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Résumé

Il y a actuellement un vif intérêt pour des méthodes rigoureuses qui effectuent l’analyse

électromagnétique des milieux diélectriques avec une distribution de permittivité diélectrique

complexe. L’intérêt est motivé par des applications actuelles et futures dans la concep-

tion et la fabrication d’éléments optiques et optoélectroniques. Le niveau que les tech-

nologies de microstructuration ont maintenant atteint requiert des appels pour méthodes

numériques rapides, économes en mémoire et rigoureuses capables de résoudre et d’optimiser

des grandes parties de structures dont les caractéristiques représentent la fonction optique

de la structure complète.

Bien que la majorité des problèmes de modélisation en microoptique sont non périodiques

(par exemple, une section d’une couche diffusante d’OLED, la cellule d’un réticule mi-

croélectronique, une microlentille diffractive de haute NA), ils peuvent être efficacement

résolus par la périodisation de la distribution de l’indice. Une nouvelle méthode numérique

puissante pour la modélisation exacte de structures périodiques 2D est décrite avec toutes

les fonctionnalités et les expressions nécessaires à son exécution. La puissance de cette

méthode est dans sa forme spécifique unique qui permet d’appliquer rapidement des algo-

rithmes numériques et, par conséquent, de diminuer de façon spectaculaire la complexité

de calcul en comparaison avec les méthodes établies. La comparaison avec des solutions

de référence a montré que, d’abord, la nouvelle méthode donne les mêmes résultats que

celles-ci sur les structures de référence et, d’autre part, que le temps de calcul nécessaire

et le recours en mémoire représentent une percée vers la résolution de grandes structures

périodiques ou périodisées.

La méthode développée a été appliquée à analyser le problème de diffusion non périodique

d’une couche diélectrique plan avec micro/nanoparticules sphériques. Une référence numérique

proposée a démontré la possibilité d’obtenir environ 1% de précision. En outre, il a été

développé un modèle numérique basé sur des matrices S pour la simulation des structures

plane électroluminescentes. La validité de la méthode a été démontrée par comparaison

avec les résultats expérimentaux. Enfin, les deux méthodes de calcul de la diffusion de

la lumiére et de simulation des structures multicouches ont été groupeées, et une couche

diffusante a été démontrée augmentait l’efficacité externe d’une OLED de quelques pour

cents.
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Resume

There is presently a strong interest for rigorous methods that perform the electromagnetic

analysis of dielectric media with complex dielectric permittivity distribution. The inter-

est is motivated by both present and future applications in the design and manufacturing

of optical elements and optoelectronic devices. The level that the microstructuring tech-

nologies have now reached calls for fast, memory sparing, and rigorous numerical methods

capable of solving and optimizing large structure parts whose characteristics do represent

the optical function of the whole structure.

Although the majority of modeling problems in microoptics are non-periodic (e.g.,

a section of an OLED extraction layer, the cell of a microelectronic reticle, a high NA

diffractive microlens) they can be efficiently solved by periodizing the index distribution.

A new powerful numerical method for the exact modeling of 2D periodic structures is

described with all features and expressions needed to implement it. The power of this

method is in its unique specific form which permits to apply fast numerical algorithms

and, consequently, to decrease dramatically the calculation complexity in comparison with

established methods. The comparison with reference solutions has shown that, first, the

new method gives the same results as the latter on benchmark structures and, secondly,

that the needed calculation time and memory resort represent a breakthrough towards

solving larger periodic or periodized structures.

The developed method was applied to analyze nonperiodic scattering problem of a

plane dielectric layer with spherical micro/nanoparticles. Proposed numerical benchmark

demonstrated the possibility to get about 1% accuracy. In addition there was developed a

numerical S-matrix based method for planar electroluminescent structures simulation. Va-

lidity of the method was demonstrated by comparison with experimental results. Finally

both methods for the light scattering calculation and multilayer structures simulation were

joined, and a scattering layer was demonstrated to increase an OLED external efficiency

by several percent.
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Résumé substantiel

Il y a actuellement un vif intérêt pour des méthodes rigoureuses qui effectuent l’analyse

électromagnétique des milieux diélectriques avec une distribution de permittivité diélectrique

complexe. L’intérêt est motivé par des applications actuelles et futures dans la concep-

tion et la fabrication d’éléments optiques et optoélectroniques. Le niveau que les tech-

nologies de microstructuration ont maintenant atteint requiert des appels pour méthodes

numériques rapides, économes en mémoire et rigoureuses capables de résoudre et d’optimiser

des grandes parties de structures dont les caractéristiques représentent la fonction optique

de la structure complète.

Différents modèles décrivant la diffusion de la lumière sur les particules individuelles

et de groupes de particules considèrent généralement les diffuseurs placés dans un milieu

homogène et isotrope ou périodiquement reproduits à l’infini. Ces modèles et méthodes

connexes font face à certaines difficultés cependant quand le volume de diffusion est infinie

en deux dimensions et délimité par des interfaces planes dans la troisième dimension. Les

exemples sont l’impact d’une couche de diffusion sur l’efficacité des OLEDs et des éléments

diffractifs complexes de grande ouverture.

Les interfaces planes dans la zone de champ proche de particules diffusantes peuvent

être prises en compte par différentes méthodes rigoureuses. La plupart d’entre elles,

par exemple, les différences finies, éléments finis ou méthodes des équations intégrales

de volume, sont d’une grande complexité numérique. Le meilleur choix pourrait être la

méthode de la matrice T qui a été appliquée pour des particules près de la surface des

géométries. Cependant, cette méthode nécessite des efforts supplémentaires de calcul de

la matrice T pour chaque particule dans un ensemble de diffusion.

Un autre moyen de calcul de la dispersion dans des structures planes a été établi au

moyen de méthodes de calcul de diffraction de lumière sur des réseaux. Principalement,

ce sont des méthodes de Fourier, et, en particulier, la méthode Fourier modale (FMM).

Récemment, la FMM a été appliqué au calcul de la diffusion des ondes électromagnétiques

sur des objets 2D. Un avantage important de cette approche est que la forme géométrique

de l’objet n’affecte pas la complexité de la méthode ni le temps de calcul. Cependant, la

FMM a une complexité assez élevée égale à O(N3
O) avecNO étant le nombre d’harmoniques

dans la transformée de Fourier de l’espace.

La présente thèse propose une méthodologie qui permet de résoudre exactement des
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grands systèmes, passe autre la limite O(N3
O), et diminue également la taille de mémoire

requise. Pour ce faire, elle calcule un grand système 2D-périodique en un temps propor-

tionnel à NO. Ceci est réalisé par le calcul d’une équation intégrale qui est réduit à un

système d’équations linéaires dans la forme d’un produit de matrices bloc-diagonales et

bloc-Toeplitz. Le système est résolue par des algorithmes de calcul connus comme la FFT

et la GMRES.

Cette nouvelle méthode numérique puissante pour la modélisation exacte de structures

périodiques 2D est décrite avec toutes les fonctionnalités et les expressions nécessaires à son

exécution. La puissance de cette méthode est dans sa forme spécifique unique qui permet

d’appliquer rapidement des algorithmes numériques et, par conséquent, à diminuer de

façon spectaculaire la complexité de calcul en comparaison avec les méthodes établies.

La comparaison avec des solutions de référence (données par la FFM et les méthodes

de Rayleigh) a montré que, d’abord, la nouvelle méthode donne les mêmes résultats que

celles-ci sur les structures de référence et, d’autre part, que le temps de calcul nécessaire et

le recours de mémoire représentent une percée vers la résolution de plus grandes structures

périodiques ou périodiséer.

La méthode développée a été appliquée à l’analyse d’une problème de diffusion non

périodique d’une couche diélectrique plane avec micro/nanoparticules sphériques. Une

référence numérique avec la solution de Mie a démontré la possibilité d’obtenir environ

1% de précision. En outre, il a été développé un modèle numérique basé sur les matrices

S pour la simulation de structures planes électroluminescentes. La validité de la méthode

a été démontrée par comparaison avec des résultats expérimentaux.

Avec l’application de la méthode à l’analyse des OLEDs avec couche diffusante, le

modèle de propagation des ondes planes dans les OLEDs a été révisé et sa capacité

à simuler rigoureusement toutes les propriétés électromagnétiques des structures a été

démontrée. Les relations importantes exactes pour le flux de puissance et les pertes dans

les couches OLED ont été données. L’applicabilité de ce modèle a été confirmée par

une comparaison avec les données expérimentales obtenues par la mesure des propriétés

optiques d’une OLED fabriquée verte.

Enfin, les deux méthodes de calcul de la diffusion de la lumière et de simulation des

OLEDs ont été groupées, et une couche de diffusion a été démontrée augmentant l’efficacité

externe d’une OLED de quelques pour cents.
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Substantial resume

There is presently a strong interest for rigorous methods that perform the electromagnetic

analysis of dielectric media with complex dielectric permittivity distribution. The inter-

est is motivated by both present and future applications in the design and manufacturing

of optical elements and optoelectronic devices. The level that the microstructuring tech-

nologies have now reached calls for fast, memory sparing, and rigorous numerical methods

capable of solving and optimizing large structure parts whose characteristics do represent

the optical function of the whole structure.

Various models describing the light scattering on single particles and groups of particles

usually consider scatterers placed in a homogeneous isotropic medium or periodically

continued to the infinity. These models and related methods face certain difficulties

however when a scattering volume is infinite in two dimensions and bounded by plane

interfaces in the third dimension. Examples are calculation of a scattering layer impact

on the efficiency of photovoltaic devices and complex high-aperture diffractive elements.

Plane interfaces in the near field zone of scattering particles can be taken into account

by different rigorous methods. Most of them, e.g., finite-difference, finite-element or

volume integral equation methods are of a high numerical complexity analyzing multi-

particle large aperture 3D scattering structures. The better choice could be the T-matrix

method which was applied for particle-near-surface geometries. However, this method

requires additional T-matrix calculation efforts for each particle in a scattering ensemble.

Another way to the scattering calculation in planar structures was established by

means of methods for the light diffraction calculation on gratings. Primarily, these are

Fourier methods, and, in particular, the Fourier modal method (FMM). Recently, the

FMM has been applied for the calculation of the electromagnetic wave scattering on 2D

objects. A prominent advantage of this approach is that scattering object geometry does

not affect the method complexity and calculation time. However, the FMM itself exhibits

quite high complexity equal to O(N3
O) with NO being the number of harmonics in the

Fourier-space.

The thesis proposes a methodology which exactly solves large systems and breaks

through the O(N3
O) limit, and also decreases the required memory size. It does so and

calculates a large 2D-periodic system in a time proportional to NO. This is achieved via

the analytical derivation of an adequately formulated integral equation which is reduced to
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a system of linear equations in the form of a product of block-diagonal and block-Toeplitz

matrices. The system is processed by known powerful calculation algorithms based on the

fast Fourier transform (FFT) and the generalized minimal residual method (GMRES).

A new powerful numerical method for the exact modeling of 2D periodic structures

is described with all features and expressions needed to implement it. The power of this

method is in its unique specific form which permits to apply fast numerical algorithms

and, consequently, to decrease dramatically the calculation complexity in comparison

with established methods. The comparison with reference solutions (given by the FFM

and Rayleigh methods) has shown that, first, the new method gives the same results as

the latter on benchmark structures and, secondly, that the needed calculation time and

memory resort represent a breakthrough towards solving larger periodic or periodized

structures.

The developed method was applied to analyze nonperiodic scattering problem of a

plane dielectric layer with spherical micro/nanoparticles. Proposed numerical benchmark

with the Mie solution demonstrated the possibility to get about 1% accuracy. In addition

there was developed a numerical S-matrix based method for planar electroluminescent

structures simulation. Validity of the method was demonstrated by comparison with

experimental results.

With a view of applying the method to the analysis of organic light-emitting diodes

(OLED) with scattering layers, the plane wave propagation model of OLEDs was revised

and its ability to rigorously simulate all electromagnetic properties of devices was demon-

strated. The important exact relationships for the power flux and losses in OLED layers

were given. The applicability of this model was confirmed by a comparison with the

experimental data obtained by the measurement of the optical properties of fabricated

green OLEDs.

Finally both methods for the light scattering calculation and OLEDs simulation were

joined, and a scattering layer was demonstrated to increase an OLED external efficiency

by several percent.
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Introduction

Light-emittimg devices passed a long and exciting way from Edison’s carbon glowers to

modern diodes, and their development still face scientists with numerous interdisciplinary

problems. Primary research motivators inlude the necessity of decreasing the cost of ligth

while incresing its efficiency and flexibility. Lightning devices also suffer from modern

trends of miniaturization, and it is hard colaborative work of scientists, engineers, and

technicians that gives birth to the state-of-the art light-emitting diodes (LED).

Among the diversity of species, organic light emitting diodes (OLED) — emerged after

the 1987-th breakthrough of Tang and VanSlyke [1] — possess quite facinating potential.

Their primary application sphere embraces large-area, possibly semi-transparent, thin

ligtning panels and flexible displays as well as possible futuristic lightning decorations.

Great effort was spent to bring them to the current almost ready-to-use state, and some

further steps are required. This thesis presents an attempt to get ahead.

A history of OLEDs is a path from fractions to dozens of lm/W efficiency, and from

several to many thousands of hours lifetime. Now the advance needs a solid foundation

of sophisticated computer simulation. This work demonstrates results on rigorous nu-

merical methods development for the light scattering and diffraction calculation in planar

structures being representitative models for OLED optical properties study. Owing the

powerful tool, it was applied to analyze a promising way of the OLED external efficiency

increase by use of scattering layers. And, hopefully, this tool will also find its applications

in other challenging problems.

The thesis is organized as follows. First chapter briefly describes a background of the

treated problems including both review of concurrent numerical methods and description

of problem area in the scope of organic light-emitting diode physics. Second chapter

provides the descriprion of a new numerical method development key points as well as

benchmarking results. Passage to the applications in OLED optics is made in the third

chapter where an increase of OLED efficiency due to a scattering layer is demonstrated

through the rigorous numerical simulation.

Present work is a result of collaboration between Laboratory of Nanooptics and Fem-

tosecond Electronics in Moscow Institute of Physics and Technology, Dolgoprudny, Rus-

sia, and Laboratory Hubert Curien of University Jean Monnet of Saint-Etienne, France.

I would like to thank my supervisors at both locations, Prof. Alexandre Tichshenko and
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Prof. Anatoly Gladun for invaluable assistance and help. Also, I wish to express my

sencere gratitude to both collectives, in particular to Alexey Arsenin, who orchestrates

the russian lab activity, and Prof. Olivier Parriaux in France. Finally, I cannot foget to

mention my relatives, who I am grateful to for their kind empathy.
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Chapter 1

Emission, propagation and scattering of

light in planar structures

1.1 Electromagnetic wave propagation in homogeneous

plane layered structures

Subject of this thesis is development and applications of models describing the light

scattering and diffraction calculation in non-homogeneous planar dielectric structures.

This work bases on a new numerical method which exibits less numerical complexity and

computer memory requirements than known alternative approaches for the solution of a

certain class of problems. Being developed the method is applied to a problem of rigorous

simulation of organic ligh-emitting diodes (OLED) with scattering layers. Problem of the

light diffraction and scattering in planar structures under consideration can be naturally

divided into several sub-problems including the light propagation calculation in planar

homogeneous structures, electroluminescent sources modeling, and light diffraction and

scattering caluclation in spatially inhomogeneous layers. Each sub-problem was studied

previously to some extent. Some known methods were taken as a basis for the current

study. These methods together with those being close to the developed ones are briefly

described in this chapter.

Generally a planar structure under consideration can be thought of a finite set of

NL adjacent plane layers of different materials. These layers can be either homogeneous

or inhomogeneous. Introduce Cartisian coordinates with axis Z being perpendicular to

layers’ plain, and designate the coordinates of plane interfaces between layers as z0 . . . zNL

(Fig. 1.1). Half-infinite media bounding the structure from above and from below with

respect to axis Z positive direction will be further regarded as a cover and a substrate

respectively. Denote coordinates of their boundaries with the structure as zL = z0 и

zU = zNL
. Additionally, layer thicknesses are found as hk = zk+1 − zk with k ∈ Z+ : 0 ≤

k < NL.
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Figure 1.1: Plane layered structure with Cartesian coordinates.

Emission, propagation and scattering of electromagnetic waves are considered here

within the framework of classical electrodynamics, and, hence, are described by the

Maxwell’s equations:

∇× E = −∂B
∂t
, (1.1)

∇×H = J+
∂D

∂t
, (1.2)

∇ ·D = ρe, (1.3)

∇ ·B = 0. (1.4)

In what follows all the fields and sources are considered to be decomposable into a set of

monochromatic time harmonics with frequency ω, and each harmonic has an exponential

factor of exp(−iωt). Assuming an external charge density to be 0 rewrite Eqs. (1.1)-(1.4)

as a system of two equations for unknown time harmonic amplitudes:

∇× E = iωB, (1.5)

∇×H = J− iωD. (1.6)

Eqs. (1.5) and (1.6) should be also supplemented with material relations between fields

and inductions as well as electromagnetic boundary conditions [2]. We introduce these

boundary conditions in a standard form of a matrix-vector product for the electric field,

and in form of scalar product for the magnetic field:

D = ε̂E,

B = µ0H.
(1.7)

With a view of writing out the explicit form of the first relation in (1.7) consider functions

εk(r), k ∈ Z+ : k = 0 . . . NL−1, zk < z < zk+1, describing the dielectric permittivty of the

all layers in the planar structure (see Fig. 1.1). Here r = (x, y, z) is a vector in the intro-
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duced reference frame. Additional constants εs and εc correspond to substrate and cover

spatially homogeneous permittivities. Composite layers consisting of different materials

are described by discontinuous functions εk(r). Therefore, the boundary conditions of the

E and H vectors tangential components’, and D and B normal components’ continuity

must be formulated at both set of interfaces z = zk, k = 0 . . . NL and surfaces of functions’

εk(r) discontinuities.

