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ABSTRACT

This thesis presents our research to provide performance portability and scalability
to complex scientific applications running over hierarchical multicore parallel platforms.
Performance portability is said to be attained when a low core idleness is achieved while
mapping a given application to different platforms, and can be affected by performance
problems such as load imbalance and costly communications, and overheads coming from
the task mapping algorithm. Load imbalance is a result of irregular and dynamic load be-
haviors, where the amount of work to be processed varies depending on the task and
the step of the simulation. Meanwhile, costly communications are caused by a task dis-
tribution that does not take into account the different communication times present in a
hierarchical platform. This includes nonuniform and asymmetric communication costs at
memory and network levels. Lastly, task mapping overheads come from the execution
time of the task mapping algorithm trying to mitigate load imbalance and costly commu-
nications, and from the migration of tasks.

Our approach to achieve the goal of performance portability is based on the hypothe-
sis that precise machine topology information can help task mapping algorithms in their
decisions. In this context, we proposed a generic machine topology model of paral-
lel platforms composed of one or more multicore compute nodes. It includes profiled
latencies and bandwidths at memory and network levels, and highlights asymmetries
and nonuniformity at both levels. This information is employed by our three proposed
topology-aware load balancing algorithms, named NUCOLB, HWTOPOLB, and HIER-
ARCHICALLB. Besides topology information, these algorithms also employ application
information gathered during runtime. NUCOLB focuses on the nonuniform aspects of
parallel platforms, while HWTOPOLB considers the whole hierarchy in its decisions, and
HIERARCHICALLB combines these algorithms hierarchically to reduce its task mapping
overhead. These algorithms seek to mitigate load imbalance and costly communications
while averting task migration overheads.

Experimental results with the proposed load balancers over different platform com-
posed of one or more multicore compute nodes showed performance improvements over
state of the art load balancing algorithms: NUCOLB presented improvements of up
to 19% on one compute node; HWTOPOLB experienced performance improvements
of 19% on average; and HIERARCHICALLB outperformed HWTOPOLB by 22% on av-
erage on parallel platforms with ten or more compute nodes. These results were achieved
by equalizing work among the available resources, reducing the communication costs ex-
perienced by applications, and by keeping load balancing overheads low. In this sense,
our load balancing algorithms provide performance portability to scientific applications
while being independent from application and system architecture.

Keywords: Computer architecture, Parallel programming, Profiling, Scheduling.
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1 INTRODUCTION

For years now, science has advanced thanks to the insights brought by numerical sim-
ulations. These scientific applications are used to reproduce and predict complex phe-
nomena, with scales varying from the way a protein behaves to the effects caused by
an earthquake. These applications have ever increasing demands in performance and re-
sources. For instance, the higher the resolution of a weather forecasting model, the more
precise and accurate would be its predictions, as local phenomena would be better rep-
resented in the system. In order to profit from the multiple resources available in high
performance computing (HPC) platforms, scientific applications are developed using par-
allel languages and runtimes.

Parallel applications are decomposed into smaller parts, which can be implemented
as processes, threads, objects, etc. We refer to them as tasks. Each task participates in
the simulation by processing a part of the total workload. Before starting an application,
it may not be possible to predict the amount of work, or load, each task will receive or
produce. Load irregularity may come from tasks playing different roles in the application,
or simulating different aspects or materials in the system. The load of a task can also
change dynamically through time, as it achieves a different state in the simulation, or
receives feedback from other tasks. When tasks are distributed over a parallel platform
without taking such behaviors into account, load imbalance occurs.

In addition to the effects that tasks’ loads have over the execution of a scientific ap-
plication, there is also the affinity of tasks that affect it. A task’s affinity group refers
to the other tasks that it shares data or communicates with. It is in the best of interests
to have communicating tasks mapped in the parallel platform in a way that reduces their
communication times. However, communication times are not only affected by the com-
munication behavior of a task, which can be irregular and dynamic as can happen to its
load, but also by the organization of the HPC platform where the application is executing.

Typical HPC platforms are composed of multiple processing units, varying in scale
from a multicore machine to a cluster composed of many multicore compute nodes. Their
topologies include different cache, memory, and network levels organized hierarchically.
As a consequence, the communication time between a pair of processing units or compute
nodes will also depend on their distance in the whole topology.

Besides the effects caused by a hierarchical organization, communication times may
not be uniform in some of the topology levels. At an interconnection network level, this
happens because having a direct and dedicated interconnection between every pair of
compute nodes is unfeasible in scale. Meanwhile, in order to mitigate the effects of the
“memory wall problem” (WULF; MCKEE, 1995), not only is memory organized in a hi-
erarchical fashion, but the main memory is also being assembled from different memory
banks in a nonuniform memory access (NUMA) design. Besides nonuniformity, symme-
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try may not be held, as the communication time between two components can depend on
which direction it is happening, and the routing algorithms involved. If not taken into
account when mapping tasks to the available resources, these characteristics of HPC plat-
forms (namely nonuniform and asymmetric communication times, and hierarchical orga-
nization), together with an application’s irregular and dynamic communication behaviors,
can result in costly communications to said application.

Mitigating costly communications and balancing load are two different ways to im-
prove application performance. Nevertheless, they can be orthogonal: an optimal task
distribution for balancing load can negatively affect performance by increasing commu-
nication costs, as can the opposite happen. In this context, an equilibrium has to be found
when focusing in both objectives for performance.

1.1 Problem statement

A challenge lies on managing the execution of a scientific application in order to
explore the resources of a parallel platform to their fullest and, consequently, achieve high
performance and scalability. This requires identifying characteristics of the application
and platform, and managing which processing and communication resources get to be
shared among tasks based on their loads and affinity. This problem is also aggravated by
the fact that platforms and applications evolve independently from one another.

Finding the best task distribution to balance load and/or communication costs is a
NP-Hard problem (LEUNG, 2004), thus requiring impracticable amounts of time for any
application or platform of interest. To mitigate this problem, heuristics are employed to
schedule tasks in feasible time. Although different algorithms exist, they may not provide
performance portability.

A task mapping algorithm is said to attain performance portability when it is able to
map a given application to different platforms and still achieve high efficiencies, which
comes from a low core idleness. Although an algorithm can be tuned to a specific ap-
plication and platform, this sacrifices portability in the process, as extensive work has to
be done to provide scalable performance when running the same application in another
platform, or another application in the same platform.

Performance portability also requires the task mapping algorithm to be performant, as
its execution time will influence the application’s performance. In this sense, a challenge
lies in displaying performance portability with task mapping algorithms, as one needs to
equilibrate balancing load, reducing communication costs, and keeping the algorithm’s
execution time small.

1.2 Objectives and thesis contributions

The main objective of our research is to provide performance portability and scala-

bility to complex scientific applications running over hierarchical multicore parallel

platforms. We follow the hypothesis that precise machine topology information can

help load balancing algorithms in their decisions. Considering this objective and hy-
pothesis, our contributions are the following:

• We develop a generic machine topology model of parallel platforms composed of
one or more multicore compute nodes. It includes profiled information at memory
and network levels. This model is used to provide detailed information to task
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mapping algorithms. Our model is able to automatically measure, store, and make
available the machine topology at a user level. It is also kept generic by using tools
and benchmarks independent of application and system architecture.

• We propose load balancing algorithms that work at runtime level, which keeps them
independent of a specific platform or application. They combine application infor-
mation gathered during execution to our proposed machine topology model that
considers real communication costs over the platform. They improve the distribu-
tion of tasks over a parallel platform in order to mitigate load imbalance and costly
communications. They are able to handle applications with irregular and dynamic
behaviors, and machine topologies with nonuniform and asymmetric communica-
tions costs (PILLA et al., 2012, 2014).

• We experimentally evaluate our approach with real benchmarks and applications
over multiple parallel platforms. We implement our load balancing algorithms with
a parallel language and compare their performance to other state of the art algo-
rithms.

1.3 Research context

This research is conducted under the context of a joint doctorate between the Institute

of Informatics of the Federal University of Rio Grande do Sul (UFRGS); and the Mathe-

matics, Information Sciences and Technologies, and Computer Science (MSTII) Doctoral
School, part of the University of Grenoble (UdG). This cooperation is held within the
International Laboratory in High Performance and Ambient Informatics (LICIA).

At UFRGS, research is developed in the Parallel and Distributed Processing Group

(GPPD). This research group possesses a vast experience with task mapping algo-
rithms and scientific applications, which include load balancing algorithms for Bulk Syn-
chronous Parallel applications (RIGHI et al., 2010) and weather forecasting models (RO-
DRIGUES et al., 2010).

At UdG, this research is conducted in the Nanosimulations and Embedded Applica-

tions for Hybrid Multi-core Architectures (Nanosim) team, which is part of the Grenoble

Informatics Laboratory (LIG). This team counts with an extensive background in multi-
core architecture modeling and memory management (RIBEIRO, 2011; CASTRO, 2012).

This research also profits from a collaboration with the Parallel Programming Labo-

ratory (PPL) of the University of Illinois at Urbana-Champaign through the Joint Labora-

tory for Petascale Computing (JLPC). They are the developers of a parallel language and
runtime system named CHARM++, which was used as a test bed for the implementation
of our proposed load balancing algorithms.

1.4 Document organization

The remaining chapters of this thesis are organized as follows:

• A review of the main characteristics of parallel platforms and applications is pre-
sented in Chapter 2. It also discusses the basics of task mapping algorithms and
machine topology probing.

• Our machine topology model is presented in Chapter 3. Its rationals, advantages,
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and limitations are explored in this chapter. An evaluation of the parameters mea-
sured in the topology is also detailed.

• Two centralized load balancing algorithms are proposed in Chapter 4. They are:
NUCOLB, a load balancer that focuses on the nonuniform aspects of parallel plat-
forms; and HWTOPOLB, a load balancer that considers the whole machine topol-
ogy hierarchy in its decisions. This chapter also presents HIERARCHICALLB, a
hierarchical topology-aware load balancer based on the composition of centralized
algorithms.

• The experiments conducted to evaluate our load balancers are shown in Chapter 6.
This chapter includes information about the parallel platforms, benchmarks, appli-
cations, and other load balancers used to measure the performance and scalability
of our algorithms.

• Concluding remarks and research perspectives are discussed in Chapter 7.
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2 BACKGROUND

The performance of scientific applications can be affected by many different variables
related to attributes intrinsic to the application itself and to the platform. For instance, at
platform level, the communication time between two tasks will depend on the time that
it takes for data to travel from one core to another through the machine topology. Mean-
while, when focusing in the application, the execution time of a task at a certain timestep
will depend on the phenomena being simulated and the input data. These problems are
accentuated as applications become more complex, and parallel platforms are designed
with more hierarchical characteristics. In this context, task mapping algorithms are em-
ployed to reduce the impact of such attributes. They ease the process of distributing work
over a parallel machine.

A task mapping algorithm provides performance portability by achieving a low core
idleness when mapping an application to different platforms. This not only demands the
algorithm to handle load imbalance and communication performance problems, but also
to be performant by keeping its time overhead to a minimum. For an algorithm to decide
which of these problems is the most relevant in a given situation, knowledge about the
parallel platform and application of interest is required.

In this chapter, we discuss the core concepts of parallel platforms and applications,
as well as their characteristics that affect performance. First, we introduce the features
of parallel system architectures, how they are assembled, and how they can influence the
communication time of applications. After that, we describe how parallel applications
are composed, and exemplify how they behave using three different scientific applica-
tions. The performance challenges faced by task mapping algorithms and their basic
concepts are explained next. We follow with a presentation of tools to control and probe
the machine characteristics, which serve to provide detailed information to task mapping
algorithms. We conclude this chapter with a discussion on the aforementioned topics.

2.1 Components of high performance computing platforms

High performance computing (HPC) platforms are parallel machines designed to run
applications with high demands of computing power and other resources. The main ap-
proach to increase their computing power is to increase their parallelism. The amount
of processing units per chip has been growing in the last decade, as has been the num-
ber of compute nodes used to compose a parallel system. For instance, the most per-
forming parallel platform in the world as evaluated by the TOP500 list in Novem-
ber 2013 (DONGARRA; MEUER; STROHMAIER, 2013), known as Tianhe-2, is com-
posed of 16, 000 compute nodes, and includes a total of 3, 120, 000 processing units. Such
platform design leads to highly hierarchical architectures, with complex memory subsys-
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tems and network topologies. This makes achieving scalable performance with different
applications a challenge.

2.1.1 Composition

When considering a bottom-up approach, the basic component of this system architec-
ture is the processing unit (PU). A processing unit is the place where a task is executed.
In this scenario, one core in a simple multicore processor would represent one PU, while
a simultaneous multithreading (SMT) core would have two or more PUs. This is the
same definition used by HWLOC (BROQUEDIS et al., 2010; HWLOC, 2013), as will be
discussed later in Section 2.4.1.

When one or more PUs are grouped in a single shared memory space, we have a com-

pute node (CN). Besides PUs and main memory, a compute node includes many levels
of cache memory to accelerate memory access. These components are hierarchically or-
ganized, as illustrated in Figure 2.1. It shows the machine topology of one compute node
composed of 24 PUs (6 PUs per socket). In this example, the memory hierarchy is orga-
nized as follows: each PU has its own L1 cache; pairs of PUs share a L2 cache; L3 cache
is shared among all PUs inside the same socket; and the main memory is shared among
all PUs.
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Figure 2.1: Example of machine topology of a UMA machine with 24 PUs distributed in
4 sockets.

Inside a compute node, tasks are considered to communicate through shared memory.
It is also considered that they are able to benefit from the memory hierarchy when com-
municating. Data sent from one task to another is regarded as stored in the first level of
the topology that is shared among the involved PUs. If the involved PUs do not share
any cache level, then data can be found in the main memory. In the case of a uniform
memory access (UMA) machine, all tasks accessing the main memory will take similar
times. This happens because all use the same interface (for instance, a bus) to read data,
as illustrated in Figure 2.2. However, the same does not happen with nonuniform memory
access (NUMA) architectures.

NUMA architectures are a current trend in the design of parallel compute nodes. As
the number of PUs inside a CN increases, so does increase the stress to the shared mem-
ory controller hub in a UMA CN. Meanwhile, on NUMA architectures, the main memory



19

Memory 

Socket Socket Socket Socket 

Figure 2.2: Example of communication through memory on a UMA machine.

is partitioned in multiple memory banks that are physically distributed, but the memory
space is still shared among all PUs in the same compute node. This design has the ad-
vantage of spreading the memory accesses over these different banks. Each group of PUs
sharing one memory bank is called a NUMA node. Figure 2.3 shows a compute node
similar to the one seen in Figure 2.1, but partitioned into 4 NUMA nodes.
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Figure 2.3: Example of a machine topology of a NUMA machine with 24 PUs distributed
in 4 NUMA nodes.

When tasks residing in PUs from different NUMA nodes communicate, data is usually
considered to be stored in the sender’s memory bank due to a first-touch memory policy,
as it stores data in the NUMA node of the first thread to access it (LOF; HOLMGREN,
2005). In this scenario, the receiver will have to make a remote memory access to read
data. This is depicted in Figure 2.4. The arrow represents the path that data travels to
get from sender to receiver. One of the main characteristics of NUMA machines is that
accessing data in a remote memory bank takes longer than accessing it in local memory.

Besides the memory hierarchy of a compute node, a network hierarchy is present
when clustering more than one CN. When using the same representation illustrated in
Figures 2.1 and 2.3, an additional level is added to the machine topology to include the
network interconnection. This is depicted in Figure 2.5. Tasks communicating in this
platform use the same mechanisms discussed before if both tasks happen to be in the
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Figure 2.4: Example of communication through memory on a NUMA machine.

same CN. If that is not the case, then data will be sent to the receiver’s CN. This com-
munication organization is displayed in Figure 2.6. The time that it takes for two tasks to
communicate through network is usually considered to be greater than the time it takes
for them to communicate through memory.
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Figure 2.5: Example of a machine topology with multiple compute nodes. 4 UMA com-
pute nodes are illustrated.

The communication time between two PUs is strongly influenced by the machine
topology level where it happens. The closer the topology level is to the PUs, the smaller
this time is. In this sense, communication at a cache level is faster than at a memory
or network level. Still, other factors can influence communication performance. For
instance, contention happens when there is conflict for a shared resource (e.g., a network
link), which decreases the performance of tasks using it. Besides that, differences inside
a topology level can affect performance, as discussed next.
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Figure 2.6: Example of communication through network organized as a fat tree.

2.1.2 Asymmetry and nonuniformity at topology levels

When studying the communication time among PUs in the machine topology, two
important properties emerge: symmetry and uniformity. They are explained below:

• Symmetry: a level in the machine topology is said to be symmetric if the com-
munication time of a first task sending data to a second one is the same than the
communication time of the second task sending data to the first one. When this
does not happen, a topology level is said to be asymmetric.

• Uniformity: a level in the machine topology is said to be uniform if all tasks
communicating through that level have the same communication time. When this
does not happen, a topology level is said to be nonuniform.

For a more formal definition, a machine topology can be denoted as a quadruple
O = (P ,L, S, C), with P the set of PUs, L the set of levels of the topology, the first
topology level shared by two PUs as a function S : P × P → L, and the communication
time of one PU to another as a function C : P×P → R>0. S is symmetric and transitive.

A topology level l ∈ L is considered to be symmetric if

∀a, b ∈ P ∧ S(a, b) = l ⇒ C(a, b) = C(b, a). (2.1)

Additionally, a topology is said to be symmetric if Equation 2.1 holds for all l ∈ L.
A topology level l ∈ L is considered to be uniform if

∀a, b, c ∈ P ∧ S(a, b) = S(a, c) ⇒ C(a, b) = C(a, c). (2.2)

Likewise, a topology is said to be uniform if Equation 2.2 holds for all l ∈ L. It is
important to notice that a topology level cannot be asymmetric and uniform at the same
time due to S being a symmetric function. All other combinations are valid.

Table 2.1 relates symmetry and uniformity to the machine topologies illustrated in Fig-
ures 2.1, 2.3, and 2.5. Other combinations can happen in real platforms, such as a cluster
of NUMA CNs. Cache levels are usually, but not exclusively, symmetric and uniform.
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Table 2.1: Characterization of the example platforms in regards to machine topology
symmetry and uniformity.

Platform Cache levels Memory level Network level

UMA CN
Symmetric Symmetric —
Uniform Uniform —

NUMA CN
Symmetric Asymmetric —
Uniform Nonuniform —

Clustered UMA CNs
Symmetric Symmetric Symmetric
Uniform Uniform Nonuniform

Nonuniformity can be seen in non-uniform cache access (NUCA) architectures (KIM;
BURGER; KECKLER, 2002). The memory level is uniform for UMA compute nodes,
and nonuniform for NUMA CNs. NUMA compute nodes may also present asymme-
try (RIBEIRO, 2011). The network level strongly depends on the network topology. In
Figure 2.6, all compute nodes are interconnected through a tree of switchs. This results in
a symmetric but nonuniform network level. Asymmetry may come in the network level
as a result of routing (HOEFLER; SCHNEIDER, 2012).

The hierarchical design of a system architecture, combined with asymmetric and
nonuniform topology levels, impacts the communication time of an application. If the dif-
ferent communication times between pairs of processing units are not taken into account,
then communication can hinder application performance. Still, the machine topology is
not the only factor affecting the total execution time of a parallel application, as charac-
teristics of the application itself play a role too. These characteristics are discussed in the
next section.

2.2 Characterization of scientific applications

Scientific applications are used to simulate phenomena through time at different scales
(e.g., from the way molecules interact in nanoseconds, to the climate in years). Simu-
lations involve large datasets and/or much processing. These parallel applications have
their work and data split into tasks which populate the resources available in parallel plat-
forms. The actual implementation of these tasks depends on the programming language.
For instance, tasks may be implemented as threads in OPENMP (DAGUM; MENON,
2002), processes in MPI (GROPP; LUSK; SKJELLUM, 1999), and active objects in
CHARM++ (KALE; KRISHNAN, 1993). The number of tasks in an application can be
much larger than the number of PUs available in the parallel platform.

2.2.1 Tasks: load and communication

Each task has an amount of processing to do. This is going to be referred as load in
this thesis. A task’s load is measured as the time it takes running on a processing unit in a
machine. The bigger the load, the longer the execution time. Although load could be de-
composed into two parameters, amount of work of a task and PU performance, we keep it
as single entity for simplicity. All platforms considered in this research are homogeneous,
which means that their processing units have the same performance. This is the same ap-
proach seen in related works (CHEN et al., 2006; HOFMEYR et al., 2011; JEANNOT;
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MERCIER, 2010; LIFFLANDER; KRISHNAMOORTHY; KALE, 2012; TCHIBOUKD-
JIAN et al., 2010; OLIVIER et al., 2011). This is discussed in more details in Chapter 5.

As tasks compute, the simulation iteratively evolves, and tasks start to communicate.
Even though simulations commonly evolve in timesteps, they are not required to follow a
Bulk Synchronous Parallel (BSP) (VALIANT, 1990) approach.

Task communication may happen through memory or network, depending on where
the involved tasks are mapped, as previously discussed in Section 2.1. For the sake of
simplicity, we are going to refer to data exchanges as messages. All messages sent and
received during the execution of an application (or a part of it) can be seen as its com-

munication graph, where vertices represent tasks and edges represent communication.
Communication is measured by the number of messages sent from a task to another and
the amount of bytes communicated. The time that it takes for a task to receive a mes-
sage depends on both factors, and is also strongly affected by the distance between the
processing units where tasks are mapped.

Considering these characteristics, an instance of an application execution (or part of
it) can be defined as a quintuple A = (T , Load, Size,Msgs,Bytes), with T the set
of tasks, their loads as a function Load : T → R>0, their sizes in bytes as a function
Size : T → R>0, the number of messages sent from one task to another as a function
Msgs : T ×T → N, and the number of bytes sent from one task to another as a function
Bytes : T × T → N. This organization is used to explain how application behavior
interacts with its performance next.

2.2.2 Application irregularity and dynamicity

The way an application and its tasks behave can affect performance in different ways,
e.g., tasks may have different loads; their loads may change through time; and communi-
cation may follow different patterns in different phases of the application. In the context
of this thesis, we focus on two task characteristics: (i) how their load behaves; and (ii) how
their communication behaves. This does not take into account other characteristics that
may influence the final performance of an application, such as the way tasks interact with
the file system. Communication and load vary from one application to another in two
axes: regularity and dynamicity. They are explained in more details below:

• Regularity refers to how the load or communication of a task differs from another
task. An application with regular load has tasks that compute for approximately the
same time. When this is not the case, an application is said to have irregular load.
Regular communication is present in applications with well-defined communica-
tion graphs, where the number of messages and amount of bytes exchanged is the
same among different tasks. Meanwhile, an application with irregular communi-

cation has a complex communication graph, or the amount of bytes or messages
communicated varies between pairs of tasks.

• Dynamicity refers to how the load or communication of a task varies through time.
An application with dynamic load has tasks that compute for different amounts of
time at different timesteps. If loads are constant through time, an application is said
to have static load. An application with static communication has a communica-
tion graph that does not change. If that is not the case for an application, it is said
to exhibit dynamic communication.

Figures 2.7 and 2.8 illustrate how regularity and dynamicity affect the load and com-
munication graph of an application, respectively. The vertical axis represents changes



24

in regularity, while the horizontal axis represents a variation in dynamicity through
timesteps. The horizontal bars in Figure 2.7 represent the load of four different tasks
during three timesteps. The circles in Figure 2.8 represent four tasks in two different
timesteps, while the arrows represent messages, and their thickness imply the volume of
data exchanged. As these figures illustrate, regularity and dynamicity are not absolute
characteristics, as they vary in levels.
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Figure 2.7: Different levels of load irregularity and dynamicity.

Timesteps 

Static Dynamic 

R
e
g
u
la

r 
Ir

re
g
u
la

r 

Figure 2.8: Different levels of communication irregularity and dynamicity.

Irregularity and dynamicity affect application performance at both load and commu-
nication sides. If the total load of tasks mapped to one PU is greater than in others, then
PUs will be idle while waiting for the slowest (most loaded) PU. This scenario can easily
happen in an application with a large load irregularity. Additionally, load dynamicity can
generate this scenario during execution time, making it hard to predict and avoid. Mean-
while, communication time will reduce if tasks that communicate more than others are
mapped closer in the machine topology, and it will suffer if the opposite happens. Com-
munication dynamicity can change which tasks have their performance affected by the
communication time.
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All these characteristics can be present in different levels in a scientific application.
We exemplify this next.

2.2.3 Examples of scientific applications

To better understand how dynamicity and irregularity present themselves in real sce-
narios, we analyze three scientific applications from different areas: seismology, weather
forecasting, and molecular dynamics.

Seismic wave propagation models are mainly employed to estimate the damage in
future earthquake scenarios. Simulations are applied in a regional scale, where the domain
is divided into a three-dimensional grid. Each sub-domain can be seen as a task. In addi-
tion to the simulated region, the domain also includes artificial borders used to process and
absorb the outgoing energy of the seismic waves. In these models, task communication is
regular and static, as tasks only communicate with their neighbors. Their load is mostly
static, but wave propagation can spread dynamism in nonlinear simulations (DUPROS
et al., 2010). These applications can also present load irregularity. This happens because
the physical domain simulation has a different load than the artificial absorbing borders;
and because different geological layers may have different constitutive laws, which results
in different computational costs (DUPROS et al., 2008, 2010; TESSER et al., 2014).

Weather forecasting models are used to predict the state of the atmosphere at given
place and time. This prediction can vary from tomorrow’s weather to how the climate is
going to be in the following years. Models such as the Regional Atmospheric Modeling
System (RAMS) (WALKO et al., 2000), and its Brazilian variant, BRAMS (BRAMS,
2013), split part of the globe and the atmosphere in a three-dimensional mesh. Each of
these parts can be seen as a task. Their communication follows a regular and static behav-
ior as seismology models do. Weather forecasting models can present load irregularity, as
tasks may have different workloads depending on input data. Load dynamicity can also
happen due to phenomena moving through the simulated area (e.g., thunderstorms) (RO-
DRIGUES et al., 2010)(XUE; DROEGEMEIER; WEBER, 2007). This dynamism hap-
pens in a scale smaller than the one seen in seismic wave propagation.

Molecular dynamics simulations are employed to study the dynamics and proper-
ties of biomolecular systems. Typical experiments with applications such as Nanoscale
Molecular Dynamics (NAMD) (NELSON et al., 1996) simulate the behavior of the
molecular system for hundreds of nanoseconds. This takes millions of femtoseconds
steps to simulate (BHATELE et al., 2009). NAMD uses a hybrid of spatial and force
decomposition methods, where the simulation space is divided into cubical regions called
cells, and the forces between two cells are the responsibility of computes. These two kinds
of tasks, cells and computes, bring load irregularity to the application. Load dynamicity
happens as simulated atoms can move from one cell to another. Communication is also
irregular, as it involves different communication patterns at the same time, such as pair to
pair and multicasts.

Table 2.2 summarizes the irregular and dynamic behaviors of the three applications.
Although these applications have similarities, as being iterative and involving a three-
dimensional space, the differences in the simulated phenomena results in various com-
binations of performance challenges to be handled when executing them in parallel plat-
forms. In the next section, we discuss the potential performance problems that should be
considered when mapping tasks to physical resources.
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Table 2.2: Characterization of the example applications in regards to application dynam-
icity and irregularity.

Application Irregularity Dynamicity

Seismic wave propagation Load (two kinds of tasks) Load
Weather forecasting Load (physical regions) Load
Molecular dynamics Load (two kinds of tasks) and communication Load

2.3 Task mapping

Task mapping algorithms serve to, as their name says, guide the way tasks are mapped
to physical resources (mainly the processing units). More formally, we define a task
mapping as a function M : T → P , where T represents the set of tasks of an application,
and P is the set of PUs of a platform.

Some variations of task mapping algorithms can be called load balancers, schedulers,
process mapping algorithms, and others. They play a central role in achieving perfor-
mance portability with scientific applications running on parallel HPC platforms, as prop-
erties of both can affect application performance. For instance, a naïve task mapping
involving an equal number of tasks per PU can perform well with a regular, static ap-
plication over a symmetric and uniform platform. However, any irregular or dynamic
behaviors can result in an increase of core idleness and loss of scalability. We discuss the
main performance problems considered in this thesis below.

2.3.1 Load imbalance and costly communications

The aforementioned behaviors can negatively affect performance in two ways:
(i) through load imbalance; and (ii) through costly communication. An application is
said to be load unbalanced when its current task mapping presents processing units with
significant load differences. The load of a processing unit is considered to be the sum of
the load of the tasks mapped to it. These load differences result in processing units being
idle while waiting its tasks to synchronize with others. Such idleness affects the parallel
efficiency and scalability of an application. Regular applications are the easiest to reduce
load imbalance, as an even task distribution results at most in an off-by-one imbalance,
where the number of tasks on each processing unit is within one of each other. Mean-
while, dynamic applications are harder to keep balanced, as changes in behavior during
execution time are more difficult to predict and mitigate.

