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Introduction

Premaier chapitre

Etude d’un probleme de bifurcation associé a une fonction convexe, asymp-
totiquement linéaire

On étudie le probleme

(1)

—Au = Af(u) dans
u=0 sur of)

ou:

- © est un ouvert borné connexe régulier de R

- f : R — R est une application de classe C!, convexe, non négative, telle que f(0) > 0
et f'(0) > 0;

- X est un parametre positif.

On sait (voir, par exemple, [BN]), qu’il existe A\* € (0, 00) tel que

- il y a une solution de (1) pour chaque A < \*;

-si A > A*, il n’y a aucune solution;

- pour A < A\* il existe une solution minimale u(\). De plus, u(\) est "'unique solution
stable du probleme (1) et 'application A — u(\) est convexe et croissante.

Quelques questions naturelles concernant ’étude du probléme (1) sont:

i) existence d’une solution si A = A*;

ii) le comportement des solutions u(A) pour A 7~ \*;

iii) lexistence et le comportement d’autres solutions.

Dans le cas ol f est sur-linéaire et sous-critique, Crandall et Rabinowitz ont démontré
(voir [CR]) qu’il existe u, = /\li/H/\l* u()\) dans C*(Q). Dans le cas ol f est sur-critique, la

géometrie de 2 devient significative.
En collaboration avec P. Mironescu, on a étudié le cas ou f est asymptotiquement
linéaire, c’est-a-dire
t
(2) lim &:ae((),oo).
t—oo
Le comportement des solutions u(\) pour A  A\* varie selon la position du graphe
de f par rapport la droite y = az. L’étude du comportement asymptotique de u(\) est



liée a 'observation que u(A) est positive et sur-harmonique. Donc, d’aprés un théoreme
classique, il y a deux posibilités quand A 7 \*:

i) u(\) converge uniformément (& une sous-suite pres) vers +oo sur tout compact de
Q.
IOC(Q)'

Soit A; la premiere valeur propre de —A dans H} (). Les résultats qu’on a obtenus

ii) u(\) converge uniformément (4 une sous-suite pres) dans Li

sont les suivants:

Théoréme 1. Si f(t) > at pour tout t, alors

A
=2

ii) )\hﬂ)\l* u(A) = oo, uniformément sur les sous-ensembles compacts de ).
iii) u(A) est I'unique solution de (1)+(2) pour A € (0, \*).
iv) le probléme (1)+(2) n’a pas de solution si A = \*.

Théoreme 2. S’il existe ty € R tel que f(ty) < aty, alors
Gas AL AL o f(1)
i)A E(;,A—O), ot )\O_Itn>l(r)lT'

ii) le probléme (1)+(2) admet une seule solution, u*, pour A = \*.
iii) )‘lirf\l* u(A) = u*, uniformément sur §.
A
iv) si A € (0, 22], w(\) est 'unique solution du probléme (1)+(2).
a
A
v) si A€ (22X, le probleme (1)+(2) a au moins une solution instable v(\).
a
De plus, pour tout choix de v(\) on a

vi) lim v(\) = oo, uniformément sur les sous-ensembles compacts de Q.
AN
vii) )\h/II}\l v(A) = u*, uniformément sur ).

L’existence d’une solution instable v(\) est prouvée en appliquant le théoreme du col
d’Ambrosetti-Rabinowitz a une fonctionnelle perturbée. On donne aussi quelques estima-
tions sur la vitesse de croissance de u(A) vers +oo dans les conditions du Théoreme 1.
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Deuxieme chapitre

L’équation de Ginzburg-Landau

L’étude du comportement asymptotique de I’équation de Ginzburg-Landau a été
initiée dans une série de travaux par F. Bethuel, H. Brezis et F. Hélein (voir [BBH1-
4]) et H. Brezis, F. Merle et T. Riviere (voir [BMR1-2]). Il s’agit de I’étude des points
critiques de la fonctionnelle de Ginzburg-Landau

dans la classe
1 1 . _
H,(G) ={u € H (G,); u= g sur G}

ainsi que leur comportement asymptotique quand ¢ — 0. Ici, G est un domaine borné
et régulier de R? et ¢ € C°(0G, S1). Les points critiques de E. vérifient I’équation de
Ginzburg-Landau

1
—uc(1—|u: H)w dans G

—Au, =
22

(4)

us. =g sur 0G .

Premiere partie

Solutions périodiques de ’équation —Av = v(1— | v |?) dans R et R?

G
Un changement d’échelle permet d’étudier le probleme (4) dans le domaine —. Donc,

€
le comportement asymptotique pour € — 0 des solutions de ’équation de Ginzburg-Landau
nous amene a ’étude des solutions du probleme

(5) ~Av=v(l—|v[*) dans R?.

On étudie (avec P. Mironescu) les solutions périodiques de ’équation de Ginzburg-
Landau en dimensions 1 et 2. Dans la premiere partie, pour T > 0 fixé, on cherche les
solutions v : R — de

(6) —v" =v(l-|v|*) dans R?

et ayant T' comme période principale. Pour chacune de ces solutions et pour 2o € R, a €
avec | a |= 1, lapplication

(7) x — av(zg £ x)
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est aussi une solution. Pour éliminer cette situation, on établit d’abord pour les solutions
de (6) une forme canonique:

’Ul(O) =a>0
v1(0) =0

<8) ’UQ(O) =0
v5(0) =b>0

ou v = vy + ive et @ = max |[v|. Le systéme (6)+(8) donne toutes les solutions de (6) qui
sont distinctes du point de vue géométrique, c’est-a-dire qui ne peuvent pas étre obtenues
I'une de I'autre par un procédé du type (7).

Le résultat principal est

Théoréme 1. i) Si T < 2, il n’y a aucune solution T-périodique.

ii) SiT > 2m, il existe une unique solution réelle (c’est-a-dire, avec vy = 0) de (6)+(8).

iii) II existe Ty > 27 tel que, pour chaque 2w < T < Tj, toutes les solutions T'-
périodiques de (6)+(8) sont la solution réelle de ii), ainsi que

472 o
v(m)zy/l—%e’%x, pour chaque x € R..

iv) Pour chaque T > Ti, il y a d’autres solutions T-périodiques que celles trouvées a
iii).

v) Pour chaque T > 0, le nombre de solutions T-périodiques de (6)+(8) est fini.

vi) Une borne inférieure pour le nombre de solutions T —périodiques est donnée par

)
§T2 +O(T logT) quand T — 0.

Dans R?, les résultats qu’on a obtenus dépendent essentiellement du parallélogramme
P des périodes. On démontre que si P est suffisamment petit, alors il n’existe aucune
solution non-constante de (5). Si P est un rectangle suffisament grand, alors il existe des
solutions P-périodiques réelles du probleme (5).
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Deuxieme partie

Sur I’équation de Ginzburg-Landau avec poids

On suppose que la donnée au bord g a un degré topologique d = deg (g, 0G) > 0. On
consideére un poids w € C*(G,R), w > 0 dans G et on se propose d’étudier 1’énergie de
Ginzburg-Landau correspondante:

y 1 1
P =5 [ 1Vul gy [ 0= e,

Soit u. un minimiseur de £’ dans la classe H ;(G, R?). F. Bethuel, H. Brezis et F. Hélein
(voir [BBH2|, [BBH4]) ont étudié le comportement des minimiseurs et la configuration
limite dans le cas w = 1 et ont introduit la notion d’énergie renormalisée.

Dans [4] et [5] on a étudié (avec C. Lefter) les mémes problémes pour le cas d’un poids
régulier et positif, en donnant ainsi une reponse au probléme ouvert No. 2 de [BBH4],
p. 137. On démontre essentiellement que le comportement des minimiseurs est du méme
type que dans le cas w = 1, la seule difference apparaissant dans ’expression de 1’énergie
renormalisée et, donc, dans la localisation des singularités a la limite. Notre résultat est

le suivant:

Théoreme 1. Il existe une suite €, — 0 et exactement d points ay,---,aq dans G
tels que

ue, — u, dans Hi (G \{ai,...,aq}; R?),
oll uy est I’application harmonique canonique associée aux singularités ay, - - -, aq de degrés
+1 et a la donnée au bord g.
De plus, si W (b) signifie I’énergie renormalisée associée a la configuration b = (by,---,bg)
de degrés d = (41,---,+1), alors a = (a1, - - -, aq) minimise la fonctionnelle
W(b) =W(b)+ 3 > logw(b;)
j=1

parmi toutes les configurations b = (by,--,bq) de d points distincts dans G.

On a

n—oo

d
lim {EY (u.,) —md|loge, |} = W(a) + g Zlogw(aj) +dy,
=1

ol v est une constante universelle.
Un autre résultat qui caracterise le comportement asymptotique des minimiseurs est

Théoréme 2. Soit

1
Wy, = —

2\2



Alors Ia suite (W,,) converge dans la topologie faible x de C(G) vers

L’expression de 1’énergie renormalisée W permet, en utilisant les résultats de Bethuel,
Brezis et Hélein concernant la valeur de la différentielle de W, de prouver une propriété du
type “vanishing gradient” pour le cas d’un tel poids. Soit @y 'unique solution du probléeme

(

k
Ady = 27TZdj5bj , dans G

j=1
0P
—Ozg/\gT, sur 0G
ov
/<I>0:0
\ JOG

et, pour chaque j =1,---,d,

Sj(z) = ®o(x) —log | x — by |
Ro(x) = Sj(x) = ) log |2 —b; | .
i#£]
Notre résultat est le suivant:

Théoréeme 3. Les propriétés suivantes sont équivalentes:
i) a = (ay,...,aq) est un point critique de I’énergie renormalisée W .

1 .
ii) V.S;(a;) = 1 kugc(ba;), pour chaque j.
j
1 ow ow ]
iii) VHj(a;) = Tw(a) (— . (a;), . (aj)), pour chaque j.
a;—a;  1Vw(ay)

, pour chaque .

iv) VR()(CLJ') + Z

1#]

Comme dans [BBH4], Chapitre 1.4, on peut définir I’énergie renormalisée en con-

sidérant un probleme variationnel dans un domaine avec des trous. Avec la méthode
“shrinking holes” de Bethuel, Brezis et Hélein on démontre

laj —a; 2 4 w(a;)

Théoréme 4. Soit
— — T k
W(b,d,g) =W(b.d,g)+ 5 (Z d; logw<bj>) ,
j=1
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ot W(b,d, g) représente I’énergie renormalisée associée a la configuration b = (by,- - -, by,)
de degrés d = (dy,---,dy) et a la donnée au bord g. Pour n > 0 suffisamment petit, soit
u, un minimiseur de EY dans

k
- n
Gv = G\ B(b-,—).
! j!l 7 w(by)
Alors

1

k
5 [ 1wy P= (3 [logn | +17(0,.9) + On), quand 0.
Gy j=1

Ce résultat montre que I’énergie renormalisée W représente ce qu’il reste de I’énergie
apres qu’on enleve ’énergie “du noyau” nd | logn |.

Troisieme partie

Comportement asymptotique des minimiseurs de I’énergie de Ginzburg-
Landau avec un poids qui s’annule

On continue dans [6] (en collaboration avec C. Lefter) 'étude des minimiseurs de
I’énergie de Ginzburg-Landau, cette fois-ci pour un poids qui s’annule.

Soit 29 € G et w € CHG,R) tels que w(wg) = 0, w > 0 dans G \ {zo} et w(z) ~
| © — xo [P dans un voisinage de xp, ou p > 0. Notre résultat sur la convergence des
minimiseurs u. de E.’ est le suivant:

Théoréme 1. Pour chaque suite €, — 0, il existe une sous-suite (designée aussi
par ,), k points ay,---,a dans G et des entiers strictement positifs dg,dy,---,d) avec
dy + -+ dy = d tels que (ue,) converge dans HL (G \ {x¢,a1,"--,ar}; R?) vers u,, qui est
I'application harmonique canonique a valeurs dans S' associée aux points zg, a1, - -, ax
avec les degrés correspondants positifs dg,dy, - - -, dy et a la donnée au bord g.

Le nombre de points qui s’accrochent a la limite vers le zéro du poids dépend de
l'ordre de croissance p > 0 de w autour de xg. Plus précisément, soit w(x) =| z — xo [P +
+f(J 2 |)- |  — 2o |PT! dans un petit voisinage de o, ot f : R — R est une application
de classe C'. On démontre

Théoréme 2. 1) Soit p > 0 un nombre réel qui n’est pas un entier multiple de 4.
Alors
i) Sid§§+1, alors dy = d.
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i) Si d > g + 1, alors dy = ]ZO + 1, ou [x] désigne la partie entiére du nombre
réel x. De plus, la configuration limite a = (xg, a1, -+, a) avec les degrés correspondants
d = (dg,+1,---,+1) minimise I’énergie renormalisée

—~

k
- T
W(b):W(b,d,g)+§p;10g]bj\, b= (wg,b1, -, bg)-

2) Soit p un entier multiple de 4. Si d < 2 + 1, alors dy = d. Le cas ou p est un entier

multiple de 4 est un cas critique, au sens que si d > P + 1, alors do peut avoir différentes

valeurs. Par exemple, si G = By, xog = 0 et w(z) =| x |P, on a le méme résultat que dans
le cas 1).

On donne un exemple pour G = By, g =0, d = §+ 1, w(x) =| = |P dans un voisinage

de xg, mais dy = g, donc k = 1.

Quatrieme partie

Problemes de minimisation et les énergies renormalisées correspondantes

En collaboration avec C. Lefter on étudie dans [7] quelques problémes de minimisation
liés a I’énergie de Ginzburg-Landau.

1) Singularités et degrés prescrits.

Soit @ = (ay, - -, ax) une configuration de points distincts dans G et d = (dy, - -+, dy) €
k. Soit deg (g9,0G) =d = dy + - -- + dj. Pour p > 0 suffisamment petit, soit

k

Q, =G\ | JB(ai,p) , Q=G \{ay, ...ax} .

=1

Soit v, un minimiseur de 1’énergie / | Vo |? dans la classe
Q,

F,={ve H' (Q,;S"); deg(v,0G) = d et deg(v,0B(a;, p)) = d;, pour i =1,....k}.

Théoreme 1. On a ’estimation asymptotique

1

k
1~
5/ | Vv, |*= W(Z df) log; + Wi(a,d) + O(p), quand p — 0.
2p i=1
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De plus, I’énergie renormalisée W(a,a) est liée a I'énergie renormalisée W (a,d, g) définie
dans [BBH4] par la formule

W(a,d) = inf  Wi(a,d,g)
g:0G—sS1
dex(9.0G)=d

et I'infimum est atteint.

Pour le cas G = Bj et g() = %’ on trouve des formules explicites pour les deux
énergies renormalisées. Plus précisément, on démontre

Théoréme 2. On a
W(a,d,g) == —WZdidj log | a; —a; | —WZdidj log | 1 —a;a, | .
i#] ©,J

W(CL,E) = _Wzdidj lOg ’ a; — Gy ‘ —|—7T2dzdj lOg ’ 1— al-aj ‘ .

i#] ]

2) Une restriction supplémentaire pour la classe des fonctions test.

Pour A > 0 fixé, soit w, un minimiseur de / | Vo |? dans la classe
QP

ov
Fpa= UG}—;/ — |?< A} .
P { P BGlaT’ }

Notre résultat est

Théoréme 3. On a

k

1 1 —~ —

2 / | Vw, ]2277(5 d?) log;+WA(a,d)+0(1) , quand p — 0.
Q, j=1

De plus, I’énergie renormalisée WA(CL,E) est lie a W (a,d, g) par

WA(CL,E) = inf{W(a,d, g); deg(g;0G) =d et / | 99 ?< A} .
oG 8’7'

3) Une classe de minimiseurs de [’énergie de Ginzburg-Landau.

Au lieu de considérer les minimiseurs de FE. lorsqu’on prescrit la donnée au bord
(comme dans [BBH4]), on est tenté de minimiser 1’énergie de Ginzburg-Landau pour de
degré au bord préscrit et le module 1 des fonctions test sur 0G. Mais 'infimum de F.
dans cette classe de fonctions n’est pas atteint, comme ont observé F. Bethuel, H. Brezis

1X



et F. Hélein. Donc, il est naturel de considérer, pour A > 0 fixé, les minimiseurs u. de F.
dans la classe

Haa = {u NG RY)s ul=1 sur 0G, deg (w0G) =d et [ |50 P<a).
oG

On démontre

Théoréme 4. Pour chaque suite €,, — 0 il existe une sous-suite (désignée aussi par
€n) et exactement d points ay,---,aq dans G tels que

Ue, — Uy dans Hﬂoc(@\ {a1, -+, aq}; Rz) ,

oll u, est ’application harmonique canonique & valeurs dans S' et singularités ai,-- -, aq
de degrés +1. De plus, la configuration a = (a1, -, aq) minimise la fonctionnelle

Wala,d) o= min (W (a3, 9)s deg (g:0G) =d et [ |50 P<a},
oG 87’

Cinquieme partie

L’énergie renormalisée associée a une application harmonique

Soit G C R? un domaine borné, régulier et simplement connexe et g € C1(9G, S')
telle que deg (g,0G) = d > 0. Etant donné une configuration a = (ay,---,ax) de points
distincts dans G et d = (dy,---,dy) € * tel que dy + ---dy = d, F. Bethuel, H. Brezis
et F. Hélein ont introduit dans [BBH4] la notion d’application harmonique canonique
ug: Q =G\ {a1, --,ar} — S' associée a (a,d, g) comme

z—a d z—a de
z—a | |z — ag |

ou
Apog=0 dans G
up =g sur JIG .
Toute application harmonique u :  — S avec u = g sur G et deg(u,a;) = d; pour
j=1,---,k ala forme
9) u=eYyy dans Q,



ou

k
W(x) =Y cjlog|z—a; | +¢(x)
(10) =1
=0 sur 0G

A¢p =0 dans G.

On introduit dans [8] (avec C. Lefter) une notion d’énergie renormalisée associée a
une application harmonique u. Cette notion coincide avec I’énergie renormalisée définie
par Bethuel, Brezis et Hélein dans [BBH4| si u = ug. Notre résultat est

Théoréme 1. Pour chaque application harmonique de la forme (9),

;i/n%{%/(;wu - f:c +d2} f:(c§+d§>. 1og(§k:(c§+d§)> — W (w)

P4 j=1 j=1
existe et est fini. De plus,

W(u):m}{%/(}pywﬁ (Z_: —i—dz)log%}.

En utilisant cette evaluation asymptotique on trouve une formule explicite pour ’éner-
gie renormalisée W (u). On démontre

Théoreme 2. Pour chaque application harmonique u,

k
W(“) = W(a,a,g) - chjgbj(aj)

k
= W(ug) — WZCZ'C]' log | a; —a; | —Wch¢(aj) ,

i#j j=1

ot ¢ a été défini dans (10).
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A bifurcation problem associated to
a convex, asymptotically linear function

Petru MIRONESCU and Vicentiu D. RADULESCU

Abstract -We consider the bifurcation problem associated to a convex, asymptotically
linear function and we study the behaviour of the stable solution and the existence and

related properties of the unstable solutions.

Un probleme de bifurcation associé a une fonction

convexe, asymptotiquement linéaire

Résumé - On considere le probleme de bifurcation associé a une fonction convezxe,
asymptotiquement linéaire et on étudie le comportement des solutions stable et instables,

ainst que l’existence de ces dernieres.

Version francaise abrégée - Dans cette note on considere le probleme

(1)

— Au = Af(u) dans Q
u=0 sur 0N

dans les conditions suivantes : € est un ouvert borné connexe régulier de R™:; f: R — R
est une fonction de classe C!, convexe, non négative, telle que f(0) > 0 et f/(0) > 0. De

plus, f est une fonction asymptotiquement linéaire vers oo, c’est-a-dire,

tim 5=l 1) = € 040
On suppose que A est un parametre positif et on cherche u dans C?(Q) N C(Q).

Sous ces hypotheses, on sait (voir [1]) qu’il existe A* € (0, 00) tel que pour tout A < A*
(resp. A > \*), le probleme (1) admet une solution (n’a aucune solution). Enfin, pour
A < A*, il existe une solution minimale u(\). De plus, u(A) est une solution stable et
I'application A — u(\) est convexe et croissante.

On se propose d’étudier les questions suivantes :

i) 'existence de plusieures solutions;

ii) Pexistence d’une solution pour A = \*;

iii) le comportement de la deuxieme solution.

Dans ce cadre, nos résultats principaux sont les suivants:

THEOREME 1. - Si f(t) > at pour tout t, alors

1



i) A= 2L

i) )\li)H)\l u(A) = oo, uniformément sur les sous-ensembles compacts de €.
i11) u(X) est lunique solution de (1) pour X € (0, \*).

iv) (1) n’a pas de solutions si A = \*.

THEOREME 2. - S’il existe to € R tel que f(to) < aty, alors

i) X" € (34, 32), ot Ag = min @

ii) (1) admet une seule solution, u*, pour A = \*.

iii) )\li)ni u(A) = u*, uniformément sur €.

i) Si A € (0,21], u(N) est l'unique solution de (1).

v) Si X € (AL, \*), le probléme (1) a au moins une solution instable v(\).
De plus, pour tout choiz de v(\) on a

vi) lim v(\) = oo, uniformément sur les sous-ensembles compacts de €.
A

)\_)T

vii) lim v(\) = u*, uniformément sur Q.
A= A*

On utilise les notations suivantes: si @ € L*(Q), alors A\;(—A — a) et p;(—A — )
sont la jeéme valeur propre (resp. la jéme fonction propre) de l'opérateur —A — a.. Si
a = 0, on les note A; et ;. On suppose toujours que 1 > 0 et que ||¢;|r2) = 1.

Pour la démonstration de ces deux résultats un argument essentiel est le Lemme 3, qui
montre que u(A) vérifie I’ alternative suivante: ou bien u(\) converge vers oo uniformément
sur les compacts de €2, ou bien u() converge vers une solution du probleme (1). L’existence

d’une solution instable est obtenue via le théoreme de Ambrosetti-Rabinowitz.

INTRODUCTION - We study the problem

{ —Au=Af(u) inQ

1
1) u=20 on O0f)

where:  is a smooth bounded connected open set in RY, v € C?(Q)NC(Q), ) is a positive
parameter, f € C1'(R,R) is convex, nonnegative, with f(0) > 0 and f/(0) > 0. Moreover,
we suppose that f is asymptotically linear in the sense that

(2) lim S0 =a € (0,00)

t—oo

Under these hypotheses it is known (see [1]) that there exists A* € (0, 00) such that
i) (1) has no solution for A > A*.
ii) (1) has solution for every A € (0, \*).
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iii) when A € (0, \*) there exists a minimal solution, u(A), which can also be described

as the unique solution w such that
(3) M(=A = Af(u) >0

( Such solutions are called stable ).

iv) u(A) increases with .

Here and in what follows, if a € L*(2), then \;(—A — a) and ¢,;(—A — «) denote
the jth eigenvalue (eigenfunction, respectively) of —A — a. We always suppose ¢1 > 0
and gojz = 1. If @ = 0 we write A\; and ;.

In this paper we are concerned with the following questions:

i) what happens when A\ = \*,

ii) the behaviour of u(\) for A near A\*,

iii) under what circumstances (1) has solutions different from u(\).

The main results are the following:

THEOREM 1.- If f(t) > at for each t, then:

i) A =2
i) /\lim* u(A) = 00, u.c.s. Q.

ii1) w(X) is the only solution of (1) when X € (0, \*).

iv) (1) has no solution when A = \*.

THEOREM 2.- If there exists to such that f(ty) < ato, then:

§x e (3

it) (1) has exactly one solution, say u*, when \ = \*.

iit) )\lgr)}* u(A) = u* w.f.

iv) when A € (0,21], (1) has no solution but u(X).

v) when X € (22, X*), (1) has at least an unstable solution, say v(\).
Moreover, for each choice of v(\) we have

i) linA11 v(A) =00 w.cs. Q.

}\_)T

vii) )\ling\l* v(A) =u* u.Q.

Here, \g = rgig@, a solution u is called unstable if \y(—A — \f'(u)) < 0, while
u.c.s. and u. mean uniformly on compact subsets (uniformly, resp.).

After the sketches of the proofs, we discuss the problem of the order of convergence
to 0o in the Theorems 1 and 2. As all integrals are taken over €2, we shall omit this in our

writing.



L. Proofs of the Theorems 1 and 2
We mention first some auxiliary results:
LEMMA 1. Let a € L>®(Q), w € H}(Q) \ {0}, w > 0, be such that \(—A —a) <0

and
(4) —Aw > aw

Then M (—A —a) =0, —Aw = aw and w > 0 in Q.
This follows multiplicating (4) by ¢1(—A — «) and integrating by parts.

LEMMA 2. §) \* > 21,

i) if f(t) =at+b,b>0, then \* = 2L and (1) has no solution when X = X\*.

ii1) if (1) has solution when A = X*, it is necessarily unstable.

iv) (1) has at most one solution when \ = \*.

v) u(A) is the only solution of (1) such that \y(—A — Af'(u)) > 0.

