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1
GENERAL INTRODUCTION

1.1/ CONTEXT

It is now a general tendency that computers integrate more and more transistors and

processing units into a single chip. Personal computers are currently multi-core platforms.

This happens in accordance with the Moore’s law that states that the number of transistors

on integrated circuits doubles approximately every two years. At the same time, personal

computers most often integrate graphic acceleration multiprocessor cards that become

more and more cheaper. This is particularly true for Graphics Processing Units (GPU)

which were originally hardware blocks optimized for a small set of graphics operations.

Hence, the concept of GPGPU, that stands for general-purpose computing on graphics

processing units, emerges by recognizing the trend of employing GPU technology for not

only graphic applications but also general applications. In general, the graphic chips,

due to their intrinsic nature of multi-core processors and being based on hundreds of

floating-point specialized processing units, make many algorithms able to obtain higher

performances than usual Central Processing Unit (CPU).

The main objective of this work is to propose parallel computation models and parallel

algorithms that should benefit from the GPU’s enormous computational power. The focus

is put on the field of combinatorial optimization and applications in embedded systems

and terrestrial transportation systems. More precisely, we develop tools in relation to

Euclidean optimization problems in both domains of stereovision image processing and

routing problems in the plane. These problems are NP-hard optimization problems. This

work presents and addresses stereo-matching problem, balanced structured meshing

problem of a data distribution, and also the well known Euclidean traveling salesman

problem. Specific GPU parallel computation models are presented and discussed.

1.2/ OBJECTIVES AND CONCERN OF THIS WORK

The major concern of the work could be summarized as:
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Propose a computation model for GPU that allows

(i) massive GPU parallel computation for Euclidean optimization problems,

such as image processing and TSP,

(ii) application in real-time context and/or to large scale problems within

acceptable computation time.

In the field of optimization, GPU implementations are more and more studied to ac-

celerate metaheuristics methods to deal with NP-hard optimization problems, and large

size problems that can not be addressed efficiently by exact methods. Here, we restrict

our attention to heuristics and metaheuristics. Often, they exploit natural parallelism of

metaphors, such as ant colony algorithms, or genetic algorithms that present an inherent

level of parallelism by the use of a pool of solutions to which can be applied simultaneous

independent operations. A most studied example, is the computation of solution evalua-

tions in a parallel way. Meanwhile, such methods are based on parallel duplication of the

solution data for parallelism. According to a fixed memory size GPU device, it follows that

the input problem data size should decrease with the increase of the population size, and

hence with the increase of the number processing units used in parallel. Such popula-

tion based approach is memory consuming if one wants to deal with large size problems

and large size populations together, that are contradictory requirements. Other methods

are local search or neighborhood search approaches that operate on a single solution

by improving it, successively with a neighborhood search operator. In that case, most of

the GPU approaches try to compute the neighborhood candidates in parallel and select

the best candidate. Due to the size of neighborhoods which are generally large, such

approaches are facing to a difficult implementation problem of GPU resources manage-

ment. The number of threads could be very high. For example, a single 2-opt improve-

ment move should require O(N2) evaluations, with N the problem size. How to assign

such evaluations computation to parallel threads is a difficult question. For the moment of

writing, it looks that such approaches have only addressed relatively small size problems,

considering a very standard problem such as the Euclidean traveling salesman problem.

For each problem at hand, the designer has to carefully assign neighborhood operations

to computation resources, as threads and registers.

To contribute at the development of GPU approaches able to deal with large size prob-

lems, we restrict our attention to Euclidean optimization problems and address a different

way to tackle data input at a low level of granularity. We follow the local dense approaches

in image processing that simply assign a little part of the data to each computing unit. Pix-

els of an image constitute a cellular decomposition of the data that yields to a natural level

of computational parallelism. To address different Euclidean optimization problems, we

extend the model of cellular decomposition to neural networks topological map algorithms

that operate by the multiplication of simple operations in the plane. Such operations pro-

duce, or make emerge, the required solution. The general approach that we retain for

massive parallelism computation is cellular decomposition of the plane between a grid of

cells, each one assigned to a given small and constant part of the input data, and hence

to a single processing unit.

The cellular decomposition concerns input data of the problem. The approach differs

from cellular genetic algorithms where processors are organized into a grid and where

each one manages an independent solution. Such approach exploits data duplication

parallelism, whereas our approach exploits data decomposition parallelism. An important
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point, is that we are using such decomposition in accordance to the problem size, with a

linear relationship, in order to address large size problems. We will illustrate that point on

the Euclidean traveling salesman problem. Another point, is that we focus on a distributed

and decentralized algorithm, with quite no intervention of the CPU during computation. It

is worth noting that GPU local search methods often operate in a sequential/parallel way,

where CPU may have a central role to prepare the next parallel computation for neighbor-

hood move. We only consider methods where no solution transfers occurs between GPU

and CPU during the course of the parallel execution. The main points are a low granu-

larity level of data decomposition, together with distributed computation with no central

control. The parallel cellular model does not prevent from using it into larger population

based methods, or in combination with standard local search operators. We are inves-

tigating a complementary way of addressing some Euclidean optimization problems that

can be embedded in more general strategies.

In this work, we are implementing two types of algorithms. They are the winner-takes-all

(WTA) local dense algorithm for stereo-matching and the self-organizing map (SOM) neu-

ral network algorithm for structured meshing. The continuity of the method is illustrated

on applications in the field of artificial vision, 3D surface reconstruction, that use both

methods, and to Euclidean traveling salesman problem that uses the SOM.

The goal of a stereo-matching algorithm is to produce a disparity map that represents

the 3D surface reconstructed from an image pair acquired by a stereo camera. We

first study a stereo-matching method based on color filter array (CFA) image pairs. If

a naive and direct GPU implementation can easily accelerate its CPU counterpart, the

real-time requirement could be achieved. Then, starting from this basic GPU application,

we investigate acceleration mechanisms to allow near real-time computation. Memory

management appears to be a central factor for computation acceleration, whereas use of

specific support region for matching and refinement steps improve quality substantially.

Then, the parallel self-organizing map for compressed structured mesh generation is pre-

sented. Starting from a disparity map as input, the algorithm generates an hexagonal

mesh that can be used as a compressed representation of the 3D surface, with improved

details for the objects of the scene nearest to the camera. By using the same algorithm,

we address the traveling salesman problem and large size instances with up to 33708

cities. For SOM applications, a basic characteristic is the many spiral search of closest

points in the plane, each one performed in time complexity O(1), in average when dealing

with a bounded data distribution. Then, one of the main interests of the proposed ap-

proach is to allow the execution of approximately N spiral searches in parallel, where N

is the problem size. This is what we call “massive parallelism”, the theoretical possibility

to reduce average computation time by factor N, and many repetitions of constant time

simple operations. We systematically study the influence of problem size, together with

the trade-off between solution quality and computation time on both CPU and GPU, in

order to gauge the benefit of massive parallelism.

1.3/ PLAN OF THE DOCUMENT

According to the objectives and concerns, this thesis is organized into two main parts:

one part is related to background definitions and exposition of state-of-the-art methods,

the other part is devoted to the proposed model, solution approaches and experiments.

The plan is summarized in Fig. 1.1.
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Figure 1.1: Reading directions

The first part is composed of chapters 2, 3, and 4. Chapter 2 presents the GPU compu-

tation architecture and its related CUDA programming model. Chapter 3 presents back-

ground on stereovision, and reviews local dense stereo-matching method already applied

on CPU and GPU plateforms. Chapter 4 presents background on the self-organizing map

and of its application on structured meshing and transportation problems. For each ap-

plication and algorithm, these chapters try to present the state-of-the-art in parallel GPU

computing for such problems.

The second part of the document is composed of chapters 5, 6, and 7. Chapter 5 presents

the cellular GPU parallel model for massive parallel computation for Euclidean optimiza-

tion problems. Chapter 6 presents application to stereo-matching problems for CFA de-

mosaicing stereovision and the real-time stereo-matching implementation that is derived

from the standard local dense scheme. Chapter 7 presents details about the two GPU

applications of the cellular parallel SOM algorithm. The two applications are the balanced

structured mesh problem applied on disparity map, and the well-known Euclidean travel-

ing salesman optimization problem.

Then, a general conclusion finishes the document. A section specially exposes the per-

spectives of this work for parallel optimization computation in the future.



I
BACKGROUND





2
BACKGROUND ON GPU COMPUTING

2.1/ INTRODUCTION

Most personal computers can now integrate GPU cards at very low cost. That is the

reason why it would be very interesting to exploit this enormous capability of computing to

implement parallel models for optimization applications. In this chapter, we will introduce

the background of the GPU architecture and the CUDA programming environment used in

our work. Specifically, we will first present the GPU hardware organization and memory

system. Then we will give general introductions to the CUDA programming model and

the Single-Program Multiple-Data (SPMD) parallel programming paradigm, explain the

thread and memory management, outline the scalability and synchronization effects of

this model, and introduce the configuration of block and grid in multi-thread execution.

2.2/ GPU ARCHITECTURE

In this section, we provide a brief background on the GPU architecture. Our analytical

model is based on the Compute Unified Device Architecture (CUDA) programming model

and the NVIDIA Fermi architecture [GTX13] used in the GeForce GTX 570 GPU.

2.2.1/ HARDWARE ORGANIZATION

Figure 2.1: Repartition of transistors for CPU and GPU architectures.
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For years, the use of graphics processors was dedicated to graphics applications. Driven

by the demand for high-definition 3D graphics on personal computers, GPUs have evolved

into a highly parallel, multi-threaded and many-core environment. Indeed, this architec-

ture provides a tremendous powerful computational capability and a very high memory

bandwidth compared to traditional CPUs. The repartition of transistors between the two

architectures can be illustrated as Fig. 2.1.

We can see in Fig. 2.1 that CPU does not have a lot of Arithmetic-Logic Units (ALU in the

figure), but a large cache and an important control unit. And therefore, CPU is specialized

for management of multiple and different tasks in parallel that require lots of data. In this

case, data are stored within a cache to accelerate its accesses. While the control unit

will handle the instructions flow to maximize the occupation of ALU, and to optimize the

cache management. In other hand, GPU has a large number of arithmetic units with

limited cache and few control units. This architecture allows the GPU to compute in a

massive and parallel way the rendering of small and independent elements, while having

a large flow of data processed. Since in GPU, more transistors are devoted to data

processing rather than data caching and flow control, GPU is specialized for intensive

and highly parallel computations.

Figure 2.2: A sketch map of GPU architecture.

Fig. 2.2 provides a display of the global GPU architecture. The GPU architecture consists

of a scalable number of streaming multiprocessors (SMs). For GTX 570, the number of

SM is 15, and each SM features 32 single-precision streaming processors (SPs), which

are more usually called CUDA cores, four special function units (SFUs) executing tran-

scendental instructions such as sin, cos, reciprocal and square root. Each SFU executes

one instruction per thread per clock and a warp executes over eight clocks. A 64KB high

speed on-chip memory (Shared Memory/L1 Cache) and an interface to a second cache

are also equipped for each SM [Gla13].

The SM executes a set of 32 threads together called a warp. Executing a warp instruc-
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tion consists of applying the instruction to 32 threads. In the Fermi architecture a warp is

formed with a batch of 32 threads. The GPU of the Fermi architecture uses a two-level,

distributed thread scheduler for warp scheduling. The GigaThread Engine is above the

SM level and the Dual warp Scheduler at the SM level, the later is the one more usually

concerned. Each SM can issue instructions consuming any two of the four blue execu-

tion columns shown in Fig. 2.2. For example, the SM can mix 16 operations from the

16 cores in the first two-column with 16 operations from the 16 cores in the second two-

column or 16 operations from the load/store units or any other combinations the program

specifies. Normally speaking, one SM can issue up to 32 single-precision (32-bit) floating

point operations or 16 double-precision (64-bit) floating point operations at a time. More

precisely, at the SM level, each warp scheduler distributes warps of 32 threads to its exe-

cution units. Threads are scheduled in warp. Each SM features two warp schedulers and

two instruction dispatch units, allowing two warps to be issued and executed concurrently.

The dual warp scheduler selects two warps and issues one instruction from each warp to

a group of 16 cores, 16 load/store (shown as the L/S units in Fig. 2.2 ) units or 4 SFUs.

Most instructions can be dually issued, such as two integer instructions, two floating in-

structions or a mix of integer, floating point. Load, store and SFU instructions can be

issued concurrently also. Double precision instructions do not support dual dispatch with

any other operations.

2.2.2/ MEMORY SYSTEM

2.2.2.1/ MEMORY HIERARCHY

From a hardware point of view, GPU consists of streaming multiprocessors, each with

processing units, registers and on-chip memory. As multiprocessors are organized ac-

cording to the SPMD model, threads share the same code and have access to different

memory space. Table 2.1 and Fig. 2.3 show these different available memory space and

connections with threads and blocks.

Table 2.1: GPU MEMORY SPACE.

Memory Type Access Latency Size

Global Medium Large

Registers Very fast Very small

Local Medium Medium

Shared Fast Small

Constant Fast (cached) Medium

Texture Fast (cached) Medium

The communication between CPU and GPU is done through the global memory. How-

ever, in most GPU configurations, this memory is not cached and its access is quite slow,

people have to minimize accesses to global memory for both read/write operations and

reuse data within the local multiprocessor memory space. GPU has also read-only tex-

ture memory to accelerate operations such as 2D and 3D mapping. Texture memory

space can be used for fast graphic operations. It is usually used by binding texture on

global memory. Indeed, it can improve random accesses or uncoalesced memory ac-

cess patterns that occur in common applications. Constant memory is another read-only
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Figure 2.3: CUDA Programming Model.
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memory, but its hardware is optimized for the case where all threads read the same lo-

cation. Shared memory is a fast memory located on the multiprocessors and shared by

threads of each thread block. This memory area provides a way for threads to commu-

nicate within the same block. Registers among streaming processors are exclusive to an

individual thread; they constitute a fast access memory. In a kernel code, that is a global

CUDA funtion, each declared variable is automatically put into registers. Local memory

is a memory abstraction and is not an actual hardware component. In fact, local mem-

ory resides in the global memory allocated by the compiler. Complex structures such as

declared arrays will reside in local memory. In addition, the local memory is meant as a

memory location used to hold “spilled” registers. Register spilling occurs when a thread

block requires more registers than available ones on an SM. Local memory is used only

for some automatic variables, which are declared in the device code without any of the

qualifiers, such as device , shared , or constant . Generally, an automatic vari-

able resides in a register except for the following cases: arrays that the compiler cannot

determine are indexed with constant quantities and large structures or arrays that would

consume too much register space. Any variable can be spilled by the compiler to local

memory, when a kernel uses more registers than that are available on the SM.