Load imbalance is mostly independent of the machine topology. However, the oppo-
site happens for costly communications. The time that it takes for two tasks to commu-
nicate depends on how many messages are exchanged, the data volume, and where these
tasks are mapped. For instance, communication through network is usually considered to
take longer than through shared memory. If we consider that the communication time of
an application is the sum of the time that all its messages take, then an application is con-
sidered to have costly communications if its current communication time is much greater
than its optimal communication time. In other words, an application is said to have costly
communications if its current task mapping does not benefit from the machine topology.
Applications with regular communication are easier to map to the machine topology in a
way that reduces communication costs.
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Table 2.3: Characterization of the example applications in regards to sources of load
imbalance and costly communications.

Application Load imbalance Costly communication

Seismic wave propagation Load irregularity and dynamicity Bad task mapping
Weather forecasting Load irregularity mainly Bad task mapping
Molecular dynamics Load irregularity and dynamicity Irregular communication

The impact of load imbalance and costly communications will depend on the appli-
cation and platform of interest. For instance, considering the three applications discussed
in Section 2.2.3, Table 2.3 summarizes possible sources of load imbalance and costly
communications. Seismic and weather simulations are less likely to suffer from costly
communications, as their communication behavior is strongly static and regular. Still, a
task mapping that leaves communicating tasks far from each other could generate a per-
formance problem. Meanwhile, load irregularity and dynamicity pose challenges to a load
balanced task distribution for the three applications. All these factors and some more have
to be taken into consideration to provide performance portability to parallel applications,
as is discussed next.

2.3.2 Performance portability

Performance portability is achieved when an application can be mapped to different
platforms and still achieve low core idleness. This requires a task mapping that mitigates
the effects of load imbalance and costly communications. Besides these two challenges,
the task mapping algorithm itself must not be a liability to performance.

To better illustrate these concepts, Figure 2.9 depicts a scenario at its top where an ap-
plication running on four PUs is unbalanced and suffering from costly communications.
The vertical bars represent the load on each PU, and the arrows represent the communi-
cation time among PUs. Communication is illustrated after the computation phase of the
application only to evidence it, as communication can happen at the same time tasks are
computing.

Below the initial task mapping in Figure 2.9, five different task mappings are pre-
sented. Mapping (a) improves communication, but does not solve the load imbalance
problem. Mapping (b) fixes the load imbalance, but increases the communication costs
of the application. This could be a result of the task mapping algorithm not taking into
account the communication behavior of the application or the machine topology. Map-
ping (c) solves both problems, but application performance is affected by the execution
time of the task mapping algorithm. While this algorithm is running, the application is
stalled. A similar problem happens with mapping (d), where the task migration overhead
increases the total execution time of the application. The ideal case in Figure 2.9 is illus-
trated by mapping (e), where both performance problems are handled by a task mapping
algorithm with a low overhead.

For performance portability to be achieved, a task mapping algorithm must take in-
formed decisions regarding where to map tasks. In the next section, we discuss the main
sources of application and platform knowledge used by task mapping algorithms.



28

PUs 

0 1 2 3 
Load 

Communication 

T
im

e
 

0 1 2 3 

Task mapping 

Task migration 

0 1 2 3 

(a) Load imbalance 

0 1 2 3 

Task mapping 

Task migration 

0 1 2 3 

(b) Costly comm. 

Task mapping 

Task migration 

0 1 2 3 

0 1 2 3 

(c) Algorithm time 

Task mapping 

Task migration 

0 1 2 3 

0 1 2 3 

(d) Migration time 

Task mapping 

Task migration 

0 1 2 3 

0 1 2 3 

(e) Best scenario 

T
im

e
 

Figure 2.9: Challenges for performance portability.

2.3.3 Information required for mapping tasks

As previously discussed in Sections 2.2.1 and 2.1.2, we can see an application execu-
tion as the quintuple A = (T , Load, Size,Msgs,Bytes), and the machine topology of
the parallel platform where it is executing as a quadruple O = (P ,L, S, C). Nonetheless,
different task mapping algorithms may only consider part of this representation for its de-
cisions, as they focus on different objectives or scenarios where part of this information
is not available.

Task mapping algorithms that focus on mitigating load imbalance usually require
some knowledge of the execution time of the tasks or the current utilization of the pro-
cessing units. Tasks’ loads, or Load, can be obtained by timing the execution of each task
(for instance, at a runtime (KALE; KRISHNAN, 1993) or operating system (HOFMEYR
et al., 2011) level), or by predicting their processing time based on some previous knowl-
edge of the application. However, this second approach can only be applied to applica-
tions with static loads mostly. By using Load, an algorithm will seek to distribute tasks
in a way that the sum of their loads in each PU is similar.

The total time spent of migrating tasks, or the migration overhead, can be estimated
using the amount of bytes private to each task, or their Size. The current task mapping M
is also important in this situation, as it enables the task mapping algorithm to keep some
tasks where they currently are, avoiding unnecessary task migrations.

The communication graph of an application plays an important role when trying to re-
duce costly communications. Task mapping algorithms can use the number of messages
(Msgs) or the data volume exchanged between tasks (Bytes) to evaluate which tasks
should be mapped close to each other. Such information can be captured at operating sys-
tem level (DIENER; CRUZ; NAVAUX, 2013), runtime level (FRANCESQUINI; GOLD-
MAN; MEHAUT, 2013), or even by tracing an execution of the application (MERCIER;
CLET-ORTEGA, 2009). Still, with no knowledge about the machine topology, one can
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only map communicating tasks to the same PU.
The machine topology can be used by task mapping algorithms in two different detail

levels. The first one involves using the machine topology hierarchy, as the set of levels
in the topology L and the first topology level shared by two PUs S, to designate which
PUs are closer to each other. However, this approach does not differentiate nonuniform
or asymmetric levels. The second step includes knowledge about the communication
time between PUs C. By combining this information with the communication graph of
the application, one can estimate the communication costs of different mappings. The
mechanisms used to discover the machine topology hierarchy and communication times
are the subject of the next section.

2.4 Machine topology identification

Existing approaches to identify the characteristics of a system architecture can be
divided into two different groups. The first group focuses on controlling and discover-
ing the different topology levels in a parallel platform, while the second group involves
benchmarks and applications to obtain the communication times of the platform and other
parameters. We present examples of both groups in the next sections and discuss which
characteristics of the machine topology they could be able to provide to task mapping
algorithms.

2.4.1 Hierarchy perception

A first technique to organize and model the hierarchical topology of a machine would
be to read the vendors’ architecture specifications and to describe it manually. An ad-
vantage of such approach lies in the ability to obtain architecture details that may not be
available for tools (e.g., the physical distance between two components). However, this
faces several issues, such as: (i) the problems of being manual work (portability, propen-
sity to errors, scalability, etc.); (ii) limited information made available by vendors; and
(iii) at a communication costs level, the differences between what is specified and what
the system provides under different workloads. Due to such limitations, this approach is
usually not chosen.

A tool used in different works to provide information about the system’s architecture
is named Portable Hardware Locality, or HWLOC (BROQUEDIS et al., 2010)(HWLOC,
2013). HWLOC provides a portable abstraction of the underlying machine hardware, de-
scribing the system architecture hierarchy. It automatically gathers the machine topology
of a compute node, and it provides the ability to extend it to include multiple compute
nodes. HWLOC contains supplementary information about machine components, such as
cache sizes, line sizes, and associativity. Its interface supports the manipulation of the
hardware abstractions, and the binding of tasks and memory onto PUs and NUMA nodes.
HWLOC is able to represent nonuniformity. For instance, it uses a distance matrix made
available by the BIOS to represent the distance among NUMA nodes. However, it does
not express asymmetries at a topology level.

Another tool like HWLOC is LIKWID (TREIBIG; HAGER; WELLEIN, 2010)(LIK-
WID, 2013). The main difference between the two is that LIKWID supports hardware
performance counters for a target application and architecture. Nonetheless, this feature
depends on the support provided by the hardware. It represents nonuniformity for NUMA
nodes the same way that HWLOC does, and it also does not report asymmetries. Moreover,
LIKWID is limited to one compute node, and it does not offer an API to manipulate the
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hardware abstraction as data structures.
Instead of using general tools like HWLOC and LIKWID, some companies prefer to

provide machine topology information through special interfaces to developers. For in-
stance, the UV 2000 series server from SGI includes a topology file with its operating
system that contains all NUMAlink 6 interconnections between pairs of NUMA nodes
inside the parallel platform (SGI UV 2000 System User Guide, 2012). With this infor-
mation, one can measure the distance between two NUMA nodes in the machine as the
number of hops.

A last approach to probe the machine topology involves benchmarking the hardware,
as done by Servet (GONZALEZ-DOMINGUEZ et al., 2010)(SERVET, 2013). Servet
is a benchmark suite to characterize the communication costs of platforms composed of
multiple UMA compute nodes. It assesses the cache hierarchy, memory access costs and
bottlenecks, and the communication latency among PUs. This communication latency is
used to group PUs into levels, which form the machine topology. However, Servet does
not explicitly contemplate nonuniformity in the memory level.

Besides Servet, there are different sets of benchmarks to evaluate the memory and
network levels of a machine topology. A brief list is presented next.

2.4.2 Communication cost scanning

Benchmarks that work inside a single compute node usually focus in more than
just scanning communication costs. For instance, BlackjackBench (DANALIS et al.,
2012)(BLACKJACK, 2013) is a suite composed of several micro-benchmarks to probe
the hardware characteristics of a compute node, such as caches’ line size, size, latency,
and associativity; TLBs number, page size, and working set; instruction latencies and
throughputs; and others. BlackjackBench’s focus is to provide hardware information for
algorithm-guided tuning, and architecture-aware compiler environments. It also contains
a collection of scripts to ease and automate the statistical analysis of benchmarked data.
Analysis techniques include enforcing monotonicity to reduce noise when it makes sense,
e.g., considering that cache access latency only increases as we move farther from the
processing unit; and finding the steps in curves that represent hardware changes, such as
the size of a cache level in the hierarchy, by finding the biggest gradients (relative values
increase).

A very traditional benchmark suite that considers characteristics of a compute
node and its network interconnections can be found in LMBENCH (STAELIN,
1996)(LMBENCH, 2013). It includes benchmarks to evaluate PUs, memory, network,
file system, and disk. Although current implementations are able to run benchmark in-
stances in parallel, the original suite was focused on evaluating CNs with one PU only.
For this reason, they cannot uncover asymmetric and nonuniform levels in the topology
by themselves. Memory benchmarks assess read latency and read bandwidth of the dif-
ferent cache and memory levels, and include an implementation of the STREAM bench-
mark (STAELIN, 1996, ap. (MCCALPIN, 1995)). Meanwhile, the network benchmark
measures the round-trip time (RTT) between two CNs using two different transport pro-
tocols: TCP (Transmission Control Protocol) and UDP (User Datagram Protocol).

When focusing at an interconnection network level only, different frameworks are
available for the development of benchmarks. An example of this is Netgauge (HOE-
FLER et al., 2007)(NETGAUGE, 2013). Netgauge splits communication patterns, such
as one-to-one or one-to-many, from the communication protocols and interfaces used,
such as InfiniBand or TCP. It also provides the ability to implement new modules and
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insert them in the framework. Similarly to BlackjackBench, Netgauge automates the sta-
tistical analysis of benchmarked data.

Meanwhile, at a higher level than Netgauge, coNCePTuaL, or Network Correctness
and Performance Testing Language (PAKIN, 2007)(CONCEPTUAL, 2013), is a domain-
specific language to write network benchmarks. It eases the expression of complex com-
munication patterns with its high level language. coNCePTuaL’s focus is to provide a
portable, readable, and reproducible way to evaluate networks. Benchmarks described
with coNCePTuaL are used to generate C code using different communication interfaces,
such as TCP and MPI, that are then executed. When run, they automatically document the
state of the system. coNCePTuaL is also able to process output data to ease its statistical
analysis.

It can be noticed that no tool or benchmark alone is able to capture information from
both memory and interconnection levels while also detecting the communication costs of
the platform. This motivates the development of new approaches to model the machine
topology.

2.5 Discussion

In this chapter, we presented the main characteristics of parallel HPC platforms and
scientific applications that influence performance. We have seen that a parallel platform
is composed of multiple processing units distributed over one or more compute nodes.
Its machine topology is organized hierarchically, including multiple cache, memory, and
network levels. When tasks mapped to processing units exchange messages, their com-
munication time can be influenced by asymmetry and nonuniformity at different topology
levels. When communication time is unoptimized, we say that the task mapping suffers
from costly communications.

Besides the influence of the machine topology on the communication time, the parallel
application also plays an important role. Communication performance is affected by its
communication graph, which includes the number of messages exchanged between its
tasks and their data volume, and may present irregular and dynamic behaviors.

Irregularity and dynamism can also be present at a task load level, as exemplified
with scientific applications from three different areas: seismic wave propagation, weather
forecasting, and molecular dynamics. If a mapping results in a large task load difference
among PUs, the faster PUs will have to idly wait for the slowest one to continue their
computations. In this scenario, we say that the task mapping suffers from load imbalance.

We defined that a task mapping achieves performance portability when it is able to
map an application to different parallel platforms while maintaining a low core idleness.
This involves mitigating load imbalance, costly communications, and also keeping its
own overhead to a minimum. Task mapping overhead is related to the time spent by an
algorithm computing a new task mapping, and the time spent migrating tasks. To achieve
all that, a task mapping algorithm requires detailed information about the application and
the machine topology.

Different approaches to obtain information about the machine topology were dis-
cussed. Most tools and applications focus on identifying the different topology levels
in a parallel platform or evaluating the communication costs at different levels, but not
both. To fill this gap, we propose our own approach to model the machine topology of
HPC platforms in the next chapter, and employ it in novel topology-aware load balancing
algorithms in Chapter 4.
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3 MODELING THE TOPOLOGIES OF HPC PLATFORMS

As discussed in the previous chapter, a parallel platform can include complex mem-
ory and network hierarchies in its topology. Such topology may present asymmetries
and nonuniformity in different levels, which influence the performance of scientific ap-
plications. This is specially true when considering their communication performance. To
mitigate this problem, task mapping algorithms can take into account properties of the
parallel platform and organize them into their own machine topology model. However,
current tools are usually focused on modeling the memory hierarchy and/or the network
hierarchy, or capturing the communication costs of platform, but not both.

In this chapter, we present the rationale of our machine topology model, as well as its
features, limitations, techniques, and tools involved. Our main objective is to provide a
unified machine topology model that includes both memory and network levels, and that
exposes asymmetry and nonuniformity in different levels, so they can be used by task
mapping algorithms and others. Additional objectives include:

• Presenting a general vision of the topology, allowing the model to be applied over
different platforms in a portable way;

• Providing an interface that allows the machine topology model to be used by differ-
ent algorithms, specially task mapping ones;

• Modeling communication times over the topology with real, precise, and accurate
costs;

• Profiling the machine topology without incurring in large overheads. This includes
limiting the scope of information collected; and

• Building our solution over well established tools.

3.1 Topology representation

We start this chapter by introducing how different topology levels are represented in
our model, followed by a discussion about the parameters used to represent communica-
tion costs.

3.1.1 Topology tree

We base our approach to machine topology modeling over the abstraction provided by
HWLOC (BROQUEDIS et al., 2010). HWLOC exposes information about a compute node
system’s architecture to applications and runtimes. Examples of such information are the
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number of processing units, cache sizes and sharing, and the presence of different memory
nodes. HWLOC also enables process, thread, and memory binding, which are important
features required to profile the communication costs of a platform. This is discussed in
more details in Section 3.2.1.

HWLOC represents the machine topology as a tree, where processing units (PUs) are
leaves and the compute node (CN) is the root. All other components in the machine, such
as cache memories, sockets, and NUMA nodes serve as intermediary nodes. This tree can
be traversed, for instance, to find the first topology level shared by two PUs, or to which
NUMA node a PU belongs.

Although HWLOC provides an automatic machine topology detection mechanism, it
is limited to a CN only. However, to overcome this limitation, HWLOC provides to the
developer the ability to extend its representation to include multiple compute nodes. For
a machine topology O as described in Section 2.1.2, HWLOC provides the set of PUs P ,
the set of topology levels L, and how levels are shared as a function S. In other words, it
only lacks the communication costs C.

HWLOC considers nonuniformity at a memory level by exposing the distance matrix
made available by the BIOS to represent the distance among NUMA nodes. These values
can be seen as synthetic communication costs, as they do not represent actual parameters
of the topology. We extend HWLOC’s machine topology model by benchmarking the
cache, memory, and network hierarchies to compute the communication costs C. More
details are presented in Sections 3.2.1 and 3.2.2.

3.1.2 Communication costs

Two metrics were chosen to portray the communication costs achieved through the
machine topology. These are latency and bandwidth. They are able to represent the
different factors that impact communication performance in a simplified way.

Latency (Clat) expresses the cost to first access a message and bring it closer to a task.
Latency affects the waiting time for data directly. The longer it takes to access data, the
farther the communicating tasks are considered to mapped. Latency is also called as delay

in the LogP model for networks (CULLER et al., 1993).

Bandwidth (Cband) reflects the limit in amount of data that can be accessed per unit
of time. It can be used to observe bottlenecks in the memory and network topologies.
Bandwidth is seen as the inverse of the overhead parameter in LogP. When used in com-
bination with latency, it provides an estimation of the time that it takes to access a certain
data quantity. It is important to clarify that latency and bandwidth are not directly related.
This is discussed in more details with experimental results in Section 3.3.1.

The communication costs between two PUs are related to the first topology level that
is shared by them, as we consider that this is where their communication happens. In this
context, latency and bandwidth have to be provided for all cache, memory, and network
levels. Figure 3.1 illustrates how communication latency and bandwidth are represented
for different topology levels on one socket of a machine named Xeon24, where Xeon
represents its processor model and 24 is the number of PUs in a compute node. More
information about this machine can be found in Section 6.1.1. The rectangles represent
PUs and the three levels of cache present in a socket, while the arrows indicate at which
topology level communication happens.

We obtain the communication costs of a parallel platform by profiling all levels of the
machine topology. The mechanisms involved in this process are explained next.
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Figure 3.1: Machine topology representation of one socket of machine Xeon24. Different
levels of the cache hierarchy present different latencies and bandwidths.

3.2 Topology modeling

To model the topology and provide this knowledge concisely and in feasible time,
some assumptions regarding the machine have to be made. We list the main assumptions
of our model below. These assumptions are in pair with current and popular technologies.

• All PUs have the same cache hierarchy and cache sizes. In other words, the cache
hierarchy is homogeneous, as is the usual case in current platforms. This assump-
tion helps to reduce the benchmarking time by evaluating the cache hierarchy for
one PU instead of all PUs. This can easily be changed, but would incur in a longer
profiling time due to the identification of different cache hierarchies and their re-
spective benchmarking.

• There is no combination of different kinds of memory in the system, such as volatile
and non-volatile random-access memories, or caches and scratchpads. The present
model could be extended to include these characteristics if tools are made available
to identify and control memory allocation.

• The benchmarks do not explicitly consider contention. We assume that the platform
is dedicated to the application, which removes contention from consolidation, and
contention from the parallel application alone can be modeled in the algorithms that
use our model. Both are currently out of the current scope of our research.

• Communication costs are optimistic, as they represent the best latency and band-
width achievable for a topology level by a single PU. Measurements are made se-
quentially and require the platform to be dedicated for them.

We opted to use well-known benchmarks and tools as a mean to maintain our model
generic. Still, there is no common mechanism to measure latency and bandwidth at both
memory and network levels. For this reason, we explain how we model the communica-
tion costs for each of these levels in the next sections.

3.2.1 Memory hierarchy of multicore platforms

The memory characteristics of a parallel platform are profiled using two portable mi-
crobenchmarks from the LMBENCH suite (STAELIN, 1996; LMBENCH, 2013). We use
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lat_mem_rd to measure memory read latency and bw_mem for memory read band-
width. These benchmarks run multiples times to gather statistical measurements.

lat_mem_rd measures memory read latency using a technique known as pointer
chasing, where each memory access reads the address of the next position to access. A
stride of the size of the cache line is used to force each memory read to mitigate prefetch-
ing effects.

bw_mem tests memory read bandwidth by accessing a contiguous vector of integers
with a stride of the size of four integers. While STREAM (STAELIN, 1996, ap. (MC-
CALPIN, 1995)) is a well-known bandwidth benchmark, its focus resides in the main
memory of the machine. It did not show much difference between cache levels and par-
tially avoided caching in some experiences.

To measure these metrics for the different levels of the memory hierarchy, data used by
the benchmarks is required to: (i) fit inside the level of interest; and (ii) be big enough to
avoid being stored in a cache level closer to the PU. Our approach is based on measuring
latency and bandwidth for one data size only for each level of the memory hierarchy. Such
data size represents the middle point in logarithm scale between the sizes of two levels
in the memory hierarchy. In the context of this thesis, these points are called midpoints.
Figure 3.2 illustrates the midpoints for a machine with a memory hierarchy containing
three cache levels. The horizontal axis represents in logarithmic scale the size in bytes of
the different memories: 32 KB of L1 cache, 2 MB of L2 cache, 32 MB of L3 cache, and
2 GB of main memory. The size of a cache line is considered to be 512 bytes.

L1 L2 L3 Mem Line 

Midpoint L1 
4 KB 

Midpoint L2 
256 KB 

Midpoint L3 
8 MB 

Midpoint Mem 
256 MB 

Figure 3.2: Midpoints for a memory hierarchy including the main memory and three
cache levels. Midpoints represent the middle point in logarithm scale between the sizes
of two levels.

By measuring these metrics for the midpoints only, the overhead of benchmarking the
machine topology is significantly reduced when compared to measuring several data sizes
to compute statistics for each topology level. We compare our approach to using the mean
and median latencies in Section 3.3.2.

In the case of nonuniform and asymmetric topology levels, benchmarking is done
for each pair involved. We call this approach permutation-based. For instance, when
considering a NUMA compute node, the measurements involve keeping the benchmark’s
thread in the first PU of a NUMA node while its memory resides in another NUMA
node. This process is facilitated by HWLOC, as it provides the ability to bind threads and
memory in the machine topology. As usually no information is available regarding the
way NUMA nodes are physically interconnected, all combinations of NUMA nodes are
benchmarked. This is done sequentially to avoid having measurements interfering with
each other.

Testing all permutations of NUMA nodes results in O(m2) latency and bandwidth
measurements for m NUMA nodes. As this number is usually small for current compute
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nodes, benchmarking time tends not to be a problem. Nevertheless, we provide a different
alternative for the scenario where m is large. Instead of measuring latency and bandwidth
for all combinations of NUMA nodes, we use the distance matrix available in HWLOC

to guide the benchmarking by measuring the communication costs only once for each
distance value. We call this approach distance-based. This involves a constant number
of measurements instead of a quadratic one. For instance, in a machine where distances
are represented as 1 for the local memory and 2 for the other NUMA nodes, communi-
cation costs would be measured only twice, and the obtained latencies and bandwidths
would be replicated for the different NUMA node combinations. We provide a precision
comparison of the two approaches in Section 3.3.3.

The procedure used to benchmark the network topology is similar to the one used to
measure nonuniformity inside a compute node, but instead of considering NUMA nodes,
pairs of compute nodes are evaluated. This is presented next.

3.2.2 HPC network topology

The benchmarks used for measuring parameters in the network level are different from
the ones used in a memory level. This happens due to differences in the basic mechanism
used for communication. Passing a message in shared memory requires allocating space
to store the message’s content and sending a pointer containing this memory position,
while communication in distributed memory involves sending the message through the
network to be read by the receiver.

We gather network statistics using a ping-pong benchmark written with coNCeP-
TuaL (PAKIN, 2007; CONCEPTUAL, 2013). As discussed in Section 2.4.2, coNCeP-
TuaL is a domain-specific language to write network benchmarks that focuses on porta-
bility, readability, and reproducibility. The abstract code used to describe our ping-pong
benchmark is illustrated in Code 3.1. The benchmark returns the round-trip times (RTT)
between all pair of compute nodes (line 26) for different sizes of messages. This process
is sequential, as is the measurement done for nonuniform memory levels. An advantage
of such approach is that it is able to profile the network without previous knowledge of its
topology.

The use of the round-trip time is related to the absence of a global clock to measure
the time of a single message. Different message sizes are benchmarked so that a simple
linear regression (Equation 3.1) can be applied to decompose the time in latency and
bandwidth. Equation 3.2 represents this process, where time represents the RTT for a size
of message bytes. Latency is considered two times because two messages are involved
in the measurement. However, bandwidth is considered only once because the return
message has a null size, which results in a smaller influence in the overall measurement.
This enables the capture of asymmetric bandwidths.

y = α + βx (3.1)

time = 2× latency +
bytes

bandwidth
(3.2)

For the linear regressions, message sizes are split into two groups: small messages
and big messages. Small messages are more strongly influenced by communication la-
tency, while big messages depend on the bandwidth. By using small messages to compute
latency and big messages for bandwidth, we are able to obtain more precise results. By
combining this information with the measurements done at cache and memory levels, we
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are able to provide a complete view of the machine topology with unified communication
costs.

Code 3.1: Ping-pong benchmark description with coNCePTuaL.

1 # ping−pong l a t e n c y t e s t w r i t t e n i n coNCePTuaL

2 R e q u i r e l a n g u a g e v e r s i o n " 1 . 4 " .
3 # Parse t h e command l i n e .

4 r e p s i s " Number o f r e p e t i t i o n s o f each message s i z e " and
comes from

5 "−−r e p s " o r "−r " w i th d e f a u l t 1000 .
6 maxbytes i s "Maximum number o f b y t e s t o t r a n s m i t " and comes

from
7 "−−maxbytes " o r "−m" w i t h d e f a u l t 1M.
8 warm i s " Number o f r e p e t i t i o n s f o r warmup " and comes from
9 "−−warmup " o r "−w" w i t h d e f a u l t 50

10 # Ensure t h a t we have a peer w i t h whom t o communicate .

11 A s s e r t t h a t " t h e ping−pong t e s t r e q u i r e s a t l e a s t two t a s k s
" w i t h num_tasks >=2.

12
13 # Per form t h e benchmark .

14 For each s e n d e r i n {0 , . . . , 1000} {
15 f o r each r e c e i v e r i n { n e i g h b o r f o r each n e i g h b o r i n {0 ,

. . . , 1000} where s e n d e r <> n e i g h b o r } {
16 f o r each msgs i ze i n {512 , 1024 , 2048 , . . . , maxbytes } {
17 t a s k s e n d e r r e s e t s i t s c o u n t e r s then

18 f o r r e p s r e p e t i t i o n s p l u s warm warmup r e p e t i t i o n s {
19 t a s k s e n d e r s e n d s a msgs i ze b y t e s message t o t a s k

r e c e i v e r then

20 t a s k r e c e i v e r s e n d s a 0 b y t e message t o t a s k s e n d e r
21 } then

22 i f r e c e i v e r < num_tasks then

23 t a s k s e n d e r l o g s
24 r e c e i v e r a s " Neighbor " and
25 msgs i ze as " By tes " and
26 e l a p s e d _ u s e c s as " T o t a l t i me ( u s e c s ) "
27 }
28 }
29 }

3.3 Topology model evaluation

We evaluate different aspects and decisions of our machine topology model in this
section. Firstly, we show how the achievable communication latency and bandwidth de-
pend on the topology level being used, and justify the use of both metrics to represent the
communication costs of the machine topology. Secondly, we discuss the impact of us-
ing midpoints to measure communication costs. Lastly, we compare different approaches
to identify nonuniformity and asymmetry at a memory level. All machines used in this
evaluation are detailed in Section 6.1.1.
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3.3.1 Latency and bandwidth measurements

To better understand how the communication costs of a platform vary among topology
levels, different parallel platforms have been evaluated. Nonetheless, they all presented
the same behavior. For this reason, we will discuss the results obtained with only one
parallel platform.

Latencies measured with lat_mem_rd on the parallel platform named Opt48 are
illustrated in Figure 3.3. The vertical and horizontal axes represent latency and the size of
data used in the benchmark, respectively. The three labels in the graph indicate the size
of each cache level. For each level of the memory hierarchy, 50 data sizes were used for
profiling. These follow an arithmetic progression inside each level. For this experiment,
the benchmark runs 50 repetitions for each data size. Different numbers of data sizes
and repetitions were also evaluated, but showed similar results. As the horizontal axis is
represented in a logarithmic scale, there are more data points near the end of each memory
level than at the beginning.
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Figure 3.3: Memory latency measured with lat_mem_rd for different data sizes on
Opt48.

An area of stability can be seen for each level of the memory hierarchy in Figure 3.3.
However, the edges of each memory level tend to show some disturbance. Latencies are
smaller when data is slightly bigger than the preceding cache level because that cache
is still able to accelerate part of the memory reads. Similarly, latencies are bigger when
data approaches the limit of a cache level, as conflicts and other processes from the op-
erating system can reduce the effectiveness of a cache level. These extremities could be
prejudicial to our topology model, as they add noise to the measurement process.

The same stability behavior seen in Figure 3.3 can be seen in the bandwidth profile
obtained with bw_mem and shown in Figure 3.4. These results follow the same method
discussed before. In this case, the vertical axis represents the memory bandwidth achieved
for the different data sizes.
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Figure 3.4: Memory bandwidth measured with bw_mem for different data sizes on Opt48.
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Figure 3.5: Product between memory latency and bandwidth for machine Opt48.

