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Abstract

Visual sensitivity to small color difference is an important factor for pre-

cision color matching. Small color differences can be measured by the line

element theory in terms of color distances between a color point and neigh-

borhoods of points in a color space. This theory gives a smooth positive def-

inite symmetric metric tensor which describes threshold of color differences

by ellipsoids in three dimensions and ellipses in two dimensions. The metric

tensor is also known as the Riemannian metric tensor. In regard to the color

differences, there are many color difference formulas and color spaces to pre-

dict visual difference between two colors but, it is still challenging due to

the nonexistence of a perfect uniform color space. In such case, the Rieman-

nian metric tensor can be used as a tool to study the performance of various

color spaces and color difference metrics for measuring the perceptual color

differences. It also computes the shortest length or the distance between

any two points in a color space. The shortest length is called a geodesic.

According to Schrödinger’s hypothesis geodesics starting from the neutral

point of a surface of constant brightness correspond to the curves of constant

hue. The chroma contours are closed curves at constant intervals from the

origin measured as the distance along the constant hue geodesics. This hy-

pothesis can be utilized to test the performance of color difference formulas

to predict perceptual attributes (hue and chroma) and distribution of color

stimulus in any color space. In this research work, a method to formulate

line element models of color difference formulas the ∆E∗
ab , the ∆E∗

uv, the

OSA-UCS ∆EE and infinitesimal approximation of CIEDE2000 (∆E00) is

presented. The Jacobian method is employed to transfer their Riemannian

metric tensors in other color spaces. The coefficients of such metric tensors

are used to compute ellipses in two dimensions. The performance of these

four color difference formulas is evaluated by comparing computed ellipses



with experimentally observed ellipses in different chromaticity diagrams. A

method is also developed for comparing the similarity between a pair of

ellipses. The technique works by calculating the ratio of the area of in-

tersection and the area of union of a pair of ellipses. Similarly, at a fixed

value of lightness L∗, hue geodesics originating from the achromatic point

and their corresponding chroma contours of the above four formulas in the

CIELAB color space are computed by solving the Euler-Lagrange equations

in association with their Riemannian metrics. They are compared with with

the Munsell chromas and hue circles at the Munsell values 3, 5 and 7. The

result shows that neither formulas are fully perfect for matching visual color

difference data sets. However, Riemannized ∆E00 and the ∆EE formulas

measure the visual color differences better than the ∆E∗
ab and the ∆E∗

uv for-

mulas at local level. It is interesting to note that the latest color difference

formulas like the OSA-UCS ∆EE and the Riemannized ∆E00 do not show

better performance to predict hue geodesics and chroma contours than the

conventional CIELAB and CIELUV color difference formulas and none of

these formulas fit the Munsell data accurately.



Résumé

Afin de pouvoir apparier de manière précise les couleurs il est essential de

prendre en compte la sensibilité visuelle à percevoir de petites différences

de couleur. Les petites différences de couleur peuvent être mesurées par

des ellipses qui décrivent les différences justes observables (just notice-

able difference - JND). Ces ellipses décrivent la faculté du Système Vi-

suel Humain à discriminer des couleurs très peu différentes. D’un point de

vue mathématique, ces ellipses peuvent être modélisées par une fonction

différentielle positive de forme quadratique, caractéristique de ce que l’on

appelle communément une métrique Riemannienne. La métrique Rieman-

nienne peut être considérée comme un outil utile pour évaluer l’adéquation,

la robustesse et la précision, d’un espace couleur ou d’une métrique couleur,

à décrire, à mesurer, correctement les différences de couleur telles qu’elles

sont perçues par le Système Visuel Humain. L’un des particularités de

cette métrique est qu’elle modélise la plus petite distance qui sépare deux

couleurs dans un espace couleur par une ligne géodésique. Selon l’hypothèse

de Schrödinger les lignes géodésiques qui partent d’un point neutre d’une

surface de luminosité constante décrivent des courbes de teinte constante.

Les contours de chrominance (chroma) forment alors des courbes fermées

à intervalles constants à partir de ce point neutre situées à une distance

constante des lignes géodésiques associées à ces teintes constances. Cette

hypothèse peut être utilisée pour tester la robustesse, la précision, des for-

mules mathématiques utilisées pour mesurer des différences couleur (color

difference formulas) et pour prédire quelle valeurs peuvent prendre tel ou

tel attribut perceptuel, ex. la teinte et la saturation (hue and chroma), ou

telle distribution de stimulus couleur, dans n’importe quel espace couleur.

Dans cette thèse, nous présentons une méthode qui permet de modéliser

les éléments de ligne (lignes géodésiques), correspondants aux formules



mathématiques Delta E ∗ ab, Delta E ∗ uv, OSA-UCS Delta EE utilisées

pour mesurer des différences couleur, ainsi que les éléments de ligne corre-

spondants à l’approximation infinitésimales du CIEDE2000. La pertinence

de ces quatre formules mathématiques a été évaluée par comparaison, dans

différents plans de représentation chromatique, des ellipses prédites et des

ellipses expérimentalement obtenues par observation visuelle. Pour chacune

de ces formules mathématiques, nous avons également testé l’hypothèse

de Schrödinger, en calculant à partir de la métrique Riemannienne, les

lignes géodésiques de teinte et les contours de chroma associés, puis en

comparant les courbes calculées dans l’espace couleur CIELAB avec celles

obtenues dans le système Munsell. Les résultats que nous avons obtenus

démontrent qu’aucune de ces formules mathématiques ne prédit précisément

les différences de couleur telles qu’elles sont perçues par le Système Visuel

Humain. Ils démontrent également que les deux dernières formules en date,

OSA-UCS Delta EE et l’approximation infinitésimale du CIEDE2000, ne

sont pas plus précises que les formules conventionnelles calculées à partir

des espaces couleur CIELAB et CIELUV, quand on se réfère au système

Munsell (Munsell color order system).
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Chapter 1

Introduction

1.1 Motivation

Many color spaces and color difference formulas have been developed over the past

decades to predict visual color perception as far as possible. But, it is not happening

because of the complex human visual system.

Riemann [49] described from his differential geometry that colors and the positions

of objects of sense constitute a non-Euclidean manifold. Helmholtz [60] on the basis of

Riemannian geometry presented a line element to describe how distance in a color space

specifies pairs of color stimuli that give a particular constant perceptual difference in

the RGB color space. This quantitative mathematical analysis has progressed further

in the color vision by Schrödinger [50], Stiles [56] and Vos and Walraven [65]. JJ Vos

[63] presented a pictorial outline about the implementation of line element as well as

its importance in the color vision system (see Figure 1.1). He described ’Lower color

metrics’ for the laws of color mixture as exhibit in the trichromatic color space and

’Higher color metrics’ for the line element in the sense that it builds on the fundamentals

of lower color metrics. His concluding remarks of extended modelling of line elements

for paradoxical effects of luminance and saturation on color discrimination deserve the

renewed interest for color science researchers.

MacAdam [34] successfully implemented the line element theory in a two dimen-

sional space that have the Riemannian form for his experimental data to measure the

visual sensitivity to color differences. He derived just noticeable difference (JND) el-

lipses from the metric tensor gik and plotted them in the xy chromaticity diagram to

1



1. INTRODUCTION

Figure 1.1: Outline of the events leading from lower to higher color metrics -
figure reproduced from the article [63].

2



1.1 Motivation

describe the threshold of color matches about a color center [33]. Many other thresh-

old and in recent supra threshold color matching data sets have been developed and

established [3, 5, 31, 66, 69]. All these data sets are represented in terms of variability

ellipses in color spaces and they are derived from the Riemannian metric. These data

sets are the basis for the many color difference formulas developed so far by the Com-

mission Internationale de l Éclairage (CIE) and others. It shows an integral relationship

between color difference formulas and the line element theory.

With respect to color differences, the main objective of color difference formulas is

to give quantitative color difference value (∆E) that should represent the visual color

difference perceived by the human visual system (color difference obtained from the

psychophysical experiment). Many color difference formulas like the ∆E∗
ab [8] and the

∆E00 [32] of the CIELAB space, the ∆E∗
uv of the CIELUV space [8], the ∆EE of

the log compressed OSA-UCS space [44] and so on have been developed to fulfill such

an objective. Unfortunately, all these formulas so far developed do not have perfect

uniform color spaces. It means they are unable to to measure the visual perception

of color differences sufficiently [11, 12, 20, 27, 38]. Theoretically in a perfect uniform

color space, the color matching ellipses should become circles. Figures 1.2 and 1.3 show

MacAdam’s ellipses transformed into the CIELAB and the CIELUV color spaces and

they appeared again ellipses which indicate non-uniform color spaces.

Figure 1.2: MacAdam’s ellipses in the CIELAB color space - Enlarged 10 times.

These existing formulas are optimized to predict certain set of visual data. It can

not be assured that such formulas are able to predict other sets of visual data which

3



1. INTRODUCTION

Figure 1.3: MacAdam’s ellipses in the CIELUV color space - Enlarged 10 times.

are obtained under different experimental conditions. On the other hand, color and

imaging industries have a continuous demand to know which color difference formula

or color space should be used for a specific application. This crucial fact necessitates

to evaluate the performance of color difference formulas for measuring the visual color

difference data. Mathematical modelling of color difference formulas to calculate small

color differences by applying the line element theory could be one option. Further,

many color difference formulas use the Euclidean distance to measure color differences

between two color points in a color space. But, color researchers have found that the

small color difference calculation using the Euclidean distance does not agree sufficiently

with the perceptual color difference due to the curvilinear nature of the color space [12,

19, 25, 29, 51, 53, 58]. The beauty of line element theory for assessing color differences

is that it can deal with the Euclidean as well as non-Euclidean color perception space

at a time where as the color difference formulas in nearly every case assume that color

perception is Euclidean.

Line element is also used to study the perceptual attributes hue, chroma and light-

ness by computing the appropriate geometrical quantities which correlates in some way

with these attributes [70]. The geometrical quantities imply hue geodesics and chroma

contours originating from a point representing an achromatic stimulus on a surface of

constant brightness. This conjecture can be applied to color difference formulas to know

how well they predict such attributes in comparison to the experimentally observed the

Munsell like color order system in a color space because there is no analytical expression

to convert the CIE system to the Munsell system.

4



1.2 Aims

1.2 Aims

The first aim of this research study is to implement the line element theory based on the

Riemannian geometry for the color difference formulas to evaluate their performances

for measuring the visual color difference data. Four color difference formulas the ∆E∗
ab,

the the ∆E∗
uv, the ∆E00 and the OSA-UCS based ∆EE are chosen to study because of

their symmetrical nature and specific importance in the color vision. Implementation

of the line element model for these four formulas to accomplish the above task consist

following steps:

• Formulation of the line element distance of above color difference formulas by

converting color coordinates into color vectors.

• Computation of the Riemannian metric tensors gik of the formulas.

• Computation of the equidistance (threshold) ellipses in a color space.

• Formulation of a pair of ellipses comparison method.

• Comparison of the computed ellipses of the formulas with the experimentally

observed standard data sets.

The second aim is to compute hue geodesics and chroma contours of these formulas

in the CIELAB color space to study the distribution of their color stimuli with respect

to the Munsell color order system. Such computations allow us to evaluate how well

they predict perceptual attributes defined in terms of hue, chroma and lightness. The

following steps should be carried out in order to complete this aim:

• Formulation of the Euler-Lagrange equations of above color difference formulas.

• Computation of the Christoffel symbols defined in terms Riemannian metric ten-

sors gik of the formulas in the CIELAB color space.

• Comparison of the computed hue geodesics and chroma contours of the formulas

with the the Munsell color system.

5
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1.3 Research Methodology

The nature of this research study is based on theoretical consideration of the Rieman-

nian form regarding the functioning of color difference formulas coupled with certain

threshold and supra threshold experimental data sets. Therefore, the author has used

mathematical and statistical methods to carry out this research. Jacobian coordinate

transfer method is used to transfer the metric coefficients from one color space to other.

Statistical the sign test is adopted to evaluate the significance of the results come from

comparing pairs of ellipses. Graphical methods like histogram plots, box plots and

cumulative distribution function plots are also used to show the research results. Like-

wise, to compute hue geodesics and chroma contours, the Runge-Kutta and the central

difference numerical techniques are applied.

1.4 Chapter Introduction

The intent of chapter 2 is to provide relatively simple concept of color theory develop-

ment and state of the art used in this research work. Section 2.1 describes historical

background of the color theory and overview of the line element model for the color

discrimination. Section 2.2 includes basic colorimetry with emphasized on the CIE

1931 and 1964 system, tristimulus values and chromaticity coordinates. Visual color

difference data and its type are described in section 2.3. The next section 2.4 gives

brief description of the CIELAB, the CIELUV, and the OSA-UCS color spaces as well

as color difference formulas associated with theses space. The color order system and

the Munsell system which describe three classical attributes (value, hue and chroma) in

color perception are presented in section 2.5 and subsection 2.5.1. The prime focused

topic Riemannian geometry and the line element for color space is described clearly in

section 2.6. Different historical line element models for the color space are summarized

in section 2.7. Analysis of color difference formulas by the line element model also re-

quire color space transformation and it is described in section 2.8. Finally, this chapter

ends in section 2.9 with deriving geodesic equations.

Chapter 3 is the main important part of this thesis where the key achievement of this

research work published in different conferences and journal is summarized. Chapter

4 is the discussion over the obtained results and chapter 5 gives concluding remarks of

this work.
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Chapter 2

Background and State of the Art

2.1 Historical Background and Overview

A theory of color vision is based on a set of assumptions or postulates about the visual

system. Newton [41] was the first to explain color theory from his color matching

experiments with light. He also introduced geometric concept of complementary colors

using the color circle. The scientist, Thomas Young [71] suggested the three fold model

of color perception in 1802. He speculated that there were three different types of

photo receptors in the eyes for color vision. He also developed equilateral triangle for

exhibiting in theory, all possible shades of colors which is known as Young’s trichromatic

theory. In the 1860, James Clerk Maxwell [37] explored the use of three primary colors

and realized that no additive combination of three primary colors can cover the entire

perceivable hues. He showed that the set of primaries was not unique, but that spectral

primaries more widely separated in wavelength could be used to produce a wider range

of perceived hues. Maxwell recognized that the chromaticity (hue and saturation)

of a colored surface is relatively insensitive to the brightness. Maxwell’s work could

be considered to be the basis for modern colorimetry [30]. Helmholtz [60] described

Young’s trichromatic nature of color space on a more quantitative basis which came to

be known as the Young-Helmholtz theory of color vision. This theory was postulated on

the basis of additive and associative laws of color mixture developed by Grassman [21].

Right after Grassman, a German mathematician, Riemann [49] remarked significantly

that the colors and the positions of the objects of sense constitute a non-Euclidean

manifold. Helmholtz was the first to define a line element in terms of Riemannian

7



2. BACKGROUND AND STATE OF THE ART

geometry on the color space which would measure the perceptual difference between

any two colors. In 1920, Schrödinger [50] modified Helmholtz line element stating that

the additivity of brightness is essential to formulate line element. He further described

that in the Riemannian space, shortest distances between colors of equal intensity form

geodesics which can be calculated from line elements. His pioneer efforts give a solid

footing about the geometry of color space. In 1946, Stiles [56] did simple modification

of Helmholtz’s line element by introducing different constant factors in each coordinate

of three dimensional color space. The latest and most advanced contribution along this

line, is the zone-fluctuation line element of Vos and Walraven [65]. The Riemannian

space based line element can still be used as color vision models.

Along with the theoretical color vision models, it is necessary to do color stimulus

measurement defining standard observers and a colorimetric system. To recommend in-

ternationally standardized colorimetric system, Commission Internationale delÉclairage

(CIE) set up color matching functions based on the experimental color matching data

of Guild [22] and Wright [68]. The CIE also defined three tristimulus values X,Y and

Z implying a three dimensional color space as well as a horseshoe- shaped outline called

the CIE chromaticity diagram.

For expressing the relative sensitivity of the visual system to small color differences,

psychophysical experiment is done which gives a color difference threshold. Such thresh-

old values are called just noticeable differences (JNDs). MacAdam [34] was the first to

derive JND thresholds for small color differences throughout the CIE xy chromaticity

diagram in terms of ellipses. These are now known as MacAdam’s JND ellipses. After

MacAdam, many other color researchers also derived chromaticity difference data sets

based on JND ellipses. The latest data sets are BFD-Perceptibility(BFD-P) [31], RIT-

DuPont [3], Witt [66]and others. They are known as supra threshold color difference

data. The color difference formulas like CIELAB, CIELUV, CIEDE2000 and so on are

derived from supra threshold color difference data. These empirical color difference

formulas can be evaluated by applying the line element model in a postulated color

space.

The attributes of color based on principles of color perception are described with

Color order systems. Geometrically, the attributes hue, chroma and lightness represent

three coordinates of a color order system and they are orthogonal to each other. A

set of color standard materials (patches) are selected to represent scales of constant

8



2.2 Colorimetry

hue, chroma and lightness with the aim of perceptual uniformity. An example of such

kind is the Munsell Color order System [40] and they are analogous to the Riemannian

coordinate system in Schrödinger’s interpretation[28]. Using the Riemannian metric as

a tool, geodesics of color difference formulas can be calculated which can be compared

with the Munsell color order system for evaluating their perceptual uniformity and

distribution of color stimulus in any color space.

2.2 Colorimetry

Colorimetry is concerned with an observer’s perception for small color differences. It

also explains color quantitatively using standard experimental data and the empirical

laws of color matching properties of additive mixtures of color stimuli. The CIE colori-

metric system builds on these empirical laws which describes color perception specifying

the color matching functions of standard observers as functions of wavelength.

2.2.1 The CIE 1931 System

In 1931, the CIE specified color matching functions of standard observers in terms of

x̄(λ), ȳ(λ) and z̄(λ) in the wavelength range λ = 380 to 780 nm. These color matching

functions represent the chromatic response of the average human viewing through a

2◦ angle [1]. This system is also known as the CIE 1931 2◦ Standard Observer. It

is suitable for application to matching fields of between one and four degree angular

subtense. The plot of x̄(λ), ȳ(λ) and z̄(λ) as a function of wavelength is shown in

Figure (2.1). The CIE 1931 standard observer is based on two independent color

matching experiments performed by Guild (1931) and Wright (1928-29) for a total of

17 observers and the relative luminance of the colors of the spectrum averaged for about

100 observers.

2.2.2 The CIE 1964 System

The CIE 1931 system is not appropriate for the larger-field (greater than 4◦) visual

color matching [15]. Its inadequacy at short-wavelengths is well known, and is often

taken into account in colorimetric and photometric applications [61]. In 1964, the CIE

standardized a large field colorimetric system based on the visual color matching obser-

vations of Stiles at el. [55] and Speranskaya [54] with a 10◦ field of view. This system
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2. BACKGROUND AND STATE OF THE ART

Figure 2.1: The CIE 1931 Standard Colorimetric Observer - CIE31 Color matching
functions.

is defined as the CIE 1964 10◦ Standard Observer. Its color matching functions are

noted as x̄10(λ), ȳ10(λ) and z̄10(λ). Figure (2.2) shows 1964 color matching functions of

standard colorimetric observer in the wavelength from 360 nm to 830nm. The subscript

10 is used to distinguish the 10◦ data from the original 1931 standard 2◦ observer data.

Figure 2.2: The CIE 1964 Standard Colorimetric Observer - CIE64 Color matching
functions.

2.2.3 Tristimulus Values and Chromaticity Coordinates

The CIE created a special set of mathematical primaries (imaginary primaries) X,Y

and Z to replace the actual red, green and blue (RGB) primaries for simplifying color

10



2.2 Colorimetry

calculations. All real colors can be matched using positive proportion of three imaginary

primaries. The values of X,Y and Z are known as the CIE 1931 tristimuls values which

specify the color stimulus. The Y tristimulus value is equal to the curve that indicates

the human eye’s response to the total power of a light source. It is also called relative

luminance. The Y tristimulus value roughly represents the lightness of a sample. The

CIE tristmuls values for object colors are calculated by adding the product of the

spectral power distribution of the illuminant, the spectral reflectance factor of the

object and the color matching functions of the observer at each wave length of the

visible spectrum [36]. According to the CIE recommendation, following equations are

used to calculate the tristimulus values of an object.

X = k
∑

λ

P (λ) x̄(λ)R(λ)

Y = k
∑

λ

P (λ) ȳ(λ)R(λ)

Z = k
∑

λ

P (λ) z̄(λ)R(λ)

k =
100

∑

λ P (λ) ȳ(λ)

(2.1)

where, P (λ) is the value of the spectral power distribution of the illuminant at wave

length λ , R(λ) is the reflectance factor of the sample at the wavelength λ. The factor

k normalizes the tristimulus values so that Y will have a value of 100 for the perfect

white diffuser - a theoretical material that reflects 100 percent of the incident light. In

the CIE XYZ system, the curve for the Y tristimulus value is equal to the curve of the

human eye’s response to the total power of a light source.

2.2.4 Chromaticity Coordinates and Diagram

To describe visual attributes of colors in terms of hue and chroma, the CIE XYZ

tristimulus values are used to formulate a new set of chromaticity coordinates that are

denoted by xyz. The chromaticity coordinates xyz are obtained by taking the ratio of
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2. BACKGROUND AND STATE OF THE ART

the tristimulus values to their sum X + Y + Z as given by the equations below:

x =
X

X + Y + Z

y =
Y

X + Y + Z

z =
Z

X + Y + Z
1 = x+ y + z

(2.2)

Mathematically, x and y are formulated by the projective transformation of the tris-

timulus values into a two-dimensional plane. The derived color space specified by x, y,

and Y is known as the CIE xyY color space. The third dimension is indicated by the

tristimulus value Y . The scale for Y extends from the white spot in a line perpendicular

to the plane formed by x and y using a scale that goes from 0 to 100.

A plot of y against x is called a chromaticity diagram. Such a plot using the

CIE XY Z and X10Y10, Z10 is shown in Figure (2.2). The chromaticity diagram is a

Figure 2.3: The chromaticity diagram using the CIE 1931 and 1964 tristimulus
values - The difference between CIE31 and 64 systems.

horseshoe shaped spectrum locus, purple line and the colors of the chromaticity diagram

occupy a region of the real projective plane.

2.3 Visual Color Difference Data

Psychophysical experiments are done for measuring visual color differences. In general,

observers matched a series of colors viewing through a bipartite field. The experimental
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2.3 Visual Color Difference Data

data gives color attributes in terms of hue, chroma and lightness for a color difference

and is commonly known as the visual color difference data. This means chroma dif-

ference for a test color is produced keeping the lightness and hue constant and the

same process is repeated to produce other two attributes. Color difference formulas are

generally developed by using such a data set. There are several approaches to obtain

visual color difference data set [47, 70]. Here, threshold and supra threshold data are

mainly focused.

2.3.1 Threshold Color Difference Data

Threshold color difference data describes observers ability to discriminate two color

stimuli by the just noticeable difference (JND) in terms of color attributes such as hue

or chroma. The JND gives as a unit of sensation difference. It is also referred to the just-

perceptible difference (JPD) that the visual differences are too small. MacAdam [34]

first performed a psychophysical experiment to derive JND thresholds for chromaticity

discrimination of 25 color samples. He used a bipartite comparison field of view that

allowed very small variation in chromaticity until it matched the test color. The results

were plotted as small areas in the 1931 CIE xy chromaticity diagram. These small

discrimination areas in different directions represent visual color differences of different

magnitudes and could be described by ellipses. They became known as MacAdam’s

JND ellipses (2.4). Although, this chromatic discrimination data set is based on the

Figure 2.4: MacAdam’s JND ellipses in the CIE 1931 chromaticity diagram -
enlarged 10 times.

standard deviation of color matches about a color center, MacAdam ellipses provide a
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guideline about the color vision and how good they are at distinguishing between similar

colors. Brown [5], Wyszecki and Fielder [69] and many other researchers also derived

chromaticity difference data sets based on JND ellipses. Color difference formula like

Friele-MacAdam-Chickering (FMC) [7] was developed using threshold color difference

data.

2.3.2 Supra Threshold Color Difference Data

Supra threshold data are derived by discriminating visual color difference between two

colors instead of determining just-noticeable color differences. The color differences

presented to and matched by the observer are not necessarily small or of near threshold

size, but can be many times JND threshold. The criterion of equality of color difference

requires the observer’s ability to discriminate between color differences of comparable

size generated by pairs of color stimuli of different chromaticities [70]. Witzel at el. [67]

also describes that supra threshold color differences are obtained from ratio judgments

of visual color differences. This procedure is called perceptual color scaling in which

a unit perceptual color ellipsoid can be described about a point in a color space more

precisely than ones obtained by threshold color difference experiments. Perceptibility

and acceptability measurements are done in supra threshold color differences [2].

Recent visual color difference data sets BFD-Perceptibility(BFD-P) [31], RIT-DuPont [3],

Witt [66] and Leeds [27] are based on supra threshold color difference. Among the four

data sets, BFD-P is the largest data set. The CIE technical committee I-47 on hue

and lightness dependent correction accumulated the four data set and recommended 17

color centers for deriving color difference formulas [26]. A scaling factor was calculated

for each data set to adjust different psychophysical methods used in various percepti-

bility experiments [31]. All these experimental data sets are expressed in terms of the

chromatic ellipses. The distance between the center of an ellipse to any ellipse point

represents more or less same visual difference. Luo and Rigg [31] accumulated and and

plotted BFD-P data relating to small to medium color differences of surface colors in

the CIE xy chromaticity diagram. Figure 2.5 shows BFD-P ellipses plotted in the CIE

xy chromaticity diagram.
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2.4 Color Spaces and Color Metrics

Figure 2.5: BFD-P ellipses in the CIE 1964 chromaticity diagram - 1.5 times
enlarged.

2.4 Color Spaces and Color Metrics

A color space is an abstract mathematical model to describe color differences in three

dimensions. It gives a quantitative measure of visual or perceptual color difference in

terms of the color distance in a three dimensional space. Color spaces are important for

color quality control in many applications such as image analysis, color reproduction,

and so on. Many color space models are defined such as RGB, CMYK for different

applications. Here, the CIE defined the CIELAB, the CIELUV and the OSA-UCS

color space are discussed.

2.4.1 The CIELAB

In 1976, the CIE recommended the CIELAB [8] color space based on Adams-Nickerson

[14, 17] color space. It is a rectangular color space defined by the three axes L∗, a∗ and

b∗ as follows:

L∗ = 116

(

Y

Yr

)
1

3

− 16

a∗ = 500

[

(

X

Xr

)
1

3

−
(

Y

Yr

)
1

3

]

b∗ = 200

[

(

Y

Yr

)
1

3

−
(

Z

Zr

)
1

3

]

(2.3)
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with the constraint that X
Xr

, Y
Yr
, Z
Zr

> 0.01. Here, L∗, a∗ and b∗ correspond to the

Lightness, the redness-greenness and the yellowness-blueness scales in the CIELAB

color space. Similarly, X, Y , Z and Xr, Yr, Zr are the tristimulus values of the color

stimuli and white reference respectively. If X
Xr

, Y
Yr
, Z
Zr

is less than 0.01, the following

equations are used:

L∗ = 116

[

f

(

Y

Yr

)

−
(

16

116

)]

a∗ = 500

[

f

(

X

Xr

)

− f

(

Y

Yr

)]

b∗ = 200

[

f

(

Y

Yr

)

− f

(

Z

Zr

)]

(2.4)

where f(Y/Yn) = (Y/Yn)
1/3 for (Y/Yn) greater than 0.008856 and f(Y/Yn = 7.787(Y/Yn)+

16/116 for Y/Yn ≤ 0.008856; f(X/Xn) and f(Z/Zn) are similarly defined. The

CIELAB color space in Figure 2.6 is organized in the cube form which provides an

approximately uniform color space. Basically, this color space provides a simplified

lightness scale and an opponent color model in which compressed normalized CIE tris-

timulus values are subtracted from each other. The L∗ axis values run from 0 (black)

to 100 (white). The a∗ and b∗ axes have no numerical limits. On the a∗ axis, positive

value indicates red and negative value indicates green. On the b∗ axis, positive is yellow

and negative is blue, but for the both a∗ and b∗ axes, zero means neutral gray.

