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INTRODUCTION

Les travaux présentés dans ce mémoire portent sur certaines classes d’équations ou
d’inéquations elliptiques non linéaires et s’organisent autour de quatre themes principaux:
I’étude de propriétés qualitatives de solutions des problemes elliptiques semi-linéaires et
quasi-linéaires; ’analyse de solutions qui explosent a la frontiere pour quelques classes
de problemes elliptiques semi-linéaires; I’étude de problemes elliptiques non lisses via les
théories de point critique de Clarke et Degiovanni, ainsi que le role des inégalités hemivari-
ationnelles dans le traitement de quelques problemes de mécanique.

Dans la premiéere partie sont présentés quelques résultats qualitatifs pour diverses classes
d’équations aux dérivées partielles elliptiques. On prouve en particulier 'existence et
I'unicité de 1'état fondamental pour un probléeme dans R”, I’existence d’une solution pour
une classe de problemes avec donnée au bord singuliere, un résultat de multiplicité pour
un probléme sous critique sans compacité soumis a une petite perturbation, ainsi que des
résultats d’existence ou de non existence pour un probleme de bifurcation avec une donnée
non linéaire sur le bord.

La deuxieme partie porte sur ’étude de quelques classes de problemes elliptiques semi-
linéaires sur un domaine quelconque qui admettent des solutions explosant au bord (ou &
'infini). Notre analyse inclut I’équation logistique avec un coefficient qui peut s’annuler
sur la frontiere; dans ce cas on établit une condition nécessaire et suffisante pour I’existence
d’une solution explosant au bord ainsi que I'unicité et le comportement asymptotique de
cette solution.

Le troisieme chapitre est consacré a 1’étude de quelques problemes elliptiques multivo-
ques. On démontre un résultat abstrait de multiplicité du type Ljusternik-Schnirelmann
avec application dans le probleme du pendule forcé. Ensuite on étudie parallelement un
probleme sans compacité en utilisant les approches de Degiovanni et de Clarke. On con-
sidere aussi un probleme symétrique soumis a une contrainte et avec une infinité de solutions
et on étudie l'effet d’une perturbation arbitraire en montrant que le nombre de solutions
tend vers l'infini si la perturbation tend vers zéro. On étudie également plusieurs résultats
d’existence et de multiplicité pour des inégalités hemivariationnelles dans BV (Q; R"). On
conclut ce chapitre avec un résultat de multiplicité et de perturbation pour une inégalité
variationnelle qui modélise le démarrage d’un tremblement de terre.

Dans la derniere partie de ce mémoire on analyse quelques problemes issus de la théorie
des inégalités hemivariationnelles. On prouve des résultats d’existence du type Hartman-
Stampacchia et on étudie l'influence d’une perturbation arbitraire pour plusieurs classes
de problemes aux valeurs propres pour des inégalités hemivariationnelles avec symétrie.

Tous ces problemes conduisent a des équations, systemes ou inéquations posés dans des
domaines bornés ou non bornés. On cherche des estimations a prior: et des théoremes de



compacité et les principaux outils appliqués sont la méthode de sur et sous solutions, le
principe du maximum et la théorie du point critique.

1 Problemes elliptiques semi-linéaires et quasi-linéaires:
existence et unicité des solutions

1.1 Existence et unicité de I’état fondamental pour un probleme
elliptique avec une non linéarité singuliere

On considére le probleme

—Au = p(z)f(u) dans RY
(1.1) u>0 dans R"
u(r) - 0 si |z|— o0,

ou N > 2 et les fonctions p et f satisfont les hypotheses:
(p1) p € Cit (RY), @€ (0,1);

(p2) p > 0 dans R",

(p3) /7“ - ®(r)dr < 0o, ot ®(r) = maxp(x).

" |z|=r
(f1) il existe B > 0 tel que I’application u — f_(f) soit décroissante sur (0, 00);
U
(f2) li{% J(u) = 400 et f est bornée dans un voisinage de +oc.
u U

THEOREME 1 Sous les hypothéses (f1), (f2), (p1)-(p3), le probléme (1.1) a une seule
solution u € CEF*(RN).

loc

Le résultat suivant montre le role de la condition (p3) en vue de 'existence d’une
solution.

THEOREME 2 Soit p une fonction positive, radiale, continue sur R" et telle que
o
/ rp(r)dr = oo.
0

Alors le probléme (1.1) n’a aucune solution positive radiale.

1.2 Solutions multiples d’un probleme sous-critique dégénéré
Soient N > 2 et 2 < p < 2*:=2N/(N — 2). On consideére le probléme
(1.2) —div (a(z)Vu) + b(z) u = K (2)|ul’ *u+cg(z) dans RV,

ou les fonctions a, b, K et g satisfont les hypotheses

i



(A1) a€ C(RY) et il existe Ry > 0 tel que

1
{z; a(z) =0} C B(0,Ry) et L€ LY(B(0, Ry)), pour un certain
> Np ;
17 ON+2p—Np’
A2)  lim a(z) = a(oc) € Ry et 0 < a(x) < a(co) dans RV ;

|z| =00

(
(B) ess | l‘im b(z) = b(oo) € R, et il existe by > 0 tel que b; < b(z) < b(o0) a.e. RN
T|—0o0
(K) ess lim K(z) = K(o0) € Ry et K(z) > K(co) a.e. dans R";

|z|—o00
(M) meas ({z € RY; b(z) < b(oo)}U{z € RY; K(z) > K(c0)}) > 0.
Soit E le complété de C5°(RY) par rapport & la norme

lull, = [ (a(@) [ Vul? + b(z)ud) da.
RN
On suppose que g € E*, g # 0.

L’effet d’une petite perturbation pour un probleme elliptique semi-linéaire a été étudié
dans Tarantello [49], ot il est montré que si € est assez petit, alors le probleme (1.2) admet
au moins deux solutions dans le cas critique p = 2* et non-dégénéré a = 1, pour un domaine
borné, avec b =0 et K = 1.

En utilisant le principe variationnel d’Ekeland ainsi que le théoreme du col sans la con-
dition de Palais-Smale (voir Brezis-Nirenberg [6, Theorem 2.2]) combiné avec une variante
du lemme de Brezis-Lieb [5] on montre

THEOREME 3 Sous les hypothéses (A1), (A2), (B), (K) et (M), il existe €g > 0 tel que
le probléme (1.2) admet au moins deux solutions, si 0 < & < &.

1.3 Solutions multiples d’un probleme critique dégénéré

Soient © un ouvert de RY, N > 2 et o € (0,2). On désigne par H}(; |x|*) la fermeture
de C'*(Q) par rapport a la norme

Iclle= ([ eieiveras) " vee cr@)

Soit H~(£; |z|%) 'espace dual de Hy (€; |z|®) et soit E, le cone positifde E = H~(Q; |z|%).
On considere le probleme

(1.3) u>0, u#0 dans Q,

—div (|z|*Vu) = [u[*?u+ f dans Q,
u=>0 sur OS2,

ol 25, = 2N/(N—2+a) et f € H *(Q;]z|*). On observe que ce probleme devient dégénéré
si 0 € Q ou si Q est non-borné.
On définit

s2(Q) =1im S, (2N B,) sX(02) = lim S,(Q2\ B,).

r—0 r—00

il



On dit que © C RY satisfait la condition C si © est un cone de RY, ou Q@ = RY, ou

S,(Q) < min{s?(Q),s2(Q)}.

«

On démontre le résultat suivant de multiplicité.

THEOREME 4 Supposons que Q satisfait la condition C. Alors, pour chaque g € E,
il existe 9 > 0 tel que pour chaque 0 < ¢ < &g, le probléme (1.3) avec f = eg admet au
moins deux solutions.

1.4 Problemes quasi-linéaire avec condition aux limites non linéaire

Soit € R" un domaine non-borné avec frontiere réguliere I' et soit n le vecteur unité de
la normale extérieure sur I'. On considere le probléme aux limites

(4) { —div (a(z)|VulP 2Vu) = Mf(x)|u’ *u + g(z)|u|” >v  dans €,

a(x)|VuP?Vu - n+ b(x) - |[uf’ *u = h(z,u) sur T,

oﬁp<q<p*:NN—_’;)sip<N(p*:—f-oosipZN),0<a0§a€L°°(Q)etb:F—>Rest
une fonction continue telle que

c C

T =" S

ou ¢ et C sont des constantes positives.
Soit A : I' x R — R une fonction de Carathéodory telle que
(A1) |A(z, s)| < ho(z) + hi(z)|s|™ Y g <m < % sip< N (g<m< +ocosip>N),

oith; : I' = R (i = 0, 1) sont des fonctions mesurable qui satisfont hy € L™ (™=D(T; wé/(lfm)),
0 < h; <Crws p.p. dans I,

ou Cp > 0, avec w(z) = (1 + |z))* = € T et —N<oz<m-%—N+lsip<N
(=N <a<0sip>N).
On suppose aussi que
h(z, s)
A2) lim ————
(A2) 288 s
(A3) il existe pu € (p, q| tel que

=0 uniformément en z

uH(z,s) < sh(z,s) p.p. ¢ € [ et pour chaque s € R

(A4) il existe un ouvert ) # U C T tel que H(z,s) > 0 pour (z,s) € U x (0,00), ol
H(z,s) = [ h(z,t)dt.
0

Soit C$°(Q2) 'espace des fonctions C$°(R™N) restreintes & et soit E le complété de
C$°(Q) par rapport & la norme

1/p
|u||g = (/ <|Vu(a;)\1’ + uﬁwm(x)‘l’) dx) :

Q

v



Soit
[a(z)|VulPdx + [ b(z)|ul? dT
Q P

A=

inf
webs uto [ F@)|ulp dz
Q

On montre les résultats suivants

THEOREME 5 Supposons que les conditions (A1)-(A4) soient satisfaites. Alors, pour
chaque )\ < ), le probléme (A) admet au moins une solution non-triviale.

THEOREME 6 Supposons h(z,s) = 0 et ¢ > 2. Alors, pour chaque A < ), le probléme
(A) admet une infinité de solutions.

On considere maintenant le probleme non linéaire aux valeurs propres

(B) { —div (a(z)|VulP>Vu) = Af(2)|uP*u + g(z)|u|? *u], dans

a(z)|VulP~>Vu - n + b(z)|ulP~u = Mh(z,u), sur .
On montre

THEOREME 7 Supposons que les hypothéses (A1) et (A3) soient satisfaites. Soit d un
réel tel que 1/d n’est pas une valeur propre X\ pour le probléeme (B) et satisfaisant

d>i.
A

Alors il existe p > 0 tel que pour chaque r > p > P, le probléme (B) admet une solution
(u, A) = (ug, N\g) € E x R, telle que

1 1
d+ 12 fJually"™ " d + p? [|ually"™

Ad €

1.5 Résultats d’existence et de non-existence pour un probleme
quasi-linéaire avec conditions aux limites non linéaires

Soit © € R" un domaine non-borné avec frontiere réguliere I' et soit n le vecteur unité de
la normale extérieure sur I'. On considere le probléeme

—div (a(z)|VulP2Vu) + h(z)u"~' = f(\,z,u) dans Q,
(Iag) S a(@)|VulP~>Vu-n+b(z) - w*~" =0g(z,u) sur T,
u>0, u#0 dans (),

oll
N
1<p<N, max{p,2}<r<p*::;;_p
a € L>®(Q), a(z) > ay >0 p.p. T €Q
¢ C
eyt =" = Tt p.-zel,oue C>0.
(1+|(L‘|)P—1— (x)_(1+|33|)1’—1’ pP-p- T ouc



7‘/ (r—q)

G d:v<oo.

h:Q — (0,00) est continue et /

On suppose que g : I' x R — R est une fonction de Carathéodory telle que
(gl) ¢(-,0)=0, g(z,s)+g(x,—s) >0 p.p. x € F et pour chaque s € R;
(g2) lg(z, 8)| < go(z) +g1(z)[s|™; p<m<p- , Oll g; sont non-négatives, mesurables
et telles que

0 < gi(z) < Cy(1+ [2)® p.p., go € L™ D(T; wy/ ™),

ou —N <oy <m- p — N +1.
On suppose que f()\,x, s) : (0,00) x Q2 x R — R est une fonction croissante en \,
mesurable en z, dérivable en s et qui satisfait
(f1) f(-0)=0, f(A\z,8)+f(\z,—5)>0 VA>0, pp.z €, Vs €R;
(f2) |fs(\,z,8)] < Ad(x)|s]97? avec r > g > max{p,2}, VA >0, p.p. z € Q, Vs € R, ou
¢ > 0 est une fonction mesurable telle que
0 < d(z) <cpwi(z) p.p.ze€Q;

f(A\ z,s)
f3) lim ——————
(3) Tim i (z)|s]125
(f4) [f(A,z,8) — fF(A2,z,8)] < |A — Aa|vb(z)[s]97, VAL, A >0, pp.z€Q, Vs € R, ou
1 > 0 est une fonction mesurable telle que

=1 uniformément par rapport a z et A;

0 <9Y(z) < Crwi(z) p.p.z€.

On démontre que, sous ces hypotheses, ont lieu les résultats suivants

THEOREME 8 II existe 6, 0* et \* > 0 tels que le probléme (1,4) n’admet aucune
solution si 0, < 0 < 0* et 0 < A < A\*.
On définit maintenant

U={u€X:/G(:E,u)dF<0}, V:{ueX:/G(x,u)dF>O}

et
[l , [l
S | — gt — inf — b
o ilelgpr(x u) dl”’ 52foG(x,u) dr
r
SiU =0 (resp. V =0) alors §_ = —oo (resp. 7 = +00).
On montre

THEOREME 9 Soit § = max{6,,0_}, & = min{6*,0"} et supposons que J = (0,0) # 0.
Alors il existe Ag > 0 tel que

(i) le probléme (1,4) admet une solution si A > X\ et 6 € J;

(ii) le probléme (1)) n’a aucune solution si0 < XA < Ao et 0 € J.

vi



2 Problemes elliptiques singuliers: existence, unicité
et explosion des solutions

2.1 Problémes avec donnée au bord singuliére

Soit 2 un ouvert regulier de RY, Q # RY. On considére le probleme

Au=p(z)f(u) dans Q,
(2.4) u>0, uz0 dans 2,
u(z) = oo si dist (z,0Q) — 0.

Ce type de probleme fait actuellement ’objet de nombreux travaux portant sur I’existence,
I'unicité et le comportement asymptotique des solutions au voisinage de la frontiere. Les
premiers résultats d’existence ont été obtenus par Keller [31] et Osserman [40]. Ils ont
prouvé que si 2 est borné, p = 1 et f € Lip,.(2), f croissante, f(0) = 0, alors une
condition nécessaire et suffisante pour I'existence de solutions est

AWF1W0ﬁ<+m, o F'(t) = f(1).

Dans le cas particulier p = 1 et f(u) = u¥*2/V=2) N > 2 qui apparait dans de nombreux
problémes géométriques, Loewner et Nirenberg [32] ont étudié les questions d’unicité et
de comportement asymptotique. Bandle et Marcus [2] ont étendu ces résultats a d’autres
nonlinéarités, comme f(u) = u?, p > 1.

On suppose que f satisfait

(f1) feC0,00), f/>0, f(0)=0et f> 0sur (0,00)

ainsi que la condition de Keller-Osserman

(f2) /wmrwﬁ<m,ouF@:/ﬂ@m

La fonction p est continue, non-négative et peut s’annuler dans des sous ensembles de
) qui ne touchent pas la frontiere de €. Si ) est borné, on suppose que

(pl) pour chaque zy € Q avec p(xy) = 0, il existe zy 3 Qy CC Q2 tel que p > 0 sur 9.
Dans ce cas on montre

THEOREME 10 Supposons les hypothéses (f1), (f2) et (p1) soient satisfaites. Alors le
probléme (2.4) a au moins une solution.

Si Q = RY on démontre un résultat similaire, mais avec la condition (pl) remplacée
par une condition adaptée au cas non-borné. Si 2 # R est un ouvert non-borné, Marcus
[33] a construit une solution de (2.4) qui tend vers zero a l'infini et qui, de plus, est la
solution explosive minimale du probléme (2.4). Nous montrons que si = R \ B(0, R),
alors le probleme (2.4) admet deux types de solutions explosives, selon leur comportement
a l'infini: la solution de Marcus et une autre solution U telle que U(x) — +oo si |z| — oo.
De plus, la solution U est maximale parmi toutes les solutions larges du probleme (2.4).

vii



2.2 Problemes d’explosion pour 1’équation logistique

Soit © € RY (N > 3) un ouvert borné régulier. On considere le probleme

(2.5) Au+ au = b(x) f(u) dans €,

ol a est un réel et b € C%*(Q), 0 < u < 1, tel que b >0 et b Z 0 sur Q. Soit
Qo =int{z € Q: b(z) =0}

et on suppose que 2y C Q et que 09 satisfait la condition du cone extérieur. La non-
linéarité f € C*[0, 00) satisfait
(A1) f>0et f(u)/u est croissante sur (0, c0).
() [ b . on F(t)= /tf(s) ds.
1 F(t) 0

Soit Aso, la premiere valeur propre de (—A) dans Q. On considére A1 = 400 si
Q() = @

Le résultat suivant donne une condition nécessaire et suffisante pour ’existence d’une
solution explosive pour 1’équation (2.5).

THEOREME 11 Supposons que f satisfait les conditions (A;) et (Ay). Alors le probléme
(2.5) admet une solution explosive positive si et seulement si a € (—00, Moo 1)-

On remarque que dans le résultat ci-dessus b peut s’annuler sur 02 ou méme b = 0 sur
0f). On repond ainsi a une question posée par le Professeur Haim Brezis en mai 2001.

On considere maintenant le probleme

Au+au=b(z)f(u) dans Q\Qq,
(2.6) Bu =0 sur 0€),
U = 400 sur 0€2,

ou b > 0 sur 0f2 et B signifie une condition de Dirichlet, de Neumann ou de Robin.
On démontre que le probleme (2.6) admet des solutions maximales, pour n’importe
quel valeur de a. Plus précisement, on a

THEOREME 12 Pour chaque a € R, le probléme (2.6) admet une solution maximale et
une solution minimale.

On montre aussi que, sous des hypothéses supplémentaires, le probléme (2.6) admet
une solution unique.

Parmi les non-linéarités qui satisfont les hypotheses de nos résultats on cite

(i) flu) =wP, p>1; (ii) f(u) =vwPln(u+1), p > 1; (iii) f(u) = vP arctanu, p > 1.

2.3 Solutions explosives a ’'infini pour les systemes elliptiques

On considére le systéeme

(2.7)

{ Au=p(z)g(v)  dans RY,
Av =q(z)f(u)  dans RV,

viii



ol p,q € Co2(RM) (0 < o < 1) sont des fonctions non-négatives et & symétrie radiale. On

suppose que f,g € Clo(;f [0,00) (0 < B < 1) sont des fonctions non-négatives et croissantes.
Soit

G ={(a,b) € R* x R"; (3) solution radiale de (2.7) telle que (u(0),v(0)) = (a,b)}.

On montre

THEOREME 13 Supposons que

1imM=0 Ve > 0.

t—00 t

Alors G =R*" x R™.
De plus,

i) Si

/ tp(t) dt = / tq(t) dt = +oo,

0 0
alors toute solution radiale positive de (2.7) explose & 'infini.
ii) Si
/ tp(t) dt < oo, / tq(t) dt < oo
0

0

alors toute solution radiale positive de (2.7) est bornée. Si (1, 0) sont deux solutions radiales
positives de (2.7), alors il existe une constante C' telle que, pour chaque r € [0, 00),

max {[u(r) —a(r)], [v(r) — 9(r)[} < C max {[u(0) — w(0)], |v(0) — v(0)[}.

Supposons maintenant que f, g € C'[0, c0) satisfont
(H1) f(0) = g(0) =0, liminf, oo £ =: 0> 0

ainsi que la condition de Keller-Osserman

(Hy) /100 Z’t(t) < oo, ou G(t) :/Otg(s) ds.

Dans ce cas on montre

THEOREME 14 Soient f, g € C'[0,00) qui satisfont (Hy) et (Hz). Si

/Oo tp(t) dt < oo, /oo tq(t) dt < oo,
0 0

alors toute solution radiale (u, v) de (2.7) avec (u(0),v(0)) € F(G) est une solution explosive
a I'infini.

X



2.4 Unicité de la solution explosant au bord pour équations lo-
gistiques avec absorption

Soit 2 € RN (N > 3) un domaine borné et régulier, a un parametre réel et b € C%# (%),
pwe (0,1),b>0,b0dans Q. On considere 1’équation logistique
(2.8) Au + au = b(x) f(u) dans Q,
ou f € C0, 00) satisfait
(A1) f>0et f(u)/u est strictement croissante sur (0, 4+00).

Soit

Qo:=int{z € Q: b(z) =0}

et on suppose que 0€) est régulier (éventuellement vide), Oy C Q et b > 0 sur Q\ Q. On
désigne par Ay 1 la premiere valeur propre (avec conditions de Dirichlet) de I'opérateur
(—A) dans €y, avec la convention A\ ; = 400 si Qy = 0.

On dit que u est une solution large (explosive) de (2.8) si u > 0 dans Q et u(z) — oo
si d(x) := dist (x,00) — 0.

Soit D > 0 et R : [D,00) — (0,400) une fonction mesurable. On dit que R a une
variation réguliere d’indice p € R (notation: R € R,) si lim, o R(&u)/R(u) = £°, pour
chaque & > 0.

Soit K I’ensemble des fonctions k : (0, ) — (0,+00) (pour un certain v), de classe C*,

t (4)
k(s)d
croissantes, telles que lim;_,y+ <7f0 k((i; 8) :={;, pour : =0, 1.

On démontre le résultat suivant.

THEOREME 15 Supposons que la fonction f satisfait la condition (A;) et que f' est une
fonction a variation réguliére d’indice p # 0. De plus, on suppose que le potentiel b vérifie

(B) b(x) = ck*(d(z)) + o(k*(d(x))) sid(z) — 0, avec c > 0 et k € K.

Alors, pour chaque a € (—00, Ax,1), I’équation (2.8) admet une unique solution explo-
sive u,. On a, de plus,
Uq (2)

o hd(@))

2 g I/P
ou &y = +hp et la fonction h est définie par
c(2+p)

s, Vte(0,v).

o  ds ¢
/h(t) 7\/%:/0 k(s) d

2.5 Comportement asymptotique de la solution explosant au bord
pour I’équation logistique avec absorption

On continue I’étude du probleme logistique

(2.9) Au+au=0b(z)f(u) dans Q, u(z) — oo sid(z) := dist (z,0Q) — 0,



sous les hypotheses de la section précédente.

Soit K I'ensemble des fonctions & : (0,v) — (0,00) (pour un certain v), de classe C?,
croissantes, telles que limy ([ k(s) ds/k(t))® := £;, pour 4 =0, 1.

Soit RV, (¢ € R) I'ensemble des fonctions positives et mesurables Z : [4,00) - R
(avec A > 0) telles que lim, o Z(&u)/Z(u) = &9, V€ > 0. On désigne par NRV, la
classe des fonctions f définies par f(u) = Culexp {5 &#(t)/tdt}, Yu > B > 0, ou C > 0
et ¢ € C[B,o0) satisfait lim;_, #(t) = 0. Supposons que 0 < f € C'[0,00) N NRV, 4
(p > 0) est telle que f(u)/u soit strictement croissante sur (0,00) et que b = 0 sur 9
vérifie b(x) = k*(d)(1 + o(1)) si d(xz) — 0, avec k € K. Alors, pour chaque a < Ay 1, le
probléme (1) admet une unique solution positive u, (voir Théoréme 15).

Pour chaque ¢ > 0, soit

no [k k) = dou [A()] " exp [ it (sA(s)) Hds| (u>di), 0< A€ Cdy,00),
0 limy, o0 A1) = limy 0o uA'(u) = 0, lim, o u¢T A (u) =2, € R, dy, d; >0 |~

On a R C K. De plus, si k € Ry, alors 1 = 0 et lim;_,o k(t) = 0.

On définit les classes F,, = {f € NRV,;1(p>0): ¢ € RV, ou —p € RV}, sin €
(—p—2,0] et Fpo,r ={f € Fpo: limy,oo(Inu)"¢(u) = £* € R}, pour 7 € (0,00).

On démontre le résultat suivant.

THEOREME 16 On suppose que b(z) = k*(d)(1 + éd? + o(d’)) si d(z) — 0 (avec § > 0,
ceR),onk € Rye. Soit 0 < f e C0,00) telle que f(u)/u soit strictement croissante sur
(0,00). De plus, on suppose que f satisfait 'un des cas suivants de croissance a I'infini:

(i) f(u) = Cuf*! dans un voisinage de 'infini;

(ii) f € F,y avec n # 0;

(iii) f € Fpo,n avec 1 = w/(, ot w = min{6, (}.

Alors, pour chaque a € (—00, Ay,1), I'unique solution positive u, du probléme (2.9)
satisfait

ug(z) = &h(d)(1 + xd” + o(d”)) si d(z) — 0,

o & = [2(2+ p) ]V* et h est définie par [5,[2F (s)]?ds = [sk(s)ds, pour t > 0
suffisement petit. L’expression de x est donnée par

_ —(1 + ¢)€,(2¢) 'Heaviside(d — ¢) — ép'Heaviside({ — 0) = x1, pour (i) et (ii)
X= x1— 07 (—=ple/2)™ (1/(p+2) +1In&), pour le cas (ii).

2.6 Problémes elliptiques singuliers anisotropes

On considere le probleme

N—-1
(2 10) Z fz(u) Ugsz; T Uyy + p(x) g(u) =0, T €
) i=1
U= Oa T € 3Q,

o1 © C RY est un ouvert borné régulier et p est une fonction continue positive sur .
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On suppose que
(Hy)  fi,g:(0,00) = (0,00), 2 =1, N — 1 sont de classe C';
(Hy)  fi,i=1,N —1 est croissante sur (0,00) et g est décroissante sur (0, c0).
Soit
D={ye[0,f: 32" = (z1,...,25 1) tel que (z',y) € Q}.

Soit ¢ 'unique fonction positive définie par

P(y) 1 3
——dt = = (by — %), our chaque y € |0, /].
o/g(t) 2(yy)p que y € [0,/]
Alors
max(y) < max p(y) = 4,

yeD y€[0,]

ol A > 0 est défini implicitement par

A
/i dt = éﬂ?
59t 8

On impose aussi
(H3)  f] > 0 sur (0, A].
fifi

fl

Pour z € Q on deﬁmt les ensembles

*(z) € R, pour chaque i =2, N — 1.

(Cy) il existe hm

P,={2<i<N-1; Upg(x) >0} et N,={2<i<N—1; tpg(z) <0}

Notre premier résultat donne une condition suffisante pour I'unicité de la solution, si
on savait qu’au moins une solution existerait.

THEOREME 17 Supposons que les hypothéses (H;)-(Hs) et (Cy) soient satisfaites. Alors
il existe K1 = Ki(f1, g,p,Q) tel que si u est une solution positive de (2.10) qui satisfait

Z MiUg,z; + Z Mgz, + Uyy > —K;  sur Q

1€ P, 1€EN,

alors u est I'unique solution de (2.10).
Dans la suite on impose la condition
fi
C Ji
) 5

Dans ce cas on montre

=2, N — 1 est décroissante sur (0, c0).

THEOREME 18 Supposons que les hypothéses (H;)-(Hj) et (Cs) soient satisfaites.
Alors il existe Ky = Ks(f1,9,p,) tel que si u est une solution positive de (2.10) qui, de
plus, satisfait

U I
Ugz; + Z u Ug;p; T+ Z (Hlf f ) Ug,z; < Ky sur Q

i€EP; i€EN, 1

alors u est I'unique solution de (2.10).
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3 Problemes elliptiques non lisses:
théories de Clarke et de Degiovanni

3.1 Un résultat de multiplicité pour des fonctionnelles locale-
ment Lipschitz périodiques
Soit X un espace de Banach réel et f : X — R une application localement Lipschitz. Soit
Of (u) = {z* € X*; f°(u;v) > (2*,v), pour tout v € X}
le gradient de Clarke au point v € X, ou

fU(“Q U) = lim sup f(w + )‘U) - f(w)

w—Y )\ ’

AN0

veX.

Le point u € X est un point critique de f si 0 € df(u), c’est-a-dire f°(u;v) > 0, pour
chaque v € X.

Soit Z un sous-groupe discret de X, donc inf,c 5 (03 ||2]| > 0.

Une fonction f : X — R est Z-périodique si f(x + z) = f(x), pour chaque z € X et
z € Z.

Sim: X — X/Z est la surjection canonique est si x est un point critique de f,
alors I’ensemble 7! (7 (x)) ne contient que de points critiques de f. L’ensemble 7~ (7 (z))
s’appelle orbite critique de f.

On dit qu’une application localement lipschitzienne Z-périodique f : X — R satisfait
la condition de Palais-Smale (PS)z si, pour chaque suite (u,) de X telle que (f(u,)) est
bornée et ming-caf(u,) ||7*|| — 0, la suite (7 (u,)) est relativement compacte dans X/Z.

Notre résultat abstrait est

THEOREME 19 Soit f : X — R une application localement Lipschitz, Z-périodique,
bornée inférieurement et qui satisfait la condition de Palais-Smale (PS).

Alors f a au moins n + 1 orbites critiques distinctes, ot n est la dimension de ’espace
vectoriel engendré par Z.

Comme application de ce théoréme on résout le probleme multivoque du pendule forcé

(3.11) { f(/é?i 5((3 c l9(2(£)), g (®)]  p-p- t € (0,1)
(();.12) ferLr(0,1) pour p>1

(3.13) ge L), glu+T)=g(u) ou T >0, pp. ueR
(3.14) /OTg(t)dt - /01 F(t)dt=0.

On a noté

g(u) = li\lg essinf{g(u); |u—v| <e} glu)= li\lgesssup{g(u); lu—v| <e}.
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Notre résultat d’existence est

THEOREME 20 Supposons que les hypothéses (3.12)-(3.14) soient satisfaites. Alors le
probléme (3.11) a au moins deux solutions distinctes dans ’espace

X :=H)(0,1) ={z € H'(0,1); z(0) =x(1)}.

3.2 Deux approches paralleles d’'un probleme non linéaire dans
RN
En appliquant le théoréme du col, Rabinowitz [42] a étudié le probléme sans compacité

—Au+b(z)u = f(z,u) dans R",

ol f est une fonction réguliere, sous-critique et super-linéaire et b > b, > 0 dans R™. Notre
but est de présenter deux variantes non lisses de ce problemes, en utilisant les théories de
point critique de Degiovanni et de Clarke.

Soit E l’espace de Hilbert des fonctions u : R® — R telles que ||[u||% := [g«(|Dul? +
b(z)u?) < oo. On suppose d’abord que l'opérateur linéaire (—A) est remplacé par un
opérateur quasi-linéaire et on cherche les solutions faibles positives © € E' du probleme

3aij

% > Os (z,u)DjuDju + b(z)u = f(z,u) z € R".

(3.15)— Y Dj(as(z,uw)Dyu) +

ij=1

On impose les conditions suivantes

aij = aji
(3.16) aij(z,-) € C'(R) p.p. z € R"
aij(z,u)s, %L(x u)s € L*(R" x R) ;

(317)Iv >0 telque > ay(z,u)s&&; > vlE]? pp.  €R", Vs €R, VEER”
inj=1
El,u€(2 2*), v € (0, —2) elque
B0 <53 Wi u)se, <y 3 ayln5)6E pp. w € R, V(s,§) €R xR
2,j=1 i,j=1
Soit b € L{S.(R") satisfaisant

(3.19) ess, l|im b(z) = +oo .
T|—00

{ 3b>0 tel que b(x)>b p.p. x€R"
On suppose que f(z,s) Z 0 et

f:R" xR — R est une fonction de Carathéodory
(3.20) f(z,0)=0 p.p.- z € R"
0 < pF(z,s) < sf(x,s) Vs >0 p.p. x € R".
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La fonction f a une croissance sous-critique, exprimée par la condition

2n_ n
(3.21) { Ve >0 3f. € L»+2(R") tel que

|f(aﬁ,$)\ng(aﬁ)—l-€|s\z_jg Vse€ Ret pp. x € R".

Pour chaque § € (2,2*) on définit ¢(d) = 5 et on suppose que

2n
2n+(2—n)
(3.22) JC >0, e (2,2), 3G e LR tel que
' F(z,s) < G(z)|s]° + C|s[* Vs e R, pp. € R".

On peut considérer aussi le cas 0 = 2 mais dans cette situation il faut supposer que ||G||,/2
est assez petit.
Notre résultat est

THEOREME 21 Supposons que les conditions (3.16)-(3.22) soient satisfaites. Alors le
probleme (3.15) admet au moins une solution positive dans E.

On considere ensuite le probleme multivoque

(3.23) —Au+ b(z)u € [f(z,u), f(z,u)]  dans R",

[y

ou

flz,s) = ll\I‘% essinf {f(x,t); |t —s| < &} f(z,s) = 1_1{% esssup {f(z,t); [t —s| <e}.

On suppose que f: R®” x R — R est une fonction mesurable telle que
(3.24) |f(z,8) <C(|s|+[s|”) pp- (z,8) e R" xR,

ouC >0etl <p< Z—’_Lg On ne suppose pas que f(z,-) est continue, mais si on
définit F(z,s) = [y f(z,t)dt, on observe que F' est une fonction de Carathéodory qui est
localement Lipschitz par rapport a la deuxiéme variable. On observe aussi que ¥(u) =
Jrn F(x,u) est localement Lipschitz sur E.

On impose aussi les conditions

(3.25) 21\1‘1(1) esssup { ‘ @

; (x,8) € R" x (—s,e)} =0
et il existe u > 2 tel que
(3.26) 0 < pF(x,s) <sf(z,s) p.p. (z,5) € R" x[0,400) .

Notre résultat dans ce cas est

THEOREME 22 Supposons que les conditions (3.19), (3.24)-(3.26) soient satisfaites.
Alors le probléme (3.23) a au moins une solution positive dans E.

XV



3.3 Perturbations d’un probleme non linéaire aux valeurs pro-
pres symétrique

Soit © ¢ RY un ouvert borné. Pour r > 0 fixé arbitrairement on considére le probléme
suivant: trouver (u, \) € H}(Q) x R tel que

f(@,u) € Li,,(Q),

loc

(3.27) —Au = Af(z,u) dans D'(Q),
/ |Du|?dx = .
Q

On suppose que f : 2 x R — R est une fonction de Carathéodory avec les propriétés
suivantes:

(f1) f(x,—s) = —f(z,s), p.p. sur Q et pour chaque s € R;

(f2) ilexiste a € L'(Q), b € Ret 0 < p < 2% (si N > 2) tels que

0< sf(z,5) < ale) +blsP,  Flz,5) < a(z) + blsf?,
p.p. sur §2 et pour chaque s € R\ {0}, ou F(z,s) = [; f(x,t)dt;

(f3) sup|f(z,s)| € L},.(Q), pour chaque ¢ > 0.
jsI<t

THEOREME 23 Supposons que les conditions (f1) — (f3) soient satisfaites. Alors le
probléme (3.27) admet une suite (tu,, \,) de solutions distinctes.
Ensuite notre objectif est d’analyser le probleme perturbé
f(x,u), g(w,u) € Liy(2)
(3.28) —Au = A(f(z,u) + g(z,u)) dans D'(Q),

/ |Du|*dx =12,
Q

ou g: {2 x R — R est une fonction de Carathéodory qui n’est pas nécessairement impaire
par rapport a la seconde variable. On suppose quand méme que ¢ satisfait

(91) 0 < sg(z,s) < a(zx) + b|s|P p.p. sur Q et pour chaque s € R\ {0};

(g2) sup |g(z,s)| € L},.(Q2), pour chaque ¢ > 0;
s|<t

(93) G(z,s) < Cy(1+|s/P), p.p. sur Q et pour chaque s € R, avec C; > 0, ou G(z,s) =
Jo g(, t)dt.

On démontre que le nombre de solutions du probléme perturbé (3.28) devient de plus
en plus grand si la perturbation est assez petite, dans un sens précisé ultérieurement. Plus
précisement, on a

THEOREME 24 Supposons que les conditions (f1)—(f3) et (g1)—(g3) soient satisfaites.
Alors, pour chaque entier n > 1, il existe &, > 0 tel que le probléme (3.28) admet au moins
n solutions distinctes si g est une fonction telle que la condition (g3) soit satisfaite pour
Cy =ep.
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3.4 Résultats de multiplicité pour une classe d’inégalités hemi-
variationnelles

Soit n > 2 et Q un ouvert borné et régulier de R™. Soit ¥ : R™ — R une fonction convexe
et paire telle que ¥(0) = 0, ¥(£) > 0 pour £ # 0. On suppose aussi qu’il existe ¢ > 0 tel
que ¥ (&) < cl€|, pour chaque £ € R™Y.

Soit G : 2 x RY — R une application qui vérifie les conditions

(G1) G(-,s) est mesurable, pour chaque s € R";
(G5) pour chaque t > 0, il existe ay € L'(Q) tel que
|G (xz,81) — G(x, $9)| < ay(x)|s1 — 2
pour p.p. = € Q et chaque s1, s, € RN avec |s;| < t;
(G3) il existe a € L'(Q2) et b € R tels que

|G(x,5)| < a(zx) +bls|”  pour p.p. z € Q et chaque s € RV ;

(G4) pour chaque € > 0 il existe a, € L'(Q) telle que

G°(z,5;—5) < a.(x) + e|s[*/ 1) pour p.p. x € Q et chaque s € RV .

On suppose aussi que la fonction G satisfait les conditions

(3.29) il existe @ € L'(Q) et b € L*(Q) tels que
' G(z,s) > —a(z) — b(z)|s] pour p.p. © € Q et chaque s € RY;
G
(3.30) (z,5) = +o0 pour p.p. ¥ € Q;
[s]—o0 |8|
(3.31) {s — G(=, s)} est paire pour p.p. z € 2.

Soit £ : L#-1(Q; RY) = R U {400} définie par

( a o Dus S
/\Il(Du )dx—i—/\ll <|Dus|> d|Du?|(z)+
Q Q
E(u) = +/\If°°(u Q@ v)dH" ! (x) siu € BV(Q;RN),
N
| +o0 si u € Lot (Q;RN)\ BV (Q; RY),

ou Du = Du®dzx + Du’ est la décomposition de Lebesgue de Du, |Du’| est la variation
totale de Du®, Du®/|Du?| est la dérivée de Radon-Nikodym de Du® par rapport a |Du?®|,
U> est la fonctionnelle de récession associée a ¥, v est la normale extérieure sur 0f2 et la
trace de u sur JS) est encore designée par u (voir [1]).

Le théoreme suivant est un résultat de multiplicité du type Clark [21].
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THEOREME 25 Pour chaque entier k > 1 il existe A, tel que si A\ > Ay, le probléme

u € BV(Q; RY)

5(1})—5(u)+/ﬂG°(m,u;v—u)dfc2)\/Q\/%W-(v—u)d:r Vv € BV (; RY)

admet au moins k paires (u, —u) de solutions distinctes.
On impose maintenant la condition technique suplémentaire
il existe ¢ > 1 et R > 0 tels que
(3.32)
G°(z,s;8) < qG(z,8) <0 p.p. x € Q et chaque s € RY avec |s| > R.

On définit la fonctionnelle paire et semicontinue inférieurement f : L#(Q; RY) - RU
{+o0} par

f(u) =E(u) +/ G(z,u)dx.
Q
Sous ces hypotheses on montre

THEOREME 26 II existe une suite (uy) de solutions du probléme
u € BV(Q; RY)
E(w) — E(u) +/ G°(z,u;v —u)dx >0 Vv e BV(Q;RY)
Q

telle que f(up) — +o00.

3.5 Un probleme non linéaire qui modélise ’initiation des trem-
blements de terre

Soit © C R? un domaine régulier tel que sa frontiere se décompose en deux parties: la
frontiere extérieure I'y = 02 et une partie interne I' composée d’un nombre fini d’arcs
bornés. Soit

V={ve H(Q); v=0 sur [y}

et soit v : V — L*(T') Popérateur de trace. On définit le cone convexe fermé
K={veV; [v]>0surI},

ol [-] signifie le saut & travers I'. Soit 3 une constante positive et j(t) = —(t?/2, t € R.
Pour r > 0 fixé on définit

M = {UGV; /ude:rQ}.
Q
On étudie le probléeme suivant de valeurs propres:

trouver u € K N M et A\? € R tels que

(3:33) [ Vu- V- wde+ [ § (a@)iy(0() - v(u(@))) do+
/\2/QU(U —u)dx >0, Yv e K.
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On montre le résultat suivant de multiplicité:

THEOREME 27 Le probléme (3.33) admet une infinité de solutions (u, \?) et 'ensemble
de valeurs propres {\?} satisfait A3 := sup \? < +oo et inf \? = —oco. De plus, il existe
une solution (ug, \3) du probléme (3.33). L’application 3 — A\3(3) est convexe et

1o do+388) [ v do > B [ do, Ve e K,

On étudie ensuite l'effet d’une perturbation arbitraire dans le probleme (3.33). Plus
précisement, si € est un réel, on considere le probleme

trouver u. € K et A2 € R tels que
oy | [V Vo —udet [ G+ o) (@) (0(e) = () do+
M (v —u.)dz >0, K,
E/QU(’U ue)dr >0, Vv €

oue >0et g: R— R est une function continue arbitraire telle que

2(N -1
Jda>0,32<p< % tels que [g(t)| < a(l+ [t|P) , si N > 3;
da >0, 32 < p < 400 tels que |g(t)] < a(l + |t]P) , si N =2.
On démontre que le nombre de solution du probléme (3.34) devient de plus en plus grand
si la perturbation “tend” vers zero:

THEOREME 28 Pour chaque entier n > 1, il existe &, > 0 tel que le probléme (3.34) a
au moins n solutions distinctes (u, \?) si |e| < e,. De plus, A2, := sup{\?} est fini et il
existe une solution (uge, A\3.) du probléme (3.34).

4 FEtude des inégalités hemivariationnelles

4.1 Perturbation d’une inégalité hemivariationnelle symétrique
avec contrainte

Soit  un ouvert borné et régulier de RY et soient ay,ay : Hy(Q) x Hj () — R deux
formes bilinéaires, symétriques et continues. Soient By, By : H}(Q2) — Hy(Q) opérateurs
linéaires, auto-adjoints et coercifs. Pour a,b,r > 0, soit

Sﬁ’b = {(Ul,’Ug) € H&(Q) X H&(Q) : CL(Bl’Ul,Ul) + b(BQ’UQ,’UQ) = 7”2}.

Soit 5 : @ x RY — R telle que j(z, ) est localement Lipschitz. L’hypothése fondamentale
sur j est j(x, —y) = j(z,y), pour p.p. z € et chaque y € RY. On suppose que

(Hy) Tlexiste § € Lp-1(Q) et p € R tels que |z| < 0(z)+plyP~!, pour p.p. (z,y) € QxRN
et chaque z € 9,j(x,y).
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On définit application (A1, As) : H3 () x HJ(Q) — H~1(Q) x H}(Q) par la relation
(A1, Az) (u1, uz), (vi,v2)) = a1(u1, v1) + ag(uz, v2)
ainsi que P'application de dualité A : H}(Q) x Hy(Q) — H 1(Q) x H 1(Q) par
(A(uy,ug), (v1,v2)) = a(Biuy,v1) + b(Baua, v2).
On impose la condition de compacité
(Hs) Pour chaque suite {(ul,u2)} C S%° telle que u; —+ u; dans HL(), pour chaque
2t € 0f;(ul), tel que
(4.35) a;(ul, ul) + (28, ul )y — o; € R,
1= 1,2, et pour chaque w € L" 771 (2, RY) satisfaisant
(4.36) w(z) € 0yj(x, (u1 — u2)(z)) pour p.p. = € €,

tel que
[(A1, Az) = Ao - A] (ug, u7)
converge dans H~'(Q2) x H~(Q), olt

(4.37) o = r2(ag + ag + / (w(z), (1 — us)(2)) dz),

il existe une sous-suite convergente de (u),u?).

Soit ¢ : 2 x RN — R une fonction de Carathéodory qui est localement Lipschitz par
rapport a la deuxieme variable et qui ne satisfait aucune hypothese de parité. On impose

(H3) Tl existe 8, € LP/®=D(Q) et 6, € L>(Q) tels que
2| < O1(2) + b(2) [y,
pour p.p. (z,y) € Q x RN et chaque z € 9yg(z,y).

Pour ¢ € H'(Q2), on considére le probléme suivant: trouver (u;,us) € H}(2) x HJ(£2)
et (A1, A2) € R? tels que

[ ay(uy, v +a2(u2,vg)+<gb v >+ < P, v9 > +

+ / {35 (@, (1 = ) @); (01 = v2) @)+

(Prap) < gy( (ur — ug)(2); (v1 — v2)(x)) }dx >
> )\1(31U1, v1)v + Aa(Bausg, v2)v, YV v, v € Hy (),

a(Blul, U,l) + b(BQ’U,Q, ’LLQ) = 7"2.

Motreanu et Panagiotopoulos [36] ont montré que si g = 0 et ¢ = 0, alors le probleme
(P,4p) admet une infinité de solutions. Notre résultat est dans le méme esprit que le
théoreme 23 et montre que si les perturbations g et ¢ sont assez petites, alors le nombre
de solutions de ce probleme devient de plus en plus grand. Plus précisément, on a

THEOREME 29 Supposons que les hypothéses (Hy)— (Hs) soient satisfaites. Alors, pour
chaque n > 1, il existe 6, > 0 tel que, si ||p||g-1 < §, et si ||01]] prw-1) < On, ||02]|L0 < On,
alors le probléme (P, ,;) a au moins n solutions distinctes.

XX



4.2 Résultats d’existence du type Hartman-Stampacchia pour
les inégalités hemivariationnelles

Soit V' un espace de Banach reflexif infini dimensionnel tel qu’il existe 7' : V — L?(€, R¥)
un opérateur linéaire et continu, ot 1 < p < 0o, k > 1, et Q est un ouvert borné de R”.
Soit K CV,A: K — V*et j=j(z,y): 2 x R* = R une fonction de Carathéodory
qui est localement Lipschitz par rapport & la deuxiéme variable y € R* et qui satisfait la
condition

(j) il existe hy € L5-1(Q, R) et hy € L=®( R) tels que

2] < hi(z) + ho(z) |yt

pour p.p. & € Q et chaque y € R*, 2 € 9j(x,y). Soit Tu = 4, u € V. On étudie le
probleme
(P) Trouver u € K tel que, pour chaque v € K,

(Au,v —u) + /Qjo(ac,ﬁ(x); o(z) — a(x))dz > 0.

On montre plusieurs résultats d’existence pour ce probleme, dont on cite

THEOREME 30 Supposons que I’ensemble K est fermé, borné et convexe et que 'opé-
rateur A : K — V* est monotone et demi-continu sur F' N K, pour chaque sous-espace
fini dimensionel de V. Si j satisfait la condition (j) alors le probléme (P) a au moins une
solution.

On montre aussi plusieurs résultats d’existence pour des inégalités variationnelles-
hemivariationnelles du type: trouver u € K tel que

(Au= f,0—u) + @) = @) + [ (1@ 1(0(@) — u(@))du >0, Voe K.
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Existence and Uniqueness of Positive Solutions to a
Semilinear Elliptic Problem in RY

Florica-Corina St. CIRSTEA and Vicentiu D. RADULESCU

Department of Mathematics, University of Craiova, 1100 Craiova, Romania

Let p € CIOO’;’(RN) with p > 0 and let f € C*((0,00),(0,00)) be such that lim,~, f(u)/u = 400, f is bounded
at infinity and the mapping u — f(u)/(u + B) is decreasing on (0, 00), for some 3 > 0. We prove that the
problem —Au = p(z) f(u) in RY, N > 2, has a unique positive Cfo’ca(RN ) solution which vanishes at infinity
provided fooo r®(r)dr < oo, where ®(r) = max {p(z); |z| = r}. Furthermore, it is showed that this condition is
nearly optimal. Qur results extend previous works by Lair-Shaker and Zhang, while the proofs are based on two

theorems on bounded domains, due to Brezis-Oswald and Crandall-Rabinowitz-Tartar.

1 Introduction

Consider the problem
—Au =p(z)f(u) in RN

u>0 in RY (1)
u(z) > 0 as |z |- o0,

where N > 2 and the function p satisfies the following hypotheses:
(pl) p € CY%(RY) for some a € (0,1);
(p2) p > 0 in RY.
This problem has been intensively studied in the case where f(u) = v, with v > 0. For
instance, in the case of a bounded domain Q C R”", Lazer and McKenna proved in [7] that the

problem
—Au = p(x)u™7, in Q

has a unique classical solution if p is a sufficiently smooth function which is positive on Q. The
existence of entire positive solutions on R" for v € (0,1) and under certain additional hypotheses
has been established in Edelson [4] and in Kusano-Swanson [5]. For instance, Edelson proved



the existence of a solution provided that
/ NN =2DP(r)dr < oo,
1

for some A € (0,1), where ®(r) = max p(x). This result is generalized for any v > 0 via the sub

and super solutions method in Shaker [8] or by other methods in Dalmasso [3]. Lair and Shaker
continued in [6] the study of (1) for f(u) = u~7, v > 0. They proved the existence of a solution
under the hypothesis
(p3) /7" - ®(r)dr < oo, where &(r) = I‘n‘zixp(x).
2 =r

Zhang studied in [9] the case of a nonlinearity f € C'((0,00), (0,00)) which decreases on
(0, 00) and satisfying lim,~ o f(u) = +o00.

Our aim is to extend the results of Lair, Shaker and Zhang for the case of a nonlinearity
which is not necessarily decreasing on (0,00). More exactly, let f : (0,00) — (0,00) be a C!
function which satisfies the following assumptions:

(f1) there exists 8 > 0 such that the mapping u — 'f—(f)ﬁ is decreasing on (0, 00);
(f2) li{‘r(l) J(u) = 400 and f is bounded in a neighbourhood of +oc.
u u

Our main result is the following:

Theorem 1 Under hypotheses (f1), (2), (p1)-(p3), the problem (1) has a unique positive
global solution u € CE*(RM).

Theorem 1 shows that (p3) is sufficient for the existence of the unique solution to the problem
(1). The following result shows that condition (p3) is nearly necessary.

Theorem 2 Suppose p is a positive radial function which is continuous on R" and satisfies
o0
/ rp(r)dr = oo.
0

Then the problem (1) has no positive radial solution.

2 Uniqueness

Suppose u and v are arbitrary solutions of the problem (1). Let us show that v < v or,
equivalently, In (u(z) + 8) < In (v(z) + B), for any € R". Assume the contrary. Since we have

lim (In (u(z) + 8) —1In (v(z) + 8)) = 0,

|z|—o00

we deduce that maxg~ (In(u(z) + B8) — In(v(z) + B)) exists and is positive. At that point, say
To, we have

V (In(u(zo) + B) — In(v(zg) + B)) = 0,

2



SO

By (f1) we obtain

So, by (2) and (3),

0> A (In(u(zo) + B) — In(v(xo) + §)) = m Aulw) = gy S
1 24— |[Vo(xo)]* =

W.Wu(mo)l j(v(l‘oHB)Q Vo (z0)|

Wf(“(‘%)))— W)Av(m -

—p(o) (u(xo) =3 o) +ﬂ> >0,

which is a contradiction. Hence u < v. A similar argument can be made to produce v < u,
forcing u = v.

3 Existence

We first show that our hypothesis (f1) implies that li{r(l) f(u) exists, finite or +o00. Indeed, since
u

%“g is decreasing, there exists L := il{r(l) %‘ﬂ) € (0,400]. It follows that %lbl\lj(l) f(u) = Lp.

In order to prove the existence of a solution to (1), we need to employ a corresponding result
by Brezis and Oswald (see [1]) for bounded domains. They considered the problem
—Au = g(z,u) inQ
u>0, u#0 inQ (4)
u=0 on 09,

where Q@ C R" is a bounded domain with smooth boundary and g(z,u) :  x [0,00) — R.
Assume that

for a.e. x € Q the function u — g(z,u) is continuous on [0, o)

and the function v — g(x,u)/u is decreasing on (0, 00) ;

for each u > 0 the function x — g(z,u) belongs to L>(Q); (6)



3C > 0 such that g(z,u) < C(u+1) ae.2€Q, Vu>0. (7)

Set
ao(x) = limg(z,u)/u  and Uoo(z) = lim g(z,u)/u,

u\0 U—00

so that —oo < ap(z) < 400 and —00 < ax(z) < +00.
Under these hypotheses on g, Brezis and Oswald proved in [1] that there is at most one
solution of (4). Moreover, a solution of (4) exists if and only if

Al(—A — ao(l')) <0 (8)
and
M (—A —ax(z)) >0, (9)

where A;(—A — a(z)) denotes the first eigenvalue of the operator —A — a(z) with zero Dirichlet
condition. The precise meaning of \;(—A — a(z)) is

A(=A —a(z) = 111||f0||2 X (/IW)2 / )

[p#0]

Note that / ayp® makes sense if a(z) is any measurable function such that either a(z) < C or

[p#0]
a(x) > —C a.e. on €.

Let us consider the problem

—Au, =p(z)f(ug), if |z |<k
u(z) =0, if |z |=k

The following two distinct situations may occur:

Case 1: f is bounded on (0, c0).
In this case, as we have initially observed, there exists and it is finite li{% f(u), so f can be
u

extended by continuity at the origin.

In order to obtain a solution to the problem (10), it is enough to verify that the hypotheses
of the Brezis-Oswald theorem are fulfilled. Obviously, (5) and (6) hold. Now, using (pl),
(p2) and the fact that f is bounded, we easily deduce that (7) is satisfied. We observe that

ap(z) = I%M = 400 and ax(z) = ugglmw = 0. Then (8) and (9) are also
fulfilled. Thus by Theorem 1 in [1] the problem (10) has a unique solution u; which, by the

maximum principle, is positive in |z| < k.

Case 2: 11}{‘% f(u) = +oo.



We will apply the method of sub and supersolutions in order to find a solution to the problem
(10). We first observe that 0 is a subsolution for this problem.

We construct in what follows a positive supersolution. By the boundedness of f in a
neighbourhood of +oo, there exists A > 0 such that f(u) < A, for any u € (1,+00). Let
fo :(0,1] = (0,400) be a continuous nonincreasing function such that fo > f on (0,1]. We can
assume without loss of generality that fo(1) = A. Set

folu), if 0<u<1
g(u) =
A, ifu>1.

Then ¢ is a continuous nonincreasing function on (0,+0c). Let h : (0,00) — (0,00) be a C!
nonincreasing function such that A > g. Thus, by Theorem 1.1 in [2] the problem

—AU =p(x)h(U) if |z |<k
U=0, if |[z|=k

has a positive solution. Now, since h > f on (0, +00), it follows that U is supersolution for the
problem (10).

In both cases studied above we define u;, = 0 for |z| > k. Using a maximum principle
argument as already done above for proving the uniqueness, we can show that u; < ugz4; on R,

We now prove the existence of a positive function v € C?(R") for which u; < v on RY. Asin
[6] we construct first a positive radially symmetric function w such that —Aw = &(r) (r =| z |)
on R" and lim,_,, w(r) = 0. We obtain

where :
K= [ [o"'®(0)dodC, (11)
[

provided the integral is finite. Integration by parts gives

T

C T C
d
[e [0y dodc = ~(n -2 0/ d_céz‘"()/ 0" (or) do dC =

0 0

(n—2)"" (—TQ_”/TO”_ICI)(O) do + /Tgcb(g) dg) :

0



Now, using L’Hopital’s rule, we evaluate the limit of the right side of (12) as r — oc. We have

lim (—7"2" / o1 (0) do + / Co(¢) dg) —
0

0

— [ 0" B(0) do + 12 [ CB(C) dC

. 0 0
= lim =
r—00 7“”_2

T—00

= lim ]C@(C) d¢ = 70@(0 d¢ < oo.

Then we obtain K = —— - / CO(C) dC < oo
n—
0
Clearly, we have
1 o
w(r) < — /gcp(g)dg Vr >0
0
1"
Let v be a positive function such that w(r) = — - / mdt where ¢ > 0 will be chosen such
c

that Kc < / —dt

We prove that we can find ¢ > 0 with this property.
x

4
By our hypothesis (f2) we obtain that Jim / mdt = +00. Now using L’Hopital’s rule we
0

have .
_t_
) Of f(@® dt . T
lim = lim — =4+
Z—00 T T—00 f(.T)

From this we deduce that there exists x; > 0 such that / —dt > Kz for all x > z,. It follows

that for any ¢ > z; we have K¢ < /—dt

But w is a decreasing function, and this implies that v is a decreasing function too. Then
v(r) v(0)

O/ﬁdtgo/ﬁdt: )=c- K</—dt
t

It follows that v(r) < ¢ for all r > 0.
From w(r) — 0 as r — oo we deduce that v(r) — 0 as r — oo.



By the choice of v we have

1 v 1 v 1 v\’
Vw=--——-Vv and Aw:——Av—i——(—) Vo2 13
¢ T0) o e \Fwy) VY 1)
The hypothesis u +—— ff) is a decreasing function on (0,00) implies that u —— fiu) is a
U
decreasing function on (0, c0). From (13) we deduce that
Av < C@Aw =—c @@(r) < —f(v)®(r). (14)

By (10) and (14) and using in an essential manner the hypothesis (f1), as already done for
proving the uniqueness, we obtain that u < v for |z| < k and, hence, for all R".
Now we have a bounded increasing sequence

Uy g < -os S U S Uy S0 S0

’

with v vanishing at infinity. Thus there exists a function, say u < v such that uy — u pointwise
in RV.

Now, using the same argument as in [6], it is easy to prove that u € Ci:*(R") and thus u is
a classical solution of the problem (1).

4 Proof of Theorem 2

Suppose (1) has such a solution, u(r). Then

-1
/U/II(,’,,) + n

u'(r) = —f(u(r))p(r).

We put In(u(r) + 1) = a(r) > 0 for all » > 0.

r

u(r) = ! u(r) — ! ul?
ACRTO R R T
Then u(r) satisfies
~1 n—1 ~/ 1 2 _ f(u(T)) r
L P CS S N EAN A B e 4 O (15)

Multiplying equation (15) by 7*~! and integrating on (0, () yield

o

ﬂ'(C)C"_l-I-/Cinl \Vu|*do = _/Cif(u(a)) (0)o™ 'do (16)
/(o) +1)? / u(o) + 17 '



Now we multiply (16) by ¢!~ and integrate over (0,7). Hence

+/C1 ”/ Z —E _|Vul’do d¢ =

/Cln/f +1 7)o" 1do d¢.

We observe that @(r) < @(0) Vr > 0 implies u(r) < u(0) Vr > 0.

f(u)

If 8> 1 then the function u —
u+1

is decreasing on (0, 0cc). This implies

flu(o)) _ f(u(0))
u(o) +1 ” u(0)+1° (17)

Since u is positive, we have
/Cln/f o)o™ tdod¢ < @(0) forallr > 0.

Substituting (17) into this expression we obtain

T ¢
/len/p(a)onflda d¢ < 1}(0) i 111(0) < 00.
0 0

We can use integration by parts and L’Hopital’s rule (as we did in proving that the integral in
(11) is finite) to rewrite this as

contradicting the hypothesis.

If B < 1 then the function u —— i i B
u

>/Cl”/f 0)o™ 'do d¢ =

is increasing on (0, 0c). In this case we have

T ¢
= [ [ LD “(“)i/f plo)o™do d¢ >



T ¢

f(u(0)) . n
> m,@O/CI O/P(U)O tdo d¢
which implies
T ¢
n n @(0)(u(0) + B)
0/<1 O/p(a)g Ydo d¢ < 3 F(u(0) < oo forallr>0.

We obtain again that

1 u(0) + 8
hm/tptdtgiuo < 00
w28 PO S ) )
contradicting the hypothesis.
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Multiple solutions of degenerate perturbed elliptic
problems involving a subcritical Sobolev exponent
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Abstract. We study the degenerate elliptic equation
—div (a(z)Vu) + b(z) u = K(z)|ul’"u + g(z) in RV,

where N > 2 and 2 < p < 2*. We assume that a # 0 is a continuous, bounded and nonnegative
function, while b and K are positive and essentially bounded in RY. Under some assumptions on a, b
and K, which control the location of zeros of ¢ and the behaviour of a, b and K at infinity we prove that
if the perturbation g is sufficiently small then the above problem has at least two distinct solutions in an
appropriate weighted Sobolev space. The proof relies essentially on the Ekeland Variational Principle [8]
and on the Mountain Pass Theorem without the Palais-Smale condition, established in Brezis-Nirenberg
[6], combined with a weighted variant of the Brezis-Lieb Lemma [5], in order to overcome the lack of
compactness .

Key words: degenerate elliptic problem, weighted Sobolev space, unbounded domain, perturbation,
multiple solutions.

1 Introduction

Perturbations of semilinear elliptic equations and of inequality value problems have been inten-
sively studied in the last two decades. We start with the elementary example

—Au = |[ulf %y in Q,
(1)
u=>0 on 0f,

*Correspondence author. E-mail: varadulescu@hotmail.com
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where 2 is a smooth bounded domain in R (N > 2) and 2 < p < 2*. Here 2* denotes the critical
Sobolev exponent, that is, 2* = 2N/(N —2),if N > 3, and 2* = 400, if N = 2. A classical result,
based on a Z, symmetric version of the Mountain Pass Theorem (see Ambrosetti-Rabinowitz
[1]), implies that problem (1) has infinitely many solutions in HJ(f2). A natural question is
to see what happens if the above problem is affected by a certain perturbation. Consider the
problem

—Au = |ufP?u+g(z) inQ,

(2)
u =0 on 0f) .

Bahri-Berestycki [3] and Struwe [14] have showed independently that there exists py < 2* such
that for any g € L?*(Q), problem (2) still has infinitely many solutions, provided 2 < p < po.
Moreover, Bahri [2] has shown that for any 2 < p < p, there is a dense open set of g € H~'(f)
for which problem (2) possesses infinitely many solutions.

Our aim is to study a perturbation problem, but from another point of vue. More exactly,
we will analyse the effect of a small perturbation g in the degenerate semilinear elliptic problem

—div (a(x)Vu) + b(z) u = K(2)|ulf~?u+ g(z) in RV, (3)

where N > 2 and 2 < p < 2*. Suppose that a € C(RY) and b, K € L®(R") satisfy the
hypotheses:

(A1) There exists Ry > 0 such that

1 Np
N = — Lq B .
{z; a(z) =0} C B(0,Ry) and - € LYB(0, Ry)) for some g > ON T 2p - N
(A2) |l|im a(r) = a(oc) € Ry and 0 < a(z) < a(oo) in RV ;
T|—00
(B) ess ‘ l‘im b(x) = b(oc) € Ry and there exists b, > 0 such that b, < b(z) < b(oo) a.e. in RV ;
T|—00
(K) ess ‘l‘im K(z) = K(00) € R, and K (z) > K(o0) a.e. in R ;
T|—00

(M) meas ({z € RY; b(z) < b(oo)} U {z € RY; K(z) > K(c0)}) > 0.

The degeneracy hypothesis (A1) is inspired by condition (A—1) introduced in Murthy-Stampacchia
[11]. In light of Proposition 1, assumption (A1) should be seen as a “subcritically” condi-
tion. Our framework includes degeneracies a that behave like a(x) ~ |z|* near the origin, with
0 < a<2N/p+2— N. For the treatment of supercritical degeneracies on bounded domains
we refer to Passaseo [12], where several nonexistence results are proven. The full strength of
condition (A2) will appear in the proof of Proposition 2. This assumption is taken over from
Chabrowski [7] and it will be used in this paper only to check that the hypotheses of [7, Theorem
1] are fulfilled in our situation.

Let H},(R") be the Sobolev space defined as the completion of C§°(R") with respect to the

11



norm
luli2s = [ @@Vl +ba)u?) da.
RN
We denote by ||-||-1 the norm of H;,}(RN) which is the dual space of H;yb(RN), ie H,, (RN =
(H!,(RY))*. Throughout this work we suppose that g € H,, (R")\ {0}.

Definition 1 We say that u € H;,b(RN) is a weak solution of (3) if

/ (a(z)Vu - Vv + b(z)uwv) de — / K(z)|ulP2uv do — / g(x)vdr =0 for allv € CP(RYN).
R" R" R"

We are concerned in this paper with the study of the degenerate semilinear elliptic equation
(3), in other words it is assumed that a vanishes in at least one point in R". The main result
asserts that if ||g||—1 is sufficiently small then problem (3) possesses at least two solutions. We
overcome the lack of compactness of our problem by applying a variant of the Mountain Pass
Theorem without the Palais-Smale condition (see Brezis-Nirenberg [6, Theorem 2.2]), combined
with a generalization of the Brezis-Lieb Lemma [5, Theorem 1]. We also point out that the
study of degenerate elliptic boundary value problems was initiated in Mikhlin [9], [10] and many
papers have been devoted in the past decades to the study of several questions related to these
problems. We refer only to Murthy-Stampacchia [11], Stredulinsky [13], Passaseo [12] and the
references therein.

Taking into account our hypothesis (A2), the continuity of @ implies that meas {z € R"; a(zr) <
a(oo)} > 0. On the other hand, combining the hypotheses (A1) and (A2) with the continuity
of & we obtain that infRN\B(O,Ro) a(x) > 0. According to these comments we see that if a,

K € C(RY) satisfy (A1), (A2) and (K) then all the assumptions of Lemma 1 and Theorem 1
in [7] are fulfilled. In virtue of these results, Chabrowski [7] established the existence of a weak
solution to problem (3) in the case ¢ = 0 and b = A > 0. We prove in this paper that if we
perturbe the problem studied in Chabrowski’s paper such that the perturbation does not exceed
some level, then equation (3) has at least two distinct solutions. More precisely, if ¢ is small then
there is a local minimum near the origin, while the second solution is obtained as a mountain
pass. Assumptions (B), (K) and (M) will be used to deduce the existence of the mountain pass
solution, while the existence of a simple solution (the local minimum) will follow without these
stronger hypotheses. Results of this type have been originally proven in Tarantello [15], but in a
different framework. More precisely, Tarantello considered the non-degenerate (a = 1) problem
(3) in a bounded domain, and for p = 2* (N > 3), b = 0, K = 1 it is showed that (3) has at
least two distinct solutions, provided that g #Z 0 is sufficiently “small” in a suitable sense.
Our main result is the following.

Theorem 1 Assume conditions (A1), (A2), (B), (K) and (M) are fulfilled. Then there exists
C > 0 such that problem (3) has at least two solutions, for any g Z 0 satisfying ||g||-1 < C.

12



2 Auxiliary results

Weak solutions of (3) correspond to the critical points of the energy functional

Tw) =3 /(a(x)\Vu|2+b(a:)u2)dx—% [ K@urdr— [ glude,  ue H,RY).
RN

R" R"

It is easy to observe that the boundedness of a and b implies that H*(R") is continuously
embedded in H,(R"). Our first result shows that H!,(R") is continuously embedded in
LP(R™). Using this fact and (K) we conclude that the functional .J is well defined.

Proposition 1 There exists a positive constant C, > 0 such that, for any u € Hé’b(RN ),

/ wlPde| <G, (R/ (a(2)|Vul? + b(z)u?) de

Proof. We follow the method used in the proof of Proposition 2.1 in Passaseo [12] (see also
Chabrowski [7]). In view of our hypotheses (A1) and (A2), we may assume, by taking Ry large

D=

enough, that

{z; a(z) =0} C B(0,Ry — 1) and inf a(z) > 0. (4)

R™\B(0,Ro-1)
Choosing ¢ appearing in (A1), we define r = q2+_q1- We see that our hypothesis g > mﬁ;ﬁ
implies p < 2=, where 1 < r < 2 < N. So, by the Sobolev embedding theorem, Wy (B(0, Ry))

is continuously embedded in L?(B(0, Ry)). Using this fact, (A1) and Holder’s inequality we find

(B/ updx) < Cy / Vurdx) =C’1(B/ 1un7"a(x)q_qu_1dx) <
\B(0. o) Gy UT) T

(O,Ro) ) . O,Ro) )
1 : 2 2 2 2 2
< .
4 (B / o(z)7 dx) / a(x)|Vu| dx) < Oy (E / (a(z)|Vul® + b(z)u )dm)
(07R0) \B(OaRO) (07R0)
(5)

Let Wg,_1 € CY(R") be such that ¥g,_; = 1in R" \ B(0, Ry), ¥x,_1 = 0 on B(0, Ry — 1)
and 0 < ¥p,_; < 1in RY. The continuous embedding H*(R") c LP(R") and relation (4)
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imply

IShL
3

/ lulPdx | = / [uWgy—1Pdx | <
Y\ B(0,Ro) "\B(0,Ro)
/ |U,\IJR0_1|p dx < (R/ |V U\I[RO 1 | +‘U’\I}R0 1| ) <
N

1 (6)

C, /(|WRO,1|2u2+m;RO,1|2|w\2+|@R0,1|2u2) dr | <

\R" .

G| [ (VeP+wddr| <G| [ (@@)VuP +b@e?)de |
\R"\B(0,Ro-1) M\ B(0,Ro—1)

where C; with i = 1, 6 are some positive constants.
From (5), (6) and the elementary inequality

(a +b)YP < C(p) (a’? + b'/P) for all a,b >0

we obtain
/ lulPdx | < C(p) (B / |ulP dx) + / |ulP dz <
o (0,Ro) M\ B(0,Ro)
%
c, / (a(@)|Vul? + b(z)u?) dz | |
N
for some positive constants C(p) and C, depending only on p. This completes our proof. O

In this paper we denote by ”—” the weak convergence and by ”—” the strong convergence,
in an arbitrary Banach space X.

Remark 1 Let {u,} be a sequence that converges weakly to some uo in H.,(R"). Since
{u,} is bounded in H},(R") we see easily that {u,} restricted to R" \ B(0, Ry) is bounded
in H'(R™ \ B(0, Ry)). It also follows from the proof of Proposition 1 that the sequence {u,}
restricted to B(0, Ry) is bounded in Wy (B(0, Ry)), p <
to a subsequence) that

Nr
~—- Therefore, we may assume (up

Up — ug in LY _(RY) and wu, — u a.e. in RY. (7)
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Remark 2 If we examine carefully the proof of Proposition 1 we see that it holds in order
to conclude that H.,(R") is continuously embedded in L*(R"), for every 2 < s < p. If {u,}
is a bounded sequence in H},(R"), then using the fact that H},(R") is a reflexive space and
Remark 1 we can assume (passing eventually to subsequences) that

up = ug in Hyy(RY), up = uo in L, (R"), 2<s<p and wu, > ugae inRY. (8)
We define the functionals I : H!,(R") = R and I : H.,(RY) - R by
1 , , 1
I(w) = 5 / (a(z)|Vul? + b(z)u?) dz — - / K(z)|ul? dz,
R" pRN
1
/ (a(@)|Vul? + b(oo)u?) dz — - / K (00)[ul? dz.

A simple calculation shows that J, I, I, € C'(Hy,(R"),R) and their derivatives are given

(J'(u),v) = /(a(x)Vu-Vv+b(m)uv)dm— / K(x)|ulP~*uv dz — /g(x)vdx,

R" R" R"
(I'(u), v) = / (a(z)Vu - Vo + b(z)uw) dz — / K (@) |ulP2uv dz,
R" R"
(I' (u),v) = / (a(z)Vu - Vv + b(oco)uv) dx — / K (00)|uP~?uv du,
R" R"

for all u, v € Hy,(RY). We have denoted by ( , ) the duality pairing between H},(R") and
H,;(R").

Definition 2 If F is a C! functional on some Banach space X and c is a real number, we say
that a sequence {u,} in X is a (PS). sequence of F if F(u,) — ¢ and F'(u,) — 0 in X*.
We now prove that the weak limit (if exists) of any (PS). sequence of J is a solution of problem

(3).

Lemma 1 Let {u,} C H.,(R") be a (PS). sequence of J for some c € R. Assume that {u,}
converges weakly to some ug in Hib(RN). Then J'(ug) = 0 i.e. ug is a weak solution of problem

(3).

Proof. Consider an arbitrary function ¢ € C°(R") and set 2 = supp (. Obviously J'(u,) — 0
in H;,}(RN) implies (J'(uy,), () — 0 as n — oo, that is

n—o0

lim (/Q(a(x)Vun - V(¢ + b(z)u,C) de — /QK(JJ)|un\p_2unC dx — /Qg(x)C dx) =0. (9)
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Since u, — up in H, ,(R") it follows that

lim [ (a(x)Vu, - V{+b(z)u,() de = /Q(a(x)VuO - V(4 b(x)uoC) de. (10)

n—oo JO

The boundedness of {u,} in H,(R") and Proposition 1 show that {|u,[P?u,} is a bounded
sequence in LP/®~D(R"Y). Combining this with the convergence |u,[P~%u, — |uo[?~?uq a.e. in
R" (which is a consequence of (7)) we deduce that |ug[? 2ug is the weak limit of the sequence
|t [P~ 21, in LP/P=D(RN). So

lim / K (@) |un P~ 2unC do = /Q K () |uo [P~ 2uo( da. (11)

n—oo JO

From (9), (10) and (11) we deduce that
/Q(a(x)Vuo -V + b(x)upC) dr — /QK(:C)|UO P~ 2uoC dx — /Qg(x)Cdx = 0.

By density, this equality holds for any ( € H, i,b(RN ) which means that J'(ug) = 0. The proof of
our lemma is complete. O

Brezis and Lieb established in [5, Theorem 1] a subtle refinement of Fatou’s Lemma. Our
next result is a weighted variant of the Brezis-Lieb Lemma.

Lemma 2 Let {u,} be a sequence which is weakly convergent to ug in Hlb(RN). Then

Tim [ K@) (Jual — Jun — uol?) dz = / K(2)|uol dz.
R" R"

Proof. From Proposition 1 and the boundedness of {u,} in H},(R") we obtain that {u,} is a

bounded sequence in LP(R"). For a given ¢ > 0 we choose R. > 0 such that

/ K(z)|upl? dzx < e. (12)
|z|>Re
We have
| / )(unl? = uol? =t~ wol?) do| = | [ K (@) (funl? ~ luol?) do—
|z|<Re
/ K@)lun =P do— [ K(@)uoldo+ [ K(@)(unl? = un = uol?) dol <
|z|<Re |z|>Re |z|>Re (13)
[ K@ unl — uoP)dal+ [ K (@)l — uol? de + / ) uo|? da+
|z|<Re |z| <Re |z|>Re
/ p K (2)|0ug + (un — ug) [P~ uo| dz, where 0<80(z) <1
|z|>Re
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From (12) and Holder’s inequality we find

K (2)]0ug + (un — )P ug| dx < ¢ / K(x)(Jug|? + |ty — ug|P |uo|) dz <

|z|>Re |z|>Re
¢ / K(:c)uopdx—i-(/ K(m)un—uopdx) (/ K(x)|u0pda:) < & +e7)
|z|>Re z|>Re z|>Re

for some constants ¢, ¢ > 0 independent of n and ¢.
Now, by (7),

Jim / K(z)(|un? — |uoP) dz =0 and Jim / K(x)|u, — up|? dz = 0. (15)
|z|<Re |z|<Re

From (12), (13), (14) and (15) it follows that
limsup| | K(z)(Junl’ — [uolP — [un — uol?) dz| < (pé+1)( +e7).
RN

Since € > 0 is arbitrary we deduce that

lim (R/ K (@)|un|? dz — / K ()|uol? dz — / K () |un — uol? dz | =0,
N RN RN

which concludes our proof. O

Lemma 3 Let {v,} C H},(R") be a sequence converging weakly to 0 in H.,(R"). Then

nll_{glo[l(vn) - Ioo(vn)] =0; (16)
Hm [(I'(va), vn) — (I3 (Un), vn)] = 0. (17)

n—oo

Proof. A simple computation yields

pRN

(' (v0), 0a) = (Too(va)s ) = [ (b(00) = b@)ido = [ (K(2) = K(00)) va” da
R" R"

I(02) = Lo(wn) — 5 [ (6(00) — bl de — = [ (K(z) — K(00))un? da-
RN

Let € > 0 be a positive number. The assumption (K) implies that there exists R, > 0 such that
|K(z) — K(o0)| = K(7) — K(c0) <& for a.e. z € RY with |z| > R,.
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Using this fact we obtain

| (K@) - K@)l dz= [ (K@)~ K(e)lvaldz+ [ (K(@) - K(oo))|val dz <

RY z|<Re z>Re

(1K~ K ()| unpdx+s( / vn|pd:c).

/<R Z|>R.

Since v, — 0 in H;,b(RN), it follows by Proposition 1 that {v,} is bounded in ZL?(R"). On the
other hand, in virtue of (7), we have that v, — 0 in £ _(R"). Then letting n — oo we see that

loc

limsup [ (K(z) — K(00))|va|Pdz < Ce
n—oo RN
for some constant C' > 0 independent of n and ¢. It follows that

lim (K(z) — K(00))|vp|Pdx = 0.
n OORN
To prove (16) and (17) we need only to show that

dim [ (b(co0) — b(z))v?2 dz = 0. (18)

RN
To this end, notice that for any R > 0 we have

/ (b(00) — b(z))v? dz = / (b(00) — b(z))v? dz + / (b(c0) — b(z))v2 dz <

RY |z|<R |z|>R

(19)
(b(c0) — b1) / v?dz + / (b(c0) — b(x))v? da.
lz|<R z[>R
From (B) we have that for any € > 0 we can choose R. > 0 such that
b(00) — b(x)| = b(co) — b(x) <& for a.e. v € RY with |z| > R,. (20)

But, from Remark 2, we know that H, ,(R") is continuously embedded in L(R") and, by (8),

v, — 0in L} (R"). Therefore, using (19) and (20) we deduce the existence of a positive number

M, independent of n and ¢, such that

limsup | (b(co) — b(z))v2dr < Me.
n—oo

RN

Since € > 0 is arbitrary, it follows that (18) is true. O
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Lemma 4 For any 0 < € < 1 there exist R = R(¢) > 0 and C = C(eg) > 0 such that for all

g with ||g||—=1 < C, there exists a (PS)., sequence of J(u) with co = co(R) = inf J(u), where
u€EBR

B = {u € H!,(R"); |lullap < R}. Moreover, co(R) is achieved by some ug € H,,(R") with
J’(Uo) =0.

Proof. Fix 0 < ¢ < 1. Then for any u € Hlb(RN) by (K) and Young’s inequality we have

Iw = 3llls = [ K@lurde=— [ go)uda>

L ey N
R T I P

2 »@RY)

U, K] i
iz~ V=g, (Sl + Ll =
1 I

(5-5) s = El=cgue, - onale,

where Cy > 0 is a positive constant given by Proposition 1. The above estimate shows the
existence of R = R(¢) > 0, C = C(g) > 0 and 6 = 6(R) > 0 such that J(u) |sp,> 0 > 0 for all
g with ||g||-1 < C. For example, we can take

1—g? \7= M 11 -
R(e) = (m> , C(e) = VMe, §(R) = - Where M =M(R)= (5 —~ 5) | K| CS R

Define ¢y = ¢o(R) = inf J(u). So, ¢y < J(0) = 0. The set By becomes a complete metric space
u€BR

with respect to the distance

dist (u,v) = ||u — v||ap for any u,v € Bp.
On the other hand, J is lower semi-continuous and bounded from below on By. So, by Ekeland’s
Variational Principle [8, Theorem 1.1], for any positive integer n there exists u,, with

1
¢ < J(Un) <cy+ E’ (21)

1 _
J(w) > J(uy) — EHun —wlyp for all w € Bpg. (22)

We claim that ||u,|lep < R for n large enough. Indeed, if ||u,||,p = R for infinitely many
n, we may assume, without loss of generality, that ||u,|l., = R for all n > 1. It follows that
J(un) > 6 > 0. Combining this with (21) and letting n — oo, we have 0 > ¢o > § > 0 which is
a contradiction.
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We now prove that J'(u,) — 0 in H;,}(RN). Indeed, for any u € H;,b(RN) with ||ullsp = 1,
let wy, = u, + tu. For a fixed n, we have ||wy|[ap < ||[tnllap+t < R, where ¢ > 0 is small enough.
Using (22) we obtain

t
I (un +tu) 2 J(un) = —|lullap

that is
1

|a,b =
n

J(up + tu) — J(up)
t

1
> ——|ju
n

1
Letting ¢ N\, 0, we deduce that (J'(u,),u) > —— and a similar argument for ¢ /* 0 produces
n

1

(I (un), u)| < — for any u € HL,(RY) with |lulles = 1. So,

n b}
! ! 1

| (up)l|-1 =  sup  [{J'(un),u)) <= —0 asn— oo.
N n
uEHl,b(R )
l[ulla,p=1

We have obtained the existence of a (PS)., sequence, i.e. a sequence {u,} C H,,(R") with
J(un) = ¢o and  J'(u,) — 0in Hy (RY). (23)

But ||un|lap < R, for the fixed R, shows that {u,} converges weakly (up to a subsequence) in
H;’b(RN). Therefore (7), (23) and Lemma 1 imply that, for some uy € H;yb(RN)

Uy — Ug in H;,b(RN), Up — Up a.e. in RY (24)
J'(ug) = 0. (25)
We prove that J(ug) = ¢p. By (23) and (24) we have

o(1) = (J'(un), ) = [ (a(@)|Vun? +b(a)ud)d — [ K(@)unl? dz— [ g(w)un da.

R" R" R"
Therefore
1 1 1
J(up) == — - / K(z)|u,|P dx — = / g(z)u, dz + o(1).
2 p BY QRN

By (23), (24), (25) and Fatou’s lemma we have

. 1 1 1
Co = lim inf J(up) > (5 - 5) / K (z)|ug|?P dz — 3 / g(z)ugdz = J(uy).
R" R"

Since uy € Bp, it follows that J(ug) = ¢. O
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3 Proof of Theorem 1

Set
S = {u € Hyy(RY) \ {0}; (I (u),u) = 0}.

We first justify that S # (. Indeed, fix ug € H},(R") \ {0} and set, for any A > 0,
It follows that
W) = N ([ (o) Vuof? + b(oc)us) da = X2 [ K (o) uoP da)

Our hypotheses imply that ¥()) < 0 for A large enough and ¥(\) > 0 for A sufficiently close to
zero. It follows that there exists \g € (0, 00) such that ¥()\g) = 0. This means that \qug € S.