While latency increases as we move farther from the processing unit, bandwidth de-
creases. However, these changes do not happen at the same order of magnitude. We see an
increase in latency from L1 to the memory node at the scale of hundreds, while bandwidth
decreases in order of tens. This indicates that these two metrics are in part disconnected.
To better visualize this, Figure 3.5 shows the product of latencies and bandwidths ob-
tained for different data sizes. The unity of the vertical axis is of no meaning in this case.
The product value increases with data size, which indicates that latency is not inversely
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proportional to bandwidth, as it increases faster than bandwidth decreases. The strong
variance seen around the L2 label at 512 KB comes from same reasons explained before.
They affect slightly different data sizes for each benchmark, which results in those spikes.

These results show the significance and difference of latency and bandwidth to model
the communication costs. They also stress how noisy measurements can be when they are
close to the limits of different memory hierarchy levels. We discuss how we overcome
these noises next.

3.3.2 Use of midpoints

Our approach to measure latency and bandwidth at different memory topology levels
is based on the use of midpoints, which represent the middle point in logarithm scale
between the sizes of two levels in the memory hierarchy. To better understand how this
affects the measured values, we compare the use of midpoints to other statistical tools,
namely the arithmetical mean and median.

As Figures 3.3 and 3.4 illustrate, latency and bandwidth measurements show varia-
tions near the limits of each memory level. This affects statistics as the difference between
each level is not symmetric. To better display this, Table 3.1 represents three different
approaches to define the latencies of the memory hierarchy on three different machines
named Xeon24, Xeon32, and Opt48. All approaches execute the benchmark 50 times for
each data size.

Table 3.1: Memory latency (ns) as measured by lat_mem_rd on different machines.

Xeon24
L1 L2 L3 Memory node

Midpoint 1.133 5.694 39.20 185.8
Mean 1.132 9.416 57.24 183.9
(% change vs. midpoint) (0.1%) 65% 46% (1.0%)
Median 1.133 5.917 46.84 185.3
(% change vs. midpoint) 0.0% 3.9% 19% (0.3%)

Xeon32
L1 L2 L3 Memory node

Midpoint 1.791 4.480 20.90 118.2
Mean 1.786 7.197 20.70 116.0
(% change vs. midpoint) (0.3%) 60% (1.0%) (1.8%)
Median 1.790 4.563 20.93 119.0
(% change vs. midpoint) 0.0% 1.8% 0.1% 0.7%

Opt48
L1 L2 L3 Memory node

Midpoint 1.364 6.973 19.46 48.58
Mean 1.377 7.821 21.21 48.41
(% change vs. midpoint) 1.0% 12% 9.0% (0.4%)
Median 1.364 7.022 19.66 48.44
(% change vs. midpoint) 0.0% 0.7% 1.1% (0.3%)
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The difference between latencies computed with the midpoint approach and the arith-
metic mean goes up to 65%, as seen on the L2 cache latency of Xeon24. Meanwhile, the
difference between use of midpoints and the median stays under 4%, with the only excep-
tion being the L3 cache latency on Xeon24. These results indicate that midpoints provide
stable means to measure the communication costs of different topology levels. Its main
advantage when compared to the median is that it requires only one run for each level of
the memory hierarchy, while the median requires running benchmarks with several data
sizes, which results in a larger benchmarking time.

3.3.3 Nonuniformity measurement at memory level

As discussed in Section 3.2.1, we provide two different ways to capture nonuniform
communication costs at a memory level: a permutation-based approach, which bench-
marks all possible pairs of NUMA nodes; and a distance-based approach, which uses the
distance matrix made available by the BIOS and HWLOC to guide which pairs should be
benchmarked. The first approach provides more detailed information, while the second
has a benchmarking time much smaller than the first one. In this section, we compare
both techniques to other information available in parallel compute nodes.

We focus our experiments on Xeon192, an SGI UV2000 machine composed of
24 NUMA nodes, where each NUMA node contains 8 PUs. This parallel platform pro-
vides an interesting environment for our experiments due to its substantial number of
NUMA nodes inside a single compute node, and to their interconnection, as NUMA
nodes in an SGI UV2000 machine are interconnected through a proprietary fabric named
NUMAlink 6, or NL 6 (SGI UV 2000 System User Guide, 2012).

Figure 3.6 illustrates how the first eight NUMA nodes of Xeon192 are interconnected
among themselves and with other NUMA nodes. Each circle represents a NUMA node,
while each arrow represents a NL 6 interconnection. Dashed arrows represent intercon-
nection using Intel QuickPath Interconnect (QPI) (An Introduction to the Intel QuickPath
Interconnect, 2009). This information is collected from a topology file made available
with the operating system on this platform.

As it can be seen in Figure 3.6, Xeon192’s nodes form pairs interconnected through
QPI, such as nodes 0 and 1, or 4 and 5. Additionally, each NUMA node has two NL 6
connections with one other node (e.g., nodes 4 and 6). Based only on this view of the
platform, one could expect to see different communication performances between node 0
and nodes 8, 2, or 3, as the first is connected to node 0 by only one NL 6, the second is
connected by two NL 6, and the third would require data to go through QPI and a double
NL 6 interconnect.

Another vision of the same eight NUMA nodes of Xeon192 is shown in Figure 3.7.
This representation is based on information made available by SGI on manuals (SGI UV
2000 System User Guide, 2012). In this figure, each square represents a processor node.
A processor node consists of two NUMA nodes interconnected by QPI to one application-
specific integrated circuit (ASIC) named HARP. This ASIC is connected to the NUMA-
link interconnect fabric through different NL 6 ports. Each pair of NL 6 interconnections
is represented by an arrow in Figure 3.7.

These two representations of Xeon192 provide different expectations of the commu-
nication performance at memory level. To better demonstrate that, Table 3.2 presents
estimations of the communication costs achievable by node 0 accessing data on various
NUMA nodes. The first line of the table depicts the minimum number of hops data would
have to traverse to be accessed by a PU on node 0 using the machine representation of
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Figure 3.6: Interconnections of the first eight NUMA nodes of machine Xeon192 based
on topology file.
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Figure 3.7: Interconnections of the first eight NUMA nodes of machine Xeon192 based
on the machine specification of processor nodes.

Figure 3.6, while the second line is based in Figure 3.7. Although these approaches pro-
vide the same estimation for several combinations of NUMA nodes, they disagree on 28%
of the cases (160 of 576) for this machine.

As previously discussed, a different approach to characterize nonuniformity at mem-
ory level is to use the distance matrix made available by the BIOS and accessible using
HWLOC. The distances provided by this matrix for node 0 on Xeon192 are presented on
the third line of Table 3.2. Four different distance levels can be seen: a distance 1 for
the node itself; a distance 5 for the other NUMA node inside the same processor node;
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Table 3.2: Comparison of the different representations of communication distance from
NUMA node 0 on Xeon192.

Method
NUMA nodes

0 1 2 3 8 9 10 16 18

# of hops (NL 6 and QPI) 0 1 1 2 1 2 2 1 2
# of hops (Processor nodes) 0 0 1 1 1 1 2 1 2

Distances (BIOS/HWLOC) 1 5 6.5 6.5 6.5 6.5 7.9 6.5 7.9

Latency (ns) 71 457 573 572 572 576 682 575 696
(remote/local) 1.0 6.4 8.1 8.1 8.1 8.1 9.6 8.1 9.8

Bandwidth (GB/s) 10.5 2.1 1.7 1.7 1.7 1.7 1.4 1.7 1.4
(local/remote) 1.0 5.0 6.2 6.2 6.2 6.2 7.5 6.2 7.5

a distance 6.5 for NUMA nodes in neighboring processor nodes; and a distance 7.9 for
NUMA nodes at a distance of two hops. It is important to notice that this does not differ-
entiate between NUMA nodes (or processor nodes) connected by more NL 6 ports. Still,
none of these techniques can detect asymmetries.

The last four lines of Table 3.2 present the latencies and bandwidths measured using
our permutation-based approach. For each permutation, each benchmark is executed 5
times to warmup the memory, and 30 times to gather statistical data. For each of the
two metrics, a factor comparing local and remote communication costs is also provided.
These measured communication costs behave similarly to the distances matrix, as four
different levels can be seen. Results indicate that the distances matrix is based on band-
width factor on Xeon192, as they differ from one another by less than 5%. However, the
differences in latency between local and remote communications are 25% larger than the
aforementioned distances. In this context, using the distance matrix would result in a un-
derestimation of the real communication costs among NUMA nodes. Overestimation can
also happen. For instance, on a machine such as Xeon32 (see Chapter 6.1.1), distances
are 40% to 50% greater than the actual communication cost differences.

Using the permutation-based approach to measure latencies and bandwidths, we are
also able to reveal asymmetries at a memory level. The main limitation of this approach
lies in its execution time. For Xeon192, which is composed of 24 NUMA nodes, the
memory hierarchy profiling takes approximately 500 minutes, which can be prohibitive.
In this same machine, our distance-based approach takes around 2 minutes only. Even
though some accuracy and details are lost, this technique showed an average difference
of 1.1% to its permutation-based counterpart, with a maximum difference of 2.8%. In
addition, all communication costs measurements involved in our machine topology model
showed differences between runs of 1% at most.

All these results involving the use of both latency and bandwidth to represent commu-
nication costs, the use of midpoints to decrease profiling time, and the two techniques to
measure nonuniformity at memory levels justify some of decisions taken in our machine
topology model. We discuss next how we make our machine topology available to task
mapping algorithms, so they can benefit from this precise information.
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3.4 Machine topology library

Our machine topology model is made available to task mapping algorithms as a library
named HIESCHELLA (HIESCHELLA, 2013). HIESCHELLA represents a machine topol-
ogy as OHieSchella = (P ,L, S, {Clat, Cband}). It uses the topology tree abstraction provided
by HWLOC to organize PUs and topology levels, and augments it with the communication
costs of the platform as latencies and bandwidths.

This section is organized as follows: Firstly, we present HIESCHELLA’s tools used to
profile the machine topology and organize its communication costs. Secondly, we explain
how the topology model is stored for previous use by task mapping algorithms. Lastly, we
show how HIESCHELLA interfaces its machine topology model with other algorithms.

3.4.1 Tools

HIESCHELLA includes three tools that use its library. They are memory_profile,
network_extension, and read_topology.

The memory hierarchy of a multicore platform is modeled by memory_profile.
It starts by gathering the machine topology tree and computing the midpoints for the
different memory levels. It continues by measuring the memory read latencies and band-
widths with benchmarks lat_mem_rd and bw_mem, respectively. The machine topol-
ogy model including the communication costs is later stored on an Extensible Markup
Language (XML) file. memory_profile can profile nonuniform memories using
both permutation-based and distance-based techniques. It is important to emphasize that
memory_profile has to be run only once to model the machine topology of a compute
node.

When a parallel platform is composed of multiple CNs, the interconnection network
topology is modeled by network_extension. It uses as input the machine topology
model of a single CN and the parsed results of our network benchmark (see Section 3.2.2),
and provides as output a complete model including both memory and network topology
levels. This model is also stored on an XML file for posterior use by task mapping algo-
rithms.

Our last tool, read_topology, is used to provide a simplified, human-readable
view of the machine topology model. It includes the communication costs among all
PUs. This information is read from the topology files generated by memory_profile
or network_extension. The way this information is stored is explained next.

3.4.2 Data storage

HIESCHELLA extends HWLOC’s XML format to represent and store the communica-
tion costs benchmarked in the machine topology. As our model intends to represent the
communication costs among PUs as a function C : P × P → R≥0, a simple approach to
store this information would be to use matrices of size n2 for a number of PUs n, where
each cell represents the cost between two PUs. This would provide a low cost to build,
and fast access to data. Nonetheless, we chose to store data in a tree structure and profit
from HWLOC’s topology representation. This approach has two main advantages over
using matrices: (i) it is closer to the hierarchical structure of the machine; and (ii) it has
better scalability, as the memory footprint of a tree is O(n), while a matrix would take
O(n2).

In the case of nonuniform and asymmetric costs, like the ones between two different
NUMA nodes, a matrix is stored in their common ancestor in the machine topology (the
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first level of the topology that is shared among those components). This lets us express
the different communication costs when necessary while avoiding the use of a whole n2

matrix.

3.4.3 Library interface

HIESCHELLA implements a dynamic library to be linked to task mapping algorithms
and our tools. It provides an interface to a set of functions written using the programming
language C.

A first function is used to load the machine topology model from an XML file.
It includes a custom callback used to read the communication costs from said file,
as this information is not standard to HWLOC. The result of this function call is a
hwloc_topology_t object that is used by all other HIESCHELLA functions. Func-
tions are also provided to write the communication costs of a topology level in the model.
They are exclusively used by memory_profile and network_extension.

The most important functions provided by HIESCHELLA are the ones used to obtain
the communication costs between two PUs. Several functions are made available for that
use, such as get_latency, get_bandwidth, and get_comm. They take as input
the previously loaded topology object and the identifiers of the two PUs of interest. With
this simplified interface, our library is able to provide a detailed topology model for task
mapping algorithms. We present how our topology-aware load balancing algorithms are
able to profit from this model in the next chapter.
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4 PROPOSED LOAD BALANCING ALGORITHMS

The main hypothesis of our research revolves around the idea that precise machine
topology information should be considered by task mapping algorithms as it can influ-
ence application performance. For instance, the communication time between application
tasks can vary according to the processing units that they are mapped due to the nonuni-
form and asymmetric communication costs present on different topology levels. To help
task mapping algorithms overcome these issues, we provide them with a detailed ma-
chine topology model, as discussed in the previous chapter. Still, the availability of this
information does not make task mapping trivial.

Scheduling theory shows that the problem of finding an optimal task distribution for a
parallel program is NP-hard (LEUNG, 2004). Since an optimal solution cannot be found
in feasible time, the development of task mapping algorithms is strongly based on the
use of heuristics. To improve the performance of an application, techniques involve miti-
gating load imbalance, and reducing communication costs, as discussed in Section 2.3.1.
Still, to achieve performance portability, a scheduling algorithm needs to map tasks to dif-
ferent platforms and achieve a low core idleness, which also depends of the task mapping
algorithm itself not being a performance problem.

In this context, we propose novel topology-aware load balancing algorithms. To keep
our approach generic, we decouple it from a specific application or platform by doing
load balancing at a middleware level. Application information is captured during runtime,
while the machine topology is independently provided by our library. The load balancing
technique was chosen as it has been attested to be appropriate for both load imbalance and
costly communication problems of applications with dynamic and irregular behaviors,
which is further discussed in Section 5.1.

Our load balancing algorithms are introduced in the following order: First, we present
our centralized algorithms, which are suitable for parallel platforms composed of few
CNs. They are named NUCOLB (PILLA et al., 2012) and HWTOPOLB (PILLA et al.,
2012, 2014). After that, we present HIERARCHICALLB, which involves the hierarchical
composition of centralized algorithms, and is more suitable for larger parallel platforms.
We end this chapter with a discussion on the implementation of these algorithms, and a
comparison of their main characteristics and contributions.

4.1 Centralized algorithms

A load balancing algorithm is considered to be centralized when it decides where each
and every task of an application will be mapped. The main advantage of this approach
lies in its complete view of the application and parallel platform. This involves control of
the load distribution over all processing units, and over the communication through the
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whole parallel machine, which allows algorithms to make better decisions.
This complete knowledge over the mapping of tasks comes with a price: increases in

the size of the parallel platform or application can significantly impact the execution time
of centralized load balancing algorithms, which will affect performance portability. In
other words, their scalability may be limited. In this sense, the algorithm’s run time has to
be traded with its ability to quickly mitigate load imbalance and costly communications.

We present two different centralized load balancing algorithms in this section. The
first algorithm is named NUCOLB and focuses on the nonuniform aspects of parallel
platforms. Meanwhile, our second algorithm is named HWTOPOLB and considers the
whole topology in its decisions. Their characteristics and differences are detailed next.

4.1.1 NUCOLB: Nonuniform communication costs load balancer

NUCOLB (PILLA et al., 2012) is a load balancing algorithm developed for paral-
lel platforms involving nonuniform levels in their topologies. This includes topologies
with one or more NUMA compute nodes. While it aims at mitigating load imbalance, it
also tries to reduce costly communications by keeping communicating tasks in the same
NUMA node. In this section, we discuss the rationale of NUCOLB, its models, and its
algorithm.

4.1.1.1 Rationale

NUCOLB focuses on the NUMA nodes of the machine topology model. This is done
for two main reasons: Firstly, this helps to emphasize the nonuniform communication
costs present in the platform, which have a large impact in the communication perfor-
mance of the application. Secondly, this is used to reduce the execution time of the al-
gorithm. This happens because NUCOLB assesses the communication time of a task at a
NUMA node level instead of a PU level, which results in the communication time having
to be computed only once for all PUs in the same NUMA node.

Its heuristic works like a classical list scheduling algorithm (LEUNG, 2004), where
tasks or jobs are rescheduled from a priority list and assigned to less loaded processing
units in a greedy manner. The priority list is dynamically computed and is based on
the load of the tasks. This design involves evaluating a new mapping for all tasks at
each load balancing call, which enables a quick mitigation of load imbalance and costly
communications by NUCOLB. This is specially useful when dealing with application
dynamism. Additionally, list scheduling algorithms are considered to be efficient, as they
typically run in polynomial time, and provide good results in practice. Finally, the choice
of a greedy algorithm is based on the idea of fast convergence to a balanced situation by
mapping the greatest sources of imbalance first.

Our algorithm is also refinement-based, which means that it considers the current task
mapping on its decisions. Refinement-based algorithms migrate less tasks than algorithms
that do not consider the current task mapping, which helps them to decrease their task
migration overhead.

4.1.1.2 Application and platform modeling

NUCOLB models the application as ANucoLB = (T , Load, Size0,Msgs, Bytes0). In
other words, it considers the current existing tasks, their loads, and their communication
graph based only on the number of messages exchanged. The communication graph is
used to compute the communication cost of mapping a task to a certain NUMA node, as
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will be discussed later in this section.
The machine topology is seen as ONucoLB = (P ,L, S, Clat), with P the set of PUs,

L the set of levels of the topology, and the first topology level shared by two PUs as a
function S : P × P → L. The function Clat represents the communication latency in
the machine topology at memory and network levels. This latency is used to compute the
NUCO FACTOR, which acts as the difference between remote and local communication
latencies. The NUCO FACTOR is represented by a function F : P × P → R≥1. The
NUCO FACTOR F for two PUs p and q is presented in Equation 4.1. In this scenario,
Clat(p, p) represents the latency that p has to access its local memory.

F (p, q) =
Clat(p, q)

Clat(p, p)
(4.1)

The algorithm regards communication between NUMA nodes as a source of more
costly communications than communication inside a NUMA node. To illustrate that,
consider the set of NUMA nodes N and a function that maps PUs to NUMA nodes as
node : P → N . Two PUS p and q are said to reside in the same NUMA node if their
NUCO FACTOR is equal to 1, as depicted in Equation 4.2.

node(p) = node(q) ⇐⇒ F (p, q) = 1 (4.2)

4.1.1.3 Algorithm

The main idea of this load balancing algorithm is to iteratively map tasks in decreas-
ing order of Load, assigning each of them to the PU that offers the least overhead to its
execution. In order to decide if a task t should be scheduled on PU p to balance load,
the algorithm considers information about the execution of the application, such as the
current load on PU p as LoadPU(M, p), the amount of communication among task t
and other tasks currently assigned to PUs in the same NUMA node than p (and, likewise,
the communication between task t and tasks currently outside this NUMA node), and
information about the communication costs related to the topology of the parallel ma-
chine. More formally, the cost of placing a task t on a PU p is estimated as a function
cost : M × P × T → R using Equation 4.3.

cost(M, p, t) = LoadPU(M, p) + α× (remoteCost(M, p, t)− localCost(M, p, t))
(4.3)

Equation 4.3 presents a weighted linear sum of the costs involved in the execution
of task t on PU p. In this equation, all communication costs are normalized by a factor
α that controls the weight that they have over the execution time. remoteCost repre-
sents the communication costs of remote messages, as presented in Equation 4.4. Remote
communications are multiplied by the NUCO FACTOR between the involved nodes. This
way, the greater the difference between local and remote latencies, the greater the remote
communication cost. Meanwhile, localCost represents local communication, as given
in Equation 4.5. Local communications are subtracted from the total cost. This leads to
smaller costs for NUMA nodes that have many local message exchanges.

remoteCost(M, p, t) =
�

u∈T ∧node(p) �=node(M(u))

(Msgs(u, t)× F (p, node(M(u)))) (4.4)
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localCost(M, p, t) =
�

u∈T ∧node(p)=node(M(u))

Msgs(u, t) (4.5)

NUCOLB’s algorithm bases its mapping decisions in the aforementioned functions
and equations. NUCOLB involves a refinement-based greedy list scheduling algorithm
that assigns the task with the largest load to the PU that presents the smallest cost. The
pseudocode for NUCOLB is presented on Algorithm 1.

Algorithm 1: NUCOLB’s algorithm.
Input: Topology O, Application A, Mapping M
Output: Mapping M �

1 M � ← M
2 T � ← T
3 while T � �= ∅ do

4 t ← argmax
u∈T �

Load(u)

5 T � ← T � \ {t}
6 p ← M �(t)
7 LoadPU(M �, p) ← LoadPU(M �, p)− Load(t)
8 q ← argmin

r∈P

cost(M �, r, t)

9 LoadPU(M �, q) ← LoadPU(M �, q) + Load(t)
10 M �(t) ← q

The algorithm iteratively tries to map the task t with the largest execution time that has
not been evaluated yet. t is initially mapped to PU p. This information is obtained from the
initial mapping M . The load of this task is subtracted from the load of p before evaluating
the cost function. This subtraction is an important characteristic of this algorithm, as
it avoids unnecessary migrations by reducing the load of p. This is important because
the overhead resulting from migrations can only be estimated with information about
the size of the task in memory, which NUCOLB does not consider (Bytes0). After this
subtraction, the algorithm evaluates all possible mappings for t and chooses the core q
that presents the smallest cost. Once this choice is made, the load of task t is added to the
load of q. The algorithm continues by searching for a new mapping for the next task.

4.1.1.4 Algorithm properties

Considering n = card(T ) and m = card(P), NUCOLB presents a complexity
of O(n2m logm) in the worst-case scenario involving all-to-all communications. How-
ever, since this kind of communication is usually avoided in parallel applications for scal-
ability, assuming a small, constant vertex degree of the communication graph, NUCOLB
has a complexity of O(nm logm) for log n < m logm, or O(n log n) otherwise (due to
sorting). The logm factor is related to the description of the machine topology as a tree,
as provided by our library.

A characteristic of NUCOLB is that it will evaluate all possible mappings for a task
even in a situation where load is balanced and communications are optimized, which
results in a constant evaluation overhead. This issue is approached in a different way by
HWTOPOLB.
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4.1.2 HWTOPOLB: Hardware topology load balancer

HWTOPOLB (PILLA et al., 2012, 2014) aims at improving performance by decreas-
ing the costs of communication through the whole machine topology, and by ensuring that
no PU will be underutilized due to load imbalance. In addition, this algorithm is proved
to asymptotically converge to an optimal solution, as we demonstrate in Theorem 1.

4.1.2.1 Rationale

HWTOPOLB considers all levels of the machine topology model in its decisions. Al-
though this approach requires more time to compute the communication costs of a task
mapping, it provides a more accurate estimation.

In order to maintain a small load balancing time, specially when the current task
mapping shows low core idleness, we designed HWTOPOLB in a way to usually avoid
computing a new mapping for most tasks. Instead of ordering all tasks and evaluating
their migrations like NUCOLB, HWTOPOLB prioritizes the most loaded PUs and stops
after deciding that a task should not be migrated from its current PU (more details are
provided later in this section). This prioritization also helps to handle the greatest sources
of PU idleness first, which hastens the convergence to a better task mapping.

Some design decisions are linked to requirements for the algorithm to asymptotically
converge to an optimal solution. The first one is that the algorithm is refinement-based,
which also has the advantage of decreasing the task migration overhead. The second one
is that decisions related to choosing a task for evaluation and choosing a PU to map it are
probabilistic. This is required to escape local optimum mappings.

4.1.2.2 Application and platform modeling

HWTOPOLB models the machine topology as OHwTopoLB = (P ,L, S, {Clat, Cband}).
The functions Clat and Cband represent the communication latency and bandwidth, re-
spectively, in the machine topology. This includes cache levels, the memory level, and
the network level when considering more than one CN. These metrics are captured by
benchmarking the machine topology, and made available by our library, as discussed in
Chapter 3.

The application is modeled as AHwTopoLB = (T , Load, Size0,Msgs, Bytes). Al-
though it would be of interest to consider the size of the tasks to better predict their
migration overhead, this is not done due to an implementation limitation. This is dis-
cussed in Section 4.3. The communication graph considers both the amount of messages
exchanged and the volume of data communicated. They are used in conjunction with the
latencies and bandwidths available in the machine topology model to measure communi-
cation costs.

4.1.2.3 Algorithm

HWTOPOLB tries to find the best trade-off between mapping a task to a more un-
derutilized PU and mapping a task closer to the other tasks it communicates with. In its
context, the function to minimize is the total completion time of the tasks, also called the
makespan, that we denote by globalCost : (T → P) → R.

The total completion time can be expressed as the maximum completion time on each
PU. Equation 4.6 expresses the total completion time based on PUCost(M, p) as the
completion time of PU p for mapping M . Similarly, the completion time on a PU is the
sum of the time, denoted by taskCost(M, t), needed to execute each task scheduled on
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said PU. This is depicted in Equation 4.7.

globalCost(M)
def
= max

p∈P
PUCost(M, p) (4.6)

PUCost(M, p) =
�

t∈T ∧M(t)=p

taskCost(M, t) (4.7)

The time to execute a task depends on its load and its communication costs as rep-
resented in Equation 4.8. The computational load Load(t) of task t can also be seen as
equal to the size of the task over the speed of the PU. This is shown in a more simplified
way as homogeneous PUs are being considered.

taskCost(M, t) = Load(t) + commCost(M, t) (4.8)

The communication cost of a task, denoted by commCost(M, t), is defined as the
sum of (i) the number of messages received from different tasks, multiplied by the access
latency to the nearest shared level in the machine topology; and (ii) the number of bytes
received from different tasks, divided by the bandwidth of said topology level. This is
depicted in Equation 4.9, where Msgs(u, t) and Bytes(u, t) represent the number of
messages and bytes received by task t from task u, respectively.

commCost(M, t) =
�

u∈T

Msgs(u, t)× Clat(M(t),M(u))

+
�

u∈T

Bytes(u, t)

Cband(M(t),M(u))
(4.9)

The goal here is to design an algorithm that finds an optimal mapping, i.e. a mapping
M such that globalCost(M) is minimized. The proposed algorithm works as follows: at
each of its iterations, the current mapping is modified in one component according to the
three following steps.

• Firstly, we choose a PU. The PU with the highest load is selected with probability
α (in practice the parameter α is close to one). Otherwise (with probability 1− α),
we select another PU uniformly.

• Secondly, we choose one task currently mapped to this PU. The task with the
biggest load is chosen with probability β(again, βis large). Otherwise, the choice
is uniform over all tasks on said PU.

• Finally, we move this task to a PU that minimizes the overall cost with a high
probability.

For the last step, we chose to use a Gibbs distribution with temperature E. The Gibbs
distribution with temperature E > 0 over the set of k real values v1 . . . vk is the probability
vector on {1 . . . k}:

�

exp(−vi/E)
�k

j=1 exp(−vj/E)

�

i=1...k

(4.10)

In our case, the values v are the costs associated to each PU. This distribution was
chosen because it has two properties of interest: (i) the probability of choosing a PU with
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minimal cost goes to one as the temperature goes to zero; and (ii) it is memoryless, which
means, in our context, that the probability of choosing a new mapping depends only on
the current mapping. This property, together with the property of the space of possible
task mappings being discrete, allows our problem to be modeled as a Markov chain.
This is important for the convergence proof provided in Section 4.1.2.4. Although other
exponential distributions present the same properties, we chose the Gibbs distribution as
it can be easily computed by our algorithm.

HWTOPOLB is designed as described in Algorithm 2. The parameters used are the
temperature E > 0, the horizon h, α ∈ (0; 1), and β ∈ (0; 1). We also use a function
RAND() that represents a uniform pseudo-random generator of a real number in (0; 1). The
horizon h defines the number of iterations of the algorithm, which plays an important role
on Theorem 1. It is important to notice that, as discussed in Section 4.1.2.1, Algorithm 2
is implemented to stop after deciding that a task should not be migrated from its current
PU, which means its value cannot be defined a priori.