Maxwell’s equations (1.5), (1.6) contain external source density J. Here we single

out two types of sources that will be considered further. The first one includes infinitely

distant sources which radiation comes to a structure in form of plane waves. These waves

are characterized by two wavevector projections kx, ky on axes X and Y , and their electric

field amplitude writes:

Einc(r) = Einc exp(ikxx+ ikyy ± ikzz), (1.8)

where

kz =
√

ω2µ0ε− k2x − k2y. (1.9)

The wavevector of a plane wave will be further regarded as k± = (kx, ky,±kz). Here

the sigh “+” distinguishes waves propagating in positive direction with repect to axis Z,

whereas the sign “–” — in negative.

The second type of sources comprises dipole sources placed inside a structure or in

the near-field region nearby it. A classical point monochromatic dipole placed at point

r0 = (x0, y0, z0) is described in terms of the dipole moment density

p(r, t) = p0δ(x− x0)δ(y − y0)δ(z − z0) exp(−iωt). (1.10)

Decomposing the electric and magnetic fields into sets of plane waves

f(r, t) =
1

(2πk0)2

∞
∫

−∞

∞
∫

−∞

f(kx, ky, t)dkxdky, (1.11)

with vector f standing for both fields E and H, and factor k0 = ω
√
µ0 keeps the dimen-

sions, we come to the following formulas for the fields emitted by point dipole (1.10) (e.g.,

[3])

Ep(kx, ky, t) =
k20

2iεmkz

[

k± ×
[

k± × p0

]]

exp
(

ik±r− iωt
)

,

Hp(kx, ky, t) =
iωk2

2kz

[

k± × p0

]

exp
(

ik±r− iωt
)

.

(1.12)

Here εm is the dielectric permittivity of a homogeneous isotropic medium containing the

dipole source. In a series of works studying the luminescent molecules placed in the
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vicinity of plane interfaces, two-dimensional Fourier transform (1.11) is replaced with the

Fourier-Bessel transform of variable kρ =
√

k2x + k2y. The corresponding formulas for the

dipole field components are found, e.g., in [4, 5, 6].

It is convenient to study polarization properties of planar structures by decomposing

the fields into two independent TE and TM polarizations. For each plane harmonic these

polarizarions are defined with respect to the plane of incidence defined by axis Z and

wavevector k. The elelctric field of the TE-polarized wave is perpendicular to this plane

whereas for the TM polarization the perpendicular vector is H. The relation between field

amplitudes and plane polarized harmonic amplitudes ae± и ah± are given in the Appendix

A in general matrix-vector form which is used throughout the thesis.

In the simplest case all the layers of a planar structure are homogeneous and isotropic.

For zero structure thickness the problem reduces to a plane interface separating two

media which is described by the well-known Fresnel coefficients for plane wave reflection

and transmission [2]. If a structure contains a few layers of nonzero thickness, its reflection

and refraction coefficients can also be written in an explicit analytic form (for example,

[7]). In general case of a multilayer stack one can distinguish two approaches for the

rigorous electromagnetic field calculation — S-matrix [8] and T-matrix [2, 9] methods.

Now define S- and T-matrices by means of the introduced notations. Consider plane

waves propagaing in the substrate and in the cover. Let their amplitudes be a±s and a±c

respectively (Fig. 1.1). Then, a T-matrix relates wave amplitudes in the substrate and

in the cover and writes
(

a+c

a−c

)

=

(

T00 T01

T10 T11

)(

a+s

a−s

)

. (1.13)

S-matrix is different and relates incoming and outgoing wave amplitudes:

(

a−s

a+c

)

=

(

S00 S01

S10 S11

)(

a+s

a−c

)

, (1.14)

and corresponts to the quntum mechanical scattering operator [10], which translates an

intial state of a system to its final state. T-matrices represent a convenient tool for theo-

retical analysis of planar media (e.g., [11, 12]) since their multiplication rule coincides with

the standard matrix multiplication. However, in a numerical implementation T-matrices

are unstabe allowing for the exponential error accumation in calculation of evanescent

waves propagation [13]. On the other hand S-matrix-based numerical methods are stable,

while their multiplication for a multilater structures is not so trivial. With a view of

developing numerical methods we will deal only with S-matrices.

Analytical expressions for S-matrix components have the simplest form for a plane

interface between two media and for a plane homogeneous layer. An explicit form of

the S-matrix for a plane interface separating two homogeneous media with dielectric
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permittivities εL and εU (Fig. 1.2a) writes via Fresnel coefficients [2]:

STEI =









kLz − kUz
kLz + kUz

2kUz
kLz + kUz

2kLz
kLz + kUz

kUz − kLz
kLz + kUz









(1.15)

for the TE polarization and

STMI =









εUkLz − εLkUz
εUkLz + εLkUz

2εLkUz
εUkLz + εLkUz

2εUkLz
εUkLz + εLkUz

εLkUz − εUkLz
εUkLz + εLkUz









(1.16)

for the TM polarization. S-matrix of a plane homogeneous layer of thickness h does not

depend on the polarization state (Fig. 1.2b):

SL =

(

0 exp(ikzh)

exp(ikzh) 0

)

. (1.17)

In many problems it is more convenient to deal with a set of plane harmonics rather

than with a separate one. In this case S-matrix size equals to 2NO × 2NO instead of

2 × 2, with NO being the number of harmonics under consideration. For a particular

case of a structure consisting of homogeneous layers only, S-matrix contains four diagonal

sub-matrices of size NO × NO, since the in-plane wavevector projection of a plane wave

γ =
√

k2x + k2y does not change in the processes of progation, reflection and refraction.

z

ε

εU

L

aU±

aL±

z

ε

aU±

aL±

z

aU±

aL±

S
U

S
L

a) b) c)

Figure 1.2: To definitions of a) a plane interface S-matrix, b) a homogeneous layer S-
matrix and c) an S-matrix multiplication rule.

Next consider a structure having two parts with S-matrices SL и SU as is shown in

Fig. 1.2c. Then components of the whole structure S-matrix are found via the S-matrix
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multiplication rule:

S00 = SL00 + SL01S
U
00

(

1− SU00S
L
11

)−1
SL10

S01 = SL01
(

1− SU00S
L
11

)−1
SU01

S10 = SU10
(

1− SU00S
L
11

)−1
SU10

S11 = SL11 + SU10S
L
11

(

1− SU00S
L
11

)−1
SU01

(1.18)

If SL and SU are written for a set of harmonics, equations (1.18) are matrix equations

with the division operation being the multiplication by an inverse matrix. Notice also

that operations sequence in (1.18) remains correct for S-matrix components Smn being

either scalars or matrces.

Equations (1.15)-(1.18) allow to calculate wave propagation, reflection and refraction

in a planar structure for the light emitted by infitely distant sources. To simulate the

emission of sources placed inside a structure decompose the field emitted by the point

dipole (1.12) intoa set of TE and TM polarized waves [3]:

ae±d =
iω2µ0k

2
0

8π2γkz
(kyp0x − kxp0y) ,

ah±d =
iω2k20
8π2γkz

(

∓kxkzp0x ∓ kykzp0y + γ2p0z
)

,

(1.19)

where γ =
√

k2x + k2y. Analogous formulas were combined with the T-matrix method to

simulate the fluorescent molecule lifetine near plane interfaces in [4, 14, 15, 16, 17, 18, 3].

Similar approaches were used for the field decomposition into a set of cylindrical harmonics

in [5, 19, 20, 21]. Analytical methods based on Green’s functions of a layered medium

were developed in [22, 23, 24, 25, 26], however, they appear to be interesting from the

theoretical point of view, whereas in numerical computations they either allow obtaining

only approximate results or reduce to T-matrix based calculations.

1.2 Diffraction and scattering in plane layers

The next sub-problem to be solved to develop a rigorous model of the light propagation

and scattering in planar structures is calcuation of an inhomogeneous layer S-matrix. In

the previous section S-matrices of homogeneous layers and plane interfaces we shown to

have a quite simple form (1.15)-(1.17). However, for an inhomogeneous layer it seems

to be impossible to obtain a general closed analytic form of the S-matrix. Thus, it has

to be found numerically. Currently one can find several methods potentially capable to

solve this problem. They can be classified into finite-difference, finite-element, integral

equations, modal and hybrid methods.

Finite-difference (FD) methods form a broad class of methods capable to solve various
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differential equations. The core idea is the replacement of derivatives in some differential

equation Lf = u by finite differences on a mesh G defined in a region x ∈ D where

one searches for a solution f(x) ∈ S. The initial equation is replaced then by a finite-

difference one Lgfg(x) = ug which solution belongs to a mesh functions space Sg. Principal

properties of a finite-difference scheme include convergence, approximation and stability

[27]. Convergence implies the decrease of the difference between the mesh solution and the

exact solution projected to the mesh Fg with the decrease of the mesh step τ proportionally

to an integer power (convergence rate) of this step:

‖fg − Fg‖ ≤ const · τ k

Approximation shows the precision of the mesh equation with the exact solution being

substituted in it (this is called residual):

‖LgFg − ug‖ ≤ const · τ k

Stability means that small perturbations in the initial data lead to small changes in

solution uniformly over the mesh step:

z ∈ Sg, Lgϕg = 0, Lgψg = z ⇒ ‖ϕg − ψg‖ ≤ const · ‖z‖

One of the most popular finite-difference schemes was proposed in [28] (the article was

cited more than seven thousands times). This scheme is characterized by the second order

approximation over the space and time. Computer programms based on it were applied,

e.g., for the modeling of diffractive optical elements [29, 30], photonic crystals [31, 32, 33],

light scattering in non-periodic scattering media [34, 35]. The mentioned scheme is based

on a cubic mesh as are many others in the FD method. Obviously they do not suit well to

problems with a complex geometry which needs an adaptive mesh generation to take into

account a specific field distribution. Examples of non-uniform meshes for the FD method

were also proposed but generally they substantially complicate the method’s formulation

[36]. In this sence the finite element method (FEM) much better describes problems with

complex cuved interfaces.

For the problems of the Maxwell’s equations solution, application of the FD method

results in a sparse linear algebraic equation system. The complexity of standard iterative

methods [37] is O(N2) with N being the size of the equation system, however, the sparse-

ness usually allows to reduce the complexity down to O(N1+α), α > 0 [38]. A substantial

drawback of the method is the necessity of taking the dimensions of a computational

domain several times larger than the dimensions of a scattering object. This results in

a tremendous increase of the mesh node number and, consequently, to the increase of

the required computer memory. Thus, application of the FD method to complex scatter-
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ing structures usually requires the use of computing clusters with singnificant amount of

memory.

The finite difference method was widely used for the solution of Maxwell equation as

well as numerous other differential equations systems due to its universality. As was men-

tioned above it faces certain difficulties for the problems where the boundary conditions

should be defined on complex shaped surfaces. To avoid facing this problem and retaind

the universality property one may choose the finite element method (in the electrodynam-

ics it is often referred to as the method of moments — MOM). The idea lying in the core

of the FEM is to calulate a decomposition of the solution f(x) of a differential equation

system over a complete set of orthogonal functions. Denoting an approximate solution as

f̃(x) one can write such decomposition in form

f̃(x) = ψ0 +
∑

n

cnψn(x).

Coeficients cn are found in scope of either variational principle or minimal energy con-

dition. The variational formulation implies the calculation of such function f̃ ∈ Ŝ that

(f̃ ′, g′) = (u, g) for any g ∈ Ŝ. The minimal energy condition requires the minization

of the funtional E(g) = 1
2
(g′, g′) − (u, g): f̃ ∈ S, E(f̃) ≤ E(g) for any g ∈ Ŝ. Both

of these formulations yield linear system equations with sparce matrices. These systems

are solved by iterative algorithms [39]. Apart from the mesh generation problem, one of

the main shortcomings of the method for complex 3D scattering structure analysis is the

same as that of the FD method — very high requirements to the computer memory and,

consequently, quite time-consuming calculations. One may regard this problem to be a

consequence of the universality.

Certain scattering structures can be also analyzed by means of the volume integral

equation (VIE) and the surface integral equation methods [40]. Consider a scattering

volume V . The volume integral equation in the 3D coordinate space writes [41]

Esca(r) = Einc(r) +

∫

V

dr′k2m∆ε(r
′)Gm(r, r

′)Esca(r
′), (1.20)

where ∆ε is the difference in the dielectric permittivity of a scatterer and a surrounding

medium εm, km = ω
√
εmµ0, and Gm(r, r

′) is the free space tensor Green’s function [42].

Eq. (1.20) is reduced to an algebraic linear equation system by subdividing the volume

V into a number of sub-volumes ∆V which dimensions are small comparable to the

wavelength λ (a conventional estimation of the maximum sub-volume size is λ/20). A

similar equation system arises in the discrete dipole approximation (DDA) [43]. These

methods are promising in terms of the numerical complexity which is linear with respect

to the number of spatial sub-volumes. However, the VIE and the DDA are generally

restricted to simulation of single particles or small groups of particles with dimensions are
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comparable to the wavelength and are hardly applicable to high-aperture structures.

Another integral method is the surface integral method (SI) which is also referred

to as the null-field method (NFM) [40]. It is based on the derivation of surface inte-

gral equations from the Maxwel’s equations and further field decomposition into a set of

spherical harmonics. The main application of this method is the T-matrix calculation of

non-spherical bodies for further use in the T-matrix method [44] (note, that in the light

scattering theory T-matrices are different from those given in (1.13) and substantially

represent element S11 of S-matrix (1.14)).

A general observation concerning numerical methods consists in higher preference of

narrow specialized methods in comparison with widely applicable approaches such as

FD and FEM. The most effective among all seem to be modal methods. They include,

e.g., the Mie solution [45, 46] describing a plane wave scattering on a sphere, the T-

matrix method of the light scattering calculation [47, 48, 49, 44], and the modal method

of the diffraction calculation on gratings [50, 51, 52, 53, 54, 55]. In problems where it

is possible to analytically represent the modal fields, modal methods demonstrate the

precision, speed and convergence far better than all other methods (for example, the light

scattering calculation by a group of spherical particles or the light diffraction calculation

on a rectangular grating). The other side of the matter is that an analytical representation

highly narrows the range of modal methods direct applicability.

A way to improve modal methods’ capabilities is to use a transformation to the Fourier

space. This is done in the Fourier-modal method (FMM) [56] also referred to as the

rigorous coupled-wave approach (RCWA) [57], and in the differential method. The FMM

is widely used for the light diffraction calculation on plane gratings and diffractive optical

elements. These methods are descibed below in some more detail than others since the

method developed in this work also operates in the Fourier space. Formely the FMM was

developed for the light diffraction caluclation on gratings so it will be described from this

point of view.

Consider a plane periodically structured plane layer (Fig. 1.3 shows an example of a

2D sinusoidal intefrace separating two media within a plane layer). Such structuring is

described as periodic change of the dielectric (and, perhaps, magnetic) permittivity along

one or two noncollinear directions in plane XY . Let Λ1,2 be the grating periods and k̂1,2

are unit vectors in the directions of periodicity. Then, material constants of the layer are

written as spatial coordinate functions:

ε(r) = ε(r+m1Λ1k̂1 +m2Λ2k̂2),

µ(r) = µ(r+m1Λ1k̂1 +m2Λ2k̂2),
(1.21)

with integers m1,2, and K1,2 = k̂1,2K1,2, K1,2 = 2π/Λ1,2.
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Decompose the electromagnetic field in the grating layer into a set of spatial harmonics:

f(r) =
∞
∑

n1=−∞

∞
∑

n2=−∞

fn1n2(z) exp(in1K1ρρρ+ in2K2ρρρ), (1.22)

where ρρρ = (x, y) is the radius-vector in plane XY , and f , stands for both the electric and

the magnetic field. Indices n1,2 enumerate diffraction orders. An inverse transform writes

fn1n2(z) =
1

Λ1Λ2

Λ1
∫

0

Λ2
∫

0

exp(−in1K1ξ1 − in2k2ξ2)f(ξ1, ξ2, z)dξ1dξ2. (1.23)

Here ξ1,2 are the coordinates in a frame which two axes Ξ1,2 are defined by the reciprocal

lattice vectors K1,2, and the third one coinsides with Z. Transformations (1.22) and

(1.23) allow one to rewrite Maxwell’s equations (1.5) and (1.6) in form of an infinite

linear differential equation system with functions depending on the variable z:

dEx
n1n2

dz
= iωµ0H

y
n1n2

−
kxn1,n2

ω

∑

m1,m2

ε(n1−m1)(n2−m2)

(

kxm1m2
Hy
m1m2

− kym1m2
Hx
m1m2

)

,

dEy
n1n2

dz
= −iωµ0H

x
n1n2

−
kyn1,n2

ω

∑

m1,m2

ε(n1−m1)(n2−m2)

(

kxm1m2
Hy
m1m2

− kym1m2
Hx
m1m2

)

,

dHx
n1n2

dz
= −iω

∑

m1,m2

ε(n1−m1)(n2−m2)E
y
m1m2

+
kxn1,n2

ωµ0

(

kxn1n2
Ey
n1n2

− kyn1n2
Ex
n1n2

)

,

dHy
n1n2

dz
= iω

∑

m1,m2

ε(n1−m1)(n2−m2)E
y
m1m2

+
kxn1,n2

ωµ0

(

kxn1n2
Ey
n1n2

− kyn1n2
Ex
n1n2

)

.