Proposition 2 Let J,, = inf{I(u); u € S}. Then there exists u € H;’b(RN) such that

Joo = Io(1) = sup Io(ta). (26)

Proof. We consider the constrained minimization problem

m = inf / (a(x)|Vul® + boo)u?) dz; u € HL,(RY), / K)|uPde=1%.  (27)
R" R"
For every ¢ € H2,(R"Y) \ {0} let
£ = Iu(te) = 5 [ @)Vl +b(o0)u?) do == [ K(oc) gl da.
R" R”Y
We have
£t =1 / (a(2)|Vul? + b(oo)u?) dz — P~ / K (00) || da,
R" R"

which vanishes for .

/ (a(z)|Vu? + b(oo)u?) dz | *
_ _ RN
T TR
RN
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Hence

/ (a(@)|Vul? + b(oo)u?) dz
FEle) = L)) = sup Ltte) = (3 - 1) (B _—
| K(e)lglda

It follows that

1 1 »
inf sup I (ty) = (— - —) mr=2,
pem? (RY)\(0} 20 2

We easily observe that for every u € S we have #(u) = 1 which implies Ioo(u) = sup;sq oo (t1).
Let {u,} C H},(R") be a minimizing sequence for problem (27), i.e.,
lim [ (a(z)|Vu,|* + b(co)u?)dz =m and / K (c0)|u,|P dz = 1.

R" R"

1 .
Then v,, = m?-2u,, satisfies

(1) Io(vn) — (% - %) mp-3 as n — oo

(17) I's(v,) >0 in Ha_bl(RN) asn — 0o.
Now, using (B) we get that the minimizing sequence {u,} is bounded in H;,b(RN) and, by
Remark 2, we find u € H;’b(RN) such that (up to a subsequence) u, — u in Hj,b(RN) and

u, — u in Lf _(R™). Our hypotheses (A1) and (A2) allow us to apply Lemma 1 and Theorem

1 in [7] in order to find that v # 0 and w is a solution of problem (27). Letting @ = mﬁu, we

1 1 »
see that @ € S and (1) = (5 - —) m»—2. We obtain
p

1 1 »
Joo = inf I (u) = inf sup I, (tu) > inf sup Ino(tu) = | = — = | m»—2 = [ (1)
u€eS u€eSs >0 ueH;b(RN)\{O} t>0

which concludes our proof. O

Proposition 3 Assume {u,} is a (PS). sequence of J that converges weakly to ug in H},(R").
Then either {un} converges strongly in HL,(R™), or ¢ > J(ug) 4 Joo.

Proof. Since {u,} is a (PS), sequence and u, — ug in H_,(R") we have
J(uy) =c+o(1) and (J'(uy),u,) = o(1). (28)
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Set v, = u, — ug. Then v,, =0 1in Hijb(RN) which implies

/ (a(x)Vv,Vug + b(z)vup) dr — 0 asn — oo,
RY

/ g(x)vpdr -0 asn— oo.
RY

We rewrite the above relations as

unll?y = lluoll?, + llvnll?, + o(1),
[unllap = lluollas + llvnlles + o1) (29)
J(v,) = 1(v,) 4+ 0o(1) .
From (28), (29), Lemma 1 and Lemma 2 it follows that
o(1) +c= J(uy) = J(up) + J(vs) +0(1) = J(up) + I(v,) +0(1), (30)

o(1) = (J"(un), upn) = (J' (o), uo) + {J' (vy), vn) + 0(1) = (I'(vy,),vs) + 0(1) .

If v, — 0 in H},(RY), then u, — ug in H!,(R") and J(uo) = lim,_,o0 J(us) = c.
If v, # 0 in H},(R"), then combining this with the fact that v, — 0 in H},(R") we may
assume that ||v,||es — > 0. Then (30) and Lemma 3 imply

¢ = J(ug) + Io(vn) + 0o(1) (31)
tin = (I (0n),v0) = [ (@(@)| Vo + b(oo)e) do — [ K(oo)lvaldo = = B, (32)
R R"
where limy oo ftn = 0, 0 = [ (a(@)|Von[*+b(00)02) dz > lval|2, and B, = [ K (o0)|va” d >

0. In virtue of (31), it remains to show that I.(v,) > Jw + 0(1). For ¢t > 0, we have

(I'_(ton), tog) = 2 / (a(2)|Von|? + b(oo0)v2) dz — ¥ / K (00)|vn]? da.

RY R"

If we prove the existence of a sequence {¢,} with ¢, > 0, ¢, — 1 and (I'_(t,v,), t,vs) = 0, then
L () = L (totn) + -~ — L= (00) ol T (tavn) + 0(1) > Juo + 0(1)
oo\Un) = doo\lnUn Qp — ) ||Un = Loo\lnUn = Joo

2 p »R™)

and the conclusion follows. To do this, let ¢ = 1 + 6 with |4| small enough and using (32) we
obtain

(I'_(tv,), tvn) = (1 +6)2an — (1 +0)PBy = (1 +0) %y — (1 4+ 8)P(an — p1n) =

(20 —pd +0(0)) + (1 4+ 0)Pn = (2 — p)0 + 0(3) + (1 + )P ige.
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Since o, — 1 > 1 > 0, lim,_y00 ttn = 0 and p > 2 then, for n large enough, we can define

2 || - —2 |pin| : : : :

ot = —"" _and §, = ——"— which satisfy the following properties
" ap(p—2) " an(p—2)

07 N0 and (Il ((1+ 0, )vn), (1 +65)v,) <O,

6, /0 and (I ((1+9,)vn), (146, )vs) >0. )
From (33) we deduce the existence of ¢, € (1+9,,1+ 6,7) such that
tn =1 and (I (tpvn), thvn) = 0.
This concludes our proof. O
Let % € Hy ,(R") be such that (26) holds. We can find £ > 0 such that
I(tw) <0 ift>1
J(tu) <0 ift>tand |[g]|-1 < 1.
We put
P = {y € C([0,1], H;,(R"Y)); 7(0) = 0,7(1) = tu} (34)
¢y = inf sup J(u). (35)

YEP ucy

Proposition 4 There exist Ry > 0, C = C(Ry) > 0 and 0, > 0 such that for all g with ||g||-1 <
C we have J |apg > Or, and ¢y < co+ Joo , where ¢, is given by (35) and ¢y = inf,cg, J(u).

Proof. By our hypothesis (M) and the definition of I we can assume that I(tu) < I (tu) for all
t > 0. A simple computation implies that there exists to € (0,%) such that

sup I(ta) = I(tot) < Io(tott) < sup I (1) = Ju.
£>0 £>0

Then there exists an ¢y € (0, 1) such that

sup I (t1) < Joo — €o- (36)
£>0
For this €y, we get the existence of Ry = Ry(¢y) and C; = C4(gy) = C1(Ry) such that for all g
with ||g||—1 < C; the conclusion of Lemma 4 holds. Moreover, in virtue of its proof, there exists
R, > 0 such that J |pp, > Or,, provided that [|g]|-1 < C;. Taking C; = min{C\,¢e0,/E0} we
find
0

1
co= inf J(u)>—=5llgl’s > —= for all g with |lg]|_1 < Cb. (37)
u€BR, 2¢e;; 2

24



If ||g||-1 < , then for u € 7o = {ttu; 0 < ¢ < 1} we have

_ &
21 ||| a,p

W) = 1w = [ g@udz| <] [ ga)u
R" R"

5
So, if ||g||-1 < C = min {02, W} then for all g with ||g||—-1 < C we obtain
a,b

J(u) < I(u) + %0 for u € 7
and from (34), (36), (37) it follows that
€0 _ €0 €0
¢g = inf sup J(u) < sup J(u) < sup I(u) + B <supI(tu) + — < Joo — — < Joo + Co.

YEP uey u€vo u€o >0 2 2
O

Proof of Theorem 1 concluded. Consider Ry > 0, C = C(Ry) > 0 and dg, > 0 given by
Proposition 4 and, in view of its proof, we have that for all g with ||g||_1 < C the conclusion
of Lemma 4 is also true. Therefore, we obtain the existence of a solution uy € H} b(RN ) of (3)
such that J(ug) = ¢.

On the other hand, it follows from the Mountain Pass Theorem without the Palais-Smale
condition [6, Theorem 2.2] that there is a (PS)., sequence {u,} of J(u), that is

J(up) = cg+0(1) and J'(u,) = 0in H ;(RY).

This implies

1 1 1 1 1
co+o(1)+=|1J (up) || -1 ||tnll4 ZJun——J'un,un2<———> un2—<1——>
gto(1) p|| (un)l|=1llunllap > J(un) p( (un), un) 2 | 5 . lunllz,s .

Hence {u,} is a bounded sequence in H} b(RN ) and, passing to a subsequence, we may assume
that u, — uy in H.,(RY) for some u; € H.,(R"). So, by Lemma 1, u; is a weak solution of

(3).
We prove in what follows that J(ug) # J(u;). Indeed, by Proposition 3, either u, — u; in
H, ,(R") which gives
J(ur) = lim J(up) =cg >0 > co = J(uo)

and the conclusion follows, or
Cg = nll}r{.lo J(un) > J(u1) + Joo-

If we suppose that J(u1) = J(up) = co, then ¢, > ¢ + Joo which contradicts Proposition 4. This
concludes our proof. O
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Critical singular problems on infinite cones

V. RADULESCU*AND D. SMETs!

Abstract

We prove existence results for non autonomous perturbations of singular critical
elliptic boundary value problems. The non singular case was treated by Tarantello [11]
for bounded domains; here the singular weight allows for unbounded domains as cones
and give rise to a different non compactness picture (as was first remarked by Caldiroli
and Musina [5]).

Keywords : Singular weights, critical exponent, unbounded domains, Caffarelli-Kohn-
Nirenberg inequalities.

1 Introduction

Let © be an open set in RN, N > 2 and let « € (0,2). For any ¢ € C°(2), define

1/2
1¢lla = </Q |x|a|VC|2dm> .

Let H}(;|7|*) be the closure of C°(Q2) with respect to the || - ||o-norm. It turns out that
H}(;]z]®) is a Hilbert space with respect to the inner product

(U, v)o = / |z|*Vu - Vudz, Vu,v € Hy(Q;|z|*).
Q

If Q = RY we set HY(RY; |z|*) = H}(RY; |z|*). We remark that if Q; and Q5 are arbitrary
open sets in RV such that Q1 C Qo then H{(Q1;]z|®) < Hi(Q0;|z|%), with continuous
embedding. We also point out that since we allow the cases 0 € Q or Q unbounded then there
is no inclusion relationship between H}(f;|z|%) and the standard Sobolev space H(€2).
However, the Caffarelli-Kohn-Nirenberg inequality asserts that H(Q;|z|®) is continuously
embedded in L2 (Q), where 2, = 2N/(N — 2+ «). More precisely, there exists C, > 0 such

that
12z 1/2
(/ |u|2adx> <c, (/ |:B|O‘|Vu|2dz) ,
Q Q

for any u € H}(Q;|z|%).
Consider the problem
—div (|z|*Vu) = [u|%2 2y in Q,
u>0, uz0 in Q, (1)
u=0 on 0N).

*Department of Mathematics, University of Craiova, 1100 Craiova, Romania.
Email : radules@ann. jussieu.fr

tLaboratoire Jacques-Louis Lions, Université de Paris 6, 175 rue du Chevaleret, 75013 Paris, France.
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We observe that degeneracy occurs in (1) if 0 € Q or if Q is unbounded. We also point
out that if 27, in problem (1) is replaced by a subcritical exponent p € [2,2}) then the
corresponding equation is characterized by local compactness, and existence results are
carried out in an easier way.

Consider the quotient

|V u|2d
Sa(’U/; Q) = fQ ‘:L-| | U|2/;C* ’
(Jo lul?sdz)™"
and denote
Sa(Q) = inf S (u; ). (2)

u€ Hg (%]z]*)\{0}

It is obvious that if u € H} (S |z|*) satisfies
[lalVuPds = 5o@)  and [ juPido =1
Q Q

then the function U(z) = [Sa(Q)]l/(ZZ —2) u(z) is a solution of (1).

Caldiroli and Musina [5] studied the critical case and they showed that some concentra-
tion phenomena may occur in (1), due to the action of the non compact group of dilations
in RY. They proved in [5] that if « € (0,2) then, in certain cases, S,(f2) is attained in
H{(9;|z|*) by a positive function, so problem (1) has a solution. We point out (see Struwe
[10, Theorem I11.1.2]) that S, () is never attained in H}(£2) in the limiting case o = 0 and
it £RN.

Let H=1(Q;|z|%) be the dual space of H}(;|z|*) and denote by || - ||—1 the norm in
H=Y(Q; |z|%). For any f € H~(Q;|z|%), consider the perturbed problem

—div (|#|°Vu) = [u|>2u+ f inQ, (3)
u=20 on 0N.

We say that a function u € H}(€2;]x|%) is a solution of problem (3) if  is a critical point
of the energy functional

1 1 .
J(u) = §/Q|x|a|Vu|2dJ;—2—*/Q|u|2adx—/9fudx.
87

We observe that the Caffarelli-Kohn-Nirenberg inequality ensures that J is well defined on
the space H}(€;|z|*). Moreover, by the continuity of the embedding H}(Q) — L2 (1),
the functional J is Fréchet differentiable on H{(Q;|z|®).

Perturbations of critical semilinear boundary value problems on bounded domains were
initially studied by Tarantello in [11]. Our purpose is to prove a corresponding multiplicity
result for the degenerate problem (3). Notice that in our case, 2 will be unbounded . We
first need some preliminaries. Set
s2(Q) = lim S, (2N B,)

r—0

a

and

a

s2(Q) = rll)lgo Sa(Q\ By).

These limits are well defined because the mappings 7 — S, (2N B;) and r — S, (2 \ B;)
are easily seen to be respectively non increasing and non decreasing.
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CONDITION C. We say that Q C RY (N > 2) satisfies Condition C provided that € is
acone in RN, or Q =RY, or

Sa(€) < min{s3,(Q), 53°(V)} - (4)

We recall that Q C RY is a cone if  has Lipschitz boundary and if Az € € for every
A>0and z € Q. If Q is a cone then

Sa(92) = $2() = s2(Q),

so equality holds in (4) (see [5, Lemma 3.9]). We also point out (see Caldiroli-Musina [5])
the following situations in which property (4) is fulfilled:

(i) Q = Qg U Qy, where Q is a cone and €; is an open bounded set such that 0 & Q;
(i) @ =TI x RN=1 where I = R, or I = (0,+00), or I = (—00,0), or I is bounded and
0¢1.

Denote by E the positive cone of E = H~1(£);|z|%). This means that f € E, if and

only if f # 0 and
/ fudz > 0,
Q

for any u € H}(Q;|z|*) such that v > 0 a.e. in €.
Our main result is the following

Theorem 1.1. Assume that a € (0,2) and Q satisfies Condition C. Then, for each g € E,
there exists eg > 0 such that for all 0 < € < €, problem (3) with f = eg has at least two
positive solutions.

Remark 1.2. a) In the previous theorem, €y can be chosen uniformly for g in a compact
subset of E.

b) The existence of at least two solutions (not necessarily positive) when g belongs to E
instead of E is less clear. The sign condition can easily be weakened, but we think the
general case should require some additional assumption.

2 The first solution

We first recall that if ¢ is a real number, X is a Banach space and F : X — R is a C'-
functional then F' satisfies condition (PS). if any sequence (uy) in X such that F'(u,) — ¢
and ||F'(up)||x» — 0 as n — oo, is relatively compact. It is obvious that if a Palais-Smale
sequence converges strongly, then its limit is a critical point. Our first result shows that if
a (PS). sequence of J is weakly convergent then its limit is a solution of problem (3).

Lemma 2.1. Let (u,) C H}(Q;|z|%) be a (PS). sequence of J, for some ¢ € R. Assume
that (uy) converges weakly to some ug. Then ug is a solution of problem (3).

Proof. Consider an arbitrary function ¢ € C§°(2) and set w = supp({). Obviously
J' (up) — 0 in H}(Q; |z|*) implies (J'(uy,),¢) — 0 as n — oo, that is

nlgrolo </ |z|*Vuy, - V(dz — / |un|?e~2u, ¢ do — / f¢ da:) = 0. (5)
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Since up — ug in H} (4 |z|*) it follows that

lim / |z|*Vuy, - V{dz = / |z|*Vug - V( dx. (6)
w w

n—oo

The boundedness of (u,) in H{ (Q; |z|*) and the Caffarelli-Kohn-Nirenberg inequality imply
that |uy,|?>~2u, is bounded in L?/?a=1(Q; |z|*). Combining this with the convergence (up
to a subsequence)

|t | %o ~2up — |ug|? 2ug a.e. in

we deduce that |ug|?>~2ug is the weak limit of the sequence |u,|?>~2u, in the space
L2/Ca (9 |2]7). So

lim/|un|232unde:/|u0|2‘*¥QUOCdx. (7)
w w

n—oo

From (5), (6) and (7) we deduce that
/|x|aVu0-VCdx—/ |u0|22—2u0gdm—/fgda;:o.
w w w

By density, this equality holds for any ¢ € H}(Q;|z|*) which means that J'(ug) =0. O

Lemma 2.2. There exists 1 > 0 such that problem (3) has at least one solution ugy provided
that f #0 and ||f||-1 < e1. Moreover, ug is positive if f € E.

Proof. The idea is to show that there exist ¢y < 0 and R > 0 such that J has the (PS),,
property, where
co = inf{J(u);u € H}(Q;|z|*) and ||u|| < R}. (8)
Then we prove that cg is achieved by some ug € H{(Q;|z|*) and, furthermore, J'(ug) = 0.
Applying the Caffarelli-Kohn-Nirenberg inequality we have

1 1 .
JMZ—MW——/WWM—/MMZ
2 220 Q

1, 5, 1 o
Lo L e
Sl Qﬂéw dz — ||fl|-1 - [lul| >

a

1 g2 9 o 9
5= 5 ) llull? = Ol — CLIfI2,

Fixing € € (0,1) we find R > 0, e > 0 and > 0 such that J(u) > § if ||u|| = R and
IFll1 <er
Let ¢y be defined in (8). Since f # 0, ¢o < J(0) = 0. The set

B = {u € Hy(Q;|2[*);||ull < R}
becomes a complete metric space with respect to the distance
dist (u,v) = ||lu —v|| for any u,v € Bp.

On the other hand, J is lower semi-continuous and bounded from below on Bg. So, by
Ekeland’s variational principle [8, Theorem 1.1], for any positive integer n there exists uy,

such that )
co < J(up) Sco—}-g, (9)
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and 1
J(w) > J(up) — EHun —aw|| for all w € Bpg. (10)

We claim that ||luy| < R for n large enough. Indeed, if ||u,| = R for infinitely many
n, we may assume, without loss of generality, that ||u,| = R for all n > 1. It follows that
J(up) > 8 > 0. Combining this with (9) and letting n — oo, we have 0 > ¢y > § > 0 which
is a contradiction.

We now prove that ||J'(u,)||—1 — 0. Indeed, for any u € H}(;|z|*) with ||u|| = 1, let
Wy, = Uy, + tu. For a fixed n, we have ||wy|| < ||uyl| +t < R, where ¢t > 0 is small enough.
Using (10) we obtain

i
T (un + ) > T (un) = —|Ju]

that is
J(up +tu) — J(up)

t

1 1
>l =~
n n

1
Letting t \, 0, we deduce that (J'(u,),u) > —— and a similar argument for ¢ /0 produces
n
1
(I (un),u)| < — for any u € H(Q; |z|%) with |jul| = 1. So,
n
! ! 1
| (un)||=1 = sup [(J'(un),u)) < ——0 asn— oo.
lJull=1 "
We have obtained the existence of a (PS),, sequence, i.e. a sequence (u,) C H}(;|z|%)

with
J(up) = co and || (un)]| -1 — O. (11)

But |lun|| < R shows that (u,) converges weakly in H}(f;|z|%), up to a subsequence.
Therefore, by (11) and Lemma 2.1 we find that for some ug € H}(€; |z|%),

Uy = up in HY(Q;]2]%), up — up ae. in RY (12)

and
J'(ug) = 0. (13)

We now prove that J(up) = ¢o. By (11) and (12) we have

o(l)z(J'(un),un):/ |m|a|Vun|2dx—/ a2 dx—/fundm.
Q Q Q

J(up) = (% - 2%) /Q |t | %o da — (1 — 2%) /qun dz + o(1).

By (11), (12), (13) and Fatou’s lemma we have

T I 1 a2t o (1 _
co—llnn_1>£fJ(un)2 (§_£>/lel |ug|“e dx <1 22>/qu0dw—J(u0).

Since ug € Bp, it follows that J(ug) = co. If f € E,, ug can be replaced by |ug|, and the
proof is complete. U

Therefore
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3 A priori estimates for the second solution
Set

1 1 «
I(u) = §/Q|x|a|Vu|2dw—2—*/Q|u|2adx
o

S = {u € Hy(]x]*) \ {0}; (I'(u),u) = 0}.
We first justify that S # (). Indeed, fix ug € Hg(Q;|z|%) \ {0} and set, for any A > 0,

and denote

T(A) = (I'(Mug), Aug) = /\2/ ||| Vug|? d — )\23/ luo|% dz .
2 Q

Since 2}, > 2, it follows that ¥(A) < 0 for A large enough and ¥(X) > 0 for A sufficiently
close to zero.
Hence there exists A\g € (0, 00) such that ¥()\g) = 0. This means that Aug € S.

Lemma 3.1. Let I, = inf {I(u); u € S}. Then there exists i € H}(Q;|z|*) such that

I = I(a) = supI(tu). (14)
>0
Proof. We first claim that
I (u) = sup I(tu) YuesS. (15)
>0

Indeed, for some fixed ¢ € H(Q;|z|*) \ {0}, denote

2 t2a .
() = I(tp) = = / 2oV dz — £ / o[ da.
2 Q 2a Q

We have
£t =1 / 2| Vaf? dr — 1% / p[% da,
Q Q

which vanishes for

_1
2% 2
/ 12| Vul? da
to=to(p) = & -
[ 1o da
Q
Hence
N
2—a
. / 12[*|Vul? do
f(tO) = I(tO(P) = sup I(t(P) = & N—2te
N N *
( [ lof dw)
Q
It follows that
inf sup I(ty) = 2_—a[S (Q)]% (16)
pEHL([21*)\ {0} £>0 2N '

We now easily observe that for every u € S we have ty(u) = 1. So, by (16), we find (15).
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By Caldiroli-Musina [5], Theorems 2.2 and 3.1, the minimum is achieved in (2) by some
function U € H}(Q; |x|®). We prove in what follows that the function @ := [S,(Q)]"/@a=2U
satisfies (14). We first observe that @ € S and

2 -« N
1(8) = =2 [Sa()] 75 . (17
So, by (15) and (17),
— N
I, = inf I(u) = inf sup I(tu) > inf sup I (tu) = ——[S.(Q)]2-= = I(u),
oo = nf I{u) = inf 120 (i) = weHy (%2l (0} 50 () = 3 15a () (u)
which concludes our proof. O

Lemma 3.2. Assume (uy,) is a (PS), sequence of J that converges weakly to ug in Hy (9 |z|%).
Then either (uy) converges strongly in H} (2 |x|%), or ¢ > J(uo) + Ino-

Proof. Since (uy,) is a (PS). sequence and u, — ug in H(Q; |z|*) we have
J(up) =c+o(1) and (J'(uyp),u,) =o(1). (18)

Set vy, = up — ug. Then v, — 0 in H}(;|z|*) which implies
/ |z|*Vup, - Vugdz -0 asn — oo,
Q

fop,dr —0 asn— o0.
Q

We rewrite the above relations as

lunll® = lluoll® + llvall* + o(1)

J(vn) = I(vn) +o(1). (19)

The Brezis-Lieb Lemma, combined with the Caffarelli-Kohn-Nirenberg Inequality yield

/ (Tt — [0
Q

%) dg = / luo|%dz + o(1) . (20)
Q

From (18), (19), (20) and Lemma 2.1 we find
o(1) + ¢ = J(up) = J(uo) + J(vn) + 0o(1) = J(uo) + I(vn) + 0(1), (21)
o(1) = (J'(un), un) = (J'(uo), uo) + (J'(vn), v} + 0(1) = (I'(vn), vn) + o(1) .

If v, — 0 in H(Q;|z]|%), then u, — up in HE(Q; |z|%) and J(ug) = limy 00 J (un) = c.
If v, 4 0 in H}(Q;|z|®), then combining this with the fact that v, — 0 in Hg(Q;|z|?)
we may assume that ||v,| — [ > 0. Then, by (21),

¢ = J(uw) + I(vy) + 0(1) (22)

i = (T (0), ) = /Q 2] Vo ? d — /Q N (23)

where limy, o0 ptn = 0, ay = [ [7|%|Von|? dz > |lvn|? and B, = [, |va|?> dz > 0. In virtue
of (22), it remains to show that I(v,) > I + o(1). For ¢t > 0, we have

(1o ton) = [ 1t 9enl? do — % [ o’ do
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If we prove the existence of a sequence (t,) with ¢, — 1 and (I'(t,v,), tnv,) = 0 then

1-2  1—te o
aTL Un = nIUn o [e's) o
[[on I(tnvn) +0(1) > Io + 0(1)

- * 2% -
2% L%

I(vn) = I(tpvn) +

and the conclusion follows. To do this, let t = 1 4+ ¢ with § > 0 small enough and using
(23) we obtain

(I'(tvp), ton) = (1 + 5)20% -1+ 5)2;6n =(1+ 5)20% -1+ 5)2‘*"(0% — fin) =
(26 — 256 + 0(8)) + (1 + 6)% fiy, = (2 — 25)6 + 0(8) + (1 4 8)%a puyy.

Since a, = 1 > 12 > 0, lim,, 00 ftn, = 0 and 27, > 2 then, for n large enough, we can define

the sequence 6,, = an2(|2’£"_‘2) > 0 and 6,, — 0. Then
(I'((1+dn)on), (1L +0n)vn) <O (I'((1 = dn)vn), (1 — dn)vn) > 0. (24)

From (24) we deduce the existence of t, € (1 — dp,1 + d5,) such that
tn, =1 and (I'(tyvn),tnvn) = 0.

This concludes our proof. U

Fix @ € H}(Q;|z|%) such that (14) holds. Since 2 < 2%, there exists o > 0 such that

I(ta) <0 if t >t
J(ta) <0 if t>tq.

Set
P ={y € C([0,1], Hy (2 ]z|*)); 7(0) = 0,7(1) = tou} (25)
¢1 = inf sup J(u). (26)
YEP uey

In the next result ¢y, resp. ¢1, are those defined in (8), resp. (26).

Lemma 3.3. Given g € Ey, ||g||-1 = 1, there exist R > 0 and 3 = eo(R) > 0 such that
c1 < ¢y~ I, for all f =eg with € < eq.

Proof. We first remark that
IOO + co > 0 ) (27)

provided that ¢; and R given in the proof of Lemma 2.2 are sufficiently small. Indeed, let
1o be the solution obtained in Lemma 2.2. Then, by Cauchy-Schwarz,

1 1 N ) 1
= - — 1__
0 (2 23)/9'“”‘ [Vuol"de ( 2z>/ng“°d‘””’
1 1 1
>|z—-= @ 2de — (1 - = 1- :
> (2 2,&>/QI:E| |Vuo|“dx ( 2Z)Ilfll 1 |luol|

Applying the inequality

(28)

2 2
8<%+ vap>0



we find . . . ~ )
(1= 5 ) 1l bl < (5 - 5 ) ool + o202, oo

So, by (28) and (29),
(N —a+2)?

>~ NG —a) IFI1%y - (30)

€0

It follows that the negative number ¢y is close enough to 0 if ||f||—1 is small. But, by
Lemma 3.1,

2 -«

IN [SQ(Q)]N/(Z_(I) > 07

Io =

o (27) follows obviously.

In order to conclude the proof we observe, by the definition of ¢q, that it suffices to
show that
sup J(ta) < co + Ioo (31)
>0
if || f||-1 is sufficiently small.

Next, using (27), the continuity of J and J(0) = 0, we obtain some 7y > 0 which is
uniform with respect to all f satisfying 0 < ||f||-1 < &1 such that, for some &’ < 1,

co+ I > sup J(tu),
tE[O,T()]

if || f]|=1 < €'. So, in order to prove (31), it suffices to show that if || f||_1 is small then

co + Ioo > sup J(ta). (32)
t>To

_? t2a
T(ta) / |||V 2de — % / a2 da — t / fade

/\x| |Val dw——/ |al adx—To/fudx

for any ¢ > Ty. But, by Lemma 3.1,

But

I(®) = S35 [Sal@)) V).

Hence, using an argument similar to that used for proving (28), we find

2 24
sup J(ta) < sup ( / |z|%| Va|*dz — —/ || % da:) —To/ fudz
t>Tp >Tp \ 2 2y Ja Q

SIOO—TO/fudm<IOO+co,
Q

if f =eg with e < ¢”. Indeed, it follows from (30) that ¢y is quadratic in & while [ fu is
linear. Letting €2 = min{¢’, "}, we conclude the proof. O
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4 Proof of Theorem 1.1 concluded

Let €9 = min{e1,e2}. Hence, by Lemma 2.2, we obtain the existence of a positive solution
ug € H} (9 |7|*) of (3) such that J(up) = cp.

On the other hand, since J(|u|) < J(u) when f € E., it follows from the Mountain Pass
Theorem without the Palais-Smale condition [3, Theorem 2.2] that there exists a positive
(PS)., sequence (uy) of J, that is

J(un) =c1+o(1) and || J'(uy)||-1 = 0.

This implies

1 1
cr 4 o [ (wn) -1 - flunll +0(1) > I (un) = (I (un), un)

2
a (33)
S (2= Il = (1= 2 ) 10
e 2 22 n 22 —1 nl|-

Hence {u,,} is a bounded sequence in H¢(Q; |z|%). So, up to a subsequence, we may assume
that u, — uy > 0 in H}(Q; |z|*). Lemma 2.1 implies that u; is a solution of (3).

We prove in what follows that uy # wi. For this aim we shall prove that J(ug) # J(u1).
Indeed, by Lemma 3.2, either u,, — u1 in H{(Q;|z|*) which gives

J(ur) = lim J(up) =c1 >0 > ¢y = J(up)

n—oo

and the conclusion follows, or

c1 = lim J(up) > J(u1) + Inc.

n—oo

If we suppose that J(u1) = J(ug) = cp, then ¢; > ¢y + I which contradicts Lemma 3.3.
This concludes our proof. ]
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Abstract. We prove several existence results for eigenvalue problems involving the p-Laplacian and
a nonlinear boundary condition on unbounded domains. We treat the non-degenerate subcritical case
and the solutions are found in an appropriate weighted Sobolev space.

1 Introduction and preliminary results

The growing attention for the study of the p-Laplacian operator A, in the last few decades is motivated
by the fact that it arises in various applications. For instance, in Fluid Mechanics, the shear stress 7
and the velocity gradient V,u of certain fluids obey a relation of the form 7(z) = a(z)V,u(z), where
Vyu = |Vu|P~?Vu. Here p > 1 is an arbitrary real number and the case p = 2 (respectively p < 2,
p > 2) corresponds to a Newtonian (respectively pseudoplastic, dilatant) fluid. The resulting equations
of motion then involve div (aVpu), which reduces to aA,u = adiv (V,u), provided that a is constant.
The p-Laplacian appears in the study of flow through porous media (p = 3/2, see Showalter-Walkington
[24]) or glacial sliding (p € (1,4/3], see Pélissier-Reynaud [20]). We also refer to Aronsson-Janfalk [4] for
the mathematical treatment of the Hele-Shaw flow of “power-law fluids”. The concept of Hele-Shaw flow
refers to the flow between two closely-spaced parallel plates, close in the sense that the gap between the
plates is small compared to the dimension of the plates. Quasilinear problems with a variable coefficient
also appear in the mathematical model of the torsional creep (elastic for p = 2, plastic as p — oo, see
Bhattacharya-DiBenedetto-Manfredi [5] and Kawohl [18]). This study is based on the observation that
a prismatic material rod subject to a torsional moment, at sufficiently high temperature and for an
extended period of time, exhibits a permanent deformation, called creep. The corresponding equations
are derived under the assumptions that the components of strain and stress are linked by a power law
referred to as the creep-law see Kachanov [16, Chapters IV, VIII], Kachanov [17], and Findley-Lai-
Onaran [13]). A nonlinear field equation in Quantum Mechanics involving the p-Laplacian, for p = 6,
has been proposed in Benci-Fortunato-Pisani [6]. Eigenvalue problems involving the p-Laplacian have
been the subject of much recent interest (we refer only to Allegretto-Huang [1], Anane [3], Drabek [9],
Drébek-Pohozaev [11], Dréabek-Simader [12], Garcia-Peral [15], Garcia-Montefusco-Peral [14]).
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Let © C¢ RY be an unbounded domain with (possible noncompact) smooth boundary 9Q. We
assume throughout this paper that p, ¢ and m are real numbers satisfying 1 < p < ¢ < p* = Np_if

N—p’
p<N p*———{—ooiprN,qu<p—( L) ifp<N (g <m < +oo when p > N).
N—p

Let C§°(2) be the space of C§°(R™)-functions restricted on €.
We define the weighted Sobolev space E as the completion of C§°(£2) in the norm

1/p
1
|ullg = (/ (|Vu(a;)|p + m\u(x”p) dac) .

Q

Denote by LP(Q; w1), LI(2; wy) and L™(0N2; ws) the weighted Lebesgue spaces with weight functions
wi(z) = (1 +|z|)% (i = 1,2,3), and the norms defined by

[wllpw, = | wilu(@)[Pdz,  [ullgw, = | walu(@)|?dz
Q Q

and
i, = [ wslu(@)™ s,
N
where =N < @y < —pifp < N (a1 < —p whenp > N), —N < a3 < ¢">2 - Nif p< N (=N < a3 <0

when p > N), and —N<a3<m¥—N+1ifp<N(—N<a3<0whenp2N).
We shall use in our paper the following embedding result.

Theorem A. Under the above assumptions on p, q and m, the space E is compactly embedded in
L1(Q; ws) and also in L™(08; ws).
This theorem is a consequence of Theorem 2 and Corollary 6 of Pfliiger [22]. Furthermore, with the

same proof as in Pfliiger [21, Lemma 2], one can show

Lemma 1 The quantity
||u||p:/ a(x)|Vu|pdac+/ b(z)|ul? dS
Q 0

defines an equivalent norm on E.

2 The main results

Consider the problem

(4) —div (a(z)|VulP72Vu) = Af (z)|ulP?u + g(z)|u|"%u  in Q,

a(z)|VulP2Vu - n + b(z) [ulP~*u = h(z,u) on 09,

where n denotes the unit outward normal on 92, 0 < ag < a € L*®(Q), while b : 9Q — R is a continuous
function satisfying

c C
At T =P S Tyt

for some constants 0 < ¢ < C.
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Problems of this type arise in the study of physical phenomena, related to equilibrium of anisotropic
continuous media which possible are somewhere “perfect” insulators, cf. Dautray-Lions [7].
We assume that f and g are nontrivial measurable functions satisfying

0< f(z) <CA+|z))* and 0<g(z) <C(+|z))**, forae zel.

The mapping h : Q2 x R — R is a Carathéodory function which fulfills the assumption
(A1) |h(z,9)] < ho(@) + ha(2)]s]™ ",
where h; : 00 — R (i = 0,1) are measurable functions satisfying

ho € L™ ™1 (90; wa/"™™) and 0 < hy < Chws ae. on ON.

We also assume

) h(z,s)
(A2) i s

(A3) There exists pu € (p,q] such that

= 0 uniformly in z.

pH(z,t) < th(z,t) for a.e. x € 0N and every t € R.

(A4) There is a nonempty open set U C 9Q with H(z,t) > 0 for (z,t) € U x (0,00), where
t
H(z,t) :/ h(z,s) ds.
0

Our first result asserts that under the above hypotheses, problem (A) has at least a solution.
By weak solution of problem (A) we mean a function u € E such that, for any v € E,

/ a(x)|VulP2VuVu d:l:—}-/ b(x)|ulP?uv dS
Q o9

= )\/ f(x)\u|p_2uvdm+/ g(x)|u|q_2uvd:v+/ h(z,u)vdS.
Q Q o0

Define

X:= inf

Joal@)|Vul? dz + [y ba)ul? dS
u€EE; u#0 '

Jo f(@)|ulP dz

Our first result is

Theorem 1 Assume that the conditions (A1)-(A4) hold. Then, for every A < X, problem (A) has a
nontrivial weak solution.

In the special case h(z,s) = 0 we are able to show also a multiplicity result for problem (A). The
statement is the following

Theorem 2 Assume h(z,s) = 0 and g > 2. Then, for every A\ < X, problem (A) possesses infinitely
many solutions.
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Next we prove the existence of an eigensolution to the following eigenvalue problem

—div (a(z)|VulP2Vu) = z)|ulP2u 2)|ul?%u) in
5 div (a(e)| Vul’ 2Vu) = A (f(@)|ul" 2u+ g@)lul? %) in @,

a(x)|VulP2Vu - n + b(z)|u[P2u = Mh(z,u) on 09.

We stress that for the next existence result of the paper we drop the assumptions (A2) and (A4).
By weak solution of problem (B) we mean a function v € F such that, for any v € E,

/ a(z)|VulP2Vu - Vo dz +/ b(z)|ulP?uv dS
Q 0

=) [/ f(@)|uP2uvdz +/ g(z)|u|i 2uvdz +/ h(w,u)vdS] )
Q Q o0
We prove

Theorem 3 Assume that the hypotheses (Al) and (A3) hold. Let d be an arbitrary real number such
that 1/d is not an eigenvalue X in problem (B), and satisfying

>t (2.1)

>

Then there exists p > 0 such that for all v > p > p, the eigenvalue problem (B) has an eigensolution
(u, A) = (ug, A\g) € E X R for which one has

A €

1 1
d+r2|luglly" ™" d + pQII'udIIZ"_”] '

3 Problem (A)

Throughout this section we use the same notations as was previously done in the case of problem (A).
The energy functional corresponding to (A) is defined as F : E - R

Fu) = %/Qa(x)WuF”dac—l—%/(mb(x)|u|pd8— %/Qf(a:)|u|pd$—/aQH(x,u) ds — %/Qg(:c)|u|qda:

where H denotes the primitive function of A with respect to the second variable.
By Lemma 1 we have || - ||y =~ || - ||[z- We may write

Fw = falf - [ @l o~ [ Hwas - [ ga)lultda.

Sincep < qg<p*, —-N<a; <—pand —N < ay < qN—;B — N we can apply Theorem A and we obtain
that the embeddings E C LP(Q; wi) and E C L%(Q; wy) are compact. So the functional F' is well
defined.

We denote by Ny, = h(z,u(z)), Ng = H(z,u(z)) the corresponding Nemytskii operators.

Lemma 2 The operators
Np, : L™(09; ws) — L™ ™1 (60, wé/(lfm)), Ny : L™(09; ws) — L*(09)

are bounded and continuous.
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Proof. The proof follows from Theorem 1.1 in [10]. [
Our hypothesis A < A implies the existence of some Cy > 0 such that, for every v € E

ol =& | f@loPds > Collol.

Lemma 3 Under assumptions (Al)-(A4), the functional F is Fréchet differentiable on E and satisfies
the Palais-Smale condition.

Proof. Denote I(u) = Il)||u||b Kp(u / H(z,u)dS, Kg(u /\I! (z,u)dr and Kg(u) =
/ ®(z,u) dz, where ®(z,u) = %f(w)|u|p and ¥ (z,u) = Eg(w)|u|q.
Q
Then the directional derivative of F' in the direction v € FE is
<F,(’U,),’U> = <II('U’)’U> - )‘<K<,I>(IU’)51U> - <K&,(U),’U> - <K}I(U),'U>,

where

(I'(u),v) = /Q o(@)|VulP 2VuVo dz + /a _b{a)lul v dS,

(K (u),v) = - h(z,u)vdS,
(K (u) /g )|ul? % uv de,
(K (u /f ) P~ 2uv da.

Clearly, I' : E — E* is continuous. The operator KJ; is a composition of the operators
Ky : B — L™(09; wg) % L™ (00 wy/ ™) 4 B*

where (I(u),v) = [y uvdS. Since

, 1/m’ 1/m
/ luv|dS < (/ |u|™ wé/(l_m) dS) (/ |v|™ws dS) ,
1) o0 0

then [ is continuous, by Theorem A. As a composition of continuous operators, K'H is continuous, too.
Moreover, by our assumptions on ws, the trace operator E — L™(99; ws) is compact and therefore,
K ;I is also compact.

Set ¢(u) = f(z) |u/P"2u. By the proof of Lemma 2 we deduce that the Nemytskii operator cor-
responding to any function which satisfies (A1) is bounded and continuous. Hence Nj and N, are
bounded and continuous. We note that

Kby E C IP(; w) ¢ p2/0=1)(Q; /(7P 1 g

where (n(u),v) = [ uv dz. Since

(r=1)/p 1/p
/ luv| dz < (/ |u|p/(p71)wi/(1—p) dm) (/ |v]Pw; d:c) :
Q Q Q
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it follows that 7 is continuous. But K&, is the composition of three continuous operators and by the

assumptions on wi, the embedding E C LP(; wy) is compact. This implies that K:I, is compact. In a

similar way we obtain that K:I, is compact and the continuous Fréchet differentiability of F' follows.
Now, let u, € E be a Palais-Smale sequence, i.e.,

|F(up)| < C for all n (3.1

and
| F' (un)|| g+ — 0 as n — oo. (3.2)

We first prove that {uy} is bounded in E. Remark that (3.2) implies that
(' (), un)| < o+ ||ug|lp for n large enough.

This and (3.1) imply
1
C + llunlls = F(un) — ;(F'(un),un)- (3-3)

But

(F' (), un) = / ()| VP dz+ / b(x) un|? dS—A / F(2)|un]? do— / 9(2) [un|? dz— / h(z, ), dS.
Q o0 Q Q o0N

We have

Fuw) = () ) = (=) (Il =2 [ f@)lulvde)

— (/ H(z,up)dS — l/ h(z, up)un, dS) - (1 - 1) / 9(x)|up|? dz).
o H Joq q 1% Q
By (A3) we deduce that

1
H(z,u,)dS < — h(z, up)uy, dS. (3.4)
a0 K Joq
Therefore ) L1
Fun——F'un,un2<———>C up||P. 3.5
()M<()>pu0||||b (3.5)

Relations (3.3) and (3.5) yield

1 1
C -+ lunlly > (=) Collunlf:
p u

This shows that {uy} is bounded in E.
To prove that {u,} contains a Cauchy sequence we use the following inequalities for ¢,¢ € RN (see
Diaz [8], Lemma 4.10):

€ —CIP < CEP2 — [CPT20) (€ ), forp>2 (3.6)
€ = ¢P < CUEP2 — [CP20) (€ = Ol + > P, forl<p<2 (3.7)
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Then we obtain in the case p > 2:

i — |} = /Qa(:v)|Vun VP da + /aQ b()lun — wyl? dS
< C((I'(un), un — uk) — (I'(uk), un — us))
= C((F"(un), un — k) — (F"(ur), tn — up) + MEg (n), un — ug) — MK (ur), un — up)
H(E gy (un), tn — i) — (K (ug), tn — k) + (K (n), un — up) — (KG (up), un — up))
< C(|IF (un)ll B + 1P (we) |5+ + A |1 K (un) — Ko (ug)l| 2+

I (un) — Ko (un) |+ + 1Ky (wn) — Ky (up)llp)llun — ullo.

Since F'(u,) — 0 and Ky, K}, K!; are compact, we can assume, passing eventually to a subse-
quence, that {u,} converges in E.
If 1 < p < 2, then we use the estimate

lun, — uglly < O'(T (un), un — we) = (I (un ), — w)| (lunlly ™ + gl 7). (3.8)

Since ||up||p is bounded, the same arguments lead to a convergent subsequence. In order to prove the
estimate (3.8) we recall the following result: for all s € (0, 00) there is a constant Cs > 0 such that

(x+1y)° < Cs(z® +7°) for any z,y € (0,00). (3.9)

Then we obtain

2
[t — |2 = (/ o(2)| Vit — Vug|? do +/ b(a)un — we]? dS) v
Q oN

2 2 (3.10)
<Gy (/ a(z)|Vuy, — VuglP dx) gt (/ b(x)|up — ugl? dS) p] .
Q a9
Using (3.7), (3.9) and the Holder inequality we find
/ a(z)|Vuy, — VuglP de = / a(z)(|Vuyn — Vug|?)? do
Q Q
_9 _9 g p(2—p)
< c/ a(z) ((IVun P2V, — Vg P2 Vug) (Vin = Vug))* (|Vun| + [Vur) "7 do
b
= C’/ 2)(|Vtn P2V, — |Vug P72V ) (Vu, — Vuk)) (a(z)(|Vup| + |Vug|)? ) * dz
( ) (|Vun|P "2V, — | Vur P72 Vug) (Vuy, — Vug) dx) (/ a(z)(|Vug| + |Vug|)? da:)
Q

2-p

(/ z)|Vuy|P dx —i—/ z)|Vug|P dx) ’ (/ a(z)(|Vun P2V, — [Vug|P~2Vug) (Vu, — Vug) dw)
Q

(/Q a(z)|Vuy|P d:v) = + (/Q a(z)|Vug|? d:v) Z)_Tp‘|
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S

2

x ( / () ([Vin P Vi — Vg P2 Vaug) (Ve — Vag) d:c)
Q
b

_ b @2- (2-p)p
<C, [/Qa(x)(wunv’—?vun—|vukv’—2vuk)(vun—vuk)dx] (||un||,, el )

Using the last inequality and (3.9) we have the estimate

(/Q a(z)|Vuy, — VuglP dav)%

(3.11)
<G (/Q a(z)(|Vun P2 Vup — |VugP~Vug) (Vun, — Vug) d33> (Ilmllf‘p + ||Ulc||§_p)-

In a similar way we can obtain the estimate

2
([ bltun —uras)” < G, ([ bla)lunl 2 = funl? 2w o~ w) do ) (7 + ;7).
(3.12)
It is now easy to observe that inequalities (3.10), (3.11) and (3.12) imply the estimate (3.8). The proof
of Lemma, 3 is complete. m

Proof of Theorem 1. We have to verify the geometric assumptions of the Mountain-Pass The-
orem. We first show that there exist positive constants R and ¢y such that

F(u) > ¢, for any u € E with ||lu|| = R. (3.13)
By Theorem A we obtain some A > 0 such that
lulldwy < Allullj forall u € E.
This fact implies that

1 1 Co A
Fe) = (lll = Nol,) ~ [ s@luitds~ [ B uyas = 22l - 2l - [ Hawas

By (A1) and (A2) we deduce that for every £ > 0 there exists C; > 0 such that

1
glg(w)IIUI" < eb(a)luf’ + Cows(z)[ul™.

Consequently
C A C A
F(u) > ;OHUHi’—gHUHZ—/aQ (eb(z)|ul’ + Cows(x)[u[™) dS > ;OHUHiJ—gHUHZ—601||U||§—0502||U||Z"-

For € > 0 and R > 0 small enough, we deduce that for every v € E with |ullpy = R, F(u) > ¢y > 0,
which yields (3.13).
We verify in what follows the second geometric assumption of the Mountain-Pass Theorem, namely

Jv € E with ||v]| > R such that F(v) < cp. (3.14)
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Choose 9 € C5°(R), ¢ > 0, such that § # suppy N 9N C U. From %g(w)|u\q > c3s"* — ¢4 on
U x (0,00) and (A1) we claim that

tP 1
Fey) = (11 - A lEw) - [ at@)itvltde [ H(.ty)as

< (1l = Nbl0,) — st [ s+ et == [ gyt
P ’ o U q Jo

Since ¢ > pu > p, we obtain F(t1)) — —oo as t — oo. It follows that if ¢ > 0 is large enough, F(t1)) < 0
so v = 11 satisfies (3.14).
By the Ambrosetti-Rabinowitz Theorem, problem (A) has a nontrivial weak solution. L]

Next we prove the second existence result about problem (A).

Proof of Theorem 2. In order to show the claim we want to apply a classical tool in critical
point theory, precisely we will use the Ljusternik-Schnirelmann theory (see [23]). Consider the even
functional

J(v):%/ﬂ ()| Vol do + » / |v\”dS——/f ol da,

on the closed symmetric manifold
M={vecE: / 2)l? = 1.

Note that M is only a Cl-manifold, since we have assumed 1 < p < ¢. By our hypotheses on f, g, b
and h (note that (A1)-(A4) are easily satisfied), Lemma 3 and Theorem 5.3 in [25], we have that J|as
possesses at least y(M) pairs of critical points (where (M) stands for the genus of M).

Now we have to estimate v(M). Since g # 0 there exists an open set w C € such that g(z) > § > 0 on
w. By the properties of the genus it follows that y(w) > v(B), where B is the unit ball of Wol’p(w) CFE,
but it is well known that the genus of the unit ball of a infinite dimensional Banach space is infinity, so
v(M) = co. Hence there exists a sequence {v,} C E, such that any v, (and also —vy,) is a constrained
critical point of J on M.

By the Lagrange multipliers rule we obtain that there exists a sequence {A,} C R such that

/ a(z )|Vun|pd$—|—/ z)|vn|P dS — )\/ f(@)|op|P dz = Ay / z)|vn|? dz.
Q
Since v, € M, using our assumption A < X we find

An = llonl? — A/Qf(x)|vn|” dz > 0,

so we can apply the usual scaling. Setting u, = /\k/ (a=p )vn, we have that w, satisfies for any n the
equation
[ a@IVuadz+ [ b@)unds =2 [ f(@)funl do + [ g@lualtdo,
Q ) Q Q
so the claim is proved. [
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4 Problem (B)

We start with the following auxiliary result.

Lemma 4 Under assumption (A1), if ¢ < m, there ezxists a number p > 0 such that for each p > p the
function
oo Elolle = Lol - = [ 9@t do— [ H(v)ds, ver
m D w1 qJo 80 ) ) )
is bounded from below on FE.

Proof. The growth condition for A implies

[ Ha) dS‘ < /BQ (ho(a;)m + %h1(m)|fu|m) ds

m—1

_m_ _1 o
< ([ 70 aS) T Wl oniun + Chllolnanuy < Co+ ClolR, o€ P,

with constants Cy,C > 0. One obtains also that

1 - —
2| [ st@lul? da| < Calpl < To+ T, ve .

with constants Cy,C > 0. Clearly, we can choose now the positive number p as desired. [

In view of Lemma 4 one can find numbers by > 0 and a > 0 such that

—2
5 2 1 1
E ol + b0 = Sl - a/ﬂg(a;)|v|q dr — /{m H(z,v)dS>a>0, veE (41

With by > 0 and p > 0 as above we consider numbers 7 > p > p and a function 8 € C'(R) such
that

B(0) = B(r) =0, B(p) = bo, (4.2)
B'(t) <0 &< t<Oorp<t<r, (4.3)
|t‘£11100ﬁ(t) = +00. (4.4)

Lemma 5 Assume that conditions (Al) and (A3) are fulfilled. Then, for any d > 0 satisfying (3), the
functional J : E x R — R defined by

50,0 = Dol + 260 2 [ 1@l = [ g@lolt do - [ H0) ot Lok 45)

is of class C! and satisfies the Palais-Smale condition.
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Proof. The property of J to be continuously differentiable has been already justified in the proof
of Theorem 1.
In order to check the Palais-Smale condition let the sequences {v,} C E and {t,} C R satisfy

|J(Unytn)| < M, Vn > 1 (4.6)

J{;(Umtn) = t721 ||Un||;n7pI,('Un) - Kéb(vn) - K}I(Un) - K<I/(Un) + dI,(Un) -0, (4.7)
2

Jé(vmtn) = m (tn”UnHZn + ﬁ,(tn)) —0 (4.8)

where I, K3, Kf, Ky have been introduced in the proof of Lemma 3.
From (4.1), (4.2), (4.5) and (4.6) we infer that

2 2 1 1 d
M>2 v+ =pB(ty) — - 4 ——/ 14 —/H ,n) dx + = |lvp |}
2 2 \oally” + 2 Bltn) = Slvnllpn = o | 9@l do = | H(z,0n) o+ —loalf

2 — p? 2 d
> S ol o (B(tn) = Bp) + 5 ol

Condition (4.4) in conjunction with the inequality above yields the boundedness of {¢,}.

Let us check the boundedness of {v,, } along a subsequence. Without loss of generality we may admit
that {v,} is bounded away from 0. From (22) we deduce that the sequence {t,|v,||;"} is bounded.
Therefore it is sufficient to argue in the case where t, — 0. From (4.6) it turns out that

1 1 d
—|lvn P +/Hm,v d:E—I——/ z) vy |2z — = ||v,||P
onl + [ oo+ [ galontds — ol

is bounded. By (4.7) we deduce that

m(—(ffé(vn),vn) — (K (vn), vn) — (Kl (0n), v0) + dlva]|E) — 0.

Then, for n sufficiently large, assumption (A3) allows us to write

11 1 1
P q
M+1+ ||Un||b > d (5 — ;) ||'U'n.||b + (; - a) ||'Un||Lq(Q,w2)

1 1 1
+f (;h(z,’un)vn _ H(x,'un)) ds + (; _ 5) om0,

1 1 1 1 1
N p_ p - _ = N p
> (=) (Aol = o) 2 (5 = ) (4= 5) Ioalk:

By (3), this establishes the boundedness of {v,} in E.
In view of the compactness of the mappings K}, K/, K], (see the proof of Lemma 3), by (4.7) we
get that

(d+22 llolly" ?) I'(wn)

converges in E as n — oo. The boundedness of {t,} and {v,} ensures that {I'(v,)} is convergent in E*
along a subsequence. Assume that p > 2. Inequality (3.6) shows that

un —uglly < C [/Qa(a:)ﬂVun\pQVun — |Vug [P2Vuy) - (Vun — Vuyg) do+
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+ [ b0a) (un P2, = [P ~2u0) (= wr) T =

C(I'(un) = I'(ug), un — u) < Ol (un) = I'(wk)l[5llun — uglls  ifp > 2.

Consequently, if p > 2, {v,} possesses a convergent subsequence. Proceeding in the same way with
inequality (3.7) in place of (3.6) we obtain the result for 1 < p < 2. ]

In the proof of Theorem 3 we shall make use of the following variant of the Mountain Pass Theorem
(see Motreanu [19])

Lemma 6 Let E be a Banach space and let J : EXR — R be a C! functional verifying the hypotheses
(a) there exist constants p > 0 and o > 0 such that J(v,p) > «, for every v € E;
(b) there is some r > p with J(0,0) = J(0,7) = 0.
Then the number
c:= inf max J(h(T))
geP 0<7<1

is a critical value of J, where
P :={g € C([0,1]; E x R); ¢(0) = (0,0), g(1) = (0,7)}.

Proof of Theorem 3. We apply Lemma 6 to the function J defined in (4.5). It is clear that
assertion (a) is verified with p > 0 and @ > 0 described in Lemma 4 and (4.1). Due to relation (4.2),
condition (b) in Lemma 6 holds. Lemma 5 ensures that the functional J satisfies the Palais-Smale
condition. Therefore Lemma 6 yields a nonzero element (u,t) € E x R such that

Ty, t) = (d+[lully™) T'(u) - Ky(u) - Ki(u) — Ky(u) =0, (4.9)

Ji(u,t) = — (tllully* + B'(t)) = 0. (4.10)

2
m
From (4.10) it follows that

t6'(t) < 0. (4.11)

Combining (4.11) and (4.3) we derive that if ¢ # 0, then u # 0 and
p<t<r. (4.12)

Therefore for each d in (3) such that 1/d is not an eigenvalue in (B) and each r > p > p we deduce that
there exists a critical point (u,t) = (ug,tq) € E X Ry of J, where t = t; verifies (4.12). Consequently,
relation (4.9) establishes that ug € E is an eigenfunction in problem (B) where the corresponding
eigenvalue is

A 1
d= T o1 m—p>
d+ t7 ||lually”*
with ¢t = t4 satisfying (4.12). This completes the proof. [
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On a double bifurcation quasilinear problem arising in the study of
anisotropic continuous media,

Florica-Corina St. CIRSTEA and Vicentiu D. RADULESCU*

Department of Mathematics, University of Craiova, 1100 Craiova, Romania

Abstract. We study the bifurcation problem
—div (a(x)|Dul’"’Du) 4+ h(z)u"~" = f(\, z,u) in QCcRY,
a(z)|Dul’ > Du - n + b(x)u”"" = g(x, u) on T,
u>0, u#0 in Q,

where 2 is an unbounded domain with smooth non-compact boundary I', n denotes the unit outward normal vector on I’
and A > 0, 0 are real parameters. We assume that max {p,2} < r < p* = pN/(N — p), 1 < p < N, the functions a, b and
h are positive while f, g are subcritical non-linearities. We show that there exist an open interval I and A* > 0 such that
the problem has no solution if § € I and XA € (0, \*). Furthermore, there exist an open interval J C I and A¢ > 0 such
that, for any 6 € J, the above problem has at least a solution if A > Ao, but it has no solution provided that A € (0, Ao).
2000 Mathematics Subject Classification: 35J60, 35P30, 58E05, 58G28.

1 Introduction

Among the great range of processes modelled by nonlinear equations, those leading to bifurcation
problems are of particular difficulty and importance. More precisely, many models from chemical
engineering, mathematical biology, mechanics and engineering may be written in the form

ug = F(\,u, Du, D*u,--)  in Qx (0,7), (1)

where u = u(z,t) is the state of the system under consideration. For instance, if we try to describe
the behaviour of a bacteria culture, then the state variable u might be the number of mass of the
bacteria. In many concrete situations problems like (1) represent a complicated system of equations
involving partial differential equations and other operations, like boundary or initial conditions. Each
mathematical model contains (implicitly or explicitly) parameters corresponding to the real world
situation being described. For example, the outcome of a bacteria growing experiment will depend on
the size of the experimental apparatus, the temperature, the composition of the ambient atmosphere,
and other parameters. In such a way, a surprising variety of the problems in applied mathematics which
exhibit multiple steady state solutions, even systems with infinitely many degrees of freedom, can be
reduced to the form

ug = F(A1, Agy -+« s Mg,y Du, D%, -+ +) in Q x (0,7)

*Correspondence author. E-mail: radules@ann. jussieu.fr
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which involves a large number k of parameters. However, even for the biologists, it would be difficult
to figure out how F should depend on all these quantities. In this case, in order to develop a consistent
mathematical theory, one tries to fix as many as possible parameters and perhaps to vary one of them
so as to see the effect of this. Many times several parameters in a model can be lumped into a single
one by standard scaling procedures, such that Reynold’s number, Lyapunov-Schmidt reduction, etc.
Thus we obtain the evolution problem (1) which depends on a single parameter. The simplest solutions
(1) can have are equilibrium solutions. These are time-independent solutions of (1), i.e., the states
which satisfy F(\,u, Du, D?u,--+) = 0. Similar problems arise for the case of several state variables.
We refer, e.g., to the steady state Brusselator model (see Brown-Davidson [4]) which was developed to
describe morphogenesis and pattern formation in chemical reactions. We assume in this paper that F
involves the quasilinear differential operator

Ayu = div (|DuP~?Du), 1<p<oo.

We are concerned in this paper with the study of the following double bifurcation quasilinear problem

—div (a(z)|DuP2Du) + h(z)u" ' = f(\, z,u) in Q CRY,
(Pr0) § a(z)|DulP~2Du - n + b(z)uP~! = Og(z,u) on I',
u>0, u#0 in Q,

where (2 is an unbounded domain with non-compact, smooth boundary I'; A > 0,  are real parameters
and throughout max {p,2} <r < pN/(N —p), 1 <p < N.

The study of non-trivial solutions in the above problem is motivated by the following example.
Suppose an inviscid fluid flows irrotationally along a flat-bottomed canal. The flow can be modelled
by an equation of the form F(A,u, Du) = 0, where F(A,0,0) = 0. One possible motion is a uniform
stream (corresponding to the trivial solution u = 0), but it is of course the non-trivial solutions which
are of physical interest.

Problems of this type arise in the study of physical phenomena related to equilibrium of anisotropic
continuous media which possible are somewhere “perfect” insulators, cf. Dautray-Lions [7]. For in-
stance, if 7 denotes the shear stress and Dyu is the velocity gradient then these quantities obey a
relation of the form 7(z) = a(z)Dpu(z), where Dyu = |Du[P~2Du. The case p = 2 (respectively p < 2,
p > 2) corresponds to a Newtonian (respectively pseudoplastic, dilatant) fluid. The resulting equations
of motion then involve the quasilinear operator div (aDpu). We refer in this sense to Aronsson-Janfalk
[2] for the mathematical treatment of the Hele-Shaw flow of “power-law fluids”. The concept of Hele-
Shaw flow refers to the flow between two closely-spaced parallel plates, close in the sense that the
gap between the plates is small compared to the dimension of the plates. Quasilinear problems with
a variable coefficient also appear in the mathematical model of the torsional creep (elastic for p = 2,
plastic as p — oo, see Bhattacharya-DiBenedetto-Manfredi [3] and Kawohl [14]). This study is based
on the observation that a prismatic material rod subject to a torsional moment, at sufficiently high
temperature and for an extended period of time, exhibits a permanent deformation, called creep. The
corresponding equations are derived under the assumptions that the components of strain and stress
are linked by a power law referred to as the creep-law see Kachanov [12, Chapters IV, VIII], Kachanov
[13], and Findley-Lai-Onaran [11]). We also refer to the study of flow through porous media (p = 3/2,
see Showalter-Walkington [19]) or glacial sliding (p € (1,4/3], see Pélissier-Reynaud [15]). We mention
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the recent papers Cirstea-Motreanu-Radulescu [5], Drabek-Huang [9] and Driabek-Simader [10] for the
mathematical treatment of bifurcation problems for several classes of quasilinear elliptic equations on
unbounded domains and with respect to anisotropic spaces.

The purpose of this paper is to study a quasilinear eigenvalue problem with non-linear boundary
condition in an unbounded domain Q C RY and we generalize in a larger framework some results from
Cirstea-Radulescu [6]. It is known that for unbounded domains, neither the embedding WP (Q) —
L9(9), nor the trace WP (2) — L™(T) are compact. So, it is natural to look for more general function
spaces, for instance weighted Sobolev spaces, where compact embeddings can be obtained for suitable
weight functions. However, due to the non-linear boundary condition it is not only necessary to have
compact embeddings of weighted Sobolev spaces but to use also compactness of the trace operator.

Pfliiger [17] studied the trace operators WP (Q; vy, v1) — L*(T; w) in weighted Sobolev spaces for
sufficiently regular unbounded domains Q C RY with non-compact boundary. He established certain
conditions on the weight functions vy, v1, w which ensures the compactness of this operator.

For a positive measurable function w; defined in a domain Q C RY, let L9(Q; w) be the space of
all measurable functions u such that

1/q
lullg,0w = (/ [u(z)|Twy (x) d:v)
Q

is finite. If ' is a submanifold in R, we denote by L™(I'; wy) the space of all measurable functions
u such that |||/, rw, is finite. The weighted Sobolev space W1P(Q; vy, v;) is defined as the set of
all functions u € LP(€; vg) such that all the derivatives ug, (1 < i < N) belong to LP(€; v1). The
corresponding norm is given by

I

1/p
P ( / lu(z) Poo () dz + / |\ Du(z)Pos (2) da:) .
Q Q

Denote by A, the Muckenhoupt class which is the set of all positive measurable functions v in RY
satisfying
1/p (p—-1)/p

ﬁa/”dw /,U—l/(p—l)dx <C ifl<p<oo

1
@Zvdngessgggu(x) ifp=1,

for all cubes @ in R, For example, the function v(z) = (1+ |z|)? belongs to A, if 8 € (—~N,N(p—1))
(see Torchinski [20]).

We always assume that the continuous weight functions vg, v1, wo, w1, wo belong to A,. Further-
more, the unbounded domain © C R”Y and the weight functions are chosen such that we can apply
[17, Theorem 2] and [17, Corollary 6] to guarantee that the trace W1P(€; vg,v1) — LP(T; wg) is con-

tinuous and the embedding WP (Q; vy, v1) < L4(Q; wy) for some p < g <

WP(Q; vy, v1) — L™(T; wy) for some p < m < p %—:117 are compact .

jg_p, respectively the trace
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Remark 1 To give an example of the domain Q@ C RN and of the weight functions vy, vi, wo, w1 and
wy that satisfy the above assumptions, consider Q as an infinite cylinder w x R where w C RVN~1 is
smooth, bounded and

1
vo(z) = Ar vi(z) =1, wo(x) = (1+]z))?°, wi(z) = (1+|z))*, wa(z) = (1+|z])*2, =€ RN.
To obtain continuity of the trace operator W1P(S2; vy, v1) — LP(T'; wg) and compactness of the embed-
ding WP (Q; vg,v1) — LI(Q; wy) respectively of the trace operator WP (Q; vg,v1) — L™(T'; wa) we
have to choose

N-p N-p

—N<agpy<l—-p, —-N<ai<gq

—N and —N<ay<m

- N+1.

Denote by C°(f2) the space of C§° (R )-functions restricted to Q2. We define the weighted Sobolev space
E as the completion of C5°(€2) in the norm ||-||z where we shall use the abbreviation |||z = ||*||1,p,2,v0,01 -

Remark 2 The definition of E and the choice of our weight functions ensure the continuity of the
trace E — LP(T'; wo) and the compactness of the embedding E — LI(Q; wy) respectively of the trace
operator E — L™(T'; we).

2 Main results

Suppose throughout this paper that the following hypotheses are fulfilled
(Hy) vy € CY(R") and there exists a constant 0 < o < N such that

|z] - [Do(z)| < o vo(x) Vo € Q;

(H2) a is a positive measurable function, locally bounded in © and there exist positive constants
ag, a1 such that
ao(|z[Pvo(z) + vi(2)) < alz) < arvi(z) ae. z € Q;

(Hz) b is a positive continuous function on R" and there exist positive constants by and b; such
that
bolz|vo(z) < b(z) < bywo(z) a.e. z€T.

Let f(A,z,s) : (0,00) x2xR — R be non-decreasing in A, measurable in z, derivable in s satisfying

(Hy) f(,-,00=0, f(Az,8)+f(Az,—s)>0 VYA>0, ae.z€Q, VseR;

(Hs) |fs(\,z,5)| < Ap(z)|s|772  for some r > g > max {p,2}, VA >0, a.e. z € , Vs € R, where
( is a non-negative, measurable function such that

0<o(z) <crwi(z) ae z€;

A
(Hg) !1_1)1(1) % =1 uniformly in z and in \;

Hy) [f(,z,8) — fF(A2,m,8)| < |A1 — Ao|ww(2)[s]97L, VA1, A2 >0, ae. z € Q, Vs € R, where 9
is a non-negative, measurable function such that

0<9(z) <Crwi(r) ae z€.
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Assume g : I' x R — R is a Carathéodory function that satisfies the conditions

(Hs) g¢(-,0) =0, g(z,s)+g(z,—s)>0ae eI, VseR;

(Ho) |g(z,s)| < go(z) +g1(z)|s|™"!, forsomep<m<p %:]11, a.e. ¢ € ), Vs € R, where go, g1
are non-negative, measurable functions such that

0 < go(x),g1(z) < Cywa(z) ae. xz€l, goe L™mI(T; wé/(lfm)).

The following integrability condition of the ratio w]/h? is inspired by assumption (1.4) in Alama-
Tarantello [1].

(H10) h:Q — R is a positive and continuous function satisfying

r\ 1/(r—q)
wi
/ (ﬁ) dzr < oo.
Q

Remark 3 If0 < a <a € L®(Q) and b € C(RY) is a positive function such that

C1

- < €2
(a1 =

S T

for some constants 0 < c; < co

then hypotheses (Hy)-(Hs) are fulfilled if we take weight functions as in Remark 1 with ag =1 — p.

Consider the Banach space X = E N L"(Q; h) endowed with the norm

p/r
lull’ = llullE + (/l'M(I)ITh(m) dx) :
Q

Obviously, the following embeddings
X45E and X5 L"(2; h) are continuous. (2)

The energy functional corresponding to (P g) is given by ®,4: X — R,
1 1 1
By (u) = — /a(x)|Du|” dz + = /b(x)|u|” dT + - /h(x)|u|’" dz — /F(/\,a:,u) dz — Q/G(:L‘,u) dr,
p p T
Q r Q Q r

where F' and G denote the primitive functions of f and g with respect to the last variable, i.e.
u u

F(\ z,u) = [ f(\z,s)ds, G(z,u) = [ g(z,s)ds. Solutions to problem (P ) will be found as non-
0 0

negative and non-trivial critical points of @) g. Therefore, a function v € X is a solution of the problem
(Py,p) provided that u > 0, u # 0 in © and for any v € X,

/a(x)|Du|p*2Du-D'u d$+/b($)|u|p72uv dI‘+/h(:v)|u|r72uvda:—9/g(m,u)'u dl’ = /f()\,x,u)’u dz.
Q r Q r Q

Set
Ng:={ueX: /g(x,u)udI‘ < 0}, Pyg:={ueX: /g(m,u)udf‘ > 0}
r r
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0, = sup 4”“”%; 0* := inf ||u||p
T wen, [ g(z u)udl’ T ueP, fg(a; uw)udl’
r
where || - || is defined on E as follows
1/p
lully = ( [a@ipup ds + [ b df) . )
Q r

We introduce the convention that if Ny = () then 6, = —oco and 6* = 400, provided Py = . Define

Ng = {uEX:/G(z,u)dI‘<0}, Pq = {ueX:/G(x,u)dP>0}

PP U/ S S | —
T ueNg P [ Gz, u)dT ) uePprGxu) dar -
T
If Ng = 0 (resp., Pg = ) then we set § = —oco (resp., 67 = +00).

Our main results are the following

Theorem 1 Suppose 0, < 6 < 0*. Then there exists \* > 0 such that problem (P g) has no solution,
provided that 0 < A < \*.

In order to state the next result, define § = max {6,,60_} if g(z,-) is odd and @ = 0 elsewhere. Let
6 = min {6*,07} and observe that § <0 < 6. Set J = (6, 0) and assume that J # (.

Theorem 2 Suppose 0 € J. Then there exists Ag > 0 such that the following hold:
(i) Problem (P g) admits a solution, for any X > Ay,
(i) Problem (Pyg) does not have any solution, provided that 0 < X < Xg.

3 Auxiliary results
We first prove that the energy functional @, 4 is well defined on X.

Lemma 1 There exist positive constants Cy and Cy such that for every u € E

/\umo dz < 01/|Du|%1( )dx—|—02/|n |[ulPvo(z) dT .

Proof. Using the divergence theorem we obtain, for any u € C§°(12),

/:v  D(|uPvo(x)) dz — /(n - &) [ulPvo(z) dT — N/ lu[Pvo (z) da.
Q

Q r

This implies

N/|uv’v0(a:) dz < /|n-x||u\pv0(x) dF+/\u|p|x\|Dv0(a:)|da:+p/|:1:Hu|p_1|Du|vo(x) dr.  (4)
Q T Q Q
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Using Holder’s and Young’s inequality, we get the estimate

(p=1)/p 1/p
p [ lallul " |Dufuo(s) do < p ( [ 1uPro@) dx) ( [ 1Duplafuo(z) dx) <
Q Q Q (5)
e(p—1) / lulPvo (z) d + €17 / | Dul?|z|Pvo dz
Q Q
where € > 0 is an arbitrary real number. From (4), (5) and (Hy) it follows that
(N—e(p—1)—0) / lu[Pvo (z) da < &P / | DulP|z|Poo (z) dz + / I - | [ulPvo () dT.
Q Q r
Using (Hz2) and choosing € small enough we find
/ lulPvo(z) dz < Cy / \DulPvi () dz + Co / in - zjufPro(z) dT,  Vu € C°(Q).
Q Q r
The conclusion of our lemma follows now by standard density arguments. O

Lemma 2 The quantity || - ||p defined by (3) represents an equivalent norm on E.

Proof. The inequality ||ul/%; < c||u||? follows directly from Lemma 1 by using the left hand side inequal-
ities which appear in hypotheses (Hz2) and (Hg).

By Remark 2 we know that the trace E — LP(I'; wy) is continuous. Therefore, we have that there
exists C > 0 such that

/|u|pw0(w) dr < Cllul’, VucE. (6)
T

Using the inequalities remained in (H2), (H3) and by (6) it follows that

Jull} < ax [ 1DuPo1(@)d + by [ JuPwo(a) dr < ¢ ulfy.
Q r

Hence the desired equivalence is proved. O

For A > 0 fixed, let f) be the function defined by

iz, s) = f(\z,8) Vre VseR.

u
Set F(z,u) = [ fa(z,s)ds. Denote by Ny,, Ng,, Ny, Ng the corresponding Nemytskii operators.
0

Lemma 3 The operators

Ny, LUQ; wy) — L9/@=D(Q; wl/ 79y, Np, : LI(9Q; wy) — L'(Q)
N, : I™(T; wy) — L™ D@ wl/ ™) N« LT wy) — LY(T)

are bounded and continuous.
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Proof. From hypothesis (Hs) we deduce that

@) € 2p@llt < Ol () ez e VueR
5 (7)
q(qA— 1)(p(ac)|u|q < %/\|u|qw1(w) ae.z € YueR,

|F)\($’u)| <

where C; denotes c;/(q — 1).
For u € LI(; wy) we get (setting ¢' = ¢/(¢ — 1))

/leA |q d:L‘ < Cf/\ /|u|qw1 )

Therefore, Ny, is bounded. Similarly, the boundedness of N, follows from the estimate

/|NF/\(U)|d:(; < %A/Wm(x) dx
Q Q

Let m' =m/(m — 1) and u € L™(T'; ws). Then, by (Hy)

r r

I
gm'~1 (o +cr / lu|™ws () df) ,
T

which shows that N, is bounded. In a similar way, by (Hg) and Hélder’s inequality we obtain

1
[INatwldr < [ goluldr + — [ giful™dr <
T T T

1/m’
(/gg”wé/(lm) dF) . </|u|mw2(x) dI‘) %/|u|mw2
r

r

and the boundedness of N¢g follows.
From the usual properties of Nemytskii operators we deduce the continuity of Ny, Np,, Ny and
Ng¢ (see Vainberg [21]). O

In view of Lemmas 2 and 3, ®, ¢ is well defined on X.
Lemma 4 The functional ®) g is Fréchet-differentiable on X.

Proof. We use the notation

1 1
1) =l Jw) = fulfan Kolw) = [ Gu)dr, Ke(w= [ F(eu)ds
r Q

59



Then the Géateaux derivative of @, 4 is given by

! /! / !

(@) 0(u),v) = (I (w),v) + (J (u),0) = (Kp, (u),v) = 0(Kg(u),0),

(I (u),v :/a )| DulP~2 D - Dvd:v+/b )|ulP~2uw dT,

Q
(7 (w),v) :/h(x)|u|’"—2uvdx, (K}, (u) /fA (@, u)vde, (Ka(u), ):/g(x,u)vdf.
Q

r

We need only to show the continuity of q)')\,e and the assertion is proved.

Clearly, I : E — E' and J : L'(Q; h) — (L"(Q; b))’ are continuous. By using (2) we see
immediately that I' : X — X’ and J : X — X' are continuous.

The operator K’G is a composition of operators

X & B Ly LD wy) 2% L/ m=D(D; )/ Ty B B ¥

where (k(u),v) = [uvdl'. Obviously, k is a linear operator. By Holder’s inequality and Remark 2,
r

1/m’ 1/m
/|uv|dr < </|u|mlw;/(1—m) dF) . (/ |v]|™ws dP) < C||u||m/(m 1)Ll (- m||vlle

T r T

which shows that & is continuous. As a composition of continuous operators, K'G is continuous, too.
Moreover, it is compact since the trace operator -y is compact. In a similar way we obtain that K}*& is
continuous such that the Fréchet-differentiability of ®) g follows. O

4 Proof of Theorem 1

Assume 6, < 6 < 6* and let A > 0 be chosen such that problem (P, y) possesses at least a solution. We
claim that there exists A* > 0 such that A > X\*. Suppose that v is a solution of problem (Pjg). Then,
using (7) we find

ulf? —O/g(w,u)udr+/h(a:)|u|’"da: _ /f()\,x,u)ud:v < )\C’f/\u|qw1(w) dz. (8)
T Q Q Q

Now, the Young inequality implies the following estimate

~ 9 1/(r—q)
/\Cf/|U|q’w1(.’E) da::/kif;:]l h/muft dz < TGyl /( ) dx+g/h|u|"dm.
Q Q Q Q

This inequality combined with (8) gives

—q, ~ r\ 1/(r—a) -
Julf —0 [ g wpuar < 2@yt o [()T T do+ L [ de <
T

T
1/(r—q) 9)
) dx .

w]
r h4

/
"~ 9./ \\yr/(r—a)
(Cyay/ra Q/ (
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On the hand, 6 < 6* implies the existence of a constant C; € (0,1) such that

[l

0<(1-C)0"<(1-C1)7—F—v—
ffg(x,u)udI‘

for all u € P,

which yields
lul? — 9/g(x,u)udI‘ > Cillulf  forallu € P,
r

On the other hand, 6, < @ shows that there exists Cy € (0, 1) such that

lul? — 9/g($,u)udf > Cyllulp for all u € .
T

From (10) and (11) we conclude that

lul? — H/g(x,u)udf > Collulll  forallu e X
r
where Cy = min {C1, Ca}.
The continuity of the embedding E < L9(f2; w;) implies the existence of C' > 0 such that
6||u||f;”9,w1 <l forallu € E.

By (8) and (12) we have

p/q
C,C ( / |9 () da:) < Collull? < AC; / |t () da,
Q Q

which implies
(Ucoéf_l)\_l)q/(q_p) §/|u|qw1(af;) dz.
Q
This combined with (13) yields
CoC(CCoCy ' A 1yP/a=P) < Coul}.

Using (14) together with (9) and (12) we obtain

w1
T ha

I e r\ 1/(r—0)
CoC(CCC Ayl la) < T2 4Gy nyr/=a) / ( ) dz.
Q

We see that our claim follows if we take

N 1/(r—q)
* _ v wy
X = C (/(hq) dz
Q

) (q—p)/q:| (T—q)/(’l"—p)

) —(g—p)(r—q)/q(r—p)

where C* denotes (:71 [006 (T’"Tq
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Corollary 1 Suppose 0, < § < 0* and X > 0 such that (Pyg) has a solution u. Then

1/(r—a)
Collully + dz < —(C’ A/ = q)/ (w1> di
Q

ha

and
ully > KA~(@P),

where K > 0 is a constant independent of u.

Proof. The first part of the assertion follows by (9) and (12). The second one is implied by (14) which
shows that the constant K can be chosen, for example as c p(qu)(Coéffl)l/ (a-p), a

5 Properties of &)y

Proceeding in the same manner as we did for proving (12) we can show that if we take 6_ < 0 < 67
then there exists ¢ > 0 such that

1
Il — H/G(:c,u) dr > cllull?  for all u € X. (15)
T

We shall employ in what follows the following elementary inequality
w/(v—p)
slult — tlu|” < Cpuus (t> Vu € R, Vs,t € (0,00), VO < pu < v. (16)

Lemma 5 Suppose 0_ < 0 < 0% and X\ > 0 is arbitrary. Then the functional ®y g is coercive.
Proof. From (7) we have that there exists C' > 0 such that
F(\ z,u) < CA|u|fw (z) a.e. ¢ € Q, Yu € R. (17)

By virtue of (16) and (H19) we obtain

q/(r—q) 1/(r—q)
/(CAwl\uw _ —W) dz < C,«q/)\wl (AZ”) dz = Cyp N/ /( ) dz < C'.
Q

Q

Using (15), (17) and the above estimate we find
L o 1 r
Brol) = ulf - O/G(:I:,u) dr — /F()\,:z:,u) do + - /h|u| dz >
r

Q Q
h 1 1
cllulf — / (C)\|u|qw1 _ gw) do+ o /h|u|’" do > el + o /h|u|’" dz — "
Q Q Q

and the coercivity of ®, 4 follows. O
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Lemma 6 Suppose 0_ < 0 < 0%, X\ > 0 is arbitrary and {u,} is a sequence in X such that ® g(uy) is
bounded. Then there exists a subsequence of {uy}, denoted again by {u,}, such that

Up = ug i X, Uy = ug a.e. inQ and Py g(ug) < linrgngA,g(un).
Proof. In view of Lemma 5, the boundedness of @ g(uy,) shows that {u,} must be bounded in X. Using
(2) and Remark 2 we may assume (up to a subsequence) that
Up = ug in X,  up — up in LY(Q; wy) and  u, — up a.e. in .

Set
1
E(z,u) = F(\, z,u) — ;h|u|T and &(z,u) = Ey(z,u).

By hypothesis (Hs) and (16) we obtain
(a-2)/(r—
fule,u) = fulhz,w) — (r— Dhla[? < Acgwiul?™? — (r — D[~ < Chus (T)
It follows that

Q/(E(ac,un) — Z(z,up)) dz = Q/ (/01 /OS Eulz,up + t(un — up)) dtds) (tn — up)? dz <

w20

!
| e Un
Q

— ug)? dz.

This inequality will be used to get the estimate for ® g(ug) — @ 9(un):

@5.0(u0) — Prg(un) =
(uolly = ually) +6 [ (G(a,1n) ~ Gl o)) AT + [ (2, un) ~ E(w,00)) do <
T

(r=2)/(r—q)

wy

2
m(“n — up)” dz.
Q

RVWi= K=

(uolly = unll) +6 [ (G(aytn) — Gl ) T + "
r
The compactness of the trace operator E — L™(T'; we) and the continuity of the Nemytskii operator
Ng : L™(T; wy) — LY(T') imply that Ng(us) — Ng(ug) in L(T) ie. [|Ng(un) — Ng(ug)|dl — 0 as
r
n — 0o. It follows that

lim F/ Gz, un) dT = / G, ug) dT. (18)

n— 00
r
By Holder’s inequality we find

(4-2)/q
(r—2)/(r—a) 7\ 1/(r—q)
w w
| Syt — ) do < (/ (7) dw) | (/ [un = wowi (z) dx)
@ Q

Q

2/q

Since u, — up in LI(Q; wy) we obtain
. wY*?)/(T*q) )
Q

The lower semicontinuity of || - ||, with respect to the weak topology, (18) and (19) finish the proof. O
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Lemma 7 Suppose 0, < 6 < 0* and X\, \, Ao > 0 such that problem (P, g) has a solution u, for each
n. Then {u,} converges weakly (up to a subsequence) in X to some ug which is a non-negative critical
point of @y, 9.