Algorithm 2: HWTOPOLB’s algorithm.
Input: Topology O, Application A, Mapping Minit

Output: Mapping M
1 initialization: M ← Minit, i ← 0
2 while i < h do

/* Choice of a PU from which a task is selected */

3 if RAND() < α then

4 Choose PU p̄ uniformly in P∗ def
= argmax

p∈P

PUCost(M, p)

5 else

6 Choose PU p̄ uniformly in P\P∗

/* Choice of a task in p̄ */

7 if RAND() < β then

8 Choose task t̄ uniformly in T ∗
p̄

def
= argmax

t∈T ∧M(t)=p̄

taskCost(M, t)

9 else

10 Choose task t̄ uniformly in {t ∈ T ∧M(t) = p̄}\T ∗
p̄

/* Choice of a PU to which the task t̄ is moved */

11 Choose a PU p̂ according to a Gibbs distribution with temperature T over the

set of values (globalCost(M �
p))p∈P , where M �

p(t) =

�

p if t = t̄
M(t) otherwise

/* Mapping update */

12 M(t̄) ← p̂
13 i ← i+ 1

14 return M

4.1.2.4 Algorithm properties

The complexity of Algorithm 2 cannot be defined in terms of the number of tasks
or PUs because it also depends on the horizon h. However, considering n = card(T )
and m = card(P), an iteration of the algorithm (lines 2-13) presents a complexity
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of O(nm logm) in the worst-case scenario involving all-to-all communications. How-
ever, for a sparse communication graph with a constant vertex degree, as it is usually the
case, the complexity of an iteration is reduced to O(m logm). In this same scenario, the
algorithm’s initialization has a complexity of O(n logm).

By choosing a new mapping using the Gibbs distribution, the sequence of mappings
computed in the successive iterations of the algorithm forms a random sequence that is
an irreducible and aperiodic Markov chain over all possible mappings as long as E > 0,
0 < α < 1 and 0 < β < 1. Therefore, as the number of iterates grows, its distribution
converges to the unique stationary distribution of the chain. Although it is not possible to
compute this limit distribution exactly, one can characterize its behavior as a function of
E, as shown in the following theorem.

Theorem 1. For all α, β∈ (0; 1), if the temperature E is close to zero, then the mapping

computed by HWTOPOLB is optimal with high probability when the horizon h grows

to infinity, i.e. the probability can be rendered arbitrarily close to one by lowering the

temperature.

Before a proof of the optimality of HWTOPOLB is given, some remarks and com-
ments about the algorithm are presented below.

• Another way to state the theorem is the following: let us denote by
P
∗(h,E,α, β) the probability that the mapping returned by the algorithm is op-

timal. Then for all 0 < α, β< 1, lim E→0 limn→∞ P
∗(h,E,α, β) = 1.

• Introducing non deterministic decisions allows the algorithm to escape from locally
optimal configurations where moving one task from one PU does not help but still
better configurations exist. However, in the algorithm, greedy decisions (i.e. choos-
ing the most loaded processor, or the biggest task) are taken with a high probability.
This allows us to speed up convergence to good mappings. For example, picking
the biggest task with high probability mimics the classical Largest Processing Time
(LPT) algorithm that can be proved to provide a 4

3
-approximation of the optimal

mapping (GONZALEZ; IBARRA; SAHNI, 1977).

• The algorithm resembles the Gibbs sampling method (BREMAUD, 1999). In the
classical Gibbs sampling method, the moved task is chosen according to a uniform
distribution over all tasks or using a fixed deterministic order among tasks. Here,
the proof of optimality of the algorithm does not follow from standard arguments,
because the mapping process is not a reversible Markov chain. In this context, a
new proof is needed.

• Using the classical Gibbs sampling algorithm is not practical here because it is not
easy to pick a task uniformly over all tasks. It is easier to first pick a PU and then
pick a task on that PU, as done in the proposed algorithm. Also, an adequate tuning
of the parameters α and βcan help to improve the speed of convergence.

• Some restrictions imposed on Gibbs sampling also apply here. Moving two tasks
simultaneously is not allowed: the optimality result does not hold in this case.

• Finally, note that the convergence in the theorem is asymptotic (h → ∞) and then,
the optimal mapping may be reached after a prohibitive time. In order to have a
good trade-off between optimality and convergence time, we set the parameters of
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the algorithm to E = 0.1, α = 0.8, β= 0.8 in the experimental evaluation present
in Chapter 6, and the algorithm stops as soon as no performance improvement is
achieved in the iteration of the main loop (lines 2-13).

Proof. Let us denote by (ME(i))i≤h the sequence of mappings produced by HWTOPOLB
under temperature E (line 11). This is a Markov chain over the set of all possible map-
pings. It should be clear that, if the parameters α and βare strictly between 0 and 1, then
all mappings are reachable by (ME(i)) with a positive probability. Hence the unique sta-
tionary distribution of the Markov chain denoted by πE gives the asymptotic distribution
of (ME(i)).

The proof proceeds in two steps. We first show that, if the task were picked uniformly
in the algorithm, the Markov chain would be reversible. This makes the computation of
the asymptotic distribution easy and the result follows in that case. However, note that,
in Algorithm 2, the probability of selecting a given task cannot be made uniform even by
tuning β and α. In the second stage, the limit distribution in the real nonuniform case is
characterized by using spanning trees. This allows us to show that the set of mappings M
such that limE→0 πE(M) > 0 are exactly the same as in the uniform case. This will
complete the proof.

4.1.2.4.1 Uniform Case

This case amounts to changing lines 3 to 10 in the algorithm by “choose task t̄ uni-
formly in T ”.

Let us denote by Nt(M) the neighborhood of the mapping M , which is the set of
mappings that differ from M only for task t. The transition probability from M to M �

(M � �= M ), denoted by PE(M,M �), is given by Equation 4.11.
�

1
T

exp(globalCost(M �)/E)�
M��∈Nt(M) exp(globalCost(M ��)/E)

if M � ∈ Nt(M)

0 otherwise
(4.11)

For all E > 0, (ME(i)) is a reversible Markov chain, i.e. πE(M)PE(M,M �) =
πE(M

�)PE(M
�,M). It is easy to check that πE(M) ∝ exp(globalCost(M)/E), so that

πE(M) is positive only for mappings that minimize the global cost, when E is arbitrarily
close to 0.

4.1.2.4.2 General Case

In the nonuniform case, which corresponds to the proposed algorithm, the Markov
chain (ME(i)) is no longer reversible. Theorem 1 by Álos-Ferrer and Netzer (2010)
states that the mappings M∗ ultimately reached by the algorithm (i.e. such that

limE→0 πE(M
∗) > 0 for all E) are those minimizing the function W (M)

def
=

minS∈S(M)w(S), where S(M) is the set of all spanning trees with root M over the graph

induced by the neighborhood relation N (.)
def
= ∪t∈T Nt(.), and w(S) as defined in Equa-

tion 4.12.

w(S)
def
=

�

(M,M �)∈S

�

globalCost(M �)− min
M ��∈N (M)

globalCost(M ��)
�

(4.12)

A close look at the definition of the function w(S) should convince one that the span-
ning trees minimizing w(S) do not depend on the probability that a given task is chosen.
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Consequently, mappings such that limE→0 πE(M) > 0 are the same as in the uniform
case.

4.1.3 Comparison between proposed centralized algorithms

Although our proposed algorithms have the same objective of providing performance
portability to scientific applications running on parallel platforms, they show many dif-
ferent characteristics. For instance, each considers different platforms attributes, even
though they have access to the same machine topology model. NUCOLB works only with
parallel platforms with CNs composed of NUMA nodes, and uses the NUCO FACTOR

to weight communication distance between NUMA nodes, while HWTOPOLB accepts
platforms without nonuniform memory levels, and uses both latency and bandwidth at
different topology levels to estimate communication costs.

Their processes to decide where to map one task are also different. NUCOLB maps
a task to the PU that presents the smallest cost deterministically, whereas HWTOPOLB
maps it to the PU that would result in the smallest makespan with the highest probability.

NUCOLB evaluates a new mapping for all tasks at each load balancing call, which re-
sults in a more aggressive strategy to fix unbalance. This is specially useful with dynamic
applications, but can result in a more significant load balancing overhead. Meanwhile,
HWTOPOLB tries to remap less tasks per load balancing call. This strategy provides a
smaller load balancing overhead, and benefits applications that have been well mapped
and show small PU idleness.

Besides the aforementioned characteristics, both algorithms are centralized. They
benefit from a complete control over the mapping of tasks, but their execution times can
harm performance portability when the size of the application or parallel platform in-
creases. To overcome this problem, we discuss a different approach in the next section.

4.2 Hierarchical algorithms

The process of mapping tasks to PUs is organized as a tree in hierarchical algorithms.
At root level, centralized decisions are taken to map all tasks to different domains. At
each level of the tree, a domain distributes the tasks that it has received over its own
subdomains. These decisions are taken independently and in parallel at each level. This
process is repeated until tasks are finally mapped to PUs. In this sense, a centralized
algorithm can be seen as a hierarchical algorithm of one level only.

By splitting part of the scheduling decisions, hierarchical algorithms are able to re-
duce their execution time when compared to centralized algorithms in large scale parallel
platforms. This comes at a cost of a reduced view and control of the load and communi-
cation distribution over all processing units, which can lead to a slower convergence to a
task mapping with a low PU idleness.

We based our topology-aware hierarchical load balancing algorithm, named HIERAR-
CHICALLB, on our centralized algorithms presented in Section 4.1. We provide detailed
explanations next.

4.2.1 HIERARCHICALLB: Hierarchical load balancer composition

HIERARCHICALLB is a load balancing algorithm for parallel platforms constituted
of multiple compute nodes. It hierarchically organizes our centralized load balancing
algorithms in two levels. At root level, HIERARCHICALLB employs HWTOPOLB to



57

distribute tasks over CNs. Meanwhile, it can use NUCOLB or HWTOPOLB at leaf level
to map tasks to PUs inside a compute node.

4.2.1.1 Rationale

We hierarchically compose our centralized algorithms instead of creating a hierarchi-
cal algorithm from scratch to benefit from their well understood properties and behaviors.
This approach also provides more flexibility, as new centralized algorithms can be added
to HIERARCHICALLB later.

HIERARCHICALLB employs task mapping in two levels: first, all tasks available are
mapped to CNs; and later, tasks from each CN are mapped to its PUs. This second phase is
done in parallel for each CN. This organization matches the machine topology, as different
mechanisms are used for communication between CNs (interconnection network) and
inside a CN (memory hierarchy). Additionally, Zheng et al. (2011) show that a tree with
two load balancing levels can have the smallest execution time.

NUCOLB was not chosen as a load balancing algorithm to be employed at root level
due to the following reasons: (i) it works only with platforms composed of NUMA nodes,
which are not seen by the root load balancer; (ii) it would result in a longer load balancing
time than HWTOPOLB, as it evaluates new mappings for all tasks at each load balancing
call; and (iii) it would also result in more task migrations among CNs.

4.2.1.2 Application and platform modeling

Similarly to HWTOPOLB, HIERARCHICALLB models the application as
AHierarchicalLB = (T , Load, Size0,Msgs, Bytes), and the whole machine topology
as OHierarchicalLB = (P ,L, S, {Clat, Cband}). However, these models are split into two
different views, one for each of the task mapping levels.

At the root level (or centralized level), HIERARCHICALLB keeps the same appli-
cation model but has a different view of the machine topology, as it focuses on map-
ping tasks to CNs instead of PUs. In this context, the machine topology is modeled
as Onet = (N ,Lnet, Snet, {Cnet lat, Cnet band}), with N the set of compute nodes that
serve as virtual PUs for the centralized load balancing algorithm, Lnet the set of net-
work levels of the topology, the first topology level shared by two CNs as a function
Snet : N × N → Lnet, and the communication latency and bandwidth of one CN to an-
other as functions Cnet lat : N ×N → R>0 and Cnet band : N ×N → R>0. Additionally,
the task mapping at this level is seen as Mnet : T → N .

At the leaves level (or distributed level), the load balancing algorithm at each com-
pute node sees a different part of the application and machine topology. The leaf
load balancer responsible for CN i ∈ N models the parallel application as Ai =
(Ti, Loadi, Size0,Msgsi, Bytesi), where Ti represents the set of tasks mapped to i, their
loads as a function Loadi : Ti → R>0, the number of messages sent from one task to
another as a function Msgsi : Ti × Ti → N, and the number of bytes sent from one task
to another as a function Bytesi : Ti × Ti → N. Ti is a subset of T where Equation 4.13
holds. It is important to notice that all communication among tasks in different CNs is
lost at this level.

∀t ∈ Ti ⇒ t ∈ T ∧Mnet(t) = i (4.13)

The load balancer responsible for a compute node sees only the PUs and topology
levels that are part of it. Considering a function cn : P → N that relates PUs to CNs, the
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machine topology of CN i ∈ N is seen as Oi = (Pi,Lmem, Smem, {Cmem lat, Cmem band}),
with Pi the set of PUs in where ∀p ∈ Pi ⇒ cn(p) = i, Lmem the set of memory levels of
the topology in i, the first topology level shared by two PUs as a function Smem : Pi×Pi →
Lmem, and the communication latency and bandwidth of one PU to another as functions
Cmem lat : Pi × Pi → R>0 and Cmem band : Pi × Pi → R>0.

These models are provided by HIERARCHICALLB to the centralized algorithms that
compose it. Nevertheless, these algorithms may disregard parts of the models. For in-
stance, NUCOLB does not take into account Bytesi and Cmem band in its decisions.

4.2.1.3 Algorithm

HIERARCHICALLB does not decide a task mapping by itself. Instead, it employs
centralized load balancing algorithms in two levels. For this reason, we split HIERAR-
CHICALLB’s algorithm into two parts: a root algorithm and a leaf algorithm. The root
algorithm is executed in a centralized fashion once at each load balancing call. Mean-
while, an instance of the leaf algorithm is run in parallel in each compute node of the
platform.

HIERARCHICALLB can be said to operate in four steps: (i) the leaves send data to the
root; (ii) the root computes a mapping of tasks to CNs; (iii) the leaves receive data from
the root; and (iv) the leaves compute a mapping of tasks to PUs.

The operation of HIERARCHICALLB at root level is presented in Algorithm 3.
It starts by receiving application information from all leaf load balancers. This in-
cludes their application models Ai, and functions Ext_Msgsi : Ti × T → N and
Ext_BytesiTi × T →N , which refer to the number of messages and bytes sent from
tasks in CN i to tasks in other CNs, respectively. They are defined in Equations 4.14
and 4.15. The algorithm continues by organizing the application model and mapping at
network level. On line 5, HIERARCHICALLB calls a centralized load balancing algorithm
(currently HWTOPOLB). It then divides the application model according to its mapping
decisions using function split, and sends this information to the leaf load balancers.

Algorithm 3: HIERARCHICALLB’s root algorithm.
Input: Topology Onet

1 for i ∈ N do

2 Receive Ai, Ext_Msgsi, Ext_Bytesi from leafi

3 Mnet(t) ← i, ∀t ∈ Ti ∧ i ∈ N
4 AHierarchicalLB ← join(A, Ext_Msgs,Ext_Bytes)
5 M �

net ← LB_algorithm(Onet,AHierarchicalLB,Mnet)
6 A� ← split(AHierarchicalLB,M

�
net)

7 for i ∈ N do

8 Send A�
i to leafi

Ext_Msgsi(t, q) =

�

Msgs(t, q) ∀t, q ∈ T ∧ t ∈ Ti ∧ q /∈ Ti

0 otherwise
(4.14)

Ext_Bytesi(t, q) =

�

Bytes(t, q) ∀t, q ∈ T ∧ t ∈ Ti ∧ q /∈ Ti

0 otherwise
(4.15)
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As mentioned before, HIERARCHICALLB leaf load balancers compute a new task
mapping in parallel for each compute node. This is done as portrayed in Algorithm 4.
Each leaf load balancer starts by sending its local information to the root load balancer
and waiting for new application data. After receiving an answer (line 2), the leaf maps
all new tasks to a PU chosen uniformly in P � using function random_PU This process
is used to give a valid task mapping to the centralized load balancing algorithm, which
is called on line 4 to provide a new mapping of tasks to PUs. This algorithm could be
HWTOPOLB or NUCOLB.

Algorithm 4: HIERARCHICALLB’s leaf algorithm.
Input: Topology Omem, Application Ai, Mapping Mi, Messages to remote tasks

Ext_Msgsi, Bytes to remote tasks Ext_Bytesi
Output: Mapping M �

i

1 Send Ai, Ext_Msgsi, Ext_Bytesi to root
2 Receive A�

i from root
3 Mi(t) ← random_PU(Pi), ∀t ∈ T �

i ∧ t /∈ Ti

4 M �
i ← LB_algorithm(Omem,A

�
i,M

�
i)

4.2.1.4 Algorithm properties

The pessimistic complexity of HIERARCHICALLB cannot be easily defined, as it de-
pends on the centralized algorithms used. For instance, as explained in Section 4.1.2.4,
HWTOPOLB’s complexity cannot be defined in terms of number of tasks or PUs as its
iterations depended on the horizon h.

HIERARCHICALLB computes a new task mapping in sequential steps that involve two
communication phases and two load balancing algorithms phases. Meanwhile, a central-
ized load balancing algorithm executes only one step. In this context, HIERARCHICALLB
requires a large number of tasks and PUs to compensate this overhead when compared to
a centralized algorithm.

An advantage of HIERARCHICALLB over our centralized algorithms is that it reduces
the memory required in a compute node to run a load balancer. This happens because
no part of the load balancing tree requires a complete view of the mapping of tasks to
processing units. This information is spread over the different leaf load balancers, and the
root load balancer sees a compressed view of the task mapping (to CNs instead of PUs).
In this sense, our hierarchical load balancing algorithm can handle larger problems than
our centralized ones.

A last aspect that has to be noticed is that, although HIERARCHICALLB can employ
HWTOPOLB in both of its levels, it does not have the same convergence guarantee of the
centralized algorithm. This guarantee is lost because HIERARCHICALLB does not respect
the restriction of moving only one task at a time since decisions are taken in parallel at
leaf level.

4.3 Implementation details

NUCOLB, HWTOPOLB, and HIERARCHICALLB are implemented using
CHARM++ (KALE; KRISHNAN, 1993)(CHARM++, 2013). Their source-code is
available online free of charge (HIESCHELLA, 2013). CHARM++ is a parallel pro-
gramming language and runtime system (RTS) based on C++ with the goal of improving
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programmer productivity. It abstracts architectural characteristics from the developer and
provides portability over platforms based on one or more compute nodes.

CHARM++ contains a load balancing framework (ZHENG et al., 2011), which pro-
vides an interface for developing load balancing plugins to CHARM++ applications. A
load balancer is provided with information regarding the application (A) and its current
mapping (Minit), and the runtime system expects in return a new task distribution to mi-
grate tasks. We discuss CHARM++ in more details in Section 5.1.

All load balancing information comes from previous timesteps of the application. Pro-
filed information is reset after each load balancing call. CHARM++ models the application
as ACharm++ = (T , Load, Size0,Msgs, Bytes). Although this representation provides
plenty information for load balancing algorithms, its limitations also have an important
impact over the scheduling decisions of NUCOLB and HWTOPOLB. Examples of trade-
offs are given below.

• Information is aggregated from all timesteps between two load balancing calls.
However, a load balancer does not know how many timesteps have passed in this
period, nor can it split this profile to analyze the behavior of tasks during past
timesteps. This precludes the dynamicity evaluation done by algorithms such as
MIGBSP (RIGHI et al., 2010), which is discussed in Section 5.1.

Storing only aggregated information is understandable, as keeping a profile for each
timestep would increase the memory footprint of the load balancing framework,
which could make centralized algorithms impractical.

To circumvent this limitation, a load balancer call could be done at each applica-
tion timestep. Still, this incurs in larger algorithm and task migration overheads
affecting the application’s performance, and a loss of performance portability.

• The moment in time when messages are sent is not captured. By knowing when
tasks are communicating, a load balancer could evaluate if contention is happening
at certain periods, and try to mitigate its effects. Still, storing this information could
results in the same problem discussed above.

• The size of tasks in bytes is not provided (Size0). Without this information, migra-
tion costs cannot be realistically predicted. In this situation, migrations have to be
avoided to guarantee scalable performances.

A way to discover task sizes would be to serialize tasks when calling a load balancer.
This serialization is already done when a task is chosen for migration. Nonetheless,
the overhead involved in allocating, deallocating, and copying memory could turn
load balancing unfeasible. Serializing only one task would result in a smaller over-
head, but could also lead to wrong decisions if tasks are irregular in size.

CHARM++ provides a flat view of the machine topology, which does not include
any information about the topology levels, their sharing, and communication costs. To
overcome this, we use our machine topology model described in Chapter 3. Our load
balancing algorithms initialize the data structures responsible for the machine topology
model at the start of the application, and then load this information from an XML file
using our HIESCHELLA library.

To better explain how our load balancers are implemented, we show a simplified class
diagram in Figure 4.1. It contains both the original CHARM++ load balancer classes and
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the ones that we developed. The basic structures used by CHARM++ load balancers are
implemented by the BaseLB class. The class CentralLB extends it to provide the
basic mechanisms used by all centralized load balancers. Our centralized load balanc-
ing algorithms are based a new class named TopologyAwareLB that adds the machine
topology model obtained from our library. Meanwhile, HIERARCHICALLB is imple-
mented by extending the HybridBaseLB class, which serves as a base for hierarchical
load balancers in CHARM++.

Class NucoLB 
 

alpha: float 
… 
 
Work() 
Init() 
… 

Class HierarchicalLB 
 

alpha = float 
beta = float 
temperature = float 
… 
 
Work() 
Init() 
… 

Class BaseLB 
 

lbname: string 
… 
 
… 

Class HierarchicalLB 
 

rootLB: TopologyAwareLB 
leafLBs: TopologyAwareLB 
… 
 
Work() 
… 

Class HybridBaseLB 
 

… 
 
… 

Class CentralLB 
 

… 
 
… 

Class TopologyAwareLB 
 

topology: hwloc_topology_t 
pus: vector 
tasks: vector 
… 
 
… 

CHARM++ classes 

Added classes 

Figure 4.1: Load balancers simplified class diagram.

CHARM++ uses a token-based scheme for hierarchical load balancers in order to avoid
unnecessary task migration overheads (ZHENG et al., 2011). Instead of migrating tasks
between domains at each level of the load balancing tree, lightweight tokens containing
only the tasks’ workload information are used. At the end of the load balancing phase, all
tokens are substituted by their original tasks to enforce the new task mapping.

Although we have implemented our load balancers using the CHARM++ parallel sys-
tem, their characteristics and model allow them to be ported to other parallel libraries
(e.g., MPI and OpenMP). Firstly, the machine topology model is provided by our library,
being generic and independent of parallel language. The remaining information required,
namely the application communication pattern and load, could be obtained through the
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use of profile-guided tools and by extending parallel libraries. For instance, Lifflander,
Krishnamoorthy and Kale (2012) developed a threaded active message library on MPI,
which is discussed in Section 5.1. This library is able to collect the load of each task. The
only information missing for our load balancing algorithms would be the communication
graph, which should be trivial to obtain from the MPI runtime.

4.4 Conclusion

In this chapter, we presented our topology-aware load balancing algorithms, named
NUCOLB, HWTOPOLB, and HIERARCHICALLB. They aim to provide performance
portability to scientific applications running on parallel HPC platforms.

These algorithms involve different trade-offs regarding their control over load im-
balance, costly communications, and load balancing execution time. NUCOLB is able
to quickly fix performance problems, specially of dynamic applications, at the cost of
a longer load balancing time and a greater number of task migrations. Meanwhile,
HWTOPOLB provides a smaller load balancing overhead, and a guarantee of conver-
gence to an optimal mapping, at the cost of a slower convergence to a better task map-
ping. Lastly, HIERARCHICALLB organizes centralized load balancing algorithms in a
hierarchical fashion in order to scale to larger parallel platforms, at the cost of a reduced
control over the load and communication distribution over all PUs when compared to a
centralized algorithm such as NUCOLB and HWTOPOLB. The techniques used in our
algorithms are compared to the state of the art in task mapping in Chapter 5.

Our algorithms were implemented using the CHARM++ parallel programming lan-
guage in order to benefit from its load balancing framework, which provides detailed
application information at a runtime level. Meanwhile, their machine topology models
are obtained from our HIESCHELLA library. By using data from these two sources, our
load balancing algorithms are kept independent of a specific application or platform. In
addition, we are able to benefit from other load balancing algorithms and real application
developed using CHARM++ to evaluate our own algorithms. We present an experimental
evaluation of the proposed load balancing algorithms in Chapter 6.
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5 RELATED WORK ON TASK MAPPING

The complexity of parallel platforms and applications demands effective task mapping
techniques to achieve efficiency and scalability. This scheduling problem has been exten-
sively studied over the past few decades and is known to be an NP-complete problem (LE-
UNG, 2004). Since no optimal solution can be computed in feasible time, different global
scheduling algorithms and heuristics have been researched and developed (CASAVANT;
KUHL, 1988).

Task mapping techniques can be employed at different times and levels. In the case
of static applications, offline techniques can be used based on the analysis of their codes
at compiler or pre-compiler level, or based on traces of previous executions. Meanwhile,
more dynamic techniques can be employed at different levels, such as: at application level,
which requires extensive knowledge about the application, and additional implementation
effort when porting the technique to another application; at operating system level, which
has a simplified view of the application, and is restrained to one compute only; and at
middleware level, which requires the use of external runtime systems or libraries.

Some algorithms represent the machine topology O and application A in ways dif-
ferent from the ones presented in Sections 2.1 and 2.2. An algorithm or technique that
models a flat machine topology has the set of levels of the topology L as Lflat with only
one level, which is also the only level shared by all PUs. The communication time of
one PU to another, also described as C, can be decomposed into different parameters, as
the exact time that it takes to send one message also depends on characteristics of said
message (e.g., its size in bytes), which are application-dependent. For instance, C could
be decomposed into the communication bandwidth, delay, and overhead parameters of
LogP (CULLER et al., 1993). Additionally, some approaches use synthetic communi-
cation costs Csyn that only represent the topology level where communication happens.
In the applications’ side, some models do not take into consideration their tasks’ load
(Load0), size in memory (Size0), number of messages (Msgs0), or bytes communicated
(Bytes0).

In this chapter, the state of the art in task mapping and task scheduling techniques is
presented. We split it in different categories according to the main technique applied: load
balancing, work stealing, and process mapping. A comparison between the algorithms
discussed in this chapter and the ones proposed in this thesis is presented at the end of the
chapter.

5.1 Load balancing algorithms

Load balancing (LB) is a technique used to distribute an application’s load and com-
munication evenly over a platform in order to avoid having overloaded PUs. Most ap-
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proaches try to fix load imbalances and costly communications periodically by remapping
tasks ever so often. These approaches are measurement-based, which means that they
require information about the application gathered during runtime. A tasks’ load and com-
munication graph captured during the last timesteps are used as an approximation of its
behavior in future timesteps. This means that load balancers are more effective with more
static applications, as less load balancing calls would be required to keep the platform and
application in a balanced state. This is seen as the principle of persistence (ZHENG et al.,
2011).

We discuss different approaches for load balancing in this section. Firstly, we will
touch the subject of graph mapping and partitioning algorithms. Secondly, we present
load balancing algorithms developed at runtime level, and follow with load balancing
algorithms focused on application characteristics that go beyond the application model
discussed in Section 2.2.1.

5.1.1 Graph partitioning

A technique to load balance dynamic applications involves using hypergraph parti-
tioning, as done by Catalyurek at al. (2007). They focus on mitigating the effect of costly
communications by reducing the communication volume among PUs and avoiding task
migrations. The application is represented as a hypergraph, where vertices are tasks, and
nets (hyperedges) represent communication and migrations costs. Communication and
migration costs are computed using the amount of bytes a task communicates (Bytes)
and contains (Size), respectively. All costs are scaled by a factor of α that represents
the load balancing periodicity in application timesteps. Their algorithm tries to split the
hypergraph into k = card(P ) partitions while keeping the load on each PU smaller than
the average plus an overhead.

Hypergraph partitioning is done in phases using the ZOLTAN tool (DEVINE et al.,
2002)(BOMAN et al., 1999). However, similar tools could be used to do graph partition-
ing, such as METIS (KARYPIS; KUMAR, 1995) (more specifically, HMETIS(METIS,
2013)) and SCOTCH (PELLEGRINI; ROMAN, 1996)(SCOTCH, 2013). Initially, a coars-
ening phase is used to reduce the number of vertices in the graph. Coarsening is done by
merging pairs of vertices that have costly nets between them. This is done in steps until
the amount of vertices is smaller than a fixed number (for instance, 2048), or when the last
coarsening step does not reduce the hypergraph enough (e.g., by 10%). Coarsening steps
are computed in parallel and the best match is chosen at each step. After coarsening the
graph, each PU computes in parallel a different randomized greedy hypergraph growing
algorithm to split it into k partitions. This is done through recursive bisection in ZOLTAN.
Additionally, a refinement phase tries to move vertices among partitions in order to refine
the load distribution.

Migrations costs are only considered after the first load balancing call. They are added
to the hypergraph by including one fixed vertex to each partition of the graph. These ver-
tices represent PUs and cannot be merged through the coarsening phase of the algorithm,
nor moved to other partitions. Migration costs are added as nets between vertices in one
partition and their local fixed vertex. This is done in order to reduce the time spent mi-
grating tasks. Load balancing calls involving migration costs work to refine the initial
task distribution.
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5.1.2 Runtime level load balancers

Load balancing mechanisms have been proposed on different runtime systems. For
instance, CHARM++ (KALE; KRISHNAN, 1993)(CHARM++, 2013) is a parallel pro-
gramming language and runtime system (RTS) based on C++ with the goal of improving
programmer productivity, as previously discussed in Section 4.3. It abstracts architectural
characteristics from the developer and provides portability over platforms based on one or
more compute nodes. However, it does not consider any information about the machine
topology O besides the set of PUs P . This results in a flat view of the machine topology
(Lflat).