2.2.2.2/ COALESCED AND UNCOALESCED GLOBAL MEMORY ACCESSES

Regarding the executing processing, the SM processor executes one warp at one time

and schedules warps in a time-sharing fashion. The processor has enough functional

units and register read/write ports to execute 32 threads together. When the SM pro-

cessor executes a memory instruction1, it generates memory requests and switches to

another warp until all the memory values in the warp are ready. Ideally, all the memory

accesses within a warp can be combined into one memory transaction. In fact, for best

performance, accesses by threads in a warp must be coalesced into a single memory

transaction of 32, 64 or 128 bytes. Unfortunately, that depends on the memory access

pattern within a warp. If the memory addresses are sequential, all of the memory re-

quests within a warp can be coalesced into a single memory transaction. Otherwise,

each memory address will generate a different transaction. Fig. 2.4 illustrates two exam-

ples for each of these two cases. The CUDA manual [NVI10] provides detailed algorithms

to identify types of coalesced/uncoalesced memory accesses. If memory requests in a

warp are uncoalesced, the warp cannot be executed until all the memory transactions

from the same warp are serviced, which will take significantly longer time than waiting for

only one memory request as in the coalesced case and it can lead to a significantly per-

formance decrease. However, some modifications have been done as a solution to the

problem of latency in the case of uncoalesced memory accesses. Generally speaking,

before the GPU compute capability version 1.3, stricter rules are applied to be coalesced.

When memory requests are uncoalesced, one warp generates 32 memory transactions.

While in the later versions after version 1.3, the rules are more relaxed and all memory

requests are coalesced into as few memory transactions as possible [HK09].

1In this document, a computation instruction refers to a non-memory instruction
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(a) Example 1 1: Coalesced float memory ac-

cess resulting in single memory transaction.

(b) Example 1 2: Coalesced float memory ac-

cess ( divergent warp ) resulting in single mem-

ory transaction.

(c) Example 2 1: Non-sequential float mem-

ory access resulting in sixteen memory trans-

actions.

(d) Example 2 2: Access with misaligned

starting address float, resulting in sixteen

memory transactions.

Figure 2.4: Coalescence and uncoalescence phenomenon in global memory access.
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2.2.2.3/ ON-CHIP SHARED MEMORY

While the global memory is part of the off-chip Dynamic Random Access Memory

(DRAM), the shared memory is implemented within each SM multiprocessor as a Static

Random Access Memory (SRAM). The shared memory has very low access latency,

which is almost the same as that of register, normally 10-20 cycle, and high bandwidth of

1,600 GB/s, which has been widely investigated to reduce non-coalesced global memory

accesses in regular applications [SRS+08]. However, since one warp of 32 threads ac-

cesses the shared memory together, when there is a bank conflict within a warp, access-

ing the shared memory takes multiple cycles. Moreover, this on-chip memory (Shared

Memory/L1 Cache) can be used either to cache data for individual threads (as regis-

ter spilling/L1 Cache) and/or to share data among several threads (as shared memory).

This 64 KB memory can be configured as either 48 KB of shared memory with 16 KB of

L1 cache, or 16 KB shared memory with 48 KB of L1 cache. Shared memory enables

threads within the same thread block to cooperate, facilitates extensive reuse of on-chip

data, and greatly reduces off-chip traffic. Shared memory is accessible by the threads in

the same block.

2.3/ CUDA

2.3.1/ THE CUDA PROGRAMMING MODEL

CUDA is an acronym standing for Compute Unified Device Architecture. It is a parallel

computing platform and programming model created by NVIDIA and implemented in their

graphics processing units (GPUs). CUDA provides the access to the virtual instruction set

and memory of the parallel computational elements in CUDA GPUs. Thanks to CUDA, the

latest NVIDIA GPUs become accessible for computation like CPUs. GPUs have a parallel

throughput architecture that emphasizes executing many concurrent threads slowly rather

than executing one single thread very quickly. The arrival of CUDA leverages a powerful

parallel compute engine in NVIDIA GPUs to solve many complex computational problems

in a more efficient way than on CPUs. Normally, the approach of solving general-purpose

(not exclusively graphics) problems on GPUs with CUDA is known as GPGPU.

CUDA gives developers a software environment that allows using C as a high-level pro-

gramming language. As illustrated in Fig. 2.5, other languages or application program-

ming interface are supported, such as CUDA FORTRAN, OpenCL and DirectCompute.

When CUDA is executed on GPUs, all the threads will be grouped into blocks and then

into warps. All the threads in one block are executed on one SM together. One SM

can also have multiple concurrently running blocks. The number of blocks, which are

running on one SM, is determined by the resource requirements of each block, such as

the number of registers and shared memory usage. The blocks, which are running on

one SM at a given time, are called active blocks in this paper. Since typically one block

has several warps and the number of warps is the same as the number of threads in one

block divided by 32, the total number of active warps per SM is equal to the number of

warps per block times the number of active blocks.

Generally speaking, the scheduling of warps is realized by SMs automatically and se-

quentially. We take a block of 128 threads as an example. The threads in this block will
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Figure 2.5: CUDA is Designed to Support Various languages or Application Programming Inter-

faces.

be grouped into four warps: 0-31 threads may be in Warp 1, 32-63 threads may be in

Warp 2, 64-95 threads Warp 3 and 96-127 threads Warp 4. However, if the number of

threads in the block is not a multiple of 32, the SM (the warp scheduler) will take all the

threads left as the last warp. For example, if the number of threads in the block is 66, then

there will be three warps: Warp 1 contains 0-31 threads, Warp 2 contains 32-63 threads

and Warp 3 takes 64-65 threads. Since the last warp has only two threads, it leads to the

waste of computation capability of 30 threads.

Figure 2.6: Warp execution on SM. The waiting warps will be replaced by the ready warps to

hide latency.

At any moment, one SM executes only one warp from one block. But this does not imply

that SM will certainly finish all the instructions in this warp all at once. If the executing

warp needs to wait for some more information or data (for example: reading from/writing

in the global memory), a second warp will be shifted into the SM to replace the executing

warp for the purpose of hiding latency, as shown in Fig. 2.6. So there should be one

theoretically best situation for performance: all the SMs have enough warps to shift if it

is necessary, and all the SMs are busy in the execution duration. It is one of the key

points to obtain high performance. And it is the reason why, it is necessary to use the

threads and blocks in a way that maximizes hardware utilization. In other words, best

performance can be reached when the latency of each warp is completely hidden by

other warps [OHL+08, JD10]. To achieve this, a GPU application can be tuned by two

leading parameters: the number of threads per block and the total number of threads.
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2.3.2/ SPMD PARALLEL PROGRAMMING PARADIGM

The Single-Program Multiple-Data (SPMD) paradigm is the most used paradigm in par-

allel algorithm designing. In this paradigm, processors execute basically the same piece

of code but on different parts of the data, which involves the splitting of application data

among the available processors. In some other papers, this paradigm is also referred

to as geometric parallelism, domain decomposition, or data parallelism. A schematic

representation of this paradigm can be seen in Fig. 2.7

Figure 2.7: Basic processing structure of SPMD paradigm.

The applications in this document all have an underlying regular geometric structure, such

as the image plane with pixels in stereo matching applications, structured meshing prob-

lem, and city distribution in plane in TSP. This allows the data to be distributed among

the processors following a given way, where each processor will be in charge of a defined

spatial area. Processors communicate with neighboring processors and the communi-

cation load will be proportional to the size of the boundary of the input element, while

the computation load will be proportional to the volume of the input element. In certain

platforms, it may also be required to perform some global synchronization periodically

among all the processors. The communication pattern is usually highly structured and

extremely predictable. The data may initially be self-generated by each process or may

be read from the main memory space during the initialization stage.

SPMD applications can be very efficient if the data are well distributed among the proces-

sors and the system is homogeneous. If different processors present different workloads

or capabilities, then the paradigm should require the support of some load-balancing

scheme able to adapt the data distribution layout during run-time execution [SB08].

It should be noted that this paradigm is highly sensitive to the loss of some processors.

Usually, the loss of a single processor is enough to cause a deadlock in the computation

processing, in which none of the processors can reach the global synchronization point if

it exists.
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2.3.3/ THREADS IN CUDA

The CUDA programming model follows SPMD software model. The GPU is treated as a

coprocessor that executes data-parallel kernel functions. All CUDA threads are organized

into a two level concepts: CUDA grid and CUDA block. A kernel has one grid which

contains multiple blocks. Every block is formed of multiple threads. The dimension of

grid and block can be one-dimension, two-dimension or three-dimension. Each thread

has a threadId and a blockId, which are built-in variables defined by the CUDA runtime to

help user locate the thread’s position in its block, as well as its block’s position in the grid

[NVI12a, SK10].

CUDA provides three key abstractions: one hierarchy of thread groups, device memories

and barrier synchronization. Threads have a three-level hierarchy. One block is com-

posed of tens of or hundreds of threads. Threads within one block can share data using

shared memory and can be synchronized at a barrier. All threads within a block are exe-

cuted concurrently on a multi-threaded architecture. A grid is a set of thread blocks that

executes a kernel function. Each grid consists of blocks of threads. Then, programmers

specify the number of threads per block and the number of blocks per grid.

2.3.4/ SCALABILITY

The advent of GPUs, whose parallelism continues to scale with Moore’s law, bring parallel

systems into real applications. The challenge left is to develop computational application

software, which transparently scales its parallelism to leverage the increasing number of

processor cores, such as 3D graphics applications transparently scale their parallelism to

GPUs with widely varying numbers of cores.

Figure 2.8: Scalable programming model.

The CUDA parallel programming model is designed to overcome this challenge, while

maintaining a low learning curve for programmers familiar with standard programming
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languages, such as C or C++. In fact, the CUDA is simply exposed to the programmers

as a minimal set of language extensions of C, even with the three key abstractions of its

core: a hierarchy of thread groups, special memory spaces and barrier synchronization.

These abstractions provide very fine-gained data and thread parallelism. They guide

programmers to partition their problems into coarse sub-problems, that can be solved

independently in parallel by blocks of threads, and further each sub-problem into finer

pieces that can be solved cooperatively in parallel by all threads within the same block.

This decomposition preserves language expressivity, by allowing threads to cooperate

when solving each sub-problem, and at the same time, enabling automatic scalability. As

it is illustrated in Fig. 2.8, only the runtime system needs to know the count of physical

processors. While each block of threads can be scheduled on any of the available pro-

cessor cores in any order, a compiled CUDA program can be executed on any number of

processor cores.

2.3.5/ SYNCHRONIZATION EFFECTS

The CUDA programming model supports thread synchronization through the sync-

threads() function. Typically, all the threads are executed asynchronously whenever all

the source operands in a warp are ready. However, if we take this function into count,

it will stand as a barrier synchronization function, that makes the threads in the same

block coordinate their activities, which will guarantee that all the simultaneously activated

threads are in the same location of the program sequence at the same time, thus ensuring

that all the threads are reading the correct values from the relative memory space.

Figure 2.9: Additional delay effects of thread synchronization.

When a kernel calls syncthreads() function, threads of the same block will be stopped

until all the threads of the block reach the sync-location1. While this may seem to slow

down execution since threads will be idle if they reach the sync-location before other

threads, it is absolutely necessary to sync the threads here, because the additional delay

1It should be noticed that CUDA has no barrier for synchronize the blocks of a grid, thus blocks can

execute in any order relative to each other
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is surprisingly less than one waiting period, in almost all the applications [NVI10]. Fig.

2.9 shows the additional delay effect.

2.3.6/ WARP DIVERGENCE

An undesirable effect of having data dependent branching in flow control instruction (if, for,

while) is warp divergence. This can slow down the instruction throughput when threads of

the same warp follow different execution paths. In that case, the different execution flows

in a warp are serialized. Since threads of a same warp share a program counter, this

increases the number of instructions executed for this warp. Once all executed paths are

completed, the warp converges back to the same execution path. Full efficiency arises

when all 32 threads of a warp follow a common path. But these conditions look difficult to

obtain in data dependent applications with non-uniform distributions.

2.3.7/ EXECUTION CONFIGURATION OF BLOCKS AND GRIDS

The dimension (both the width and the height) and size (total number of elements) of a

grid and the dimension and size of a block are both important factors. The multidimen-

sional aspect of these parameters allows easier mapping of multidimensional problems to

CUDA GPU even if it does not play a role in performance. As a result, it is more interesting

to take the ‘size’ into discussion rather than the ‘dimensions ’.

The number of active warps per multiprocessor has a great influence on the latency hid-

ing and occupancy. This number is implicitly determined by the execution parameters

along with resource constraints, such as registers or/and other memory space on chip.

The choosing of execution parameters maintains a balance between the latency hiding,

occupancy and the resource utilization. There do exist some certain heuristics that can

be individually applied to each parameter [NVI11]. When choosing the first execution

configuration parameter, the number of blocks per grid, the primary concern is keeping

the entire GPU busy. It is better to make the grid size larger than the number of multipro-

cessors, so that all multiprocessors have at least one block to execute. Moreover, there

should be multiple active blocks per multiprocessor, so that blocks that are not waiting

for a synchronization function ( syncthreads()) can keep the hardware busy. This rec-

ommendation is subject to resource availability, so, it should be determined along with a

second execution parameter, the number of threads per block and the usage of memory-

on-chip, such as shared memory.