Figure 2.6: The CIELAB color space, taken from http://dba.med.sc.edu/price/

irf/Adobe_tg/models/cielab.html (visited,11/10/11) - Permission is granted for per-
sonal use

The color difference, ∆E∗
ab between the color pair in the CIELAB color space is
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2.4 Color Spaces and Color Metrics

defined as an Euclidean distance between the two points in the color space representing

them. The color difference formula is written as:

∆E∗
ab =

√

(∆L∗)2 + (∆a∗)2 + (∆b∗)2 . (2.5)

The CIELAB color difference formula can also be expressed in terms of lightness,

chroma and hue as:

∆E∗
ab =

√

(∆L∗)2 + (∆c∗ab)
2 + (∆H∗

ab)
2 . (2.6)

Here, ∆c∗ab and ∆H∗
ab are the chroma and the differences inH as derived in Equation

2.7. They are computed for a color pair with subscripts 0 and 1 by following equations:

∆C∗
ab = C∗

ab,1 − C∗
ab,0

∆H∗
ab = 2(C∗

ab,1C
∗
ab,0)

1/2 sin(∆h∗ab)

∆h∗ab = h∗ab,1 − h∗ab,0

C∗
ab = (a∗2 + b∗2)1/2

hab = arctan(b∗/a∗).

(2.7)

In the CIELAB space, the rectangular coordinates are transferred into the polar coor-

dinates to define hue as an angle and chroma as a radius. The hue angle hab as defined

in Equation 2.7 is zero along the positive a∗ axis. It increases counter clock wise with

90◦ for +b∗ direction, 180◦ for −a∗ direction and 270◦ for −a∗ direction [8].

2.4.2 The CIELUV

The CIE in 1976 also adopted the CIELUV color space based on the CIE1964 U∗, V ∗,W ∗

by modifying the lightness and chromaticity scale [8]. It is also a rectangular color space

defined by three quantities as:

L∗ = 116

(

Y

Yr

)
1

3

− 16

u∗ = 13L∗ (u
′ − u

′

r)

v∗ = 13L∗ (v
′ − v

′

r)

(2.8)

with the constraint that Y
Yr

> 0.01. The L∗ corresponds lightness scale having the

range from 0 to 100. u∗ and v∗ are the chromaticity scales. The quantities u
′

r and v
′

r
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are the u
′

and v
′

chromaticity coordinates of a the perfect reflecting diffuser [9]. These

four quantities are calculated as follows:

u
′

=
4X

X + 15Y + 3Z

v
′

=
9Y

X + 15Y + 3Z

u
′

r =
4Xr

Xr + 15Yr + 3Zr

v
′

r =
9Yr

Xr + 15Yr + 3Zr
.

(2.9)

The plot of u
′

and v
′

chromaticity coordinates in Figure (2.7) is known as the CIE 1976

uniform chromaticity scale diagram which measures the better visual color difference

than the CIE xy chromaticity diagram.

Figure 2.7: The CIELUV uniform chromaticity scale diagram, taken from http:

//en.wikipedia.org/wiki/File:CIE_1976_UCS.png - Permission is granted for personal
use

In the CIELUV color space, the color difference, ∆E∗
uv can be calculated using the

Euclidean distance of the L∗, u∗ and v∗ coordinates expressed as:

∆E∗
uv =

√

(∆L∗)2 + (∆u∗)2 + (∆v∗)2. (2.10)
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2.4.3 The CIEDE2000

The CIE in 2000 recommended a new color difference formula, the CIEDE2000 [12] for

small to medium color difference evaluation. The formula is based upon the CIELAB

color space and Luo at el. [32] described the methodology used for developing the

formula from experimental color difference data. The CIEDE2000 formula is a complex

formula than its predecessor color difference formulas like the CIELAB and the CIE94

[10]. It includes specific weighting functions known as lightness (SL), chroma (SC) and

hue (SH), parametric factors (kL, kC , kH), the rotation term RT to correct chroma and

hue differences in the blue region and a scaling factor (1 + G) for the CIELAB a∗ to

improve the performance for gray colors. The color difference, ∆E∗
00 is calculated in

the non-Euclidean form expressed as:

∆E00 =

[

(

∆L′

kLSL

)2

+

(

∆C ′

kCSC

)2

+

(

∆H ′

kHSH

)2

+

RT

(

∆C ′

kCSC

)

·
(

∆H ′

kHSH

)]0.5

(2.11)

In Equation (2.11), RT is the rotation function and it is defined as:

RT = − sin(2∆θ)Rc

∆θ = 30 · exp−
(

h̄′ − 275

25

)2

Rc = 2

√

C̄ ′7

C̄ ′7 + 257

(2.12)

Similarly, the weighting functions are defined as:

SL = 1 +
0.015(L̄′ − 50)2
√

20 + (L̄′ − 50)2

SC = 1 + 0.045C̄ ′

SH = 1 + 0.015C̄ ′T

T = 1− 0.17 cos(h̄′ − 30o) + 0.24 cos(2h̄′ + .32 cos(3h̄′ + 6o)− 0.2 cos(4h̄′ − 63o)
(2.13)
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Here, the lightness, the chroma and the hue are expressed taking the average of a pair

of color samples. In equation form, we write:

L̄′ =
L∗
1 + L∗

2

2

C̄ ′ =
C ′
1 + C ′

2

2

h̄′ =
h′1 + h′2

2

∆H = 2
√

C ′
1C

′
2 sin

∆h′

2

(2.14)

The other terms used in the ∆E∗
00 formula are also defined in the following way:

L′ = L∗

a′ = a∗(1 +G)

b′ = b∗

C ′ =
√

a′2 + b′2

h′ = arctan
b′

a′

G =
1

2

(

1−
√

C∗7
ab

C∗7
ab + 257

)

(2.15)

C∗
ab is the average of the two samples in the color pair.

2.4.4 The OSA-UCS Color Space

In 1974, the committee on Uniform Color Scales of the Optical Society of America

developed a color space (color appearance system) that is based on the regular rhom-

bohedral lattice arrangement of color samples [18, 35]. The OSA-UCS system specifies

color by three coordinates, the constant OSA lightness LOSA and lattice coordinates

(j, g). j defines yellowness-blueness and g represents greenness-redness and they are

abstract parameters in the sense that a positive value of g will not indicate green;

instead, this parameter separates the blue and green colors. Correspondingly, the neg-

ative values of j parameter separates blue from the violet region. The OSA L can have

values from -7 to +5. Positive values for LOSA mean a color which is brighter than the

background, and negative values a color which is darker. The lattice points (L, j, g) of

the OSA-UCS color space can be derived from the CIE 1964 tristimulus values.
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Figure 2.8 shows the OSA-UCS color space. In such a structure, each color is

surrounded by 12 neighboring colors and the distances between a color and the nearest

neighbors at each point of the lattice are perceived as a uniform color-difference [13].

Figure 2.8: The OSA-UCS color space, taken from http://www.colorsystem.com/

?page_id=960&lang=en (visited,11/10/11) - Permission is granted for personal use

2.4.5 The OSA-UCS ∆EE

The OSA-UCS ∆EE is a new Euclidean color-difference formula using log compression

on the basis of the properties of the OSA-UCS color space [44]. Small and medium

color-differences can be measured efficiently by a simple Euclidean distance in the log-

compressed OSA-UCS space [42, 43] defined by the coordinates LE , GE and JE as:

LE =

(

1

bL

)

ln

[

1 +
bL
aL

(10LOSA)

]

, (2.16)

GE = −CE cos(h), (2.17)

JE = CE sin(h), (2.18)

CE =

(

1

bc

)

ln

[

1 +
bc
ac

(10COSA)

]

, (2.19)

(2.20)

21

http://www.colorsystem.com/?page_id=960&lang=en
http://www.colorsystem.com/?page_id=960&lang=en
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where, LE , GE , JE and CE are the log compressed lightness, chromaticity coordinates

and chroma respectively. The constants are:

aL = 2.890,

bL = 0.015,

ac = 1.256,

bc = 0.050.

(2.21)

In the OSA-UCS space, the chroma (COSA) and the hue angle (h) are derived from

the coordinates J and G, which correspond to the empirical j and g of the OSA-UCS

system as:

COSA =
√

G2 + J2, (2.22)

h = arctan(
−J

G
). (2.23)

The CIE 1964 (x10 y10 Y10) space to the OSA-UCS (LOSA, J,G) is defined through a

sequence of linear transformations and a logarithmic compression as follows:

LOSA =

(

5.9[(Y
1/3
0 − 2

3
) + 0.042(Y0 − 30)1/3]− 14.4

)

1√
2
,

Y0 = Y
(

4.4934x2 + 4.3034y2 − 4.2760xy − 1.3744x− 2.5643y + 1.8103
)

.

(2.24)





A
B
C



 =





0.6597 0.4492 −0.1089
−0.3053 1.2126 0.0927
−0.0374 0.4795 0.5579









X
Y
Z



 , (2.25)

[

J
G

]

=

[

SJ 0
0 SG

] [

− sinα cosα
sinβ − cosβ

]





ln
(

A/B
An/Bn

)

ln
(

B/C
Bn/Cn

)



 (2.26)

=

[

2(0.5735LOSA + 7.0892) 0
0 −2(0.764LOSA + 9.2521)

]

×
[

0.1792[lnA− ln(0.9366B)] + 0.9837[lnB − ln(0.9807C)]
0.9482[lnA− ln(0.9366B)]− 0.3175[lnB − ln(0.9807C)]

]

.

(2.27)

2.5 The Munsell Color Order System

In colorimetry, a color order system based on the principles of color perception describes

a logical method to organize color perception consisting with the following properties:
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• Have natural dimensions for hue, chroma and lightness

• Have perceptually uniform scales

Many color order systems have been developed [2, 24] and are in use for the scientific

and industrial interests. Within the numerous color order systems [2, 70], the Munsell

color system [40] is perhaps the best known and the most studied scientifically, because

of its careful color scale formulation.

The Munsell color order system specifies colors in a three-dimensional space ac-

cording the three color attributes Munsell hue, value and chroma. These attributes can

be represented cylindrically and varied independently in three dimensions as shown in

Figure 2.9. The neutral colors are placed along a vertical line, called the neutral axis

Figure 2.9: The Munsell color system, taken from http://en.wikipedia.org/

wiki/Munsell_color_system (visited,14/10/11) - Permission is granted for personal
use.

with black at the bottom, white at the top and all grays in between. The different hues

are displayed at various angles around the neutral axis. The chroma scale is perpen-

dicular to the axis, increasing outward. This three-dimensional arrangement of colors

is called the Munsell color space where the perceptive distribution of color is uniform.

For the scientific study of the color spaces and color difference formulas, the Munsell

data can be plotted into the different color spaces. Figure 2.10 shows an example of

plotting the Munsell hue and chroma plotted in the xy chromaticity diagram of the CIE
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2. BACKGROUND AND STATE OF THE ART

xyY color space at the constant Munsell value 5. A closer inspection of the Munsell

constant - hue lines show that most hue lines are curved starting from the achromatic

origin.

Figure 2.10: The Munsell hue and chroma in the CIE xy chromaticity diagram
at the Munsell value - 5.

2.6 Riemannian Space and Line Element

Riemannian space describes curvature of a surface by smooth manifolds with a Rieman-

nian metric tensor. It generalizes Euclidean geometry to spaces that are not necessarily

flat, although they still resemble the Euclidean space at each point infinitesimally. In

the Riemannian space, the distance between two points is measured by means of a

smooth positive definite symmetric form. For example, the arc length of curves can be

determined by the Riemannian metric tensors and analysis of differential equations that

have been generalized to the setting of Riemannian manifolds. The formal definition

of Riemannian space and mathematical details can be found in [4]. The Riemannian

symmetric space can be applied as a tool to color spaces for measuring color difference

distances.

Considering a color space as a Riemannian space, small color differences can be

measured locally in terms of color distances between a color point and neighborhoods

of points in that space. Such color difference distances represent threshold of color

differences. They described by ellipsoids in three dimensions and ellipses in two dimen-

sions. These representation of color differences can be mapped from one color space
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to other color space due to the isometry between Riemannian spaces provided that the

Gaussian curvatures at the corresponding points must be the same [25, 48]. This is

also called a distance-preserving diffeomorphism between Riemannian spaces [6]. The

isometry feature plays an important role to study the performance of various color

spaces and color difference metrics for measuring the the perceptual color differences.

Helmholtz [60] did first attempt to define a line element and a Riemannian metric

tensor for the color space to describe the mechanism of color vision. Basically, line

elements are mathematical formulations in terms of first fundamental form in a color

space defined as the Riemannian space in which perceptual or visual color differences

are represented by color vectors. The application of the line element is to compute the

shortest length or the distance between any two points in such a color space from the

Riemannian metric. The shortest length is called a geodesic which is used to evaluate

magnitude of their perceptual color differences. The geodesics are straight lines in a

flat space but in the Riemannian space they are generally curved.

2.6.1 Formulation of the Line Element for Color Space

In this subsection, the mathematical form of the line element is described considering

the CIE chromaticity color space xyY as the three dimensional Riemannian space.

Suppose p1 and p2 are two points in such a color space with coordinates (x, y, Y ) and

(x + dx, y + dy, Y + dY ). The distance ds between these two points can be expressed

in the following quadratic form:

ds2 = g11dx
2 + 2g12dxdy + g22dy

2 + 2g13dxdY + 2g23dydY + g33dY
2. (2.28)

Equation 2.28 in matrix form is:

ds2 =
[

dx dy dY
]





g11 g12 g13
g21 g22 g23
g31 g32 g33









dx
dy
dY



 , (2.29)

with g12 = g21 and g23 = g32. The coefficients gik in Equation 2.29 is a positive definite

symmetric metric tensor and it is known as the Riemannian metric. The distance ds is

called the line element. At the constant ds, the Riemannian metric gives an ellipsoid

at a color center. In a two dimensional color space, the metric gik has the following
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form:

gik =

[

g11 g12
g21 g22

]

(2.30)

The metric represents the chromaticity difference of any two colors measured along the

geodesic of the surface and it gives the chromaticity discrimination ellipses in terms of

chromaticity coordinates (x, y) at constant luminance Y . MacAdam’s ellipses in Figure

2.4 are the examples of chromaticity discrimination ellipses.

2.7 Line Element Models

In this section, the author will briefly discuss historical line element models based on

color fundamentals R, G and B or cone fundamentals. In theses color spaces, color

differences with increments have assumed to be based on the Weber-Fecher law.

2.7.1 Helmholtz Line Element Model

Helmholtz [60] assumed that all three R,G and B color vision processes are identical

and satisfy the Weber-Fecher law:

dR

R
=

dG

G
=

dB

B
= const (2.31)

where, dR, dG, dB are the incremental changes in the processes. Assuming a Euclidean

space, he purposed that with all three primaries in operation, the smallest perceptible

difference is obtained by combining the fractional deviations for the three primaries.

The line element consists following form:

ds =

[

(

dR

R

)2

+

(

dG

G

)2

+

(

dB

B

)2
]1/2

(2.32)

where ds is the threshold difference between two points in the R,G and B space. This

line model possessed difficulties to fit experimental data of color discrimination [29]. As

pointed out by Schrödinger [50], the Helmholtz line element does not have the same

luminous efficiency curve as obtained from the directly observed V (λ) curve.
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2.7 Line Element Models

2.7.2 Schrödinger Line Element Model

Schrödinger [50] proposed a more complex line element to correct the shortcomings of

the Helmholtz line element of following form:

ds2 =
1

IRR+ IGG+ IBB

[

IR(dR)2

R
+

IG(dG)2

G
+

IB(dB)2

B

]

(2.33)

where IR, IG and IB are the luminous efficiency functions of the three fundamental

color vision processes. The factor 1/IRR + IGG + IBB makes a surface of constant

brightness plane in tristimulus space for this line element. The additivity of brightness

considered by Schrödinger was a strong point of his line element because with a suitable

choice of the relative values of the constants IR, IG and IB, brightness deduced from

the Schrödinger line element agree approximately with the luminances based on the

experimentally determined V (λ) curve. However, his line element did not get practical

importance because of difficulties to calculate relative values of constants and it has

not been studied intensively [70].

2.7.3 Stiles Line Element Model

Stiles [56] suggested a line element based on his two color thresholds experimental data.

It has the following form:

ds2 =

[

ζ(R)

ρ
(dR)

]2

+

[

ζ(G)

γ
(dG)

]2

+

[

ζ(B)

β
(dB)

]2

(2.34)

where ζ(R) = 9/1 + 9R, ζ(G) = 9/1 + 9G and ζ(B) = 9/1 + 9B are experimentally

determined functions. ρ, γ and β are the Weber fractions with values 1.28, 1.65 and 7.25

respectively. Stiles line element was found good to fit visual experimental data than the

above mentioned two line elements. The constant values indicates that ”blue” vision

process is less sensitive than ”green” and ”red”. However, there remain experimental

data that can not be predicted adequately [70].

2.7.4 Vos and Walraven Line Element Model

Vos and Walraven [65] line element is based on photon noise methodology in place

of the empirical Weber-Frencher law. They consider the first the case in which the

visual mechanism is stimulated by color stimuli of low luminances. The important
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new concept introduced by Vos and Walraven to the notion of the line element is that

the out put signals of the individual cone mechanism are integrated by combining two

chromatic signals and one luminance signal, before a difference signal is transmitted to

the brain [62]. According to their hypothesis, in the cone mechanism zone, the signal

to noise output can then be treated in terms of standard Poisson statistics as given

below:
[

Signal

Noise

]

output

=
dN√
N

(2.35)

where N is the average number of quanta absorbed per second. Vos and Walraven

concluded that opponent processing does not play a role at the threshold level and

they defined line element as follows:

(ds)2 =

[

dR

[R(1 +R/R0 +R2/R2
1)]

0.5

]2

+

[

dG

[G(1 +G/G0 +G2/G2
1)]

0.5

]2

+

[

dB

[B(1 +B/B0 +B2/B2
1)]

0.5

]2
(2.36)

where RGB are the responses of the three independently operating cone mechanisms.

The subscript 0 indicates the number of quanta for which saturation occurs and sub-

script 1 the number of quanta for which supersaturation occurs. Thus, this model of

line element can account for various level of saturation of the cone system. Vos and wal-

raven find reasonable agreement between the line element prediction and experimental

color discrimination data. This is the most elaborate line element which includes both

Helmholtz and Schrödinger concepts.

2.8 Jacobian Method for Coordinates Transform

The first fundamental form ds2 of Equation 2.28 can be mapped from one coordinate

system to other coordinate system using the Jacobian method. Suppose, (x, y, Y )

coordinates are related to (u, v, w) having new metric tensor g′ik. The metric tensor gik

of the (x, y, Y ) coordinate system is also related to the new metric tensor g′ik as follows:





g′11 g′12 g′13
g′21 g′22 g′23
g′31 g′32 g′33



 =





∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂Y
∂u

∂Y
∂v

∂Y
∂w





T 



g11 g12 g13
g21 g22 g23
g31 g32 g33









∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂Y
∂u

∂Y
∂v

∂Y
∂w



 (2.37)
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where the superscript T denotes the matrix transpose and the matrix

J =
∂(x, y, Y )

∂(u, v, w)
=





∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂Y
∂u

∂Y
∂v

∂Y
∂w



 (2.38)

is the Jacobian matrix for the coordinate transformation.

2.9 The Geodesic Equation

The line element in a color space can also be defined as:

ds2 = gikdx
idxk. (2.39)

where ds is the incremental distance between two points, dxi and dxk are differential

coordinates.Here, Einstein’s summation convention which indicates summation over

repeated indices, aibi =
∑

i a
ibi is used. If we consider two points p0 and p1, the

distance between the two points along a given path is given by the line integral:

s =

∫ p1

p0

ds =

∫ p1

p0

(gikdx
idxk)

1

2 . (2.40)

The shortest distance between p0 and p1 can be obtained by minimizing s with respect

to the path. This path is called the geodesic that represents the positive distance

function in the color space. Let λ be a variable that parameterizes the path taken. So,

let us define xi = xi(λ). Equation 2.40 can be written as:

s =

∫ p1

p0

ds =

∫ λ1

λ0

(

gik
dxi

dλ

dxk

dλ

)

1

2

dλ. (2.41)

Using variational calculus approach and introducing the Lagrangian L[dxi/dλ, xi] =
√

gik dxi/dλ dxk/dλ, we can define:

dxi

dλ
= ẋi (2.42)

ds

dλ
= L
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Equation (2.40) in terms of the variation of distance s with path is

δs =

∫ λ1

λ0

δL dλ

=

∫ λ1

λ0

[

∂L

∂xi
δxi +

∂L

∂ẋi
δẋi
]

dλ

(2.43)

where

δẋi = δ

(

dxi

dλ

)

=
d

dλ
(δxi). (2.44)

Integrating the second term by parts and using Equation (2.44), we get

∫ λ1

λo

∂L

∂ẋi
d

dλ
(δxi) dλ =

∂L

∂ẋi
δxi
∣

∣

∣

λ1

λ0

−
∫ λ1

λ0

d

dλ

(

∂L

∂ẋi

)

δxidλ. (2.45)

In this case, every path starts at λ0 and terminates at λ1, there is no variation of the

coordinates xi at the endpoints and the integrated term in Equation (2.45) vanishes.

We can write Equation (2.43) as:

δs =

∫ λ1

λ0

[

∂L

∂xi
− d

dλ

(

∂L

∂ẋi

)

δxidλ

]

δxidλ. (2.46)

The distance s will be minimum when δs = 0. From Equation (2.46) with the criteria

of minima, we can obtain the Euler-Lagrange equation in the following form:

∂L

∂xi
− d

dλ

(

∂L

∂ẋi

)

= 0 (2.47)

For the positive symmetric metric, we have gik 6= gik(ẋ
j) and ∂ẋm

∂ẋn = δmn and the

derivatives of Equation (2.47) are computed step by step. First, we find

∂L

∂ẋi
=

1

2L
gkj

∂

∂ẋi
(ẋk ẋj)

=
1

2L
gkj (δikẋ

j + δij ẋ
k)

=
1

2L
(gij ẋ

j + gkiẋ
k)

=
1

2L

(

gij
dxj

dλ
+ gki

dxk

dλ

)

(2.48)

Here, j in the first term and k in the second term are dummy indices and Equation
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(2.48) can be written as:

∂L

∂ẋi
=

1

L

(

gik
dxk

dλ

)

= gik
dxk

ds
. (2.49)

Therefore,

d

dλ

(

∂L

∂ẋi

)

=
d

ds

(

gik
dxk

ds

)

ds

dλ
. (2.50)

Now, we compute first term of Equation (2.47) with L = ds/dλ

∂L

∂xi
=

1

2L

∂gkj
∂xi

dxk

dλ

dxj

dλ
=

1

2

∂gkj
∂xi

dxk

ds

dxj

ds

ds

dλ
(2.51)

Combining Equations (2.51) and (2.50), the geodesic equation is:

1

2

∂gkj
∂xi

dxk

ds

dxj

ds

ds

dλ
− d

ds

(

gik
dxk

ds

)

ds

dλ
= 0

1

2

∂gkj
∂xi

dxk

ds

dxj

ds
− d

ds

(

gik
dxk

ds

)

= 0.

(2.52)

The second term of Equation (2.52) can be expanded as:

d

ds

(

gik
dxk

ds

)

= gik
d2xk

ds2
+

dgik
ds

dxk

ds

= gik
d2xk

ds2
+

∂gik
∂xj

dxj

ds

dxk

ds

= gik
d2xk

ds2
+

1

2

(

∂gik
∂xj

+
∂gij
∂xk

)

dxk

ds

dxj

ds

(2.53)

Here, the reindexing of repeated indices have done using the property of the sym-

metric metric. The Equation (2.52) becomes:

gik
d2xk

ds2
=

1

2

∂gkj
∂xi

dxk

ds

dxj

ds
− 1

2

(

∂gik
∂xj

+
∂gij
∂xk

)

dxk

ds

dxj

ds

= −1

2

[

∂gik
∂xj

+
∂gij
∂xk

− ∂gkj
∂xi

]

dxk

ds

dxj

ds

(2.54)

Changing the dummy index k to m, Equation (2.54) is:

gik
d2xk

ds2
= −1

2

[

∂gim
∂xj

+
∂gij
∂xm

− ∂gmj

∂xi

]

dxm

ds

dxj

ds
(2.55)
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The final geodesic equation is

d2xk

ds2
+ Γk

mj

dxm

ds

dxj

ds
= 0. (2.56)

where Γk
mj are called Christoffel symbols. They are defined in terms of the metric

tensor as follows:

Γk
mj =

1

2
gik
[

∂gim
∂xj

+
∂gij
∂xm

− ∂gmj

∂xi

]

. (2.57)

Here, gik is the inverse of the metric gik satisfying gikgki = δik. Here, δik is the Kronecker

delta which vanishes for i 6= k.
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Chapter 3

Contribution: Summary of the

Papers

3.1 Introduction

Outcomes of this research work is published in different conferences and journal. The

relation between the papers and the method is demonstrated by the block diagram

in Figure (3.1). In this figure, the letters A, B, C, D and E in block represent five

different papers. The arrow lines show how they relate each other. The ’metric’ blocks

represent the Riemanian metrics of four color difference formulas ∆E∗
ab, ∆E∗

uv, the

Remannaized (approximate form) ∆E00, the OSA-UCS ∆EE . For example, ’DE∗ab

Metric’ block means the Riemannian metric tensor of ∆E∗
ab color difference formula

derived from the line element in the CIELAB color space. Similarly, how these metrics

transformed in different color spaces by the Jacobian method are shown in other blocks

connecting them by double arrow lines. Such a line also describes that the process

is vice versa. Experimental data used in this research work is shown in red outlined

blocks. Their use in different papers are shown by connecting the red lines. Comparison

of computed ellipses from different metrics with experimentally observed ellipses is

done in chromaticity diagram. Paper E focuses how these different metrics are used

to study perceptual attributes hue and chroma. Variational method block represents

computation of Euler-Lagrange equations associated with these metrics which give hue

geodesics and chroma contours according to the Schrödinger’s hypothesis [50]. This

hypothesis is tested with the Munsell hue and chroma in the CIELAB color space.
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Figure 3.1: Block diagram demonstrating the relation between the papers and
the method - A pictorial overview of this research work.
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3.2 Paper A: Evaluating Color Difference Formulae by

Riemannian Metric

In this paper, line elements for the CIELAB (∆E∗
ab) and the CIELUV (∆E∗

uv) formu-

las [8] are derived to study their performance for measuring experimentally observed

threshold color matching data sets. These data sets were developed by MacAdam [34]

using single observer and Wyszecki and Fielder [69] using three observers. They are

represented in terms of JND ellipses in the xy chromaticity diagram. A method to

relate Riemannian metric tensor gik with the ellipse parameters, the principal axes and

the angle formed by them are presented in details. The final form of equation is (this

can also be found in [70]):

g11 =
1

a2
cos2 θ +

1

b2
sin2 θ

g12 = cos θ sin θ (
1

a2
− 1

b2
)

g22 =
1

a2
sin2 θ +

1

b2
cos2 θ

(3.1)

Here, a and b represent the semi major axis and the semi minor axis of an ellipse

respectively and gik are the coefficients of the metric tensor. The equation for angle is:

tan(2θ) =
2g12

(g11 − g22)
(3.2)

Line elements for the CIELAB and the CIELUV color difference equations to measure

the infinitesimal color difference at a color point in their respective color spaces are

derived as follows:

Line element of the CIELAB color difference formula:

(dE∗
ab)

2 =
[

dL∗ da∗ db∗
]





1 0 0
0 1 0
0 0 1









dL∗

da∗

db∗



 . (3.3)

Line element for the CIELUV color difference formula:

(dE∗
uv)

2 =
[

dL∗ du∗ dv∗
]





1 0 0
0 1 0
0 0 1









dL∗

du∗

dv∗



 . (3.4)

Since the experimentally observed ellipses are represented in the CIE xyY space,
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it is necessary to map or transfer the line elements of above two formulas from their

respective color spaces to the same xyY color space. The Jacobian method is applied

to transfer the gik metrics of above two formulas derived from line elements into the

CIE xyY space. It takes following steps:

• CIELAB ⇔ CIEXYZ ⇔ CIExyY

• CIELUV ⇔ CIEXYZ ⇔ CIExyY

This method requires computation of partial derivatives between color vectors of two

color spaces. For example, the gik metric transfered from the CIELAB to CIEXYZ

space is expressed as:





dL∗

da∗

db∗



 =





∂L∗

∂X
∂L∗

∂Y
∂L∗

∂Z
∂a∗

∂X
∂a∗

∂Y
∂a∗

∂Z
∂b∗

∂X
∂b∗

∂Y
∂b∗

∂Z









dX
dY
dZ



 . (3.5)

In Equation (3.5) the partial derivatives of color vectors in matrix form is called the

Jacobian matrix and it is also expressed as ∂(L, a∗, b∗)/∂(X,Y, Z). The final transfor-

mation of gik metric tensor from the CIELAB color space to the CIE xyY with two

Jacobian matrices is:

(dE∗
ab)

2 =
[

dxdydY
] ∂(X,Y, Z)

∂(x, y, Y )

T ∂(L, a∗, b∗)

∂(X,Y, Z)

T

I
∂(L, a∗, b∗)

∂(X,Y, Z)

∂(X,Y, Z)

∂(x, y, Y )





dx
dy
dY



 (3.6)

Here, the whole transformation matrix is ∂(X,Y,Z)
∂(x,y,Y )

T ∂(L,a∗,b∗)
∂(X,Y,Z)

T
I ∂(L,a∗,b∗)

∂(X,Y,Z)
∂(X,Y,Z)
∂(x,y,Y ) and it

represents the metric tensor of the CIELAB color space in the CIE xyY color space.