CHARM++ applications are overdecomposed into active objects called chares. Pro-
grammers describe computation and communication in terms of how these chares interact
and the RTS manages all messages generated from these interactions. Chares commu-
nicate through asynchronous messages. Furthermore, its RTS is responsible for physical
resource management on the target platform.

A load balancing framework is also included in CHARM++. It provides a full view
of an instance of an application execution A and its current mapping of tasks to PUs as a
function M : T → P . The load of each task includes the time spent on computation and
communication. For a given mapping M , the load on each PU, LoadPU : M × P →
R≥0, is equal to the sum of the loads of all tasks mapped to it, plus runtime overheads
(Overhead : P → R≥0), as in Equation 5.1.

LoadPU(M, p) = Overhead(p) +
�

t∈T ∧M(t)=p

Load(t) (5.1)

All load balancing information comes from previous timesteps of the application.
CHARM++’s load balancing framework provides the current task mapping Minit to a load
balancer, and expects in return a new task distribution. This mechanism was used to im-
plement several load balancing strategies (including ours), some of which are discussed
below.

Zheng et al. (2011) study the performance and scalability of different periodic load
balancers on CHARM++. The authors present four load balancing strategies:

• GREEDYLB is a centralized greedy algorithm that only uses task loads (Load)
for its decisions (ZHENG, 2005). It is used to quickly mitigate load imbalance.
GREEDYLB starts by removing tasks from their current mapping to create an empty
mapping M0. This includes removing the tasks’ loads from their current PUs. It
then sorts tasks in decreasing load order, and iteratively maps the unassigned task
with the highest load to the least loaded PU. The initial task mapping Minit is not
considered in this process, which leads to a large amount of task migrations. For a
number of tasks n = card(T ), GREEDYLB is an O(n log n) algorithm.

• GREEDYCOMMLB is similar to GREEDYLB, with the addition of communication
loads, commLoad : M × T → R≥0. They are computed using the application’s
Msgs and Bytes, and two synthetic communication cost parameters Cα and Cβ .
The communication cost of a task is related to how many messages and bytes it
sends to tasks mapped to other PUs, as presented in Equation 5.2. Similarly, the
communication load of a PU, commLoadPU : M ×P → R≥0, is equal to the sum
of the communication load of the tasks currently mapped to it.
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commLoad(M, t) = Cα ×
�

u∈T ∧M(t) �=M(u)

Msgs(t, u)

+ Cβ ×
�

u∈T ∧M(t) �=M(u)

Bytes(t, u) (5.2)

commLoadPU(M, p) =
�

t∈T ∧M(t)=p

commLoad(M, t) (5.3)

The algorithm starts by sorting tasks in decreasing load order, and uses an empty
mapping M0. GREEDYCOMMLB creates a new task mapping Mi+1 by iteratively
choosing a PU pmin to assign the unassigned task with the highest load t. This PU is
chosen among the least loaded PU and all PUs that have tasks that t communicates
with. pmin is the PU that presents the smallest total load, totalLoad : M×P → R≥0,
which is the sum of the current PU load, communication load, and communication
load of task t. This is represented in Equation 5.4.

totalLoad(Mi, p) = LoadPU(Mi, p)+commLoadPU(Mi, p)+commLoad(Mi, t)
(5.4)

The communication load of task t is smaller in PUs that have tasks that it com-
municates with. The idea behind this is to mitigate costly communications while
balancing load by keeping communicating tasks mapped to the same PU. Al-
though GREEDYCOMMLB considers more information about the application than
GREEDYLB, they have the same complexity for a communication graph with a
constant vertex degree and card(T ) � card(P) (ZHENG, 2005).

• REFINELB improves load balance by incrementally adjusting the current task map-
ping. Based on Minit, it splits PUs as heavy or light according to their load. A
processing unit p is considered heavy (or overloaded) if its load is greater than a
threshold. This threshold is computed by multiplying the average PU load by a
margin � ≥ 1.0, as shown in Equation 5.5.

threshold(M) = LoadPUavg(M)× � (5.5)

REFINELB checks all possible task migrations from the most loaded PU to all light
PUs, and migrates the task that leaves its new PU the closest to the threshold. This
process is repeat until no migrations seem to improve load balance, or no PU is con-
sidered heavy. REFINELB contains an additional heuristic: it starts with a high � at
each load balancing call, and uses binary search to reduce it to achieve a state closer
to the average load. As GREEDYLB, REFINELB does not consider the application’s
communication graph.

• HYBRIDLB is a hierarchical load balancer. It groups PUs in domains, which can
be based on the network topology of the platform. Domains can be organized in
multiple levels as a tree, where PUs are leaves. Different load balancing strategies
are used depending on the level of the tree. This hierarchical approach is used to
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reduce the load balancing algorithm time seen in centralized load balancers run-
ning on large scale parallel platforms. HYBRIDLB starts by representing all PUs in
one domain as one virtual PU. Data is then sent to the domain leader, which will
repeat this process through all intermediary tree levels. When load balancing data
gets to the root, a refinement-based algorithm, such as REFINELB is applied. Us-
ing such algorithm has the advantage of reducing inter-domain migrations. As the
load balancer chooses from where load should be migrated, it informs the leaders
of its sub-domains. At intermediary levels, tasks are chosen to be migrated among
domains. At the level closer to the leaves, a greedy algorithm, such as GREEDY-
COMMLB or GREEDYLB, is used to decide the mapping of tasks to PUs in the
domain.

The results presented by Zheng et al. show that: (i) centralized load balancers tend
to provide better task distributions than hierarchical ones; (ii) refinement-based and hier-
archical algorithms provide better scalability by reducing load balancing overheads, such
as task migrations; and (iii) the hierarchical approach significantly reduces the memory
footprint required for load balancing.

Although on a parallel environment other than CHARM++, Lifflander, Krishnamoor-
thy and Kale (2012) propose a load balancing mechanism for MPI that have similarities
with the algorithms presented by Zheng et al. To achieve tasks with a finer granularity
than the usual MPI process, they overdecompose the parallel application into tasks simi-
lar to the ones in CHARM++. However, their load balancing mechanism does not profile
the application’s communication graph. They propose a hierarchical load balancing strat-
egy that blends REFINELB and GREEDYLB. It organizes PUs in a load balancing tree,
where all PUs are leaves, and some are also repeated in different levels of the tree. The
authors also discuss the possibility of using other organizations that better fit the machine
topology.

At the beginning of the load balancing phase, the average PU load is determined. Each
overloaded PU starts removing tasks from its task pool in increasing order of load until
it is not considered overloaded anymore. A PU is considered overloaded when its load
is greater than a threshold(M) previously defined in Equation 5.5. The selected tasks
and the new PU load are sent to its parent in the tree. This parent stores the heaviest
tasks available in a greedy fashion, so it can later map them to its underloaded PUs while
keeping such PUs under threshold(M). It then sends the total load surplus or deficit in its
sub-tree to its own parent, together with the remaining tasks. This procedure is repeated
until load balancing information gets to the root. The root PU will map the heaviest tasks
to the least loaded sub-trees in a greedy fashion. Sub-trees will repeat this process until
the leaves receive their tasks.

The greedy approach used in each level of the tree has the objective of reducing load
balancing communication and storage by only sending tasks and information necessary
for the algorithm. Additionally, a load balancing tree with only two levels corresponds to
a centralized algorithm, which is also discussed by the authors.

In a different context, Francesquini, Goldman and Mehaut (2013) employ load balanc-
ing on runtime environments based on the actor model running on one NUMA compute
node. The main difference between these environments and the ones discussed previ-
ously is that tasks are dynamically created and destroyed during execution. They split
tasks into two groups: regular tasks, which are expected to have a short lifespan; and
hubs, which execute for a longer time and spawn several tasks. Communication happens
mainly between a hub and the tasks it created, which are called its affinity group. This
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division influences the initial task mapping, as hubs are spread through different NUMA
nodes, and regular tasks are mapped to the same NUMA node than their hubs to reduce
communication costs. Their load balancing algorithm works in three steps. It first tries
to migrate tasks back to their original NUMA node (called home node). If there still load
imbalance, then the algorithm evaluates task migrations between PUs in the same NUMA
node. It considers migrations between NUMA nodes only if these two steps are not
enough balance load. Besides this load balancing mechanism, the authors also propose a
work stealing algorithm, which is discussed in Section 5.2.

5.1.3 Application-focused load balancers

Application-focused load balancing algorithms consider information that go beyond
what is represented by our application model. For instance, in a different work using
CHARM++, Bhatele, Kale and Kumar (2009) study the impact of network topology-
aware load balancing algorithms on NAMD (see Section 2.2). Their approach benefits
from knowledge specific to this application. Their research focuses on static and dy-
namic topology-aware mappings on 3D mesh and torus networks. In this context, a static
mapping means choosing where a cell task is going to execute at the beginning of the
application, while dynamic mapping is related to the periodic migration of compute tasks.
A refinement-based algorithm is used for balancing load. Their results show that these
static and dynamic techniques can improve the communication performance of NAMD
by up to 10%. The metric used to evaluate load balancing algorithms is hop-bytes, which
is based on the total number of bytes exchanged between PUs weighted by the distance
between them in hops. They benefit from knowing the application to load balance, as they
are able to decide the more important tasks to keep in place or migrate.

Still on CHARM++, Rodrigues et al. (2010) discuss a refinement-based strategy to re-
duce load imbalance and costly communications in weather forecast models (more specif-
ically, BRAMS). They try to preserve the spatial proximity between neighbor tasks (and,
by consequence, avoid costly communications) by traversing them with a Hilbert curve
and recursively bisecting it according to their loads. This is repeated until the number
of segments becomes equal to the number of PUs. This strategy is named HILBERTLB.
This load balancer benefits from knowing that BRAMS has a static and regular commu-
nication graph. However, it does not use information about the number of messages or
bytes in its decisions. Their results show that only HILBERTLB and METISLB, a graph
partitioning load balancing algorithm that uses METIS (KARYPIS; KUMAR, 1995), are
able to improve the performance of BRAMS.

In this same study, Rodrigues et al. also evaluated how the load balancing frequency
and imbalance threshold influence the final application performance. Load balancing
frequency is related to how many timesteps the application should run before calling
HILBERTLB, while the imbalance threshold defines the acceptable load difference be-
tween the most loaded PU and the average. When this difference is smaller than the
threshold, no task migrations are done. Their results showed that, for BRAMS, the best
performance is achieved with an interval of 10 timesteps and a threshold of 10%. Bigger
thresholds resulted in too few migration to fix load imbalance, while too small thresholds
resulted in more migrations than necessary (which incur migration overheads). Mean-
while, although a higher frequency enabled perceiving load imbalance sooner, it also
affected performance due to the time spent by the load balancer. Smaller frequencies
resulted in taking too long to improve balance. This indicates that the optimal load bal-
ancing frequency depends on the application of interest.
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In a different approach, Righi et al. (2010) propose an algorithm named MIGBSP for
load balancing Bulk Synchronous Parallel (BSP) (VALIANT, 1990) applications running
on parallel systems composed of multiple sites (e.g., clusters). Each site is organized as a
set of PUs and has its own Set Manager. A Set Manager is responsible for load balancing
decisions, and communication with other Set Managers. A load balancing call is done at
each α timesteps. The value of α is changed according to the behavior of the application
in the last iterations. If tasks execute for amounts of time that are too different from the
average, the load balancing frequency is increased. Otherwise, it is decreased. In the
context of MIGBSP, tasks have a granularity of process.

During a load balancing call, each Set Manager decides how likely it is to migrate
some of its tasks to other sites. They compute a Potential of Migration PM(t, s) for
each task t and site s. PM is based on three metrics: computation, communication and
memory. The higher the value of PM(t, s), the more likely task t is to migrate to site s.
Computation and communication affect PM positively, while memory does the opposite.
The more stable a tasks’ computation or communication is, the more these metrics will
influence its potential of migration.

The computation metric comp(t, s) is influenced by the load of t, and the performance
of the PUs in s. This load is computed applying the Aging concept (TANENBAUM, 2008)
over the load of task t at each of the last α timesteps. It uses the idea that the predicted
load for the next timesteps is more influenced by recent timesteps. The communication
metric comm(t, s) applies the Aging concept over the amount of bytes sent from task t to
other tasks in site s. Finally, the memory metric mem(t, s) computes the amount of time
it would take to move t from its current site to another one.

After the candidates for migration are chosen, their migration feasibility is evaluated.
The Set Managers estimate the amount of time a candidate task t would take to run in its
current site and its destination site. If the first is smaller than the second plus the estimated
migration time, then t is not migrated. If no tasks are migrated after several load balancing
calls, then MIGBSP decreases the load balancing frequency.

At the memory level, Hofmeyr et al. (2011) propose a user-level scheduler, named
JUGGLE, to mitigate load imbalance of single program, multiple data (SPMD) static and
regular applications running on a compute node. It runs on Linux and works with parallel
application written using PTHREADS, UPC, and OPENMP. The authors focus on off-by-

one imbalance. JUGGLE keeps a thread in each PU to monitor the progress of each task.
Periodically, all monitored information is sent to a centralized scheduler that classifies
PUs as fast and slow, and migrates tasks from slow PUs to fast PUs. Additionally, JUG-
GLE considers nonuniformity at memory level by forbidding migrations between NUMA
nodes. Techniques similar to this one are employed on work stealing algorithms.

5.2 Work stealing

Work stealing (WS) algorithms try to mitigate load imbalance by moving tasks from
loaded PUs to idle PUs. When a PU becomes idle, it becomes a thief. Thieves try to steal

tasks from PUs that still have tasks to execute. The former PUs are called victims (FRIGO;
LEISERSON; RANDALL, 1998)(BLUMOFE; LEISERSON, 1999). Following this def-
inition, work stealing algorithms are mostly distributed or hierarchical scheduling algo-
rithms. They can also be seen as receiver initiated load balancing algorithms (KUMAR;
GRAMA; VEMPATY, 1994). This technique is specially useful for applications where
Load is unknown, and algorithms based on recursive, branch-and-bound, and divide-and-
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conquer approaches.
Work stealing techniques differ from each other mainly by the way task pools are

handled. Task pools are the abstraction used to organized tasks (DINAN et al., 2009). The
scheduling algorithm may use either a centralized or a distributed approach. A centralized
task pool resides in one PU and stores all tasks. All other PUs will have to steal tasks from
it. Meanwhile, distributed tasks pools store patches of the set of tasks and are linked to
different PUs. In this situation, a task pool may be local to one PU only, or shared by
a group of PUs. In the case of distributed task pools, different approaches are used to
define from where a thief PU will try to steal tasks. Examples of ways to pick a victim
are: randomly, in round-robin, and from the nearest neighbors in the topology (KUMAR;
GRAMA; VEMPATY, 1994). Some of the different approaches for work stealing are
discussed below.

Francesquini, Goldman and Mehaut (2013) propose a NUMA-aware work stealing
algorithm that complements their load balancing algorithm discussed in Section 5.1. In
their context, each PU has its own local task pool. A thief chooses a victim following a
order based on the number of hops between its NUMA node and the node of the victim. It
first tries to steal tasks from task pools in its NUMA node, followed by task pools at a one
hop distance, as so on. This acts to reduce the communication costs and task migration
overhead while mitigating load imbalance.

At a memory level, Tchiboukdjian et al. (2010) propose a work-stealing algorithm for
applications based on parallel loops using the KAAPI library (GAUTIER; BESSERON;
PIGEON, 2007) running on one compute node. Their focus lies on reducing load im-
balance while also reducing the amount of last level cache (LLC) misses. This is done
without any knowledge of machine topology levels or communication times.

In KAAPI, each PU has its own task pool. An application has n independent tasks
that reside sequentially in memory in a task pool organized as a queue. These tasks are
the loop iterations. A thief steals more than one task at each time due to their granularity.
Tasks are stolen from the beginning to the end of the list. The author’s proposal lies in
defining a window that limits how many tasks can be stolen and executed at a certain time.
This is done to reduce the working set and improve cache usage.

Quintin and Wagner (2010) implement two new work stealing algorithms in KAAPI

for parallel platforms composed of one or more CNs: Probability Work Stealing (PWS),
and Hierarchical Work Stealing (HWS). In PWS, instead of selecting a victim uniformly,
the probability of selecting a victim is proportional to the inverse of the distance between
the PUs of the thief and the victim. This requires some topology information to be com-
puted. Meanwhile, HWS organizes PUs in groups, such as all PUs in the same socket or
cluster. Each group is composed of one leader and several slaves. Slaves can only steal
local tasks in their group, while leaders steal global tasks between groups. The division
of global and local tasks has to be set by the user. Both algorithms try to reduce the task
migration overhead by avoiding steals from distant PUs.

In a different work using KAAPI, Hermann et al. (2010) present a work stealing al-
gorithm for a compute node composed of PUs (called Central Processing Units in their
approach, or CPUs) and graphics processing units (GPUs). Their technique focuses on
applications seen as task dependency graphs. Dependency represents which tasks gener-
ate data used by other tasks. The initial task mapping is achieved by partitioning the graph
with tools like METIS and SCOTCH, and mapping multiple partitions to each processing
unit (including GPUs). Partitions are used to keep locality among tasks that share data.
Load balance is later achieved by stealing a partition from a task pool.
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Their work stealing policy takes into account the different performances that a task
can achieve running on CPUs and GPUs. The runtime system captures task loads, and
uses them to compute a ratio of the time taken to execute a partition in a CPU and in a
GPU. If that ratio is over a threshold, then the partition can only be stolen by other GPUs.
To avoid keeping a PU idle for too long, this threshold is increased each time a CPU fails
to steal, and decreased each time a GPU fails.

In the context of OPENMP applications, Olivier et al. (2011) discuss and evaluate
several scheduling algorithms. They also present a hierarchical work-stealing algorithm
named multithreaded shepherds (MTS) for a CN composed of more than one socket. They
focus on improving performance by reducing load imbalance and improving cache and
memory usage.

MTS uses a task pool per socket to benefit from cache memory shared among PUs.
PUs access their task pools as Last In, First Out (LIFO) queues, or stacks. The use of
stacks improves cache usage by using temporal locality, as recently created tasks are
scheduled first. Meanwhile, task pools are seen as First In, First Out (FIFO) queues for
stealing tasks. This also helps locality as recent tasks are less likely to be migrated. In
addition, when a PU becomes idle, it randomly chooses a task pool to steal tasks, and
migrates a number of tasks equal to the number of PUs in its socket. This reduces the
overhead of stealing remote tasks.

In the same scenario than Olivier et al., Broquedis et al. (2010) present a RTS for
executing and tuning OPENMP applications named FORESTGOMP. FORESTGOMP fo-
cuses on reducing communication costs while balancing load by keeping tasks that are
created in the same parallel region close together in the machine topology. The machine
topology is captured using HWLOC (see Section 2.4). Every time tasks are created, they
are grouped in a bubble. Bubbles are bound to specific parts of the machine, such as
a core, a socket, or a NUMA node, to maximize cache reuse. These bubbles represent
hierarchical task pools. If a PU has no task to execute in its local pool, it is going to
search through the hierarchy before trying to steal from remote task pools. Additionally,
FORESTGOMP stores where a bubble was last scheduled to be able to place it again in
its previous location and improve cache reuse.

Besides their work on load balancing algorithms discussed in Section 5.1, Lifflander,
Krishnamoorthy and Kale (2012) also propose a work stealing mechanism for MPI. What
sets aside their proposal from others is the consideration of iterative applications as target.
Their retentive work stealing algorithm keeps stolen tasks in their new PU’s task pool, so
that the application will start in a more balanced state in the next timestep.

In their approach, each PU has its own task pool, and task pools are randomly chosen
for stealing. A window mechanism, similar to the one proposed by Tchiboukdjian et al.,
is used to define which tasks cannot be stolen. Besides keeping locality with recently
created tasks, this also reduces the overhead of reading local tasks for execution, as it
does not require obtaining a lock.

In the context of a specific application, Frasca, Madduri and Raghavan (2012) in-
vestigate methods to improve performance and power consumption of the Betweenness
Centrality (BC) algorithm using OPENMP on a NUMA compute node. Their approach
uses a task pool per PU and a retentive work stealing algorithm similar to the one pro-
posed by Lifflander, Krishnamoorthy and Kale. However, instead of randomly choosing
a task pool to steal, the thief’s search for tasks is guided by the NUMA distance, which
uses a synthetic value to represent communication costs. Synthetic communication costs
are also applied in process mapping algorithms, as discussed in the next section.
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5.3 Process mapping

Processing mapping (PM) is a technique used to define the initial task mapping of
an application mainly. It largely focuses on mitigating costly communications, as ap-
plications are considered to have regular and static tasks, and do not suffer from load
imbalance. Additionally, the number of tasks is usually the same as the number of PUs.
Process mapping requires some level of knowledge about the machine topology. Different
approaches are discussed below.

Mercier and Clet-Ortega (2009) try to improve the placement of MPI processes on a
symmetric compute node. They gather the machine topology using a component of the
PM2 runtime system (THIBAULT; NAMYST; WACRENIER, 2007) and synthetic com-
munication costs Csyn. This is used to generate a machine topology matrix. Meanwhile,
application information is gathered by tracing an initial execution. The amount of bytes
exchanged among tasks (Bytes) is extracted from the trace to generate a symmetric com-
munication matrix.

Both the machine topology and communication matrices can be seen as complete,
non-oriented graphs with weighted edges. By using the abstraction of graphs, the authors
are able to use the SCOTCH library (PELLEGRINI; ROMAN, 1996) to statically map the
communication graph to the topology graph.

Similarly, Jeannot and Mercier (2010) propose a process mapping algorithm named
TREEMATCH for a NUMA compute node. Communication is gathered using the same
approach as Mercier and Clet-Ortega. However, the machine topology is gathered using
HWLOC (see Section 2.4) and represented as a tree. Using this information, TREEMATCH

works similarly to a graph partitioning algorithm. A coarsening phase is applied over the
communication graph to reduce the number of vertices by a factor of the arity of a level
of the tree (from leaves to the root). When the number of vertices in the graph does not
match the number of vertices in a level of the tree, disconnected vertices are added to the
graph. When only one vertex remains, TREEMATCH starts to map the groups of vertices
to the topology tree, in a way that tasks end mapped to PUs, which represent the leaves of
the topology tree.

Cruz, Diener and Navaux (2012) present a dynamic process mapping algorithm that
considers the memory hierarchy on its decisions. Tasks are remapped during their exe-
cution based on their current communication behavior. The information of which tasks
are sharing data is captured from the Translation Lookaside Buffers (TLBs), or from page
misses at operating system level (DIENER; CRUZ; NAVAUX, 2013). They employ the
Edmonds graph matching algorithm, which solves the maximum weight perfect matching
for complete weighted graphs. The weights for the communication graph are related to
how much data two tasks share, while the ones for the platform are related to the first level
of the topology shared by two PUs.

At a network level, Chen et al. (2006) propose a tool named MPI Process Placement
toolkit (MPIPP) to map MPI processes to parallel platforms composed of multiple CNs.
The network topology is benchmarked to obtain its communication costs Cgap and Coverhead

of the LogP model (CULLER et al., 1993). For P = card(P) PUs, P/2 ping-pong tests
are run in parallel, where each PU communicates with only one other PU. This benchmark
runs P −1 times, so all possible interactions between two PUs are measured. Meanwhile,
a trace is used to gather information about the communication behavior of the application.
Messages sizes are computed by dividing the amount of bytes exchanged between two
tasks (Bytes) by their number of messages (Msgs). Using this data, the median message
size is computed and compared to a threshold. If the median message size is bigger than
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the threshold, then Bytes and Cgap are used to compute the task mapping. Otherwise,
Msgs and Coverhead are used.

MPIPP mapping decision starts by placing each task in a random PU. Then, at each
iteration, the algorithm selects which pairs of communicating tasks are going to exchange
PUs, so that the communication cost reduction is the maximum possible. The commu-
nication costs depends on the chosen parameters, as discussed above. This process is
repeated until no gains are achieved.

In a similar context, Hoefler and Snir (2011) study the problem of mapping appli-
cations with irregular communication patterns to the network topology. The network
topology includes CNs and switches, while the application’s communication graph con-
siders Bytes only. The authors focus on optimizing two different metrics: Worst Case

Congestion, or congestion; and Average dilation, or dilation.

• Congestion is the ratio between the amount of bytes that are communicated thought
a link in the network, and the capacity of the link. The worst case congestion gives
a lower bound on the time needed for communication.

• Dilation is the average length of the path taken by a message sent from a task to
another one. The average dilation is computed by weighting each communication
between tasks and its frequency. Thus, it gives how many hops messages will have
to traverse in the network, or how much the network will be stressed.

The authors propose a topology mapping library that employs different algorithms
to try to find the task mapping that minimizes congestion and dilation. Firstly, in the
case where more than one task will be mapped to each CN, a graph partitioner is used to
group tasks such that the number of groups equals the number of compute nodes. This
generates a new communication graph representing the application. If the number of
tasks is equal to the number of CNs, then a graph similarity algorithm is used to generate
a task mapping. Other algorithms employed include a recursive bisection algorithm and
a greedy algorithm that maps the tasks with the most communication to the CNs with the
largest bandwidths between them. In addition to these algorithms, each of the generated
mappings goes through an optimization phase where random pairs of tasks are swapped.
The new generated mappings have their congestion and dilation computed and compared,
and only the best mapping found is used.

5.4 Discussion

Although task mapping algorithms use techniques much different from each other,
many common points can be seen among them. In this section, we summarize the tech-
niques and algorithms presented in this chapter and compare them to the algorithms pro-
posed in Chapter 4 in light of their application modeling, machine topology modeling,
and task mapping techniques employed. These comparisons are depicted in Tables 5.1,
5.2, and 5.3, where task mapping algorithms are ordered by their appearance in the text.

Task mapping algorithms are compared in Table 5.1 according to the kinds of appli-
cations that they focus at. This is done in terms of the following characteristics:

• The parallel application as a 5-uple A = (T , Load, Size,Msgs,Bytes). T is
omitted as all algorithms consider the tasks to map. The other parameters are shown
with a check mark (�) when considered by the mapping algorithm.
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• The application behavior in terms of irregularity as: Tasks when only load irregu-
larity is considered; Comm. when only communication irregularity is considered;
Both when both are considered; and Reg. when the algorithm does not model irreg-
ularity.

• The application behavior in terms of dynamicity as: Tasks when only load dynam-
icity is considered; Comm. when only communication dynamicity is considered;
Both when load and communication dynamicity are considered; and St. when the
algorithm models static loads and communication.

Table 5.1: Task mapping algorithms comparison in terms of application modeling.

Algorithm Load Size Msgs Bytes Irreg. Dyn.

NUCOLB � � Both Both
HWTOPOLB � � � Both Both
HIERARCHICALLB � � � Both Both

Catalyurek at al. � � � Both Both
GREEDYLB � Tasks Tasks
GREEDYCOMMLB � � � Both Both
REFINELB � Tasks Tasks
HYBRIDLB � � � Both Both
Lifflander et al.: LB � Tasks Tasks
Francesquini et al.: LB Tasks Tasks
Bhatele et al. � � Both Both
HILBERTLB � Tasks Tasks
Righi et al. � � � Both Both
JUGGLE � Reg. St.
Francesquini et al.: WS Tasks Tasks
Tchiboukdjian et al. Tasks Tasks
PWS Tasks Tasks
HWS Tasks Tasks
Hermann et al. � � Tasks St.
MTS Tasks Tasks
FORESTGOMP Tasks Tasks
Lifflander et al.: WS Tasks Tasks
Frasca et al. Tasks Tasks
Mercier et al. � Comm. St.
TREEMATCH � Comm. St.
Cruz et al. � Comm. Comm.
MPIPP � � Comm. St.
Hoefler et al. � Comm. St.

The proposed load balancing algorithms presented in Chapter 4, NUCOLB,
HWTOPOLB, and HIERARCHICALLB, consider applications with irregularity and dy-
namicity at both task and communication levels. This is a common feature in load bal-
ancing algorithms that consider the communication graph at some level. However, load
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balancing algorithms are more sensible to dynamic loads than work stealing algorithms,
as the latter are more reactive when perceiving idle PUs. Additionally, while algorithms
are able to handle irregular and dynamic loads, dynamic communications are left aside in
more than half of the studied approaches.

Our load balancers use the number of messages exchanged among tasks to represent
the communication graph at some level (HWTOPOLB also considers the data volume).
This is less commonly seen in other algorithms. One of the only algorithms that differen-
tiates small messages from big messages is MPIPP (CHEN et al., 2006). Although large
volumes of data communicated can have an impact in performance due to bottlenecks
in the parallel platform, applications with a large number of small messages can also be
affected by non negligible communication latencies. By considering both, an algorithm
becomes more adapted to handle different kinds of applications.

On a final note, tasks’ sizes are rarely accounted by the algorithms, as the main ap-
proach to reduce migration costs usually involves avoiding migrations whenever possible.