When choosing the block size, it is important to keep in mind one phenomenon, that

multiple concurrent blocks can reside on a multiprocessor and therefore occupancy is

not determined only by block size alone. In other words, a larger block size does not

necessarily lead to a higher occupancy. For example, on a device of computation capacity

1.1 or lower, a kernel with a maximum block size of 512 threads results in an occupancy

of 66 percent, because the maximum number of threads per multiprocessor on such a

device is 768. Hence, only a single block can be active per multiprocessor. However, a

kernel with 256 threads per block on such a device can result in 100 percent occupancy

with three resident active blocks [NVI10].

However, higher occupancy does not always mean better performance. A lower occu-

pancy kernel will evidently have more registers available per thread than a higher occu-
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pancy kernel, which may result in less register spilling to local memory. Typically once

an occupancy of 50 percent has been reached, additional increases in occupancy do not

necessarily translate into improved performance [Gup12].

With respect to such factors involved in selecting block size, inevitably trial configurations

are required. Given the knowledge of occupancy, there still exist a few rules of thumb to

help us set the block size for a better performance:

• Threads per block should be a multiple of warp size to avoid wasting computation

on under-populated warps and to facilitate coalescing.

• A minimum of 64 threads per block should be used, but this should happen only if

there are multiple concurrent blocks per multiprocessor.

• Between 128 and 256 threads per block can be a better choice than others and a

good initial range for experimentation with different block sizes.

• It can be very helpful to use some smaller thread blocks rather than one large

thread block per multiprocessor if the performance is too much affected by latency,

especially when the kernels frequently call the synchronization function ( sync-

threads()).

2.4/ CONCLUSION

In this chapter, we have briefly presented the GPU’s parallel architecture and the CUDA

programming environment. We first presented the GPU architecture, lying out the two

cases of memory accesses: the coalesced access and the uncoalesced access to mem-

ory space, figuring out that it is more suggested to reach the coalesced access for efficient

data read/write in the main memory space. Then, we explained the CUDA programming

model, with the presentation of the scalable programming model and the introduction of

configuration of blocks and grids in multi-thread execution. At last, we have drawn out the

basic frame of the parallel programming platform. In next two chapters, we will present

the background of the problems and applications addressed in this document.





3
BACKGROUND ON STEREO-MATCHING

PROBLEMS

3.1/ INTRODUCTION

This chapter is centered at the presentation of the background of the stereo-matching

problems. We first give a definition of stereo-matching problem, lying out its geometry

model and the important definitions used in the document. After that, is the presentation

of the stereo-matching method, on which we focus at the local matching methods includ-

ing their mostly used matching costs and their update in color stereo-matching problems.

The left-right consistency check is mentioned as the common used outlier detector for

removing the matching errors in the estimated disparity maps. Then, we provide general

introductions to the two applications studied in this document: the CFA stereo-matching

problem and the real-time stereo-matching implementation. Finally, we enumerate the

current research progress in stereo-matching methods.

3.2/ DEFINITION OF STEREOVISION

In the field of automotive vehicles or robot system, main recent applications require the

perception of the three-dimensional real world. In this case, the intelligent vehicle system,

used in assisting the driver and warning him when there is a potential danger, should be

able to detect the different objects that are on the road, and represent them in the three-

dimensional scene map. Here, we focus on artificial devices such as stereo cameras,

equipped with two cameras, to mimic and simulate the mainly used detecting system, that

is, the human-eyes bionic stereovision system. Two images of the scene are acquired

simultaneously by the cameras. From these two images (left image and right image),

stereovision system aims to recover the third dimension, which has been lost during the

image formation. The projections of the same scene point visible by the two cameras do

not have the same coordinates in the two image planes. The exact position of this scene

point can be retrieved if its two projections, called homologous pixels, are identified. The

problem of identifying homologous pixels in the two images is called stereo-matching

problem.

Stereo matching methods are applied to pairs of stereo images that can be gray-level

images or color images. In gray-level images each pixel is characterized by a gray-level

intensity value, while in color images each pixel is characterized by three color compo-

nents Red (R), Green (G) and Blue (B) intensities.



CHAPTER 3. BACKGROUND ON STEREO-MATCHING PROBLEMS 34

Figure 3.1: Binocular Stereovision Geometry.

In a classic binocular stereoscopic vision, from a scene point P, using the projection

matrices of the left and the right cameras, we can find the location of the projected points

onto the left and the right image plans, as illustrated in Fig. 3.1. There is a very interesting

set of properties, called epipolar geometry, related to the classic binocular stereovision.

Several terms are defined as following:

• the epipolar plane of a scene point P is the plane determined by P and the projec-

tion centers Ol and Or.

• the left epipolar is the projection onto the left projection plane of the right projection

center and the right epipolar is the projection onto the right projection plane of the

left projection center.

• to any space point, we associate two epipolar lines which are in overlap as one line

in Fig. 3.1. The epipolar lines are the intersections of the epipolar plane of the point

with the projection planes. In the figure, the epipolar line is the projection of the

straight line OlP or OrP onto the right or the left projection plane, respectively.

The epipolar geometry describes the relation between right and left projections of a scene

point P. Hence, the very important property, called epipolar property is introduced: given

a scene point P, its right projected point pr lies on the right epipolar line corre-

sponding to its left projected point pl and vice versa.

Now suppose an inverted problem, the two projected points are identified and we want to

find the location of scene point P. P is the intersection of the straight lines Ol pl and Or pr.

So the scene point P can be recovered if only the pair of left and right projected points

is identified. Given only one projection of a scene point P, the stereo-matching problem

aims at determining its homologous one in the other image plan if it exists.

As we know, for one projection p, its homologous projection p’, if it exists, lies on the

epipolar line corresponding to the projection p. However, in the binocular model, the two

epipolar lines coincide with each other. So, the correspondence problem is in fact a one-

dimensional search problem rather than one two-dimensional search problem. However,

the homologous point might not even exist in certain cases, such as half-occlusion.
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3.2.1/ HALF-OCCLUSION

In binocular stereovision, since there are some scene points that can be visible by only

one camera, we cannot project every scene point onto two image plans [OA05]. We

refer to these points as half-occluded. The Fig. 3.2 presents this very half-occlusion

phenomenon and the Fig. 3.3 shows a more concrete example. In Fig. 3.2, the scene B

is projected onto bl in the left image plane but is not visible by the right camera. Similarly,

the scene point C is projected onto cr in the right image plane but is not visible by the left

camera. We can deduce that all the scene points between A and B are invisible for the

right camera, while the scene points between C and D are invisible for the left camera.

Figure 3.2: Half-occlusion Phenomenon.

(a) Left image acquired by

left camera.

(b) Right image acquired

by right camera.

(c) Images representing the different parts of (a) and (b).

The four parts from left to right are: visible only by left

camera, visible by both cameras, visible by both cameras

and visible only by right camera.

Figure 3.3: Half-occlusion phenomenon in example of image pair “Teddy”.
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3.2.2/ ORDER PHENOMENON

In the stereovision model, an assumption is usually taken: a group of scene points has

the same projection rank order in both image plans. Fig. 3.4(a) presents a case that

respects this order. However, this hypothesis of order conservation does not always hold

true. For example, when the scene points belong to objects at different distances from

cameras, this order is not respected any more, as illustrated in Fig. 3.4(b).

(a) Order Respected. (b) Order Not Respected.

Figure 3.4: Order Phenomenon.

3.3/ STEREO MATCHING METHODS

3.3.1/ METHOD CLASSIFICATION

Generally speaking, a high computational complexity is not avoidable for methods to solve

the stereo-matching problem by analyzing a pair of stereo images. Particularly, for each

pixel in the left image, there are a lot of possible candidate right pixels to be examined

in order to determine the best correspondence. It is assumed that the homologous right

pixel corresponds to the best correspondence. Stereo-matching methods can be sorted

into two classes: the sparse methods and the dense methods [Wor07].

Sparse methods match features that have been identified in the stereo image pair. The

features used can be edges, line segments, curve segments and so on. For this reason,

these methods are also called feature-based methods. the matching process is carried

out only on the detected features [Wu00]. These methods draw significant attention for

many years since 1980s because of their low computational complexity. In that time,

they are well suited for real-time applications [MPP06]. However, these methods can not

satisfy those applications that need an accurate identification of all the homologous pixels

in the stereo image pair [BBh03]. This turns people to dense methods in the last decade.

The dense matching methods are the stereo-matching methods that provide all the ho-

mologous pixels in the stereo image pair. The two methods proposed in this document

are both dense matching methods. Since there are a large amount of papers about solv-

ing the stereo-matching problem, it is quite difficult to make an exhaustive review. But
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as these methods do have the same processing steps, a brief review of recent dense

stereo-matching methods has been done by Scharstein and Szeliski [SS02].

3.3.2/ DENSE STEREO-MATCHING METHOD

The four steps which are usually performed by a dense stereo-matching method are

identified:

• Matching cost computation.

• Cost aggregation where the initial matching costs are spatially aggregated over a

support region of a pixel.

• Optimization to determine the best correspondence at each pixel.

• Matching results refinement to remove the outliers.

The dense matching methods are further classified into global methods and local meth-

ods. The optimization step of global methods involves a high computational effort which

does not make them suitable for real-time applications. Although global methods can pro-

vide very good results [SS02, BBh03], the interest in local methods does not decrease

thanks to their simplicity and low computational complexity, and the local methods have

the top performance [Mei11, SWP+12] in the list of Middlebury [HS06].

In a context of GPU computation, local dense stereo-matching methods, which are also

called window-based approaches, are the natural choice for parallel computation. These

methods assume that the intensity configurations are similar in the neighborhood of ho-

mologous pixels. Particularly, intensity values of neighbors of a pixel in the left image are

closed to those of the same neighbors of its homologous pixel in the right image. So, a

matching cost is defined between the window around the left pixel and the window around

the candidate pixels in the right pixels. The window is also called support region.

3.3.3/ MATCHING COST COMPUTATION

Common pixel-based matching costs include absolute differences (AD), sum of abso-

lute differences (SAD), squared differences (SD), sum of squared differences (SSD) and

sampling-insensitive absolute differences [BT98], or their truncated versions. A detailed

review about matching costs is provided by [HS07]. Since stereo-matching costs are used

by window-based stereo methods, they are usually defined for a given window shape.

For a fixed window in a gray-level image, the Absolute Difference (AD), between the gray-

level Il(xl, y) of pixel pl with coordinates (xl, y) in the left image and the gray-level Ir(xl− s, y)

of a candidate pixel pr at a shift s with coordinates (xl − s, y) in the right image, is defined

in Equation 3.1, where the subscript g refers to gray-level images. The Sum of Absolute

Differences (SAD) is defined as Equation 3.2. The SAD measures the aggregation of

absolute differences between the gray-levels of pixels, in support region of size (2w+ 1)×
(2w + 1) centered at pl and a similar window at pr, with w the window’s half-width.

ADg(xl, y, s) = |Il(xl, y) − Ir(xl − s, y)| (3.1)
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S ADg(xl, y, s) =

w
∑

i=−w

w
∑

j=−w

|Il(xl + i, y + j) − Ir(xl + i − s, y + j)| (3.2)

Similarly, the Squared Difference (SD) and the Sum of Squared Differences (SSD) are

defined in Equation 3.3 and Equation 3.4, respectively.

S Dg(xl, y, s) = (Il(xl, y) − Ir(xl − s, y))2 (3.3)

S S Dg(xl, y, s) =

w
∑

i=−w

w
∑

j=−w

(Il(xl + i, y + j) − Ir(xl + i − s, y + j))2 (3.4)

In color images, for each pixel at coordinates (x, y), the presentation of the pixel’s dense

information is associated with three color components rather than one component in gray-

level images. So, to present a point in three-dimensional RGB color space, the coordi-

nates of the color point should be updated as R(x, y),G(x, y) and B(x, y). Therefore, a color

image can be considered as an array of color points I(x, y) = (R(x, y),G(x, y), B(x, y))T . And

the color image can be split into three component images R, G and B, in each of these

images, a point is characterized by one single color component level as in gray-level im-

ages. A lot of research has shown that the use of color images rather than gray-level ones

can highly improve the accuracy of stereo-matching results [Cha05, CTB06, Kos96]. The

color information can be sometimes helpful in reducing stereo-matching ambiguities as

presented by [CTB06]. Anyway, in most cases, a full color image carries more information

in its three color components than a gray-level image of the same scene.

The generalization to color images of stereo-matching costs should also be updated.

Based on Equation 3.1 and Equation 3.2, the matching cost AD and SAD are rewritten

as Equation 3.5 and Equation 3.6.

ADc(xl, y, s) = |Rl(xl, y)−Rr(xl− s, y)| + |Gl(xl, y)−Gr(xl− s, y)| + |Bl(xl, y)−Br(xl− s, y)| (3.5)

S ADc(xl, y, s) =

w
∑

i=−w

w
∑

j=−w

(|Rl(xl + i, y + j) − Rr(xl + i − s, y + j)|

+|Gl(xl + i, y + j) −Gr(xl + i − s, y + j)|
+|Bl(xl + i, y + j) − Br(xl + i − s, y + j)|)

(3.6)

Similarly, the SD and SSD can be generalized to deal with color images as Equation 3.7

and Equation 3.8. Where the ‖ ·‖ is the Euclidean norm, and therefore, ‖ ·‖2 is the squared

Euclidean distance between two points of the three-dimensional RGB color space. And

Il and Ir are the color points associated respectively with the left and right pixels [Kos93].

S Dc(xl, y, s) = ‖Il(xl, y) − Ir(xl − s, y)‖2 (3.7)

S S Dc(xl, y, s) =

w
∑

i=−w

w
∑

j=−w

‖Il((xl + i, y + j) − Ir(xl + i − s, y + j)‖2 (3.8)
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The matching cost will be computed by shifting the window over all the possible candidate

pixels in the right image. The final estimated disparity is determined by the shift where

the matching cost reaches the minimum. All the local stereo-matching methods use the

window in a certain way and they are also called area-based or window-based matching

methods.

3.3.4/ WINDOW FOR COST AGGREGATION

Local dense matching methods exploit the concept of support region or window. Every

pixel receives a support from its neighbor pixels. It is commonly accepted that pixels

inside this support region are likely to have the same disparity and can therefore help

to resolve matching ambiguities. Usually, the support region can be classified into fixed

window and adaptive window.