The coefficients of the first two columns and rows of the three dimensions metric tensor

gives us the threshold ellipse in the chromaticity diagram. The similar method is

applied to compute the threshold ellipse of the CIELUV formula.

Ellipse comparison method: A technique is developed to compare the line el-

ement derived ellipses of above two formulas with experimentally observed ellipses in

the xy chromaticity diagram. In such a technique, the ratio of the union area and the

intersection area of a pair of ellipses is calculated. Figure (3.2) shows two ellipses A

and B. The ratio of the intersection area and the union area between them is expressed
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3.2 Paper A: Evaluating Color Difference Formulae by Riemannian Metric

Figure 3.2: A pair of ellipses having same center - illustration of a pair of ellipses
comparison method.

as:

R =
Area(A

⋂

B)

Area(A
⋃

B)
(3.7)

where R is a nonnegative value between 0 < R ≤ 1. Higher value of R means two

ellipses are closely matched.

In this paper, a traditional approach to compare a pair of ellipses having same

center is also presented [69]. Three parameters, the area of ellipse, the ratio of the

principal axes and the angle between them are calculated. The difference in numerical

values of these parameters between a pair of ellipses indicate how well they match.

Result: Figure (3.3) shows MacAdam’s original and the computed ∆E∗
ab and ∆E∗

uv

ellipses in the CIE xy chromaticity diagram. The color centers for these computed

ellipses are according to the MacAdam’s data. Ellipses are computed at L∗ = 70, for

the CIELAB and CIELUV color space formulas and to achieve this lightness value

the Y component of the CIE xyY color space is approximated at 0.4 scale. First,

the comparison between MacAdam’s ellipses and the computed ellipses of above two

formulas are done by the traditional approach [69] as stated above.

The comparative data of shape (the ratio of semi major (a) and semi minor (b)

axes) and the orientation (angle) between MacAdam, the ∆E∗
ab and ∆E∗

uv ellipses

show that there are disagreement with experimentally observed ellipses and computed

ellipses of the CIELAB and CIELUV space formulas [46]. However, it can be seen that

computed ellipses of two formulas have general trends of agreement comparing with

area of MacAdam’s ellipses. For example, the blue is the smallest, the green largest
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(a) CIELAB Ellipses having same color centers as MacAdam.

(b) CIELUV Ellipses having same color centers as MacAdam.

Figure 3.3: MacAdam’s original and the computed (∆E∗

ab) and (∆E∗

uv) ellipses in the
CIE31 chromaticity diagram(enlarged 10 times).
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and that red, blue and yellow are more elongated than others.

Similarly, comparing between computed ∆E∗
ab and ∆E∗

uv ellipses with respect to the

shape, it is found that a/b ratio is significantly higher in most of the ∆E∗
ab ellipses than

the ∆E∗
uv ellipses of same color centers. This result indicates that the ∆E∗

uv ellipses

are more circular than the ∆E∗
ab ellipses.

The numerical values of R of the proposed technique stated above to compare the

∆E∗
ab and ∆E∗

uv ellipses with respect to MacAdam’s ellipses are also calculated. This

technique has specific advantage over the traditional method for comparing a pair of

ellipses. For a pair of ellipses, it takes account of variations in the size, the shape and

the orientation simultaneously. Therefore, this value is an indicator which tells us how

well two ellipses match each other. The sign test (standard statistical test) of these

ratio values R indicates that the ∆E∗
uv is performing better than the ∆E∗ab at a level

of significance p = 0.015.

Figure (3.4) shows the ∆E∗
ab and the ∆E∗

uv ellipses having the same color centers as

Wyszecki’s three observers color-matching ellipses respectively. The comparative data

of area, shape and orientation between three observers ellipses and computed ∆E∗
ab and

∆E∗
uv ellipses show a similar behavior as found for the MacAdam data. The sign test

of the ratio R for this data set also indicates that the ∆E∗
uv is better than the ∆E∗

ab

with p = 0.0125.

Conclusion: The presented method can compute threshold ellipses of the CIELAB

and CIELUV space formulas in the chromaticity diagram and thus gives the opportunity

to evaluate how well they match the experimentally observed visual color matching

data. The comparison between the computed ∆E∗
ab and ∆E∗

uv ellipses with two different

visual data sets [34, 69] suggest that neither formulas are good enough to predict the

visual color matching. However, the ratio test method shows that the CIELUV space

based formula performs better than the CIELAB space based formula to predict visual

color difference for both of the data sets tested.
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(a) CIELAB ellipses having same color centers as Wyszecki ellipses.

(b) CIELUV ellipses having same color centers as Wyszecki color-matching
ellipses.

Figure 3.4: Wyszecki’s three observers color-matching ellipses and computed the ∆E∗

ab

and ∆E∗

uv ellipses in the CIE31 chromaticity diagram (enlarged 5 times).
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Contribution in paper A:

In this paper, formulation of the line elements of ∆E∗
ab and ∆E∗

uv metrics in their

respective color spaces are introduced. The Riemannian metrics of ∆E∗
ab and ∆E∗

uv are

transformed into the CIE XYZ and the CIE xyY color spaces by the Jacobian method.

Threshold ellipses are computed in the xy chromaticity diagram by this method. Math-

ematical derivations for this method is derived. A pair of ellipses comparison method is

developed. Statistical sign test method is employed to find out the relationship between

the predicted ellipses and experimentally observed ellipses.

3.3 Paper B: Riemannian Formulation of the CIEDE2000

Color Difference Formula

In this paper, Riemannian metric tensor of the CIE recommended latest color difference

formula, the CIEDE2000 [32] is formulated by applying the line element theory. The

CIEDE2000 is the improved version of the CIELAB space based formula with specific

weighting functions known as lightness (SL), chroma (SC) and hue (SH), parametric

factors (kL, kC , kH), and the rotation term RT to correct chroma and hue differences in

the blue region. This formula is based on the supra threshold data like BFD-P [31] and

claimed as an excellent out performing formula, when measured against the aggregate

data set. The main focus of this paper is to study the performance of this advanced

formula for measuring small color differences in other color space as the formula does

not have its specific or corresponding color space.

Line element of the CIEDE2000 color difference equation gives the Riemannian

metric tensor gik in a non-Euclidean metric form. The Jacobian method is used to

transform this metric tensor into the CIE 1964 xyY color space. The transformation

steps are:

• CIELCH ⇔ CIELAB ⇔ CIEXYZ ⇔ CIExyY
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The purpose of such transformation is to compute the ellipses in that color space where

experimentally observed BFD-P ellipses are represented. The computed ellipses of the

CIEDE2000 formula and the original ellipses obtained from the BFD-P data set are

compared by calculating the ratio of the area of the intersection and the area of the

union as described in the paper A. MacAdam’s ellipses are also compared with the

computed CIEDE2000 ellipses in the CIE 1931 xy chromaticity diagram.

Result: Figure (3.5)shows the computed ellipses of the CIEDE2000 formula and

BFD-P ellipses in the CIE1964 xy chromaticity diagram with same color centers at the

constant lightness value (L∗ = 50). It can be seen that both BFD-P and CIEDE2000

ellipses for the neutral and gray color centers are almost the same. However, in

CIEDE2000, the orientation of ellipses in the blue region are rotated compared to

the BFD-P ellipses of same region. On the other hand, in the red region too, the

CIEDE2000 ellipses are rotated in opposite direction and stretched in length. For

Figure 3.5: BFD-P and Computed CIEDE2000 ellipses in the CIE64 Chro-
maticity diagram - Enlarged 1.5 times

comparing the similarity of a pair of ellipses, the ratio R as stated in paper A: has
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maximum value .95 in the neutral color region and minimum value .25 around high

chroma blue. Figure (3.6) shows the MacAdam’s original ellipses and the CIEDE2000

ellipses in the CIE 1931 xy chromaticity diagram. This figure helps to visualize the dif-

ference between experimentally observed and computed ellipses in terms of size shape

and orientation in a simple manner.

Figure 3.6: MacAdam and CIEDE2000 ellipses plotted in the CIE1931 chro-
maticity xy diagram - Enlarged 10 times.

Conclusion: Formulation of the CIEDE2000 formula into the Riemannian metric

and application of the Jacobian method to transfer it into different color spaces as well

as to compute ellipses from this metric are successfully accomplished. Comparing the

computed ellipses with BFD-P ellipses, orientation problems are seen the CIEDE2000

ellipses in the blue region as well as in the red region. This indicates that further

research for the improvement of the rotation term or the color difference metric, in

general is necessary.

Contribution in paper B:

Formulation of the complex the CIEDE2000 formula in terms of the line element
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is performed. Ellipses of this formula is computed in the xy chromaticity diagram to

compare with experimentally observed BFD-P data as well as with the MacAdam data

in the CIE 1964 chromaticity diagram. In this process, mathematical derivations of the

Jacobian metrics in the CIE XYZ and xyY color spaces are done (See Appendix A for

the detail derivations).

3.4 Paper C: Riemannian Formulation and Comparison

of Color Difference Formulas

In this paper four color difference formulas the CIELAB (∆E∗
ab), the CIELUV (∆E∗

uv),

the OSA-UCS (∆EE) and the infinitesimal approximation of the CIEDE2000 (∆E00)

are taken to study by the line element theory. It is an extended version of paper A

and paper B with another color difference formula the the OSA-UCS (∆EE). The

purpose of this paper is to do a comparative study between computed ellipses of these

four color difference metrics with respect to the supra-threshold BFD-P [31] ellipses

in the CIE 1964 xy chromaticity diagram. In this paper, formulating Remiannian

metric of ∆E00 (refer Equation 2.11) is improved than presented in the paper B. The

Remiannian metric of the ∆E00 is formulated by using L′C ′h′ coordinates instead of

L′C ′H ′ due to the rule of the Riemannian geometry. Calculation of the Remiannian

metric using L′C ′h′ coordinates gives us an approximation of ∆E00 when we substitute

dH ′ = C ′dh′ as proposed by Völz [59] at infinitesimal color difference only. It is called

here Riemannized ∆E00 which can not be integrated to build CIE defined ∆E00 due

to the definition of ∆H ′. The detailed explanation is given in paper C. However, it is

approximately equal to the original CIEDE2000 formula at infinitesimal color difference

with a error rate less than 0.5% for ∆E00 ≤ 1.

For the ∆EE of the OSA-UCS log-compressed color space the line element as given

44



3.4 Paper C: Riemannian Formulation and Comparison of Color Difference
Formulas

in Equation (3.8) is written as:

(dEE)
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[
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The transformation of the Riemannian metric of this formula into the xyY color

space is:
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, (3.9)

where ∂(LOSA, G, J)/∂(x, y, Y ) is a 3×3 Jacobian matrix that is further divided into the

1×3 and 2×3 Jacobian matrices ∂LOSA/∂(x, y, Y ) and ∂(G, J)/∂(x, y, Y ), respectively.

The detail computation of Jacobian metrics are found in paper C as well as in appendix

I.

Result: The transformed 3 × 3 Riemmanian metrics of the CIELAB (∆E∗
ab), the

CIELUV (∆E∗
uv), the OSA-UCS (∆EE) and the Riemannized CIEDE2000 (∆E00)

give ellipsoid in the CIE xyY color space. If we define constant lightness, then partial

derivatives of lightness functions of all Jacobians will be zero. This gives 2× 2 metric

tensors and ellipses are computed in the xy chromaticity diagram. Ellipses of above four

formulas are computed at the constant lightness value (L∗ = 50) and compared with the

BFD-P ellipses. Similarity comparison between the BFD-P and ellipses derived from

above four formulas is done by calculating R values as stated in the paper A. Figure

(3.7) shows histogram of R values between BFD-P and ∆E∗
ab, ∆E∗

uv, Riemannized

∆E00 and ∆EE ellipses. The maximum R values given by ∆E∗
ab, ∆E∗

uv, Riemannized

∆E00 and ∆EE are .81, .87, .95, and .93 respectively. Similarly, the lowest R values

of these four formulas are, .1, .14, .2 and .2 respectively. Ellipse pairs of all four color

difference metrics having maximum R values are located around neutral color region
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(a) CIELAB. (b) CIELUV.

(c) CIEDE00. (d) OSA-UCS ∆EE .

Figure 3.7: Histogram of comparison values of ∆E∗

ab, ∆E∗

uv, Riemannized ∆E00 and
OSA-UCS ∆EE with respect to BFD-P ellipses. The values lie in the range 0 < x ≤ 1.

while matching pairs with lowest R are found around high chroma blue. The result

indicates that the Riemannized ∆E00 and ∆EE perform better than the ∆E∗
ab and the

∆E∗
uv.

Box plots are also used to study ellipse matching values (R) of these metrics (see

figure 3.8). The Riemannized ∆E00 gives the highest median value while the CIELAB

median value is the lowest. the performance ranking of these metrics are categorized as

follows: Riemannized ∆E00 first, ∆EE second, ∆E∗
uv third and ∆E∗

ab fourth. However,

there is no big difference between ∆E00 and ∆EE and between ∆E∗
uv and ∆E∗

ab.

The pairwise statistical sign test of R values shows that at 5 % confidence level,
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Figure 3.8: Box plots of ellipse matching values (R) of the ∆E∗

ab, ∆E∗

uv, Riem-
annized ∆E00 and OSA-UCS ∆EE with respect to BFD-P ellipses - .

Riemannized ∆E00 and ∆EE both performed significantly better than ∆E∗
uv and ∆E∗

ab

metrics. Further, ∆E∗
uv performs better than ∆E∗

ab with p = 0.0176. There is no

significant difference between ∆E00 and ∆EE metrics.

The difference (∆E) between the Riemannized ∆E00 and the original ∆E00 metrics

for finite color differences by using test data of Gaurav Sharma et.al. [52] shows that

the error is less than 0.5% for ∆E00 ≤ 1 and for ∆E00 ≤ 2, it is smaller than 1.2%.

Therefore, the Riemannized ∆E00 is very close to the exact ∆E00 for the small colour

differences. Conclusion Riemannized ∆E00 and OSA-UCS ∆EE formulas measure

the visual color differences significantly better than ∆E∗
ab and ∆E∗

uv formulas.

However, neither formulas are fully perfect for matching the visual color differences

data. Among the CIELAB and CIELUV formulas, performance of the CIELUV is

found slightly better than the CIELAB. Similarly, there is no significant difference

between Euclidean ∆EE and Riemannized CIEDE2000 formulas. It is interesting to

note that the Euclidean ∆EE formula is not inferior to the complex, non-Euclidean

industry standard ∆E00 for measuring small color differences.

Contribution in paper C:

Formulation of the the OSA-UCS (∆EE) in terms of the line element is done. A
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comparative study between four color difference metrics to predict experimentally ob-

served BFD-P data in xy chromaticity diagram is done. The line element formulation

of the CIEDE2000 is elaborated more precisely. Box plots are used to show the com-

parative study of their performance. Based on the result, features of color spaces are

discussed.

3.5 Paper D: CIE Uniform Chromaticity Scale Diagram

for Measuring Performance of OSA-UCS Delta EE

and CIEDE00 Formulas

The CIELUV based u∗, v∗ diagram is used to compare the non-Euclidean approximate

form of ∆E00 and the Euclidean ∆EE color difference formulas for measuring the visual

data. At constant lightness,u∗, v∗ diagram is identical in shape to the CIE recommended

(CIE 15:2004) the uniform chromaticity scale (UCS) diagram. The motivation for this

paper is to implement the idea of other researchers who suggested to use u∗, v∗ diagram

before drawing any conclusions about visual color differences [23, 39, 57]. The uniform

chromaticity scale (UCS) diagram based on the CIELUV color space is developed by the

projective transform of tristimulus (XY Z) values. The intention of such transformation

is to get perceptual uniformity which means it is more suitable for measuring small color

differences. It is also interesting to know how well these two advanced formulas predict

visual color differences in an independent uniform color space like the CIELUV.

In this paper, equi-distance ellipses of the approximate form of ∆E00 and ∆EE are

computed in the u∗, v∗ diagram. They are compared with the BFD-P ellipses. Here,

the BFD-P ellipses are transformed into the CIELUV space from the xyY space where

theses ellipses are observed. The comparison between the computed ellipses of each

formula and BFD-P ellipses is done by calculating a matching ratio, R ∈ (0, 1].

Result The ellipses of both formulas are similar in the neutral region with respect
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to the BFD-P ellipses. In the blue region, ellipses of both formulas appear smaller in

size than the observed ellipses and they are following close pattern to BFD-P in the

green part but, rotated in the red region. Figure ?? shows box plot of the R values. We

Figure 3.9: Box plots of ellipse matching values of the approximate form of ∆E00

and OSA-UCS ∆EE with respect to BFD-P ellipses - Upper and lower quartiles
show full range of matching data.

can see that both ∆E00 and the ∆EE have similar median values with slight differences.

Figure shows (3.10) cumulative distribution function (CDF) of two R values . This

Figure 3.10: CDF plot of R values of the OSA-UCS ∆EE and the approximate
form of ∆E00 - .

function describes the distribution of R values by taking the sum of each value of R

having finite mean and variance. The maximum difference between two curves is .1
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and follow the pattern of normal distribution.

Conclusion: Simple Euclidean ∆EE metric is not inferior to the complex non-

Euclidean mathematical framework of ∆E00 for evaluating color differences in the u*

v* chromaticity diagram of the CIELUV color space.

Contribution in paper D

The CIELUV color space based u ∗ v∗ chromaticity diagram is used to compare the

performance of the approximate form of ∆E00 and the OSA-UCS ∆EE for predicting

the experimental data. To accomplish this task, the Jacobian metrics of these formulas

are computed in the CIELUV color space. Similarly, the BFD-p data which is repre-

sented in the CIE xy diagram is also transformed in the u ∗ v∗ chromaticity diagram

by the Jacobian method. Cumulative distribution function (CDF) plot is used to show

the comparison values of these metrics.

3.6 Paper E: Geodesic Calculation of Color Difference

Formulas and Comparison with the Munsell Color Or-

der System

This paper mainly focuses study of perceptual attributes hue, chroma and lightness

predicted by the four color difference formulas the CIELAB (∆E∗
ab), the CIELUV

(∆E∗
uv), the OSA-UCS (∆EE) and the infinitesimal approximate form (Riemannized) of

the CIEDE2000 (∆E00) in the CIELAB color space based on Schrödinger’s hypothesis

[50]. Riemannian metric tensors of these formulas can be used to compute the shortest

curve between two points in a color space which is called a geodesic.

Schrödinger’s explained the idea of deriving surfaces of constant brightness from

line element. He also hypothesized that all colors along a geodesic curve originating

from a point representing an achromatic stimulus on a surface of constant brightness

share the same hue. He further hypothesized that contours of constant chroma can be
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determined from these geodesics (henceforth called hue geodesics) by taking each point

on a chroma contour as the terminus of a hue geodesic such that all the hue geodesics

terminate on that chroma contour at the same geodesic distance. Explanation of this

hypothesis is also found in Wyszecki and Stiles [70]

Schrödinger’s hypothesis is tested by computing the hue geodesics and chroma con-

tours of four color difference formulas, the ∆E∗
ab , the ∆E∗

uv, the infinitesimal approx-

imate form of ∆E00 and the OSA-UCS based ∆EE in the CIELAB color space, and

comparing the results to the Munsell color order system. The mathematical construct

to compute these hue geodesics and chroma contours using Riemannian metric tensors

of each formula are explained in section 2.9. For such computation the Euler-Lagrange

equations are necessary to solve by using numerical method like the Runge-Kutta [16].

Results: The hue geodesics and chroma contours of the ∆E∗
ab , the ∆E∗

uv, the

Riemannized ∆E00 and the ∆EE are computed at L = 30/50/70, which correspond to

the Munsell value 3, 5 and 7 respectively. In the CIELAB color space, hue geodesics

of these color difference formulas start from the origin of a∗, b∗ to different directions.

In a similar way, chroma contours start from the a∗, b∗ origin. They are also evenly

spaced along the hue geodesic distance. The hue geodesics and chroma contours form

the geodesic grids of the above four color difference formulas. For example, Figure

(3.11) shows the hue geodesics and chroma contours of these four formulas computed

at L = 50

All these formulas derived hue geodesics and chroma contours do not match the

Munsell chromas and hue circles. Comparatively, the approximate ∆E00 and the ∆EE

predicted hue geodesics and chroma contours are found slightly better than predicted

ones by the ∆E∗
ab and the ∆E∗

uv. In the case of the approximate ∆E00, chroma con-

tours are elliptical in the central region of the CIELAB color space and their shapes

also diverge from circular to notch on their path in the blue and violet regions. This

happened due to the G parameter in the CIEDE2000 formula. Similarly, the shape of
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(a) CIELAB geodesic grid. (b) CIELUV geodesic grid.

(c) Riemannized CIEDE00 geodesic grid. (d) OSA-UCS ∆EE geodesic grid.

Figure 3.11: Computed geodesic grids of the ∆E∗

ab, the ∆E∗

uv, the Riemannized ∆E00

and the OSA-UCS ∆EE in the CIELAB space and compared with the Munsell chromas
and hues at the Munsell value 5.
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∆EE and ∆E∗
uv predicted geodesic grid is similar.

Conclusion:

The latest color difference formulas like the OSA-UCS ∆EE and the CIEDE2000

do not show better performance to predict hue geodesics and chroma contours than

the conventional CIELAB and CIELUV color difference formulas. These findings also

suggest that the distribution of hue geodesics and chroma contours of the above four

color difference formulas are weak to predict perceptual color attributes of the Mun-

sell system in all over the color space even though their quantitative color difference

measures are comparatively good.

Contribution in paper E:

With the Riemannian metrics developed in paper C, Schrödinger’s hypothesis is

tested for the CIELAB (∆E∗
ab), the CIELUV (∆E∗

uv), the OSA-UCS (∆EE) and the

infinitesimal approximate form (Riemannized) of the CIEDE2000 (∆E00). This is done

by computing hue geodesics and chroma contours of these metrics in the CIELAB color

space and compared with the Munsell system. The Jacobian metrics in the CIELAB

space is derived. Distribution of their color stimuli are studied to show how well they

predict perceptual color attributes.

3.7 Discussion

The development of many standard color difference formulas and color spaces suggest

that quantitative measurement of color differences between two colors has progressed

in the color science. All these color difference formulas attempt to decide whether two

colors are visually equivalent or not. But, to predict visual difference between two

colors is still challenging. There are mainly two reasons: first no existence of perfect

uniform color space. Secondly, color difference formulas are optimized to predict certain

experimental data and as a result, we can not say that such a color difference formula
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can able to approximate other kind of experimental data. For a specific application,

which color space or color difference formula should be used need mathematical analysis.

In color science, two colors can be discriminated locally at a point in a color space

with an infinitesimal approximation. Such an approach to predict the discriminabil-

ity between two colors is called the line element theory. In this theory, the metric

gik is introduced to describe nonlinear distortions imposed by the color vision system

in the color discrimination. This metric is based on the Riemannian space and it is

also called Riemannian metric tensor. It gives the intrinsic properties about the color

measured at a point in the color space. Specifically, the metric represents the chro-

maticity difference of any two colors measured along the geodesic of the surface. This

line element theory has also limitations specially if we want to relate the value of gik

to light adaptation (varying light conditions). However, considering the iso-luminance

plane as hypothesized by Schrödinger [50], the line element theory and the gik metric

provide an adequate characterization of the color discrimination data. Construction

of ellipses using color discrimination data sets in an iso-luminance plane prove this

fact. For example, starting from MacAdam [34], Brown [5], Wyszecki and Fielder [69],

to recent BFD-Perceptibility(BFD-P) [31], RIT-DuPont [3], Witt [66]and others con-

structed ellipses from their data sets. The main concern in this research study is not

primarily to discover better formulas for predicting the small color differences. It in-

tends rather with testing hypothesis concerning the organization of perceptual (visual)

color mechanisms as well as to study the relation between different color space and

color difference formulas. Therefore, study of the various color difference metrics by

the line element theory treating the color spaces as Riemannian spaces is useful as it

represents a natural theory of color vision.