Proof.- i) 0 and the solution u € H () of —Au = Aau + f(0)) are sub and superso-
lution for (1) when A € (0, 21).

it) It suffices to prove the second part, which follows, by contradiction, multiplying
by ¢1 and integrating.

i11) Otherwise, in view of the implicit function theorem, A\* would not be maximal.

iv) If vy is such a solution, then vy = Ali)H)\l u(A) is also a solution and vy < v;. With
w = vy — vy > 0, we have —Aw > f’(vy)w. Hence, either w = 0 or w > 0, but then
f(v1) = avy + f(0). The last possibility contradicts ii).

v) As in i), if v were such a solution different from u()), then f'(v) = f'(u(X)).

LEMMA 3. The following assertions are equivalent:

i) A\ = AL

i) (1) has no solution in C*(2) N C(Q) when A = \*.

ii1) ,\ILHAI u(A) = 00 u.c.s. €.

Proof.- i)=ii) Any such solution u is a priori unstable. But this forces f to be linear
in [0, max u], which contradicts Lemma 2.

i1 )==iii) It is enough to show that u()\) is bounded in L?*(f2). Suppose the contrary.
Then, by the Theorem 4.1.9., p. 94, of [2], u()\) converges in L] (Q) to some u*. If
u(A) = k(Nw(N), k(A) > 0, [w?(\) = 1, we get the existence of some w, weak x cluster
point of (w())) in H} () such that w >0, [w? =1 and —Aw = 0.

Obviously, #i)=-4i). It remains to see that [iii) and ii)]= ). If w is obtained as

above, this time it verifies —Aw = A*aw. Hence, \*a = A1 and w = ;.

4



COROLLARY 1. Under the hypotheses of the Lemma 3,

1 —
hm —u()\) =@ u.f)
A [lu(M)l 2

Via a bootstrap argument and the Theorem 8.34, p. 211 in [3], we get that w(A) is
bounded in C%%(Q), for some a € (0,1). We apply afterwards the Arzela-Ascoli Theorem.

Proof of the Theorem 1.- i), ii), iv). Suppose (1) has a solution u when A = 21. Then,
—Au > Aju. Lemma 1 implies f(u) = au + f(0), but this contradicts Lemma 2.

iii) If w is a solution, then A;(—A — Af'(u)) > A (—=A — A1) =0.

Proof of the Theorem 2.- i) Suppose \* = >‘ . Then

0= lim wKM—amwM+Amwm—fwu»Hz‘?{/w>n,

A— 2L
where [ = 1tlim [f(t) — at] < 0. If we suppose \* > )\—1 we obtain a similar contradiction.
—00
i1), i), 1v) are obvious.
v) is a consequence of the Ambrosetti-Rabinowitz Theorem. Let
A1 aX — A\

Ve (N0 = g = ul). F(0) = [ f(s)ds. X = 13(@),

= %/WUF—/F(u)+§/!V(u—uO)|2, ue X, ecl0 e

Then it is known (see [1]) that Jy € C*(X,R) and ug is a local minimum for Jy.

Hence, ug is a local strict minimum for J, € € (0,¢€p].Since lim sup Jc(typ1) = —o0,
T e€[0,e0]

there exists vg € X with J.(vo) < Je(up), for each e. If
p={peC([0,1],X):  p(0) = uo, p(1) = vo}

and ¢, = inf max J, o p, then ¢y < ¢, < maX Jo + = /|V vy — Up)|

# [0,1] [uo,v0]
The variational problem satisfies a Palais- Smale type condition, in the sense that if

(5) (Je, (uy)) is bounded
and
(6) i (ug) — 0



then (u,) contains a convergent subsequence.By standard arguments, it is enough to find
a subsequence bounded in L2. Suppose the contrary: let u, = kpw,,, f w2 =1, k, >0,
nli_)rréo kpn = 00, €, — € € [0,€9]. Then, by (5), if we modify f such that t_l}r_noo f(t) =0, we get
(up to a subsequence) w,, — w, both in weak x H3 and L? sense, with —(1+¢€)Aw = law™.
Hence w™ = w, which contradicts the choice of €. Hence there exists (Ve)ee(0,e0] PTE-

compact in H} () such that

o { — Ave = Af(ve) + €(ug — ve)

Je(ve) = e > Je(up)

(Note that this implies ve # up and v unstable). Let v be a limit point of v. when
€ — 0. Then v is the desired solution. Indeed, v is unstable as limit of unstable solutions.

vi) follows immediately if we show that (v())) is bounded in L?#(2) when ) is near \*.
The contrary would give as in Lemma 3 that \* = %

vii) If we suppose the contrary we obtain the same contradiction as in the proof of
ii)=> iii) in Lemma 3.

Further results: 1) If Ag > % (or, more generally, if A* < 22) then v()) is unique.
This follows from [4], p. 838. This implies that in this case v depends C! on A.

2) If A* > 22 then there exists € > 0 such that v(\) is unique in (21, 22 +¢). Indeed,

for A = 22 we have, if v is an unstable solution of (1), that Ao(—A — Af'(v)) > 0.

The equality would imply that f is linear in [O,mgx v|, which is contradictory. Since

A (—A—=Xf'(v)) <0, we get the uniqueness when A = 22 via the previous remark and the
implicit function theorem. A routine argument shows that the uniqueness remains true in
a neighborhood of %

A natural question is to estimate the speed of convergence to co of u(A) in Theorem

1. Regarding the equality

8) / 1 [\ — aN)u(A) + Adau()) — fu(\))] =0

one can obtain the following results:

3)Ifl = tlirgo[f(t) — at] € (0,00), then

a(A1 — al) —

9) Mo u(A) — o1 u.f

4) If [ = 0 then
(A1 —aNu(A) — 0 u.Q

6



In this case the answer depends heavily on f. For example:

i) if f(t) =t+ H_% then u(\) ~ ﬁ@l;
i) if f(t) =t+ ﬁ then u(\) — oo like no power of (A\; — A).

Similarly,
5) If | € (—00,0) then (9) is true with v(\) instead of u(\).
6) If [ = —oo then

(A —aX)v(A) = 00 u.c.s.Q

7) In the above statements we can allow f/(0) = 0 if f is strictly convex near 0.
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THE STUDY OF A BIFURCATION PROBLEM
ASSOCIATED TO AN ASYMPTOTICALLY LINEAR FUNCTION

Petru MIRONESCU and Vicentiu D. RADULESCU

Introduction

In this paper we consider the problem

{ —Au=Af(u) in Q

1
M) u=20 on 0Of)

where: Q is a smooth connected bounded open set in RY, f:R — Ris a C! convex

nonnegative function such that f(0) > 0, f'(0) > 0 and f is asymptotically linear, that is

lim @ =a € (0,4+00)

t—oo

In what follows we suppose that \ is a positive parameter and u € C%(Q) N C(Q).

We point out some well known facts about the problem (1) ( see [5] for details):

i) there exists \* € (0,4o00) such that (1) has (has no) solution when A € (0, \*)
(A € (A", 4+00), resp.).

ii) for A € (0, \*), among the solutions of (1) there exists a minimal one, say u(\).

iii) A — u()) is a C! convex increasing function.

iv) u(\) can be characterized as the only solution u of (1) such that the operator
—A — \f'(u) is coercive.

In what follows, we discuss some natural problems raised by (1):

i) what can be said when A = A\*?7

ii) which is the behaviour of u()\) when A approaches \*7

iii) are there other solutions of (1) excepting u(\)?

iv) if so, which is their behaviour?

Before mentioning our main results, we give some definitions and notations:

i) let tli)rgo (f(t) —at) =1 € [—00,00). We say that f obeys the monotone case (the

non-monotone case) if 1 > 0 (I < 0,resp.).



ii) if @ € L>°(€2) we shall denote by ¢, (c) and A;(a) the jth eigenfunction (eigenvalue,
resp.) of —A —a. We consider that / @;(a)pr(a) = 6, and 1 () > 0. If o = 0 we shall
write ¢; (A;, resp.). .

iii) a solution u of (1) is said to be stable if \y(Af'(u)) > 0 and unstable otherwise.

iv) u.c.5.Q and ©.Q will mean “uniformly on compact subsets of 7 (“uniformly on
07, resp.).

All the integrals considered are over €2, so that we shall omit {2 in writing.
Now we can state the main results:

THEOREM A.- If f obeys the monotone case, then:
DA =2

ii) )\li_)rr)\l* u(A) = oo, u.c.s. .

iii) w(\) is the only solution of (1) when A\ € (0, \*).

iv) (1) has no solution when A = \*.

THEOREM B.- If f obeys the non-monotone case, then:

i) A* € (A, i—;), where \g = %g@

ii) (1) has exactly one solution, say u*, when A = \*.

iii) )\liﬂ)\l* u(A) = u* u.Q.

iv) when A € (0,21], (1) has no solution but u(\).

v) when \ € (%, A*), (1) has at least an unstable solution, say v(\).
For each choice of v(\) we have

vi) lim v(A) =00 u.cs. Q.

)\HT

i) li ) =u* u.Q.
vii) Jim, v(A) =u* u
After we establish these results, we discuss the problem of the order of convergence

to oo in the theorems A and B.



1. Proof of Theorem A

LEMMA 1. Let a € L*>(Q),w € Hg () — {0},w > 0, be such that \;(«) < 0 and
(2) —Aw > aw

Then:

i) AM(a) =0

i) —Aw = aw

i) w > 0 in Q.

Proof: If we multiply (2) by ¢1(a) and integrate by parts, we obtain

[asi@utn@) [erw= [an@uw

Now this means that \j(a) = 0 and —Aw = aw. Since w > 0 and w # 0, we get

w = ¢y (a) for some ¢ > 0, which concludes the proof. 0

LEMMA 2. (the linear case) If f(t) = at + b when t > 0, with a,b > 0, then
i) Ar =21
ii) (1) has no solution when A = \*.

Proof: i), ii) If A € (0, 21) then the problem

—Au—dau=Xb in ()
(3)

u=20 on O0f)

has a unique solution in H{ (Q) which is positive in view of Stampacchia maximum principle
(see [5]). Now €2 smooth and —Au = Xau + \b € HE(2) mean v € H3(Q2) and so on. We

get u € H*(Q) and therefore u € C°°(Q2). We have thus exhibited a smooth solution of
(1) when X € (0,22)
We claim that (1) has no solution if \* = % For if u were such a solution, multiplying

(1) by ¢1 and integrating by parts, we get /901 = 0, which contradicts ¢ > 0. O

LEMMA 3. i) \* > 21,
ii) if (1) has solution when A\ = \*, it is necessarily unstable.

iii) (1) has at most a solution when \ = \*.
iv) u(A) is the only solution of (1) such that Ay (Af'(u)) > 0.
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Proof: i) It is enough to exhibit a super and sub solution for A € (0,26), that is:
U,U € C%(Q)NC(N) such that U < U,

{ — AU > M\([T) inQ

and that the reversed inequalities hold for U (see [5] for the method of super and subsolu-
tions).

Take some b > 0 such that f(t) < at+b for nonnegative t. Let U be the solution of (3)
with b = £(0) and U = 0. We have f(t) < at + b for t > 0 and this implies f(U) < aU +b
in view of the positivity of U. The remaining part is trivial.

ii) Suppose that (1) with A = A\* has a solution u* with A; (A\*f’(u*)) > 0. Then by

the implicit function theorem applied to
G:{ue CQ’%(Q) :u=00n00} xR — C’O’%(ﬁ), G(u,\) = —Au — Af(u)

it follows that (1) has solution for A in a neighbourhood of A*, contradicting by this the
definition of \*.

i11) Let u be such a solution. Then u is a supersolution for (1) when A € (0, \*) and
therefore u > u(\) for such A\. This shows that u(\) (which increases with \) tends in
LY(Q) sense to a limit u* < u. Since —Au()\) = Af(u(N)) we get —Au* = X*f(u*). In
order to conclude that u* is a solution of (1), it is enough to prove that u* € HJ(Q2) and to
deduce from this first that either —Au* € L? () and hence v* € W22 (Q) when N > 2,
or —Au* € L*(Q) and hence u* € C%2(Q) if N = 1,2 (using theorems 8.34 and 9.15 in
[7]). The first case is then concluded via a bootstrap argument, while the second one using
the theorem 4.3 in [7] (here 2* = 1\?_]:72 is the critical Sobolev exponent).

Now we claim that u(\) is bounded in H{(Q). Indeed, if we multiply (1) by u()\) and
integrate by parts we get

J1va? =2 [ fau) < [uf

Thus, u(A\) — v* in H(Q) if X — \*. Indeed, if v is a weak-x cluster point of u(\)
when A — \*, then, up to a subsequence, u(A) — v a.e. But u(\) — u a.e. We have
hence obtained that u* € H}(€). The proof will be concluded if we show that u = u*. Let
w=u—u*>0. Then

(4) —Aw = X*(f(u) = f(u")) = A" f'(u")w

11



We also have A (A*f/(u*)) <0, so that lemma 1 implies that either w = 0 or w > 0,
AN f(u*)) = 0 and —Aw = N f'(u*)w. If we take (4) into account the last equality
implies that f is linear in all the intervals [u*(z),u(x)],z € Q. It is easy to see that
this forces f to be linear in [O,mgx u]. Let a, 8 > 0 be such that f(u) = au + ( and
f(u*) = au* + 3. We have

0= MO\ F () = M\ a) = A — \a,

that is A" = % The last conclusion contradicts Lemma 2.
iv) Suppose (1) has a solution u # u(\) with A;(Af/(u)) > 0. Then u > u(\) by the

strong maximum principle (see the theorem 3.5. in [7]). Let w = u — u(A) > 0. Then

(5) —Aw = A(f(u) = f(u(N))) < Af'(u)w

If we multiply (5) by ¢ = ¢1(Af’(u)) and integrate by parts we get

3 [ Fgw s G @) [ew < [ £ e

Thus, A\;(Af'(u)) = 0 and in (5) we have equality , that is f is linear in [O,mgxu].
Let , B > 0 be such that f(u) = au + 3, f(u(\)) = au(A\) + 3. Then

0 =X (Af(w) = A (Af (u(N)),
contradiction. =

The following result is a reformulation of the theorem 4.1.9. in [9].

LEMMA 4. Let (u,) be a sequence of nonnegative superharmonic functions in Q.
Then

either

i) lim u, =00 w.c.s. )

n— oo
or

1

1oe(§2) to some u*.

ii) (u,) contains a subsequence which converges in L

LEMMA 5. The following conditions are equivalent:
A==
ii) (1) has no solution when \ = \*

iii) )\liI{\l* u(A) =00 w.c.s. Q

Proof: i)=> ii) Suppose the contrary. Let u be such a solution. As we have already
seen, A\; (A" f/(u)) < 0. But Ay (AN f'(u)) > A\ (M\*a) = 0.

12



Hence A\ (A*f'(u)) = 0, that is f’(u) = a. As already happened, this contradicts
lemma 2.

ii) = iii) Suppose the contrary. We prove first that u(\) are uniformly bounded in
L?(Q). Suppose again the contrary. Then, up to a subsequence, u(A\) = k(A)w(\) with
k(\) — oo and /wQ()\) = 1.

Suppose, using again a subsequence if necessary, that u(A) — u* in Llloc
ﬁf(u()\)) — 0in L} (), that is

) loc

(©2).Then

(6) —~Aw(\) — 0 in L}, .(Q)

It is easy to see that (w())) is bounded in H} (). Indeed,

[ v = [-awopu = [ ﬁf(U(A))w(A) <

<A* /(an(/\) + %w()\)) < Na+ c/w()\) <

< Na+ c/ V|| (for a suitable ¢ > 0)

Let w € Hg(92) be such that,up to a subsequence,
(7) w(\) — w weakly inHj(Q) and strongly in L?(1)

Then, by (6), —Aw = 0, and by (7), w € Hj(2) and [w? = 1. We have obtained
the desired contradiction. Hence (u())) is bounded in L?(€2). As above, u()) is bounded
in H}(Q). Let u € HE(2) be such that, up to a subsequence, u(\) — u weakly in H}(Q)
and strongly in L?(€). Then by (1) we get that u is a H}(Q) solution of —Au = \* f(u).
As we have already done, we get that in fact u is a solution of (1) when A = A\*. This
contradiction concludes the proof.

iii)==1i). As we have seen, if (1) has a solution when A = \* | it is necessarily equal
to Ali)H)\l* u(\), which cannot happen in the given context.

[iii) and ii)|]= 1) Let u(\) = k(AN)w(\) with k£(A) and w(\) as above. This time
)\hﬂr{\lyﬂ k(M) = oco. As above we get a uniform bound for (w(\)) in Hg(2). Let w € H}(Q)
be such that, up to a subsequence, w(\) — w weakly in Hg(Q2) and strongly in L?(Q).
Then —Aw(\) — —Aw in D'(2) and ﬁf(u()\)) — Maw in L?(€). (The last statement

will be shown out in the proof of Lemma 9). So we obtain
—Aw = Naw, w € Hy(Q), w>0, /w2 =1

13



A1

But this means exactly that \* = 2L (and w = ¢1). 0

LEMMA 6. The following conditions are equivalent:

AT >

ii) (1) has exactly a solution,say u*, when A = \*.

iii) u(\) is converging u. Q2 to some u* which is the unique solution of (1) when A = \*.

Proof: We have already seen that \* > % This makes this lemma a reformulation
of the preceding one apart the fact that the limit in iii) is u. €. Since we know that
u(\) — u* a.e., it is enough to prove that u()\) has a limit in C'(Q) when A — \*. Even
less, it is enough to prove that () is relatively compact in C(Q2) . This will be done via the
Arzela-Ascoli Theorem if we show that (u(\)) is bounded in C%2(Q) . Now 0 < u(\) < u*
implies 0 < f(u()\)) < f(u*), which offers a uniform bound for —Au(\) in L?¥(Q). The
desired bound is now a consequence of the theorem 8.34 in [7] (see also the remark from

the page 212) and of the closed graph theorem. O

Proof of Theorem A:
i), i) and iv) will follow together if we prove one of them. We shall prove that A* = A&

A1

by showing that (1) has no solution when A = L. For suppose u were such a solution.

Then
(8) —Au = Af(u) > A

If we multiply (8) by ¢1 and integrate by parts we get Af(u) = Aju, contradicting the
fact that f(0) > 0.
ii1) taking into account the lemma 3 iv), it is enough to prove that for A € (0, %) any
solution u verifies Ay (Af'(u)) > 0. But
—A=\f"(u)>—-A—Xa

which shows that
)\1(>\f/(u)) > /\1()\&) =X —Xa>0

2.Proof of Theorem B

i) We prove first that A\* < i—; For this aim, we shall see that (1) has no solution

when \ = i—; Suppose the contrary and let u be such a solution. Then multiplying (1) by
1 and integrating by parts we get

9) M [eu=n [ s

14



In our case, (9) becomes

A
/\1/<P1U= )\—; ©1f(u) ZM/%U

which forces f(u) = Aou and, as above, this contradicts f(0) > 0.

The remaining part of i), #) and iii) are equivalent in view of the lemmas 3 iii) and

a

6. We shall prove that A\* > 2% supposing the contrary. Then )\hH)\l* u(A) =00 w.c.s. and

A* = 21 If we examine (9) rewritten as
(10) 0= [ by - M) =

= /901[@1 — aA)u(A) = A(f(u(}) — au(N))] = —A/sol[f(U(/\)) — au(A))]

we see that the righthand side integrand converges monotonously to lp; when A — A*.
Here | = tlim (f(t) —at) < 0. Passing to the limit in (10) we obtain the contradictory
— 00

inequality

02—1A/¢1>0

We have seen that \* < i—; and we know that (1) has solution when A = A*. This
shows that A\* < i—;

iv) can be proved exactly in the same way as #ii) in the theorem A.

Since all the solutions of (1) are positive, we may modify f(¢) as we wish for negative
t. In what follows we shall suppose, additionally, that f is increasing.

For the proof of v) we shall use some known results that we point out in what follows:

THE AMBROSETTI-RABINOWITZ THEOREM: Let E be a Banach space,
J € CY(E,R), ug € E. Suppose that there exist R, p > 0,v9 € E such that

(11) J) = o) +p if fu—uol = R

(12) J(’Uo) S J(’LLO)

Suppose that the following condition is satisfied:

(PS) every sequence (u,,) in E such that (J(uy)) is bounded in R and J'(u,,) — 0 in E*
is relatively compact in F.

15



Let
P={peC([0,1], E) : p(0) =wup,p(1) =vp}
and

c=infmax F op
P [0,1]

Then there exists u € E such that J(u) = ¢ and J'(u) = 0.

Note that ¢ > J(ug) and that is why u # ug (see [5] for details).

We want to find out solutions of (1) different from w(A), that is critical points, others
than u(\), of

J:E — R, J(u):%/]VuF—/F(u)

t
where F = H}(Q) and F(t) = )\/ f(s)ds. We take u(\) as ug for each \ € (%, A*).
0
We have
LEMMA 7. i) J € CY(E,R)
ii) For u,v € E we have J'(u)v = [Vu-Vv— X[ f(u)v

iii) ug is a local minimum for J.

The proof can be found in [5].

In order to apply the Ambrosetti-Rabinowitz Theorem we transform ug into a local

strict minimum by modifying J. Let
Jo:E—R, Jo(u)=J(u)+ %/|V(u — up)|?

In view of the preceding lemma we obviously have

i) J e Cl(E,R)

i) J{(u)-v=[Vu-Vo—=X[ f(u)v+e[V(u—ug)-Vov

iii) ug is a local strict minimum for J. if € > 0 (so that (11) is verified).

We prove first the existence of a vy good for all € near 0.

LEMMA 8. Let ¢g = ’\“2—;1/\1 Then there exists vy € E such that J.(vo) < Je(ug) for
€ cC [0, 60].

Proof: Note that Jc(u) is bounded by Jo(u) and J,,(u). It suffices to prove that

tlim Jeo (tp1) = —00

A
(13) Jo(to1) = 71152 + %0)\1152—

16



€
—60A1t/§01%0+§0/|VU0|2—/F(tg01)

Let o = %y‘l. Since « < a, there exists 3 € R such that f(s) > as+ ( for all s,
which implies that F(s) > %*s? + 8As when s > 0. Then (13) shows that

) 1 A1+ oM — A\
11?1 sup t_ZJEO (tp1) < 5 <0
—00
because of the choice of a. O

LEMMA 9. The condition (PS) is satisfied uniformly in €, that is if

(14) (Je, (un)) is bounded in R, €, € [0, €]
and
(15) J. (un) — 0 in E*

then (uy,) is relatively compact in E.

Proof: Since any subsequence of (u,,) verifies (14) and (15), it is enough to prove that
(up,) contains a convergent subsequence. It suffices to prove that (u,) contains a bounded
subsequence in E. Indeed, suppose we have proved this. Then, up to a subsequence,

up — u weakly in H}(Q), strongly in L?(Q) and a.e., and ¢, — €. Now (15) gives that
—Auy, — Af(up) — € A(u, —ug) — 0 in D'(Q)

Note that f(u,) — f(u) in L?*(Q) because |f(u,) — f(u)| < alu,, — u|. This shows
that
—(1+ €,)Auy, — Af(u) — €Aug  in D'(Q),

that is

(16) —Au— Af(u) — eA(u —up) =0
The above equality multiplied by u gives

(17) (1+6)/]Vu|2—)\/uf(u)—e)\/uf(uo):0
Now (15) multiplied by (u,) gives

(18) (1+€p) / |V, |? — )\/unf(un) - en)\/unf(uo) —0

17



in view of the boundedness of (u,,). The middle term in (18) tends to —A [wf(u) and the
last one to —eX [uf(up) in view of the L?(Q) -convergence of u,, and f(u,,). Hence, if we
compare the first terms in (17) and (18) we get that [ |Vu,|* — [|Vu|?, which insures us
that u, — w in H}(Q). Actually, it is enough to prove that (u,) is (up to a subsequence)
bounded in L?(Q2). Indeed, the L?(Q)-boundedness of (u,,) implies the HJ (2)-boundedness
of (u,) as it can be seen by examining (14).