(1.24)

This system contains the Fourier-images of the dielectric permittivity εn1n2 defined in

accordance with (1.23), as well as the Fourier images of the inverce permittivity:

εn1n2(z) =
1

Λ1Λ2

Λ1
∫

0

Λ2
∫

0

1

ε(ξ1, ξ2, z)
exp(−in1K1ξ1 − in2k2ξ2)dξ1dξ2. (1.25)

Wavevector projections for different diffraction orders kαn1n2
, α = x, y, are defined as

kαn1n2
= kincα + n1K1α + n2K2α, α = x, y, (1.26)
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where kincα are the in-plane projections of the incident plane wave wavevector (1.8).

Figure 1.3: Example of a 2D periodic sinusoidal intefrace separating two media within a
plane layer.

Next, we rewrite the differential equation system (1.23) in matrix form

F′(z) = HF, (1.27)

where vector F = (Ex, Ey, Hx, Hy) contains all the field harmonic amplitudes. The foun-

dation of the FMM was laid in works [58, 56, 57]. This method consists in search of eigen

solutions of Eq. (1.27), or, in other words, search of modes in the reciprocal Fourier space.

First, a grating layer is divided into a number of thin slices (slicing approximation), and

in each slice the dependence of the ε from coordinate z is neglected. Then the equation

HF = ±βF (1.28)

is used to find propagation constants of the Fourier modes. For numerical calculations

the size of matrix H is made finite by cutting the infinite Fourier series. Denote the

corresponding maximum diffraction order numbers as max |n1,2| = NO1,2. Then Eq. (1.28)

becomes a matrix equation with matrix HNO1NO2
, and the problem is reduced to the

algebraic eigenvalue problem. Numerical complexity of the last problem is O(N3
O1N

3
O2)

[37].

In the differential method one applies a finite-difference scheme to solve (1.27). There
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were proposed different implementations of this method, e.g., [50, 59]. Currently the

differential method is not as widely used as the FMM and have been developed in recent

years mainly by authors of [60].

The above formulation of the Fourier-methods works well only for holographic gratings

descibed by continuous functions (1.21). For corrugated one-dimensional gratings the

corresponding method has a very poor convergence for TM waves diffraction. Authors of

[61, 62] demonstrated this problem to be caused by an incorrect passage from (1.27) to a

finite system of linear equations. The essence of the problem is that the Fourier transform

of the product of two functions having coincident points of discontinuity is incorrect. An

attempt of mathematical justification of this fact was undertaken in [63], however, one

can think of a simpler explanation — it is impossible to define a product of corresponding

distributions [64, 65, 66].

Appearence of works [61, 62] stimulated both intense development and application

of the Fourier-methods [67, 68], in particular, for the light difraction calculation on 2D

gratings [69, 70, 71, 72, 73, 74]. Formulation of the FMM and the differential methods

for 2D gratings requires an additional effort to treat the boundary condition in correct

manner. Mathematical description of this problem will be given in the next chapter.

There will be proposed a different approach from the one developed in [72, 73, 74].

Fourier-methods find their applications in the simulation and optimization of diffrac-

tive optical elements, photonic crystals (e.g., [75, 76, 77, 78]) which are examples of

periodic and quasi-periodic structures. Recently there appeared several works where

authors made attempts to adapt the FMM to the solution of non-periodic problems

[79, 80, 81]. These works describe calculaiton of the light diffraction on gratings con-

taining the perfectly-matched layer (PML) [82, 83]. The PML allowed eliminating the

re-scattering process on different grating periods and, hence, obtainig an approximate so-

lution of a non-periodic problem. The formulation of the method developed in this thesis

allows for the immediate incorporation of the PML, however, the simulation of scattering

in this work will be carried out in a simpler manner.

1.3 Generalized source method

Now we proceed to description of a general theoretical method that was used in this thesis.

This method was proposed in [84, 85] where it was referred to as the generalized source

method (GSM). GSM represents a rigorous procedure for calaultion of the light scattering

and diffraction in inhomogeneous media. The method consists of two subsequent steps.

First, one should choose a basis medium described by functions ε(r), µ(r) and a corre-

sponding analytic solution of the Maxwell’s equations for any source distribution. Second,

this analytic solution shoud be written for a generalized source representing the difference

between the initial and the basis media, thus, giving rize to a self-consistent equation.
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Now consider the described scheme in detail.

Let us start from the Maxwell’s equations (1.5), (1.6), and rewrite the first one in a

more general case allowing for the presence of inhomogeneous magnetic permittivity µ(r)

and magnetic currents F(r):

∇× E = iωµH+ F. (1.29)

Eqs. (1.29) and (1.5) give rize to the wave equations

∇× 1

µ
∇× E− ω2εE = iωεJ+∇× 1

µ
F, (1.30)

∇× 1

ε
∇×H− ω2µH = −iωµF+∇× 1

ε
J. (1.31)

Exact analytical solutions for (1.30) and (1.31) for any source distribution are known for

a quite narrow range of problems. The GSM uses the power of these analytical solutions

allowing one to develop numerical methods capable to solve wide classes of problems.

To be specific, choose one of the exact solutions of system (1.30), (1.31) with certain

boundary conditions and regard it to as the basis one. Write out the basis solution in

form of a functional relationship that translates sources to unknown fields:

E = ℵbE(J,F),
H = ℵbH(J,F).

(1.32)

Decompose the permittivities describing an initial medium into a sum of the chosen basis

permittivities and additional summands (which generally can be of any magnitudes):

ε(r) = εb(r) + ∆ε(r),

µ(r) = µb(r) + ∆µ(r).
(1.33)

This representation enables one to introduce generalized currents Jgen and Fgen generated

by permittivity differences ∆ε(r) and ∆µ(r):

Jgen = −iω∆εE, (1.34)

Fgen = iω∆µH, (1.35)

Then, Eqs. (1.32) can be rewritten in form

E = ℵbE(Jr + Jgen,Fr + Fgen) = Einc + ℵbE(−iω∆εE, iω∆µH),

H = ℵbH(Jr + Jgen,Fr + Fgen) = Hinc + ℵbH(−iω∆εE, iω∆µH).
(1.36)

Here Jr denotes real currents which are replaced by external fields Einc, Hinc excited by

them. Equation system (1.36) is a general form of implicit equations being the cornerstone
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of the GSM. Particular form of Eq. (1.36) depends on the basis solution. Note also that

no restrictions are imposed to ∆ε(r), ∆µ(r).

The GSM can be thought of the following demonstrative procedure. Let an incident

electromagnetic wave Einc, Hinc be propagating in a region with scattering bodies. It

excites the generalized sources which amplitudes are proportional to the functions ∆ε(r),

∆µ(r), and the modified field writes

E(1) = Einc + ℵbE(−iω∆εEinc, iω∆µHinc),

H(1) = Hinc + ℵbH(−iω∆εEinc, iω∆µHinc).
(1.37)

This field also interacts with the scattering structure and the subsequent modification is

E(1) = Einc + ℵbE(−iω∆εE(1), iω∆µH(1)),

H(1) = Hinc + ℵbH(−iω∆εE(1), iω∆µH(1)).
(1.38)

And so on. Eq. (1.37) is, evidently, the Born approximation [86]. By continuing with the

described iterations up to infinity we run into the Newmann series [87]. However, this

treatment is good only for undertanding the method since in numerical calculations the

Newmann series often diverge. For simulation of the light scattering and diffraction on

high-constrast and high-aperture objects more sophisticated numerical methods should

be used.

The VIE method [41] described above is an example of the GSM implementation with

the basis medium being an isotropic homogeneous space and the basis solution being the

tensor Green’s function of a free space [88]. In this thesis the GSM is applied for the

development of the method for the light scattering and diffraction calculation in plane

micro- and nanostructured plane layers. An attempt of developing a similar method

was undertaken in [89, 90], however authors succeded only in calculation of the TE wave

diffraction on 1D gratings. A better result was obtained in [91] for the rectangular crossed

gratings calculation on basis of a method similar to the one proposed here. This article has

appered recently and almost simultaneously with the article [65] describing the method

proposed here.

1.4 Organic light emitting diodes with scattering layers

In this section we discuss the problem of rigorous simulation of organic light emittins

diodes (OLED) with scattering layers, which is solved in the third chapter the thesis.

Electroluminescent properties of organic materials have been studied since about 50th

of the previous century. The first LED made of organic materials was created in 1989

[1]. This breakthrough gave rise to a new field in science and technology which have been

intensively developed so far. Currenlty the market offers a set of small-size OLED de-
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vices including displays for cellular phones and household appliances as well as decorative

lightning elements. Leading companies announce the mass production of high-diagonal

TV-sets and high-quality lightning devices for the next several years. Herewith manu-

facturers still face a range of problems including the prolongation of the OLED lifetime,

search of new functional materials and increase of the device efficiency. The last prob-

lem is particularly important for lightning applications where OLEDs face quite a high

competition with inorganic LEDs.

An OLED conventionally represents a multilayered structure showed in Fig. 1.4. A

typical structure contains metal or transparent electrodes, and organic electroluminescent

layer. Also there may be included additional organic layers allowing to tune the electron-

hole transport in a device and the device color. The OLED efficiency is defined as a ratio

between the number of emitted photons and the number of electrons passed through a

device. An alternative definition is the raio between the emitted light power and the

electric power consumed by a diode. The power losses are divided into two essentially

different channels: power loss due to the nonradiative exciton recombination with so

called internal efficiency coefficient ηin, and power loss due to optical trapping in the

diode multilayer structure (including a substrate) described by the external efficiency

coefficient ηout. The net efficiency then writes

ηext = ηinηout. (1.39)

Currently the internal efficiency can be made close to 100% due to the use of phospho-

a) b)

Figure 1.4: Examples of OLEDs: a) conventional OLED and b) an OLED with a scattering
layer.

rescent materials [92, 93, 94]. Thus, the main effort regarding the solution of the OLED

efficiency enhancement problem is directed to the improvement of ηout.

Optical losses can also be divided into several channels [95]. First, the power is ab-

sorbed in OLED layers, mainly in a metal cathode (up to 50% of the electromagnetic
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power). Second a substantial amount of power can be guided in the waveguide modes

(∼10%). Additionally the power loss occures at the substrate-air interface due to the

total internal reflection (up to ∼10%).

To lower the losses due to the waveguide modes excitation and the total internal

reflection there were proposed several methods [96, 95, 97, 98] (Fig. 1.5) including the use

of photonic crystals and diffraction gratings [99, 100, 101, 102, 103, 104, 105, 106, 107, 108],

microlences [109, 110, 111, 112, 113, 114, 115, 116], scattering layers [117, 118], aerogel

layers [119], microstructurization of a substrate [120, 121, 122, 123, 124, 125, 126, 127], and

microresonator geometries [128, 129, 130, 131, 132, 133]. The best results regarding the

increase of the external efficiency were obtained with periodic wavelength-scale structures

and microlences. However, a periodical structurization leads to a strong anisotropy of

the emitted radiation which is quite undesirable for many applications, and the use of

microlences requires a rather high-cost technology.

Figure 1.5: Methods of the OLED efficiency increase: a) conventional OLED, b) OLED
with aerogel, c) corrugated OLED, d) nanostructured substrate, e) OLED with mi-
crolenses, and f) OLED with mesastructure [96].
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Nanostructured scattering layers seem to be the most prospective from the point of

view of the compromiss between the efficiency increase potential and the device cost. It

is natural to place it between the transparent electrode and the substrate as shown in

Fig. 1.4 to scatter waveguide modes and simultaneously avoid affecting the electron-hole

transport. Tuning the parameters of a scattering layer and the whole OLED requires the

ability of their optical properties simulation. The accuracy of such simulation should be

at least about 1% since the net expected effect of the scattering layer application is about

1-10%. Furthermore, the model should account for the evanescent wave scattering which

generally requires a rigorous solution of the Maxwell’s equations. So, it is seen that the

problem of OLED with sattering layer simulation is quite sophisticated.

Optical properties of OLEd with homogeneous layers containing electroluminescent

sources were simulated with T-matrix method or analytical reflection and transmission

coefficient calculation combined with the dipole representation of sources [134, 20, 135,

136, 137, 138]. Other models include an approximate integration in the plane wavevectors

space [139, 140, 141]. Some works presented a waveguide analysis of OLED multilayer

structures [142, 101]. Examples of the external efficiency optimization for OLEDs with

homogeneous layers are found in [143, 113, 144, 145, 146, 147]. OLED wiht gratings were

simulated in [148, 104, 149]. Besides, there were attempts to simulate microstructured

OLEDs with FEM and FD methods [150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,

161, 143, 162]. Here we do not discuss these works as the drawbacks of the corresponding

methods were outlined above. Approximate models based on the radiation transfer theory

were proposed in [117, 163], however, this approach does not meet the posed requirements.

1.5 Conclusions

The first chapter gives the nesessary information conserning the problems solved in the

thesis. It contains a brief review of numerical methods potentially concurrent to those

ones developed in this work and capable to rigorously solve the Maxwell’s equations in

plane inhomogeneous layers, description of the generalized source method being the basis

of the teoretical developments presented below, and a short discussion of the questions

related to the OLED with scattering layers simulation problem. One can conclude that,

first, currently there is a strong need in fast numerical methods in the light scattering

theory capable to deal with complex structures, second, that the Fourier-methods are a

promising choise for the problem of the light scattering in planar structures, and, third,

that the problem of rigorous simulation of OLED with nanostructured scattering layers

was not solved previously with suffcicent and controlled accuracy.
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Chapter 2

Ligth diffraction on 2D diffraction

gratings

2.1 Introduction

This chapter describes the implementation of the generalized source method in the 2D

reciprocal space. First, we will obtain analytical formulas for the S-matrix components of

an infinitely thin inhomogeneous layer, and, second, an implicit equation describing the

light diffraction on gratings will be formulated. The end of the chapter demonstrates the

convergence analysis of the proposed fast method.

An interrelation between the inital nonperiodic problem of the light scattering in plane

heterogeneous layers and the light diffraction on gratings calculation problem can be es-

tablished from the following considerations. An approach developed in this work bases on

the planar geometry of layers independently of a shape of scattering particles placed inside

a layer. Thus, a plane wave representation is used here as a natural representation of such

geometry. Mathematically this representation is expressed as the 2D Fourier transform of

the fields and permittivities in the XY plane. In accordance to the convolution theorem

the Fourier image of a two functions product is a convolution of their Fourier images:

F(f · g) = F(f) ∗ F(g). (2.1)

Thus, the Fourier transform converts products of permittivities by fields in wave equations

(1.30) and (1.31) into corresponding convolutions. Any numerical calculation requires a

discretization, which in this case is the discretization of the reciprocal space. Then, one can

notice, that the convolution is represented by a product of a Toeplitz matrix by a vector

providing that the mesh in the reciprocal space is equidistant. This product in turn can

be calculated by the FFT as was mentioned in the previous chapter. Therefore, a method

that solves the light diffraction problem by means of matrix-vector product operations

with only Toeplitz and diagonal matrices can be implemented with the linear comlexity
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with respect to the mesh node number. The charge of the speed is the equidistancy of a

mesh in the reciprocal space, and the corresponding periodicity in the coordinate space.

2.2 Basis solution

The theoretical analysis in this thesis bases on the generalized source method described in

section 1.3. Here we consider the first step of the GSM applied to the diffraction problem,

namely, the derivation of the basis solution. Starting from the Maxwell’s equations one can

write the Helmgoltz’s equations in a homogeneous isotropic medium with permittivities

εb and µb allowing for both electric and magnetic sources:

∇ (∇Eb)−∆Eb − ω2εbµbEb = iωµbJ+∇× F, (2.2)

∇ (∇Hb)−∆Hb − ω2εbµbHb = −iωεbF+∇× J. (2.3)

Introduce vector AE, AH and scalar ϕE, ϕH potentials as

Eb = −∇ϕE + iωAE − 1

εb
∇×AH, (2.4)

Hb = ∇ϕH + iωAH +
1

µb
∇×AE. (2.5)

Being substituted into Maxwell’s equations (1.5), (1.6) the vector potentials can be shown

to satisfy the following equations

∆AE + k2bAE = −µbJ, (2.6)

∆AH + k2bAH = εbF, (2.7)

providing that the Lorentz gauge is used [164]:

ϕE =
∇AE

iωεbµb
, (2.8)

ϕH = − ∇AH

iωεbµb
. (2.9)

Due to the further Fourier transform discussed in the introduction to the current chapter,

we write sources in form of plane currents:

(

J

F

)

=

(

j(z)

f(z)

)

exp (ikxx+ ikyy) . (2.10)
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Solutions of (2.6) and (2.7) for the specified form of sources can be written as an integral

over coordinate z [85]

(

AE(r)

AH(r)

)

=i
exp (ikxx+ ikyy)

2kz

×
∞
∫

−∞

(

µbj(z)

−εbm(z)

)

exp [ikz (z − z′) ξ (z − z′)] dz′,

(2.11)

where ξ denotes the difference of two Heaviside θ-functions:

ξ (z − z′) = θ (z − z′)− θ (z′ − z) =

[

1, z − z′ ≥ 0

−1, z − z′ < 0
, (2.12)

and wavevector z-projection kz is defined by 1.9. The fields are found from (2.4) and (2.5)

and represent a superposition of plane waves propagating upwards and downwards with

respect to axis Z together with an additional term proportional to the source amplitude:

Eα = exp (ikxx+ ikyy)

{

δαz
iωεb

jz(z)

+
∑

β=x,y,z

z
∫

−∞

[

jβ(z
′)
Y+
βα

ωεb
− fβ(z

′)X+
βα

]

exp [ikz (z − z′)] dz′

+
∑

β=x,y,z

z
∫

−∞

[

jβ(z
′)
Y−
βα

ωεb
− fβ(z

′)X−
βα

]

exp [−ikz(z − z′)] dz′







,

(2.13)

Hα = − exp (ikxx+ ikyy)

{

δαz
iωµb

fz (z)

−
∑

β=x,y,z

z
∫

−∞

[

fβ (z
′)
Y+
βα

ωµb
+ jβ (z

′) X+
βα

]

exp [ikz (z − z′)] dz′

−
∑

β=x,y,z

z
∫

−∞

[

fβ (z
′)
Y−
βα

ωµb
+ jβ (z

′) X−
βα

]

exp [−ikz (z − z′)] dz′







.