Proof. By Corollary 1, {uy} is bounded in X. Therefore, in view of Remark 2, Lemma 2 and (2), we
may assume (passing eventually to subsequences) that

0 0
Un — ug in X, up — g in L7 (4 h), tp — ug in B, up — ug in LP(T; b), 2 — 220 in LP(Q; a) (20)
Up — ug in LY(Q; wy), up — uwg in L™(T; we), up — ug a.e. in Q, wu, - ug a.e. in'.  (21)

We now observe that the embedding E — Li .(Q) is compact for all p < s < p*. This and (20) imply

loc
up — up in L (), Vp<s<ph (22)
Since uy, is a non-negative critical point of @y, ¢ for each n, we derive by (21) that vy > 0 in 2 and for
any v € X we have
/a|Dun|p_2Dun-DU dm+/b|un|p_2unv dF—I—/ h|tn | 2 upv de = /f()\n,x,un)v da:—l—@/g(m,un)v dr.
Q T Q Q r

By (20) we find that {|u,|"~%uy,} is bounded in L'/"=1(Q; k), while by (21) we have that |u,|"~%u, —
lug|"~2ug a.e. in 0. Combining these facts we get
[tn|" "2t — Juo|""2ug in L/ (Q; h). (23)
For v € L'(9 h) fixed, set l,(u) = [huvdz, for all w € L7/1D(Q; h). Tt is easy to verify that
Q

l, € (L7/=1)(Q; h))'. This together with (23) implies

lim /h|un|r_2unv dx = /h|u0\7_2uov dz, Vv e X. (24)
n—oQ
Q Q
Similarly
lim [ bluy|P2upv dl = /b\u0|p_2uov dr, Yo e X. (25)
n—oo
r r

Taking into account (21) and Lemma 3 we infer that
Ny, (un) = Ny, (ug) in L9/ D (05 wi/" ) and Ny(un) — Ny(ug) in L™ ™D (D; wy/ ™). (26)

By Holder’s inequality and (Hyz) we derive the estimates
/|(f()\n,$,un) - f()\Oa‘fEa’u'O))m dz <
Q
10 G200 = £ oz, )l dz + [ 170, ,10) = £(h0,2,u0))o] de <
Q Q
CrlAn = ol [ lunlt= lolwr dz + [ 1(N7,, (ua) = Ny, (w0) 0] do <
Q Q
O hn = Nolltn 2t ol g2+ 1Ny, (tm) = Ny W0l 0t 0l 0

EAbd]
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and
[ (@ 100) = 9(2,100))0 4T < [Ny () = Nyfo)l, 1) gt/ [l

Then, in virtue of (26) we find

n—oo

lim /f(/\n,a:,un)vda::/f()\o,a:,uo)vdw, Yo € X.
Q

lim [ g(z,u,)vdl = /g(w,uo)'u dr, Vv € X.

n—00
r

We now claim that Du, — Dug a.e. in §2. Set

1

>zt

It is clear that there exists Ry > 0 such that Qp # 0 for all R > Rj. Since Qg C Qg CC  for all
Ry < R < R’ and Ugr>R,Qr = 2 we need only to show

Qr = {z € R : |z| < R and dist (z, RV \ Q) >

Du, — Dug a.e. in Qg for any R > Ry.
For this purpose we use the following inequalities (see Diaz [8, Lemma 4.10]) that hold for any &,¢ € RY
€ —CIP < CEPT2 — KPP0 ~C),  forp>2; (28)
€~ ¢IP < CEP~2e — [CP20E - Ol +[¢h* P, for1<p<2. (29)

Therefore, it is sufficient to prove that

(|Dun\p_2Dun — |Du0|p_2Du0) - (Dup — Dug) — 0 a.e. in Qp for any R > Ry. (30)
For a fixed R > Ry, choose ¥ € CP(RY) with0 <9 <1inRM, 9 =1o0n Qr and 9 =0 on R \ Qup.
Then by (20) and (21) we have that Yu, — dup in E which yields

/a|Du0|p_2Du0 - D(Yup — Jug) dz + /b19|u0|p_2u0(un —ug)dl = 0. (31)
Q

By Hoélder’s inequality and (22) we find

(p—1)/p 1/p
|/ — ug)|Dug|P~2Dug - DY dz| < C4 / a|Dug|? dz / |up, — uglP dz — 0.
upp ¢ upp ¥
Using this fact in (31) we obtain
/a19|Du0|p72Du0 - D(up — ug) dz + /bﬂ|u0|p72u0(un —up)dl’ — 0. (32)

Q

On the other hand, since (@;n’a(un),ﬂ(un —ug)) = 0 we have

/m‘}|Dun|p_2Dun - D(up — ug) dz + / b19|un|p_2un(un —ug)dl' + / a(u, — u0)|Dun\p_2Dun -Dddx =
Q r Q
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/h19|un|r n(uo — up dw—i—/f Ans Ty Uy )9 (U —uo)dzz:—I—O/g(x,un)ﬂ(un —ug)dl.

By Hblder s inequality, (20) and (22) we derive

(r=1)/p 1/p
|/ — ug)|Duy [P 2Du,, - DY dz| < Oy / a|Duy, |P dz / |un, — uo|P dz -0
upp ¢ upp 9
and
(r=1)/r 1/r
/h19|un|’" 20 (g — up) dz| < Oy / hluy|" dz / |up, — ug|" dz — 0.
upp ¢ upp ¢

By (7), (21), (26) and Holder’s inequality we see that

|/f(/\na-7f'aun)"9(un - UO) d$| < C~1f SliIl) An / |un|q_1|un - UO‘wl dr <
n_

Cf SUP An ||un||q,n wl““ﬂ - u0||q,Q,w1 =0

and
R R N A [ A
T

It follows that

{O\

ad| Dy [P"2Duy, - D(uy, — ug) dz + /bﬁ|un|p_2un(un —up) dl’ = 0. (33)
r

Since

< /m‘}(|Dun|p72Dun — |Du0|p72Du0) - (Duy, — Dug) dz <
Q
/ (| Dun|P~? Dun, — | Dug|P"2 Dug) - (Dup — Dug) dz + / B9 ([t [P~ — [110 [P~ 21u0) (ty — o) T
Q

we deduce by (32) and (33) that

lim [ a(|Dun|P ?Duy — |DugP"2Dug) - (Duyn, — Dug) dz = 0.

n—o0
Qr

Hence (30) holds. Therefore, the claim that Du, — Dug a.e. in  is proved. This combined with the
fact that {|Duy|P~ 2‘9—“ﬂ=} is bounded in L?/®=1(Q; a) implies

_ ou Buo _
Duy P72 — |Dyg[P 2= in LP/®"D(Q; a).
DualP 252 Duol? 2320 i 12/0 (9 0
It follows that
nlggo a|Duy,|P"2Du,, - Dv dz = /a|Du0|p_2Du0 - Dv dx, Yv e X. (34)
Q Q
By (24), (25), (27) and (34) we conclude that ug is a critical point of @y, g. O
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6 Proof of Theorem 2

Let @ € J and A > 0 be arbitrary. From Lemma 5 we see that m) g := in)f( ®) g(u) is real. Let {un}
ue

be a sequence such that lim,_,o @5 ¢(un) = my 9. According to Lemma 6, we can assume (up to a

subsequence) that
up = ug in X and @) g(ug) < linrggf@)\,g(un) = m)g-

This shows that in}f{ ®) ¢(u) is attained in ug. From (H4) and (Hg) we deduce that G(z, |uo|) > G(x,uo)
ue

a.e. z €' and F(A, z,|ug|) > F(X z,up) a.e. z € Q. It follows that @) g(Jug|) < ®xg(ug). Therefore,
we may assume that ug > 0 on €. To ensure that ug Z 0 we shall prove that m,) g is negative provided

that A > X for some A > 0.
By hypothesis (Hg) we deduce that there exists § > 0 independent of z and A such that

A
F(\ z,u(z)) > 2—q|u(m)|qw1(x) a.e. £ € Q, Yu € X with sup |u(z)| < 4.
€N

Set ¢ > 0 with the property that

V={ue X\ {0} sup Ju(z)] < Cllullg0um} # 0
x
and denote 7 = (g)q. Define

~ 2 2 2
X i= inf {22 Jluf? —qﬁ/G(J;,u) dr + —q/hw dz: ue Zz),
np n 2 nr o

where
Z={u€eX: sup |u(z)| <4, /|u|qw1(z) dx =n}.
z€eN
Q
. . . 771/‘1
It is easy to verify that Z # (). Indeed, if y € Y then u = vl Yy € Z.
y q,Q,'Ull

We now claim that A > 0. For this aim, we consider the constrained minimization problem

M= inf {JJul’: ue E,/\u|qw1(x) dz = n}.
Q

Since the embedding F — L7(Q; wy) is continuous, it follows that M > 0. Thus

ul? > M for all u € X with /\u|qw1(m) dx = 1.
Q

By applying the Holder inequality we find

: Wi wpy o= N )
/\u| wlda::/hq/rh |u|?dz < /(E) dz . /h\u| dx .
Q Q Q Q
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By virtue of (15) and (36) we have

2 2 2 2 2
Dl — —qG/G(:c,u) dar + 24 /h|u|’" de > efulfp + 2 /h|uvdx >
np n 2 nr o n nr o

5 5 r\1/(r—q) —(r—q)/q
oM+ gyl / (ﬂ) dx
n nr J hi

for all u € X with [ |u|%w; dz = 7. It follows that
Q

, ) e\ 0/
5> 2 opr 4 24 -0/ (/ (ﬂ) dx)
7 r h4

Q

and our clair~n follows.
Let A > A. Then there exists a function u; € Z such that
2

2 2
A > —q||U1||€ - —q9/G(:v,u1) dr + =1 /h|u1|r dz.
np n 2 nr S

This inequality and (35) imply

1 1
Dy g(ur) = 5||u1||§ —H/G(:C,ul)dI‘+ ;/h|u1|’" da:—/F(/\,:C,ul(:C))dx <
r Q Q

1 1 A
—||u1||§;—H/G(x,ul)dr+—/h|u1|"dx— —/|u1\qw1 dz < 0.
P rd 2qQ

I

Consequently, 12;.“( ®) g(u) < 0. Thus, the problem (Pjg) has a solution if § € J and A > .
u

Set
Ao = inf {A > 0: (P ) admits a solution}.

By Theorem 1, we see that A\g > A* > 0.

We now show that for each A > Ag problem (P, y) admits a solution. Indeed, for every A > Xq there
exists p € (Ao, A) such that problem (P, ) has a solution u, which is a subsolution of problem (P)g).
We consider the variational problem

inf {®) g(u) : v € X and u > u,}.

By Lemmas 5 and 6 this problem admits a solution @. This minimizer @ is a solution of problem (Pj g).
It remains to show that problem (P)\O,g) has also a solution. Let A, — Ag and A, > Ao for each n.
Problem (P, g) has a solution u, for each n. Then, in virtue of Lemma 7, we may assume (up to
a subsequence) that u, — wy in X, u, — ug in LYQ; wy), up — wup in L™(T'; we), where ug is a
non-negative critical point of @y, 9. To conclude that uy is a solution of problem (P, ) it remains only
to prove that ug # 0. Since u, and ug are critical points of (®,, ¢) and (®),,4), respectively, we have

/ / /

(I' (un), un — uo) — (I (o), un — u) + (J (wn), tn — uo) — (J (u0),un — uo) = Jin + Jon,
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where

Jl,n = /(f(An,iL',’U/n) - f()\(),iL‘,’U,O))(Un - ’U,()) d.’E,

Q
Ton =9 [ (9(a,10) ~ g, u0)) (un — o) T
r
It is easy to see that
0 < (I (un), un — ug) — (I (uo), un — ug) < Jin + Jon (37)

Using (7) we get the estimate

|J1n] < é’f ()\n / |t |9 [ty — wo|wy () dz 4 Ao / o] T Y uy — uo|wy () dw)
Q Q
and it follows from the Holder inequality that

x —1 -1
il < O (sg;; T e Aonuong,n,wl> 1~ 0l = 0. (38)
n_

By (26) and Hoélder’s inequality we find
ol < 101Ny 1) ~ Nyl 1 s 1 = il = 0. (39)
Relations (37), (38) and (39) yield
(I (), tn, — o) — (I (ug), up — ug) — 0 as n — oo.

We show that ||u, — uollpy = 0 as n — co. We distinguish two cases which may occur

CASE 1: p > 2. Using (28) we obtain

!

lun — u0||€ <C ((I’(un),un —up) — (I (uwp),un — uo)) -0 asn— oo.

which shows that [|uy||p — ||uollp as n — oco.

CASE 2: 1 < p < 2. We observe that it is enough to show that
lun, = woll§ < O ({I' (un), un = o) = (I'(u0), un = uo)) (Ilunlly ¥ + lluolly 7). (40)
In order to prove (40) we recall the following result: for all s > 0 there is a constant Cs > 0 such that
(z+y)’ <Cs(z®+y°) for any z,y € (0, 00). (41)
Then we obtain

2/p
|tn — ugllz = (/ a(z)|Duy, — DuglP dz + /b(w)|un — ugl? dI‘) <
Q r

2/p 2/p
Cp (/a(x)m“” — Duo|” dx) + (/ b(z)|un — uo|? dI‘)
T

Q

(42)
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Using (29), (41) and the Holder inequality we find

/a(:c)|Dun — Duy|P dz = /a(x)(|Dun — Dug)?)P? dz <
Q Q
2
l / (a(|Dun|P~2Duy, — | DuoP~2Dug) - (Dur, — Duo))p/ (a(|Dun| + | Dug|)P) > P2 dg <
Q

(2-p)/2

p/2
o / a(|Dtn|P~2Duy, — |DugP~2Dug) - (Dur, — Dug) dm) ( / a(|Dun| + | Dug|)? dz <

Q Q

p/2 (2-p)/2
o /a(|Dun|p_2Dun — |Dug|P~2Dug) (Duy, — Dug) dw) /(a|Dun|p + a|Duyg|P) dw) <

Q Q
p/2
3 / a(z)(|Dun P~ Duy — |Dug|P~Dug) - (Dun — Dug)dz | (Junl? + [luol?)® P72 <
Q
p/2
es | [ a(@)(1DunP2 D = Dol D) - (Dt = Du)da | (a7 + ua[7772)
Q

Using the last inequality and (41) we have the estimate

2/p
(/ a(z)|Duy — Dug|P dﬂﬁ) <6 ((I’ (tn), i, — ) = (I (ug), up — Uo)) (lunlly ™ + lluolly P)- (43)
)

In a similar way we can obtain the estimate

2/p
(/wm%—wwﬁ) < e ({1 (un), tn = u0) = (I’ (u0), un = o)) (lunlly ™ + [luolly ) (44)

r
It is now easy to observe that inequalities (42), (43) and (44) imply the estimate (40).

In both cases, by Corollary 1, ug # 0. This concludes our proof. O
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Existence theorems for some classes of
boundary value problems involving the
p-Laplacian

Dumitru MOTREANU! and Vicentiu RADULESCU?
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ABSTRACT. We prove an alternative for a nonlinear eigenvalue problem involving the p-Laplacian
and study a subcritical boundary value problem for the same operator. The theoretical approach is
the Mountain Pass Lemma and one of its variants (due to the first author), which is very useful in the
study of eigenvalue problems.

KEY WORDS: p-Laplacian, nonlinear eigenvalue problem, critical point theory.

AMS SuBJECT CLASSIFICATION: 35 P 30, 47 H 15, 58 E 05.

For any fixed real number p € (1,+400) the p-Laplacian is defined by
Ayu = div (| Vu [P~ Vu).

This operator appears in a variety of physical fields. For example, applications of A, have been
seen in Fluid Dynamics. The equation governing the motion of a fluid involves the p-Laplacian.
More exactly the shear stress 7 and the velocity gradient Vu of the fluid are related in the

manner that
T(z) =r(z) | Vu |p’2 Vu,

where p = 2 (resp., p < 2 or p > 2) if the fluid is Newtonian (resp., pseudoplastic or dilatant).
Other applications of the p-Laplacian also appear in the study of flow through porous media
(p = 2), Nonlinear Elasticity (p > 2), or Glaciology (1 < p < %).

Throughout this paper, 2 stands for a bounded domain in R”". In the first section we are
concerned with the following nonlinear eigenvalue problem with Dirichlet boundary condition
and constraints on eigenvalues:

—Ayu = Af(z,u), inQ,
(1) v =0, onod,
0< A <a,

where a > 0 is a given constant. The function f is supposed to satisfy
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(Hy) f is a Carathéodory function, i.e., measurable in z € 2 and continuous in u € R, with
f(z,0) # 0 on a subset of 2 of positive measure;

(Hy) | f(z,u) |[<CL+Cy |u|i™!, for a.e. z € Q and all u € R, with constants C; > 0, Cy > 0
and 1 < p < ¢ < p*, where

Np
, ifp <N,
P = N—p p
400, ifp>N;
(Hs)  there are constants b; > 0,6, > 0,1 < v < p < v such that, for a.e. x € Q and every
u € R,

f(x,u)u—y/ouf(s,T)dT >—by—by|ul”.

By the Sobolev embedding Theorem, there exists a constant C' > 0 such that, for every
Lp
u € WO (Q)v

2 lulle < Clullyy

For a later use we denote
(3) a; =cp | \(q’l)/q and ay =Clc; | Q |(q’1)/q +eq t).

Our approach relies on the following version of the celebrated Mountain Pass Theorem of
Ambrosetti-Rabinowitz (see [1], [6]):

Lemma 1.([5]) Let X be a Banach space and let F : X xR — R be a C' functional verifying
the hypotheses
(a) there exist constants p > 0 and « > 0 provided F(v, p) > «, for every v € X;
(b) there is some r > p with F(0,0) = F(0,7) = 0.
Then the number
¢ := inf max F(g(7)),

gel 0<7<1

where

I'={g €C(0,1],X x R);¢(0) = (0,0),9(1) = (0,7)},
is a critical value of F'.

Let us now state our main result concerning the eigenvalue problem (1). We shall keep the
notations given in (2), (3) and, for simplicity, we use in the sequel || - || in place of || - ||W01,p.

Theorem 1. Assume that the function f : Q x R — R satisfies conditions (H;)-(Hs). Let
B € C'(R,R) be a function such that, for some constants 0 < p < r, o > 0, the following
properties hold:

(1) B(0) =p(r) =0;

(B2) p°*' > qag and OTHﬁ(P) = ay;

(Bs) ‘t1|i_rgo B(t) = +oo;

(Bs) B'(t) <0 ifand only ift <Qorp<t<r.
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Then, for each a > 0, the following alternative holds:
either

(i) a > 0 is an eigenvalue in problem (1) with a corresponding eigenfunction u € W, (Q)
located by

a< — // :vtdtdx+—||u||p<a1+a

or
(ii) one can find a positive number s with

(4) p<s<r,

which determines an eigensolution (u, \) € Wy(Q) x (0, a] of the problem (1) by the relations

(5) lull = s7/9(=B'(s)) "4,

(6) Al=atl4 5(4+0P)/<1(_ﬁ'(5))(q7p)/q :
g+1 1

(7) o S S— ||U,||q o+ / / LE ¢ dtd$+ o ||u||10 < a; + .
q

In the second section of this paper we consider another problem related to the p-Laplacian
operator:

Ay =M uPPut [u|T?u, inQ,
(8) v =0, onod,
U %0, in .

Our result on this problem is
Theorem 2. If A < \(=4,) := inf{/ | Vu P;u e WeP(Q),u # 0, ||lul| = 1} and
Q
1 < p < q < p*, then the problem (8) has a weak solution.
The key argument in the proof is the Mountain-Pass Theorem in the following variant:

Ambrosetti-Rabinowitz Theorem. Let X be a real Banach space and F' : X — R be a
C'-functional. Suppose that F satisfies the Palais-Smale condition and the following geometric
assumptions:

() there exist positive constants R and cy such that
F(u) > ¢y, for allu € X with ||ul]| = R

F(0) < ¢y and there exists

(10) v € X such that ||v|| > R and F(v) < ¢g.

Then the functional F' possesses at least a critical point.
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1 Proof of Theorem 1

In order to set problem (1) in terms of Lemma 1 we introduce the functional F € C*(W,”(Q)xR)
by

| |0’+1

(11) F(v,t) =

ol + - / (z t)dtdz + — ||v||p

From () and (11) we derive that condition (b) of Lemma 1 is valid.
From (H,), (2) and (3) we see that, for every v € Wy?(9),

v(x)
/ / f(z,t)dtdz
QJo 1 q
< cilvllzr + eaq " [|v]|Za
e | Q@D o]l e + c2q 7 0]l
e | Q@D (e | Q@D tepg) o]l
| @ [00/8 +0(cy | 009 3™ o]
ai + as ||U||q

(12)

I IAIAIA

Relations (11), (12) and (52) yield

o+l o+1
—ag) ||v||” +

F(v,p) > (©

ﬁ(p)_al ZCE,

for every v € WyP(£2). This shows that the requirement (a) of Lemma 1 is fulfilled.
We check now that F' verifies the Palais-Smale condition. To this end, let (v,,t,) be a
sequence in W, ?(€Q) x R such that F(v,,t,) is bounded and

F'(0n, t) = (Fy(vns t0), Fy(vp, 1)) = 0, in W™ (Q) x R,

where p' = Ll Therefore

(13) | F(n, t,) |< M
(14) —Fy(vnt) =| ta |7 [Jall97 Apv + f(-vn) + 0 Apvy, = 0 in W HP(Q)
(15) Fy(vn, ty) =| tn |7 (sgntn) ||lval|? + B'(t) = 0, inR.

From (11), (12) and (13) we infer that

o+1

M > (g7 [t |7 —ag) [ua]| + B(tn) — ax.
But, by condition (f3), this shows that (¢,) is bounded in R.
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Without loss of generality we may assume that (v,) is bounded away from 0. We treat
separately two cases.
Firstly, assume that along a subsequence one has ¢, — 0. Then, by (8;), it follows that

B'(t,) — £'(0) = 0. So, by (15),
(16) | tn |7 |[on||]? = 0, asn— oco.

From (11), (13) and (16) we see that
v () 1
(17) / / f(z,7)drdx — — ||v,||" is bounded in R.
o Jo ap

Since t,, — 0 and (v,,) is bounded away from zero it is clear from (16) that

[ tn |7 [Junl| 272 |
=|tn || ta |7 loall7 Jon|P~"
=ty || tn |7 |Vall? [|n]| ™t = 0, asn — co.

Thus, (14) implies

(18) fCvn) +a P Ay, =0, asn— oo,

From (17) and (18) we find that, for some constant M > 0 and with v > 2 in (H3),
M+ v v,

1 vn ()
> —oall = [ [ f(@,)drda
ap aJo

([ @ vnonds + ™t [ (Ayun)vnda)
Q 0
1,1 1 1 n(z)
===l + 5 [ (Feoen—v [ f(@,)dr)de,
a'p v v o 0
if n is sufficiently large. Then hypothesis (H3) and inequality (2) ensure us that some new
constants d; > 0 and dy > 0 exist such that

M + v |v,|]
(I i}
> = (== =) llvall” = = (b1 | Q| +ba2|lvnll]~)
T Y
> S (= Y lonllP = dy — dy [[val” -
> a(p u)”U"“ 1 — dy ||vn |

Recalling that 1 < v < p < v, the last estimate shows that (v,) is bounded in W,”(Q). On the
other hand, the growth condition in (Hj) ensures that the restriction of Nemytskii’s operator to
W,y (), namely,

v e Wy () ¥ f(-,0()) € W (),

is a compact mapping, in the sense that it maps any bounded set onto a relatively compact one
(see, for details, de Figueiredo [3] or Rabinowitz [6]). Thus, passing eventually to a subsequence,

(19) F(,va(-))  converges in W, 7 (Q).
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By (18) and (19) we conclude that (v,) possesses a convergent subsequence in Wy (€2).
Assume now that (t,) is bounded away from 0. Then, by (15), we see that (v,) is bounded
in W, (). Hence (19) holds. From (14) it follows that

(T+a|t, "™ |Joall""P) Apv, is convergent in W1 (9),

which shows that (A,v,) converges in W=7 (2). Finally, we obtain that, up to a subsequence,
(vn) converges in Wy (Q). This concludes the verification of the Palais-Smale condition for the
functional F.

The hypotheses of Lemma 1 are now verified. Thus, there exists a point (u, s) € Wy ?(Q) xR
satisfying

1

2 A u= s ) -
( 0) Pu CL_1+ | g ‘U-I—l ”u”q,p f( au)a
(21) [ 517 (sgns) [lull+ 5'(s) = 0
o+1 1
(22) Le 177 ‘ lell?+ 7= 8(s) - [ / £ (@, t)dtdz + — ||u||p > a.

From (21) we observe that
(23) sB'(s) <0.

There are two cases:
Case 1: s = 0. Then the assertion (i) in the alternative of Theorem 1 is deduced from (20) and
(22). The last inequality of (i) is obtained from the definition of ¢ and I' in Lemma 1, making
use of the path g € T given by ¢(¢) = (0,tr), for 0 < ¢ < 1.

Case 2: s # 0. We argue by contradiction. If s < 0 then, by (54), it follows that g'(s) < 0,
which contradicts (23). So, the only possibility is s > 0. Using (/4) again it turns out

(24) p<t<r.

If t = port =r, relation (21) and assumption (3;) imply v = 0. This leads to a contradiction
between (20) and our hypothesis (H;). We proved that (24) reduces to (4). Since s > 0, (21)
gives rise to (5). From (20) it is clear that (u, \) € WyP(Q) x R is an eigensolution of (1), where

1

25 A= .
% o

Substituting ||u|| as determined by (5) in (25) we arrive at (6). The first inequality of (7) is just
(22). The second inequality of (7) follows from Lemma 1, by choosing the path g(¢) = (0,tr),
0<t< 1. [
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Corollary 1. Assume that the function f : Q x R — R satisfies hypotheses (H;)-(Hj)
and let a > 0 be a number which is not an eigenvalue of the problem (1). Then there exists a
sequence (un, \,) € Wy P(Q) x (0,a) of eigensolutions of (1) with the properties

U, — 0 in WyP(Q), Ay =0 and A, '|u,|P =0, asn — oco.

Proof. For every € > 0 one can find 8, € C'(R, R) satisfying (5;)-(84) with p = p. <7 =,
which depends on ¢, and ¢ > 0, @ > 0 independent of ¢ such that

(26) | BLt) [< %", for every ¢ > (gag)"/"V.

Applying Theorem 1, one obtains the number s = s, € (p.,7.) that describes an eigensolution
(ue, Ae) of (1) by equalities (5) and (6) with v = u. and A = A.. Clearly, we can assume

(27) Se =+ 400, ase—0.
Hence, by (5), (26) and (27), we infer that
(28) | = 27/ (=f'(s:)) /4 <es V50, ase —0.

We know that the following equality holds

1

3 Apu, = f(z,u.).

Letting ¢ — 0 we notice that, in view of (H;) and u, — 0 in W,?(Q), it follows that A, — 0 as
e — 0. In addition, we get from (6) that
(29) (At —a )T = sITP(—B(s,))T P < gl P glotlp,
By (28) and (29) we observe that
luell” (A" —a™) <&,
which implies, taking into account (28), that
A |uelP =0, ase—0.

This completes our proof. [ ]

Corollary 2. Under the hypotheses of Corollary 1, for every function 3 € C*'(R,R) sat-
isfying conditions (31)-(84) with fixed constants p,r, o, «, there is a one-to-one mapping from
[1,+00) into the set of eigensolutions (u, A) of the problem (1). In particular, there exist un-
countable many solutions (u, \) of (1).

Proof. Notice that if 3 € C'(R,R) satisfies the requirements (3;)-(34) for given numbers
p,1,0,a, then this is true for each function 63, with an arbitrary number 6 > 1. We may
suppose that there is some a > 0 which is not an eigenvalue of (1). Applying Theorem 1 with
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64, for § > 1, in place of 4, one finds an eigensolution (us, A\s) € Wy*(€) x (0, @) and a number
ss € (p,r) such that

(30) ugll = 57" (=8 (s5)) /7 61

and, by (25),

(31) MNt=a s us||7".

Let 61,02 > 1 with §; # d2. Then (31) shows that s5;, = s5,. Thus (30) yields 6; = ;. This
contradiction completes the proof. [ ]

In some situations the qualitative informations provided by Theorem 1 and Corollaries 1 and
2 can be improved by direct methods in studying the eigenvalue problem (1).

Example 1. Assume that the Carathéodory function f : Q2 x R — R satisfies (H;) and the
growth condition

t
(32) \/f(x,ﬂdﬂﬁ Ci+Cy |t|P,, forae ze€QandallteR,
0

with constants C; > 0 and Cy > 0. Using the constant C' > 0 entering in (2), with ¢ = p, we
check that every number A > 0 which satisfies

(33) A< A =

pCCy
is an eigenvalue of the boundary value problem

—Ayu = Af(z,u), in
U =0, on 0.

In order to justify this, corresponding to each A in (33) we introduce the functional I, :

Wy?(2) — R by
/ / f(z,t)dtdx + — ||v||p
The assumption (32) allows us to write

(34) L(v) > 5ol =Ci[ Q] =Callvliz

> (55 —CC) ollP = C1 | 2],
for every v € Wy *(Q). From (33) and (34) it follows that the functional I is bounded from below,
coercive and (sequentially) weakly lower semicontinuous on Wy (€2). Therefore the infimum of I,
is achieved at some u € W, (€2) which solves the above boundary value problem corresponding
to any A in (33).

Remark 1. The problem treated in Example 1 covers the assymptotically linear case dis-
cussed by Brezis&Nirenberg [2] and Mironescu&Radulescu [4]. In these references sharp in-
formation is given concerning the solvability (unsolvability) of the cases outside (33). In the
situation where (33) holds with p replaced by o < p, the considered eigenvalue problem admits
every positive number A as an eigenvalue.
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2 Proof of Theorem 2

Our hypothesis

/ | Vu [P dz
A<A(=Ay) = inf o
Wa P (@)\ (0} / | |P dz
Q

implies the existence of some Cy > 0 such that, for every v € Wy (Q),
(35) /(|vv P —)\|v|”)da:200/ | Vo P da.
Q Q

Set

wi—l, ifu>0,
g(u) ={ -

0, ifu<O

and G(u) = /u g(t)dt. Denote

o

Flu) = ;—)/Q(\ Vu P A ulP)dz — [ Glu)ds.

Observe that
|G(u) [<C |ul

and, by our hypothesis 1 < p < ¢ < p*, Wy*(Q) C LI(Q), which implies that F is well defined
on Wy ().
A straightforward computation shows that F is a C" function and, for every v € W,? (Q),

F'(u)(v) = /Q(| Vu P ?2Vu-Vo— X\ |ulP?uv)dz — /Qg(u)vd:v.

We prove in what follows that F' satisfied the hypotheses of the Mountain-Pass Theorem.
Verification of (9): We may write, for every u € R,

[g(u) [<[w ™.

Thus, for every u € R,

1 q
(36) |G(U)\S5|U| :
Now, by (36) and the Sobolev embedding Theorem,

p 1 q
(37) F(u) > Gy [lullP - p [ull,

for every u € W, 7(Q).
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For ¢ > 0 and R > 0 small enough, we deduce by (36) that, for every u € W, (Q) with
[ull = R,
F(u) > ¢y >0.

Verification of (10): Choose ug € Wy™P(£), ug > 0 in . Then, by 1 < p < ¢ < p*, it follows
that if ¢ > 0 is large enough,

tp
ﬂw@:—/ﬂWdehmMM—ﬂ/%m<o
p Ja Q

Verification of the Palais-Smale condition: Let (u,) be a sequence in W,”(Q) such that

(38) sup | F'(un) |< 400,

(39) ||Fl(un)||w—1,p' — 0, asn — 0.

We prove firstly that (u,) is bounded in W,?(Q). Remark that (39) implies that, for every
v e Wy”(Q),

(40) /Q(‘ Vi, P2V, - Vo — X | uy, P2 uw)de
40
= [ glun)vdz +o()llel] asn - oo.
Q

Choosing v = u,, in (40) we find

(41) L9 7 =X )z = [ glun)unda + o(1) [l

Remark that (38) means that there exists M > 0 such that, for any n > 1,
1

42 = [V =2 7Yz = [ Glun)ds < M.

(42) 5 [T =X P = [ Glun)is |

But a simple computation yields

13 [ 9myundz =g [ Glun)da.

(43) | 9(un)updz = q | G(un)dz

Combining (41), (42) and (43) we find

(44) o | Glun)dz = O(1) +o(1) [lual,

where o = ¢ — p > 0. Thus, by (41) and (44),

[unl[” < O(1) + o(1) [Juall,

which means that ||u,|| is bounded.
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It remains to prove that (u,,) is relatively compact. We consider the case p < N. First of all
we remark that (40) may be written

4 p-2 - =
(45) /Q | Vuy, P2 Vuy, - Vodz /Q h(ug)vdz + o(1) |[v]],

for every v € WyP(Q), where
h(u) = gu) + A |u P72 u.

Obviously, h is continuous and there exists C' > 0 such that

(46) | h(u) |[< C (14 | u |[NP-N+)/N=-p)y
Moreover
(47) hw) = of| u N?/P) | as 4| o0,

Observing that (—A,)™" : W1 (Q) — W, *(Q) is a continuous operator, it follows by (45) that
it suffices to show that h(uy,) is relatively compact in W~ (). By Sobolev’s Theorem, this
will be achieved by proving that a subsequence of h(u,) is convergent in (LNP/(N=P)(Q))* =

L(Np)/(prNw)(Q)'
Since (u,) is bounded in Wy (Q) ¢ LWP/(V=P)(Q) we can suppose that, up to a subsequence,
U, = u € LNP/WN-P(Q)  ae in Q.

Moreover, by Egorov’s Theorem, for each § > 0, there exists a subset A of 2 with | A |< ¢ and
such that
unp — u, uniformlyin Q\ A.

So, it is sufficient to show that
/A | h(uy) — h(w) ‘(N:D)/(NP*N+P) de <,
for any fixed n > 0. But, by (46),
/A | h(w) |NP/Ne=N+D) g < 0 /A (14 | u [VP/(N=P)y gy

which can be made arbitrarily small if we choose a sufficiently small § > 0.
We have, by (47),

[ hun) = ) [$PION0) 4y < e [y PP gy 40, | A
A

which can be also made arbitrarily small, by Sobolev’s Theorem and by the boundedness of (u,)

in Wy* ().
Hence, F satisfies Palais-Smale Condition and, by Ambrosetti-Rabinowitz Theorem, the
problem (8) has a weak solution. u
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Remark 2. We are not able to decide at this stage what happens if A > A;(—A,). The
main difficulty consists in the impossibility of defining in a suitable manner the orthogonal of a
set, so to split the Banach space WO1 P(Q), p # 2, as a direct sum of its first eigenspace and the
corresponding orthogonal. A more general version of Theorem 2 can be obtained by replacing
the term | u [972 » in (8) by a function f(x,u) whose behaviour at v = 0 and for | u |— +oo0 is
similar to the one of | u |972 u. The final part of the proof of Theorem 2, that is, the deduction
of the relative compactness of u, from its boundedness, can also be derived using the continuity
of Nemytskii’s operator u — h(u) on L¥" ().
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Blow-up boundary solutions of semilinear elliptic problems

Florica St. CIRSTEA and Vicentiu D. RADULESCU*

Department of Mathematics, University of Craiova, 1100 Craiova, Romania

o
Abstract. Let f be a non-decreasing C'-function such that f > 0 on (0,00), f(0) = 0and [ 1/\/F(t)dt
1

t
is finite, where F'(t) = [ f(s)ds. We prove the existence of positive large solutions to the equation
0

Au = p(z)f(u) in a smooth bounded domain @ ¢ RN, N > 3, provided that p is a non-negative
continuous function so that any of its zeros is surrounded by a surface strictly included in © on which
p is positive. Under additional hypotheses on p we deduce the existence of maximal solutions if € is

unbounded.

1 Introduction and the main results

We consider the following semilinear elliptic equation

Au=p(z)f(u) in Q, 0
u>0, uZ0 in 2,

where @ € RY (N > 3) is a smooth domain (bounded or possibly unbounded) with compact
(possibly empty) boundary. We assume throughout this paper that p is a non-negative function
such that p € C%*(Q) if Q is bounded, and p € C2%(Q), otherwise. The non-linearity f is

loc
assumed to fulfill

(f1) feC'0,00), f'>0, f(0)=0and f >0 on (0,00)

and the Keller-Osserman condition

(f2) /[2F(t)]_1/2dt<oo, where F(t) = / £(s) ds.

*Correspondence author. E-mail: varadulescu@hotmail.com
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The main purpose of the paper is to find properties of large solutions of (1), that is solutions
u satisfying u(z) — oo as dist (x,002) — 0 (if Q@ Z RY), or u(z) = oo as |z| — oo (if @ = RY).
In the latter case the solution is called to be an entire large solution.

Problems of this type have been originally studied by Loewner and Nirenberg in their cele-
brated paper [11]. Their work deals with partial differential equations having a “partial confor-
mal invariance” and is motivated by a concrete problem arising in Riemannian Geometry. More
precisely, in [11] Loewner and Nirenberg proved the remarkable result that (1) has a maximal
solution, provided that Q # R"™, p = Const. > 0 in © and f(u) = u(N+2/(V-2),

In [1] and [12] it is considered problem (1) in the special case when §2 is bounded and p > 0
in Q. More precisely, in [1] Bandle and Marcus described the precise asymptotic behavior of
large solutions near the boundary and established the uniqueness of such solutions, while in [12]
Marcus obtained existence results for large solutions.

The first result we obtain in this paper is an existence theorem for large solutions when (2 is
bounded.

Theorem 1 Suppose €2 is bounded and p satisfies

(pl) for every xy € Q with p(x¢) = 0, there is a domain Qo > zo such that Qo CQandp >0 on
0.

Then problem (1) has a positive large solution.

This result generalizes Theorem 3.1 in Marcus [12] and Lemma 2.6 in Cheng-Ni [4] since
condition (pl) is weaker than the assumption that p > 0 on 05, as required in [4, Lemma 2.6]
and in [12, Theorem 3.1]. Indeed, the continuity of p, the compactness of 92 and the fact that
p > 0 on 0F) imply the existence of some 6 > 0 such that p > 0 in

Q5 = {x € Q; dist (x,00) < 6}.

Therefore, all the zeros of p are included in Qy = Q\ Q5 CC Q. Hence p > 0 on 9%, so (pl) is
fulfilled.

We now consider problem (1) when Q@ = R", and first observe that any entire large solution
of (1) is positive. Indeed, assume there exists 2o € R” such that u(zy) = 0. Since u is an entire
large solution, we can choose R > |xg| such that v > 0 on dB(0, R). Thus, by Theorem 5 in the
Appendix, the problem

A¢=p(z)f(¢) in B(0,R),
(=u on 0B(0, R),
>0 in B(0, R)

has a unique solution, which is positive. By uniqueness, of course, ( = u, which is the required
contradiction. This shows that v cannot vanish in R”.
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The next purpose of the paper is to prove the existence of an entire maximal solution for
(1), under more general hypotheses than in Cheng-Ni [4]. They investigate the structure of all
positive solutions of (1) in the special case when f(u) = u?, v > 1, and they also establish
existence of the maximal classical solution U of (1), under the hypotheses that this equation
possesses at least a positive entire solution and there is a sequence of smooth bounded domains
(€2,)n>1 such that, for any n > 1,

Q_n - Qn—i—l; RN = U2

n=

12y, p>0on 08, (2)

Cheng and Ni also proved in [4] that the maximal solution U is the unique entire large solution
of problem (1), under the additional restriction that for some [ > 2 there exist two positive
constants Cy, Cy such that

Cip(z) < |z| ! < Cyp(z)  for large |z (3)
Our result in the case Q@ = R" is the following

Theorem 2 Assume that Q = RY and that problem (1) has at least a solution. Suppose that p
satisfies the condition

(pl)’  There ezists a sequence of smooth bounded domains (Qp)n>1 such that Q, C Q,.1,
RY = U2 ,Q,, and (p1) holds in Q,, for anyn > 1.

Then there ezists a mazimal classical solution U of (1).
If p verifies the additional condition
o0

(p2) /7'(1)(7") dr < oo, where ®(r) =max{p(x): |z| =1},

0
then U 1is an entire large solution.

In view of the remark above that condition (pl) on Q is weaker than the requirement that
p > 0 on 09, it follows that condition (pl)" is weaker than the assumption (2) required in [4],
and also assumption (p2) is weaker than condition (3) imposed in [4].

We now observe that if p(z) > 0 for |z| sufficiently large, then (p1)’ is automatically satisfied.
Therefore it is natural to ask us if there exists p > 0 which satisfies (p2) and (pl)’, with p
vanishing in every neighborhood of infinity. The answer is positive by the following example.
Take

,

p(r)=0 for r=|z|€[n-1/3,n+1/3], n>1;

J w0 i R\ - 1/3n+1/3]

n=1
2
ctlo d =
{ p€C[0,00) an rer[g,%)—(H]p(r) n?(2n + 1)
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Of course, (pl)’ is fulfilled, for 2, = B(0,n + 1/2). On the other hand, condition (p2) is also
satisfied since

o) n+1 n+1
l/rcb(r)drzngln/rp(r)drgngln/mrdr:;ﬁ<oo.

We now consider the case in which Q # R” and € is unbounded; we say that a large solution
u of (1) is regular if u tends to zero at infinity. In [12, Theorem 3.1] Marcus proved for this case
the existence of regular large solutions to problem (1) by assuming that there exist v > 1 and
B > 0 such that
liltgionff(t)t“’ >0 and lim inf p(z)|z|? > 0.

|z| =00

The large solution constructed in Marcus [12] is the smallest large solution of problem (1). In
the next result we show that problem (1) admits a maximal classical solution U and that U
blows-up at infinity if @ = R \ B(0, R).

Theorem 3 Suppose that Q # RY is unbounded and that problem (1) has at least a solution.
Assume that p satisfies condition (pl)' in Q. Then there exists a mazimal classical solution U
of problem (1).

IfQ = RN\ B(0, R) and p satisfies the additional condition (p2), with ®(r) = 0 forr € [0, R],
then the mazimal solution U is a large solution that blows-up at infinity.

In conclusion, by Theorem 3 and the recalled result of Marcus, in the case Q2 = R\ B(0, R),
problem (1) admits large solutions tending to zero or to infinity as |z| — oo (regular or normal
large solutions).

In Section 2 we prove Theorem 1, while in Section 3 we prove Theorems 2 and 3. In Section 4
we prove the following necessary condition for the existence of entire large solutions to equation
(1) if p satisfies (p2), and for which f is not assumed to satisfy (f2), and p is not required to be
so regular as before. More precisely, we prove

Theorem 4 Assume that p € C(RY) is a non-negative and non-trivial function which satisfies
(p2). Let f be a function satisfying assumption (f1). Then condition

f% ()

is necessary for the ezistence of entire large solutions to (1).
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2 Existence results for bounded domains

Lemma 1 Assume that conditions (f1) and (f2) are fulfilled. Then
o
[ 7 <

Proof. Fix R > 0 and denote B = B(0, R). By Theorem 5 in the Appendix the boundary value
problem

Auy, = f(un), in B
Up =N, on 0B (5)
Up > 0, u, Z0, in B

has a unique positive solution. Since f is non-decreasing, it follows by the maximum principle
that u,(z) increases with n, for any fixed = € B.

We first claim that (u,) is uniformly bounded in every compact subdomain of B. Indeed, let
K C B be any compact set and d := dist (K, 0B). Then

0 <d <dist(z,0B), Vze K. (6)

By Proposition 1 of Bandle-Marcus [1], there exists a continuous, non-increasing function p :
R, — R, such that
un(z) < p(dist (z,0B)), V& € K.

The claim now follows from (6). Thus, for every x € B we can define u(x) := lim,, o Un ().
We next show that u is a classical large solution of

Au = f(u) in B. (7)

Fix 2y € B and let r > 0 be such that B(xy,r) C B. Let U € C*°(B) be such that ¥ =1 in
B(xg,7/2) and ¥ =0 in B\ B(zg,7). We have

A(Tuy,) = 2VV - Vu, + pn,

where p, = u, AV 4+ VAu,. Since (u,) is uniformly bounded on B(z,7) and f is non-decreasing
on [0,00), it follows that ||p,|lcc < C, where C' is a constant independent of n. From now on,
using the same argument given in the proof of Lemma 3 of [9], we find that (u,) converges in
C 2*(B(xg,r1)), for some r; > 0. Since zy € B is arbitrary, this shows that u € C?(B) and u
is a positive solution of (7). Moreover, by the Gidas-Ni-Nirenberg theorem in [6], u is radially
symmetric in B, namely u(z) = u(r), r = |z|, and u satisfies in the r variable the equation

N-1
r

u”(r) + u'(r) = f(u(r)), 0<r<R.
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This equation can be rewritten as follows
(rN =1 (1)) = VT f(u(r)), 0<r<R. (8)

Integrating (8) from 0 to r we obtain
u'(r) = rl’N/sN’lf(u(s)) ds, 0<r<R.
0
Hence u is a non-decreasing function and
u'(r) < v N f(u(r)) /sN’1 ds = %f(u(r)), 0<r<R. 9)
0
Similarly, u,, is non-decreasing on (0, R), for any n > 1.
In order to show that u is a large solution of (7), it remains to prove that u(r) — oo as
r /* R. Assume the contrary. Then there exists C' > 0 such that u(r) < C for all 0 < r < R.
Let N; > 2C be fixed. The monotonicity of uy, and the fact that uy, (r) — Ny as r 7 R imply
the existence of some r; € (0, R) such that C < uy,(r), for r € [r1, R). Hence

C <un, (1) <unp1(r) < <up(r) < tpg(r) <--- Vn > Ny, Vr € [ri, R).

Passing to the limit as n — oo, we obtain u(r) > C for all r € [r;, R), which is a contradiction.
Integrating (9) on (0,7) and taking » R we find

t ~— 2N’
L0
The conclusion of Lemma 1 is therefore proved. O

Proof of Theorem 1. By Theorem 5 in the Appendix, the boundary value problem

Av, = p(z) f(v,), in
Up =N, on 0f) (10)
v, >0, v, Z0, in Q2

has a unique positive solution, for any n > 1.
We now claim that

(a) for all zg € ) there exist an open set O CC €2 containing xy and My = My(xy) > 0 such
that v, < My in O, for any n > 1;

(b) lim, ,gqv(r) =00 where v(z) = lim, o0 vy (7).
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We first remark that the sequence (v,,) is non-decreasing. Indeed, by Theorem 5 in the Appendix,
the boundary value problem

AC= pllwf(0), im0
(=1, on 0f)
¢ >0, in
has a unique solution. Then, by the maximum principle,
0<(<n<--- <y, <=0 in Q2. (11)

We also observe that (a) and (b) are sufficient to conclude the proof. In fact, assertion (a)
shows that the sequence (v,) is uniformly bounded on every compact subset of 2. Standard
elliptic regularity arguments (see the proof of Lemma 3 in [9]) show that v is a solution of
problem (1). Then, by (11) and (b), it follows that v is the desired solution.

To prove (a) we distinguish two cases :

CASE p(zy) > 0. By the continuity of p, there exists a ball B = B(zy,r) CC Q such that
myg := min {p(z); = € B} > 0.
Let w be a positive solution of problem
Aw = my f(w), in B
of (w) 12)
w(z) — oo, as x — 0B.
The existence of w follows by [7, Theorem III], due to Keller. By the maximum principle it
follows that v, < w in B. Furthermore, w is bounded in B(zg,7/2). Setting My = sup w, where
0
O = B(xy,r/2), we obtain (a).

CASE p(z9) = 0. Our hypothesis (p1) and the boundedness of €2 imply the existence of a domain
O CC 2 which contains zy such that p > 0 on 00O. The above case shows that for any x € 00
there exist a ball B(z,r;) strictly contained in € and a constant M, > 0 such that v, < M, on
B(z,r;/2), for any n > 1. Since 00 is compact, it follows that it may be covered by a finite
number of such balls, say B(z;,7;,/2), i = 1,---,ko. Setting My = max {M,,,-- 'szkO} we
have v, < My on 00, for any n > 1. Applying the maximum principle we obtain v, < My in O
and (a) follows.

Let us now consider the problem
—Az=p(z) inQ
z=0, on 0f). (13)

2>0, zZ0 in(



Applying Theorem 1 in Brezis-Oswald [2] we deduce that (13) has a unique solution which is
positive in {2, by the maximum principle.
We first observe that for proving (b) it is sufficient to show that

o0

dt
/ —— < z(z) for any z € Q. (14)
f@)
v(z)
By Lemma 1, the left hand-side of (14) is well defined in Q. Fix ¢ > 0. Since v, = n on 052,

there is n; = ny(g) such that

A

f( y < <e(1+RH) M2 < z(x) +e(1+[z[) V2 Ve ed, Vn>ny, (15)

?\8

Un

where R > 0 is chosen so that Q C B(0, R).
In order to prove (14), it is enough to show that

o0

/ % <z(x)+e(l+z)? Ve eQ, Vn>n. (16)

v (z)

Indeed, putting n — oo in (16) we deduce (14), since € > 0 is arbitrarily chosen. Assume now,
by contradiction, that (16) fails. Then

Todt 2\—1/2
meaéc{/ f A — e+ Ia) /}>o.

Using (15) we see that the point where the maximum is achieved must lie in Q. At this point,
say xg, we have

0>A (/ fd— —z(z) —e(1+ x2)1/2)
(z) |z=z0

(—p(> ( )( 21V + pla )—EA(1+|<C|2)1/2)|$_M:

(- G) (vn) - Vo2 +£(N = 3)(1+[aP) > + 31+ o%)%2) >0,

|lz=20

This contradiction shows that inequality (16) holds and the proof of Theorem 1 is complete. O
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3 Existence results for unbounded domains

In this section we are interested mainly in the question of finding and describing the behavior
on the boundary and at infinity of the maximal solution to problem (1), where € is now an un-
bounded domain, possibly RY. For the significance of such a study we refer to Dynkin [5] where
it is showed that there exist certain relations between hitting probabilities for superdiffusions
and maximal solutions of (1) with f(u) =u", 1 <~y < 2.

It is clear that a unique normal large solution is necessarily a maximal solution. In view of
this remark the problem of maximal solution seems to be connected with the uniqueness of large
solutions. But this is not the best way to be followed because we lose the control if the uniqueness
of large solutions fails. The advantage offered by our results is that we find a direct method
which establishes an interesting connection between the maximal solution and any sequence of
large solutions taken on bounded domains of the type given in condition (pl1)" in 2.

Proof of Theorem 2. By Theorem 1, the boundary value problem

Av, = p(z) f(vy), in Q,
vn(z) = 00, as x — 08}, (17)

v, >0, in Q,

has solution. Since Q, C Q2,1 we can apply, for each n > 1, the maximum principle (in the
same manner as in the uniqueness proof of Theorem 5 in the Appendix) in order to find that
Up > Upy1 in Q. Since RY = U® Q, and Q, C Q4 it follows that for every z, € RV
there exists ng = ng(xo) such that zo € Q, for all n > ng. In view of the monotonicity of
the sequence (v, (2o))n>n, We can define U(zy) = lim,_,o vn(2o). By applying the standard
bootstrap argument (see [8, Theorem 1]) we find that U € Co*(RY) and AU = p(z) f(U) in Q.

We now prove that U is the maximal solution of problem (1). Indeed, let u be an arbitrary
solution of (1). Applying again the maximum principle we obtain that v, > w in €, for all
n > 1. By the definition of U, it is clear that U > u in RY.

We point out that U is independent of the choice of the sequence of domains €2, and the
number of solutions of problem (17). This follows easily by the uniqueness of the maximal
solution.

We suppose, in addition, that p satisfies (p2) and we shall prove that U blows-up at infinity.
For this aim, it is sufficient to find a positive function w € C(R") such that U > w in R" and
w(z) — 0o as |x| — oo. We first observe that (p2) implies

K= 707“1N (/T oV 1d(0) da) dr < oo. (18)

0 0
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Note that (18) is a simple consequence of the fact that for all R > 0 we have
R T R d r

1-N N-1 @ 2N N-1 _
/7“ (/0 (I)(O')dd) dr— N/dr )(/ @()do)dr
0 0 .

R
1
2-N [ N-1
N — <
NR 0/ ®(0) do 0/7@( ) dr

1
92—

20/7‘@ r)dr < oo.

Using (18) and the maximum principle we obtain that the problem

—Az = O(r), r=|z| < oo,
z(z) = 0 as |z| = oo

has a unique positive radial solution which is given by

=K — /01_N (/TN_I(I)(T) dT) do, Vr > 0.
0 0

Let w be the positive function defined implicitely by

o0

dt

— vz € RV, (19)
| 7@

z(z) =

Assumption (f1) and L’Hospital rule yield
f(t) _
1%7 —1{%]0( ) = f'(0) € [0,00),
which implies the existence of some ¢ > 0 such that

t
§<f'(0)+1 forall 0 <t <.
Thus for every s € (0,6) we have

P odt 1 pdt 1

O IOES Y AT ES!

(Ind —Ins).

5
It follows that lim [ -%. = oo, which gives the possibility to define w as in (19).
s\O0; /()

We claim that w < v, in Q,, for all n > 1. Obviously this inequality is true on 0€2,. Using
the same arguments as in the proof of the inequality (26) in the Appendix (with Q replaced by
2,) we obtain that for any € > 0 and n > 1 we have

w(z) < vp(z) +e(1 + |z[?)~1/2 in Q,
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and the claim follows. Consequently, U > w in R" and, by (19), w(z) — oo as |z| — co. This
completes the proof. O

Proof of Theorem 3. We argue in a similar manner as in the proof of Theorem 2, but with
some changes due to the fact that Q # R".

Let (2,)n>1 be the sequence of bounded smooth domains given by condition (pl)’. For
n > 1 fixed, let v, be a positive solution of problem (17) and recall that v, > v,41 in ,. Set
U(z) = lim,_, vy(z), for every z € Q. With the same arguments as in Theorem 2 we find
that U is a classical solution to (1) and that U is the maximal solution. Hence the first part of
Theorem 3 is proved.

For the second part, in which Q = R" \ B(0, R), we suppose that (p2) is fulfilled, with
®(r) = 0 for r € [0, R]. In order to prove that U is a normal large solution it is enough to show

the existence of a positive function w € C(R™ \ B(0, R)) such that U > w in R \ B(0, R), and
w(z) — 00 as |z| — oo and as |z| \y R. This will be done as in the proof of Theorem 2, with

the function z given now as the unique positive radial solution of the problem
—Az = ®(r), if |z =r>R
z(z) = 0 as |z| = oo
z(z) —» 0 as |z| \y R.

The uniqueness of z follows by the maximum principle. Moreover,

z(r) = (# - TA}—_Q) IZOUIN (07 N 71d(7) dT) do — Ri_Z /TUIN (/U N 71d(7) dT) do.

R 0

This completes the proof. O

4 Proof of Theorem 4

Let u be an entire large solution of problem (1). Define

u(z) u(ré)
ey (/J;f;)) 5= L (/ J:g)) is

§1=1
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where wy denotes the surface area of the unit sphere in R" and a is chosen such that a € (0, up),
where uy = infRN u > 0. By the divergence theorem we have

70) = o [ gy Vo) - €ds = 1N|/ Ay V) -vds =

Nl u(rg)) wart L u(y))
u(y) u(y)
1 dt 1 0 dt
—riNH/ v (/ f(t)) de:rerll/ - (/ f(t)) s =
yl=r a yl=r @
1 dt
wNT‘N_lBO/) A (a/ f(t)) e

Since u is a positive classical solution it follows that
la'(r)| <Cr—0 asr—0.
On the other hand
u(z) 1 R u(z) dt
wn (R (R) = V1! (r) :D/A ( / o dt) dz = / (/ A ( / f(t)) dS) dz,

where D = {z € R" : r < |z| < R}. Dividing by R — r and letting R — r we find

u(z)
wn (PNl (1)) = / A ( / f‘é’;)) ds = / div < ; (ul(x))Vu(x)> ds =

|z|=r z|=r
1 , wlz) - (Vu(z) 2 1 ulz p(z) f(u(=)) wnr N 1P (r
S |(5) won wuinr s s as < [ PG S <o 0t
Integrating the above inequality yields
u(r) < u(0) + /TJI_N (/"' N 1o(r) dT) do  VYr>0. (20)

Since (p2) implies (18) we have
a(r) <a(0)+ K  Vr>0.

Thus % is bounded and assuming that (4) is not fulfilled it follows that u cannot be a large
solution. 0
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5 Appendix

The following result is mentioned without proof in Marcus [12] and it was applied several times
in this paper. For the sake of completeness we present in this section a simple proof of this
theorem.

Theorem 5 Let Q be a bounded domain. Assume that p € C%*(Q) is a non-negative function,
f satisfies (f1) and g : 02 — (0,00) is continuous. Then the boundary value problem

Au=p(@)f(u), i
u=g, on 0f) (21)

u>0, u#0, in Q
has a unique classical solution, which is positive.

Proof of Theorem 5. We first observe that the function u™(z) = n is a super-solution of
problem (21), provided that n is sufficiently large. To find a positive sub-solution, we look for
an arbitrary positive solution to the following auxiliary problem

Av = d(r) in A(r,7) = {z € R"; r < |z| < 7} (22)
where
r=inf{r > 0; 0B(0,7)NQ #0}, T=sup{r >0; dB(0,7)NQ # 0}
O(r) = max p(xz) for any r € [r, 7).

The function

T [
v(r) =1 +/ o=V (/ N=1d(7) dT) do, r<r<rF
T 0
verifies equation (22). The assumptions on f and g imply

. o dt
gO::I%}an>0 and lim —— = 00.

This will be used to justify the existence of a positive number ¢ such that

90 dt
max v :/c 10} (23)

Next, we define the function u_ such that



It turns out that u_ is a positive sub-solution of problem (21). Indeed, it is clear that
u_ € C*()NCE) and wu_ > cin Q.

On the hand, from (22), (24) and (f1) it follows that
p(a) < Av(e) = ———Au_(2) + (1) (u_(@)) - [Va_ (@) < ——1—

fu_(z)) f

which yields
Au_(2) > pla)f(u_(z)  in Q.

On the other hand, taking into account (23) and (24) we find
u_(z) < g(x) Vo € 00.

So, we have proved that u_ is a positive sub-solution to problem (21). Therefore this problem
has at least a positive solution u. Furthermore, taking into account the regularity of p and
f, a standard boot-strap argument based on Schauder and Holder regularity shows that u €
C?(Q) NC(N).

Let us now assume that u; and uy are arbitrary solutions of (21). In order to prove the
uniqueness, it is enough to show that u; > us in €2. Denote

w:={x € Q; u(r) < ug(z)}
and suppose that w # (). Then the function % = u; — uy satisfies

At = p(z)(f(ur) = f(uz)), inw

u =0, on Ow .

(25)

Since f is non-decreasing and p > 0, it follows by (25) that @ is a super-harmonic function in w
which vanishes on dw. Thus, by the maximum principle, either % = 0 or @ > 0 in w, which yield
a contradiction. Thus u; > uy in €.

We give in what follows an alternative proof for the uniqueness. Let u;, us be two arbitrary
solutions of problem (21). As above, it is enough to show that u; > uy in Q. Fix ¢ > 0. We
claim that

up(z) < uy(z) +e(1+ |z)?)~1/2 for any z € Q. (26)

Suppose the contrary. Since (26) is obviously fulfilled on 052, we deduce that

Iilgﬁx{ug(x) —u(z) —e(1+ \$|2)’l/2}
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is achieved in €2. At that point we have

0> A (us() — ua(2) — (1 + [2)77?) = p(a) (f(us(2)) = f(wi(2))) — A+ [2]*) 7/ =
(@) (f(ua(z)) — fur(z))) + (N = 3)(1 + |z]*) 32 +3e(1 + |z[)) 2 >0,

which is a contradiction. Since ¢ > 0 is chosen arbitrarily, inequality (26) implies us < u; in €.
O

We point out that the hypothesis that f is differentiable in the origin is essential in order to
find a positive solution to problem (21). Indeed, consider Q = By, and f(u) = u¥=2/8 where
B> 2. Choose p=1and g = C on 8B, where C = (8% + (N —2)3) "%, For this choice of
Q, p, f and g, the function u(r) = Cr?, 0 < r < 1, is the unique solution of problem (21), but
u(0) = 0.

Under the hypotheses on f made in the statement of Theorem 5, except f is of class C! at
the origin (but f € C%* in v = 0), problem (21) has a unique solution which may vanish in
Q). For this purpose it is sufficient to choose as a sub-solution in the above proof the function
u_ =0.

Acknowledgments. We are greatly indebted to Professor Patrizia Pucci for the careful
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Abstract. Let f be anon-negative C*-function on [0, 00) such that f(u)/u is increasing and [ 1/1/F(t) dt < oo,
where F(t) = f(f f(s)ds. Assume Q C RY is a smooth bounded domain, a is a real parameter and b > 0 is a
continuous function on €2, b #Z 0. We consider the problem Awu + au = b(z)f(u) in Q and we prove a necessary
and sufficient condition for the existence of positive solutions that blow-up at the boundary. We also deduce
several existence and uniqueness results for a related problem, subject to homogeneous Dirichlet, Neumann or
Robin boundary condition.

1 Introduction and the main results
Consider the semilinear elliptic equation
Au+ au = b(z) f (u) in Q, (1)

where Q is a smooth bounded domain in RY, N > 3. Let a be a real parameter and b € C%*(Q),
0 < p<1,such that 5> 0 and b # 0 in 2. Set

Qo =int{z € Q: b(z) =0}

and suppose, throughout, that Qg C Q and b > 0 on Q \ Q. Assume that f € C'[0, 00) satisfies
(A1) f>0and f(u)/u is increasing on (0, 00).

*The research of F. Cirstea was done under the IPRS Programme funded by the Australian Government through
DETYA. V. Ridulescu was supported by the P.I.C.S. Research Programme between France and Romania and the Grant
M.E.C. D—26044.

100



Following Alama and Tarantello [1], define by Hy, the Dirichlet Laplacian on Qg as the unique
self-adjoint operator associated to the quadratic form 9 (u) = [, |Vu|? dz with form domain

HLH(Q) ={u € Hy(Q): u(z) =0 forae z€Q\ N}

If 99 satisfies the exterior cone condition then, according to [1], H5 () coincides with H} () and
H, is the classical Laplace operator with Dirichlet condition on 9.
Let Aso,1 be the first Dirichlet eigenvalue of Hy, in Qp. We understand Ao 1 = oo if Qg = 0.

Set g = limy,N\ o ﬂu@, Ihoo = limy o0 ﬂuﬂ, and denote by A1 (o) (resp., A1 (poo)) the first eigenvalue

of the operator Hy, = —A + pob (resp., H,, = —A + poob) in H} (). Recall that A (+00) = Ao 1.
Alama and Tarantello [1] proved that problem (1) subject to the Dirichlet boundary condition

u=0 on JQ (2)

has a positive solution u, if and only if @ € (A1(uo), A1 (peo))- Moreover, u, is the unique positive
solution for (1)4+(2) (see [1, Theorem A (bis)]). We shall refer to the combination of (1)4(2) as
problem (Ej).

Our first aim is to give a corresponding necessary and sufficient condition, but for the existence
of large (or explosive) solutions of (1). A solution u of (1) such that v > 0 in Q and u(z) — oo as
dist (z,092) — 0 will be called a large solution. Cf. Corollary 5 in the Appendix, if such a solution
exists, then it is positive even if f satisfies a weaker condition than (A;), namely

(A1) f(0)=0, f'>0and f > 0 on (0,00).

Problems related to large solutions have a long history and are studied by many authors and in
many contexts. Singular value problems of this type go back to the pioneering work [29] on the equation
Au = e" in the space, and were later studied under the general form Au = f(u) in N-dimensional
domains. We refer only to [3]-[6], [11], [15], [16], [21], [22], [24]-[26], and [31]. We also point out the
paper [30], where there are studied large solutions of the problem

Au = K (z)uN+2/(V=2)

in a ball, in particular for questions of existence, uniqueness and boundary behaviour.

Keller [20] and Osserman [27] supplied a necessary and sufficient condition on f for the existence
of large solutions to (1) when a = 0, b = 1 and f is assumed to fulfill (A;)’. More precisely, f must
satisfy the Keller-Osserman condition (see [20, 27]),

4y [T X here F “f(s)d
< 00, where F(t) = / s)ds.
) | 0= 16

Keeping this in mind and using Theorem 4 in the Appendix we find that our problem (1) can
have large solutions only if the Keller-Osserman condition (As) is fulfilled (see Remark 2 in Section 3).

Furthermore, when this really happens, our first result gives the maximal interval for the parameter a
that ensures the existence of large solutions to problem (1). More precisely, we prove

Theorem 1 Assume that f satisfies conditions (A1) and (Ag). Then problem (1) has a large solution
if and only if a € (—00, Axo,1)-
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We point out that our framework in the above result includes the case when b vanishes at some
points on 9%, or even if b = 0 on J€). In this sense, our result responds to a question raised to one of
us by Professor Haim Brezis in Paris, May 2001.

Denote by D and R the boundary operators
Du :=u and Ru := dyu + B(z)u,

where v is the unit outward normal to 092, and 8 € C1#(052) is non-negative. Hence, D is the Dirichlet
boundary operator and R is either the Neumann boundary operator, if 8 = 0, or the Robin boundary
operator, if 8 # 0. Throughout this work, B can define any of these boundary operators.

Note that the Robin condition R = 0 relies essentially to heat flow problems in a body with constant
temperature in the surrounding medium. More generally, if & and 8 are smooth functions on 9f2 such
that a, 8 > 0, a+ 8 > 0, then the boundary condition Bu = ad,u + fu = 0 represents the exchange of
heat at the surface of the reactant by Newtonian cooling. Moreover, the boundary condition Bu = 0
is called isothermal (Dirichlet) condition if & = 0, and it becomes an adiabatic (Neumann) condition
if 8 = 0. An intuitive meaning of the condition oo + 8 > 0 on 0f) is that, for the diffusion process
described by problem (1), either the reflection phenomenon or the absorption phenomenon may occur
at each point of the boundary.

If f(u) = uP (p > 1), the semilinear elliptic problem

Au + au = b(z)u? in Q,
3)
Bu =0 on 0f)

is basic population model (see, e.g., [18]) and is also related to some prescribed curvature problems
in Riemannian geometry (see, e.g., [28] and [19]). The existence of positive solutions of (3) has been
intensively studied; see for example [1], [2], [12], [13], [17] and [28].

If b is positive on € then (3) is known as the logistic equation and it has a unique positive solution
if and only if a > A\1(Q2), where A\1(Q2) denotes the first eigenvalue of

—Au = lu in €,
Bu=0 on Jf).

We are now concerned with the following boundary blow-up problem

Au+ au = b(z) f(u) in 2\ Q,
Bu=0 on 092, (4)

U = 00 on 08,

where b > 0 on 052, while Qy is non-empty, connected and with smooth boundary. Here, u = co on
090 means that u(z) — oo as ¢ € Q\ Qo and d(z) := dist (z, Q) — 0.

The question of existence and uniqueness of positive solutions for problem (4) in the case of pure
superlinear power in the non-linearity is treated by Du-Huang [16]. Our next results extend their
previous paper to the case of much more general non-linearities of Keller-Osserman type.
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In the following, by (A;) we mean that (A;) is fulfilled and there exists lim, o (F/f)" (u) := 7.
Then, v > 0. Moreover, v < 1/2 if, in addition, (As9) is satisfied (see Lemma 6).

We prove

Theorem 2 Let (A;) and (Ay) hold. Then, for any a € R, problem (4) has a minimal (resp., mazimal)
positive solution U, (resp., U,).

In proving Theorem 2 we rely on an appropriate comparison principle (see Lemma 3) which allows
us to prove that (u,)n,>1 is non-decreasing, where wu,, is the unique positive solution of problem (31)
(in Lemma 9) with ® = n. The minimal positive solution of (4) will be obtained as the limit of the
sequence (up)n>1. Note that, since b = 0 on 9€, the main difficulty is related to the construction of an
upper bound of this sequence (see Lemma 10) which must fit to our general framework. To overcome it,
we find an equivalent criterion to the Keller-Osserman condition (A2) (see Lemma 7). Next, we deduce
the maximal positive solution of (4) as the limit of the non-increasing sequence (vy,)m>m, provided m;
is large so that €,,, CC Q. We denoted by v,, the minimal positive solution of (4) with Qy replaced by

Qp i={z e Q: d(z) <1/m}, m>my. (5)

The next question is whether one can conclude the uniqueness of positive solutions of problem (4).
We recall first what is already known in this direction. When f(u) = u*, p > 1, Du-Huang [16] proved
the uniqueness of solution to problem (4) and established its behavior near 92y, under the assumption

) b(x) .
lim ——— =¢ for some positive constants 7,c > 0. (6)
d(x)\o0 [d(x)]"
We shall give a general uniqueness result provided that b and f satisfy the following assumptions:

. b(x)
B i E )

=c for some constant ¢ > 0, where 0 < k € C'(0, 8p) is increasing and satisfies

(B2) K(t) = foti l;;((i;ds € C'0,4), for some do > 0.

Assume there exist ( > 0 and £y > 1 such that
(A3) f(et) <EFCf(t), VEE(0,1), VE>to/¢

(A1) the mapping (0,1] 3 £ — A(€) = limy 00 g}%

is a continuous positive function.
Our uniqueness result is

Theorem 3 Assume the conditions (A1) with v # 0, (43), (A4), (B1) and (By) hold. Then, for any
a € R, problem (4) has a unique positive solution U,. Moreover,
. Us(=)
lim
d(x)\0 h(d(z))

= 605

where h is defined by

/h:) J;TSW B /ot V() ds, Vit € (0,60) (7)

_ KO -2 +2y

and &y is the unique positive solution of A(£)
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Remark 1 (a) (A;)+(A3) = (A2). Irideed, limy, 00 %%% > 0 since t%% is non-decreasing for ¢ > .
(b) K'(0)(1—2v)+ 2y € (0,1] when (A1) with v #0, (A2), (B1) and (Bs) hold (see Lemma 8).
(¢) The function (0,00) 3 & —> A(§) € (0,00) is bijective when (Asz) and (A4) hold (see Lemma 12).

Among the non-linearities f that satisfy the assumptions of Theorem 3 we note: (i) f(u) =P, p > 1;
(i) f(u) =vPIn(u+ 1), p > 1; (iii) f(u) = uP arctanu, p > 1.

Theorem 2.8 in [16] follows by applying Theorem 3 with f(u) = uP, p > 1 and k(t) = ¢" for ¢t > 0.
However, our result proves the uniqueness for a larger class of functions b than in [16]. Indeed, if (B)
is satisfied with k(t) = e '/* for ¢ > 0, then the uniqueness remains despite of (6) which is not valid.

The above results also apply to problems on Riemannian manifolds if A is replaced by the Laplace—

Beltrami operator
1 0

Ve Ou;
with respect to the metric ds? = ¢;j dz;dz;, where (c;;) is the inverse of (a;;). In this case our results
apply to concrete problems arising in Riemannian geometry. For instance, (cf. Loewner-Nirenberg [24]
and Li [23]) if  is replaced by the standard N-sphere (SV,gq), A is the Laplace-Beltrami operator
Agy, a = N(N —2)/4, and f(u) = (N — 2)/[4(N — 1)]uN+2/(N=2) " we find the prescribing scalar
curvature equation on S™.

Ap (Veas@iy ) eimdetlay),

2 Comparison principles
Throughout this section, we assume that f is continuous on (0, 00) and @ is increasing on (0, 00).

Lemma 1 Assume w is a bounded domain and p € CO*(w) is a positive function in w.
If uy, ug € C%(w) are positive functions in w and

Aug + auy —p(z) f(u1) <0 < Aug + aug — p(x) f(ug) inw (8)
limsup (ug —u1)(z) <0 (9)
dist (z,0w)—0

then w1 > ug in w.

Proof. We use the same method as in the proof of Lemma 1.1 in Marcus-Veron [26] (see also [16,
Lemma 2.1]), that goes back to Benguria-Brezis-Lieb [7].
By (8) we obtain, for any non-negative function ¢ € H'(w) with compact support in w,

/w (Vui - Vo —auip + p(x) f(ur)p) de >0 > / (Vug - Vo — ausp + p(x) f(u2)p) dz. (10)

w

Let 1 > €9 > 0 and denote

wi(er,62) ={r € w: uz(x) +e2 > ui(z) +e1}.

+ )
v = (u; + €i)_1 ((uz + 52)2 — (u1 + 81)2) , t=1,2.
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Notice that v; € Hi (w) and, in view of (9), it has compact support in w. Using (10) with ¢ = v; and
taking into account the fact that v; vanishes outside wy (e1,e2) we find

—/ (V'U:Q . V’UQ - Vu1 - V’Ul) dr
w4 (e1,€2) (11)

> / ( )p(w)(f(uz)vg — f(u1)vr)dz + a/ (u1v1 — ugvy) dz.
w4 (e1,€2 w

+(e1,€2)

A simple computation shows that the integral in the left-hand side of (11) equals

2
-/ ‘Vug—u2+62Vu1 dz < 0.
w+(51,52) u1 +€1

Passing to the limit as 0 < g5 < &1 — 0, the first term in the right hand-side of (11) converges to

/w+(0,0)p($) (%? B %?) (uh — uf) da,

while the other term converges to 0. Hence, we avoid a contradiction only in the case that w4 (0,0) has
measure 0, which means that u; > us on w. [ ]

u1 + €1
U + €9

2
+ ‘Vul — Vusg

With the same arguments Lemma 1 can be written in the following more general form.

Lemma 2 Let w be a bounded domain. Assume that p, q, v are CO*-functions on @ such that r > 0
and p >0 in w. If uy, ug € C%(w) are positive functions in w and

Auy + q(w)us — p(@) f(ur) +(x) <0 < Auz + qla)us — p(a)f(uz) +1(z) inw  (12)

limsup (uz —u1)(z) <0 (13)
dist (z,0w)—0

then w1 > ug in w.
The next result extends Lemma 2.1 in Du-Huang [16].

Lemma 3 Assume w CC Q and p € CO*(Q\ w) is a positive function in Q \ @.
If uy, uz € C%(Q\ w) are positive functions in Q\ w and

Auy +au; — p(z)f(u1) <0 < Aug + aug — p(z) f(ug) inQ\w (14)

Bui > 0> Buy on 09Q; limsup (ug —u1)(z) <0, (15)
dist (z,0w)—0

then u; > ug on Q\ @.

Proof. We distinguish 2 cases:

CASE 1: B =D. The assertion is an easy consequence of Lemma, 1.

CASE 2: B = R. Let ¢1, @2 be two non-negative C?-functions on Q \ w vanishing near Ow.
Multiplying in (14) the first inequality (resp., the second one) by ¢1 (resp., ¢2) and applying integration
by parts together with (15) we deduce that

- / (Vug - Vg — Vuy - Vi) dz — / B(x)(uzp2 — uip1) dS(z)
) a0 (16)

> [ p@)(f(uz)pa — flur)pr) do+a [ (urps — wapa) do,
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where Q := Q \ w. Let €1 > &2 > 0 and denote

Q4 (e1,e2) ={z € Q: ug(x) + €2 > ui(z) + €1}
+ .
vi = (u; +&;)7" ((u2+52)2—(u1+61)2) =12

Since v; can be approximated closely in the H' N L*®-topology on € \ w by non-negative C2-functions
vanishing near dw, it follows that (16) holds for v; taking place of ¢;. Since v; vanishes outside the set
Q4 (g1,€2) relation (16) becomes

—/ (Vug - Vug — Vuy - Vo) dz — / B(x)(ugve — uiv1) dS(x)
Q4 (e1,62) i) (17)
> p(@) (f(uz)on — f(un)or)dz+a [ (won — upws) do.

Qi (e1,2) Q4 (e1,62)

As g1 — 0 (recall that 1 > €2 > 0) the second term on the left hand-side of (17) converges to 0.
From now on, the course of the proof is the same as in Lemma, 1. This completes the proof. [

3 Large solutions of Problem (1)

Remark 2 Assuming (A1), problem (1) can have large solutions only if f satisfies the Keller-Osserman
condition (Az).

Suppose, a priori, that problem (1) has a large solution us. Set f(u) = |alu + ||blloof (u) for u > 0.
Notice that f € C1[0,00) satisfies (A4;)’. For any n > 1, consider the problem

Au = f(u) in Q,

uU="n on 0,

u >0 in Q.

By Theorem 4 in the Appendix, this problem has a unique solution, say u,, which, moreover, is positive
in Q. Applying Lemma 2 for ¢ = —|a|, p = ||b||co, 7 = 0 and w = Q we obtain
0<tp <tUpt1 SUyp in, VYn>1

Thus, for every x € 2, we can define %(z) = lim,_, s un(x). Moreover, since (uy,) is uniformly bounded
on every compact subset of €2, standard elliptic regularity arguments show that @ is a positive large
solution of the problem Au = f (u). It follows that f satisfies the Keller-Osserman condition (As).
Then, by (A1), oo = limy 00 f(u)/u > 0 which yields lim, o f(uw)/f(u) = |a|/poo + ||bllec < 0.
Consequently, our claim follows.

Typical examples of non-linearities satisfying (A1) and (A43) are:
(i) f(u) =€ —1; (i) f(u) =dP, p>1; (iii) f(u) =u[ln(u+1)]P, p> 2.
Remark 3 We have poo := limy 00 f(u)/u = limy o f'(u) = 0.
Indeed, by 1'Hospital’s rule, limy oo F/(u)/u? = f100/2- But, by (As), we deduce that po = co. Then,
by (A1) we find that f'(u) > f(u)/u for any u > 0, which shows that lim,_, f'(u) = cc.
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Proof of Theorem 1

A. NECESSARY CONDITION. Let uy, be a large solution of problem (1). Corollary 5 in the Appendix
implies that us, is positive. Suppose A1 is finite. Arguing by contradiction, let us assume a > A 1.
Set A € (A1(0), Aso,1) and denote by uy the unique positive solution of problem (E,) with a = A\. We
have

A(Muo) + )\oo,l(Muoo) < b(z) f(Muco) in 2,
Mug, = 00 on 0F,
Muso > u) in Q,

where M := max {maxg ©)/ ming us; 1}. By the sub-super solution method we conclude that problem
(Eq) with a = A1 has at least a positive solution (between uy and Mu,). But this is a contradiction.
So, necessarily, a € (—00, Aso,1)-

B. SUFFICIENT CONDITION. This will be proved with the aid of several results. We assume, until the
end of this Section, that f satisfies (4;) and (As).

Lemma 4 Let w be a smooth bounded domain in RN. Assume p, q, r are CO*-functions on @ such
that v > 0 and p > 0 in @. Then for any non-negative function 0 # ® € CO#(0w) the boundary value
problem

Au+g(r)u=p(x)f(u) —r(z) inw,

u >0 n w, (18)

has a unique solution.

Proof. By Lemma 2, problem (18) has at most a solution. The existence of a positive solution will be
obtained by device of sub and super-solutions.
Set pg := inf, p > 0. Define f(u) = pof(u) — ||q||ccu — 7, where 7 := sup,r +1 > 0. Let ¢; be the

(u)

unique positive solution of the equation f(u) = 0. By Remark 3 we derive that lim,_, % =po > 0.

Combining this with (As), we conclude that the function ¢(w) = f(w + ¢1) defined for w > 0 satisfies
the assumptions of Theorem III in [20]. It follows that there exists a positive large solution for the
equation Aw = ¢(w) in w. Thus the function u(z) = w(z)+t1, for all z € w, is a positive large solution
of the problem

Au+ ||qllocu =pof(u) — 7 in w. (19)

Applying Theorem 4 in the Appendix, the boundary value problem

Au = [|glloct + [[Pllocf(v)  inw,
u >0 in w, (20)

u=>ae on Ow,
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has a unique classical solution u. By Lemma 2, we find that 4 < 7 in w and w (resp., @) is a positive
sub-solution (resp., super-solution) of problem (18). It follows that (18) has a unique solution. |

Under the assumptions of Lemma 4 we obtain the following result which generalizes [26, Lemma 1.3].

Corollary 1 There exists a positive large solution of the problem
Au+ q(z)u = p(z) f(u) — r(z) in w. (21)

Proof. Set ® = n and let u, be the unique solution of (18). By Lemma 2, u,, < tup4+1 < U in w, where
u denotes a large solution of (19). Thus lim, o u,(Z) = uc(x) exists and is a positive large solution
of (21). Furthermore, every positive large solution of (21) dominates uq, i.e., the solution us, is the
minimal large solution. This follows from the definition of 4., and Lemma 2. [

Lemma 5 If 0 # ® € C%*(09Q) is a non-negative function and b > 0 on 09, then the boundary value
problem

Au+ au = b(z) f (u) in Q,
u >0 in €, (22)
u=>a on 09,

has a solution if and only if a € (—00, Aso,1). Moreover, in this case, the solution is unique.

Proof. The first part follows exactly in the same way as the proof of Theorem 1 (necessary condition).

For the sufficient condition, fix a < A1 and let Aoo,1 > A« > max {a, A1 (uo)}. Let u, be the unique
positive solution of (E,) with a = \,.

Let Q; (i = 1,2) be subdomains of €2 such that Qq CC Q; CC Qs CC Q and 2\ ©Q; is smooth.
We define u, € C?(Q) as a positive function in  such that u; = u on 2\ Qs and u; = u, on €.
Here uo, denotes a positive large solution of (21) for p(z) = b(z), r(z) = 0, ¢(z) = a and w = Q \ Q4.
Using Remark 3 and the fact that by := infg,\q, b is positive, it is easy to check that if C' > 0 is large
enough then 7 = Cu satisfies

Avg + avg < b(z)f(ve)  inQ,
Ve = 00 on 01).
Ve > I%%X 0] in Q.
By Theorem 4 in the Appendix, there exists a unique classical solution vg of the problem
Avg = |alug + [[bllco f(ue) i,
ve >0 in Q,

v = on 0.

It is clear that vg is a positive sub-solution of (22) and ve < maxpn® < v in Q. Therefore, by
the sub-super solution method, problem (22) has at least a solution v between v and Te. Next,
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the uniqueness of solution to (22) can be obtained by using essentially the same technique as in [10,
Theorem 1] or [9, Appendix II]. [ ]

Proof of Theorem 1 completed. - Fix a € (—00, Axo,1). Two cases may occur:

CASE 1: b > 0 on 09. Denote by v, the unique solution of (22) with ® = n. For ® = 1, set
v := vp and V := Uy, where vy and Up are defined in the proof of Lemma 5. The sub and super-
solutions method combined with the uniqueness of solution of (22) shows that v < v, < wvp41 <V in
Q2. Hence vy (z) := lim, o vy (z) exists and is a positive large solution of (1).