We shall conclude the proof obtaining a contradiction from the supposition that
|wn L2y — oo. Let u, = kyw, with k, > O,fw?l =1 and k, — oco. We may sup-

pose €, — €. Then

T Jen( . 2 €n Uo 2
9) 0= tim PG — i 5 (190, - 5 [F)+ G 190, - 107
Now

€n Ug €n 6n
S 19w =R =G [+ g 19008 =2 [ s

Thus (19) can be rewritten

1+, 1
lim | ZE /|an|2—k—2/F(un)] —0

n—oo

But
\a
|F(wn)| = | F(knwy,)| < —k2w + Ablkpwy|

because |f(t)| < alt|+b. Here b = f(0). This shows that (3= | F(u,)) is bounded and this
must also be true for |[wn|| g1 (). Now let w € H} () be such that (up to a subsequence)
w, — w weakly in H} (), strongly in L?(Q) and a.e.. Note that [w? = 1. We claim that

(20) —(14€)Aw = daw™

Indeed, (15) divided by k,, gives

(21) (1+en)/an-Vv—)\/ f(];")v— EIZ: /f(uo)v 0

for each v € HE(2). Now

(1—|—€n)/an-Vv—>(1—|—6)/Vw-Vv

18



Hence (20) can be concluded from (21) if we show that ﬁ f(uy,) converges (up to a
subsequence) to aw™ in L?(2). Now ﬁf(un) = ﬁf(knwn) and it is easy to see that the

required limit is equal to aw™ in the set
{r e Q: wy(z) - w(z) #0}

If w(z) = 0 and w,(z) — w(z), let € > 0 and ny be such that |w,(z)| < € for n > nyg.
Then

knw,, b
% <ea+ T for such n,

that is the required limit is 0. Thus,%n”) — aw™ a.e. Here b = f(0). Now w,, — w in

L?(€) and thus, up to a subsequence, w, is dominated in L?(Q) (see theorem IV.9 in [4]).
Since - f(un) < alwy| 4+ 7=b, it follows that ﬁf(un) is also dominated. Hence (20)

is now obtained. Now (20) and the maximum principle imply w > 0 and (20) becomes

Aa

— Aw = w
1+e

(22) w >0

/w2:1

Thus 1>fe = A1 (and w = 1), which contradicts the fact that ¢ € [0,¢] and the

choice of €¢g. This contradiction finishes the proof of the lemma 9. O

LEMMA 10. ¢, is uniformly bounded.

Proof: The fact that J, increases with € implies ¢, € [cg, ¢, ] 0

Now we continue the proof of the theorem B v): for € € (0, o], let v. € H}(Q) be such
that

A A
(23) A = o f(v0) + {5 (o)
and
(24) Je(ve) = ce

The relation (24) and the lemmas 9 and 10 show that there exists v € Hg(Q2) such
that v. — v in H}(Q) as e — 0. Now (23) implies

—Av = Af(v)
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The last assertions to be proved are that v # ug = u()\) and v € C?(Q) N C(Q). Note

that ve is a solution of (23) different from uy and hence unstable, in the sense that

A(——f(ve)) <0

1+€

Indeed (23) is an equation of the form
—Au = g(u) + h(z)

where g is convex and positive and h is positive. Then, if it has solutions, it has a minimal
one, say u, with A1(g’(u)) > 0 (see [5]). Now the proof of the lemma 3 4v) shows that for
all other solutions v we have A\1(¢’(v)) < 0. In our case, ug stands for u and v, for v. All
we have to prove now is that the limit of a sequence of unstable solutions is also unstable,

which will be done in

LEMMA 11. Let u,, — u in H}(Q) and p,, — p be such that Ay (u, f'(u,)) < 0.
Then A1 (uf'(u)) <O0.
Proof: The fact that A\;(a) < 0 is equivalent to the existence of a ¢ € Hj(Q2) such

that
/|V<p|2§/ag02 and /@2:1

follows from the Hilbert-Courant min-max principle.
Let ¢, € H}(Q) be such that

(25) /IVsonl2 < /unf’(un)wi

(26) /gofl =1

Since f’ < a, (25) shows that (,,) is bounded in Hg(2). Let ¢ € Hi(Q) be such that,
up to a subsequence, ¢,, — ¢ in H}(2). Then the righthand side of (25) converges, up to
a subsequence, to u [ f'(u)p?. This can be seen by extracting from (y,) a subsequence
dominated in L?(2) as in the theorem IV.9 in [4]. Since

/@2 =1 and /|V<p|2 < liminf/|V<pn|2,

we get the desired result.

20



The fact that v € C?(Q) N C(N) follows via a bootstrap argument:
ve Hi Q)= f(v) e L () = v e W2 (Q) = ...

The key facts are:

a) if v € LP(Q2) then f(v) € LP(Q)

b) an elliptic regularity result (theorem 9.15 in [7]).

¢) the Sobolev embeddings.

vi) Suppose the contrary. Then there are u,, — %, v, an unstable solution of (1) with
A= pin, and v € L}, _(Q) such that v, — v in L] .(Q)

We claim first that (v,) cannot be bounded in Hg(£2). Otherwise, let w € Hg(2) be
such that, up to a subsequence, v,, — w weakly in H}(Q) and strongly in L?(Q2). Then

—Av, — —Aw in D'(Q) and f(v,) — f(w) in L*(Q),

which shows that —Aw = 21 f(w).
It follows that w € C?(Q) N C(Q), that is w is a solution of (1). From Lemma 11 it
follows that

A

(21) e

fl(w)) <0

Now (27) shows that w # u(%), which contradicts ) of the Theorem.

The fact that (v,) is not bounded in Hg(f2) implies that (v,) is not bounded in
L?(Q). Indeed, we have seen that the L?(2)-boundedness implies the H{ () one. So, let
v, = kyw,, where k,, > 0, f w% = 1 and up to a subsequence k,, — 0.

We have

—~Aw, = E () = 0 in Lo ()

n

(and hence we have convergence also in the distribution sense) and (w,) is seen to be
bounded in Hg(2) with an already provided argument. If w is a x-cluster point of (w,,) in
HJ (), we obtain —Aw = 0 and [ w? = 1, the desired contradiction.

vii) As before, it is enough to prove the L?(Q)-boundedness of v(\) near \* and to
use the uniqueness property of u*. Suppose the contrary. Let p, — A*, [|vn||r2(0) — oo,

where v,, are the corresponding solutions of (1). If we write again v,, = k,w,, then

_ Hn
(28) —Aw,, = . (up)
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The fact that the righthand side of (28) is bounded in L?(2) implies that (w,) is
bounded in H}(€). Let w be such that up to a subsequence w,, — w weakly in H}(Q)
and strongly in L?(€2). A computation already done shows that

—Aw = XNaw, w >0 and /w2 =1,
which forces A\* to be % This contradiction concludes the proof. O

3. Some further remarks

As we have seen in the proofs of the Theorems 1 and 2, we have that

1
i) in the monotone case, lim u(\) = 1 in H}(Q).
a2 [[u(A) | pze) 0

oy . 1
ii) in the non-monotone case, lim

— p(\) = ¢y in HL(SQ).
a2 o) L2 ’

It is natural to try to find out:

i) if the above limits continue to exist in a more restrictive sense, say in C(£2).
ii) which is the asymptotic behaviour of [[u(A)[[z2(q) and [[v())||2(q) When A is near %

It is easy to answer the first question. We have

PROPOSITION 1. i) in the monotone case,

1 _
lim ——————u(\) =¢; inCY Q)
a2 a2

=
ii) in the non-monotone case,

1 _
lim ————v(\) =¢ in C1(Q
A2 [v(Mz20) ) ! ()

Proof: i) The proof is essentially the same as for the Lemma 6: it is enough to prove
that (mu()\)) is relatively compact in C1(Q) (when A is near 2%), which can be
done by showing that it is bounded in Cl’%(ﬁ). But this follows from the fact that the
above set is bounded in Hg(£2) and a bootstrap argument (note that a uniform bound for
w(A) = mu()\) in some LP(Q)), 1 < p < oo provides a uniform bound for —Aw(\)
in LP(2) for the same p).

i1) is identical with 7). O

Moreover, we have

PROPOSITION 2. If w(\) is either
AL

a ’

ey YN OF oo, YY), then 355 is

uniformly bounded when X is near
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Proof: Note that the strong maximum principle implies that 815(:‘) < 0 on 9f) and

hence w%\) can be extended to a continuous function on by setting

% (z)

P1 ov
r)==%_" for z € 0N.
w()\)< ) 3151(}) (z)

LEMMA 12. There exists e¢g > 0 such that if
wo = {z e RN : d(z,00) < ¢}

then

i) for each x € wy there is a unique x € OS2 such that d(z,0) = |z — x|

i) if TI(z) = xq, then 11 € CY(wy) (x,z( are as above ).

iii) if |z — II(x)| = € then x = I(z) — ev(Il(x)) or x = II(z) + ev(II(x)), according to
the case x € Q) or x ¢ 0.

iv) if x € Q then [z,1I(x)) C Q.

The proof can be found in [10]. O

Let w=wyNQand K = Q\ w. Since w(\) — ¢; u.Q, for A close enough to % we

1
have w(\)|x > 2 m}}n 1, that is w‘ii\) < ¢ in K for such A and a suitable c. If z € w, let
xg = II(x). Then

e1(z) _ e1(@) —ei(@o) _6%(%—#7’(&‘—%))

(29) w\,x)  w\z) —w ) —e%()\,xo + 7(z — x0))

for some 7 € (0,1). Taking a smaller €q, if necessary, we may suppose that ﬁu&))(m) <0

A1

on w. Then, as above, the quotient in (29) is smaller than some ¢; > 0 for A near =1. 0O

For the second question the answer is delicate. For example we have
PROPOSITION 3. Suppose f to obey the monotone case, that is f(t) > at for all t,
and let
[ = lim [f(t) — at] > 0.

t—o00
Then )
tim (A1 — aX)[u(N) 20 = zll/gol.

A_)T

Proof: Let Lg be a limit point of (A1 — aA)||u(N)||r2(q) when A — 21 If we rewrite

(10) (/%KM—aMMM—AUWMD—aMMH=O
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in the form

(30) [ et = zw) = [ Aer(Fa(n) - au(y)

and we note that the righthand side integrand converges dominated to %l ©1 when A — %,

and that the lefthand side integrand tends to Lop? u. € if Ly < oo and to oo uniformly

in Q if Ly = oo (on an appropriate sequence of \), we get that
A
Ly= "1 / ®1
a

It is obvious that the answer is good only when [ > 0. If [ = 0 then it shows only

O

that [|u(A)| z2(q) grows slower than /\1_;@/\ As we shall see below, in this case the answer
depends heavily on f.

EXAMPLE 1. Let f(t) =t+ t—&—% when t > 0 (defined no matter how for negative t).
Then

Jim /A= Allu(M) ez 9) = VA€

Proof: With the usual decomposition u(\) = k(A)w(A), if we divide (10) by VA1 — A

we get

(31) @1V )\1 — )\k:()\)w

Ap1

W=/ VM)W § 2V A

We claim first that li)\m i}\nf VA1 — Ak(X\) > 0. Otherwise, let u, — A1 be such that
— Al
VA1 — pnk(pn) — 0. Then

VAL = ik (pn)w(pin) o1 — 0 .2

and
VAL = k() w () + 29/ X1 — p — 0 w.Q,

which contradicts (31) for large n.

We shall also prove that limsup /A1 — Ak(\) < co. Suppose the contrary. Let p,, —
A— A1

A1 be such that /A1 — g k(i) — 0o. Then the lefthand side of (31) tends to oo with n.

We shall show that the righthand side remains bounded and the contradiction will conclude

the proof. Now —#1— is uniformly bounded by some M > 0, so that the righthand side

w(pn)
integrand is less than ﬁ, which is bounded.
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Let ¢ € (0,4+00) be a limit point of /A1 — Ak(\) when A — A;. Let u,, — A1 be such
that /A1 — pnk(pn) — ¢ and /A1y — pnk(in) > 5. Then the lefthand side of (31) tends

2>\1M )\1

to ¢, while the righthand side integrand is dominated by =2== and converges a.e. to <*.

Hence ¢ = 2|Q| which finishes the proof. O

Note that a similar computation can be made if f(t) = vt% + 1.

If f(t) — at decays to oo faster than } then the behaviour becomes more complicated,

as shows

EXAMPLE 2. Let f(t) =t + —(t—|—11)2' Then |lu())||z2(q) tends to oo like no power of
(A1 — A). More precisely,
1
i) lim (A = A)*uNllz2@) =0 ifo> 2.

i) Jim O = AN 2oy =00 ifa <

Proof: We shall need first some estimations for [ i and [ 1{¢1>5}i.

LEMMA 13. i) There exist positive constants K;, Ko and € such that

1
Ki|lne| < /1{<p1>6}— < Ksllne|  for e € (0,€7).
¥1

i) [ o = oo.
Proof: ii) follows obviously from 3).

i) Let €9 and wp as in Lemma 12. Let
D :wy — 9N X (—€g,€69) and W : 9N X (—e€g, €9) — wo
be defined by
O(x) = (I(z), (x — (x),v(x))) and V(zg, €) = xo + ev(zo).

Then ®, ¥ are smooth and ¥ = ®~!, so that if we replace if necessary ey with a smaller
number, we may suppose that there exist C7,Cs > 0 such that 0 < C; < |J(¥)| < C3 on
wp-

We claim that there exist C3, C4 > 0 such that

Csd(x,00) < ¢1(x) < Cyd(x,00)
0
when = € w, if we replace, eventually, ¢y with a smaller number. Indeed, as max % <0,

o0 1
B dp1 ()
Ca =500 5 (Ti(a)

we obtain that
<0
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if €y is small enough.

Let Cy = max|¢’|. Then if x € w we get
Q

e1(z) = p1(r) — p1(Il(z)) = —d(z, I(z ))%

for some y € [z, II(x)] and also the desired result.
Take €1 < min((ilrif ©v1,C3 €). Now if € < €7 then:

1 1 1
/1{<P1>6}a :/1{@1261}E+/1{€<¢1<61}a

Note that
{—<d(:1; 8Q)<—}C{e<<p1<61}c{—<d(:c aQ)< C
3
and
1 1 1
< <
Cud(x,00) ~— p1(x) — Czd(x,00N)
there. Then
1 1 1 <
1{901>61} 04 1{ <d(x o)< C4}m
1 1 1 1
< 1{«p1>e}¢ 1{<p1>el} 03 1{C_<d(m 00)< }m
It remains to find, for example, Cs, C’6 > (0 such that
1 I= 1 1
Cs|lne| < I = L <d@on)< gt Y d(z,09) < Co(|lne| + 1)
Now with the changement of coordinates x = W(z,d) we get
- | L1 T(w)lds(wo)do,
<9Q><(C4 ) 0
so that o o
Cy I < T < Col00] 22
€ Cse

and the desired estimation follows easily. The proof of the Lemma is completed.

Now in order to prove i) of the Example 2 it is enough to show that
lim ()\1 — )\)3 Hu()\)HLz(Q) = X
A— A1
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Suppose that there exist u,, — A1 and ¢ < oo such that
(M — ftn)3ky — ¢, where k, = [[u(in)]| 120

If we divide (10) written with A = u, by (A1 — ,un)§ we get

1 P1
32 / A1 — n3knwn:)\/ _
(32) P1(A = pn) O o) e 1102

where w,, = éu(,un).

If ¢ = 0 then the lefthand side in (32) tends to 0, while the second one to co. Hence
c € (0,00). The fact that k, — oo implies that for each € > 0, 2k, w,, + 1 < €k2, for large
n, so that the righthand side of (32) is larger that

Ly
2¢2 | p? +e

for n big enough to have (A; — 11)3k2 < 2¢2. Since the limit of the lefthand side is ¢, we

get that
> ﬁ / Y1
— 22 ) pi+te

for all € > 0. Leting ¢ — 0 we obtain ¢ = 0o, the desired contradiction.

i1) Suppose the contrary. Then there exist a > %, fn — A1, ¢ € (0,400] such that
(A1 — A%k, — ¢, where ky, = [|u(pn)||22(0)-
Let 3 =3a —1> 0. Then (10) with A\ = pu, divided by (A; — A\)1=% gives

(33) /901()‘1 — Hn)* kpwn, = )‘/ (A — ﬂn)QaSO,Bl(k;nwn +1)2 (=1I)

The limit of the lefthand side is ¢ € (0, 4+00]. I, can be estimated as follows:

In:/ = /1{801<>\1—Hn}"' + /1{<p1>)\1—,un}-~-:<]n+Kn

A1 — [in, o
0< 7. < [ b = = )i =0

while ( )B
M )\1 — Hn 1
0 <Ky < c—g/l{wlle—un}a7
2

w
where M = sup max — < oo (as shows the proof of the Proposition 2).
n 1
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Lemma 13 shows that the last expression is O((A; — i, )?|In(A1 — i, )|), that is it tends

to zero with n.
In the non-monotone case ||[v(A)||z2(q) grows faster to co. We have

PROPOSITION 4. Let f obey the non-monotone case and let

lim [f(t) — at] =1 € [—00,0).

t—o0

Then
hm ()\1 — CL)\)H’U( )HLQ(Q) =1

A—2

The proof is identical to that of the preceding Proposition.

The result is good only when [ € R. When [ = —o0, we give an example.

EXAMPLE 3. If f(t) =t +2 — v/t + 1, then

Jim (=)o) 20y = ([ 1v70?

Proof: If we multiply (10) by A — A\; we get

(34) [ o= 2 VARV - (= 2 VEO) V() =

—2000- ) [ 1= [V = AR+ (= A2 - VO = AR w()

where k(\), w()\) are as usual. We prove first that limsup (A — A\;)?k()\) < oo. Suppose
A— A1

there exist p, — A; such that (u, — A\1)?k(pn) — oo. Then the righthand side of (34)
tends to 0, while the lefthand side is, for a suitable choice of C1,C5 > 0, less than

Cr(A = M)VE(A) — Ca(A = A1)%k(N)

so it tends to —o0

Suppose now that

(35) liminf (A — A;)?k(\) = 0.
A— A1

The last integral in (34) is positive, so that (34) gives

(36) [ erVEVaiIh - 0= 2 VEN V) < 22 [
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But the assumption (35) makes the lefthand side of (36) to tend to oo for a suitable
A. The contradiction shows that (35) is false.

Now let ¢ € (0,+00) be any limit point of (A — A1)?k(\) when A — A;. Then (34)
shows that ¢ = ([ ¢1/01)>.

All  other functions we have tested behaved well in the sense that

(M) || 2(0) ~ C’g(/\_;kl) where ¢ is the inverse of the antiderivative of

1
at + f(0) + 1 — f(¢)

[0,400) 5t +——
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PERIODIC SOLUTIONS OF THE EQUATION
—Av =(1 — |[v]?) IN R AND R?

Petru MIRONESCU and Vicentiu D. RADULESCU

1. Introduction

We study in this paper the existence of periodic functions v : R — C which satisfy

the equation
(1) —v" = (1~ |uf).
As observed in [BMR], the functions
(2) Ae*®  where k€R, AcC, |[AP+k*>=1,

are such solutions.
For fixed T', we also study the number of solutions of (1) with principal period T'. The

problem is that (1) has too many solutions, that is, if v is a solution, then
(3) x — av(xg £ )

is also a solution if || = 1 and zp € R. In order to avoid such a redundance, we shall first
obtain a “canonical form” of solutions of (1). Namely, let V' be a periodic solution of (1).
We may suppose that z = 0 is a maximum point for |[V'|?. Then one can find € € {—1,+1}
and a € C, |a] =1 such that

r = oV (ex)

satisfies, apart (1), the conditions

v1(0) =a>0
v1(0) =0
(4) UQ(O):O
\ Ué(O) =b>0,



where v = v1 + tv and @ = max|v|. It is obvious that the system (1)+(4) gives all the
geometrically distinct solutions of (1), that is solutions that cannot be obtained one from
another by the procedure (3).

In what follows, we shall simply write “T-periodic solutions” instead of “solutions
of principal period T”. Our first result concerns the existence and the multiplicity of

”T'-periodic solutions”.

2. The main result

Our main result is the following

Theorem. i) If T < 27, there are no T-periodic solutions.

ii) If T > 2m, there is exactly one real solution v of (1)4+(4), that is a solution for
which vo = 0. Moreover, v depends analytically on T.

iii) There is some T > 2w such that, for 2m < T < Ty, (1)+(4) has no other T-periodic
solutions apart those given by ii) above and (2), for k = 2%, A= V1— k2.

iv) For T > T, (1)4+(4) has other T-periodic solutions apart these two.

v) For each T, the number of T-periodic solutions is finite.

vi) For large T, (1)+(4) has at least

gTQ +O(T log T)

T-periodic solutions.

Remark: In fact, we shall find all the solutions of (1)+(4). More precisely, we shall
exhibit a set Q = Q C R? such that, roughly speaking,
i) if (a, b) ¢ €, then the solution of (1)+(4) has a finite life time for positive or negative

ii) if (a,b) € 02, we obtain the solutions given by (2) or ii) of the Theorem.

iii) if (a,b) € IntQ), then v # 0, v has a global existence, |v| and %ﬁ are periodic
functions. For such (a,b), if Ty is the principal period of |v| and ¢ is (globally) defined
such that v = €*?|v|, then v is periodic if and only if ¢(Ty) — ¢(0) € 7. Given ¢ = 2 €,

q >0, (m,n) =1, the set

{(a,;b) € Int Q5 (Tp) — ¢(0) = 7q}

is a smooth curve, which for example can be parametrized as (a,b(a)), a € (ag, 1), where ag

is depending on q. If Ty(a) denotes the principal period of |v| for the initial datae (a, b(a)),
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then li/m1 To(a) = oo and this curve raises a smooth curve of periodic solutions of (1)+(4),
with principal periods T'(a) = nTy(a) (if m is even ) or T'(a) = 2nTy(a) (if m is odd ).

Actually, the diagram of bifurcation of the distinguished solutions is given by Picture

For the instant, we do not know whether the curves ¢ =const. are like a) or like b) in
Picture 1. In other words, we do not know whether 7" increases or not along these curves.
If the first possibility holds, the minimum number of solutions given by (38) is the exact
one. After the proof of the theorem, we shall give a sufficient condition for this happens
(see the Remarks following the proof).

Finally, the last paragraph is devoted to the existence, in the whole R?, of 2-periodic
solutions which are geometrically distinct to the real ones. Some existence and non-

existence results are obtained.
3. Proof of Theorem
Let us note first that
(5) a<l.
Suppose the contrary. Let M > 1 be such that
min |v| < M < max |v|.

Let I be an interval such that |v| > M in I and |v| = M on 0I. ( Note that such an

interval is necessarily finite ). Since
([o[*)" = 2*(jvf* = 1) > 0

in 1, it follows that |v| < M in I, which contradicts our choice of I.

Next we shall prove that
(6) b <a’(1—d?).

Indeed, for small x we have



so that (6) follows from the fact that x = 0 is a local maximum.
Now let
Q= {(a,b) € (0,1] x [0,1]; b* < a*(1 —a?)}.

We have obtained that if (1)+(4) raises a non-null periodic solution such that z = 0
is a local maximum, then necessarily (a,b) € Q.
We shall first study the case (a,b) € 0.

Case 1 If b = a/1 — a?, it follows that
v(z) = ae’™® | where k= +/1—a2.

Indeed, (2) provides a solution for (1)4(4) in this case.

Case 2 If b = 0, one gets easily that v, = 0. If a = 1, we get the trivial solution
v(z) = 1, so that in what follows we shall assume that a € (0,1).

Note first that v; cannot be positive (negative) into an infinite interval if v is peri-
odic. For, otherwise, v; would be a periodic concave (convex) function, that is a constant
function.This is impossible for our choice of a and b.

Let x1, x5 be two consecutive zeros of v1. We may suppose that v(z) > 0if r; < z <
X2, so that v'(z1) > 0, v'(x2) < 0. If z3 is the smallest x > x5 such that v(xz3) = 0, it
follows that v(z) < 0 if 9 < x < x3.

If we prove the fact that xo — 1 > m, it will also follow that x3 — x; > 27 and that
there is no x € (x1,x3) such that v(z) = 0 and v'(x) > 0. We will get that the principal

period of v must be > 2. This will be done in

Lemma 1. Let f : R — [0,1] be such that the set {z; f(z) =0 or f(z)= 1}
contains only isolated points. Let v be a real function such that v(x1) = v(z2) = 0, and
v(z) > 0 in (z1, z2). If, for x € [x1, x2],

(7) " =vf,

then xo — x1 > .

x
Proof. We may assume that z; = 0. Multiplying (7) by ¢(x) := sin ™ and integrat-
T2
ing by parts, we obtain that

o o T 9 )
/ v<p>/ vfo=(—) / v,
0 0 T2 0

that is zo > . O
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Incidentally, this proves i) of the Theorem.
Returning to the Case 2, we shall explicitely integrate (1)+(4) as one usually does for
the Weierstrass Elliptic Functions. Multiplying (1) by v/, we find

1 1
(8) v = —v? + 51}% +a? — §a4.

It follows that, as far as the solution of (1)+(4) exists, we have |v;| < a and |v]| <
< y/a? — 3a*. Hence the solution of (1)+(4) is globally defined.

Note that v](0) = 0, v{(0) < 0, so that v; decreases for small z > 0. Moreover,
vi(z) <0 for 0 < x < 7, where

T=sup{z >0; vi(y) >0 forall 0<y<uz}.

Indeed, suppose the contrary. Then, taking (8) into account, we obtain the existence
of some 79 > 0 such that vy (79) = a, 79 < 7. If we consider the smallest 75 > 0 such that
the above equality occurs, we have vi(x) < a if 0 < & < 79. Since v1(0) = v1(79) = a,
it follows that there exists some 0 < 71 < 79 such that vj(7) = 0, which is the desired

contradiction. Hence we have

1 1
9) viz—\/a2—§a4—v%—|—§vil<0 in (0,7).