The first four papers presented here describe the implementation of line element

theory for four color difference formulas, the ∆E∗
ab, the ∆E∗

uv, the approximate form of

∆E∗
00 and the ∆EE to evaluate their performance for measuring visual color differences.
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This is done by a comparative study between computed ellipses of these four color

difference metrics with respect to experimentally observed data sets. In this research

study, MacAdam, Wyszecki and Fielder and BFD-P data sets are used. The first

two are known as threshold data sets and the last one is supra-threshold data set. A

pair of ellipses comparison method is developed (see section 3.1) to compare between

computed ellipses of these formulas and experimentally observed ellipses from threshold

and supra-threshold data sets. This method gives color matching R values which takes

account of variations in the size, the shape and the orientation simultaneously for a

pair of ellipses. The pairwise statistical sign test of R values is also done between all

pairs of metrics.

The summary results of first four papers indicate that all these four formulas show

poor performance to measure visual color difference data in the blue region. Even the

latest ∆E∗
00 which has many parameters to correct chroma and hue differences in the

blue region does not show superior performance as expected in that region with respect

to other three color difference formulas. In the green region, the performance of these

formulas are seen better than in the blue region. Like wise, in the red region such

performance lies in between than blue and green regions. Comparatively, among the

four color difference formulas, the ∆E∗
ab shows the least performance to predict the

visual color difference, the ∆E∗
uv is better than the ∆E∗

ab and the approximate form

of ∆E∗
00 and the ∆EE tops the preceding two formulas. The statistical sign test of R

values shows that there is no significant difference between the approximate form of

∆E∗
00 and the ∆EE . Here , the error between the approximate form of ∆E∗

00 and the

original form of ∆E∗
00 is less than 0.5% for ∆E00 ≤ 1.

The overall analysis of above results also describes the characteristics of color spaces

used by above color difference metrics responsible for better performance. For example,

saturation is defined in ∆E∗
uv not in ∆E∗

ab [2]. In ∆EE , the lightness LOSA takes into

account the Helmholtz-Kohlrausch and crispening effects [44]. Further, the OSA-UCS
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system adopts a regular rhombohedral geometry which gives square grid with integer

value of lightness [45]. This makes OSA-UCS space more uniform than CIELAB and

CIELUV and suitable for small to medium color difference measurement. On the other

hand, the non-Euclidean Riemannized ∆E00 have many parameters for computing color

differences to predict visual color difference closely but, still it is lagging to reach its

goal. However, this formula has its specific advantage to correct the non-linearity of

the visual system. But, the quality of the formula depends on selecting parameters

values as well as the color space on which it is based. It could be a discussion point

further that without improving the color space, would it be a good idea to improve a

color difference formula?

The last paper describes how the Riemannian metrics of these formula are used

to test Schrödinger’s hypothesis for predicting perceptual attributes hue, chroma and

lightness with respect to the Munsell system. At a fixed value of lightness L∗, hue

geodesics originating from the achromatic point and their corresponding chroma con-

tours of the above four formulas in the CIELAB color space can be computed by solving

the Euler-Lagrange equations in association with the Riemannian metrics of these color

difference formulas. Hue geodesics and chroma contours predicted by above formulas

can be compared with the Munsell chromas and hues circles at different Munsell val-

ues. For such comparison, the necessary condition is that the lightness value should

correspond to the Munsell value. The result shows that computed hue geodesics and

chroma contours of these formulas do not predict precisely the Munsell chromas and

hue circles. In the blue and violet region, all formulas hue geodesics disagree highly

than the Munsell chroma. The ∆E∗
ab hue geodesics are intersecting the Munsell chro-

mas around yellow, green and blue areas and they are straight whereas the Munsell

chromas are curved at high chroma. The ∆E∗
uv predicted hue geodesics are intersecting

the Munsell chromas mostly in the third quadrant of the CIELAB space. They follow

the curvature pattern of the of the Munsell chromas, and their directions in the red
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and yellow regions of the CIELAB space are very close to the Munsell chromas.

In the case of approximate ∆E00, sharply curved hue geodesics and change in circu-

lar shape of chroma contours are found in the blue region which show poor performance

of this formula for predicting the Munsell chromas in that region. In the central re-

gion, chroma contours of this formula are also found elliptical instead to be circular.

Calculating hue geodesics and chroma counters setting G = 0(G parameter defined in

the ∆E00 formula) improves the elliptical nonlinearity except at the blue region. This

finding suggests that correcting chroma in the blue region of the color space can have

a diverse effect in the whole color space.

The ∆EE predicted chroma contours are seen similar to the Munsell hue circles in

the achromatic region of the CIELAB color space but, in other parts of the CIELAB

color space they are not matching the Munsell hue circles. The shape of ∆EE chroma

contours are similar to the ones predicted by the CIELUV formula, but they appear to

be more correct.

In general, the approximate ∆E00 and the ∆EE do not show better performance

for predicting the Munsell chroma and hue circles than the ones predicted by the

conventional the ∆E∗
ab and the ∆E∗

uv.
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Chapter 4

Conclusion and Perspective

The main purpose of this research work is to develop the line element model of dif-

ferent color difference formulas to study their performance for predicting visual color

difference. Next, to compute hue geodesics and chroma contours of these formulas to

test how well they predict perceptual color attributes. The concluding remarks of this

research study are listed below:

• Formulation of the line element distance of the ∆E∗
ab, the ∆E∗

uv, the approximate

(Riemannized) ∆E00 and the ∆EE and deriving their Riemannian metric tensors

by converting color coordinates into color vectors are accomplished. The Riem-

annized ∆E00 is found indistinguishable to the exact ∆E00 for the small color

differences.

• Computation of the threshold ellipses of these four formulas in different color

spaces is successfully done by applying the Jacobian method.

• A pair of ellipses comparison method is developed to compare the computed

ellipses of the formulas with the experimentally observed standard data sets.

This method gives a matching ratio R which takes account of variations in the

size, the shape and the orientation for a pair of ellipses simultaneously.
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• Comparison of the computed ellipses of the above four formulas with the exper-

imentally observed different standard data sets shows that neither formulas are

fully perfect for matching visual color difference data sets. However, Riemannized

∆E00 and the ∆EE formulas measure the visual color differences better than the

∆E∗
ab and the ∆E∗

uv formulas at local level.

• The Euclidean ∆EE formula is not inferior to the complex, non-Euclidean indus-

try standard ∆E00 for measuring small color differences.

• Computation of hue geodesics and chroma contours of above color difference for-

mulas are succeeded using their Riemannian metrics in the CIELAB color space

to test Schrödinger’s hypothesis with respect to the Munsell system.

• Comparisons of the geodesic grids (combined geometrical structure of hue geodesics

and chroma contours) of these formulas with the Munsell chromas and hue cir-

cles at the Munsell values 3, 5 and 7 show that none of these four formulas can

precisely fit the Munsell data.

• It is interesting to note that the latest color difference formulas like the OSA-UCS

∆EE and the Riemannized ∆E00 do not show better performance to predict hue

geodesics and chroma contours than the conventional CIELAB and CIELUV color

difference formulas.

In this research work, the line element theory of Riemannian form for four color

difference formulas as described above is tested to predict a variety of experimental

color discrimination data sets (MacAdam, Wyszecki and BFD-P). The recent BFD-

P data sets are based on printed color samples. To validate effectiveness of the line

element theory, it should be tested with other kind of color discrimination data sets

based rather than the printed color samples. One example could be color discrimination

data sets based on self illuminating color samples.
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Line elements basically concerns with the color vision mechanism and they are

developed by vision researchers. Whereas color difference formulas and color spaces

typically concern with printed color samples originated from the paint industry. These

color spaces and color difference formulas are developed on basis of trial and error with

the CIE XYZ system as underlying color description. The inadequacy of the CIE system

is that it does not consider cone receptor primaries for the color discrimination. In the

color vision research, color discrimination in the cone receptor level is important[64].

In addition, color order systems like the Munsell system are based on hue, chroma

and value ordering principle. These systems are considered perceptually uniform and

in many color discrimination context, they have proven to be useful. However, they do

not have any theoretical base.

From these facts, the development of a color space model based on the line element

theory that can be used for color and brightness discrimination could be the future work.

In such a model, Schrödinger’s hypothesis [50] as well the Vos and Walraven’s zone

fluctuation line element [65] concept can be integrated for more primitive investigations.
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Abstract

For precision color matching, visual sensitivity to small

color difference is an essential factor. Small color differences

can be measured by the just noticeable difference (JND) ellipses.

The points on the ellipse represent colours that are just notica-

bly different from the colour of the centre point. Mathematically,

such an ellipse can be described by a positive definite quadratic

differential form, which is also known as the Riemannian metric.

In this paper, we propose a method which makes use of the Rie-

mannian metric and Jacobian transformations to transform JND

ellipses between different colour spaces. As an example, we com-

pute the JND ellipses of the CIELAB and CIELUV color differ-

ence formulae in the xy chromaticity diagram. We also propose

a measure for comparing the similarity of a pair of ellipses and

use that measure to compare the CIELAB and CIELUV ellipses

to two previously established experimental sets of ellipses. The

proposed measure takes into account the size, shape and orien-

tation. The technique works by calculating the ratio of the area

of the intersection and the area of the union of a pair of ellipses.

The method developed can in principle be applied for comparing

the performance of any color difference formula and experimen-

tally obtained sets of colour discrimination ellipses.

Introduction

Color spaces and color difference metrics have been ac-

tive fields of research for many decades and it is still going on.

Among the many aspects, one important objective is to reduce

the gap between the visual perception of the color difference and

the mathematical model describing it. Since the establishment

of The International Commission on Illumination (CIE), many

colour difference formulae have been developed to measure the

visual color difference, but no single formula can be considered

a perfect one for all applications due to, among other things, the

curvilinear nature of the color space as pointed out by many pre-

vious researchers [2, 3, 4]. In the CIELAB and CIELUV sys-

tems, the color space is considered as a flat space and the color

difference in such a space is simply the Euclidean distance be-

tween points. In a Euclidean space, the distance between points

are straight lines and the advantage of such a space is simplicity

for calculating the color difference in practice. The disadvantage

of such a space is that color difference calculation or color dis-

tance does not agree sufficiently with the perceptually observed

color difference. For this reason, colour difference calculations

using the CIELAB and CIELUV formulae between standards

and their matches have been a disputed issue with respect to the

visual perception of the color difference [8, 10, 11]. Hence, it

is highly desirable to know how well the CIELAB and CIELUV

colour difference formulae map the visual perception of the color

difference.

For precision color matching, visual sensitivity to small

color difference is the essential factor. The first systematic stud-

ies of visual color matching precision in the different parts of

the tristimulus space were done by MacAdam[1], MacAdam and

Brown[4], but also by other researchers such as Wyszecki and

Fielder [6], Guild and Wright [9]. MacAdam pointed out that

small color difference can be measured by the just noticeable

differences (JND) through the discrimination ellipse which ulti-

mately manifests an observer’s precision of matching the chro-

maticity of the test color [1, 2]. These findings suggest that the

colour space is Riemannian where the small distance between

two points is described by a positive definite quadratic differ-

ential form, also known as the Riemannian metric. From this

positive definite metric, the discrimination ellipse is uniquely de-

termined and vice versa. Hence, considering the color space as

a Riemannian space the difference between two colors are de-

scribed by the line element which describe the colour percep-

tion properties of an observer from the measured discrimination

thresholds [2, 7, 14, 18].

Many current color science researchers suggest that the

color matching ellipses and the Riemannian metric still hold sig-

nificant role in the color perception or visual color difference and

can be applied in many practical cases where it is required to dis-

criminate small or medium color differences[11, 13, 14, 15, 16].

In these contexts, it is useful to study the performance of the

CIELAB and CIELUV color difference formulae based on small

color distances. In other words, MacAdam’s approach to com-

pute the just noticeable difference (JND) or the discrimination

ellipse on the chromaticity diagram would be the reliable evalu-

ating tool to study the performance of different colour difference

formulae.

In this paper, the authors present a method of local linear

transform of the CIELAB and CIELUV colour difference met-

rics into the chromaticity diagram using the principle of the Rie-

mannian metric and Jacobian transformations. This is then used

to visualize the color differences predicted by the ∆Eab and ∆Euv

colour difference metrics. In other words, the above mentioned

formulae from their respective color spaces are transformed into

the xyY space by the Riemaninan metric. Then, the correspond-

ing JND or the color matching ellipses are plotted into the chro-

maticity diagram. The principal axes (semi major axis and semi

minor axis) of the ellipse are calculated from the coefficients of

the metric tensor, gik. The ellipse corresponds to the chroma and

hue differences and can be considered as a tool for representing

an observer’s ability to determine perceptual color difference.

To test our method, We have used the visual colour match-

ing experimental data done by MacAdam [1] and Wyszecki and

Fielder [6]. MacAdam’s data set was prepared by the experi-

ment performed by a single observer. Wyszecki and Fielder’s

data set was prepared by the color matching matching experi-

ments done by three observers having extensive experience in vi-

sual colorimetry. In this paper, we have used average of three sets

color matching data. Both these data sets are based on the xyY

colour space. The CIELAB and CIELUV ellipses are computed

using these data sets. Then, computed CIELAB and CIELUV el-

lipses are compared with ellipses obtained from the experimental

data by two approaches. The first approach is to compare each
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pair of computed and observed ellipses by the size, the shape and

the orientation respectively. The second approach is to calculate

a single value comparison index of each set of ellipse by calcu-

lating the ratio of the intersection area to the union area of the

ellipses. The obtained results shows that this is a useful method

for comparing the performance of different color difference for-

mulae.

Riemannian Metric and the Ellipse Equation
In a Riemannian space, there exists a positive definite sym-

metric metric tensor called the Riemannian Metric. In general,

the metric tensor gik is a function that tells us how to compute the

infinitesimal distance between any two points in a given space.

So, considering the 2D color space as the Riemannian space, an

ellipse whose length is equal to the arc length of a curve between

two points is expressed by a differential quadratic form:

ds2 = g11 ·dx2 +2 ·g12 ·dx ·dy+g22 ·dy2 (1)

The matrix form of Equation (1) is

ds2 =
[

dx dy
]

·
[

g11 g12

g21 g22

]

·
[

dx

dy

]

(2)

where, ds is the distance between two points, dx is the difference

of x coordinates, dy is the difference of y coordinates and g11,

g12 and g22 are the coefficients of the metric tensor gik. Here, the

coefficient g12 is equal to the the coefficient g21. Mathematically,

it is written as :

gik =

[

g11 g12

g21 g22

]

(3)

The metric gik gives intrinsic properties of the color of a geo-

metric surface. Alternatively, it represents the chromaticity dif-

ference of any two colors measured along the geodesic of the

surface [2]. The coefficients of gik also determine an ellipse in

terms of its parameters a, b and θ defined as the semi major axis,

the semi minor axis and the angle of inclination in a geometric

plane respectively and vice versa. To determine the value of the

the coefficients gik in terms of the parameters of an ellipse, let

us consider the standard equation of an ellipse having center at

origin in a geometric plane in the matrix form as follows:

1 =
[

x y
]

·
[ 1

a2 0

0 1
b2

]

·
[

x

y

]

= XT ·D ·X (4)

where X is a 2×1 vector and equals to [xy]T , the 2×2 diagonal

matrix D = Diag( 1
a2 ,

1
b2 ) and the superscript T denotes the trans-

pose operation. The ellipse can be rotated in different orientation

by a 2×2 rotation matrix R expressed as :

R =

[

cosθ −sinθ

sinθ cosθ

]

(5)

The general transformation is Y = RX with inverse X = RTY .

Substituting this into Equation (4), we have :

Y T ·R ·D ·RT ·Y = 1 (6)

where, Y equals [x
′
y
′
]T , new axes after the rotation. Similarly,

the transformation matrix Mt equals R ·D ·RT . In the expanded

form, Equation (6)is

1=
[

x
′

y
′]
[ 1

a2 cos2 θ + 1
b2 sin2 θ cosθ sinθ ( 1

a2 − 1
b2 )

cosθ sinθ ( 1
a2 − 1

b2 )
1
a2 sin2 θ + 1

b2 cos2 θ

][

x
′

y
′

]

(7)

If we consider the value of ds in Equation (1) is constant and

compare with it Equation(7), the coefficients of gik can be related

to the parameters of an ellipse as follows:

g11 =
1

a2
cos2

θ +
1

b2
sin2

θ

g12 = cosθ sinθ (
1

a2
− 1

b2
)

g22 =
1

a2
sin2

θ +
1

b2
cos2

θ

(8)

The angle formed by the major axis with the positive x-axis is

given by

tan(2θ) =
2g12

(g11 −g22)
(9)

The value of θ is ≤ 90◦ when g12 ≤ 0 otherwise θ is ≥ 90◦.

Similarly, the inverse of Equation(7) is written as:

1

a2
= g22 +g12 cotθ

1

b2
= g11 −g12 cotθ

(10)

Alternatively, the semi major axis (a) and the semi minor axis

(b) of an ellipse can also be determined by the eigenvector and

eigenvalue of the metric gik. If λ1 and λ2 are eigenvalues of the

metric gik, the semi major axis (a) and the semi minor axis (b)

are equal to 1√
λ1

and 1√
λ2

respectively. [16]

Color Space Transformation
In order to compare the CIELAB and CIELUV colour dif-

ference formulae to the visual perception of the color differ-

ence, we compute the JND threshold ellipses of the CIELAB

and CIELUV color difference formulae. Since the experimen-

tally observed ellipses are based on the xyY space, it is necessary

to map color vectors of the CIELAB and CIELUV colour spaces

to the xyY space by a Jacobean transformation. The mapping is

done in two steps: first mapping of colour vectors of the CIELAB

and the CIELUV spaces into the XYZ tristimulus space and then

to the xyY space.

CIELAB is defined as given below:

L∗ = 116

(

Y

Yr

)
1
3

−16

a∗ = 500

[

(

X

Xr

)
1
3

−
(

Y

Yr

)
1
3

]

b∗ = 200

[

(

Y

Yr

)
1
3

−
(

Z

Zr

)
1
3

]

(11)

where L∗, a∗ and b∗ corresponds to the Lightness, the redness-

greenness and the yellowness-blueness scales in the CIELAB

color space. Similarly, X , Y , Z and Xr, Yr, Zr are the tristimu-

las values of the color vectors and reference white respectively.

The color difference in the CIELAB colour space is

∆E∗
ab =

√

(∆L∗)2 +(∆a∗)2 +(∆b∗)2 (12)

If we Take line element distance to measure the color difference

at a point in the color space, the Equation (12) becomes differen-

tial. In terms of the metric form, we can write

(dE∗
ab)

2 =
[

dL∗ da∗ db∗
]





1 0 0

0 1 0

0 0 1









dL∗

da∗

db∗



 (13)
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Now, to transfer or map color vectors L∗, a∗, b∗ into X , Y , Z tris-

timulas color space, we use the Jacobean transformation where

the variables of the two color spaces are related by the continuous

partial derivatives. By the chain rule, we have





dL∗

da∗

db∗



=







∂L
∂X

∂L
∂Y

∂L
∂Z

∂a
∂X

∂a
∂Y

∂a
∂Z

∂b
∂X

∂b
∂Y

∂b
∂Z











dX

dY

dZ



 (14)

Again, from the equation 13 and 14, we have

(dE∗
ab)

2 =
[

dXdY dZ
] ∂ (L,a∗,b∗)

∂ (X ,Y,Z)

T

I
∂ (L,a∗,b∗)
∂ (X ,Y,Z)





dX

dY

dZ



 (15)

where I is a 3 by 3 identity matrix and
∂ (L,a∗,b∗)
∂ (X ,Y,Z)

is a Jacobian

matrix,







∂L
∂X

∂L
∂Y

∂L
∂Z

∂a
∂X

∂a
∂Y

∂a
∂Z

∂b
∂X

∂b
∂Y

∂b
∂Z






=







0 116
3 Y

−2
3 0

500
3 X

−2
3

−500
3 Y

−2
3 0

0 200
3 Y

−2
3

−200
3 Z

−2
3






(16)

Again, the relationship between X , Y and Z tristimulus colour

vectors and x, y and Y colour vectors are

X =
xY

y

Y = Y

Z =
(1− x− y)Y

y

(17)

Similarly, transformation from X , Y , Z tristimulus colour space

into x, y, Y colour space is done by another Jacobian matrix
∂ (X ,Y,Z)
∂ (x,y,Y )

and expressed as :





dX

dY

dZ



=







∂X
∂x

∂X
∂y

∂X
∂Y

∂Y
∂x

∂Y
∂y

∂Y
∂Y

∂Z
∂x

∂Z
∂y

∂Z
∂Y











dx

dy

dY



 (18)

where,
∂ (X ,Y,Z)
∂ (x,y,Y )

are







∂X
∂x

∂X
∂y

∂X
∂Y

∂Y
∂x

∂Y
∂y

∂Y
∂Y

∂Z
∂x

∂Z
∂y

∂Z
∂Y






=







Y
y

−xY
y2

x
y

0 0 1
−Y
y

(x−1)Y
y2

1−x−y
y






(19)

Finally, the transformation from of L∗, a∗, b∗ into x, y, Y

with two Jacobian matrices is

(dE∗
ab)

2 =
[

dxdydY
] ∂ (X ,Y,Z)

∂ (x,y,Y )

T
∂ (L,a∗,b∗)
∂ (X ,Y,Z)

T

I
∂ (L,a∗,b∗)
∂ (X ,Y,Z)

∂ (X ,Y,Z)

∂ (x,y,Y )





dx

dy

dY



 (20)

Here, the whole transformation matrix is
∂ (X ,Y,Z)
∂ (x,y,Y )

T ∂ (L,a∗,b∗)
∂ (X ,Y,Z)

T
I

∂ (L,a∗,b∗)
∂ (X ,Y,Z)

∂ (X ,Y,Z)
∂ (x,y,Y )

and represents the

metric tensor of three dimensional color space. The coefficients

of the first two columns and rows of the 3D metric tensor gives

us the JND threshold ellipse in the chromaticity diagram.

By the same approach as described in Equations (12–20),

we can map the CIELUV colour space into xyY colour space

Figure 1: Illustration of the union and the intersection area of two

ellipses.

with the following standard formulae:

L∗ = 116

(

Y

Yr

)
1
3

−16

u∗ = 13L

[(

4X

X +15Y +3Z

)

−
(

4Xr

Xr +15Yr +3Zr

)]

v∗ = 13L

[(

9Y

X +15Y +3Z

)

−
(

9Yr

Xr +15Yr +3Zr

)]

(21)

Method of Comparison
Using the principles of union intersection and ratio testing,

we present the method to compare two ellipses with respect to

their shape and orientation. Figure (1) shows two ellipses A and

B. The shaded area is the intersection area between them and

the total area of A and B is known as the union area. From the

statistical point of view, the acceptance region is the intersection

area and the rejection region is the union area. The ratio of these

intersection and union area gives us a nonnegative value less than

or equal to one. Large value of the ratio gives strong evidence

that the two ellipses are closely matched.

Result and Discussion
We have applied our method on visual experimental data

sets known as Macadam and three observer. Let us begin

from MacAdam’s data. In Figure(2), the subfigure (2(a)) shows

MacAdam’s color matching ellipses in the CIE chromaticity dia-

gram according to his visual experiment data. The next two sub-

figures (2(b)) and (2(c)) are the computed CIELAB and CIELUV

color matching ellipses obtained by the Jacobian transformation

of the Riemenian metric as described in the section two. The

color centers for these computed ellipses, at which color matches

are according to the MacAdam’s data. To do comparison with

experimentally obtained MacAdam’s ellipses, ellipses are com-

puted in xyY color space where the Y component (brightness)

is in the range [0.01.0] and plotted in the xy chromaticity dia-

gram. Here, ellipses are computed at L∗ = 70, and to achieve this

lightness value the Y component is approximated at 0.4 scale.

However, in our method the Y component of xyY can be scaled

at any value in the range between 0.0 to 1.0 which allows to

compare visual color difference at any lighting conditions. Ta-

ble 1 gives the calculated area (size), the ratio of semi major (a)

and semi minor (b) axes (shape) and the orientation in angle of

MacAdam, the CIELAB and CIELUV ellipses. Comparing with

area of MacAdam’s ellipses, it can be seen that the CIELAB and

CIELUV ellipses have general trends of agreement among dif-

ferent set of ellipses. For example, the blue is the smallest, the

green largest and that red, blue and yellow are more elongated
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Table 1: Calculated Area (Size), Ratio of major (a) and minor (b) axes (Shape) and Angle of orientation of MacAdam’s and computed

CIELAB and CIELUV ellipses.

Area of Ellipses ×log10 Ratio of major(a) and minor(b) axes Orientation in Angle(Degree)

MacAdam CIELAB CIELUV MacAdam CIELAB CIELUV MacAdam CIELAB CIELUV

-4.03 -3.96 -3.97 2.43 5.18 1.81 62.5 12.75 11.36
-3.42 -3.42 -3.45 4.00 3.12 1.54 77 23.17 16.95
-3.41 -3.38 -3.42 5.00 3.63 1.68 55.5 18.64 23.11
-2.16 -2.3 -2.24 4.17 2.10 1.83 105 85.74 89.08
-2.53 -2.61 -2.56 2.35 2.70 1.50 112.5 78.42 89.89
-2.38 -2.44 -2.4 2.52 1.76 1.61 100 75.1 80.45
-2.50 -2.53 -2.51 2.50 1.62 1.51 92 60.92 69.52
-2.64 -2.72 -2.7 2.00 2.31 1.21 110 67.53 78.84
-2.72 -2.68 -2.74 2.67 1.68 1.47 70 34 61.81
-2.78 -2.72 -2.76 3.67 1.09 1.83 104 44.53 22.22
-3.20 -3.11 -3.24 2.21 2.20 1.23 72 40.43 40.75
-3.06 -3.02 -3.16 3.44 2.12 1.31 58 39 50.77
-3.19 -3.01 -3.06 2.56 1.84 1.50 65.5 34.14 53.39
-2.72 -2.67 -2.92 2.38 1.40 1.76 51 5.16 49.13
-2.85 -2.76 -2.94 2.29 1.25 2.05 20 3.55 43.21
-2.97 -2.84 -3.03 2.00 1.43 2.30 28.5 18.74 41.2
-3.00 -2.80 -3.19 2.64 1.86 2.13 29.5 14.82 35.15
-3.04 -2.92 -3.40 2.00 2.50 2.44 13 4.32 36.38
-2.97 -2.96 -3.30 2.00 1.75 2.78 60 30.11 43.98
-3.19 -3.02 -3.18 2.56 2.04 1.64 47 22.01 37.65
-3.10 -3.09 -3.33 2.50 2.47 1.87 34.5 16.27 33.26
-3.08 -3.00 -3.49 2.95 3.07 2.20 57.5 30 36.56
-3.38 -3.21 -3.32 4.36 2.38 1.48 54 20.54 29.24
-3.26 -3.26 -3.31 4.83 3.18 1.70 86.74 86.69 94.83
-2.97 -3.04 -3.07 3.79 3.74 1.99 40 15.93 29.39

than others.

In Table 1, the comparative data of shape (the ratio of semi

major (a) and semi minor (b) axes) and the orientation between

MacAdam, the CIELAB and CIELUV formulae show that there

are some disagreement with experimentally observed ellipses

and computed ellipses using the Riemenian metric. We can see in

Table 1 that CIELAB ellipses have higher values of a/b ratio than

the CIELUV ellipses. Thus, they are more closer in shape than

the CIELUV ellipses with respect to the observed MacAdam’s

ellipses but neither ellipses fully comply with the original ones.

Similarly, with regard to the orientation, most of the ellipses are

inclined downwards compared to the MacAdam ellipses. The

computed ellipses are more circular than the MacAdam ellipses.