CASE 2: b >0on 09Q. Let z, (n > 1) be the unique solution of (18) for p=b+1/n,r=0,¢=a,
® =n and w = Q. By Lemma 1, (z,) is non-decreasing. Moreover, (z,) is uniformly bounded on every
compact subdomain of Q. Indeed, if K C Q is an arbitrary compact set, then d := dist (K,9Q) > 0.
Choose § € (0,d) small enough so that Qy C Cs, where C5 = {z € Q : dist (z,0Q) > 6}. Since b > 0
on 9Cy, Case 1 allows us to define z as a positive large solution of (1) for Q = Cs. Using Lemma 1 for
p =b+1/n and w = Cs we obtain z, < z; in Cy, for all n > 1. So, (z,) is uniformly bounded on K.
By the monotonicity of (z,), we conclude that z, — z in L{$.(€2). Finally, standard elliptic regularity
arguments lead to z, — z in C?#(Q). This completes the proof of Theorem 1. ]

4 Auxiliary results

The main purpose of this Section is to provide an equivalent criterion to the Keller-Osserman condition
(A2). To our best knowledge there are no results of this type. We point out that, throughout this
Section, a significant role plays the set G defined by

!
_ ) : . g'(t)
g = {g : 36 > 0 such that g € C*(0,4), g¢" > 0on (0,6), %1\%9(75) =00 and 3%{% Fa0) } .

Note that G # 0. We see, for example, that ¢® C G where

0= {9 : @€ C?%0,00), 6 is convex on (0,00) and 7li\rllr(}ﬂ(t) = oo} .

Obviously, © # (. Let § € © be arbitrary. Since 6’ is non-decreasing on (0, 00) and limy 0(t) = oo,
it follows that limy o 6'(t) = —oo. Then,
‘ o'(t) <
(0'(1))> +6"(t)| — [ (t)]

=0 ast\0
which proves that e’ € G.

!
Remark 4 lim 28 _ i 9
N0 g"(t)  1N\O g (t)

=0 for any function g € G.

Indeed, if g € G is chosen arbitrarily, then

. ! _ . _ . ! _
%{%g(t)— 00, %{glng(t) oo and %%ln|g(t)| 00. (23)

L'Hospital’s rule and (23) imply that limp o S0 = limy g % = 0.
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Lemma 6 Assume (A;). Then, the following hold:

(i) ~v=>0.
(i) v < 1/2 provided that (As2) is fulfilled.

Proof. (i) If we suppose v < 0, then there exists s; > 0 such that

(7) v

Integrating this inequality over (s1,00) we obtain a contradiction. It follows that v > 0.

(ii) Let (Ag) be satisfied. Using the definition of vy, we find lim,,_, o %ﬂ =1—+. By Remark 3
and L’Hospital’s rule we obtain

IN

%<O for any u > s1.

im Flu) § lim 1 =
u=oo f2(u)  umoo 2f!(u)
and
\{‘?L(—;L) o 1 Fu)f'(u) 1
OSJL%O@%‘EUIL%WZT* (24)
Y \E(s)
This concludes our proof. [

Lemma 7 Assume (A;). Then the Keller-Osserman growth condition (As) holds if and only if

. tf(g(t)
(Ag) %{‘% g"(t)

=00 for some function g € G .

Proof. A. NECESSARY CONDITION. Since (A) holds, we can define the positive function g as follows

o0 ds 9 3 . .
/ =t" forallt >0, whered € |_,o00] is arbitrary. (25)
a(t) VF(s) 2
Obviously, g € C?(0,00) and limp g g(t) = co. We claim that g € G and condition (A4,) is fulfilled. To
argue this, we divide our argument into three steps:
!
STEP 1: limgi(t) =14 (’y— 1)

N0 1201 f(g(1)) 2
We derive twice relation (25) and obtain

g'(t) = —9t" "1\ /F(g(t) (26)
mpy 01, 92 292 _ 9% 992 20-1)  4'(t)
0'(0) = g () + TR 00) = SR a0) (( ey 1) @)
By using (26) and (24) we find
) NGO
lim & = lim —O T F(g() = lim —ﬂﬁ = lim —ﬁﬁ =1 ( — 1)
RREIG) D ) 1 Ly A e A T\ 2)

STEP 2: ¢" > 0 on (0,6) for § small enough.
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Since v > 0, by using Step 1 we find

C2W-1) g0  20-1) 1\ 1
= v ()21 (25)

In view of (27), the assertion of this step follows.

IO _ o a1 00

: i = =
STEP 3 t{% D) an t{% 0]
Taking into account (27) and (28) we find
!/ !
g 2% gl 1 iy

lim =—% = lim —
7 2 4291 2(9-1) '(t)
N0 g"(t) N0 92 1201 f(g(2)) - tw—glf(g(t)) +1

and, for any ¢ € (0,6) where § > 0 is given by Step 2, we have
tf(g(?)) tf(g(t)) 5 _ tf(g(®)) 2

gt %g’(t) + %tzﬂ_Qf(g(t)) = %2t279_2f(g(t)) = 924203

Sending ¢ to 0, the claim of Step 3 is proved.

B. SUFFICIENT CONDITION. Let g € G be chosen so that (A4,) is fulfilled. By L’Hospital’s rule we find

im (g'(£)” = 2lim g'()
O F(g(t) — ~ 80 f(g(t))

We choose § > 0 small enough such that ¢'(s) < 0 and ¢"(s) > 0 for all s € (0,0). It follows that

/°° L_hm/g(t)i_hm P gE)ds 5oy 9B
o) VE@) N0 Jg6) VE(s) o VE(g(s)) T ten) VE®)
Hence, the growth condition (Ag) holds. ]

Lemma 8 Assume that (A)) with v # 0, (A3), (B1) and (Bs) are fulfilled. Then, the following hold:
(1) K'(0)(1—2vy)+2y e (0,1].
(i) h € G, where h is the function defined by (7).

Proof. (i) Since v # 0, by Lemma 6 we find 0 < v < 1/2. Therefore, the claim of (i) follows if we prove
that K'(0) € [0,1]. To this aim, we remark that K(0) = 0. Suppose that K(0) # 0. Then, we obtain

lim [111 (/Ot\/@ds)]l(t) - ﬁ € (0,00),

t
. . . _ _ . ,
which contradicts the fact that %{‘% In (/0 \/ k(3) ds) = —00. So, K(0) = 0. This produces K'(0) > 0.
Since K € (4]0, do), we have

K'(0) = lim (fi W)

N k()
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so that

() [T /E(s)ds NIYorANE ,
}{‘% k?”/Z(t) =2 (1 — %{% <OW> ) =2(1 - K'(0)). (29)

Hence, K'(0) < 1. Indeed, assuming the contrary, relation (29) yields &'(t) < 0 for ¢ € (0,4) for some
0 < § < ép. But this is impossible, since lim\ o k() = 0 and k£ > 0 on (0, dp).

(ii) Using the definition of h, we deduce that h € C?(0,8) and limps g h(t) = co. Then, by twice

deriving relation (7), we find
R (t) = —+/k(t) /2F (h(2)), vt € (0,d),

respectively,
Wiy 1 VF(h(?)

VERD)
K'(t) o VE(S) ds Ty
k3/2(t) f’?(c;:) ds

= k@) f(r(t) - —=

= k(@) f(h(?)) | 1

V()
Using (24) and (29), we obtain
F(h(1))
. () -2 TR v Jo VE(S)ds 2y —1 B
) T RO -2y 2y B e T e TRy 1y 0 =0
7) 27 N0 [ Jre) (t) ) + 2y
and
lim&—K'(O)(l—Q ) +2y>0 (30)
NP ORI i
which shows that A" is positive on (0, d;) for some §; > 0. This concludes our proof. ]

5 Proof of Theorem 2

We start with the following result.

Lemma 9 Assume b> 0 on 0Q. If (A1) and (A3) hold, then for any positive function ® € C2H(98))
and a € R the problem

Au+ au = b(z) f (u) in Q\ Q,
Bu=0 on 052, (31)
u=7ae on 09,

has a unique positive solution.

Proof. In view of Lemma 3 we find that (31) has at most a positive solution. To prove the existence
of a positive solution to (31) we shall use the sub and super-solution method.
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Let w CC Qg be such that the first Dirichlet eigenvalue of (—A) in the smooth domain Qg \ @ is
greater than a. Let p € C%#(Q) be such that p(z) = b(z) for z € Q\ Qq, p(x) = 0 for z € Q) \ w and
p(z) > 0 for x € w. By virtue of Lemma 5, problem

Au + au = p(z) f(u) in Q,
u=1 on 01},

has a unique positive solution .
We choose 7 and €5 two subdomains of 2 such that Q¢ CC Q; CC Qs CC Q.
Define u* € C?(Q2\ Qo) so that u* =1 on Q\ Qy, u* = u; on O \ Qp and m, := ming, o u* > 0.

CraM: For £ > 1 large enough, fu* is a super-solution for problem (31).
We first observe that

—A(lu*) = Lauy — lp(z) f(u1) > a(fu*) — b(z)f(fu*) forz € Q1 \ Qo and £> 1. (32)

Denote by M™* := supg,q, (au* + Au*) and b := minﬁ\Ql b > 0. By Remark 3, we obtain that there
exists #1 > 1 such that

*

M
flmy) > d for all ¢ > 4.

0
For z € Q\ Q and £ > ¢; we have
b(x) f(Eu®) > bof(my) > L(au” + Au’)
which can be rewritten as
—A(tu*) > a(fu*) — b(z)f(lu*) forz € Q\Qy and £ > 4. (33)
By (32) and (33) it follows that
—A(lu*) > a(fu*) — b(z) f(fu*) in Q\Qy, for any £> 4.
On the other hand,

B(¢u*) > £min{1, IIél})Isll B(x)} >0 on 09, forevery £ > 0.
x

By taking £ > max {maxpq, ®/m.;¢1} the claim follows.
Set b := supq b. By Theorem 4 in the Appendix, the boundary value problem

Au, = bf (us) + |a|us in 2\ Qo,
Uy =0 on 012, (34)

Uy = D on 09y,

has a unique non-negative solution, which is positive in Q \ Qp. Since us = 0 on 9Q we find that
Rus = Oyus < 0 on 0N. It is easy to see that u, is a sub-solution of (31) and u, < fu* in ﬁ\ Qg for ¢
large enough. The conclusion of Lemma 9 follows now by the sub-super solution method. [ |
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Corollary 2 If Qg is replaced by ., defined in (5), then the statement of Lemma 9 holds.

Proof. The proof is very easy in this case. The construction of the sub-solution is made as before,
while the super-solution can be chosen any number ¢ > 1 large enough. |

We now come back to the proof of Theorem 2, that will be divided into two steps:
Step 1. Existence of the minimal positive solution for problem ().

For any n > 1, let u, be the unique positive solution of problem (31) with ® = n. By Lemma 3,
un(x) increases with n for all z € Q \ Q. Moreover, we prove

Lemma 10 The sequence (uy(z))y is bounded from above by some function V(x) which is uniformly
bounded on all compact subsets of Q\ Qq.

Proof. Let b* be a C2-function on Q2 \ Qg such that
0 < b*(z) <blz) Vre\Q.

For z bounded away from 02 is not a problem to find such a function b*. For z satisfying 0 < d(z) < ¢
with § > 0 small such that z — d(z) is a C%-function, we can take

. d(z) rt ]
b*(x) :/0 ; [dgl)lgs b(z)] ds dt.

Let g € G be a function such that (Ay) holds. The existence of g is guaranteed by Lemma 7. Since
b*(z) — 0 as d(z) \( 0, we deduce, by Remark 4 and (A;), the existence of some § > 0 such that for
all z € Q with 0 < d(z) < dand € > 1
b*(x) f(g(b"(x))) w2, 90 () . ‘ g(b"(z))

PO @Ne o ad VT ) s S g @)
Here, ¢ > 0 is taken sufficiently small so that ¢'(b*(z)) < 0 and ¢"(b*(z)) > 0 for all z with 0 < d(z) < 6.

For ng > 1 fixed, define V* as follows

(i)  V*(x) =upy(z) +1 for z € Q and near 99 ;

(ii) V*(z) = g(b*(z)) for z satisfying 0 < d(z) < d;

(iii) V* € C?(2\ Q) is positive on Q\ Qp .

We show that for ¢ > 1 large enough the upper bound of the sequence (uy(z)), can be taken as
V(z) = &V*(x). Since

BV (z) =¢(BV*(z) > Emin{l, B(z)} >0, Vze I and d(li)rio[un(a:) —V(z)] = —o0 <0,

to conclude that u,(z) < V(z) for all z € Q\ Qq it is sufficient to show, by virtue of Lemma 3, that
—AV(z) > aV(z) —blz)f(V(z)), VzeQ)\Q. (35)

For z € Q satisfying 0 < d(z) < § and £ > 1 we have

—AV(z) —aV(z) + b(z) f(V(z)) = —EAg(b"(2)) — a&g(b"(z)) + b(z) f(9(b (2))¢)

> &' () (- S 80 (o) — (V0@ — 0 ST () LN
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For z € Q satisfying d(z) > 4,
~AV(@) - V(@) + @) (V@) =€ (~AV"(2) - aV*(z) + b(o) M) >0

for ¢ sufficiently large. In the last inequality, we have used (iii) and Remark 3. It follows that (35) is
fulfilled provided ¢ is large enough. This finishes the proof of the lemma. |

By Lemma 10, U, (7) = lim,, 0 us(z) exists, for any x € Q\ Qg. Moreover, U,, is a positive solution of
(4). Using Lemma 3 once more, we find that any positive solution u of (4) satisfies u > u, on Q\ Qy,
for all n > 1. Hence U, is the minimal positive solution of (4).

Proof of Theorem 2 completed.
Step 2. Ewistence of the mazimal positive solution for problem ().

Lemma 11 If Qg is replaced by Q,,, defined in (5), then problem (4) has a minimal positive solution
provided that (A1) and (As) are fulfilled.

Proof. The argument used here (more easier, since b > 0 on Q \ Q,,) is similar to that in Step 1.
The only difference which appears in the proof (except the replacement of 2y by €,,) is related to the
construction of V*(z) for z near 0,,. Here, instead of Lemma 7 we use our Theorem 1 which says
that, for any a € R, there exists a positive large solution ug o, of problem (1) in the domain Q\ Q.
We define V*(z) = ug,00(z) for z € 2\ Qy, and near 9Qy,. For € > 1 and z € 2\ Oy, near 992, we have

—AV(z) —aV(z) + b(z) f(V(z)) = —EAV™(2) — afV*(z) + b(z) f (EV"(2))
= b(@)[f (V™ (2)) — £f(VF(2)] > 0.

This completes the proof. [ |

Let v, be the minimal positive solution for the problem considered in the statement of Lemma 11.
By Lemma 3, vy, > U1 > u on Q) Q,,, where u is any positive solution of (4). Hence U,(z) :=
lim,;, 00 V() > u(x). A regularity and compactness argument shows that U, is a positive solution of
(4). Consequently, U, is the maximal positive solution. This concludes the proof of Theorem 2. [

6 Proof of Theorem 3

By (A4) we deduce that the mapping (0,00) > £ — A({) = Jim_ g}izg

function, since A(1/£) = 1/A(€) for any £ € (0,1). Moreover, we claim

is a continuous positive

Lemma 12 The function A : (0,00) — (0,00) is bijective, provided that (As) and (A4) are fulfilled.

Proof. By the continuity of A, we see that the surjectivity of A follows if we prove that limg\ g A(£) = 0.
To this aim, let £ € (0,1) be fixed. Using (A3) we find

f(&u) <& to

) S 2T
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which yields A(£) < £S. Since £ € (0,1) is arbitrary, it follows that limg\ g A(€) = 0.
We now prove that the function £ — A(€) is increasing on (0, 00) which concludes our lemma. Let
0 < & < & < o0 be chosen arbitrarily. Using assumption (A3) once more, we obtain

e =1 (hem) < (2) s, vezoo

It follows that

flew) _ (&\° f(bu) &
are0 < (8) B V2w
Passing to the limit as u — oo we find
A < () A < ),
which finishes the proof. [ |

Proof of Theorem 3 completed.

By Lemma 8, h € G. Set II(¢) = d(lim b(x) , for any £ > 0. Using (B;) and (30), we find
KOSD) | J(Ew)

() TR e e f(w)

@) k(@) () f(hd@)E)
o RAE) W) )

This and Lemma 12 imply that the function IT : (0,00) — (0,00) is bijective. Let & be the unique
-2 2
positive solution of II(¢) = 1, that is A(&) = K(0)1 = 2y) + 7
For € € (0,1/4) arbitrary, we denote & = II7!(1 — 4¢), respectively & = IT~1(1 + 4e).
Using Remark 4, (B;) and the regularity of 9Q¢, we can choose § > 0 small enough such that
(i) dist (z,09) is a C? function on the set {z € Q: dist (z,0Q) < 26};

I h
(ii) h”((?) Ad(z) +a h”((i’)) <eand h"(s) >0 forall s € (0,26) and z satisfying 0 < d(x) < 26;

e ) L T
(i) (TI(&2) —¢) Fh(d@)E) <b(z) < (II(&) +¢) d@)e)’ for every th 0 < d(z) < 26.
< d(z) < 26.

f(h
(iv) b(y) < (1 +¢€)b(z), for every z,y with 0 < d(y)
h(

Let o € (0,6) be arbitrary. We define v,(z) = h(d(z) + o), for any z with d(z) + o < 24,
respectively U,(x) = h(d(z) — 0)& for any z with o < d(x) < 24.
Using (ii), (iv) and the first inequality in (iii), when o < d(z) < 24, we obtain (since |Vd(z)| = 1)

— A, () — avy(2) + b(z) f (Vs (2))

&2
e o (LK@ ) L hda) —0) | ba)f(h(d() — 0)é)
&R (d@) = o) i;,l'l’((((li((x)):a)) Ad() i;;’((dd((w))_—oa) t H(h';(i(x) —0)& )



for all z satisfying o < d(z) < 24.
Similarly, using (ii), (iv) and the second inequality in (iii), when d(z) + o < 26 we find

By a) = g (5) + H(2) 2 (2)
: H(dlz) + o) M) +o) |, i (hdle) + 0)e)
- +o) W) +0) 0 T Vi@ vo) T W) 1o, )
< €1 H(d(a) + ) (=) -0 Ad(a) ~ a g DT 1 (14 £)(1(E) + s)) <o,

for all z satisfying d(z) + o < 26.

Define Q5 = {z € Q: d(z) < ¢}. Let w CC Qo be such that the first Dirichlet eigenvalue of (—A)
in the smooth domain € \ @ is strictly greater than a. Denote by w a positive large solution to the
following problem

—Aw = aw — p(x) f (w) in Qy,

where p € C%(Qys) satisfies 0 < p(z) < b(z) for z € Q5 \ Qo, p(x) = 0 on U\ w and p(z) > 0 for € w.
The existence of w is guaranteed by our Theorem 1.
Suppose that u is an arbitrary solution of (4) and let v := u + w. Then v satisfies

—Av >av—b(z)f(v) in Qs\ Q.

Since
v]an, = 00 > U,lan, and w|an, = 00 > v,|a0;,

by Lemma 3 we find
u+w>v, onQs\ Q. (36)

Similarly B
Ue+w >u on Q\ Q. (37)

Letting 0 — 0 in (36) and (37), we deduce
h(d(z)) &2 + 2w > u+w > h(d(z)) &1, Yz € Q5 \ Qo

Since w is uniformly bounded on 0, it follows that

culz) u(z)
&1 < liminf <limsup ——~ < &. (38)
d@\o h(d(z)) = gaz)\o h(d(z))
Letting ¢ — 0 in (38) and looking at the definition of &; respectively & we find

lim )
d(z)\o h(d(x))

= &o. (39)

This behavior of the solution will be speculated in order to prove that problem (4) has a unique solution.
Indeed, let uj, ug be two positive solutions of (4). For any ¢ > 0, denote @; = (1 + €) u;, 1 = 1,2. By
virtue of (39) we get

i U@ () o oua(e) —da(z)
BT h@@) e @@y - e <0
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which implies
a1 )~ ] = G0 fuala) — da ()] = oo

On the other hand, since % is increasing for u > 0, we obtain
Al = —(1+¢) Auj = (1 +¢) (au; — b(z) f(us)) > aty — b(z)f (%) in Q\ Qo
Bu; = Bu; =0 on 09).

So, by Lemma, 3,
ui(z) < dg(z), we(z) <w(z), Vre )\ Q.

Letting € — 0, we obtain u; = ug. The proof of Theorem 3 is complete. [

Remark 5 Assume that f satisfies (A1) and (As). Then problem (1) with a =0, b =1 has a unique
large solution . Moreover, U satisfies the asymptotic condition (see [5, Theorems 2.3 and 2.4])

m By
dist (z,00)—0 I'(dist (z, 092))

?

where I' is the function defined as

o0
/ 4, wso
r(t) V/2F(s)

Let ©; CC € be a connected subdomain, with smooth boundary such that Qy C ©;. Theorem 3 yields

Corollary 3 Let (A4) be added to the assumptions of Remark 5. Then, for any a € R, problem (4)
with b =1 on 0Q1 and Qg replaced by 1, has a unique positive solution U,. Moreover, U, behaves on
0 exactly in the same manner as 4 on 02, i.e.,

Ua(z)

I ~1.
dist (2,001)—0 D(dist (z, 91))

Proof. By Remark 1 (a), we can apply the argument of Lemma, 11 to deduce the existence of a positive
solution for problem considered here. Concerning the uniqueness, we remark that (B;) and (B2) are
fulfilled by taking ¢ = 1 and k = 1 on (0,00). It follows that h defined by (7) coincides with I'. But
I'(t) = —/2F(T(t)) and I'(t) = f(T'(¢)) for any ¢ € (0,00). Thus, we obtain ' € G (without calling
Lemma 8) and II(¢) = A(¢) for all £ > 0. So, by Lemma 12, IT : (0,00) — (0, 00) is bijective. From
now on, we proceed as in the proof of Theorem 3 remaining only to replace A by I and Qg by ;. =

7 Appendix

The following result has been applied several times in the paper and it is mentioned without proof in
Marcus [25]. For the convenience of the reader we give in what follows a complete proof of this result.
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Theorem 4 Let Q C RN be a bounded smooth domain. Assume 0 % p € C%*(Q) is non-negative and
f € C[0,00) is a positive, non-decreasing function on (0,00) such that f(0) =0. If 0 £ ® € CO*(69)
is non-negative, then the boundary value problem

Au=p(z)f(u)  inQ,

u=>a on 01, (40)

u >0 in Q,
has a unique classical solution, which is positive in €.

Remark 6 The conclusion of Theorem 4 has been established in [11, Theorem 5] when ® is assumed
to be positive on 0S2. Our approach for proving the positivity of solution was essentially based on this
assumption and it fails when the zero set of ® is non-empty.

Under the same assumptions on p and f as in the statement of Theorem 4 we have

Corollary 4 (Strong maximum principle.) Let Q be a non-empty domain in RN. If u is a non-
negative classical solution of the equation Au = p(z)f(u) in Q then the following alternative holds:
either u =0 in Q or u is positive in €.

Proof. If u # 0 in Q, then there exists z¢ € 2 such that u(zg) > 0. We claim that u > 0 in 2. Arguing
by contradiction, let us assume that u(z1) = 0 for some z; € Q. Let w CC £ be a bounded smooth
domain such that z; € w and zg € Ow. Set pg := 1 + sup,, p > 0 and consider the problem
Av=pof(v) inw,
v=uZ%0 on Jw, (41)

v>0 n w.

By Theorem 4, this problem has a unique solution vy which, moreover, is positive in w. It is clear that
0 (resp., u) is sub-solution (resp., super-solution) for problem (41). So, there exists a solution v; of (41)
satisfying 0 < v; < u. By uniqueness we deduce that v1 = vg > 0 in w. It follows that v > vy > 0 in w.
But this is impossible since u(z1) = 0. |

Corollary 5 Let @ C RN be a bounded smooth domain. If ui is a non-negative classical solution of
the equation Au+ au = p(z)f(u) in Q such that uqy #Z 0 on IQ then uy is positive in Q.

Proof. Let ® € CO’“(BQ) be such that ® # 0 and 0 < ® < u; on 0€2. Consider the problem

Au=[afu+ plloof(w)  inQ,
u=9ae on 012, (42)

u >0 in .
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By Theorem 4, this problem has a unique solution, say ug and, moreover, ug > 0 in Q. But wuy is
supersolution for problem (42), so u1 > up > 0 in  and our claim is proved. [

Proof of Theorem 4. We first observe that u_ = 0 is a sub-solution of (40), while u* = n is a
super-solution of (40) if n is large enough. Hence problem (40) has at least a solution ug.

Then, taking into account the regularity of p and f, a standard boot-strap argument based on
Schauder and Holder regularity shows that ue € C?(Q)NC(Q). The fact that uge is the unique classical
solution to (40) follows in the same way as in [11, Theorem 5].

We state in what follows two proofs for the positivity of ug: the first one relies essentially on
Theorem 1.20 in [14] while the second proof offers a more easier and direct approach.

FIRST PROOF: Set M := maxgp. Let u, be the unique non-negative classical solution of the problem

Au, = M f(uy) in €,
Uy = P on Of).

To conclude that ug > 0 in Q it is enough to show that ug > u. > 0 in 2. Since f € C[0, 00) we have

u? 2u 2
e Ton i T Bl () el (43)

which implies immediately that f01+ du__ _ . By applying Theorem 1.20 in Diaz [14], we conclude

VF(u)
that u, > 0 in Q.
We now prove that ug > u, in 2. To this aim, fix € > 0. We claim that
Uy () < us(z) + (1 + |z|?) "2 for any z € Q. (44)
Assume the contrary. Since u, |90 = ug s = @ we deduce that

max{u. (x) ~ ue(z) — e(1 +a) /%)

is achieved in 2. At that point we have

0> A (uale) ~ua(2) — e+ o)) = M (uale)) — ple) f (ua (@) — A+ |2?) ™

> ple) (f (@) — f(ua(@))) + eV — 3)(1+ [22) > + 3e(1 + [22) 7 > 0,

which is a contradiction. Since € > 0 is chosen arbitrarily, inequality (44) implies ug > u, in Q. [

SECOND PROOF: Since ® # 0, there exists zy € Q such that ug(z¢) > 0. To conclude that ug > 0 in Q
it is sufficient to prove that ue > 0 on B(zo;7) where 7 = dist (zg, 9Q2). Without loss of generality we
can assume o = 0. By the continuity of ug, there exists r € (0,7) such that ug(z) > 0 for all z with
|z| <r. So, min g —, ug(x) =: p > 0. We define

f(t) ft)

It remains to show that ug > 0 in A(r,7), where

A(r,7)i={z e RV : r < |z <T}.

P+ dt P+ dt
M :=maxp, n:= / — and v(e):= / — for0<e<p.
Q P 5

For this aim, we need the following lemma.
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Lemma 13 For ¢ > 0 small enough, the problem
—Av=M in A(r,7),
v(z) =7 as |z| =, (45)
v(z) = v(e) as |z| =T,

has a unique solution, which is increasing in A(r,T).

Proof. By the maximum principle, the problem (45) has a unique solution. Moreover, v is radially
symmetric in A(r,7), namely v(z) = v(r), r = |z|. The function v satisfies

N -1
v'(r) + V(i) =-M, r<r<r.
Integrating twice this relation we find
__ M, Ci 2w
U(T)——ﬁT—N_2T +Cy r<r<rw,
where C; and Cj are real constants. The boundary conditions v(r) = 7 and v(F) = v(e) imply

M N -2
C = (V(&) —-n+ W(T2 - EQ)) m
From (43) we deduce that v(¢) — oo as € — 0. Thus, taking ¢ > 0 sufficiently small, C; becomes large
enough to ensure that v'(r) > 0 for all r € (r, 7). |
Set € > 0 sufficiently small such that the conclusion of Lemma 13 holds. Let u be the function
defined implicitely as follows

pHLdt
/u(w)+£ 0] =wv(z) forall z € A(r,T). (46)

It is easy to check that
Au> Mf(u+e) >p(z)f(w)  in A7),
u(z) = p—e < ug(z) as |z| =,
u(z) =0 < ugp(x) as |z| =T.

Using the maximum principle (as in the proof of (44)) we deduce that u < ug in A(r,7). By (46) and
Lemma 13 we deduce that u decreases in A(r,7). Thus, u > 0 in A(r,7). This completes the proof. m

The positiveness of the solution in Theorem 4 follows essentially by the assumption f € C' on
[0,00). We show in what follows that if f is not differentiable at the origin, then problem (40) has
a unique solution that is not necessarily positive in 2. However, in this case, the positiveness of the
solution may depend on ¢ and on the geometry of 2. Indeed, let us consider the problem

Au=+/u in{,
u>0 in Q, (47)
u=-c on 012,
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where ¢ > 0 is a constant.

In order to justify the uniqueness, let u1, us be two solutions of (47). It is sufficient to show that
up < ug in Q. Set w = {z € Q; wui(z) > uz(z)} and assume that w # 0. Then A(u; — ug) =
VU1 — /uz > 0 in w and u; — up = 0 on dw. The maximum principle implies u; — ug < 0 in w which
yields a contradiction.

The existence of a solution follows after observing that u— = 0 (resp. uy = ¢) are sub-solution
(resp. super-solution) for our problem.

The following example illustrates that in certain situations the unique solution of the problem (47)
may vanish.

ExAMPLE 1. Set Q = B(0,1) C RN and w(z) = a|z|*. If ¢ < m, let us choose a so that
c<a< m. It follows that

Aw = (4N + 8)a|z|?> < Va|z|? = yw  in Q,

w=a>c on 0N.

This means that w is a super-solution of (47). Since w(0) = 0 then, necessarily, u(0) = 0.

The next example shows that in some cases, depending on ¢ and on diam (2, the unique solution of
(47) is positive.

EXAMPLE 2. Suppose that Q can be included in a ball B(zg, R) with R < R, := 2/cv/N + 2.
Define w(zr) = a|z — xo|*, where a is chosen so that % > a > ﬁ. Then w satisfies

Aw = (4N + 8)a|z — zo|> > Va|r — o2 =vw in Q,

w=alz —zo|* < c on 0N}

which shows that w is a sub-solution of (47). We conclude that u(z) > w(z) > 0, for any z € Q\{zo}.
If diamQ < 2R < 2R,, there exist two points zy and z; such that  can be included in each of the
balls B(zg, R) and B(x1, R). Using the previous conclusion we have

1 — Zo 4

u(z) > amax{|z — zo|t, |z — z1[*} > @ > 0.

Choosing a = %7, |1 — 7o| = 2R — diam ) and R = R, we find

( )>i<2R—diamQ>4_ (1_diamQ
W = R 2 — ¢ 2R

Acknowledgements. We thank the referee for the careful reading of the manuscript and for
pointing out that the necessary condition a < Ay,1 in the statement of Theorem 1 may be deduced
as a consequence of the anti-maximum principle, after showing that the large solution is positive in
Qo. This work has been completed while V.R. was visiting the Institut des Mathématiques Pures et
Appliquées in Louvain-la-Neuve. He is grateful to Professor Michel Willem for this invitation and for
numerous fruitful discussions.

4
) >0, Vzel.

122



References

[1]

2]

(3]

[16]

[17]

18]

[19]

[20]

21]

S. Alama and G. Tarantello, On the solvability of a semilinear elliptic equation via an associated eigenvalue problem,
Math. Z., 221 (1996), 467-493.

A. Ambrosetti and J.L. Gadmez, Branches of positive solutions for some semilinear Schrédinger equations, Math. Z.,
224 (1997), 347-362.

C. Bandle, G. Diaz and I.J. Diaz, Solutions d’équations de réaction-diffusion non linéaires explosant au bord
parabolique, C.R. Acad. Sci. Paris, Sér. I Math., 318 (1994), 455-460.

C. Bandle, A. Greco and G. Porru, Large solutions of quasilinear elliptic equations: existence and qualitative
properties, Boll. Unione Matematica Italiana, 7, 11-B (1997), 227-252.

C. Bandle and M. Marcus, ‘Large’ solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic
behavior, J. Anal. Math., 58 (1992), 9-24.

C. Bandle and G. Porru, Asymptotic behaviour and convexity of large solutions to nonlinear equations, World Sc.
Series in Appl. Anal. 3 (1994), 59-71.

R. Benguria, H. Brezis, and E. Lieb, The Thomas-Fermi-Von Weizsacker theory of atoms and molecules, Comm.
Math. Phys., 79 (1981), 167-180.

H. Brezis, Analyse fonctionnelle: théorie et applications, Masson, Paris, 1983.
H. Brezis and S. Kamin, Sublinear elliptic equations in R, Manuscripta Math., 74 (1992), 87-106.
H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., T.M.A., 10 (1986), 55-64.

F. Cirstea and V. Radulescu, Blow-up boundary solutions of semilinear elliptic problems, Nonlinear Anal., T.M.A.,
48 (2002), 521-534.

E. N. Dancer, Some remarks on classical problems and fine properties of Sobolev spaces, Differential Integral Equa-
tions, 9 (1996), 437-446.

M. A. del Pino, Positive solutions of a semilinear elliptic equation on a compact manifold, Nonlinear Anal., T.M.A.,
22 (1994), 1423-1430.

J. 1. Diaz, Nonlinear Partial Differential Equations and Free Boundaries. Elliptic Equations, Pitman Adv. Publ.,
Boston, 1986.

G. Diaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: existence and uniqueness, Nonlinear
Anal., T.M.A., 20 (1993), 97-125.

Y. Du and Q. Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math.
Anal., 31 (1999), 1-18.

J.M. Fraile, P. Koch Medina, J. Lépez-Gémez, and S. Merino, Elliptic eigenvalue problems and unbounded continua
of positive solutions of a semilinear elliptic equation, J. Differential Equations, 127 (1996), 295-319.

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Longman Scientific and Technical, Harlow,
UK, 1991.

J.L. Kazdan and F.W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differential
Geometry, 10 (1975), 113-134.

J.B. Keller, On solution of Au = f(u), Comm. Pure Appl. Math., 10 (1957), 503-510.

A.C. Lazer and P.J. McKenna, On a problem of Bieberbach and Rademacher, Nonlinear Anal., T.M.A., 21 (1993),
327-335.

123



(22]

23]

[24]

[25]

[26]

[27]

28]

29]

(30]

31]

A.C. Lazer and P.J. McKenna, Asymptotic behavior of solutions of boundary blow-up problems, Differential and
Integral Equations, 7 (1994), 1001-1020.

Y.Y. Li, Prescribing scalar curvature on SV and related problems, Comm. Pure Appl. Math., 49 (1996), 541-597.

C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations,
in Contributions to Analysis, L.V. Ahlfors et al., eds., Academic Press, New York, 1974, 245-272.

M. Marcus, On solutions with blow-up at the boundary for a class of semilinear elliptic equations, in Developments
in Partial Differential Equations and Applications to Mathematical Physics (G. Buttazzo et al., Eds.), Plenum Press,
New York (1992), 65-77.

M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of
nonlinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 237-274.

R. Osserman, On the inequality Au > f(u), Pacific J. Math., 7 (1957), 1641-1647.

T. Ouyang, On the positive solutions of semilinear equations Au + Au — hu? = 0 on the compact manifolds, Trans.
Amer. Math. Soc., 331 (1992), 503-527.

H. Rademacher, Einige besondere problem partieller Differentialgleichungen, in: Die differential und Integralgle-
ichungen der Mechanik und Physik I, 2nd Ed., Rosenberg, New York, 1943, 838-845.

A. Ratto, M. Rigoli and L. Véron, Scalar curvature and conformal deformation of hyperbolic space, J. Funct. Anal.,
121 (1994), 15-77.

L. Véron, Semilinear elliptic equations with uniform blow-up on the boundary, J. Anal. Math., 59 (1992), 231-250.

124



Entire solutions blowing-up at infinity for semilinear
elliptic systems

FLORICA ST. CIRSTEA AND VICENTIU D. RADULESCU*

Department of Mathematics, University of Craiova, 1100 Craiova, Romania

Abstract

We consider the system Au = p(z)g(v), Av = q(z)f(u) in RY, where f, g are positive
and non-decreasing functions on (0, 00) satisfying the Keller-Osserman condition and we
establish the existence of positive solutions that blow-up at infinity.

1 Introduction and the main results

Consider the following semilinear elliptic system

Au = p(z)g(v) in RV, W
Av = q(z)f(u) in RV,
where N > 3 and p,q € 100’3
functions. Throughout this paper we assume that f,g € CIOO’CB [0,00) (0 < 8 < 1) are positive
and non-decreasing on (0, 00).
We are concerned here with the existence of positive entire large solutions of (1), that
is positive classical solutions which satisfy u(z) — oo and v(z) — oo as |z| — oo. Set
R* = (0,00) and define

G ={(a,b) € R* xRT; (3) an entire radial solution of (1) so that (u(0),v(0)) = (a,b)}.

(RM) (0 < @ < 1) are non-negative and radially symmetric

The case of pure powers in the non-linearities was treated by Lair and Shaker in [5].
They proved that G = Rt x Rt if f(t) = ¢” and g(t) = ¢ for t > 0 with 0 < v,6 < 1.
Moreover, they established that all positive entire radial solutions of (1) are large provided
that

/Ooo tp(t) dt = oo, /Ooo tq(t) dt = oc. (2)

*Corresponding author. E-mail: radules@ann. jussieu.fr
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If, in turn
o0 o
/ tp(t) dt < oo, / tq(t) dt < oo (3)
0 0

then all positive entire radial solutions of (1) are bounded.
Our purpose is to generalize the above results to a larger class of systems. More precisely,
we prove

Theorem 1 Assume that

lim 9(cf () =0 forallc>0. (4)

t—00 t

Then G = RT x RT. Moreover, the following hold:

i) If p and q satisfy (2), then all positive entire radial solutions of (1) are large.

it) If p and q satisfy (3), then all positive entire radial solutions of (1) are bounded. Fur-
thermore, if f,g are locally Lipschitz continuous on (0,00) and (u,v), (4,?) denote two
positive entire radial solutions of (1), then there exists a positive constant C such that for
all r € [0, 00)

max {[u(r) — a(r)], [v(r) — o(r)[} < C max {|u(0) — @(0)], |v(0) — 5(0)}.

If f and g satisfy the stronger regularity f,g € C'[0,00), then we drop the assumption
(4) and require, in turn,
(H1) £(0) =g(0) =0, liminf, o {4 =10 >0
and the Keller-Osserman condition (see [4, 10])
o dt
1 /G(?)
Observe that assumptions (H;) and (Hz) imply that f satisfies condition (Hz), too.
The significance of the growth condition (Hg) in the scalar case will be stated in the
next Section.

Set n = min {p, ¢}. If 5 is not identically zero at infinity and assumption (3) holds, then
we prove

Property 1: G # () (see Lemma 4).

(H2) < 00, where G(t) = /Otg(s) ds.

Property 2: G is bounded (see Lemma 5).
Property 3: F(G) C G (see Lemma 6), where

F(G) ={(a,b) € 9G | a > 0 and b > 0}.
For (c,d) € (Rt x RT™) \ G, define
R, 4 = sup {r > 0|there exists a radial solution of (1) in B(0, ) so that (u(0),v(0)) = (c,d)}.

Property 4: 0 < R. 4 < oo provided that v = max {p(0),¢(0)} > 0 (see Lemma, 7).

Our main result in this case is

Theorem 2 Let f,g € C'[0,00) satisfy (Hy) and (Hz). Assume (3) holds, n is not
identically zero at infinity and v > 0. Then any entire radial solution (u,v) of (1) with
(u(0),v(0)) € F(G) is large.
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2 Preliminaries

Let © C RY, N > 3 denote a smooth bounded domain or the whole space RY. Assume
p # 0 is non-negative such that p € C%*(€Q), if Q is bounded and p € Cloo’f (Q) otherwise.
Consider the problem

Au = p(z)h(u) inQ, (6)
where the non-linearity h € C'[0, c0) satisfies

(A1) h(0)=0, h’>0, h>0 on (0,0c0).

Proposition 1 Let Q = B(0,R) for some R > 0 and let p be radially symmetric in Q.
Then Eq. (6) subject to the Dirichlet boundary condition

u=c (const.) >0 on 09, (7)
has a unique non-negative solution u., which, moreover, is positive and radially symmetric.

Proof. By Proposition 2.1 in [8] (see also [1, Theorem 5]), problem (6)+(7) has a unique
non-negative solution u, which, moreover, is positive. If u. were not radially symmetric,
then a different solution could be obtained by rotating it, which would contradict the
uniqueness of the solution. [ |

By a large solution of Eq. (6) we mean a solution u > 0 in  satisfying u(z) — oo as
dist (z, 0Q) — 0 (if @ Z RY) or u(z) — oo as |z| — oo (if @ = RY). In the latter case, the
solution is called an entire large solution. We point out that, if there exists a large solution
of Eq. (6), then it is positive. Indeed, assume that u(zg) = 0 for some zy € Q. Since u is

a large solution we can find a smooth domain w CC €2 such that ¢y € w and u > 0 on Jw.
Thus, by Theorem 5 in [1], the problem

AC=p@h()  mw,
(=u on Jw,

(>0 inw

has a unique solution, which is positive. By uniqueness, ( = w in w, which is a contradiction.
This shows that any large solution of Eq. (6) cannot vanish in Q.

Cf. Keller [4] and Osserman [10], if €2 is bounded and p = 1, then Eq. (6) has a large
solution if and only if A satisfies
Ay [T here H "h(s)d

< 00, Where t:/ s)ds.

A [ i ® = [ he)

This fact leads to

Lemma 1 Eq. (6), considered in bounded domains, can have large solutions only if h
satisfies the Keller-Osserman condition (Azg).
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Proof. Suppose, a priori, that Eq. (6) has a large solution uy,. For any n > 1, consider
the problem

Au=[lploh() i,
uU=mn on 01},
u >0 in Q.

By Proposition 2.1 in [8], this problem has a unique solution, say wu,, which, moreover, is
positive in Q. By the maximum principle

0<tp<tpt1 U n, Vn>1.

Thus, for every z € (, it makes sense to define w(z) = lim, o un(z). Since (uy) is
uniformly bounded on every compact set w CC (2, standard elliptic regularity implies that
u is a large solution of the problem Au = ||p||coh(u) in Q. ]

Therefore, in the rest of this section, we consider Eq. (6) assuming always that (A;)
and (Az) hold. In this situation, by Lemma 1 in [1],

> dt
. %<OO. (8)

Typical examples of non-linearities satisfying (A1) and (Ag) are: i) h(u) = e* — 1; ii)
h(u) = wP, p > 1; iii) h(u) = u[ln(u + 1)]?, p > 2.

For the proofs of the Propositions that will be stated below, we refer the reader to [1].
Proposition 2 ([1, Theorem 1].) Let Q be a bounded domain. Assume that p satisfies

(p1) for every o € Q with p(zo) = 0, there is a domain 2y > zo such that Qy C Q and
p‘ago > 0.

Then Eq. (6) possesses a large solution.

Corollary 1 Let Q = B(0,R) for some R > 0. If p is radially symmetric in Q and
plaa > 0, then there exists a radial large solution of Eq. (6).

Proof. By Proposition 1, the large solution constructed in the same way as in the proof of
[1, Theorem 1] will be radially symmetric. [

Proposition 3 ([1, Theorem 2].) Consider Eq. (6) with Q = RN assuming that p
satisfies

(p1)!  There ezists a sequence of smooth bounded domains (Qy)n>1 such that Q, C Qpy1,
RN = U, and (p1) holds in 2, for any n > 1.

(p2) /Ooo ro(r)dr < oo, where p(r) = max {p(z): |z|=r}.

Then Eq. (6) has an entire large solution.
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Remark 1 Theorem 4 in [1] asserts that (8) is a necessary condition for the ezxistence of
entire large solutions to Eq. (6) if p satisfies (p2) and for which h is not assumed to fulfill

(Az).

Remark 2 If p is radially symmetric in RN and not identically zero at infinity, then (p;)’
is fulfilled.

Indeed, we can find an increasing sequence of positive numbers (R,,),>1 such that R,, — oo
and p > 0 on 0B(0, Ry,), for any n > 1. Therefore, (p1)’ is satisfied on Q, = B(0, Ry,).

Corollary 2 Let Q = RN. Assume that p is radially symmetric in RY, not identically
zero at infinity such that (p2) is fulfilled. Then Eq. (6) has a radial entire large solution.

Proof. By Remark 2 and Corollary 1, the entire large solution constructed as in the proof
of Theorem 2 in [1] will be radially symmetric. |

We supplied in [1] an example of function p with properties stated in Corollary 2. More
precisely,

,

p(r)y=0 for r=|z|e[n—-1/3,n+1/3], n>1;
{ p(r)>0 in Ry\ |J[n—1/3,n+1/3];

n=1
1
1
d —
\ p € C'[0,00) an Ter[zlz)i”p(r) 3

3 Auxiliary results

Lemma 2 Condition (2) holds if and only if lim, oo A(r) = lim,_,oc B(r) = 0o where

r t r t
A(r) = / tlfN/ sN1p(s) ds dt, B(r) = / tlfN/ sN1q(s) ds dt, Vr > 0.
0 0 0 0

Proof. Indeed, for any r > 0

1 r 1 (" vy 1 /
= - < *
Afr) = —— [ [ oty dt = = [0 dt] <53 | woa o
On the other hand,

[ty —— [y = [ =) o
0 pN—2 0 N—2 0

v
<
|2 —
I\
| ——
=
¥
I\
|
—~
N 3
N——
¥
N
| I
S—
[V
=1
—~~
=
&

This combined with (9) yields

ﬁ /0 ip(t)dt > A(r) > N1_2 [1— (%)N_Q] /O%tp(t) dt.

Our conclusion follows now by letting r — oc. ]
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Lemma 3 Assume that condition (3) holds. Let f and g be locally Lipschitz continuous
functions on (0,00). If (u,v) and (4,?) denote two bounded positive entire radial solutions
of (1), then there exists a positive constant C such that for all r € [0, 00)

max {[u(r) — a(r)], |v(r) = o(r)[} < C max {|u(0) —u(0)], [v(0) — v(0)[}.

Proof. We first see that radial solutions of (1) are solutions of the ordinary differential
equations system

u'(r) =p(r)g(v(r)), >0
(10)

Define K = max {|u(0) — @(0)|, |v(0) —©(0)|}. Integrating the first equation of (10), we get

W) = @) =N [TV () (glo(s) - g(o(s) .

0

Hence

) ) < K+ [ 8N [C N p(s)lg(ols) - gl dsde. ()

Since (u,v) and (@,?7) are bounded entire radial solutions of (1) we have
lg(v(r)) — g(0(r))| < mlo(r) —o(r)]  for any r € [0, 00)
| (u(r)) = f(a(r))] < mlu(r) —a(r)]  for any r € [0,00),

where m denotes a Lipschitz constant for both functions f and g. Therefore, using (11) we
find

T t
lu(r) —a(r)| < K + m/o tl_N/O sNp(s)|v(s) — B(s)| ds dt. (12)
Arguing as above, but now with the second equation of (10), we obtain
T t
lv(r) —o(r)| < K + m/o tl_N/O sN7Lq(s)|u(s) — a(s)| ds dt. (13)

Define . .
X(r) =K+ m/ tl_N/ sNp(s)|v(s) — o(s)| ds dt.
0 0

Y(r) = K +m /0 TN /0 "N -Lg(s) u(s) — i(s)| ds d.

It is clear that X and Y are non-decreasing functions with X (0) = Y (0) = K. By a simple
calculation together with (12) and (13) we obtain
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Since Y is non-decreasing, we have

X(r) < K +mY(A() < K + "5 V() /0 Cip(t) dt < K +mC,Y(r)  (15)

where Cp = (1/(N — 2)) 57 tp(t) dt. Using (15) in the second inequality of (14) we find
(rN Y (1) < mrN " g(r) (K + mCpY (r)).

Integrating twice this inequality from 0 to r, we obtain
m? T
Y(r) < K(1+mCy) + =G, / L)Y (1) dt,
- 0
where Cy = (1/(N —2)) [57 tq(t) dt. From Gronwall’s inequality, we deduce

2 r
Y(r) <K+ qu)eme fo tat) dt <K(1+ qu)emchcq

and similarly for X. The conclusion follows now from the above inequality, (12) and (13). m

4 Proof of Theorem 1

Since the radial solutions of (1) are solutions of the ordinary differential equations system
(10) it follows that the radial solutions of (1) with u(0) =a > 0, v(0) = b > 0 satisfy

u(r) =a+ /OT N /Ot sN1p(s) g(v(s)) ds dt, r > 0. (16)

v(r) = b+/or N /Otleq(s)f(u(s))ds dt, r>0. (17)

Define vo(r) = b for all r > 0. Let (ug)r>1 and (vg)g>1 be two sequences of functions given
by

r t
ug(r) =a+ / tl_N/ sN1p(s) g(vg_1(s)) ds dt, r>0.
0 0

ve(r) =b+ /OT =N /Ot sN=Lq(s) fur(s)) ds dt, r > 0.

Since v1(r) > b, we find us(r) > wui(r) for all » > 0. This implies vo(r) > vi(r) which
further produces us(r) > ug(r) for all r > 0. Proceeding at the same manner we conclude
that

ug(r) <wugei(r) and  vg(r) < wvggi(r), Vr>0and k > 1.

We now prove that the non-decreasing sequences (uy(r))x>1 and (vg(r))x>1 are bounded
from above on bounded sets. Indeed, we have

uk(r) <ugs1(r) < a+ g(vg(r))A(r), Vr >0 (18)

and
vg(r) < b+ f (ug(r)) B(r), vr > 0. (19)
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Let R > 0 be arbitrary. By (18) and (19) we find
up(R) <a+g(b+ f (uk(R)) B(R)) A(R), Vk=>1

or, equivalently,

o g+ (u(R)B(R)
l<u® ur () 4

(R), Vk>1. (20)

By the monotonicity of (ug(R))kr>1, there exists limy_,oo ug(R) := L(R). We claim that
L(R) is finite. Assume the contrary. Then, by taking k& — oo in (20) and using (4) we
obtain a contradiction. Since uy(r), vi.(r) > 0 we get that the map (0,00) 3 R — L(R) is
non-decreasing on (0, c0) and

ug(r) < uk(R) < L(R), Vr € [0,R], Vk > 1. (21)

vk(r) <b+f(L(R)) B(R),  Vrel0,R], Vk > 1. (22)

It follows that there exists limp oo L(R) = L € (0,00] and the sequences (ug(r))i>1,
(v (r))k>1 are bounded above on bounded sets. Therefore, we can define u(r) := limy_, o, ug(r)
and v(r) := limg_, o vg(r) for all 7 > 0. By standard elliptic regularity theory we obtain
that (u,v) is a positive entire solution of (1) with u(0) = a and v(0) = b.

We now assume that, in addition, condition (3) is fulfilled. According to Lemma 2 we
have that lim, ,,, A(r) = A < oo and lim, , B(r) = B < oco. Passing to the limit as
k — oo in (20) we find

a_ g(b+f(L(R))B(R)) a_, g(b+f(L(R)B)

SIm L(R) ABR<Tm*  Im *

Letting R — oo and using (4) we deduce L < co. Thus, taking into account (21) and (22),
we obtain B o
up(r) <L and wg(r) <b+ f(L)B, Vr >0, Vk > 1.

So, we have found upper bounds for (ux(r))r>1 and (vx(r))r>1 which are independent of
r. Thus, the solution (u,v) is bounded from above. This shows that any solution of (16)
and (17) will be bounded from above provided (3) holds. Thus, we can apply Lemma 3 to
achieve the second assertion of 7).

Let us now drop the condition (3) and assume that (2) is fulfilled. In this case, Lemma
2 tells us that lim, ,o A(r) = lim,_,o, B(r) = co. Let (u,v) be an entire positive radial
solution of (1). Using (16) and (17) we obtain

u(r) > a+ g(b) A(r), Vr > 0.

v(r) > b+ f(a) B(r), Vr > 0.

Taking r — oo we get that (u,v) is an entire large solution. This concludes the proof of
Theorem 1. [

We now give some examples of non-linearities f and g which satisfy the assumptions of
Theorem 1 (see [3]).
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1) Let
l m
F&)=>"at, gt) =3 bt? fort>0
j=1 k=1
with a;j, by, vj, O > 0 and f(t) = g(t) = 0 for ¢ < 0. Assume that v0 < 1, where

= max vy;, 0= max 0.
7 15;’51%’ 1<k<m F

2) Let
F)=(1+)"? and g(t) =1+ forteR

with 7, § > 0 and y0 < 1.

3) Let
7 fo<t<l,
f(t) =
i e > 1,
and
 fo<t<i,
g9(t) =

i > 1,

with y, 0 > 0, v8 < 1 and f(t) = g(t) =0 for ¢ < 0.
4) Let g(t) =t for t € R, f(t) =0 for ¢t < 0 and

f)y=t (—ln ((%) arctant))7 fort >0

where v € (0,1/2).

5 Proof of Theorem 2

Let f,g € C'[0,00) satisfy (Hy) and (Hs). Suppose that 7 is not identically zero at infinity
and (3) holds. We first give the proofs of Properties 1-4 which are the main tools used to
deduce Theorem 2.

Lemma 4 G # (.
Proof. By Corollary 2, the problem

A= (p+q)(z)(f+9)(¥) inRY,

has a positive radial entire large solution. Since 1) is radial, we have

v =90+ [N [ 4 ) + o)) dsdt, V>0
T | L (pa)s 9)(¢(s)) dsdt, Vr >0.
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We claim that (0,(0)] x (0,%(0)] € G. To prove this, fix 0 < a,b < (0) and let vo(r) = b
for all » > 0. Define the sequences (uj)r>1 and (vg)k>1 by

ug(r) =a+ /OT =N /Ot sN_lp(s)g(vk,l(s)) dsdt, Vre€|[0,00), Vk>1, (23)

ve(r) = b+ /OT =N /0?t sNq(s) f(ug(s)) dsdt, Vre[0,00), Vk>1. (24)

We first see that vy < vy which produces u; < us. Consequently, v; < ve which further
yields uo < ug. With the same arguments, we obtain that (uy) and (v) are non-decreasing
sequences. Since 9'(r) > 0 and b= vy < 9(0) < 4(r) for all > 0 we find

i) <at [0 [N p(s)gp(s)) dsdi
0 T 0 t
<(0) + /0 =N /0 N+ q)(5)(f + ) ((s)) ds dt = (r).

Thus u; < 9. It follows that

o) <ot [0V [N G) 1 (e)) d
<9+ [ 0N [[N ot )7 + ) (s) ds e =900,
Similar arguments show that
wp(r) < (r) and wg(r) < 9(r) Vre[0,00), Vk> 1.

Thus, (ux) and (vg) converge and (u,v) = limg_, o (uk, vk) is an entire radial solution of (1)
such that (u(0),v(0)) = (a,b). This completes the proof. |

An easy consequence of the above result is
Corollary 3 If (a,b) € G, then (0,a] x (0,b] C G.

Proof. Indeed, the process used before can be repeated by taking

T t
uk(r) = ao +/ tl_N/ SN_lp(s)g(vk—l(s)) ds dta Vr e [07 OO), Vk > 1,
0 0

vk (r) = bo + /OT t=N /Ot sN7q(s) f(uk(s)) dsdt, Vre [0,00), Vk>1,

where 0 < ag < a, 0 < by < b and vo(r) = by for all r > 0.
Letting (U, V') be the entire radial solution of (1) with central values (a,b) we obtain as
in Lemma, 4,
ug(r) <ugs1(r) <U(r), Vrel0,00), Vk2>1,

ve(r) <wvgpa(r) < V(r), Vre[0,00), Vk>1.

Set (u,v) = limg_,o0(ug,vg). We see that u < U, v <V on [0,00) and (u,v) is an entire
radial solution of (1) with central values (ag, by). This shows that (ag,by) € G, so that our
assertion is proved. ]
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Lemma 5 G is bounded.
Proof. Set 0 < A < min{o,1} and let 6§ = () be large enough so that
f(t) > Ag(t), Vit > 6. (25)

Since 7 is radially symmetric and not identically zero at infinity, we can assume 1 > 0 on
0B(0, R) for some R > 0. Corollary 1 ensures the existence of a positive large solution ¢
of the problem

AC = Mp(z)g (g) in B(0, R).

Arguing by contradiction, let us assume that G is not bounded. Then, there exists (a,b) € G
such that a + b > max {24,((0)}. Let (u,v) be the entire radial solution of (1) such that
(u(0),v(0)) = (a,b). Since u(z) + v(x) > a+b > 26 for all z € R, by (25), we find

flu(z)) > f (M) > Mg (M) if u(z) > v(x)

and

It follows that

Al +v) = p(x)g(v) + q(z) F(u) > n(x)(9(v) + F(w)) > Mn(z)g (“ : ) in RV,

On the other hand, ((z) — oo as |z| = R and u,v € C?(B(0, R)). Thus, by the maximum
principle, we conclude that v+ v < ¢ in B(0, R). But this is impossible since u(0) + v(0) =
a+b>((0). [ ]

Lemma 6 F(G) C G.

Proof. Let (a,b) € F(G). We claim that (a — 1/ng,b—1/ng) € G provided ng > 1 is large
enough so that min{a, b} > 1/n¢. Indeed, if this is not true, by Corollary 3

D= [a—i,oo) x [b—i,oo) C (R xR\ .
no Un

So, we can find a small ball B centered in (a,b) such that B CC D, i.e., BNG = (). But
this will contradict the choice of (a,b). Consequently, there exists (up,, vpn,) an entire radial
solution of (1) such that (un,(0),vn,(0)) = (@ — 1/ng,b — 1/ng). Thus, for any n > ng, we
can define

1 T t
unp(r) =a — - -I-/ tlfN/ sNﬁlp(s)g(vn(s)) ds dt, r >0,
0 0

vp(r) =b— % + /Or t=N /Ot sN7Lq(s) f (un(s)) ds dt, r > 0.

Using Corollary 3 once more, we conclude that (uy)n>n, and (vp)n>n, are non-decreasing
sequences. We now prove that (u,) and (v,) converge on R". To this aim, let zo € R" be
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arbitrary. But 7 is not identically zero at infinity so that, for some Ry > 0, we have n > 0
on 0B(0, Ry) and zg € B(0, Ry).

u

Since o = liminf,_ o % >0, we find 7 € (0,1) such that

a+b 1

f(t) >7g(t), Vt> 5 e

Therefore, on the set where u, > v,, we have

Flun) > f (%) > g (un +vn> |

Similarly, on the set where u, < v,, we have

It follows that, for any z € RV,

Up, —I—’Un>

A(ug +vp) = p(x)g(vn) + q(x) f(un) > n(x)[g(vn) + f(un)] > ()9 ( 5

On the other hand, by Corollary 1, there exists a positive large solution of

AC = m(s)g (g) in B0, Ry).

The maximum principle yields w, + v, < ¢ in B(0,Rp). So, it makes sense to define
(u(zg),v(xg)) = limy—o0(un(zo),vn(xp)). Since zy is arbitrary, the functions u, v exist
on RY. Hence (u,v) is an entire radial solution of (1) with central values (a,b), i.e.,

(a,b) € G. [ ]

Lemma 7 If, in addition, v = max {p(0),q(0)} > 0, then 0 < R.4 < oo where R.q is
defined by (5).

Proof. Since v > 0 and p,q € C|0,00), there exists € > 0 such that (p + ¢)(r) > 0 for all

0 <r <e. Let 0 < R < € be arbitrary. By Corollary 1, there exists a positive radial large
solution of the problem

b = (p+9@)(f +9)W)  in BO.R)
Moreover, for any 0 <r < R,
r t
Yalr) = () + [ ¢V [0+ 9(6)( +0)(Wr(e) dsa.

It is clear that 9% (r) > 0. Thus, we find

V() = [V )(6)(f + 9)(a(s)) ds < O +9)(a(r)

0

where C > 0 is a positive constant such that [;(p + ¢)(s)ds < C.
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Since f + g satisfies (A1) and (Az2), we may then invoke Lemma 1 in [1] to conclude

/“L@o
L (f+9®)

Therefore, we get

d /°° ds B Pp(r) <C

Cdr Jypry (FH9)(s) — (F+9)@r(r) ~

Integrating from 0 to R and recalling that ¢ g(r) — oo as r / R, we obtain

for any 0 < r < R.

00 ds
/me) Gro@ =%

Letting R N\, 0 we conclude that

o0
m [ %o

ENO Jyp(0) (f +9)(s)
This implies that 1(0) — co as R \, 0. So, there exists 0 < R < € such that 0 < ¢,d <
¥ 5(0). Set

ug(r) =c+ /OT =N /Ot sNp(s)g(vk_1(s)) ds dt, Vr € [0,00), Vk > 1, (26)

_ " 1-N ¢ N—-1
vk(r)—d—i—/o ¢ /Os o(s)flup(s)) dsdt,  Vre0,00), Vk>1,  (27)

where vo(r) = d for all 7 € [0,00). As in Lemma 4, we find that (uj) resp., (vy) are
non-decreasing and

ug(r) < p(r) and v (r) < Pp(r), vr € [0,R), Vk > 1.

Thus, for any r € [0, R), there exists (u(r),v(r)) = limg— oo (ug(r), vk (r)) which is, more-
over, a radial solution of (1) in B(0, R) such that (u(0),v(0)) = (c,d). This shows that
R.q > R > 0. By the definition of R, 4 we also derive

li = li = Q. 2
T/%IR%,d u(r) =oco and T/%}%Ii,d v(r) = o0 (28)
On the other hand, since (c,d) € G, we conclude that R, 4 is finite. [

Proof of Theorem 2 completed.

Let (a,b) € F(G) be arbitrary. By Lemma 6, (a,b) € G so that we can define (U,V)
an entire radial solution of (1) with (U(0),V(0)) = (a,b). Obviously, for any n > 1,
(a+1/n,b+1/n) € (RT x RY)\ G. By Lemma 7, Ry11/np41/n (in short, R,) defined by
(5) is a positive number. Let (U,,V,,) be the radial solution of (1) in B(0, R,) with the
central values (a + 1/n,b+ 1/n). Thus,

Un(r) = a + % + /0 "N /0 Nl g(Va(s)) dsdt,  Vre[0, Ry, (29)

137



1 r t
Va(r) = b+ - +/ tH"/ sNLg(s)f(Un(s))dsdt,  Vre[0,Ry). (30)
0 0
In view of (28) we have

. _ . _ S 1
Tl/l(n}%n Un(r) =00 and Tl/l(r]%n Va(r) =00, V¥n2>1
We claim that (R,)n>1 is a non-decreasing sequence. Indeed, if (uy), (vx) denote the
sequences of functions defined by (26) and (27) withc =a+1/(n+1) andd = b+1/(n+1),
then

ug(r) < ugs1(r) < Unp(r), (1) < vgs1(r) < Viu(r), Vre[0,R,), VE>1. (31)

This implies that (ug(r))k>1 and (vg(r))g>1 converge for any r € [0,R,). Moreover,
(Un+1, V1) = limg_yo0(ug, vg) is a radial solution of (1) in B(0,R,) with central val-
ues (a+1/(n+1),b+1/(n+1)). By the definition of R, 1, it follows that R, > R, for
any n > 1.

Set R := lim,, o, R, and let 0 < r < R be arbitrary. Then, there exists n; = ni(r)
such that r < R, for all n > n;. From (31) we see that U,1 < U, (resp., Vp+1 < V,) on
[0, Ry,) for all n > 1. So, there exists limy_yo0(Un(r), Va(r)) which, by (29) and (30), is a
radial solution of (1) in B(0, R) with central values (a,b). Consequently,

lim U,(r) =U(r) and Jim_ Vo(r) =V(r) for any r € [0, R). (32)

n—oo

Since U} (r) > 0, from (30) we find

Vio(r) < b+ % + f(Un(r) /0°° N /Otleq(s) ds dt.

This yields
Va(r) < C1U(r) + Cof (Un(r)) (33)
where C is an upper bound of (V(0) 4+ 1/n)/(U(0) + 1/n) and

00 t 1 00
Cy = / tlfN/ sN1lg(s)dsdt < 5 / sq(s) ds < oc.
0 0 —2Jo

Define h(t) = g(C1t+ Caf(t)) for t > 0. It is easy to check that h satisfies (A1) and (Ag).
So, by Lemma 1 in [1] we can define

> dt
F(S) = , %, fOI‘ all s > O

But U, verifies
AUn = p(x)g(Vn)

which combined with (33) implies

AU, < p(l‘)h(Un).
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A simple calculation shows that

-1 w (U,
AP(U,) =T (Un) AUy + T (Un)| VUl = o AU, + 1)
1 AGA)

h(Un)

UAASE

>

p(r)h(Un) = —p(r)
which we rewrite as

d !
(TNIJP(Un)) > —rIp(r)  forany 0 <r < Ry.

Fix 0 <7 < R. Then r < R, for all n > ny provided n; is large enough. Integrating the
above inequality over [0, 7], we get

d r

—I(U,) > —TlfN/ sN1p(s) ds.

dr 0

Integrating this new inequality over [r, R,,] we obtain
Ry t

—T'(Up(r)) > —/ tl_N/ sNlp(s) ds dt, Vn > nq,

T 0

since Uy (r) — oo as r ' Ry, implies I'(U,(r)) — 0 as r / R,,. Therefore,

Rn t
L(Un(r)) < / tlfN/ sN1p(s) ds dt, Vn > ni.
r 0

Letting n — oo and using (32) we find

T(U(r)) < / *pew /0 " sN-1p(s) ds dt,

U(r) >T7! (/TR t=N /Ot sN=1p(s)ds dt) .

Passing to the limit as 7 * R and using the fact that limg\ o I'"!(s) = oo we deduce

or, equivalently

R t
li/I%U(r) > 11}111%1“—1 (/ tl—N/ sNp(s) dsdt) = oo.
T T r 0

But (U,V) is an entire solution so that we conclude R = oo and lim,_,, U(r) = oo. Since
(3) holds and V'(r) > 0 we find

U(r) <a+g(V(r)) /Ooo t=N /t sV p(s)ds dt
1

Oo0
—— > 0.
=3/, tp(t)dt,  ¥r>0

<a+g(V(r))

We deduce lim,_,, V() = 00, otherwise we obtain that lim,_,, U(r) is finite, a contradic-
tion. Consequently, (U, V) is an entire large solution of (1). This concludes our proof. =

139



References

[1]
[2]
[3]

[4]
[5]

[6]
[7]
(8]

F. Cirstea and V. Radulescu, Blow-up boundary solutions of semilinear elliptic prob-
lems, Nonlinear Analysis, T.M.A. 48 (2002), 541-554.

F. Cirstea and V. Radulescu, Existence and uniqueness of blow-up solutions for a class
of logistic equations, Commun. Contemp. Math, in press.

R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic sys-
tems, Nonlinear Analysis, T.M.A. 39 (2000), 559-568.

J.B. Keller, On solution of Au = f(u), Comm. Pure Appl. Math. 10 (1957), 503-510.

A.V. Lair and A.W. Shaker, Existence of entire large positive solutions of semilinear
elliptic systems, J. Differential Equations 164 (2000), 380-394.

A.C. Lazer and P.J. McKenna, On a problem of Bieberbach and Rademacher, Non-
linear Analysis, T.M.A. 21 (1993), 327-335.

A.C. Lazer and P.J. McKenna, Asymptotic behavior of solutions of boundary blow-up
problems, Differential and Integral Equations 7 (1994), 1001-1020.

M. Marcus, On solutions with blow-up at the boundary for a class of semilinear el-
liptic equations, in Developments in Partial Differential Equations and Applications
to Mathematical Physics (G. Buttazzo et al., Eds.), Plenum Press, New York (1992),
65-77.

M. Marcus and L. Veron, Uniqueness and asymptotic behavior of solutions with bound-
ary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré, Anal.
Non Linéaire 14 (1997), 237-274.

R. Osserman, On the inequality Au > f(u), Pacific J. Math. 7 (1957), 1641-1647.

C. Yarur, Existence of continuous and singular ground states for semilinear elliptic
systems, Electron. J. Differential Equations, No. 1 (1998), 1-27.

140
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Scientific field: Equations aux dérivées partielles/ Partial differential equations

Abstract. Let Q be a smooth bounded domain in R¥. Assume f € C![0,00) is a non-negative
function such that f(u)/u is increasing on (0,00). Let a be a real number and let b > 0, b #Z 0 be a
continuous function such that b = 0 on 0Q2. We study the logistic equation Au+ au = b(z) f(u) in Q. The
special feature of this work is the uniqueness of positive solutions blowing-up on 9f2, in a general setting
that arises in probability theory.

Unicité de la solution explosant au bord pour équations logistiques avec absorption

Résumé. Soit Q un domaine borné et régulier de RY. On suppose que f € C*[0,00) est une fonction
non-negative telle que f(u)/u soit strictement croissante sur (0,400). Soit a un réel et b >0, b Z 0, une
fonction continue sur Q telle que b = 0 sur 0Q. On étudie ’équation logistique Au + au = b(x) f(u) sur
Q. Le but de cette Note est de montrer l'unicité de la solution explosant au bord de  dans un contexte
général, qui apparait en théorie des probabilités.

Version frangaise abrégée. Soit Q) C RN (N > 3) un domaine borné et régulier, a un
parametre réel et b € C%#(Q), u € (0,1), b >0, b # 0 dans Q. On consideére 1’équation logistique

Au + au = b(z) f(u) dans Q, (1)
ot f € C'0,00) satisfait
(A1) f>0et f(u)/u est strictement croissante sur (0, +00).

Soit
Qo :=int{z € Q: b(z) =0}

*The research of F. Cirstea was done under the IPRS Programme funded by the Australian Government through
DETYA. V. Radulescu was supported by the P.I.C.S. Research Programme between France and Romania.
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et on suppose que 0Qq est régulier (éventuellement vide), Qo C Q et b > 0 sur 2\ Q. On désigne
par Aeo1 la premiere valeur propre (avec conditions de Dirichlet) de 'opérateur (—A) dans Qo,
avec la convention \oo,1 = +00 si Qp = 0.

On dit que u est une solution large (explosive) de (1) si u > 0 dans Q et u(x) — oo si
d(x) := dist (z,002) — 0.

Soit D > 0 et R :[D,00) = (0,400) une fonction mesurable. On dit que R a une variation
réguliere d’indice p € R (notation: R € R,) si lim,_ oo R(§u)/R(u) = &P, pour chaque £ > 0
(voir [11]).

Soit K I’ensemble des fonctions & : (0,7) — (0,+00) (pour un certain v), de classe C!, crois-

f(f k(s)ds @
k(t)

On démontre le résultat suivant.

santes, telles que lim;_,q+ ( :=¥;, pour i =0, 1.

THEOREME 1. - Supposons que la fonction f satisfait la condition (A1) et que f' est une
fonction & variation réguliére d’indice p # 0. De plus, on suppose que le potentiel b vérifie

(B) b(z) = ck*(d(x)) + o(k*(d(x))) sid(z) = 0, avecc >0 et k € K.

Alors, pour chaque a € (—00, A1), ’équation (1) admet une unique solution explosive u,. On
a, de plus,

. ua ()
| =
B0 hd(z))
) 1/p
ot §o = (c (;_flpp)) et la fonction h est définie par
/wL—/tk(s)ds vt € (0,v)
we) V2F(s)  Jo ’ n

Let Q c RY (N > 3) be a smooth bounded domain. Consider the semilinear elliptic equation
Au+ au = b(z) f (u) in Q, (1)

where a is a real parameter and b € C%#(Q), for some p € (0,1), such that b > 0, b # 0 in Q.
Suppose that f € C[0, 00) satisfies
(A1) f>0and f(u)/u is increasing on (0, 00).

In the study of positive solutions for (1), subject to the homogeneous Dirichlet boundary
condition, an important role is played by the zero set (see [1])

Qo :=int{x € Q: b(x) =0}

We shall assume throughout that Qg is smooth (possibly empty), Qo C ©, and b > 0in Q\ Q.
By a large (explosive) solution of (1) we mean a solution u of (1) such that v > 0 in Q and
u(z) — oo as d(z) := dist (z,00) — 0. In [3, 4] we study the existence of large solutions for (1)
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and also deduce several existence and unicity results for a related problem. Note that any large
solution of (1) is positive and it can exists only if the Keller-Osserman condition holds (see [4])

e} dt t
(A2) /1 0 < o0, where F(t) =/0 f(s)ds.

Let Hy, define the Dirichlet Laplacian on the set g C 2 as the unique self-adjoint operator
associated to the quadratic form ¥ (u) = [, |[Vu|? dz with form domain

Hp(Qo) ={ue Hy(Q): u(x) =0 forae ze€Q\ N}

If 8Qy satisfies an exterior cone condition, then H} () coincides with Hj(Q) and H, is the
classical Laplace operator with Dirichlet condition on 9.

Let Aco,1 be the first Dirichlet eigenvalue of Hy, in Q. We understand Ao 1 = +00 if Q9 = 0.

The main result in [3] asserts that equation (1) has a large solution iff a € (—00, Aso,1).

The special feature of this paper is the uniqueness of large solutions of (1) in a general framework
for f and b, under the restriction b = 0 on 012, inherited from the logistic equation (see [6]).

We start with

DEFINITION 1 ([11]). - A positive measurable function R defined on [D, 00), for some D > 0,
is called regularly varying (at infinity) with index g € R, written R € Ry, if for all £ > 0

lim R(&u)/R(u) = &7.
uU—r 00
When the index of regular variation q is zero, we say that the function is slowly varying.
REMARK 1. - Any function R € R, can be written in terms of a slowly varying function.

Indeed, set R(u) = u?L(u). From Definition 1 we easily derive that L varies slowly.

The canonical g-varying function is u?. The functions In(1 + u), Inln(e + u), exp {(Inw)*},
a € (0,1) vary slowly, as well as any measurable function on [D, 0o) with positive limit at infinity.

In what follows L denotes an arbitrary slowly varying function and D > 0 a positive number.
For details on Properties 1-4 stated below, we refer to Seneta [11] (pp. 7, 18, 53 and 78).

PROPERTY 1. - For any m > 0, 4™ L(u) = oo, u ™L(u) = 0 as u — oc.

PROPERTY 2. - Any positive C'-function on [D, 0o) satisfying uL} (u)/L1(u) — 0 as u — oo is
slowly varying. Moreover, if the above limit is ¢ € R, then L; € R,.

PROPERTY 3. - Assume R : [D,00) — (0,00) is measurable and Lebesgue integrable on each
finite subinterval of [D, 0o0). Then R varies regularly iff there exists j € R such that

Jj+1
e (O @)
u—oo [ xI R(x) dx
exists and is a positive number, say a; + 1. In this case, R € R, with ¢ = a; — j.
PROPERTY 4 (Karamata Theorem, 1933). - If R € R, is Lebesgue integrable on each finite
subinterval of [D, 00), then the limit defined by (2) is ¢ + j + 1, for every j > —g — 1.

LEMMA 1. - Assume (A1) holds. Then we have the equivalence

Q) f € R, = b) lim uf'(u)/f(u) =9 < o0 = o) lim (F/) (w) :=7>0.

lim
U— 00
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REMARK 2. - Let a) of Lemma 1 be fulfilled. The following assertions hold
(i) p is non-negative. Indeed, if p < 0 then Property 1 and Remark 1 would contradict (Ay);
(1) y=1/(p+2) =1/(8 + 1) (see the proof of Lemma 1);
(791) If p # 0, then (Az) holds (use limy, o0 f(u)/uP = 00, Vp € (1,1+4p)). The converse implication
is not necessarily true (take f(u) = uln*(u + 1)). However, there are cases when p = 0 and (As)
fails so that (1) has no large solutions. This is illustrated by f(u) =wu or f(u) = uln(u + 1).

Inspired by the definition of , we denote by K the set of all positive, increasing C*-functions
¢ (@)
Jo k(s)ds
k(t)
It is easy to see that £ = 0 and ¢; € [0, 1], for every k € K. Our next result gives examples of
functions k € K with lim;_,o+ k(t) = 0, for every ¢; € [0,1].

k defined on (0, v), for some v > 0, which satisfy lim; o+ =4;, i=0,1.

LEMMA 2. - Let S € C'[D, 00) be such that S’ € R, with ¢ > —1. Hence the following hold:
a) Ifk(t)=exp{—-S(1/t)} Vt<1/D, then k € K with ¢, = 0.
b) Ifk(t)=1/S(1/t) Vt<1/D, thenk € K with ¢, =1/(qg+2) € (0,1).
¢) Ifk(t)=1/InS(1/t) Vt<1/D, then k € K with ¢, = 1.

REMARK 3. - If S € C'[D, ), then S’ € R, with ¢ > —1 iff for somem > 0,C > 0 and B > D
we have S(u) = Cu™exp {f; @ dt}, Vu > B, where y € C[B,o0) satisfies lim, oo y(u) = 0. In
this case, S’ € R, with ¢ =m — 1. This is a consequence of Properties 3 and 4.

Our main result is

THEOREM 1. - Let (A;) hold and f' € R, with p > 0. Assume b= 0 on 0N satisfies
(B) b(x) = ck?®(d(z)) + o(k?(d(z))) as d(x) — 0, for some constant ¢ >0 and k € K .

Then, for any a € (—00, Aoo,1), Eq. (1) admits a unique large solution u,. Moreover,

. o () _
B Rld(z)) & 3)
1/
where &y = (f(;f%) ’ and h is defined by
oo ds t

By Remark 3, the assumption f' € R, with p > 0 holds iff there exist p > 1 and B > 0 such
that f(u) = CuPexp {fg @ dt}, for all u > B (y as before and p = p+ 1). If B is large enough
(y > —pon [B,x)), then f(u)/u is increasing on [B, 00). Thus, to get the whole range of functions
f for which our Theorem 1 applies we have only to “paste” a suitable smooth function on [0, B]
in accordance with (4;). A simple way to do this is to define f(u) = uPexp{ fou zi—t) dt}, for all
u > 0, where z € C[0,00) is non-negative such that lim;_,o+ 2(t)/t € [0, 0) and lim, o z(u) = 0.
Clearly, f(u) = v?, f(u) = uPIln(u + 1), and f(u) = u? arctanu (p > 1) fall into this category.

Lemma 2 provides a practical method to find functions & which can be considered in the state-
ment of Theorem 1. Here are some examples: k(t) = exp {—1/t*}, k(t) = exp {—In(1 + 3)/t*},
k(t) = exp {— [arctan (})] /t*}, k(t) = —1/Int, k(t) = t*/In(1 + }), k(t) = ¢, for some a > 0.
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As we shall see, the uniqueness lies upon the crucial observation (3), which shows that all
explosive solutions have the same boundary behaviour. Note that the only case of Theorem 1
studied so far is f(u) = u? (p > 1) and k(t) = t® (o > 0) (see [6]). For related results on the
uniqueness of explosive solutions (mainly in the cases b =1 and a = 0) we refer to [2, 8, 9, 12].

Proof of Lemma 1. - From Property 4 and Remark 2 (i) we deduce a) => b) and ¥ = p + 1.
Conversely, b) = a) follows by Property 3 since ¢ > 1 cf. (A4;).

!
b) = c). Indeed, lim, 00 4414 = 1+ 9, which yields 25 = limy o0 [1 - (?) (u)] =1-17.

¢) = b). Choose s; > 0 such that (E)I (u) > 3, Yu > s;. So, (5) (u) > M + (?) (s1),

Yu > s1. Passing to the limit u — oo, we find lim,_, f((u)) = oo. Thus, lim,_, ﬁ = % Since
1—7v:=lim, 0o %, we obtain lim,_ o “Jf(g)‘) =1, [ ]

o

Proof of Lemma 2. - Since lim, o, uS'(u) = 0o (cf. Property 1), from Karamata Theorem we

deduce lim,,_, o, “521(;;) = ¢+ 1> 0. Therefore, in any of the cases a), b), ¢), lim;_,o+ k(t) = 0 and

k is an increasing C''-function on (0, v), for v > 0 sufficiently small.

a) It is clear that lim;_,q+ #}% = lim;_,o+ M = —(q + 1). By I'Hospital’s rule, £, =
k(s) ds) Ink(t) . k(s)ds)k'(t)
llmt_>0+ k'((t)) = 0 and llmt_>0+ % B _qﬁ SO7 1-— 61 = llmt_>0+ % 1
b) We see that lim;_,q+ T:(:)) = limy_,o+ tsgég = ¢ + 1. By I’Hospital’s rule, ¢y = 0 and
. [ k(s) ds INIOKE th' (£) 1
llmt_>0+ —OW = q+2 SO, 61 =1- hmt_>0+ JW W = q+—2
We have i LA SO _ 41, By PHospital’s rule, I LOL
¢) We have lim;_,o+ k2—(t) = lim;_,¢+ tS(l/t) = ¢+ 1. By PHospital’s rule, lim,_,o+ “zm— = 1.
. Ck(s)d
Thus, £o =0 and £; = 1 — lim,_,+ J 2k 9 =1 n

Proof of Theorem 1. - Fix a € (—00, Ax0,1)- By [3, Theorem 1], (1) has at least a large solution.

If we prove that (3) holds for an arbitrary large solution u, of (1), then the uniqueness is a
consequence of [3, Lemma 3]. Indeed, if u; and uy are two arbitrary large solutions of (1), then
(3) yields limg(z) 50+ 52 &3 = 1. Hence, for any ¢ € (0,1), there exists § = d(e) > 0 such that

(1 —-e)uz(z) <ui(z) < (1+e)ua(z), Vze N with 0<d(z) <. (5)

Choosing eventually a smaller § > 0, we can assume that Qg C Cs, where Cs := {z € Q : d(z) > §}.
It is clear that u; is a positive solution of the boundary value problem

A¢ + agp = b(z)f(¢) in Cs, ¢=wu; on 9Cs. (6)

By (A4;) and (5), we see that ¢~ = (1 — &)us (resp., ¢ = (1 + &)uz) is a positive sub-solution
(resp., super-solution) of (6). By the sub and super-solutions method, (6) has a positive solution
#1 satisfying ¢~ < ¢ < ¢t in Cs. Since b > 0 on Cs \ Qq, by [3, Lemma 3] we derive that (6) has
a unique positive solution, i.e., u3 = ¢ in Cy. This yields (1 — &)uz(z) < ur(x) < (1 4 €)uz(x) in
Cs, so that (5) holds in Q. Passing to the limit € — 0%, we conclude that u; = us.
In order to prove (3) we state some useful properties about h:
(h1) h € C*(0,v), lim;_,o+ h(t) = oo (straightforward from (4)).
hll(t)

1 2
(h2) limt_,0+ R0 F (DD = it 2++pﬁ1 , V€ > 0 (so, h" > 0 on (0,29), for § > 0 small enough).