It follows that, if 0 < x < 7, then

a 1
/ dt =z,
v(z) \/%tll — 124+ a2 — %a4
which gives

(10)

=7(a).

/a dt
T =
1 1
0 \/§t4—t2+a2—§a4

From (1), we obtain vy (7 4+ z) = —v1 (7 — ), v1(27 —x) = —v1(x), v1(4T + ) = v1 (),
so it is easy to see that v is periodic of principal period T'(a) = 47(a).

Now (10) can be rewritten as

! 1
r(a) =
/0 V-1 - 21 +e2)

so that 7 increases with a and

(11)

dg

lim 7(a) = g lim 7(a) = +o0.
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Since 7'(a) > 0, it follows that the mapping

is analytic, so that ii) is completely proved. Moreover,

lim o(T)=0 and lim o(7T)=1,
T\.27 T oo

so that the diagram of “real” solutions is that depicted in Picture 1.

Next we return to the points (a,b) which are interior to .

Case 3 Let (a,b) € IntQ.

Write, for small x,
(12) v(z) = e ®w(x)

with ¢(0) =0 and w > 0.

One can easily see that w satisfies

(13) —w” = w(l —w?) — %
and
14 { w(0) =a
w'(0) =0,
while ¢ is given by
(15) o= e =0.

’
w2

Hence, if the system (13)+(14) has a global positive solution, it follows that (12) is

global. Moreover, if w is periodic of period Tj, then
(16) v(nTy + z) = ™I @ (1) for 0<z<Ty, n=0,1,..

so that (1)4(4) gives a periodic solution if and only if ¢(Tp) € 7.

We shall prove the global existence in

Lemma 2. If (a,b) € Int Q, then (13)+(14) have a global positive periodic solution.
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Proof. Note that the assumption made on (a,b) implies that w”(0) < 0, so that,
multiplying as above (13) by w’, we obtain , for small z > 0,

1 a?b? 1
2 2 4 2 4 2
and
1 a?b? 1
r_
(18) w——\/—w2+§w4—?+a2—§a4+bz.

Now (17) implies that w and w’ are bounded as far as the solution exists and, moreover,
that

inf{w(zr); w exists} >0.

It follows that w is a global solution. Let
T=sup{z >0; w'(y)<0 forall 0<y<uz}.

Note that (18) is valid if 0 < x < 7.
Let ¢ be the only root of
1, a®b?

1
2 L4 2 L o4 g2
flx) = -z +2:1: 7 +a 2a +b 0

which is positive and inferior to a.

Since f(x) < 0if 0 <z < cor x > a, x close to a, it follows from (17) that

(19) c<w(r)<a forall zeR.

Claim 1. li;n w(z) = c.

Proof of Claim 1. If 7 < oo, it follows that w’(7) = 0. Now (17) together with the
definitions of 7 and ¢ show that w(7) = ¢. If 7 = oo, then we have lim w(z) > c. If we
would have lim w(x) > ¢, there would exist a constant M > 0 such that w'(x) < —M for

each x > 0. The latest inequality contradicts (19) for large =.
As we did before, for 0 < z < 7, (18) gives

1

(20) x:/
w(x) \/_t2+%t4_ai_2b2+a2_%a4+b2

dt,
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1

7-:/ dt < 00.
c \/—t2+%t4—“§—§2+a2—%a4+b2

It follows by a reflection argument that w(27) = w(0) = a, w'(27) = w'(0) = 0, so
that w is (27)-periodic. O

Next, in order to make simpler the computations that follow, it is useful to replace the
(a,b)-coordinates into other ones, by associating to (a, b) the point (A, C), where A = a2,

C = ¢? with a, c as above. This changement of coordinates maps 2 analytically into
w:={(A,C); 0<C<A 2A+C <2}

( see Picture 2 ).
It follows from the above discussion that to each (A, C') € w it corresponds a solution
(w, @) of (13)-(15) such that w and ¢’ are periodic of period given by ( after a suitable

change of variables )

*° 1
(22) Ty, =To(A,C) = 2\/5/0 N SRS e RN ) dy .
Moreover, ¢(0) = 0 and
7(A,C) 1
(23) P(Ty) = V2ACE=4=C) [ T sy,

where 7(A,C) = 1Ty(A, C).
Now the change of variables w(y) = t yields, with p(A,C) := ¢o(Ty (A, C)),

o0 2 1 1
(24) <,O<A,C):\/2Ao(2—A—0)/O \/(2—2A—0)yy2i(2_,4_20)'Ay2+cdy’

and (22), (24) show that (A, C) — (To, ¢) is an analytic map. Moreover, (22) gives that

25 To > li To(A,C) = inf To(A,C) > 7.
(25) 0= (A,C)lgl(0,0) o4, C) =, |(A,CI‘I)1\26>O 0(4,C) >

A lower estimate for ¢ will be given in

(4,0)= 7.

L 3 > and i
cemima . — aln 11m
v V2 (A,C)—(0,0) 14
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Proof. If we put y = \/Ez in (24), we obtain

1

o0 Cz2+ A
(26) ¢(A’O):V2<2_A_C)/O \/C(2—2A—C)22iA(Z—A—QC)zﬂJrle’

so that the second assertion follows from the Lebesgue Dominated Convergence Theorem.

For the first one, it is enough to show that for given 0 < k < 1, the function

2
k42

(0, )3 A o(A, kA)

is increasing.

After a short computation, we find that

ky? + 1

o 2k ~
(27)  W'(A) = N TR /0 \/[k(2 — (k+2)A)y” + (2 - 26+ DA)P

dy > 0.

O

Incidentally, this shows that ¢ has no critical points and that the level curves p=const.

are analytic and can be parametrized as

(28) (A(k), kA(E)) -

Lemma 4. lim ¢(A) = .
A/k+2

Proof. It follows from (26) that

2(k+1) kx? +1 dz
A 2(2 —
i )>\/( k+2 / \/ K2 (k+2)A)2+2— 2kt DA2 41

and the last integral tends monotonically to 400 by the Beppo Levi Theorem. O

From the above Lemma, we obtain that the parametrization (28) is valid for k& € (0, 1).

Moreover, (27) shows that the mapping
(29) k— A(k)

is analytic. Of course,the level line ¢ =const. is non-void if and only if const.> % This

will be assumed in the sequel. We shall prove that (29) provides a decreasing mapping.
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0
Indeed, if we consider now v as (A, k), then it follows from (27) that 8_177?1 increases with
k. Hence, if k1 < ko, then

w(A7 kl) < w(Aﬂ kQ) ;
that is A(k) decreases with k.
We obtain the existence of

lllfml A(k):= Ay and ]11{% A(k) == A1 > Ao,

From Lemma 3, Ag > 0.

Claim 2. A4, =1.

Proof of Claim 2. It follows from (26) and the Lebesgue Dominated Convergence
Theorem that

T
lim AC)=— if 0< Ay <1,
<A,0)~<A2,0)¢( ) V2 2

so that, taking Lemma 3 into account, we obtain that, given € > 0, there exists § > 0 such
that

o(A,C) < %-l—s

if0<A<1-96,0<C <§. This completes the proof of the claim. O

At this stage of the proof, we know that the level lines p=const. are analytic, all of
them “end” at (1,0) and “begin” at (A, Ag) for some suitable 0 < Ay < 1, Ay depending
on the constant. Moreover, if g1 < ¢z, the line ¢ = ¢; lies below the line ¢ = go ( see
Picture 3 ).

Now Aj can be found implicitely, because ¢ can be extended by continuity on the line
segment M N. This shows that

s 1—A0
Q—<P(A0,A0)—§\/2_3AO,

2

8¢ —

(30) Ao = Ao(q) = 124 —3n2 "

Returning to the proof of the theorem, note that iii) and iv) follow easily from the

above calculation. Indeed, for small A and C, if p(A,C) = 7 is a rational multiple of
n

m, then n > 4, so that, taking into account the fact that To(A, C) > =, it follows that for

small A the period of v is at least 47. Now the existence of T follows from (25).

40



In order to prove v), note that the level line ¢ = ¢ contains a T-periodic solution if

and only if
q= 77@, (m,n) =1 and there exists (4,C) on the level line
n
(31) L if m is even
h that  Ty(A,C) = n’
such that  Ty(4, C) { L if m is odd
We shall prove that
2 li To(A,C) = o0.
(32) g To(A, €)= oo

Suppose (32) proved for the moment. Obviously, if ¢(A4,, C,) — oo, then
24, + C,, — 2. It follows from (32) that, for ¢ large enough, To(A, C) > T if (A, C)
is on the level line ¢ = ¢, so that (31) cannot hold for such ¢g. Hence, in order to prove v)

it remains to show that, for given ¢, T} , the set
M = {(A7C)7 (p(A,O) =4dq, To(A,O) = TO}

is finite.
Let
C = {(A,C), 90(A7C) = q} :
Since C; is an analytic curve, M is finite provided that (1,0) and (Ao(q), Ao(q)) are not
cluster points of M. For (1,0), this follows from the fact that, according to (32), To(A, C)

approaches +o0o as A approaches 1 along C;. In particular, To(A, C) is not constant along

C1. In order to see what happens in (Ao(q), Ao(q)), we perform the following trick: let
w =wU{(C,A); (A,C)ecwlU{(4,4); 0<A<1}

( see Picture 4 ).

Obviously, (24) extends ¢ to an analytic function ¢; in wy. The change of variables
z = 1 in (24) shows that ¢(A,C) = ¢(C, A). Note also that (27) continues to hold for
k = % This shows that ¢; has no critical points and that To(A, C) tends to +o0o at the
both ends of ¢;=const. Hence, ¢ can assume the same value only a finite number of times.

All it remains to do is
Proof of (32). Let A, < 1,0 < C, <1 be such that 24,, + C,, /2. Then

dy
24, —C)y? +2]

(33 (4, C) > 2v2 [ N R
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and the right hand side of (33) tends to +oo from the Beppo Levi Theorem. O

The proof of v) is completed.

3

Sl

, (m,n) =1, — > . Then the

m
Next we return to the proof of vi). Take ¢ = 7—
n n

level line ¢ = ¢ is nonempty and smooth. If we put

B 00 dy _ 24¢> — 672
@) ) =22 [ e e " Ta e

it follows from (32) that, along ¢ = ¢, Ty assumes all the values between T(q) and +oc0.

We obtain that, for fixed T', (1)4(4) has at least one T-periodic solution corresponding to
each ¢ such that

m m 1 L if m is even
- =1, —>-—_ T Y
(35) g=7_, (m,n) =1, o ok o(q) <{%, i m is odd .

Hence it suffices to count, for large T', the number of elements of A U B, where

1
(36) A= {(m,n);(m,n) =1,mis even, ULES —,24m?*n? —6n* < (16m?n* —5n?)n?T?}
n

V2

and
(37)
1
B = {(m,n);(m,n) = 1,m is odd, ULEN —,96m?n? — 24n* < (16m*n? — 5n?)12T?}.
n

V2

Note that

AUB D {(m,n); (myn)=1, m>n, m< \/25—47TT}.

It follows that there are at least

(38) Z d(m)

5
1<m<y/ 47T

solutions, where ® is the Euler’s Function. Now a Theorem of Mertens ( see [Ch] ) asserts
that the sum in (38) is

(39) gTQ +O(T log T).

The proof of the Theorem is completed. O
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Remarks: 1) It is obvious that (38) does not provide an accurate estimate. On the
other hand, one may see that the number of elements of AU B is O(T?).

2) (35) counts all the T-periodic solutions if and only if Tj increases along ¢=g=const.
as far as A increases from Ag(q) to 1. A sufficient condition is that
(A,C) — (Th(A,C),p(A,(0)) is a local diffeomorfism. This relies on the following fact:
let w be an open connected set of R? and f : w — R? a local diffeomorfism. If the level
lines fo=const. are connected, then f:w — f(w) is a global diffeomorfism.

3) It follows from the proof that the diagram of bifurcation is, indeed, as in Picture
1. For example, the level line ¢ = ¢q, ¢ = W@, raises a branch of periodic solutions which
starts from a solution of the form (2). Note that, on a level line, the solutions oscillate
more and more as A /" 1, in the sense that max |v| and min |v| approach 1 and 0 as A
approaches 1. It is also easy to see that, in Picture 1, the points 17,75, T3, ... are isolated.

4) One may prove that, if @ = max |v| for a T-periodic solution, then
2

i) a®+ (%T)2 =1 if v is given by (b);

2m

T

2 2m 2 : : « » :

ili) a*+ (=)° <1lifvisa “complex” solution.

5) We have seen that the solution of (1)+(4) is globally existent if (A,C) € w. The

same happens if (A,C) € wy. There is nothing surprising in this, because starting with

ii) a®+ (= )? > 1if v is a real solution;

some (A,C) € w; \ w means considering the “canonical form” of (1) with x = 0 a local
minimum, this time.

Let Q4 be the inverse image of w; with respect to the mapping (a,b) — (A, C).
Considering some point (a,b), a > 0, b > 0 such that (a,b) ¢ Q, it is easy to carry out

once again (13)-(21) in order to prove that this time v has a finite left or right life time.
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4. Existence of non-trivial periodic solutions
in R?

We are concerned with the existence of double periodic solutions, that is of functions

u: R? — C solutions of

(40) —Au =u(l — \u]2), uelL? (RQ) ,

loc

such that there exist wy,ws € R? linearly independent with
(41) u(r +w;) =u(z), j=1,2.

Of course, we have already obtained such solutions: take wy = (27,0) with T' > 7 , wy
arbitrary and u a 2T-periodic real solution. Even simpler, one may take u=const., |u| =0
or 1.

Therefore, we shall look for non-trivial solutions, that is solutions enjoying the prop-

erty

(42) { there is no v : R — C solution of (1) such that

u(x) = v(agxy + asxy) for some a € C, |a| =1.
We start with a non-existence result.

Proposition 1. If |w;],|ws2| are small enough, all the solutions of (40)-(41) are con-

Stant.
We shall use in the proof
Lemma 5. Let u be a solution of (40)-(41). Then |u| <1 ( so that u is smooth ).
Proof of Lemma 5. We follow an idea from [BMR]. It follows easily from (40) that
u € H- _(R?). Let

loc

P={ w4+ pws; 0<A<1,0< <1},
Let ¢ be a C§°(R?)-function such that ¢ > 0, ¢ = 1 in a neighborhood of 0, and

1 x
on(x) = ﬁgp(ﬁ) forn=1,2,....
Multiplying (40) with u(|u|? — 1)T¢,, and integrating by parts, we get, as n — oo,

[ v [ PP [ (-1,
P[lul>1] POflul=1] PN[lu21]

that is |u] < 1 a.e. It follows that u € L* | so that u may be supposed smooth. O
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Proof of Proposition 1. Let (¢;,)n>0 be an orthonormal basis of eigenfunctions of
—Ain H ; (P) (‘here “p” means periodic conditions on P ) with corresponding eigenvalues
(An)n>0. We may suppose ¢g = 1, so that A\, > 0 for all n > 1. If |w;|, |we| are small
enough, then A, > 2 ifn > 1.

Let u be a solution of (40)-(41) and write

U= chgon . ulul? = Zdngon.

Integrating (40) over P, we find that cg = dp. Multiplying (40) by ¢,, n > 1 and
integrating we obtain, if d,, # 0,

|dn] = (An — 1D)len| > en] -

[z [ .
P P

Z |Cn|2 > Z |dn|2-

Examinating these formulae, we see that ¢, = d,, =0 if n > 1, that is u is constant.O

Since |u| < 1, we have

that is

Concerning the existence of solutions of (40)-(42), we have been able to prove it if P

is a rectangle large enough.

Proposition 2. Let P be large enough such that the first eigenvalue of —A in H}(R)
is inferior to 1, where R = %P.
Then (40)-(42) has solutions.

Proof. Let
1 1 9, 1 212
J:Hy(R)— R, J(u):§ |Vul +Z (1 —|ul®)

Then J is a C''-function ( see [BN] ), even, bounded from below. It is not difficult to
see that it satisfies the (PS)-condition:

(PS) if (u,) C HY(R) is such that (J(u,)) is bounded and J'(u,) — 0 in H™!(R),
then (u,) is relatively compact in H}(R).

R
Now J(0) = ’T’ and, if ¢ is the first eigenfunction of —A in H}(R), then J(gp1) <
J(0) for small .
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More generally, if the k-th eigenvalue is inferior to 1, one can easily see that there is
some R > 0 such that J(u) < J(0) if v € Sp{¢1,...,¢r} and |u|| = R. Here ¢; denotes
the eigenfunction corresponding to the k-th eigenvalue.

It follows from Theorem 8.10 in [R] that J has at least k pairs (u;, —u,) of critical
points which are different from 0. Let ug be a critical point of J in R. Suppose R =
(0,a) x (0,b).Define u : P — C by

w(z') = u(z") = —ug(z), u(x"”)=wuo(x),

where © = (z1,22) ,2" = (2a — x1,22) , 2" = (21,20 — z2) ,2"" = (2a — x1,2b — x2).

It is obvious that u satisfies (41). It is not hard to see that wug is regular ( see [G] ).
It follows then by a simple calculation that u satisfies (40).

Finally, suppose (42) does not hold. Let 5 = (a2, —ay) where @ = a3 + iy is as in
(42). Then u must be constant along each parallel to ﬁ . Since any such line intersects the

grid generated by P, it follows that u = 0, which is not the case. O
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Equations aux dérivées partielles/ Partial Differential Equations

ON THE GINZBURG-LANDAU ENERGY WITH WEIGHT

Catalin LEFTER and Vicentiu D. RADULESCU

Abstract. We study the behavior as ¢ — 0 of minimizers (u.) of the Ginzburg-
Landau energy EY with the weight w. We prove the convergence (up to a subsequence)
to a harmonic map whose singularities have degree +1. We also find the expression of the
renormalized energy and deduce that the configuration of singularities is a minimum point
of this functional. Our work is motivated by a problem raised by F. Bethuel, H. Brezis
and F. Hélein in [4].

Sur 1’énergie de Ginzburg-Landau avec poids

Résumé. On étudie le comportement quand € — 0 des minimiseurs (u.) de I’énergie
de Ginzburg-Landau EY avec le poids w. On montre la convergence (a une sous-suite pres)
vers une application harmonique dont les singularités ont les degrés +1. On trouve aussi
I’expression de I’énergie renormalisée et on déduit que la configuration des singularités et
un point de minimum de cette fonctionnelle. Notre travail est motivé par un probleme
posé par F. Bethuel, H. Brezis et F. Hélein dans [4].

Version francaise abrégée. Soit G un ouvert borné, régulier et simplement connexe
dans R?. On fixe une condition aux limites g : G — S* telle que d = deg (g, dG) > 0.
Soit w € C'(G,R), w > 0 dans G. On considere Iénergie de Ginzburg-Landau avec le

poids w:

1 1
B2 =5 [Vl [0 uPPu, e>0,
2 G 482 G
définie pour tout u € H*(G;R?). Soit 1. un minimiseur de E* dans la classe
1. R2) L. Rr2Y. 5 —
H,(G;R”) ={u € H (G;R"); u=gsur G} .
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Pour caractériser le comportement des minimiseurs dans le cas w = 1, ainsi que la
configuration limite, F. Bethuel, H. Brezis et F. Hélein ont défini (voir [2],[4]) ’énergie

renormalisée par

k
_ 1
W(b,d,g) = -7 _did; log | b; —b; | t3 /8G Bo(gAgr) =7 Y d;iRo(bs) ,

i#j j=1

ot b = (by,---,bs) est une configuration de k points distincts dans G de degrés d =

(dy,---,dy), avec d = dy + - -+ + di. Les applications ®g et Ry sont définies de maniere

unique par
( k
Ady = QWZdjdbj , dans G
j=1
o
(1) —Ozg/\gT, sur 0G
v
/ Py =0
\ JOG
et
k
(2) Ro(x) = ®o(z) — Y djlog |z —b; | .
j=1

On désigne par W (b) I’énergie renormalisée quand tous les degrés sont égaux a +1.

Théoreme 1. Il existe une suite €, — 0 et exactement d points aq,---,aq dans G
tels que
ue, — uy, dans H} (G \ {a1,...,aq}; R?),

ol uy est I’application harmonique canonique associée aux singularités ay, - - -, aq de degrés
+1 et a la donnée au bord g.

De plus, a = (a1, --,aq) minimise la fonctionnelle

d
W(b) =W () + 5 > logu(by)

parmi toutes les configurations b = (by,---,by) de d points distincts dans G.
On a

d
lim {EY (ue,) — md | loge, |} = W(a) + g Zlogw(aj) + dy,
i=1
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ol v est une constante universelle.

Théoreme 2. Soit .

Alors la suite (W,,) converge dans la topologie faible x de C(G) vers

Let G be a smooth, simply connected domain in R? and w € CY(G,R), w>0in G.
We consider the Ginzburg-Landau energy with the weight w

P = [ 1Vl gy [ 0= uPu.
where:

a) € > 0 is a (small) parameter.

b) g : 0G — S is a smooth data with a topological degree d > 0.

Studying the behavior of minimizers u. of E in the case w = 1, F. Bethuel, H. Brezis
and F. Hélein have proved (see [2]|, [4]) that there exists d points a1, --,aq in G such
that (up to a subsequence) u., — u, in Cf (G \ {ai,---,aq}), where u, is the canonical
harmonic map associated to g and a = (a1, -+, aq). In order to locate the singularities at
the limit, they have defined the renormalized energy associated to a given configuration b =
(by,---,by) of distinct points in G with associated degrees d = (dy,---,dy), di+---+d = d
by

k
_ 1
W(b,d.g)=—nY _did; log|b; —b; | +§/ Bo(gAgr) =7 Y d;iRo(bs) ,
i3 oG j=1
where ®( is the unique solution of

(

k
A®y =27 ) d;dy, , inG

j=1
(1) @:g/\gT, on 0G
ov
/@0:0
\ JOG
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and
k

(2) Ro(z) = ®o(z) — Y djlog |z —b;| .
j=1

We shall denote by W (a) the renormalized energy when k& = d and all degrees equal
+1. F. Bethuel, H. Brezis and F. Hélein have proved in [4] that the functional W is related

to the asymptotic behavior of minimizers u. as follows:
(3) lim {Ee(uc) - 7d | loge [} = W(a,d, g) + dv,
E—

where ~y is an universal constant, d; = 1 for all ¢ and the configuration (aq, - -, aq) achieves
the minimum of W.

This work is motivated by the Open Problem 2, p. 137 in [4]. We are concerned
with the study of the convergence of minimizers of £, as well as with the corresponding
expression of the renormalized energy. We prove that the behavior of minimizers is of the
same type as in the case w = 1, the change appearing in the expression of the renormalized
energy and, consequently, in the location of singularities of the limit u, of u.. Our Theorem
2 generalizes another result of F. Bethuel, H. Brezis and F. Hélein concerning the behavior
of u.. We then prove in Theorem 3 a vanishing gradient property for the configuration
of singularities obtained at the limit. The last theorem is devoted to a description of the
renormalized energy by the “shrinking holes” method which was developed in [4], Chap-
ter I.

Theorem 1. There is a sequence ¢,, — 0 and exactly d points a1, ...,aq in G such
that
ue, — uy in HL (G \ {a1,...,aq}; R?),

where u, is the canonical harmonic map associated to the singularities a1, ..., aq of degrees
+1 and to the boundary data g.

Moreover, a = (ay, ..., aq) minimizes the functional
ol
W(b) =W(b) + 5 Z:llogw(bj)
=

among all configurations b = (b1, ...,bq) of d distinct points in G.

In addition we have

d
lim {EY (ue,) — md | loge, |} = W(a) + g Zlogw(aj) + dy,

J=1
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where v is some universal constant, the same as in (3).

Remark. The functional W may be regarded as the renormalized energy correspond-

ing to the energy EY.

If ¢,e,m > 0 are constant, let

xT

I(e,n) = min{E.(u); u € H'(B,(0); R?) and u(z) = p on 0B5,(0)}.
For x € G, denote
My(x)= sup w and my(x) = inf w.
B(e,m)nG B(z,m)NG

Sketch of the proof. The first part of the conclusion may be obtained by adapting the
techniques developed in [1], [2], [3], [4] taking into account the estimate

(4) 2 (1_ | Ue,,
G

which is deduced by using the ideas in [6].
The proof of the second part of the theorem is divided into 3 steps:

Step 1. An upper bound for EX(u.). If b = (b;) is an arbitrary configuration of d
distinct points in G, then there exists 79 > 0 such that, for each n < 1o,

1
(5) + W (b) + mdlog 54—0(7)) asn — 0,

d
E¥(u;) < Z \/7) 1)
for € > 0 small enough. Here O(7n) is a quantity which is bounded by Cn, with C' indepen-
dent of 7 > 0 small enough.