(2.14)

Here indices α и β stand for spatial coordinates x, y, and z, matrix elements write

Y±
αβ =

k±α k
±
β − k2δαβ

2kz
, (2.15)

X±
αβ =

eαγβk
±
γ

2kz
, (2.16)

and δαβ, eαβγ are Kronecker symbol and absolutely antisymmetric tensor respectively.

Eq. (2.13) and (2.14) provide the required basis solution of the GSM. Note that these
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formulas can be also derived using the method of Green’s functions [165, 166].

Consider an important case when sources exist only in plane z = 0 and their amplitudes

(2.10) are represented by δ-functions of coordinate z:

jβ(z) = jβδ(z), fβ(z) = fβδ(z). (2.17)

Then the firt summand in Eqs. (2.13), (2.14) gives a singular disturbance in theXY plane.

To account for the polarization state of the electromagnetic radiation we introduce a

standard tranfromation of the field amplitudes to the amplitudes of TE- and TM-polarized

waves [2]. Corresponding notations are given in Appendix A. The relation between the

TE- and TM-waves amplitudes and the source amplitudes is found by substitutuin of

(2.17) into (2.13) and (2.14) and taking into account Eqs. (A.7), (A.8):

ae±reg(j, f) =
ωµ0kx
2γkz

jy −
ωµ0ky
2γkz

jx ±
kx
2γ
fx ±

ky
2γ
fy −

γ

2kz
fz, (2.18)

ah±reg(j, f) =
ωε0ky
2γkz

fx −
ωε0kx
2γkz

fy ±
kx
2γ
jx ±

ky
2γ
jy −

γ

2kz
jz. (2.19)

In the source plane z = 0 these expressions should be supplemented with singular sum-

mands

ae± = ae±reg + aδe = ae±reg + δ(z)
jz
iωε0

, (2.20)

ah± = ah±reg + aδh = ah±reg − δ(z)
fz
iωµ0

. (2.21)

One can consider Eqs. (2.18)-(2.21) as the basis solution of the GSM equally with (2.13),

(2.14).

To simplify the further analysis and possibly improve the numerical behaviour of the

method we introduce a modified field by susbstracting singular terms in the source region:

Ẽx,y = Ex,y

Ẽz = Ez −
jz
iωεb

, (2.22)

H̃x,y = Hx,y

H̃z = Hz +
fz
iωµb

, (2.23)

so that the modified fields are regular everywhere and can be decomposed into amplitudes

(2.18) and (2.19) only.
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2.3 S-matrix based diffraction calculation

Eqs. (2.18) and (2.19) are witten for a single source plane harmonic (2.10). In general case

one should account for all possible harmonics of fields and currents. For this purpose we

introduce index n enumerating the Fourier orders. Accounting for the further truncation

of the Fourier series denote the maximum harmonic numbers as NO1 и NO2. Then a

one-to-one correspondence between n and indices enumeraing the diffraction orders along

each direction of periodicity n1, n2 can be established in form n = n1NO2 + n2, −NO1,2 <

n1,2 < NO1,2. This enables Eqs. (2.18) and (2.19) to be rewritten as (here we refer to the

introduced modified field (2.22), (2.23))

ãe±m =
ωµbkxm
2γkzm

jym − ωµbkym
2γmkzm

jxm ± kxm
2γm

fxm ± kym
2γm

fym − γ

2kzm
fzm, (2.24)

ãh±m =
ωεbkym
2γmkz

fxm − ωεbkxm
2γmkzm

fym ± kxm
2γm

jxm ± kym
2γm

jym − γm
2kzm

jzm. (2.25)

According to the GSM, generalized currents are proportional to products of fields by per-

mittivity modifications (1.34), (1.35). First, consider an index grating described by con-

tinuous functions ε(r), µ(r) of coordinates x, y. Relation between the Fourier-components

of the fields and generalized currents follows from (1.34), (1.35), (2.22), (2.23), and writes

jx,ym = −iωεb
([

εx,y
εb

]

mn

− δmn

)

Ẽx,yn,

jzm = −iωεb
(

δmn −
[

εb
εz

]

mn

)

Ẽzn,

(2.26)

fx,ym = iωµb

([

µx,y
µb

]

mn

− δmn

)

H̃x,yn,

fzm = iωµb

(

δmn −
[

µb
µz

]

mn

)

H̃zn.

(2.27)

Now one can write out explicit formulas for S-matrix components of an infinitely thin

slice of a plane grating

(

ae±m

ah±m

)

=

(

See±±
mn Seh±±

mn

She±±
mn Shh±±

mn

)(

ae±n

ah±n

)

. (2.28)

By introducing notations

∆ε,µ
x,ymn =

[

(ε, µ)x,y
(ε, µ)b

]

mn

− δmn,

∆ε,µ
zmn = δmn −

[

(ε, µ)z
(ε, µ)b

]

mn

,

(2.29)
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one can write

See±±
mn =

i

2

{

kb
2 kxm
γmkzm

∆ε
ymn

kxn
γn

+ kb
2 kym
γmkzm

∆ε
xmn

kyn
γn

±m ±n
kxm
γm

∆µ
xmn

kxnkzn
γn

±m ±n
kym
γm

∆µ
ymn

kynkzn
γn

+
γm
kzm

∆µ
zmnγn

}

,

(2.30)

She±±
mn =

i

2
ωµb

{

±n
kxm
γmkzm

∆ε
ymn

kynkzn
γn

−±n
kym
γmkzm

∆ε
xmn

kxnkzn
γn

±m
kxm
γm

∆µ
xmn

kyn
γn

∓m
kym
γm

∆µ
ymn

kxn
γn

}

,

(2.31)

Seh±±
mn =

i

2
ωεb

{

±n
kym
γmkzm

∆µ
xmn

kxnkzn
γn

∓n
kxm
γmkzm

∆µ
ymn

kynkzn
γn

∓m
kxm
γm

∆ε
xmn

kyn
γn

±m
kym
γm

∆ε
ymn

kxn
γn

}

,

(2.32)

Shh±±
mn =

i

2

{

kb
2 kym
γmkzm

∆µ
xmn

kyn
γn

+ kb
2 kxm
γmkzm

∆µ
ymn

kxn
γn

±m ±n
kxm
γm

∆ε
xmn

kxnkzn
γn

±m ±n
kym
γm

∆ε
ymn

kynkzn
γn

+
γm
kzm

∆ε
zmnγn

}

,

(2.33)

where signs ‘’±‘’ и ‘’∓‘’ with index n correspond to incident field harmonics, and with

index m correspond to diffracted field harmonics. Analogously, one can obtain S-matrix

components of an infinitely thin layer of a corrugated grating. They appear to be rather

bulky and are given in Appendix B.

Eqs. (2.30)-(2.33) and their modifications (B.2)- (B.10) allow one to calculate the light

diffraction on gratings with the S-matrix multiplication rule (1.18). Since the derived

equations describe the diffraction on an infinitely thin plane layer, calculation of the

diffraction on a thick layer requires slicing of a grating along axis Z into a finite number

of sufficiently thin slices, and calculation of S-matrices for each slice. Thus, an algorithm

for the S-matrix-based diffraction calculation is formulated as follows:

1. Slicing of a layer of thickness h with a grating into NS slices of thickness ∆h;

2. Calculation of matrices containing the Fourier harmonics of dielectric and magnetic

permittivities ε(x, y, zp), µ(x, y, zp) in each slice p = 0 . . . NL − 1 with zp = z(L) +

(p+ 1/2)∆h;

3. Calculation of matrices containing the Fourier harmonics of thrigonometric functions

of angles defining normal directions at curved interfaces separating different media

inside a grating layer (see Appendnices B, C);
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4. Calculation of S-matrices of each slice using Eqs. (2.30)-(2.33) or (B.2)-(B.10);

5. Calculation of the whole grating S-matrix by means of Eq. (1.18).

Steps 2 and 3 of the given algorithm will be retained in the method based on a linear

algebraic equation system solution, and will be discussed further.

As can be noticed, the last step is the most computationally complex part of the

given algorithm. According to Eqs. (1.18) this step requires inversion of matrices of size

NO × NO, and, generally, this operation is made by O(N3
O) multiplications. Since Eqs.

(1.18) are used each time when a new slice is added, the net numerical complexity of the

method appears to be O(N3
ONS).

There was written a program based on the given algorithm for light diffraction calcu-

lation on 1D gratings in both collinear and noncollinear cases. Set of input parameters

include: the wavelenght of an incident plane wave, angle of incidence (two angles in

noncollinear case), grating period and depth, grating profile, parameters NO, NS, and

permittivites of all materials. The output includes all S-matrix complex components.

Figs. 2.1a and 2.2a demonstrate convergence of the method with the increase of the

slice number for a plane wave diffraction with λ = 0.6328µm and incidence angle 10◦ on 1D

rectangular and sinusoidal corrugated gratings. Parameters of both gratings were taken

to be Λ = 1µm, h = 0.5µm and refractive index contrast — 1.5. The same convergence

rate was revealed also for other types of gratings — sinusoidal index gratings and gratings

consisting of infinite cylinders, in the range of periods from 100 nm to 10 µm and in the

range of depths from 10 nm to 5 µm. One may notice that the slice numbers used for

the diffraction calculation on rectangular gratings greatly exceeds values of NS for the

sinusoidal one. This is due to the independence of the rectangular grating profiles from

coordinate z, which enables the power-law multiplication of S-matrices instead of linear

subsequent multiplications.

Figs. 2.1a and 2.2a reveal that the convergence has the power-law dependence from the

inverse number of slices starting from a sufficienly large NS depending on NO. Thus, one

may suppose that the solution (S-matrix components) can be represented as a polynomial

of the variable 1/NS in some neighbourhood of the point 1/NS = 0:

am(1/NS) = am(0) +
∞
∑

k=1

a
(k)
M

(

1

NS

)k

, (2.34)

where am(0) denotes the exact solution. Then applying the Lagrange’s polynomial inter-

polation scheme [37] of power p and calculating a free term of the polynomial

am(0) ≈
p+1
∑

k=1

am (1/NSk)
∏

q 6=k

[1−NSq/NSk]
(2.35)
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a) b)

Figure 2.1: Convergence of the S-matrix-based diffraction calculation method for a rectan-
gular grating. a) Convergence as a function of NS for different NO. b) Use of polynomial
interpolation to improve the convergence.

one can obtain a much better solution and corresponding increase of the convergence

rate. Figs. 2.1b and 2.2b demonstrate examples of application of Eq. (2.35) to the

diffraction calculation described above. It is seen that the polynomial interpolation gives

the expected result and allows improving the accuracy up to several orders of magnitude

for given NS and NO.

а) б)

Figure 2.2: Convergence of the S-matrix-based diffraction calculation method for a corri-
gated 1D sinusoidal grating. a) Convergence as a function of NS for different NO. b) Use
of polynomial interpolation to improve the convergence.

The method of the light diffraction calculation developed in this section is interesting

mainly due to its novelty. The given estimation of its accuracy shows that it does not

provide any advantages in comparison with the FMM. Nevertheless, it can be modified so

as to reduce the diffraction problem to an implicit linear equation system mentioned in

section 1.3. In other words this means that instead of a sequentional calculation of slice
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S-matrices and their subsequent multiplication all the wave amplitudes in each slice will

be calculated self-consistently at a time.

2.4 Diffraction on index gratings

In this section the proposed S-matrix based method of the light diffraction calculation is

modified so as to reduce its numerical complexity and replace the S-matrix multiplications

by self-consistent linear algebraic equation system solution.

We start with rewriting Eqs. (2.27) и (2.27) in matrix-vector form

(

j
(E)
αm

j
(M)
αm

)

=
∑

n

(

−iωεbVE
αβmn 0

0 iωµbV
H
αβmn

)(

Ẽβn

H̃βn

)

, (2.36)

where we introduced block-diagonal matrices

VE = diag{∆ε
x, ∆

ε
y, ∆

ε
z},

VH = diag{∆µ
x, ∆

µ
y , ∆

µ
z}.

(2.37)

The last two matrices are diagonal with respect to coordinate indices α, β, and their

components are defined by (2.29). Then, substitution of Eq. (2.36) into basis solutions

(2.13) and (2.14), and using formulas of Appendix A, gives an implicit integral equation

relating amplitudes of incident and diffracted harmonics:

am (z) =

∞
∫

−∞

∞
∑

n=−∞

∑

α,β



















R±
m (z, z′)

(

PEαm PHαm

)

×
(

VE
αβmn (z

′) 0

0 VH
αβmn (z

′)

)

×
(

QE
βn

QH
βn

)

aincn (z′)



















dz′, (2.38)

where

R±
m (z, z′) = ζ [± (z − z′)] exp [±ikzm (z − z′)] , (2.39)

ζ (z) =











1, z > 0
1
2
, z = 0

0, z < 0

, (2.40)

and matrices PE,H write

PEm =
1

2













−ωµbkym/(2γmkzm) ωµbkxm/(2γmkzm) 0

−ωµbkym/(2γmkzm) ωµbkxm/(2γmkzm) 0

kxm/γm kym/γm −γm/kzm
−kxm/γm −kym/γm −γm/kzm













, (2.41)
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PHm =
1

2













kxm/γm kym/γm −γm/kzm
−kxm/γm −kym/γm −γm/kzm

ωεbkym/(2γmkzm) −ωεbkxm/(2γmkzm) 0

ωεbkym/(2γmkzm) −ωεbkxm/(2γmkzm) 0













. (2.42)

Vector a(z) =
(

ae+mn ae−mn ah+mn ah−mn

)T

contains all amplitudes of TE- and TM-harmonics

propagating in a plane with coordinate z.

To pass from Eq. (2.38) to a system of algebraic equations we use a standard ap-

proximation of the integral by a finite sum over slices introduced in the previous section.

Consider as before a layer bounded by planes z = z(L) and z = z(U), z(U) − z(L) = h, and

divide it into NS slices of equal thickness ∆h = h/NS. Let wave amplitudes ae,h±mp to be

defined at centers of slices with coordinates zp, p = 0, . . . , (NS − 1),

zp = z(L) + (p+ 1/2)∆h. (2.43)

Then, Eq. (2.38) reduces to a linear system of algebraic equations

amp =

NS−1
∑

q=0

∞
∑

n=−∞

∑

α,β

R±
mpqPαmVαβmnqQβn, (2.44)

where indices p and q enumerate slices, and matrix elements, that were introduced before,

are replaced by more compact notations including both electric and magnetic sub-parts.

Then we truncate infinite sums over diffraction orders by some maximum value NO =

NOxNOy. This brings us a finite equation system which writes in matrix form as

a = RPVQainc = Aainc. (2.45)

It is naturally to define the amplitude vector of an incident field at the boundaries of

a grating layer by constants ae,h−inc (z(U)) and ae,h+inc (z(L)). The amplitudes in each slice ainc

to be substituted in (2.45) then write

(

ae,h+inc (zq)

ae,h−inc (zq)

)

=

(

ae,h+inc (z(L)) exp [ikz0∆h(q − 1/2)]

ae,h−inc (z(U)) exp [ikz0∆h(NS + 1/2− q)]

)

. (2.46)

Note that here a layer with a grating is supposed to be placed in a homogeneous medium

with constant permittivity εb. Generalization of the following results to a case of arbitrary

substrate and cover will be given further.

Now, in accordance with the GSM (1.36), unknown diffracted field amplitudes are

found via the solution of a self-consistent problem represented by a system of linear

algebraic equations:

a = (I− RPVQ)−1ainc = (I− A)−1ainc, (2.47)
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where I is the identity matrix

I = Iαβmnpq = δαβδmnδpq. (2.48)

To calculate the amplitudes of diffraction orders propagating outwards of the layer bound-

ary aout, one should apply Eq. (2.45) one more time, so that

aout = ainc + TPVQ(I− RPVQ)−1ainc. (2.49)

The introduced matrix T coherently transforms unknown amplitudes of the diffracted

waves into corresponding amplitudes at layer boundaries. Its components are found anal-

ogously to (2.46) and write

T(U)
nq = exp [ikzn∆h(NS + 1/2− q)],

T(L)
nq = exp [ikzn∆h(q − 1/2)].

(2.50)

Finally, to calculate unknown amplitudes of the electric and magnetic fields components

inside a grating layer we use (A.7), (A.8), (2.22) and (2.23):

E(zq) =







I 0 0

0 I 0

0 0 I−∆ε
z






QE(I− A)−1ainc, (2.51)

H(zq) =







I 0 0

0 I 0

0 0 I−∆µ
z






QH(I− A)−1ainc. (2.52)

Outside the grating layer the modified field (2.22), (2.23) coincides with the real field

and can be found as the product of vector aout by matrices (A.7) and (A.8).