A straightforward aggregation approach consists in using a square window centered at

each pixel p. This kind of square-window approach implicitly assumes that the disparity

is similar over all pixels in square window. However, this assumption does not hold true

near discontinuity areas. To overcome this problem, several works have been done [BI99,

FRT97], and the shifting window approach is proposed for this purpose. This approach

considers multiple square windows centered at different locations and retains the window

with the smallest cost. The size of the support window is fixed and is difficult to adjust the

size for both square-window and shifting-window approaches. A small window may not

include enough intensity values for a good matching result, while a large one may violate

the assumption of constant disparity inside the support window. In fact, the window size

should be able to represent the shape of objects in one image. Thus, the window size

should be large for textureless regions and small for well textured regions. For this reason,

Kanade et al [KO94] proposes an adaptive-window method which automatically selects

the window size and/or shape based on local information. We will retain this method for

improving our GPU method.

3.3.5/ BEST CORRESPONDENCE DECISION

After the computation and aggregation of matching cost, the homologous pixel in the

right image is derived based on the Winner-Takes-All (WTA) principle, as illustrated in

Fig. 3.5. The shift for which the matching cost is the lowest is selected. Thus, the

estimated disparity d̂w
l

(xl, y) at the pixel pl corresponds to the shift s of the right pixel at

which the matching cost is the minimum. It can be expressed as Equation 3.9 when the

SAD matching cost is used.

d̂w
l (xl, y) = arg min

s
(S ADw

g (xl, y, s)) (3.9)

In this document, the left image pixel is used as the reference in the cost computation

as default. So, we use the l subscript in the estimated disparity symbol, s ranging from

smin to smax. And the superscript w is taken into use when the aggregation is based on a

neighborhood window with a half-width w.

Once the disparity has been estimated at each pixel in the left image, the left dense

estimated disparity map is formed. The disparity map is the array of disparity values



CHAPTER 3. BACKGROUND ON STEREO-MATCHING PROBLEMS 40
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✻

Matching

Cost

smin smaxd̂ω
l

(xl, y)

Figure 3.5: Winner-Takes-All method, [smin, smax] represents

the possible shifts of the searched pixels. When the shifts

s equals to d̂ (estimated disparity), the matching cost value

reaches the minimum.

computed for each pixel, which has the same size as the input left image and right image.

However, the matching cost does not always reach a global extremum at the correct dis-

parity for all the regions, Fig. 3.6 illustrates three examples of untextured area, textureless

area and repetitive area [Cha05], respectively. In these cases, the gray-levels of the left

image and right image are represented. If we examine the gray-level of nine pixels, we

are not able to determine a correspondence in the right image, because the gray-level

pattern is the same along the correspondence epipolar lines in the two images. As a re-

sult, several minimums are found, which will shield the true disparity from being chosen.

To avoid this problem, the matching cost and the aggregation support region should be

carefully chosen to correctly match pixels.

3.3.6/ LEFT-RIGHT CONSISTENCY CHECK

In the matching process, one image is taken as a reference, for each pixel in this image,

we seek its homologous pixel in the other image. The matching method may yield one

estimated disparity map for each of the two input images. The first one is for the left input

image and the second one is based on the right image. On these two estimated disparity

maps, there could be some matching errors. So, a refinement step is usually employed

to improve the matching quality.

Different methods allow the refinement to improve the disparity estimation quality. These

refinement methods are variously used in most stereo-matching methods [FHZF93]. And

they are employed as a post-processing step to improve disparity maps by removing

those false matching results or for providing sub-pixel disparity estimation.

The most used method for detecting false matching results is the left-right consistency

check. This consistency check method takes the estimated disparity as outlier if Equation
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(a)

(b)

(c)

Figure 3.6: Matching cost reaches several minimum. (a) Untextured regions. (b) Textureless

regions. (c) Repetitive texture regions.
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3.10 does not hold true.

d̂w
l (xl, y) = d̂r(xr, y) = d̂r(xl − d̂l(xl, y), y) (3.10)

If this condition is not verified, then it is considered that this pixel may be bad matched

and should be repaired, or lying in a half-occlusion region, and so, no disparity value can

be estimated at this pixel [FRT00].

3.4/ TWO IMPLEMENTATIONS OF STEREO-MATCHING PROBLEMS

In this document, two problems of stereo-matching and their related methods are studied

and implemented with GPU computing. They are the CFA stereo-matching problem and

the real-time stereo-matching. Here, we briefly present their main characteristics.

3.4.1/ INTRODUCTION TO CFA STEREO-MATCHING PROBLEMS

In most real-time implementation of stereo-matching, such as the intelligent cars and the

integrated robot systems, the color image pairs can be acquired by two types of cameras:

the one equipped with three sensors associated with beam splitters and color filters,

providing the so-called full color images, of which each pixel is characterized in Red,

Green and Blue levels, and the one equipped only with a single-sensor.

In the second case, the single-sensor cannot provide a full color image directly, but actu-

ally deliver a color filter array (CFA) image. Every pixel in it is characterized by a single

color component, that can be one of the three color components: Red (R), Green (G) and

Blue (B). So, the missing color components have to be estimated at each pixel. This pro-

cess of estimating the missing color components is usually referred as CFA demosaicing.

It produces a demosaiced color image where every pixel is presented by an estimated

color point [BGMT08].

As the demosaicing methods intend to produce demosaiced color images, they attempt

to reduce the presence of color artifacts, such as the false colors or zipper effects, by

filtering the images [YLD07]. So some useful color information for stereo-matching may

be lost in the color demosaiced images. As a result, the demosaiced color image pairs’

stereo-matching quality usually suffers either from color artifacts or from the alteration of

color texture caused by demosaicing schemes.

The method that is presented by Halawana [Hal10] is an alternative solution to match

pixels by analyzing directly the CFA images, without reconstructing all the full color image

by demosaicing processing. These type of stereovision is called CFA stereo-matching

problem. We present and study a GPU implementation of the Halawana method in this

document.

3.4.2/ INTRODUCTION TO REAL-TIME STEREO-MATCHING METHODS

The constraint of computation time in stereo-matching methods is very important for ap-

plications that run at video rate. So, the running time of stereo-matching methods used
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should be less than 34 ms, which is generally the image acquisition time in filming the

videos. The research work about real-time stereo-matching follows two main ways:

• looking for algorithms with low computation time while still providing good matching

quality,

• developing hardware devices for efficient implementation in order to decrease the

computation time.

These devices include special purpose hardware, such as the digital signal processors

(DSP) or field programmable gate arrays (FPGA), and extensions to recent PCs, for ex-

ample, the Multi-media Extension (MMX) [FKO+04, HIG02] and the pixel/vertex shading

instructions for the Graphics Processing Units (GPUs) [GY05, MPL05].

3.5/ RELATED WORKS ON STEREO-MATCHING PROBLEMS

3.5.1/ CURRENT PROGRESS IN THE REAL-TIME STEREO COMPUTATION

From the beginning of 1990s, real-time dense disparity map stereo has become a re-

ality, making the use of stereo processing feasible for a variety of applications. Until

very recently, all near real-time implementations made use of special purpose hardware,

like digital signal processors (DSP) or field programmable gate arrays (FPGA). However,

with ever increasing clock speeds and the integrating of single instruction multiple data

(SIMD) coprocessors, such as Intel MMX, the NOC and the Graphic Processing Unit

(GPU) into general-purpose computers, near real-time stereo processing becomes a re-

ality for common personal computers. This section presents the progression of fast stereo

implementation over the last two decades.

In 1993, Faugeras et al reported on a stereo system developed at INRIA and imple-

mented it for both DSP and FPGA hardware [FHZF93]. They implemented normalized

correlation efficiently using the block matching method with left-right consistency check-

ing. They used a right-angle trinocular stereo configuration, computing two estimated

disparity maps and then merging them to enforce joint epipolar constraints. The DSP

implementation exploited the MD96 board [Mat93], that consists in four Motorola 96002

DSPs. The other implementation on FPGA was designed for the PeRle-1 board; which

was developed at DEC-PRL and was composed of 23 Xilinx logic cell arrays (LCA). The

algorithms were also implemented in C for a Sparc 2 workstation. The results showed

that the FPGA implementation outperformed the DSP implementation by a factor of 34

and the Sparc 2 implementation by a factor of 210, processing 256 × 256 pixel images at

approximately 3.6 fps.

In the same year, Nishihara presented a stereo system based on the PRISM-3 board

developed by Teleos Research [Nis93]. This system used Datacube digitizer hardware,

custom convolver hardware, and the PRISM-3 correlator board, which makes extensive

use of FPGAs. For robustness and efficiency, this system employed area correlation of

the sign bits after applying a Laplacian of Gaussian filter to the images. Two years later,

Konolige also reported on the performance of a PC implementation of these algorithms

by Nishihara in 1995 [Kon97]. His system was capable of 0.5 fps with 320 × 320 pixel

images.
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Also in 1993, one system came close to achieving frame-rate. Kanade et al’s algorithms,

the multi-baseline stereo method, was used by WEbb implemented on the CMU warp ma-

chine [CW91, KON92, Web93]. Three images were used for this system. For efficiency,

the sum of absolute differences (SAD) was used. They used 64 iWarp processors and

could achieve 15 fps with 256 × 240 pixel images.

In 1995, Matthies et al presented a real-time stereo-matching system using a Datacube

MV-200 image processing board and a 68040 CPU board [MKLT95]. Including the left-

right consistency checking, this performed SSD stereo-matching on a Laplacian image

pyramid to determine disparities. They could achieve 1.7 fps with 256 × 240 pixel images.

A complete discussion of their algorithm development and details on an earlier version of

the system can be found in [Mat92]. Also in 1995, Kimura et al reported on a video-rate

stereo machine developed at CMU [KKK+95]. This was the first published stereo system

capable of more than 24 fps with 256 × 240 pixel images. Like the iWarp implementation

at CMU, this system also exploited multi-baseline stereo to improve depth estimates. The

prototype system was equipped with six cameras. Also, like the iWarp implementation,

the SAD was used for efficiency. These algorithms were implemented on custom hard-

ware and an array of eight C40 DSPs. The CMU video-rate stereo machine has been

used for a variety of applications, including virtual reality [KYO+96].

Two years later, Woodfill and Von Herzen [WV97] implemented the famous census match-

ing [ZW94] for stereo on the custom PARTS engine developed at the Interval Research

Corporation. The PARTS engine is made up of 16 Xilinx 4025 FPGAs and fits on a stan-

dard PCI card. It is capable of processing 320 × 240 pixel images at 42 fps. Corke and

Dunn [CD97] also implemented census matching on their Configurable Logic Processors

(CLP), VMEbus circuit boards made up of several FPGAs each. Their system is capable

of processing 256 × 256 pixel images at 30 fps.

From 1998 to 2005, new approaches were still reported in the stereo-matching field

[KSY+99, BK99, DGHW98], but people were turning to some platforms more usually

equipped on PC.

In 2005, Heiko Hirschmuller [Hir05] presented an accurate semi-global stereo-matching

method concentrating on the object boundaries. This method can perform pixel-wise

matching based on mutual information and the approximation of a global smoothness

constraint. It was capable of 1 fps in performing typical images. In the same year, Veksler

[Vek05] implemented the dynamic programming (DP) into stereo-matching problem. By

applying the DP to a tree structure, where the nodes of the tree are all pixels, this method

could handle a typical image in less than 1 second. Also by the DP, [WLG+06] which

integrated an adaptive aggregation step in the DP stereo frame-work, the matching cost

is aggregated only in the vertical direction, and this implementation has come to over 50

million disparity evaluations per second.

Tombari et al [dGGV08] proposed a new cost aggregation strategy that shapes the car-

riable support at each correspondence based on information derived from image color

segmentation. This strategy could be capable of 5 fps in processing typical size (320×240)

images.

Owning to the complexity of global methods, most of them are not suitable for real-time

applications. To the best of our knowledge, there are only two global methods that can be

found running in real-time. The first is proposed by Forstmann and Kanou [FKO+04]. It

is a real-time stereo system based on dynamic programming and it consists in a specific

coarse-to-fine approach in combination with MMX implementation which uses compiler
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optimization strategies to achieve real-time stereo-matching performance. Another al-

gorithm is proposed in [GY07] based on dynamic programming. In this algorithm, the

iterative best path tracing process used by traditional dynamic programming is replaced

by a local minimum search process, making the algorithm suitable for parallel execution.

Nevertheless, local Winner-Takes-All (WTA) optimization is still the most used one in

almost all real-time stereo-matching algorithms. Faugeras et al [FHZF93] has proposed a

sliding window technique for rectangular aggregation windows of fixed size. This method

has linear complexity with respect to the numbers of pixels and computed disparities,

which gives rise to real-time implementations such as that of Point Grey Research 1. A

detailed review about real-time stereo-matching algorithms based on local methods can

be consulted in [WGY06].

All these methods are executed on CPU or some special designed hardware. And in-

deed, they have performed quite well for fast stereo-matching. However, with the raise

of the integrated hardware, such as the GPU, more and more people are attracted to

this new implementation field, and the parallel computing becomes a popular subject for

researchers.

3.5.2/ PARALLEL COMPUTING BASED ON GPU IN STEREO-MATCHING

Most of the latest near real-time stereo-matching methods are based on parallel com-

puting, especially on GPU. The GPU has been employed in stereo-matching prob-

lem for almost ten years. Many methods have been introduced for last decades

[Mei11, SWP+12, WLG+06, GGK09]. Several implementations are available in the lit-

erature.

Researches on GPU parallel computing in stereovision can be roughly classified into two

classes, the first one is the proposition that takes the running time more important than

matching accuracy or tends to look for a trade between the computation time and match-

ing quality. The CostFilter[RHB+11], PlaneFitBP[YEA08], ADCensus[Mei11] belong to

this class. While the second class consists of the methods which concentrate on ac-

curate stereo-matching, and the use of GPU is only a way to accelerate computation

[HBG10, LS10, WTFJ10].