Step 2. A lower bound for E (uc, ). If a1, ..., aq are the singularities of u, and n > 0,
then there is Ng = Ny(n) € such that, for each n > Ny,

d

1
(6) " (ue, ) Z (m 1> + 7d logﬁ +Wi(a)+ O(n).

j=1
Here o = 1+ n and O(7) is a quantity with the same behavior as in (5).

Step 3. The final conclusion. From (5), (6) and the asymptotic expression of I(e,n)

as = — 0 (see [4]), we obtain
Ui

d
(7) W (b) + g Y " log M, (b)) — mdloge, + dy + o(1) >
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d
1 1
> W(a) + g E log my(a;) — ndloge, + md log — — wd log — + dy + o(1),
, n n
=1

where o(1) stands for a quantity which goes to 0 as €,, — 0 for fixed n. Adding nd loge,,
and passing to the limit firstly as n — oo and then as n — 0, we obtain that a = (a1, ..., aq)

is a global minimum point of W. We also deduce that

n—oo

d
lim {EY (ue,) — nd |loge, [} = W(a) + ngogw(aj) +dy .
j=1

Theorem 2. Set

1 2\2

Then (W,,) converges in the weak * topology of C(G) to

d
We=13 > 0.

Jj=1

The expression of the renormalized energy W allows us, by using the results obtained
in [4], to give the analogue of the vanishing gradient property obtained in [4], Chapter
VIIL.2.

Taking into account Theorem 1 and using the expression of DW (see Theorem VIII.3

in [4]) we obtain

Theorem 3. (“Vanishing gradient property”) If a = (a1, --,aq) is as in Theorem 1,
then

aj —a;  1Vuw(aj)

for each j.

VRo(a;) + >

“laj—aiP 4 w(e)’

As in [4], Chapter 1.4, we may define the renormalized energy by considering a suitable
variational problem in a domain with shrinking holes.

Let by, ..., by be distinct points in G. Fix dy, ...,d; € and a smooth data g : 0G — S*
of degree d = dy + ... + dj. For each n > 0 small enough, define

k
Gy =G\ |Jwy,
j=1
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where

s = B(bj %) |

&Y ={ve Hl(GZ;Sl); deg (v,0w;,) =d; and v=g on O0G}.

Set

Let u, be a solution of

(8) min / |V l? .
uegff G’qnu
The following result shows that the renormalized energy W is what remains in the

energy after the singular “core energy” md | logn | has been removed.

Theorem 4. We have the following asymptotic estimate:

1

k
5/%” | Vu, ]2: W(Zdjz) | logn | +W(b,c_i,g)—|—0(77), asn — 0,

=1
where

k
- T
W(b.d,g) = W(b,d,g) + 5 (Z d3 log w(bj)) :
j=1
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ON THE GINZBURG-LANDAU ENERGY WITH WEIGHT

(Sur l’énergie de Ginzburg-Landau avec poids)

Catalin LEFTER and Vicentiu D. RADULESCU

Abstract. This paper gives a solution to an open problem raised by Bethuel, Brezis and Hélein.
We study the Ginzburg-Landau energy with weight. We find the expression of the renormalized energy
and we show that the finite configuration of singularities of the limit is a minimum point of this functional.
We find a vanishing gradient type property and then we obtain the renormalized energy by Bethuel, Brezis

and Hélein’s shrinking holes method.

Résumé. Ce travail donne la solution d’un probléme ouvert de Bethuel, Brezis and Hélein. On
étudie 1’énergie de Ginzburg-Landau avec poids. Nous trouvons l’expression de I’énergie renormalisée et
on prouve que la configuration finie des singularités de la limite est un point de minimum pour cette

)

fonctionelle. Nous montrons une propriété du type ”vanishing gradient” et on obtient ensuite 1’énergie

renormalisée avec la méthode ”shrinking holes” de Bethuel, Brezis et Hélein.
Keywords: Ginzburg-Landau energy with weight, renormalized energy.
Classification A.M.S. : 35 J 60, 35 Q 99.
1. Introduction

In a recent book [BBH4|, F. Bethuel, H. Brezis and F. Hélein studied the vortices
related to the Ginzburg-Landau functional. Similar functionals appear in the study of
problems occuring in superconductivity or the theory of superfluids.

In [BBH4], F. Bethuel, H. Brezis and F. Hélein have studied the behavior as e — 0 of

minimizers u. of the Ginzburg-Landau energy

1 1
E. = — 24— 1— 2)2
W= [ 1VuP gz [a-lup)
in the class of functions
1 1 .R2). _
H,(G) ={u € H (G;R”); u=g on 0G},
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where:
a) € > 0 is a (small) parameter.
b) G is a smooth, simply connected, starshaped domain in R2.
c) g: 0G — St is a smooth data with a topological degree d > 0.
They obtained the convergence of (uc, ) in certain topologies to u,. The function wu,

is a harmonic map from G \ {a1,...,aq} to S*, and is canonical, in the sense that

0 ou 0 ou
o * — a * =) = in D' :
e (u A 8;1:1) + 92a (u A 8:172) 0 in D'(G)

Recall (see [BBH4]) that a canonical harmonic map u, with values in S and singu-

larities by, ..., by of degrees dy, ..., dx may be expressed as
d d
e Y () e
Us(x) = | ——— oo | ———] e ,
0= (7= EEy

Apg=0 in G.

with

They also defined the notion of renormalized energy W (b, d, g) associated to a given
configuration b = (by,...,b) of distinct points with associated degrees d = (dy, ..., dy).
For simplicity we set W(b) = W (b,d,g) when k = d and all the degrees equal +1. The

expression of the renormalized energy W is given by

_ 1
W(b,d,g):—ﬂZdidjlog|bi—b]~|—1—§/8 Do(g A gr) deRO ,
1#£]

where ®( is the unique solution of

( k
ADy =27y d;d, , inG
j=1

(1) %o
ov
R

k
Ro(x) = ®o(z) — Y _d;log |z —b; | .
j=1

=gANg,, ondG

and
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The functional W is also related to the asymptotic behavior of minimizers u. as

follows:
(2) lim {E.(us) — 7d | loge |} = min W(b) + dv,
e—0 beGd

where v is an universal constant, £k = d, d; = +1 for all ¢+ and the configuration a =
(a1,---,aq) achieves the minimum of W.

We study in this paper a similar problem, related to the Ginzburg-Landau energy
with the weight w, that is

y 1 1
P = [ 1Vul+gg [ 0= lupe.

with w € C'(G), w > 0 in G. Throughout, u. will denote a minimizer of E*. We mention

that u. verifies the Ginzburg-Landau equation with weight

1
—Au. = —u.(1— |u. P)w in G

(3) e?

us =g on 0G.

Our work is motivated by the Open Problem 2, p. 137 in [BBH4]. We are concerned
in this paper with the study of the convergence of minimizers, as well as with the corre-
sponding expression of the renormalized energy. We prove that the behavior of minimizers
is of the same type as in the case w = 1, the change appearing in the expression of the
renormalized energy and, consequently, in the location of singularities of the limit wu, of
U, . In our proof we borrow some of the ideas from Chapter VIII in [BBH4|, without
relying on the vanishing gradient property that is used there. We then prove a correspond-
ing vanishing gradient property for the configuration of singularities obtained at the limit.

In the last section we obtain the new renormalized energy by a variant of the “shrinking
holes” method which was developed in [BBH4|, Chapter I.

2. The renormalized energy

Theorem 1. There is a sequence €, — 0 and exactly d points a1, ...,aq in G such
that
ue, — u, in HL (G\ {a1,...,aq}; R?),
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where u, is the canonical harmonic map associated to the singularities aq, ..., aq of degrees

+1 and to the boundary data g.

Moreover, a = (a1, -, aq) minimizes the functional
(4) W) =W()+ 5 > logw(by)
j=1

among all configurations b = (by, ..., bq) of d distinct points in G.
In addition, the following holds:

d
(5) lim {EY (uc,) —nd | loge, |} = W(a) + g Zlogw(aj) +dv,
=1

where v is some universal constant, the same as in (2).

Remark. The functional W may be regarded as the renormalized energy correspond-

ing to the energy EY.

Before giving the proof, we shall make some useful notations: given the constants

c,e,m >0, set

I¢(e,n) = min{ES(u); u € H(B,;R?) and u(x) = L on 0B,}.
n

Here B, = B(0,7) C R*.
For z € GG, denote

M,(x)= sup w and my(x) = inf w
B(zm)NG B(zm)nG
Note that
€
I¢(e,n) =1¢(=,1) =T (—=,1
(e,m) = 1°(=,1) (77\/5 )
and

I9(e,n) < I%(g,m),

provided ¢; < cs.

We shall drop the superscript c if it equals 1.

Proof of Theorem 1. The first part of the conclusion may be obtained by adapting
the techniques developed in [BBH1|, [BBH2|, [BBH3|, [BBH4] (see also [S]). We shall point

out only the main steps that are necessary to prove the convergence:
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a) Using the techniques from [S] we find a sequence &,, — 0 such that, for each n,

1

n JG

(6)

b) Using the methods developed in [BBH4|, Chapters 3-5, we determine the “bad”
disks, as well as the fact that their number is uniformly bounded. These techniques allow
us to prove the convergence of (u.,) weakly in H} (G '\ {a1,...,ar}; R?) to u,, which is
the canonical harmonic map associated to ai, ..., ax with some degrees dy, ..., d; and to the
given boundary data.

L (G\ {a1,...,a}; R?) follows as in [BBH4],
Theorem VI.1 with the techniques from [BBH3], Theorem 2, Step 1. Now the local con-

vergence of (uc, ) in G\ {a1,---,ax} in stronger topologies, say C2, may be easily obtained

c¢) The strong convergence of (u. ) in H}

by a bootstrap argument in (3). This implies that
2
(7) T —| Vuy |*,

uniformly on every compact subset of G \ {a1, ..., ax}.

d) For each 1 < j < k, deg (u«,a;) # 0. Indeed, if not, then as in Step 1 of
Theorem 2 [BBH3], the H'-convergence is extended up to aj, which becomes a “removable
singularity”.

e) The fact that all degrees equal +1 may be deduced as in Theorem VI.2, [BBH4].

f) The points aq, ..., aq lie in G. The proof of this fact is similar to the corresponding
result in [BBH4].

The proof of the second part of the theorem is divided into 3 steps:
Step 1. An upper bound for EX (u.).
We shall prove that if b = (b;) is an arbitrary configuration of d distinct points in G,

then there exists ng > 0 such that, for each n < nq,

d

€ 1
(8)  EP(u) € 3T 1)+ W(b) + 7dlog —+0(n) a5y —0,

j=1 MV M;, (b;) n
for € > 0 small enough. Here O(7n) is a quantity which is bounded by Cn, with C' indepen-
dent of 7 > 0 small enough.
The idea is to construct a suitable comparison function v.. Let n < ng, where
Ny = mikn{dist (bj,0G),| bj — bg |}. Applying Theorem 1.9 in [BBH4] to the configuration
.77
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d
b, we find u : G, ::G\UB(bj,n) — S with % = g on G and «a; €, | a; |= 1 such that

j=1

~ Z—bj

u=aj——— on 0B(bj,n)

aEEy !
and
1 . 1
(9) 5 | Vu | :WdlogE—FW(b)—i—O(n), asn — 0.
G

mn

We define v, as follows: let v. = u on G,, and, in B(b;,7n), let v. be a minimizer of
E¥ on H} (B(b;,n); R?), where h = l0B(b;,m)- We have the following estimate

€

(10) E¥(ve | B, ) < IM 09 (e,n) = [(———,
(b ) n Mn(bj)

The desired conclusion follows from (9),(10) and E¥ (u.) < E¥(v.).
Step 2. A lower bound for E (ue,).

We shall prove that, if aq, ..., aq are the singularities of u,, then given any n > 0, there
is No = Ny(n) € such that, for each n > Ny,

d

n 1

(11) EY (u.,) 221(6—,1) + md log — + W(a) + O(n)..
j=1 0477 moﬂ?(aj) 77

Here o = 1+ n and O(n) is a quantity with the same behavior as in (8).

Indeed, for a fixed a;, supposed to be 0, u, may be written

uy = i+

where 1 is a smooth harmonic function in a neighbourhood of 0. We may assume, without
loss of generality, that ¥(0) = 0.

In the annulus 4, ., = {x € R*;  <| z |< an} the function u., may be written, for
n large enough, as

Ue,, = pnei(wn—w) )

where 1, is a smooth function and 0 < p,, < 1. Define, for n < r < an, the interpolation

function

o+ pa(n.O)(n — 1) pmamr
on(r,0) = HS(cin_f)(an ) | e 040
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We have

1 ||wHLoo an
. / (1= | v [2)2 < 1202 / " / (1= | up [?)?do)dr =
€hJA €n n n 0B,

n,an

1 (1— 2
:||w||Loo-a+ / |un|)d0—>0, as n — 0o .

This convergence is motivated by (7). We also observe that the convergence of (u., ) in
HL (G \ {a1,...,aq}; R?) implies

(12) / |wn|%/ Vo2, as 5—0,
A An,an

n,an

where
v(n,0) = clata—ny ¥ (m.6)+6]

Thus, we may write, for n > Ny,

1
B2 (0nlayu) =5 [ V0 o).

An,an

We prove in what follows that

(13) /A Vo = 0(n).

mn,amn

Indeed, since

2 3(n,0) L[ an—r ?
‘V’U‘ = m ﬁ{mlbe(nae)—{_l

and

U(r,0) < Cr, [¢e(r,0) [SC, | e(r,0) |< Cr,

the desired conclusion follows by a straightforward calculation.
We obtain

(14) B (v > [l (e, am) + O(n) .

EnlB(ajan))

On the other hand, by the convergence of (u.,) in H} (G \ {a1,...,aq}; R?) it follows
that

(15) B2 (e, la,) = [ 1 Vu. P +O(m).

Gy
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for €,, sufficiently small.

Taking into account (12)-(15) we obtain the desired result.
Step 3. The final conclusion.

It follows from [BBH4], Chapter IX that
€ 5
(16) I(e,n) =7 |log— |+y+0o(l) as — —0,
n n

where the constant v represents the minimum of the renormalized energy corresponding
to the boundary data x in Bj.
From (8) and (11) we obtain

d
(17) W(b)+gZIOgMn(bj) — wdloge, + dy + o(1) >
j=1

d
1 1
> Wi(a)+ g E log my,(a;) — mdloge, + nd log — — wd log — + dvy + o(1),
, Ui n
i=1

where o(1) stands for a quantity which goes to 0 as €, — 0 for fixed 1. Adding 7d loge,
and passing to the limit firstly as n — oo and then as n — 0, we obtain that a = (a1, ..., aq)

is a global minimum point of W. We also deduce that

n—oo

d
lim {EY (u.,) —7d | loge, |} = W(a) + % S logw(ay) + dy .

j=1

We now generalize another result from [BBH4| concerning the behavior of u..

Theorem 2. Set

1
W, = 12 (1— | ue, |*)w.

n

Then (W,,) converges in the weak x topology of C(G) to

d
We=13 > 0.

Jj=1

Proof. The boundedness of (W,,) in L'(G) follows directly from (6). Hence (up to

a subsequence), W,, converges in the sense of measures of G to some W,. With the same
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techniques as those developed in [BBH3| (Theorem 2) or [BBH4] (Theorem X.3) we can
d

obtain that, for any compact subset K of G\ U {a;},
j=1

1
o) 11— | ue, [ k) < Ck -
n

Hence
d
supp W, C U{aj}.
j=1

Therefore

W* = ijdaj with m; cR.

We now determine m; using the same methods as in [BBH4]. Fix one of the points
a; (supposed to be 0) and consider Br = B(0, R) for R small enough so that B contains
no other point a; (i # j). As in the proof of the Pohozaev identity, multiplying the

Ginzburg-Landau equation (3) by x - Vu. and integrating on Br we obtain

R ou 1 1
]_ J— g 12 - 1_ - 2 o 1_ E 2\2 ‘ _
( 8) 2 8BR| v | +2€2 LR( |U | ) W+4 5 ( |u | ) (V’U) ,I)
R dus 5, R -
2 JoBg | or | +452 BR( | ue [7)"w

Passing to the limit in (18) as ¢ — 0 and using the convergence of W,, we find

R 8U* R 6U*
Z* |2 +2m; = 5/ Y% 2

19 —
( ) 2 8BR| 87/ 8BR| 87’ |

Using now the expression of u, around a singularity we deduce that, on 0Bg,

Qui 00 D 5 DY,
ou, , 00 a¢ ,_ 1,2 a¢ )

Inserting (20) and (21) into (19) we obtain

R R oY
22 = 2 4o9m; = = s
(22) 2aBR’ VR rom, = "+ 5 LB

’ 2
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On the other hand, multiplying Av = 0 by x - Vi) and integrating on Br we find

R 8_¢2_R/ |8_w|2
dBR

(23) 2 | ov 2 or

Thus, from (17) and (18) we obtain

3. The vanishing gradient property of the renormalized energy with weight

The expression of the renormalized energy W allows us, by using the results obtained
in [BBH4], to give an expression of the vanishing gradient property in the case of a weight.
From (4) it follows that

(24) DW (b, ..., by) = DW (by, ..., ba) + g(vw(bl) Vw(bd))

w(by) " w(ba)

for each configuration b = (b, ..., bg) € G%.
Recall now Theorem VIIL.3 in [BBH4|, which gives the expression of the differential
of W in an arbitrary configuration of distinct points b = (b, ..., bg) € G%:

@) 0w = -2 (G200, ) ) (Gt 00, 50| -
= on| (=Gt Gt 00 ) e (500, 5 00 ) |

Here S;j(z) = ®¢(z) —log | z — b; | in G and ®( the unique solution of

( d
A®g =27 ) 6, ,in G
j=1

0P

Lo

=gAg,,on 0G
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The function H; is harmonic around b; and is related to u, by

2=b i)
|z —bj |

ug(x) = near b; .

Let

Ro(z) = Sj(z) = log |z —b; | .

i#]
Our variant of the vanishing gradient property in [BBH4] (Corollary VIII.1) is

Theorem 3. The following properties are equivalent:

i) a = (ay,..,aq) is a critical point of the renormalized energy W.

i) VS;(aj) = ! Vw(a;)

(

1 ow ow :

@ ) ( (aj)7 . (aj)), for each j.
—a; _ 1Vuw(qy)

|ay'—'az\2 4 w(ay)

for each j.

iv) VRo(a5) + Y
i#]

The proof follows by the above considerations and the fact that, for each j,

VRO( Z Tr — a;

_ 2"
Z#J‘w al|

, for each j.

4. Shrinking holes and the renormalized energy with weight

As in [BBH4|, Chapter 1.4, we may define the renormalized energy by considering a
suitable variational problem in a domain with “shrinking holes”.

Let, as above, G be a smooth, bounded and simply connected domain in R? and let
b1, ..., by, be distinct points in G. Fix dy, ...,d; € and a smooth data g : 0G — S of degree
d=dy + ... + di. For each n > 0 small enough, define

k
Gy =G\ |Jwy,
j=1

n
wiy=DB(b;, —— ).
7N (J w(bj))
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Set
5:71) :{UEHl(Gg;Sl); deg(v,awjm) :dj and v=g on aG}

We consider the minimization problem

(26) min / |V l? .
ueé’;f G;?”

The following result shows that the renormalized energy W is what remains in the

energy after the singular “core energy” md |logn | has been removed.

Theorem 4. We have the following asymptotic estimate:

k

1 o

5/ | Vuy P=7()_d3) |logn | +W(b,d,g) +O(n), asn—0,
Gw .

n J=1

where

k
— s
W(b.d,g)=W(b.d,g)+ 5 (Z d3 log w(bj)) :
j=1

Proof. As in [BBH4], Chapter I we associate to (26) the linear problem:

(AP, =0, inG

®, = C; = Const. , on each Ow;j
)
/ & =2nd; , foreachj=1,..k
(27) Owj,n v
0P
—1 =gAg,, ondG
v

/ o, = 0.
\ JOG

With the same techniques as in [BBH4] (see Lemma 1.2), one may prove that

[P — Poll Lo (Guy = On)

where @ is the unique solution of (1).

Note that the link between ®, and an arbitrary solution u, of (26) is

(28) 83)1 8%’2
ou, 0%, . w
Uy N — = —— m G77

K (9113'2 61’1
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From now on the proof follows the same lines as of Theorem 1.7 in [BBH4]. O
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MINIMIZATION PROBLEMS
AND CORRESPONDING RENORMALIZED ENERGIES

Citilin LEFTER and Vicentiu RADULESCU

1. Introduction

Let G be a smooth bounded simply connected domain in R?. Let a = (ay,...,ax)
be a configuration of distinct points in G and d = (dy, ...,dy) € Z*. Consider a smooth
boundary data g : G — S! whose topological degree is d = d; + ... + dj. Let also p > 0
be sufficiently small and denote

k
Q, =G\ | JB(ai,p) , Q=G \{a, ...ax} .

=1

In [BBH4], B. Bethuel, H. Brezis and F. Hélein have studied the behavior as p — 0

of solutions of the minimization problem

uely g

(1) Ly g = min / | Vo |,
QP
where
Epg=1{ve HY(Q,;5"); v=gon dG and deg(v,0B(a;, p)) = d;, fori=1,...k}.

They proved that (1) has a unique solution, say u,. By analysing the behavior of u, as
p — 0, they obtained the renormalized energy W (a,d, g) through the following asymptotic

expansion:

k

1 1 -

(2) 5/ |Vup |2:7T<§ d?)log;-f—W(a,d,g)-l-O(p), asp—>0.
Q2 i=1
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If G = B; and g(0) = e%? we give an explicit formula for W (a, d, g):

(3) W(a, d, g) == —WZ dzd] 10g | a; — a; ’ —WZ dzd] 10g | 1-— aﬂj | .
i#] i,J

It is natural to ask what happens if we try to minimize the Dirichlet energy / | Vo |2
QP
with respect to other classes of test functions. Let

F,={ve H'(Q,5"); deg(v,0G) = d and deg(v,0B(a;, p)) = d;, fori=1,...k}.

In [BBH4] it is proved that the problem

4 F, = mi Vo |?
(4) pggglp/mlvla

has a unique solution v,. We find an analogous asymptotic estimate of (2) for the problem

(4). More precisely, we prove that

k
1 1 =, =
(5) 5/ |vup|2:7r(§ df)log;+W(a,d)+O(P), as p — 0.
2 i=1

The connection between the renormalized energy W (a,d,g) from [BBH4] and the new

renormalized energy W (a, d) is

(6) W(a,d) = inf  W(a,d,g).
g:0G— 51
deg(9,0G)=d

Moreover the infimum in (6) is achieved. In the case G = By we prove that

(7) W(a,a) = _Wzdidj 10g | a; — a; | —I—T('Zdzdj 10g | 1-— aﬂj | .
i#] ]

We also study the behavior as p — 0 of solutions of the minimization problem

veF, A

(8) Fpa= min/ | Vo ]2,
QP

where 5
v

]:714:{1)6]:;/ |—]2§A}.
P P P 67'

We find an analogue of (5): if w, is a solution of (8) then

k
1 1 —~ —
5/9 | Vw, \2=7T<§ d?) log;—l—WA(a,d)—}—o(l), as p— 0,
P j=1
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where

Wala,d) = {1V (0, g); deg (6:0G) = d and [ | F2 1< 4}

oG (97'
and the infimum is atteint.

In the last section we minimize the Ginzburg-Landau energy

1 1
P =5 [ 19uP + g [ lufy

in the class

Haa={uc H(GR?); |u|=1 on 9G, deg(u,0G) =d and /

2 eg ay
8G 87’

We prove that Hg 4 is non-empty if A is sufficiently large and that the infimum of E. is
achieved. If u. is a minimizer, we prove the convergence as € — 0 of u. to u,, which is a
canonical harmonic map with values in S' and d singularities, say a,---,aq. Moreover,

the configuration a = (ay, - -, a4) minimizes the renormalized energy Wy.

2. The renormalized energy for prescribed singularities and degrees

We recall that in [BBH4] the study of the minimization problems (1) and (4) is related

to the unique solutions ®, , respectively <f>p , of the following linear problems:
(AP, =0 inQ,
¢, = C; = Const. on each Ow; with w; = B(a, p)

/ %:%di i=1,..k
(9) ow; OV
& =gAg, ondG

ov

/ ®, =0
\ JoG

and
( A@p =0 in
@Dp =(C; =Const. on Ow; i=1,...k
(10) @DP:O on 0G
\ 8%%:27@ 1=1,..,k




We also recall that ®, converges uniformly as p — 0 to ®¢, which is the unique solution of

( k

ADy =27 ) d;id,, inG
j=1

(11) 9% _ g on oG
ov

/@0:0.
\ JOG

The explicit formula for W (a,d, g) found in [BBH4] is

k
1
(12) W(a,d,g) = —7 5 d;djlog | a; —a; | +—/ Oo(gNgy)— E d;Ro(a;) ,
] 2 Joc i=1

where

k
R()(.T) = (I)()(.T) - Zdj 10g | T — ay | .
j=1

We recall (see [BBH4]) that v is a canonical harmonic map with values in S* and

boundary data g if it is harmonic and satisfies

aiL'l N 8:132
ov . 8@0

O Ow, T 0wy

in Q
in €,
or, equivalently,

0 ov 0 ov '\ . /
8_:1:1(UA8_:1;1>+6_x2(U/\8_x2) =0 in D(G)

If v is canonical and has singularities a1, - - -, ax € G with topological degrees dy, - - -, di

then v has the form

d1 dk
o(z) = (ﬂ) (ﬂ) Siv(2)
|z —aq | | 2 —ag | ’

where ¢ is a uniquely determined smooth harmonic function in G.
We know from Chapter I in [BBH4]| that

(13) P 8901 8IL‘2 P
v, 0P,
— = — Q, .
Vp N D2 92, in {2},
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So

(14) | Vo, |=| V®, | inQ,.