Similarly, comparing between computed CIELAB and

CIELUV ellipses with respect to the shape, it is found (Table 1)

that a/b ratio is significantly higher in most of the CIELAB el-

lipses than the CIELUV ellipses of same color centers. This re-

sult indicates that the CIELUV ellipses are more circular than the

CIELAB ellipses.

We also computed the ratio of the area of intersection and

the area of union between MacAdam’s ellipses and the CIELAB

and CIELUV ellipses. Such ratio gives the correlation between

computed and original ellipses in terms of size, shape and orien-

tation which is a more informative way for inter comparing the

different sets of ellipses by a single value or number. For ex-

ample, if the computed ellipse and the observed ellipse are same

in terms of size, shape and orientation, the ratio of the area of

intersection and the area of union is 1. This assures the full com-

patibility between a pair of ellipses in terms of size, shape and

orientation. Table 2 gives the numerical values of such com-

parison of the CIELAB and CIELUV formulae with respect to

MacAdam. We have also done sign test for these ratio values of

the CIELAB and CIELUV ellipses. The results actually shows

that the CIELUV is performing better than the CIELAB at a level

of significanc p = 0.015.

Our second data set is the three observers color-matching el-

lipses data. Here, the ellipse parameters are taken as the average

of three sets of color-matching ellipses made by three observers.

Figure (3(a)) shows the three observers color-matching ellipses

in the chromaticity diagram. Similarly, Figures (3(b)) and (3(c))

gives computed ellipses of the CIELAB and the CIELUV having

the same color centers of three observers color-matching ellipses

respectively. Like for the MacAdam’s ellipses, the ellipses are

plotted at constant lightness , and we can see the similarity be-

tween experimentally observed and computed ellipses from our

method described above. Table 3 shows comparative data of area,

shape and orientation between three observer ellipses and com-

puted CIELAB and CIELUV ellipses. The result shows a similar

behaviour as for the MacAdam data. The last table 4 gives the

single value comparison index for each set of ellipses by com-

paring the ratio of the area of intersection and the area of union.

In our second data set too, the sign test of the ratio of the area

of intersection and the area of union shows that the CIELUV is

better than the CIELAB with p = 0.0125.

Conclusion
We have developed a method to compare the behaviour of

colour difference metrics to experimentally observed JND el-

lipses. The method uses Jacobean to transform the Riemannian

metric tensor to the same colour space as the experimental data.

The presented method can compute JND ellipses of the

CIELAB and CIELUV formulae in the chromaticity diagram and

thus gives the opportunity to evaluate how well they match the

visual colour difference obtained in experiments.

Such a pairs of ellipses are compared in terms of size, shape

and orientation to see the compatibility between computed and

observed ellipses. In our method, JND ellipses of CIE color dif-

ference formulae can be plotted at any value of lightness (L∗) in

the CIE xy diagram. This feature allows to compare the visual

colour difference in order to achieve the best possible match.

A pair of ellipses can be compared by using the ratio of

the area of intersection and the area of union. This gives the

single value index which represents three parameters of ellipse

to compare in terms of shape, size and orientation respectively.

The comparison between the computed CIELAB and

CIELUV ellipses with different visual data sets reveal out that
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(a) MacAdam Ellipses. (b) CIELAB Ellipses having same color cen-
ters as MacAdam.

(c) CIELUV Ellipses having same color cen-
ters as MacAdam.

Figure 2: MacAdam’s original and Computed CIELAB and CIELUV ellipses in the CIE31 Chromaticity diagram(Enlarged 10 times)

(a) Wyszecki Color-matching Ellipses (mean
of three sets of data).

(b) CIELAB Ellipses having same color cen-
ters as Wyszecki Color-matching Ellipses.

(c) CIELUV Ellipses having same color cen-
ters as Wyszecki Color-matching Ellipses.

Figure 3: Wyszecki Color-matching ellipses and Computed the CIELAB and CIELUV ellipses in the CIE31 Chromaticity diagram

(Enlarged 5 times)

Table 3: Calculated Area(size), Ratio of major(a) and minor(b) axes(Shape) and Angle of orientation of 3 observers and computed

CIELAB and CIELUV ellipses.

Area of Ellipses ×log10 Ratio of major(a) and minor(b) axes Angle of orientation (Degree)

3 observers CIELAB CIELUV 3 observers CIELAB CIELUV 3 observers CIELAB CIELUV

-4.348 -4.922 -4.948 2.95 1.34 2.08 35 61.1 51.2
-4.557 -4.781 -4.907 2.72 1.18 1.8 48 30.6 56.7
-4.227 -4.903 -5.156 3.57 1.49 2.16 179 11.2 44.2
-4.706 -4.801 -5.049 1.74 1.69 1.52 63 41.9 55.2
-4.278 -4.921 -4.837 2.14 1.49 1.99 50 50.6 56.3
-4.532 -4.855 -5.144 1.63 1.61 1.94 5 21.6 46.1
-4.649 -4.834 -5.132 2.47 1.7 1.74 34 29.1 48.2
-4.697 -4.919 -5.165 1.6 1.98 1.29 59 46.5 51.6
-4.525 -4.925 -5.273 2.63 2.09 1.6 54 29.5 43.3
-4.935 -4.981 -5.304 3.7 2.16 1.44 65 33.4 41.6
-4.479 -5.028 -5.272 1.83 2.1 1.24 73 44.2 41.4
-4.056 -5.086 -5.223 3.57 1.53 2.61 179 71.9 40.2
-4.302 -4.751 -4.865 3 1.23 1.72 72 45.6 60.5
-4.833 -4.915 -5.198 3.25 1.98 1.38 70 40.3 48.2
-4.838 -4.858 -5.155 2.36 1.86 1.52 60 36.6 49.6
-4.852 -4.833 -5.12 2.29 1.78 1.56 50 36.3 50.8
-4.697 -4.886 -5.188 2.5 1.94 1.48 57 36.7 48.2
-4.787 -4.83 -5.109 3.08 1.78 1.53 59 38.2 51.8
-3.865 -4.765 -4.715 4.52 1.11 1.78 76 16 66.6
-4.313 -4.721 -4.807 4.78 1.37 1.62 77 59.1 66.6
-4.117 -4.904 -5.026 3.33 1.27 2.11 21 80.2 48.4
-4.01 -5.015 -5.099 2.27 1.46 2.35 8 66.8 44.5

-4.223 -4.744 -4.892 2.43 1.63 1.49 82 56.5 66.2
-4.416 -4.788 -5.012 3.05 1.45 1.73 36 33.7 53.4
-4.043 -4.954 -5.254 2.11 1.66 2.33 8 10 40.7
-4.492 -4.794 -5.011 1.64 1.73 1.44 103 48.7 59.6
-4.108 -4.9 -5.233 2.15 1.78 2.07 14 18.3 42.5
-4.251 -4.901 -5.264 1.46 1.99 1.86 40 23.6 42.7
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Table 2: Ratio of area intersection and Union of Ellipses with

respect to MacAdam Ellipses

CIELAB CIELUV

0.29 0.47
0.25 0.33
0.28 0.35
0.34 0.5
0.48 0.65
0.57 0.6
0.58 0.54
0.49 0.55
0.59 0.6
0.41 0.61
0.4 0.52
0.44 0.47
0.35 0.66
0.59 0.62
0.55 0.81
0.68 0.63
0.64 0.64
0.69 0.44
0.83 0.47
0.4 0.68
0.52 0.59
0.59 0.39
0.32 0.46
0.31 0.38
0.39 0.24

Table 4: Ratio of area intersection and Union of Ellipses with

respect to 3 observer ellipses

CIELAB CIELUV

0.4 0.58
0.26 0.36
0.56 0.38
0.2 0.35
0.47 0.58
0.33 0.54
0.26 0.52
0.27 0.47
0.4 0.69
0.16 0.34
0.55 0.72
0.51 0.32
0.4 0.53
0.19 0.36
0.17 0.32
0.16 0.3
0.25 0.49
0.17 0.32
0.4 0.52
0.34 0.41
0.51 0.49
0.56 0.43
0.51 0.65
0.37 0.55
0.77 0.38
0.32 0.52
0.88 0.46
0.7 0.62

neither formulae is good enough for the perfect visual color

matching. However, the ratio test method shows that CIELUV

performs better than CIELAB to predict visual colour differ-

ence for both of the data sets tested. The general trend of color

matching ellipses of CIE color difference formulae (CIELAB

and CIELUV) are along the direction to experimentally obtained

ellipses.

Finally, by our method we can transform any colour space

to other colour space and vice versa, preserving the property of

their original colour space and can be extended to our future work

to study advanced colour difference formula like ∆E00.
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Abstract
The CIELAB based CIEDE2000 colour difference formula

to measure small to medium colour differences is the latest stan-

dard formula of today which incorporates different corrections for

the non uniformity of the CIELAB space. It also takes account of

parametric factors. In this paper, we present a mathematical for-

mulation of the CIEDE2000 by the line element to derive a Rie-

mannian metric tensor in a color space. The coefficients of this

metric give Just Noticeable Difference (JND) ellipsoids in three

dimensions and ellipses in two dimensions. We also show how

this metric can be transformed between various colour spaces by

means of the Jacobian matrix. Finally, the CIEDE2000 JND el-

lipses are plotted into the xy chromaticity diagram and compared

to the observed BFD-P colour matching ellipses by a comparing

method described in Pant and Farup (CGIV2010).

Introduction
A color difference formula or a color difference metric, which

measures the difference between two colors, is becoming a prime

research topic in the modern colorimetry. The target is to find a

good color difference formula, which can give a quantitative mea-

sure (∆E) of the perceived color difference correctly. It is also the

requirement of many color applied fields such as image analysis,

color reproduction, color image restoration and so on.

MacAdam [2] described that small or medium color differ-

ences can be measured by the Just Noticeable Difference (JND)

ellipses, which represent the human perception of threshold colour

differences. Since then, many color difference formulae have

been developed for measuring the color difference accurately. In

1976, the CIE recommended two color difference formulae, the

CIELAB and CIELUV formulae, have become popular in colour

industries, but, they fail to measure the visual perception of the

color differences sufficiently, although, they are said to be uni-

form colour difference formulae [3],[4].

In 2001, the CIE recommended the CIEDE2000 formula based

on the CIELAB to improve the correlation between measured and

human observed color differences. In particular, the CIEDE2000

is the improved version of the CIELAB with specific weighting

functions known as lightness (SL), chroma (SC) and hue (SH),
parametric factors (kL,kC,kH), and the rotation term RT to correct

chroma and hue differences in the blue region. All these modifica-

tions are based on visual data obtained from four different exper-

iments known as BFD-P [5], Leeds [6] RIT-DuPont [7] and Witt

[8]. In other words, visual results from these four experiments

were adjusted to a common scale by computing scaling factors for

each data set and adopting the visual scale of BFD-P as a unit [9].

Luo et al. [10] have described in the detail about the CIEDE2000

formula as an excellent out performing formula, when measured

against the aggregate data set, but still it has some issues related

to its development [11]. Similarly, Sharma et al. [12] have shown

mathematical discontinuity in the formula. Further, field test re-

ports and performance studies on the CIEDE2000 have also not

shown conclusively that the latest CIE formula performs better

than previous existing formulae [13–15].

In such contexts, it would be useful from many aspects to

study the CIEDE2000 color difference formula by the Rieman-

nian approach. First, in this approach, we can map or transfer this

formula into other color spaces preserving the subjective property

of the formula. Second, the formula does not have its specific or

corresponding color space, it is only the improved L,a∗,b∗ color

space formulated in terms of lightness (L), chroma (C) and hue

(H). So, it is interesting to know how well this advanced formula

measures small colour differences in other color spaces. Third,

Riemannian space is curved and such space is considered suitable

for small to medium color difference measurement because many

researchers have described that small color difference calculation

using the Euclidean distance does not agree sufficiently with the

perceptual color difference due to the curvilinear nature of the

color space [16–20].

In this paper, the authors present a method to formulate the

CIEDE2000 color difference formula in terms of the Riemannian

metric and this metric is used to compute the JND ellipses. Here,

the authors take the line element to calculate the color differences

dE. To calculate line element, the CIEDE2000 color difference

equation should be converted into the differential form. This gives

us the Riemannian metric in a non-Euclidean color space. Again,

to obtain the Riemannian metric in a new color space, we also

need to transform color vectors from one color space to another.

This is accomplished by the Jacobian transformation. To illus-

trate our method, the authors transformed the CIEDE2000 for-

mula into the xyY color space. And, the JND ellipses are plotted

into the xy chromaticity diagram. The input data to compute the

JND ellipses for our method is BFD-P data sets [5]. BFD-P data

sets were assessed by about 20 observers using a ratio method,

and the chromaticity discrimination ellipses were calculated and

plotted in the xy chromaticity diagram for each set [21]. A com-

parison has also been done between the computed JND ellipses of

the CIEDE2000 formula and the original ellipses obtained from

the BFD-P data set. The detailed description, for comparing a pair

of ellipses, by calculating the ratio of the area of intersection and

the area of union can be found in Pant and Farup (CGIV,2010).

This method gives a single comparison value which takes account
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of variations in the size, the shape and the orientation simultane-

ously for a pair of ellipses. Therefore, this value is an indicator

which tells us how well two ellipses match each other. Further,

using MacAdam data, the authors also plot the JND ellipses of

the formula in the xy chromaticity diagram to see simple visual

comparison with the original data set. The authors see a good

mathematical technique in this method to study the CIEDE2000

color difference formula.

Formulation of the CIEDE2000 Metric Tensor
and Color Space Transformation

In this section, the authors will describe our method to com-

pute metric tensor of the CIEDE2000 formula in the xyY space.

Let us begin the process by defining the standard form of the for-

mula [22].

∆E00 =

[

(

∆L′

kLSL

)2

+

(

∆C′

kCSC

)2

+

(

∆H ′

kHSH

)2

+

RT

(

∆C′

kCSC

)

·
(

∆H ′

kHSH

)]0.5

(1)

In Equation (1), RT is the rotation function and expressed as

RT =−sin(2∆θ)Rc

where ∆θ = 30 · exp−
(

h̄′−275
25

)2
and Rc = 2

√

C̄′7

C̄′7+257

Similarly, the weighting functions are defined as:

SL = 1+
0.015(L̄′−50)2√

20+(L̄′−50)2

SC = 1+0.045C̄′ and SH = 1+0.015C̄′T with

T = 1 − 0.17cos(h̄′ − 30o) + 0.24cos(2h̄′ + .32cos(3h̄′ + 6o)−
0.2cos(4h̄′−63o)

Here, we define for a pair of color samples L̄′ = L∗
1+L∗

2

2

C̄′ = C′
1+C′

2

2 and h̄′ = h′1+h′2
2 and ∆H = 2

√

C′
1C′

2 sin ∆h′
2

The other symbols used in the formula are also defined in the

following way:

L′ = L∗, a′ = a∗(1+G), b′ = b∗ and C′ =
√

a′2 +b′2 with

h′ = arctan b′
a′ and G = 1

2

(

1−
√

C∗7
ab

C∗7
ab+257

)

where L∗, a∗ and b∗ corresponds to the Lightness, the redness-

greenness and the yellowness-blueness scales and C∗ chroma in

the CIELAB color space. Likewise, h′ is the hue angle for a pair of

samples. To formulate Riemannian Metric, the authors take only

L′,C′ and h′ values rather than their arithmetic mean values L̄′,C̄′

and h̄′ because in the Riemannian or non-Euclidean color space,

infinitesimal distance is taken to measure colour differences. So,

Equation (1) becomes a differential form as follows:

(dE∗
00)

2 =
[

dL′ dC′ dH ′]





(kLSL)
−2 0 0

0 (kCSC)
−2 1

2 (kCSCkHSH)
−1

0 1
2 (kCSCkHSH)

−1 (kHSH)
−2









dL′

dC′

dH ′





(2)

In Equation (2), the matrix of coefficients of weighting functions,

parametric factors, and the rotation term is the Riemannian metric

of the formula in its original form. As said in the introduction

section, the authors will show the process to transform it into the

xyY space in terms of metric form. In general, the transformation

process takes the following steps: First, from L′C′H ′ to L∗a∗b∗

then to XY Z tristimulus color space and finally into the xyY color

space.

So, at first, we need to transform differential color vectors

dL,dC′,dH ′ into dL∗,da∗,db∗. Since, they are different color

vectors or functions at a given point in a color space, we can only

relate them by applying the Jacobian method. In this method,

we compute all partial derivatives of vector functions L′, C′, and

H ′ with respect to L∗, a∗, and b∗. This gives us a 3× 3 matrix

of continuous partial derivatives, which is known as a Jacobian

matrix.

In the equation form, we write:





dL′

dC′

dH ′



=







∂L′

∂L∗
∂L′

∂a∗
∂L′

∂b∗
∂C′

∂L∗
∂C′

∂a∗
∂C′

∂b∗
∂H ′

∂L∗
∂H ′

∂a∗
∂H ′

∂b∗











dL∗

da∗

db∗



 (3)

where, the matrix of partial derivatives in Equation (3) can also be

denoted by
∂ (L′,C′,H ′)
∂ (L∗,a∗,b∗) . Now, the Equation (2) becomes as follows:

(dE∗
00)

2 =
[

dL∗ da∗ db∗
] ∂ (L′,C′,H ′)

∂ (L∗,a∗,b∗)

T





(kLSL)
−2 0 0

0 (kCSC)
−2 1

2 (kCSCkHSH)
−1

0 1
2 (kCSCkHSH)

−1 (kHSH)
−2





∂ (L′,C′,H ′)
∂ (L∗,a∗,b∗)





dL∗

da∗

db∗





(4)

The calculation of
∂ (L′,C′,H ′)
∂ (L∗,a∗,b∗) appears as





1 0 0

0 ∂C′

∂a∗
∂C′

∂b∗

0 ∂H ′

∂a∗
∂H ′

∂b∗



 (5)

where
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dH ′ = C′dh′ because lim ∆H → 0sin ∆h′
2 ≈ ∆h′

2 ⇒ dH ′ =
2C′dh/2′

∂C′

∂a∗
=

a′

C′

[

(1+G)+
a∗2

C∗

(

−175×256

4

C∗5/2

(C∗7 +257)3/2

)]

∂C′

∂b∗
=

b′

C′ +
a′

C′

[

a∗b∗

C∗

(

−175×256

4

C∗5/2

(C∗7 +257)3/2

)]

∂H ′

∂a∗
=C′ ∂h′

∂a∗
− b′

C′

[

1+G+
a∗2

C∗

(

−175×256

4

(C∗)5/2

((C∗)7 +257)3/2

)]

∂H ′

∂b∗
=C′ ∂h′

∂b∗
=

a′

C′
(6a)

In a similar way,
∂ (L,a∗,b∗)
∂ (X ,Y,Z)

Jacobian matrix map color vectors

L∗, a∗, b∗ into X , Y , Z tristimulus color space and by another

Jacobian matrix
∂ (X ,Y,Z)
∂ (x,y,Y )

, we can relate X , Y and Z tristimulus

and x, y and Y color vectors. The detailed derivations of these

Jacobians can be found in Pant and Farup (CGIV,2010). Finally,

the mapping of the CIEDE2000 formula into the xyY color space

in terms of the metric tensor is

(dE00)
2 =
[

dx dy dY
] ∂ (X ,Y,Z)

∂ (x,y,Y )

T
∂ (L,a∗,b∗)
∂ (X ,Y,Z)

T
∂ (L′,C′,H ′)
∂ (L∗,a∗,b∗)

T





(kLSL)
−2 0 0

0 (kCSC)
−2 1

2 (kCSCkHSH)
−1

0 1
2 (kCSCkHSH)

−1 (kHSH)
−2





∂ (L′,C′,H ′)
∂ (L∗,a∗,b∗)

∂ (L,a∗,b∗)
∂ (X ,Y,Z)

∂ (X ,Y,Z)

∂ (x,y,Y )





dx

dy

dY





(7)

Multiplying all the Jacobian matrices, their transposes and the ma-

trix of original form (matrix of correction terms) together, we will

get a 3×3 matrix in the xyY color space.

This matrix is known as the Riemannian metric tensor (gik)

of the CIEDE2000 formula in the xyY color space, which gives

JND ellipsoids in three dimensions and ellipses in two dimen-

sions. The principal axes of ellipses can be calculated from eigen-

vectors and eigenvalues of the metric gik. So, if λ1 and λ2 are

eigenvalues of the gik, the axis (a) and the axis (b) equal to 1√
λ1

and 1√
λ2

respectively.

Result and Discussion
In this section, the authors will discuss on the behavior of

computed ellipses of the formula in the xyY color space with re-

spect to the BFD-P ellipses.

One severe problem is found at the gray axis where the Jaco-

bian (Equation 5) is not defined. It can be easily seen by inserting

a∗ and b∗ = 0 in Equations (6. In fact, the limit does not exist,

since it depends on the path. Thus, a Riemannian metric does not

exist at the gray axis. However, JND ellipses can be computed by

the metric defined in Equation (7) for the rest of the colour space.

Here, all the calculated or computed ellipses of the CIEDE2000

formula and BFD-P ellipses have same color centers. Again, to

draw the computed ellipses into the xy chromaticity diagram, the

authors have taken the constant lightness value (L∗ = 50) and this

value equals to the lightness value which was taken to draw orig-

inal BFD-P ellipses. The variables (kL,kC and kH) are set to 1 for

calculating ellipses. Now, at first, the authors describe qualitative

analysis between computed and original ellipses. Figures 2(a) and

2(b) show BFD-P and computed CIEDE2000 ellipses drawn in

the CIE64 chromaticity diagram respectively. It can be seen that

ellipses for the neutral and gray color centers are almost the same

in both figures. Similarly, in both BFD-P and CIEDE2000, the

ellipses for blue, green-blue, green-yellow, yellow and red cen-

ters tend to point along lines of constant dominant wavelength.

However, in CIEDE2000, the orientation of ellipses in the blue

region are rotated compared to the BFD-P ellipses of same re-

gion. On the other hand, in the red region too, the CIEDE2000

ellipses are rotated in opposite direction and stretched in length.

In terms of size, the CIEDE2000 ellipses in blue and green-blue

are slightly smaller than the BFD-P ellipses in the corresponding

region, where as they are slightly larger as well as more circular

in shape in the yellow region.

Our next analysis between CIEDE2000 and BFD-P is based

on our method for comparing the similarity of a pair of ellipses

as said in the introduction section. The value obtained by this

method lies in the range of 0 < x ≤ 1. Hence, a comparison value

of 1 between a pair of ellipses ensures the full compatibility be-

tween them in terms of size, shape and orientation. According

to this method, the authors have got maximum matching value of

.96 between a pair of CIEDE2000 and BFD-P ellipses. This pair

appears in the neutral color region. Similarly, the minimum value

has come .29 around high chroma blue. The matching values of

all ellipse pairs can be seen in the histogram 1 as well as from the

Table 1.

Similarly, Figures 3(c) and 3(b) show the MacAdam’s origi-

nal ellipses and the CIEDE2000 ellipses taking his original color

centers in the 1931 xy chromaticity diagram. Ellipses are plotted

at constant lightness level at L∗ = 50. These figures also help to

visualize the difference between original and computed ellipses

in terms of size shape and orientation in a simple manner and the

general trend of difference is also similar to the BFD-P and the

CIEDE2000 ellipses as described above.

Conclusion
The first objective of this paper is to formulate the CIEDE2000

formula into the Riemannian metric and apply the Jacobian method

to transfer it into different color spaces as well as to compute JND

ellipses from this metric. This is successfully accomplished, ex-

cept at the gray axis. Second objective is to study the behavior of

the formula in the xyY color space with respect to the experimen-

tally observed data. This is also done by drawing JND ellipses of

the formula and experimentally observed BFD-P ellipses into the

xy chromaticity diagram and comparing them by our comparison

technique described above.

On the basis of our findings as discussed above, the authors

can say that the CIEDE2000 significantly measures the visual

color differences. However, it is seen orientation problem in the

CIEDE2000 ellipses compared to BFD-P ellipses in the blue re-

gion as well as in the red region. This indicates that further re-

search for the improvement of the rotation term or the colour dif-

ference metrics, in general is necessary. Our method has also

shown that the formula measures small color difference well in
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Table 1: Comparison values of CIEDE2000 and BFD-P Ellipses pairs . A comparison value of 1 between a pair of ellipses ensures the full compatibility
between them in terms of size, shape and orientation.

Ellipse pair number 1 2 3 4 5 6 7 8 9 10 11 12

Value 0.96 0.93 0.9 0.88 0.88 0.88 0.86 0.85 0.85 0.83 0.82 0.81

Ellipse pair number 13 14 15 16 17 18 19 20 21 22 23 24

Value 0.79 0.79 0.78 0.77 0.77 0.77 0.76 0.75 0.75 0.75 0.75 0.75

Ellipse pair number 25 26 27 28 29 30 31 32 33 34 35 36

Value 0.75 0.75 0.75 0.74 0.74 0.73 0.73 0.72 0.72 0.72 0.71 0.71

Ellipse pair number 37 38 39 40 41 42 43 44 45 46 47 48

Value 0.71 0.71 0.7 0.7 0.69 0.69 0.69 0.69 0.68 0.68 0.68 0.68

Ellipse pair number 49 50 51 52 53 54 55 56 57 58 59 60

Value 0.66 0.66 0.65 0.65 0.64 0.62 0.6 0.58 0.58 0.57 0.54 0.53

Ellipse pair number 61 62 63 64 65 66 67 68 69 70 71 72

Value 0.53 0.53 0.52 0.52 0.51 0.5 0.49 0.48 0.47 0.46 0.46 0.44

Ellipse pair number 73 74 75 76 77 78 79 80

Value 0.4 0.38 0.37 0.34 0.34 0.33 0.33 0.29

(a) BFD-P Ellipses. (b) CIEDE2000 Ellipses having same color centers as BFD-P.

(c) BFD-P and CIEDE2000 Ellipses plotted on the same xy diagram
.

Figure 2: BFD-P Ellipses and Computed CIEDE2000 Ellipses in the CIE64 Chromaticity diagram(Enlarged 1.5 times)
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(a) MacAdam Ellipses. (b) CIEDE2000 Ellipses having same color centers as MacAdam.

(c) MacAdam and CIEDE2000 Ellipses plotted on the same xy dia-
gram.

Figure 3: MacAdam’s original and Computed CIEDE2000 ellipses in the CIE31 Chromaticity diagram(Enlarged 10 times)
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Figure 1: Histogram of comparison values between CIEDE2000 and
BFD-P Ellipses. The values lie in the range 0 < x ≤ 1. Higher comparison
value indicates better matching between a pair of ellipses.

the non-Euclidean space.

The authors hope that the formula presented here will be use-

ful for the color research and applications.
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Abstract

Study of various color difference formulas by the Riemannian approach
is useful. By this approach, it is possible to evaluate the performance of
various color difference fourmlas having different color spaces for measur-
ing visual color difference. In this paper, the authors present mathematical
formulations of CIELAB (∆E

∗

ab), CIELUV (∆E
∗

uv), OSA-UCS (∆EE)
and infinitesimal approximation of CIEDE2000 (∆E00) as Riemannian
metric tensors in a color space. It is shown how such metrics are trans-
formed in other color spaces by means of Jacobian matrics. The coef-
ficients of such metrics give equi-distance ellipsoids in three dimensions
and ellipses in two dimensions. A method is also proposed for comparing
the similarity between a pair of ellipses. The technique works by cal-
culating the ratio of the area of intersection and the area of union of a
pair of ellipses. The performance of these four color difference formulas is
evaluated by comparing computed ellipses with experimentally observed
ellipses in the xy chromaticity diagram. The result shows that there is
no significant difference between the Riemannized ∆E00 and the ∆EE at
small colour difference, but they are both notably better than ∆E

∗

ab and
∆E

∗

uv.