)f
(hg) limg_o+ h(t)/h"(t) = limy_o+ h'(£)/h"(t) = 0.
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We check (hy) for £ =1 only, since f € R,41. Clearly, h'(t) = —k(t)\/2F (h(t)) and

() ([ k(s)ds
H(B) = O Bit) (1‘2 (kg(t) )f(h(t))f;g)([};“(g]—lﬂds) vee w0

We see that lim,,_,o v/ F(uw)/f(u) = 0. Thus, from "'Hospital’s rule and Lemma 1 we infer that

I F(u) 1 p ()
im =-—n= .
Using (7) and (8) we derive (h2) and also
' - Vk(s)d -
i MO _=204p) L ke)ds W b
t—0+ h''(t) 24bip o0t k(t)  wooo fu) [C[F(s)]"12ds 2+ lip

From (hy) and (hs), lim;_,g+ h'(t) = —oo. So, 'Hospital’s rule and (9) yield lim;_,o+ :,(—(tt)) =0.
This and (9) lead to lim; o+ % = 0 which proves (hs).

Proof of (3). Fix € € (0,¢/2). Since b = 0 on 9 and (B) holds, we take § > 0 so that
(i) d(z) is a C?-function on the set {z € RN : d(z) < 26};
(ii) k2 is increasing on (0,26);
(iii) (c — e)k?(d(z)) < b(z) < (c+¢€)k?(d(z)), Yz € Q with 0 < d(z) < 2;
(iv) R"(t) > 0Vt € (0,20) (from (h2)).

1/

Let o € (0,8) be arbitrary. We define £+ = [(C;Tt)?z%p)] * and vy (x) = h(d(z) + )¢, for
all z with d(z) + o < 24 resp., v] (z) = h(d(z) — )&, for all z with o < d(z) < 24.

Using (i)-(iv), when ¢ < d(z) < 26 we obtain (since |Vd(z)| = 1)

Ao+ ot~ M) <€) = o) ( ey~ M) + =T 41
(e 2~ (1) _o)é"))
WdE) - o)

Similarly, when d(z) + o < 26 we find

Avy +avy —b(@)f(v;) > € h"(d() + o) (%

—(c+¢)

h"'(d(z) + o)

Using (h2) and (h3) we see that, by diminishing §, we can assume
Avt (z) + avt(z) — b(z) f(v}(z)) <0 Vz with o < d(z) < 26;

Av, (z) + av, (z) — b(z) f(v, (z)) > 0 Vz with d(z) + o < 20.

Let ©; and Q5 be smooth bounded_ domains such that Q CC Oy CC! )5 and the first Dirichlet
eigenvalue of (—A) in the domain Q;\ ) is greater than a. Let p € C%#(Qy) satisfy 0 < p(z) < b(x)
forz € A\ Cas,p=00n 2 \ Qand p>0on N\ Q. Denote by w a positive large solution of

Aw + aw = p(z) f(w) in Q \ Cas.
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The existence of w is ensured by Theorem 1 in [3].
Suppose that u, is an arbitrary large solution of (1) and let v := u, + w. Then v satisfies

Av+av —b(@)f(v) <0 in Q\ Cos.

Since vjg = 00 >V, 5q and vjac,; = 00 >V, 50, , Lemma 1 in [3] implies

ug +w > v, on )\ Cas. (10)
Similarly, o
v +w>u, onC,\Cas. (11)
Letting o — 0in (10) and (11), we deduce h(d(z))¢+ +2w > u,+w > h(d(z))E, for all z € Q\Cas.
, o e Ua(T) . Uq ()
Since w is uniformly bounded on 99, we have ¢~ < liminf —% % < limsup ——~ < £T.
d(z)=0 h(d(z)) ~ 4a)~0 h(d(z))
Letting ¢ — 07 we obtain (3). This concludes the proof of Theorem 1. [ |
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Abstract. Let Q be a smooth bounded domain in R". Assume that f > 0 is a C*-function on [0, cc)
such that f(u)/u is increasing on (0, +00). Let a be a real number and let b > 0, b # 0 be a continuous
function such that b = 0 on 9. The purpose of this Note is to establish the asymptotic behaviour of the
unique positive solution of the logistic problem Au+ au = b(z)f(u) in Q, subject to the singular boundary
condition u(z) — +oo as dist (x,0Q) — 0. Our analysis is based on the Karamata regular variation theory.

Comportement asymptotique de la solution explosant au bord de ’équation
logistique avec absorption

Résumé. Soit Q un domaine borné et régulier de R . On suppose que 0 < f € C*[0, c0) est telle que
f(u)/u soit strictement croissante sur (0,+00). Soit a un réel et b >0, b # 0, une fonction continue sur
Q telle que b = 0 sur Q. Dans cette Note on établit le comportement asymptotique de 'unique solution
positive du probléme logistigue Au+ au = b(x) f(u) sur Q avec la donnée au bord singuliére u(x) — 400 si
dist (z, 0) — 0. Notre analyse porte sur la théorie de la variation réguliére de Karamata.

Version frangaise abrégée. Soit O C RY (N > 3) un domaine borné et régulier, a un
parametre réel et 0 #Z b € C%*(Q), b > 0 dans Q. On considere le probleme logistique avec
explosion au bord

Au+ au = b(z)f(u) dans Q, u(z) = +oo sid(z) := dist (z,00) — 0, (1)

ol 0 < f € C0, oc) satisfait la condition de Keller—Osserman (voir [6, 7]) et telle que f(u)/u soit
strictement croissante sur (0, +00). Soit Q := int{z € Q : b(z) = 0}. On suppose que Qg est
régulier (éventuellement vide), Qy C Q et b > 0 sur 2\ Q. On désigne par A1 la premiere valeur
propre de l'opérateur (—A) dans H}(Qp), avec la convention Aso,1 = +00 si Qo = 0. Dans [2] on

*The research of F. Cirstea was done under the IPRS Programme funded by the Australian Government through
DETYA. V. Radulescu was supported by CNRS with a research visiting position at the Université de Savoie. E-mail
addresses: florica@matilda.vu.edu.au (F. Cirstea), vicrad@yahoo.com (V. Ridulescu).
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montre que le probléme (1) admet une solution positive u, si et seulement si a < Aso,1. L’unicité
de la solution u, est établie dans [1]. Soit K I’ensemble des fonctions & : (0,v) — (0,00) (pour un
certain v), de classe C!, croissantes, telles que limt\g(fot k(s)ds/k(t))® := ¢;, pour i = 0, 1.

Soit RV, (¢ € R) l’ensemble des fonctions positives et mesurables Z : [A4,00) = R (avec
A > 0) telles que limy_, oo Z(€u)/Z(u) = &7, V€ > 0. On désigne par NRVj la classe des fonctions
f définies par f(u) = Culexp {[g ¢(t)/tdt}, Yu > B > 0, 0t C > 0 et ¢ € C[B,o0) satisfait
lim¢ 00 ¢(t) = 0. Supposons que 0 < f € C'[0,00) N NRV,;1 (p > 0) est telle que f(u)/u soit
strictement croissante sur (0,00) et que b = 0 sur 9 vérifie b(z) = k2(d)(1 + o(1)) si d(z) — 0,
avec k € K. Alors, pour chaque a < Ax,1, le probléme (1) admet une unique solution positive uq
(voir [1]). Le but de cette Note est d’établir la vitesse d’explosion au bord de la solution u,.

Pour chaque ¢ > 0, soit

- ke k(u") = doulA(w)] " exp [— 2 (sA(s) ™ ds] (u>dy), 0< A€ Cdy,o0),
0, =
limy 00 A() = limy_y0o uA' (1) = 0, limy_yoo usT A/ (u) = £, € R, do, dy >0

On a Ro¢ C K. De plus, si k € Ro¢ alors £; = 0 et lim;_,o k(t) = 0.

On définit les classes F,p, = {f € NRV,11(p>0): ¢ € RV, 0ou —¢p € RV, },sine€ (—p—2,0]
et Fpo,r ={f € Fpo: limyoo(Inw)"¢p(u) = £* € R}, pour 7 € (0, 00).

On démontre le résultat suivant.

THEOREME 1. - On suppose que b(x) = k2(d)(1 + éd’? +o(d?)) si d(x) — 0 (avec§ >0, ¢ € R),
ot k € Roc¢. Soit 0 < f € C'[0,00) telle que f(u)/u soit strictement croissante sur (0,00). De
plus, on suppose que f satisfait I'un des cas suivants de croissance a I’infini:

(i) f(u) = CuP*! dans un voisinage de I'infini;

(i) f € Fpn avecn # 0;

(iii) f € Fpo,r, avec 1 = w/(, ot w = min{#, (}.

Alors, pour chaque a € (—00, Ao,1), I'unique solution positive u, du probléme (1) satisfait

uq(x) = &h(d)(1 + xd¥ +o(d¥)) si d(z) — 0,

olt & = [2(2+ p)~']"/* et h est définie par fifft) [2F(s)]'/?ds = fot k(s)ds, pour t > 0 suffisement
petit. L’expression de x est donnée par

—(1 + )£ (2¢) "' Heaviside(d — ¢) — ép~'Heaviside(¢ — 8) = x1 dans les cas (i) et (ii)

x1 = (=ple/2)™ (1/(p +2) +In&) pour le cas (iii).

Notons que le seul cas lié & ce résultat et correspondant & la situation particuliere Qo = 0,
f(u) = uPTt k(t) = ct* € K (avec ¢,a > 0), § = 1, a été étudié dans [4]. Dans ce travail, les deux
premiers termes du développement asymptotique de u, autour de 99 tiennent compte de d(x) ainsi
que de la courbure moyenne H de 9f2. Dans notre résultat on enléve la restriction b > 0 dans €2
et on garde la condition b = 0 sur 912, comme restriction naturelle héritée du probléme logistique
(voir [4]). De plus, on raffine la vitesse d’explosion de u, pour une large classe de potentiels b, avec
0 > 0 quelconque et k appartenant & un ensemble trés riche de fonctions.
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Let @ C RY (N > 3) be a smooth bounded domain. Consider the blow-up logistic problem
Au+ au = b(z) f(u) in Q, u(z) = +o00 as d(z) := dist (z,00) — 0, (1)

where f € C'[0,0), a is a real parameter and 0 #Z b € C%#(Q) (for some u € (0,1)) satisfies b > 0
in Q. Suppose that the absorption term f fulfills both

(A) f>0and f(u)/u is increasing on (0, 00)

and the Keller-Osserman condition (see [6, 7]) [,°[F(t)]~}/?dt < oo, where F(t) = f(f f(s)ds.

Assume throughout that Qo CC Q satisfies the exterior cone condition (possibly, Qo = @) and
b>0on )\ Qo, where Qo := int {z € Q : b(z) = 0}. Let Moo, be the first Dirichlet eigenvalue
of (—A) in H§ (). Set Ao, = +00 if Qo = 0. Under the above assumptions, we have proved in
[2] that (1) has a positive solution u, if and only if @ < Ay,1. Moreover, the uniqueness of u, is
studied in [1]. Denote by K the set of all positive increasing C'-functions k defined on (0, v), for
some v > 0, which satisfy limt\‘g(f(;t k(s) ds/k(t))® := £;, i € 0,1. We have £, = 0 and ¢; € [0, 1].

Let us now recall some basic definitions related to the Karamata regular variation theory (see
[5, 8]). Let RV, (¢ € R) be the set of all positive measurable functions Z : [4,00) — R (for some
A > 0) satisfying limy_,o0 Z(§u)/Z(u) = &9, V€ > 0. Define by NRV, the class of functions f in
the form f(u) = Culexp { [5 ¢(t)/tdt}, Vu > B > 0, where C > 0 is a constant and ¢ € C[B, c0)
satisfies lim;_,o ¢(t) = 0. The Karamata Representation Theorem shows that NRV, C RV,.

If f € NRV,.1 (p > 0) satisfies (4) and b = 0 on 09 such that b(z) = k2(d)(1 + o(1)) as
d(z) — 0, for some k € K, then for any a € (—00, Aso,1), there is a unique positive solution ug, of
Eq. (1). Note that the Keller-Osserman condition is automatically fulfilled. Moreover, we have
limu—s o0 E(u) = limy— oo [F ()] ?[f (u) [;7(F(s) */?ds] ™ = pl2(p +2)] * (see [1]).

We have seen in [1] that the uniqueness of wu, is essentially based on the same boundary
behaviour shown by any positive solution of (1). The purpose of this Note is to refine the blow-up
rate of u, near 912 by giving the second term in the expansion of u, near 0f2. This is a more subtle
question which represents the goal of more recent literature (see [4] and the references therein).
The approach we give is very general and, as a novelty, it relies on the theory of regular variation
instituted in the 30’s by Karamata and subsequently developed by himself and many others (see [5,
8]). For any ¢ > 0, set Ko ¢ the subset of K with ¢; = 0 and lim~ o t’c(f(;5 k(s)ds/k(t)) := L, € R.
It can be proven that Ko ¢ = Ro,¢, where

- ko k(u ) = dou[A(w)] " exp [— 2 (sA(s)) ™! ds] (u>di), 0< A € CYdy,00),
07( =
limy 00 A(u) = limy 0o uA' (1) = 0, limy_yoo usT A/ (u) = £, € R, do, d1 >0

Moreover, £, and L, are connected by L, = —(1 + ()£, /¢ (see [3] for details). Define

Fon={f€NRV,41 (p>0): ¢ RVyor —p€ RV}, n€(—p—2,0];
Fanw ={f € Fpo: Jim (lnw)"6(u) = ¢* € R}, 7 € (0,00).

Our main result establishes the following asymptotic estimate.
THEOREM 1. - Assume that
b(z) = k*(d)(1 + éd’ + o(d?)) ifd(z) — 0, where k € Ro¢, 8 >0, ¢ € R. (2)

Suppose that f fulfills (A) and one of the following growth conditions at infinity:
(i) f(u) = CuP™! in a neighbourhood of infinity;
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(ii) f € Fpp withn #0;
(iii) f € Fpo,ry with 71 = w/(, where ww = min{#, (}.
Then, for any a € (—00, Aoo,1), the unique positive solution u, of (1) satisfies

ua(z) = Eh(d)(1 + xd® + o(d®)) if d(z) — 0, where & = [2(2+ p)~']*/* (3)

and h is defined by f,f(i) [2F(s)]~'/?ds = fot k(s)ds, for t > 0 small enough. The expression of x is

—(1 + )£,(2¢) ! Heaviside (§ — ¢) — ép~ ! Heaviside (¢ — 6) := x1 if (i) or (ii) holds

x1 = (=pli/2)T [1/(p+2) + In &) if f obeys (iii).

Note that the only case related, in same way, to our Theorem 1 corresponds to Q¢ = 0,
f(u) = uPt! on [0,00), k(t) = ct* € K (where ¢,a > 0), # = 1 in (2), being studied in [4]. There,
the two-term asymptotic expansion of u, near 9N (a € R since Aoo,1 = 00) involves both the
distance function d(z) and the mean curvature H of 0Q. However, the blow-up rate of u, we
present in Theorem 1 is of a different nature since the class Ro ¢ does not include k(t) = ct®.

Our main result contributes to the knowledge in some new directions. More precisely, the
blow-up rate of the unique positive solution u, of (1) (found in [1]) is here refined

(a) on the maximal interval (—oo, Aso,1) for the parameter a, which is in connection with an
appropriate semilinear eigenvalue problem; thus, the condition b > 0 in  (which appears in [4])
is removed by defining the set g, but we maintain b = 0 on 012 since this is a natural restriction
inherited from the logistic problem (see [4] for details).

(b) when b satisfies (2), where 6 is any positive number and k belongs to a very rich class of
functions, namely Ro ¢ . The equivalence Ro ¢ = Ko, shows the connection to the larger class X
(introduced in [1]) for which the uniqueness of u, holds. In addition, the explicit form of k € Rq ¢
shows us how to built k¥ € Ko ¢.

(c) for a wide class of functions f € NRV,;; where either ¢ = 0 (case (i)) or ¢ (resp., —¢)
belongs to RV, with € (—p —2,0] (cases (ii) and (iii)). Therefore, the theory of regular variation
plays a key role in understanding the general framework and the approach as well.

Proof of Theorem 1. - We first state two auxiliary results (see [3] for their proofs).

LEMMA 1. - Assume (2) and f € NRV,; satisfies (A). Then h has the following properties:
(i) h € C?(0,v), limp o h(t) = oo and limy~ g b/ (t) = —o0;
(ii) limg o B (8)/[K* () f (M()E)] = (2 + ptr)/[€TH(2 + p)], VE > O;
(iif) limyo h(t) /" (t) = limyo ' (t)/B" (t) = limyo h(t) /R (t) = 0;
(iv) limgo B/ (8)/[th"(t)] = —pl1/(2 + ply1) and limy~o h(t)/[2R" ()] = p?03/[2(2 + plh));
(v) limgn 0 R(2)/[th'(t)] = limgo[Int]/[In A(t)] = —pl1/2;
(vi) If ¢, = 0, then limy o t? h(t) = oo, for all j > 0;
(vii) limgo 1/[t¢ In h(t)] = —ply /2 and limpy o B/ (8) /[t R" ()] = ply/(2€), VE € Roy-
Let 7 > 0 be arbitrary. For any u > 0, define T1 ,(u) = {p/[2(p + 2)] — E(u)}(Inw)” and
To - (u) = {f(&ou)/[é f(u)] — & }(Inu)™. Note that if f(u) = Cuft!, for u in a neighbourhood Vi
of infinity, then T1 . (u) = T - (u) = 0 for each u € V.

LEMMA 2. - Assume (A) and f € F,y. The following hold:
(i) If f € Fpo,r, then limy_yoo T1,7(u) = —0%/(p + 2)? and limy_,00 To,- (u) = E5€* In&p.
(ii) If f € Fpp with n # 0, then limy_, o0 Th 7 (u) = limy—yo0 To 7 (u) = 0.
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Fix ¢ € (0,1/2). We can find § > 0 such that d(z) is of class C? on {z € R : d(z) < §},
k is nondecreasing on (0,d), and A'(t) < 0 < h"(¢) for all t € (0,0) (see [1] for details). A
straightforward computation shows that lims o ¢! =%k’ () /k(t) = oo, for every § > 0. Using now
(2), it follows that we can diminish § > 0 such that k%(t) [1 + (¢ — £)t?] is increasing on (0,4) and

14 (E—e)d® < b(x)/k*(d) <1+ (é+¢e)d’, Ve Q withd e (0,6). (4)

We define u™ (z) = &h(d)(1 + xFd®), with d € (0,9), where xT = x & £ [1 + Heaviside ({ — 6)]/p.
Take 6 > 0 small enough such that ui(w) > 0, for each z € Q with d € (0,4). By the Lagrange
mean value theorem, we obtain f(u*(z)) = f(&h(d)) + éoxETd@h(d) f'(Y*(d)), where Y*(d) =
&oh(d)(1 + A\t (d)xEd™), for some A\ (d) € [0,1]. We claim that

lim FOC=(d)/ f(&oh(d)) = 1. ()

Fix o € (0,1) and M > 0 such that |xF| < M. Choose p* > 0 so that |(1 £ Mt)**! — 1| < 5/2,
for all ¢ € (0,2u*). Let p, € (0, (1*)*/®) be such that, for every z € Q with d € (0, 1)

| F(&h(@)(1 £ Mu*)/ f(&oh(d) — (1 £ Mp*)**| < o/2.

Hence, 1 — o < (1 — Mp*)P*t! — /2 < f(XYE(d))/f(éoh(d)) < (1 + Mp*)P +6/2 < 1+ o, for
every ¢ € Q) with d € (0, 14). This proves (5).

Step 1. There exists §; € (0,9) so that Aut + aut — k2(d)[1 + (¢ — €)d’]f(ut) < 0, Vz € Q
with d € (0,61) and Au™ + au™ — k?(d)[1 + (& +¢)d?]f(u™) > 0, Vz € Q with d € (0,6;).

Indeed, for every = € 2 with d € (0,9), we have

Aut + aut — E2(d) [1 + (EF e)d?] f(uh)

= &d®h" (d) [ax;t h’f,(ég) +xFAd ;:,,(d) + 2wy d’;L,S‘(”;) +wxFAd Z,(,'a) (6)

a h(d
+w(w — DXE gy + Ad il + 2ty + Ty SF()|
where, for any t € (0,0), we denote

St(t) = (=e£e)t" T k() f (& ())/[th”( ) Si() X2 (1=K (@)h(e) £ (X)) /0" (t)),
Sy (1) = (=e £ ezt (O F' (TF(@)) /1" (1), Si(t) =t"7(1— k(1) f(oh(1))/[Eh" (1)

By Lemma 1 (ii), we find limy~o k2(2) f (&oh(t))[&h" (t)]~" = 1, which yields limy o SiE(t)
(—¢xe)Heaviside (C—Q) Using [1, Lemma 1] and (5), we obtaln hmt\o E2(t)h(t) ' (XYE(t)) /A" (t)
p + 1. Hence, limy o S (t) = —pxF and limg o S5 (t) =

Using the expression of h”, we derive SF(t) = kz(';l),f((g(t)) Z,— S4,i(t), Vt € (0,6), where we

denote Sy1(t) = 252D ([T k(s) ds/k(t))', Saa(t) = QW and Sy 3(t) = — et

Since Ro,c = Ko,¢, we find limy~ 0 S1,1(t) = —(1 + {)plul ' (p + 2) ! Heaviside (6 — ().

Cases (i), (ii). By Lemma 1 (vii) and Lemma 2 (ii), we find lim\ o S4 2( ) = limy 0 Sa,3(t) = 0.
In view of Lemma 1 (i), we derive that lims o Si(t) = —(1 + ¢)pls(2¢) " Heaviside (6 — ).

Case (iii). By Lemma 1 (vii) and Lemma 2 (i), limy 0 Sa2(t) = —20%(p + 2)72(—pli/2)™
and hmt\o Sy3(t) = =20%(p + 2)71(—ply/2)™ In&. Using Lemma 1 (ii) once more, we arrive at
s SY() = ~(1+ 0t (20)~ Homiside(§ - ) - (pta/2)1/(p+) 4 Ins].

Note that in each of the cases (i)—(iii), the definition of xZ yields lim g DO i=1S; Tt)=-e<0

and limg o ZJ 1 S; (1) =e>0. By Lemma 1 (vii), limy\ o % = 0. But limy o h,((tt)) =0, so

limy 0 tu,h,f,,)( 77 = 0. Thus, using Lemma 1 [(iii), (iv)], relation (6) concludes our Step 1.
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Step 2. There exists Mt, §* > 0 such that u,(z) < ut(z)+M™*, forallz € Q with0 < d < §T.

Define (0,00) 3 u — ¥, (u) = au — b(z) f(u), Vz with d € (0,61). Clearly, ¥,(u) is decreasing
when a < 0. Suppose a € (0,Ao0,1). Obviously, f(¢)/t : (0,00) = (f'(0),00) is bijective. Let
02 € (0,01) be such that b(z) < 1, Vz with d € (0,2). Let u, define the unique positive solution
of b(z) f(u)/u = a+ f'(0), Yz with d € (0,d2). Hence, for any z with d € (0,62), u = ¥ (u) is
decreasing on (ug,00). But limg(,)\ o % = +oo (use limg(z) 0 vt (2)/h(d) = &, (A) and
Lemma 1 [(ii) and (iii)]). So, for d> small enough, u*(z) > u,, Vz with d € (0, d2).

Fix 0 € (0,82/4) and set N, :={z € Q: 0 < d(z) < d2/2}. We define u}(z) = ut(d — 0,5) +
M, where (d, s) are the local coordinates of z € N,. We choose M+ > 0 large enough to have
uk(02/2,8) > uq(d2/2,s), Yo € (0,d2/4) and Vs € 09Q. Using (4) and Step 1, we find

—Aul(z) > aut(d—o0,5) — [1+ (& —€)(d — 0)?1k*(d — o) f(ut (d — 0, 5))
>aut(d—o0,s) — [1+ (& —e)d®|k*(d) f(ut (d — 0,5)) > ¥, (u(d - 0,5))
> U, (ug) = aug (z) — b(z) f(uy(z)) in No.

Thus, by [2, Lemma 1], u, < u¥ in N, Vo € (0,02/4). Letting o — 0, we have proved Step 2.
Step 3. There exists M ~, 0~ > 0 such that u,(z) > u=(x)—M~,forallz € Qwith0 <d <™.
For every r € (0,9), define Q, = {x € @ : 0 < d(z) < r}. We will prove that for A > 0

sufficiently small, Au™(z) < wu.(z), Vo € Qs,/4. Indeed, fix arbitrarily o € (0,02/4). Define

vy(r) = du~(d + 0,s), for x = (d,s) € Qs,/2. We choose A € (0,1) small enough such that
vE(02/4,8) < ug(d2/4,s), Yo € (0,02/4), Vs € 00N. Using (4), Step 1 and (A), we find

Avz(z) + avi(z) > M2 (d + o)1 + (E+ &) (d + 0)?] f(u™(d + 0, 5))
> (@)L + @ +e)d’]f(u™(d +0,5)) > bf(v}),

for all x = (d, s) € 952/4, that is v} is a subsolution of Au+au = b(z) f(u) in Qs, /4. By [2, Lemma
1], we conclude that vy < u, in Q5,/4. Letting 0 — 0, we find Au™(z) < ua(z), Vo € Qj,/4.

Since limg\ou™ (.7:) /h(d) = &, by using (A) and Lemma 1 [(ii), (iii)], we can easily obtain
limg~,o k%(d) f(A>u~ (z)) /u~ () = oc. So, there exists & € (0,2/4) such that

E*(d)[1 + (& +e)d?]f (Nu™)/u™ > N|a|, Vre Qwith0<d<$. (7)

By Lemma 1 [(i) and (v)], we deduce that u~ () decreases with d when d € (0,8) (if necessary,
0 > 0 is diminished). Choose d. € (0,9), close enough to J, such that

h(8.:) (L + X2 67)/[P(8) (1 + X7 67)] < 1+ . (8)

For each o € (0,8 — 4,), we define z,(z) = v~ (d+ 0,s) — (1 — Au~(0«,5). We prove that z, is
a subsolution of Au + au = b(z) f(u) in Qs,. Using (8), z,(z) > v (4,8) — (1 — Nu"(d4,58) > 0
Ve = (d,s) € Q5,. By (4) and Step 1, z, is a subsolution of Au + au = b(z) f(u) in Qj, if

K (d+ o)1+ (@ +e)(d+0)°] [f(u™(d+0,5)) — f(25(d, 5))] > a(l — N)u~(3,5), (9)

for all (d,s) € Qs,. Applying the Lagrange mean value theorem and (A), we infer that (9) is
a consequence of k2(d + o)[l + (¢ + ¢)(d + 0)%] f(2,(d, 5))/2,(d,s) > |a|, V(d,s) € Qs,. This
inequality holds by virtue of (7), (8) and the decreasing character of v~ with d.

On the other hand, z,(d«,5) < Au™ (04, 5) < uq(x), VI = (d4,5) € Q. Clearly, limsup,_,q(zs —
Ug)(z) = —oo and b > 0 in Qg,. Thus, by [2, Lemma 1], z, < u, in Qj,, Vo € (0,6 — 6,). Letting
o — 0, we conclude the assertion of Step 3.
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By Steps 2 and 3, xT > {—1+ uq(z)/[éoh(d)]}d = — M T [[£od® h(d)] Vz € Q with d € (0,dT)
and xo < {-1+4 ua(z)/[&h(d)]}d"® + M~ /[&od® h(d)] Vz € Q with d € (0,67). Passing to the
limit as d — 0 and using Lemma 1 (vi), we obtain x- < liminfg_,o{—1+ us(z)/[Eoh(d)]}d~® and
limsupy_,o{—1+ ue(2)/[Coh(d)]}d~® < x7. Letting £ — 0, we conclude our proof. |
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Existence implies uniqueness for a class of singular
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We consider a singular anisotropic quasilinear problem with Dirichlet boundary condition and we establish two
sufficient conditions for the uniqueness of the solution, provided such a solution exists. The proofs use elementary

tools and they are based on a general comparison lemma combined with the generalized mean value theorem.
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1 Introduction and the main results

Singular anisotropic boundary value problems arise naturally when studying many concrete situations.
We refer to Canié-Keyfitz [1] for the study of self-similar solutions of conservation laws in two dimen-
sions. We also mention Ding-Liu [5] where it is studied another anisotropic problem in the plane. Their
model is closely related to the phase transition problem in anisotropic superconductivity with “thermal
noise” term.

In [2], Choi, Lazer and McKenna studied a problem that is linked to an equation arising in fluid
dynamics. They proved that the singular elliptic boundary value problem

uUgy + ubuyy +p($ay) =0, (xay) €N (1)

has a positive classical solution, where  C R? is a bounded convex domain with smooth boundary,
p is a positive Holder continuous function and the constants a, b satisfy a > b > 0. Choi, Lazer and
McKenna also developed a new comparison principle for quasilinear problems that is based on the
method of sub- and super-solutions.

Recently Choi and McKenna [3] removed the assumption that the dimension be restricted to two,
but they also retained the convexity assumption which is crucial in the construction of a super-solution
1), satisfying the boundary conditions. More exactly, they showed that the boundary value problem

N

Zu‘“uwm +p(z) =0, z €
i=1 (2)

u =0, x € 0N}
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has at least one positive classical solution u, such that u(z) < 9(z) for all z € Q, where O Cc RY
(N > 1) is a bounded convex domain with smooth boundary and a; > ag > --- > any > 0, with
a1 > ay. Choi and McKenna point out that the most significant omission of their paper is the absence
of any information on the uniqueness of solutions. In this direction there are known very few results
which hold only for the two dimensional case.

Lair and Shaker proved in 7] a uniqueness result related to (1) and they required neither the domain
2 to be convex nor the function p to be as smooth as in [2]. They made only the assumption that there
is some solution u for which u,; is bounded above appropriately. In their paper there are distinguished
two different situations: a —b > 1, resp., a — b < 1.

Reichel [8] established that problem (1) has at most one positive classical solution. It is assumed
that

p(niz, moy) > p(z,y) for all (z,y) € Q, 7; € [0,1]

and the bounded domain Q2 (with 0 € Q) satisfies an interior rectangle condition, i.e., for each (z,y) € 99
the rectangle {(mz,m2y) : 7; €[0,1)} is a subset of €.

It is natural to ask us if it is possible to give a uniqueness result which holds for more general
degenerate quasilinear operators and for a larger class of functions p, with no assumption on the
geometry of the domain or the dimension of the space.

For this aim, we consider the singular anisotropic elliptic boundary value problem

N-—1
Z fi(w) Ug;z; + uyy + p(x) g(u) =0, z €} )
=1

u =0, x € 0f)

where  is a bounded domain in RV, N > 2 and p is a positive continuous function on Q. We have
denoted the last coordinate zy by y and we shall use notation z’ for the first (N — 1) coordinates.

Throughout this paper, we assume that the following hypotheses are fulfilled
(H1) fi,g:(0,00) = (0,00), i =1, N — 1 are C'-functions;

(Hy)  f;,i=1,N — 1 is nondecreasing on (0,00) and g is nonincreasing on (0, cc).

Since €2 is bounded, we can make a translation of the domain so that it lies in the interior of the
strip RY=1 x [0, 4] for some £ > 0. The fact that p € C(f) is a positive function implies the existence
of @ > 0 and B > 0 such that p(z) € [, (] for each z € Q.

Set

D = {y €10,£ : 3z’ such that (z',y) € Q}.

We can suppose, without loss of generality, that £ ¢ D.
Let 9 be the unique positive function defined by

1

[V

(by —y?), for any y € [0, £]. (4)

o\g
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It is obvious that

r;leagtﬁ( )<yrg[%§]¢( y) = A4, (5)

Al
O/W :—. (6)

where A > 0 is uniquely defined by

We also assume
(H3) f1 > 0on (0,A]
In the first result of this paper we in}pose the condition
(Cy) 1 f;j’ (z), foralli =2, N — 1.

1
In view of this hypothesis we observe that for any 7 = 2, N — 1 it makes sense to define

= min (fZ — f;{l) and M; = max — lefl) .

fi
For any z € 2 we define the sets
P,={2<i<N—-1; ugg;(z) >0} and Ny ={2<i< N —1; ugq,(z) <0}

Our first result asserts that the existence of a positive solution v € C%%(2) N C(R) of (3) en-

sures its uniqueness, provided that the expression ) mjugz + Y. M;Ug,s, + uyy is bounded below
i€P, i€EN,
appropriately.

Theorem 1 Assume (Hi)-(Hs) and (C1) hold. There exists a positive constant K1, depending on f1,
g, p and Q, such that if u is a positive solution of (3) satisfying

Z Mgz, + Z Miug,g; + Uyy > —K1  in Q (7)
1€Py tENg

then u is the unique solution of (3).

We now drop the assumption (C;) but we require

fi

(C2) I i =2, N — 1 is nonincreasing on (0, cc).

Our next theorem shows that the uniqueness of solution to (3) is assured if we find a positive solution

u € C%*(Q) N C(Q) with the property that wug,,, + Z ;Z%Z)umlzl + > | inf ;—77, Ug,z; 18 bounded
! i€N, \(0,4) /1
above appropriately.

Theorem 2 Assume (Hy)-(H3) and (C2) hold. There exists a non-negative constant Ko depending on
f1, g, p and Q, such that if u is a positive solution of problem (3) satisfying

Ug iz, T Z

S 1EN,

Ug;z; + Z <%)n1£) f1> Upz; < Ko in Q (8)

then u is the unique solution of (3).
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We point out that hypotheses (7) and (8) should be understood as sufficient conditions that guar-
antee the uniqueness of the solution, provided such a solution exists. Problems related to uniqueness
for singular anisotropic quasilinear boundary value problems have been recently studied by Hill, Moore
and Reichel in [6]. In [6] the authors impose a topological contraint to the boundary and the proof
of the uniqueness of the solution uses essentially the fact that () satisfies a weighted starshapedness

condition. In order to illustrate our above stated results, let us consider the problem

N N

> utiugg, +2> (1—|z)*% =0, ifzeB(0,1) CRY
i=1 i=1 9)
u =0, if |z| =1,

where a; > --- > ay > 0 and a; > ay. By Theorem 4.3 in [6], this problem has a unique solution.
The same conclusion follows from our results. Indeed, let us observe that the functions f;(t) = t% %~
and g(t) =t~ fulfill conditions (H;)-(H3) and (C;), with @ = 0, 8 = 2N, A = [N(ay + 1)]"/(en+1),
m; =0 and M; = (a1 — a;)(a; —an) 1A%~ for 1 <4 < N — 1. Choosing

9 N1
Ki>24 —— a1 — a;) A% TN
1 + a —an 1:22( 1 ai) ,
it follows by Theorem 1 that u(x) = 1 — |z|? is the unique solution of problem (9).
The main difficulty in the treatment of (3) is the lack of the usual comparison principle between
sub- and super-solution, due to the anisotropic character of the equation. To this end, using a result

of Choi and McKenna, we will state in Section 2 a comparison principle which is suitable for (3).

2 An auxiliary result

In this section we prove that the number A given by (6) is an upper bound for every positive classical
solution of problem (3). To this end, we make use of a comparison lemma on a class of quasilinear
elliptic equations established in Choi-McKenna [3]. In view of this result we can obtain L* bounds

on the solutions to this class of equations using the method of sub- and super-solutions. Consider the

problem
N-1
Y film,u) ugya; + uyy + p(@) gz, u) =0,  nQ
i=1 (10)
U = U, on 02,

with ug|sn > 0, where the functions f;, g and p satisfy the assumptions
(A1) fi:Qx[0,00) — [0,00) is continuous and f;(z,-) is nondecreasing for each z € §;
(A2) g:9Q x(0,00) = (0,00) is continuous, and g(z,-) is nonincreasing for each = € Q;

(A3) p:Q — R is continuous, and there exist positive constants o and 3 such that

0<a<p(x)<p forallze Q.
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Assume that
(L) There exists a sub-solution ¢ € C(Q) N C?(N2) with ¢ > 0 on Q satisfying

N-1

D fil@, 0) oz + Py + p(x) g(z,0) >0, inQ
=1

Oriz; <0, in§), forany:=1,2,---,N —1,

and ¢ < ug on 0f).
(U) There exists a super-solution % € C(Q) N C?(Q) with % > 0 in Q satisfying

N-1
> Jil@ W) iz + by + (@) 9(2,9) <0, in O
i=1
Vew; <0, inQ, foranysi=1,2,---,N -1,
and 1 > ug on 0S).

Lemma 1 Assume (A1)-(As), (L) and (U) hold. Then any positive solution u of (3) satisfies u < A
in Q, where A is defined in (6).

Proof. Under the above hypotheses, Choi and McKenna proved in [3] that every solution u €
C?(2) N C(Q) of problem (10), with u > 0 in Q, satisfies

p<u<1p inQ.

Moreover, if only conditions (A1) — (A3) and (U) hold, then u < ) in Q.
It is easy to check that the function 1 defined in (4) satisfies condition (U) considered for our
problem (3). Therefore, by the Choi-McKenna comparison lemma and (5), we find that every positive

classical solution of (3) is bounded above by the same number A defined in (6). ]

3 Proof of Theorem 1

Let u and v be solutions of (3) and let u satisfy (7), where

2 1 (#
K — — inf _1+ inf 1
YT RRA) 0 fL T Y o) (

We prove in what follows that u = v in Q. Set

_uehy) oy v(E@hy)
Y= YT )
where
s(y) = sin %, c(y) = cos % y € (0,0).



Since s > 0 and s € C*, it follows that w and z are well defined and they are as smooth as u and v
?

respectively on €. A simple computation shows that w satisfies the boundary value problem

N-1 9
2mc T8 .
Z s fi(u)wa;a; + 7 Yy t+ swyy — 7 +p(z)g(u) =0, inQ
i=1 (11)
w =0, on 0F).
Similarly, o
27c s .
Z s fi(v)2g;z; + o + Szyy — Z +p(z)g(v) =0, inQ
i=1 (12)
z=0, on 0L2.

Relations (11) and (12) yield
S kB s [(£) @ ( )W] L
27rc 1 1 1 1 1
(ol )_77<ﬁ@5_ﬁWQ “”[%)“”‘(%)Wﬂza

Whenever z # w we can rewrite the above equation as follows

’U 1 2wc 1 1 1
Z ) zZ—w xm+sf1(v)(z—w)yy+Tfl(v)(z—w)y+ (f1(’v) - fl(u)>Q(z,w) =0 (13)

where

N-1 i _ i .

(o -(F)w w1 (£ - w

Qz,w) =uyy + Y 77 g, — 5 - - +p(z) 2 1 _
= (5) @ - (£) W PHO (B o-Fw  (F)o-(F

In order to conclude the proof it is enough to show that
Q(z,w) >0 whenever z # w. (14)

Indeed, if (z — w) > 0 at some point in 2, then max(z — w) is achieved in €2, since z = w = 0 on 1.
Q

At that point we have

1 1

filv)  fi(u)

which contradicts (13). A similar argument shows that (z — w) cannot be negative at any point in €.

(= w)oias S0, (= why 0, -w)y=0 and | ) Qe w) <0

Hence z = w in Q which implies © = v on Q.

For every = € €, let us define
p(z) = min(u(z),v(z)) and v(z)= max(u(z),v(z)).
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Thus, by Lemma 1, v < A4 in .

In (13) we apply the Cauchy generalized mean value theorem on every interval [u(z), v(z)] where
z € Q is taken such that z(z) # w(z). Hence, for all i = 2, N — 1 we obtain the existence of &;(x),

o(zx), Mz) € (u(z),v(zr)) C (0,A) such that

(R) 0w~ E*ff—) (W) (%)
a 1

= 7 (&) < M;
#) @) (4)

Using (15), (16) and (17) we find

!
2 2 9
dl 1 o ST : (fl)
Q(z,w) > uyy + Milg,z; + Miug, s, + — inf == + o inf =
vy ZEZPm 1YL, ZEZNZ 1Yz EQ fl(A) (O,A) f{ (O,A) (%)/
1€ Py 1EN

Since the solution u satisfies (7) we obtain that relation (14) is true. This completes the proof.

4 Proof of Theorem 2

Let u and v be two solutions of (3) and set

gl
Ky =—asup = >0.

©0.4) f1 ~

The functions w, z, u and v will have the same signification as in the above proof.
By (11) and (12) it follows that

N-1 N-1 e

Z sfi(v)(2 — w)z;z; + Z s[fi(v) — fi(w)|wg,z; + 7(2 - w)y +s(z — w)yy_
=1 =1

s

2 (7= w) +p()lg(v) —g(u)] = 0.

Whenever z # w, relation (19) may be rewritten in the following form

N-1
3 55i0)( — Wege, + gz = w)y + (s = whgy + [f1(0) ~ Fr(w)]Blz,w) =0,
=1
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where

" fi(v) — fi(u) ™ v—u g(v) — g(u)

R(zw) = iz, + Z e~ hw " T RE - A R - A

Using the maximum principle (as we did in the proof of Theorem 1) we see that the proof will be
concluded if we prove that
R(z,w) <0 whenever z # w.

From now on, we shall consider only the points z € 2 with the property that z(z) # w(z). For these
points, we apply again the Cauchy generalized mean value theorem on [u(z),v(z)] and we obtain 7;(x),
0(z), ((z) € (u(z),v(z)) C (0, A) such that

oD ~BD _ S g By
(@)~ hla(@) ~ @) 2 @ e =N (20)
v(z) — u(z) _ 1
filo(z)) = filu(z)) — fi(0(z)) (21)
9(v(2)) —glu(@) _ g . w
Fio@) @) A0S =" (22
It is easy to verify that hypothesis (Cz) implies
filv(z)) = filu(z)) _ filu(z)) —
FL0(@) = fi(a(@)) < Fi(u(@) foralli =2,N — 1. (23)
On the other hand, since f; is increasing on (0, A),
v(z) —u(x) > 0. o)

fi(v(z)) = fi(u(z))
Combining relations (20), (22), (23) and (24) with the expression of R(z,w) we deduce that

'U/ I
R(z,w) < gz, + Ug;z; + inf =% | gz, + a su ]
(2 0) <+ 3 110 Z( )f1> P

1€Py 1EN, (0,4)

Since u is a solution of (3) satisfying (8) we deduce that R(z,w) is negative. This completes our
proof. O
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A MULTIPLICITY THEOREM
FOR LOCALLY LIPSCHITZ PERIODIC FUNCTIONALS

Petru MIRONESCU and Vicentiu D. RADULESCU
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Abstract. We prove in this paper a multiplicity theorem of the Ljusternik-Schnirel-
mann type for locally Lipschitz periodic functionals and related results. The key argument
in our proofs is the Ekeland’s Variational Principle and a non-smooth Pseudo-Gradient
Lemma. As application of these abstract results we solve a non-linear setvalued elliptic
problem.

Introduction

In PDE, two important tools for proving existence of solutions are the Mountain-
Pass Theorem of Ambrosetti and Rabinowitz (and its various generalizations) and the
Ljusternik-Schnirelmann Theorem. These results apply to the case when the solutions of
the given problem are critical points of an appropriate functional of energy f, which is
supposed to be real and C!, or even differentiable, on a real Banach space X. One may
ask what happens if f, which often is associated to the original equation in a canonical way,
fails to be differentiable. In this case the gradient of f must be replaced by a generalized
one, in a sense which is to be defined.

The first approach is due to Chang [8] and Aubin and Clarke [2], who considered the
case of a locally Lipschitz function f. For such functions, Clarke [11] defined a generalized
gradient, which coincides to the usual ones if f is differentiable or convex. Still denoting
this generalized gradient by df, critical points of f are all points x such that 0 € df(x).
In this setting, Chang [8] proved a version of the Mountain Pass Lemma, in the case when
X is reflexive. For this aim, he used a “Lipschitz version” of the Deformation Lemma.
The same result was used for the proof of the Ljusternik-Schnirelmann Theorem in the
Lipschitz case. As observed by Brézis, the reflexivity assumption on X is not necessary.

Our main result is a multiplicity theorem for locally Lipschitz periodic functionals,
their set of periods being a discrete subgroup of the space where they are defined. This
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result can be regarded as a Ljusternik-Schnirelmann type theorem for non-differentiable
functionals.

After recalling a well known theorem due to Choulli, Deville and Rhandi [9] and giving
some consequences of this Mountain Pass type theorem for locally Lipschitz functionals, we
present the connection between their theorem and our main result by solving a non-smooth
problem that generalizes the forced-pendulum equation.

Following [8], authors usually impose measurability conditions to some a priori un-
known functions in order to be able to find 0f. We first show that these conditions are
automatically fullfilled and then we prove the existence of critical points, which are shown
to be solutions of a multivalued PDE.

1. The theoretical setting

Throughout, X will be a real Banach space. Let X* be its dual and (z*, z), for x € X,
x € X*, denote the duality pairing between X* and X. We say that a function f: X - R
is locally Lipschitz (f € Lip;,.(X,R)) if, for each z € X, there is a neighbourhood V of z
and a constant k = k(V') depending on V' such that

[f ) = f) < klly ==zl ,

for each y,z € V.

We recall in what follows the definition of the Clarke subdifferential and some of its
most important properties (see [10] for details).

For each z,v € X, we define the generalized directional derivative at x in the direction
v of a given f € Lip,;,.(X,R) as

fO(LE, v) = lim sup fly+ )‘1))\) — fy)
A0

Then f9(z,v) is a finite number and |f°(z,v)| < k||v||. The mapping v — f9(z,v)
is positively homogeneous and subadditive, hence convex continuous. The generalized
gradient (the Clarke subdifferential) of f at x is the subset 0f(z) of X* defined by

of(z) ={z* € X*; f%=z,v)> (z*,v), forallve X} .

If f is convex, df(xz) coincides with the subdifferential of f at z in the sense of convex
analysis.

The fundamental properties of the Clarke subdifferential are:

a) For each x € X, 0f(z) is a nonempty convex weak-+x compact subset of X*.

b) For each z,v € X, we have

2z, v) = max{(z*,v); z* € 0f(x)} .
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c¢) The set-valued mapping z — 9 f(x) is upper semi-continuous in the sense that for
each zg € X,e > 0,v € X, there is 6 > 0 such that for each z* € 0f(z) with ||z — x| < 4,
there exists zf € 0f(x¢) such that |(z* — z§,v)| < e.

d) The function f°(-,-) is upper semi-continuous.

e) If f achieves a local minimum or maximum at z, then 0 € 9f(z).

f) The function

Ao)= _min_ "]

exists and is lower semi-continuous.

g) Lebourg’s Mean Value Theorem: If z and y are distinct points in X, then there is
a point z in the open segment between z and y such that

fy)— f(z) € (0f(2),y—z) -

Definition 1. A point u € X is said to be a critical point of f € Lip;,.(X,R) if
0 € f(u), namely f°(u,v) > 0 for every v € X. A real number c is called a critical value
of f if there is a critical point u € X such that f(u) = c.

Definition 2. If f € Lip,,.(X,R) and c is a real number, we say that f satisfies the
Palais-Smale condition at the level ¢ (in short (PS).) if any sequence (z,) in X with the
properties lim f(z,) = c and lim A(z,) = 0 has a convergent subsequence. The function

n— o0 n—00

f is said to satisfy the Palais-Smale condition (in short (PS)) if each sequence (z,,) in X
such that (f(xy,)) is bounded and lim A(z,) = 0 has a convergent subsequence.
n—00

Let Z be a discrete subgroup of X, that is

inf |[z]| >0 .
z€Z\{0}

A function f : X — R is said to be Z-periodic if f(x + z) = f(x), for every z € X
and z € Z.

If f € Lip;,.(X,R) is Z-periodic, then z — f°(z,v) is Z-periodic, for all v € X and
Of is Z-invariant, that is 0f(z + z) = df(x), for every x € X and z € Z. These implies
that X\ inherits the Z-periodicity property.

If 7 : X — X/Z is the canonical surjection and x is a critical point of f, then 7= (n(z))
contains only critical points. Such a set is called a critical orbit of f. Note that X/Z is a
complete metric space endowed with the metric

d(r(z),n(y)) = inf lz —y —z|| .

Definition 3. A locally Lipschitz Z-periodic function f : X — R is said to satisfy the
(PS)z - condition provided that, for each sequence (x,,) in X such that (f(zy,)) is bounded
and A(z,) — 0, then (w(zy)) is relatively compact in X /Z. If ¢ is a real number, then f is
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said to satisfy the (PS)z . - condition if, for any sequence (x,) in X such that f(x,) — ¢
and \(z,,) — 0, there is a convergent subsequence of (7(zy)).

Denote Cr (f,c) the set of critical points of the locally Lipschitz function f: X — R
at the level ¢ € R, that is

Cr (f,c)={x € X; f(x)=c and A(z)=0} .

2. The main result

Theorem 1. Let f : X — R be a bounded below locally Lipschitz Z-periodic function
with the (PS)z-property. Then f has at least n+ 1 distinct critical orbits, where n is the
dimension of the vector space generated by the discrete subgroup Z.

Before beginning the proof, we shall recall the notion of category and some of its
properties, which will be required by the proof of the main result.
A topological space X is said to be contractible if the identity of X is homotopical to
a constant map, that is there exist up € X and a continuous map F : [0,1] x X — X such
that
F(0,-)=idx and F(1,:)=wup .

A subset M of X is said to be contractible in X if there exist ug € X and a continuous
map F :[0,1] x M — X such that

F(0,-)=idy and F(1,-)=wup .

If A is a subset of X, we define the category of A in X as follows:

Catx(A) =0, if A=0 .

Catx(A) = n, if n is the smallest integer such that A can be covered by n closed
sets which are contractible in X.

Catx(A) = oo, otherwise.

Lemma 1. Let A and B subsets of X. Then the following hold:

i) If A C B, then Catx(A) < Catx(B).

ﬁ) CatX(A U B) < Catx(A) —+ Catx(B)

iii) Let h : [0,1] x A — X be a continuous mapping such that h(0,x) = x for every
x € A. If A is closed and B = h(1, A), then Catx (A) < Catx (B)

iv) If n is the dimension of the vector space generated by the discrete group Z, then,
for each 1 <1 <mn+ 1, the set

Ai ={AC X; A is compact and Cat,x)m(A) > i}
is nonempty. Obviously, A1y D As D ... D Apy1 -
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The only nontrivial part is iv) , which can be found in [19].
The following two Lemmas are proved in [26].

Lemma 2. For each 1 < j < n+ 1, the space A; endowed with the Hausdorff metric

d(A, B) = max{sup dist(a,B) , sup dist(b, A)}
a€A beB

is a complete metric space.

Lemma 3. If 1 <i<n+1 and f € C(X,R), then the function n : A; - R defined
by

1(4) = max f (2)

is lower semi-continuous.
If n is the dimension of the vector space generated by the discrete group Z, one sets

foreach1 <i<n+1

Ci:Alélin(A) .

For each ¢ € R we denote [f < c]={z € X; f(z) <c}.

3. Proof of Theorem 1

It follows from Lemma 1 iv) and the lower boundedness of f that
—oco<cr << < cepg1 <00 .

It is sufficient to show that, if 1 <7 < j < m+1 and ¢; = ¢; = ¢, then the set
Cr(f,c) contains at least j — i + 1 distinct critical orbits. We argue by contradiction and
suppose that, for some i < j, Cr(f,c) has k < j — 4 distinct critical orbits, generated by
x1,...,zk € X. We construct first an open neighbourhood of Cr(f, ¢) of the form

k
V}:U U B(z; + z,7) .

I1=1z€Z

Moreover, we may suppose that 7 > 0 is chosen such that 7 is one-to-one on B(z, 2r).
This condition ensures that Cat,(x)(w(B(z1,2r))) = 1, for each | = 1,...,k. Here V, =0
if k =0.

Step 1. We prove that there exists 0 < ¢ < min{i,7} such that, for each

z€c—e< f<c+e|]\V,, one has

A(z) > Ve . (1)



Indeed, if not, there is a sequence (z,,) in X \ V,. such that, for each m > 1,

1 1 1
c— < flzm) <c+ p” and  A(zy,) < N

Since f satisfies (PS)z , it follows that, up to a subsequence, w(z,,) — w(z) as
m — oo, for some x € X \ V. By the Z-periodicity of f and A, we can assume that
Ty — x as m — oo. The continuity of f and the lower semi-continuity of A imply f(z) = ¢
and A(z) = 0, which is a contradiction, since x € X \ V.

Step 2. For € found above and according to the definition of c;, there exists A € A;
such that

2
gleaj(f(a:) <c+e® .

Setting B = A\ Va,, we get by Lemma 1 that
j < Ca‘tw(X) (W(A)) < Ca‘tﬂ'(X)(ﬂ-(B) U 71-(727‘)) <

< Cat,r(X) (W(B)) + Catﬂ-(X)(ﬂ'(VQT)) < Cat,r(X)(W(B)) + k< Cat,r(X)(ﬂ'(B)) +5—1.

Hence, Cat, x)(m(B)) > i, that is B € A;.

Step 3. For € and B as above we apply the Ekeland’s Principle to the functional 7
defined in Lemma 3. It follows that there exists C' € A; such that, for each D € A;,
D # C,

n(C) <n(B) <n(A) <c+e?

(5(3,0) <e,
n(D) >n(C) —eé(C, D) . (2)

Since BN Vs, =0 and 6(B,C) < e < r, it follows that C NV, = (. In particular, the
set F=[c—e < f]NC is contained in [c —e < f <c+¢€]and FNV, = 0.

Lemma 4. Let M be a compact metric space and let ¢ : M — 2% be a set-valued
mapping which is upper semi-continuous (in the sense of c¢)) and with weak-x compact
convex values. Fort € M denote

() = inf{|lz*[; =% € ()}

and

v=jnf () .

Then, given € > 0, there exists a continuous function v : M — X such that for all
t € M and z* € (1),
lo@)ll <1 and (a*,0(t)) >vy—c .
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Proof of Lemma. We may suppose v > 0 and 0 < € < 7. If B, denotes the open
ball in X* centered at 0 with radius r, then, for each ¢ € M, one has

B,Y_% N (p(t) =0 .

Since ¢(t) and B,_z are convex, weak-x compact and disjoint, it follows from the
Theorem 3.4 in [24], applied to the space (X*, o(X*, X)) and from the fact that the dual
space of the above one is X, that:

for every t € M, there is some vy € X, ||v¢]| = 1 such that

<€7Ut> < <"B*7'Ut> ’

for each £ € By_< and z* € ¢(t). Therefore, for each z* € ¢(t),

2
9

@) > s (o) =y .
fEB,Y_s

2

Because of the upper semi-continuity of ¢, there is an open neighbourhood V (¢) of ¢
such that, for each ¢’ € V(t) and each z* € ¢(t),

(" v) >y —¢€ .

Since M is compact and M = U V(t), we can find a finite subcovering {V1, ..., V,,}

teM
of M. Let vy, ...,v, be on the unit sphere of X such that (z*,v;) >y —¢, forall 1 <i<

n, t € V; and z* € ¢(t).
If p;(t) = dist(t, 0V;), define

Q-(t):% and v(t):;g(t)vi .

The function v is the desired mapping. 7

Applying Lemma 4 to ¢ = 0f on F, we find a continuous map v : F' — X such that,
for all x € F and z* € 0f(x),

lv(z)]| <1 and (z*,v(z))> 116111;)\(:10) —e> 11612)\(3:) —e>Ve—¢ ,

where the last inequality is justified by (1).
It follows that, for each z € F and z* € df(x),

0 * . *
z,—v(x)) = max (z*,—v(x))=— min (z",v(x)) <e—+e < —¢,
Pole, (@) = max (o' o) = min (" 0() <e Ve
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from our choice of ¢.
From the upper semi-continuity of f° and the compactness of F, there exists § > 0
such that if x € F', y € X, ||y — || <9, then

Py, —v(@) < —e . (3)

Since CNCr(f,c) = 0 and C is compact, while Cr(f, ¢) is closed, there is a continuous
extension w : X — X of v such that w|c(s,) =0 and ||w(z)|| < 1, for all z € X.

Let o : X — [0, 1] be a continuous Z-periodic function such that « =1 on [f > ¢| and
a=0on[f<c—¢]. Let h:[0,1] x X — X be the continuous mapping defined by

h(t,z) = z — tda(x)w(z) .
If D =h(1,C), it follows from Lemma 1 that
Ca’t'/r(X) (T(D)) > Catw(X) (W(O)) >

which shows that D € A;, since D is compact.
Step 4. By Lebourg’s mean value Theorem we get that, for each x € X, there exists
6 € (0,1) such that

f(h(1,2)) = f(R(0, 7)) € (Of(h(0,2)), —da(z)w(z)) .

Hence, there is some z* € df(h(0,x)) such that

f(h(L,2)) = F((0, 7)) = o) (2", —dw(x)) .
It follows by (3) that, if z € F, then

f(h(1,z)) = f(R(0, 2)) = da(x){z", —w(z)) < (4)

< da(z) oz — 00a(x)w(z), —v(z)) < —eda(z) .
It follows that, for each x € C,
f(r(1,2)) < f(=z) .
Let z¢ € C be such that f(h(1,z¢)) = n(D). Hence,
c < f(h(1,20)) < f(zo) -

By the definition of o and F, it follows that a(zp) = 1 and z¢ € F. Therefore, by (4),
we get

f(h(1,20)) — f(mo) < —€0 .
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Thus,
n(D) +ed < f(wo) < n(C) . (5)

Taking into account the definition of D, it follows that

d(C,D)<§ .
Therefore,
n(D) +ed(C, D) <n(C) ,
so that (2) implies C = D, which contradicts (5). 3

4. A multivalued generalized version of the forced-pendulum problem

As an application of the above results, we shall study the periodic multivalued problem
of the forced-pendulum

{ﬂ?"(t) + f(t) € [g(=(2),g(z())] , ae. t €(0,1) (6)
z(0) ==z(1) ,
where:
feLP(0,1) forsome p>1 (7)
g€ L*R), glu+T)=g(u) forsome T >0, ae. u€ R , (8)
g(u) = il\I‘I(l) essinf{g(u); |u—v| <e} glu)= gl\r‘% esssup{g(u); |[u—v| <e} ,
T 1
| stdu= [ war=o Q

We shall prove

Theorem 2. If f, g are as above, then the problem (6) has at least two solutions in
— gl — 1 . —

which are distinct in the sense that their difference is not an integer multiple of T'.

Define the functional ¢ in L*°(0,1) by

Y(x) = /01 (/Om(S)g(u)du)ds .

It is obvious that 1) is a Lipschitz map on L°°(0,1).
u

Let G(u) :/0 g(v)dv.
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The following results show that the description of 9% given in [8] holds without further
assumptions on g.

Lemma 5. Let g be a locally bounded measurable function defined on R and g, g as
above. Then the Clarke subdifferential of G is given by

0 G(u) = [g(u), g(u)] ueR .

Proof. The required equality is equivalent to G°(u,1) = g(u) and G°(u, —1) = g(u).

As a matter of facts, examining the definitions of G°, g and g, it follows that g(u) =
—(=9)(u) and G°(u, —1) = —(—G)°(u, 1), so that the second required equality is equivalent
to the first one.

Now the inequality G°(u, 1) < g(u) can be found in [8], so we have only to prove that
G°(u,1) > g(u). Suppose that G°(u,1) = g(u) — ¢ for some £ > 0. Let § > 0 be such that

G(t+ ) — G(7) €

if [T —u|<dand 0 < A< 4. Then

1 T+A €
X/ g(s)ds < g(u) — 3 if [7—ul<éd, A>0 (10)

We claim that there exist A, \, 0 such that
1 T+>\n
. / g(s)ds —> g(t) ae. 7€ (U—0,u+9d) . (11)

Suppose for the moment that (11) has already been proved. Now (10) and (11) show
that

g(r) <G — 2 if T€@—dutd)

so we obtain the contradictory inequalities
€
g(u) < esssup{g(s); s € [u—0,u+0]} <g(u) -5

All it remains to be proved is (11). Note that we may cut g in order to suppose that
g € LN L'. Then (11) is nothing that the classical fact that for each ¢ € L'(R),

Ta(p) =9 as ANO0 (12)

where

u+A
Tro(u) = —/ o(s)ds for A>0, ueR, pe L'(R) .
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Indeed, it can be easily seen that T} is linear and continuous in L!(R) and )1‘1{‘1}) Trp =

¢ in D(R) for ¢ € D(R). Now (14) follows by a density argument. _

Returning to our problem, it follows by Theorem 2.1. in [8] that

Oy () C 0Y() (13)

In order to obtain information on 0, we shall need an improvement of the Theorem
2.1. in [8].

Theorem 3. If x € L*°(0,1), then
0y () (1) C [g(=(t)),9(x(t))] ae t€(0,1) ,

in the sense that if w € 0v(x) then

9(z(t)) <w(t) <g(z(t)) ae te(0,1) (14)

Proof. Let h be a Borel function such that h = g a.e. on R. It follows that the set

A={te(0,1); g(=(t)) # h(x(t))}
is a null set. (A similar reasoning can be done for g and h).

Therefore we may suppose that g is a Borel function. We would like to deal with

1
/ g(z(t))dt, so we have to prove that g is a Borel function.
0

Lemma 6. Let g : R — R be a locally bounded Borel function. Then g is a Borel
function.

Proof of Lemma. Since the requirement is local, we may suppose that g is bounded
by 1, for example, and it is nonnegative. Since

g= lim lim g,
71— 00 M —>00 ’

where

t+1 X
G, 8) = ( / ™ (z, 5)|ds )=
-3

it suffices to prove that g, , is Borel.
Let
M={g: QxR —-R; |g|<1 and g is a Borel function}

N={geM,; gmn isa Borel function}
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It is known (see [3], p. 178) that M is the smallest set of functions having the following
properties:

i) {1 C(AxR,R); [g/<1}CM

ii) gk LA g imply g € M. Note that here we have an ”each point” convergence.

Since N contains obviously the continuous functions and ii) is also true for A/, by the
Dominated Convergence Theorem, it follows that M = N. 7

Proof of Theorem 3 continued. Let v € L*>(2), v > 0. Then, for suitable A; N\, 0
and h; — 0 in LPT1(Q) one has

u(z)+h;(z)+A;v(x)
Y0 (u,v) = lim —/ / 9(z, s)ds dz
()+hi(z)

We may suppose that h; — 0 a.e., so that

u(z)+h;(z)+X;v(x)
$%(u,v) = lim —/ / g(x,s)ds do <
i—00 A [v>0] Ju

(®)+h:(z)
1 u(z)+h;(z)+Aiv(x)
g/ (lim sup / g(z, s)ds)dz <
w>0]  isoo AN Ju(@)+hs(z)

< / gz, u(x))o(z)da
[v>0]
so that

WO (u, v) < / (@, u(z))v(z)ds (15)

[v>0]
for such v.

Suppose now that (21) is false, that is, for example, there exist € > 0, a set E with
|E| > 0 and w € 0¢(u) such that

w(z) > g(z,u(z))+e onE (16)
Now (15) with v = 15 shows that
(w,v) = /Ew < °(u,v) < /Eg(x,u(a:))dx

which contradicts (16). 0

Proof of Theorem 2. Define on the space X = H}, (0,1) the locally Lipschitz

per

o(z) = / Bt — / F(t)z(t)dt + / Gt
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The critical points of ¢ are solutions of (6). Indeed, it is obvious that
8g0(a:) =2+ f- 8¢|H;w(071) (.73) n H_l((), 1)

If o is a critical point of ¢ it follows that there exists w € 81/)|H1}6T(0, 1)(zo) such
that
"+ f=w in H 0,1)

Since p(z + T) = ¢(z), we are going to use the Theorem 1. All we have to do is
to verify the (PS)z,. condition, for each ¢, and to prove that (6) has a solution z( that
minimizes ¢ on H,.(0,1). Note first that every z € H},,(0,1) can be written

per
1
z(t) = / z(s)ds +z(t)dt with z € H3(0,1).
0

Hence, by the Poincaré’s inequality,
1 1 1 1
ola) = 5 / Z2()dt — / F)F()dt + / G (t))dt
0 0 0

> S E2Ze = Ifllze - 17l o = Gllz

DO | =

1
> S E2172 = Clifllze - [17 N2 = 1G]l — 00 as ||Z]|m — oo,

where p’ denotes the conjugated exponent of p.
We verify in what follows the (PS)z,. condition, for each c¢. Let (z,) C X be such
that

o(zy) = ¢ (17)
AMzy,) — 0. (18)

Let w, € d¢(z,) C L*(0,1) (because g oz, < w, < gozy, and g, € L*(R)) be
such that
Mzp) =2l +f —w, =0 in H1(0,1)

Then, multiplying (18) by z,, we get

1 1 1
[ @t~ [ foa+ [ wnsn = o)l
0 0 0

—%/Ol(a:’n)Q+/01farn—/01G(a:n),—>c
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so that there exist positive constants C1,Cy such that

1
| @2 < 1+ Gl
0

Note that G is also T-periodic; hence it is bounded.
Replacing z,, by z,, + kT for a suitable integer k£, we may suppose that

xn(0) € [0, T]

so that () is bounded in H}).
Let 2 € Hy be such that, up to a subsequence, z, — = and ,(0) — 2(0). Then

1 1
/ (z0)? = (—a:;;—f+wn,a:n—a:)+/ Wy (T, — T)—
0 0

1 1 1
—/ f(:cn—x)—i-/ $;1$I—>/ z'?
0 0 0

because x,, — z in Lp’, where p’ is the conjugated exponent of p. It follows that z,, — =
in H ;. _
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Nontrivial solutions for a multivalued problem with strong
resonance

Vicentiu D. RADULESCU

Department of Mathematics, University of Craiova, 1100 Craiova, Romania

The Mountain-Pass Theorem of Ambrosetti and Rabinowitz ([1]) and the Saddle Point The-
orem of Rabinowitz ([21]) are very important tools in the critical point theory of C'-functionals.
That is why it is natural to ask us what happens if the functional fails to be differentiable. The
first who considered such a case were Aubin and Clarke ([6]) and Chang ([12]), who gave suitable
variants of the Mountain-Pass Theorem for locally Lipschitz functionals which are defined on
reflexive Banach spaces. For this aim they replaced the usual gradient with a generalized one,
which was firstly defined by Clarke ([13], [14]). As observed by Brezis ([12], p. 114), these
abstract critical point theorems remain valid in non-reflexive Banach spaces.

We apply some of these results to solve a multivalued problem with strong resonance at
infinity. We remark that it is not natural to consider nonlinearities which are strongly resonant
at +o00, but which may not be strongly resonant at —oo. The literature is very rich in resonant
problems, the first who studied such problems, however in the smooth case, being Landesman and
Lazer ([18]). They found sufficient conditions for the existence of solutions for some singlevalued
equations with Dirichlet conditions. These problems, that arise frequently in mechanics, were
thereafter intensively studied and many applications to concrete situations were given.

1 Abstract framework

Let X be a real Banach space and let f : X — R be a locally Lipschitz function. For each
z,v € X, we define the generalized directional derivative of f at x in the direction v as

f°(z,v) = limsup fly+ o) - fly) .

Yy—x )\
ANO

The generalized gradient (the Clarke subdifferential) of f at the point x is the subset df(z) of
X* defined by
Of (z) = {z* € X*; fO(x,v) > (z*,v), forallv € X} .

We also define the lower semi-continuous function

A(z) = min {[|z*[|; 2" € 9f(x)} .

179



For further properties of these notions we refer to [12, 13, 14].

We say that a point x € X is a critical point of f provided that 0 € df(x), that is f%(z,v) >0
for every v € X. If ¢ is a real number, we say that f satisfies the Palais-Smale condition at
the level ¢ (in short (PS). ) if any sequence (z,), in X with the properties lim f(z,) = ¢ and
lim Mz,) = 0 is relatively compact.

We shall use in this paper the following result, which is an imediate consequence of the
Mountain Pass Theorem proved in [12].

THEOREM 1. Let f : X — R be a locally Lipschitzian function. Suppose that f(0) =0
and there is some v € X \ {0} such that f(v) < 0 . Moreover, assume that f satisfies the
following geometric hypothesis: there exist 0 < R < ||v|| and o > 0 such that, for each u € X
with ||u|| = R, we have f(u) > « .

Let P be the family of all continuous paths p : [0,1] — X that join 0 to v and

= inf .
¢= Inf max f (p(2))

Then there exists a sequence (x,) in X such that:
() lim f(r) = c;
(ii) Jim AMzn) =0
Moreover, if f satisfies (PS). then c is a critical value of f.

The following Saddle Point type result generalizes the Rabinowitz’s Theorem ([21]). Its proof
is an easy exercise and is left to the reader.

THEOREM 2. Let f : X — R be a locally Lipschitzian function. Assume that X =Y & Z,
where Z is a finite dimensional subspace of X and for some zy € Z there exists R > ||| such
that

inf [y + =) > max{f(:); = € Z, ol = R} |

Let
K={z¢€ Z; ||zl < R}

and
P={peCK,X); pl) =z if ||z|| = R} .

If ¢ is defined as in Theorem 1 and f satisfies (PS). , then c is a critical value of f.

2 Main results

Let M be a m-dimensional smooth compact Riemann manifold, possibly with smooth boundary
OM. Particularly, M can be any open bounded smooth subset of R™. We shall consider the
following multivalued elliptic problem

—Apu(z) — Mu(z) € [ f(u(z)), flu(z))] ae zeM
(P) u=0 on 0 M
uz0
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where:
i) Ay is the Laplace-Beltrami operator on M.
ii) A; is the first eigenvalue of —A s in H} (M).
iii) feL®R).
iv) f(t)= li\r;&essinf {f(s); [t—s| <e}
f(t) = limesssup {f(s); [t —s| <e} .

As proved in [12], the functions f and f are measurable on R and, if
t
F(t)= [ fs)ds,
0
then the Clarke subdifferential of F' is given by

OF(t) = [f(t), f(t)] ae. teR.

Let (gi;(x))i; define the metric on M. We consider on Hj (M) the locally Lipschitz functional
© = 1 — o, Where

1(u) = %/M(g g”(:v)a—xza—x] —\w? )dz and  po(u) = /M F(u)dz .

By a solution of the problem (P) we shall mean any critical point of the energetic functional

®.
Denote
f(£o0) = ess Jim f(t) and F(+oo)= lim F(¢) .

t—to0
Our basic hypothesis on f will be
(f1) f(400) = F(400) =0,

which makes the problem (P) a Landesman-Lazer type one, with strong resonance at +oc.
The following formulates a sufficient condition for the existence of solutions of our problem:

THEOREM A. Assume that f satisfies (f1) and either
(F'1) F(—o00) = —¢
or —oo < F(—o0) <0 and there exists n > 0 such that
(F'2) F  is non-negative on (0,n) or (—n,0)

Then the problem (P) has at least one solution.

For positive values of F'(—o0) it is necessary to impose additional restrictions to f. Our
variant for this case is

THEOREM B. Assume (f1) and 0 < F(—o00) < +00.

181



Then the problem (P) has at least one solution provided the following conditions are satisfied:
f(=00) =0

and A 3
2 12 foreach te R .

F(t) <
(1) <~

For the proof of Theorem A we shall make use of the following non-smooth variants of
Lemmas 6 and 7 in [15] (see also [3] for Lemma 1) which can be obtained in the same manner:

LEMMA 1. Assume f € L®(R) and there exist F'(+o00) € R. Moreover, suppose that
(i) f(+00) =0 if F(+00) is finite;
and
(ii) f(—o0) = 0 if F(—oo0) is finite.
Then
R\ {a- meas(M); a = —F(+o0)} C {c € R; ¢ satisfies (PS).}

LEMMA 2. Assume f satisfies (f1). Then ¢ satisfies (PS). , whenever ¢ # 0 and ¢ <
—F(—00) - meas(M).

Here meas (M) denotes the Riemannian measure of M.

PROOF OF THEOREM A. We shall develop some of the ideas used in [26]. There are two
distinct situations:

Case 1. F(—o0) is finite, that is —oo < F(—oc) < 0. In this case, ¢ is bounded from below
since

1 2
== ()= 2 - [ F
0= [ (S22 st - | Pl
and, by our hypothesis on F(—00),

sup F(u)dz < o0 .
u€HY (M) /M

Therefore,
00 <a:= ue;}éfmw(w <0=¢(0) .

Choose ¢ small enough in order to have F(ce;) < 0 (note that ¢ may be taken positive if
F > 0in (0,n) and negative if F* < 0 in (—n,0) ). Here e; > 0 denotes the first eigenfunction
of —Ays in Hy(M). Hence ¢(ce;) < 0, so a < 0. It follows now from Lemma 2 that ¢ satisfies
(PS),. The proof ends in this case by applying Theorem 1.

Case 2. F(—o0) = —oc. Then, by Lemma 1, ¢ satisfies (PS). for each ¢ # 0.

Let V be the orthogonal complement of the space spanned by e; with respect to Hg (M),
that is

Hy(M)=Sp{ei}®V .
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For fixed ¢y > 0, denote

Vo ={ter +v; v eV} and  ao = inf p(v) .

veEVD
Note that ¢ is coercive on V. Indeed, if v € V', then
> L 2 Ay e F
ov) > 50— Dllelliy — [ F0) = oo as [lollmy = +oo.

because the first term has a quadratic growth at infinity (¢, being fixed), while / F(v) is
M

uniformly bounded (in v), in view of the behaviour of F' near +oo. Thus, a¢ is attained,
because of the coercivity of ¢ on V. From the boundedness of ¢ on H}(M) it follows that
—o0<a<0=¢(0)and a < ap.

Again, there are two posibilities:

(i) a < 0. In this case, by Lemma 2, ¢ satisfies (PS),. Hence a < 0 is a critical value of .

(i) a = 0 < ag. Then, either ag = 0 or ay > 0. In the first case, as we have already
remarked, ag is attained. Thus, there is some v € V' such that

0 = ao = @(tee; +v) .

Hence, u = toe; +v € HY (M) \ {0} is a critical point of ¢, that is a solution of (P).
If ap > 0, notice that ¢ satisfies (PS), for each b # 0. Since tlgrn ©o(ter1) = 0, we may apply

Theorem 2 to conclude that ¢ has a critical value ¢ > a¢ > 0. [
Proor oF THEOREM B. If V' has the same signification as above, let
Vi={tes+v; t>0, veV}.

It will be sufficient to show that the functional ¢ has a non-zero critical point. To do this,
we shall make use of two different arguments.
If u=te; +v €V, then

o(u) = %/Muw? ~x?) = [ Fter+v)

In view of the boundedness of F' it follows that

—00 < ay = uien‘ggp(u) <0.
We analyse two distinct situations:
Case 1. ay=0.
To prove that ¢ has a critical point, we use the same arguments as in the proof of Theorem
A (the second case). More precisely, for some fixed ¢, > 0 we define at the same way V; and
ag. Obviously, ag > 0 = a,, since V; C V.. The proof follows from now on the same ideas as in
Case 2 of Theorem A, by considering the two distinct situations ag > 0 and ay = 0.
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Case 2. ay <0O.

Let u,, = t,e; +v, be a minimizing sequence of ¢ in V. We observe that the sequences (uy,),
and (v,), are bounded. Indeed, this is essentially a compactness condition and may be proved
in a similar way to Lemma 1. It follows that there exists w € V., such that, going eventually
to a subsequence,

u, = w weakly in Hj(M) .

u, — w strongly in L*(M) .
Up = W a.e.
Applying the Lebesgue Dominated Convergence Theorem we obtain
Jim @y (un) = @a(w) -
On the other hand,

p(w) < liminf o, (u,) — im @o(u,) = liminf p(u,) = ay

It follows that, necessarily, @(w) = a; < 0. Since the boundary of V is V and

inf o(u) =0,
we conclude that w is a local minimum of ¢ on V; and w € V. |
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Abstract

We determine nontrivial solutions of some semilinear and quasilinear elliptic problems on R";
we make use of two different nonsmooth critical point theories which allow to treat two kinds of
nonlinear problems. A comparison between the possible applications of the two theories is also
made.

1 Introduction

Consider a functional J defined on some Banach space B and having a mountain-pass geometry: the
celebrated theorem by Ambrosetti-Rabinowitz [1] states that if J € C'(B) and J satisfies the Palais-
Smale condition (PS condition in the sequel) then J admits a nontrivial critical point. In this paper
we drop these two assumptions: in order to determine nontrivial solutions of some nonlinear elliptic
equations in R" (n > 3), we use the mountain-pass principle for a class of nonsmooth functionals which
do not satisfy the PS condition. More precisely, we consider a model elliptic problem first studied by
Rabinowitz [14] with the C''-theory and we extend his results by means of the nonsmooth critical point
theories of Clarke [6, 7] and Degiovanni et al. [9, 10]: one of the purposes of this paper is to emphasize
some differences between these two theories. This study was inspired by previous work on the existence
of standing wave solutions of nonlinear Schrédinger equations: after making a standing wave ansatz,

Rabinowitz reduces the problem to that of studying the semilinear elliptic equation
—Au~+b(z)u = f(z,u) in R" (1)

under suitable conditions on b and assuming that f is smooth, superlinear and subcritical.

To explain our results we introduce some functional spaces. We denote by LP the space of measurable
functions u of p-th power absolutely summable on R", that is, satisfying ||lul|} := Jg~ |u[P < +oc;
by H' we denote the Sobolev space normed by ||ul|%: = Jg=(|Dul* + [u[*). We will assume that
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the function b in (1) is greater than some positive constant; then we define the Hilbert space E of all
functions u : R" — R with [|u|%, := [g~(|Du/? + b(z)u?) < co. We denote by E* the dual space of E:

as E is continuously embedded in H' we also have H~! C E*.

We first consider the case where (—A) in (1) is replaced by a quasilinear elliptic operator: we seek
positive weak solutions u € E of the problem
i 1 " 8aij . n
_ Z Dj(a;j(z,u)D;u) + 5 Z s (z,u)DiuDju + b(z)u = f(z,u) in R" . (2)
i,j=1 =1

Note that if a;j(z,s) = 6;;, then (2) reduces to (1). Here and in the sequel, by positive solution we
mean a nonnegative nontrivial solution. To determine weak solutions of (2) we look for critical points
of the functional J : E — R defined by

1 " 1
J(u) = 5/ . ”221 aij(z,u)DiuDju + 2 /R” b(a,')fu,2 _ /R" F(z,u) Vu € F,
where F(z,s) = [; f(z,t)dt. Under reasonable assumptions on a;;,b, f, the functional J is continuous
but not even locally Lipschitz, see [4]: therefore, we cannot work in the classical framework of critical
point theory. Nevertheless, the Gateaux-derivative of J exists in the smooth directions, i.e. for all
u € F and ¢ € CZ° we can define

a/Z]

J (u)[p] = /R” (Z [aij(x,u)DiuDj(p-i- %883 (x,u)DiuDjugo] + b(z)up — f(x,u)go) ;

=1

According to the nonsmooth critical point theory developed in [9, 10] we know that critical points u of

J satisfy J'(u)[¢] = 0 for all ¢ € C° and hence solve (2) in distributional sense; moreover, since

- i Dj(aij(z,u)Diu) + b(z)u — f(z,u) € E
ij=1

we also have

"\ Dajj
Z 8: (z,u)D;uDju € E*

ij—1

and (2) is solved in the weak sense (Vo € E). We refer to [4] for the adaptation of this theory to

quasilinear equations of the kind of (2) and to [8, 11] for applications in the case of unbounded domains

N | =

and for further references. Under suitable assumptions on a;j,b, f and by using the above mentioned

tools we will prove that (2) admits a positive weak solution.

Next, we take into account the case where f is not continuous: let f(z,-) € L%, (R) and denote

flz,s) = 21\1‘1(1) essinf {f(z,t); |t —s| < e} flz,s) = gl\I‘I(l) esssup {f(z,t); [t —s| <e};

our aim is to determine v € F such that

—Au+b(z)u € [f(z,u), f(z,u)] in R" . (3)
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Positive solutions u of (3) satisfy
0 €0I(u),

where

Tw) = § /Rn(\Du|2+b(a:)u2) _ /RnF(m,zﬁ) Vue E

and OI(u) stands for the Clarke gradient [6, 7] of the locally Lipschitz energy functional I; more
precisely,

I (u) = {g € B Plusv) > (Cv), Voe E} ,

where

I%(u; v) = limsup I(w + Av) = I(w) .

w—u A
ANO

(4)

This problem may be reformulated, equivalently, in terms of hemivariational inequalities as follows:
find u € E such that

/R” (DuDv + b(z)uv) + /Rn(—F)O(x,u;'u) >0 Yve E, (5)

where (—F)%(z,u;v) denotes the Clarke directional derivative of (—F) at u(z) with respect to v(z) and
is defined as in (4). So, when f(z,-) is not continuous, Clarke’s theory will enable us to prove that (3)

admits a positive solution.

The two existence results stated in next section have several points in common: in both cases we first
prove that the corresponding functional has a mountain-pass geometry and that a PS sequence can be
built at a suitable infmax level. Then we prove that the PS sequence is bounded and that its weak limit
is a solution of the problem considered; the final step is to prove that this solution is not the trivial
one: to this end we use the concentration-compactness principle [12] and the behaviour of the function
b at infinity. However, the construction of a PS sequence and the proof that its weak limit is a solution

are definitely different: they highlight the different tools existing in the two theories.

2 Main results

Let us first state our results concerning (2). We require the coefficients a;; (7,5 = 1, ...,n) to satisfy

A4 = Qj;
aij(z,-) € C*(R) for a.e. z € R" (6)
aij(xa 3)7 %i(x’ 3) € Loo(Rn X R) ;

moreover, on the matrices [a;;(z, s)] and [5%(30, s)] we make the following assumptions:

n
>0 suchthat > ai(z,s)&& > v[¢)* forae zeR" VseR, VE€R" (7)
ij=1
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Ju € (2 2*) , Y€ (0,4 —2) such that
(8)

O<SZ ” xs{zﬁjgvza”a:s)&fj for a.e. z € R", Vs € R, VE € R" .
1,J=1 i,j=1

We require that b € LS (R") and that
3b >0 such that b(z) >b for ae. z € R"

ess lim b(z) = +o0 .
|| —o00

Let p be as in (8), assume that f(x,s) Z 0 and

f:R" xR — R is a Carathéodory function
f(z,0)=0 for a.e. z € R" (10)

0 < pF(z,s) < sf(z,s) Vs > 0 and for a.e. z € R" ;

moreover, we require f to be subcritical

Ve >0 3f. € L+ (R") such that

|f(z,3)] gfg(ac)—H:|s|Z_1Lg Vs € R and for a.e. z € R" .

Finally, for all § € (2,2*) define ¢(¢) = 2n+(2+n)5: then we assume’

3C >0, 35€(2,29), 3G e LIOR™ such that 12)
F(z,s) < G(z)|s]’° + C|s|* Vs € R and for a.e. z € R" .