A

Lemma 1. &, converges to dy in L>(§2,) as p — 0. More precisely, there exists
C > 0 such that

(15) 1®, — Dol (,) < Cp.

For the proof of Lemma 1 we need the following result of Bethuel, Brezis and Hélein
(see [BBH4|, Lemma 1.4):

Lemma 2. Let v be a solution of

Av=0 1inQ,
Ov =0 foreachj .
81/
Then

k
supv—mfv E supv—mfv .
Q, —

Proof of Lemma 1. We apply Lemma 2 to the function v = ®, — ®;. Since

A

¢, = Const. on each 0B(aj, p), it follows that

k
sup (&, — & 111f <I> — <I> < sup Py — inf @) <Cp.
Qf( g 0) Qp 0 N Z(@B(a?p) ’ 0B(aj,p) O) =P

Using now the fact that @Jp — &y = 0 on G we obtain
(17) 1@, — PollL~(0,) < Cp -
O

Remark. By Lemma 1 and standard elliptic estimates it follows that @)p converges
in CF_(QUOG) as p — 0, for each k > 0.

loc

87



Theorem 1. As p — 0 then (up to a subsequence) v, converges in CF _(Q U 0G) to
Vg, which is a canonical harmonic map.
Moreover, the limits of two such sequences differ by a multiplicative constant of mod-

ulus 1.

Proof. We may write, locally on Q, U 0G, v, = e"?r with 0 < ¢, < 2m. Thus, by

(13),

% = —% in 2,
%) aml aéxz

Yo _9%p

Do s in Q, .

Hence, up to a subsequence, ¢, converges in Cf (Q U dG). This means that v,
converges (up to a subsequence) in CF_(Q U 0G) to some vg. Denote by 9p = Vpjac- It is

clear that g, converges to some go and vg satisfies

( vy ody .
U 8_331 = _8_932 in 2
(19) du _0dy o
vo Ors  Oxq m
\ Yo = 9o on dG ,

which means that vy is a canonical harmonic map.
We now consider two sequences v,,, and v,,, which converge to v; and v,. Locally,

Cpn — P1 and Pu, — P2 .

Thus, Vi1 = Vs, so ¢y and o differ locally by an additive constant, which means
that v; and ve differ locally by a multiplicative constant of modulus 1. By the connected-

ness of €2, this constant is global. m

Let

A

k
Ro(x) = ®o(x) — Y djlog |z —a;| .
j=1

We observe that Ry is a smooth harmonic function in G.

Theorem 2. We have the following asymptotic estimate:

k

1 1~

(20) 5/ | Vo, 12:W(Zd§) 10g;+W(a,d)+O(p), asp— 0,
QP J:l
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where

k
(21) W(a,d)=—mY did;log|a;—a; | —n Y _ d;jRo(a;) .
i#j j=1

Proof. We follow the ideas of the proof of Theorem 1.7 in [BBH4].

Since i)p is harmonic in £, and <i>p = 0 on 0G we may write
1 1 1< od i
[ |V, |?= —/ |V, = —= / —Lo,=-7) d; P, <8B(aj,p)) :
2 /Qp 2 Q, 2 ; 0B(aj,p) o ;

By Lemma 1 and the expression of Ry we easily deduce (20). 0

Theorem 3. The following equality holds:

—~

22 d) = inf d
(22) W (a,d) deg(;%G)ZdW(a,d,g)

and the infimum is achieved.

Proof. Step 1. W(a,d) <  inf  Wi(a,d,g).
roo ep (a, )_deg(;%a):d (a,d,g)

Suppose not, then there exist € > 0 and g : G — S* with deg (g; 0G) = d such that
(23) W(a,d,g) +e < W(a,d) .
Thus, if u, is a solution of (1), then

k
1 1 _
(24) 5/9 | Vau, |2:7r(§ jd?) log;+W(a,d,g)+O(p) >

Jj=1

We obtain a contradiction by (23) and (24).

Step 2. If g, and go are as in the proof of Theorem 1, then

For r > 0 let u, , be a solution of the minimization problem

(25) min / | Vu |* .
Q.

u€€r g,
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Denote u, , = u, and ®,, the solution of the associated linear problem (see (9)). Let
P, o be the solution of (11) for g replaced by g,.
We recall (see Theorem 1.6 in [BBH4|) that

(26) ®,, —»®,0 inCE(QUIG) asr — 0
and
1 b 1 _
(27) ] 5/9 | Vu,, |* —m (Z d?) log; —Wi(a,d,g,) |<Cy,r,
[ ]:1

where Cy = C(g) > 0 is a constant which depends on the boundary data g.
Our aim is to prove that Cy, is uniformly bounded for p > 0. Indeed, analysing the
proof of Theorem 1.7 in [BBH4] we observe that C, depends on 59,37 which appears in

k
28 b, - o) < sup ®,0— inf P < C.r.
( ) H P p70||L () ; LB(aj,r) PO dB(aj,r) Po 9

It is clear at this stage, by the convergence of g, and elliptic estimates, that égp is
uniformly bounded.
Observe now that the map C'(9G; S') 3 g — W (a,d, g) is continuous. We have

k
— —~ 1 1 —~
| Wiadgo) - Wlad) <] [ 190, P —r( ) tog? - Wlad) |+
p j=1

k
1 1 _ _ _
+ | 5/9 | Vo, |? _W<Zd§) log; — W(a,d,g,) | + | W(a,d,g,) — W(a,d, go) |<

j=1
< O(p) + Cp+ | W(CL,E, gp) - W(CL,E, gO) |_> 0 as p — 0.

Thus

which concludes the proof of Step 2. m

Theorem 4. For fixed A, if w, is a solution of the minimization problem (8) then

the following holds:

k
1 1 —~ -
(29) —/ | Vw, ‘2:7T<Zd?> log;—{—WA(a,d)—}—o(l), asp — 0,
Q

2 ,
14 7j=1
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where

~ _ — 0
(30) Wal(a,d) = inf{W(a,d, g); deg(g;0G) =d and / | 8_9 |’< A},
oG 9T

and the infimum is achieved.

Moreover, w, converges in CPO’CO‘(Q U OG) to the canonical harmonic map associated
to go, a, d.

Proof. The existence of w, is obvious. Let g, = w, |ag. It follows from Chapter I in
[BBH4| that

k
1 1 _
(31) |§/Q | Vw, |2 —W(E jd]?) log;—kW(a,d,gp) <Cy,-p, as p—0,
P j:]_

where C, depends only on g, a and d.
By the boundedness of g, in H'(0G) we may suppose that (up to a subsequence)

gdp — go  weakly in H'(0G), as p—0.
As in the proof of Theorem 3 (see (28)) we deduce that C, is uniformly bounded.

We now prove that the map g — W(a,d, g) is continuous in the weak topology of
H'(0@G). Taking into account the weak convergence of g, to go and the Sobolev embedding

Theorem we obtain

% _, go N\ 990 weakly in L*(0G), as p—0.
or or

Using (11), it follows that

9gp N\

$,0— @y weaklyin H'(G), asp—0.
So, by the Rellich Theorem,

®,0 — Do strongly in L*(G), as p—0.
Therefore,

dg 990
[0} 7P ) —_ — 0.
/ac; 70 (gp/\ 3T> —>/8G O<gOA 57) s p—0

We also deduce, using elliptic estimates, that for each i,
Rpo(a;) — Ro(a;) as p—0.
Thus, by (12), we obtain the continuity of the map g — W (a,d, g). Hence, by (31),
we easily deduce (29).
The fact that the infimum in (30) is achieved may be deduced with similar arguments
as in the proof of Theorem 3.

The convergence of w, to a canonical harmonic map follows easily from the conver-

gence of g,. O
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3. Renormalized energies in a particular case

We shall calculate in the first part of this section the expressions of W(a,a) and
W (a,d,g) when G = B(0;1) and g(6) = ¢'¥ for an arbitrary configuration a = (a1, ..., az).

Proposition 1. The expression of the renormalized energy W(a,a) is given by

W(a,a) = _Wzdidj 10g | a; — aj ‘ —|—7T2dldj 10g | 1-— aﬂj | .
i#] 2]

Proof. Let Ry be defined as in the preceding section. Then

ARO =0 in Bl

k
Ro(Z)Z—Zdj10g|CU—aj‘ ifx € 0By .
j=1

It follows from the linearity of this problem that it is sufficient to compute Ry when
the configuration of points consists of one point, say a. Hence, by the Poisson formula, for
each r € By,

~ d log|z—a|
2 = (- |z ElEm g
(32) Bufe) = (-2 ) [ gl

We first observe that

~

(33) Ro(x) =0 it a=0.
Ifa;éOanda*:L,then
| a?
a
A d log|z—a*|+log|a
3 Ro(w) = e (- | a ) [ RELEZCITelal,,
™ 9B |z — x|

= —dlog |z —a"| —dlog|a] .
Hence, by (33) and (34)

. 0 ifa=0
(35) Ro(z) = {

—dlog |z —a* | —dlog|a| ifa#0.

In the case of a general configuration a = (aq, ..., ax) one has

k k
(36) Ro(x) == djlog|az—a} |- djlog|a;]| .
j=1 j=1

92



Applying now Theorem 2 we obtain

W(a,d) = —ﬂZdidj log | a; —a; | —I—7TZdidj log | 1 — a;a;,
i#] %]

O

Proposition 2. The expression of W (a,d, g) if G = By and g(0) = €' is given by

(37) W(aﬂ,g) = _Wzdidj log ’ a; — aj | _Wzdidj lOg | 1-— (Iiaj | .
i#] ]

Proof. We shall use the expression (12) for the renormalized energy W(a,d,g). As
above, we observe that it suffices to compute Ry for one point, say a.
We define on B(0;1) \ {a} the function G by

2i10g|gc—a|—|—2ilog\ac—a*|—4i |z > +C ifa#0
(38) Gla) =4 7 " "

d d 9 :

—log|z|—— |x|"4+C ifa=0

2T 4

and we choose the constant C such that

/ G-0.
0B

d d
(39) C=1+

2

It follows that, for every a € By,
log|al .

The function G satisfies

AQ = déa - g in Bl
T
0G
(40) 5, =0 ondB
G=0.
\ 8B1

It follows now from (11) that

A<%) = déa in Bl

2
0 [Py d
E (g) = % on 831

/ o _y.
\ 83127T
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) d
Thus the function ¥ = — — — (| z |2 —1) satisfies
2 Arw

A\I/:d(sa—é in31
™

ov
(41) £ =0 on 0B

| w-o.
0B,

By uniqueness, it follows from (40) and (41) that

42 -0 2 )= —a|+—1 —a* | —— C.
(12) (P )= og|w—al b log |z —at |~ x4

Taking into account the expression of C given in (39), as well as the link between ®
and Ry we obtain (37). O

Remark. It follows by Theorem 3 and Propositions 1 and 2 that

k
Zdidj log | a; —a; | +Zd§ log(1—|a; [*) <0.

i#] j=1

A very interesting problem is the study of configurations which minimize W (a,d, g)
with d and g prescribed. This relies on the behavior of minimizers of the Ginzburg-Landau
energy (see [BBHA4| for further details).

Proposition 3. If k = 2 and dy = d = 1, then the minimal configuration for W is
unique (up to a rotation) and consists of two points which are symmetric with respect to

the origin.

Proof. Let a and b be two distinct points in B;. Then
w
~— =tog(la P+ b ~2|al [ b] -cosg) +loa(1+ |a [ b[* =2 ] a-|b] cosp)+

+log(1— | a |*) +log(1— | b]*)

where ¢ denotes the angle between the vectors Oa and Ob. So, a mnecessary condition
for the minimum of W is cosp = —1, that is the points a, O and b are colinear, with O
between a and b. Hence one may suppose that the points a and b lie on the real axis and
—1<b<0<a<1. Denote

f(a,b) = 2log(a — b) + 2log(1 — ab) + log(1 — a®) + log(1 — b?) .
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A straightforward calculation, based on the Jensen inequality and the symmetry of f,
shows that a = —b = 57 /4. 0

4. The behavior of minimizers of the Ginzburg-Landau energy

We assume throughout this section that G is strictly starshaped about the origin.
In [BBH2] and [BBH4|, F. Bethuel, H. Brezis and F. Hélein studied the behavior of

minimizers of the Ginzburg-Landau energy F. in
1. R2) — 1. R2). 5 —
H,(GiR") ={ue H (G;R"); u=g on 0G},

for some smooth fixed g : G — St, deg(g;0G) = d > 0. Our aim is to study a similar

problem, that is the behavior of minimizers u. of E. in the class

(43) Hga = {uc H(G;R?); |u|=1on dG, deg(u,dG) = d and /8G %PSA}.

It would have seemed more natural to minimize E. in the class
Hy = {uc HY(G;R?); | u|=1 on G, deg (u,dG) = d}

but, as observed by F. Bethuel, H. Brezis and F. Hélein, the infimum of E. is not atteint.
To show this, they consider the particular case when G = B, d = 1 and g(x) = z. This is
the reason why we take the infimum of E. on the class Hg 4, that was also considered by
F. Bethuel, H. Brezis and F. Hélein.

Theorem 5. For each sequence e, — 0, there is a subsequence (also denoted by €,,)

and exactly d points ay,---,aq in G such that
Ue,, = Ux in Hl{)c(é\ {a17 T 7ad}; R2) )

where u, is a canonical harmonic map with values in S* and singularities a1, --,aq of
degrees +1.

Moreover, the configuration a = (ay,---,aq) is a minimum point of
?< A}

/I/TV/A(a,E) :=min {W(a,d, g); deg(g;0G) =d and / | 99
oG or
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Proof. Step 1. The existence of u,.
For fixed ¢, let u. be a minimizing sequence for E. in Hg 4. It follows that (up to a

subsequence)

u — u.  weakly in H*

and, by the boundedness of u! |s¢ in H'(OG), we obtain that
Ue, log— ue o strongly in H%(GG) .
This means that, if g. = u. |gq, then
deg (9-;0G) = d .

By the lower semi-continuity of E., u. is a minimizer of E.. Moreover, this u. satisfies

the Ginzburg-Landau equation

1

(44) —Au, = E—Que(l— |ue |?) inG .

Step 2. A fundamental estimate.
As in the proof of Theorem III.2 in [BBH4|, multiplying (47) by - Vu. and integrating
on GG, we find

(45) %/E)G(r'w(%zf)Z% (1= e Py =

_1/ (SCZ/) 0g. 2_/ (x.T)E)ueage
_2 8G 8’7' 8G 81/ 87’ '

Using now the boundedness of g. in H'(9G) and the fact that G is strictly starshaped

we easily obtain

ZI +_ J— <
<6) /8G| (91/‘ 62/3(1 |u5\) <C,

where C' depends only on A and d.

Step 3. A fundamental Lemma.
The following result is an adapted version of Theorem I11.3 in [BBH4| which is essential

towards locating the singularities at the limit.

Lemma 3. There exist positive constants Ag and o (which depend only on G, d and
A) such that if



where Bsy is some disc of radius 2¢ in R? with

>N and (<1,

M|~

then

1
(47) |u5(:v)|2§ ifre GNDBy .

The proof of Lemma is essentially the same as of the cited theorem, after observing
that o
Vel L= (c) < ~

where C' depends only on GG, d and A.

Step 4. The convergence of wu..

Using Lemma 1 and the estimate (46), we may apply the methods developed in Chap-
ters III-V in [BBH4] to determine the “bad” discs, as well as the fact that their number
is uniformly bounded. The same techniques allow us to prove the weak convergence in
HE . (G\{a1,---,ar}; R?) of a subsequence, also denoted by u., , to some u,.

As in [BBH4], Chapter X (see also [S]) one may prove that, for each p < 2,

ue, — uy, in WHP(Q) .

This allows us to pass at the limit in

6 a £ a 8 £ .

—(uan/\ u")—i——(uen/\ u”): in D'(G)
1

and to deduce that u, is a canonical harmonic map.

The strong convergence of (u., ) in HL_(G\ {a1,---,ar}; R?) follows as in [BBH4],
Theorem VI.1 with the techniques from [BBH3|, Theorem 2, Step 1.

We then observe that for all j, deg(u,a;) # 0. Indeed, if not, then as in Step

1 of Theorem 2 in [BBH3], the H'-convergence is extended up to a;, which becomes a

“removable singularity”. The fact that all these degrees equal +1 and the points ay,- - -, aq
are not on the boundary may be deduced as in Theorem VI.2 [BBH4].
The following steps are devoted to characterize the limiting configuration as a mini-

mum point of the renormalized energy /WVA.

Step 5. An upper bound for E_(u.).
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For R > 0, let I(R) be the infimum of E. on H(G) with G = B(0; %) and g(z) = |x—|
x
on JG. Following the ideas of the proof of Lemma VIII.1 in [BBH4] one may show that

if b = (b;) is an arbitrary configuration of d distinct points in G and g is such that
0
deg (g,0G) = d and / ] 8_9 |2§ A, then there exists 79 > 0 such that, for each n < nqg,
oG T

1
(48) E.(u:) < dl(%) + W(b,g) +nd log; +0(n), asn—20

for € > 0 small enough. Here O(7n) stands for a quantity which is bounded by C,), where

C' is a constant depending only on g.

Step 6. A lower bound for E.  (u.,).

With the same proof as of Step 2 of Theorem 1 in [LR] one may show that if a1, -, aq
are the singularities of u, and n > 0, then there is Ny = Ny(n) € N such that, for each
n > N07

En
n(1+n)

where O(n) is a quantity bounded by C7, where C' depends only on gg.

(49) E. (1) > df( ) i muog% W (4, g0) + On)

Step 7. The limiting configuration is a minimum point for Wa.
Taking into account that (see [BBH4], Chapter III)

I(e) =7 |loge [ +7+ O(e) ,
we obtain by (48) and (49)
(50) W (b, g) — mdloge, + dy+ O (%) >

> W (a, go) — mdloge, +dy + O(n) .

Adding wdloge,, in (50) and passing to the limit firstly as n — oo and then as n — 0,
we find

As b and g are arbitrary chosen it follows that a = (a1, --,aq) is a global minimum
point of
(52) /I/IV/A(b) = min {W (b, g); deg(g;0G) =d and / | g_g ?< A},
oG 9T
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O

Remark. The infimum in (52) is achieved because of the continuity of the mapping
Ha,a D g+— W(b,g) with respect to the weak topology of H!(9G).
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THE RENORMALIZED ENERGY
ASSOCIATED TO A HARMONIC MAP

Citilin LEFTER and Vicentiu RADULESCU

Introduction

In [BBH2|, F. Bethuel, H. Brezis and F. Hélein have studied several problems which
occur in superconductivity and superfluids and they have introduced the notion of renor-
malized energy. We recall the essential facts: Let G C R? be a smooth simply connected
bounded domain and let g : G — S! be a smooth map of topological degree d > 0.
Consider a configuration a = (ay, ..., ax) of distinct points in G and d = (d1, ...,d}) € yA
such that dy + ... + d, = d. The canonical harmonic map ug : Q = G\ {a1,...ar.} — S*
associated to (a,d, g) is defined by

di B d
(1) uo(z) = (ﬂ) <ﬂ> L) if s e @,

|z —aq | | z —ag |

where

Apg=0 in G
up =g on J0G .

For each p > 0 sufficiently small we define

k
Gy =G\ | Blaj.p)

The renormalized energy W (a,d, g) appears in Chapter I of [BBH2] as

k
— L 1 9 9 1
@ Wiad.g)=tm{5 [ 19w —w(jz_;dj) og 1
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We also recall that any harmonic map u: Q — S',u = g on G with deg (u,a;) = d; has

the form

(3) u=e%uy onQ

(

k
W(x) = ch log | x —a; | +¢(x)
j=1

=0 onJG
(Ap=0 onG.

In the first section we define a notion of renormalized energy associated to a harmonic
map u, which coincides with W (a, d, g) when u = ug. In the second part of this paper we

give an explicit formula for our notion of renormalized energy.

1. The main result

Theorem 1. For any harmonic map u : 8 — S1 of the form (3) the following limit

exists and is finite

6 {2 [ 190p - S e T S ) oY) = W

—PiD j=1 j=1
Moreover
1 k
(6) W(u) = ;%{5/(; | Vu |* —7 <Zl (¢ + dj?)) log—}
p j=

Proof. Fix p > 0 such that the closed balls B(a;, p) are mutually disjoint and included
in G.
We shall estimate Vu in the neighbourhood of a singularity a;, supposed to be 0.

There exists a smooth harmonic function ¢ such that, if 0 <| z |< p,

u(z) = eilc loglel+d;0+¢(w))
Hence
(7) | Vu |=[ V(ejlog | z | +d;0 + () |=
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c? + d?
G : d; : T i(6+60)
=| —— (cosf,sinf) + —- (—sinh,cosh) + V( |=| ——e O +V(|,

| @ | |z | | @ |

where 6y € [0,27) depends only on ¢; and d,.

We observe that the term V( is negligible in / | Vu [P, in the sense that
B(0,p)
G +di
(8) / | | Vu [P — | Y= ¢i0+60) |P |< (The Mean Value Theorem)
B(0,p) E2
1
SC’/ —dr=0(p) asp /2.
B(0,) "
Therefore i
1 4 2 2\E
2, | Vu |P —2_pjz::1(cj +d3)E =
. Wumi{z/ vup 5T G )] <
2 Gp j=1 2 B(aj;,p) 2—p 7 ’ B
k
<1/ MIESS R+ (24| +Cp, asp 2
- 9 G, = 2 J J 92 _ P J J ’ )
for some fixed constant .
It follows that
1 m i
9) lim sup {— | Vu |P — (2 + dz)%} <
P2 2 Ja 2—-p ; ! !

k
1 P
(10 iy [ 190l 5T, e )

N
|
]

The relations (9) and (10) show that the two limits are finite and their difference is
O(p). Since p is arbitrary, it follows that the limit in (5) exists and is finite.
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Now we can also deduce from (9) and (10) that (6) holds. O

Corollary 1. For each u as in Theorem 1,
k
lim (2 — Vu |P=2m i+ d?) .
lim 2-p) [ | Vul 36+

The proof of this equality follows obviously from Theorem 1.

Corollary 2. If ug is the canonical harmonic map associated to (a,d, g) then

W(ug) =Wi(a,d,g) .

The proof follows immediately from (6).

2. An explicit formula for the renormalized energy

Our purpose in what follows is to give an explicit formula for the renormalized energy
W (u), for any harmonic map u : Q — S*. To do this, we shall use the asymptotic evaluate
given by (6).

It follows by (3) that

u/\@:uo/\%ﬁ—a—w in Q
(11) (9113'1 81131 81‘1
u/\a—u—u /\%—Fa—lb in
aIEQ -0 8582 81‘2 ’
We recall (see Chapter 1 in [BBH2]) that
w2t _ 9% g
(12) 8331 8%2
ug N\ % = % in Q
0 8%2 N 83@1 ’

where @ is the (unique) solution of

(

k
A®g =27 ) d;d,, inG
j=1
0P
—Ozg/\gT on 0G
ov
/ Do=0.
\ JOG
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Inserting (12) into (11) we obtain

8u . 8(1)0 8¢ .
uh 8x1 - 8302 + 81‘1 m Q

prm— Q .
uh 8.’172 8331 + 8%2 o

(13)

We have by (11) and (12)

1 1 1
(14) —/ |Vu|2:—/ |V‘1’0|2+—/ vy 2 +
2 Ja, 2 Je, 2 Ja,

o Oug o Jug
+/Gp |:8$1 (UO " 8901) * 8x2 <U0 A 8@)} ’
In Chapter I from [BBH2] it is proved that

k
1 1 _
Gy j=1

We show now that the third term in the right side of (14) is O(p) as p — 0. Indeed,

since ug is an harmonic map and 1 = 0 on 0G, we have

8¢ 8u0 8w aU,O
1 - —_ _ _— =
( 6) /Gp |:8.%’1 (Uo A 61‘1) + 81132 (UO A (95172):|
. Ouo 6’&0 ) i / 3(130
= div ug N — ), Y(ug AN =—) | = — —_—.
A (0 1 5000000 A 520) DY -
Around each a; one may write

(17) Y=cjlog|z—aj|+¢;, Ap; =0
(18) @O:djlog\x—aj|+5'j, ASjZO.