Introduction

Color difference metrics are in general derived from two kinds of experimental
data. The first kind is threshold data obtained from color matching experiments
and they are described by just noticeable difference (JND) ellipses. The second
kind is visual colour difference data and it gives supra-threshold colour difference
ellipses [1]. For example, Friele-MacAdam-Chickering (FMC) colour difference
metric [2] is based on first kind of data where as the CIELAB [3] is based on
second kind data.

MacAdam [4] was the first to describe just noticeable difference (JND) el-
lipses. Later, more elaborated data sets were established by Brown [5], Wyszecki
and Fielder [6]. Examples of supra-threshold colour difference based data are
BFD-Perceptibility(BFD-P) [7], RIT-DuPont [8], Witt [9]and others. The former
two data sets were also included in the BFD-P data sets and fitted in the CIE
xy chromaticity diagram [7].
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Riemann [10] was the first to propose that colors, as well as the other objects
of sense, could be described by non-Euclidean geometry. Later, Helmholtz [11]
derived the first line element for a color space. Similarly, Schrödinger [12]
and Stiles [13] also elaborated more on Helmholtz’s line element with modi-
fications. The latest and most advanced contribution along this line, is the
zone-fluctuation line element of Vos and Walraven [14]. A thorough review of
color metrics following the line element can be found in [15–17].

On the other side, color and imaging industries have a continuous demand
for a practical standard for measuring perceptual color differences accurately.
So, at present, many color difference metrics are in existence. Among these,
the CIELAB and the CIELUV [3] are popular and the most established ones
in industries. Theses formulas are defined by Euclidean metrics in their own
color spaces that are obtained by non-linear transformations of the tristimulus
values. The CIEDE2000 [18] is a revised and improved formula based on the
CIELAB color space, resulting in a non-Euclidean metric. Another import-
ant example is the recent Euclidean color difference metric, ∆EE proposed by
Oleari [19] based on the OSA-UCS color space. However, all the formulas men-
tioned above have some demerits to measure the visual perception of the color
differences sufficiently [20–24]. Further, it has also been noticed by many other
color researchers that the small color difference calculation using the Euclidean
distance does not agree sufficiently with the perceptual color difference due to
the curvilinear nature of the color space [22, 25–29].

Studying the various color difference metrics by treating the color spaces
as Riemannian spaces proves useful. In such a representation, one can map or
transfer a color metric between many color spaces. Basically, in a curved space
the shortest length or the distance between any two points is called a geodesic.
In the Riemannian geometry, distances are defined in the similar way. There-
fore, small color differences can be represented by an infinitesimal distance at a
given point in a color space. This distance is given by a positive definite quad-
ratic differential form, also known as the Riemannian metric. In this sense, the
Riemannian metric provides a powerful mathematical tool to formulate met-
ric tensors of different color difference formulas.These metric tensors allow us
to compute equi-distance ellipses which can be analyzed and compared with
experimentally observed ellipses in a common color space.

In this paper, the authors formulate the CIELAB, the CIELUV, and the
OSA-UCS based ∆EE color difference formulas in terms of Riemannian metric.
Similarly, Riemannian approximation of the CIEDE2000 is also presented. The
CIEDE2000 approximation is hereafter referred to as the Riemannized ∆E00.
This is done by taking the line element to calculate infinitesimal color differences
dE. In this process, color difference equations are converted into the differential
form. Again, to obtain the Riemannian metric in a new color space, we need to
transform color vectors from one color space to another. This is accomplished by
the Jacobian transformation. To illustrate the method, the authors transformed
the four color difference formulas mentioned above into the xyY color space.
The equi-distance ellipses of each formula are plotted in the xy chromaticity
diagram for constant luminance. The input data to compute the ellipses for
our method is the BFD-P data sets [7]. The BFD-P data sets were assessed by
about 20 observers using a ratio method, and the chromaticity discrimination
ellipses were calculated and plotted in the xy chromaticity diagram for each
set [30]. A comparison has also been done between the computed equi-distance
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ellipses of each formula and the original ellipses obtained from the BFD-P data
set. A method for comparing a pair of ellipses by calculating the ratio of the
area of intersection and the area of union was proposed by the authors [31].
This method gives a single comparison value which takes account of variations
in the size, the shape and the orientation simultaneously for a pair of ellipses.
Therefore, this value is an indicator which tells us how well two ellipses match
each other. A comparative analysis has also discussed between computed equi-
distance ellipses of different color difference formulas.

Method

Ellipse Equation

In the Riemannian space, a positive definite symmetric metric tensor gik is a
function which is used to compute the infinitesimal distance between any two
points. So, the arc length of a curve between two points is expressed by a
differential quadratic form as given below :

ds2 = g11dx
2 + 2g12dxdy + g22dy

2. (1)

The matrix form of Equation (1) is

ds2 =
[

dx dy
]

[

g11 g12
g12 g22

] [

dx
dy

]

, (2)

and

gik =

[

g11 g12
g21 g22

]

(3)

where ds is the distance between two points, dx is the difference of x coordinates,
dy is the difference of y coordinates and g11, g12 and g22 are the coefficients of
the metric tensor gik. Here, the coefficient g12 is equal to the coefficient g21 due
to symmetry.

In a two dimensional color space, the metric gik gives the intrinsic properties
about the color measured at a surface point. Specifically, the metric represents
the chromaticity difference of any two colors measured along the geodesic of the
surface.In general, it gives equi-distant contours. However, to calculate small
colour differences considering infinitesimal distance ds, the coefficients of gik also
determine an ellipse in terms of its parameters and vice versa. The parameters
are the semimajor axis, a, the semiminor axis, b, and the angle of inclination
in a geometric plane, θ, respectively. In equation form, the coefficients of gik in
terms of the ellipse parameter are expressed as [31]:

g11 =
1

a2
cos2 θ +

1

b2
sin2 θ,

g12 = cos θ sin θ (
1

a2
− 1

b2
),

g22 =
1

a2
sin2 θ +

1

b2
cos2 θ.

(4)

The angle formed by the major axis with the positive x-axis is given by

tan(2θ) =
2g12

(g11 − g22)
. (5)
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Here θ ≤ 90◦ when g12 ≤ 0, and otherwise θ ≥ 90◦. Similarly, the inverse of
Equations (4–5) are

1

a2
= g22 + g12 cot θ,

1

b2
= g11 − g12 cot θ.

(6)

Alternatively, the semi major axis, a, and the semi minor axis, b, of an ellipse
can also be determined by the eigenvector and eigenvalue of the metric gik. If
λ1 and λ2 are eigenvalues of the metric gik, the semimajor axis, a, and the
semiminor axis, b, equal to 1/

√
λ1 and 1/

√
λ2 respectively. Like wise, θ is the

angle between the first eigenvector and the first axis [32].

Transformation of coordinates

In Equation (1), the quantity ds2 is called the first fundamental form which
gives the metric properties of a surface. Now, suppose that x and y are related
to another pair of coordinates u and v. Then, these new coordinates will also
have new metric tensor g′ik. As analogy to Equation (3), it is written as:

g′ik =

[

g′11 g′12
g′21 g′22

]

. (7)

Now, the new metric tensor g′ik is related to gik via the matrix equation as
follows:

[

g′11 g′12
g′21 g′22

]

=

[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]T [
g11 g12
g21 g22

] [

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]

, (8)

where the superscript T denotes the matrix transpose and the matrix

J =
∂(x, y)

∂(u, v)
=

[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]

(9)

is the Jacobian matrix for the coordinate transformation, or, simply, the Jac-
obian.

Ellipse comparison

Using the principles of union–intersection and ratio testing, the authors present
the method to compare two ellipses with respect to their size, shape and ori-
entation. Figure 1(a) shows two ellipses A and B. The common area is the
intersection area between them and the total area of A and B is known as the
union area. From the statistical point of view, the acceptance region is the
intersection area and the rejection region is the union area. The ratio of these
intersection and union area gives us a non-negative value which lies in the range
of 0 < x ≤ 1. So, the matching ratio is expressed as:

R =
Area(A

⋂

B)

Area(A
⋃

B)
(10)

High value of R gives strong evidence that the two ellipses are closely matched
and vice versa. For example, a highly matched ellipse pair with R equal to .92
and a poorly matched ellipse pair with R equal to .21 are shown in Figure 1(b)
and Figure 1(c) respectively. Hence, a match ratio of 1 between a pair of ellipses
ensures full matching between them in terms of size, shape and orientation.

96



(a) The union and the intersection area of
two ellipses.

(b) Highly matched ellipse pair withR .92. (c) Poorly matched ellipse pair with R .21.

Figure 1: Illustration of the method to compare two ellipses with respect to
their size, shape and orientation.
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The Color Difference Metrics

In this section, the authors show how to derive the Riemannian forms of the
four color difference metrics chosen for the study. Only the outline of the deriv-
ations are given. For the detailed expressions of the coefficients of the Jacobian
matrices, see the appendix.

The ∆E∗
ab Metric

The color difference in the CIELAB color space is defined as the Euclidean
distance,

∆E∗

ab =
√

(∆L∗)2 + (∆a∗)2 + (∆b∗)2 . (11)

The CIELAB color space defined for moderate to high lightness is given as

L∗ = 116

(

Y

Yr

)
1

3

− 16,

a∗ = 500

[

(

X

Xr

)
1

3

−
(

Y

Yr

)
1

3

]

,

b∗ = 200

[

(

Y

Yr

)
1

3

−
(

Z

Zr

)
1

3

]

,

(12)

where L∗, a∗ and b∗ corresponds to the Lightness, the redness-greenness and the
yellowness-blueness scales in the CIELAB color space. Similarly, X, Y , Z and
Xr, Yr, Zr are the tristimulus values of the color stimuli and white reference
respectively.

The relationship between X, Y and Z tristimulus coordinates and x, y and
Y color coordinates are

X =
xY

y
,

Y = Y,

Z =
(1− x− y)Y

y
.

(13)

If we take the line element distance to measure the infinitesimal color differ-
ence at a point in the color space, Equation (11) becomes differential. In terms
of the differential quadratic form, we can write

(dE∗

ab)
2 =

[

dL∗ da∗ db∗
]





dL∗

da∗

db∗



 . (14)

Now, to transfer or map differential color vectors dL∗, da∗, db∗ into dX, dY ,
dZ tristimulus color space, it is necessary to apply the Jacobian transforma-
tion where the variables of two color spaces are related by continuous partial
derivatives. Hence, it is expressed as:





dL∗

da∗

db∗



 =





∂L
∂X

∂L
∂Y

∂L
∂Z

∂a
∂X

∂a
∂Y

∂a
∂Z

∂b
∂X

∂b
∂Y

∂b
∂Z









dX
dY
dZ



 . (15)
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Again, from Equations (14) and (15), we have

(dE∗

ab)
2 =

[

dXdY dZ
] ∂(L, a∗, b∗)

∂(X,Y, Z)

T
∂(L, a∗, b∗)

∂(X,Y, Z)





dX
dY
dZ



 , (16)

where ∂(L, a∗, b∗)/∂(X,Y, Z) is the Jacobian matrix in Equation (15).
Similarly, transformation from X, Y , Z tristimulus color space into x, y,

Y color space is done by another Jacobian matrix ∂(X,Y, Z)/∂(x, y, Y ) and
expressed as :





dX
dY
dZ



 =







∂X
∂x

∂X
∂y

∂X
∂Y

∂Y
∂x

∂Y
∂y

∂Y
∂Y

∂Z
∂x

∂Z
∂y

∂Z
∂Y











dx
dy
dY



 . (17)

Finally, the L∗, a∗, b∗ metric is transformed into x, y, Y as follows:

(dE∗

ab)
2 =

[

dx dy dY
] ∂(X,Y, Z)

∂(x, y, Y )

T
∂(L, a∗, b∗)

∂(X,Y, Z)

T
∂(L, a∗, b∗)

∂(X,Y, Z)

∂(X,Y, Z)

∂(x, y, Y )





dx
dy
dY



 .

(18)
Thus, the Riemannian metric tensor corresponding to ∆E∗

ab in the xyY space is

g∆E∗

ab
=

∂(X,Y, Z)

∂(x, y, Y )

T
∂(L, a∗, b∗)

∂(X,Y, Z)

T
∂(L, a∗, b∗)

∂(X,Y, Z)

∂(X,Y, Z)

∂(x, y, Y )
. (19)

The ∆E∗
uv Metric

The color difference in the CIELUV color space is defined as the Euclidean
distance,

∆E∗

uv =
√

(∆L∗)2 + (∆u∗)2 + (∆v∗)2 . (20)

The CIELUV color space is defined as

L∗ = 116

(

Y

Yr

)
1

3

− 16,

u∗ = 13L

[(

4X

X + 15Y + 3Z

)

−
(

4Xr

Xr + 15Yr + 3Zr

)]

,

v∗ = 13L

[(

9Y

X + 15Y + 3Z

)

−
(

9Yr

Xr + 15Yr + 3Zr

)]

.

(21)

In complete analogy with the case for ∆E∗

ab, the Riemannian metric tensor
corresponding to ∆E∗

uv in the xyY space is

g∆E∗

uv
=

∂(X,Y, Z)

∂(x, y, Y )

T
∂(L, u∗, v∗)

∂(X,Y, Z)

T

I
∂(L, u∗, v∗)

∂(X,Y, Z)

∂(X,Y, Z)

∂(x, y, Y )
. (22)
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The Riemannized ∆E00 Metric

The CIEDE2000 formula derived from the CIELAB color space is defined as a
non-Euclidean metric in a space as follows :

∆E00 =

[

(

∆L′

kLSL

)2

+

(

∆C ′

kCSC

)2

+

(

∆H ′

kHSH

)2

(23)

+ RT

(

∆C ′

kCSC

)(

∆H ′

kHSH

)]0.5

.

The rotation function, RT , is defined as:

RT = − sin(2∆θ)Rc, (24)

where ∆θ = 30 · exp
[

−
(

h̄′ − 275

25

)2
]

, (25)

and Rc = 2

√

C̄ ′7

C̄ ′7 + 257
. (26)

The weighting functions are defined as:

SL = 1 +
0.015(L̄′ − 50)2
√

20 + (L̄′ − 50)2
, (27)

SC = 1 + 0.045C̄ ′, (28)

SH = 1 + 0.015C̄ ′T, (29)

with T = 1− 0.17 cos(h̄′ − 30o) + 0.24 cos(2h̄′)

+ .32 cos(3h̄′ + 6o)− 0.2 cos(4h̄′ − 63o).
(30)

Here, the lightness, the chroma and the hue are obtained taking the average
of the pair of color samples for which the color difference is to be determined,
L̄′ = (L

′

1 + L
′

2)/2, C̄
′ = (C ′

1 + C ′

2)/2 and h̄′ = (h′

1 + h′

2)/2. Furhter, ∆H =
2
√

C ′

1C
′

2 sin(∆h′/2).
The color coordinates used in the formula are defined from the CIELAB

coordinates in the following way:

L′ = L∗, (31)

a′ = a∗(1 +G), (32)

b′ = b∗, (33)

C ′ =
√

a′2 + b′2 , (34)

h′ = arctan
b′

a′
, (35)

G =
1

2

(

1−
√

C∗7
ab

C∗7
ab + 257

)

, (36)

where L∗, a∗ and b∗ corresponds to the lightness, the redness-greenness and the
yellowness-blueness scales and C∗ chroma in the CIELAB color space. Like-
wise, h

′

is the hue angle for a pair of samples. The authors like to explain
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some problems for formulating Remiannian metric of ∆E00. In the ∆E00 for-
mula as given in Equation (23), the coordinate H ′ does not exist since ∆H ′

is not the difference of any H ′. As per the rules of Riemannian geometry, it
is not possible to get the Remiannian metric of the formula from its original
configuration. However, at infinitesimal colour difference, it is possible to use
L′C ′h′ coordinates instead of L′C ′H ′ because C

′

and h
′

are legitimate coordin-
ates. Calculation of Remiannian metric using L′C ′h′ coordinates gives us an
approximation of ∆E00 when we substitute dH ′ = C ′dh′ as proposed by Völz
[33] at infinitesimal colour difference only. But, this Riemannized ∆E00 can not
be integrated to build CIE defined ∆E00 due to the definition of ∆H ′. Defining
the metric for infinitesimal colour differences, the discontinuity problems in the
hue angle as noted by Sharma et.al. [34] is vanished. This is due to taking
h′ values instead of taking airthmetic mean h̄′. However, there are very small
discontinuities remaining in RT , caused by the discontinuity of h′ at h′ = 0 and
in the transformation from XY Z to L∗a∗b∗.

To calculate line element L′, C ′ and h′ values are taken. So, the Equation
(23) in the approximate differential form is written as follows:

(dE00)
2 =

[

dL′ dC ′ dh′
]

×





(kLSL)
−2 0 0

0 (kCSC)
−2 1

2C
′

RT (kCSCkHSH)−1

0 1
2C

′

RT (kCSCkHSH)−1 C
′2(kHSH)−2





×





dL′

dC ′

dh′



 .

(37)

In Equation (37), the matrix consisting of weighting functions, parametric
factors, and rotation term is the Riemannian metric of the formula in its approx-
imate form. This metric is positive definite since R2

T /4 < 1, sin(2∆θ) ∈ [−1, 1]
and |RC | < 2 (see Equations (24)–(26)). It can be transformed into xyY color
space by the Jacobian method. The first step is to transform differential color
vectors [dL′ dC ′ dh′] into [dL

′

da
′

db
′

] by computing all partial derivatives of vec-
tor functions L′, C ′, and h′ with respect to L

′

, a
′

, and b
′

. Then, the L
′

, a
′

,
and b

′

differential vecors are again transformed into L∗, a∗, and b∗ . Rest of the
other process is analog to the CIELAB space. The resulting Riemannian metric
tensor representing the CIEDE2000 color difference metric in the xyY space is

g∆E00
=

∂(X,Y, Z)

∂(x, y, Y )

T
∂(L, a∗, b∗)

∂(X,Y, Z)

T
∂(L′, a′, b′)

∂(L, a∗, b∗)

T
∂(L′, C ′, h′)

∂(L′ , a′ , b′)

T

×





(kLSL)
−2 0 0

0 (kCSC)
−2 1

2C
′

RT (kCSCkHSH)−1

0 1
2C

′

RT (kCSCkHSH)−1 C
′2(kHSH)−2





× ∂(L′, C ′, h′)

∂(L′ , a′ , b′)

∂(L′, a′, b′)

∂(L, a∗, b∗)

∂(L, a∗, b∗)

∂(X,Y, Z)

∂(X,Y, Z)

∂(x, y, Y )
.

(38)
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The ∆EE Metric

The ∆EE color difference formula is defined as the Euclidean metric in the log
compressed OSA-UCS color space,

∆EE =
√

(∆LE)2 + (∆GE)2 + (∆JE)2 . (39)

Here, LE GE and JE are the coordinates in the log-compressed OSA-UCS
space. The lightness is derived from the original OSA-UCS formula and their
definitions are expressed as follows[35, 36]:

LE =

(

1

bL

)

ln

[

1 +
bL
aL

(10LOSA)

]

, (40)

CE =

(

1

bc

)

ln

[

1 +
bc
ac

(10COSA)

]

, (41)

COSA =
√

G2 + J2, (42)

h = arctan(
−J

G
), (43)

GE = −CE cos(h), (44)

JE = CE sin(h), (45)

with the following constants,
aL = 2.890,

bL = 0.015,

ac = 1.256,

bc = 0.050.

(46)

Expressing GE and JE in terms of COSA, we have:

cosh =
G√

G2 + J2
,

sinh =
J√

G2 + J2
,

GE = − CEG

COSA
,

JE =
CEJ

COSA
.

(47)

The OSA-UCS color space is in turn related to the CIEXYZ color space:

LOSA =

(

5.9[(Y
1/3
0 − 2

3
) + 0.042(Y0 − 30)1/3]− 14.4

)

1√
2
,

Y0 = Y
(

4.4934x2 + 4.3034y2 − 4.2760xy − 1.3744x− 2.5643y + 1.8103
)

.
(48)

The coordinates J and G, which correspond to the empirical j and g of the OSA-
UCS are defined through a sequence of linear transformations and a logarithmic
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compression as follows:





A
B
C



 =





0.6597 0.4492 −0.1089
−0.3053 1.2126 0.0927
−0.0374 0.4795 0.5579









X
Y
Z



 , (49)

[

J
G

]

=

[

SJ 0
0 SG

] [

− sinα cosα
sinβ − cosβ

]





ln
(

A/B
An/Bn

)

ln
(

B/C
Bn/Cn

)



 (50)

=

[

2(0.5735LOSA + 7.0892) 0
0 −2(0.764LOSA + 9.2521)

]

×
[

0.1792[lnA− ln(0.9366B)] + 0.9837[lnB − ln(0.9807C)]
0.9482[lnA− ln(0.9366B)]− 0.3175[lnB − ln(0.9807C)]

]

.

(51)

For calculating the line element at a given point, the log-compressed OSA-
UCS formula given in Equation (39) is written as:

(dEE)
2 =

[

dLE dGE dJE
]





dLE

dGE

dJE



 . (52)

The differential color vectors can be transformed into the OSA-UCS color space
by applying the Jacobian method as follows:

(dEE)
2 =

[

dLOSA dG dJ
] ∂(LE , GE , JE)

∂(LOSA, G, J)

T
∂(LE , GE , JE)

∂(LOSA, G, J)





dLOSA

dG
dJ



 . (53)

In the OSA-UCS space, the coordinates J and G are also related with the
lightness function LOSA. So, to transfer the differential color vectors [dLOSA

dG dJ ] into [dx dy dY ], it is required to split the differential lightness vector
dLOSA and the differential coordinates dG and dJ in two parts. At first, let us
relate [dLOSA dGdJ ] in terms of [dx dy dY ] as follows:





dLOSA

dG
dJ



 =
∂(LOSA, G, J)

∂(x, y, Y )





dx
dy
dY



 =

[

∂LOSA

∂(x,y,Y )
∂(G,J)
∂(x,y,Y )

]





dx
dy
dY



 , (54)

where ∂(LOSA, G, J)/∂(x, y, Y ) is a 3×3 Jacobian matrix that is further divided
into the 1×3 and 2×3 Jacobian matrices ∂LOSA/∂(x, y, Y ) and ∂(G, J)/∂(x, y, Y ),
respectively. The first one is again separated as follows:

∂LOSA

∂(x, y, Y )
=

∂LOSA

∂Y0

[

∂Y0

∂x
∂Y0

∂y
∂Y0

∂Y

]

. (55)

Similarly, the second one is also separated in two parts since both G and J
depends on x, y, Y not only through A, B, and C, but also through LOSA. So,
the Jacobian follows as:

∂(G, J)

∂(x, y, Y )
=

∂(G, J)

∂(LOSA, A,B,C)
· ∂(LOSA, A,B,C)

∂(x, y, Y )
. (56)
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Again, in Equation (56), the last Jacobian ∂(LOSA, A,B,C)/∂(x, y, Y ) is
further split in two parts according to

∂(LOSA, A,B,C)

∂(x, y, Y )
=

[

∂LOSA

∂(x,y,Y )
∂(A,B,C)
∂(x,y,Y )

]

, (57)

where
∂(A,B,C)

∂(x, y, Y )
=

∂(A,B,C)

∂(X,Y, Z)

∂(X,Y, Z)

∂(x, y, Y )
. (58)

The first of these is simply the constant matrix given in Equation (49), and the
last one is already familiar from the other metrics.

Results and Discussion

In this section, first, the authors discuss the behaviour of computed ellipses of
the ∆E∗

ab, the ∆E∗

uv, the Riemannized ∆E00 and the ∆EE in the xyY color
space with respect to BFD-P ellipses individually. Secondly, a comparative
study between computed ellipses of these four color difference metrics will be
done.A detailed quantitative comparison is done by using BFD-P data sets.

Before doing comparative analysis, it is necessary to mention that equi-
distance ellipses computed by the metric defined in Equation (38) represents
Riemannized ∆E00 ellipses for infinitesimal colour differences. In fact, the ∆E00

metric in its original form does not define the Riemannian space in the strict
sense.

Similarly, the ellipses are computed with a constant Y=0.4 in xyY color
space. If we define constant lightness, then partial derivatives of lightness func-
tions of all Jacobians will be zero. This gives 2 × 2 metric tensors and ellipses
are computed in the xy chromaticity diagram.

Figure 2 shows BFD-P ellipses in the CIE 1964 chromaticity diagram. Simil-
arly, Figures 3(a), 3(b), 3(c) and 3(d) show the ellipses of ∆E∗

ab, ∆E∗

uv, Rieman-
nized ∆E00 and ∆EE metrics respectively, using BFD-P data. All these ellipses
are computed at the constant lightness value (L∗ = 50) and color centers are
taken from BFD-P data. In the xyY color space, this lightness value corres-
ponds to the luminance Y = 0.4. In the Riemannized ∆E00 case, parametric
factors (kL, kC and kH) are set to 1. Comparing with BFD-P ellipses, disagree-
ments can be seen with respect to the size, shape and rotation in ellipses of
∆E∗

ab, ∆E∗

uv, Riemannized ∆E00 and ∆EE formulas. ∆E∗

ab and ∆E∗

uv ellipses
appear more circular than BFD-P ellipses, but Riemannized ∆E00 and ∆EE

ellipses follow closer to the original ellipses in the blue and green region. How-
ever, it could be said that all computed ellipses of these four color difference
metrics follow the general pattern of agreement with BFD-P ellipses. For ex-
ample, the blue is the smallest, the green largest and the red, blue and yellow
are more elongated than others. But, it is also seen that Riemannized ∆E00

and ∆EE ellipses represent experimentally obtained ellipses more reasonably
than compared to ∆E∗

ab and ∆E∗

uv ellipses. For example, ellipses of ∆Eab, and
∆E∗

uv around neutral and gray color centers are bigger in size, while in the same
region Riemannized ∆E00 and ∆EE ellipses look more similar to the BFD-P
ellipses. This indicates better quality performance of these two color difference
formulas over two popular ∆E∗

ab and ∆E∗

uv formulas. Similarly, ∆EE ellipses
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perform better in the blue region than Riemannized ∆E00 ellipses. The authors
also computed the difference between the Riemannized ∆E00 and the original
∆E00 metrices for finite colour differences by using the CIEDE2000 total colour
difference test data of Gaurav Sharma et.al. [34]. For ∆E00 ≤ 1, the error is
less than 0.5% and for ∆E00 ≤ 2, it is smaller than 1.2%. However, It is seen
that in the cases where ∆E00 > 2.5, the error between two metrices steeply
raise. But, for larger colour differences, geodesic line can be calculated from the
metric tensor of the Riemannized ∆E00. Basically, ∆E00 formula is developed
to calculate small colour differences because the BFD-P data set upon which
the ∆E00 formula developed is scaled for ∆E∗ab < 2 [7].