In 2008, Yang et al [YEA08] presented a compromising approach for stereo depth esti-

mates. It can replace estimates in textureless regions with estimates on planes at near

real-time rates. Their approach segments the image via a novel real-time color segmen-

tation algorithm, and subsequently fits planes to textureless segments and refines them

using consistency constraints. Moreover, the authors have optionally employed loopy be-

lief propagation to correct local matching errors. This method can handle 18 frames per

second using an NVIDIA Geforce 8800 GTX graphics card, and it remains one of the top

three best implementations in the Middlebury database [HS06].

Besides PlaneFitBP, Rhemann et al [RHB+11] proposed in 2011 a genetic framework

containing three steps: constructing a cost volume, fast cost volume filtering and winner-

takes-all label selection. By this simple framework, they have obtained the disparity map

in near real-time, whose quality exceeds those of all other fast (local) approaches on the

Middlebury stereo benchmark. In the same year, Mei et al [Mei11] presented a GPU-

based stereo-matching system including an AD-census measure. It uses the cost aggre-

1http://www.ai.sri.com/∼konolige/svs/svm.htm

http://www.ai.sri.com/~konolige/svs/svm.htm
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gation in dynamic cross-based regions. [ZWC+13a] reported a GPU-based framework

with SAD-AL stereo measure, adaptive window cost aggregation strategy and a simple

refinement step. Both these two approaches can handle the typical images in less than

0.1 seconds, more specially, the ”Tsukuba” image in less than 0.02s. And the ADCensus,

achieving excellent trade between the computation time and the accuracy, is still one of

the best implementations in Middlebury benchmark.

Some researchers have introduced the accurate stereovision approaches from CPU to

GPU, and these methods can handle the matching work of well quality with some ac-

celeration in comparing with sequential computation on CPU. In 2010, three approaches

were proposed. The first one was reported by Asmaa et al [HBG10]. Their method ex-

ploits the adaptive support weight windows for generating an explicit per-segmentation of

the reference image in a fast way. By using a modified segmentation-based sliding win-

dow technique which makes run time independent of the window size, they achieve 10 fps

for the four benchmarks in Middlebury database. Yu et al [WTFJ10] proposed a system

based on GPU with the Pareto-efficiency front-line in the accuracy and speed trade-off

space but aiming at high matching quality. They have designed an exponential step size

message propagation (ESMP) which incorporates the smoothness term commonly used

in belief propagation for global stereo-matching methods. This approach can handle a

stereo image pair of size 384 × 512 in 0.096s and be able to demonstrate a speed-up

factor of 2.7 to 8.5 in common stereovision applications.

3.6/ CONCLUSION

In this chapter, the basics of stereovision have been described. Details about the stereo-

matching problems consisting in finding out pairs of homologous pixels in the left and

right input images have been presented. We have introduced the important cases where

stereo-matching schemes fail, such as the textureless region and the repetitive regions in

the images. We have explained the useful assumptions about order and half-occlusion.

Finally, the current progress of parallel computation in stereo-matching problem has been

introduced. As in this document the two matching methods used are both local dense

stereo-matching methods, so we describe the details of the local dense matching meth-

ods. This class of methods analyzes the neighbors of the center pixel and the neighbors

of its candidates to identify pairs of homologous pixels. The local methods are less time

consuming, in comparing with global stereo-matching methods which evaluate matching

globally with all the pixels in the images. One important method in local dense stereo-

matching is winner-takes-all method, which can be easily implemented in parallel archi-

tectures such as multi-processors or GPUs. We will investigate different GPU implemen-

tations of this general method, by combination of diverse techniques generally simulated

in CPU platforms.



4
BACKGROUND ON SELF-ORGANIZING

MAP AND STRUCTURED MESHING
PROBLEMS

4.1/ INTRODUCTION

In this chapter, we will focus on the background of the self-organizing map used for struc-

tured meshing problems. A structured mesh is generally a grid of vertices having a fixed

local neighborhood. Structured meshes correspond to the three possible tessellations

of the plane with identical regular polygons: square, triangular, and hexagonal. Mesh

generation is a large area of research and most methods for surface reconstruction gen-

erally deal with Delaunay triangulation and/or recursive subdivision that yield to unstruc-

tured meshes with variable neighborhoods at different level of refinement, and hence

these methods require specific and complex data structures. The generation of struc-

tured meshes according to a density distribution is also a meshing technique useful for

surface reconstruction. In that case, the advantage can reside in the grid data structure

with fixed dimensions, and constant neighborhood that allow fast access computation and

compact representation. The self-organizing map (SOM) algorithm is a neural network

approach dealing with visual patterns moving and adapting to brute distributed data in

space. It is a usual tool for structured meshing generation in the plane or 3D space.

Its main property is to allow adaptation by density and topology preservation of a planar

graph to an underlying data distribution. These properties are the requisites that allow to

address structured meshing and even solve traveling salesman problem by using such a

simple and massive parallel heuristic.

We propose in this document a GPU parallel implementation for SOM in 2D space and its

applications to two domains: meshing for stereovision in image processing, and meshing

for terrestrial transportation problems with the example of TSP. Our intention is to show

that the SOM algorithm can be used as an heuristic, or basic tool operator, useful in both

domains. In this chapter, we make a survey of SOM for structured meshing applications

and surface reconstruction in relation to stereovision. Secondly, we present the concept

of adaptive meshing for transportation applications, using SOM as a central tool, that

were already developed for Euclidean routing problems. Finally, we provide related works

particularly on parallel computing on the Euclidean TSP. For each case of application, we

look specifically at the GPU models already used in the literature.
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4.2/ SELF-ORGANIZING MAP FOR GPU STRUCTURED MESHING

Structured or unstructured mesh generation can be used in many fields to improve the

precision of simulation-based computations by optimizing the choice of points to be con-

sidered in the simulation, relative to the underlying resource. Numerous industrial appli-

cations need an optimization of calculation points in order to minimize the computation

time or to maximize the resulting precision (fluid mechanic applications, interference cal-

culation for frequency assignment...). Most of the time, the initial data subject to the

computation is situated like in geographic coordinates and altitudes for meteorological

measurements, and it can be regularly distributed or not. While mesh generation is a

large area of research [Car97, Geo91, dGGV08, PSB+07], few approaches exist for struc-

tured mesh generation according to a density distribution, in order to represent data by

density and topology preservation. Clearly, it is the main property of the self-organizing

map [Koh01, Koh82] algorithm that it can generate such structured meshes. For example,

[Bon89, SST91] deal with this subject but the implementations were sequential and not

competitive. Numerous approaches like [Sch00, ZB06] have proposed generation meth-

ods for structured meshes but the methods are often too memory consuming and can not

handle large size problems or are not sufficiently fast for real-time execution. It looks like

that GPU parallel computation is still an open field for such problems and applications.

Considering SOM applications on structured meshing problems, most of applications do

not refer to parallel execution or real-time requirement. In [PCA98] the authors introduce

an approach to the local stereo matching problem using edge segments as features with

several attributes. They use a learning strategy based on the self-organizing feature-

mapping method to get the best cluster centers. The authors of [BEP05] propose an

original neural network architecture inspired from Kohonen’s self-organizing maps, based

on adaptive learning process applied to a generalized mesh structure that would lead

to a coherent topological definition of the surface, represented by a points cloud, given

as input. However, they still need to find the fine tuning concerning the local adaptation

and subdivision process. [LWC03, Nec10, dRAN07] integrate the self-organizing map

with meshes and surface reconstruction but also they never refer to the cellular space

decomposition for further studies of parallel implementations. [CB08] proposes a simple

combination of self-organizing map and cellular automata in meshing processing, but

the paper does not explore deeper neither in the properties of this combination nor the

possibility of execution on parallel architectures. In [YIL08], the authors present a SOM

based algorithm for implicit surface reconstruction. But no parallel GPU implementation

is provided by the authors. The authors in [VGB09] design a new stereo-matching model

based on SOM, aimed at solving the correspondence problem within a two-frame area

matching approach and producing dense disparity maps. Salient aspects of the solution

were the local processing of the stereo images, the use of a limited set of directly available

features and the applicability without image segmentation.

From our knowledge, we did not find GPU parallel implementations for structured mesh-

ing applications based on noisy distribution maps, except simple Delaunay triangulation

based on a point set. We did not find GPU parallel implementations for the SOM algorithm

when applied in 2D space. Some methods for computing SOM on GPU have been pro-

posed [MSH+12, YKN+12]. All these methods accelerate SOM process by parallelizing

the inner steps in each basic iteration, and mainly focus on two aspects: finding winner

neuron and moving the winner neuron as well as its neighbors in parallel. In our model,

we use parallel processing units to perform SOM iterations independently in parallel, each
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one to a part of the data, instead of using many parallel processing units to cooperatively

accelerate some part of a sequential SOM procedure iteration by iteration.

4.3/ ADAPTIVE MESHING FOR TRANSPORTATION PROBLEMS

The origin of adaptive meshing which uses planar honeycomb structures as a tool to

dimension radio-cellular network according to mobile traffic is from [CLK00, CKLC05,

CK06]. Then, the concept was generalized for transportation routing problems by us-

ing the SOM algorithm as a common tool. This section presents the adaptive meshing

concept and summarizes several applications already developed for distributed terrestrial

optimization problems [CK07a, CK07b, CKH07, HCK05].

(a) (b) (c)

Figure 4.1: Meshing of a territory. (a) Sampling of the demand (1000 dots) on a territory. (b)

Adapted honeycomb mesh representing a radio-cellular network. (c) Adapted graph of intercon-

nected routes representing a transportation network.

In [CKLC05, CK06] the authors have taken the visual specificity of SOM and the adaptive

meshing concept into radio-cellular networks. The goal is to adjust an intermediate struc-

ture (the network) to an underlying distribution of demands, shown in Fig. 4.1(a), subject

to topology constraints. This is illustrated for cellular network dimensioning in Fig. 4.1(b),

with a honeycomb mesh representing cell transceiver base stations covering a territory.

The terrestrial transportation case is illustrated in Fig. 4.1(c), where interconnected lines

stand for interconnected routes.

As another application of adaptive meshing, the Median-Cycle Problem (MCP) has been

investigated by [LLRG04, LLRG05, RBL04]. It consists of finding a ring passing through

a subset of cities, minimizing objective length, subject to a bound on distance to clusters.

Application of SOM to the problem consists of using a ring structure, the mesh, that

adapts to the point set. The memetic SOM approach [HCK05] was developed to solve

the problem. It consists of a genetic algorithm including SOM as a specific operator.

Solution for the MCP is illustrated in Fig. 4.2, on the lin105 instance of TSPLIB [Rei91].

In Fig. 4.2(a), is shown a Euclidean, or continuous, version of MCP, where the ring has

cluster centers free to position anywhere in the plane. In Fig. 4.2(b), cluster centers are

forced to be located on point locations, as in the case for the classical and discrete MCP.

In Fig. 4.2(c), with a same number of centers and cities, MCP becomes a TSP.
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(a) (b) (c)

Figure 4.2: Median cycle problems (MCP) using the lin105 TSPLIB problem. (a) Euclidean MCP.

(b) Classical MCP. (c) Euclidean TSP.

In [CK07a, CK07b], the adaptive meshing approach is illustrated on a real life case of

combined clustering and vehicle routing. The goal is to locate bus-stops on roads and

define the regional routes of buses to transport the 780 employees of a great enterprise.

In Fig. 4.3, are shown visual patterns of solutions. A transport mesh obtained is shown

in Fig. 4.3(a), juxtaposed over demands and underlying roads. It illustrates the visual

shape of a typical solution, where bus stops, reflect demand distribution and constitute

routes. In Fig. 4.3(b) and (c), a zoom is performed on the right side of the area to

illustrate the two main steps for solving the problem sequentially. Fig. 4.3(b) presents

bus stops, symbolized by crosses, obtained for k-median problem. Fig. 4.3(c) presents

the vehicle routing problem solution obtained subsequently, with routes exactly passing

by the crosses.

(a) (b) (c)

Figure 4.3: Clustering and routing for the transportation of 780 customers (dots) of a great en-

terprise. (a) Unified clustering and routing problem solution. (b) Clustering k-median problem first

(crosses are cluster centers). (c) Capacitated vehicle routing problem second (routes pass among

cluster centers).

In the literature, many applications of neural networks have addressed the traveling sales-

man problem. For more information on this subject, we refer the reader to the extensive

survey of [CB03]. In [CK09], the authors evaluated the memetic SOM performance on
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the Euclidean TSP. They compared it against the Co-Adaptive Net of [CB03], which was

considered at the date of writing as the best performing neural network application to

the TSP. Experiments were conducted on large size TSPLIB instances from 1000 to up

85900 cities. Mainly, numerical results tended to show that memetic SOM competes with

the Co-Adaptive Net, with respect to solution quality and/or computation time.

(a) (b)

(c) (d)

Figure 4.4: VRP using c11 (a) and c12 (b) instances. VRP with time duration constraint using

c13 (c) and c14 (d) CMT instances.

The memetic SOM approach was applied to vehicle routing problem (VRP) in [CK07b].

Example of local improvement moves performed during the optimization phase are visual-

ized in Fig. 4.4 on the clustered instances c11-14, from the publicly available Christofides,

Mingozzi, and Toth (CMT) test problems [Chr76].

In [CKH07], a memetic SOM application to address a clustering version of the vehicle

routing problem with time windows (VRPTW) is proposed. The approach was tested

on Solomon’s standard test problems [Sol87]. Visual patterns in Fig. 4.5(a-c) illustrate

solution on the rc201 test case.

Subsequently, [CHKK12] illustrates how the concept of adaptive meshing, provided by

the original SOM, is naturally suited for application into a dynamic setting, specifically to

address the dynamic VRP. The experiments show that the memetic SOM method per-

forms better with respect to solution quality than an ant colony algorithm MACS-VRPTW,

a genetic algorithm, and a multi-agent oriented approach, with a computation time used

roughly 100 times lesser.
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(a) (b) (c)

Figure 4.5: Clustering Vehicle Routing Problem with Time Windows, using the rc201 Solomon

test case. (a) Obtained solution. (b) Same solution after removing empty clusters. (c) A classical

VRPTW solution obtained after projecting cluster centers to their (single) assigned requests.

