.07 0.33

0.01 0.07 0.33

0.01 0.07 0.31

0.01 0.07 0.33

0.01 0.07 0.32

0.01 0.07 0.32

0.01 0.07 0.32

0.01 0.08 0.33

0.01 0.06 0.33

0.01 0.06 0.33

0.01 0.07 0.32

0.01 0.07 0.32

0.01 0.07 0.32

0.01 0.07 0.33

0.01 0.07 0.32

0.01 0.07 0.32

(d) q = 1

R̄MC

0.35

0.34

0.35

0.35

0.35

0.33

0.34

0.34

0.34

0.35

0.33

0.35

0.33

0.35

0.34

0.35

0.34

0.35

0.34

0.35

0.35

0.34

0.34

0.35

0.35

0.34

0.35

(e) q=1

Table C.1: Information structure for the game in Case study 2. Actions (θ̃1, θ̃2, θ̃3) and q, ap-
proximate bidders’ expected payoff (P̄MC

i , i = 1 . . . 3) and approximate seller’s expected revenue
R̄MC .

Finally, it is worth noting that the results obtained in this scenario are coherent with
the analytical results presented in Chapter 5. That is, that when buyers are uncertain
about the performance of the service to buy, in order to avoid a decrease on the expected
seller’s revenue, the seller should propose a percentage of reimbursement equal to 100%.
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