Many differences can also be found when comparing task mapping algorithms accord-
ing to their representation of the machine topology. This is done in Table 5.2 in terms of
the following characteristics:

• The machine topology as a 4-uple O = (P ,L, S, C). P is omitted as all algo-
rithms consider the PUs available to map tasks. L and S are grouped in one column
because the way topology levels are shared is directly linked to the number of levels
in the machine topology model. C is listed as empty if no communication costs are
considered.

• The parallel platform levels considered for task mapping as: Mem. when only one
compute node is modeled; Net. when multiple CNs are taken into account, but their
internal organization is not considered; and Plat. when a whole parallel platform is
modeled.

• The topology levels where nonuniformity is treated by the algorithm as: Mem. for
the memory level; Net. for the network level; Plat. for both levels; and Unif. if all
levels are seen as uniform.

• The topology levels where asymmetry is treated by the algorithm as: Mem. for the
memory level; Net. for the network level; Plat. for both levels; and Sym. if all
levels are seen as symmetric.

A first thing that can be noticed in Table 5.2 is that our algorithms are the only ones
to consider nonuniformity at platform level, which includes both memory and network
levels. All other algorithms that consider the whole platform in their decisions see a flat,
symmetric and uniform topology, which has the quality of being simple. Nevertheless,
instead of modeling a flat machine topology like most load balancers implemented using
CHARM++, NUCOLB, HWTOPOLB and HIERARCHICALLB have a hierarchical view
of the topology. Their approach to model communication costs is more strongly related
to process mapping algorithms than to load balancing ones.

While task mapping algorithms that work at network level consider real communica-
tion costs in their decisions, such as the latency, bandwidth, and number of hops among
CNs, others use mostly synthetic values to represent distant communications. Although
synthetic values reduce the amount of work required to model the machine topology while
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Table 5.2: Task mapping algorithms comparison in terms of machine topology modeling.

Algorithm L and S C Level Nonunif. Asym.

NUCOLB � Clat Plat. Plat. Mem.
HWTOPOLB � {Clat, Cband} Plat. Plat. Plat.
HIERARCHICALLB � {Clat, Cband} Plat. Plat. Plat.

Catalyurek at al. flat ∅ Plat. Unif. Sym.
GREEDYLB flat ∅ Plat. Unif. Sym.
GREEDYCOMMLB flat {Csyn, Csyn} Plat. Unif. Sym.
REFINELB flat ∅ Plat. Unif. Sym.
HYBRIDLB flat {Csyn, Csyn} Plat. Unif. Sym.
Lifflander et al.: LB flat ∅ Plat. Unif. Sym.
Francesquini et al.: LB � ∅ Mem. Mem. Sym.
Bhatele et al. � Chops Net. Net. Sym.
HILBERTLB flat ∅ Plat. Unif. Sym.
Righi et al. � Cband Net. Net. Sym.
JUGGLE � ∅ Mem. Mem. Sym.
Francesquini et al.: WS � Chops Mem. Unif. Sym.
Tchiboukdjian et al. flat ∅ Mem. Unif. Sym.
PWS � Csyn Plat. Unif. Sym.
HWS � ∅ Plat. Unif. Sym.
Hermann et al. flat ∅ Mem. Unif. Sym.
MTS � ∅ Mem. Mem. Sym.
FORESTGOMP � ∅ Mem. Mem. Sym.
Lifflander et al.: WS flat ∅ Plat. Unif. Sym.
Frasca et al. � Csyn Mem. Mem. Sym.
Mercier et al. � Csyn Mem. Mem. Sym.
TREEMATCH � Csyn Mem. Mem. Sym.
Cruz et al. � Csyn Mem. Mem. Sym.
MPIPP � {Clat, Cband} Net. Net. Sym.
Hoefler et al. � {Chops, Cband} Net. Net. Net.

still providing the possibility of some vision of nonuniformity, they can also provide com-
pletely wrong communication costs, depending on the machine.

Although our algorithms are based on the same topology model, they consider differ-
ent aspects of parallel systems. NUCOLB uses latency to represent the different commu-
nication costs among NUMA nodes, while HWTOPOLB estimates real communication
times using latencies and bandwidths. Both consider asymmetries at memory level, but
only HWTOPOLB considers asymmetry at network level too. This happens due to the
way latency and bandwidth are measured at network level, as discussed in Section 3.2.2.
Benchmarking the network involves measuring the RTT between pairs of compute nodes.
Although we are able to differentiate bandwidth in the two directions, latency ends up
being averaged. Since NUCOLB considers only latency in its decisions, it ends with a
symmetric view of the network. The only other machine topology model that considers
asymmetries is the one presented by Hoefler and Snir (2011). Their network asymmetry
comes from modeling the routing algorithm employed in the platform. Routing differen-
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tiates the probability of messages being sent through different paths in the network.
Finally, task mapping algorithms are compared according to their objectives and tech-

niques employed in Table 5.3. Comparison is done in terms of the following characteris-
tics:

• The employed technique: load balancing (LB), work stealing (WS), and process
mapping (PM).

• The consideration of mitigating load imbalance and costly communications when
mapping tasks. A check mark (�) is used when an algorithm has one of them as
objective.

• Taking the current task mapping into account when computing a new task mapping.

• The way the algorithm is managed as: Cent. for centralized algorithms; Hier. for
hierarchical algorithms; and Dist. for distributed algorithms.

By crossing the comparisons made in Tables 5.1, 5.2, and 5.3, some insights can be
brought to light.

• Most hierarchical algorithms take into account the original task mapping, as they
focus in reducing task mapping overheads, such as the time spent migrating tasks.

• One may try to reduce costly communications without considering the commu-
nication costs of the platform or the communication graph in the task map-
ping algorithm, as done by Rodrigues et al. in their load balancing algorithm
HILBERTLB (RODRIGUES et al., 2010). However, this requires extensive knowl-
edge about the application of interest, and reduces generality.

• Different algorithms employ greedy strategies for task mapping, such as NUCOLB,
GREEDYCOMMLB, HYBRIDLB, and the hierarchical load balancing algorithm
proposed by Lifflander, Krishnamoorthy and Kale. What sets NUCOLB apart from
them the most is its view of the machine topology, which influences its cost function
and view of locality at a NUMA node level.

• Most task mapping algorithms make their decisions in a deterministic way, which
results in the possibility of finding and stopping at a local optimum solution. In this
sense, probabilities such as the one used by HWTOPOLB are rarely seen. The only
exception in this case is PWS.

Additionally, the study of the state of the art in task mapping algorithms helped us see
how load balancing algorithms are the most used for mitigating both load imbalance and
costly communications, how taking into account the initial task mapping is a relevant ap-
proach used to avoid migrations and their overhead, and how a detailed machine topology
model is important when focusing on communication costs. We evaluate how our load
balancing algorithms are able to provide performance portability to applications running
on parallel platforms when compared to other algorithms in the next chapter.
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Table 5.3: Task mapping algorithms comparison in terms of techniques employed and
objectives.

Algorithm Tech. Load Imb. Costly Comm. Minit Mgt.

NUCOLB LB � � � Cent.
HWTOPOLB LB � � � Cent.
HIERARCHICALLB LB � � � Hier.

Catalyurek at al. LB � � � Hier.
GREEDYLB LB � Cent.
GREEDYCOMMLB LB � � Cent.
REFINELB LB � � Cent.
HYBRIDLB LB � � � Hier.
Lifflander et al.: LB LB � � Hier
Francesquini et al.: LB LB � � � Cent.
Bhatele et al. LB � � � Cent.
HILBERTLB LB � � Cent.
Righi et al. LB � � � Hier.
JUGGLE LB � � Hier.
Francesquini et al.: WS WS � � � Dist.
Tchiboukdjian et al. WS � Dist.
PWS WS � � Dist.
HWS WS � � Hier.
Hermann et al. WS � � Dist.
MTS WS � Dist.
FORESTGOMP WS � � Dist.
Lifflander et al.: WS WS � Dist.
Frasca et al. WS � Dist.
Mercier et al. PM � Cent.
TREEMATCH PM � Cent.
Cruz et al. PM � Cent.
MPIPP PM � Cent.
Hoefler et al. PM � Cent.
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6 PERFORMANCE EVALUATION

The process of scheduling tasks in a parallel platform is usually based on heuristics,
as an optimal mapping cannot be computed in feasible time. Task mapping algorithms
consider different aspects of the application and machine topology to mitigate load im-
balance, costly communications, or both. As so, an algorithm’s final performance will
depend on the number of tasks of the application, their loads, their dynamicity and irreg-
ularity, the algorithm’s overhead, the number of PUs in the parallel platform, and others.

In this chapter, we present a performance evaluation of the proposed load balanc-
ing algorithms NUCOLB, HWTOPOLB, and HIERARCHICALLB in comparison to other
algorithms of the state of the art discussed in Chapter 5. We first present the evaluation
methodology common to our experiments. Experiments with NUCOLB and HWTOPOLB
on a multicore compute node are presented next. This is followed by the performance
evaluations on clusters with all proposed algorithms. A discussion over the obtained re-
sults is presented at the end of this chapter.

6.1 Evaluation methodology

Experiments were set over a combination of parallel platforms, applications, and load
balancing algorithms. To ease the comprehension of our methodology, we first character-
ize the parallel platforms that served as testbed. This is followed by a description of the
CHARM++ benchmarks and applications used in the evaluations. Next, other state of the
art load balancers are detailed. This section ends with a discussion on final details of the
experiments.

6.1.1 Experimental platforms

We conducted our evaluation on five representative parallel platforms. Table 6.1 sum-
marizes some of the hardware characteristics of these machines. All characteristics listed,
with the exception of the number of compute nodes, refer to one compute node only.

In addition to the attributes listed in Table 6.1, Xeon24 has a UMA (Uniform Memory
Access) design. The compute nodes of Opt4 and Opt32 are interconnected through Giga-
bit Ethernet and a Gemini 3D torus network, respectively. Communication is performed
using MPI. Opt4 is part of Grid’5000 (BOLZE et al., 2006).

The version of MPI available on Opt4 and Opt32, and other software used in these
platforms are listed in Table 6.2. All machines use CHARM++ release 6.4.0 for the ex-
perimental evaluation, with the exception of the results with NUCOLB presented in Sec-
tions 6.2.1 and 6.3.1, which use CHARM++ release 6.3.0. Experiments using one compute
node only use the CHARM++ multicore-linux64 build. Experiments running on multiple
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Table 6.1: Overview of the platforms’ hardware characteristics.

Characteristic Xeon24 Xeon32 Opt48 Opt4 Opt32

#PUs 24 32 48 4 32
#Sockets 4 4 4 2 2
#NUMA nodes — 4 8 2 4

Processor
Xeon Xeon Opteron Opteron Opteron

X7460 X7560 6174 2218 6272
Clock (GHz) 2.66 2.27 2.20 2.6 2.10
LLC (MB) 16 (L3) 24 (L3) 10 (L3) 2 (L2) 12 (L3)
DRAM (GB) 64 64 256 4 32

#CNs 1 1 1 20 16
Total PUs 24 32 48 80 512
Network

— — —
Gigabit Cray

Interconnection Ethernet Gemini

Table 6.2: Overview of the platforms’ software components.

Software Xeon24 Xeon32 Opt48 Opt4 Opt32

Linux kernel version 3.2.0 3.5.2 3.2.0 2.6.32 2.6.32
GCC version 4.6.3 4.7.1 4.6.3 4.4.5 4.3.4
MPI library - - - OpenMPI cray-mpich2

CNs on Opt4 and Opt32 use the net-linux-x86_64-smp and mpi-crayxt-smp builds, re-
spectively.

6.1.2 Benchmarks and applications

To evaluate the performance of our proposed load balancers, we selected three bench-
marks from CHARM++, lb_test, kNeighbor, and stencil4D, and two applications: one
from the molecular dynamics field named LeanMD, and another from the seismic wave
propagation field named Ondes3D. They were chosen due to their varied range of com-
munication patterns and workload characteristics. They are described below.

lb_test is an imbalanced iterative benchmark which supports different levels of load
irregularity and communication patterns. A static load variation from 50 ms to 200 ms
was used in our experiments.

kNeighbor is a synthetic iterative benchmark where a task communicates with k other
tasks at each step (in these experiments, k = 7). Its communication pattern is a ring. In
our experiments, messages of 8 KB are exchanged among tasks.

stencil4D is an imbalanced stencil computation. It uses a four dimensional mesh
to represent its communication pattern. In these experiments, an array of side 128 was
decomposed into blocks of size 32.

LeanMD is a molecular dynamics (MD) application written in CHARM++ and based
on the popular MD application, NAMD (NELSON et al., 1996)(BHATELE et al., 2009).
It simulates the behavior of atoms based on the Lennard-Jones potential, which is an ef-
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fective potential that describes the interaction between two uncharged molecules or atoms.
The computation on LeanMD is parallelized using a hybrid scheme of spatial and force
decomposition. In each timestep, force calculations are done for all pairs of atoms that
are within the cutoff distance. The force calculation for a pair of cells is done by a dif-
ferent set of tasks called computes. Based on the forces sent by the computes, the cells
perform the force integration and update various properties of their atoms – acceleration,
velocity and positions. Communication in LeanMD happens between two arrays of tasks.
In the first step of communication, tasks of the three dimensional cell array communicate
using a multicast operation with tasks in the six dimensional array. Then, in the second
step, tasks of the six dimensional array communicate with one or two tasks of the three
dimensional array.

Ondes3D is a seismic wave simulator employed to estimate the damage in future
earthquake scenarios (DUPROS et al., 2010). It simulates the propagation of seismic
waves over a three-dimensional space. Ondes3D implements the standard fourth-order in
space numerical scheme, and uses the Convolutional Perfectly Matched Layer (C-PML)
method for its absorbing boundary conditions (KOMATITSCH; MARTIN, 2007). It uses
a standard MPI Cartesian two dimensional grid decomposition. Although originally im-
plemented using MPI, it has been ported to Adaptive MPI (AMPI) (HUANG; LAWLOR;
KALE, 2004) to benefit from CHARM++’s load balancing framework (TESSER et al.,
2014). For that to happen, the application has to be overdecomposed into multiple virtual
MPI processes per PU. Ondes3D presents load irregularity due to the boundary conditions
producing additional work, and load dynamicity from the simulation of waves spreading
through space. For our experiments, we ran a simulation based on the Mw 6.6 2007 Ni-
igata Chuetsu-Oki, Japan earthquake (AOCHI et al., 2013) with a resolution of 72 million
grid points. The complete simulation is comprised of 6000 timesteps, but only the initial
600 ones were used in our experiments due to its long execution time.

Table 6.3 summarizes the benchmarks characteristics and parameters used in our
experiments. Additional details over LeanMD parameters are presented separately for
NUCOLB, HWTOPOLB, and HIERARCHICALLB in their respective sections. Different
load balancing frequencies have been chosen for different applications in order to strike a
balance between the benefits of remapping tasks and the overheads of moving tasks and
computing a new task mapping. Deciding the optimal moment to call a load balancer is a
challenging problem (MENON et al., 2012) and is out of the scope of this thesis.

Table 6.3: Benchmarks and application characteristics.

Number of Number of Communication
Type

LB Number of
Tasks Timesteps Graph Frequency LB Calls

lb_test 200 50 random load-bound 10 4
kNeighbor 400 50 ring comm-bound 10 4
stencil4D 256 50 4D mesh load-bound 10 4
LeanMD * * complex load-bound * *
Ondes3D 512 600 2D mesh load-bound 20 29



82

6.1.3 Load balancers

We compare the performance of our load balancers to the baseline and to other state
of the art algorithms. The baseline represents the use of no load balancer during the exe-
cution of the application. The state of art load balancers are represented by GREEDYLB,
GREEDYCOMMLB, HYBRIDLB, SCOTCHLB, SCOTCHREFINELB, REFINECOMMLB,
and TREEMATCHLB. These load balancers present a variety of task mapping strategies,
including greedy, refinement-based, and graph partitioning. Their algorithms are dis-
cussed in more details in Chapter 5.

SCOTCHLB and SCOTCHREFINELB are based on the graph partition algorithms im-
plemented in the SCOTCH library (PELLEGRINI; ROMAN, 1996). The difference be-
tween them is that SCOTCHREFINELB considers the current task mapping on its deci-
sions. TREEMATCHLB is based on the process mapping algorithm TREEMATCH (JEAN-
NOT; MERCIER, 2010). To group tasks in a way to mimic the granularity of processes,
TREEMATCHLB starts by applying a greedy algorithm based on the tasks’ loads. RE-
FINECOMMLB is similar to REFINELB, but it considers the communication graph in
its decisions like GREEDYCOMMLB. The employed version of HYBRIDLB uses RE-
FINELB as a root load balancer and GREEDYLB as a leaf load balancer. These load
balancers are compared to our proposed algorithms according to their machine topology
model, application model and techniques employed in Tables 6.4 and 6.5, respectively.
The characteristics used for comparison are a subset of the ones presented in Section 5.4.

Table 6.4: Load balancers comparison in terms of machine topology modeling.

Algorithm L and S C Nonunif. Asym. Mgt.

NUCOLB � Clat Plat. Mem. Cent.
HWTOPOLB � {Clat, Cband} Plat. Plat. Cent.
HIERARCHICALLB � {Clat, Cband} Plat. Plat. Hier.

GREEDYLB flat ∅ Unif. Sym. Cent.
GREEDYCOMMLB flat {Csyn, Csyn} Unif. Sym. Cent.
HYBRIDLB flat ∅ Unif. Sym. Hier.
SCOTCHLB flat ∅ Unif. Sym. Cent.
SCOTCHREFINELB flat ∅ Unif. Sym. Cent.
REFINECOMMLB flat {Csyn, Csyn} Unif. Sym. Cent.
TREEMATCHLB � Csyn Plat. Sym. Cent.

These load balancing algorithms are all implemented and made available with
CHARM++, which results in several similarities. They are all centralized or hierarchi-
cal load balancers that work at a platform level, including one or more compute nodes in
their decisions. Most are able to handle task load and communication that are both irreg-
ular and dynamic. Besides HYBRIDLB, all considered load balancers focus on mitigating
load imbalance and costly communications. Additionally, all lack the knowledge of the
task sizes in bytes.

6.1.4 Experimental setup

The results shown in this chapter are the average of a minimum of 20 runs for each
benchmark and application, and present a statistical confidence of 95% by Student’s t-
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Table 6.5: Load balancers comparison in terms of application modeling and techniques
employed.

Algorithm Load Msgs Bytes Minit

NUCOLB � � �

HWTOPOLB � � � �

HIERARCHICALLB � � � �

GREEDYLB �

GREEDYCOMMLB � � �

HYBRIDLB � �

SCOTCHLB � �

SCOTCHREFINELB � � �

REFINECOMMLB � � � �

TREEMATCHLB � �

distribution and a 5% relative error, unless noted. The execution time of all tests, and
hardware counters, such as LLC cache misses, were captured using perf stat (STAT,
2013). Additionally, CHARM++ threads were bound to PUs at the start of the experi-
ments. This avoids thread migration overheads and guarantees that threads are pinned in
the machine topology.

HWTOPOLB uses three different parameters, named α, β, and T , as discussed in
Section 4.1.2. Results shown in Section 6.2.2 were obtained with α = 0.8, β= 0.8 and
T = 0.1. Different combinations of α ∈ (0.5; 1), β ∈ (0.5; 1), and T ∈ (0.1; 1) were
evaluated, but their results were all inside the relative error margin and hidden for the sake
of simplicity. NUCOLB uses a parameter α to control the weight that communication has
over the execution time, as presented in Section 4.1.1. Results shown in this chapter were
obtained with α = 10−5.

The performance impact of load balancing algorithms depends on several different
parameters, such as the duration of application timesteps, the number of tasks, the load
balancing frequency, the load balancing algorithm’s execution time, etc. Our main metric
to evaluate the impact of load balancing is the total execution time of the application,
or makespan. We also consider the average timestep duration after load balancing and
the average load balancing algorithm execution time. The timestep duration does not
consider the timesteps before load balancing, nor overheads related to load balancing. The
load balancing time is comprised of the time spent executing the algorithm and migrating
tasks. These metrics are employed to better understand the performance of load balancing
algorithms in the next sections.

6.2 Load balancing on multicore machines

We start this evaluation by focusing on the performance of the proposed algorithms
when mapping tasks over parallel platforms composed of one compute node only. The
multicore machines used for these experiments present varied machine topologies, includ-
ing different numbers of PUs and NUMA nodes, which highlight different features of our
centralized load balancers. Additionally, the results obtained at this smaller scale serve to
guide decisions when working at a cluster level in Section 6.3.
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We organize this section in three parts. Firstly, we present the results obtained with
NUCOLB. This is followed by the results with HWTOPOLB. Lastly, we compare the
performance of both algorithms with the seismic wave simulator Ondes3D.

6.2.1 NUCOLB

This section provides a performance comparison between NUCOLB and GREEDY-
COMMLB, SCOTCHLB, and TREEMATCHLB on parallel platforms Xeon32 and Opt48.
We first discuss results with benchmark lb_test, followed by kNeighbor, stencil4D, and,
lastly, LeanMD.

The lb_test benchmark presents a large variation in task loads, from 50 ms to 200 ms,
and a small number of tasks per PU. It starts in an imbalanced state, as illustrated in
Figure 6.1. This figure shows the initial imbalanced timesteps of lb_test, and its bal-
anced state after calling NUCOLB as captured by the Projections performance analysis
tool (KALE; SINHA, 1993). Each horizontal bar represents a PU (called PE on Pro-
jections). The blue areas represent the execution of tasks, and the white areas represent
idleness. The period between 2 and 9.4 seconds (7.4 seconds total) illustrates the initial
imbalanced state of the benchmark. PE 7 is the most loaded PU. Meanwhile, the period
between 9.4 and 14.5 seconds (5.1 seconds total) represents the 10 timesteps after calling
NUCOLB and before calling it again. This scenario illustrates how NUCOLB is able to
reduce PU idleness to a minimum.

Figure 6.1: Execution of lb_test on PUs 4 to 7 of Xeon32, as captured by Projections.

Table 6.6 summarizes the execution times obtained for lb_test on machines Xeon32
and Opt48. Most load balancers obtain speedups between 1.25 and 1.39 when compared
to the baseline. The baseline represents the execution time of the application without using
a load balancer. Performance improvements come from similar speedups in timestep
duration. The best results are obtained with NUCOLB, as it achieves speedups of 1.39
over the baseline on Opt48 and of 1.30 on Xeon32. This represents keeping the idleness
of Opt48 and Xeon32 PUs as low as 5% and 4%, respectively. NUCOLB migrates an
average of 14 tasks per load balancing call, while other load balancers migrate 195 tasks
on average. This, however, has a small impact on the total execution time, as these tasks
have a small memory footprint. For instance, NUCOLB has a load balancing time of
9 ms on Xeon32, while SCOTCHLB takes 12 ms. The small amount of communication
of the benchmark, which adds to a total of 1 MB per timestep, reduces the impact of
considering the communication costs in these platforms. Nonetheless, the positive results
with this compute-bound benchmark still emphasize the advantages of a list scheduling
approach.

The execution times measured for the kNeighbor benchmark are presented in Fig-
ure 6.2. kNeighbor is a communication-bound benchmark. In this experiment, tasks
communicate approximately 9 GB per timestep. Unlike lb_test, this benchmark starts in
a balanced state. CHARM++ distributes tasks in a round-robin fashion through the PUs.
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Table 6.6: Total execution time in seconds of lb_test and speedups for NUCOLB and other
load balancers.

Load balancers
Xeon32 Opt48

Time Speedup Time Speedup

Baseline 36.19 s — 27.93 s —
NUCOLB 27.95 s 1.30 20.09 s 1.39
GREEDYCOMMLB 28.57 s 1.27 20.27 s 1.39
SCOTCHLB 28.91 s 1.25 21.53 s 1.30
TREEMATCHLB 38.40 s 0.94 29.56 s 0.94

kNeighbor has twice as many tasks as lb_test, and these tasks have a regular and static
behavior. This explains the original balanced state of the application. NUCOLB is able to
reduce the average timestep duration of kNeighbor on Xeon32 by 30 ms. This reduction
is less noticeable in the total execution time due to the load balancing overhead of 150 ms
per load balancing call. This cost comes from migrating an average of 116 tasks. On
the same machine, other load balancers migrate an average of 388 tasks, which results in
a migration time of more than 700 ms per load balancing call. This helps explain why
other load balancers end up increasing the total execution time. In particular, GREEDY-
COMMLB tries too hard to keep communicating tasks on the same PU. This leads to
overloaded PUs, which increase the timestep duration by 50%. On Opt48, NUCOLB is
the only load balancer that improves performance over the baseline (a speedup of 1.14).
This was possible because NUCOLB has a small load balancing overhead, and benefits
from the knowledge of the machine topology. By using it, NUCOLB is able to keep com-
municating tasks on the same NUMA node (instead of simply the same PU) and reduce
communication costs. This results in a 6% reduction on the average load of each PU, or
80 CPU-seconds.

Figure 6.3 illustrates the total execution time of the stencil4D benchmark. stencil4D

has a number of tasks similar to lb_test, and also starts in an imbalanced state. Imbal-
ance comes from an original mapping that underloads some PUs, and from tasks with
irregular computational loads. Its tasks send boundary information using messages of ap-
proximately 260 KB each, which adds to a total communication of 460 MB per timestep.
stencil4D occupies 5.5 GB in memory, which means that it has large tasks. For both
machines, NUCOLB shows the best performance. It obtains a speedup of 1.18 over the
second best load balancer, GREEDYCOMMLB, on Xeon32. When considering only the
timestep duration after load balancing, it obtains a speedup of 1.21. The difference in
these speedups comes from the initial timesteps of the benchmark, which happen before
any load balancer can fix the load unbalance.

NUCOLB migrates an average of 47 tasks per load balancing call on Xeon32, which
translates to 100 ms spent migrating tasks. NUCOLB is able to avoid unnecessary migra-
tions because it considers the original mapping of the application and knows the machine
topology. By exploiting the machine topology, it is able to minimize migrations that
could worsen performance by increasing communication costs. Meanwhile, other load
balancers migrate 5.3 times more tasks. This results in a migration overhead 11 times
greater than that of NUCOLB. This is related to the cost of migrating stencil4D’s large
tasks. Table 6.7 summarizes the load balancing costs of stencil4D. The large number of
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Figure 6.2: Total execution time of kNeighbor with NUCOLB and other load balancers.
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Figure 6.3: Total execution time of stencil4D with NUCOLB and other load balancers.

migrations leads to an increase in the memory footprint of the benchmark, which ends up
affecting the performance of some tasks. For instance, other load balancers increase last
level cache misses by 32% and page faults by 19% on Opt48 when compared to the base-
line, while NUCOLB shows an average reduction of 1% on both parameters. Meanwhile,
NUCOLB achieves a speedup of 1.58 over the baseline by reducing the average timestep
duration from 1.84 s to 0.78 s.

NUCOLB also balances the communication between PUs, as can be seen in Fig-
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Table 6.7: Load balancing times in seconds for stencil4D for different NUMA machines.

Load balancers Xeon32 Opt48

Baseline — —
NUCOLB 0.11 s 0.27 s
GREEDYCOMMLB 1.17 s 0.84 s
SCOTCHLB 1.13 s 1.02 s
TREEMATCHLB 1.14 s 1.04 s

ures 6.4 and 6.5. They show the distribution of messages received from other PUs for
stencil4D on Opt48, as captured by Projections. The horizontal axis identifies each PU,
while the vertical axis represents the number of messages received from other PUs. These
figures show how NUCOLB balances communications, as the difference in the most and
the least number of messages received by any PU is reduced. Before load balancing,
PU 22 receives the largest amount of messages, 4.5 times more than the smallest num-
ber of messages received by any PU. This difference is reduced to 2.6 times after load
balancing.

Figure 6.4: Messages received per PU before load balancing (first 10 timesteps).

The performance of the LeanMD application can be seen in Figure 6.6. This appli-
cation is comprised of many small tasks. Each occupies a small amount of memory and
communicates through small messages of approximately 100 bytes. In these experiments,
LeanMD runs 1875 tasks for 300 timesteps, and a load balancing call is done at each 60
timesteps, for a total of four load balancing calls. This application starts in a balanced
state in this experiment. For instance, its original task mapping presents a PU idleness of
only 5% on Xeon32. This helps to explain why no load balancer was able to significantly
improve performance on this machine. This is related to the large amount of tasks per PU
in this experiment. We have an average of 58 tasks per PU, and the difference between the
PUs with the greatest and the smallest number of tasks is only 3. Although this brings an
initial balanced state to the application, this incurs a higher processor overhead, as many
tasks have to be scheduled on each PU. We have a different situation on Opt48, with its
larger number of PUs. In this situation, NUCOLB is able to reduce the timestep duration
by 12%, resulting in a speedup of 1.12 over the baseline. Other load balancers show simi-
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Figure 6.5: Messages received per PU after load balancing with NUCOLB (remaining
40 timesteps).

lar performances as, in this case, migration costs are negligible and communication plays
a minor part in the overall performance.
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Figure 6.6: Total execution time of LeanMD with NUCOLB and other load balancers.