4.4/ PARALLEL COMPUTING FOR EUCLIDEAN TRAVELING SALES-

MAN PROBLEM

4.4.1/ SOLVING TSPS ON GENERAL PARALLEL PLATFORMS

The Euclidean traveling salesman problem (TSP) is a classical and widely studied combi-

natorial optimization problem. The problem is NP-complete [Pap77]. It consists of finding

a shortest tour passing to a set of N cities located in the plane, such that each city appears

in the tour only once. For years, a lot of research has been done in the TSP field, a de-

tailed literature on heuristics and metaheuristics methods can be found in [JM02, JM97]. It

appears that the best performing approaches for TSP are specific and very sophisticated

implementations of simple local search methods such as 2-Opt, 3-Opt, and Lin-Kernighan

(LK) and that metaheuristics like tabu search of genetic algorithms are time consuming

methods. Compared to other metaheuristic approaches, memetic algorithms that com-

bined local search into population based genetic algorithm look to be superior. However,

very few metaheuristic approaches appear to be competitive with the Helsgaun [Hel00]

implementation of the LK heuristic, on both computation time and solution quality. As far

as we know, the memetic algorithm of Nguyen [NYYY07], that already includes LK as a

main embedded local search, looks very competitive, even for large size problems. The

simpler Iterated LK heuristic appears to be the better choice if good solutions are required

in short time. Then, a difficult question to answer is how to adapt such complex powerful

heuristics for the TSP to the multi-processor parallel platforms.

A lot of applications have studied parallelism of work stations or clusters to accelerate

algorithms for TSP. They can be often based on genetic algorithm or data and subdivision

partition. For example, the studies and applications [Kar77, Kar77, PMM88, KL89, JK90,

Ces96, SOS97] more or less investigate partition and subdivision of data. They subdivide

the set of input cities into smaller sets, and compute an optimal sub-tour for each subset.

These sub-tours are then combined to obtain the tour for the entire problem. Different

studies of coarse-grained parallel genetic algorithmic can be found in [WmS+05, NYYY07,

Bor06]. Such methods can also be combined with Lin-Kernighan local search heuristic as

in [BHP01, Hel00]. These methods are generally executed on a cluster of workstations
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with high granularity.

4.4.2/ SOLVING TSPS ON GPU PARALLEL PLATFORM

The most frequent GPU applications to TSP use genetic algorithm (GA) or ant colony

optimization (ACO) [Dor92] that are both population based metaheuristics. Other GPU

implantations consider parallel computation for neighborhood operators in simple local

search.

Population based methods such as AG and ACO are good candidate for parallel execu-

tion when considered at a high granularity level, where parallelism takes place at level

of a single solution. Then, parallelisms resides in the multiple evaluations and opera-

tions performed independently on each individual (solution) of the population. Parallelism

resides in data duplication and not in input data partition. Some examples of GPU imple-

mentations based on GA are proposed by [YCP05, DMMC09, CDJN11, PJ09]. The study

of ACO’s parallel algorithms has been figured out by [Stü98, TRFR98]. In years, several

ACO GPU implementations have been proposed as [You09, WDZ09, CGN+13, DDGK13].

Such GPU implementations can reach an acceleration factor as big as 20 for small size

TSPs in comparison to the sequential version on CPU. However, the methods have the

common weakness in memory employment. These population based methods need sig-

nificant memory space to store the solutions, so when the instance size increases, the

memory space needed will go beyond the hardware’s capability. In a device with limited

memory, the instance size should diminish as the number of processing units augments.

This limits the performance of this model for large size instances.

Some GPU implantations that compute neighborhoods for local search or tabu search

methods are also proposed as in [JJL08, FT11, Luo11] for solving TSPs. Generally, to

each thread is associated the computation of some neighbors in neighborhood. Because

of the large size of neighborhoods that grows at least as the square of input size (for

2-Opt specially), it is a very difficult task to assign the processors to the neighbors. They

consume a lot computing resources and larger size problems with more than five thou-

sand cities stay always the endpoint for these methods. Moreover, from our knowledge,

we did not find GPU implementation of SOM to the Euclidean TSP in the literature, and

no GPU implementations for large size TSP problems with up to thirty thousand cities, as

we present in this document.

4.5/ CONCLUSION

We have presented some background and literature survey on GPU implementations

of SOM algorithm, and application to structured meshing in stereovision and to routing

problem as TSP. We did not find GPU implementation of SOM in 2D and 3D space,

as a distributed and decentralized algorithm as we propose. It looks that current GPU

parallel models for mesh generation mainly focus on triangulation methods. Also, current

GPU models for solving TSP have difficulties in handling large size instances, and their

shortcomings resides in important memory use.

One important point of the new parallel model for SOM presented in this document, being

able to address the two problems of meshing and routing, is that it proceeds by a cellular

decomposition of the data, i.e. the disparity map or the set of cities in the plane, such
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that each processing unit represent a constant and small part of the data. Hence, the

approach should be more and more competitive according to the increase of the physical

cores, and be able to deal with very large size problems at the same time.
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5
PARALLEL CELLULAR MODEL FOR

EUCLIDEAN OPTIMIZATION PROBLEMS

5.1/ INTRODUCTION

In this chapter, we will center our attention to present the proposed cellular GPU parallel

model for massive parallel computation on some Euclidean optimization problems. Firstly,

we detail the partitioning of the problem input data, called distribution map, between a set

of cells organized in a two-dimensional cellular matrix and that define the computational

level of granularity. To each cell, is assigned a single processing unit. While data de-

composition is not a new way of dealing with parallelism in general, here, we specifically

assume a linear association from input data to computation cores as the problem size

increases, when dealing with Euclidean optimization problems. This is the main assump-

tion that makes us speak about massive parallelism, and allows to address large size

problems. Each cell is responsible for a constant part of the data. It is also assumed

that distributed computation between processors has no central control, unlike most of

current metaheurisctics on GPU that use GPU calls from a sequential master algorithm.

We present and discuss the main characteristics of the approach, its advantages and

shortcomings, with regards to standard GPU approaches in combinatorial optimization.

Secondly, we give the principle of the model application to two types of problems. The first

type are local dense stereo-matching problems. The solution partition is standard in that,

each pixel is already a basic processing unit. Parallel local dense winner-takes-all meth-

ods will be applied for that problems. Second type of problems are Euclidean clustering

problems, called meshing problems here, that include the standard Euclidean traveling

salesman problem. They are addressed by using the self-organizing map procedure as

a simple and distributed heuristic for that problems. The continuity between the applica-

tions is that meshing is applied to a disparity map obtained from stereo-matching, and

that TSP solution is also a mesh in the plane. Both approaches and applications share in

common distributed and massive parallelism at cellular level.

This chapter contains three main sections. The first section presents the principle of data

and treatment decomposition within a matrix of cells and threads, and the main char-

acteristics of the general parallel computation model. The second section discusses its

application to stereo-matching, even if the cellular decomposition is straightforward since

one pixel stands for one cell. The third section details the cellular parallel computation

model for the self-organizing map procedure that we specifically propose, and its applica-

tion to meshing generation according to a disparity map, and traveling salesman problem.
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5.2/ DATA AND TREATMENT DECOMPOSITION BY CELLULAR MA-

TRIX

Here, we expose the main characteristics of the parallel cellular model proposed to ad-

dress some Euclidean optimization problems. In such problems, the input data of the

problem are numerical entities distributed onto a surface or plane. We assume that the

input data is given by a distribution map representing some population of values over the

plane. Such distribution map, also called density map, can either be a matrix of pixels

for image processing or a set of points representing requests or customers located in the

plane for transportation applications.

Figure 5.1: Partitioning of the input distribution map.

Then, based on such distribution map, one important point of the parallel computation

model presented in this document, is that it proceeds by a cellular decomposition of the

data, where each cell of the decomposition is necessarily assigned to a single process-

ing unit, or thread for GPU platform, and represents a constant part of the input data

according to the problem size.

Fig. 5.1 illustrates the partitioning. In this figure, the input data distribution map lying at

the bottom are partitioned into a matrix of cells, represented in the figure as map of cells

juxtaposed to the former. A data element from the input distribution map can be a pixel or

more simply, a point in the plane. To each cell corresponds a single thread that will com-

pute locally based on its cell contents as well as on the contents of its local neighborhood

cells. It could follow from such neighborhood interactions concurrent accesses to shared

data.

An important assumption of the model is that a given cell represents a constant and small

part of the input data. Hence, according to the increase of physical parallel processing

units in the future, the approach should be more and more competitive, while at the same

time being able to deal with larger size problems. This property holds true because of the

linear memory needed corresponding to the distribution map size. We will illustrate that

point in experiments by systematically analyzing the influence of the input data size on

performances, and dealing with large size instances.

The parallel cellular model offers some advantages in comparing with some current paral-
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lel optimization approaches on GPU. For example, when looking at the GPU applications

to the standard Euclidean traveling salesman problem, the main optimization approaches

executed on GPU are population based metaheuristics, like the genetic algorithm or ant

colony, or neighborhood search methods. Since population based methods are based on

data duplication, the more is the population size, the less is the instance size contained

in a standard GPU with limited memory size. For the neighborhood search, that is based

on parallel computation of the solution neighbors, it is worth noting that the fast increase

of neighborhood size limits the size of the problem being addressed. For example, a

simple 2-opt neighborhood operator already generates O(N2) neighbors. According to

recent literature on GPU applications, it looks that the larger size problems stay as the

endpoint for these models. We do not see GPU application to the traveling salesman

problem using more than about 5,000 cities. Here, we will address an instance with up to

about 30,000 cities. However, the classical models are generic methods, complementary

to the proposed cellular method. It should be possible to use cellular parallel computation

into a population based framework, or combine classical neighborhood operators with it.

Also, one can execute local search based on a linear decomposition of the data. Another

difference, is that current approaches are mixed sequential/parallel methods, whereas

our method addresses distributed computation between cells with no central control. Cel-

lular genetic algorithms also implement distributed control, but the model presents hight

granularity with input data duplication in population of solution. Also, classical methods

necessitate a construction method, to first build an initial solution that will be improved by

the metaheuristic. In our case, the method generates a solution from scratch.

The parallel cellular model presents some shortcomings. It is first restricted to Eu-

clidean problems and specific classes of problems. Here, we address local dense stereo-

matching problems, from the one hand, and meshing problems, that are clustering prob-

lems in the plane with topological relationships between cluster centers, on the other

hand. There exist interactions and concurrences betweens threads in accessing memory

space. In stereo-matching problems, the matching cost aggregation needs added den-

sity values from its neighbors in its support region. While in the meshing problems, the

grid nodes of the meshing share some common parts, and are concurrently accessed by

neighborhood threads. All these interactions and concurrences in memory access need

atomic operations to coherently update the memory, but in a sequential order. The be-

havior of the model can depend on the data distribution. As the data distribution may

present great variations of spatial density, it should be the case that some cells would

have a more important computation work than others. This introduces divergence be-

tween thread execution and makes computation serial. It is worth noting that uniform

distribution corresponds to the most balanced cellular decomposition and hence to equi-

librated multi-processor load. This is what we call ”massive parallelism”, the theoretical

and ideal possibility to execute O(N) simultaneous parallel operations, with N the problem

size, in average for uniform or bounded distributions. We now present our four applica-

tions, that are also referred in [ZCW+13, ZWC+13a, ZWC+13b, WZC13], of that cellular

parallel model.

5.3/ APPLICATION TO STEREO-MATCHING

In the previous section, we have introduced the cellular parallel GPU model, and pre-

sented the details of the partitioning of the input distribution maps. We now present the
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stereo-matching methods that we have implemented on GPU. We present the parallel

model, the two applications addressed, and recall the winner-takes-all method.

5.3.1/ LOCAL DENSE STEREO-MATCHING PARALLEL MODEL

In local dense stereovision, the stereo-matching is based on local pixel intensity values of

the input image pairs. The methods for these problems assume that the density and inten-

sity configurations are similar in the neighborhood of homologous pixels. So, a matching

cost is defined between the window around the left pixel to be matched and the window

around the candidate pixels in the right image. The window is also called support region.

Between local dense matching methods, the differences are mostly in the matching cost

computation, and in aggregation of the matching cost in support region for each pixel.

Generally, based on the support region, methods can be classified into two branches:

the fixed window methods, whose support region has a fixed shape and dimension, and

the adaptive window methods, in which the support region pixel can represent the texture

segment in its neighborhood. We will investigate the two types of methods.

The cellular parallel computation model used for stereo-matching problems is simply the

pixel decomposition level of the image. The model is straightforward in GPU platforms

for image processing. The input distribution maps are mainly the left image and the right

image. For every input image, the partition we used for the cellular matrix is then the

pixel partition itself. Each pixel corresponds to a single cell of the parallel model, and to

a single thread. Each thread is in charge of one pixel, and the thread will handle all the

necessary operations at the pixel location, such as computing window aggregated costs

between neighborhood pixels.

In this document, we propose stereo-matching GPU implantations for two methods and

their variants: a CFA stereo-matching method with fixed window size, and a near real-time

stereo-matching method based on adaptive-window cost aggregation. Both methods use

the winner-takes-all selection method of homologous pixels.

5.3.1.1/ CFA STEREO-MATCHING APPLICATION

This first approach is a naive and straightforward implementation of the CFA stereo-

matching method originally proposed by Halawana [Hal10] based on winner-takes-all

method, applied on two color components only. The application proposed in this docu-

ment extends the experiments and evaluations originally proposed in [Hal10]. We system-

atically study influence of image size, and the trade-off between quality and computation

time, on both CPU and GPU and extend comparisons with other similar methods.