In Section 3 we will prove
Theorem 1 Assume (6)-(12); then (2) admits a positive weak solution @ € E.

Let us turn to the problem (3): we assume that f : R" x R — R is a (nontrivial) measurable function
such that
|f(z,s)] < C(|s| + |s|P) for ae. (z,5) e R" xR, (13)

where C is a positive constant and 1 < p < ""’%. Here we do not assume that f(z,-) is continuous:

nevertheless, if we define F(z,s) = [5 f(z,t)dt we observe that F' is a Carathéodory function which is

locally Lipschitz with respect to the second variable. We also observe that the functional

T(u) = /R” Flz,u)

'One could also consider the case § = 2: in such case one also needs ||G||,/» to be sufficiently small.
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is locally Lipschitz on E. Indeed, by (13), Hélder’s inequality and the embedding F C LPT!,
¥ (u) — ¥(v)| < C(llulle, [lvle)llv -]z,

where C(||u||g, ||v|]|z) > 0 depends only on max{||u| g, ||v|z}-
We impose to f the following additional assumptions

;i\r‘% esssup {‘@ ; (z,8) € R" x (—5,5)} =0 (14)
and there exists p > 2 such that
0< pF(zx,s) <sf(x,s) fora.e. (r,s) € R" x[0,400) . (15)

In Section 4 we will prove
Theorem 2 Under hypotheses (9), (13)-(15), problem (3) has at least a positive solution in E.

Remark. The couple of assumptions (11) (12) is equivalent to the couple (13) (14) in the sense that
Theorems 1 and 2 hold under any one of these couples of assumptions. O

It seems not possible to use the above mentioned nonsmooth critical point theories to obtain an existence
result for the quasilinear operator of (2) in the presence of a function f which is discontinuous with
respect to the second variable; indeed, to prove that critical points of J (in the sense of [9, 10]) solve (2)
in distributional sense, one needs, for all given ¢ € C°, the continuity of the map w» J'(u)[¢], see [4].

Even if J ¢ C!(E), we have at least J € CY(W'PNE) for p > 3” : this smoothness property in a finer
topology is in fact the basic (hidden) tool used in Theorem 1.5 in [4]; however, one cannot prove the
boundedness of the PS sequences in the W1 norm. On the other hand, the theory developed in [6, 7]
only applies to Lipschitz continuous functionals and therefore it does not allow to manage quasilinear
operators as that in (2).

3 Proof of Theorem 1

Throughout this section we assume (6)-(12): by (6) and (8) we have

ue = Z ” xu)DuD uu € LY(R™) (16)
i,j=1
and therefore J'(u)[u] can be written in integral form.

We first remark that positive solutions of (2) correspond to critical points of the functional J; defined
by

2/n2a,]quuDu+2/ b(x u—/ F(z,ut Yu el ,

1,J=1

where uT denotes the positive part of u, i.e. u™(z) = max(u(z),0).
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Lemma 1 Let u € E satisfy J', (u)[¢] = 0 for all ¢ € C°; then u is a weak positive solution of (2).
For the proof of this result we refer to [8]; without loss of generality we can therefore suppose that
f(z,8) =0 Vs <0, forae ze€R"

and, from now on, we make this assumption; for simplicity we denote J instead of J;.

Let us establish the following boundedness criterion which applies, in particular, to PS sequences?:

Lemma 2 Ewvery sequence {un,} C E satisfying
[T(um)| <C1 and  |J (um)um]| < Collum |k
is bounded in E.

Proof. Consider {u,,} C E such that |J(up,)| < Ci, then by (10) we get

1 1
Iy = 2/n Za”wum)DumD um—;/ nf(:c,um)um—l—g/nb(w)ufngCl;

1,j=1

by (16) we can evaluate J'(u,)[un,] and by the assumptions we have

fe

Z aij (@, um) DiumDjum + 2/ ) Z (9au @, i) Dyt Dttt +
2,j=1 ,j=1

_/ o I (25t ) U + /R" b(x)uz,

Therefore, by (8) and computing I, uJ (um)[um] we get

< Colluml|e -

—2
u/nZawwum)DumDum-l-—/ b(z)uZ, < Csllum|lg + Ci ;
i,j=1

by (7) this yields Cy > 0 such that Cy||um||% < C3|lum|lz + C1 and the result follows. O

Let us denote by Ej,c the space of functions u satisfying [, (|Du|? + b(z)u?) < oo for all bounded open
set w C R" and by E}  its dual space; we establish that the weak limit of a PS sequence solves (2):

Lemma 3 Let {up} be a bounded sequence in E satisfying

Oa;
/ " Z azg T, Um) D; umDjp + 2/ n Z ;J T, U ) D; umDjump = (Bms ®) Vo € C°
i,j=1

with {Bm} converging in Ef  to some § € By .. Then, up to a subsequence, {u,} C E converges in

Eioe to some u € E satisfying

0
/nZaZ]quuDJ<p+2/nz a”xu)Dqup (B, ¥) Vo € CF° .

5,5=1

*We refer to [4, 9, 10] for the definition of PS sequences in our nonsmooth critical point framework.
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Proof. As b is uniformly positive and locally bounded, for all bounded open set w C R™ we have
/(|Du|2 +b(r)u?) <0 = /(\Du|2 +u?) < o0 ;
w w

therefore the proof is essentially the same as Lemma 3 in [8]: the basic tool is Theorem 2.1 in [3] which
is used following the idea of [4]. O

The previous results allow to prove

Proposition 1 Assume that {u,,} C E is a PS sequence for J; then there ezists 4 € E such that (up
to a subsequence)

(i) upm — @ in E

(7)) Up, — u in Eoc

(i1i) 4 > 0 and @ solves (2) in weak sense.

Proof. By Lemma 2, the sequence {u,,} is bounded and (%) follows. To obtain (i7) it suffices to apply
Lemma 3 with 8, = oy + f(x, up) — b(x)uy € E* where a,, — 0 in E*: indeed, if u,, — u in E, then
Bm — B in Ef  with 8 = f(z,u) — b(z)u. Finally, (éii) follows from Lemmas 1 and 3. O

ocC

In order to build a PS sequence for the functional J we apply the mountain-pass Lemma [1] in the
nonsmooth version [10], see also Theorem 2.1 in [2]: let us check that J has such a geometrical structure.
First note that J(0) = 0; as the function F' is superquadratic at +o0c, we may choose a nonnegative
function e such that

ecC¥, e>0 and J(te) <0 Vi>1.

Moreover, it is easy to check that there exist p, 3 > 0 such that p < |le||g and J(u) > B if ||ul|g = p:
indeed by (12) we infer

/R" F(z,u) < ||Gllg)llull3- + Cllull3: ;

hence, by (7) we have J(u) > Cy||ul}f — Ca||u||% — Cs||ul|% and the existence of p, 3 follows.
So, J has a mountain pass geometry; if we define the class

I':={yeC(0,1]; E); v(0) =0, v(1) =e} (17)
and the minimax value
= inf t 1
o= inf max J(v(?)) (18)

the existence of a PS sequence for J at level a follows by the results of [9, 10].

We have so proved
Proposition 2 Let I’ and o be as in (17) (18); then J admits a PS sequence {un,} at level a.

As we are on an unbounded domain, the problem lacks compactness and we cannot infer that the above
PS sequence converges strongly; however, by using Proposition 1, the weak limit 4 of the PS sequence
is a nonnegative solution of (2): the main problem is that it could be 4 = 0. To prove that this is not

the case we make use of the following technical result:
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Lemma 4 There ezist p € (2,2*) and C > 0 such that ||u;|, > C.

Proof. Using the relations J'(um)[um] = o(1) and J(u,) = a + o(1), by assumptions (8) and (10) we
have

2 = 2J(um) — I (um) [tm] + o(1)

= R” [f(ZE,’U,jn)’U,m - 2F('7"7u747;)] - 1‘/ n Z aaij (-T,Um)DzUijumUm + 0(1)
Z' M

< o Hla e+ o(1)
Then, by (11), for all £ > 0 there exists f. € an_fz’(R") such that

20 < [ S @) + el
as ||um|2+ is bounded, one can choose € > 0 so that
o< [ @) (19)
R
Now take r € (RQ—J_LQ, 2): then for all § > 0 there exist fs € L™ and f° € L7+ such that
fe=Js+ 1" and [ 2 <4,
Then, by (19) and Holder’s inequality we infer

a < [ follellugllp + dlluy, 2

r_.

7275 as ||um||2+ is bounded, one can choose § > 0 so that

(07
% < Wl sl

and the result follows. O

where p =

By the previous Lemma we deduce that {u}} does not converge strongly to 0 in LP. Taking into
account that ||u;}||2 and ||Vu ||2 are bounded, by Lemma 1.1 p. 231 in [12], we infer that the sequence
{u;} “does not vanish” in L?, i.e. there exists a sequence {y,,} C R™ and C > 0 such that

/ b > C (20)
ym+Br
for some R. We claim that the sequence {y,,} is bounded: if not, up to a subsequence, it follows by
(9) that

/ b(z)uZ, = +oo
which contradicts J(un,) = a+o0(1). Therefore, by (20), there exists an open bounded set w C R" such
that

/\umP >0>0. (21)

So, consider the PS sequence found in Proposition 2; by Proposition 1, it converges in the L2 . topology
to some nonnegative function @ which solves (2) in weak sense; finally, (21) entails @ Z 0.

The proof of Theorem 1 is complete.
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4 Proof of Theorem 2

In this section we assume (9) and (13)-(15); moreover, we set f(z,s) =0 for s <0.

To prove Theorem 2, it is sufficient to show that the functional I has a critical point ug € C, C being

the cone of positive functions of E. Indeed,
0I(u) = —Au+b(z)u — 0¥(u) in E*
and, by Theorem 2.2 of [5] and Theorem 3 of [13], we have
OV (u) C [f(z,u(z)), f(z,u(z))] for a.e. z € R" |
in the sense that if w € 0¥ (u) then
fzu(z)) <w(z) < f(z,u(z)) for a.e. z € R".

Thus, if ug is a critical point of I, then there exists w € 9% (ug) such that

—Aug + b(z)ug = w in E* .

(22)

The existence of ug will be justified by a nonsmooth variant of the mountain-pass Lemma (see Theorem

1 of [15]), even if the PS condition is not fulfilled. More precisely, we verify the following geometric

hypotheses:
I(0) = 0 and Jv € FE such that I(v) <0

3B8,p >0 suchthat I>p on {u€FE; |ul|g=np}.

Verification of (23). It is obvious that I(0) = 0. For the second assertion we need

Lemma 5 There exist two positive constants C1 and Cy such that
f(z,s) > Cish™L — Cy for a.e. (z,s) € R" x [0,+00) .
Proof. From the definition we clearly have

f(z,s) < f(x,s) a.e. in R" x [0, +00) .

Then, by (15),
0 < pF(x,s) < sf(x,s) for a.e. (z,s) € R" x [0,+00) ,

where

S
F(z,s) :/ f(z,t)dt .
0 L
By (27), there exist R > 0 and K7 > 0 such that

F(z,s) > Kys* for a.e. (z,s) € R" X [R, +0).
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The inequality (25) follows now by (26), (27) and (28). O

Verification of (23) continued. Choose v € C(R"™) \ {0} so that v > 0 in R"; we obviously have
Joon (D0 +5(@)0?) < +00.

Then, by Lemma 5,

I(tv) = % /Rn(\Dv\z +b(@)v?) — U(to) <

t2
Dv|2+b 2+Ct/ —C’t“/ F<o,
B"(l U| (x)v) 2 Rn” 1 an

<
-2

for ¢ > 0 large enough. O

Verification of (24). First observe that (13) and (14) imply that, for any € > 0, there exists a constant
A, such that
|f(z,s)| <els|+ Ae|s|P for ae. (z,s) e R" xR (29)

By (29) and Sobolev’s embedding Theorem we have, for any u € F

€ 2 Ae +1 2 +1
U(u) < = u® + ulP™ < eCs ||lul|g + Cy |Jul|%,

where ¢ is arbitrary and Cy = Cy(g). Thus, by (9)

1
10 =5 [, (DuP + b)) = () > G lully = Ca [lully = Ca lully’ = 8> 0.

for ||ul|g = p, with p,e and S sufficiently small positive constants. O

Denote
I'={y € C([0,1], E); v(0) =0, (1) # 0 and I(y(1)) < 0}

and
= inf I .
¢ = inf max (v(2))
Set
Ar(u) = Cég;?u)IICIIE* :

Then, by Theorem 1 of [15], there exists a sequence {u,,} C E such that
I{up) — ¢ and Ar(um) = 0 (30)

since I(|u|]) < I(u) for all u € E we may assume that {u,,} C C. So, there exists a sequence {w,,} C
0¥ (u,) C E* such that
— Ay, + () Uy, — Wiy — 0 in E* . (31)
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Note that for all u € C, by (15) we have

1
< / u(z)f(z, u(z)) -

Therefore, by (22), for every u € C and any w € 9¥(u),

1
T(u) < — / u(z)w(z).
U
Hence, if (-,-) denotes the duality pairing between E* and E, we have

Tu) =52 [ (1Dul? + b))

1 1
—I—;(—Aum + bum — Wi, Um) + M (Wi, Um) — U (um,)
-2 1
> “2—u2 /Rn(|Dum\2 FBE)E) + Aty + by — Wy, )
> 55 lumlll; = 1) llum 5 -
This, together with (30), implies that the Palais-Smale sequence {uy,} is bounded in E: thus, it

2
loc

that wy, € 0¥ (uy,) for all m, that u,, — up in E and that there exists wy € E* such that w,, — wy

converges weakly (up to a subsequence) in E and strongly in Ly . to some uy € C. Taking into account
in E* (up to a subsequence), we infer that wy € 0W¥(up): this follows from the fact that the map
w F(z,u) is compact from E into L'. Moreover, if we take ¢ € CX°(R") and let §) := suppy, then
by (31) we get

/Q(DUOD‘P + b(z)uop — wop) =0 ;

as wy € 0¥ (ug), by using (4) p.104 in [5] and by definition of (—F)?, this implies

/ (DuoDy + b(z)uop) + / (=F)%(z,up; ) >0 .
Q Q

By deunsity, this hemivariational inequality holds for all ¢ € E and (5) follows; this means that ug solves
problem (3).
It remains to prove that ug # 0. If w,, is as in (31), then by (22) (recall that u,, € C) and (30) (for

large m) we get

c 1 1 1 —
2 < I(upm) — 2 (— AU, + by, — Wiy, Uy) = 2 (Wi, U ) — /R" F(z,up) < 2 / U f (@, um) - (32)

Now, taking into account its definition, one deduces that f verifies (29), too. So, by (32), we obtain
A,

c 1 €
5 <5 foneluml® + A1) = 5 N3+ 5 lum 211

hence, {u,,} does not converge strongly to 0 in LP*!. Frow now on, with the same arguments as in the

proof of Theorem 1 (see after Lemma 4), we deduce that ug # 0, which ends our proof.
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Abstract. We consider a symmetric semilinear boundary value problem having infinitely many solu-
tions. We prove that, if we perturb this problem in a non-symmetric way, then the number of solutions
goes to infinity as the perturbation tends to zero. The growth conditions on the nonlinearities do not
ensure the smoothness of the associated functional.

Perturbations des problémes non-linéaires aux valeurs propres symétriques non réguliers

Résumé. On considére un probléme semi-linéaire symétrique avec une infinité de solutions. On montre
que, si l’on perturbe ce probléme d’une maniére non-symétrique, alors le nombre de solutions devient de
plus en plus grand lorsque la perturbation tend vers zéro. Les conditions de croissance sur les nonlinéarités
ne garantissent pas la régularité de la fonctionnelle associée.

Version francgaise abrégée

Soit © C RY un ouvert borné. Pour r > 0 fixé arbitrairement on considére le probleme suivant:
trouver (u, ) € H3(Q) x R tel que

f(@,u) € L (),
(1) —Au = \f(z,u) dans D'(Q),

/ |Du|*dx = r*.
Q

On suppose que f: Q x R = R est une fonction de Carathéodory avec les propriétés suivantes:
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(f1) f(z,—s) = —f(=,s), p.p- sur et pour chaque s € R;
(f2) ils existent a € L'(Q2), b€ Ret 0 < p < 225 (si N > 2) tels que
0< sf(z,s) <a(z)+bls?, F(z,s) < a(zx) + b|s|?,
p.p. sur 2 et pour chaque s € R\ {0}, ou F(z,s) = fos [z, t)dt;
(f3) sup |f(z,s)| € L},.(2), pour chaque t > 0.

Is|<t

THEOREME 1. - Supposons que les conditions (f1)—(f3) soient satisfaites. Alors le probléme (1)
admet une suite (fun, A,,) de solutions distinctes.

Ensuite notre objectif est d’analyser le probleme perturbé

f(z,u), g(z,u) € Lj, (),
2) —Au = A(f(z,u) + g(z,u)) dans D'(Q),

/ |Du|*dx = r?,
Q

oug: xR — R est une fonction de Carathéodory qui n’est pas nécessairement impaire par
rapport a la seconde variable. On suppose quand méme que g satisfait

(91) 0 < sg(=,s) < a(z) + b|s|? p.p. sur et pour chaque s € R\ {0};

(92) sup |g(=,s)| € L},.(2), pour chaque ¢ > 0;
|s|<t

(93) G(z,s) < Cy4 (1+|s[?), p.p. sur Q et pour chaque s € R, avec Cy > 0, 01 G(z, s) = [ g(z,t)dt.
On démontre que le nombre de solutions du probléme perturbé (2) devient de plus en plus

grand si la perturbation est assez petite, dans un sens précisé ultérieurement. Plus précisement,
on a

THEOREME 2. - Supposons que les conditions (f1)— (f3) et (g1) — (g3) soient satisfaites. Alors,
pour chaque entier n > 1, il existe g, > 0 tel que le probléme (2) admet au moins n solutions

distinctes si g est une fonction telle que la condition (g3) soit satisfaite pour Cy = &p.

La preuve des Théorémes 1 et 2 repose sur un argument variationnel. D’abord on pose
Sy = {u € Hy(Q): / |Du|*dx = rz}
Q

et on étudie les points critiques sur S, de la fonctionnelle continue et paire I : H}(Q) — R définie
par

I(u) = — /Q Fa, u)dz .
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REMARQUE 1. - Si (f2), (f3) sont remplacées par la condition standarde 0 < sf(z,s) <

a1 (z)|s| + b|s|P avec a1 € Ll‘?—L’(Q), alors I est de classe C' et le Théoréme 1 se trouve dans [8,
Theorem 8.17]. Avec notres hypothéses, f peut avoir la forme f(z,s) = a(z)y(s) avec a € L' (1),
a > 0,v € C.(R), v impaire et sy(s) > 0 pour chaque s € R. Dans ce cas la, I est bien sir
continue, mais pas localement Lipschitz.

REMARQUE 2. - Lorsque f et g satisfont la condition standarde qu’on vient de mentionner,
résultats du type du Théoréme 2 sont bien classiques (voir par example Krasnoselskii [7]). Des
résultats de perturbation, plutét différents des nétres, ou le probléme perturbé admet encore une
infinité de solutions, peuvent étre trovés dans [8, 9]. Dans un cadre non régulier, un résultat dans
la ligne du Théoréme 2 a été démontré dans [4] lorsque f et g satisfont la condition standarde,
mais la fonction u est contrainte par un obstacle, de sorte que I’équation se transforme dans une
inéquation variationnelle.

Let @ ¢ RY be a bounded open set. For some fixed r > 0, consider the problem: find
(u, X)) € Hy(Q2) x R such that
f(z,u) € Lj,(Q),
(1) —Au=Af(z,u) inD'(Q),

/ |Du|?dz = r?
Q

where f: ) x R — R is a Carathéodory function such that the following conditions hold:
(f1) f(z,—s) = —f(z,s), for a.e. z € Q and every s € R;
(f2) there exist a € L'(Q), b € R and 0 < p < 2% (if N > 2) such that
0< sf(z,s) <a(zx)+bls?, F(z,s) <a(z) + b|s|?,
for a.e. z €  and every s € R\ {0}, where F(z,s) = fos Sz, t)dt;
(f3) sup |f(z,s)| € L}, .(Q), for every ¢t > 0.

ls|<t

We notice that, if N = 1, then in condition (f2) the term b|s|? can be substituted by any
continuous function ¢(s) of s, while, if N = 2, the same term can be substituted by exp(y(s)),
with ¢(s)s™2 — 0 as |s| — .

THEOREM 1. - Assume that hypotheses (f1) — (f3) hold. Then Problem (1) admits a sequence
(£un, Ap) of distinct solutions.

Then we want to study what happens when the energy functional is subjected to a perturbation
which destroys the symmetry.
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Consider the problem: find (u,\) € H}(Q) x R such that

f(@,u), g(z,u) € Li,(Q),
2) —Au=A(f(z,u) + g(z,u)) inD'(),

/ |Dul*dz = r?

where g : 2 x R = R is a Carathéodory function. We make no symmetry assumption on g, but
we impose only

(91) 0 < sg(z,s) < a(x) + b|s|P for a.e. z € N and every s € R\ {0};
(92) sup |g(=,s)| € L},.(), for every t > 0;

s|<t
(93) G(z,s) < Cy(1+ |s]P), for a.e. z € Q2 and every s € R, for some Cy; > 0, where G(z,s) =
Iy gl t)dt.

Our second result shows that the number of solutions of Problem (2) becomes greater and
greater, as the perturbation tends to zero. More precisely we have

THEOREM 2. - Assume that hypotheses (f1) — (f3) and (g1) — (¢3) hold. Then, for every
positive integer n, there exists €, > 0 such that Problem (2) admits at least n distinct solutions,
provided that (g3) holds for Cy = &y,

We will prove Theorems 1 and 2 by a variational argument. First we set

Sy = {u € Hy(Q): / |Du|*dz = 7‘2}
Q

and we study the critical points on S, of the even continuous functional I : H}(2) — R defined

by
= —/ F(z,u)dx
Q

REMARK 1. - If (f2), (f3) are substituted by the more standard condition 0 < sf(x,s) <
a1 (z)|s| + b|s|P with a; € LI\%ﬁZ(Q), then I is of class C* and Theorem 1 can be found in [8,
Theorem 8.17]. Under our assumptions, f could have the form f(z,s) = a(z)y(s) with a € L1(1),
a>0,v € C.(R), v odd and sy(s) > 0 for any s € R. In such a case, I is clearly continuous, but
not locally Lipschitz.

REMARK 2. - When f and g are subjected to the standard condition we have mentioned,
results like Theorem 2 go back to Krasnoselskii [7]. For perturbation results, quite different from
ours, where the perturbed problem still has infinitely many solutions, we refer the reader to [8, 9].
In a nonsmooth setting, a result in the line of Theorem 2 has been proved in [4] when f and g
satisfy the standard condition, but the function u is subjected to an obstacle, so that the equation
becomes a variational inequality.

From (f2) it easily follows that I(u) < 0 and that sup I,(u) = 0, where I, = I|g, .
Since I is only continuous, we will apply the nonsmooth techniques developed in [1, 3, 4, 5]. In
the following, we will adopt the notations of such papers.

LEMMA 1. - The following facts hold:
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(a) if u € S, satisfies |dI,|(u) < 400, then f(z,u) € L},.(Q) N H~'(Q) and there exists p € R
such that
lpAu+ f(z, u)l| g-r < |dL| (u);

(b) the functional I, satisfies (PS). for any ¢ < 0;

(¢) if w € S, is a critical point of I,., then there exists A > 0 such that (u,\) is a solution of
Problem (1).

Proof. -
(a) Set also

Iw) ifwes,,
Ir,est(w) =
+oo  ifw e HI(Q)\S-.

Then it is immediately seen that |dI, 5| (vw) = |dI,| (u), where we are using the weak slope in-
troduced in [5] (see also [1, Definition 2.1]). By [1, Theorem 4.13] there exists a € OI, ¢s:(u)
with ||a||g-1 < |dI}est| (w), where 9 stands for the subdifferential introduced in [1, Definition 4.1].
Taking into account (f2), we deduce from [6, Theorem 3.3] that

I°(u;0) <0, I%(u; 2u) < —2/ f(z,u)udz < +0o.
Q

Actually, the same proof shows a stronger fact, namely that

.TO(u;O) <0, To(u;2u) < —2/ flz,u)udz < +00.
Q

Therefore we can apply [1, Corollary 5.10], obtaining 8 € 0I(u) and p € R with a = 8 — pAu.
From [6, Theorems 3.3 and 2.25] we conclude that f(z,u) € L;, .(2) N H '(Q) and 8 = — f(z, u).
Then (a) easily follows.

(b) Let ¢ < 0 and let (u,) be a (PS).-sequence for I,.. By the previous point, we have f(z,u,) €
Ll (Q)N H~1(Q) and there exists a sequence (i) in R with

loc
lnAun + f(z,un)|[g-1 — 0.

Up to a subsequence, (uy) is convergent to some u weakly in Hi (2) and a.e. From (f2) it follows
I(u) = ¢ < 0, hence u # 0. Again by (f2) and Lebesgue’s Theorem, we deduce that

0< / f(:c,u)uda:zlim/ [z, up)updx zlimun/ | D, |2dz .
Q noJo n Q
Therefore, up to a further subsequence, (uy,) is convergent to some p > 0 and

— 0.

1
Auy, + — f(z,uy
At fo0) -

From [6, Lemma 4.8] we deduce that (u,,) is precompact in Hg () and (b) follows.
(¢) Arguing as in (b), we find that f(z,u) € L}, .(2) N H~'(2) and that there exists p > 0 with

uAu + f(z,u) = 0. Then the assertion easily follows. [ |
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LEMMA 2. - There exists a sequence (b,) of essential values of I, strictly increasing to 0.

Proof. - We will adapt some arguments from [4] to our concrete situation. Let ¢ :] — 00,0[— R
be an increasing diffeomorphism. From Lemma 1 it follows that ¢ o I,. satisfies (P.S). for every
¢ € R. Then by [2, Theorem 1.4.13] we have that {u € S, : ¥ oI, (u) < b} has finite genus for every
b€ R. If (c,) is the sequence defined as in [4, Theorem 2.12] with respect to ¢ o I,., it follows that
¢n = +00 as n — oo. Therefore there exists a sequence (b],) of essential values of ¢ o I,. strictly
increasing to +00. Then b, = ¢~1(b/,) has the required properties. [ |

Proof of Theorem 1. - Combining Lemma 1 with [4, Theorem 2.10], we deduce that each b, is
a critical value of .. Again from Lemma 1 we conclude that there exists a sequence (Euy,, A,) of
solutions of Problem 1 with I(u,) = b, strictly increasing to 0. [ |

Now we introduce the continuous functional J, : S, — R defined by

J(u) = I(u) /Q Gz, u)dz .

LEMMA 3. - For every n > 0, there exists € > 0 such that sup |I.(u) — J-(u)| < 1, provided
u€eS,
that (¢3) holds for Cy = ¢.

Proof. - By Sobolev inclusions, we have
0< I (u)— J.(u) = / G(z,u)dz < Cy /(1 + |ulP)dz < 7, for any u € S,
Q Q
if g is chosen as in the hypothesis. [ |

Proof of Theorem 2. - As in the proof of Theorem 1, let us consider a strictly increasing
sequence (b,,) of essential values of I, such that b, — 0 as n — co. Given n > 1, take some § > 0
with b, + 6 < 0 and 2(b; —bj_1) < 0 for j = 2,...,n. We apply [4, Theorem 2.6] to I, and J,. So,

for any j = 1,...,n, there exists n; > 0 such that sup |I.(u) — J,(u)| < n; implies the existence of
u€eS,
an essential value ¢; €]b; — d,b; + d[ of J.. We now apply Lemma 3 for n = min{#n,...,7,}. Thus

we obtain &, > 0 such that sup |I,(u) — J(u)| < 7, if (¢3) holds with Cy = &,,. It follows that J,

u€S,
has at least n distinct essential values ¢, .. .,cp in the interval | — oo, 0.
Now Lemma 1 can be clearly adapted to the functional J,.. Then we find uy,...,u, € S, and
A1,...,Ap > 0 such that each (uj;, A;) is a solution of Problem 2 with J,.(u;) = ¢;. |
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Abstract
Hemivariational inequalities containing both an area-type and a non-locally Lip-
schitz term are considered. Multiplicity results are obtained by means of techniques
of nonsmooth critical point theory.

1 Introduction

The theory of variational inequalities appeared in the middle 60’s in connection with the
notion of subdifferential in the sense of Convex Analysis (see e.g. [6, 22, 33] for the main
aspects of this theory). All the inequality problems treated to the beginning 80’s were
related to convex energy functionals and therefore strictly connected to monotonicity: for
instance, only monotone (possibly multivalued) boundary conditions and stress-strain laws
could be studied.

Nonconvex inequality problems first appeared in [35] in the setting of Global analysis
and were related to the subdifferential introduced in [17] (see A. MARINO [34] for a survey
of the developments in this direction).

*The research of the first two authors was partially supported by Ministero dell’Universita e della
Ricerca Scientifica e Tecnologica (40% — 1995).

tThe research of the third author was partially supported by G.N.A.F.A. - Consiglio Nazionale delle
Ricerche, Italy.
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In the setting of Continuum mechanics, P. D. PANAGIOTOPOULOS started the study
of nonconvex and nonsmooth potentials by using Clarke’s subdifferential for locally Lips-
chitz functionals. Due to the lack of convexity, new types of inequality problems, called
hemivariational inequalities, have been generated. Roughly speaking, mechanical problems
involving nonmonotone stress-strain laws or boundary conditions derived by nonconvex su-
perpotentials lead to hemivariational inequalities. We refer the reader to [41, 42] for the
main aspects of this theory.

A typical feature of nonconvex problems is that, while in the convex case the stationary
variational inequalities give rise to minimisation problems for the potential or for the energy,
in the nonconvex case the problem of the stationarity of the potential emerges and therefore
it becomes reasonable to expect results also in the line of critical point theory.

For hemivariational inequalities, several contributions have been recently obtained by
techniques of nonsmooth critical point theory (see [5, 23, 25, 26, 27, 28, 38, 39, 40, 43|
and references therein). The associated functional f is typically of the form f = fy + fi,
where f; is the principal part satisfying some standard coerciveness condition and f; is
locally Lipschitz. In such a setting, the main abstract tool is constituted by the nonsmooth
critical point theory developed in [12] for locally Lipschitz functionals.

The aim of our paper is to obtain existence and multiplicity results for hemivariational
inequalities associated with functionals which come from the relaxation of, say,

— [ i+ Du?d /G, dz | e WM (Q:RN), O nR"n>2.
f(u) /Q + |Du|?dz + A (z,u) dx u 0 ( ), © open in n >

The first feature is that the functional f does not satisfy the Palais-Smale condition in
BV (; RY), the natural domain of f, as it is already known in the case of equations (see
e.g. [36]). Therefore we extend f to L= (€;RY) with value +oo outside BV (Q;RN).
This larger space is better behaved for the compactness properties, but the nonsmoothness
of the functional increases. The second feature is that the assumptions we impose on G
imply the second term of f to be continuous on L#-1(Q; R"), but not locally Lipschitz.
More precisely, the function {s — G(z,s)} is supposed to be locally Lipschitz for a.e.
x € (), but the growth conditions we impose do not ensure the corresponding property
for the integral on L%(Q; R”). Because of these facts, we will take advantage of the
nonsmooth techniques developed in [7, 16, 19], which have been already applied in the
setting of equations (see [8, 9, 10, 15, 18, 20, 21, 23, 36, 37] and references therein) and
turn out to be suitable also for our setting.

In section 2 we recall the main tools we will need, while in section 3 we prove some
general results for a class of lower semicontinuous functionals f : L?(Q; RY) — RU{+oc0}.
In section 4 we show that the area-type integrals fall into the class considered in section 3.
By the way, we also prove a relation between the convergence in the so-called intermediate
topologies of BV (Q; RY) and the convergence in L1 (€; R") (see Theorem 4.10), which
seems to be new. Finally, in sections 5 and 6 we apply the general setting of section 3 to
obtain multiplicity results of Clark and Ambrosetti-Rabinowitz type. Of course, we believe
that our approach could be equally applied to other situations with different geometries.
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2 Recalls of nonsmooth analysis

Let X be a metric space endowed with the metric d and let f : X — R be a function. We
denote by B, (u) the open ball of centre u and radius r and we set

epi (f) ={(u,A) € X xR: f(u) <A}.
In the following, X x R will be endowed with the metric
d ((u, ), (v, 1)) = (d(u,0)" + (A = p)°)

and epi (f) with the induced metric.

N

Definition 2.1 For every u € X with f(u) € R, we denote by |df|(u) the supremum of
the o’s in [0, +00[ such that there exist 6 > 0 and a continuous map

H: (Bs (u, f(u)) Nepi(f)) x [0,6] = X
satisfying

d(,H((w::U‘)at)vw) Sta f(’H((w,,u),t)) SM_Jtv

whenever (w, 1) € By (u, f(u)) Nepi(f) and t € [0,4].
The extended real number |df| (u) is called the weak slope of f at u.

The above notion has been introduced in [19], following an equivalent approach. When f
is continuous, it has been independently introduced also in [32], while a variant has been
considered in [30, 31]. The version we have recalled here is taken from [7].

Now, according to [17], we define a function G; : epi(f) — R by Gs(u,\) = A. Of
course, Gy is Lipschitz continuous of constant 1.

Proposition 2.2 For every u € X with f(u) € R, we have f(u) = G(u, f(u)) and
|dGy| (u, f(u))
df| () = { /1= 1dGy| (u, f(u))?
oo i |dg; | (u. f(u)) = 1.
Proof. See [7, Proposition 2.3]. m

if [dG;| (u, f(u) <1,

The previous proposition allows us to reduce, at some extent, the study of the general
function f to that of the continuous function Gy.
Definition 2.1 can be simplified, when f is continuous.

Proposition 2.3 Let f: X — R be continuous. Then |df|(u) is the supremum of the o’s
in [0, +oo] such that there exist 6 > 0 and a continuous map

H:Bs(u) x [0,6] > X

satisfying
(2.4) dH(w, 1), w) <t,  f(H(w,?) < f(w)—ot,

whenever w € Bs (u) and t € [0, ].
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Proof. See [7, Proposition 2.2]. m

We need also, in a particular case, the notion of equivariant weak slope (see e.g. [10]
for the general definition).

Definition 2.5 Let X be a normed space and f : X — R an even function with f(0) <
+o00. For every (0,\) € epi(f) we denote by |dz,Gs|(0,) the supremum of the o’s in
[0, +00[ such that there exist 6 > 0 and a continuous map

H = (M1, M) : (Bs (0,A) Nepi(f)) x [0,8] — epi (f)

satisfying
d(H((w,p), 1), (w,m)) <t,  Ho((w,p),t) < p—ot,

Hl((_w’y’)’t) = _Hl((wa N)’t) )
whenever (w, 1) € Bs (0,\) Nepi (f) and t € [0,4].

Remark 2.6 In Proposition 2.3, if there exist 0 > 0 and a continuous map H satisfying
d(H(w,t),w) <ot,  f(H(w,1)) < f(w)—ot,

instead of (2.4), we can deduce that |df| (u) > o/p.
A similar remark applies to Definition 2.5.

By means of the weak slope, we can now introduce the two main notions of critical point
theory.

Definition 2.7 We say that u € X is a (lower) critical point of f, if f(u) € R and
|df| (u) = 0. We say that ¢ € R is a (lower) critical value of f, if there exists a (lower)
critical point u € X of f with f(u) = c.

Definition 2.8 Let c € R. A sequence (up,) in X is said to be a Palais-Smale sequence at
level ¢ ((PS).—sequence, for short) for f, if f(un) — ¢ and |df| (up) — 0.

We say that f satisfies the Palais-Smale condition at level ¢ ((PS),, for short), if every
(PS).—sequence (up) for f admits a convergent subsequence (up,) in X.

The main feature of the weak slope is that it allows to prove natural extensions of the
classical critical point theory for general continuous functions defined on complete metric
spaces. Moreover, one can try to reduce the study of a lower semicontinuous function
[ to that of the continuous function G;. Actually, Proposition 2.2 suggests to exploit
the bijective correspondence between the set where f is finite and the graph of f. This
approach can be successful, if we can ensure that the remaining part of epi(f) does not
carry much information. The next notion turns out to be useful for this purpose.

Definition 2.9 Let c € R. We say that f satisfies condition (epi)., if there exists € > 0
such that
inf {|dGs| (u, A) : f(u) <A, [A—¢c|<e}>0.

The next two results may help in dealing with condition (epi)..
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Proposition 2.10 Let (u,\) € epi(f). Assume that there exist 9,0,0,& > 0 and a con-
tinuous map
H:{w e Bs(u): f(w) <A+d} x[0,0] > X

satisfying
d(H(w,t),w) < ot,  f(H(w,t)) <max{f(w)—ot,\—e}

whenever w € Bs (u), f(w) <A+ 9 andt € [0,4].
Then we have

o
d A) > —— .
| gf‘ (u: ) = \/m
If moreover X is a normed space, [ is even, u = 0 and H(—w,t) = —H(w,t), then we
have o
d 0,)) > ———.
| Z2gf|( ) ) = \/m

Proof. Let §' €]0,6] be such that §' + 06’ < € and let
K : (By (u, A) Nepi(f)) x [0,6] — epi (f)

be defined by K((w, ), t) = (H(w,t), u— ot). If (w, u) € By (u, \) Nepi(f) and ¢ € [0, 4],
we have
A—e<A=0¢ -0 <p—ot, f(w) —ot < p—ot,

hence
f(%(wat)) < maX{f(’bU) - Otv A— 8} < H—= ot.

Therefore I actually takes its values in epi (f). Furthermore, it is

d(K((w, 1), 1), (w, p)) < \/@* +0?t,

gf(lC((w,,u),t)) =p—ol= gf(w,,ll) —ot.

Taking into account Proposition 2.3 and Remark 2.6, the first assertion follows.
In the symmetric case, K automatically satisfies the further condition required in Def-
inition 2.5. m

Corollary 2.11 Let (u,\) € epi(f) with f(u) < X\. Assume that for every o > 0 there
exist 6 > 0 and a continuous map

H:{w € Bs(u): f(w) <A+d} x[0,§] > X
satisfying
d(H(w,t),w) < ot,  f(H(w,t)) < f(w)+1(f(u) - f(w)+0)

whenever w € By (u), f(w) <A+ 4§ and t € [0,4].
Then we have |dG¢| (u, \) = 1. If moreover X is a normed space, f is even, u =0 and
H(—w,t) = —H(w,t), then we have |dz,Gs| (0,\) = 1.
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Proof. Let ¢ > 0 with A — 2 > f(u), let 0 < 9 < A — f(u) — 2¢ and let 6 and H be as in
the hypothesis. By reducing ¢, we may also assume that

§<1,  6(A=2e|+|f(u)+o]) <e.
Now consider w € By (u) with f(w) < A+4d and ¢t € [0,6]. If f(w) < A — 2¢, we have

flw)+t(f(u) = f(w)+0) = A —=1)f(w)+t(f(u)+0) <
< (@ = = 2¢) +1(f(u) +0) <
< A=2e+tA =2+t f(u)+o < A—¢,

while, if f(w) > A — 2¢, we have
Fw) +t(f(u) = f(w) + 0) < f(w) — (A= f(u) — 26 - 0)t.
In any case it follows
f(H(w,t)) < max{f(w) — (A= f(u) — 26 — o)t, A — ¢} .

From Proposition 2.10 we get

A—flu) —2e—p
dG:| (u, ) >
rll ) Vo + (A= f(u) — 26 — 0)?2

and the first assertion follows by the arbitrariness of p.
The same proof works also in the symmetric case. m

Now we recall two critical point theorems we will apply later. The first one is an
adaptation of a result of D. C. Clark (see [13] and [44, Theorem 9.1]) to our setting.

Theorem 2.12 Let X be a Banach space and f : X — R U {400} an even lower semi-
continuous function. Assume that

(a) f is bounded from below;
(b) for every c < f(0), the function f satisfies (PS). and (epi),;

(c) there exist k > 1 and an odd continuous map 1 : S¥=1 — X such that
sup {f(1(2) : = € S*71} < £(0),

where S*~1 denotes the unit sphere in RF.

Then f admits at least k pairs (u1, —u1),. .., (ug, —ug) of critical points with f(u;) <

f(0).
Proof. See 20, Theorem 2.5]. m

The next result is an adaptation of the classical Theorem of Ambrosetti-Rabinowitz
[1, 44, 48].
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Theorem 2.13 Let X be a Banach space and f : X — R U {400} an even lower semi-
continuous function. Assume that there exists a strictly increasing sequence (V3,) of finite-
dimensional subspaces of X with the following properties:

(a) there exist a closed subspace Z of X, o > 0 and a > f(0) such that X = Vo & Z and

Vue Z: ||ul| =0 = f(u) > a;

(b) there ezists a sequence (Ry) in |o, +0oo[ such that

Vu € Vi@ |lul| > Ry = f(u) < f(0);

(c) for every ¢ > «, the function f satisfies (PS). and (epi).;
(d) we have |dz,Gy| (0, ) # 0 whenever A > .
Then there ezists a sequence (uyp,) of critical points of f with f(up) — +o0.

Proof. Because of assumption (c), the function Gy satisfies (PS), for any ¢ > a. Then the
assertion follows from [36, Theorem (2.7)]. m

Now assume that X is a normed space over R and f : X — R a function.

Definition 2.14 For every u € X with f(u) € R, v € X and e > 0, let f7 (u;v) be the
infimum of r’s in R such that there exist § > 0 and a continuous map

V: (Bs (u, f(u)) Nepi(f)) x]0,6] — B (v)

satisfying
fz+tV((z,p),t) <p+rt

whenever (z, u) € Bs (u, f(u)) Nepi(f) and t €]0,0]. Then let

fo(usv) = Selig 2 (uyv) .

Let us recall that the function f°(u;-) is convex, lower semicontinuous and positively
homogeneous of degree 1 (see [7, Corollary 4.6]).

Definition 2.15 For every u € X with f(u) € R, we set
Of (u) ={u" € X*: (u*,v) < f°(u;v) Yve X}.

It turns out that f° (u;v) is greater than or equal to the generalized directional derivative
in the sense of Rockafellar (see [14, 47]). Consequently, df(u) contains the subdifferential
of f at u in the sense of Clarke. These modified notions of f° (u;v) and df(u) have been
introduced in [7, 18], because they are better related with the notion of weak slope and
hence more suitable for critical point theory, as the next result shows.
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Theorem 2.16 Ifu € X and f(u) € R, the following facts hold:
(@) |df|(u) < 400 <= Of(u) #0;
(b) ldf|(u) <400 = [df| (u) > min {Jlu*|| : u* € 9f(u)}.
Proof. See [7, Theorem 4.13]. m

However, if f : X — R is locally Lipschitz, these notions agree with those of Clarke
(see [7, Corollary 4.10]). Thus, in such a case, f° (u;-) is also Lipschitz continuous and we

have that t

(2.17) Vu,v € X : f°(u;v) = limsup fle+ u;) ~ f(2) ,
ot

(2.18) {(u,v) — f°(u;v)} is upper semicontinuous on X x X .

3 The general framework

Let n > 1, N > 1, Q be an open subset of R” and 1 < p < oo. In the following, we wil
denote by || - || the usual norm in L9 (1 < ¢ < 00). We now define the functional setting
we are interested in.

Let £ : LP(; RY) — R U {+00} be a functional such that:

(&1) € is convex, lower semicontinuous and 0 € D (£), where

D)= {u € LP(;RN): E(u) < +oo} ;

(&) there exists 9 € C.(RY) with 0 <9 <1 and 9(0) = 1 such that
(£.1)  YueD(E),YweD(E)NL®(QRY),Ve>0:

Jim {P e ((3) U)] = £(0);

£(z)<c

(£:2)  VueD(E): Jim £ (19 (%) u) — ().

Moreover, let G : © x RY — R be a function such that
(G1) G(-, s) is measurable for every s € R";
(Gs) for every t > 0 there exists oy € L'(Q) such that
G(z,51) — G(z, 82)| < au(z)]s1 — 82
for a.e. z € 2 and every s, s, € RY with |s;| < ¢; for a.e. z € Q we set
G°(z,58) =" (55),  0,G(z,5) = 0v(s),
where v(s) = G(z, s);

213



(Gs) there exist ag € L*(2) and by € R such that

G(z,8) > —ag(z) — bo|s|P  for a.e. z € Q and every s € RV;

(G4) there exist a; € L'(Q) and b; € R such that

G°(z,s;—s) < ai(z) + by|s|P for a.e. z € Q and every s € RV .

Because of (£1) and (G3), we can define a lower semicontinuous functional f : LP(Q; RY) —
R U {+00} by

f(u) :5(u)+/QG(:E,u(:U))dx.

Remark 3.1 According to (£1), the functional € is lower semicontinuous. Condition (Es)
ensures that € is continuous at least on some particular restrictions.

Remark 3.2 If {s — G(x,5)} is of class C for a.e x € Q, the estimates in (Gs) and in
(G4) are respectively equivalent to

Is| <t = |D;G(z,s)| < ay(z),

D,G(z,s)-s > —ai(x) — by|sP.
Because of (Gs), for a.e. z € Q and any ¢t > 0 and s € RY with |s| < ¢t we have
(3.3) Vs e RV 1 |G°(x,5;8)| < ay(7)]8];

(3.4) Vs* € 0,G(x,s) : |s*] < ay(x).

In the following, we set J;(s) = 9(s/h), where 9 is a function as in (£;), and we fix M > 0
such that ¥ = 0 outside By (0). Therefore

(3.5) Vs e RN : |s| > hM = 9,(s) = 0.

Our first result concerns the connection between the notions of generalized directional
derivative and subdifferential in the functional space L?(£2; RY) and the more concrete set-
ting of hemivariational inequalities, which also involves the notion of generalized directional
derivative, but in RV,

If u,v € LP(Q; RY), we can define [, G°(z, u;v) dz if we agree, as in [46], that

o . _ o . + _ o . - —
/QG (x,u;v)dx = 400 whenever /Q[G (x,u;v)]" dz —/Q[G (x,u;v)]” de = +00.

With this convention, {v — [, G°(z,u;v)dx} is a convex functional from L?(Q; RY) into
R.
Theorem 3.6 Let u € D (f). Then the following facts hold:

(a) for every v € D () there erists a sequence (vy) in D (€) N L®(uRYN) satisfying
[G°(z, u;vp, — )T € LYQ), [Jvn —v]l, = 0 and E(vy) — E(v);
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(b) for every v € D (E) we have

(3.7) fe(u;v —u) Sg(v)—5(u)—|—/ﬂG°(m,u;v—u)dm;

(¢) if Of (u) # 0, we have G°(x,u; —u) € L'(Q) and
(3.8) S(U)—S(u)—i-/Qch(:r,u;v—u)dx2/Qu*-(v—u)dx

for every u* € df(u) and v € D (€) (the dual space of LP(Q;RY) is identified with
LY (; RYN) in the usual way);

(d) if N =1, we have [G°(x,u;v —u)]t € L(Q) for every v € L*(Q; RY).

Proof.

(a) Given ¢ > 0, by (£2.2) we have ||J,(v)v—v]|, < € and |E(Iy(v)v) —E(v)| < € for h large
enough. Then, by (&.1) we get |9 (uw)Ip(v)v —v||, < € and |E (D (u)Ip(v)v) — E(v)] < €
for k large enough. Of course 9y (u)d;(v)v € L®(Q; RY) and by (3.3) we have

G°(z,u; 9 (u)Op(v)v —u) < Fg(u)In(v)G°(z,u;v —u) +
+(1 — I (u)94(0)G° (2, u; —u) <
< (h+k)Magy () + [G°(z, u; —u)] T .

From (G4) we infer that [G°(z,u; —u)]" € L*(Q) and assertion (a) follows.
(b) Without loss of generality, we may assume that [G°(z,u;v — u)]* € L'(Q). Suppose
first that v € D (£) N L*(Q; RY) and take £ > 0.

We claim that for every z € LP(Q;RY), ¢t €]0,1/2] and h > 1 with hM > ||v]|s, We
have

(39) Gzt —2) - Glz,2)

t

In fact, for a.e. x € Q, by Lebourg’s Theorem (see e.g. [14]) there exist ¢ €]0,¢[ and
u* € 0;G(z,z + t(In(2)v — 2)) such that

G(z,z + t(In(2)v — 2)) — G(=, 2)
t

< 2([[vlloo annr + a1 + bu(|2] + [0])P) -

= u" - (Dh(2)v —2) =

By (3.4) and (3.5), it easily follows that

[Un(2)u” - v|

2 < 2o

On the other hand, from (G4) we deduce that for a.e. z € Q2

ut- (2 + i(’ih;z)v —2)) >~ izG"(x, 2+ U (On(2)v — 2); = (2 + {(In(2)v — 2)) >
> 1 %(al + b1z + t(In(2)v — 2)[P) > =2 (a1 + b1 (|2] + [v])P) .
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Then (3.9) easily follows.
For a.e. x € Q2 we have

G°(z,u; Op(u)v — u) In(u)G°(z,u;v —u) + (1 — Ip(u)G° (2, u; —u) <

<
< [G(m,u;v — uw)]" + [G°(, u; —u)]T.

Furthermore, for a.e. x €  and every s € RY, (G;) implies G°(z, s;-) to be Lipschitz
continuous, so in particular

li}lln G°(z,u; O (u)v — u) = G°(z,u;v — u) a.e. in Q.
Then, given
A > / G°(z,u;v —u)dx,
Q
by Fatou’s Lemma there exists A > 1 such that
(3.10) VYh>h: / G°(z,u;9p(u)v —u)de < A and ||Jx(u)v — ||, < €.
0
By the lower semicontinuity of G, there exists § €]0,1/2] such that for every z € B (u)
it is G(z) > G(u) — £. Then for every (z, u) € By (u, f(u)) Nepi(f) it follows

E(2) S p—G(:) S pt 5 —G(w) < f(u) +5— G(w) + 5 < E(u) +1

Let now o > 0. By assumptions (£;) and (&,.1) there exist h > h and § < § such that
|v]|co < KM,

E(z) > &) —o, EWn(z)v)<&W)+o, |[((z)v—2)—(v—u)|,<e,

for any z € Bs (u) with £(2) < E(u) + 1
Taking into account (2.17), (3.9) and (3.10), we deduce by Fatou’s Lemma that, possibly
reducing §, for any ¢ €]0, 6] and for any z € By (u) we have

/ G(z,z + t(On(2)v — 2)) — G(z, 2) dr <\
Q t

Now let V : (Bs (u, f(u)) Nepi(f)) x]0,d] = B. (v —u) be defined setting

V((z, 1), t) = I(z)v — 2.

Since V is evidently continuous and

f(z+tV((2, p),t)) z+ t(ﬁh(z)v z)) <
+t(EWh(2)v) —E(2)) + Gz + t(In(2)v — 2) <
(E(w) = &) +20)t+G(2) + X\t =
) —

( (
(E(w) —E(u)+ A+ 20)t,

I
S

VANV
n
\N/

N
+ o

(
(
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(
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we have
fPusv—u) <EW)—E(u)+ A+ 20.

By the arbitrariness of o > 0 and A\ > / G°(z,u;v — u) dz, it follows
Q

lusv—u) < E(v) —E(u)+/ﬂG°(m,u;v—u)dm.

Passing to the limit as ¢ — 0%, we get (3.7) when v € D () N L®(Q; RY).
Let us now treat the general case. If we set v, = J,(v)v, we have v, € L®(Q;RY).
Arguing as before, it is easy to see that

G°(z,u;vp, — u) < [G°(x,u;v — u)|t + [G° (2, u; —u)] T,

so that
lim sup/ G°(z,u;vp —u)dx < / G°(z,u;v —u)dz.
h Q Q

On the other hand, by the previous step it holds
fo(usvp —u) < E(vp) — E(u) +/ G°(z,u;vp, — u) dz .
Q
Passing to the lower limit as A~ — oo and taking into account the lower semicontinuity of

f°(u,-) and (&3.2), we get (3.7).
(c) We already know that [G°(z,u; —u)]T € L'(Q). If we choose v = 0 in (3.7), we obtain

f(u;—u) < E(0) — E(u) +/ G°(z,u;—u)dx.
Q
Since 9f (u) # 0, it is f°(u; —u) > —oo, hence
/[Go(x,u; —u)]” dz < 400.
o
Finally, if u* € 0f(u) we have by definition that
fo(usv—u) > / u* - (v—u)dr

Q

and (3.8) follows from (3.7).

(d) From (3.3) it readily follows that G°(z, u; v —u) is summable where |u(z)| < ||v]|c. On
the other hand, where |u(z)| > ||v||« We have

G°(z,u;v —u) = (1 - E) G°(z,u; —u)

u

and the assertion follows from (G4). m

Since f is only lower semicontinuous, we are interested in the verification of the con-
dition (epi).. For this purpose, we consider an assumption (G%) on G stronger than (Gj).

Theorem 3.11 Assume that
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(G%) there exist a € L'(Q) and b € R such that

|G(x,5)| < a(zx)+0bls|]P  forae x€Q and every s € RV .

Then for every (u, A) € epi (f) with A > f(u) it is |dGy| (u, A) = 1. Moreover, if £ and
G(z,-) are even, for every A > f(0) we have |dz,Gf| (0, A) = 1.

Proof. Tet o> 0. Since
vre[0,1]: G°(z,u;7u —u) = (1 — 7)G°(z,u; —u) < [G°(x, u; —u)]*,
by (£2.2) and (G,) there exists h > 1 such that
[Op(u)u—ul, <o,  EWp(u)u) < E(u) + e,
Vh>h: /QGC’ (2, u; O (u)d5(w)u —u)de < p.

Set v = V5 (u)u. B
By (&;.1) there exist A > h and 0 €]0, 1] such that

19n(2)v — 2||, < o, EWn(2)v) < E(u) + o,

whenever ||z —ul|, < d and £(2) <A+ 1—G(u) + o.
By decreasing ¢, from (G%), (3.9) and (2.17) we deduce that

G(2) = G(u)| <o,

/ Gz, 2 +t(In(2)v — 2)) — G(z,2) dr < p

t

whenever ||z —ul|, < ¢ and 0 <t < 4.
Define a continuous map

H:{z€Bsu): f(z2) <A+d}x[0,0] = X

by H(z,t) = z + t(In(z)v — z). It is readily seen that ||H(z,t) — 2|, < ot.
If z€ Bs(u), f(2) <A+6and 0 <t <6, we have

E(z2) =f(2) —G(2) <A+6—-Gu)+ o< A+1—-G(u)+ o,
hence, taking into account the convexity of &,
E(z+t(Wh(z)v—2)) < E(z) + LEWn(z)v) — E(2)) < E(2) +t(E(u) — E(2) + 0) -
Moreover, we also have
Gz +t(Wn(2)v—2)) < G(2) +to < G(2) + t(G(u) — G(z) + 20) .

Therefore
[z +t(Wn(2)v — 2)) < f(2) +t(f(u) — f(2) + 30) -
and the first assertion follows by Corollary 2.11.
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Now assume that £ and G(z,-) are even and that u = 0. Then, in the previous
argument, we have v = 0, so that H(—z,t) = —H(z,t) and the second assertion also
follows. m

Now we want to provide a criterion which helps in the verification of the Palais-Smale
condition. For this purpose, we consider further assumptions on £, which ensure a suitable
coerciveness, and a new condition (GY) on G, stronger than (G4), which is a kind of one-
sided subcritical growth condition.

Theorem 3.12 Let c € R. Assume that

(&3) for every (up) bounded in LP(S2; RN) with (€ (up)) bounded, there exists a subsequence
(un,) and a function u € LP(Q; RY) such that

lim up, (z) = u(z) for a.e. x €2
k—o00

(E4) if (up) is a sequence in LP(S; RY) weakly convergent tou € D (€) and & (up) converges
to E(u), then (up) converges to u strongly in LP(;RYN);

(G') for every € > 0 there exists a. € L'(Q) such that

G°(x,5;—38) < a.(x) +¢ls|P  fora.e. z € Q and every s € RV .

Then any (PS).-sequence (uy) for f bounded in LP($; R™N) admits a subsequence strong-
ly convergent in LP(; RY).

Proof. From (G3) we deduce that (G(up)) is bounded from below. Taking into account
(&1), it follows that (€(up)) is bounded. By (£3) there exists a subsequence, still denoted
by (up), converging weakly in LP(2; RY) and a.e. to some u € D (£).

Given £ > 0, by (&2.2) and (G4) we may find kg > 1 such that

E(Vgy(w)u) < E(u) +¢,
/Q(l — Vg (1)) G (z,u; —u)dr < €.
Since Iy, (u)u € D (E) N L>®(;RYN), by (E,.1) there exists k; > ko such that
(3.13) Vh e N:  E(Ok, (up)Vk, (u)u) < E(u) + ¢,
/Q(l — Dgy () 0k (1)) G (2, u; —u) dzx < €.
It follows that ¥, (up)g, (u)u € D (£). Moreover, from (3.3) and (G))) we get

G°(z, up; Ok, (up) Vg (u)u — up) <
< gy (up) G° (@, up; Vg (w)u — up) + (1 — O, (un))G°(x, up; —up) <
< oy m(x) (koM 4+ ki M) + a.(x) + e|ug|? .

219



From (2.18) and Fatou’s Lemma we deduce that

limsup [ [G®(z, un; Tg, (un) ko (u)u — up) — elunl’] dz <
h—oo JQ

< [ 16 @, s 9, () O (w)s = ) = eful’] do <
< /9(1 Dy () Oy (0))G° (, 05 —u) d < €,

hence
(3.14) limsup [ G°(z, up; Uk, (un)Oro (u)u — up) do < esup |lualh + €.
o h

h—o00
Since (up) is a (PS).sequence, by Theorem 2.16 there exists uj, € 0f (uy) with ||u} ||,y <
|df| (up), so that hlim lluplly = 0. Applying (c) of Theorem 3.6, we get
—00

E (O, (un)Ong (w)u) > € (un) — /QGO(x, Up; Vg, (Uun) Do (w)u — up) do +
—i—/Qu}kL - (9k, (un) Ok (W) u — up) da .

Taking into account (3.13), (3.14) and passing to the upper limit, we obtain
limsup & (up) < E(u) + 2 + esup [Juglfp .
h

h—o0

By the arbitrariness of € > 0, we finally have
limsup &(up) < E(u)

h—o0

and the strong convergence of (u) to u follows from (€4). m

4 Area type functionals

Let n > 2, N > 1, Q be a bounded open subset of R® with Lipschitz boundary and let
¥:R"™W >R

be a convex function satisfying

{ U(0) =0, ¥(&£) > 0 for any £ # 0 and

v
) there exists ¢ > 0 such that ¥(¢) < c[¢] for any £ € R™.

We want to study the functional £ : L#1(Q; RY) — R U {+o0} defined by

( a o Dus S
/\I!(Du )dx—i—/\ll (wus') d|Dw’| (z)+
Q Q
E(u) = +/\If°°(u ®v) dH" (z) if u € BV(; RN),
o0
| +oo if w € La-1(Q; RV)\ BV (Q; RY),
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where Du = Du® dx+ Du® is the Lebesgue decomposition of Du, | Du?| is the total variation
of Du®, Du®/|Du?®| is the Radon-Nikodym derivative of Du® with respect to |Du®|, ¥ is
the recession functional associated with ¥, v is the outer normal to €2 and the trace of u
on 0N is still denoted by u (see e.g. [4, 29]).

Theorem 4.1 The functional £ satisfies conditions (€1), (&), (&) and (&4).

The section will be devoted to the proof of this result. We begin establishing some technical
lemmas. For notions concerning the space BV, such as those of @, S,, u* and u~, we refer
the reader to [2, 3.

In BV (€; R") we will consider the norm

||u||BV:/Q|Du“|dx+ |Du5|(Q)+/m\u|d7{"’1(x),

which is equivalent to the standard norm of BV (; RY).

Lemma 4.2 For every u € BV (Q;RY) and every € > 0 there exists v € C°(Q; RY) such
that

[ 1Dvl dz = |lull v
Q

[ —ull = <e, <e, [EW)-E()l<e, vl < esssuplul.

Proof. Let § > 0, let R > 0 with Q C Bg (0) and let
1
Ip(z) =1 — min {max{h%[l — hd(z,R™\ Q)],O} , 1} .

Define 4 € BV (Bg (0); RY) by

. u(r) ifx e,
“('”):{ 0  ifzeBr(0)\Q.

According to [11, Lemma 7.4 and formula (7.2)], if A is sufficiently large, we have that
Opu € BV (G RY), |[9pu — ul| = < & and

[T+ D) e + D@y’ () <
al?2 n S n—1 —
</Q,/1+\Du| dc +|Du\(Q)+/m|u|d”H +0
=/ J1+|Das2dL® + |Daf| (B (0) + 6.
Br(0)

Moreover, ¥,u has compact support in © and esssup |9,u| < esssup |ul.
Q Q

If we regularize J,u by convolution, we easily get v € C%°(Q; RY) with

|7 00 Sessgup\u\, ||v—u||ﬁ )
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and

1+ [Do[2dL" 1+ |Dae|?dL" + |Da’|(B .
o iiDepact < [ /i [Das dct + |Di| (B (0)) + 6

lullsy = [ |Da?|dz + | Di|(Br (0)).
Br(0)

Since

D
5u=/ U(Da%) da + o (22 ) gipas)
(w) Br(0) (D) BR(0) (IDus\) D

by the results of [45] the assertion follows (see also [4, Fact 3.1]). m

Lemma 4.3 The following facts hold:
(@) ¥ :R™ — R is Lipschitz continuous of some constant Lip(¥) > 0;
(b) for any & € R™ and s € [0, 1] we have ¥ (s€) < s¥(§);

(c) for every o > 0 there exists d, > 0 such that

VEER™ 1 T(E) > dy(€] — 0);

(d) €: BV(;RY) = R is Lipschitz continuous of constant Lip(¥);

(e) if o and d, are as in (c), we have

Yue BV(QRY):  Eu) > do(|ullpy — 0L(Q)) .

Proof. Properties (a) and (b) easily follow from the convexity of ¥ and assumption ().
To prove (c), assume by contradiction that o > 0 and (&) is a sequence with ¥(&,) <
= (|&n| — 0). If 4] — 400, we have eventually

w(g—") < 2&) <1<1—i> .
€l &l A |l
Up to a subsequence, (&,/|&x|) is convergent to some 7 # 0 with ¥(n) < 0, which is
impossible. Since [£,| is bounded, up to a subsequence we have &, — £ with || > o and
U(€) < 0, which is again impossible.

Finally, (d) easily follows from (a) and the definition of || - || gy, while (e) follows from
(c) (see e.g. [37, Lemma 4.1]). m

Let now 9 € CHRY) with 0 <9 < 1, |[|[VY|oo <2, 9(s) =1 for |s] <1 and J(s) =0
for |s| > 2. Define 9;, : RY — R and T}, Ry, : R — RN by

In(s) = 0 (%) L Ta(s) = On(s)s, Ra(s) = (1 — 0a(s))s.
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Lemma 4.4 There exists a constant cy > 0 such that

u

e(v(7)v) < €@+ SFlolaliulay

E(Thou) < E(u)+ cy l|Du\({x € Q\ S, : |u(z)| > h}) +

/ ut — [ dH (o) + uldH (@) |
{z€Sy:lut(z)|>h or [u=(z)|>h} {zxed:|u(z)|>h}
S(Thow)+E(Rhow)§5(w)+Cq,/ |Dw| dx
{ze:h<|w(x)|<2h}

whenever h > 1, u € BV (Q;RY), v € BV(Q;RY) N L>®(Q; RY) and w € C(Q; RY).

Proof. Suppose first that u,v € C°(2; RY). Then, since

oo (3] =0 () 2+ v [oo(2) o]

by (¥) and Lemma 4.3 it follows that

(4.5) £ (19 (%) v) < &)+ Lip(@)%”v”w /Q \Du| da .

In the general case, let us consider two sequences (ug), (vg) in C2°(Q; RY) converging to
u,v in L'(Q;RY) with [, |Dug|dz — |Jullsyv, €(vk) — €(v) and ||vg]lec < ||v]]eo- Passing

to the lower limit in (4.5), we obtain the first inequality in the assertion.
To prove the second inequality, we first observe that by Lemma 4.3 we have

(4.6) E(Ty ou) < E(u) + Lip(V)|| Ry, o ul| gy -

In order to estimate the last term in (4.6), we apply the chain rule of [2, 49]. Since
Rp(s) =0if |s| < h and ||DRp|| < kg for some ky > 0, we have

| \D(En@)de < [ \DRA(@)][Du?| do < ko [ Duf| dx,
Q Q\Sy {z€Q\Sy:|a(z)|>h}

DRy ()"

@) < [, IPEA@|dIDwl(r) + [ [Ra*) = Bau)] aH™ (@) <

< ko(|Du?| ({z € Q\ S, : |i(z)| > h}) +/

{z€Su:|ut(2)|>h or [u~(z)|>h}

ut —u [ dH™ ()

and

/a | Ra(u)| dH(z) < ko u| dH™ 1 (z) .

{zed:|u(z)|>h}

Combining these three estimates, we get

4.7) ||Rp o u <k / Du®|dx + |Du’|({x € Q\ S, : |u(x)| > h})+
A Rl < bo([ D] (D € QS i) > 1)
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lut —u [ dH™ (z) + lul d%”l(x)> :

! J
{zx€Sy:lut(z)|>h or |u—(z)|>h} {zxed:|u(z)|>h}

Then the second inequality follows from (4.6) and (4.7).
Again, since W is Lipschitz continuous, we have

< ——= [ 1Dd{—|D <
< h /Q 9 ) Dw lw|dzx <

D(T}, o w)) dz — /Q U (9, (w) Dw) dz

< 2Lip(®)|| V9 oo/ Duw|dz .
< 2LVl [, [Dulds
In a similar way, it is also
[ 9(DEow)dz — [ B((1 = 9,(w))Dw) dx‘ < 2Lip(W) [Vl [ \Dw|dz .
Q Q {h<|w|<2h}

Hence, combining the last two estimates and taking into account (b) of Lemma 4.3, we get
/ U(D(T} o w)) dz + / U(D(Ry o w)) dz <
Q Q

< / U(Dw) dz + 4Lip(\Il)||V19||oo/ \Duw)| dz
Q {h<|w|<2h}

and the proof is complete. m

Lemma 4.8 Let (uy) be a sequence in C°(Q;RY) and assume that (uy) is bounded in
BV (; RY). B B
Then for every € > 0 and every k € N there ezists k > k such that

lim inf / |Duyp|dx < €.
h—00
{k<|up|<2k}

Proof. Let m > 1 be such that

sup/ | Duy,| dx < me

and let 4y € N with 2% > k. Then, since

io+m—1

> / |Duh|dm</ \Duh\daj<
{2i<|up|<2it1}

=10

there exists 75, between 73 and 79 +m — 1 such that

£
Duy|dx < —.
/{Zih <Jup|<2int1} | h| =9

Passing to a subsequence (ihj), we can suppose iy, =1 > ig, and setting k = 2! we get
. €
vieN: [ |Duyldv<:.
{k< \uh]. |<2k}

Then the assertion follows. m
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Lemma 4.9 Let (uy) be a sequence in CP(;RY) and let v € BV (Q;RY) with ||uy, —
ully = 0 and E(up) — £(u). B B
Then for every € > 0 and every k € N there exists k > k such that

lim inf || Ry o us||py < €.
h—o0

Proof. Given € > 0, let d > 0 be such that

veer™: w(© 24~ 5 )

according to Lemma 4.3. Let also cg > 0 be as in Lemma 4.4. By (4.7) and Lemma 4.8,
there exists k > k such that

de
R -
|| k o u”BV < 3L1p(\11) ?
lim inf / Duy| dz < E
1m in Uu X - .
h—o0 h 36\1,

{k<|up| <2k}

From Lemma 4.4 we deduce that
E(Tyou)+ 1i}fr_l)io£1fg(Rk oup) < li’{g(i)glfg(Tk ouy) + li’{r_l)iolgfg(Rk ouy) <

< liminf(€(Ty 0 un) + E(Ry o un)) <

IN

E(u) + cy liffn inf / | Duy| dx <
—00
{k<|un|<2k}

d d
E(u) + 5 < E(Tou) + Lip(W) | R o ullsy + 5 <

A\

2
< g(Tk ou) + gdé‘,
whence 9
h}{I_l)g}lfS(Rk ouyp) < gds :
On the other hand, by Lemma 4.3 we have

3

E(Reoup) > d (||Rk o upl[ gy — 5)

and the assertion follows. m

Now we can prove the main auxiliary result we need for the proof of Theorem 4.1. It
is a property of the space BV which could be interesting also in itself.

Theorem 4.10 Let (uy) be a sequence in BV (Q; RY) and let w € BV (Q; RYN) with ||up, —
ully = 0 and E(up) — E(u).
Then (uy,) is strongly convergent to u in L»—1(Q; RY).
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Proof. By Lemma 4.2 we may find v, € C>°(; RY) with

1 1 1
lon —unlly <55 llon = unll 2 <5 1€(n) = E(un)| < 7.

Therefore it is sufficent to treat the case in which u, € C®(Q; RY).
By contradiction, up to a subsequence we may assume that there exists € > 0 such that
|lun —ul|_=. > . Let ¢ be a constant such that ||w||_»_ < é||w||py for any w € BV (Q;RY)

(see [24, Theorem 1.28]). According to Lemma 4.9, let £ € N be such that

€ - I €
| By 0 uf| = < 3 h’{r_l)ér.}fHRk oup||.= < é 11}{13)(1)101f||Rk oup|lpv < 3"
Then we have
(4.11) lun — ull o <||[Rgoup|l o+ ||Thoup — Ty oull o+ ||Rpoull = .

Since Ty o up — Ty o in La-1(; RN) as h — oo, passing to the lower limit in (4.11) we
get
liminf ||up — ul| = <e,
h—00 n—1

whence a contradiction. m

Proof of Theorem 4.1. It is well known that £ satisfies condition (&;). Conditions (&) are
an immediate consequence of Lemma 4.4. From (e) of Lemma 4.3 and Rellich’s Theorem
(see [24, Theorem 1.19]) it follows that & satisfies condition (£3). To prove (&), let (uy) be
a sequence in L#-1 (2; R") weakly convergent to . € BV (Q; R") such that & (uy) converges
to £(u). Again by (e) of Lemma 4.3 and Rellich’s Theorem we deduce that (uy) is strongly
convergent to u in L'(Q; RY). Then the assertion follows from Theorem 4.10. m

5 A result of Clark type

Let n > 2 and € be a bounded open subset of R with Lipschitz boundary, let ¥ : R*™Y —
R be an even convex function satisfying (¥) and let G : Q@ x RY¥ — R be a function
satisfying (G1), (G2), (G3), (G}) with p = -2+ and the following conditions:

(5.1 there exist @ € L'(Q) and b € L"() such that
' G(z,s) > —a(z) —b(z)|s|  for a.e. z € Q and every s € RV;
(5.2) lim Gz, s) = 400 for a.e. z € Q;
|s]—o00 |S|
(5.3) {s —> G(z,s)} is even for a.e. z € ().

Finally, define £ as in Section 4. The main result of this section is:
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Theorem 5.4 For every k € N there exists Ay such that for any A > Ay the problem
u € BV(; RY)

S(U)—S(u)-l-/QGO(x,u;v—u)dx2)\/ (v—u)dx Vv € BV(Q;RYN)

,/1—i—|u|2

admits at least k pairs (u, —u) of distinct solutions.
For the proof we need the following

Lemma 5.5 Let (up,) be a bounded sequence in L7 (Q; RYN), which is convergent a.e. to
u, and let (og) be a positively divergent sequence of real numbers.
Then we have

lim/ Mdm=+oo ifu##0,
hJa On

liminf/ G(@:entin) 405 ifu—0.
h Q On

Proof. If u = 0, the assertion follows directly from (5.1). If u # 0, we have

1 ~
/dez de__/ &dx_/ blun| da
Q On {u#0} Oh {u=0} {u=0}

From (5.1), (5.2) and Fatou’s Lemma, we deduce that

lim G($, Qhuh)

dxr = +o00,
h J{uz0} On

whence the assertion. m

Proof of Theorem 5.4. First of all, set

G(z,s) = G(z,s) — AM(y/1+|s]2—1).

It is easy to see that also G satisfies (G1), (G2), (G%), (GY), (5.1), (5.2), (5.3) and that

S N

Now define a lower semicontinuous functional f : L#-1(€; RY) — R U {400} by

G°(z,5;8) = G°(z,5;8) — A

f(u) =E(u) +/ G(x,u)dz.
Q
Then f is even by (5.3) and satisfies condition (epi). by Theorem 3.11. We claim that

(5.6) lim  f(u) = +o0.

l[ull _np —o0
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To prove it, let (us) be a sequence in BV (Q; RY) with [[up|| o =1 and let g, — +o0. By
(e) of Lemma 4.3 there exist ¢ > 0 and d > 0 such that

Yue BV(QRY) . E(u) > d(|lullsy — EL7(Q)) .

If ||upl|py — +o0, it readily follows from (5.1) that f(gpup) — +00. Otherwise, up to a
subsequence, uy, is convergent a.e. and the assertion follows from the previous Lemma and
the inequality

(lallav = Seri@)) + [ CE0) q0]

f(onun) > on
On

Since f is bounded below on bounded subsets of L#=1(Q;RY), it follows from (5.6)
that f is bounded below on all L#1 (€; R"); furthermore, it also turns out from (5.6) that
any (PS). sequence is bounded, hence f satisfies (PS). by Theorem 3.12.

Finally, let £ > 1, let wy, ..., wy be linearly independent elements of BV (Q; RY) and
let ¢ : S¥=1 — L7 1(Q; RYN) be the odd continuous map defined by

k
Y(E) = Z §w; -

Because of (G%), it is easily seen that
3

sup {g(u) + [ Gl ue w(sk—l)} < 400

inf{/ﬂ(,/u a2 —1)dz:ue w(s’“)} >0,

Therefore there exists Ay > 0 such that sup f(¥(§)) < 0 whenever A > Aj.
gesk—l
Applying Theorem 2.12, it follows that f admits at least k pairs (uy, —ug) of critical
points. Therefore, by Theorem 2.16, for any wuy it is possible to apply Theorem 3.6 (with

G instead of @), whence the assertion. m

and

6 A superlinear potential

Let n > 2 and € be a bounded open subset of R with Lipschitz boundary, let ¥ : R*™Y —
R be an even convex function satisfying (¥) and let G : Q2 x R¥ — R be a function
satisfying (G1), (G2), (G%), (GY), (5.3) with p = - and the following condition:
(6.1 there exist ¢ > 1 and R > 0 such that

' G°(z,s;8) < qG(x,s) <0 for a.e. z € Q and every s € RY with [s| > R.
Define £ as in section 4 and an even lower semicontinuous functional f : L#-1(Q;R") —
R U {+00} by

f(u) :5(u)+/QG(x,u) dz .
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Theorem 6.2 There ezists a sequence (uy) of solutions of the problem
u € BV (Q;RM)
E(w) — E(u) +/QG°(x,u;v —u)dz >0 VYoe BV(Q;RY)

with f(up) — +oo.

Proof. According to (3.3), we have

Is|] <R = |G°(z,s;9)| < ag(z)|s|.
Combining this fact with (6.1) and (G%), we deduce that there exists ap € L'(€2) such that
(6.3) G°(z, s;s) < qG(z, s) + ag(x) for a.e. z € Q and every s € RV .

Moreover, from (6.1) and Lebourg’s Theorem [14] it follows that for every s € RY with
|s| = 1 the function {t — t7?G(x,ts)} is nonincreasing on [R,+oo[. Taking into account
(G%) and possibly substituting ag with another function in L!(Q), we deduce that

(6.4) G(z,s) < ag(x) — bo(z)|s|?  for a.e. z € Q and every s € RV,

where

bo(z) = inf (~R 'G(z,Rs)) >0  forae. z€Q.

js]=1

Finally, since {§ — G°(z,s;8)} is a convex function vanishing at the origin, we have
G°(z,s;s) > —G°(z, s;—s). Combining (6.3) with (G’), we deduce that for every € > 0
there exists a. € L'(Q) such that

(6.5) G(z,s) > —a.(z) —els|n 1 for a.e. z € Q and every s € RV.

By Theorem 3.11 we have that f satisfies (epi). for any ¢ € R and that |dz,Gs| (0,A) =1
for any A > f(0).
We also recall that, since ¥ is Lipschitz continuous, there exists M € R such that

(66) (a+1)%(e) ~ w(26) > L2 w(e) - M,

(6.7) (0 + 1)W() — w2(26) > T Lu(e)

(see also [36]).

We claim that f satifies the condition (PS). for every ¢ € R. Let (up) be a (PS),.-
sequence for f. By Theorem 2.16 there exists a sequence (u}) in L™(Q;RY) with u} €
Of (up) and ||u}||, — 0. According to Theorem 3.6 and (6.3), we have

E(2uy) > S(uh)—/QG"(a:,uh;uh)da:—i-/QuZ-uhdx2

> S(Uh)—q/gG(a:,u,de%—/gu}:-uhda:—/ﬂao(x)d:r.
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By the definition of f, it follows

qf (un) + [[wpllnllunll 25 + /an(fﬂ) dz 2 (¢ + 1)€ (un) — E(2un) -
Finally, applying (6.6) and (6.7) we get

qf (un) + ([ lInlfunll 27 +/ ag(r) dz > ng(uh) ML Q).

By (e) of Lemma 4.3 we deduce that (us) is bounded in BV (Q; R"), hence in L7 (Q; RY).
Applying Theorem 3.12 we get that (u;) admits a strongly convergent subsequence and
(PS), follows.

By [36, Lemma 3.8], there exist a strictly increasing sequence (W},) of finite-dimensional
subspaces of BV (; RY) N L>®(Q;RY) and a strictly decreasing sequence (Z3,) of closed

subspaces of L#-1(€; R") such that La-1(Q;RY) = W), ® Z, and N Z, = {0}. By (e) of
h=0
Lemma 4.3 there exists o > 0 such that

Yu € L+1(Q;RY) : Jul| 2. =0 = €&E(u)>1.

We claim that
liin(inf{f(u) tu € Zn, |ull 2, = o}) > £(0).

Actually, assume by contradiction that (u) is a sequence with up € Zp, |lup||_=. = 0 and
limsup f(un) < f(0).
h

Taking into account (G%) and Lemma 4.3, we deduce that (€(up)) is bounded, so that (up)
is bounded in BV (Q; RY). Therefore, up to a subsequence, (u) is convergent a.e. to 0.
From (6.5) it follows that

l1m1nf/ (2, up) + e|up| 71 1 da:>/G:c 0) dz

hence
liminf/ G(z,up) dxz/G(a:,O) dx
h Q Q

by the boundedness of (uy) in L7 (Q; RY) and the arbitrariness of e. Therefore

limsup&(up) < £(0) =
h

which contradicts the choice of p.
Now, fix h with

inf{f(u) : u € Zg, [[ull =, = o}) > f(0)

and set Z = Z; and V;, = W5,,. Then Z satisfies assumption (a) of Theorem 2.13 for
some « > f(0).
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Finally, since V}, is finite-dimensional,

lull == (/Q bo\u|qu)q

is a norm on V}, equivalent to the norm of BV (Q; R"). Then, combining (6.4) with (d) of
Lemma 4.3, we see that also assumption (b) of Theorem 2.13 is satisfied.

Therefore there exists a sequence (uy) of critical points for f with f(uy) — 400 and,
by Theorems 2.16 and 3.6, the result follows. m
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Abstract

We study a symmetric nonlinear eigenvalue problem arising in earthquake
initiation and we establish the existence of infinitely many solutions. Under
the effect of an arbitrary perturbation, we prove that the number of solutions
becomes greater and greater if the perturbation tends to zero with respect to
a prescribed topology. Our approach is based on non-smooth critical point
theories in the sense of De Giorgi and Degiovanni.

Keywords: nonlinear eigenvalue problem, Lusternik-Schnirelmann theory,
symmetry, perturbation, earthquake initiation.
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86A17.

1 Introduction

The minimax method has been used intensively in constructing critical points for
functionals defined on Hilbert or Banach spaces as solutions of nonlinear partial dif-
ferential equations or boundary value problems for inequality problems. In particular,
when the problems possess symmetry, one can construct multiple critical points by
the minimax method. This is the general Lusternik-Schnirelmann type theory (see
(2,18, 19, 21, 23, 25]). When an order structure is present, one can also use fixed point
theory, topological degree arguments or variational methods to construct solutions of
differential equations or variational inequalities (see [1, 6, 7, 12, 14]). However, little
work has been done for invariant energy functionals under group actions when one
expects to obtain multiplicity of critical points.

The main purpose of this paper is to consider a concrete nonlinear eigenvalue
variational inequality arising in earthquake initiation and to establish, in the setting
of the non-smooth Lusternik-Schnirelmann theory, the existence of infinitely many
solutions. The main novelty in our framework is the presence of the convex cone of
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functions with non-negative jump across an internal boundary which is composed of
a finite number of bounded connected arcs.

Under some natural assumptions, we prove the existence of infinitely many so-
lutions, as well as further properties of eigensolutions and eigenvalues. Since the
associated energy functional is included neither in the theory of monotone operators,
nor in their Lipschitz perturbations, we employ the notion of lower subdifferential
which is originally due to De Giorgi.

Next, we are concerned with the study of the effect of a small non-symmetric
perturbation and we prove that the number of solutions of the perturbed problem
becomes greater and greater if the perturbation tends to zero with respect to an
appropriate topology. Our proof relies on powerful methods from algebraic topology
developed in Krasnoselski [18] combined with adequate tools in the sense of the
Degiovanni non-smooth critical point theory (see [8, 12, 13]).