Thus, by (17) and (18),

0 0S;
19 / lp—:/ —J(c-log T —a, +¢->:
e o5tam 0T Joia,p o \I 11T 1HO
o5,
= —¢; =0(p) asp—0.
/anj,p) or 1= O0)
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All it remains to do now is to estimate / | V¢ |2. We have

P

(20) / VY 2= Z /8 .

k

0
==Y [ (elomla—a; | +0) o <c]10g|w_aj|+¢3)_
j=179B(a;,p)
c; 09
= cjlogp+ ¢; <—]+—]>:
2/83(a.75p) ! j) P v

k k
1
= 277( E c?) log; — 27 g c;jpi(aj)—
=1

j=1

k
¢ > 8@
E log p — E <:U/ =
<_1 /83(a ») OV ’ dB(ay, p)

( ?)log——QWZcﬂ)j a;)+O(p) asp—20.

= 7j=1

rvja

So, by (6), (14), (15), (16), (19) and (20) we have obtained

Theorem 2. For any harmonic map u,

W(“) = W(CL?E?g) - chj(pj(aj) =

k
= W(ug) — WZCZ‘CJ‘ log | a; —aj; | —WZC]‘¢<CLJ') ,

i#j j=1

where ¢ was defined in (4).

Acknowledgements. We would like to express our gratitude to Professor H. Brezis

for his constant support during our stay at the University Paris 6.
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ASYMPTOTICS FOR THE
MINIMIZERS OF THE
GINZBURG-LANDAU ENERGY WITH
VANISHING WEIGHT

Citalin LEFTER and Vicentiu RADULESCU

Abstract. We study the asymptotic behavior of the minimizers for the
Ginzburg-Landau energy with a weight which vanishes. We find the link
between the growth rate of the weight near its zeroes and the number of
singularities of the limiting configuration, as well as their degrees. We give
the expression of the corresponding renormalized energy which governs the
location of singularities at the limit.

Introduction

F. Bethuel, H. Brezis and F. Hélein have studied in [BBH4] the asymptotic
behavior as € — 0 of minimizers of the Ginzburg-Landau energy

1 1
E - B _ 2t 2 1— 212
(G = Bw) = 5 [ IVl apg [0 luP)
in the class
1 1 Ty 2Y. 5 —
H;, = H,(G) ={ue H (G;R*); u= g on dG},

where G C R? is a smooth bounded domain and g : G — S' is a smooth
data with the topological degree d > 0.

For each sequence €, — 0, they have proved the existence of a subse-
quence, also denoted (e,) and of a finite configuration {aj,---,aq} in G
such that (u,) converges in certain topologies to u,, which is the canonical
harmonic map with values in S' associated to {ay,--- ,aq} with degrees +1
and to the boundary data g. This means that

Z — aj Z — Qq

Ui (2) (2 in G\ {a1, - a4}

= ]Z—a1|“']z—ad]
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with

(1) Ap=0 inG

uxy =g on I0G.
Moreover, the configuration a = (ay,--- ,aq) minimizes the renormalized
energy W(a,g). The renormalized energy W(a,d,g) associated to a given
configuration a = (aj,--- ,ay) with corresponding degrees d = (dy,-- - ,dy)

and to the boundary data g with deg(g,0G) = d, d = dy + --- + d was
introduced in [BBH2|, [BBH4]. If all d; equal +1 (that is & = d) then
W (a,g) denotes W (a,d, g).

In [LR1] we have studied the Ginzburg-Landau energy with weight

y 1 1
B =5 [ 1Vulagg [0-luPre.

where w € C*(G), w > 0 in G. We proved a similar behavior of minimizers,
but the limiting configuration minimizes the modified renormalized energy.
More precisely, u., converges to u, in certain topologies but now the limiting
configuration a = (a1, -+ ,aq) is @ minimum point of

d
™
Wi(b,g) =W(b,g)+ §. 1: logw(b;) , be G
=

A natural question is to see what happens if w vanishes. We first study
the case when w > 0 and it has a unique zero xy € G and suppose that
w(x) ~| x—x¢ |P around zp, where p > 1. This means that w(z) =| z—x¢ |P
+f(z) | z |P*! in a neighbourhood of g, where f is a C'* function. We show
that, up to a subsequence, u. converges to a harmonic map u, associated to

singularities xg, a1, - - , a with dy = deg (uy, z9) > 0 and deg (u., a;j) = +1
for j =1,---, k. More precisely, we have (see Theorems 1 and 7)
Z—x do al z—a ,
u*(z): < 0 ) k e
| z — o | |z —ay | | z — a |

with dy + k = d. Here ¢ is such that (1) holds. Remark that in some

situations the set a = (a1, - ,ax) is empty. We next complete this result
by finding:

a) the exact value of k as a function of p and d;

b) the position of ay, - - - , aj through the corresponding renormalized energy.

Our main results are the following:
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Theorem A. Assume that d < g + 1. Then dy = d and zq is the only

singularity of .

Theorem B. Assume that d > §+1 and that p is not an integer multiple

of 4. Then dy = [Z] +1 (here [x] denotes the integer part of the real number
Theorem C. Assume that d > g + 1 and that p is an integer multiple

of 4. Then either dy = g or dy = g + 1.

Theorem D. Assume that d > P + 1 and u, converges to the canonical

harmollic map associated to the configuration a = (zg, a1, -+ ,ax) with de-
grees d = (dy,+1,--- ,+1) and to the boundary data g. Then the limiting
configuration a minimizes the renormalized energy

o~

k
W(b) = W(b,d.g)+ 5 Y loguw(b)
j=1

among all configurations b = (xo, by, -+, bg).

We show, by considering two examples, that in Theorem C both cases
actually occur (see Examples 1 and 3).

The proofs of Theorems A-D follow immediately from Theorems 6, 7, 8
and 9.

1 Estimates of the energy in the case of a ball

We start with a preliminary result.

Theorem 1. For each sequence €,, — 0, there exist a subsequence (also
denoted by €,,), k points ay,--- ,ax in G and positive integers dy,dy, - - , dj
with dy+dy+- - -+dy, = d such that (ue, ) converges in H}. .(G\{zo, a1, ,ar}; R?)
to u,, which is the canonical harmonic map with values in S associated to
the points xg,a1,--- ,a with corresponding degrees dy,dy,--- ,d; and to
the boundary data g. Moreover, dy > 0 and d; = --- = dj, = £1.

Proof. As in [BBH4], the estimate

1

) = [ 0w puse
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is fundamental to prove the convergence of (u.), where U is an arbitrary
neighbourhood of zp and C = C(U). The estimate (2) may be obtained
with the techniques of Struwe (see [S2]) used by Hong in the case w > 0 (see
[H)).

Let V be a closed neighbourhood of x3. With the methods developed in
[BBH4], Chapters III-VI, one obtains a finite number of “bad” discs in G\ V.
By this way we find a finite configuration {ai,--- ,ax} (k depending on V)
in G\ V such that, up to a subsequence, (uc,) converges in H} (G \ (V U
{a1,--- ,ax});R?) to some uy. The limit u, is a harmonic map with values
in S' and singularities a1, - - - , aj, such that the degree of u, around each a;
(j > 1) is some non-zero integer d;. The fact that all the singularities lie in
G follows as in [BBH4], Theorem VI.2.

Taking arbitrary small neighbourhoods V' of xg and passing to a further
subsequence, we obtain by a diagonal argument a sequence (ay) of points in
G without cluster point in G'\ {z¢} and a sequence (dj,) of non-zero integers
such that (u.,) converges in

Hioo(G \ ({o} U {ax; k > 1});R?)

to u, which is a harmonic map from G \ ({zo} U {ax; k > 1}) with values
in S' and singularities a;, of degrees dj.
As in [BBH4], Theorem III.1,

1
(3) E.(u;) <md logg +0(1), ase—0.

Taking into account the energy estimates in [BBH4] (see also [LR1]) we
obtain that

(4) d di<d.

Jj=1

This means that there is a finite number of singularities a;, say k.

Denote dy = deg (uy,xo), which is well defined, since z( is an isolated
singularity. By adapting the proof of Lemma V.2 from [BBH4] in our case
and on G\ V we obtain that all degrees d;, j = 1,--- , k have the same sign.
Moreover, as in Theorem VI.2 from [BBH4], | d; |= +1, for all j > 1.

We now prove that dy > 0. Indeed, if not, there would be at least d + 1
singularities different from 0. This would contradict (4). |

We shall see later that dy > 0 and d; = +1, for all j = 1,--- ,k. This
will be done after obtaining stronger energy estimates.
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At this stage we are in position to point out the following estimate, which
will be used in what follows: for each compact K C G\ {zo,a1,---,ar},

(5) IV (ue = ue)llLoe ) < Ckce -

This follows with the techniques from [BBH3| in the case of a null degree
(see also [M]).

We shall next establish, when G is a ball and w(x) = |z|P, upper and
lower bounds for the energy E.. These will be accomplished by using the
techniques developed in [BBH4], Chapter I. We shall also take into account
some results from [LR1] (see Theorem 1).

d
For fixed p > 0, &, R > 0 and g(z) = <|i|> , set

1 1
Jy(e,R) = JP(¢,R) = min {/ Vu | +— 1u221:p}.
(e, R) = Jy(e, R) A2 BRI | 122 BR( |u )" |z |

By scaling, it is easy to see that

(6) Ja(e, R) = Jd<Rf+g,1> .

Hence, in order to obtain an asymptotic formula for Jg , it suffices to study
the functional Jy(g) := Jy(e,1). If p = 0, denote I4(e,R) = JI(, R).
Throughout, u. will denote a point where J;(e) is achieved.

We first establish an upper bound for Jy(e).

Theorem 2. The following estimate holds

2d?
(7) Jale) <

1
mlog—+0(1), ase—0.
€

Proof. For @« > 0 and 0 < € < 1, let w. be a minimizer of E. on
H gl(B(O, £%)). In order to obtain (7), we choose the following comparison
function:
x

d
ww={ (37) Presiois

we(x) for0<|z|<e®.

A straightforward computation shows that

1 1
(8)  Bolve{m e <|z|<1}) = 2 / | V. [= nda log -
2 ea<|zl<1 g
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On the other hand, using Lemma II1.1 in [BBH4] and the fact that |z|P < P
on B(0,e%), we obtain

(9)
E-(ve; B(0,e%)) < Iy(e' =5, e®) = [j(e"~"2*, 1) < 7 d | log

. | HO(1).
€ 2

Now, choosing o =
(7). ]

We next establish a lower bound for the energy.

5 and taking into account (8) and (9) we obtain

Theorem 3. Assume that the only limit point of u. obtained in Theorem

d
1is (zﬂ) , that is 0 is the unique singularity of the limit. Then
x

2d? 1
pi27rlog€—0(1) ase — 0.

(10) Ja(e) =

d
Proof. We first estimate e E.(ug) using an idea from [S1]. Let £1 < eo.
5

Then
Eey(uey) 2 Eey (uey) > Eey(uey) > Eey(ue,) -
€)

Therefore, if v(e) := E.(ue) then

€1 teg
| v(er) —v(e2) [Sler—e2 [ —55 / (1= | te, [*)*w(z)dz .
€182 JBy

This implies that v is locally Lipschitz on (0, +00), that is locally absolutely
continuous on (0, +00) and v equals to the integral of its derivative. On the
other hand

E€1 (u€2) B E€2 (u€2) < E€1 (u€1) — Esz (u€2) < E€1 (u61) — E€2 (u€1)
€1 — €2 - €1 — €2 - €1 — €9 '

Letting €1 " €9 and €9 \, €1 we have

d 1

(11) V() = —Ec(u) = 93/, (

R 1—|u: )|z |P  ae. on (0,400).

Recall that u. satisfies the equation

1 .
12 { ~Aue = S u(l=u. ) |2 [P in By

ue = ¢ on 0B .
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As in the proof of the Pohozaev identity, multiplying (12) by (x - Vu.) and
integrating by parts we obtain

Ou, Oug Oug 82'“5 p+2 / pe
e 7, \ 20 g, T - 1= | u. .
/831 I (v )+/B Z Oz; (5J z; o Oz;0x; 42 Bl( | ue [7)7 | 2|

Loy

Therefore

P+2/‘ 22 p_/’ Ous 1o Oue
) B[ a-juprier=[ (1552-1558).

Thus

1 24 1 d
1) on [ e luPRlap = 2ae o [ S
2e® Jp, p+2 p+2 Jop, OV

Taking into account the estimate (5) we obtain from (14) that

(15) 1/ (e w22 = 2% 1 i 0() ase—0
2¢2 J, © Cp+2 ‘

Integrating (11) from € to 1 we find together with (15) that

2

+2

(16) E (ug) = T logé +0(1) ase—0.

Theorem 4. Suppose, in the case of the ball By and w(x) =| x [P, that
Ug, converges as in Theorem 1 to w, which has singularities 0 with degree
do and aq,--- ,ai such that

deg (ux,a1) = -+ = deg (uy, ar) = £1.

Then

1 272 d(2) km
(1) g [0 T PR o= s F 1 0) asn o,

Proof. We follow the strategy of the proof of Theorem VIL.2 from
[BBH4]. From (13) we have that

1
@(1— | e, \2)2 | @ [P

n

W, =
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is bounded in L!(B;) as n — oco. We also remark at this stage that there
exists C' > 0 such that, for all € > 0 (and not only for a subsequence),

1

= [ 0= lwP?lapsc,

By
Indeed, if not, passing to a subsequence ¢, such that (uc,) converges, we
would contradict the previous result.

By the boundedness of (W,,) it follows its convergence weak x in C(B)*
to a measure W, supported by 0,a1,--- ,ax. Hence

k
Wy = mgdy + ij5aj with m; € R.
=1
We now determine my.

Consider Br = B(0, R) for R small enough so that By contains no other
point a; (i # 0). Multiplying (12) by - Vu. and integrating on Br we obtain

R Ous 5 p+2 29
18 s 1- P
(18) 2 8BR‘8V|+452 /BR( ue )" ||
R Ou, R

2 212
= = 1- P
2 BBR| or | +452 /aBR( ue )7 1]

Passing to the limit in (18) as € — 0 and using the convergence of W),
we find

R 0 R 0
P mo = [ | 2=

19 —
( ) 2 8BR 61/ 2 8BR (97'

|2
The fact that u, is canonical implies that

z \% .
ui(z) = <H> e'Ho@)  on Bp

x
with
AHy=0.
Therefore, on dBg,
au* 89 8H0 2 d% do 8H0 8H0 2
I = HISEP
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Inserting (20) and (21) into (19) we obtain

(29 B[ 2%

2 dBgr ov '

2 2
2 =d, —
On the other hand, by multiplying AHy = 0 with -V Hy and integrating
on Br we find

R 8H0 R 8]LIO
(23) Y-
OBg v OBg T
Thus, from (22) and (23) we obtain
" 2
o= p+2 07

A similar computation for a;, j # 0 gives m; = g (see [BBH4], Theorem
VIL2). n

Remark 1. By analyzing the proofs of Theorems 3 and 4 we observe that
we may replace the weight | = |P by a weight which, in a neighbourhood of 0 is
of the form w(z) =
|z |P +f(x) |z |PT!, with f e CL.

Remark 2. The conclusion of Theorem 4 remains valid for a general
domain G and a weight w(x) = |z|P around 0. In this case, the boundedness

of
1

2 [0 P

follows by the same computation as in the proof of Theorem 4.

Until now we have obtained a lower bound for the energy under the
supplementary hypotheses that G = By, g = ¢/ and w(z) = |z|P. We now
establish a general lower bound for E.(u.) when w is like in Remark 1; this
will be useful to deduce the exact value of dg.

Theorem 5. Let

T 1 2.2
(24) C_hgi(?leg?/c;(l | ue |7) w.
Then
i)C >0.
ii) The following hold:
1
(25) 2 [0l PP = C = 0(e).
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and
(25) E.(ue) >2C logé —O(e).

iii) We have

_ )2
(26) C>min{(d 9 +£;0<€<d}.
p+2 2

Proof. ii) Suppose (25) does not hold. Then there are ¢, — 0 and
C), — 400 such that

1

Q G(l— | Ug,, |2)2w < C - CnEn .

We may suppose that ., converges as in Theorem 1. Taking into account
(18) and the rate of convergence of u. away from singularities (see [BBH4],
Theorem VI.1) we easily observe that

1
45‘2\/6,(1_ | Ue,, ’2)2’11) = C+ O(En),

which gives a contradiction.
The inequality (25’) follows by integrating (11) for small e.
i),iii) By Theorem 4, any limit point as € — 0 of

1

) G(l— | ue [?)?w

is of the form
(-0 |t
p+2 m 2

and 1), iii) follow immediately. |

with —d < ¢ < d

Theorem 1°’. Under the assumptions of Theorem 1, we have dy > 0.

Proof. We already know that dy > 0. Suppose dy = 0. Then, as in
[LR1], Theorem 1,

1
E-(u:) > Trdlogg -C.

On the other hand, by Theorem 2 and choosing an appropriate test function,

2 1
< (== - “1cC.
E (u:) < (p+2+(d 1)>7Tlog5 +C
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This gives a contradiction. [

Theorem 6. Let G = By, g(0) = €% and w(x) =| z |P. Ifd < g +1

then, for the corresponding minimizers u. of E., we have

x

ue(z) — ()d —

|z |

If p is not an integer multiple of 4 and d > g + 1, then wu, has singularities

p
4

Proof. We prove the assertion of the theorem by induction. Let d = 1
and let k be the number of singularities different from 0. On the one hand,
it follows from Theorem 2 that

0,a1,---,a with degrees do,+1,--- ,+1, where dy = [ ] + 1.

2 1
:2 logg—i—O(l) ase—0.

On the other hand, it follows as in [LR1], Theorem 1 that

E.(u:) <
< ( 5)_p

1
E. (us,) > 7k logs— +0(1) ase, —0.

2
We thus obtain £ < —— < 1, that is kK = 0.
p+2

Suppose now the assertion true for any 0 < k < d—1 with d < g +1. If
the conclusion of the theorem does not hold, there is a sequence €, — 0 and
there are k > 1 points a1, - ,ax in G\ {0} such that (u.,) has at the limit
the singularities a1, - - - ,ar. These singularities have equal degrees d’ = +1
or d = —1. We shall examine the two cases:

i) If d = +1 then dy < d. Taking into account the induction hypotheses
and Theorem 5 we obtain, for R > 0 sufficiently small,

2d2 1
O 7rlog-=—C, ase—0.
€

+2
Thus
2d3 1
(27) Eg(u€)2<p+02+k>7rlog€—0, ase—0.
But Theorem 2 implies
2d? 1
(28) Ea(u5)§p+27rlogg+0, ase — 0.
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If we compare (27) and (28) we find that

2d> - 2d3

+ k.
p+2 p+2

This inequality is clearly false if £ > 0 and dy > 0, contradiction.

ii) Let d = —1. There are two cases:

Case 1: d+k < g + 1. In this case, the corresponding minimum in (26)
for d replaced by d + k is achieved for £ = 0 and we obtain from Theorem 5
that

2(d + k)* 1
E., (us,) > <(p+2> —(5+k:)7rlog€n—C as e, — 0.
This contradicts the upper bound (7).

Case 2: d+k > g + 1. In this case, the minimum in (26) (for d replaced

d2
by d+ k) is >
y ) is p—

5" This yields again a contradiction. [ ]

Theorem 7. Under the assumptions of Theorem 1, we have d; = +1,
fori=1,--- k.

If p is an integer multiple of 4 and d > g + 1 then dy € {p b + 1}.

4’ 4
Proof. The fact that d; = +1 follows as in Theorem 6. The statement
that dg € g,g + 1 ford > Z + 1 is a consequence of Theorem 5 and of

the fact that the quantity

2d3
—— 4+ (d—d
P ( 0)
L . p P
atteints its minimum in the set dy € {1,--- ,d} for dy = 1 or dy = 1 +1. m

2 The renormalized energy

In [BBH4], F. Bethuel, H. Brezis and F. Hélein have introduced the concept
of renormalized energy associated to a given configuration of points with
prescribed degrees and to a boundary data. They observed that the limiting
configuration of singularities is a minimum point of this functional. We shall
find the renormalized energy in the case of a ball, say By, when the weight is
w(zx) =| z |P. In the case of a vanishing weight the introduction of a concept
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of renormalized energy is useful only for d > g + 1. Indeed, for d < g +1

there is only one singularity at the limit, namely the zero of w.

Theorem 8. Let g : 0B; — S, deg(g,0B;1) = d > 24— 1, w(z) =|
x |P. If ug, converges to the canonical harmonic map u, associated to
a = (0,a1,--- ,ax) with corresponding degrees d = (dg,+1,---,+1), then
the configuration a minimizes the functional

o~

k
- s
W(a,g) = W(a,d,g) + 5 leogw«zj) :
J:

The proof follows the same lines as of the proof of Theorem 1 in [LR1]. m

It has been observed in the preceding Section that if p is an integer multi-
ple of 4, then

do € {Z, g + 1}. In what follows we show that both cases may occur.

Example 1. If p is an integer multiple of 4, G = By, w(x) =| = |P,
9(0) = ¢®® and d = £ 1 1 then d0:§+1.
Assume, by contradiction, that dy # d. As observed in Theorem 7, the only
possibility in this case is dy = g By Theorem 8, the limiting configuration
a = (0,a1) with degrees d = (B, 1) minimizes the functional W. We may
now make use of the explicit form of the renormalized energy W found in
[LR2], Proposition 2:

- 0 T
W(a,d,g) = =5 plog | ar | =m log(1= a1 |*) = 5 plog(| ar [* +1= [ a1 |*)

v
= —5plog |ay | =7 log(1— | a1 |).

Hence

—

Wia,g) = —m log(1— | a1 |?).
But this functional does not achieve its infimum on Bj \ {0}. So, this case
is impossible, that is dy = g + 1.

Example 2. If p is an integer multiple of 4, G = By, w(z) =| x |P,
g(0) = e¥ and d = % + 2 then dy = g
Indeed, with the explicit form of the renormalized energy (see [LR2]) we
compute W when dy = g + 1 (that is k =1) and dp = g (that is k = 2).
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Ifd0:§+1then

—

W(0,a1) = —m log(| ar > (1— | ay |2)>

which achieves its infimum on B \ {0} and
inf W(O,al) =7 log4.

If dy = % then
W(0,a1,a2) = —7 log | a1 — az |* —m log(1— | a1 [*) — 7 log(1— | az [)—

- 1og<| a1 —az 2 +(1— | a1 (- | az 12>) .

In this case, with an argument from [LR2], the infimum of W(O,al,ag) is
achieved for a; = —as = 571, A straightforward calculation gives

infﬁ/\(o, ap,az) < ian(O, ap)

which means that dy = g

We next turn to the case of general G, g.

Theorem 9. Let G be a smooth bounded domain in R? g:0G — St
of topological degree d and w : G — R, w > 0 in G\ {zo}, w(x) = C |
r—xg |P +f(x) | x—x0 |PT! in a small neighbourhood of zy, where f is a C*

function. If d > % + 1 then the limit configuration a = (0,a,--- ,a) with
degrees d = (dy, +1,--- ,+1), dy > 0, minimizes the functional /W(a, g).
The proof is similar as of Theorem 8. [

We shall now give an example which shows that if p is an integer multiple
of 4 and for a general weight w that is like | [P in a neighbourhood of 0, then
one can not obtain a general result, in the sense that the zero of the weight
might have different degrees at the limit. This example shows that not only
the behavior of the weight around its zero is important in the determination
of degrees, but also the form of the weight w away from 0.

Example 3. Let h: [0,1] — (0,1] be a C* function which equals 1 on
[0, 0] and h(aq) = %ilr}lh = ¢ > 0, which will be suitable chosen. We take
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w(x) = h(] = |) | z [P, p an integer multiple of 4 and g(z) = 2% on 9By,
where d = g + 1. We shall choose ¢ such that

W<(0), (d)) > W((O, a), (d — 1, +1)> + g log(da”) .

Taking into account Theorems 8 and 9, it follows that this choice of § gives

3 Remarks for the case of a weight with several
Zeroes

For the sake of simplicity assume w has two zeroes a; and as in G and, in
small neighbourhoods of a;,

w(z) =|z—a; [P with p; >0,7=1,2.
We also suppose that each p; is not an integer multiple of 4. If d > % +

[]jﬂ —+2 it can be proved using the same techniques that u., converges to u,

which has singularities a1, a9, - , ar of corresponding degrees d; = % +
1,dy = [T} +1,d3 = --- = dp = +1. Moreover, the configuration a =
(a1,as,as,--- ,ap) with d = (dy,dz, +1,--- ,+1) minimizes the renormalized
energy
W(a,a,g):W d gZIngaj
4! P2
The case d < 1 + [ 1 ] + 2 yields a delicate discussion. For example, if

d =1, then there is only one singularity at the limit. This is a if

2 < 2
pr+2 p2+2’

that is  p; > pa.