These experiments illustrated how NUCOLB is able to provide performance portabil-
ity to applications running on different multicore machines, as it reduced (or maintained)
the total execution time of applications in all tested scenarios. It was able to reduce PU
idleness down to 4%, and to improve the communication costs experienced by the appli-
cation with a 6% reduction on the average load of each core for kNeighbor. In addition, it
kept a small load balancing overhead with migrations limited to a maximum of 30% of all
application tasks on average. We evaluate how HWTOPOLB behaves in similar scenarios
in the next section.
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6.2.2 HWTOPOLB

This section provides a performance comparison between HWTOPOLB and GREEDY-
COMMLB, SCOTCHLB, and REFINECOMMLB. We present the results of experiments
with kNeighbor, stencil4D and LeanMD on machines Xeon24, Xeon32, Opt48, and
Opt32.

The total execution times of kNeighbor are presented in Figure 6.7. As previously
discussed, kNeighbor starts in a balanced state, as its tasks have regular loads and com-
munication. For instance, the difference in load between the slowest PU and the average is
less than 9% on Xeon32, and 18% on Xeon24. Nonetheless, HWTOPOLB was able to re-
duce the average timestep duration on Xeon24 by 220 ms, and by 160 ms on Opt48. Each
time HWTOPOLB is called during the execution of kNeighbor, it reduces the timestep
duration of the benchmark some more. For instance, timesteps take approximately 1.26 s
at the beginning of the execution of kNeighbor on Xeon24. After the first load balancing
call, HWTOPOLB reduces the timestep duration to 1.09 s on average. Subsequent calls
reduce it to 1.03 s, and 1.01 s. This results in a reduction of 10 seconds in the total exe-
cution time, or a speedup of 1.18 over the baseline. In this same scenario, HWTOPOLB
obtained a speedup of 1.13 over the second best load balancer, REFINECOMMLB. While
REFINECOMMLB keeps a similar number of tasks per PU, HWTOPOLB is able to mea-
sure the impact of the communication costs and overloads some PUs with 15% more tasks
than REFINECOMMLB. By using knowledge about the machine topology, HWTOPOLB
is able to reduce the communication costs felt by the application. This translates in an 11%
reduction on the average load of each PU, or 2.7 CPU seconds per timestep.
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Figure 6.7: Total execution time of kNeighbor with HWTOPOLB and other load bal-
ancers.

Figure 6.7 also shows that no significant performance improvements were achieved on
machines Xeon32 and Opt32. In this situation, GREEDYCOMMLB overloads some PUs
while trying to improve communication. However, this results in load imbalance. For
instance, GREEDYCOMMLB increases the average timestep duration on Xeon32 by 33%.
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In this same machine, SCOTCHLB is able to reduce the average timestep duration by
3%. Still, the overall performance of kNeighbor is decreased by the time spent remapping
tasks at every load balancing call. SCOTCHLB migrates an average of 386 tasks each
time it is called. This results in an overhead of 4 seconds in the total execution time of
the benchmark. In these same situations, HWTOPOLB provides a low load balancing
overhead of 45 ms per load balancing call, and is able to compensate them with a minor
performance improvement of 7.4 ms in timestep duration.

The total execution times obtained on the experiments with stencil4D are shown in
Figure 6.8. The benchmark starts in an imbalanced state due to its original mapping
that underloads some PUs, and tasks with different computational loads. We were not
able to achieve a 95% confidence interval for the results with GREEDYCOMMLB and
SCOTCHLB on Opt48, as the measured execution times show a large variance. The total
execution times for GREEDYCOMMLB varied between 74 and 233 seconds for GREEDY-
COMMLB, and between 71 and 350 seconds for SCOTCHLB. Still, the maximum execu-
tion time measured for HWTOPOLB is of only 52 seconds.
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Figure 6.8: Total execution time of stencil4D with HWTOPOLB and other load balancers.

HWTOPOLB achieved speedups of approximately 1.8 and 1.71 over the baseline on
Opt48 and Xeon32, respectively, and a speedup of 1.23 over the second best load balancer
on Opt48. In this same machine, it was able to reduce the average timestep duration of
stencil4D by 69%. On Xeon32, HWTOPOLB decreases the timestep duration by 57%.
After the first load balancing call, the average timestep duration goes from 2.4 s to 1.28 s
by correcting the initial load imbalance. An average of 50 tasks are migrated for that. Sub-
sequent load balancing calls refine the performance of stencil4D by reducing the timestep
duration to 1.03 s, and 0.94 s after the last call. The number of tasks migrated also de-
creases at each load balancing call, arriving to an average of 14 tasks being migrated in the
last one. These results illustrate how HWTOPOLB is able to correct unbalance and refine
the work distribution. By doing this, HWTOPOLB is able to provide average speedups
of 1.54 over the baseline and 1.40 over the other load balancing algorithms on the four
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parallel platforms considered in this experiment.
HWTOPOLB improves the memory locality of stencil4D by keeping communicating

tasks close together. For instance, it reduced the LLC misses on Opt32 by 7% when com-
pared to the baseline and REFINECOMMLB, and by 40% when compared to GREEDY-
COMMLB and SCOTCHLB, as can be seen in Table 6.8. These cache misses are also
related to the number of tasks migrated, as data movement incurs in a smaller cache
reuse. These two load balancers do not consider the current task mapping, which results
in severe migration overheads.

Table 6.8: Average number of LLC misses (in millions) for stencil4D with HWTOPOLB
and other load balancers on Opt32.

Load balancers LLC misses

Baseline 7, 201
HWTOPOLB 6, 673
GREEDYCOMMLB 10, 796
SCOTCHLB 10, 769
REFINECOMMLB 8, 374

The results obtained with load balancing on the molecular dynamics application
LeanMD are presented in Figure 6.9. For this experiment, the cell array dimensions X , Y ,
and Z were set to 6, 6, and 5, respectively, resulting in a total of 2700 tasks. It simulates
501 timesteps with load balancing calls after the 20th timestep, and at each 100 timesteps
thereafter, for a total of five load balancing calls. Tasks present a small memory foot-
print, and the cost to migrate them in a shared memory machine is negligible. Differently
from previous benchmarks, tasks communicate by multicast extensively. LeanMD starts
in a balanced state, where the difference between the average and the maximum PU loads
varies from 7.5% on Opt48 down to 5.5% on Xeon24. This helps explain why no load
balancer was able to achieve performance improvements over 5% in this experiment.

GREEDYCOMMLB was able to achieve the best timestep duration for LeanMD by
aggressively remapping tasks. The tasks’ small memory footprint helps this behavior
by providing a small migration overhead. However, the difference between the timestep
duration’s achieved by HWTOPOLB and GREEDYCOMMLB is less than 3% for all cases,
and the difference between total executions times is less than 2%, which is considered to
be inside the error margin.

HWTOPOLB’s knowledge about the machine topology enables the improvement of
LeanMD’s memory locality. It reduces LLC misses by 13% on average when compared
to the baseline on Xeon24, Opt48 and Opt32, and by 6% when compared to the other
load balancers in the same machines. HWTOPOLB also reduces the total PU overhead
by 5% on Xeon32 when compared to the baseline. PU overhead comprises all time spent
by CHARM++ on activities other than executing tasks, such as managing communication.

The results presented in this section show how HWTOPOLB is able to improve appli-
cation performance on different scenarios. When considering all benchmarks and parallel
platforms, HWTOPOLB showed performance improvements of 23% and 19% on average
when compared to the absence of a load balancer and to the other load balancing algo-
rithms, respectively. We compare HWTOPOLB’s performance to the one of NUCOLB
when load balancing Ondes3D in the next section.
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Figure 6.9: Total execution time of LeanMD with different load balancers.

6.2.3 NUCOLB and HWTOPOLB

This section provides a performance comparison between our centralized load balanc-
ing algorithms and GREEDYLB, REFINECOMMLB, and SCOTCHREFINELB on machine
Xeon32 using the seismic wave simulator Ondes3D. As mentioned in Section 6.1.2, On-

des3D was originally implemented using MPI, and was ported to Adaptive MPI (AMPI)
to benefit from CHARM++’s load balancing framework. As load balancing requires mul-
tiple tasks per PU to be effective, we overdecompose the application into 512 tasks (AMPI
processes), which represents 16 tasks per PU on this platform. We will refer to this version
as overdecomposed, or OD. This version does not employ any load balancing algorithm.
Meanwhile, our baseline refers to a version running one task per PU (32 tasks total) with-
out load balancing.

The overdecomposition of Ondes3D comes with an increase in the total load and
execution time of the application, as can be seen in Figure 6.10. It shows the average
timestep duration and the average PU load for the baseline and the OD versions of On-

des3D running for 580 timesteps. The horizontal axis represents the timesteps, while the
vertical axis represents time in seconds. Each point represents the average time or load for
20 timesteps. The timestep duration represents the most loaded PU at a timestep, while
the average PU load provides a lower bound for the timestep duration. It gives an idea
of what would be the optimal timestep duration in a balanced work distribution. As the
figure illustrates, the overdecomposed version increases the average load of Ondes3D by
13% and the timestep duration by 21%. The latter means that the OD version is more load
unbalanced.

Other phenomena can be noticed in Figure 6.10. For instance, the average load and
timestep duration of the first 20 timesteps are much larger for the OD version. This hap-
pens because the overdecomposition increases Ondes3D’s initialization time by 34 sec-
onds. Ondes3D’s load dynamicity can be seen between timesteps 120 and 420 where
increases on the average PU load and timestep duration happen. While the average PU
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Figure 6.10: Average timestep and average PU load for Ondes3D on Xeon32. Values
averaged at each 20 timesteps.

load achieves its maximum around timestep 200, the maximum timestep duration can be
seen around timestep 320 for the baseline and timestep 300 for the OD version. Still, both
stabilize after timestep 420.

The execution times measured for Ondes3D with different load balancers can be seen
in Table 6.9. The baseline takes approximately 30 minutes to simulate 600 timesteps,
while the overdecomposed version of Ondes3D increases the execution time by 17.5% to
35 minutes. Still, all load balancers were able to reduce the total execution time of the
application by at least 18% when compared to the baseline. NUCOLB achieved the best
performance in this scenario, with a total execution time of 24 minutes approximately,
which results in a speedup of 1.25 over the baseline.

Table 6.9: Total execution time in seconds of Ondes3D and speedups for NUCOLB,
HWTOPOLB and other load balancers.
Load balancers Execution time Speedup over baseline Speedup over OD

Baseline 1787 s — —
OD 2100 s — —

HWTOPOLB 1471 s 1.21 1.43
NUCOLB 1429 s 1.25 1.47
GREEDYLB 1517 s 1.18 1.38
REFINECOMMLB 1456 s 1.23 1.44
SCOTCHREFINELB 1494 s 1.20 1.40

The results presented in Table 6.9 are strongly related to the trade-offs of each of
the centralized algorithms. For instance, the three most aggressive algorithms consid-
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ered, GREEDYLB, SCOTCHREFINELB, and NUCOLB, achieve the best timestep dura-
tions as they migrate more tasks to quickly mitigate load imbalance. Their timesteps
are between one and two percent better than the ones achieved by REFINECOMMLB
and HWTOPOLB. However, the elevated number of task migrations of GREEDYLB and
SCOTCHREFINELB (496 and 117 on average, respectively) increases their migration
overhead, which results in a longer load balancing time. In this scenario, NUCOLB attains
the best equilibrium among the tested load balancers for Ondes3D.

Figure 6.11 shows a comparison between the timestep durations attained by
HWTOPOLB and NUCOLB to the ones of the baseline, and to the average PU loads
for the baseline and the overdecomposed version. Both load balancers are able to achieve
timestep durations close to the average PU load of OD during the most static phases of
the simulation. It is important to notice that this average PU load represents a limit to the
performance gains achievable while overdecomposing Ondes3D. During the most load
dynamic phase of the simulation (between timesteps 120 and 320), the timestep dura-
tions achieved by NUCOLB and HWTOPOLB are 10% to 15% longer, respectively. This
performance difference between NUCOLB and HWTOPOLB highlights how the greedy
approach of the former is able to handle load dynamicity.

 0

 1

 2

 3

 4

 5

 0  40  80  120  160  200  240  280  320  360  400  440  480  520  560  600

T
im

e
 (

s
e
c
o
n
d
s
)

Iteration

Ondes3D

Baseline - timestep
Baseline - average PU load

OD - average PU load

HwTopoLB - timestep
NucoLB - timestep

Figure 6.11: Average timestep duration for Ondes3D on Xeon32 with HWTOPOLB and
NUCOLB. Values averaged at each 20 timesteps.

All results presented so far demonstrate how the proposed centralized topology-aware
load balancing algorithms perform on multicore machines. In the next section, we show
how our load balancers and others perform on platforms composed of multiple compute
nodes.

6.3 Load balancing on clusters

The second part of our performance evaluation focuses on task mapping over parallel
platforms composed of multiple compute nodes. These experiments increase in scale
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when compared to the ones presented on Section 6.2 by including more PUs and a network
level on the machine topology. The two platforms used in this evaluation involve 20 Opt4
CNs, and up to 16 Opt32 CNs, for a total of 80 and 512 PUs, respectively. These larger
platforms are employed to assess the scalability of load balancing algorithms, which have
to handle more tasks and PUs.

All experiments presented in this section use the molecular dynamics application
LeanMD. This application was chosen due to its flexibility, as its parameters can be easily
varied, and scalability, as it has been show to run on tens of thousands of PUs (KALE
et al., 2012).

We organize this section in three parts. Firstly, we present the results obtained with
NUCOLB on 20xOpt4. This is followed by the results with HWTOPOLB on up to eight
Opt32 CNs. Lastly, we compare scalability of both algorithms to the one of HIERARCHI-
CALLB on up to 16 Opt32 CNs.

6.3.1 NUCOLB

We compare the performance achieved by NUCOLB when load balancing LeanMD

to the ones of GREEDYCOMMLB, SCOTCHLB, and TREEMATCHLB in Figure 6.12.
These results were obtained on 20xOpt4, a cluster composed of 20 compute nodes in-
terconnected through Gigabit Ethernet. This experiment with LeanMD involves the same
parameters previously presented in Section 6.2.1, which comprises 1875 tasks running for
300 timesteps, with a load balancing call at each 60 timesteps. This results on an average
of 23 tasks per PU in this platform, which is much less than what was seen on machines
Xeon32 and Opt48.
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Figure 6.12: Total execution time of LeanMD on 20xOpt4.

As illustrated in Figure 6.12, NUCOLB is the load balancer that improves the per-
formance of LeanMD the most. It is able to obtain speedups of 1.19 over the baseline
and 1.18 over GREEDYCOMMLB, the load balancer with the second best performance.
NUCOLB’s topology-aware algorithm is able to balance the load over the available PUs
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while reducing the communication costs. The timestep duration is reduced by 21% —
from 115 ms to 91 ms, as can be seen in Table 6.10. This table presents the average
timestep duration and load balancing time for the different load balancers. The load bal-
ancing time includes the time spent executing the load balancing algorithm and migrating
tasks.

Table 6.10: Average timestep duration and load balancing time (ms) for LeanMD with
NUCOLB and other load balancers on 20xOpt4.

Load balancers Average timestep duration Load balancing time

Baseline 114.94 ms 0.00 ms
NUCOLB 90.64 ms 104.45 ms
GREEDYCOMMLB 111.94 ms 96.05 ms
SCOTCHLB 123.76 ms 144.08 ms
TREEMATCHLB 116.50 ms 355.64 ms

The load balancing decisions of NUCOLB are able to achieve a PU usage of 93% in
this configuration, implying an average PU idleness of 7%. The algorithm chooses to keep
up to 30% more tasks than the average on some PUs. This leads to a better performance
than spreading these tasks, as spreading incurs increased communication among NUMA
nodes and compute nodes. However, this is only helpful when considering the whole ma-
chine hierarchy. For instance, other load balancing algorithms that do not consider the
communication costs (as measured by NUCOLB) end up increasing the processor over-
head by 50%. This overhead is related to the time spent by the runtime system managing
network communication.

NUCOLB migrates approximately 300 tasks when it is first called by the application.
These migrations quickly converge to a more balanced state. Subsequent calls result in
the migration of 100 tasks. On this machine, the application’s performance does not
improve much after the second or third load balancing call. Nevertheless, NUCOLB’s
total load balancing time is equivalent to one timestep of LeanMD, as can be seen in
Table 6.10. With a load balancing call after every 60 timesteps, NUCOLB’s overhead is
easily compensated by the performance improvements that it brings.

6.3.2 HWTOPOLB

This section presents a weak scalability evaluation of HWTOPOLB, GREEDY-
COMMLB, SCOTCHLB, and REFINECOMMLB with LeanMD over 2, 4, 6, and 8 Opt32
compute nodes. The application parameters were set to vary the number of tasks accord-
ing to the number of compute nodes. The cell array dimensions Y and Z were set to 10
and 5, respectively, while dimension X is equal to 5N/2, where N is the number of com-
pute nodes used in the experiment. The number of tasks goes from 3750 for 2 compute
nodes to 15000 with 8 compute nodes. All configurations execute 301 timesteps, and in-
clude a load balancer call after the 20th timestep, and at each 100 timesteps thereafter, for
a total of three load balancing calls.

The total execution times achieved with load balancing are shown in Figure 6.13.
HWTOPOLB is the only algorithm able to achieve performance improvements on all sit-
uations. These improvements range from a speedup of 1.26 over the baseline with 2 com-
pute nodes (64 PUs), to a speedup of 1.05 with 8 compute nodes (256 PUs).



97

 0

 200

 400

 600

 800

 1000

 1200

 1400

2 4 6 8

T
o

ta
l 
e

x
e

c
u
ti
o

n
 t
im

e
 (

s
)

Number of compute nodes

LeanMD

Baseline
HwTopoLB

GreedyCommLB
ScotchLB

RefineCommLB

Figure 6.13: Total execution time of LeanMD with HWTOPOLB and other load balancers
on a varying number of Opt32 compute nodes. The problem size is increased with the
number of compute nodes.

LeanMD starts in an unbalanced state in these experiments, where the slowest PU is
twice as loaded as the average. Additionally, LeanMD does not fully exploit the machine
topology initially, as no two tasks in the same PU exchange messages in these config-
urations. As in the situation with stencil4D presented in Section 6.2.2, HWTOPOLB is
able to quickly correct imbalance and improve over its previous mapping decisions. For
instance, it decreases the average timestep duration on 2 compute nodes from 447 ms to
323 ms, a reduction of 38%. The average timestep duration’s achieved by the different
load balancers and their improvements over the baseline are listed in Table 6.11. Val-
ues inside parentheses mean a percentual increase in timestep duration (and a decrease in
performance). HWTOPOLB’s timestep duration improvements range from 13% to 38%.
Meanwhile, GREEDYCOMMLB and SCOTCHLB degrade performance by up to 352%.
This comes from the lack of knowledge of the machine topology, as they do not profit
from the different levels of cache and shared memory inside each compute node. Both
algorithms focus on increasing locality only at a PU level by mapping communicating
tasks to the same PU. Although they increase the number of messages exchanged among
tasks in the same PU, they also increase the number of messages exchanged through the
network by 38% on 2 compute nodes, and up to 80% on 8 compute nodes.

When comparing the timestep durations in Table 6.11 and the total execution times
presented in Figure 6.13, it can be noticed that there is a large gap between the per-
formance improvements achieved in the first and in the second. For instance, RE-
FINECOMMLB always improves the average timestep duration, but only improves the
total execution time when running on 2 compute nodes. This difference can be explained
by two sources of overhead, namely the setup time and the load balancing time.

The setup time of LeanMD includes the creation of all tasks, their distribution over
different PUs, and the setup of initial simulation parameters. It increases with the size
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Table 6.11: Average timestep duration of LeanMD with HWTOPOLB and other load
balancing algorithms on a varying number of Opt32 compute nodes.

#CNs Base HWTOPOLB GREEDYCOMMLB SCOTCHLB REFINECOMMLB

2 447 ms 323 ms 497 ms 429 ms 314 ms
(% vs. Base) - 38% (11%) 4% 42%

4 452 ms 385 ms 633 ms 942 ms 396 ms
(% vs. Base) - 17% (40%) (108%) 14%

6 459 ms 398 ms 1174 ms 1576 ms 401 ms
(% vs. Base) - 15% (155%) (243%) 14%

8 472 ms 416 ms 1518 ms 2133 ms 431 ms
(% vs. Base) - 13% (222%) (352%) 9%

of problem and the parallel machine. Although the setup time is negligible in a smaller
scale, this is not the case here. The setup times measured for LeanMD are 30 s, 66 s, 87 s,
and 84 s for an increasing number of compute nodes. When subtracted from the total
execution time, the total performance improvements of HWTOPOLB resemble the ones
seen for the average timestep duration, with a maximum difference of 5%.

The second source of overhead discussed is load balancing time. It comprises the
time load balancing algorithms spend computing a new task mapping. It does not include
the overhead of applying a new task mapping, such as the migration time. The average
load balancing times for the evaluated algorithms are shown in Table 6.12. HWTOPOLB
presents the smallest overhead, spending less than 1 second to compute its decisions at
each load balancing call. GREEDYCOMMLB and SCOTCHLB have similar load balanc-
ing times. However, REFINECOMMLB takes much longer to compute a new mapping,
which compromises the scalability and performance portability achieved by the algorithm.
For instance, the time spent by REFINECOMMLB on the three load balancing calls over
the execution of LeanMD on 8 compute nodes is responsible for half of the total execu-
tion time of the application. This explains why the average timestep duration reductions
obtained by REFINECOMMLB do not result in performance improvements at this scale.

Table 6.12: Average load balancing time of HWTOPOLB and other load balancing algo-
rithms for LeanMD on a varying number of Opt32 compute nodes.

#CNs HWTOPOLB GREEDYCOMMLB SCOTCHLB REFINECOMMLB

2 0.04 s 0.13 s 0.14 s 2.05 s
4 0.82 s 1.34 s 1.10 s 39.68 s
6 0.54 s 0.73 s 0.64 s 32.93 s
8 0.99 s 1.28 s 1.00 s 76.24 s

These results illustrate how increases in the size of the parallel platform and appli-
cation impact the performance of centralized load balancing algorithms. Even though
HWTOPOLB improves the performance of LeanMD on all evaluated scenarios, these
gains get smaller as the platform and application increase. This serves as a motivation
for the experiments with HIERARCHICALLB presented in the next section.
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6.3.3 HIERARCHICALLB

This section presents a comparison between our proposed hierarchical load balancing
algorithm HIERARCHICALLB, our centralized algorithms NUCOLB and HWTOPOLB,
and another hierarchical algorithm named HYBRIDLB. Other centralized algorithms were
not considered in these experiments due to the poor performance they previously showed
in Section 6.3.2.

As previously discussed in Section 4.2.1, the operation of HIERARCHICALLB is or-
ganized as a tree involving centralized load balancers in two levels. HWTOPOLB is em-
ployed to map tasks to CNs at the root level, while both HWTOPOLB and NUCOLB can
be used at the leaf level to map tasks to PUs inside each CN. We present results using
both versions of the load balancer.

The experimental evaluation of HIERARCHICALLB is split into two parts. The first
one focuses on the weak scalability of the algorithms, while the second one tests their
strong scalability. The difference between them is that weak scalability experiments in-
crease the size of the problem (in our case, application tasks) when increasing the re-
sources used (number of PUs or CNs), while the strong scalability ones keep the same
problem size. Both weak and strong scalability experiments involve running LeanMD on
2, 4, 6, 8, 10, 12, 14, and 16 Opt32 compute nodes.

The weak scalability experiments were set to execute LeanMD for 501 timesteps, and
include a load balancer call after the 40th timestep, and at each 100 timesteps thereafter
(timesteps 140, 240, 340, and 440). The cell array dimensions Y and Z were set to 11
and 5, respectively, while dimension X is equal to 2N , where N is the number of compute
nodes used. The number of tasks varies from 6600 for 2 CNs to 52800 with 16 CNs. In
this scenario, the total execution times achieved by the different proposed load balancers
are presented in Figure 6.14. Results for NUCOLB are presented only for up to 6 CNs
due to its increase in execution time.
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Figure 6.14: Total execution time of LeanMD with different load balancers on up to 16
Opt32 CNs. The problem size is increased with the number of compute nodes.
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HWTOPOLB achieves the best performance improvement on 2 CNs, with a speedup
of 1.54 over the baseline, and a total execution time 8% smaller than the second best
load balancer in this scenario, HIERARCHICALLB with HWTOPOLB. Nevertheless,
the latter presents the best total execution time for all other configurations tested, with
speedups over the baseline varying from 1.51 on 4 CNs to 1.40 on 16 CNs. Meanwhile,
HWTOPOLB speedups decrease from 1.48 to 1.04 on the same numbers of compute
nodes. This performance difference comes from the time spent load balancing by the two
algorithms. The hierarchical approach of HIERARCHICALLB with HWTOPOLB takes an
average of 20 s on each load balancing call on 16 CNs, while using only HWTOPOLB
in a centralized fashion takes 55 s on average. This overhead is so noticeable that even
HIERARCHICALLB with NUCOLB was able to outperform HWTOPOLB on 16 CNs.

NUCOLB showed the worst scalability among the proposed algorithms. Although it
achieves better timestep durations than HIERARCHICALLB when running LeanMD over
2 CNs, its load balancing time surpasses its benefits. Its average load balancing starts at
9 s for 2 CNs, increasing to 40 s on 4 CNs, and 126 s on 6 CNs. In this last scenario,
the total load balancing time surpasses the total execution time of the baseline. Mean-
while, a better scalability is sustained when using NUCOLB as a leaf load balancer for
HIERARCHICALLB. Both load balancers present performances on the strong scalability
experiments that are similar to these results.

The strong scalability experiments use the same configuration than the weak scalabil-
ity ones, with the exception of the number of tasks. LeanMD was set to execute 46080
tasks coming from a cell array with dimensions 24 × 16 × 8. The total execution times
achieved by the different proposed load balancers and the hierarchical load balancer HY-
BRIDLB are presented in Figure 6.15. Again, results for NUCOLB are presented only for
up to 6 CNs due to its increase in execution time. Experiments on 2 and 4 CNs were run
more than 10 times, but less than the minimum of 20 runs achieved in all other experi-
ments and configurations. This choice was made due to their long execution times. Still,
these results present the same statistical confidence as the other ones.

As shown in Figure 6.15, HYBRIDLB does not improve LeanMD’s performance in
any of the evaluated configurations. Even though its hierarchical organization reduces
its load balancing overhead, the use of GREEDYLB as a leaf load balancer proved to be
a problem, as its decisions result in too many migrations (just like GREEDYCOMMLB
in previous results), which overcome the benefits of the timestep reductions achieved
by the algorithm. Meanwhile, NUCOLB, and HIERARCHICALLB using NUCOLB as a
leaf load balancer are the algorithms that present the best performances for LeanMD on 2
CNs, with speedups of 1.44 and 1.47 over the baseline, respectively. Still, NUCOLB is not
able to keep that performance when we increase the size of the parallel platform. When
considering 6 CNs and beyond, HIERARCHICALLB with HWTOPOLB shows the best
performance among all examined load balancers. This is clearly illustrated in Figure 6.16,
where the speedup over the baseline running on 2 CNs is shown for the different load
balancing algorithms and the baseline.

As Figure 6.16 exposes, when HWTOPOLB is used as a leaf load balancer for HIER-
ARCHICALLB, a speedup of 9.4 is achieved on 16 CNs when compared to the baseline
on 2 CNs. This performance gain, which is greater than the 8 times increase in resources,
is only possible because the baseline is unbalanced. When comparing the performance of
the load balancer on 16 CNs to its own on 2 CNs, the speedup is reduced to 7.

Figure 6.16 also shows that the total execution times achieved by HWTOPOLB and
HIERARCHICALLB with NUCOLB are very similar between 6 and 14 CNs. There are
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two reasons behind that. The first one is that their load balancing times are similar in
several cases, as the time it takes to run HWTOPOLB in a centralized way is comparable
to running NUCOLB on a CN plus the overheads of the hierarchical decisions. The second
reason is that by using NUCOLB, HIERARCHICALLB is able to correct load imbalance
more quickly. Still, the timestep duration achieved by the hierarchical algorithm is not as
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good as the one achieved by the centralized algorithm. Nonetheless, HWTOPOLB takes
more load balancing calls to achieve such timestep duration.

The results of both weak and strong scaling experiments show how our hierarchical
load balancing algorithm is able to outperform centralized algorithms on larger scale par-
allel platforms. By using HWTOPOLB as a leaf load balancer for HIERARCHICALLB,
we were able to achieve an average speedup of 1.22 over our best centralized algorithm
when running LeanMD on 10 or more CNs. We discuss more of the benefits of our
topology-aware load balancers in the next section.

6.4 Conclusion

In this chapter, we presented an evaluation of our topology-aware load balancing algo-
rithms NUCOLB, HWTOPOLB, and HIERARCHICALLB. We assessed their performance
with three benchmarks and two applications with varied characteristics, including load
imbalance due to load irregularity and dynamicity, costly communications, different load
balancing frequencies, and tasks in different numbers and sizes. Application were run in
five parallel platforms with different machine topologies, which involved different num-
bers of processing units and NUMA nodes. The performance of the proposed algorithms
were compared to other seven load balancers implemented with CHARM++, and to a
baseline using no load balancer. In this context, our topology-aware load balancers were
able to outperform other algorithms in most of the evaluated scenarios.