2 Physical motivation

Consider, as in [3, 5, 10, 16, 27|, the anti-plane shearing on a system of finite faults
under a slip-dependent friction in an homogeneous linear elastic domain . Let  C R?
be a domain, not necessarily bounded, containing a finite number of cuts. Its bound-
ary 0f) is supposed to be smooth and divided into two disjoint parts: the exterior
boundary I'; = 02 and the internal one I' composed by N 7 bounded connected arcs

},z’ = 1,.., Ny, called cracks or faults. We suppose that the displacement field is
0 in directions Oz and Oy and that u, does not depend on z. The displacement is
therefore denoted simply by w = w(t, z, y). The elastic medium has the shear rigidity
G, the density p and the shear velocity ¢ = /G/p. The non-vanishing shear stress
components are 0., = 7,° + Goyw, 0,y = 7,° + GOyw, and 04y = 0y = =S5 (S>0
is the normal stress on the fault plane). We look for w : R, x £ — R solution of the
wave equation :

Opw(t) = FAw(t) in €, (1)
with the boundary condition :
w(t) =0 on [y, (2)

On T" we denote by [ | the jump across T, (i.e. [w] = w" —w™) and by 9, =V -n
the corresponding normal derivative with the unit normal n outwards the positive

side. On the contact zone I' we have [0,w] = 0 and a slip dependent friction law
(introduced in the geophysical context of earthquakes modelling) is assumed :

GOpw(t) = —pu(|[w(®)]])Ssign([Gw(t)]) — ¢, if [ (t)] #0, (3)

|GOw(t) +q| < p([lw®)]))S if Gfw(t)] =0, (4)

where ¢ = 7;°n; + 7,°n,. The initial conditions are

w(0) =wg, Ow(0)=w; in Q. (5)
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Any solution of the above problem let satisfies the following variational problem (VP):
find w : [0,T7] — V such that

/Q éaﬁt“’(t) (v = dw(t) dx + /Q Vu(t) - V(v — duw(t)) dz + (6)
S

[ @Bl - D] do > [ Zol@l - Do) do

for all v € V', where
V={ve H(Q)/v=0 on 'y} (7)

The main difficulty in the study of the above evolution variational inequality is the
non-monotone dependence of i with respect to the slip |[w]|. However, in modelling
unstable phenomena, as earthquakes, we have to expect “bad” mathematical prop-
erties of the operators involved in the abstract problem. The existence of a solution
w of the following regularity

w e WhH®(0,T, V)N W?>>(0,T, L*(Q)). (8)

in the two-dimensional case was recently proved by Ionescu et al. [17]. The uniqueness
was obtained only in the one-dimensional case.

Since our intention is to study the evolution of the elastic system near an unstable
equilibrium position, we shall suppose that ¢ = 1(0)S. We remark that w = 0 is an
equilibrium solution of (6), and wy, w; may be considered as small perturbations of
it.

For simplicity, let us assume in the following that the friction law is homogeneous
on the fault plane having the form of a piecewise linear function (see [24]) :

i MHs — Hd
2D,

where u is the relative slip, us and pg (s > pq) are the static and dynamic friction
coefficients, and D, is the critical slip. This piecewise linear function is a reasonable
approximation of the experimental observations reported by [22]. Since the initial
perturbation (wg,w;) of the equilibrium (w = 0) is small we have [w(¢,z))] < 2D,
for t € [0,T,] for all z € T', where T, is a critical time for which the slip on the fault
reaches the critical value 2D, at least at one point. Hence for a first period [0, 7],
called the initiation phase, we deal with a linear function .

pu(z,u) = ps w if u<2D,, p(zr,u) = pg if u>2D,, 9)

Our aim is to analyze the evolution of the perturbation during this initial phase.
That is why we are interested in the existence of solutions of the type

w(t, ) = sinh(|A|ct)u(x), w(t,z) = sin(|\|ct)u(z) (10)

during the initiation phase ¢ € [0,7,]. If we put the above expression in (6) and we
have in mind that from (9) we have u(s) = ps — (s — q)/(2D.)s then we deduce
that (u, A?) is the solution of the nonlinear eigenvalue problem

find v € K and A\? € R such that
/ Vu-V(v—u)dr— B/[u] [v — u]do + \° / u(v —u)dz >0, (11)
" T Q
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for all v € K, where K is the convex closed cone centered at the origin
K={veV; vJ>0onTl}

and 8 = (us — pa)S/(2D.G) > 0. The first type of solution from (10) has an
exponential growth in time and corresponds to A > 0. The second one has the same
amplitude during the initiation phase and corresponds to A\? < 0.

The nonlinear eigenvalue problem (11) can be written as classical eigenvalue for
the Laplace operator with Signorini-type boundary conditions :

find u: 2 — R and A\? € R such that
Au = Ny in ), u=0 on I, (12)
[Opu] =0, [u] >0, Opu>0, [u](Ou— Blu]) =0 on T. (13)

The linear case, that is equation (12) with the boundary condition
[Opu] =0, Oyu— Blul=0 on T, (14)

was analyzed in [9]. For bounded domains, they proved that the spectrum of (12),(14)
consists of a decreasing and unbounded sequence of eigenvalues. The greatest one,
A2, which may be positive, is showed to be an increasing function of the friction
parameter 3. Let us remark that if u is a solution of (12), (14) and [u] > 0 on I’
then u is a solution for (12), (13) too. For co-linear faults the first eigenfunction wuy,
corresponding to A} was found in numerical computations to be positive on I'; (see
[9, 10]), hence the linear case was sufficient to give a good model for the initiation of
instabilities. If the faults are not co-linear, then this condition is not anymore satis-
fied, that is the first eigenfunction of the linear problem has no physical significance.
Hence, in modelling initiation of friction instabilities only the non-linear eigenvalue
problem has to be considered. As it was reported in [28], where the case of two par-
allel faults was analyzed, there exits an important gap between the first eigenvalues
of the linear and nonlinear problems.

3 The main results

Let Q be a smooth, bounded open set in RY (N > 2) as in the preceding section,
that is, containing a finite number of cuts. The internal boundary is denoted by I"

and the exterior one by I'y. Denote by || - || the norm in the space V, as defined in
(7), and by Aq : L*(Q) — L*(Q)* and A; : V — V* the duality isomorphisms defined
by

Aou(v) = / uvdz, for any u,v € L*(Q)
0

and
Au(v) = / Vu - Vudz, for any u,v € V.
Q

In order to reformulate our problem, consider the Lipschitz map v = 1017 :
V — L*T), where n : V — H'Y2(T') is the trace operator, n(v) = [v] on T' and
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i: HY*(') — L*(I) is the embedding operator. Then the space L?(I') is compactly
embedded in V' through the operator y (see [15]).
Thus problem (11) can be written, equivalently,

find v € K and A\? € R such that
[vu-o-wds+ [ ow@)ineE) - @@)dr )

r
)\2/ u(v —u)dr >0, YveK,
Q
where
j:R—>R j(t):—§t2

and j'(- ; -) stands for the Gateaux directional derivative.

Due to the homogeneity of (15), we can reformulate this problem in terms of a
constrained inequality problem as follows. For any fixed » > 0, set

M:{UGV; /qua::r2}.
Q

Then M is a smooth manifold in the Hilbert space V. We shall study the problem
find w € K N M and \? € R such that
[ vue Vo —wds+ [ 7 G@@)aeE) - w@dr g
)\2/Qu(?) —u)dx >0, Yve K.

Our multiplicity result is

Theorem 3.1. Problem (16) has infinitely many solutions (u, \*) and the set of
eigenvalues {\?} is bounded from above and its infimum equals to —oo. Let \3 =
sup{A\?}. Then there exists uy such that (ug, \3) is a solution of (16). Moreover the
function 8 —— N(B) is convex and the following inequality holds

/ |Vo|? dz + N5 (B) / v? dx > ﬁ/[v]2 do, YveEK. (17)
0 0 r

Next, we study the effect of an arbitrary perturbation in problem (15). More
precisely, we consider the problem

find u. € K and A\? € R such that
[ Vo —udds+ [ (o) (el ele) — sule) dor g

r

/\3/ us(v —u.)dx >0, Vv € K,
"

where ¢ > 0 and ¢ : R — R is a continuous function with no symmetry hypothesis,
but satisfying the growth assumption

2(N -1
da>0,32<p< % such that |g(¢)| < a(1+[tP) , if N > 3;

— (19)
da >0, 32 < p < 400 such that [g(¢)| < a(l + [t[P) , if N =2.
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We prove that the number of solutions of problem (18) becomes greater and
greater if the perturbation “tends” to zero. This is a very natural phenomenon that
occurs often in concrete situations. We illustrate it with the following elementary
example: consider on the real axis the equation sinz = 1/2. This is a “symmetric”
problem (due to the periodicity) with infinitely many solutions. Let us now consider
an arbitrary non-symmetric “small” perturbation of the above equation, say sinz =
1/2 + ex®. This equation has finitely many solutions, for any € # 0. However, the
number of solutions of the perturbed equation tends to infinity is the perturbation
(that is, |¢|) becomes smaller and smaller.

More precisely, we have

Theorem 3.2. For every positive integer n, there exists €, > 0 such that problem
(18) has at least n distinct solutions (u.,\2) if € < €,. There exists and is finite
A2, = sup{A\?} and there exists ug. such that (uoe, \2.) is a solution of (18). Moreover,
A3, converges to A3 as € tends to 0, where A} was defined in Theorem 3.1.

4 Auxiliary results

Several times in this paper we shall apply the following basic embedding inequality:

Proposition 4.1. (Lemma 5.1 in [15]). Let 2 < a < 2(N —1)/(N—-2) if N > 3
and 2 < a < +00 if N =2. Then for B =[(a —2)N +2]/(2a) if N >3 or if N =2
and o =2 and for all (o —1)/a < B <1 if N =2 and a > 2, there exists C = C(B)
such that

l/a (1-B)/2 B2
(/ \[u]\”‘da) <C </ uzdx) (/ |Vu\2dx> , for any uwe V. (20)
r Q Q

An important role in our arguments in order to locate the solution of (16) will be
played by the indicator function of M, that is,

L ={0 o ifueM
M T 400, ifueV\ M.

Then I, is lower semicontinuous. However, since the natural energy functional as-
sociated to problem (16) is neither smooth nor convex, it is necessary to introduce
a more general concept of gradient. We shall emply the following notion of lower
subdifferential which is due to De Giorgi, Marino and Tosques [11]. The following
definition agrees with the corresponding notions of gradient and critical point in the
sense of Fréchet (for C' mappings), Clarke (for locally Lipschitz functionals) or in
the sense of the convex analysis.

Definition 4.2. Let X be a Banach space and let f : X — RU{+oc} be an arbitrary
proper functional. Let x € D(f). The gradient of f at x is the (possibly empty) set

v ly — |
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An element £ € 0~ f(x) is called a lower subdifferential of f at x.

Accordingly, we say that x € D(f) is a critical (lower stationary) point of f if
0€0 f(x).

Then 0~ f(z) is a convex set. If 97 f(z) # () we denote by grad™ f(z) the element
of minimal norm of 0~ f(z), that is,

grad™ f(z) = min{[|¢][x-; £ € 07 f(x)}.

This notion plays a central role in the statement of our basic compactness condition.

Definition 4.3. Let f : X — RU {+oc} be an arbitrary functional. We say that
(zn) C D(f) is a Palais-Smale sequence if

sup | f(zn)| < 400 and lim grad™ f(z,) = 0.

n—0o0

The functional f is said to satisfy the Palais-Smale condition provided that any Palais-
Smale sequence is relatively compact.

Remark 4.4. (i) Definition 4.2 implies that if g : X — R is Fréchet differentiable
and f: X = RU{+oc} is an arbitrary proper function then

T (f+9)(z)={+7d(z); €0 fla)},

for any x € D(f).
(i1) Similary, if f : X — RU{+o0} is an arbitrary proper functional and g : X —
R U {400} is proper, conver and lower semicontinuous then

O (f+9)@) ={¢+4(@); £ €0 fa)},
for any = € D(f) N D(g).
As established in [7],
0 Iny(u) = {\Apu; N € R} C L*(Q)* cV*,  forany ue M. (21)

In the proof of Theorems 3.1 and 3.2 we shall use several auxiliary notions and
properties. For the convenience of the reader we recall them in what follows. For
further details and proofs we refer to [12, 19, 21, 23, 26].

A topological space X is said to be contractible if the identity of X is homotopical
to a constant map, that is, there exists uy € X and a continuous map F : X x[0,1] —
X such that

F(-,0)=Idx and  F(-,1) = uy.

A subset M of X is said to be contractible in X if there exists ug € X and a continuous
map F': M x [0,1] — X such that

F(-,0)=1dy and F(-,1) = uy.
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If A is a subset of X, we define the category of A in X as follows:

Catx(A) =0, if A=40.

Catx(A) =n, if nis the smallest integer such that A can be covered by n closed
sets which are contractible in X.

Catx(A) = 400, otherwise.

Some basic properties of the notion of category are summarized in

Proposition 4.5. The following properties hold true:

(i) If AC B C X, then Catx(A) < Catx(B).

(it) Catx (AU B) < Catx(A) + Catx(B)

(11i) Let h : A x [0,1] — X be a continuous mapping such that h(z,0) = x for
every ¢ € A. If A is closed and B = h(A, 1), then Catx(A) < Catx(B)

Let (X, d) be a metric space. Consider h : X — RU{+00} an arbitrary functional
and set, as usually, D(h) := {u € X; h(u) < +00}. We recall the following definitions
which are due essentially to De Giorgi (see, e.g., De Giorgi, Marino and Tosques [11]).

Definition 4.6. (i) For u € D(h) and p > 0, let h,(p) = inf{h(v); d(v,u) < p}.
Then the number —D_ h,(0) is called the slope of h at u, where D, denotes the right
lower derivative.

(i1) Let I C R be an arbitrary non-trivial interval and consider a curve U : I — X.
We say that U is a curve of mazimal slope for h if the following properties hold true:
- U is continuous;

—hoU(t) < +oo, foranyt € I;
—d(U(t2), U(t1)) < ;12 (D hu (0)]2dt: for any t1, ta € I, 11 <ty;
~hoU(ts) —hoU(t) < — [ [Dihy(0)]” dt, for any ti, ts € I, ty < t,.

In what follows, X denotes a metric space, A is a subset of X and ¢ stands for
the inclusion map of A in X.

Definition 4.7. (i) A map r : X — A is said to be a retraction if it is continuous,
surjective and rio = Id.

(ii) A retraction r is called a strong deformation retraction provided that there
exists a homotopy ¢ : X x [0,1] = X of i or and Idx which satisfies the additional
condition ((z,t) = ((x,0), for any (z,t) € A x [0,1].

(15i) The metric space X is said to be weakly locally contractible, if for everyu € X
there exists a neighbourhood U of u contractible in X .

For every a € R, denote

f*={ue X: f(u) <a},

where f: X — R is a continuous function.

242



Definition 4.8. (i) Let a,b € R with a < b. The pair (f°, f®) is said to be trivial
provided that, for every neighbourhood [a',a"] of a and [V, "] of b, there exists some
closed sets A and B such that f“' CAC f“”, fb' C B C fb" and such that A is a
strong deformation retraction of B.

(ii) A real number c is an essential value of f provided that, for every e > 0 there
ezists a,b € (c — &, ¢+ €) with a < b such that the pair (f°, f*) is not trivial.

The following property of essential values is due to Degiovanni and Lancelotti (see
[12], Theorem 2.6).

Proposition 4.9. Let ¢ be an essential value of f. Then for every e > 0 there exists
0 > 0 such that every continuous function g : X — R with

sup{lg(u) = f(u)| v € X} <4
admits an essential value in (¢ — €,c+ ¢€).
For every n > 1, define
I,={ScS; ScF~yS)>n},

where F is the class of closed symmetric subsets of the sphere S, of radius r in a
certain Banach space and v(S) represents the Krasnoselski genus of S € T',,, that is,
the smallest £ € NU {+o0} for which there exists a continuous and odd map from S
into R* \ {0}.

5 Proof of Theorem 3.1

Define
E=F+G:V = RU{+o0},

where .

- 2 if K

Flu) = Z/Q\Vu\ dz if ue

400 , ifug K

and
B 2
Glu) = -5 Fh(u(év))] do

Then E + I, is lower semicontinuous.
The following auxiliary result shows that E'+ I, is the canonical energy functional
associated to problem (16).

Proposition 5.1. If (u, \?) is a solution of problem (16) then 0 € 0~ (E + I1)(u).
Conversely, let u be a critical point of E + Ips and denote \> = —2E(u)r=2. Then
(u, A?) is a solution of problem (16).

243



Proof. Let (u, A?) be a solution of problem (16). So, by the definition of the lower
subdifferential,
~Nu € 07 E(u). (22)

On the other hand,
0 (E+Iy)(u) =0 E(u)+ 0 Iy(u), for any uw e KN M. (23)

So, by (21) and (22), 0 € 0~ (E + Ip)(u).

Conversely, let 0 € O~ (E + I37)(u). Thus, by (21) and (23), there exists \? € R
such that (u, A\?) is a solution of problem (16). If we put v = 0 in (16) then we deduce
A?r? < —2E(u) and for v = 2u we get A?r? > —2E(u), that is \? = —2E(u)r 2. =

The above result reduces our study to finding the critical points of £ + I;. In
order to estimate the number of lower stationary points of this functional we shall
apply a non-smooth version of the Lusternik-Schnirelmann theorem. For this purpose
we need some preliminary results.

We first observe that a direct argument combined with Proposition 5.1 shows that
problem (16) has at least one solution. Indeed, the associated energy functional is
bounded from below. This follows directly by our basic inequality (20) since

1 1
(B + L) (u) > 5 lull® = 1B - M[ullfaqy > 5 lull® = C llull > Co, (24)

for any u € V. So, by standard minimization arguments based on the compactness
of the embedding i o : V — L?(T") we deduce that there exists a global minimum
point ug € KN M of E+ Ip;. Let A2 = —2F(ug)/r?. Hence 0 € 0~ (E + Is)(uo) and
(ug, A2) is a solution of problem (16). Since for any eigenvalue A\? there exists u € K
such that A2 = —2F(u)r~2 we deduce that A2 = sup{\?}.

The next step in our proof consists in showing that

Proposition 5.2. The functional E + I, satisfies the Palais-Smale condition.

Proof. Let (uy,) be an arbitrary Palais-Smale sequence of E + I;. So, by (24),
(uy) is bounded in V. Thus, by the Rellich-Kondratchov theorem (see for instance
[4]) and passing eventually at a subsequence,

U, = u  weakly in V (25)
u, —u  strongly in L*(Q) (26)
u, —u  strongly in L*(T). (27)

In particular, it follows that v € K N M.

Using now the second information contained in the statement of the Palais-Smale
condition and applying (21), we obtain a sequence (\,) of real numbers such that

lim || E'(un) + AaAotn|

n—0o0

- (28)

244



On the other hand, by the compact embeddings V C L?*(Q2) and V C L?*(I') and using
(25)—(27), it follows that

E'(uy,) = E'(v) and Ayu, = Aju in V*.

So, by (28), the sequence (),) is bounded. Hence we can assume that, up to a
subsequence, A\, — A as n — oo. Therefore 0 € 0~ (E + Inr)(u).

From (25) we get ||u|| < liminf,_, ||un||, hence it follows that for concluding the
proof it is enough to show that

[[ul| > Tim sup [|un || - (29)

n—00

But, since F' is convex,
F(u) > F(uy) + F'(un) (u — uy,).
It follows that
E(u) = F(u)+ G(u) 2 limsup (F(ug) + F'(un) (v — up) + G(un)) =

i sup (F(ur) + (1) (1 = ) + Gua) + G (wa) = w) = (30)
li;n_)sogp (F(un) + E'(un)(u — uy)) + Jim G(uy,).

Using now A\, — A combined with (25)—(28), relation (30) yields

E(u) > limsup F(u,) + G(u).

n—roo
This inequality implies directly our claim (29), so the proof is completed. |

Due to the symmetry of our problem (16), we can extend our study to the sym-
metric cone (—K). More precisely, if (u, A\?) is a solution of (16) then uy := —u €
(—K) N M satisfies

/Q Vutp - V(v — ug)dz + / 7 (Vo (2)); 1(0(2)) — y(uo(x))) dor+

r

A2 / uo(v — up)dz > 0, for all v € (—K).
Q

This means that we can extend the energy functional associated to problem (16) to
the symmetric set K := K U (—K). We put, by definition,

N E(u) ifue K
E(u)=4 E(-u) , if u € (—K)
400 , otherwise.

We are interested from now in finding the lower stationary points of the extended
energy functional J := F + I;.
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We endow the set K N M with the graph metric of E defined by
d(u,v) = |Ju — v|| + |E(u) — E(v)], for any u,v € KN M.

Denote by X the metric space (K N M, d).

We are now in position to state the basic abstract result that we shall apply
for concluding the proof of Theorem 3.1. More precisely, we use the following non-
smooth variant of the Lusternik-Schnirelmann theory that we reformulate in terms
of our energy functional J.

Theorem 5.3. (Marino and Scolozzi [20]). Assume that J satisfies the following
properties:

(i) J is bounded from below;

(ii) J satisfies the Palais-Smale condition;

(iii) for any lower stationary point u of J there exists a neighbourhood of u in X
which is contractible in X,

(iv) there exists © : (K N M) x [0,00) = K N M such that O(-,0) = Id, O (u,-) is
a curve of mazimal slope for J (with respect to the usual metric in V') and, moreover,
the mapping © : X x [0,00) = X is continuous.

Then J has at least Caty(K N M) lower stationary points.

Moreover, if Cat,y(f? N M) = 400, then J does not have a mazimum and
sup{J(u); u€ KNM,0€ 9~ J(u)} =sup{J(u); ue KN M}

We have already proved (i) and (ii). Property (iii) is proved in a more general
framework in De Giorgi, Marino and Tosques [11], while (iv) is deduced in Chobanov,
Marino and Scolozzi [7]. So, using Theorem 5.3, it follows that for concluding the
proof of Theorem 3.1 it remains to prove

Proposition 5.4. We have
Caty(K N M) = +oc. (31)

Proof. Fix ¢ € K \ {0} such that ||¢|12@) > r and let (e;)p>1 C V be an
orthonormal basis of L?(Q2). Fix arbitrarily an integer n > 1 and denote

n

M®™ = {i Q;€;; Za? =r’}
i=1

=1

As usually, we denote at = max{a,0} and ¢~ = max{—a, 0}, for any real number a.
Define the mapping ¢; : M™ x [0,1] — V' \ {0} by

pr(u,t) = (1= 1) [(u—9)* = (u+ )] + Px (min{max(u, =), ¥}),
where Pk denotes the canonical projection onto K. Then

o1(u,1) € K and o1 (u, D)2z < ||ullze < 7.
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We also define ¢, : (K \ {0}) x [0,1) — K \ {0} by

2(u,t) = min [maX (1% u, —w) ,1/}} :

t
Fix arbitrarily u € ¢;(M™1). Then

lim [j2 (u, £)l|2 = [|¥l]z2 > 7-

The compactness of ¢, (M ™, 1) implies that there exists ty € (0, 1) such that
lpo(u, )|l >7r V€ [t, 1), Yu € o1 (M™ 1),

Let P be the canonical projection of V onto the closed ball of radius r in L?(Q)
centered at the origin. Define the map ® : M(™ x [0,1+ty] — V '\ {0} by

B 1(u, t) , if (u,t) € M™ x [0,1]
D(u,t) = { ?(@(@1(% 1),t—1)) , if (u,t) € M™ x [0,1+ t,]

Then ®(u,0) = 0 and ®(u,1 + ty) € M. Since ®(-,t) is odd and continuous from
L?(Q2) in the L?-topology, it follows by Proposition 4.5 that

n < Catga(M™) < Catp (®(M™, 1+ 19)) < Caty (®(M™,1+1)) .

Since the set ®(M ™, 1 +1,) is compact in V and the topology of X is stronger than
the H;-topology, we obtain

n < Catyy (®(M™, 1 +10)) < Catx (B(M™,1+1,)) < Caty(K N M).

This completes the proof of Proposition 5.4. ]

Proof of Theorem 3.1 completed. Until now, using Theorem 5.3, we have es-
tablished that problem (16) admits infinitely many solutions (u, \?). We first observe
that the set of eigenvalues is bounded from above. Indeed, if (u, A\?) is a solution of
our problem then choosing v = 0 in (16) and using (20), it follows that

B

Nr? < =2ull” + 5 lullza) < €
where C does not depend on u.
It remains to prove that
inf{\?; \? is an eigenvalue of (16)} = —oo.

For this purpose, it is sufficient to show that

sup{J(u); u € KN M} = +oo.
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But this follows directly from (20) and
sup /|Vu|2dx = 400.
weKnM JQ

In order to prove the last part of the theorem we remark that —\g, as a function of
[, is the upper bound of a family of affine functions

1
N2(A) — 2 2 g 2
356 = gt 5 { [1v0P o= [ as}, (52)
hence it is a concave function. Thus 8 — A3(3) is convex and (17) yields.
This concludes the proof of Theorem 3.1. [ |

6 Proof of Theorem 3.2

We shall establish the multiplicity result with respect to a prescribed level of energy.
More precisely, let us fix » > 0. Consider the manifold

N = {ue V; /F[u]pdazrp},

We reformulate problem (18) as follows:

where p is as in (19).

find u. € KN N and A\? € R such that
[V Voot [ 5+ ) G20 1) dort g
r
)\2/ ue(v — ug)dr >0, Yv € K.
Q

We start with the preliminary result

Lemma 6.1. There exists a sequence (b,) of essential values of E such that b, — 400
as n — 0o.

Proof. For any n > 1, set a,, = infger, sup,cg E(u), where I';, is the family of
compact subsets of K N N of the form ¢(S™ 1), with ¢ : S* ! — K N N continuous
and odd. The function F restricted to K N N is continuous, even and bounded from
below. So, by Theorem 2.12 in [12], it is sufficient to prove that a, — +00 as n — co.
But, by Proposition 5.2, the functional E restricted to K N N satisfies the Palais-
Smale condition. So, taking into account Theorem 3.5 in [8] and Theorem 3.9 in [12],
we deduce that the set E¢ has finite genus for any ¢ € R. Using now the definition of
the genus combined with the fact that K N N is a weakly locally contractible metric
space, we deduce that a, — +00. This completes our proof. [ ]

248



The canonical energy associated to problem (33) is the functional J restricted to
K NN, where J = E+ ® and ® is defined by

B(u) = ¢ / 9(1(u(z)))do.

A straightforward computation with the same arguments as in the proof of Propo-
sition 5.1 shows that if u is a lower stationary point of J then there exists \> € R
such that (u, A\?) is a solution of problem (33). In virtue of this result, it is sufficient
for concluding the proof of Theorem 3.2 to show that the functional J has at least n
distinct critical values, provided that ¢ > 0 is sufficiently small. We first prove that
J is a small perturbation of F. More precisely, we have

Lemma 6.2. For every n > 0, there exists 6 = &, > 0 such that sup,cpny | (1) —
E(u)| <n, provided that € < 4.

Proof. We have

|J(u) — E(u)| = [®(u)| < 8/F (7 (u(=)))] do.
So, by (19) and Proposition 4.1,

T(w) — B(u)] < ca / (14 [u(@)P) do < Ce <,

r

if ¢ is sufficiently small. [ |

By Lemma 6.1, there exists a sequence (by) of essential values of E|xnn such that
b, — 4+o00. Without loss of generality we can assume that b; < b; if 7 < j. Fix an
integer n > 1 and choose €y > 0 such that g < 1/2ming<;<,(b; — b;—1). Applying
now Proposition 4.9, we obtain that for any 1 < j < n, there exists n; > 0 such that
if supgny [J(u) — E(u)| < n; then Jxny has an essential value ¢; € (b; — €9,b; +
€0)- So, by Lemma 6.2 applied for n = min{#y,...,n,}, there exists d, > 0 such
that supgnn |/ (u) — E(u)| < n, provided that ¢ < §,. This shows that the energy
functional J has at least n distinct essential values ¢y, ..., ¢, in (by — &g, b, + €9)-

The next step consists in showing that ci,...,c, are critical values of Jxnn.
Arguing by contradiction, let us suppose that c¢; is not a critical value of .Jjxny. We
show in what follows that
(A1) There exists > 0 such that J;xny has no critical value in (¢; — 6, ¢; + 6).
(Az) For every a,b € (¢; — 0, c¢; + 6) with a < b, the pair (Jf’[mN, Jfgnn) 1s trivial.

Suppose, by contradiction, that (A;) is no valid. Then there exists a sequence
(dy) of critical values of Jixny with dy — c¢; as k — oo. Since dy, is a critical value,
it follows that there exists u; € K N N such that

J(ug) =dr and 0€ 0 J(ug).

Using now the fact that J satisfies the Palais-Smale condition at the level ¢;, it follows
that, up to a subsequence, (uy) converges to some u € K NN as k — 00. So, by the

249



continuity of J and the lower semicontinuity of grad J(-), we obtain J(u) = ¢; and
0 € 0 J(u), which contradicts the initial assumption on c;.

Let us now prove assertion (Ay). For this purpose we apply the Noncritical Point
Theorem (see [8], Theorem 2.15]). So, there exists a continuous map x : (K N N) x
[0,1] = K N N such that

x(u,0) = u, J(x(u,t)

) < J(w),
T} < b= J(x(w 1)) < o, (34)

J(u) <a= x(u,t) =u.

Define the map p : Jf’lmN — J%nn by p(u) = x(u,1). From (34) we obtain that p is
well defined and it is a retraction. Set

J: J|bKﬂN X [07 1] — J|bKﬂN7 j(u:t) = X(ua t)
The definition of J implies that, for every u € J|b1m N

J(u,0)=u  and J(u,1) = p(u) (35)

and, for any (u,t) € Jxnn X [0, 1],
I (u,t) = T (u,0). (36)

From (35) and (36) it follows that J is J%y-homotopic to the identity of J%y,
that is, J is a strong deformation retraction, so the pair (J\bKﬂN’ J\L}mN) is trivial.

Assertions (A1), (Az2) and Definition 4.8 (ii) show that ¢; is not an essential value of
J knn. This contradiction concludes our proof. ]
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Abstract
The aim of the present paper is to discuss the influence which have certain perturbations
on the solution of the eigenvalue problem for hemivariational inequalities on a sphere of
given radius. The perturbation results by adding to the hemivariational inequality a term of
the type ¢°(z,u(z);v(x)), where g is a locally Lipschitz nonsmooth and nonconvex energy
functional. Applications illustrate the theory.

Introduction

The study of variational inequalities began in the early sixties with the pioneering works of
G. Fichera (see [8]), J.L. Lions and G. Stampacchia (see [11]). The connection of this theory
with the notion of subdifferential of a convex function was achieved by J.J. Moreau (see [12]),
who introduced the notion of convex superpotential.

The mathematical theory of hemivariational inequalities, as well as their applications in Me-
chanics, Engineering or Economics, were introduced and developed by P.D. Panagiotopoulos
(see [20-27]) in the case of nonconvex energy functions. He also defined the notion of nonconvex
superpotential (see [19]). An overview of these methods is given in the recent monograph by
Z. Naniewicz and P.D. Panagiotopoulos (see [16]). By replacing the subdifferential of a con-
vex function by the generalized gradient (in the sense of F.H. Clarke) of a locally Lipschitz
functional, hemivariational inequalities arise whenever the energetic functional associated to a
concrete problem is nonconvex. The hemivariational inequalities appear as a generalization of
the variational inequalities, but they are much more general than these ones, in the sense that
they are not equivalent to minimum problems but, they give rise to substationarity problems.
Since one of the main ingredients of this study is based on the notion of Clarke subdifferential of
a locally Lipschitz functional, the theory of hemivariational inequalities appears as a new field
of Non-smooth Analysis.
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Note that all problems formulated in terms of hemivariational inequalities can be formulated
“equivalently” as multivalued differential equations. However, the formulation in terms of hemi-
variational inequalities has a great advantage: that the hemivariational inequalities express a
physical principle, the principle of virtual work or power. This fact permits us to use all the
advantages of the energetic approach in the mathematical treatement. Moreover, the energetic
approach is the only approach towards the development of a solid numerical method.

1 The abstract framework

Let V be a real Hilbert space with the scalar product (-, -) and the associated norm || -||. Assume
V is densely and compactly imbedded in LP(€; RY ), for some 1 < p < 400 and N > 1, where
Q2 is a bounded domain in R™, m > 1. In particular, the continuity of this embedding ensures
the existence of a positive constant C,(2) such that

ullze < Co(Qull,  forall ue V.

Throughout, the Euclidean norm in R" will be denoted by | - |, while the duality pairing between
V* and V (resp., between (R")* and R") will be denoted by (-,-)y (resp., {-,-)).

Let a : V x V — R be a continuous, symmetric and bilinear form, which is not necessarily
coercive. Let A : V — V* be the self-adjoint bounded linear operator which corresponds to a,
that is, for every u,v € V,

(Au,v)y = a(u,v).

For r > 0, set S, the sphere of radius r in V' centered at the origin, i.e.
Sr={ueV; ||lul|=r}.

Consider a mapping C' : S, xV — R, to which we impose no continuity assumption. However,
for our purpose, a weak kind of compactness hypothesis is given by

(H;) There exists a locally Lipschitz function f:V — R, even and bounded on S, satisfying
C(u,v) > fO(u;v), for all (u,v) € S, x V', with (u,v) =0,
and such that the set
{CeVr (€0f(u), ue S}
is relatively compact in V*.

Here f%(u;v) stands for the Clarke derivative of f at u € V with respect to the direction

veV,v#0, that is
fO(UQU) = lim sup flw+ M) = f(w) .

ww A

Accordingly, Clarke’s generalized gradient 0f(u) of f at u is defined by
8f(u) = {C € V¥ fusv) > (C,v)y, forall ve V).
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Let j : Q x RY — R" be a Carathéodory function which is locally Lipschitz with respect to
the second variable and such that j(-,0) € L'(2). We also assume that this functional satisfies
the symmetry condition
(Hy) j(z,y) = j(x, —y), for a.e. x € Q and every y € R,
and
(Hs3) there exist a; € LP/®~1(Q) and b € R such that

lw < ai(z)+b|y [P, for a.e. (z,y) € @ x RN and all w € 9j(z,y).
We have denoted by 0j(z,y) Clarke’s generalized gradient of the locally Lipschitz mapping

y — j(x,y), for some fixed z € Q.
Let A:V — V* be the duality isomorphism

(Au,v)y = (u,v), for all u,v e V.

Our last assumption is

(H,) Let (u,) C S, be an arbitrary sequence which converges weakly in V' to some u. Consider
a sequence (, € 0f(up) such that

G,(Un, U'n) + <Cna un)V —
and, for every w € LP/®=D(Q; R") verifying
w(z) € 0j(z,u(z)), for a.e. z € Q,

the sequence {(A — A\gA)uy,} is convergent. Then there exists a strongly convergent subsequence
of (u,) in V. Here )¢ is defined by

Ao = r2(ap + /Q (w(z), u(z))dz).

In the proof of our main result we shall make use of some notions of Algebraic Topology, for
which we refer to [29, Chapter 1] (see also [6,7]). We recall only few basic definitions.

Let X be a metric space and A C X. A mapr : X — A is said to be a retraction if
it is continuous, surjective and 74 = Id. A retraction r is called to be a strong deformation
retraction provided there exists a homotopy F' : X x [0,1] = X of i o r and Idx which satisfies
the additional condition F(z,t) = F(z,0), for each (z,t) € A x [0,1]. Here i stands for the
inclusion map of A in X. The metric space X is said to be weakly locally contractible, if every
point has a neighbourhood which is contractible in X.

Let ¢/ : X — R be a locally Lipschitz functional. For every a € R, set

[ <a] ={ue X;¢(u) <a}.

Given a,b € R with a < b, the pair ([0 < b, [t < a]) is said to be trivial provided that, for
every neighbourhoods [a',a"] of a and [V, b"] of b, there exist some closed sets A and B such
that [ < d'|CAC [y <a"], [y <V] C B C [ <b'| and such that A is a strong deformation
retract of B.

A real number c is said to be an essential value of ¢ if, for every € > 0, there exist a,b €
(c—e,c+¢€), with a < b and such that the pair ([0 < b],[¢) < a]) is not trivial. This notion is
essentialy due to M. Degiovanni and S. Lancelotti (see [7]).

255



2 The main result

Let us consider the following eigenvalue hemivariational inequality with constraints:
(P;) Find (u,A) € V x R such that, for allv € V|

(1) { a(u,v) + C(u,v) + /Qjo(x,u(x); v(z))dr > Mu,v),

Jull =7

Under hypotheses (H;)-(H4), Motreanu and Panagiotopoulos proved in [13, Thm. 4] that
this problem admits infinitely many pairs of solutions (fu,, A,), with all u,, distinct. Moreover,
they find the expression of eigenvalues \,,. Remark that their statement is done under a slight
less general hypothesis, namely by assuming a;=const. in (Hjz). Examining this proof, we
remark that in order to show that the arguments of [13] hold in our case, it is sufficient to verify
that the energy functional

(1a) F@y:%m“u+ﬂm+JmL wev,

is bounded from below on S, where J : LP(; RY) — R is defined by J(u) = / j(z,u(x))dz.
0
Indeed, notice first that, for a.e. (z,y) €  x R",

[ j(zy) IS 5(=,0) [+ ] j(z,y) —5(z,0) |<
| 7(2,0) | +sup{| w [;w € 9j(z,Y), Y €[0,y]} |y |<
1 7(2,0) [ +ai(z) [y [+b [y [P .

Therefore
| J(u) [5G0l + llaall g - llullze + bl[wl[7s -

Hence,

1 .
Fis, (u) 2 =gllall - r* = [ fllee = 3¢, 0)llzr = Cop(lanll = DO ()"

From now on the proof follows the same lines as in [13].

A natural question arises now: what happens if we perturb (1) in a suitable manner? Per-
turbation results for the case of equations have been established in [1,2] while perturbation
techniques for variational inequalities have been developed in [3,7]. Let us consider the following
non-symmetric perturbed hemivariational inequality:

(P3) Find (u, A\) € V x R such that

a(u,v) + Cuy0) + [ (7, u(@)i0(@) + 9w, u(@); 0(a)) ) do+
(2) (0, v)y ZM ),mumvev
lull =7,
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where ¢ € V* and ¢ : @ x R — R" is a Carathéodory function which is locally Lipschitz with
respect to the second variable and such that g(-,0) € L'(Q). Fix 6 > 0. We make no symmetry
assumption on g, but we impose only the growth condition

(Hs) | w [< ax(z) +6 | y [P~ for ae. (z,y) € Q x RY and for all w € 9g(z,y), where
ag € LP/P=1(Q).

We also assume

(Hg) The mappings ¢g(-,0), az and ¢ satisfy
ool <6 and  flpllv+ < 4.

As a compactness condition we assume the following variant of (H,):

(H7) Let (u,) C S, be an arbitrary sequence which converges weakly in V' to some u. Assume
Cn € Of (un) such that
a(una un) + <<n7 un)V —

and, for every w, z € LP/®1((Q; RY) verifying
(2a) w(z) € dj(z,u(r)) and z(z) € dg(z,u(x)) for a.e. z € Q,

the sequence {(A — AA)u,} is convergent. Then (u,) is relatively compact in V. Here )\, is
defined by

Xo = r 2(a + /Q (w(z) + 2(2), u(z))dz) .

Our aim is to show that the number of solutions of (P;) increases as § — 0. More precisely,
we have

Theorem 1. Assume hypotheses (H;)-(H7) hold.
Then, for every n > 1, there exists §,, > 0 such that, for each § < 6, the problem (P3) admits
at least n distinct solutions.

In the proof of our main result, given in the next section, we shall make use of some techniques
from [6,7,13,15].

3 Proof of Theorem 1

We shall follow in the proof a method developed by Degiovanni and Lancelotti in [7].
For every n > 1, set

Fn:{SCST;SEFa’Y(S)Zn},

where F denotes the family of closed and symmetric subsets of S, with respect to the origin
and 7(S) represents Krasnoselski’s genus of the set S € I',. Namely, 7(S) is the smallest
k € NU{+oo} for which there exists an odd continuous mapping from S into R*\ {0}. Motreanu
and Panagiotopoulos proved in [13] that the corresponding min-max values of F over [,

B = Sléllfn iléls) F(u), n>1,
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are critical values of F' on S,. We first remark that
Lemma 1. We have that sup F' is not achieved and nll)rrolo Bn = sup F(u). Moreover, there

Sy UESy
exists a sequence (b,) of essential values of Fig, strictly increasing to sup F(u).
u€Sy

Proof. The proof of this result is essentially contained in [7]. It is sufficient to adapt the
arguments given in these papers for the case of locally Lipschitz functionals and replacing the
classical Fréchet-differentiability by the subdifferentiability in the sense of Clarke. We point out
only the main steps of the proof:

i) The functional Fig, satisfies the Palais-Smale condition (see the proof of Thm. 4 in [13]).
So, if there exist uy € S, and m < n such that 3, = 5, < f(ug), then v(Kpz,) > n—m+1,
where

Kg, ={uesS,; Flu)=p, and Ap(u)=0}.

In the above relation, Ag is defined by
Ap(u) = min{[|¢]|; § € OF(u)}.

It is known (see [4]) that if F' is a locally Lipschitz functional then Ag is lower semi-continuous.
ii) If the sequence (f,) is stationary and if there exists uy € S, such that i) holds, then
v(Kpg,,) = +0o, for some m > 1. This is not possible, since S, is a weakly locally contractible
space and Kp,, is a compact set, which implies v(Kp,,) < +00.
iii) It follows by the previous steps, the definition of Krasnoselski’s genus and the fact that

F #const. on S, that sup F(u) is not achieved and lim 3, = sup F(u). Moreover, without
UESy n—oo u€Sy

loss of generality, we may assume that sup F'(u) = +oco. Let us define
u€Sr

Th={p(S™"; ¢:85" = S, is continuous and odd},

and B
B, = inf sup F(u).
Ccel'y ueC
Of course, 3, > By, so that lim, o B8, = sup,cg, F(u) = +oo. By Theorem 2.12 of [7] it follows
that there exists a sequence (b,) of essential values of F|g, strictly increasing to sup F'(u). m

uES,
Notice that the proof of Theorem 4 in [13] works if f is supposed to be only bounded from

below on S,. If sup f(u)yes, = oo then sup F(u) = co and 3, — 00, as n — 00.
u€eS,

We associate to the hemivariational problem (P;) the energy function H : V' — R, defined
by

(20) H(u) = ga(u,u) + f(u) + T(u) + Gw) + (o, )y

where G(u) = / g(x,u(z))dz, for every u € LP(;RY). The next result asserts that if § is
0

chosen sufficiently close to 0 in (Hs) and (Hg), then H is a small perturbation of the functional
F on §,.
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Lemma 2. For every € > 0, there exists 6q > 0 such that, for all § < &,

sup | F(u) — H(u) |[< €.

u€eS,

Proof. We have
| 9(z,y) [<] g(2,0) [ +az(x) |y |+6 |y [P .
Thus, for all u € S,,

| F(u) — H(u) [< | G(u) + {p,u)y [<| G(u) [ +
g, )||L1+5 »(Q)r +0C. ()7“”+(57"<5

for 6 > 0 small enough. |
Lemma 3. The functional H satisfies the Palais-Smale condition on S,.
Proof. Let (u,) be a sequence in S, such that sup | H(u,) |< +oo and Ay (u,) — 0, as

n
n — oo. The expression of the generalized gradient of H on S, is given by

(3) O(Hys,)(u) = {& — r~*(& u)pvAu; € € OH (u)} -

Consequently, there exists a sequence (&,) C V* such that

(4) £, € OH (uy,)
and
(5) En — 172 (Eny un) v A, — 0, strongly in V*.

We have to prove that (u,,) is relatively compact.

Using (4), (5) and applying the formula for the generalized gradient of a sum (see, e.g., [5,
Prop. 2.3.3]) in the expression of H, one obtains the existence of ¢, € df(u,), w, € O(Jjv)(un)
and z, € (G v)(uy,) such that

(6)  AAu, + G+ wp + 2n — 7 2{AAU, + G + Wy + 2, U )y AU, + @ — 0 strongly in V*.
Moreover, the density of V in L?(Q; R") implies (see [4, Thm. 2.2])
o(Jv)(u) C 0J(u) and o(Gyy)(u) C 0G(u).

It is well known that the embedding V* c L*/ (p_l)(Q; R") is compact. Thus one can suppose,
passing eventually to subsequences, that

(7) Wy — W strongly in V*
(8) Zn = 2 strongly in V*.
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Furthermore, hypothesis (H,) implies that (eventually, at a subsequence),
9) (o — C strongly in V*.

Since ||u,|| = r, we can also assume that

(10) U, = u  weakly in V.

Additionally, we can suppose that

(11) {a(tn,un)} converges in R
and
(12) (W, + 2ny Un)y — (W + z,u)y .

Using the upper semicontinuity of the Clarke generalized gradient (see [5, Prop. 2.1.5]), the
relations (6), (12) and the hypothesis (H;), we find

(13) w € 0(Jy)(u)

(14) z € (G )(u)

(15) Cedf(u).

Applying now Theorem 2.7.5 in [5], the relations (13) and (14) yield
(16) w(z) € 0j(x,u(x)) for a.e. z € Q
(17) z(z) € 0g(z, u(x)) for a.e. x € Q.
Set

Xo = r2(ap + /Q (w(z) + 2(2), u(z))dz)
where
ap = lim {a(un, un) + (wn + 2n, Un)v} -

Relations (6)-(12) allow us now to deduce that the sequence {(A — A\gA)u,} converges strongly
in V*. Then, by (H7), there exists a strongly convergent subsequence of (u,), which concludes
our proof. -

Lemma 4. Ifu is a critical point of H|s, then there exists A € R such that (u, \) is a solution
of (PQ)
Proof. We have, for every u € V,

(18) OH (u) = Au + d(Jiy) (u) + A(Gy) (u) + .
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Since 0 € 0(H|s,)(u), it follows by (3) and (14) that there exists

(19) w € 0(Jyy)(u) C 0J(u) and z € 0(Gy)(u) C 0G(u)
such that u is a solution of

(20) AMu+w+z+o=r*(AMu+w+z+ ¢,u)y Au.
Moreover (see [5, Thm. 2.7.3]), for every u € LP(Q; R"),

0J(u) C /Qaj(x,u(x))dx and 0G(u) C /Qag(x,u(x))dx.

Thus, by (19), the mappings w, z : @ — (R™)* satisfy

(21) w(z) € 0j(z, u(x)) for a.e. z € Q,

(22) z(z) € 0g(z, u(x)) for a.e. z € Q,

and, for all v € V,

(23) (w, v}y = /Q(w(x),v(x))dx,

(24) (z,0)y = /Q (2(z), v(z))da .

Set

(25) A=r?((AMu+ ¢, u)y + /g)(w(x) + z(z), u(z))dr) .

It follows by (20)-(25) that, for every v € V|

Mo, ) = au,0) = o0y = [ (w(@) + 2(e), v(a))do <
[ max{ (u,v(2); uea(w+z><x,u(x>>}dx<
(26) [ max{ (s, v(@))s 1 € O (e, ula }d:r:—i—
/max <u2, ( )); o € 92(z, u(z)) Ydz =
| @ u(@);v(a)da+ [ o° xu(x),v( ))dz
We have used above the classical inclusion (see [5, Prop. 2.3.3])
O(w + 2)(z,u(z)) C dw(z, u(z)) + 02(z, u(z)).

We point out that the last equality in (26) holds because of Prop. 2.1.2 from [5].
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Proof of Theorem 1. Fix n > 1. Taking into account Lemma 4, it suffices to motivate the
existence of some ¢,, > 0 such that, for every <4, the functional H|s, has at least n distinct
critical values.

By Lemma 1, let (b,) be a sequence of essential values of F|g, strictly increasing to sup F'(u).
UESy

1
Fix n > 1 and some g < 5 1<m<1n (bj41 —b;). We apply Theorem 2.6 from [7] to Fis, and Hg,.
<<
Hence, for every 1 < j < n — 1, there exists n; > 0 such that
sup | F(u) — H(u) [< 7

u€eS,

implies the existence of an essential value c; of H|g, in (b; — &¢,b; 4+ €0). We now apply Lemma
2 for e = min{eg, 71, -+, Mu_1}. This yields the existence of some 6, > 0 such that

sup | F(u) — H(u) [<e,

uEr

provided 6 < 6, in (H5) and (Hs). So, we have obtained that the functional H g, has at least n
distinct essential values ¢y, - - -, ¢, in (—o0, b, +¢). It remains to prove that ¢, - - -, ¢, are critical
values of H|g,. Arguing by contradiction, let us assume that c; is not a critical value of Hjg,.

Claim. There exists € > 0 so that Hg, has no critical value in (c; — €, ¢; +¢€).

Proof of Claim. Indeed, if not, there is a sequence (d,) of critical values of Hg, with
d, — ¢;, as n — o0o. Since d,, is a critical value, there exists u, € S, such that

H(u,) = d, and A (un) =0.

Now we take into account that (PS)CJ. holds. Therefore, up to a subsequence, one can suppose
that (u,) converges to some u € S,, as n — oo. By the continuity of H and the lower semi-
continuity of Ay, it follows that

H(u) =¢; and Ap(u) =0,

which contradicts the initial assumption on ¢; and concludes the proof of our Claim.

Now we apply the Noncritical Point Theorem (see [6, Thm. 2.15]), which can be also deduced
as a consequence of the Deformation Lemma for locally Lipschitz functionals (see [4, Thm. 3.1]).
Thus, for some fixed ¢; — e < a < b < ¢; + ¢, there exists a continuous map 7 : S, x [0,1] = S,
such that, for each (u,t) € S, x [0, 1],

77(%0):”: H( ( )

) < H(u),
H(u) < b= Hinu,1)) < o,

H(U’) <a= 77(%75) =u
It follows that the map

p:[Hs, <bl— [Hgs, <b],  p(u) =n(u,1)
is a retraction. Set

W [Hs, <B x[0,1] = [Hgs, <b,  H(u,t)=n(u,1).
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We observe that, for every u € [H|s, < b,

(27) H(u,0)=v and  H(u,1) = p(u).
Moreover, for each (u,t) € [H|s, < a] x [0, 1],

(28) H(u,t) = H(u,0).

By (27) and (28) it follows that # is [H|s, < a]-homotopic to the identity of [H|s, < a], i.e., H
is a strong deformation retraction. This means that the pair ([His, < b],[Hs, < a]) is trivial.
Therefore, ¢; is not an essential value of H|g . This contradiction concludes our proof. |

4 A note of the possible Applications

The perturbation results obtained in the previous Sections may have a serious application in the
study of the eigenvalue problems for hemivariational inequalities. Suppose, for instance, that we
deal with the eigenvalue problem of two adhesively connected v. Karman plates [28] and that
the interface law has a very complicated form (a zig-zag nonmonotone multivalued diagram).
Then one can consider the eigenvalue problem for a simplified interface law which results by
“smoothing some parts” of the complicated initial law. With respect to the corresponding
nonsmooth nonconvex potential energy (1a) this “simplification procedure” means that we have
added an additional nonconvex and nonsmooth energy term (cf. eq. (2b)). The simplified
interface law results by the “superposition” of the two nonmonotone multivalued relations given

in (2a).
Here we deal with systems having a prescribed cost or weight or consumed energy. This
is the meaning of the constraint ||u|| = r and therefore we have an eigenvalue problem for

hemivariational inequality on a sphere of a given radius.
Theorem 1 of the present paper holds in all cases of the applications given in [13] Sect.3,
where we refer the reader for further information.

Acknowledgements. The authors are grateful to Professor Marco Degiovanni for many
useful discussions and his interest in this work, as well as for an improvement of the statement
of Lemma 1 and of arguments used in its proof.
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Abstract

In this paper we prove a perturbation result for a new type of eigenvalue problem
introduced by D. Motreanu and P.D. Panagiotopoulos in [9]. The perturbation is made
in the nonsmooth and nonconvex term of a double eigenvalue problem on a spherlike type
manifold considered in [1]. For our aim we use some techniques related to the Lusternik-
Schnirelman theory (including Krasnoselski’s genus) and results proved in [4], [5] and [24].
We apply these results in the study of some problems arising in Nonsmooth Mechanics.

1 Introduction

The mathematical theory of hemivariational inequalities and their applications in Mechan-
ics, Engineering or Economics, were introduced and developed by P.D. Panagiotopoulos
(see [17-23]). This theory may be considered as an extension of the theory of variational
inequalities studied by G. Fichera (see [6]), J.L. Lions and G. Stampacchia (see [8]). How-
ever, Hemivariational Inequalities are much more general, in the sense that they are not
equivalent to minimum problems, but give rise to substationarity problems.

*Supported by a TEMPUS S-JEP 09094-96 fellowship.
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In this paper we deal with a new type of eigenvalue problem for hemivariational in-
equalities, called ”double eigenvalue problems” which were introduced by D. Motreanu and
P.D. Panagiotopoulos (see [9]). In [1] it is proved a multiplicity result concerning the so-
lutions belonging to a spherelike type manifold. Our aim is to study the effect induced by
an arbitrary perturbation made in the nonsmooth and nonconvex term of the symmetric
hemivariational inequality considered in [1].

2 The abstract framework

Let V be a real Hilbert space, with the scalar product and the associated norm denoted by
(-,-)v and || ||y, respectively. We shall suppose that V is densely and compactly embedded
in LP(Q; RY) for some p > 2, where N > 1 and Q C R™,m > 1, is a smooth, bounded
domain. Throughout in this paper, we shall denote by (-,-)y and (-,-) the duality products
on V and RY| respectively. Let us denote by C,(f2) the constant of the (continuous, in
particular) embedding V C LP(£2; R") which means that

[vllr < Cp(2) - lv]|v, for allv e V.

Let a1,a2 : V X V — R be two continuous symmetric bilinear forms on V and let By, By :
V — V be two bounded self-adjoint linear operators which are coercive in the sense that

(Biv,v)y > b~ ||v||}, forallv €V, i =1,2,

for some constants b1, b > 0. For fixed positive numbers a, b, 7 we consider the submanifold
S@b of V x V described as follows

8§40 = {(v1,v2) € V x V : a(Bv1,v1)y + b(Byva, v2)y = r2}.
We need to consider the tangent space associated to the manifold defined above, which is
Tlur us)Sap = {(v1,v2) €V XV 1 a(Byui,v1)v + b(Baug,v2)y = 0}.
Let j : Q x RY — R satisfy the following assumptions
(i) 7(-,y) is measurable in Q for each y € R" and j(-,0) is essentially bounded in €;
(i) j(=,-) is locally Lipschitz in R for a.e. z € Q.

Throughout this paper we shall use the notation jg for Clarke’s generalized directional
derivative (see [3]) of j with respect to the second variable y, i.e.,

. ) —
jg(/)(37ay;z) :limsup](‘r’w+ z) -](xaw),
bV A

with z € Q, y,2z € RY and A € R. Accordingly, Clarke’s generalized gradient 9,j(z,y) of
the locally Lipschitz map j(z,-) is defined by

Oyi(z,y) ={€ € RN : (&,2) < j)(w,y;2), V2 e RV}

As Radulescu and Panagiotopoulos observed in [24], we may request that j satisfies a slight
more general growth condition than the classical one (see the hypothesis (H;) in [13])
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(H1) There exist 6 € L&D (©) and p € R such that
|2 < 0(=) + plylP~,

for a.e. (z,y) € @ x RN and each z € 9,j(z,y).

(1)

Let us consider a real function C : S%* x V x V' — R to which we impose no continuity
assumption. We are now prepared to consider the following double eigenvalue problem :

Find U1, U € V and )\1, A2 € R such that

a1(u1,v1) + ag(ug, v2) + C((u1, u2),v1,v2)+
+s£j2($’ (u1 — u2)(z); (v1 — v2)(z))dz >

1
(Prap) \ > A (Brug, o)y + Ao(Baug, va)y, V v1,v5 €V,

a(Blul, ’u,1)V + b(BQ’u,Q, ’U,Q)V =72,

We impose the following hypothesis

(Hs) There exist two locally Lipschitz maps f; : V — R, bounded on ;(S%%), (i = 1,2)

respectively, and such that the following inequality holds

C((u1,un),v1,v9) > fP(ur;01) + f3 (u;v2),
V (u1,up) € S¥° and V (v1,v) € T(ul,w)Sf’b,

In addition we suppose that the sets
{z € V* : z€0fi(u),u; €m(S*°)}
are relatively compact in V*, for ¢ = 1, 2.
Define the map (A1, A2) : V x V — V* x V* by the relation
((A1, A2)(u1,u2), (v1,v2))vxv = a1(u1,v1) + az(uz,v2)
and the duality map A : V x V — V* x V* given by
(A(u1,u2), (v1,v2))vxv = a(Bru1,v1)y + b(Baug, ve)y.

We also assume

(2)

(4)

(H3) For every sequence {(u},u2)} C S with u?, — u; weakly in V, for any 2% € 9f;(ut,),

with
ai(ul,ub) 4+ (2 ul )y — a; € R,
1 =1,2, and for all w € LI%(Q; RY) which satisfies the relation
w(z) € 0yj(z, (u1 —uz)(x)) for ae. z € €,

such that
[(Al, AQ) — /\0 . A] (Ul ’U,2)

ny 'n
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converges in V* x V*, where
b

o =r~%(or +an+ / (w(z), (u1 —us)(z)) da), (7)

there exists a convergent subsequence of (u),u2) in V x V (thus, in S3?).

n?n

(Hy4) j is even with respect to the second variable, i.e.,
j(z,—y) = j(z,y), for a.e. z € Q, and any y € RY,
and f; is even on m;(S%) i.e.,
fi(—=us) = fi(u;), for all (ug,ug) € 84 i=1,2.

By assuming the hypotheses (Hy), (Hs), (Hs) and (Hy), it is proved in [1] that the double
eigenvalue problem (Prly o) @dmits infinitely many pairs of solutions {£(uk,u2), (AL, \2)} C

5%t x R2. Moreover, it is found the expression of the eigenvalues A} and A\2. The aim of
this paper is to answer a natural question: what happens if we perturb (P1 ) in a suitable
manner? For proving our main result we need some notions of Algebraic Topology which
may be found in [26]. We recall now only some basic definitions.

Let X be a metric space and A C X. We said that a map r : X — A is a retraction
if it is continuous, surjective and fulfills 4 = Id. A retraction r is called to be a strong
deformation retraction if there exists a homotopy F : X x [0,1] — X of i o7 and Idx
such that F(z,t) = F(z,0), for each (z,t) € A x [0, 1]. Here 7 stands for the inclusion map
of A in X. We call X to be weakly locally contractible, if every point has a contractible
neighbourhood in X. Let £ : X — R be a locally Lipschitz functional. Set, for every a € R

[€ < a] = {ue X;¢{(u) <a}.

Let us fix a,b € R with a < b. The pair ([ < b],[¢ < a]) is called trivial if, for every
neighbourhoods [a', "] of a and [b',b"] of b, there exist some closed sets A and B such that
[E<d]CAC[¢<d], E<b]CBC[¢<b']and such that A is a strong deformation
retract of B.

The next notion is essentialy due to M. Degiovanni and S. Lancelotti (see [5]).

A real number c is said to be an essential value of £ if, for every e > 0, there exist
a,b € (c — €,c+ ¢€), with a < b and such that the pair ([{ < b],[¢ < a]) is not trivial.

Let us consider an arbitrary element ¢ in V* and g : Q x RY — R a Caratheodory
function which is locally Lipschitz with respect to the second variable and such that g(-,0) €
L'(£2). Let us consider the following non-symmetric perturbed double eigenvalue problem:
find (u1,u2) € V x V and (A1, A\2) € R? such that

(a1 (u1,v1) + as(ug,v2) + C((u1, u2),v1,v2)+
+f{.7y (w1 — u2)(z); (v1 — v2)(2))+

) gy( (U1 = ug)(2); (v1 — v2) (@) pda+

(Brap) § + < ¢,01 >y + < 09 >p>

> Ai(Biug,v1)y + Aa(Baug,v2)v, Y vi,v2 €V,

a(Biu1,u1)v + b(Baug, us)y = 2.

Fix § > 0. We impose to g the growth condition
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(Hs) There exists 61 € L(/+1)(Q) such that
|2 < 61 (x) + dlylP~, (8)
for a.e. (z,y) € 2 x RY and each z € d,9(z,y).

Let us denote by J and G the (locally Lipschitz, by hypotheses (H1) and (H3) ) functionals
from LP(;RY) into R, defined by

J(u) = /j(a:,u(w))d:v and G(u) = /g(w,u(a:))dx.
Q Q

We associate to the problems (Prl’a,b) and (P2, ,) the energy functions I1, I : V x V — R,

r,a,b
defined by
1
Iy (w1, u2) = 3 [a1(u1,u1) + az(u2, u2)] + 9)
+f1(u1) + fa(u2) + J(u1 — ug),
and

I(u1,u2) = I (u1,u2) + G(ur —u2) + (p,u1)y + (p,u2)v, (10)

for all uy,us € V.

We denote by T the family of closed and symmetric with respect to the origin Oy xv,
subsets of S3. Let us denote, as usually, by v(S) the Krasnoselski’s genus of the set
S € 7T, that is, the smallest integer k& € NU{+o00} for which there exists an odd continuous
mapping from S into R¥\{0}. For every n > 1, set

T,={ScC8% : 8cT,~(S)>n}
Recall that the corresponding minimax values of I; over I',

Bn = Sinf sup {Ii(u1,u2)},

CTn (u1 ,uz)GS

are critical values of I; on S%° (see [1, Theorem 1]).

3 Preliminary Results

The first result of this section concerns the functional I.

LEMMA 1. Let s := sup  {I1(u1,u2)}. Then the supremum is not achieved and
(ul,uz)es,‘f’b

li_)m Bn = 8. Moreover, there exists a sequence (by) of essential values of the restriction of
n—,oo

I at 8%, strictly increasing to s.

Proof. This result is essentially proved in [24] (see Lemma 1) by using the ideas of M.
Degiovanni and S. Lancelotti (see [5], Theorem 2.12). The only difference is that now, we
work not on a sphere but on the Riemannian manifold S&°. Tt is sufficient to point out that
this is a weakly locally contractible space as the usual sphere in V is, and the fact that I
satisfies the Palais-Smale condition on S’ as was proved in [1]. With these remarks, the
proof of the Lemma 1 follows the same steps with the one in [24].

For continuing, we need two aditional assumptions
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(Hg) The following inequalities hold

10111 ;2 <0, llg(0)llzr < 6 and [|¢][y- < 0. (11)

The second assumption is actually a variant of the compactness hypothesis (Hj)

(H7) For every sequence {(u},u2)} C S%° with u!, — u; weakly in V, for any 2% € 9f;(ut,),
with

ai(up, ul) + (7,1 )+ < $up >v— i €R, (12)
1=1,2 and for all w,z € LT (2; RY) which satisfies the relations

w(z) € Oyj(z, (ur — ug)(x)), (13)
z(z) € Oyg(z, (U1 — u2)(x)), for a.e. z € €,

such that
[(A1, Ag) — Ao+ A] (up,u)

n)'n

converges in V* x V* where
b b

Yo =1+ s + [ (w(e) + 2(z), (1 — ) (@) d), (149)
Q

there exists a convergent subsequence of (u),u2) in V x V.

The next result proves that if § > 0 is sufficiently small in the hypotheses (H5) and
(Hg), then I is a small perturbation of I; on S%°.

LEMMA 2. For every € > 0, there exists o > 0 such that, for all § < §y we have

sup | [1(u1,uz) — Io(u, ug)| < e
(u1,u2)653’b

Proof. By using mainly the Lebourg’s mean value theorem for locally Lipschitz functionals

(see [3]) and the hypothesis (Hs) we find
G)] < llg(>0)llzr + 116l s2r - llullze + 6z
Taking into account the hypothesis (Hg) and the fact that (u1,us) € S we derive that

|11 (ug, ug) — In(ug, ug)| = |G(ur — u2)+ < d,u1 >y + < d,ug >y | <

1 1
SHg(aO)HLl'i_HelHLpP%ICP(Q)T(\/CE-'_ bb2)+
13- CRQ) T+ =) 487 (o= + =) < €

P ab1 bbg ab1 bb2 ’

for § > 0 small enough.
LEMMA 3. The functional Iy satisfies the Palais-Smale condition on S&°.
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Proof. For the beginning it is important to remark that the expression of the general-
ized gradient O(7, | gab) at the point (ug,us) € S%b is given by the formula

O go) (ur,uz) = {€ - rm 2, (ug, ua))vxy - Alug,up) = & € OI(up,ug)},

where A : V XV — V* x V* is the appropriate duality map given in (4). Here, the duality
(-,)vxv is taken for the norm

ur, u2) vy = \/a(Brur, ur)y + b(Bauz, u2)v, ¥ ur,uz € V.
Let us consider a sequence (u},u2) C S such that

sup [(Zy 4y ) (1t )| < +o0

T

and such that there exists some sequence J, C V* x V* fulfilling the conditions
q g

Jp € 0L (ul,u2), n>1

n

and
o =17 (Jus (afun)) - Al ul) =0, (15)

strongly in V* x V*. For concluding it suffices to prove that {(u.,u2)} contains a conver-

gent subsequence in V' x V. Under hypothesis (H;) the functionals J and G are Lipschitz
continuous on bounded sets in LP(€2; RY) and their generalized gradients satisfy (cf. Clarke
[3], Theorem 2.7.5)

0J(v) C /Byj(x,'u(x))dm
Q

and
0G(v) C /%g(x,v(m))dac, Vv e LP(Q;RYN).
Q

The density of V into LP(Q; RY) allows us to apply Theorem 2.2 of Chang [2]. Thus, we
obtain
(Jv)(v) C J(v),

and
0(Gy)(v) CIG(v), Vv eV.

From J,, € 81, (u,,,u}) we derive that there exists 2, € 9fi(uf,)(i = 1,2), wp € 8(Jjy)(u,, —
u2) and z, € 8(G‘V)(u}L — u2) such that

Jn = (a1(up,*) + 2 + ¢, a0(ul, ) + 22 + ¢) + K*(wn) + K*(zn),
where K : V x V — V is the map given by

K(’Ul,’l)g) = V1 — V2.
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By the above considerations we have that

wn(z) € Oy (x, (up, — up)(z))

and

2
)

zn(z) € Oyg(z, (ul, — u?)(x)), for a.e. z € Q.

By the relation (15) we get
(ar(uh,-) + 28 + b, a2(u2, ) + 22 + 8) + K" (wp) + K* (20) —

—r*([(a1(un, ) + 2n + @y az(up, ) + 2z + 6) + K" (wn) + K* ()],
(ul, u2))y <y - Aut,u) — 0, strongly in V* x V*.
Since the sequence (u),u2) is contained in S** and by the coercivity property of By and
By it follows that each sequence (ul) and (u2) is bounded in V. So, up to a subsequence,

n
we may conclude that

ul, — u;, weakly in V, for some u; € V, (i = 1,2).

The compactness assumptions in the hypothesis (Hs) implies that, again up to a subse-
quence, _
z), — z;, strongly in V*  for some z; € V* (i = 1,2).

Also we have

wn € O(Jjv) (un — up) C 8T (up, — up), (16)
Zn € 8(G|V)(u}L —u2) C 0G (u) —u?).

The compactness of the embedding V' C LP(Q; R") provides the convergences
ul, = ui, strongly in LP(Q; RY), (i =1,2). (17)

Since J and G are locally Lipschitz on LP(€2; RY), the above property ensures that (w,) and
(zn) are bounded in Lv1 (;RY). By the reflexivity of LT (;RY) and the compactness
of the embedding L#(Q;RN) C V*, there exist w,z € L#(Q;RN) such that, up to a
subsequence,

w, — w strongly in V* and weakly in LT (Q;RM)

and
2, — z strongly in V* and weakly in L#(Q; RY).

Proposition 2.1.5 in Clarke [3] and the relations (16) and (17) yield

w € 8J(U1 — UQ), (18)
z € 0G(u1 — ug).

With the above remarks we may suppose that

a;(u;,,uy) convergesin R, i =1,2,
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and
([Ght+ &2+ ) + K (wa) + K )]s (uieid))

possesses a convergent subsequence in R . From (15) and taking into account the conver-
gences stated above we derive that

(arup, ), a2(u?, ) = 2o - Alug, u2),

converges strongly in V* x V*, where )\ is the one required in (H7). So, hypothesis (H7)
allows us to conclude that (u),u?) has a convergent subsequence in V x V, so in §%°. Thus
the Palais-Smale condition for the functional I on S&° is satisfied and the proof is now

complete.
LEMMA 4. If u = (ui,u2) is a critical point of IQ|s“"’
(A1, A2) C R? such that ((u1,us), (A1, A2)) is a solution of the Tproblem (Pf’u,b).

then there exists a pair

Proof. Since u is a critical point for Igl it follows that

a,b?
r

0V><V S (8125(1,,,) (ul,uQ) (19)

r

Taking into account the expression of the generalized gradient of the restriction of I» at
S,‘}’b, we may conclude the existence of an element ¢ € 0I(u1,u2) such that

6_7"72 <§7 (ulau2))VxV'A(u1’u2) =0 (20)

By the Clarke’s calculus and the inclusions stated in the proof of Lemma 3 we derive

0l (u1,u2)(vi,v2) C a1 (u1,v1) + ag(ugz, v2)+

+0f1(u1)vy + 0fa(uz)ve + /ayj(xa (u1 — u2)(z))(v1 — ve)(z)dz+
Q

+/8yg(x, (u1 — uo)(z))(v1 — vo)(x)dz+ < p,v1 >v + < d,v2 >v,
Q

for all v1,v9 € V. So, there exists some z; € df;(u;) (i =1,2) and w, z € L%(Q;RN) with
w(z) € Oyj(z, (u1 —u2)(z)) for ae. z €1,

and
z(x) € Oyg(z, (u1 —ug)(x)) for a.e. z € 0,

such that

(&, (Ul,'l)g))VXV = a1 (u1,v1) + ag(ug, v2)+ < 21,v1 >v + < 29,02 >y +
+/ < w(x), (v1 — v)(z) > da +/ < 2(z), (1 — v2)(z) > da+
Q Q
+ < 1 >y + < P,v9 >y .
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From (20) it follows that

al(ul,vl) + a2(’u,2,1)2)+ < 21,01 >y + < 29,02 >y

+/ < w(z), (v — v2)(z) > d:z+/ < (@), (1 — v2)(z) > dat
Q Q
+ < p,v1 >y + < P, v9 >y —

_T72[a’1(u17u1) + ag(ug, u2)+ < z1,u1 >v + < 29,up >y +
+/ < w(x), (ur — us)(z) > do +/ < 2(z), (w1 — us)(z) > da+
Q Q
+ < ¢, ur >v + < d,ue >v| - (a(Brug,v1)y + b(Baug,v2)y) =0,
for all v1,ve € V. Set

A= r_Z[al(ul,m) + GQ(UQ,UQ)—F < z1,u1 >v + < z9,us >y +

+/ < (w4 2)(@), (w1 —us)(z) > dat < d,u1 >v + < b, uz >v].
Q

Let us now observe that we have

/((w +2)(2), (01 — v2)(2))dz <

Q
< [ ma{ o, (01— 02) (@))s 1 € By, (w1 — w2) ()} +
Q

+ [ max{(a, (01— 02) (@) 52 € Dyg(, (w1 — uz) (@)} =
Q
= [ 356z, (w1 = uz) (@); (01 — ) (@)} +
Q
/93(30, (u1 — ug)(z); (v1 — v2)(x))dz.
Q

In the above relation, the last equality holds because of Proposition 2.1.2 in [3]. Taking
into account the choice of z;(i = 1,2),z and w, it is easily to observe that if we denote
A1 = Aa and A2 = Ab, our hypothesis (H3) and some simple calculation lead us to the
desired conclusion claimed in the formulation of Lemma, 4.

4 The main result

With the preliminary results stated in Section 3 we are now prepared to prove our pertur-
bation result.

THEOREM 1. Assume that the hypotheses (H1) — (H7) are fulfilled. Then, for every
n > 1, there exists d, > 0 such that, for each § < 0, the problem (P,?,a,b) admits at least n
distinct solutions.
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Proof. Fix n > 1. By Lemma 4 it suffices to prove the existence of a §, > 0 such
that, for every § < d,, the functional I2 sob has at least n distinct critical values. We

may use now the conclusion of Lemma 1 and this implies that it is possible to consider

a sequence (bn) of essential values of Il|s“"” strictly increasing to s. Choose an arbitrary

€ < min (b,-+1 —b;). We now apply Theorem 2.6 from [5] to the functionals I; _, and

2 1<i<n |59
I2|s“’ Thus, for every 1 <1i¢ < n — 1, there exists 7; > 0 such that the relation

T

sup  |I1(u1,u2) — To(u1,uz)| <
(ul,uz)GS;l’b

implies the existence of an essential value ¢; of I in (b; — €p,b; + €g). By taking € =

Isg?
min{€ep, N1, -, Mp—1} in Lemma 2, we derive the existence of a d, > 0 such that

sup | Iy (ug,ug) — Ip(ug, ug)| < e,
(u1,u)eS®

provided ¢ < §,, in (Hs) and (Hg). So, the functional IQ‘ . has at least n distinct essential

values c¢1,co, ++,¢, in (—00,b, + €). For concluding our proof it suffices to show that

c1 -+ ,Cpy are critical values of IQ‘Sa’b. The first step is to prove that there exists € > 0 such

that IQ|5“”’ has no critical value in (¢; — €, ¢; + €). Indeed, if this is not the case, there exists

a sequer;ce (dy) of critical values of Io with d,, = ¢; as n — oo. The fact that d,, are

ab
ISy”

critical values for the restriction of I at S’ implies that for every n > 1, there exists
(ul,u2) € S such that

Ir(u),u?) = d, and X*(u),u2) =0,
where A\* is the lower semicontinuous functional defined by
A" (u1, ug) = min{]|(£1, £2)]
1

Thus, passing eventually to a subsequence, (u),u2) — (u1,us) € S»°, strongly in V x V.
The continuity of I and the lower semicontinuity of A* implies that

vexves (€1,62) € Ola(u1,u2)}.

I(u1,u2) = ¢; and X*(ug,ug) =0,

which contradicts the initial conditions on ¢;. Let us fix ¢; — € < a < b < ¢; + €. By Lemma,
3, I, satisfies the Palais-Smale condition on S&°. So, for every point e € [a, b], (PS), holds.
We have fulfilled the set of conditions which allow us to apply the ”Noncritical Interval
Theorem” due to J.- N. Corvellec, M. Degiovanni and M. Marzocchi (see Theorem 2.15
in [4]), on the complete metric space (Sﬁ’b,d(-, )) , where by d(-,-) we have denoted the

geodesic distance on S3°, that is, for every points z,y € S*°, d(z,y) is equal to the infimum
of the lengths of all paths on S2? joining z and y. We obtain that there exists a continuous
map 7 : S¥° x [0,1] — S such that, for each (u = (u1,uz),t) € S¥° x [0,1], are satisfied
the conditions

(@) n(u,0) = u,
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(0) Lx(n(u,t)) < Iz(u),
(0 L(u) <b= I(n(u,1)) <a,
(d) L) < a = n(ut) = u.
By the above conditions, it follows that the map

(I

|S

ap SO umn(u,1) € [12|s“"’ < b

r r

is a retraction. Let us define the map ¥ : [IQ|S < b x[0,1] — [Igls < b] by the relation

a,b a,b
r r

U(u,t) = n(u,t).

Since for every u € [I2 _, < b], we have

Pt
\Ij(ua 0) = U, \P(ua 1) = n(ua 1)7

and for each (u,t) € [I2|s“"’ < b] x [0, 1], the equality ¥(u,t) = ¥(u,0) holds, it follows that
Visl ,, <bl- homotopic to the identity of iy

retraction which implies that the pair

< b]. Thus, ¥ is a strong deformation

a,b
r

(100 < U 1E ., < a))

is trivial. With this argument, we get that c¢; is not an essential value of the restriction of
I, at S»°. This is the contradiction which concludes our proof.

5 Applications

In many problems arising in Mechanics and Engineering the cost or the weight of the
structure may be expressed as a linear function of the norm of the unknown function. Thus
the constraint that we have imposed ||ully = r( or, equivalently, allu1||? + b|lug|? = r?)
means that we have a system with prescribed cost or weight, or in some cases energy
consumption. The stability analysis of such a system involving nonconvex nonsmooth
potential functions (called also nonconvex superpotential) leads to the treatment of a double
eigenvalue problem for hemivariational inequalities on a spherelike manifold. We begin with
two mathematical examples and then we shall give some applications from Mechanics.

5.1 Perturbations of a coupled semilinear Poisson equation
First, we consider the case of the problem (Prl,a,b) in which C =0, By = By = idy, a =
b = 1. Moreover a1, a9 are coercive, in the sense that

ai(v,0) > @||o¥, Yo € Vyi=1,2,
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for some constants @;,a2 > 0 and j : R — R is the primitive

i) = [ elr)dr, teR,
0

with ¢ : R — R even, locally bounded, measurable and satisfying the subcritical growth
condition : for some 1 < p < %, ifm>3(1<p<+oo,if m=1,2), we have

lo(t)| < e1 +cot|P!, V€ R.

It is known that
9j(t) C [p(t),@(t)], Vt € R,

where

©(t) = lim essinf {¢p(s) ; |t —s| < 4}
0—0

and
©(t) = lim esssup {p(s) ; |t — 8| < 0}
6—0

(see [2]). Suppose further the sign condition of Chang [2]
p(t)>0ift <0and p(t) <0if ¢t > 0.

Let us consider that the superpotential j gives rise to a very irregular graph [£, 07(&)] (i.e.
the graph of 3j has many zig - zag etc.). Then we consider the eigenvalue problem (PZ ab)s
where gg is appropriately chosen in order to “smoother a little bit” the graph [£, 97(§)], i-e.
the graph [, 07(€) + 0g(€)] has a smaller number of irregularities than the graph [£, 07 (£)].
In the present case we may consider that

85 (t) + 0g(t) C [p(t) + ¢ (1), 9(t) + ()], Vt € R

In fact, we consider
t
o) = [¢'(r)dr, teR,
0

where ¢! : R — R is locally bounded, measurable and satisfies the subcritical growth
condition
lo'(t)] < cs+ et VEER

Note that we do not need to impose to ¢! that it is even, as we have assumed on ¢.
Obviously, Theorem 1 applies on every sphere ||v1||? + |[v2|? = 72 of V x V, with a
sufficiently small > 0. More precisely, for every n > 1, there exists §, > 0 such that if c3
and c4 are chosen smaller than §,, then the perturbed problem (P,?, a,b) admits at least n
distinct solutions.

As a specific example of application of Theorem 1, we consider the coupled semilinear
Poisson equations on a bounded domain © in RY with a smooth boundary 09 in the
double eigenvalue problem

Auy + Mg € [p(ur(z) — uz(x)), @(ur(z) — uz(x))] for ae. z € O
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Aug + Aug € [—@(ui(x) — ua(x)), —p(ui(z) — uz(x))] for a.e. z € Q

u1 = ug = 0 on Of).

Here A1, A2 € R are the eigenvalues, u1,us are the corresponding eigenfunctions and ¢,
are determined above for the function ¢ : R — R. We choose V = H{(9),

a1 (u,v) = ag(u,v) = /Vu - Vudz, Yu,v € H}(Q),
Q

(Blu,v)Hé = (Bgu,'u)Hé = /u-vd:c, Yu,v € Hy(Q),
Q
j : R — R being equal to the primitive of ¢ as we considered above and, for simplicity,
C = 0. Notice that each eigensolution of the hemivariational inequality appearing in the
problem (Prl, a,p) TePresents a weak solution of the Dirichlet system above. Under the growth

condition for ¢ as above and the assumptions from the section 2 on j, Theorem 1 in

[1] implies the existence of infinitely many double eigenfunctions (ul,u2) € S%°, with

n? -'n T
ub,u2 € HE(Q) N H?(Q) for the foregoing Dirichlet problem.
Further, we consider the perturbed eigenvalue problem

Auy + Mug € [p(ur(x) —ua(z)) + 9’;1(“1(33) — ug(z)),

B(uy (z) — ug(z)) + ol (u1(z) — ug(z))] for a.e. z € Q
Ay + Aoy € [—p(ur(z) — uz(@)) + @' (u1 (z) — us(z)),
—p(ui(zr) — uz(z)) + @1 (u (x) — up(x))] for ae. z € Q

u1 = ug = 0 on 99,

where ¢! is chosen as in the previous example and satisfies the conditions therein. Then,
our Theorem 1 applies and we obtain that the perturbed Dirichlet problem considered
above admits infinitely many distinct solutions. Notice that c3 and ¢4 must be sufficiently
small, in the same sense as in the first case considered in this section.

5.2 Adhesively connected von Karman plates. Buckling for
given cost or weight.

In the framework of the theory of elastic von Karméan plates, i.e. of plates having large
deflections, we consider two or more such plates connected with an adhesive material. The
behaviour of the adhesive material may be described by a relation of the form

—f € 0j(u1 — ua), (21)

(cf. [22], p. 109).The graph of {f,u; — us} may be a zig-zag graph with complete vertical
branches in the most general case. Concerning the derivation and study of the correspond-
ing hemivariational inequalities we refer to [16], [22]. We assume that we have two plates
Q1 and Q9,9; C R?,i = 1,2, which are adhesively connected on Q c Qi =1,2. The
plates have the boundaries 'y and 'y respectively and QNT; = 0,5 = 1,2. The boundaries
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are assumed to be Lipschitzian and are not subjected to any loading on €4 and €4 vertical
to the middle plate plane or parallel to it. We assume that Q; = ) as subsets of R? and
we denote both ; and Q, by Q. The plates are only subjected along their boundaries I'y
and I's to continuously distributed compressive forces, i.e.

Oapila; = )\’LgaZ aaﬁ = 1a27 1= 1a27

where 0 = {043} denotes the stress tensor for the in-plane action of the plate, n = {nq}
is the outher unit normal vector to I'; or to I'g, ¢; = {g1,, 92, } is a given force distribution,
which is self equilibrated, i.e. for each plate

/gaids =0, /(~T192¢ —g1,72)ds =0, i=1,2.
I'; T

1 1

Here A;,7 = 1,2, is a real number which measures the magnitude of the compressive forces
having the direction g;,% = 1,2, along the boundaries of the plates. These compressive
forces may cause buckling of the composite plate with partial debonding of the adhesive
material. As in [15], p. 455 and in [21] p. 234, where the analogous buckling problem
for variational inequalities is formulated, the notion of “reduced variational solution” is
introduced and we obtain the following eigenvalue problem: Find u1,us € V and A1, A2 € R
such that
a1 (u1,v1) + az(ug,v2) + (C1(u1),v1)y + (Ca(uz),v2)y +

/jg(m, (ur —ug)(x); (vi — v2)(z))dz > A1 (Biuy,v1)y + A2 (Baua, v2)y,
Q

for all v, v9 € V. Here V is the real Sobolev space H?(2) with inner product (-, )y, , a;(us, v;)
is the bending energy of the plate %, (C;(u;),v;) , with C;(+) a nonlinear compact operator, is
the bending energy of the plate i due to the stretching of the same plate, j°(z, u; —ug; v1 —v3)
denotes the directional derivative in the sense of Clarke at the state (u1 — u2)(z) and in
the direction (v1 — v2)(x) at z, and (Bj;u;, v;) is given by the relation (7.2.13) of [21], i.e.