Thus, the obtained equations (2.47), (2.49), (2.51) and (2.52) fully describe the prob-

lem of the light diffraction calculation on holographic gratings with continuous functions

ε(r) and µ(r). Now we proceed to a numerical algorithm.

2.5 Numerical algorithm

To describe a numerical algorithm of solution of Eqs. (2.47), (2.49), (2.51) and (2.52)

we recall the considerations given in the beginning of the current chapter regarding the

fast matrix-vector multiplication possibility in the Fourier space. To be able to use this

technique, solution should be found by an iterative method. Besides, the use of an in-

terative procedures is necessary since for big values of NO и NS matrices of the derived

linear systems cannot be inverted by the direct matrix inversion. Complexity of the di-
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rect inversion algorithm is O(N3
ON

3
S), which bounds the possibility of its use on modern

personal computers by values NO ∼ 100 and NS ∼ 10.

There are several methods capable to solve equations like (2.47), (2.49) iteratively

[39]. These equations have complex non-symmetric dence matrices. The most widely used

methods in the light scattering theory [167, 40] for similar systems are the biconjugate

gradient method (Bi-CG) [39], its modifications [168, 169] and the generalized minimal

residual method (GMRES) [170]. Use of these methods to solve (2.47), (2.49) revealed

that the GMRES appears to be the most reliable in terms of convergence. Thus, its use

will be implied in all subsequent numerical examples.

Consider in detail the structure of matrix A appearing in Eqs. (2.47), (2.49) and

(2.51). This square matrix can be thought to consist of NS ×NS blocks each containing

(2NO− 1)× (2NO− 1) sub-blocks of size 4× 4. In accordance with (2.47) matrix A is the

product of four matrices A = RPVQ. Matrix R contains exponential factors describing

the propagation of plane harmonics between different slices, and matrix elements Rnpq

depend only on the slice index difference (p − q). This matrix is Toeplitz with repect

to these spatial indices, or, in other words R is block-Toeplitz. Analogously, matrix

elements Vnmp depend on the difference (n − m), and V is block-Toeplitz with respect

to the Fourier indices, while it is diagonal with respect to p, q. Matrices P and Q are

block-diagonal regarding to inner blocks of size 3 × 4 и 4 × 3. Toeplitz matrix can be

expanded to circulant matrix, and a product of the latter by a vector can be found by

the FFT.

To summarize, the proposed numerical algorithm bases on the GMRES whith matrix-

vector products being calculated by the FFT. Numerical complexity of the algorithm is

O [NSNO log (NSNO)]. For large NO and NS the complexity is linear relative to the prod-

uct NSNO which is much better than both complexities of the GMRES with usual matrix-

vector multiplication O (N2
SN

2
O) and of the considered S-matrix algorithm O (NSN

3
O).

Thus, the numerical algorithm is formulated as follows:

• Calculation of the incident field harmonics amplitudes in each slice according to

(2.46).

• Calculation of the Fourier-images of the dielectric and magnetic permittivities and

pre-caluclation of the FFT from the obtained matrices.

• Pre-calculation of the FFT from matrix R.

• Solution of (2.47) by the GMRES with the FFT using the FFT-pre-calulated ma-

trices.

• Calculation of diffraction orders amplitudes by Eq. (2.49) or/and amplitudes of the

field projections by the Eq.(2.51).
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2.6 Diffraction on corrugated gratings

In section 2.4 we obtained Eqs. (2.47), (2.49) and (2.51) for calculation of the light diffrac-

tion on holographic gratings described by continuous functions ε(r) and µ(r). Numerous

applications require the study of composite structures with sharp interfaces separating

different media. In this case the presented solution of the Maxwell’s equations is incorrect

regarding to the problem of Fourier-methods mentioned in Chapter 1. In spite of the fact

that from the physical point of view one may expect a relative proximity of the solution of

(2.47), (2.49) to an exact one for all types of gratings, the derivation of correct equations

is essential for obtaining a good convergence and controling the accuracy of the results.

We start with analysis of corrugated gratings from the observation that the generalized

currents are proportional to the electric D and magnetic B induction:

Jgen = −iω(D−Db),

Fgen = iω(B−Bb).
(2.53)

Further only the presence of the generalized electric sources will be considered with the

magnetic permittivity of both scattering medium and basis medium being equal to the

vacuum permittivity µ0. Problem solution with the megnetic sources is absolutely anal-

ogous to the following analysis for electric sources. Thereby matrix indices introduced

in Appendix A distinguishing electric and magnetic fields will be omitted since only the

electric field will participate in the following derivations.

As stated above, the correct treatment of generalized sources requires exclusion of dis-

continuous function products with coincidenting points of discontinuity. For this purpose

we start with boundary conditions for the normal and the tangential components of the

electric field at interfaces. The electric field tangential component Eq is continuous at

interfaces, and taking the Fourier image in (2.53) is correct: (Dq)n =
NO
∑

m=−NO

[ε]nm(Eq)m.

The normal component E⊥ is discontinuous together with function ε(r) so that they

must be separated at different parts of the material relation (1/ε)D = E. This re-

sults in
NO
∑

m=−NO

[1/ε]nm(D⊥)m = (E⊥)n. The last relation brings matrix-vector formula

D⊥ = [1/ε]−1E⊥ to be used.

The stated relations together with (2.53) bring the normal and tangential components

of the generalized current

(jq)n = −iωεb
NO
∑

m=−NO

([

εq
εb

]

nm

− Inm

)

(Eq)m,

(j⊥)n = −iωεb
NO
∑

m=−NO

(

[

εb
ε⊥

]−1

nm

− Inm

)

(E⊥)m.

(2.54)
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To apply these equations introduce a local coordinate system n, ψ and ϕ at a grating

corrugation surface. Axis n coinsides with the normal direction to this surface. The

other two axes are defined by angle ψ between normal direction and axis Z of the initial

Cartesian coordiane system, and angle ϕ between the normal projection on plane XY

and axis X. Axes ψ and ϕϕϕ lie in the tangential plane to a grating surface with axis ϕϕϕ

lying in plane XY as shown in Fig. 2.3. For any vector b in the initial frame XY Z, its

Figure 2.3: Local Cartesian coordinates n, ψ, ϕ at an interface between different media,
with axes directions defined by angles ψ и ϕ.

components in the local frame are found from the following transform:







bn

bψ

bϕ






=







cosϕ sin θ sinϕ sin θ cos θ

cosϕ cos θ sinϕ cos θ − sin θ

− sinϕ cosϕ 0













bx

by

bz






. (2.55)

An inverce transform writes via the transposed matrix as







bx

by

bz






=







cosϕ sin θ cosϕ cos θ − sinϕ

sinϕ sin θ sinϕ cos θ cosϕ

cos θ − sin θ 0













bn

bψ

bϕ






. (2.56)

Note, that the Jacobian of this transform equals to 1.

Next, suppose that the trigonometric functions of angles ψ and ϕ are smooth functions

of coordinates x, y, z except, maybe of a finite number of points. This assumption is not

strong since these finctions are initially defined on a set of curves in plane of each slice

and they can be extended to the entire slice planes with periodic smooth functions with

narrow spectra. The main condition to be preserved here is the requirement of main
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trigonometric identities validity on the whole slice plane:

sin2 ψ(r) + cos2 ψ(r) = 1,

sin2 ϕ(r) + cos2 ϕ(r) = 1.
(2.57)

Approaches to the extrapolation of the mentioned trigonometric functions will be dis-

cussed below while considering particular grating examples. Analogous treatment of nor-

mal directions can be found in [64] relative to the FMM and in [68] relative to the differ-

ential method. An alternative approach given in [73] in detail is to generate the normal

vector field on a grating period, however it is not considered here.

The given discussion allows one to use the introduced notations together with (2.54)

to obtain a matrix-vector equation relating the amplitudes of incident and diffracted

modified field amplitudes in each slice of a grating layer (for details see Appendix C):

Ẽαnq =
∑

β=x,y,z

NO
∑

m=−NO

WαβnmẼβmq. (2.58)

New matrix W replaces V in case of a corrugated grating and its components write:

Wxx = ∆−DΓxx −DΓxzC
−1DΓzx,

Wxy = −DΓxy −DΓxzC
−1DΓzy,

Wxz = −DΓxzC
−1,

Wyx = −DΓxy −DΓxzC
−1DΓzy,

Wyy = ∆−DΓyy −DΓyzC
−1DΓzy,

Wyz = −DΓyzC
−1,

Wzx = −C−1DΓzx,

Wzy = −C−1DΓzy,

Wzz = I− C−1.

(2.59)

Information about grating profile is carried by matrix Γ in form of trigonometric functions

of angles ψ and ϕ. This matrix is Toeplitz relatively to the Fourier-indices m, n and writes

Γ(z) =







Γxx Γxy Γxz

Γyx Γyy Γyz

Γzx Γzy Γzz







=







cos2 ϕ sin2 ψ sinϕ cosϕ sin2 ψ cosϕ sinψ cosψ

sinϕ cosϕ sin2 ψ sin2 ϕ sin2 ψ sinϕ sinψ cosψ

cosϕ sinψ cosψ sinϕ sinψ cosψ cos2 ψ







(2.60)
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Besides, additional matrices D and C that appear in (2.59) are:

D =
[ ε

εb

]

−
[εb
ε

]−1

(2.61)

C =

[

ε

εb

]

−DΓzz (2.62)

The most important difference between (2.59) and matrix V is the presence of inverse

Toeplitz matrices. This means that direct replacement of V by W in Eqs. (2.47), (2.49)

and (2.51) would spoil the fast numerical algorithm. To preserve the achieved advantages

of the method we decompose matrix W into a product W = U(M)−1 with the following

explicit form of matrices M and U (for details see Appendix C):

M =













[εb
ε

][ ε

εb

]

0 0

0
[εb
ε

][ ε

εb

]

0

0 0
[ ε

εb

][εb
ε

]













sin2 ψ +







I 0 0

0 I 0

0 0 I






cos2 ψ, (2.63)

U =











∆xMxx +G
[ ε

εb

]

Γxx G
[ ε

εb

]

Γxy GΓxz

G
[ ε

εb

]

Γyx ∆yMyy +G
[ ε

εb

]

Γyy GΓyz

FΓzx FΓzy Mzz −
[εb
ε

]











, (2.64)

where

G = I−
[ ε

εb

][εb
ε

]

,

F = I−
[εb
ε

][ ε

εb

]

.
(2.65)

The proposed decomposition allows one to rewrite Eqs. (2.49) and (2.51) making them

free of inversions (see Appendix C):

aout = ainc + TPU(M−QRPU)−1Qainc (2.66)

E(zq) =









Mxx 0 0

0 Myy 0

FΓzx FΓzy

[εb
ε

]









(M−QRPU)−1Qainc (2.67)

Thus, obtained equations (2.66) and (2.67) represent the required modification of

(2.49) and (2.51) for the case of corrugated gratings. Eqs. (2.66) and (2.67) have more

complex structure, however their formulation allows to use the proposed fast numerical

algorithm with O(N logN) time and memory resort.
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2.7 Diffraction gratings in a planar structure

In the analysis of chapters 2.4 and 2.6 a diffraction grating was supposed to be placed in

an isotropic homogeneous medium with the dielectric permittivity equal to the GSM basis

permittivity εb. For practical use of the method we have to generalize the obtained results

for the case of arbitrary substrate and cover with permittivities εs and εc respectively.

Let the plane interface between the basis medium and the substrate be described by

amplitude reflection and transmission coefficients r
(L)e,h
n , t

(L)e,h
n , and the interface between

the basis medium and the cover — by r
(U)e,h
n and t

(U)e,h
n for each plane harmonic with

index n propagating from the inside of a grating layer. Here it will be demonstrated that

multiple reflections at the mentioned interfaces can be rigorously incorporated into the

method, and this does not affect the numerical complexity of the algorithm.

From the structure of matrix A one may conclude, that the changes to be introduced

affect only the incident field calculation and matrices R and T. Owing the incident field

amplites at a grating layer boundaries, calulation of multiple reflections is a simple exersise

which leads to the following formulas:

ae,h+(zL) =
t
(L)e,h
0 t

(U)e,h
0 exp(ikz0h)

1− r
(L)e,h
0 r

(U)e,h
0 exp(2ikz0h)

ae,h+(zU)

+

[

r̄
(L)e,h
0 +

(t
(L)e,h
0 )2r

(U)e,h
0 exp(2ikz0h)

1− r
(L)e,h
0 r

(U)e,h
0 exp(2ikz0h)

]

ae,h−(zL),

ae,h−(zU) =

[

r̄
(U)e,h
0 +

(t
(U)e,h
0 )2r

(L)e,h
0 exp(2ikz0h)

1− r
(L)e,h
0 r

(U)e,h
0 exp(2ikz0h)

]

ae,h+(zU)

+
t
(L)e,h
0 t

(U)e,h
0 exp(ikz0h)

1− r
(L)e,h
0 r

(U)e,h
0 exp(2ikz0h)

ae,h−(zL).

(2.68)

Here r̄
(L)e,h
0 and r̄

(U)e,h
0 stand for the reflection coefficients of zero-order harmonics prop-

agating towards a grating layer. Analogously for the waves being excited in qth sublayer

we have:

ae,h+(zq) =
t
(U)e,h
0 exp [ikz0∆h(q − 1/2)]

1− r
(L)e,h
0 r

(U)e,h
0 exp(2ikz0h)

ae,h+(zU)

+
t
(L)e,h
0 r

(U)e,h
0 exp [ikz0∆h(NS + q − 1/2)]

1− r
(L)e,h
0 r

(U)e,h
0 exp(2ikz0h)

ae,h−(zL),

ae,h−(zq) =
t
(U)e,h
0 r

(L)e,h
0 exp [ikz0∆h(2NS − q + 1/2)]

1− r
(L)e,h
0 r

(U)e,h
0 exp(2ikz0h)

ae,h+(zU)

+
t
(U)e,h
0 exp [ikz0∆h(NS − q + 1/2)]

1− r
(L)e,h
0 r

(U)e,h
0 exp(2ikz0h)

ae,h−(zL).

(2.69)

Summands 1/2 show that plane wave amplitudes and phases are measured in the middle
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of slices.

Next, consider the propagation of harmonics from a slice with number q to a slice

with number p. Presence of arbitrary substrate and cover results in the dependence of

matrix R components from the direction of plane wave propagation. These components

then write:
(

ae,h+np

ae,h−np

)

=

(

R
(e,h)(++)
npq R

(e,h)(−+)
npq

R
(e,h)(+−)
npq R

(e,h)(−−)
npq

)(

ae,h+nq

ae,h−nq

)

, (2.70)

and in an explicit form

R(e,h)(++)
npq = ∆h

[

θ+p−q +
r
(L)e,h
n r

(U)e,h
n exp(2ikznh)

1− r
(L)e,h
n r

(U)e,h
n exp(2ikznh)

]

× exp [ikzn∆h(p− q)]

R(e,h)(+−)
npq = ∆h

r
(L)e,h
n exp [2ikzn∆h(2NS + 1− p− q)]

1− r
(L)e,h
n r

(U)e,h
n exp(2ikznh)

R(e,h)(−+)
npq = ∆h

r
(U)e,h
n exp [2ikzn∆h(p+ q − 1)]

1− r
(L)e,h
n r

(U)e,h
n exp(2ikznh)

R(e,h)(−−)
npq = ∆h

[

θ−p−q +
r
(L)e,h
n r

(U)e,h
n exp(2ikznh)

1− r
(L)e,h
n r

(U)e,h
n exp(2ikznh)

]

× exp [−ikzn∆h(p− q)]

(2.71)

The first and the fourth elements in (2.71) have Toeplitz structure and can be immediately

multiplied by a vector via the FFT. The other two elements depend on the Fourier index

sum (p + q) instead of the difference. To include them in the fast multiplication scheme

one has to, first, invert a vector element numbering and change index q to index NS−q+1,

then perform the FFT-based meltiplication, and finally restore the initial enumeration of

the resulting vector elements.

Matrix T which “gathers” diffracted harmonics and “sums” them at layer boundaries

writes

T (e,h)(++)
nq =

exp [ikzn∆h(NS − q + 1/2)]

1− r
(L)e,h
n r

(U)e,h
n exp(2ikznh)

,

T (e,h)(−+)
nq =

r
(U)e,h
n exp [ikzn∆h(NS + q − 1/2)]

1− r
(L)e,h
n r

(U)e,h
n exp(2ikznh)

,

T (e,h)(+−)
nq =

r
(L)e,h
n exp [ikzn∆h(NS − q + 1/2)]

1− r
(L)e,h
n r

(U)e,h
n exp(2ikznh)

,

T (e,h)(−−)
nq =

exp [ikzn∆h(q − 1/2)]

1− r
(L)e,h
n r

(U)e,h
n exp(2ikznh)

.

(2.72)

Thus, Eqs. (2.68), (2.69), (2.71) and (2.72) provide the result necessary for the appli-
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cation of the developed method to gratings placed in an arbitrary structure. An impor-

tant result of this section is the demonstration that multiple reflections at grating layer

boundaries can be accounted for in a rigorous manner and can be incorporated in the fast

algorithm proposed in section 2.5.

Final algorithm for the light diffraction calculation on an arbitrary profiled corrugated

grating placed in a layered structure writes:

• Calculation of incident field amplitudes in each slice by Eqs. (2.68), (2.69) from

given amplitudes at grating layer boundaries.

• Calculation of the Fourier-images of the dielectric and magnetic permittivities in

each slice, and pre-calculation of the FFT from the obtained matrices.

• Calculation of the Fourier-images of matrix Γ (2.60) components in each slice, and

pre-calculation of the FFT from the obtained matrix.