The case p; = po is more difficult. If

(29) W(a,1,9) < W(az,1,9)
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then the singularity at the limit is a;. We cannot conclude when equality
holds in (29).

Suppose now d = 2 and p; > po. If

8 < 2 n 2
p1+2 p1+2 pa+2

(30)

then, at the limit, there is one singularity, namely a1, of degree +2. If

8 - 2 n 2
pm+2 pi+2 pa+2

then there are two singularities at the limit, namely a; and as of corre-
sponding degrees +1. If the equality holds in (30) we argue in terms of
renormalized energy as above.

The discussion may be similarly continued for greater values of d.
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ASYMPTOTICS FOR THE
MINIMIZERS OF THE
GINZBURG-LANDAU ENERGY WITH
VANISHING WEIGHT

Citalin LEFTER and Vicentiu RADULESCU

Abstract. We study the asymptotic behavior of the minimizers for the
Ginzburg-Landau energy with a weight which vanishes. We find the link
between the growth rate of the weight near its zeroes and the number of
singularities of the limiting configuration, as well as their degrees. We give
the expression of the corresponding renormalized energy which governs the
location of singularities at the limit.

Introduction

F. Bethuel, H. Brezis and F. Hélein have studied in [BBH4] the asymptotic
behavior as € — 0 of minimizers of the Ginzburg-Landau energy

1 1
E - B _ 2t 2 1— 212
(G = Bw) = 5 [ IVl apg [0 luP)
in the class
1 1 Ty 2Y. 5 —
H;, = H,(G) ={ue H (G;R*); u= g on dG},

where G C R? is a smooth bounded domain and g : G — S' is a smooth
data with the topological degree d > 0.

For each sequence €, — 0, they have proved the existence of a subse-
quence, also denoted (e,) and of a finite configuration {aj,---,aq} in G
such that (u,) converges in certain topologies to u,, which is the canonical
harmonic map with values in S' associated to {ay,--- ,aq} with degrees +1
and to the boundary data g. This means that

Z — aj Z — Qq

Ui (2) (2 in G\ {a1, - a4}

= ]Z—a1|“']z—ad]
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with

(1) Ap=0 inG

uxy =g on I0G.
Moreover, the configuration a = (ay,--- ,aq) minimizes the renormalized
energy W(a,g). The renormalized energy W(a,d,g) associated to a given
configuration a = (aj,--- ,ay) with corresponding degrees d = (dy,-- - ,dy)

and to the boundary data g with deg(g,0G) = d, d = dy + --- + d was
introduced in [BBH2|, [BBH4]. If all d; equal +1 (that is & = d) then
W (a,g) denotes W (a,d, g).

In [LR1] we have studied the Ginzburg-Landau energy with weight

y 1 1
B =5 [ 1Vulagg [0-luPre.

where w € C*(G), w > 0 in G. We proved a similar behavior of minimizers,
but the limiting configuration minimizes the modified renormalized energy.
More precisely, u., converges to u, in certain topologies but now the limiting
configuration a = (a1, -+ ,aq) is @ minimum point of

d
™
Wi(b,g) =W(b,g)+ §. 1: logw(b;) , be G
=

A natural question is to see what happens if w vanishes. We first study
the case when w > 0 and it has a unique zero xy € G and suppose that
w(x) ~| x—x¢ |P around zp, where p > 1. This means that w(z) =| z—x¢ |P
+f(z) | z |P*! in a neighbourhood of g, where f is a C'* function. We show
that, up to a subsequence, u. converges to a harmonic map u, associated to

singularities xg, a1, - - , a with dy = deg (uy, z9) > 0 and deg (u., a;j) = +1
for j =1,---, k. More precisely, we have (see Theorems 1 and 7)
Z—x do al z—a ,
u*(z): < 0 ) k e
| z — o | |z —ay | | z — a |

with dy + k = d. Here ¢ is such that (1) holds. Remark that in some

situations the set a = (a1, - ,ax) is empty. We next complete this result
by finding:

a) the exact value of k as a function of p and d;

b) the position of ay, - - - , aj through the corresponding renormalized energy.

Our main results are the following:
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Theorem A. Assume that d < g + 1. Then dy = d and zq is the only

singularity of .

Theorem B. Assume that d > §+1 and that p is not an integer multiple

of 4. Then dy = [Z] +1 (here [x] denotes the integer part of the real number
Theorem C. Assume that d > g + 1 and that p is an integer multiple

of 4. Then either dy = g or dy = g + 1.

Theorem D. Assume that d > P + 1 and u, converges to the canonical

harmollic map associated to the configuration a = (zg, a1, -+ ,ax) with de-
grees d = (dy,+1,--- ,+1) and to the boundary data g. Then the limiting
configuration a minimizes the renormalized energy

o~

k
W(b) = W(b,d.g)+ 5 Y loguw(b)
j=1

among all configurations b = (xo, by, -+, bg).

We show, by considering two examples, that in Theorem C both cases
actually occur (see Examples 1 and 3).

The proofs of Theorems A-D follow immediately from Theorems 6, 7, 8
and 9.

1 Estimates of the energy in the case of a ball

We start with a preliminary result.

Theorem 1. For each sequence €,, — 0, there exist a subsequence (also
denoted by €,,), k points ay,--- ,ax in G and positive integers dy,dy, - - , dj
with dy+dy+- - -+dy, = d such that (ue, ) converges in H}. .(G\{zo, a1, ,ar}; R?)
to u,, which is the canonical harmonic map with values in S associated to
the points xg,a1,--- ,a with corresponding degrees dy,dy,--- ,d; and to
the boundary data g. Moreover, dy > 0 and d; = --- = dj, = £1.

Proof. As in [BBH4], the estimate

1

) = [ 0w puse
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is fundamental to prove the convergence of (u.), where U is an arbitrary
neighbourhood of zp and C = C(U). The estimate (2) may be obtained
with the techniques of Struwe (see [S2]) used by Hong in the case w > 0 (see
[H)).

Let V be a closed neighbourhood of x3. With the methods developed in
[BBH4], Chapters III-VI, one obtains a finite number of “bad” discs in G\ V.
By this way we find a finite configuration {ai,--- ,ax} (k depending on V)
in G\ V such that, up to a subsequence, (uc,) converges in H} (G \ (V U
{a1,--- ,ax});R?) to some uy. The limit u, is a harmonic map with values
in S' and singularities a1, - - - , aj, such that the degree of u, around each a;
(j > 1) is some non-zero integer d;. The fact that all the singularities lie in
G follows as in [BBH4], Theorem VI.2.

Taking arbitrary small neighbourhoods V' of xg and passing to a further
subsequence, we obtain by a diagonal argument a sequence (ay) of points in
G without cluster point in G'\ {z¢} and a sequence (dj,) of non-zero integers
such that (u.,) converges in

Hioo(G \ ({o} U {ax; k > 1});R?)

to u, which is a harmonic map from G \ ({zo} U {ax; k > 1}) with values
in S' and singularities a;, of degrees dj.
As in [BBH4], Theorem III.1,

1
(3) E.(u;) <md logg +0(1), ase—0.

Taking into account the energy estimates in [BBH4] (see also [LR1]) we
obtain that

(4) d di<d.

Jj=1

This means that there is a finite number of singularities a;, say k.

Denote dy = deg (uy,xo), which is well defined, since z( is an isolated
singularity. By adapting the proof of Lemma V.2 from [BBH4] in our case
and on G\ V we obtain that all degrees d;, j = 1,--- , k have the same sign.
Moreover, as in Theorem VI.2 from [BBH4], | d; |= +1, for all j > 1.

We now prove that dy > 0. Indeed, if not, there would be at least d + 1
singularities different from 0. This would contradict (4). |

We shall see later that dy > 0 and d; = +1, for all j = 1,--- ,k. This
will be done after obtaining stronger energy estimates.
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At this stage we are in position to point out the following estimate, which
will be used in what follows: for each compact K C G\ {zo,a1,---,ar},

(5) IV (ue = ue)llLoe ) < Ckce -

This follows with the techniques from [BBH3| in the case of a null degree
(see also [M]).

We shall next establish, when G is a ball and w(x) = |z|P, upper and
lower bounds for the energy E.. These will be accomplished by using the
techniques developed in [BBH4], Chapter I. We shall also take into account
some results from [LR1] (see Theorem 1).

d
For fixed p > 0, &, R > 0 and g(z) = <|i|> , set

1 1
Jy(e,R) = JP(¢,R) = min {/ Vu | +— 1u221:p}.
(e, R) = Jy(e, R) A2 BRI | 122 BR( |u )" |z |

By scaling, it is easy to see that

(6) Ja(e, R) = Jd<Rf+g,1> .

Hence, in order to obtain an asymptotic formula for Jg , it suffices to study
the functional Jy(g) := Jy(e,1). If p = 0, denote I4(e,R) = JI(, R).
Throughout, u. will denote a point where J;(e) is achieved.

We first establish an upper bound for Jy(e).

Theorem 2. The following estimate holds

2d?
(7) Jale) <

1
mlog—+0(1), ase—0.
€

Proof. For @« > 0 and 0 < € < 1, let w. be a minimizer of E. on
H gl(B(O, £%)). In order to obtain (7), we choose the following comparison
function:
x

d
ww={ (37) Presiois

we(x) for0<|z|<e®.

A straightforward computation shows that

1 1
(8)  Bolve{m e <|z|<1}) = 2 / | V. [= nda log -
2 ea<|zl<1 g
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On the other hand, using Lemma II1.1 in [BBH4] and the fact that |z|P < P
on B(0,e%), we obtain

(9)
E-(ve; B(0,e%)) < Iy(e' =5, e®) = [j(e"~"2*, 1) < 7 d | log

. | HO(1).
€ 2

Now, choosing o =
(7). ]

We next establish a lower bound for the energy.

5 and taking into account (8) and (9) we obtain

Theorem 3. Assume that the only limit point of u. obtained in Theorem

d
1is (zﬂ) , that is 0 is the unique singularity of the limit. Then
x

2d? 1
pi27rlog€—0(1) ase — 0.

(10) Ja(e) =

d
Proof. We first estimate e E.(ug) using an idea from [S1]. Let £1 < eo.
5

Then
Eey(uey) 2 Eey (uey) > Eey(uey) > Eey(ue,) -
€)

Therefore, if v(e) := E.(ue) then

€1 teg
| v(er) —v(e2) [Sler—e2 [ —55 / (1= | te, [*)*w(z)dz .
€182 JBy

This implies that v is locally Lipschitz on (0, +00), that is locally absolutely
continuous on (0, +00) and v equals to the integral of its derivative. On the
other hand

E€1 (u€2) B E€2 (u€2) < E€1 (u€1) — Esz (u€2) < E€1 (u61) — E€2 (u€1)
€1 — €2 - €1 — €2 - €1 — €9 '

Letting €1 " €9 and €9 \, €1 we have

d 1

(11) V() = —Ec(u) = 93/, (

R 1—|u: )|z |P  ae. on (0,400).

Recall that u. satisfies the equation

1 .
12 { ~Aue = S u(l=u. ) |2 [P in By

ue = ¢ on 0B .
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As in the proof of the Pohozaev identity, multiplying (12) by (x - Vu.) and
integrating by parts we obtain

Ou, Oug Oug 82'“5 p+2 / pe
e 7, \ 20 g, T - 1= | u. .
/831 I (v )+/B Z Oz; (5J z; o Oz;0x; 42 Bl( | ue [7)7 | 2|

Loy

Therefore

P+2/‘ 22 p_/’ Ous 1o Oue
) B[ a-juprier=[ (1552-1558).

Thus

1 24 1 d
1) on [ e luPRlap = 2ae o [ S
2e® Jp, p+2 p+2 Jop, OV

Taking into account the estimate (5) we obtain from (14) that

(15) 1/ (e w22 = 2% 1 i 0() ase—0
2¢2 J, © Cp+2 ‘

Integrating (11) from € to 1 we find together with (15) that

2

+2

(16) E (ug) = T logé +0(1) ase—0.

Theorem 4. Suppose, in the case of the ball By and w(x) =| x [P, that
Ug, converges as in Theorem 1 to w, which has singularities 0 with degree
do and aq,--- ,ai such that

deg (ux,a1) = -+ = deg (uy, ar) = £1.

Then

1 272 d(2) km
(1) g [0 T PR o= s F 1 0) asn o,

Proof. We follow the strategy of the proof of Theorem VIL.2 from
[BBH4]. From (13) we have that

1
@(1— | e, \2)2 | @ [P

n

W, =
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is bounded in L!(B;) as n — oco. We also remark at this stage that there
exists C' > 0 such that, for all € > 0 (and not only for a subsequence),

1

= [ 0= lwP?lapsc,

By
Indeed, if not, passing to a subsequence ¢, such that (uc,) converges, we
would contradict the previous result.

By the boundedness of (W,,) it follows its convergence weak x in C(B)*
to a measure W, supported by 0,a1,--- ,ax. Hence

k
Wy = mgdy + ij5aj with m; € R.
=1
We now determine my.

Consider Br = B(0, R) for R small enough so that By contains no other
point a; (i # 0). Multiplying (12) by - Vu. and integrating on Br we obtain

R Ous 5 p+2 29
18 s 1- P
(18) 2 8BR‘8V|+452 /BR( ue )" ||
R Ou, R

2 212
= = 1- P
2 BBR| or | +452 /aBR( ue )7 1]

Passing to the limit in (18) as € — 0 and using the convergence of W),
we find

R 0 R 0
P mo = [ | 2=

19 —
( ) 2 8BR 61/ 2 8BR (97'

|2
The fact that u, is canonical implies that

z \% .
ui(z) = <H> e'Ho@)  on Bp

x
with
AHy=0.
Therefore, on dBg,
au* 89 8H0 2 d% do 8H0 8H0 2
I = HISEP
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Inserting (20) and (21) into (19) we obtain

(29 B[ 2%

2 dBgr ov '

2 2
2 =d, —
On the other hand, by multiplying AHy = 0 with -V Hy and integrating
on Br we find

R 8H0 R 8]LIO
(23) Y-
OBg v OBg T
Thus, from (22) and (23) we obtain
" 2
o= p+2 07

A similar computation for a;, j # 0 gives m; = g (see [BBH4], Theorem
VIL2). n

Remark 1. By analyzing the proofs of Theorems 3 and 4 we observe that
we may replace the weight | = |P by a weight which, in a neighbourhood of 0 is
of the form w(z) =
|z |P +f(x) |z |PT!, with f e CL.

Remark 2. The conclusion of Theorem 4 remains valid for a general
domain G and a weight w(x) = |z|P around 0. In this case, the boundedness

of
1

2 [0 P

follows by the same computation as in the proof of Theorem 4.

Until now we have obtained a lower bound for the energy under the
supplementary hypotheses that G = By, g = ¢/ and w(z) = |z|P. We now
establish a general lower bound for E.(u.) when w is like in Remark 1; this
will be useful to deduce the exact value of dg.

Theorem 5. Let

T 1 2.2
(24) C_hgi(?leg?/c;(l | ue |7) w.
Then
i)C >0.
ii) The following hold:
1
(25) 2 [0l PP = C = 0(e).
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and
(25) E.(ue) >2C logé —O(e).

iii) We have

_ )2
(26) C>min{(d 9 +£;0<€<d}.
p+2 2

Proof. ii) Suppose (25) does not hold. Then there are ¢, — 0 and
C), — 400 such that

1

Q G(l— | Ug,, |2)2w < C - CnEn .

We may suppose that ., converges as in Theorem 1. Taking into account
(18) and the rate of convergence of u. away from singularities (see [BBH4],
Theorem VI.1) we easily observe that

1
45‘2\/6,(1_ | Ue,, ’2)2’11) = C+ O(En),

which gives a contradiction.
The inequality (25’) follows by integrating (11) for small e.
i),iii) By Theorem 4, any limit point as € — 0 of

1

) G(l— | ue [?)?w

is of the form
(-0 |t
p+2 m 2

and 1), iii) follow immediately. |

with —d < ¢ < d

Theorem 1°’. Under the assumptions of Theorem 1, we have dy > 0.

Proof. We already know that dy > 0. Suppose dy = 0. Then, as in
[LR1], Theorem 1,

1
E-(u:) > Trdlogg -C.

On the other hand, by Theorem 2 and choosing an appropriate test function,

2 1
< (== - “1cC.
E (u:) < (p+2+(d 1)>7Tlog5 +C
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This gives a contradiction. [

Theorem 6. Let G = By, g(0) = €% and w(x) =| z |P. Ifd < g +1

then, for the corresponding minimizers u. of E., we have

x

ue(z) — ()d —

|z |

If p is not an integer multiple of 4 and d > g + 1, then wu, has singularities

p
4

Proof. We prove the assertion of the theorem by induction. Let d = 1
and let k be the number of singularities different from 0. On the one hand,
it follows from Theorem 2 that

0,a1,---,a with degrees do,+1,--- ,+1, where dy = [ ] + 1.

2 1
:2 logg—i—O(l) ase—0.

On the other hand, it follows as in [LR1], Theorem 1 that

E.(u:) <
< ( 5)_p

1
E. (us,) > 7k logs— +0(1) ase, —0.

2
We thus obtain £ < —— < 1, that is kK = 0.
p+2

Suppose now the assertion true for any 0 < k < d—1 with d < g +1. If
the conclusion of the theorem does not hold, there is a sequence €, — 0 and
there are k > 1 points a1, - ,ax in G\ {0} such that (u.,) has at the limit
the singularities a1, - - - ,ar. These singularities have equal degrees d’ = +1
or d = —1. We shall examine the two cases:

i) If d = +1 then dy < d. Taking into account the induction hypotheses
and Theorem 5 we obtain, for R > 0 sufficiently small,

2d2 1
O 7rlog-=—C, ase—0.
€

+2
Thus
2d3 1
(27) Eg(u€)2<p+02+k>7rlog€—0, ase—0.
But Theorem 2 implies
2d? 1
(28) Ea(u5)§p+27rlogg+0, ase — 0.
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If we compare (27) and (28) we find that

2d> - 2d3

+ k.
p+2 p+2

This inequality is clearly false if £ > 0 and dy > 0, contradiction.

ii) Let d = —1. There are two cases:

Case 1: d+k < g + 1. In this case, the corresponding minimum in (26)
for d replaced by d + k is achieved for £ = 0 and we obtain from Theorem 5
that

2(d + k)* 1
E., (us,) > <(p+2> —(5+k:)7rlog€n—C as e, — 0.
This contradicts the upper bound (7).

Case 2: d+k > g + 1. In this case, the minimum in (26) (for d replaced

d2
by d+ k) is >
y ) is p—

5" This yields again a contradiction. [ ]

Theorem 7. Under the assumptions of Theorem 1, we have d; = +1,
fori=1,--- k.

If p is an integer multiple of 4 and d > g + 1 then dy € {p b + 1}.

4’ 4
Proof. The fact that d; = +1 follows as in Theorem 6. The statement
that dg € g,g + 1 ford > Z + 1 is a consequence of Theorem 5 and of

the fact that the quantity

2d3
—— 4+ (d—d
P ( 0)
L . p P
atteints its minimum in the set dy € {1,--- ,d} for dy = 1 or dy = 1 +1. m

2 The renormalized energy

In [BBH4], F. Bethuel, H. Brezis and F. Hélein have introduced the concept
of renormalized energy associated to a given configuration of points with
prescribed degrees and to a boundary data. They observed that the limiting
configuration of singularities is a minimum point of this functional. We shall
find the renormalized energy in the case of a ball, say By, when the weight is
w(zx) =| z |P. In the case of a vanishing weight the introduction of a concept
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of renormalized energy is useful only for d > g + 1. Indeed, for d < g +1

there is only one singularity at the limit, namely the zero of w.

Theorem 8. Let g : 0B; — S, deg(g,0B;1) = d > 24— 1, w(z) =|
x |P. If ug, converges to the canonical harmonic map u, associated to
a = (0,a1,--- ,ax) with corresponding degrees d = (dg,+1,---,+1), then
the configuration a minimizes the functional

o~

k
- s
W(a,g) = W(a,d,g) + 5 leogw«zj) :
J:

The proof follows the same lines as of the proof of Theorem 1 in [LR1]. m

It has been observed in the preceding Section that if p is an integer multi-
ple of 4, then

do € {Z, g + 1}. In what follows we show that both cases may occur.

Example 1. If p is an integer multiple of 4, G = By, w(x) =| = |P,
9(0) = ¢®® and d = £ 1 1 then d0:§+1.
Assume, by contradiction, that dy # d. As observed in Theorem 7, the only
possibility in this case is dy = g By Theorem 8, the limiting configuration
a = (0,a1) with degrees d = (B, 1) minimizes the functional W. We may
now make use of the explicit form of the renormalized energy W found in
[LR2], Proposition 2:

- 0 T
W(a,d,g) = =5 plog | ar | =m log(1= a1 |*) = 5 plog(| ar [* +1= [ a1 |*)

v
= —5plog |ay | =7 log(1— | a1 |).

Hence

—

Wia,g) = —m log(1— | a1 |?).
But this functional does not achieve its infimum on Bj \ {0}. So, this case
is impossible, that is dy = g + 1.

Example 2. If p is an integer multiple of 4, G = By, w(z) =| x |P,
g(0) = e¥ and d = % + 2 then dy = g
Indeed, with the explicit form of the renormalized energy (see [LR2]) we
compute W when dy = g + 1 (that is k =1) and dp = g (that is k = 2).
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Ifd0:§+1then

—

W(0,a1) = —m log(| ar > (1— | ay |2)>

which achieves its infimum on B \ {0} and
inf W(O,al) =7 log4.

If dy = % then
W(0,a1,a2) = —7 log | a1 — az |* —m log(1— | a1 [*) — 7 log(1— | az [)—

- 1og<| a1 —az 2 +(1— | a1 (- | az 12>) .

In this case, with an argument from [LR2], the infimum of W(O,al,ag) is
achieved for a; = —as = 571, A straightforward calculation gives

infﬁ/\(o, ap,az) < ian(O, ap)

which means that dy = g

We next turn to the case of general G, g.

Theorem 9. Let G be a smooth bounded domain in R? g:0G — St
of topological degree d and w : G — R, w > 0 in G\ {zo}, w(x) = C |
r—xg |P +f(x) | x—x0 |PT! in a small neighbourhood of zy, where f is a C*

function. If d > % + 1 then the limit configuration a = (0,a,--- ,a) with
degrees d = (dy, +1,--- ,+1), dy > 0, minimizes the functional /W(a, g).
The proof is similar as of Theorem 8. [

We shall now give an example which shows that if p is an integer multiple
of 4 and for a general weight w that is like | [P in a neighbourhood of 0, then
one can not obtain a general result, in the sense that the zero of the weight
might have different degrees at the limit. This example shows that not only
the behavior of the weight around its zero is important in the determination
of degrees, but also the form of the weight w away from 0.

Example 3. Let h: [0,1] — (0,1] be a C* function which equals 1 on
[0, 0] and h(aq) = %ilr}lh = ¢ > 0, which will be suitable chosen. We take
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w(x) = h(] = |) | z [P, p an integer multiple of 4 and g(z) = 2% on 9By,
where d = g + 1. We shall choose ¢ such that

W<(0), (d)) > W((O, a), (d — 1, +1)> + g log(da”) .

Taking into account Theorems 8 and 9, it follows that this choice of § gives

3 Remarks for the case of a weight with several
Zeroes

For the sake of simplicity assume w has two zeroes a; and as in G and, in
small neighbourhoods of a;,

w(z) =|z—a; [P with p; >0,7=1,2.
We also suppose that each p; is not an integer multiple of 4. If d > % +

[]jﬂ —+2 it can be proved using the same techniques that u., converges to u,

which has singularities a1, a9, - , ar of corresponding degrees d; = % +
1,dy = [T} +1,d3 = --- = dp = +1. Moreover, the configuration a =
(a1,as,as,--- ,ap) with d = (dy,dz, +1,--- ,+1) minimizes the renormalized
energy
W(a,a,g):W d gZIngaj
4! P2
The case d < 1 + [ 1 ] + 2 yields a delicate discussion. For example, if

d =1, then there is only one singularity at the limit. This is a if

2 < 2
pr+2 p2+2’

that is  p; > pa.

The case p; = po is more difficult. If

(29) W(a,1,9) < W(az,1,9)
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then the singularity at the limit is a;. We cannot conclude when equality
holds in (29).

Suppose now d = 2 and p; > po. If

8 < 2 n 2
p1+2 p1+2 pa+2

(30)

then, at the limit, there is one singularity, namely a1, of degree +2. If

8 - 2 n 2
pm+2 pi+2 pa+2

then there are two singularities at the limit, namely a; and as of corre-
sponding degrees +1. If the equality holds in (30) we argue in terms of
renormalized energy as above.

The discussion may be similarly continued for greater values of d.
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