(Bz-uz-,'ui) = — hiagﬁiui,aviﬁdm v Ui, Vi € V,
Q;

for ¢+ = 1,2. Here h; denotes the thickness of the plate 7 and aﬂ? the stress field in the
plane of the plate i caused by the forces go,(a, 8 = 1,2, i = 1,2). Moreover we note that
on I';, concerning the plate bending, boundary conditions which guarantee the coerciv-
ity of the bilinear forms a;(-,-),7 = 1,2, are assumed to hold. For instance the built-in
boundary conditions u; = %—Tjj = 0,7 = 1,2, or the simple support boundary conditions
u; = 0, M;(u;) = 0,7 = 1,2, where M; denotes the bending element of the i—th plate. Fur-
ther we shall not need for the operators B; the property that (B;u;,v;) > 0V u; € V,u; # 0,
as it is the case in the corresponding theory ( see [15] ) of eigenvalue problems for varia-
tional inequalities but the stronger property of coercivity (this property is a consequence of
the assumption that the stress vector on the boundary of each subdomain €, of Q2,7 = 1,2,
is directed outside of Q,, i.e. that each subdomain of the plate is subjected to compressive
forces, (cf. [15] p. 457)). Further we express the total cost or weight of the structure by
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2
the form Y a; (Bju;,v;) = 2, where a; are given positive constants. We get that for the
i=1

arising double eigenvalue problem for hemivariational inequalities (P!, ,) the hypotheses

r,a,b
are satisfied and the multiplicity result of Theorem 1 in [1] holds.

5.2.1 Perturbations of the buckling problem of a sandwich beam of pre-
scribed weight.

Let us now consider the perturbed hemivariational inequality : Find u1,u2 € V and A1, Ao €
R such that

ai(u1,v1) + az(ug,v2) + (Cr(u1),v1)y + (Co(uz),v2)y +

[ 38, (a1 = 1) @)s (01 = v2)(@))do > Ay (Brus, 1)y + do (Baria, )y
Q

for all v1,v2 € V. One can assume that the graph [, 95(€) + 0g(€)] is much more regular
than the graph [£,05(¢)]. Further one can assume that the graph [£,07(€) + 9g(€)] is
monotone, a fact which in the framework of a numerical calculation is beneficial. Moreover,
in the monotone case one can consider the corresponding variational inequality - eigenvalue
problem and get some useful comparison results (especially in the case of simple eigenvalue
problems for which there exist certain results for variational inequalities (see [7]).

5.2.2 Fuzzy effects superimposed on an adhesive contact law.

Let us put ourselves in the framework of the previous example of adhesively connected
plates and let us consider the following interface law (see Panagiotopoulos [22], p. 77)

—f(z) € 9j([ul(z)) + dg(u(x)), (22)

where 0g describes the fuzzy effects. We recall that g results in the following manner (see
25))

Let [ be an open subset of the real line R and let M be a measurable subset of [ such
that for every open and nonempty subset I of [, mes(I N (I — M)) is > 0. Let

| 46 if u(z) € M
r(u(zr)) = { —bi if u(z)¢ M

u
and g(u) = [ r(u*)du*. Then g is Lipschitzian and
0

{‘)g(u) = [—bg,bl], Vu(x) el

Thus dg(u(-)) has an infinite number of jumps in [ where each jump is identified with the
interval [—bg, b1]. In the composite law (22), the zero of this interval lies on the graph of
[€,7(€)] and the zone [—bs, b;] around this graph describes the fuzzy nature of the adhesive
contact law. Note that existence results related to fuzzy effects have been studied by
Naniewicz and Panagiotopoulos in [14] p. 132. Here we can apply our results to the
perturbed problem (P2, ,), i.e. to the system related to the interface law (22). Our Lemma
2 shows that if the fuzz,y7eﬁ’ect tends to disappear then the energy of the perturbed problem
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tends to the energy of the initial nonfuzzy problem. On the other hand, by Theorem 1, the
number of solutions of the perturbed problem tends to infinity if the perturbation given
by the fuzzy effect tends to zero. We also remark that our results hold if the fuzzy effect
is linked to a subcritical growth, but is arbitrary, in the sense that it has no symmetry.
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Abstract

We give some versions of theorems of Hartman-Stampacchia’s type for the case of

Hemivariational Inequalities on compact or on closed and convex subsets in infinite and
finite dimensional Banach spaces. Several problems from Nonsmooth Mechanics are solved

with these abstract results.
Keywords and phrases: Hemivariational inequalities, Clarke subdifferential, Mono-

tone operator, Set valued mappings.

A.M.S. Subject Classification: 49J40, 58 E35, 58E50.

1 Introduction and the main results

The well-known theorem of Hartman-Stampacchia (see [3], Lemma 3.1, or [5], Theorem 1.3.1)
asserts that if V' is a finite dimensional Banach space, K C V is compact and convex, A : K — V*

is continuous, then there exists u € K such that, for every v € K,

(Au,v—u) > 0.

If we weak the hypotheses and consider the case where K is a closed and convex subset of the
finite dimensional space V, Hartman and Stampacchia proved (see [5], Theorem 1.4.2) that a
necessary and sufficient condition which ensures the existence of a solution to Problem (1) is

that there is some R > 0 such that a solution u of (1) with ||u|| < R satisfies ||u|| < R.
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The purpose of this paper is to extend these classical results in the framework of Hemivari-
ational Inequalities. These inequalities appear as a generalization of Variational Inequalities,
but they are much more general than these ones, in the sense that they are not equivalent to
minimum problems but give rise to substationarity problems. The mathematical theory of Hemi-
variational Inequalities has been developed by P.D. Panagiotopoulos, as well as their applications
in Mechanics, Engineering or Economics (see the monographs [6], [8], [9] and the references cited
therein for a treatment of this theory and further comments).

Let V be a real Banach space and let 7' : V' — LP(£, RF ) be a linear and continuous operator,
where 1 < p < 0o, k > 1, and § is a bounded open set in R". Throughout this paper, K is a
subset of V, A : K — V* an operator and j = j(z,y) : © x R* =R is a Carathéodory function
which is locally Lipschitz with respect to the second variable y € R* and satisfies the following
assumption

(j) there exists hy € Lz%(ﬂ, R) and hy € L*(2, R) such that

2| < hi(z) + ho(z)|yP~t,

for a.e. © € Q, every y € R* and z € §j(x,y). Denoting by Tu = @, v € V, our aim is to study
the problem

(P) Find u € K such that, for every v € K,
(Au, v — u) + / P°(z, i(x); 5(z) — a(z))dz > 0.
Q

We have denoted by j%(z,y; h) the (partial) Clarke derivative of the locally Lipschitz mapping
j(x,-) at the point y € R* with respect to the direction A € R¥, where z € Q, and by 9j(z, )
the Clarke generalized gradient of this mapping at y € R¥, that is
j(z,y' +th) — j(z,y")

I

jo(ac, y; h) = lim sup
y' =y t
£10

0j(z,y)={z € R¥: (z,h) < j°z,y; ), forall h e R*}

The euclidean norm in R¥, k > 1, resp. the duality pairing between a Banach space and its dual
will be denoted by |- |, resp. (-, - ). We also denote by || - ||, the norm in the space L”(Q, R¥)
defined by

lal, = ([ a@) P dz)”, 1<p< oo,

In order to state our existence results for the problem (P), we need the following definitions.

Definition 1. The operator A : K — V* is w*-demicontinuous if for any sequence {u,} C K
converging to u, the sequence {Au,} converges to Au for the w*-topology in V*.

Definition 2. The operator A : K — V™ is continuous on finite dimensional subspaces of

K if for any finite dimensional space F' C V, which intersects K, the operator A|xnr is demi-
continuous, that is { Au, } converges weakly to Au in V* for each sequence {u,} C K N F which
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converges® to u.

Remark 1. In reflexive Banach spaces the following hold:
a) the w*-demicontinuity and demicontinuity are the same.
b) a demicontinuous operator A : K — V* is continuous on finite dimensional subspaces of K.

The following result is a generalized form of the Hartman-Stampacchia Theorem for the case
of Hemivariational Inequalities in infinite dimensional real Banach spaces; namely it generalizes
Theorem 6 in [13] and Theorem 2.1 in [14] for the framework of such inequalities.

Theorem 1. Let K be a compact and convex subset of the infinite dimensional Banach
space V and let j satisfy the condition (j). If the operator A : K — V* is w*-demicontinuous,
then the problem (P) admits a solution.

In finite dimensional Banach spaces the above theorem has the following equivalent form.

Corollary 1. Let V be a finite dimensional Banach space and let K be a compact and
convex subset of V. If the assumption (j) is fulfilled and if A : K — V* is a continuous operator,
then the problem (P) has at least a solution.

In Section 2 the proof of Theorem 1 will be based on Corollary 1; for this reason Corollary
1 will be proved before this theorem.

Remark 2. The condition of w*-demicontinuity on the operator A : K — V* in Theorem 1
may be replaced equivalently by the assumption:

(A7) the mapping K 3> u —{Au,v) is weakly upper semi-continuous, for each v € V.

Indeed, since on the compact set K the weak-topology is in fact the normed topology, we can
replace equivalently the weak upper semi-continuity by upper semi-continuity. So we have to
prove that the w*-demicontinuity of A follows from the assumption (A;); but for any sequence
{u,} C K converging to u one finds (by (A;)):

lim sup(Au,, v) < (Au,v)

n— 00
and
lim sup(Au,, —v) < (Au, —v) <= liminf{Au,,v) > (Au,v),

n— oo n— 00

for each fixed point v € V. Thus, there exists lim,, _, oo (Auy,,v), and
nli_)ng()(Aun, v) = (Au,v),

for every v € V. Consequently, the sequence {Au,} converges to Au for the w*-topology in V*.

!By “ converges” we always mean “strongly (or norm) converges”
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Remark 3. If A is w*-demicontinuous, {u,} C K and u, — u, then
im (Aun, un) = (Au, u).

This follows from the w*-boundedness of {Au,} in V* (as a w*-convergent sequence) and from
the fact that in real dual Banach spaces each w*-bounded set is a (strongly) bounded set? (see
[12], Prop. IV.5.2). Thus, in this case, one can write

(2) nli_)r%o(Aun, v — Up) = (Au,v — u),

for each v € V.

This last fact will be helpful in the proof of the theorems in Section 2.

Weaking more the hypotheses on K by assuming that K is a closed, bounded and convex
subset of the Banach space V', we need some more about the operators A and T' (see Theorem
2). We first recall that an operator A : K — V* is said to be monotone if, for every u,v € K,

(Au — Av,u —v) > 0.
Thus we can formulate the following result, which is the corresponding variant for Hemivaria-
tional Inequalities of Theorem 1.1 in [3].

Theorem 2. Let V be a reflexive infinite dimensional Banach space and let T : V —
LrP(Q, Rk) be a linear and compact operator. Assume K is a closed, bounded and convex subset
of V and A : K —V* is monotone and continuous on finite dimensional subspaces of K. If j
satisfies the condition (j) then the problem (P) has at least one solution.

We also give a generalization of Theorem III.1.7. in [5] by

Theorem 3. Assume that the same hypotheses as in Theorem 2 hold without the assump-
tion of boundedness of K. Then a necessary and sufficient condition for the hemivariational
inequality (P) to have a solution is that there exists R > 0 with the property that at least one
solution of the problem

up € KN{ueV;|u|| < R}
(3) (Aup,v — ug) + /Q iz, ap(); 9(z) — ap(x))ds > 0,
for every v € K with ||v|| < R,

satisfies the inequality |lug| < R.

A basic tool in our proofs will be the following auxiliary result.

2This generally holds true in the topological dual of a real Hausdorff barreled locally convex space.
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Lemma 1. (a) If it is satisfied the assumption (j) and Vi, V, are nonempty subsets of V,
then the mapping V; X Vo — R defined by:

(4) (w,0) > [ (o, (@), 5(x))da

is upper semi-continuous.
(b) Moreover, if T : V' — LP(2, R¥) is a linear compact operator, then the above mapping is
weakly upper semi-continuous.

Proof. a) Let {(tm,vm)}men C Vi X Vo be a sequence converging to (u,v) € Vi x V3, as
m — co. Since T : V — LP(Q, RF) is continuous, it follows that

i — U, Opm—0 in LP(Q,RF), as m— oo
There exists a subsequence {(t,,?,)} of the sequence {(y,, 0,)} such that

timsup | 1°(@, i (2); b(2))dw = Jim [ §°(z, a(2): 0 (x) o

m—o0 JQ n— 00

By Proposition 4.11 in [4], one may suppose the existence of two functions g, iy € LP(2, R"),
and of two subsequences of {4,} and {0,} denoted again by the same symbols and such that:

jin(z)| < do(x), |0 (z)] < Bo(2),

Un(z) =2 0(z), On(z) —>0(x), as n—oo

for a.e. € Q. On the other hand, for each z where holds true the condition (j) and for each
y, h € R”, there exists z € 9 j(z,y) such that

§°(x,y;h) = (2, h) = max{(w,h) : w € dj(z,y)},
(see [1], Prop 2.1.2). Now, by (j),
17°(z,y;h)| < 2] [B] < (ho(2) + ho(z)|y[P~) - |A] .
Consequently, denoting F(z) = (hy(z) + ha(2)|io(2)[?~1)|60(x)|, we find that
17°(2, tin(); D (2))| < F(2),

for all n € N and for a.e. z € (.

From Holder’s Inequality and from the condition (j) for the functions h; and hy it follows
that F' € L'(Q,R). Fatou’s Lemma yields

lim /]O(xaﬁn(x)aﬁn(x))dxs hmsupjo(.’r,@n(l'),ﬁn(l‘))dib

n—00 JO Q n—oo

Next, by the upper-semicontinuity of the mapping j°(x, .;.) (see [1], Prop. 2.1.1) we get that

lim sup 5°(z, 4 (2); 00 (2)) < 5%z, 0(2); 9(x)),

T — 00
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for a.e. x € (), because

A~

Un(z) = a(z) and  o,(x) —>0(x), asn—o0
for a.e. x € (2. Hence

lim sup Qjo(as,&m(:v);ﬁm(:c))dxg/ﬂjo(:v,ﬁ(a:);ﬁ(x))dx,

m— o0

which proves the upper-semicontinuity of the mapping defined by (4).

b) Let {(tm,Vm)}men C Vi X Va be now a sequence weakly-converging to {u,v} € Vi x V5,
as m—o0o. Thus u, — u, v, — v weakly as m—oco. Since T : V — L?(Q2,R¥) is a linear
compact operator, it follows that

Uy — U,  Om— 0 in LP(Q, RF).

From now on the proof follows the same proof as in the case a). [ ]

2 Proof of the theorems

2.1 Proof of Corollary 1

Arguing by contradiction, for every u € K, there is some v = v, € K such that
(Au,v — u) + /Qjo(x, u(z); 0(x) — a(z))dx < 0.
For every v € K, set
N) ={u € K;{(Au,v —u) + /Qjo(ac,ﬁ(x);f)(x) —u(x))dz < 0}.
For any fixed v € K the mapping K — R defined by
u+— (Au,v —u) + /Qjo(x, u(x); 0(x) — a(z))dx

is upper semi-continuous, by Lemma 1 and the continuity of A. Thus, by the definition of the
upper semi-continuity, N(v) is an open set. Our initial assumption implies that {N(v);v € K}
is a covering of K. Hence, by the compactness of K, there exist vy, ---,v, € K such that

K C Lnj N(v;).

j=1

Let p;j(u) be the distance from u to K\ N(v;). Then p; is a Lipschitz map which vanishes outside
N(v;) and the functionals

() = P
vilu) Yim pilu)
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define a partition of the unity subordinated to the covering {pi,-- -, p,}. Moreover, the mapping

n
p(u) = 9;(u)v; is continuous and maps K into itself, because of the convexity of K. Thus,
7j=1

by Brouwer’s fixed point Theorem, there exists ug in the convex closed hull of {vq,---,v,} such
that p(ug) = ug. Define

a(u) = (Au,p(u) = w) + | (@ a(@):p(u)(2) - i(z))da.

The convexity of the map j°(%;-) (see [1], Lemma 1) and the fact that >5-1%(u) =1 imply

000 < D500 (A~ + 3w [ (e () () = o))

For arbitrary u € K, there are only two possibilities: if u ¢ N(v;), then ¢;(u) = 0. On the
other hand, for all 1 < j < n (there exists at least such an indice) such that u € N(v;), we have
¥;(u) > 0. Thus, by the definition of N(v;),

q(u) <0, foreveryue K.

But ¢(ug) = 0, which gives a contradiction. u

2.2 Proof of Theorem 1

For this proof we need Lemma 2 below. Let F' be an arbitrary finite dimensional subspace of V'
which intersects K. Let ixnr be the canonical injection of K N F' into K and i} be the adjoint
of the canonical injection i of F' into V. Then:

Lemma 2. The operator
B:KNF—F*, B=i,Aignr
is continuous.

Proof. We have to prove that the sequence {Bu,} converges to Bu in F* for any sequence
{un} C KNF converging to v in KNF (orin V). In order to do this, we prove that the sequence
{Buy,} is weakly (= w*) convergent to Bu, because F* is a finite dimensional Banach space.
Let V' be an arbitrary point of F'; then by the w*-demicontinuity of the operator A : K — V* it
follows that

(Bup,v) = (ipAignpin, v) = (ipAu,, v) =
= (Auy, - ip,v) = (Aup, v) — (Au,v) = (Bu,v)

— 00

Therefore { Bu,,} converges weakly to Bu. n

Remark 4. The above lemma also holds true if the operator A is continuous on finite
dimensional subspaces of K.
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Proof of Theorem 1. For any v € K, set

S(w)={u € K;(Au,v —u) + /Qjo(x,ﬁ(x);@(:c) —a(z))dx > 0}.

Step 1. S(v) is closed set.

We first observe that S(v) # (), since v € S(v). Let {u,} C S(v) be an arbitrary sequence
which converges to u as n — oo. We have to prove that v € S(v). But, by (2), u, € S(v) and
by the part (a) of Lemma 1, we have

0 < limsupl(Aun, v — un) + [ (@, 8 (2); 8(2) — i (z) o =

n—00

= lim (Au,, v — u,) + lim sup/ 3z, G (7);0(2) — Gp(2))dz <
n—00 n—oo JQ

< (Au,v — u) + /Qjo(x, a(z); o(z) — a(z))dz.

This is equivalent to u € S(v).

Step 2. The family {S(v);v € K} has the finite intersection property.

Let {vy,---,v,} be an arbitrary finite subset of K and let I be the linear space spanned by
this family. Applying Corollary 1 to the operator B defined in Lemma 2, we find u € K N F
such that u € N7_,S(v;), which means that the family of closed sets {S(v); v € K} has the finite
intersection property. But the set K is compact. Hence

N S() # 0,

veEK

which means that the problem (P) has at least one solution. |

2.3 Proof of Theorem 2

Let F' be an arbitrary finite dimensional subspace of V', which intersects K. Consider the
canonical injections ixnr : K N F— K and ip : FF—V and let i, : V*— F* be the adjoint of
ir. Applying Corollary 1 to the continuous operator B = i}, Aignr (see Remark 4) we find some
up in the compact set K N F' such that, for every v € K N F,

(4) (% Aignrtp, v — up) + /Q 7z, (2); 5(z) — ap(x))dz > 0.
But
(6) 0 < (Av — Aup,v —up) = (Av,v — up) — (Aup,v — up).

Hence, by (5), (6) and the observation that (i%Aignpur, v — up) =
(Aup,v — up), we have

") (Av,o = ur) + [ (@, e(@);5(a) = e(2))dz > 0,
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for any v € KN F. The set K is weakly closed as a closed convex set; thus it is weakly compact
because it is bounded and V is a reflexive Banach-space.
Now, for every v € K define

M) ={u e K;(Av,v —u) + / 3%z, (z); d(x) — a(z))dr > 0}.
Q
The set M (v) is weakly closed by the part (b) of Lemma 1 and by the fact that this set is

weakly sequentially dense (see, e.g., [2], pp. 145-149 or [10], p.3). We now show that the set
M = Nyex M(v) C K is non-empty. To prove this, it suffices to prove that

(8) N M(vj) # 90,
7j=1
for any vy,---,v, € K. Let F be the finite dimensional linear space spanned by {vy,---,v,}.

Hence, by (7), there exists ur € F such that, for every v € K N F,
(Av,v — up) + / P(z, ip(2); 8(z) — ap(z))ds > 0.
Q

This means that up € M(v;), for every 1 < j < n, which implies (8). Consequently, it follows
that M # (). Therefore there is some u € K such that, for every v € K,

9) (Av,v — u) + /Qjo(x,a(x); o(z) — a(z))dz > 0.

We shall prove that from (9) we can conclude that u is a solution of Problem (P). Fix w € K
and A € (0,1). Puttingv = (1 — AN)u+ Aw € K in (9) we find

(10) (A((1 = Nu+ Aw), AMw — u)) + / 0(z, i(2); A(w — 8)(2))dz > 0.
Q
But j°(x, 4; A) = A j%(=x, 4;9), for any X > 0. Therefore (10) may be written, equivalently,
(11) (A((1 — N+ Mo, w — u) + / 7(z, i(z); (@ — @) (z))dz > 0.
Q

Let F' be the vector space spanned by u and w. Taking into account the demi-continuity of the
operator Ajxnr and passing to the limit in (11) as A —0, we obtain that u is a solution of
Problem (P). u

Remark 5. As theset K N{z € V; ||u|| < R} is a closed bounded and convex set in V, it

follows from Theorem 2 that the problem (3) in the formulation of our Theorem 3 has at least
one solution for any fixed R > 0.
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2.4 Proof of Theorem 3

The necessity is evident.

Let us now suppose that there exists a solution ug of (3) with ||ug|| < R. We prove that ug
is solution of (P). For any fixed v € K, we choose € > 0 small enough so that w = ug+e(v—ug)
satisfies ||w|| < R. Hence, by (3),

(Aug, e(v — ug)) + /Q 0z, ap(x); (6 — ag)(x))dz > 0

and, using again the positive homogeneity of the map v — 5°(u;v), the conclusion follows. =

3 Applications

3.1 Noncoercive Hemivariational Inequalities

We consider noncoercive forms of the coercive and semicoercive hemivariational problems treated
in [6], pp. 65-77. The results are more general from the point of view of the absence of the
coercivity or the semicoercivity assumption, but less general from the point of view of the
boundedness of the set K. For this purpose, let us assume that V is a real Hilbert space and
that the continuous injections

V C[L2(Q,RHN c v+

hold, where V* denotes the dual space of V. Moreover let T : V — L*(Q,RF), T(u) = 4,
4(z) € RF be a linear and continuous mapping. Consider the operator A appearing in our
abstract framework as Au = A,u + f, where f € V* is a prescribed element, while A; satisfies,
respectively, the assumptions of Theorems 1, 2 or 3. Then the theorem 1 holds for the problem

(P;) Find u € K such that, for every v € K,
(Au, v —u) + / 7(z, a(z); 5(z) — a(z))dz > 0.
Q
Moreover, if T' is a linear compact operator, then Theorems 2 and 3 also hold for the above
problem.

Suppose further that I' is the Lipschitz boundary of €2 and that the linear mapping 7 : V' —
L*(T',R*) is continuous. Then the theorem 1 holds for the problem

(Py) Find u € K such that, for every v € K,
(Au, v —u) + / Pz, a(z); 9(x) — a(z))dz > 0.
r

Furthermore, if T is compact, then Theorems 2 and 3 remain valid for (Ps).
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3.2 Nonmonotone Laws in Networks with Convex Constraints

We shall give now an application in Economics concerning a network flow problem. We follow
the basic ideas of W. Prager [7], [11] and for the consideration of the nonlinearities we combine
them with the notion of nonconvex superpotential. We refer to [6], p. 191 for the derivation of
the formulas.

The generally nonmonotone nonlinearity is caused by the law relating the two branch vari-
ables of the network, the “flow intensity” and the “price differential” which here can also be
vectors. The problem is formulated as a hemivariational inequality and the existence of its solu-
tion is discussed further. We consider networks with directed branches. The nodes are denoted
by Latin and the branches by Greek letters. We suppose that we have m nodes and v branches.
We take as branch variables the “flow intensity” s, and the “price differential” e,. As node
variables the “amount of flow” p; and the “shadow price” uy are considered. The terminology
has been taken from [11]. Moreover each branch may have an “initial price differential” vector
62. The above given quantities are assembled in vectors e, €°, u, s, p. The node-branch inci-
dence matrix G is denoted by G, where the lines of G' are linearly independent. Upper index T’
denotes the transpose of a matrix or a vector. The network law is a relation between the “flow
intensity” s, and the “price differential” e,. We accept that s, is a nonmonotone function of
the e, expressed by the relation

, 1
(12) ey — €5 € Djy(sy) + 58530757 :

where k., is a positive definite symmetric matrix and 0 is the generalized gradient. The graph
of the s, — e, law is called y-characteristic.

The problem to be solved consists in the determination for the whole network of the vectors
s, e, u, for given vectors p and ey.

Further let C' = diag [C}, - - -, C,, - - -] and let the summation 3., be extended over all branches.
Now we consider the graph which corresponds to the network and a corresponding tree. The
tree results from the initial graph by cuting all the branches creating the closed loops. Let us
denote by sr (resp. sps) the part of the vector s corresponding to the tree branches (resp. to
the cut branches giving rise to closed loops). Then we may write instead of Gs = p the relation

Grsr +Gusuy =D.-

Here G'1 is nonsingular and thus we may write that

-1 -1
(13) s=| 5| 2| O Jpa| TOT O = s+ Bsur,
SyMm 0 I

where I denotes the unit matrix. Using (12) and (13) we obtain (cf. [6]) a hemivariational
inequality with respect to sy, which reads: find s;; € R™ (ny is the dimension of s,,) such that

>~ 35((so+ Bsu)y, (Bsiy — Bsu)y) + sy B'CB(s3, — sm)+
v

(14)
st CB(si; — sy) + €T B(sh; —sp) >0 Vsi, € R™.
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Let us now assume that the flow intensities sj; are constrained to belong to a bounded and
closed convex subset K C R™ (box constraints are very common). Thus the problem takes the
form: find s), € K which satisfies (14), for every s}, € K.

Since the rank of B is equal to the number of its columns and C' is symmetric and positive
definite the same happens for BTCB. In the finite dimensional case treated here, one can easily
verify that Corollary 1 holds, if j,(-,-) satisfies the condition (j). Thus (14) has at least one
solution.

3.3 On the Nonconvex Semipermeability Problem

Let us put ourselves within the framework of [6], p. 185, where we have studied nonconvex
semipermeability problems. We consider an open, bounded, connected subset Q of R? referred
to a fixed Cartesian coordinate system Ox;zsx3 and we formulate the equation

(15) —Au=f in

for stationary problems.

Here u represents the temperature in the case of heat conduction problems, whereas in
problems of hydraulics and electrostatics the pressure and the electric potential are represented,
respectively. We denote further by I' the boundary of €2 and we assume that I' is sufficiently
smooth (CY!-boundary is sufficient). If n = {n;} denotes the outward unit normal to I' then
O0u/0n is the flux of heat, fluid or electricity through I' for the aforementioned classes of problems.

We may consider the interior and the boundary semipermeability problems.

In the first class of problems the classical boundary conditions

(16) u=0 on I'

are assumed to hold, whereas in the second class the boundary conditions are defined as a
relation between du/0On and u. In the first class the semipermeability conditions are obtained
by assuming that f = f + f where f is given and f is a known function of u. Here, we consider
(16) for the sake of simplicity. All these problems may be put in the following general framework.
For the first class we seek a function u such as to satisfy (15), (16) with

(17) f=Ff+f  —Fe€dj(z,u)inQ.

For the second class we seek a function u such that (15) is satisfied together with the boundary
condition

(18) —g—zeajg(x,u) onI'yCT and u=0onT\T;.

Both ji(z,-) and jo(z,-) are locally Lipschitz functions and 0 denotes the generalized gradient.
Note, that if ¢ = {¢;} denotes the heat flux vector and £ > 0 is the coefficient of thermal
conductivity of the material we may write by Fourier’s law that ¢;n; = —kou/0n.

Let us introduce the notations

a(u,v) = /QVu-Vvdx
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and

(f,u) =/qudac.

We may ask in addition that u is constrained to belong to a convex bounded closed set K C V
due to some technical reasons, e.g. constraints for the temperature or the pressure of the fluid
etc.

The hemivariational inequalities correspond to the two classes of problems. Let for the first
class V = H}(Q) and f € L?(f); for the second class V = {v: v € H'(Q),v=00nT'\TI;} and
f € L*(Q). Then from the Green-Gauss theorem applied to (15), with the definition of (17) and
(18) we are led to the following two hemivariational inequalities for the first and for the second
class of semipermeability problems respectively

(i) Find u € K such that

(19) a(u,v —u) + /Qj?(x, w(z);v(z) —u(z))dz > (f,v —u) Vo e K.

(ii) Find u € K such that

(20) a(u,v—u) + s Jo(z, u(x);v(z) — u(@))dl > (f,v — u) Vv e K.

Since a(-, -) is (strongly) monotone on V both in (i) and (ii) and the embeddings V' C L*(Q) and
V C L3(T';) are compact we can prove the existence of solutions of (i) and of (ii) by applying
Theorem 2 if j; and jo satisfy the condition (j).

3.4 Adhesively Supported Elastic Plate between two Rigid Supports

Let us consider a Kirchoff plate. The elastic plate is referred to a right-handed orthogonal
Cartesian coordinate system Oxxox3. The plate has constant thickness h;, and the middle
surface of the plate coincides with the Oxizo-plane. Let €2 be an open, bounded and connected
subset of R? and suppose that the boundary T is Lipschitzian (C%-boundary). The domain
is occupied by the plate in its undeformed state. On €' C Q (€' is such that Q' N T = @) the
plate is bonded to a support through an adhesive material. We denote by ((z) the deflection
of the point z = (z1,x9,23) and by f = (0,0, f3), f3 = fs(z) (hereafter called f for simplicity)
the distributed load of the considered plate per unit area of the middle surface. Concerning the
laws for adhesive forces and the formulation of the problems we refer to [9]. Here we make the
additional assumption that the displacements of the plate are prevented by some rigid supports.
Thus we may put as an additional assumption the following one:

(21) z €K,

where K is a convex closed bounded subset of the displacement space. One could have e.g. that
Qg S z S bo etc.

We assume that any type of boundary conditions may hold on I'. Here we assume that the
plate boundary is free. Indeed there is no need to guarantee that the strain energy of the plate
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is coercive. Thus the whole space H?(f2) is the kinematically admissible set of the plate. If one
takes now into account the relation (21), then z € K C H?({2), where K is a closed convex
bounded subset of H?(2) and the problem has the following form:

Find ¢ € K such as to satisfy
(22) a(C,z—()—i—/Q'jO(C,z—Q)dQZ(f,z—() Vz € K.
Here a(-,-) is the elastic energy of the Kirchoff plate, i.e.
(23) a(C,2) =k /{2[(1 — V) CapZap +VACAZIQ 0, f=1,2,

where k = Eh?/12(1 — v/?) is the bending rigidity of the plate with F and v the modulus of
elasticity and the Poisson ratio respectively, and h is its thickness. Moreover j is the binding
energy of the adhesive which is a locally Lipschitz function on H?(2) and f € L?(Q2) denotes the
external forces. Furthermore, if j fulfills the growth condition (j) then, taking into consideration
that a(-,-) appearing in (23) is continuous monotone, we can deduce, by applying Theorem 2,
the existence of a solution of the problem (22).
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Abstract

We give an existence result for a double eigenvalue problem in Hemivariational Inequal-
ities whose energetic functional is not locally Lipschitz. It is used a finite dimensional
approach based on Kakutani’s fixed point theorem.

Key Words: eigenvalue problem, generalized gradient, hemivariational inequality, linear elas-

1 Introduction and formulation of the problem

The concept of hemivariational inequality has been introduced by P.D. Panagiotopoulos as a

natural extension of the variational inequalities to the case of nonconvex functionals. This exten-
sion is strongly motivated by many problems arising in Mechanics, Engineering or Economics.
For a comprehensive overview on this subject we refer to the monographs [P] and [NP].

*Correspondence author
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In this paper we deal with a new type of hemivariational inequalities called “double
eigenvalue problems” which has been introduced by D. Motreanu and P.D. Panagiotopoulos in
a paper where there are considered three different approaches: minimization, minimax methods
and (sub)critical theory on the sphere (see [MP]). Other results on this type of hemivariational
inequalities can be found in [BMP] (multiplicity results) and [BPR] (a perturbation result).

Let V' be a Hilbert space and let 2 C R™ be an open bounded subset of R™,m > 1, with
09 sufficiently smooth. We shall suppose that V' is compactly embedded into LP(; RY ), N > 1,
for some p € (1, +00). In particular, the continuity of this embedding implies the existence of a
constant C,(£2) > 0 such that

(%) lullze < Cp(R) - ||ullv, for all uw eV,

where by ||-||z» and |- ||y we have denoted the norms in LP(Q; R") and V respectively. Through-
out the paper the symbols V*, (-,-),, and (-, -) will denote the dual space of V, the inner product
on V and the duality pairing over V* x V, respectively. We suppose that V' N L>®(; RY ) is dense
in V. Let ai,a0 : V XV — R be two bilinear and continuous forms on V which are coercive in
the sense that there exist two real valued functions c;,co : Ry — R, with rli)lglo ¢i(r) = 400,
such that for allv e V

ai(v,v) = ci(||vllv) - lollv, i=1,2.

We denote by A;, Ay : V — V the operators associated to the forms considered above, defined
by
(Aju,v) = a;(u,v), i =1,2.

The operators A; and A, are linear, continuous and coercive in the sense that for each i = 1,2
we have
(Aiu, u)y, 2 ci(ullv) - flullv, for all uweV.

In addition we shall suppose that the operators A; and A, are weakly continuous, i.e., if v, — u,
weakly in V' then A;u, — Au, also weakly in V, for each i = 1,2. Let us now consider two
bounded selfadjoint linear and weakly continuous operators By, B, : V — V. Let j : QxR - R
be a Carathéodory function which is locally Lipschitz in the second variable for a.e. z € 2. Thus,
we can define the directional derivative

3%(z;€,m) = limsup j@,E+h+An) —j@,§+h)

b) for 6’ 77 e RN,
[A,A]—[0,0+] A

and the generalized gradient of Clarke [C]

0j(z;&) = {neRN : n-v<5%,&,7),Vy € RVY,

for a.e. z € Q and for all £ € RY. Here, the symbol “ - ” means the inner product on R".
In order to ensure the integrability of j(-,u(-)) and 7°(;;u(-),v(-)) for any w,v € V N
L>*(Q;R") we admit the existence of a function 3 :Q x Ry — R fulfilling the conditions
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(B1) B(-,7) € LY(Q), for each r > 0;
(B2) if ry <1y then B(x,71) < B(,72), for almost all € 2, and such that

(2, €) = j(@,m)| < Bz, r) - € =nl,V §&n € B(O,r),r 20, (1)

where B(O,r) ={¢ € RN : [¢| <r}, “/-|” denoting the norm in R".
Concerning the conditions above, it is important to point out that in the homogenous case
(when j is not depending explicitely on z € Q) they are negligible (see also [NP], p. 146).
Let 1 < s<pandlet k: Q — R, and a : Q x R, be two functions satisfying the
assumptions:

1 1
k(-) € L)), where —+ - =1, (2)
p q
a(-,r) € LQ), for each r >0, where t = 5 f : (3)
and
if 0<r; <rythen az,r) < alz,r), for almost all x € Q. (4)
We shall impose the following directional growth conditions:
3%z, €, =€) < k(z)- €], for all £ € RN and ae. z€Q; (5)
7(z.&n—€) < alz,r) 1+ [€[°), for all &neRY, (6)

with n € B(O,r),r >0, and a.e. z € .

REMARKS: 1. We must pay attention to the fact that the growth conditions (5) and (6) do
not ensure the finite integrability of j(-,u(-)) and j°(-;u(-),v(-)) in Q for any u,v € V. We can
remark, also, that they do not guarantee that the functional J : V' — R given by

J() = [ j(e,v(@)dz,

is locally Lipschitz on V. In fact, (5) and (6) do not allow us to conclude even that the effective
domain of J coincides with the whole space V.

2. Notice that we do not impose any coerciveness assumption on the operators B; (i = 1,2),
as done in [MP], Section 4, for the case of a double eigenvalue problem on a sphere. We suppose
however that these operators satisfy the additional hypothesis of weak continuity.

Let us consider two nonlinear monotone and demicontinuous operators C;,Cy : V — V. We
are ready to consider the following double eigenvalue problem:
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(P) Find Ui, Ug € V and )\1, Ao € R such that
a1 (ur, v1) + az(ug, v2) + (Ci(u1), v1)y + (Ca(uz), v2)y +

+/j0($; (Ul - ’LLQ)(.’E), (1}1 - UQ)(Q?))d.T 2 )\1 (Blul, Ul)V + )\2 (BQ’LLQ,’UQ)V ,VUl,UQ ev.
Q

From Remark 1 we derive that in order to find a solution for the problem (P) we cannot
follow the classical technique of Clarke [C] and for this reason, the problem (P) is a nonstandard
one. First of all we have to point out what we shall mean by solution of the problem considered
above.

DEFINITION 1. We say that an element (u1,ug, A1, o) € V XV X R X R is a solution
of (P) if there exists x € L*(; RY) NV such that
aq (Ul, Ul) + az(u2, 1)2) + (C’l(ul), Ul)v =+ (CQ(UQ), UQ)V +
+/X(.T) . (7)1 - UQ)(.T)d.Z‘ = )\1 (Blul, ’Ul)v + )\2 (BQ’LLQ, UQ)V, V’Ul, Vg € VN LOO(Q, RN) (7)
Q

and
x(z) € 0j(x; (uy — ue(z)), for ae. x €. (8)

The aim of this paper is to prove the following existence result concerning the double
eigenvalue problem (P).

THEOREM 1. We assume that the hypotheses considered in this section are fulfilled.
Then the double eigenvalue problem (P) has at least one solution.

The difficulties mentioned in the Remark 1 will be surmounted by employing the Galerkin
approximation method combined with the finite intersection property. For the treatment of finite
dimensional problem we shall use Kakutani’s fixed point theorem for multivalued mappings. This
technique has been introduced by Naniewicz and Panagiotopoulos (see [NP]).

2 A finite dimensional approach

Let A be the family of all finite dimensional subspaces F' of V N L>(Q;R"), ordered by
inclusion. For any F' € A we formulate the following finite dimensional problem

(Pr) Find uip,usr € F, A\, Ay € R and xp € L'(;RY) such that

a1 (uir, v1) + aa(Uar, v2) + (Ci(uir), v1)y + (Cao(uzr), v2)y +

+/XF(.’L') . (U1 — ’1)2)(.’13)(137 = )\1 (Blulp, UI)V =+ )\2 (BQUQF,’UQ)V, Vvl,UQ eF (9)
Q
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and

Xr(x) € 0j(x; (u1p — ugr)(z)), for a.e. z € Q. (10)

Let [ : F — 28 (%RY) defined by

Tr(vr) = {¥ € L'(Q;RY) : /\Iiwdx < /jo(x;vp(x),w(a:))dx, vYw e L®(Q;RM)}.

It is immediately that if ¥ € ['p(vp) then we have ¥(z) € 0j(z;vr(x)), for a.e. x € Q. Let
vp € F for some F' € A. It is proved in [N] (see Lemma 3.1) that ['(vp) is a nonempty convex
and weakly compact subset of L!(Q; RN). For F' € A, we shall denote by ir : FF — V and by
1y © V* — F* the inclusion and the dual projection mappings respectively. Throughout, by
(-,-)r we mean the duality pairing over F* x F. Let us define vz : L'(Q; RY) — F*, by

(vr¥,v)p = /‘1! -vdx, Yv € F.
We consider the map Ty : F — 2" given by

The main properties of T are pointed out by the following result which has been established in
[N].

LEMMA 1. For each vy € F,Tp(vr) is a nonempty bounded closed convex subset of F*.
Moreover, Ty is upper semicontinuous as a map from F into 2F".

We are now prepared to formulate the existence result for the finite dimensional problem
(Pr)-
THEOREM 2. Suppose that the hypotheses made in Section 1 are fulfilled. Then, for

each F' € A, there exist uip,usp € F, 1,2 € R and xr € LI(Q;RN) which solve the problem
(Pr). Moreover, there exists a positive constant M, independent by F such that

|urrllv + |luzr|lv < M. (11)

Proof. In what follows we shall be able to find a solution of the problem (P) by restraining

the searching area for \;, i € {1,2} on the class of all those numbers A;, \y € R which satisfy
the relation

2
X [(Cilwi), wi)v = Nl Billl|wil 7]

0= inf = > —oo. (12)
w1,w2€EVNL® (GRN) ||U1|| + ||U2||
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Define Aip = i%Ajip, App = 15 Agip, and let G : V x V — V be the map given by

G (v1,v9) = v1 — vs.
Fix F € A. We denote by G the map G restricted to F' x F. Let us consider the multivalued
mapping A : F x F — 2F"%F"_defined by

A(uy, ug) = (Arpur + (Cr(ur), wa)y — A1 (Biug, -),

AQF’LLQ + (CQ(UQ), ‘)V — /\2 (BQ’LLQ, )V) + (G* e} TF e} G) (Ul, ’LLQ),
where by (G* o Tp o G) (u1, u3) we mean the set

{G*(f) + fe€Tr(ug —ug)} C F* x F~.

The first step is to prove the upper semicontinuity of G* o T o GG. For this aim, let us
consider u. — uy,u2 — ug, strongly in F' and ¥,, € G*(Tr(u), — u2)) converging strongly to
U € F* x F*. It must be proved that ¥ € G*(Tr(u! — u?)). First we observe that G fulfills the
set of conditions which permits to apply the theorem II.19 from [B]. From there we draw the
conclusion that R(G*) = {G*0 : 6 € F*} is closed. This implies that ¥ € R(G*) (we have used
the fact that ¥,, € R(G*),Vn > 1 and ¥,, - ¥ in F* x F*). Thus we obtain the existence of a

&* € F* such that ¥,, = G*(yrx,). We have
(G*(YeXn, (v, 0))pxr = (U, (v, W) pxp, for all v,w € F,

which implies that (ypxn,v — w)p tends to (€*,v — w)p, Vv, w € F and thus, due to the fact
that dim F' < +o0o we get the strong convergence of vpy, to £* in F*. Since TF is upper
semicontinuous (see Lemma 1), we obtain that there exists x € I'r(u; — ug) such that & = ypyx.
Thus, ¥ = G*(yrx), which means that ¥ € (G* o TF) (u; —uz). This ends the proof of the upper
semicontinuity of G* o T 0 G.

On the other side, the weak continuity of A; and A, implies the continuity of A;r and
Ao from F into F*. The hypotheses on B; and C;(i = 1,2) and the above considerations lead
us to the upper semicontinuty of A from F' x F to 2F"*F". By using again Lemma 1 and the
hypotheses made on B;, C; and A;, we can simply derive that for each (u1,us) € F X F, A(u1, us)
is a nonempty, bounded, closed and convex subset of F* x F*. Moreover, from the coercivity of

a; and ay and from the definition of Tr we have
(Alur, uz), (ur,u2)yrxr = cr((luallv)llurlly + ca([[uzllv)lluzlly + (Cr(u1), u1)y + (Co(uz), uz)y —
M| Bill - [l = Aol Bal| - [luall, +/‘1’(U1 — up)dz,
Q
where U € I'p(u; — uz). By (*) and (5) we obtain
(A(u, ug), (u1,u2))rxr > cr([|ua|lv)lluallv + ca(lluzllv)[[uzllv + (C1(u1), Ul)v + (Ca(u2), U2)v -
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Al Bi]| - luallf — Al Bel| - [|uelly — /jo(iﬂ; (ur — ug) (), —(ur — up)(x)dz >
Q

> 01(||U1||v)||ul||v + C2(||U2||v)||u2||v + (C1(U1),’LL1)V + (Cz(uz)aW)v - )\1||B1|| : ||U1||%/—
Aol Ba|l - [luzlls = Co() 1kl e (ually + lluzllv) -

Taking into account the relation (12) we easily obtain the coercivity of A. Thus, A fulfilles
the conditions which allows us to apply Kakutani’s fixed point theorem (see [BH|, Proposition
10, p. 270). Thus R(A) = F* x F*, which implies the existence of uip,usr € F such that
0 € A(uyp, ugp). From the definition of A we have that there exists xp € L'(Q; R"Y) such that
(9) and (10) hold. In order to prove the final part of Theorem 2 we use the estimates:

/\1||B1||U1F||%/ + /\2||B2||U2F||%/ > A (Byugr, UlF)V + A2 (Baugp, U2F)V = a1 (up, urr)+

+ag(ugp, uzr) + (C1(urr), uir)y, + (Ca(uor), vor), + /XF(UlF — Upp)dr >
Q

> ci([lurrllv)lluiellv + co([[uar|lv) luze|lv + (Ci(uir), uir)y, + (Co(uar), var), —

- /jo(x; (urr — ugr)(2), —(urr — ugr)(z))dz.
Q
Taking into account the relations (5) and (12) we get

c(llurellv)lluarllv + ea(([uarllv)]

lugr|lv
< Cp(Q)||K| e — 6,
luir|lv + |luer|lv < Co() |14z

which by the properties of ¢; and ¢y implies the existence of a positive constant M such that
(11) holds.

LEMMA 2. For every F € A, let uyp,uor € F, A1, X € R and xr) € L'(Q;RY) which
solve the peoblem (Pg). Then the set {xr : F € A} is weakly precompact in L*(;RY).

Proof. The proof is based on the well-known Dunford-Petis theorem. We have to prove
that for each € > 0, a 6. > 0 may be determined such that, for any w C 2 with meas(w) < o,

/|Xp|dx <e FeA.

Fix r > 0 and let n € R" be such that |n| < 7. From xp € 0j(z; (uyp — ugr)(x)), for a.e.
x € ) we derive that

Xr - (1 = (uar — ugp)(2)) < 3°(; (urr — ugr)(2), N — (urp — ugr)(7)).
Taking into account the relation (6) it follows that
Xr(z) -1 < xp() - (up — uer)(x) + a(z,7) (1 + |urp(x) — ugp(z)|?), for ae. z€Q. (13)
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Let us denote by xri(z),i =1,2,---, N the components of xr(x) and set
r
z) = — (sgnxri(z), -, sgn z)).
77( ) \/ﬁ( g XFl( ) g XFn( ))
We can easily verify that |n(z)| < r a.e. x € Q and that

xe (@) (@) 2 —= - ()]

ﬂ

From (13) we obtain

# “Ixr(2)] < xp(2) - (urr — uor)() + oz, 7) (1 + [urp () — var(2)]°)

Integrating over w C () the above inequality yields
VN .
/m\m«—hF (e = uze)(@)dw + =, [ - meas(w) s+

VN
+ T”a("’r)”LQ'(w) Nlurr — uQF”ii’(w)
Thus, from (*) and (11) we obtain

[1xr@dz < X [ vo(@) - nr = ar) @ + L a1y - meas@)f = (14)

w

Pl (GO e = gl < Y [ o) = ) e
+@Mmmmmmﬁﬂgwan@®ﬁw.

We shall continue by observing that (5) implies
Xr(z) - (u1p(z) — uer(z)) + k(z) - (1 + |urr(x) — ugr(x)]) > 0, for a.e. z €.
Thus we have

/(XF( ) - (urr — o) (x) + k(z) (1 + |urp(z) — uar(x)])) dz <

< / (xr(z) - (uir — u2r)(z) + k(2)(1 + |uir(z) — uor(z)|)) dz
and we derive that

/XF (urp — ugp)(z)dx < /XF (urp — ugp)(x)dx + ”k”Lq(Q) - Cp(2) - |urr — uar|lv+
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+||&|| oo -meas(Q)% < /XF(ac) (urp — uop) (w)dz + ||k La(o) -meas(Q)alv7 + ||k La(a) - Cp(£2) - M.
Q

We have

/XF(UlF - UQF)d$ = - (A1U1F; UlF)V - (AzuzF, UZF)V -
Q

— (Ci(urp), ur1r)y — (Co(uzr), uar)y + A1 (Biuip, ur1r)y + Az (Bauop, tsr),y, -

Taking into account that C; are monotone operators and that A;, being weakly continuous maps
bounded sets into bounded sets, the relation

2
/XF(ulF —ugp)dz <Y {|Ailllluirlly + Nl Billllwir|[y: — (Ci(uir), wir)y },
Q

i=1
imply that there exists a positive constant C' such that

/XF(U1F — ugp)dx < C. (15)
Q

Now, from (14) and (15) we obtain

O+~ |la(, 1)l ) - meas(w)> + (16)

+ — -l )l ey - (Co(2)T - M7,
where we have denoted
C := C + ||kl o(ay - meas()7 + ||kl Lo - Cp(€2) - M.

Let € > 0. We choose r > 0 such that ‘/TN -C < £. Since a(-,7) € L7 (Q2) we can determine J. > 0
small enough such that if meas(w) < d, we have

\/N 8 \/N €
——llaC )l (@) - meas(@)? + ——lla(, Ml - (Cp(V)° - M® < 5.

By the relation (16) it follows that

[ Ixe@)lde < e,

for any w C Q with meas(w) < J.. This means that the weak precompactness of {xr : F € A}
in L'(Q; R") is established.

307



3 Proof of Theorem 1

We are ready to prove Theorem 1, which is our main existence result. We shall follow a
procedure introduced by Z. Naniewicz and P.D. Panagiotopoulos (see, for example [NP]). For
every F' € A let

Wg = U {(ulFI,UQFI,XFI)} CV xVx LI(Q;RN),

FleA
FIOF

with (uypr, ugpr, xp) being a solution of (Pgr). Moreover, let

Z = J{xr} C L' RY).
FeA
Denoting by weakcl(Wr) the weak closure of Wy in V x V x L*(Q; RY) and by weakcl(Z) the
weak closure of Z in L'(€; R") we obtain, taking into account the relation (12)

weakcl(Wrg) C By (O, M) x By (O, M) x weakcl(Z), for every F € A.

Since V is reflexive it follows that By (O, M) is weakly compact in V. Using Lemma 2 we get
that the family {weakcl(Wr) : F € A} is contained in a wekly compact set of V xV x L' (; RY).
It follows that this family has the finite intersection property and we may infer that

() weakcl(Wp) # 0

FeA
We choose (u1,us, X) belonging to the nonempty set above. In what follows we shall prove that
this is the searched solution for the problem (P).

Let v1,v, € L®(Q;R"Y) and let F be an element of A such that (v;,v5) € F x F. We
note that such an F exists, for example we can take F' = span{vi,vo}. Since (u1,us,x) €
Nrea weakel(Wr) it follows that there exists a sequence {(uig,,usr,, Xr,)} in Wg, simply de-
noted by (t1n, Ugn, Xn) converging weakly to (ui, ug, x) in V x V x L*(Q; RY). We have u;, — u;,
weakly in V(i = 1,2) and x,, — x, weakly in L'(Q; RY). Since (u1n, Usn, X») is a solution of (Pr)
we get

(A1tin, v1)v + (Agton, v2)v + (C1(Uin), v1)y + (Co(uzn), v2)y +

+/Xn(U1 — v9)dx = Ay (BiUin, v1)y + A2 (Balon, v2)y,
Q

The hypotheses on A;, B;, C;(i = 1,2) and the convergenses above imply the equality
2

> {{Awui, viyy + (Ci(ug), vi)y — A (Biug, vi)y ) + /X(U1 — vg)dz = 0,

=1

which is satisfied for any vy, v, € V N L®(; RY). By the density of V N L®(Q;RY) in V we
draw the conclusion that the relation (7) is valid for any v;, v € V.
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In what follows we shall prove the relation (8). Due to the compact embedding V' C
LP (% RY ) it results from the weak convergences u;, — u; in V that we have

Uip — u; strongly in LP(Q; RY), for each i=1,2.
So, by passing eventually to a subsequence we have
Uin — U; .. in D,

From the Egoroff theorem we obtain that for any ¢ > 0 a subset w C  with meas(w) < € can
be determined such that for each i € {1, 2}
Uin — u; uniformly on Q\w,

with u; € L= (Q\w; RY) for every i € {1,2}. Let v € L=(Q\w; R") be arbitrarily chosen. The
Fatou’s lemma now implies that for any p > 0 there exists J, > 0 and a positive integer N, such
that

/ J(@; (uan — ugn) (x) = 0 + M (@) — j(@; (Uan — Uan)(z) — 6)

;) dz < (17)

Q\w
< [ 5@ (n = w) (@), v(@))da + p
QN\w

for every n > N, |0| < §, and X € (0,9,). Taking into account that x, € 0j(z; (u1n, — U2n)())
for a.e. z € €2 we have

/ Xn (@) - v(2)dz < / 70(; (urn — on) (2), 0(2))da. (18)

QN\w Q\w

Passing to the limit as A — 0 in (17) and employing the relation (18) it follows that

[ xnl@)-v(@da < [ (a5 (w1 = w) @), v(@))do +

Q\w Q\w
From the relation above and the weak convergence of x, to x in L'(Q; RY ) we derive that

[ xt@) - v@)dz < [ 15 (w1~ ua)(@), v(@))do + p

Q\w QN\w

Since p > 0 was chosen arbitrarily ,
/ x(z) - v(z)dx < / 7°(z; (w1 — ug) (w),v(z))dz, Yo € L®°(Q\w; RY).
Q\w Q\w
The last inequality implies that
x(z) € 0j(x; (uy — ug)(x)), for ae. z € Q\w,
where meas(w) < €. Since € > 0 was chosen arbitrarily we have that
x(x) € 0j(x; (uy —ug)(x)), for a.e. z € Q,

which means that the relation (8) holds. The proof of Theorem 1 is now complete.
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4 Application: The Multiple Loading Buckling

We consider two elastic beams (linear elasticity) of length [ measured along the axis Oz of the
coordinate system yOzx, and with the same cross-section. The beams, numbered here by 7 = 1, 2,
are simply supported at their ends z = 0 and z = [. On the interval (I1,ls), l; <l <[, they are
connected with an adhesive material of negligible thickness. The displacements of the i-th beam
are denoted by x — u;(z), ¢ = 1,2, and the behaviour of the adhesive material is described by a
nonmonotone possibly multivalued law between — f(z) and [u(x)], where z — f(z) denotes the
reaction force per unit length vertical to the Oz axis, due to the adhesive material (cf. [P] p.87
and [NP] p.110) and [u] = u; — uy is the relative deflection of the two beams. Recall that u; is
referred to the middle line of the beam i (the dotted lines in Fig. 1) and that each beam has
constant thickness which remains the same after the deformation. The adhesive material can
sustain a small tensile force before rupture (debonding). In Fig. 1 a rupture of zig-zag brittle
type is depicted in the (—f,u) diagramm. The beams are assumed to have the same moduli of
elasticity E and let I be the moment of inertia of them. The sandwich beam is subjected to the
compressive forces P, and P, and we want to determine the buckling loading of it. This problem
is yet open problem in Engineering. From the large deflection theory of beams we may write the
following relations which describe the behaviour of the i-th beam:

w"@)+ (@) = @) on (00); (19)

u;(0) = u;(1) =0, u;(0)=u(l)=0 i=1,2. (20)

Here a? := [E/P;. We assume that the (—f,[u]) graph results from a non locally Lipschitz
function j : R — R such that

—f(z) € 0j([u(z)]), Vz e (li,l), (21)

where 0 denotes the generalized gradient of Clarke. We set
V= H*(Q)N H;(Q) Q=(0,1). (22)

It is a Hilbert space with the inner product (see [DL], p. 216, Lemma 4.2) a(u, v) := [\ u"(2)v" (z)dz.
Let L : V — V* be the linear operator defined by

!
(Lu,v) ::/ o' (z)v'(x)dx, VYu,veV. (23)
0
We observe easily that L is bounded, weak continuous and satisfies

(Lu,v) = (Lv,u), for all u,v e V.
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The superpotential law (21) implies that

3 (u@)]y) > ~f@)y, Ve (lb),¥yeR. (24)
Multiplying (19) by v;(z) —u;(x), integrating over (0,!) and adding the resulting relations for i =

1,2, implies by taking into account the boundary condition (20), the hemivariational inequality

w=fump Vv, 3 [l - @ -3 % [ @) - v

+/l1l2 °([u(@)]; v(z)] — [u(@)]))dz >0,  Vo={v,}eVxV. (25)

Thus buckling of the beam occurs if \; := 1/a? (i = 1,2) is an eigenvalue for the following
hemivariational inequality

;ai(ui,vi — u;) —;A Ui, v; — +/ (@)]; [v(2)] = [u(z)])dz > 0, (26)

for all v = {v1,v9} € V x V. According to the Theorem 1 the present problem admits at least
one solution {uy,us, A1, A2}, provided that j fulfills the growth assumption given in Sect. 1, i.e.,
(1), (5) and (6).

Acknowledgments. We are grateful to Professor Dumitru Motreanu for his interesting
comments on this work.
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EXISTENCE RESULTS FOR INEQUALITY
PROBLEMS WITH LACK OF CONVEXITY™

Dumitru Motreanu! and Vicentiu Ridulescu?
Department of Mathematics, University of Iasi, 6600 Iagi, Romania

?Department of Mathematics, University of Craiova, 1100 Craiova, Romania,

Abstract. We establish several existence results of Hartman-Stampacchia type for hemivariational
inequalities on bounded and convex sets in a real reflexive Banach space. We also study the cases of

coercive and noncoercive variational-hemivariational inequalities.

1 Introduction

The study of variational inequality problems began around 1965 with the pioneering works of
G. Fichera, J.-L. Lions and G. Stampacchia (see [4], [7]). The connection of the theory of vari-
ational inequalities with the notion of subdifferentiability of convex analysis was achieved by
J.J. Moreau (see [8]) who introduced the notion of convex superpotential which permitted the
formulation and the solving of a wide ranging class of complicated problems in mechanics and
engineering which could not until then be treated correctly by the methods of classical bilateral
mechanics. All the inequality problems treated to the middle of the ninth decade were related
to convex energy functions and therefore were firmly bound with monotonicity; for instance,
only monotone, possibly multivalued boundary conditions and stress-strain laws could be stud-
ied. In order to overcome this limitation, P.D. Panagiotopoulos introduced in [14], [15] the
notion of nonconvex superpotential by using the generalized gradient of F.H. Clarke. Due to
the lack of convexity new types of variational expressions were obtained. These are the so-called
hemivariational inequalities and they are no longer connected with monotonicity. Generally
speaking, mechanical problems involving nonmonotone, possibly multivalued stress-strain laws

or boundary conditions derived by nonconvex superpotentials lead to hemivariational inequali-

*This paper is dedicated to the memory of Professor P.D. Panagiotopoulos
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ties. Moreover, while in the convex case the static variational inequalities generally give rise to
minimization problems for the potential or the complementary energy, in the nonconvex case
the problem of substationarity of the potential or the complementary energy at an equilibrium
position emerges.

Throughout this paper X will denote a real reflexive Banach space, (T, 1) will be a measure
space of positive and finite measure and A : X — X* will stand for a nonlinear operator. We
also assume that there are given m € N, p > 1 and a compact mapping v : X — LP(T,R™). We
shall denote by p' the conjugated exponent of p. If ¢ : X — R is a locally Lipschitz functional
then ¢°(u;v) will stand for the Clarke derivative of ¢ at u € X with respect to the direction
v € X, that is

) —
©°(u;v) = lim sup olw 1;\) ow) :

A0

Accordingly, Clarke’s generalized gradient dp(u) of ¢ at u is defined by
dp(u) = {& € X*; (&v) < ¢°(usv), Vv € X}
Let j : T x R™ — R be a function such that the mapping
jiy): T =R is measurable, for every y € R™. (1)

We assume that at least one of the following conditions hold: either there exists k € L” (T, R)
such that

|.7(x7y1)_.7(x7y2)‘ Sk(‘r)‘yl_yﬂ? ViUETaV?/lay?ERma (2)

or

the mapping j(z,-) is locally Lipschitz, Vo € T, (3)

and there exists C' > 0 such that
‘Z| SC(1+|y|p_1)’ Vi ETavylayZ ERmavzeayj(xay)' (4)

Let K be a nonempty closed, convex subset of X, f € X* and ® : X — RU{+o00} a convex,

lower semicontinuous functional such that
D@)NK#0. (5)

Throughout this paper (-,-) will denote the duality pairing between X* and X.
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2 The generalized Hartman-Stampacchia theorem for
variational-hemivariational inequality problems

Consider the following inequality problem:
Find u € K such that

(Au = f,0 = u) + @) = 0(w) + | (5, 7(w(@));7(0(@) ~u(@))dp 20, ek, (6)

where v denotes the prescribed canonical mapping from X into LP(T,R™).

The following two situations are of particular interest in applications:
)T =Q, p=dz, X = WH(Q,R™) and v : X — LP(Q,R™), with p < ¢*, is the Sobolev
embedding operator;
(i) T =09, p=do, X = WH(Q,R™) and v = i 017, where n : X — Wlfr%’p(8Q,Rm) is the
trace operator and i : Wl_%’p(ﬁﬁ, R™) — LP(092, R™) is the embedding operator.

A direct application of the Knaster-Kuratowski-Mazurkiewicz (KKM, in short) principle (see

[6] or [3]) leads to the following basic auxiliary result:

Lemma 1 Let K be a nonempty, bounded, closed, convex subset of X, ® : X — RU {400} a
convez, lower semicontinuous functional such that (5) holds. Consider a Banach space Y such
that there exists a linear and compact mapping L : X — Y and let J : Y — R be an arbitrary
locally Lipschitz function. Suppose in addition that the mapping K 3 v — (Av,v —u) is weakly
lower semicontinuous, for every u € K.

Then, for every f € X*, there exists u € K such that

(Au— f,v —u) + ®(v) — ®(u) + J° (L(u), L(v —u)) > 0,Vv € K . (7)
Proof. Let us define the set-valued mapping G : K N D(®) — 2X by
G(z) = {v € KN D(®); (Av — f,v — z) — J°(L(v); L(z) — L(v)) + ®(v) — ®(z) < 0}.
We claim that the set G(x) is weakly closed. Indeed, if G(x) > v, — v then, by our hypotheses,
(Av,v — 1) < liggg}f(Avn, Up — X)
and
O(v) < lim inf O (vy,) .

Moreover, L(v,) — L(v) and thus, by the upper semi-continuity of J° (see [2]), we also obtain

limsup J° (L(va); L(z — v,)) < J° (L(v); L(z — v)) -

n—0o0

315



Therefore
—J° (L(v); L(z — v)) < liminf (=J° (L(vn); L(z — vy))) -

n—0Q

So, if v, € G(z) and v, — v then

(Av— f,v =) = J° (L(v); L(z = v)) + ®(v) — ®(z) <
lim inf {(Av, — f, v, — z) — J* (L(vs); L(v — va)) + ®(v) — B(z)} <0,

which shows that v € G(z). Since K is bounded, it follows that G(z) is weakly compact. This
implies that

N G@)#0,

zEKND(®)
provided that the family {G(z);x € K N D(®)} has the finite intersection property. We may
conclude by using the KKM principle after showing that G is a KKM-mapping. Suppose by
contradiction that there exist zi,---,z, € K N D(®) and yo € Conv{zy,---,z,} such that

Yo 95 U?Zl G(xz) Then
(Ayo — fLyo — ) + ®(yo) — ®(x;) — J° (L(wo); L(ws — o)) >0, Vi=1,---,n.
Therefore

z; € Ai={x € X;{Ayo— f,y0 — ) + ®(30) — ®(2) — J° (L(yo); L(z — o)) > 0},

for all i € {1,---,n}. The set A is convex and thus yo € A, leading to an obvious contradiction.
So,
(Nl G)#0.
zeKND(®)

This yields an element v € K N D(®) such that, for any v € K N D(®),
(Au— f,v—u) +®(v) — ®(u) + J° (L(u); L(v — u)) > 0.
This inequality is trivially satisfied if v ¢ D(®) and the conclusion follows. O

We may now derive a result applicable to the inequality problem (6). Indeed, suppose that
the above hypotheses are satisfied and set Y = L?(T,R™). Let J : Y — R be the function
defined by

J() = [ i@ u(@))dp. (8)

The conditions (2) or (3)-(4) on j ensure that J is locally Lipschitz on Y and

/T]'O(IC,U(CE);U(@)dM > J%usv), Vu,v € X.
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It follows that

] @ @) w(@))dn > S (r()ir (), Vuve X ©)

It results that if u € K is a solution of (7) then u solves the inequality problem (6), too. The
following result follows.

Theorem 1 Assume that the hypotheses of Lemma 1 are fulfilled for Y = LP(T,R™) and L = 7.
Then the problem (6) has at least a solution.

In order to establish a variant of Lemma 1 for monotone and hemicontinuous operators we

need the following result which is due to Mosco (see [9]):

Mosco’s Theorem. Let K be a nonempty convex and compact subset of a topological vector
space X. Let ® : X — R U {400} be a proper, convex and lower semicontinuous function such
that D(®) N K # (. Let f,g: X x X — R be two functions such that
(i) 9(z,y) < f(=,y), for every z,y € X;
(ii) the mapping f(-,y) is concave, for any y € X;
(iii) the mapping g(z, -) is lower semicontinuous, for every z € X.
Let A\ be an arbitrary real number. Then the following alternative holds: either
- there exists yo € D(®) N K such that g(z,yo) + ®(yo) — ®(x) < A, for any x € X,
or

- there exists xg € X such that f(xq,zo) > .

We notice that two particular cases of interest for the above result are if A = 0 or f(z,z) <0,

for every z € X.

Lemma 2 Let K be a nonempty, bounded, closed subset of the real reflexive Banach space X,
and ® : X — R U {400} a conver and lower semicontinuous function such that (5) holds.
Consider a linear subspace Y of X* such that there exists a linear and compact mapping L :
X =Y. Let J:Y — R be a locally Lipschitz function. Suppose in addition that the operator
A X — X* is monotone and hemicontinuous.

Then for each f € X*, the inequality problem (7) has at least a solution .

Proof. Set
g9(z,y) = (Az — f,y — z) — J*(L(y); L(z) — L(y))
and

flz,y) = (Ay — f,y —z) — J°(L(y); L(z) — L(y)) -
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The monotonicity of A implies that

g(z,y) < f(z,y), Vz,y e X.

The mapping © — f(z,y) is concave while the mapping y —— g(z,y) is weakly lower semi-
continuous. Applying Mosco’s Theorem with A = 0, we obtain the existence of v € K N D(®)
satisfying

g(w,u) + ®(u) — ¢(w) <0, Yw e K,

that is
(Aw — f,w — u) + ®(w) — ®(u) + J*(L(u); L(w — u)) >0, Vw e K. (10)

We use in what follows an argument which is in the same spirit as that used in the proof of
Minty’s Lemma (see [5, Lemma II1.1.5]). Fix v € K and set w = u+A(v—u) € K, for A € [0,1).

So, by (10),
MA@+ Av =) = f,v—u) + @M+ (1 = Mu)) — ®(u) + J°(L(u); \L(v — u)) >0

Using the convexity of ®, the fact that J°(u;-) is positive homogeneous (see [1], p. 103) and
dividing then by A > 0 we find

(AQw -+ (1= \u) — f,0 — ) + (o) — B(u) + J(L(w); Lo — ) > 0.
Now, taking A — 0 and using the hemicontinuity of A we find that u solves (7). O

The analogue of Theorem 1 for monotone and hemicontinuous operators can now be stated

as follows:

Theorem 2 Assume that the hypotheses of Lemma 2 are fulfilled for Y = LP(T,R™) and L = 7.
Then the inequality problem (6) admits at least a solution.

3 Coercive variational-hemivariational inequalities
We observe that if j satisfies conditions (1) and (2) then, by the Cauchy-Schwarz Inequality,

|/Tjo(fv,v(u(ﬂ«“));v(v(w)))dul < /Tk(fv)l’y(v(ﬂf))ldu < [kly - 17 (@)l < Clklp lloll, (1)

where |- |, denotes the norm in the space LP(7,R™) and || - || stands for the norm in X. On the
other hand, if j satisfies conditions (1), (3) and (4) then

5@, y(u(@);v(v(@)))] < C (A + [y(u@) ) [y(v())]
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and thus

|/Tjo(xm(U(x));v(v(w)))du\ < C (@) + @) aly@)p) < Collvll + Ce llulP~Hloll, - (12)

for some suitable constants C7,Cy > 0. We discuss in this framework the solvability of coercive

variational-hemivariational inequalities.

Theorem 3 Let K be a nonempty closed convexr subset of X, ® : X — R U {+o0} a proper,
convez and lower semicontinuous function such that KND(®) # 0 an A: X — X* and operator
such that the mapping v — (Av,v — x) is weakly lower semicontinuous, for all x € K. The
following hold

(1) If j satisfies conditions (1) and (2), and if there exists xo € K N D(®) such that

— 400, as ||lw]| = 400 (13)
then for each f € X*, there exists u € K such that

(Au— f,v —u) + ®(v) — B(u) + /Tjo(ivﬁ(?ﬁ(x)); (@) —v(u(@))dp 20, Voe K. (14)

(1) If j satisfies conditions (1), (3) and (4) and if there exist o € KN D(®) and § > p such

that
(Aw, w — o)

[[]l?

then for each f € X*, there exists u € K satisfying (14).

— 400, as ||w|| = 400 (15)

Proof. There exists a positive integer ng such that
zo € K, .= {z € K;||z|| <n}, Vn > ng.

Applying Lemma 1 with J as defined in (8) we find some u, € K, such that, for every n > ny
and any v € K,

(Aup — f,v = un) + B(v) = B(un) + J°(Y(n); 7(v) = 7(un)) > 0. (16)

We claim that the sequence (u,,) is bounded. Suppose by contradiction that ||u,|| — +occ. Then,
passing eventually to a subsequence, we may assume that
Unp

[l

Up = -
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Setting v = z in (16) and using (9), we obtain

(A, tn — To) + P(un) < @(x0) + (f, un — o) + J°(Y(un); Y(T0) — un)) <

®(xo) + (f, un — 20) + | /Tjo(zv,’y(un);’y(xo — Uy))dp| . i
Case (i). Using (11) we obtain
(At thy — 20) + B{ttn) < Do) + (f, tn — 0} + clkly [t — 0]
and thus
(At tn — T0) + Dtn) o DUT0) | (7 |1 + el flom — wolluall . (18)

[ = ual

Passing to the limit as n — oo we observe that the left-hand term in (18) tends to +oo while

the right-hand term remains bounded which yields a contradiction.

Case (ii). The function ® being convex and lower semicontinuous, we may apply the Hahn-

Banach separation theorem to find that
O(z) > (o, z) + 3, Vz e X,
for some oo € X* and 8 € R. This means that
O(z) = —llall =l + 8, VzeX.
From (17) and (12) we deduce that
(Atn, up — w0) < @(20) + llallu lunll = B + (f, un — o) + Ci ||un — ol + Co lun [P~ [lun — o]l -
Thus

Ay, up — xo) _ _ _ _
< < lall llunll=" + (@(z0) = B)llunll =" + (£, vnllunll' =" — zollunl =)+

[[unll®

Cillvallunll™=" = @ollunl| Il + Callvn = zollunll = - [[unll”~*

and taking the limit as n — oo we obtain a contradiction, since 8 > p > 1.

Thus in both cases (i) and (ii), the sequence {u,} is bounded. This implies that, up to a
subsequence, u, — u € K. Let v € K be given. For all n large enough we have v € K,, and
thus by (16),

(Aup — f,un = v) + ®(un) — B(v) = J°(y(un); 7(v) = Y(un)) < 0. (19)
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Passing to the limit as n — oo we obtain
(Au— f,u—wv) < h,{gg}ﬂA“n — f,up — v)
O(u) < lim inf O (uy)

(u) = lim y(un)

n—oo

and
— I (y(u); 7(v) = () < liminf (=J°(y(un); ¥(v) = Y(un)))

n—0o0

Taking the inferior limit in (19) we obtain
(Au— fu—v) + @) — ®(v) = J(7(u);7(v) = () < 0.
Since v has been chosen arbitrarily we obtain
(Au— fv—u)+ @) — ®(u) + J°(y(u); y(v) — y(u)) >0, Yv € K.
Using now again (9) we conclude that u solves (14). O

The following result gives a corresponding variant for monotone hemicontinuous operators.

Theorem 4 Let K be a nonempty closed convexr subset of X, ® : X — R U {+o0} a proper
conver and lower semicontinuous function such that D(®) N K # (. Let A : X — X* be
a monotone and hemicontinuous operator. Assume (13) or (15) as in Theorem 3. Then the

conclusions of Theorem 3 hold true.
Proof. Using Lemma 2 we find a sequence u,, € K,, such that
(Aup = f,0 = un) + ®(v) = B(un) + J(y(un);7(v) = Y(un)) >0, Vo€ Ky (20)

As in the proof of Theorem 3 we justify that {u,} is bounded and thus, up to a subsequence,

we may assume that u, — u. By (20) and the monotonicity of A we deduce that

(Av — f,v —up) + ®(v) — ®(uy) + T (v(un); ¥(v) — Y(uy)) > 0.

Let v € K be given. For n large enough we obtain

<AU - fa Up — U) + (I)(U'n) - CI)(U) - JO(’Y(un);ry(U) - fy(un)) S 0
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and taking the inferior limit we obtain
(Av — f,u—v) + @(u) — B(v) — J*(y(u);7(v) — (u)) < 0.
Since v has been chosen arbitrarily it follows that
(Av — f,o—u) +®(v) — ®(u) + J(y(u); y(v) — v(u)) > 0, Vv € K.
Using now the same argument as in the proof of Lemma 2 we obtain that
(Au— f,v —u) + ®(v) — ®(u) + J°(y(u);v(v) — y(u)) >0, Yo e K

and the conclusion follows now by (9). O

4 Noncoercive variational-hemivariational inequalities

In order to treat noncoercive cases we use in this Section a minimax approach for studying the
inequality problem (7) (in particular, (6)). To this end we present the necessary background of
nonsmooth critical point theory developed in Motreanu-Panagiotopoulos ([10], Chapter III).

Definition 1 (Definition 3.1 in Motreanu-Panagiotopoulos [10]). Let X be a real Banach space,
let F': X — R be a locally Lipschitz function and let G : X — R U {400} be a proper (i.e.,
# +00), convex and lower semicontinuous function. An element u € X is called a critical point
of the functional I = F + G : X — R U {+o0} if the inequality below holds

Flu;v —u) +Gw) —G(u) >0, Vv e X,

Definition 2 (Definition 3.2 in Motreanu-Panagiotopoulos [10]). The functional I = F + G :
X — RU{+o0} as in Definition 1 is said to satisfy the Palais - Smale condition if every sequence
{u,} C X for which I(u,) is bounded and

FOun;v — up) + GW) — G(ug) > —en|lv —un|, Vo€ X,
for a sequence {e,} C R™ with ¢, — 0, contains a strongly convergent subsequence in X.

Remark. Definitions 1 and 2 extend and unify the nonsmooth critical point theories due to
Chang [1] and Szulkin [19]. Precisely, if G = 0 Definitions 1 and 2 reduce to the corresponding
definitions of Chang [1], while if F' € C*(X,R) Definitions 1 and 2 coincide with those in Szulkin
[19].
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Mountain Pass Theorem. (Corollary 3.2 in Motreanu-Panagiotopoulos [10]) Let I = F +G :
X — R U {+o0} be a functional as in Definition 1 which satisfies the Palais-Smale condition
in the sense of Definition 2. Assume that there exist a number p > 0 and a point e € X with
lle|lx > p such that

inf I > max{1(0),I(e)}.

llullx=p
Then the number
c=inf{sup I(f(t)): feC(0,1],X), f(0)=0, f(1)=e} > inf I
t€[0,1] llullx=p
is a critical value of I, i.e., there exists u € X such that I(u) = ¢ and v is a critical point of I
in the sense of Definition 1.

Let us describe now the abstract functional framework of our variational approach in studying
the inequality problem (7) without the assumptions of boundedness for set K or of coerciveness
as in Theorem 3. Let X and Y be Banach spaces, with X reflexive, and let L : X — Y
be a linear compact operator. Consider the functionals £ € C*(X,R) (in (7) we will take
A=F:1X - X*), &: X - R convex, lower semicontinuous, Gateaux differentiable and
J Y — R locally Lipschitz. Given a closed convex cone K of X, with 0 € K, let Ix denote
the indicator function of K. We apply the aforementioned nonsmooth version of Mountain Pass
Theorem for the following choices: F := E+ Jo L, G:= ®+ I and thus I = F + G.

The following result follows readily from Definition 1.

Lemma 3 Every critical point u € X of the functional I in the sense of Definition 1 is a solution
to problem (7) with A = E'.

Lemma 4 Assume in addition that the following hypotheses are satisfied:

(H1) There exist positive constants ag, a1, @ with a < ag such that
E@W) + @) + J(Lv) — a({E'(v) + @' (v),v) + J°(Lv; Lv))

> aol|v|| — a1, Vu € K,

and
(H2) If {u,} is a sequence in K provided u, — v in X and limsup,,_, . (E'(uy),u, — u) < 0 for
some u € X, then {u,} contains a subsequence denoted again by {u,} with u,, — v in X.

Then the functional I satisfies the Palais-Smale condition in the sense of Definition 2.
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Proof. Let {u,} be a sequence in X with the properties required in Definition 1. In particular,
we know that {u,} C K and there exist a constant M > 0 and a sequence {¢,} C R with
€, — 0 such that

I(ug)| < M, Vn>1,

and
(E'(tp),v — up) + J°(Luy; Lv — Luy,) + ®(v) — ®(u,) > —enllv — u,||, Vo € K.

Using the convexity and the Gateaux differentiabiliy of ®, setting v = (1 + t)u,,, with ¢ > 0, in
the inequality above and then letting ¢ — 0 one obtains that

(E'(ug) + @ (un), up) + J*(Ltn; Luy) > —ep||tnll, Yn > 1.
The inequalities above ensure that for n sufficiently large (so that £, < 1) one has
M + al|un||
> B(un) + ®(un) + J(Lty) — (B (un) + @ (un), 1) + J*(Litg; L))

Here o denotes the positive constant entering assumption (H1). Then on the basis of condition
(H1) we deduce that the sequence {u,} is bounded in X.
Consequently, the sequence {u,} contains a subsequence again denoted by {u,} such that
U, — v in X and Lu, — Lu in Y for some u € K. On the other hand if we set v = u, we derive
that
(E'(up),u — up) + J°(Lup; Lu — Luy) + ®(u) — ®(un) > —ep]|u — un|-

Since J° is upper semicontinuous and ® is lower semicontinuous, this yields that

lim sup{E' (uy,), un — u) < 0.

n—oo

Assumption (H2) completes the proof. O

The main result of this Section is stated below.

Theorem 5 Assume (H1), (H2),
(H3) There exist an element u € K \ {0} satisfying |[u|| > a1/ag, for the constants ag,a; in
(H1), and E(u) + ®(u) + J(u) <0,
and
(H4) There exist a constant p > 0 such that
”1i}|1|1£p(E(’U) + ®(v) + J(v)) > E(0) + ®(0) + J(0).

Then problem (7) with A = E'" admits at least a solution u € K \ {0}.
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Proof. Let us apply the nonsmooth version of Mountain Pass Theorem to our functional 1.
Lemma 4 establishes that I satisfies the Palais-Smale condition in the sense of Definition 2.

The calculus with generalized gradients (see Clarke [2]) shows that
8y(t = (E + ®)(tu) + ¢ = J(tLu))

c —ét—%—l(E + ®)(tu) + (B + ) (tu), u)

1
——t_é_lJ(tLu) + t_éaJ(tLu)u, Vt >0, Vu € X,
!
where the notation 0; stands for the generalized gradient with respect to ¢. Lebourg’s mean
value theorem allows to find some 7 = 7(u) € (1,¢) such that
t=a (E(tu) + ®(tu) + J(tLu)) — (E(uw) + ®(u) + J(u))

€ éT‘i_l[aKE'(Tu) + @' (Tu), Tu) + 0J (Tu)TU)

—(E(tu) + ®(1u) + J(tu))](t = 1), Vt>1, Vu € X.

Combining with assumption (H1) it follows that

7o (E(tu) + ®(tu) + J(tLu)) — (E(u) + ®(u) + J(u))
1

Q|

<

7 o N —agr||ul| + a1)(t — 1), Vt>1, Vu € K.

It is then clear from assumption (H3) that one can write
I(tu) = E(tu) + ®(tu) + J(tv) < t=[E@) + ®@)) + J(@)], Vt > 1.
This fact in conjunction with assumption (H3) leads to the conclusion that

lim I(tu) = —oc.
t—+o00

Then assumption (H4) enables us to apply the nonsmooth version of Mountain Pass Theorem
for e = tu, with a sufficiently large positive number t. According to Mountain Pass Theorem
the functional I possesses a nontrivial critical point v € X in the sense of Definition 1. Finally,
Lemma 3 shows that u is a (nontrivial) solution of problem (7) with A = E’. The proof of

Theorem 5 is thus complete. U

We end this Section with an example of application of Theorem 5 in the case of variational-

hemivariational inequality (6). For the sake of simplicity we consider a uniformly convex Banach
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space X, a convex closed cone K in X with 0 € K, f = 0, ® = 0 and a self-adjoint linear
continuous operator A : X — X* satisfying (Av,v) > ¢l||v||?, for all v € X, with a constant
co > 0.

Assume that the function j : T x R™ — R verifies the conditions (1), (3), (4) with p > 2, as
well as the following assumptions of Ambrosetti-Rabinowitz type:
(7) there exist constants 0 < o < 1/2 and ¢ € R such that

j(@,y) > ajy(z,y;y) + ¢, forae zeT, VyeR™,

1
(7) lim iglf Wj(x, y) > 0 uniformly with respect to € T, and j(z,0) =0 a.e. z € T}
y—=0 |y
(773) there exists an element ug € K \ {0} such that

1
lim inf i(AuO,u())tQ—i-/j(m,tuo(x))dx < 0.
T

t—o0

Let us apply Theorem 5 for the functional J given by (8) and E(v) = (1/2)(Av,v), Yv € X.
We see that hypotheses (i) and (i7) imply (H1) and (H4), respectively. Taking @ = tu, for
t > 0 sufficiently large, we get (H3) from (i4i). It is straightforward to check that condition
(H2) holds true. Therefore Theorem 5 yields a nontrivial solution of variational-hemivariational

inequality (6) in our setting.
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