• Pre-calculation of the FFT from matrix R (2.71).

• Solution of Eq. (C.20) by the GMRES with FFT and calculation of the diffracted

wave amplitudes in each slice.

• Calculation of the diffraction orders amplitudes by Eq. (2.66) and/or of the field

amplitudes by (2.67).

2.8 Convergence of the numerical method

Theoretical results of the previous sections enclose the development of the fast amd mem-

ory sparing method for the light diffraction calculation on possibly very complex gratings.

This section demonstrates the validity of the method by comparison of results with known

refence methods. For this purpose there were chosen two methods — the FMM and the

Rayleigh method. The first one is rather popular and widely applicable for analysis of

different diffraction structures. Additionally, both the FMM and the proposed method

are Fourier methods so that one may expect them to give the same result for a given

number of diffraction orders NO in the limit NS → ∞. The Rayleigh method was chosen

for its perfect applicability to sinusoidal gratings [171].

To make a comparison with the FMM we considered one- and two-dimensional holo-

graphic gratings with sinusoidally changing dielectric permittivity inside the grating layer:

ε(x, y, z) =























εc, z > zu,

εg

[

1 + c sin
2πx

Λx
+ c sin

2πy

Λy

]

, zl ≤ z ≤ zu,

εs, z < zl,

(2.73)
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where c is a constant factor small enough to ensure ε ≥ 1. Grating permittivity described

by Eq. (2.73) does not depend on coordinate z, and the diffraction calculation by the

FMM on such grating can be performed in a particularly efficient way [73]. Fourier-

matrix [ε/εb]mn is found analytically while calculation of [εb/ε]mn is done numerically.

For the diffraction calculation Eq. (2.49) is used. Examples of results obtained by the

developed method and the FMM are given in Tables D.1, D.2 of Appendix D for the

following parameters: ng = ns = 2.5, nc = 1, c = 1, Λx = Λy = 1 µm, h = 0.5

µm, θinc = ϕinc = 30◦, λ = 0.6328 µm. Figs. 2.4, 2.5 demonstarte the convergence of

the method with the increase of the slice number NS and comparison with the result

obtained by the FMM. Number of the Fourier harmonics NO is not specified since within

the limits of NO from 10 to 150 for 1D grating and from NO = NOXNOY = 5 × 5 = 25

to NO = NOXNOY = 50× 50 = 1600 for 2D grating the obtained dependecies were quite

similar.

Figure 2.4: Convergence (relative error) and comparison with the FMM (absolute error)
versus the inverce slice number for the light diffraction calculation on 1D holographic
sinusoidal grating. Parameters of the problem are: Λx = 1 µm, h = 0.5 µm, c = 0.1,
ns = ng = 2.5, nc = 1, θinc = 30◦, λ = 0.6328 µm.

The second benchmark was made to check the method’s validity for corrugated grat-

ings. For this purpose there was taken a sinusoidal grating with profile described by the

following function:

zs(x, y) =
h

2
[sin(2πx/Λx) + sin(2πy/Λy)] , (2.74)
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Figure 2.5: Convergence (relative error) and comparison with the FMM (absolute error)
versus the inverce slice number for the light diffraction calculation on 2D holographic
sinusoidal grating. Parameters of the problem are: Λx = Λy = 1 µm, h = 0.5 µm,
c = 0.1, ns = ng = 2.5, nc = 1, θinc = ϕinc = 30◦, λ = 0.6328 µm.

and the cooresponding spatial permittivity distribution writes

ε(x, y, z) =







εs, z ≤ zs(x, y);

εc, z > zs(x, y).
(2.75)

Comparison was carried out for parameters ns = 2.5, nc = 1, Λx = Λy = 1 µm, h = 0.2

µm, θinc = ϕinc = 30◦, λ = 0.6328 µm.

In general case the Fourier images of matrix Γ (2.60) components should be evaluated

for each slice separately. However, in the particular case of sinusoidal grating there is a

possibility to define them ones for all slices. Namely, the trigonometric functions of angles

ψ and ϕ can be found analytically from (2.74). For 1D sinusoidal grating corresponding

Fourier-integrals are found analytically. For 2D grating one can calculate the FFT of

sufficiently large matrices and trace the convergence of sub-matrices of size NO1 ×NO2.

Figs. 2.6, 2.7 show the convergence for the diffraction calculation on 1D and 2D

gratings respectively. As can be seen, for a fixed NO an increase of the slice number

leads to a solution with some constant non-reducible error. This error demonstrates the

accuracy of the infinite Fourier-sums truncation and can be reduced by an increase of NO.

Examples of diffraction efficiencies calculated for the 2D sinusoidal grating are given in

Tables D.3, D.4 of Appendix D.
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Figure 2.6: Convergence with the slice number increase for the light diffraction calculation
on 1D corrugated sinusoidal grating. Parameters of the problem are: Λx = 1 µm, h = 0.2
µm, ns = 2.5, nc = 1, θinc = 30◦, λ = 0.6328 µm.

Figure 2.7: Convergence with the slice number increase for the light diffraction calculation
on 2D corrugated sinusoidal grating. Parameters of the problem are: Λx = Λy = 1 µm,
h = 0.2 µm, ns = 2.5, nc = 1, θinc = ϕinc = 30◦, λ = 0.6328 µm.

One may propose to use the power balance condition [50] as an additional criterium

of the method accuracy. However, in all simulations this condition fulfilled at least with
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а) б)

Figure 2.8: Maximum absolute difference between calculated diffraction amplitudes by the
GSM and the Rayleigh method from the slice number for the light diffraction calculation
on 1D corrugated sinusoidal grating for a) TE- and b) TM-polarization. Parameters of
the problem are: Λx = 1 µm, h = 0.2 µm, ns = 2.5, nc = 1, θinc = 30◦, λ = 0.6328 µm.

Figure 2.9: Maximum absolute difference between calculated diffraction amplitudes by the
GSM and the Rayleigh method from the slice number for the light diffraction calculation
on 2D corrugated sinusoidal grating. Parameters of the problem are: Λx = Λy = 1 µm,
h = 0.2 µm, ns = 2.5, nc = 1, θinc = ϕinc = 30◦, λ = 0.6328 µm.

an order of magnitude better than the convergence obtained from diffraction amplitudes

comparison.

Example of the calculation time dependence from the number of diffration orders is

provided in Fig. 2.10 for the light diffration calculation on 2D sinusoidal grating, analogous

to the previous one, however with depth 0.5 µm and NS = 250 by the developed method

and the FMM. As was expected the proposed method’s complexity grows approximately
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linearly with the number of diffraction orders. “Jumps” on the line are explained by the

use of the FFT radix 2, so that the size of matrices participating in calulations doubles

every time the power of 2 increases.
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Figure 2.10: Calculation time dependence from the number of diffration orders for the
light diffration calculation on 2D sinusoidal grating for the GSM and the FMM.

2.9 Conclusions

To summarize, in this chapter the generalized source method described in Chapter 1 was

applied for the development of the light diffration on gratings calulcation method. The

basis solution was derived for both magnetic and electric sources written in form of plane

waves. From this basis solution we obtained the explicit analytical form of S-matrices of

an infinitely thin grating slice. Then there was proposed an S-matrix based method for the

light diffraction calculation. The method was shown to have the complexity ∼ N3
O which

is too high for complex problems solution. Therefore, the method was modified and the

diffraction calculation problem was reduced to a linear system of algebraic equations with

block-Toeplitz matrix. The final method has linear complexity and memory requirements

with respect to calculation mesh node number. There were analized both convergence

and accuracy of this method. The results presented in this chapter were published in

[172, 65, 173].
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Chapter 3

Organic light emitting diodes with

scattering layers

3.1 Light scattering calculation on nonperiodical struc-

tures

In the previous chapter we substantiated the transition from a scattering problem to

a diffraction problem on gratings, and the method of exact and effective calculation of

diffraction of optical radiation on 1D and 2D plane diffraction gratings was developed.

Now it is necessary to return to the scattering problem in nonperiodic inhomogeneous

layers. The developed approach will be applied to the solution of a problem of modeling

OLEDs with a scattering layer.

Consider a nonperiodic scattering structure schematically shown in Fig. 3.1. Suppose

this structure to be a homogeneous matrix containing a set of scattering particles of

various size, shape, and material. Designate characteristic size of the volume filled with

particles, and characteristic size of particles as Λ and ds respectively. According to the

initial idea described in the introduction to Chapter 2, the developed numerical method

requires transformation of geometrical parameters and coordinate functions of dielectric

permittivity of a structure to the Fourier-space. Let the maximum module of a wavevector

in plane XY in the considered Fourier-representation be γmax. It is necessary to choose

it so that to resolve the characteristic size of particles γmax ∼ α/ds, where factor α > 1.

Designating a mesh step in the reciprocal space as ∆γ, ∆γ ∼ 1/Λ we get γmax = NO∆γ.

This brings NO ∼ αΛ/ds. Choosing, for example, Λ ∼ 5µm, ds ∼ 0.5µm and α ∼ 10, one

obtains the number of diffraction orders to be used NO ∼ 100.

Scattering on a nonperiodic structure described by a scattering diagram which is con-

tinuous relative to scattering angle. On the other hand the diffraction on a grating results

in finite set of propagating diffraction orders. Consider a scattering volume illuminated by

a plane wave propagating along axis Z. Denote a scattering amplitude as F (1)(θ) where

44



θ is an angle between the scattering direction and axis Z (here for simplisity we consider

a 2D geometry). Scattering amplitude from N identical scatteres placed along axis X

equidistantly with distance Λ separating any two neighbours then writes

F (N)(θ) = F (1)(θ)

n=N/2
∑

n=−N/2

exp(ik0nΛ sin θ)

= 2πF (1)(θ)
sin [(N + 1/2)k0Λ sin θ]

sin
(

k0Λ sin θ
2

) ,

(3.1)

providing that we neglect the re-scattering of the radiation scattered by each volume. The

last condition shows that in the limit N → ∞ the diffraction orders exactly reproduce

the scattering diagramm

F (∞)(θ) = F (1)(θ)
∞
∑

n=−∞

δ (k0Λ sin θ + 2πn) . (3.2)

Thus, to use solutions obtained with the developed Fourier-method to approximate corre-

sponding solutions of scattering problems one has to decrease the influence of re-scattering.

A direct and the most simple approach to do that is to separate different scatteres to a

sufficiently large distance of several wavelengths. Besides, large periods are necessary to

obtain a sufficient number of diffraction orders representing a scattering diagram. Au-

thors of [79, 80, 81] additionally used perfectly matched layers (PML, [82, 83]) placed at

boundaries of grating periods to simulate scattering on simple 2D dielectric bodies. Here

we do not use PMLs and show that they are not necessary for scattering calculation.

Figure 3.1: Calculation problems of scattering on a single object and diffraction on the
same periodized object.

Now consider in detail the representation of a scattering layer within the frame of the

developed method. Scattering particles with sizes comparable to the optical wavelengths

in many practical applications have shape close to spherical. So further we will simulate
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scattering on layers with spherical particles. To define Fourier images of corresponding

grating permittivities and required trigonometric functions described above, consider a

simple grating containing a single spherical particle in each period. The following results

can be directly generalized to the case of any number of particles.

After slicing of a grating layer period, each slice contains a circular inclusion of radius

r(z) =
√

r2s − z2 (providing that the origin is placed in the center of the sphere) of a

medium with εg inside a rectangular region of permittivity εm. Top-view of such slice is

shown in Fig. 3.2. The Fourier-image of corresponding 2D function is found analytically

and writes

εmn(z) =



























εm +∆ε
πr2(z)

ΛxΛy
, m = n = 0;

∆ε

r(z)KxKyJ1

(

r
√

(mKx)
2 + (nKy)

2

)

2π
√

(mKx)
2 + (nKy)

2
, mn 6= 0.

(3.3)

where ∆ε = εg − εm. Calculation of the Fourier images of matrix Γ (2.60) components is

Figure 3.2: Top view of a grating period slice for the grating containing a single sphere
in each period.

more complex. They are found for each slice separately. Placing the origin to the center

of the sphere we can make the angle ψ between axis Z and normal direction to the sphere

surface to be constant for each slice. Then as can be seen from (2.60) one has to consider

only functions fs = sin2 φ(x, y), fc = cos2 φ(x, y) and fsc = sinφ(x, y) cosφ(x, y). These

functions are initially defined only on the circle of raius r(z). Define them on the whole

period rectangle as follows. Introduce a circular band around r(z) bounded by radii rmin

and rmax, so that rmin < r(z) < rmax, and rmin ≥ 0, rmax < 1/2min(Λx,Λy). The period

then appears to be divided into four regions, A, B, C, and D as shown in Fig. 3.2. In

regions A and D take fs = fc = 0.5, fs = 0. Then introduce a “hat”-function of variable
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ρ =
√

x2 + y2:

fh(ρ) =































ρ
∫

rmin

exp
[

− t
(t−rmin)(r−t)

]

dt

r
∫

rmin

exp
[

− t
(t−rmin)(r−t)

]

dt
, rmin ≤ ρ ≤ r(z),

rmax
∫

ρ

exp[− t
(rmax−t)(t−r) ]dt

rmax
∫

r

exp[− t
(rmax−t)(t−r) ]dt

, r(z) ≤ ρ ≤ rmax,

(3.4)

Example of its graph is given in Fig. 3.3. Calculation of (3.4) is fast, precise and is made

by Gaussian quadratures. Owing (3.4) one can write fs and fc in regions B and C as

fs(ρ) = fh(ρ) sin
2 ϕ+

1

2
[1− fh(ρ)],

fc(ρ) = fh(ρ) cos
2 ϕ+

1

2
[1− fh(ρ)],

fsc(ρ) = fh(ρ) sinϕ cosϕ,

(3.5)

where sinϕ = y/ρ, cosϕ = x/ρ. Example of function fs can be seen in Fig. 3.4. Functions

analogous to (3.4) are well known in the distribution theory [66] as examples of infinitely

differentiatable distributions. As one can see, definition (3.5) includes coincidense of these

functions with correct values on the circle r(z), and holding of the prior trigonometric

identity fs + fc = 1. Using (3.5) one obtains the necessary Fourier-matrices. The Fourier

transform is made numerically by the FFT.
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Figure 3.3: Example of a graph of function fh, defined by (3.4), for rmin = 1 and rmax = 2.
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Figure 3.4: Example of a graph of function fs = sin2 ϕ(x, y).

3.2 Scattering of a plane wave on a layer containing

dielectric nanoparticles

Before application of the method one has to estimate the accuracy of the results by

making a benchmark with a reference solution. One of the most well-known solutions in

3D electromagnetic wave scattering is the Mie solution [45] describing the scattering of a

plane electromagnetic wave on a sphere.

For comparison consider a grating composed of infinite number of identical dielectric

spheres with refractive index 1.5 placed in a medium with refractive index 1. Take the

sphere radius to be 1µm and the wavelength to be 0.6328µm. Fig. 3.5 is an illustration

to the above discussion of representing of a scattering diagram by diffraction efficiencies.

It can be seen that all the scattering diagram features are well reproduced. Next Fig.

3.6 demonstrates the convergence of diffraction efficiencies to the corresponding values of

the differential scattering cross section (DSCS) with the increase of the diffraction order

number NO for three different periods. For a fixed period the solution converges to a value

with a fixed error that characterizes the amount of the re-scattered energy. This error

decreases with the increase of the period and amounts to about 1% which is sufficient for

comparison with most experiments.

After the benchmark consider a complex scattering layer. In an experiment the infor-
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a)

b)

Figure 3.5: Normalized differential scattering cross section provided by the Mie solution
of a plane wave scattering on a sphere, and normalized diffraction efficiencies for a plane
wave diffraction on a grating composed of the same spheres for a) TE polarization and b)
TM polarization of the incident wave.

mation about a scattering layer usually includes a volume or mass particle density, and

particle size distribution function. The size distribution function usually can be aproxi-

mated by a Gaussian distribution with some average and dispersion. Modeling of a beam

scattering on a layer as plane wave scattering implies that the diameter of the real beam

is much larger than the wavelength. Besides, in the proposed method it should be much

larger than the grating period. From the experimental point of view this means that the

beam is scattered on a large area and an additional averaging over different groups of

particles is required in the proposed method.
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Figure 3.6: Convergence to the Mie solution.

The method calculates the diffraction fields for each wavelength and then combine

them to a whole spectral response. In thick scattering layers the direct propagation of

a wide spectral beam becomes incoherent on a distance exceeding several wavelengths.

Thus, the typical layer thickness h is not larger than several micrometers. To treat thicker

layers we divide them into Ns sub-layers of thickness h, calculate the power scattering ma-

trix components S10 (1.14) for each sub-layer, and incrementally find the scattering matrix

of the whole layer. Additionally, an averaging over different particle ensembles is included

in the scattering matrix calculation with a view of getting results closer statistically to

real scattering layers.

An example in Fig. 3.7 demonstrates scattering diagrams for a plane wave scattering

from layers of three different thicknesses – 30, 60 and 90 µm. The plane wave of wavelength

0.5 µm incidents normally to the layer. Scattering layer parameters are: εg = 2.89,

εm = 2.67, particle diameters make a Gaussian distribution with average Ds = 0.5µm

and mean square δDs = 0.01µm. Grating parameters are Λx = Λy = 10µm and h = 3µm.

One can conclude with Fig. 3.7 that the width of the zero-angle peak increases while its

maximum value decreases. The scattering can be calculated via the dependence of the

forward scattered power from the layer thickness h, which is given in Fig. 3.8. The

last dependence is perfectly described by the exponential C exp(−κh) with attenuation

coefficient κ that is found from better fitting of the curve. The dependence of κ on Ds is

shown in Fig. 3.9. It reveals approximately linear dependence for particle diameters that

lie in range of diameters comparable to the wavelength.