In the acquisition of the color images, two types of cameras can be used: the cameras

that are equipped with three sensors associated with beam splitters and color filters pro-

viding the so-called full color images whose pixels are characterized in Red, Green and

Blue levels, and the cameras which are equipped only with a single-sensor. In the sec-

ond case, the single-sensor can actually deliver a color filter array (CFA) image, of which

every pixel is characterized by a single color component, which can be one of the three

color components: Red (R), Green (G) and Blue (B). So, the missing color components

have to be estimated at each pixel. This process to estimate the missing color compo-

nents is usually referred as CFA demosaicing and generates a demosaicing color image,
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where every pixel is presented by an estimated color point. The CFA stereo-matching

problem refers to the stereo-matching applied to CFA-images as input. The originality of

the Halawana method consists in only estimating the second color component of a pixel,

then avoiding the use of the third one.

5.3.1.2/ REAL-TIME STEREO-MATCHING APPLICATION

The real-time stereovision is an important branch in stereo-matching problems, since the

constraint on computation time is very important for applications that run at video rate.

So, the running time of stereo-matching methods used should be less than 34 ms which

is generally the image acquisition time in filming the videos. Despite a substantial GPU

acceleration over CPU, the previous parallel method used for CFA-images was not able to

reach real-time computation time. What we have to do is to find out one efficient matching

strategy to pick out the right homologous pixel in a set of candidates, which is the most

time-consuming part in stereo-matching processing. To improve quality results, and also

reduce computation time, we investigate memory organization, adaptive window strategy

and a last refinement step to eliminate out-layers.

5.3.2/ STEREO-MATCHING WINNER-TAKES-ALL METHOD

While stereo-matching problems presented in their general form are NP-hard problems

[KU03, Vek99], this does not prevent from using very simple search strategies, as it is the

Winner-Takes-All (WTA) principle. In the stereo-matching process, to each pixel of the

left image is associated a thread. Then, the thread has simply to find out the best pixel

in a set of candidate pixels in the right image, as the homologous pixel for the pixel in

the left image. The data can be illustrated by Fig. 5.2 and the thread execution process

is presented in Algorithm 1. In the figure, given a pixel xl in the left image, a set of

candidate pixels in the epipolar line in the right image are chosen. Then, for each of

these candidates, the aggregated matching cost is computed between the candidate and

the referred pixel xl, taking care of the window region around pixels. With the comparison

among the computed matching costs for all the candidates, the homologous pixel in the

right image is derived based on the WTA principle. The shift for which the matching cost

is the lowest is selected. Thus, the estimated disparity d̂w
l

(xl, y) at the pixel xl corresponds

to the shift s of the right pixel, at which the matching cost is the minimum. It can be

expressed as Equation 5.1, here with the SSD matching cost.

Figure 5.2: Given one pixel in the left image, picking out the best candidate pixel in the right

image.

d̂l(xl, y) = arg min
s

(S S Dg(xl, y, s)) (5.1)
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Algorithm 1 Parallel stereo-matching estimates the disparity s for pixel (xl, yl) in the left image.

Require: the pixel (xl, yl) in the left image and those candidate pixels (xr, yr) in the right

image.

Ensure: the disparity s

1: for xr ← 0 To xl; yr = yl do

2: S S D; // computing the window aggregated matching cost SSD for pixel

(xl, yl) and (xr, yr);

3: if S S D == MIN then

4: s← xl − xr;

5: end if

6: end for

7: Return s;

Note that the left image pixel is used as the reference in the cost computation as default.

So, we use the l subscript in the estimated disparity symbol, s ranging from smin to smax.

5.4/ APPLICATION TO BALANCED STRUCTURED MESHING

In this section, we first present the standard on-line and sequential self-organizing map

algorithm as stated originally by Kohonen [Koh01, Koh82]. We present the problem of

structured mesh generation as a balanced clustering problem in the plane dealing with

an hexagonal topological grid (the neural network grid or mesh) that must adapt to an

underlying distribution in the plane (the distribution map). Then, we detail the parallel

model proposed for the SOM implantation on GPU and its application to both balanced

stuctured mesh problem and also traveling salesman problem.

5.4.1/ THE SELF-ORGANIZING MAP ALGORITHM

The standard self-organizing map [Koh01, Koh82] is a non directed graph G = (V, E),

called the network, or topological grid, or structured mesh, where each vertex v ∈ V is

a neuron having a synaptic weight vector wv = (x, y) ∈ ℜ2, ℜ2 is the two-dimensional

Euclidean space. Synaptic weight vector corresponds to the vertex location in the plane.

The set of neurons V is provided with the dG induced canonical metric dG(v, v′) = 1, if and

only if (v, v′) ∈ E, and with the usual Euclidean distance d(v, v′).

Algorithm 2 Sequential self-organizing map training procedure.

1: Randomly generate a network of neurons (regular grid or ring);

2: for iter ← 0 To tmax do

3: Randomly extract a point p from the data set;

4: Perform competition to select the winner neuron n∗ according to p;

5: Apply learning law to move the neurons of a neighborhood of n∗;
6: Slightly decrease learning rate α and radius σ of neighborhood

7: end for

The training procedure structure is given in Algorithm 2. A fixed amount of tmax iterations

are applied to a network, the vertex coordinates of which being initialized to a regular
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hexagonal grid (each vertex with 6 neighbors), or a randomly generated ring (for TSP).

The data set is either a distribution map or a set of cities, from which are extracted data

points by a roulette wheel mechanism. Note that the distribution map (disparity map)

stands for a density map, where pixel value represent some point density value in the

plane. Each iteration follows three basic steps. At each iteration t, a point p(t) ∈ ℜ2 is

randomly extracted from the data set (extraction step). Then, a competition between neu-

rons against the input point p(t) is performed to select the winner neuron n∗ (competition

step). Usually, it is the nearest neuron to p(t). Finally, the learning law (triggering step)

presented in Equation 5.2 is applied to n∗ and to the neurons within a finite neighborhood

of n∗ of radius σt, in the sense of the topological distance dG, using learning rate α(t) and

function profile ht. The function profile is given by the Gaussian in Equation 5.3. Here,

learning rate α(t) and radius σt are geometric decreasing functions of time. To perform a

decreasing run within tmax iterations, at each iteration t, coefficients α(t) and σt are mul-

tiplied by e
ln
χ f inal/χinit

tmax with χ = α and χ = σ, χinit and χ f inal being, respectively, the values

at starting and final iteration. Note that a SOM simulation is characterized by the five

running parameters (αinit, α f inal, σinit, σ f inal, tmax).

wn(t + 1) = wn(t) + α(t) × ht(n
∗, n) × (p(t) − wn(t)) (5.2)

ht(n
∗, n) = e

−dG (n∗ ,n)2

σ2
t (5.3)

(a) (b) (c)

Figure 5.3: A single SOM iteration with learning rate α and radius σ. (a) Initial

configuration. (b) α = 0.5, σ = 6. (c) α = 1, σ = 12.

Application of SOM to the stereo disparity map consists of applying the training procedure

to a structured hexagonal mesh (the network). According to a density map, that is a

simple transformation of the disparity map. Examples of a basic iteration with different

learning rates and neighborhood sizes are shown in Fig. 5.3 for such a hexagonal regular

grid, where each vertex has exactly 6 neighbors. The density map used for training is

a simple transformation of the disparity map. It consists, before the training starts, in

removing background values (very low disparity values) and increasing contrast between

disparity values. This is done in order to increase the data point density for objects that

are closest to the camera in the scene. Here, density values are set to the square of the

disparity values.

In the TSP application, the grid which is used for representing the traveling salesman tour

is a ring structure with a fixed number of vertices (neurons) M. Specifically, M is set to
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(a) (b) (c) (d)

Figure 5.4: A single SOM iteration with learning rate α and radius σ. (a) Initial configuration. (b)

α = 0.9, σ = 4. (c) α = 0.9, σ = 1. (d) α = 0.5, σ = 4.

2N, N being the number of cities. Examples of a basic iteration with different learning

rates and neighborhood sizes are shown in Fig. 5.4.

5.4.2/ THE BALANCED STRUCTURED MESH PROBLEM

In the field of artificial vision, robot navigation and 3D surface reconstruction, a lot of work

has been done to develop effective stereo-matching algorithms producing high quality

disparity maps. Such a disparity map is obtained by a matching process of the left image

and the right image obtained by a stereo camera. The disparity map is a 2D image which

represents the 3D surface “seen” by a camera. But few approaches of stereo-matching

and surface reconstruction currently match the requirements of real-time execution. Al-

gorithms on GPU are now developed to respond to this problematic. Furthermore, the

volume of data stored and manipulated in the disparity map is often very important and

may constitute an obstacle for real-time algorithms. Here, we address the problem of

building, in a massively parallel way and by using GPU, a compressed and adapted struc-

tured mesh representing a given disparity map. The goal is to represent the 3D scene in

a compressed and efficient way, with more details for objects that are close to the camera

and less for objects that are far from it. The compressed structured mesh obtained in 2D

space, as it is the disparity map, should then allow for fast treatment or visualization in 3D

space, as illustrated in Fig. 5.5.

(a) (b)

Figure 5.5: 3D reconstruction example (a) Input disparity map in 2D. (b) The compressed grid in

3D space.
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Here, the Kohonen’s [Koh01, Koh82] self-organizing map (SOM) algorithm is used as an

heuristic, to achieve such a goal of structured compressed mesh generation according to

a disparity map in a massively parallel way on GPU. The disparity map is the input. It is

used as a 2D density distribution on which the algorithm operates in a massive parallel

fashion by deformation of a 2D hexagonal grid, called the neural grid. The neural grid can

be seen as a visual pattern that adapts and modifies its shape according to the underlying

distribution. The important property is that the grid deformation can respect the density

distribution and topology. This means that high disparity values will be represented by

higher neural grid point densities and that grid points hexagonal neighborhoods will reflect

spatial topology, or distances in 2D and 3D space.

In order to evaluate the adequacy of the generated grid according to the underlying den-

sity map, we state the problem as a balanced clustering problem in the plane, called bal-

anced structured mesh problem, where nodes define deformable cells that cover some

constant part of data density. The definition of the balanced structured mesh optimization

problem needs to consider both the hexagonal grid (the mesh) and the underlying density

distribution map. Fig. 5.6 illustrates the main elements. The target adaptive hexagonal

mesh is illustrated in the left part of the figure. It is defined as a set of hexagonal cells,

each one containing six subdivided triangles. These basic honeycomb cells are the units

used to evaluate the amount of the underlying points they cover. The right part of the

figure shows such an hexagonal cell and its covering points from the density map. In the

example of the figure, the total value covered, called the weight of the honeycomb cell, is

the summation of the underlying point values.

Figure 5.6: Hexagonal structured mesh with honeycomb cells and triangular subdivision (left),

density map covering with of a single honeycomb cell with weight Wk = 62.

Let Mk be the set of honeycomb cells of the mesh. Let Wk be the weight of a single

honeycomb cell, defined as the sum of the underlying point values from the distribution

map. Note, that this weight can be computed by using a standard pixel coloring algorithm

applied to the input distribution map.

W =

∑

k Wk

K
(5.4)

Cost = 100 ×
∑

k |Wk −W |
K ×W

(5.5)

Let W be the average weight of the K honeycomb grid cells defined by Equation 5.4.

We define the optimization problem as the minimization of the average percentage de-
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viation of each individual honeycomb cell weight to the average honeycomb cell weight

as defined in Equation 5.5. Hence, the structured mesh generation problem consists in

minimizing this criteria while preserving the regularity of hexagonal topology, such geo-

metrical constraints being only visually verified in this document.

5.4.3/ EUCLIDEAN TRAVELING SALESMAN PROBLEM

We also use the SOM as an heuristic to address the Euclidean traveling salesman prob-

lem (TSP). In that case, the network is a ring randomly initialized. The ring will deploy

from scratch and progressively will match the cities.

The general traveling salesman problem can be simply defined as a complete weighted

graph G = (V, E, d), where V = {1, 2, · · · ,N} is a set of vertices (cities), E = {(i, j)|(i, j) ∈
V ×V} is a set of edges, and d is a function assigning a weight di j to every edge (i, j). The

objective is to find a minimum weight cycle in G which visits each vertex exactly once.

The Euclidean TSP, or planar TSP, is the TSP where cities are points of the plane and

weight is the Euclidean distance between cities. It consists, correspondingly, of finding

the shortest tour that visits N cities where the cities are points in the plane and where the

distance between cities is given by the Euclidean metric.

5.4.4/ PARALLEL CELLULAR MODEL

The goal of structured mesh generation is to homogeneously divide a density map, the

input distribution map in our applications, between the many triangles of the structured

hexagonal mesh. In the TSP, the goal is to deploy a ring network among the cities and

generate a smallest tour. We explain here the main components and algorithmic proce-

dures of the cellular parallel model for SOM and these two applications. First, we present

the data treatment partition according to the cellular matrix. Secondly, we detail the data

impact on the thread activity which depends on data density. Third, we explain how par-

allel spiral search are performed for closest point findings, and how this procedure is

critical according to computation time performance. Then, we illustrate two results of the

two applications by visual representation.

5.4.4.1/ DATA TREATMENT PARTITION

We first present the model for structured meshing and below its adaptation for TSP. For

the balanced meshing problem, the space is defined by the distribution map dimensions

of size W × H, and each grid point can move on the density map. Given an input data

density map of size W × H, a two-dimensional topological grid is created, of a given size

Wg × Hg. Note that each grid node is indexed in its grid position, and that the size of the

grid is lower than the size of the density map, in such a way that the grid constitutes a

compressed representation of it. Note also that each grid node has coordinates (neuron

weights) in the Euclidean plane, and that these coordinates are defined by the dimensions

of the density map.

In order to implement the parallel level, at which parallel execution will take place, we

now introduce a supplementary level of decomposition of the plane and input data: the

cellular matrix. Between the topological grid and the density map, we now introduce a
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two-dimensional cellular matrix of size W/co × H/co, where co is a preset constant fac-

tor. The three main data structures of the parallel model are illustrated in Fig. 5.7. This

intermediate cellular matrix is in linear relationship to the input size. To each cell corre-

sponds a single thread. Its role is to memorize the grid nodes in a distributed fashion and

authorize many parallel closest point searches in the plane by a spiral search algorithm

[BWY79].

Figure 5.7: Parallel cellular model: the input density map, the cellular matrix and hexagonal grid.