As described in the Section 2.C, the analysis is done by our method for
comparing the similarity of a pair of ellipses. In Figure 4, histogram of R values
between BFD-P and ∆E∗

ab, ∆E∗

uv, Riemannized ∆E00 and ∆EE ellipses are
given in Figures 4(a), 4(b), 4(c), 4(d) respectively. According to this method,
the maximum R values given by ∆E∗

ab, ∆E∗

uv, Riemannized ∆E00 and ∆EE are
.81, .87, .95, and .93 respectively. Similarly, the lowest R values of these four
formulas are, .1, .14, .2 and .2 respectively. Ellipse pairs of all metrics having
maximum R values are located around neutral color region while matching pairs
with lowest R are found around high chroma blue. Table 1 shows number of
matching ellipses of four metrics with R values greater than .75 and less than
.75. The result indicates that the Riemannized ∆E00 and ∆EE perform better
than the ∆E∗

ab and the ∆E∗

uv.
The authors have also used box plots to display ellipse matching values of

these metrics in Figure 5. In the plots, the median value is marked by the central
horizontal lines. The notch indicate the confidence interval of the median, and
the box is bounded by the upper and lower quartiles of the grouped data. We
can see that the Riemannized ∆E00 gives the highest median value while the
CIELAB formula median value is the lowest. By using this technique, full
range of matching value data is also plotted for comparing these four metrics
simultaneously. The range of data is shown by dashed line, and outliers and
marked with a cross. According to this box plot, the performance ranking of
these metrics come in the following order: Riemannized ∆E00 first, ∆EE second,
∆E∗

uv third and ∆E∗

ab fourth. However, there is no big difference between ∆E00

and ∆EE and between ∆Euv and ∆Eab. But, with respect to Riemannized
∆E00 and ∆EE , the performance of ∆E∗

uv and ∆E∗

ab metrics for matching
ellipses is seen weaker.

In order to compare how well the different metrics reproduce the BFD-P
ellipses, the pairwise statistical sign test of R values is also done between all
pairs of metrics. The test result shows that at 5 % confidence level, Rieman-
nized ∆E00 and ∆EE both performed significantly better than ∆E∗

uv and ∆E∗

ab

metrics. Further, ∆E∗

uv performs better than ∆E∗

ab with p = 0.0176. There is
no significant difference between ∆E00 and ∆EE metrics.

On the basis of above results, it is good to point the features of color spaces
used by these metrics responsible for better performance. For example, satur-
ation is defined in ∆E∗

uv not in ∆E∗

ab [37]. In ∆EE , the lightness LOSA takes
into account the Helmholtz-Kohlrausch and crispening effects [19]. Further, the
OSA-UCS system adopts a regular rhombohedral geometry which gives square
grid with integer value of lightness [38]. This makes OSA-UCS space more
uniform than CIELAB and CIELUV and suitable for small to medium color
difference measurement. On the other hand, the non-Euclidean Riemannized
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Figure 2: BFD-P ellipses in the CIE1964 chromaticity diagram (enlarged 1.5 times).

∆E00 have many parameters for computing color differences. However, this for-
mula has its specific advantage to correct the non-linearity of the visual system.
But, the quality of the formula depends on selecting parameters values.

Table 1: Number of matching ellipses with matching values ≥ .75 and ≤ .75 of
four color difference metrics. This matching is done with BFD-P ellipses.

Number of Ellipse pairs with Number of Ellipse pairs with
match ratio ≥ .75 match ratio ≤ .75

∆E∗

ab 3 77
∆E∗

uv 7 73
∆E00 57 23
∆EE 55 25

Conclusion

First, formulation of CIELAB, CIELUV, Riemannized CIEDE00 and OSA-UCS
∆EE color difference formulas into the Riemannian metric is successfully ac-
complished. Secondly, The Riemannized ∆E00 is found indistinguishable to the
exact ∆E00 for the small colour differences.

Thirdly, computation of equi-distance ellipses of these four formulas in the
xyY color space is done by transferring Riemannian metrics of formulas into the
xyY color space by the Jacobian method. Fourthly, a comparison between ex-
perimentally observed BFD-P and computed ellipses of these formulas is done
in two ways: first descriptive and second by our developed comparison tech-
nique. On the basis of our findings as discussed above, the authors can say that
Riemannized CIEDE2000 and OSA-UCS ∆EE formulas measure the visual color
differences significantly better than CIELAB and CIELUV formulas. However,
neither formulas are fully perfect for matching visual color differences data.
Among CIELAB and CIELUV formulas, performance of the CIELUV is found
slightly better than the CIELAB. Similarly, there is no significant difference
between Euclidean ∆EE and Riemannized CIEDE2000 formulas. It is inter-
esting to note that the Euclidean ∆EE formula is not inferior to the complex,
non-Euclidean industry standard ∆E00 for measuring small color differences.
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(a) CIELAB ellipses using BFD-P data. (b) CIELUV ellipses using BFD-P data.

(c) CIEDE00 ellipses using BFD-P data. (d) OSA-UCS ∆EE ellipses using BFD-P
data.

Figure 3: Computed CIELAB, CIELUV, Riemannized CIEDE00 and OSA-UCS ∆EE el-
lipses in the CIE1964 chromaticity diagram (enlarged 1.5 times).
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(a) CIELAB. (b) CIELUV.

(c) CIEDE00. (d) OSA-UCS ∆EE .

Figure 4: Histogram of comparison values of CIELAB, CIELUV, Rie4annized CIEDE00 and
OSA-UCS ∆EE with respet to BFD-P Ellipses. The values lie in the range 0 < x ≤ 1. Higher
comparison value indicates better matching between a pair of ellipses.

Figure 5: Box plots of ellipse matching values of CIELAB, CIELUV, Riemannized CIEDE00
and OSA-UCS ∆EE with respect to BFD-P ellipses.
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Appendix: Detailed expressions for the Jacobians

From x, y, Y to X, Y , Z

∂(X,Y, Z)

∂(x, y, Y )
=







∂X
∂x

∂X
∂y

∂X
∂Y

∂Y
∂x

∂Y
∂y

∂Y
∂Y

∂Z
∂x

∂Z
∂y

∂Z
∂Y






=







Y
y

−xY
y2

x
y

0 0 1
−Y
y

(x−1)Y
y2

1−x−y
y






(59)

From X, Y , Z to L∗, a∗, b∗

∂(L, a, b)

∂(X,Y, Z)
=





∂L
∂X

∂L
∂Y

∂L
∂Z

∂a
∂X

∂a
∂Y

∂a
∂Z

∂b
∂X

∂b
∂Y

∂b
∂Z





=







0 116
3 ( 1

Yr
)

1

3Y
−2

3 0
500
3 ( 1

Xr
)

1

3X
−2

3
−500

3 ( 1
Yr
)

1

3Y
−2

3 0

0 200
3 ( 1

Yr
)

1

3Y
−2

3
−200

3 ( 1
Zr

)
1

3Z
−2

3







(60)

111



From X, Y , Z to L∗, u∗, v∗

∂(L∗, u∗, v∗)

∂(X,Y, Z)
=





∂L∗

∂X
∂L∗

∂Y
∂L∗

∂Z
∂u∗

∂X
∂u∗

∂Y
∂u∗

∂Z
∂v∗

∂X
∂v∗

∂Y
∂v∗

∂Z



 , (61)

where the calculations of all partial derivatives are as follows:

∂L∗

∂X
= 0, (62a)

∂L∗

∂Y
=

116

3
(
1

Yr
)

1

3Y (−2/3), (62b)

∂L

∂Z
= 0, (62c)

∂u∗

∂X
= 13

(

116

(

Y

Yr

)(1/3)

− 16

)

[

60Y + 12Z

(X + 15Y + 3Z)2

]

, (62d)

∂u∗

∂Y
= 13×

(

116

(

Y

Yr

)(1/3)

− 16

)

[ −60X

(X + 15Y + 3Z)2

]

+

[

4X

(X + 15Y + 3Z)

]

(

13× 116( 1
Yr
)

1

3Y (−2/3)

3

)

−
(

4Xr

Xr + 15Yr + 3Zr

)

(

13× 116( 1
Yr

)
1

3Y(−2/3)

3

)

,

(62e)

∂u∗

∂Z
= 13

(

116

(

Y

Yr

)(1/3)

− 16

)

[ −12X

(X + 15Y + 3Z)2

]

, (62f)

∂v∗

∂X
= 13

(

116

(

Y

Yr

)(1/3)

− 16

)

[ −9Y

(X + 15Y + 3Z)2

]

, (62g)

∂v∗

∂Y
= 13

(

116

(

Y

Yr

)(1/3)

− 16

)

[

9X + 27Z

(X + 15Y + 3Z)2

]

+

[

9Y

(X + 15Y + 3Z)

]

(

13× 116( 1
Yr
)

1

3Y (−2/3)

3

)

−
(

9Yr

Xr + 15Yr + 3Zr

)

(

13× 116( 1
Yr

)
1

3Y(−2/3)

3

)

,

(62h)

∂v∗

∂Z
= 13

(

116

(

Y

Yr

)(1/3)

− 16

)

[ −27Y

(X + 15Y + 3Z)2

]

. (62i)

From L
′

, a
′

, b
′

to L′, C ′, h′

The Jacobian for this transformation is

∂(L′, C ′, h′)

∂(L′ , a′ , b′)
=







∂L′

∂L′

∂L′

∂a′

∂L′

∂b′

∂C′

∂L′

∂C′

∂a′

∂C′

∂b′

∂h′

∂L′

∂h′

∂a′

∂h′

∂b′






=







1 0 0

0 ∂C′

∂a′

∂C′

∂b′

0 ∂h′

∂a′

∂h′

∂b′






. (63)
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where the partial derivatives are as follows:

∂C
′

∂a′
=

a
′

√
a′2 + b′2

=
a

′

C ′
(64a)

∂C
′

∂b′
=

b
′

√
a′2 + b′2

=
b′

C ′
(64b)

∂h
′

∂a′
=

−b′

C ′2
(64c)

∂h′

∂b′
=

a
′

C ′2
. (64d)

From L∗, a∗, b∗ to L′, a′, b′

The Jacobian for this transformation is

∂(L′, a′, b′)

∂(L∗, a∗, b∗)
=







∂L′

∂L∗

∂L′

∂a∗

∂L′

∂b∗
∂a′

∂L∗

∂a′

∂a∗

∂a′

∂b∗
∂b′

∂L∗

∂b′

∂a∗

∂b′

∂b∗






=





1 0 0

0 ∂a′

∂a∗

∂a′

∂b∗

0 ∂b′

∂a∗

∂b′

∂b∗



 . (65)

∂a
′

∂a∗
=

[

(1 +G) +
a∗2

C∗

(

−1

4

7× 257C∗5/2

(C∗7 + 257)3/2

)]

, (66a)

∂a
′

∂b∗
=

a∗b∗

C∗

(

−1

4

7× 257C∗5/2

(C∗7 + 257)3/2

)

, (66b)

∂b
′

∂a∗
= 0 (66c)

∂b′

∂b∗
= 1 . (66d)

From LOSA, G, J to LE, GE, JE

∂(LE , GE , JE)

∂(LOSA, G, J)
=







∂LE

∂LOSA

∂LE

∂G
∂LE

∂J
∂GE

∂LOSA

∂GE

∂G
∂GE

∂J
∂JE

∂LOSA

∂JE

∂G
∂JE

∂J






, (67)
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where the calculation of all partial derivatives are as follows:

∂LE

∂LOSA
=

10

aL + 10bLLOSA
, (68a)

∂LE

∂G
= 0, (68b)

∂LE

∂J
= 0, (68c)

∂GE

∂LOSA
= 0, (68d)

∂GE

∂G
= −

(

CE

COSA
+G

[

COSA(10/ac + 10bcCOSA)− CE

C2
OSA

]

G

COSA

)

, (68e)

∂GE

∂J
= −G

[

COSA(10/ac + 10bcCOSA)− CE

C2
OSA

]

J

COSA
, (68f)

∂JE
∂LOSA

= 0, (68g)

∂JE
∂G

= −J

[

COSA(10/ac + 10bcCOSA)− CE

C2
OSA

]

G

COSA
, (68h)

∂JE
∂J

= −
(

CE

COSA
+ J

[

COSA(10/ac + 10bcCOSA)− CE

C2
OSA

]

J

COSA

)

. (68i)

From x, y, Y to LOSA

∂LOSA

∂(x, y, Y )
=

∂LOSA

∂Y0

[

∂Y0

∂x
∂Y0

∂y
∂Y0

∂Y

]

, (69)

where

∂LOSA

∂Y0
= 5.9

[

1

3
Y

−2/3
0 + 0.042 · 1

3
(Y0 − 30)−2/3

]

1√
2
, (70a)

∂Y0

∂x
= Y (4.4934 · 2x− 4.2760y − 1.3744), (70b)

∂Y0

∂y
= Y (4.3034 · 2y − 4.2760x− 2.5643), (70c)

∂Y0

∂Y
= 4.4934x2 + 4.3034y2 − 4.2760xy − 1.3744x− 2.5643y + 1.8103.

(70d)

From LOSA, A, B, C to G, J

∂(G, J)

∂(LOSA, A,B,C)
=

[ ∂G
∂LOSA

∂G
∂A

∂G
∂B

∂G
∂C

∂J
∂LOSA

∂J
∂A

∂J
∂B

∂J
∂C

]

, (71)
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where

∂G

∂LOSA
= TG

∂SG

∂LOSA
= TG · −2× 0.764, (72a)

∂J

∂LOSA
= TJ

∂SJ

∂LOSA
= TJ · 2× 0.57354, (72b)

∂G

∂A
= SG

0.9482

A
, (72c)

∂G

∂B
= SG

−0.9482− 0.3175

B
, (72d)

∂G

∂C
= SG

0.3175

C
, (72e)

∂J

∂A
= SJ

0.1792

A
, (72f)

∂J

∂B
= SJ

−0.1792 + 0.9837

B
, (72g)

∂J

∂C
= SJ

−0.9837

C
, (72h)

where the shorthands

TG = 0.9482[lnA− ln(0.9366B)]− 0.3175[lnB − ln(0.9807C)], (73a)

TJ = 0.1792[lnA− ln(0.9366B)] + 0.9837[lnB − ln(0.9807C)], (73b)

have been introduced.
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ABSTRACT

The CIE recommended uniform chromaticity scale (UCS)

diagram based on the CIELUV is used to evaluate the non-

Euclidean approximate form of CIEDE2000 and the Eu-

clidean ∆EE colour difference formulas for measuring the

visual data. Experimentally observed visual colour difference

data in terms of supra threshold ellipses are plotted in the

CIELUV u∗, v∗ diagram. Similarly, equi-distance ellipses of

two formulas are computed and plotted in the same diagram.

Performance of these formulas are evaluated by calculating

the matching ratio between observed and computed ellipse

pairs. Various statistical tests are done for these ratio values.

It is found that there is no significant difference between the

complex non-Euclidean approximate form of ∆E00 and the

simple Euclidean ∆EE .

Index Terms— CIEDE2000, OSA-UCS ∆EE , ellipses,

visual colour difference

1. INTRODUCTION

Among the many colour difference formulas so far developed,

the CIEDE2000 [1] and ∆EE proposed by Oleari [2] based

on the OSA-UCS color space are considered more robust and

latest. The first one is an improved formula based on the

CIELAB color space, resulting in a non-Euclidean metric.

The second is the recent Euclidean color difference metric

defined in OSA-UCS space with interger values of lightness

L in a regular rhombohedron planes [2]. These two color

difference formulas are established with different criteria. It

is interesting to know how the two color difference formulas

perform for measuring the visual data.

The visual data is the experimental color discrimination

data derived from visual color difference experiments. They

are described by supra threshold ellipses. In general, these

data represent the sum of a number of threshold differences

along a particular path between two colors called line ele-

ment [3]. MacAdam [4] was the first to study about discrim-

ination data and from this data he constructed just noticeable

difference (JND) ellipses. Later, similar data sets were de-

rived by Brown [5], Wyszecki and Fielder [6]. Similarly,

more advanced data sets such as BFD-Perceptibility(BFD-

P) [7] were developed based on supra threshold color differ-

ences. Bigg and Luo established BFD-P as a standard data

set for surface colors represented in the xyY colour space [7].

On the other hand, if we treat a color space as a Riemannian

space [8], the ellipses of the approximate form of CIEDE2000

[1] and ∆EE can be computed in any other colour space, as

shown by Pant et. al. [9]. These computed ellipses can be

compared with experimentally obtained ellipses. However,

comparing ellipses in xy chromaticity scale diagram have lim-

itations due to the large deviation from uniform spacing [10–

12].

To compare visual differences, a uniform color space is

very important because in such a space a unit change in hue,

chroma and lightness are equal. In practice, realization of

these scales are difficult. As a result, many uniform color

spaces are proposed such as CIELUV [13], ATD [14] OSA

90 [15] and so on. The CIE recommended CIELUV based

uniform chromaticity scale (UCS) diagram is developed by

projective transform of the CIE tristimulus (XY Z) values.

Because of this, the CIELUV chromaticity u∗, v∗ follows the

property of linearity. Further, the aim of CIELUV space is to

map MacAdam’s JND ellipses as close to circles, it is more

suitable for measuring small colour differences. Since these

formulas are optimized to predict visual color differences in

their specific colour spaces, it is also desirable to know how

well they perform to accomplish such tasks in an independent

uniform colour space like CIELUV. In the literature, many

other researchers also suggest to use u∗, v∗ diagram before

drawing any conclusions about visual differences [16–18].

In this paper, the authors compute equi-distance ellipses
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of the CIEDE2000 and ∆EE in the u∗, v∗ diagram. The

CIEDE2000 is treated here as the Riemannian approxima-

tion considering L,C, h coordinates instead of the formula

defined L,C,H . The detailed explanation about this can be

found in the authors previous article [19]. They are compared

with the experimental BFD-P data which is also plotted in

the CIELUV chromaticity u∗, v∗ diagram. We take an in-

finitesimal distance to compute the ellipses of approximate

CIEDE2000 and ∆EE formulas. In this process, color differ-

ence equations are converted into the differential form. This

gives metric tensors (gik) of above mentioned two formulas.

Ellipse parameters, major axes and angle of rotation can be

determined by this metric tensor and vice versa. The Jaco-

bian transformation method is used to transform computed

metric from one colour space to another. For example, The

BFD-P data is plotted in the xy chromaticity diagram. These

ellipses give gik metrics in the xyY space. To obtain ellipses

in the u∗, v∗ diagram, this metric should be transformed into

the CIELUV space through XY Z space. A similar technique

is applied to plot the computed ellipses of above formulas in

u∗, v∗ diagram.

In this paper, a comparison is done between the computed

ellipses of each formula and the ellipses obtained from the

BFD-P data set in the u∗, v∗ chromaticity diagram. The com-

parison method is shown by Pant et. al. [20]. This method

gives a matching ratio, R ∈ (0, 1], which takes account of

variations in the size, the shape and the orientation simultane-

ously for a pair of ellipses. Statistical tests are also performed

between R values of two formulas. Box plot and cumula-

tive distribution function (CDF) of two R values are also plot-

ted. Such plots illustrate the performance of two formulas for

measuring visual differences.

2. COLOUR SPACES AND FORMULATION OF

ELLIPSE

2.1. Ellipse Formulation

In a Riemannian model of colour space, the infinitesimal dis-

tance between any two points is expressed by a differential

quadratic form. If we consider the xy chromaticity diagram,

such distance is expressed as:

ds2 = g11dx
2 + 2g12dxdy + g22dy

2 (1)

where ds is the infinitesimal distance between two points, dx
is the difference of x coordinates, dy is the difference of y

coordinates and g11, g12 and g22 are the coefficients of the

metric tensor gik. The ellipse parameters in terms of the co-

efficents of gik are expressed as [12]:

g11 =
1

a2
cos2 θ +

1

b2
sin2 θ,

g12 = cos θ sin θ (
1

a2
− 1

b2
),

g22 =
1

a2
sin2 θ +

1

b2
cos2 θ.

(2)

The angle formed by the major axis with the positive x-axis

is given by

tan(2θ) =
2g12

(g11 − g22)
. (3)

Here θ ≤ 90◦ when g12 ≤ 0, and otherwise θ ≥ 90◦. The

ellipse parameters can also be derived from the gik metric

tensor by solving the above equations for a, b and θ.

2.2. CIELUV space

The CIELUV in terms of CIE(X,Y,Z) is defined as:

L∗ = 116

(

Y

Yr

)
1

3

− 16

u∗ = 13L∗

[(

4X

X + 15Y + 3Z

)

−
(

4Xr

Xr + 15Yr + 3Zr

)]

v∗ = 13L∗

[(

9Y

X + 15Y + 3Z

)

−
(

9Yr

Xr + 15Yr + 3Zr

)]

(4)

The plot of u∗ and v∗ values gives us UCS diagram in the

CIELUV colour space. Now, to plot xyY space based BFD-P

data in u∗v∗ diagram, it is necsessary to transform the data

from the xyY space to the CIELUV space. This is done

by applying Jacobian transformation where the variables of

two color spaces are related by continuous partial derivatives.

This process takes following steps: First, compute the gik
metric of the data according to Equation (2). Secondly, trans-

form this metric into the XY Z color space and then to the

CIELUV space. Thirdly, compute ellipse parameter from the

transformed matric tensor and plot it in u∗v∗ diagram. In

equation form, we write:

g∆E∗

uv
=

∂(X,Y, Z)

∂(L, u∗, v∗)

T
∂(x, y, Y )

∂(X,Y, Z)

T

gik
∂(x, y, Y )

∂(X,Y, Z)

∂(X,Y, Z)

∂(L, u∗, v∗)
.

(5)

where ∂(x, y, Y )/∂(X,Y, Z) and ∂(X,Y, Z)/∂(L, u∗, v∗)
are the Jacobian metrics. They are expressed as:





dx
dy
dY



 =





∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂Y
∂X

∂Y
∂Y

∂Y
∂Z









dX
dY
dZ



 (6)





dX
dY
dZ



 =





∂X
∂L∗

∂X
∂u∗

∂X
∂v∗

∂Y
∂L∗

∂Y
∂u∗

∂Y
∂v∗

∂Z
∂L∗

∂Z
∂u∗

∂Z
∂v∗









dL∗

du∗

dv∗



 (7)

2.3. CIEDE2000 space

The CIEDE2000 formula based on CIELAB space is ex-

pressed as a non-Euclidean metric as follows :

∆E00 =

[

(

∆L′

kLSL

)2

+

(

∆C ′

kCSC

)2

+

(

∆H ′

kHSH

)2

(8)

+ RT

(

∆C ′

kCSC

)(

∆H ′

kHSH

)]0.5
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where, lightness (SL), chroma (SC) and hue (SH) are spe-

cific weighting functions. Similarly, (kL, kC , kH), and RT

describe parametric factors for experimental condition and the

rotation term respectively. The color coordinates used in the

formula are defined from the CIELAB coordinates in the fol-

lowing way:

L′ = L∗, a′ = a∗(1 +G), b′ = b∗, (9)

C ′ =
√

a′2 + b′2, h′ = arctan
b′

a′
(10)

G =
1

2

(

1−
√

C∗7
ab

C∗7
ab + 257

)

, (11)

For formulating Remiannian metric of ∆E00, we need to to

use L′C ′h′ coordinates instead of L′C ′H ′ because the co-

ordinate H ′ does not exist. The metric using L′C ′h′ co-

ordinates gives us an approximation of ∆E00. Considering

dH ′ = C ′dh′ [21], the approximate CIEDE2000 color differ-

ence metric tensor in the CIELUV space is

g∆E00
=

∂(X,Y, Z)

∂(L∗, u∗, v∗)
T
∂(L, a∗, b∗)

∂(X,Y, Z)

T
∂(L′, C ′, h′)

∂(L, a∗, b∗)

T

×




(kLSL)
−2 0 0

0 (kCSC)
−2 1

2C
′

RT (kCSCkHSH)−1

0 1
2C

′

RT (kCSCkHSH)−1 C
′2(kHSH)−2





× ∂(L′, C ′, h′)

∂(L, a∗, b∗)

∂(L, a∗, b∗)

∂(X,Y, Z)

∂(X,Y, Z)

∂(L, u∗, v∗)
(12)

where, ∂(L′, C ′, h′)/∂(L, a∗, b∗), ∂(L, a∗, b∗)/∂(X,Y, Z)
are the Jacobian metrices. The derivations of these metrices

can be found in the paper Pant and Farup [9].

2.4. OSA-UCS based ∆EE space

The ∆EE color difference formula based in the log com-

pressed OSA-UCS color space are derived from the original

OSA-UCS formula. Their definitions are expressed as fol-

lows:

LE =

(

1

bL

)

ln

[

1 +
bL
aL

(10LOSA)

]

, (13)

CE =

(

1

bc

)

ln

[

1 +
bc
ac

(10COSA)

]

, (14)

COSA =
√

G2 + J2, h = arctan(
−J

G
), (15)

GE = −CE cos(h), JE = CE sin(h) (16)

Expressing GE and JE in terms of COSA, we have:

GE = − CEG

COSA
, JE =

CEJ

COSA
(17)

The OSA-UCS color space is also related to the CIEXYZ

color space. The details can be found in the paper of Huertas

et al. [22]. For calculating the line element at a given point,

the log-compressed OSA-UCS formula is written as:

(dEE)
2 =

[

dLE dGE dJE
]





1 0 0
0 1 0
0 0 1









dLE

dGE

dJE



 .

(18)

Then, in the similar way as mentioned for the CIEDE00, it

is transformed to OSA-UCS color space and finally into the

CIELUV space. From the transformed metric tensor, we com-

pute JND ellipses in u∗, v∗ chromaticity diagram. The com-

putation of ∆EE metric tensor is published in the previous

article [19].

2.5. Ellipse pair matching ratio

The matching ratio to compare a pair of ellipses A and B is

expressed as:

R =
Area(A

⋂

B)

Area(A
⋃

B)
(19)

High value of R gives strong evidence that the two ellipses

are closely matched and vice versa.

3. RESULTS

The ellipses of BFD-P, the ∆EE and the ∆E00 in the uni-

form u∗, v∗ chromaticity diagram are shown in Figures 1(a),

1(b), and 1(c) respectively. All the ellipses are computed at

constant lightness value (L∗ = 50). The colour centers for the

computed ellipses are taken from the BFD-P data. Around the

neutral region the computed and BFD-P ellipses look similar.

In the blue region, ellipses of both formulas appear smaller

in size than the observed ellipses. Similarly, in comparison

to BFD-P, ∆E00 ellipses are rotated more in blue and red re-

gions than the ∆EE . So, the ∆EE performs better for mea-

suring experimental data in these region. Likewise, ellipses

of both formulas are following close pattern to BFD-P in the

green part.

Figures 2(a) and 2(b) are the histograms of R values of the

∆E00 and the ∆EE with respect to BFD-P ellipses. The max-

imum R value of both formulas is approximately .92 where

as the lowest value for the ∆E00 and the ∆EE is .25 and .2

respectively. Ellipse pairs having maximum R values are lo-

cated around neutral colour region. Similarly, in the ∆E00

case lowest R are found around blue and red regions while

for the ∆EE it is located in blue-violet region.

Figure 3(a) shows box plot of the R values. In such plots,

the median value is marked by the central horizontal lines.

The notch indicate the confidence interval of the median, and

the box is bounded by the upper and lower quartiles of the

grouped data. We can see that both ∆E00 and the ∆EE have

similar median values with slight differences. The authors

also plotted cumulative distribution function (CDF) of two R
values. This function describes the distribution of R values

121



by taking the sum of each value of R having finte mean and

variance. The distribution curves of two sets of R is shown

in figure 3(b). They follow the similar continous normal dis-

tribution and the maximum difference between two curves is

.1. Similarly, the pairwise statistical sign test of R values

shows that there is no significant difference between ∆E00

and ∆EE formulas.