NUCOLB’s greedy approach proved to be able to quickly mitigate load imbalance
coming even from load dynamicity. It was able to reduce the PU idleness of some plat-
forms down to 4%, and to improve the communication costs experienced by the applica-
tion with a 6% reduction on the average load of the communication-intensive benchmark
kNeighbor. NUCOLB presented a small load balancing overhead in the smaller platforms,
with load balancing times similar to other centralized algorithms, but with a maximum
number of task migrations limited to 30% of all tasks on average. Still, its load balancing
time showed to a be a problem when working with larger scale platforms.

HWTOPOLB presented a better scalability than NUCOLB due to its lighter refinement
algorithm and smaller number of task migrations. Although beneficial for scalability, the
slower convergence of HWTOPOLB’s algorithm makes it less appropriate to handle load
dynamicity. HWTOPOLB showed an average performance improvement of 20% when
compared to the absence of a load balancer, and of 10% when compared to other central-
ized algorithms without considering the weak scalability experiments of Section 6.3.2,
which would increase this value to 40% due to other load balancers having total execution
times larger than the baseline.

Our hierarchical load balancer HIERARCHICALLB showed the best scalability among
the evaluated algorithms. It presented an average speedup over the baseline of 1.45
and 1.28 when using HWTOPOLB and NUCOLB as leaf load balancers, respectively.
The former achieved performance improvements of 13% on average over HWTOPOLB
when considering all tested scenarios, and improvements of 22% on average when con-
sidering ten or more compute nodes only. These improvements were achievable by HIER-
ARCHICALLB thanks to its hierarchical design, which enables a smaller load balancing
overhead.

In general, performance portability was achieved by our proposed load balancing al-
gorithms in different levels, as they were able to reduce the PU idleness and the total
execution times of the applications. For this reduction to happen, they had to handle both
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load imbalance and costly communications, while maintaining a small load balancing
overhead. Even though the latter proved to be a problem to centralized algorithms when
scaling the platform and application, we are able to handle these scenarios by proposing
hierarchical algorithms. We discuss the contributions of this thesis in more details in the
next chapter.
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7 CONCLUSION AND PERSPECTIVES

Modern science requires the use of simulations to better understand and predict com-
plex phenomena. As these scientific applications increase their level of detail, so do
increase their demands for computing power, and memory and network resources. These
parallel applications are decomposed into tasks that can present complex, many times
unpredictable, behaviors. Tasks with irregular or input-dependent loads, and dynamic
communication patterns are examples of this. If the affinity between tasks and their load
differences are not managed by some mechanism, then application performance will suf-
fer.

Besides the performance obstacles imposed by the behavior of such applications, the
HPC platforms where they run bring their own challenges. These parallel platforms com-
posed of multicore compute nodes have hierarchical machine topologies that can present
asymmetric and nonuniform communication costs. If ignored, these characteristics can
damage the communication performance of an application due to costly communications
over the memory and network topologies.

In this context, the employment of a task mapping algorithm becomes crucial to
achieve scalable performances with applications over different parallel platforms. Such
algorithms have to manage the distribution of tasks to mitigate the effects of load imbal-
ance and costly communications, while introducing a low overhead to the total execution
time of the application. Considering this, the main objective of this thesis was to provide
performance portability and scalability to complex scientific applications running over
hierarchical multicore parallel platforms.

The contributions of this thesis were centered on the hypothesis that precise machine
topology information can help task mapping algorithms in their decisions. In this sense,
our research was focused on organizing a detailed machine topology model of hierarchical
platforms, and developing topology-aware load balancing algorithms that make use of it.

7.1 Contributions

In order to capture relevant information of parallel platforms composed of multicore
compute nodes, we proposed a generic and unified machine topology model in Chapter 3,
and implemented it as the HIESCHELLA library. Our model is able to expose asymmetry
and nonuniformity at different topology levels, and represents communication costs as
latencies and bandwidths. All communication costs are obtained by profiling both the
memory and network hierarchy of the platform. Our approach is kept generic by using
tools and benchmarks independent of application and system architecture, and can be
used by multiple algorithms.

Based on our machine topology model, we proposed three different topology-
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aware load balancing algorithms on Chapter 4, named NUCOLB (PILLA et al., 2012),
HWTOPOLB (PILLA et al., 2012, 2014), and HIERARCHICALLB. They combine our
topology model with application information gathered during execution time. NUCOLB
is a refinement-based, greedy, list scheduling algorithm that focuses on the nonuniform
aspects of parallel platforms. It employs an aggressive strategy to fix imbalance, which
is effective for applications with dynamic behaviors, but can result in a larger load bal-
ancing overhead. Meanwhile, HWTOPOLB considers the whole machine topology in its
decisions, and prioritizes moving tasks away from the most loaded processing unit in or-
der to minimize the makespan. It resorts to a lighter strategy than can lead to a slower
convergence to a task mapping with a low PU idleness, but is proved to asymptotically
converge to an optimal solution. These two centralized load balancing algorithms have
a complete view of the application and platform, which allows them to make better task
mapping decisions at the cost of a longer execution time on larger platforms. On the other
hand, our hierarchical algorithm HIERARCHICALLB is organized as a tree, splitting and
parallelizing parts of the scheduling decisions. This was done to reduce its load balanc-
ing overhead. It benefits from our machine topology model in two moments by splitting
the scheduling tree based on it, and by being able to use our centralized topology-aware
algorithms for load balancing. Our three load balancing algorithms were implemented
at runtime level using the CHARM++ runtime system, which kept them unattached to a
specific application or architecture.

We evaluated our proposed topology-aware load balancing algorithms over five dif-
ferent multicore parallel platforms with three benchmarks and two applications, and com-
pared their performances to other seven load balancers implemented with CHARM++ on
Chapter 6. Experimental results with NUCOLB showed performance improvements of
up to 19% over state of the art load balancers on different platforms composed of NUMA
compute nodes. This performance was obtained while migrating a maximum of 30% of
available tasks on average, which results in a migration overhead up to 11 times smaller
than other load balancers. NUCOLB was able to reduce PU idleness down to 4%, and
to reduce the communication costs experienced by an application (a 6% reduction on the
average load of each PU for kNeighbor). Nevertheless, its load balancing time showed
to a be a problem when working with larger scale platforms. Meanwhile, HWTOPOLB
showed that our load balancing approach improves application performance by 20% on
average when compared with the absence of a load balancer. Finally, our scalability ex-
periments on a parallel system composed of multiple compute nodes demonstrated that
HIERARCHICALLB is able to surpass other algorithms in scalability while improving
application performance. Thanks to its hierarchical design, it showed performance im-
provements of 13% on average over HWTOPOLB when considering all tested scenarios,
and improvements of 22% on average when considering ten or more compute nodes. In
general, our topology-aware load balancers outperformed other algorithms in most of the
evaluated scenarios.

The results presented in this thesis enforced that precise machine topology informa-
tion helps task mapping algorithms to provide performance portability and scalability to
complex scientific applications running over hierarchical multicore parallel platforms, as
our topology-aware load balancers were able to reduce PU idleness and the total execution
time of applications.
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7.2 Perspectives

The research presented in this thesis can be extended in several ways, some of which
are listed below.

• Algorithms’ development and spread of topology-awareness: As parallel plat-
forms grow in size, complexity, and heterogeneity, the impact that knowing the ma-
chine topology will have on performance will tend to grow too. Since our machine
topology model is made available through an application and platform-independent
library, we believe that it could be employed to provide detailed communication
cost information to task mapping algorithms on current and future platforms. This
would lead to the research and development of new work stealing algorithms, op-
erating system scheduling algorithms, algorithms specific to legacy scientific appli-
cations, distributed load balancers, and more.

• Automate the selection of scheduling algorithms based on application and ma-

chine information: The results from our experimental evaluations with load bal-
ancing reinforce that different heuristics are better suited to different scenarios. In
this sense, a research challenge lies on finding the most effective algorithm to bal-
ance the load of an application given its characteristics and current behavior. As
this can be difficult for a user to decide beforehand, we believe that an automatic
mechanism to select scheduling algorithms would both ease the burdens of users
and developers of complex applications, and benefit from available scheduling al-
gorithms. One alternative would be to use machine learning techniques to automat-
ically select the best load balancing algorithm given an application and a parallel
platform (whose detailed information could be obtained from our machine topology
model).

• Extend algorithms to focus on energy and other metrics: The main objective of
the load balancing algorithms proposed in this thesis was to reduce the total execu-
tion time of an application, or reduce PU idleness. Although an important objective,
we see that current and future platforms shall struggle with energy and power con-
strains, such as is documented for Exascale platforms (KOGGE et al., 2008), or
embedded parallel processors. In this sense, we believe that a research perspec-
tive lies on the development of new algorithms and the extension of our scheduling
algorithms to consider energy and power constrains, or focus on reducing the to-
tal energy or power consumption of parallel applications running on hierarchical
platforms.



108



109

REFERENCES

ALÓS-FERRER, C.; NETZER, N. The logit-response dynamics. Games and Economic

Behavior, [S.l.], v.68, n.2, p.413–427, 2010.

An Introduction to the Intel QuickPath Interconnect. [S.l.]: Intel Corporation, 2009.

AOCHI, H. et al. Finite Difference Simulations of Seismic Wave Propagation for the
2007 Mw 6.6 Niigata-ken Chuetsu-Oki Earthquake: validity of models and reliable input
ground motion in the near-field. Pure and Applied Geophysics, [S.l.], v.170, n.1-2, p.43–
64, 2013.

BHATELE, A. et al. NAMD: a portable and highly scalable program for biomolecular

simulations. [S.l.]: Department of Computer Science, University of Illinois at Urbana-
Champaign, 2009. (UIUCDCS-R-2009-3034).

BHATELE, A.; KALE, L. V.; KUMAR, S. Dynamic topology aware load balancing algo-
rithms for molecular dynamics applications. In: CONFERENCE ON SUPERCOMPUT-
ING (ICS 2009), 23., New York, NY, USA. Proceedings. . . ACM, 2009. p.110–116.

BLACKJACK. Compiler Metrics and Evaluation. http://icl.cs.utk.edu/
blackjack/.

BLUMOFE, R. D.; LEISERSON, C. E. Scheduling multithreaded computations by work
stealing. J. ACM, New York, NY, USA, v.46, n.5, p.720–748, Sept. 1999.

BOLZE, R. et al. Grid’5000: a large scale and highly reconfigurable experimental grid
testbed. International Journal of High Performance Computing Applications, [S.l.],
v.20, n.4, p.481–494, 2006.

BOMAN, E. et al. Zoltan home page. http://www.cs.sandia.gov/Zoltan.

BRAMS. Brazilian developments on the Regional Atmospheric Modelling System.
http://brams.cptec.inpe.br/.

BREMAUD, P. Markov chains: gibbs fields, monte carlo simulation, and queues.
[S.l.]: Springer, 1999. v.31.

BROQUEDIS, F. et al. hwloc: a generic framework for managing hardware affinities
in hpc applications. In: PARALLEL, DISTRIBUTED AND NETWORK-BASED PRO-
CESSING (PDP), 2010 18TH EUROMICRO INTERNATIONAL CONFERENCE ON.
Proceedings. . . [S.l.: s.n.], 2010. p.180–186.



110

BROQUEDIS, F. et al. Structuring the execution of OpenMP applications for multicore
architectures. In: IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DIS-
TRIBUTED PROCESSING (IPDPS 2010). Proceedings. . . IEEE Computer Society,
2010. p.1–10.

CASAVANT, T. L.; KUHL, J. G. A taxonomy of scheduling in general-purpose dis-
tributed computing systems. IEEE Trans. Softw. Eng., Piscataway, NJ, USA, v.14,
p.141–154, Feb. 1988.

CASTRO, M. Improving the Performance of Transactional Memory Applications on

Multicores: a machine learning-based approach. 2012. 208p. Ph.D. Thesis — Univer-
sité de Grenoble, Grenoble.

CATALYUREK, U. V. et al. Hypergraph-based Dynamic Load Balancing for Adaptive
Scientific Computations. In: PARALLEL AND DISTRIBUTED PROCESSING SYM-
POSIUM, 2007. IPDPS 2007. IEEE INTERNATIONAL. Proceedings. . . [S.l.: s.n.],
2007. p.1–11.

CHARM++. Parallel Programming Laboratory. http://charm.cs.illinois.
edu/.

CHEN, H. et al. MPIPP: an automatic profile-guided parallel process placement toolset
for smp clusters and multiclusters. In: SUPERCOMPUTING, 20., New York, NY, USA.
Proceedings. . . ACM, 2006. p.353–360. (ICS ’06).

CONCEPTUAL. A Network Correctness and Performance Testing Language. http:
//www.ccs3.lanl.gov/~pakin/software/conceptual/.

CRUZ, E. H. M.; DIENER, M.; NAVAUX. Using the Translation Lookaside Buffer
to Map Threads in Parallel Applications Based on Shared Memory. In: PARALLEL
DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2012 IEEE 26TH INTERNA-
TIONAL. Proceedings. . . [S.l.: s.n.], 2012. p.532–543.

CULLER, D. et al. LogP: towards a realistic model of parallel computation. SIGPLAN

Not., New York, NY, USA, v.28, n.7, p.1–12, July 1993.

DAGUM, L.; MENON, R. OpenMP: an industry standard api for shared-memory pro-
gramming. Computational Science & Engineering, IEEE, [S.l.], v.5, n.1, p.46–55,
2002.

DANALIS, A. et al. BlackjackBench: portable hardware characterization with automated
results analysis. To be published in The Computer Journal, [S.l.], p.1–13, 2012.

DEVINE, K. et al. Zoltan Data Management Services for Parallel Dynamic Applications.
Computing in Science and Engineering, [S.l.], v.4, n.2, p.90–97, 2002.

DIENER, M.; CRUZ, E. H. M.; NAVAUX. Communication-Based Mapping Using
Shared Pages. In: IEEE INTERNATIONAL PARALLEL DISTRIBUTED PROCESS-
ING SYMPOSIUM (IPDPS). Proceedings. . . [S.l.: s.n.], 2013.

DINAN, J. et al. Scalable work stealing. In: CONFERENCE ON HIGH PERFOR-
MANCE COMPUTING NETWORKING, STORAGE AND ANALYSIS, New York, NY,
USA. Proceedings. . . ACM, 2009. (SC ’09).



111

DONGARRA, J.; MEUER, H.; STROHMAIER, E. TOP500 Supercomputer Sites:

november 2013. 2013.

DUPROS, F. et al. Exploiting Intensive Multithreading for the Efficient Simulation of 3D
Seismic Wave Propagation. In: COMPUTATIONAL SCIENCE AND ENGINEERING,
2008. CSE ’08. 11TH IEEE INTERNATIONAL CONFERENCE ON. Proceedings. . .

[S.l.: s.n.], 2008. p.253–260.

DUPROS, F. et al. High-performance finite-element simulations of seismic wave propa-
gation in three-dimensional nonlinear inelastic geological media. Parallel Comput., Am-
sterdam, The Netherlands, The Netherlands, v.36, n.5-6, p.308–325, June 2010.

FRANCESQUINI, E.; GOLDMAN, A.; MEHAUT, J.-F. A NUMA-Aware Runtime En-
vironment for the Actor Model. In: PROCEEDINGS OF THE 42ND INTERNATIONAL
CONFERENCE ON PARALLEL PROCESSING, ICPP 2013, Lyon, France. Proceed-

ings. . . [S.l.: s.n.], 2013. p.250–259.

FRASCA, M.; MADDURI, K.; RAGHAVAN, P. NUMA-aware graph mining techniques
for performance and energy efficiency. In: INTERNATIONAL CONFERENCE ON
HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALY-
SIS, Los Alamitos, CA, USA. Proceedings. . . IEEE Computer Society Press, 2012. (SC
’12).

FRIGO, M.; LEISERSON, C. E.; RANDALL, K. H. The implementation of the Cilk-5
multithreaded language. SIGPLAN Not., New York, NY, USA, v.33, n.5, p.212–223,
May 1998.

GAUTIER, T.; BESSERON, X.; PIGEON, L. Kaapi: a thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: PARALLEL SYMBOLIC
COMPUTATION, 2007. Proceedings. . . ACM, 2007. p.23.

GONZALEZ-DOMINGUEZ, J. et al. Servet: a benchmark suite for autotuning on multi-
core clusters. In: PARALLEL DISTRIBUTED PROCESSING (IPDPS), 2010 IEEE IN-
TERNATIONAL SYMPOSIUM ON. Proceedings. . . [S.l.: s.n.], 2010. p.1–9.

GONZALEZ, T.; IBARRA, O. H.; SAHNI, S. Bounds for LPT schedules on uniform
processors. SIAM Journal on Computing, [S.l.], v.6, n.1, p.155–166, 1977.

GROPP, W.; LUSK, E.; SKJELLUM, A. Using MPI: portable parallel programming with
the message-passing interface. MIT Press Cambridge, MA, USA, [S.l.], p.371, 1999.

HERMANN, E. et al. Multi-GPU and multi-CPU parallelization for interactive physics
simulations. In: EURO-PAR CONFERENCE ON PARALLEL PROCESSING: PART
II, 16., Berlin, Heidelberg. Proceedings. . . Springer-Verlag, 2010. p.235–246. (Euro-
Par’10).

HIESCHELLA. Hierarchical Scheduling for Large Scale Architectures. http://
forge.imag.fr/projects/hieschella/.

HOEFLER, T. et al. Netgauge: a network performance measurement framework. In:
HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, HPCC’07. Pro-

ceedings. . . Springer, 2007. v.4782, p.659–671.



112

HOEFLER, T.; SCHNEIDER, T. Runtime detection and optimization of collective com-
munication patterns. In: PARALLEL ARCHITECTURES AND COMPILATION TECH-
NIQUES, 21., New York, NY, USA. Proceedings. . . ACM, 2012. p.263–272. (PACT
’12).

HOEFLER, T.; SNIR, M. Generic topology mapping strategies for large-scale parallel
architectures. In: SUPERCOMPUTING, New York, NY, USA. Proceedings. . . ACM,
2011. (ICS ’11).

HOFMEYR, S. et al. Juggle: proactive load balancing on multicore computers. In: HIGH
PERFORMANCE DISTRIBUTED COMPUTING, 20., New York, NY, USA. Proceed-

ings. . . ACM, 2011. p.3–14. (HPDC ’11).

HUANG, C.; LAWLOR, O.; KALE, L. V. Adaptive mpi. Lecture notes in computer

science, [S.l.], 2004.

HWLOC. Portable Hardware Locality. http://www.open-mpi.org/

projects/hwloc/.

JEANNOT, E.; MERCIER, G. Near-Optimal Placement of MPI Processes on Hierarchical
NUMA Architectures. In: D’AMBRA, P.; GUARRACINO, M.; TALIA, D. (Ed.). Euro-

Par 2010 - Parallel Processing. [S.l.]: Springer Berlin / Heidelberg, 2010. p.199–210.
(Lecture Notes in Computer Science, v.6272).

KALE, L. et al. Migratable Objects + Active Messages + Adaptive Runtime = Produc-

tivity + Performance A Submission to 2012 HPC Class II Challenge. [S.l.]: Parallel
Programming Laboratory, 2012. (12-47).

KALE, L. V.; KRISHNAN, S. Charm++: a portable concurrent object oriented system
based on c++. In: EIGHTH ANNUAL CONFERENCE ON OBJECT-ORIENTED PRO-
GRAMMING SYSTEMS, LANGUAGES, AND APPLICATIONS (OOPSLA 1993).
Proceedings. . . [S.l.: s.n.], 1993. p.91–108.

KALE, L. V.; SINHA, A. Projections: a preliminary performance tool for charm. In:
PARALLEL SYSTEMS FAIR, INTERNATIONAL PARALLEL PROCESSING SYM-
POSIUM, Newport Beach, CA. Proceedings. . . [S.l.: s.n.], 1993. p.108–114.

KARYPIS, G.; KUMAR, V. METIS: unstructured graph partitioning and sparse matrix
ordering system. The University of Minnesota, [S.l.], v.2, 1995.

KIM, C.; BURGER, D.; KECKLER, S. W. An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches. SIGOPS Oper. Syst. Rev., New York, NY, USA,
v.36, n.5, p.211–222, Oct. 2002.

KOGGE, P. et al. Exascale computing study: technology challenges in achieving exascale
systems. DARPA Information Processing Techniques Office, Washington, DC, [S.l.],
p.278, 2008.

KOMATITSCH, D.; MARTIN, R. An unsplit convolutional perfectly matched layer im-
proved at grazing incidence for the seismic wave equation. GEOPHYSICS, [S.l.], v.72,
n.5, p.SM155–SM167, 2007.



113

KUMAR, V.; GRAMA, A. Y.; VEMPATY, N. R. Scalable load balancing techniques for
parallel computers. J. Parallel Distrib. Comput., Orlando, FL, USA, v.22, n.1, p.60–79,
July 1994.

LEUNG, J. Y. T. Handbook of scheduling: algorithms, models, and performance

analysis. [S.l.]: Chapman & Hall/CRC, 2004. (Chapman & Hall/CRC computer and in-
formation science series).

LIFFLANDER, J.; KRISHNAMOORTHY, S.; KALE, L. V. Work stealing and
persistence-based load balancers for iterative overdecomposed applications. In: HIGH-
PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, 21., New York,
NY, USA. Proceedings. . . ACM, 2012. (HPDC ’12).

LIKWID. Lightweight performance tools. http://code.google.com/p/

likwid.

LMBENCH. Tools for Performance Analysis. http://lmbench.sourceforge.
net/.

LOF, H.; HOLMGREN, S. affinity-on-next-touch: increasing the performance of an in-
dustrial pde solver on a cc-numa system. In: SUPERCOMPUTING, 19., New York, NY,
USA. Proceedings. . . ACM, 2005. p.387–392. (ICS ’05).

MCCALPIN, J. D. Memory Bandwidth and Machine Balance in Current High Perfor-
mance Computers. IEEE Computer Society Technical Committee on Computer Ar-

chitecture (TCCA) Newsletter, [S.l.], p.19–25, Dec. 1995.

MENON, H. et al. Automated Load Balancing Invocation based on Application Charac-
teristics. In: IEEE CLUSTER 12, Beijing, China. Proceedings. . . [S.l.: s.n.], 2012.

MERCIER, G.; CLET-ORTEGA, J. Towards an Efficient Process Placement Policy for
MPI Applications in Multicore Environments. In: ROPO, M.; WESTERHOLM, J.; DON-
GARRA, J. (Ed.). Recent Advances in Parallel Virtual Machine and Message Passing

Interface. [S.l.]: Springer Berlin / Heidelberg, 2009. p.104–115. (Lecture Notes in Com-
puter Science, v.5759).

METIS. Family of Graph and Hypergraph Partitioning Software. http://

glaros.dtc.umn.edu/gkhome/views/metis/.

NELSON, M. et al. NAMD - a Parallel, Object-Oriented Molecular Dynamics Program.
International Journal of High Performance Computing Applications, [S.l.], v.10, n.4,
p.251–268, 1996.

NETGAUGE. A Network Performance Measurement Toolkit. http://www.

unixer.de/research/netgauge/.

OLIVIER, S. L. et al. Scheduling task parallelism on multi-socket multicore systems. In:
INTERNATIONAL WORKSHOP ON RUNTIME AND OPERATING SYSTEMS FOR
SUPERCOMPUTERS, 1., New York, NY, USA. Proceedings. . . ACM, 2011. p.49–56.
(ROSS ’11).



114

PAKIN, S. The Design and Implementation of a Domain-Specific Language for Network
Performance Testing. IEEE Transactions on Parallel and Distributed Systems, Los
Alamitos, CA, USA, v.18, p.1436–1449, 2007.

PELLEGRINI, F.; ROMAN, J. Scotch: a software package for static mapping by dual
recursive bipartitioning of process and architecture graphs. In: INTERNATIONAL CON-
FERENCE ON HIGH-PERFORMANCE COMPUTING AND NETWORKING (HPCN
1996). Proceedings. . . [S.l.: s.n.], 1996. p.493–498.

PILLA, L. L. et al. A Hierarchical Approach for Load Balancing on Parallel Multi-core
Systems. In: PARALLEL PROCESSING (ICPP), 2012 41ST INTERNATIONAL CON-
FERENCE ON. Proceedings. . . [S.l.: s.n.], 2012. p.118–127.

PILLA, L. L. et al. Asymptotically Optimal Load Balancing for Hierarchical Multi-
Core Systems. In: PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2012 IEEE
18TH INTERNATIONAL CONFERENCE ON. Proceedings. . . [S.l.: s.n.], 2012. p.236–
243.

PILLA, L. L. et al. A Topology-Aware Load Balancing Algorithm for Clustered Hierar-
chical Multi-Core Machines. Future Generation Computer Systems, [S.l.], v.30, n.0,
p.191–201, Jan. 2014.

QUINTIN, J.-N.; WAGNER, F. Hierarchical work-stealing. In: EURO-PAR CONFER-
ENCE ON PARALLEL PROCESSING: PART I, 16., Berlin, Heidelberg. Proceedings. . .

Springer-Verlag, 2010. p.217–229. (EuroPar’10).

RIBEIRO, C. P. Contributions on Memory Affinity Management for Hierarchical

Shared Memory Multi-core Platforms. 2011. Ph.D. Thesis — University of Grenoble.

RIGHI, R. et al. Observing the Impact of Multiple Metrics and Runtime Adaptations
on BSP Process Rescheduling. Parallel Processing Letters, [S.l.], v.20, n.2, p.123–144,
June 2010.

RODRIGUES, E. R. et al. A Comparative Analysis of Load Balancing Algorithms Ap-
plied to a Weather Forecast Model. Computer Architecture and High Performance

Computing, Symposium on, Los Alamitos, CA, USA, v.0, p.71–78, 2010.

SCOTCH. Static Mapping, Graph, Mesh and Hypergraph Partitioning, and Paral-

lel and Sequential Sparse Matrix Ordening Package. http://www.labri.fr/
perso/pelegrin/scotch/.

SERVET. The Servet Benchmark Suite Homepage. http://servet.des.udc.
es/.

SGI UV 2000 System User Guide. [S.l.]: Silicon Graphics, 2012.

STAELIN, C. lmbench: portable tools for performance analysis. In: IN USENIX AN-
NUAL TECHNICAL CONFERENCE. Proceedings. . . [S.l.: s.n.], 1996.

STAT perf. Linux man page. http://linux.die.net/man/1/perf-stat.

TANENBAUM, A. S. Modern operating systems. [S.l.]: Prentice Hall Englewood
Cliffs, 2008. v.4.



115

TCHIBOUKDJIAN, M. et al. A Work Stealing Algorithm for Parallel Loops on Shared
Cache Multicores. Proceedings of the 4th Workshop on Highly Parallel Processing on

a Chip (HPPC 2010), [S.l.], p.1–10, 2010.

TESSER, R. et al. Using Dynamic Load Balancing to Improve the Performance of Seis-
mic Wave Simulations. In: TO BE PUBLISHED ON PARALLEL, DISTRIBUTED
AND NETWORK-BASED PROCESSING (PDP), 2014 22ST EUROMICRO INTER-
NATIONAL CONFERENCE ON. Proceedings. . . [S.l.: s.n.], 2014. p.1–8.

THIBAULT, S.; NAMYST, R.; WACRENIER, P.-A. Building Portable Thread Schedulers
for Hierarchical Multiprocessors: the bubblesched framework. In: KERMARREC, A.-
M.; BOUGé, L.; PRIOL, T. (Ed.). Euro-Par 2007 Parallel Processing. [S.l.]: Springer
Berlin Heidelberg, 2007. p.42–51. (Lecture Notes in Computer Science, v.4641).

TREIBIG, J.; HAGER, G.; WELLEIN, G. LIKWID: a lightweight performance-oriented
tool suite for x86 multicore environments. In: INTERNATIONAL CONFERENCE ON
PARALLEL PROCESSING WORKSHOPS, 2010., Washington, DC, USA. Proceed-

ings. . . IEEE Computer Society, 2010. p.207–216. (ICPPW ’10).

VALIANT, L. G. A bridging model for parallel computation. Commun. ACM, New York,
NY, USA, v.33, n.8, p.103–111, Aug. 1990.

WALKO, R. et al. Coupled atmosphere-biophysics-hydrology models for environmental
modeling. Journal of applied meteorology, [S.l.], v.39, n.6, p.931–944, June 2000.

WULF, W.; MCKEE, S. A. Hitting the memory wall: implications of the obvious.
SIGARCH Comput. Archit. News, New York, NY, USA, v.23, p.20–24, Mar. 1995.

XUE, M.; DROEGEMEIER, K.; WEBER, D. Numerical prediction of high-impact lo-
cal weather: a driver for petascale computing. Petascale Computing: Algorithms and

Applications, [S.l.], p.103–124, 2007.

ZHENG, G. Achieving high performance on extremely large parallel machines: per-

formance prediction and load balancing. 2005. Ph.D. Thesis — Department of Com-
puter Science, University of Illinois at Urbana-Champaign.

ZHENG, G. et al. Periodic Hierarchical Load Balancing for Large Supercomputers. In-

ternational Journal of High Performance Computing Applications (IJHPCA), [S.l.],
Mar. 2011.