One of the arguments given in Chapter 1 in favour of a rigorous method develop-
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Figure 3.7: Scattering diagrams for a plane wave scattering from layers of three different
thicknesses – 30, 60 and 90 µm.

Figure 3.8: Dependence of the forward scattered power from the layer thickness h.

ment for OLEDs with scattering layers was the necessity of accounting for the evanescent
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Figure 3.9: Dependence of the attenuation coefficient for a forward propagating plane
wave in a scattering layer from the average scattering particle diameter.

wave scattering. To give an example of the evanescent wave scattering on the consid-

ered scattering layer suppose it is placed in a high-refractive index substrate. Fig. 3.10

shows the dependence of the cross section from the plane wavevector projection in plane

XY . One can see that the dependence can be approximated by the exponential function

σ(γ) = C1 exp(−C2γ) with constants C1 = 12.5, C2 = 13.4.

3.3 Organic light emitting diodes with scattering layers

To apply the developed method of scattering calculation for OLED simulation we have to

additionally develop a general method of planar electroluminescent structures simulation.

So first consider an OLED with homogeneous layers.

Simulation of planar structure will be done using S-matrices described in Chapter

1. For a complete description of an elelctroluminescent planar structure Eqs. (1.15)-

(1.17) should be supplemented with several relations [174]. Consider a panar structure

consisting of two parts with S-matrices SU and SL separated by a dipole source layer with

z-coordinate zs. Additionally, suppose that plane z = zs is not an interface separating

different materials. As was written in Chapter 1 when a dipole source plane being placed

in an isotropic homogeneous medium the aplitudes of the emitted field are given by

(1.19). For the described structure effective amplitudes in the source plane are found
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Figure 3.10: Dependence of the evanescent wave scattering cross section from the in-plane
wave projection of this wave. Solid line correspond to function σ(γ) = C1 exp(−C2γ) with
coeeficients C1 = 12.5, C2 = 13.4.

from equations (according to the S-matrix definition)

a−s = SU11a
+
s + a−d ,

a+s = SL22a
−
s + a+d ,

(3.6)

which gives

a+s =
(

1− SU11S
L
22

)−1 (
a+d + SL22a

−
d

)

,

a−s =
(

1− SU11S
L
22

)−1 (
a−d + SU11a

+
d

)

.
(3.7)

The amplitudes of harmonics propagating outwards from the top and the bottom of the

structure a−L и a+U (Fig. 3.11a), write

a+U = SU21a
+
s = SU21

(

1− SU11S
L
22

)−1 (
a+d + SL22a

−
d

)

,

a−L = SL12a
−
s = SL12

(

1− SU11S
L
22

)−1 (
a−d + SU11a

+
d

)

.
(3.8)

Next, dividing the upper part of the considered structure into two layers having matrices
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SU1,2 (see Fig. 3.11b), we find amplitudes of harmonics excited in plane z = zu, zu > zs:

a+(zu) =
(

1− SU1
22 S

U2
11

)

SU2
21 a

+
s ,

a−(zu) =
(

1− SU1
22 S

U2
11

)

SU2
11 S

U1
21 a

+
s .

(3.9)

Analogously, in plane z = zl, zl < zs, with corresponding matrices SL1,2 (Fig. 3.11c) one

finds:

a+(zl) =
(

1− SL211 S
L1
22

)

SL122 S
L2
12 a

−
s ,

a−(zl) =
(

1− SL211 S
L1
22

)

SL212 a
−
s .

(3.10)

The obtained Eqs. (3.7)-(3.10) provide means for coherent field harmonic amplitude

calculation in each plane or interface of a planar electroluminescent structure providing

free source amplitudes are known.
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Figure 3.11: Calculation of plane wave amplitudes inside a planar structure: a) effective
source amplitudes b) amplitudes in the upper part of a structure relative to the source
layer c) amplitudes in the lower part of a structure relative to the source layer.

Another important and necessary feature of a planar electroluminescent structure

analysis is the electromagnetic power flow and loss calculation in any part of the structure.

To accomplish this task we derive the Poynting vector z-projection for a given plane wave

via its TE- and TM-polarization aplitudes:

Sz =
1

2
ℜ{[E×H∗]z}

=
1

2

[ℜ(kez)
ωµ0

(

∣

∣ae+
∣

∣

2 −
∣

∣ae−
∣

∣

2
)

+ ℜ
(

khz
ωε

)

(

∣

∣ah+
∣

∣

2 −
∣

∣ah−
∣

∣

2
)

]

− ℑ(kez)
ωµ0

ℑ
(

ae+ae−∗
)

−ℑ
(

khz
ωε

)

ℑ
(

ae+ae−∗
)

.

(3.11)

Note that this equation describes the energy flow for both propagating and evanscent

waves in all types of layers including dielectric, lossy dielectric and metal.

Analogously to Eq. (3.11) one can calculate the effective power emitted by a considered
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dipole layer with effective amplitudes (3.7):

Ps = lim
z→zs+0

Sz − lim
z→zs−0

Sz

=
1

2









ℜ(kez)
ωµ0

(

∣

∣ae+s
∣

∣

2 −
∣

∣ae+s − ae+d
∣

∣

2
+
∣

∣ae−s
∣

∣

2 −
∣

∣ae−s − ae−d
∣

∣

2
)

+ ℜ
(

khz
ωε

)

(

∣

∣ah+s
∣

∣

2 −
∣

∣ah+s − ah+d
∣

∣

2
+
∣

∣ah−s
∣

∣

2 −
∣

∣ah−s − ah−d
∣

∣

2
)









− ℑ(kez)
ωµ0

ℑ
(

ae+ae−∗
)

−ℑ
(

khz
ωε

)

ℑ
(

ae+ae−∗
)

.

(3.12)

For OLED optimization it is also necessary to calculate power loss in different layers of

diode structures. For a layer of thickness h bounded by planes z = z1 и z = z2, z2−z1 = h

using (3.11) and (3.12) we get

P (z1, z2) = Ps −
∣

∣

∣

∣

lim
z→z1+0

Sz − lim
z→z2−0

Sz

∣

∣

∣

∣

, (3.13)

As can be seen, the equations given in this section describe only coherent wave prop-

agation and account for all interference effects. Such description is obviously valid only

when the total thickness of a structure does not exceed several wavelengths. If an OLED

contains several emitting layers propagation of waves emitted by different sources should

be considered incoherently (we do not study here lasing effects as, e.g., in vertically emit-

ting cavity electroluminescent lasers [175]). OLED thickness practically always allows for

coherent calculation of the radiation of each separate source. However, one shoud account

also for a thick substrate which impact should be included in terms of power propagation

coefficients.

Presence of a substrate and corresponding subsrate-air interface results in the following

consequences: all the plane waves with γ > 1 are totally reflected back to the substrate,

and for γ < 1 waves are partially transmitted into the air which leads to an addition power

loss. These effects are described by the reflection Ra and refraction Ta power coefficients

for plane waves at the substrate-air interface [2]:

Re
a =

∣

∣

∣

∣

kzs − kza
kzs + kza

∣

∣

∣

∣

2

Rh
a =

∣

∣

∣

∣

kzs − εskza
kzs + εskza

∣

∣

∣

∣

2

T e,ha = 1−Re,h
z ,

(3.14)

where kza, kzs are wavevector z-projections in the air and in the substrate, εs is the

dielectric permittivity of the substrate. Power reflection coefficient of an OLED structure

is found as its S-matrix element norm Rs = |S22|2. Then the total power emitted into the
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air Pair after N reflections is related to the power emitted to the substrate Psub by

Pair = PsubTa
1− (RaRs)

N

1−RaRs

. (3.15)

The power being lost due to the re-absorbtion in OLED structure can be estimated as

Pre−abs = PsubRa (1−Rs)
1− (RaRs)

N

1−RaRs

. (3.16)

The rest of power is trapped in the substrate:

Psub−gui = Psub (RaRs)
N . (3.17)

It should be mentioned here that power integration should be made over all wavevector

projections in plane XY — kx, ky. However, the integration is simplified since S-matrix

components are functions of γ:

P (λ) =
(2π)2

k40

∞
∫

−∞

∞
∫

−∞

P (kx, ky, λ)dkxdky =
(2π)3

k40

∞
∫

0

P (γ, λ)γdγ (3.18)

Angular dependence of the emitted power in the medium with wavevector kc in the spectral

region λ1 ≤ λ ≤ λ2 can be calulated as

P (θ, ϕ) =
(2π)2k2c
k40

λ2
∫

λ1

P (kc sin θ, λ) sin θ cos θdλ (3.19)

In numerical method integration in (3.18) and (3.19) is replaced by summation from 0 to

γmax with step ∆γ in (3.18), and from λ1 to λ2 with step ∆λ in (3.19).

As a result of the derivations of this sections one may formulate a numerical method

for the optical properties calculation of OLEDs with homogeneous layers:

1. Setting of structure parameters: positions of layer interfaces and emitting layers,

dispersion characteristics of all materials, source spectra.

2. Calculation of S-matrices for all layers and of the whole structure S-matrix by Eqs.

(1.15)-(1.18) for each wavelength λi, i = 0, . . . , Nλ − 1, and plane wavecector pro-

jection γi, i = 0, . . . , Nk − 1, from 0 to some γmax with step ∆γ = γmax/Nk.

3. Calculation of wave amplitudes at all interfaces by Eqs. (3.7)-(3.10) for all wave-

lengths λi and in-plane wavevector projections γi.

4. Calculation of power loss in each layer, effective power for each source, and power

emitted to the subsutrate and to the air by Eqs. (3.11)-(3.13).
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Benchmark for the last method was established by comparison with experimental re-

sults obtained for a test OLED [174]. Structure of this OLED is shown in Fig. 3.12 and

includes a green emitting layer, electron and hole blocking and transporting layers, metal

cathode and transparent ITO anode. Figs. 3.13 and 3.14 show the comparison between

numerical and experimental results for the spectral emitted power and OLED color co-

ordinates angular dependence. As can be seen the correspondence between experimental

and simulation data is quite good. Additionally, Fig. 3.15 demonstrates the power loss

analysis carried out by Eqs. (3.11)-(3.13).

Figure 3.12: OLED example used for comparison of experimental and simulation data.

Next consider the same green OLED and introduce in it a scattering layer between

the anode and the substrate as shown in Fig. 3.12. Let the scattering layer to consist of

a homogeneous matrix with embedded spherical particles with refractive index constrast

equal to 0.1. Take the particle diameter to be 0.5µm and particle volume density 0.1. Fig.

3.16 shows the simulated spectral dependence of the OLED external efficiency for several

thicknesses hsc of the scattering layer. It is seen that introduction of a thin scattering

layer allows to increase the efficiency from fractions of a percent to about 6% depending

on the wavelength. With increase of the wavelenght the efficiency also increases. This

feature can be explained on the basis of the modal analysis of the OLEd structure. Fig.

3.17 shows spatial field distributions for zero TE and TM modes. TM mode is plasmonic

one and is concentrated at the metal-dielectric interface between cathode and electron

transporting layer. Due to its high localization and low propagation length it can hardly

be scattered. On the contrary, the field distribution of the TE mode is much broader and

shifts towards the scattering layer location with the increase of the wavelenght. Besides,

the increase of the wavelength leads to decrease of the TE mode propagation constant,

thus, exponentially increasing the efficiency of the TE mode scattering (see Fig. 3.10).

Fig. 3.16 shows that scattering layers of thicknesses up to dozens of microns do scatter

trapped radiation and increase the OLED efficiency by several percent of the absolute
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Figure 3.13: Spectral emitted power for the device shown in Fig. 3.12 for measurement
and simulation with and without a half-ball lens.

Figure 3.14: Measured and simulated color coordinates for the device shown in Fig. 3.12.
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Figure 3.15: Power loss analysis by Eqs. (3.11)-(3.13) for the device shown in Fig. 3.12.

value. Increase of the scattering layer thickness leads to an increase of scattering and

corresponding decrease of the efficiency which is demonstrated in Fig. 3.19.

Provided simulation examples allow to make the following conclusions. First, mamxi-

mum gain that can be obtained by introduction of a scattering layer is achieved for rather

thin layers — from several microns to several dozens of microns. Second, to achieve the

external efficiency increase by 5-10% one has to carry out an optimization of both OLED

and scattering layer parameters. Such optimization makes sense only for specific device

configurations and materials and was not done in this work.

3.4 Conclusions

This chapter describes a method of a nonperiodic scattering problem solution via simu-

lation of the light diffraction on corresponding periodized structure. The proposed nu-

merical benchmark consists in comparison of the diffraction efficiencies calculated for 2D

grating of dielectric spheres with the DSCS given by the Mie solution, and shows the pos-

sibility to get about 1% accuracy for the range of problems under consideration. Next we

developed a numerical S-matrix based method for the planar electroluminescent structures

simulation. Validity of the method was demonstrated by comparison with experimental

results. Finally both methods for scattering calculation and OLED simulation were joined,

and there was demonstrated an increase of the OLED efficiency due to scattering layer

inclusion with accompanying discussion of mechanism of this effect.
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Figure 3.16: Spectral external efficiency for the OLED, shown in Fig. 3.12, with and
without a scattering layer.

Figure 3.17: Modal field spatial distribution of zero TE and TM modes for the OLED,
shown in Fig. 3.12. Vertical lines indicate interfaces between different OLED layers, and
0 corresponds to the cathode-air interface.
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Figure 3.18: Spectral dependence of the zero TE mode propagation constant for the
OLED, shown in Fig. 3.12.

Figure 3.19: Dependence of the external efficiency of the OLED, shown in Fig. 3.12, with
introduced scattering layer from the thickness of this layer. Horizontal line shows the
efficiency of the device without scattering layer.
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Conclusion

In this final chapter we list and discuss the main results of the thesis. Chapter 1 is devoted

to the review of the works related to problems solved in the thesis. First, the range of

methods capable to rigorously solve diffraction and scattering problems in plane layered

spatially nonhomogeneous structures is listed, and shortages of these methods are speci-

fied. The representation used in Fourier-methods being close to the approach, developed

in this work, is described in more details. Special attention is paid to the S-matrix tech-

nique used in Chapter 3 for modeling of organic light-emitting diodes. Secondly, section

1.3 describes the generalized source method previously proposed by the supervisor of the

thesis author in [84, 85]. The GSM became a cornerstone of the theoretical model devel-

oped in Chapter 2. The last section of the review contains the description of results on

OLED optical properties simulation. There we describe a problem of the light outcoupling

from planar OLED structures and provide arguments in favor of use of scattering layers.

On the basis of the review it is shown that a rigorous modeling of optical properties of

OLED with scattering layers is quite difficult with existing methods, and there is a need

in new fast and memory sparing method.

Chapter 2 is devoted to the application of the GSM to the light diffraction on gratings

problem. In the first paragraph there are given considerations substantiating the relation

between scattering and diffraction on gratings problems relying on the requirement of fast

matrix-vector multiplications in the Fourier space. Then, on the basis of the GSM we

analytically derive S-matrix components for infinitely thin slices of diffraction gratings.

These formulas allowed to formulate the method of the light diffraction calculation. How-

ever, as was shown the method has too high numerical complexity to be concurrent and

useful — O(N3
O), with NO being the number of points in the Fourier space. To reduce the

numerical complexity the method was reformulated so as to calculate wave amplitudes

in all slices of a grating at once by solving a system of linear equations. This system is

derived for both holographic and corrugated gratings. There was proposed a numerical

algorithm relying on the GMRES where matrix-vector multiplications are found by the

FFT. This was shown to be possible due to the Toepltiz structure of the linear system

matrix. The resulting complexity of the method was estimated to be O(NONS), where

NS is the slice number. This result represents a prominent step in the numerical methods

development for the problem of the light diffraction on gratings. In the end of the Chapter
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2 we demonstrate the analysis of the method convergence and accuracy.

In the first section of Chapter 3 we discuss the back transition from the solution of

a diffraction on a grating problem to the corresponding soution of the scattering prob-

lem. Validity of the proposed approach is demonstrated by the benchmark with the Mie

solution. We showed that range of problems under consideration can be solved with

about 1% accuracy or better. Next we developed a numerical S-matrix based method

for optical simulation of the planar electroluminescent structures. Validity of the method

was demonstrated by comparison with experimental results. Finally both methods for

scattering calculation and OLED simulation were joined, and there was demonstrated

an increase of the OLED efficiency due to scattering layer inclusion with accompanying

discussion of mechanism of this effect.

To conclude we point out one more time that the main result of the thesis is the

munerical method for the diffraction on gratings calculation with linear numerical com-

plexity relative to the number of mesh nodes. Calculation of OLED optical properties

is one of possible aplications of the method. Obviously it perfectly suites for simulation

of diffractive structures with fully determined geometry, diffractive optical elements. In

addition, the derived equations allow to consider not only electric sources but also mag-

netic, or, in other word, variations in the magnetic permittivity. This gives means to

directly include perfectly matched layers into models and, probably, improve solution of

non-periodic problems.
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Appendix A

Plane wave polarization

In this application we introduce notations defining amplitudes of TE- and TM-polarized

waves via the electric and the magnetic field compponent amplitudes, and corresponding

invers tranformations. Solutions of the Maxwell’s equations in an isotropic homogeneous

medium with permittivities εb and µb can be written in form of plane waves:

E(r)± = E± exp (ikxx+ ikyy ± ikzz) ,

H(r)± = H± exp (ikxx+ ikyy ± ikzz) .
(A.1)

Here the sign “±” distinguishes waves propagating in the positive and negative directions

relative to axis Z, and the net field amplitude is a sum of amplitudes with signs “+” and

“-”. Wavevector projections obey the condition [2]

kz =
√

ω2εbµb − k2x − k2y. (A.2)

In general case when kz can be a complex value, waves with 0 ≤ arg kz < π are denoted

by “+”, and waves with π ≤ arg kz < 2π — by sign “-”.