4. CONCLUSION

In this paper, the UCS diagram based on CIELUV colour

space is used to evaluate two colour difference formulas

∆E00 and ∆EE for measuring the visual data. On the basis

of our analysis, the authors can say that statistically, there is

no significant difference between the Euclidean ∆EE and the

non-Euclidean CIEDE2000 formulas compared to the BFD-P

data set. However, the performance of the CIEDE2000 is

found weaker in blue and red region compared to the ∆EE .

It is interesting to note that simple Euclidean ∆EE metric

is not inferior to the complex non-Euclidean mathematical

framework of ∆E00 for evaluating color differences.
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(a) BFD-P ellipses in UCS diagram.

(b) CIEDE00 ellipses in UCS diagram. (c) OSA-UCS ∆EE ellipses in UCS diagram .

Fig. 1. BFD-P and computed OSA-UCS ∆EE and approximate CIEDE00 ellipses in the u∗v∗ chromaticity diagram.

(a) CIEDE00. (b) OSA-UCS ∆EE .

Fig. 2. Histogram of R values of approximate CIEDE00 and OSA-UCS ∆EE .
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(a) Box plot. (b) CDF plot.

Fig. 3. Box and CDF plots of R values of approximate CIEDE00 and OSA-UCS ∆EE .
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Abstract

Riemannian metric tensors of color difference formulas are derived
from the line elements in a color space. The shortest curve between two
points in a color space can be calculated from the metric tensors. This
shortest curve is called a geodesic. In this paper, the authors present
computed geodesic curves and corresponding contours of the CIELAB
(∆E

∗

ab), the CIELUV (∆E
∗

uv), the OSA-UCS (∆EE) and an infinitesimal
approximation of the CIEDE2000 (∆E00) color difference metrics in the
CIELAB color space. At a fixed value of lightness L∗, geodesic curves ori-
ginating from the achromatic point and their corresponding contours of
the above four formulas in the CIELAB color space can be described as hue
geodesics and chroma contours. The Munsell chromas and hue circles at
the Munsell values 3, 5 and 7 are compared with computed hue geodesics
and chroma contours of these formulas at three different fixed lightness
values. It is found that the Munsell chromas and hue circles do not the
match the computed hue geodesics and chroma contours of above men-
tioned formulas at different Munsell values. The results also show that the
distribution of color stimuli predicted by the infinitesimal approximation
of CIEDE2000 (∆E00) and the OSA-UCS (∆EE) in the CIELAB color
space are in general not better than the conventional CIELAB (∆E

∗

ab)
and CIELUV (∆E

∗

uv) formulas.

Introduction

In a color space, color differences are described as the distance between two
color points. This distance gives us a quantitative value which in general should
agree with perceptual color differences. We can describe such distances from
different geometrical points of view. For example, the CIELAB color space is
isometric to the Euclidean geometry and the distance is described by the length
of a straight line because it has zero curvature everywhere. The distance is no
longer the length of a straight line, if we model a color space as a Riemannian
space having nonzero curvature. In such a space, the curve having the shortest
length or distance between any two points is called a geodesic. The aim of

127



a color space and a color difference formula is to give a quantitative measure
(∆E) of the perceived color difference correctly. The development of many
color spaces and color difference formulas are outcomes of a number of studies
of visual color differences based upon the distribution of color matches about
a color center [1–5]. Many research works in the past have been continuing to
relate theoretical models of color differences with experimental results.

Helmholtz [6] was the first to derive a line element for a color space as a
Riemannian space. Schrödinger [7] modified Helmholtz’s line element stating
that the additivity of brightness is essential for the formulation of the line ele-
ment. He further argued that surfaces of constant brightness can be derived
from the line element in the following way: Suppose that p1 and p2 repres-
ent the coordinates of two color stimuli in a tristimulus space, p1 moves away
from the origin along a straight line in that space, and p2 remains fixed. When
the geodesic distance between p1 and p2 is at minimum, the two given color
stimuli are said to be equally bright (which in modern parlance means they
are equally luminous). The geodesic between the final p1 and p2 is called a
constant-brightness geodesic.

Muth et al. [8] used Schrödinger’s theoretical conjecture to compute constant
brightness color surfaces in the xyY space for FMC1 and FMC2 color difference
formulas. The shape of this computed constant brightness surface is consist-
ent with experimental results. Jain [9] determined color distance between two
arbitrary colors in the xyY space by computing the geodesics. He also found
that geodesics and the constant brightness contours are in agreement with the
experimental results of Sanders and Wyszecki [10]. A thorough review of color
metrics described with the line element can be found in [11–14].

Wyszecki and Stiles [14] hypothesized that all colors along a geodesic curve
originating from a point representing an achromatic stimulus on a surface of con-
stant brightness share the same hue. They further hypothesized that contours
of constant chroma can be determined from these geodesics (henceforth called
hue geodesics) by taking each point on a chroma contour as the terminus of a
hue geodesic such that all the hue geodesics terminate on that chroma contour
at the same geodesic distance. This construct has also been used to compute
the curvature of color spaces by Lenz at el. [15]. Many other researchers have
also pointed out that hue geodesics play a vital role in various color-imaging
applications such as color difference preserving maps for uniform color spaces,
color-weak correction and color reproduction [15–18].

Hue geodesics and chroma contours of color difference formulas are useful
to study the perceptual attributes hue, chroma and lightness predicted by the
color difference metric theoretically. A color order system like the Munsell is
described in terms of hue, chroma and value to represent scales of constant hue,
chroma and lightness. This is analogous to the Riemannian coordinate system.
This analogy provides us to compare hue geodesics and chroma contours of a
color difference formula in a color space with respect to the Munsell chromas
and hues circles computed at a fixed value of lightness which should correspond
to the Munsell value. In this sense, in the CIELAB color space, hue geodesics
starting from the origin of a∗, b∗ at a fixed value of lightness L∗ are corresponding
to the curves of increasing or decreasing Munsell chroma starting from the same
origin at constant hue. In a similar way, chroma contours are closed curves with
a constant hue geodesic distance from the achromatic origin. They are also
corresponding to changing Munsell hue circles from the origin at the constant
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chroma.
The CIELAB and the CIELUV [19] color difference formulas are defined

by Euclidean metrics in their own color spaces. The CIEDE2000 [20] is an
improved non-Euclidean formula based on the CIELAB color space. The ∆EE

proposed by Oleari [21] is a recent Euclidean color difference formula based on
the OSA-UCS color space. However, all these color spaces do not have sufficient
perceptual uniformity to fit visual color difference data [22–28]. This leads to
difficulty in determining the maximum performance of color difference formulas
for measuring visual color differences. Computing hue geodesics and chroma
contours of these formulas in a color space help to evaluate their perceptual
uniformity theoretically. Similarly, hue geodesics have to be calculated to study
distribution of the color stimuli of a color difference formula in a color space. To
calculate large color differences, hue geodesics have to calculated [14, 29]. This
is even crucial for formulas like the CIEDE2000 because they are developed to
measure small color differences, 0–5 ∆E∗

ab [20].
In this paper, the authors test the hypothesis described in the fourth para-

graph by computing the hue geodesics and chroma contours of four color dif-
ference formulas, the CIELAB, the CIELUV, the Riemannian approximation of
CIEDE2000 [30] and the OSA-UCS based ∆EE in the CIELAB color space, and
comparing the results to the Munsell color order system. The mathematical con-
struct to compute these hue geodesics and chroma contours using Riemannian
metric tensors of each formula are given in the section ”The geodesic equation”.
They are computed at a fixed value of lightness L∗, starting from the origin
of the a∗, b∗ plane. For the first three color difference metrics above, constant
L∗ correspond to the constant brightness surface according to Schrödinger’s
criterion. For the OSA-UCS based ∆EE it does not correspond to constant
brightness due to the definition of the OSA-UCS space. Different hue geodesics
and chroma contours of the above four formulas are computed taking three dif-
ferent fixed values of lightness, L∗, corresponding to the Munsell values 3, 5 and
7. The Munsell chromas and hue circles are also plotted in the CIELAB color
space at the Munsell values 3, 5 and 7. They are compared with the computed
hue geodesics and chromas contours of above mentioned four formulas.

Method

Riemannian Metric

In a Riemannian space, a positive definite symmetric metric tensor gik is a
function that is used to compute the infinitesimal distance between any two
points. So, the length of an infinitesimal curve between two points is expressed
by a quadratic differential form as given below:

ds2 = g11dx
2 + 2g12dxdy + g22dy

2. (1)

The matrix form of Equation (8) is

ds2 =
[

dx dy
]

[

g11 g12
g12 g22

] [

dx
dy

]

, (2)

and

gik =

[

g11 g12
g21 g22

]

(3)
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where ds is the distance between two points, dx and dy are differentials of the
coordinates x and y and g11, g12 and g22 are the coefficients of the metric tensor
gik. Here, the coefficient g12 is equal to the coefficient g21 due to symmetry.

In a two dimensional color space, the metric gik gives the intrinsic properties
of the color space. Specifically, the metric represents chromaticity differences of
any two colors measured along any curve of the surface. Riemannian metrics
of the CIELAB, the CIELUV, and the OSA-UCS ∆EE can be derived in a
similar way because they are simply identity metrics in their respective color
spaces. The Riemannian approximation of CIEDE2000 on the other hand is a
non-Euclidean metric, so its Riemannian metric constitute weighting functions,
parametric functions and rotation term. The detailed explanation about this as
well as the derivation of Riemannian metrics of above color difference formulas
can be found in the authors’ previous article [30].

Jacobian Transformation

The quantity ds2 in Equation (1) is called the first fundamental form and it
gives the metric properties of a surface. Now, suppose that x and y are related
to another pair of coordinates u and v. The metric tensor gik can be expressed
in terms of the new coordinates as g′ik. In analogy with Equation (3), it is
written as:

g′ik =

[

g′11 g′12
g′21 g′22

]

. (4)

Now, the new metric tensor g′ik is related to gik via the matrix equation as
follows:

[

g′11 g′12
g′21 g′22

]

=

[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]T [
g11 g12
g21 g22

] [

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]

, (5)

where the superscript T denotes the matrix transpose, and the matrix

J =
∂(x, y)

∂(u, v)
=

[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]

(6)

is the Jacobian matrix for the coordinate transformation, or, simply, the Jac-
obian. Applying the Jacobian method, one can transform color vectors and
metric tensors from one color space to another space easily. For example, the
CIELUV metric tensor can be transformed into the CIELAB color space by
computing the following Jacobians:

g∆E∗

uv
=

∂(X,Y, Z)

∂(L∗, a∗, b∗)

T
∂(L∗, u∗, v∗)

∂(X,Y, Z)

T

I
∂(L∗, u∗, v∗)

∂(X,Y, Z)

∂(X,Y, Z)

∂(L∗, a∗, b∗)
(7)

where ∂(X,Y, Z)/∂(L∗, a∗, b∗) and ∂(L∗, u∗, v∗)/∂(X,Y, Z) are the Jacobian
metrics and I is an identity matrix in Equation (7). For a detailed derivation
of the Jacobians involved, it is referred to the authors’previous paper [30].

The Geodesic Equation

The line element is often written as:

ds2 = gikdx
idxk. (8)

130



Here, Einstein’s summation convention which indicates summation over re-
peated indices, aibi =

∑

i a
ibi is used. If we consider two points p1 and p2,

the distance between the two points along a given path is given by the line
integral:

s =

∫ p2

p1

ds =

∫ p2

p1

(gikdx
idxk)

1

2 . (9)

The shortest distance between p1 and p2 can be obtained by minimizing s with
respect to the path. This path is called the geodesic. Using variational calculus
approach and introducing the Lagrangian L[dxi/dλ, xi] =

√

gik dxi/dλ dxk/dλ,
Equation (9) in terms of the variation of distance s with path is

δs =

∫ p2

p1

δL dλ. (10)

where λ is a variable that parametrizes the path. The distance s will be min-
imum when δs = 0. From Equation (10) with the criteria of minima, we can
obtain the Euler-Lagrange equation in the following form (the detail mathem-
atical derivations can be found in Cohen’s text [31]):

∂L

∂xi
− d

dλ

(

∂L

∂(dxi/dλ)

)

= 0 (11)

From Equation (11), the geodesic equation is derived and is expressed as
below:

d2xi

ds2
+ Γi

jk

dxj

ds

dxk

ds
= 0. (12)

where Γi
jk are called Christoffel symbols and are defined in terms of the metric

tensor as follows:

Γi
jk =

1

2
giν
[

∂gjν
∂xk

+
∂gkν
∂xj

− ∂gjk
∂xν

]

. (13)

Here, giν is the inverse of the metric giν satisfying giνgkν = δik. Here, δik is
the Kronecker delta which vanishes for i 6= k. Equation (12) can be written in
terms of the first order ordinary differential equations as follows:

dxi

ds
= ui

dui

ds
= −Γi

jku
juk

(14)

In two dimensions, for Γi
jk(i, j, k = 1, 2), Equation (14) is expressed as:

dx1

ds
= u1

dx2

ds
= u2

du1

ds
= −Γ1

11(u
1 )2 − 2Γ1

12u
1u2 − Γ1

22(u
2 )2

du2

ds
= −Γ2

11(u
1 )2 − 2Γ2

12u
1u2 − Γ2

22(u
2 )2

(15)

where, the superscript in italics are indices.
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The Geodesic Grid Construction

Differential equations as given in Equation (15) need to be solved to compute
the hue geodesics as well as the chroma contours of the CIELAB, the CIELUV,
the Riemannized ∆E00 and the ∆EE color difference formulas in the CIELAB
color space. Analytical solutions for these equations are complex due to their
nonlinear nature. The authors use the Runge-Kutta numerical method for com-
puting the hue geodesics and chroma contours of above color difference formulas
in the CIELAB color space. This method gives a solution to increase the ac-
curacy of the integration. The step size is taken 10−4 to balance a trade off
between rounding error and truncation error. Centered difference formulas are
used to calculate the partial derivatives of the metric tensors in the expression
for the Christoffel symbols in Equation (14).

Hue geodesics of these color difference formulas start from the origin of a∗, b∗

to different directions in the CIELAB color space with a fixed value of L∗ and
they are spaced from each other at constant intervals. In a similar way, chroma
contours start from the a∗, b∗ origin. They are also evenly spaced along the hue
geodesic distance. The hue geodesics and chroma contours form the geodesic
grids of the above four color difference formulas.

Results and Discussion

Geodesic grids of four color difference formulas, the CIELAB, the CIELUV, the
Riemannized ∆E00 and the ∆EE are computed and drawn in the CIELAB color
space by using the technique described in the previous section. The Munsell
color order system is used to compare these computed hue geodesics and chroma
contours. Figures 1(a)–1(c) show the Munsell chromas and hue circles at the
Munsell value 3, 5 and 7. Figures 2, 3 and 4 show the hue geodesics and chroma
contours of the CIELAB, the CIELUV, the Riemannized ∆E00 and the ∆EE

computed at L = 30/50/70, which correspond to the Munsell value 3, 5 and 7
respectively.

The CIELAB formula is defined as a Euclidean metric in the CIELAB color
space, so its hue geodesics and chroma contours are straight lines and circles.
They are compared with the Munsell chromas and hue circles at different Mun-
sell values as shown in Figures 2(a), 3(a) and 4(a). The computed hue geodesics
intersect the Munsell chromas around yellow, green and blue areas. In the red
region of the CIELAB space, the hue geodesics follow the same directions as
the Munsell chromas. However, the Munsell chromas are curved at high chroma
whereas the hue geodesics of the CIELAB formula are straight in the same re-
gion. The chroma contours also vary from the Munsell hue circles at the Munsell
value 5 and 7, but at the value 3, the chroma contours are closer to the Munsell
hue circles at the a∗, b∗ origin and the central region of the CIELAB color space.

The CIELUV hue geodesics and chroma contours tend to agree more with
the Munsell chromas and hue circles than the ones predicted by the CIELAB
formula. But, the geodesic grids of the CIELUV formula do not cover the
Munsell chromas and hue circles due to integration instability. It can be seen
in Figures 2(b), 3(b) and 4(b). In this case, hue geodesics predicted by the
CIELUV formula intersect the Munsell chromas mostly in the third quadrant of
the CIELAB space. This result indicates that the CIELUV hue geodesics and

132



the Munsell chroma differ in the blue-green region of the CIELAB color space.
The CIELUV hue geodesics also follow the curvature pattern of the Munsell
chromas, and their directions in the red and yellow regions of the CIELAB
space are very close to the Munsell chromas. Chroma contours of the CIELUV
formula appear elliptical. They are also similar to the Munsell hue circles at
the a∗, b∗ origin and the central region. However, they do not comply fully in
accordance with the Munsell hue circles in the rest of the CIELAB color space.

The Riemannized ∆E00 hue geodesics and chroma contours begin from near
the a∗, b∗ origin. This is due to the nonexistence of the Riemannian metric at
a∗ = b∗ = 0. The detailed discussion about difficulty for getting Riemannian
metric of the CIEDE2000 can be found in the article of Pant and Farup [30].
Geodesic grids of the Riemannized ∆E00 and their comparison with the Munsell
hue and chromas at the different Munsell values are shown in Figures 2(c), 3(c)
and 4(c). The hue geodesics are more consistent with the Munsell chromas
than the hue geodesics predicted by the CIELAB and the CIELUV metrics.
However, they do not follow the curvature pattern of the Munsell chroma in
the red and yellow regions of the CIELAB color space. In the blue and violet
regions, hue geodesics are sharply curved. They are also changing direction of
curvature on their path for intermediate chromas in the CIELAB color space
(around C∗ ≈ 20). The chroma contours are elliptical in the central region of
the CIELAB color space. Their shapes also diverge from circular to notch on
their path in the blue and violet regions. In general, they do not match the
Munsell hue circles. The authors found that changing direction of hue geodesics
along their path as well as the elliptical shape of chroma contours in the central
region are due to the G parameter in the CIEDE2000 formula [20]. Figure 5
shows the hue geodesic and chroma contours of the Riemannized ∆E00 setting
the value of G = 0. This improves the problems of the changing direction
of the hue geodesics and the elliptical shape of the chroma contours except
in the blue region of the CIELAB space. However, the rotation term of the
CIEDE2000 formula is accountable for the sharply curved hue geodesics as well
as the shifting of chroma contours in the blue region. This finding suggests that
correcting chroma in the blue region of the color space can have a diverse effect
on the whole color space.

The OSA-UCS based ∆EE geodesic grid looks somewhat similar to the
CIELUV geodesic grid. Figures 2(d), 3(d) and 4(d) show the ∆EE hue geodesics
and chroma contours. They are following more closely to the direction of the
Munsell chromas and hue circles. In the blue region, the hue geodesics intersect
the planes of the Munsell chroma. Likewise, the shape of ∆EE chroma contours
are similar to the ones predicted by the CIELUV formula, but they appear to
be more correct. Chroma contours are similar to the Munsell hue circles in the
achromatic region of the CIELAB color space. In this case also, the ∆EE pre-
dicted chroma contours are not matching the Munsell hue circles in the other
parts of the CIELAB color space.

Conclusion

Hue geodesics and chroma contours of color difference metrics can be computed
in any desired color space with the known Riemannian metric tensors. This
technique is successfully shown by computing geodesic grids of the CIELAB,
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(a) Munsell chromas and hues at value 3. (b) Munsell chromas and hues at value 5.

(c) Munsell chromas and hues at value 7.

Figure 1: Munsell chromas and hues at different Munsell values.
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(a) CIELAB geodesic grid. (b) CIELUV geodesic grid.

(c) Riemannized CIEDE00 geodesic grid. (d) OSA-UCS ∆EE geodesic grid.

Figure 2: Computed geodesic grids of CIELAB, CIELUV, Riemannized CIEDE00 and OSA-
UCS ∆EE in the CIELAB space and compared with the Munsell chromas and hues at the
Munsell value 3.
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(a) CIELAB geodesic grid. (b) CIELUV geodesic grid.

(c) Riemannized CIEDE00 geodesic grid. (d) OSA-UCS ∆EE geodesic grid.

Figure 3: Computed geodesic grids of CIELAB, CIELUV, Riemannized CIEDE00 and OSA-
UCS ∆EE in the CIELAB space and compared with the Munsell chromas and hues at the
Munsell value 5.
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(a) CIELAB geodesic grid. (b) CIELUV geodesic grid.

(c) Riemannized CIEDE00 geodesic grid. (d) OSA-UCS ∆EE geodesic grid.

Figure 4: Computed geodesic grids of CIELAB, CIELUV, Riemannized CIEDE00 and OSA-
UCS ∆EE in the CIELAB space and compared with the Munsell chromas and hues at the
Munsell value 7.

Figure 5: Riemannized CIEDE00 geodesic grid with G = 0.
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CIELUV, Riemannized CIEDE00 and OSA-UCS ∆EE color difference formu-
las with the fixed value of lightness L∗ in the CIELAB color space. Comparisons
of the geodesic grids of these formulas with the Munsell hues and chromas at the
Munsell values 3, 5 and 7 show that none of these four formulas can precisely
fit the Munsell data. It is interesting to note that the latest color difference for-
mulas like the OSA-UCS ∆EE and the Riemannized CIEDE2000 do not show
better performance to predict hue geodesics and chroma contours than the con-
ventional CIELAB and CIELUV color difference formulas. These findings also
suggest that the distribution of hue geodesics and chroma contours of the above
four color difference formulas are weak to predict perceptual color attributes in
all over the color space even though their quantitative color difference measures
are good.
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Appendix A

Detailed Expressions for the

Jacobians

The detail expressions of Jacobian metrics are given in this appendix.

A.1 From x, y, Y to X, Y , Z

∂(X,Y, Z)

∂(x, y, Y )
=













∂X
∂x

∂X
∂y

∂X
∂Y

∂Y
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∂Y
∂y

∂Y
∂Y

∂Z
∂x

∂Z
∂y

∂Z
∂Y












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










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y

−xY
y2

x
y

0 0 1

−Y
y

(x−1)Y
y2

1−x−y
y













(A.1)
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A. DETAILED EXPRESSIONS FOR THE JACOBIANS

A.2 From x, y, Y to L, a∗, b∗

(dE∗
ab)
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








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
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(A.2)

Here, all Jacobian matrices and their transposes are

∂(X,Y,Z)
∂(x,y,Y )

T ∂(L,a∗,b∗)
∂(X,Y,Z)

T
I ∂(L,a∗,b∗)

∂(X,Y,Z)
∂(X,Y,Z)
∂(x,y,Y ) .

A.3 From X, Y , Z to L∗, u∗, v∗

∂(L∗, u∗, v∗)

∂(X,Y, Z)
=













∂L∗
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


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

, (A.3)
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A.3 From X, Y , Z to L∗, u∗, v∗

where the calculations of all partial derivatives are as follows:

∂L∗

∂X
= 0, (A.4a)

∂L∗

∂Y
=

116

3
(
1

Yr
)
1

3Y (−2/3), (A.4b)
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= 0, (A.4c)
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A.4 From L
′

, a
′

, b
′

to L′, C ′, h′

The Jacobian for this transformation is

∂(L′, C ′, h′)
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. (A.5)

where the partial derivatives are as follows:
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A.5 From LOSA, G, J to LE, GE, JE
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(A.9a)

A.5 From LOSA, G, J to LE, GE, JE

∂(LE , GE , JE)

∂(LOSA, G, J)
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, (A.10)

where the calculation of all partial derivatives are as follows:
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∂LE

∂LOSA
=

10

aL + 10bLLOSA
, (A.11a)

∂LE

∂G
= 0, (A.11b)

∂LE

∂J
= 0, (A.11c)

∂GE

∂LOSA
= 0, (A.11d)

∂GE
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= − ∂
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·G
)
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+G · ∂
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(
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∂
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)
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(A.11e)
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=
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∂CE
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)

− CE

C2
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(A.11f)

∂CE
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=
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(A.11g)
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, (A.11i)
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∂JE
∂LOSA

= 0, (A.11l)
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]

J
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)
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A.6 From x10, y10, Y10 to LOSA

In the OSA-UCS space, the coordinates J and G are also related with the lightness

function (LOSA). So, to transfer the differential colour vectors [dLOSA dG dJ ] into [dx10

dy10 dY10], we have to split the differential lightness vector dLOSA and the differential

coordinates dG and dJ in two parts.

A.6 From x10, y10, Y10 to LOSA

∂LOSA

∂(x10, y10, Y10)
=

∂LOSA

∂Y0

[

∂Y0

∂x10

∂Y0

∂y10
∂Y0

∂Y10

]

, (A.12)
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∂Y0
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1

3
Y

−2/3
0 + 0.042 · 1

3
(Y0 − 30)−2/3

]

1√
2

(A.13a)

∂Y0
∂x10

= Y10(4.4934 2x10 − 4.2760y10 − 1.3744) (A.13b)

∂Y0
∂y10

= Y10(4.3034 · 2y10 − 4.2760x10 − 2.5643) (A.13c)

∂Y0
∂Y10

= (4.4934x210 + 4.3034y210 − 4.2760x10y10 − 1.3744x10 − 2.5643y10 + 1.8103)

(A.13d)

From x10, y10, Y10 to G, J

∂(G, J)

∂(x10, y10, Y10)
=

∂(G, J)

∂(L,A,B,C)

∂(L,A,B,C)

∂(x10, y10, Y10)
(A.14)

where ∂(G,J)
∂(L,A,B,C) and ∂(L,A,B,C)

∂(x10,y10,Y10)
are 2× 4 and 4× 3 Jacobian matrics respectively.
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(A.15)
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Derivation of all partial derivatives of Equation (A.15) is given below:

∂G

∂LOSA
= TG

∂SG

∂LOSA

= TG · −2× 0.764

TG = 0.9482[lnA− ln(0.9366B)]− 0.3175[lnB − ln(0.9807C)]

(A.16a)

∂J

∂LOSA
= TJ

∂SJ

∂LOSA

= TJ · 2× 0.57354

TJ = 0.1792[lnA− ln(0.9366B)] + 0.9837[lnB − ln(0.9807C)]

(A.16b)
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∂B
= SG

−0.9482− 0.3175

B
;

∂G

∂C
= SG

0.3175

C
∂J
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B
;
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∂C
= SJ

−0.9837

C

(A.16c)

Where, SG and SJ values are equal to −2(0.764LOSA + 9.2521) and 2(0.5735LOSA +

7.0892) respectively.
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(A.17)
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Appendix B

Figures

B.1 BFD-P ellipses in the CIELAB

Figure B.1: BFD-P ellipses in the CIELAB color space - Enlarged 1.5 times.
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B. FIGURES

B.2 Riemannized ∆E00 predicted BFD-P ellipses in the

CIELAB

Figure B.2: Riemannized ∆E00 ellipses having the same center as BFD-P el-
lipses in the CIELAB color space - Enlarged 1.5 times.

B.3 The OSA-UCS ∆EE predicted BFD-P ellipses in the

CIELAB

B.4 ∆E∗uv predicted BFD-P ellipses in the CIELAB
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B.4 ∆E∗uv predicted BFD-P ellipses in the CIELAB

Figure B.3: The OSA-UCS ∆EE ellipses having the same center as BFD-P
ellipses in the CIELAB color space - Enlarged 1.5 times.

Figure B.4: The ∆E∗uv ellipses having the same center as BFD-P ellipses in
the CIELAB color space - Enlarged 1.5 times.
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