Define amplitudes of TE ae± and TM ah± waves as

ae± =
E± (k× ẑ)

|k× ẑ| = E±
x

ky
γ

− E±
y

kx
γ

(A.3)

ah± =
H± (k× ẑ)

|k× ẑ| = H±
x

ky
γ

−H±
y

kx
γ

(A.4)

where γ =
√

k2x + k2y. Using the Maxwell’s equations one gets

ae± = ±ωµbkx
2γkz

Hx ±
ωµbky
2γkz

Hy −
ωµb
2γ

Hz (A.5)

ah± = ∓ωεbkx
2γkz

Ex ∓
ωεbky
2γkz

Ey +
ωεb
2γ

Ez (A.6)
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On the basis of (A.3)-(A.6) it is possible to derive the inverse transform which writes







Ex

Ey

Ez






= QEa =




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ky
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ky
γ

− kxkz
ωεbγ

kxkz
ωεbγ

−kx
γ

−kx
γ

− kykz
ωεbγ

kykz
ωεbγ

0 0 γ
ωεb

γ
ωεb


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(A.7)
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− γ
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0 0
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
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(A.8)

Additionally, introduce matrix Q, composed of (A.7), (A.8):

(

E

H

)

=

(

QE

QH

)

a = Qa (A.9)
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Appendix B

S-matrices of corrugated gratings

This appendix describes the derivation of components of a profiled grating S-matrix. For

this purpose use Eq. (2.59) given in section 2.6 and derived in Appendix C. Eq. (2.59)

describes the diffraction of plane waves on an infinitely thin layer with discontinuous

function ε(x, y). Applying Eqs. (A.3)-(A.6), (A.7) and (A.8) one gets

a = Q̄EWEQEainc. (B.1)

The last equaition defines the required S-matrix (2.28) which components explicitly write

Se+e+mn = Se+e−mn = Se−e+mn = Se−e−mn =
1

γm

(

kxm∆mnkxn + kym∆mnkyn

− kmyΩxxmnkny + kmyΩxymnknx + kmxΩyxmnkny − kmxΩyymnknx
) 1

γn
,

(B.2)

Se+h+mn = Se−h+mn =
1

γm

(

−kym∆mnkxn + kxm∆mnkyn + kmyΩxxmnknx + kmyΩxymnkny

− kmxΩyxmnknx − kmxΩyymnkny
) kzn
ωεbγn

− 1

γm

(

kymΥxzmn − kxmΥyzmn

) γn
ωεb

,

(B.3)

Se+h−mn = Se−h−mn =
1

γm

(

kym∆mnkxn − kxm∆mnkyn − kmyΩxxmnknx − kmyΩxymnkny

+ kmxΩyxmnknx + kmxΩyymnkny
) kzn
ωεbγn

− 1

γm

(

kymΥxzmn − kxmΥyzmn

) γn
ωεb

,

(B.4)

Sh+e+mn = Sh+e−mn = − ωεb
kzmγm

(

kxm∆mnkyn − kxm∆mnkxn − kmxΩxxmnkny + kmxΩxymnknx

− kmyΩyxmnkny + kmyΩyymnkny
) 1

γn
− ωεb
γm

(

Σzxmnkyn − Σzymnkxn
) 1

γm
,

(B.5)
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Sh−e+mn = Sh−e−mn =
ωεb
kzmγm

(

kxm∆mnkyn − kxm∆mnkxn − kmxΩxxmnkny + kmxΩxymnknx

− kmyΩyxmnkny + kmyΩyymnkny
) 1

γn
− ωεb
γm

(

Σzxmnkyn − Σzymnkxn
) 1

γm
,

(B.6)

Sh+h+mn =
1

kzmγm

(
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)kzn
γn

+
1

kzmγm

(

kxmΥxzmn + kymΥyzmn

)

γn

+
1

γm

(
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)kzn
γm

+
1

γm

[

I− C−1
]

mn
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(B.7)
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kzmγm

(

kxm∆mnkxn + kym∆mnkyn − kmxΩxxmnknx − kmxΩxymnkny

− kmyΩyxmnknx + kmyΩyymnkny
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+
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(B.8)
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(B.9)

Sh+h−mn =
1

kzmγm

(
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− kmyΩyxmnknx + kmyΩyymnkny
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(B.10)

where

Ωαβ = DΓαβ +DΓαzC
−1ΓzβD,

Υαβ = DΓαβC
−1,

Σαβ = C−1ΓαβD

(B.11)

in accordingly to (2.61), (2.62) and (2.60). Also, consider separately an important case of

collinear TM diffraction on one-dimensional grating. Taking ϕ = 0 and kxm=0 in (2.55),

(2.56) one obtains

Sh±h±mn =
1

kzm

[

∆−DΓyy −DΓyzC
−1DΓzy

]

mn
(±kzn) +

1

±kzm
[

DΓyzC
−1
]

mn
kyn

+
1

kym

[

C−1DΓzy
]

mn
knz +

1

kym

[

I− C−1
]

mn
kyn.

(B.12)
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Here the first sign “±” is specified by incident harmonics, and the second — by diffracted

harmonics.

Thus, the derived Eqs. (B.2)-(B.10) represent general analytical relations for S-matrix

components of an initely thin slice of a corrugated grating.

82



Appendix C

Derivation of formulas describing the

light diffraction on corrugated gratings

This appendix describes in detail the derivation of equations of section 2.3, Chapter 2,

describing the electromagnetic wave diffraction on corrugated gratings. The introduced

local coordinate system allows to explicitly write Eq. (2.54):


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

jn

jψ

jφ






= −iωεb
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
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[εb
ε

]−1

− I 0 0

0
[ ε

εb

]

− I 0

0 0
[ ε

εb

]

− I



















En

Eψ

Eφ






(C.1)

Using transformations (2.55), (2.56) rewrite this equation in the initial coordinates XY Z







jx

jy

jz






= −iωεb (∆xIαβ −DΓαβ)







Ex

Ey

Ez






, (C.2)

where matrices ∆x, D and Γαβ are defined by (2.29), (2.61) and (2.60) respectively.

Toderive the relation between source j and modified field Ẽ write out separately z-

component of (C.2):

jz = −iωεb [−DΓzxEx −DΓzyEy + (∆x −DΓzz)Ez] . (C.3)

Then use the definition of the modified field (2.22) and (2.62) to get

Ẽz = Ez −
jz
iωεb

= −DΓzxEx −DΓzyEy +

(

[ ε

εb

]

−DΓzz

)

Ez

= −DΓzxẼx −DΓzyẼy + CEz.

(C.4)
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This enables one to explicitly specify relation between the real and the modified fields

insode the grating layer:







Ex

Ey

Ez






=







I 0 0

0 I 0

C−1DΓzx C−1DΓzy C−1













Ẽx

Ẽy

Ẽz






. (C.5)

Then substituting (C.5) into (C.2) we get equation providing the explicit form of matrix

WE (2.59):







jx

jy

jz






= −iωεb

×







∆x −DΓxx −DΓxzC
−1DΓzx −DΓxy −DΓxzC

−1DΓzy −DΓxzC
−1

−DΓxy −DΓxzC
−1DΓzy ∆y −DΓyy −DΓyzC

−1DΓzy −DΓyzC
−1

−C−1DΓzx −C−1DΓzy I− C−1













Ẽx

Ẽy

Ẽz






.

(C.6)

Note that application of the Fourier transform to Eq. (C.6) is correct since all the above

dericaltions preserve the coorect order of factors in multiplications as well as difference

between the normal and tangential fields and sources.

As noticed in section 2.6 the derived matrix W contains inverse Toeplitz sub-matrices

C−1 and cannot be applied in the proposed fast numerical algorithm. To solve this problem

consider the structure of matrix C−1:

C−1 =

(

[ ε

εb

]

sin2 ψ +
[εb
ε

]−1

cos2 ψ

)−1

= M−1
xx

[εb
ε

]

= M−1
yy

[εb
ε

]

=
[εb
ε

]

M−1
zz , (C.7)

where matrix M is defined by (2.63). Eqs. (C.7) and (2.65) lead to

C−1D = −FM−1
xx = −FM−1

yy ,

DC−1 = −GM−1
xx .

(C.8)

These relations allow to rewrite components of W as follows

Wxx = ∆x −DΓxx −DΓxzC
−1DΓzx =

(

∆xMxx +G
[ ε

εb

]

Γxx

)

M−1
xx , (C.9)

Wxy = −DΓxy −DΓxzC
−1DΓzy = G

[ ε

εb

]

ΓxyM
−1
yy , (C.10)

Wxz = −DC−1Γxz = GΓxzM
−1
zz , (C.11)

Wyx = −DΓyx −DΓyzC
−1DΓzx = G

[ ε

εb

]

ΓyxM
−1
xx , (C.12)
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Wyy = ∆y −DΓyy −DΓyzC
−1DΓzy =

(

∆yMyy +G
[ ε

εb

]

Γyy

)

M−1
yy , (C.13)

Wyz = −DC−1Γyz = GΓyzM
−1
zz , (C.14)

Wzx = −C−1DΓzx = FΓzxM
−1
xx , (C.15)

Wzy = −C−1DΓzy = FΓzyM
−1
yy , (C.16)

Wzz = I− C−1 =
(

Mzz −
[εb
ε

])

M−1
zz . (C.17)

This immeadiatly brings the decomposition

W = UM−1 (C.18)

together with (2.63) and (2.64). Now the derived decomposition (C.18) should be used

to reformulate the linear system of equations.

To prove (2.66) we substitute (C.18) into (2.47) and (2.49). The first one defining

amplitudes of diffracted harmonics in the grating layer is rewritten as

QEainc = QE(I−RPWQE)a = (I−QERPUM−1)QEa = (M−QERPU)M−1QEa. (C.19)

Notice that this equation includes non-rectangular matrices. We do not specify the size

of unit matrices as they are uniquely defined by other ones. In correspondence with the

general GSM formulation presented in section 1.3, unknown wave amplitudes inside the

grating layer are found from self-consistent equation:

a = ainc + RPU(M−QERPU)−1QEainc (C.20)

A direct substitution justifies that (C.20) meets (C.19). Finally, Eq. (C.20) allows to

calculate the diffracted harmonics amplitudes at a grating layer boundaries:

aout(zU , zL) = ainc(zU , zL) + TPWQEa

= ainc(zU , zL) + TPUM−1QEainc

+ TPUM−1QERPU(M−QERPU)−1QEainc

= ainc(zU , zL) + TPU
[

I + M−1QERPU(I−M−1QERPU)−1
]

M−1QEainc

= ainc(zU , zL) + TPU(I−M−1QERPU)−1M−1QEainc

= ainc(zU , zL) + TPU(M−QERPU)−1QEainc

(C.21)
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Using (C.5), (C.20), (C.7) and (C.8) one finds amplitudes of the electric field in each slice:

Eq =







I 0 0

0 I 0

C−1DΓzx C−1DΓzy C−1






QEa

=







I 0 0

0 I 0

C−1DΓzx C−1DΓzy C−1






M(M−QERPU)−1QEainc

=









Mxx 0 0

0 Myy 0

−FΓzx −FΓzy

[εb
ε

]









(M−QERPU)−1QEainc

(C.22)
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Appendix D

Tables of diffraction efficiencies

Table D.1: Diffraction efficiencies calculated by the FMM

for the diffraction of a plane wave on a holographic sinu-

soidal grating with the following parameters of the prob-

lem: ns = ng = 2.5, nc = 1, c = 0.1, Λx = Λy = 1 µm,

h = 0.5 µm, θinc = ϕinc = 30◦. Wavelength λ = 0.6328

µm.

TE → TE TE → TM TM → TE TM → TM

R−1,−1 0.00002023 0.00000881 0.00000892 0.00002558

R−1,0 0.00000245 0.00012953 0.00013144 0.00000363

R−1,1 0.00000264 0.00003574 0.00002347 0.00000169

R0,−1 0.00001274 0.00011071 0.00010857 0.0000115

R0,0 0.21674905 0 0 0.13299097

R0,1 0.00002225 0.00002923 0.00001101 0.00005733

T−1,−1 0.00434515 0.00179887 0.00203992 0.00471442

T−1,0 0.00130657 0.05517545 0.06046241 0.00091777

T−1,1 0.00068412 0.00579083 0.00575216 0.00074238

T0,−1 0.00587329 0.05042814 0.05725842 0.00818631

T0,0 0.52123807 0.00000318 0.00000256 0.58170165

T0,1 0.04015233 0.01455898 0.02021125 0.04424883

T1,−1 0.00317212 0.00324318 0.00379986 0.00276025

T1,0 0.05441954 0.00350231 0.00552772 0.05253578

T1,1 0.0088414 0.00017798 0.00022839 0.00701056
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Table D.2: Diffraction efficiencies calculated by the GSM

for the diffraction of a plane wave on a holographic sinu-

soidal grating with the following parameters of the prob-

lem: ns = ng = 2.5, nc = 1, c = 0.1, Λx = Λy = 1 µm,

h = 0.5 µm, θinc = ϕinc = 30◦. Wavelength λ = 0.6328

µm.

TE → TE TE → TM TM → TE TM → TM

R−1,−1 0.00002024 0.00000881 0.00000892 0.00002558

R−1,0 0.00000246 0.00012956 0.00013147 0.00000363

R−1,1 0.00000264 0.00003574 0.00002348 0.00000169

R0,−1 0.00001274 0.00011074 0.0001086 0.0000115

R0,0 0.21674801 0 0 0.13299014

R0,1 0.00002225 0.00002923 0.00001101 0.00005734

T−1,−1 0.00434517 0.00179887 0.00203993 0.00471443

T−1,0 0.00130657 0.05517556 0.06046262 0.00091777

T−1,1 0.00068412 0.00579085 0.00575209 0.00074237

T0,−1 0.00587331 0.0504283 0.05725868 0.00818634

T0,0 0.52123814 0.00000318 0.00000256 0.58170205

T0,1 0.04015244 0.01455894 0.02021137 0.04424889

T1,−1 0.00317212 0.00324315 0.00379981 0.00276019

T1,0 0.05441989 0.00350228 0.00552777 0.05253564

T1,1 0.00884158 0.00017799 0.00022839 0.0070105

Table D.3: Diffraction efficiencies calculated by the

Rayleigh method for the diffraction of a plane wave on a

corrugated sinusoidal grating with the following param-

eters of the problem: ns = 2.5, nc = 1, Λx = Λy = 1 µm,

h = 0.2 µm, θinc = ϕinc = 30◦. Wavelength λ = 0.6328

µm.

TE → TE TE → TM TM → TE TM → TM

R−1,−1 0.00570936 0.00165788 0.00170979 0.00538214

R−1,0 0.00038384 0.02421167 0.02483418 0.00292523

R−1,1 0.00002088 0.0016181 0.00309944 0.00000904

R0,−1 0.00280087 0.02523381 0.02430154 0.00000243

R0,0 0.11579962 0.00012129 0.00012129 0.06583007

R0,1 0.00769935 0.00939271 0.00344653 0.00265069

T−1,−1 0.00585463 0.00352645 0.00412859 0.01043321
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T−1,0 0.00276715 0.0614943 0.06898775 0.00019916

T−1,1 0.00425894 0.00714374 0.01087134 0.00090457

T0,−1 0.00705499 0.05044941 0.07311164 0.01455254

T0,0 0.38427102 0.00063096 0.0001435 0.43193664

T0,1 0.07529482 0.00808543 0.03881465 0.06065422

T1,−1 0.00986931 0.00665058 0.00740261 0.00646448

T1,0 0.12919881 0.00325943 0.01542438 0.08630225

T1,1 0.02088205 0.00084845 0.00155674 0.01293191

Table D.4: Diffraction efficiencies calculated by the GSM

for the diffraction of a plane wave on a corrugated sinu-

soidal grating with the following parameters of the prob-

lem ns = 2.5, nc = 1, Λx = Λy = 1 µm, h = 0.2 µm,

θinc = ϕinc = 30◦. Wavelength λ = 0.6328 µm.

TE → TE TE → TM TM → TE TM → TM

R−1,−1 0.00570901 0.00165777 0.00170973 0.00538269

R−1,0 0.00038379 0.02421094 0.02483321 0.00292496

R−1,1 0.00002089 0.0016185 0.00309949 0.00000907

R0,−1 0.00280105 0.02523326 0.02430042 0.00000241

R0,0 0.1157983 0.00012129 0.00012129 0.06582837

R0,1 0.00769927 0.00939297 0.00344634 0.00265114

T−1,−1 0.00585422 0.0035261 0.00412836 0.01043152

T−1,0 0.00276688 0.06149468 0.06898993 0.00019924

T−1,1 0.00425868 0.00714261 0.01087049 0.00090466

T0,−1 0.00705471 0.05044862 0.07311433 0.01455259

T0,0 0.3842799 0.00063101 0.0001435 0.4319457

T0,1 0.07529686 0.00808572 0.03881535 0.06065233

T1,−1 0.00986915 0.0066497 0.00740168 0.00646378

T1,0 0.12919709 0.00325889 0.01542421 0.08629825

T1,1 0.02088019 0.00084873 0.00155664 0.01293038
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