To a given cell corresponds a part of the input data, a part of the structured mesh, and a thread.

Each cell in the cellular matrix is a basic training unit and will be handled by one thread.

Each cell is responsible for executing a complete SOM process locally. It is at this level

that massive parallelism takes place since the threads correspond one-to-one with the

cells and are in linear correspondence to the input density map size, in O(W × H).

Application to the traveling salesman problem is very similar. The three main data struc-

tures of the parallel model are illustrated in Fig. 5.8. The input distribution map is the set

of cities in the plane itself. The network is now a ring of size M = 2N, where N is the

number of cities. The scale of cell partition is ⌈
√

N × λ⌉2, with λ a constant factor, set to

λ = 1.1 in experiments. The number of parallel processors needed is O(N). The memory

complexity is also O(N).

The many SOM processes that are activated simultaneously correspond to the cellular

matrix decomposition. The four steps of the SOM algorithm are executed in a distributed

way. These steps are the input data point extraction step according to the density map,

the closest point or winner neuron finding step, the application of learning rule step, and

the parameter decrease step. Then, this process, performed independently in parallel

by the many cells/threads, will be repeated a given number of times as stated by the

parameter tmax of the original SOM algorithm. Note that tmax is now the number of parallel

executions, rather than the number of sequential iterations. We now give more details

of each SOM main steps. Algorithm 3 resumes the parallelized SOM algorithm with cell

partition. An important point for the algorithm to be correct, is to guarantee a parallel data
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Figure 5.8: Parallel cellular model: the input cities, the cellular matrix and the ring structure, used

in TSP implementation. To a given cell corresponds a part of the input data, a part of the ring, and

a thread.

extraction step that reflects the data distribution. We detail that point.

Algorithm 3 Parallel self-organizing map training procedure.

1: Generate a regular grid of neurons;

2: Calculate activation probability for each cell;

3: for iter ← 0 To tmax do

4: Check in parallel whether celli(i = 1, 2, . . . , num) is activated or not;

5: if celli is activated then

6: Randomly extract data point (from density map or cities) p from the celli;

7: Perform competition to select the winner neuron n∗ according to p;

8: Apply learning rule to move the neurons of a neighborhood of n∗;
9: Wait until all the other cells finish their works;

10: Slightly decrease learning rate α and radius σ of neighborhood

11: end if

12: end for

5.4.4.2/ THREAD ACTIVATION AND DATA POINT EXTRACTION

pi = (
qi

max{q1, q2, . . . , qnum}
) × δ (5.6)

First, is the problem of random data point extraction by a roulette wheel mechanism per-

formed in parallel and according to the density distribution. As a solution to this problem,

we propose a particular cell activation formulae in Equation 5.6 to determine if a cel-

l/thread will be activated at each parallel iteration. The pi in the equation is the probability
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that the cell i will be activated. Here, the references of the parameters in the equation are

different following different problems:

• for balanced meshing processing, qi is the sum of the pixel values of the density

map that correspond to the cell i, i.e. the density of the cell, and num is the total

number of cells. Then, a cell is activated proportionally to its density value according

to the whole density map. Hence, the cell with the highest density will be activated

with probability one. The empirical preset parameter δ is used to adjust the level of

activity of the threads when necessary in order to avoid too many memory access

conflicts. In this application, parameter δ will be set to 1. The influence of δ in the

iteration is shown in Fig. 5.9 for a single step parallel iteration.

• for the TSP processing, qi is the number of cities into the cell i, and num is the

number of cells. The empirical preset parameter δ is used to adjust the degree of

activity. As a result, the more cities a cell contains, the higher is the probability this

cell to be activated to carry out the SOM execution at each parallel iteration. In this

way, cell activation depends on the input data density distribution.

(a) (b)

(c) (d)

Figure 5.9: Influences of different δ values on the ”cones” image pair. (a) initial state. (b) δ = 0.1.

(c) δ = 0.5. (d) δ = 1.0.

prob(i) =
di

∑cellNum
j=0

d j

(5.7)

To complete the extraction step, and obtain a data point in the plane, the added strategy

could vary:



CHAPTER 5. PARALLEL CELLULAR MODEL FOR EUCLIDEAN OPTIMIZATION PROBLEMS 70

• for the disparity map meshing processing, each activated cell/thread simply per-

forms a local roulette wheel mechanism into the cell itself, in order to produce the

extracted pixel in proportion to its local intensity. The probability of a pixel choice

local to a cell is defined by Equation 5.7, where di the density value of that pixel in

the cell, cellNum is the number of pixels in the cell, and d j their density values.

• for the TSP processing, the activated processing unit randomly chooses a city from

the cities located in its own cell with uniform probability, unlike the original sequential

SOM which randomly extracts a point from the entire input data set.

5.4.4.3/ PARALLEL SPIRAL SEARCH AND LEARNING STEP

Figure 5.10: Spiral searches performed in parallel.

After the extraction step, each activated GPU thread has gotten its input data point for fur-

ther operations. The next job is to find out the nearest topological grid node corresponding

to the extracted point. Each activated GPU thread, with its input extracted point, performs

a spiral search [BWY79] on the cellular matrix that contains the topological grid nodes.

Spiral searches operate in parallel as illustrated in Fig. 5.10. The spiral search proceeds

from the cell that contains the extracted point, as in the middle of the circle of the figure

and progressively extends the search to the cells surrounding until a grid node is found.

Once there is one grid node that is found, it is guaranteed that it is not necessary to

search any cell, that does not intersect the circle of radius equal to the distance to the

first grid node found and centered at the extracted point. It is worth noting that a single

spiral search process takes O(1) computation time on average for a bounded distribution

according to the instance size. Then, one of the main interests of the proposed approach

is to allow the execution of approximately N spiral searches in parallel, where N = W × H

is the problem size, or the number of cities, thus transforming a O(N) sequential algo-

rithm search into a constant time O(1) theoretical parallel algorithm in the average case

for bounded distributions.
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The next step is the learning step, each thread performs the displacements of the grid

nodes in the plane according to the learning rule. The displacement involves not only

the grid node found (winner neuron), but also its closest neighbors in the sense of the

topological distance into a neighborhood of radius σt. The modifications of the grid node

locations is done according to Equation 5.2 and Equation 5.3. The last step in SOM

processing is to decrease the learning parameters. The main operation is to modify the

values of the learning intensity and the radius of neighborhood. In experiments, this

specific last step is carried out on CPU for convenience in order to avoid the load and

duplication of the parameters into the GPU memory space.

5.4.4.4/ EXAMPLES OF EXECUTION

(a) (b) (c)

Figure 5.11: Different steps of training procedure on the “cones” disparity map instance.

(a) (b) (c)

Figure 5.12: Different steps of training procedure on the pr124 instance.

The main parallel algorithm repeats tmax times the parallel iteration. To resume the algo-

rithm behavior, Fig. 5.11 and Fig. 5.12 present visual representations of the solutions at

different iteration steps of the simulation, for the two applications respectively. Fig. 5.11

presents meshing on the “cones” image pair from Middlebury database and presented in

Appendix. Fig. 5.11(a) presents the initial regular grid. Fig. 5.12 presents application to

TSP instance pr124 from TSPLIB [Rei91]. Fig. 5.12(a) presents the random initial ring

for TSP. For each application case, the other two figures (b-c) present the simulation at

intermediate step, and final step respectively. At the end of the iterations, the hexagonal
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grid can represent the ‘texture’ of the input density map in Fig. 5.11(c). Similarly, at the

end of the process, the ring network has almost completely been mapped onto cities, as

illustrated in Fig.5.12(c).

5.5/ CONCLUSION

In this chapter, we have defined the proposed cellular GPU parallel model, which is the

central heart of our work. We figured out the most important step in parallel model, the

partitioning of the input distribution map. The cellular model has adapted a cellular matrix

into the execution. The small tasks from the partitioned input distribution map are as-

signed to cells of the cellular matrix, and the cells are assigned to processing units (GPU

threads). Resulting from these partitioning and mapping of tasks, the needed cores for

computation is linear with the size of input distribution density map, which brings the

main advantage of the proposed cellular parallel model: dealing with large size problems.

Then, we detailed the cellular parallel model for applications we have chosen for test-

ing the efficiency of the model. The applications are in two groups: the stereo-matching

problems and the balanced meshing processing, with also application to the standard Eu-

clidean traveling salesman problem. Experiments based on this model will be introduced

in following chapters.



6
GPU IMPLEMENTATION OF CELLULAR

STEREO-MATCHING AGORITHMS

6.1/ INTRODUCTION

In last chapter, we have presented stereo-matching problems as good candidates for

parallel GPU processing. We have presented a general cellular parallel model intended

to handle general Euclidean problems by data partition, and where local dense stereo-

matching method naturally fits. In this chapter, we present the details of two GPU stereo-

matching methods. The first application presents the main algorithmic components nec-

essary for stereovision on CFA image pairs. The basic building blocks of a standard GPU

local dense stereo-matching implementation are outlined and discussed. Starting from

such preliminary study, different mechanisms are proposed to enhance performances on

both solution quality and computation time. They are exposed in the second application

devoted to GPU real-time stereovision implementation. We present the modifications at

the levels of memory management, cost computation, adaptive window aggregation and

disparity map refinement step. This new approach will lead to speedup in computation

time and quality. Results and comparative evaluations are illustrated by experiments on

standard image processing databases. Evaluations are systematically performed accord-

ing to the image size increase.

6.2/ CFA DEMOSAICING STEREOVISION PROBLEM

The method that is presented in this section is an alternative solution to match pixels

by analyzing the CFA images without reconstructing the full color image by demosaicing

processing. The following contents in this section are organized in two parts. We first

present the partial demosaicing matching method including the estimation of the second

color component and the matching cost. Then, we describe the implementation on CUDA

and the experiments to evaluate the performances.
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6.2.1/ CFA DEMOSAICING STEREOVISION SOLUTION

6.2.1.1/ CFA STEREOVISION PROCESS

For better carrying out the comparison, the procedures of the experiments on CPU and

on GPU are almost the same. The total processing can be illustrated as Fig. 6.1.

Figure 6.1: Partial demosaicing stereo-matching method flowchart.

Since the demosaicing methods intend to produce demosaiced color images, which are

maybe ”visually pleasing”, they will try to reduce the presence of color artifacts, such as

those false colors and zipper effects, by filtering the images [YLD07]. That may some-

times lead to the rejection of color texture information, which is useful to match homol-

ogous pixels, from the demosaiced color images, rather than displaying images. The

straightforward stereo-matching methods, matching pixels in image pairs acquired with

single-CCD cameras, are to first obtain the CFA images. As the datasets are all full color

images, at the very beginning of the experiments, a simulation step for every pair of im-

ages is realized to obtain their CFA images needed, by keeping only one of the three

color components at every pixel. This work is done by GPU and by CPU, respectively.

The whole evaluation is performed according to the spatial arrangement of the Bayers

CFA, referring to Fig. 6.2. Then, for every CFA image, the partial demosaicing step is

carried out, on GPU and on CPU, respectively. So, the left demosaiced color image and

the right one are produced. The estimation method is the edge-adaptive demosaicing

method proposed by Hamilton et al as presented in [HA97].

The original full color image, as shown in Fig. 6.3(a), and the left demosaiced color image

by Hamilton’s method, as shown in Fig. 6.3(b), look somewhat similar. However, zooming

on the square areas outlined in these images, as shown in Fig. 6.3(d) and Fig. 6.3(e),

shows that textured areas are locally different.
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(a) Original color component. (b) The SCC to estimate.

Figure 6.2: CFA color components and their SCC.

(a) Left full color image.
(b) Left partially demosaiced

color image.
(c) Estimated disparity map.

(d) Zoom on full color image.
(e) Zoom on partially demo-

saiced color image.

(f) Zoom on estimated dis-

parity map.

Figure 6.3: ‘Aloe’ left image.
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At the end, a disparity map is estimated for each pair of images, as shown in Fig. 6.3(c).

6.2.1.2/ SECOND COLOR COMPONENT

The partial demosaicing matching method starts with the mosaiced CFA images. Here,

the CFA images are those images obtained according to the Bayer color filter. Each two-

by-two submosaic contains 2 green, 1 blue and 1 red filter. Each submosaic covering one

pixel sensor. The mosaiced CFA image is the one whose pixel contains only one color

component according to the Bayer color filter.

Different from the classical methods, which estimate all the missing color components

for every pixel in the CFA images, the partial demosaicing method estimates only one

color component, the Second Color Component (SCC), for every pixel. Here, the SCC is

defined as the color component that is available in the same line, as illustrated in Fig. 6.2.

This means that SCC is the green color for all the red and blue pixels, while for the green

pixels the SCC is the red color component for even lines and the blue color component

for odd lines, as in Equation (6.1).

S CC(x, y) =



















Ĝ(x, y) for red and blue pixels

R̂(x, y) for green pixels in even lines

B̂(x, y) for green pixels in odd lines

(6.1)

6.2.1.3/ SCC ESTIMATION

This method is an edge-adapted demosaicing method presented by Hamilton and

Adams[HA97]. To select the interpolation direction, this method takes into account both

gradient and Laplacian second-order values, by using the green levels available at nearby

pixels and red (or blue) samples located two apart.

For example, in the case of GRG, as illustrated in Fig. 6.2(a), to estimate the missing

green level at the red pixels. This method uses the following algorithm:

a) Approximate the horizontal ∆x and vertical ∆y gradients thanks to absolute differ-

ences as Equation (6.2).

b) Interpolate the green level as Equation (6.3).
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Ĝ =



































G−1,0+G1,0

2
+

2R−R−2,0−R2,0

4
if ∆x < ∆y

G0,−1+G0,1

2
+

2R−R0,−2−R0,2

4
if ∆x > ∆y

G−1,0+G1,0+G0,−1+G0,1

4

+
4R−R−2,0−R2,0−R0,−2−R0,2

8
if ∆x

= ∆
y

(6.3)



CHAPTER 6. GPU IMPLEMENTATION OF CELLULAR STEREO-MATCHING AGORITHMS 77

Since this method well combines two color components in partial derivate approxima-

tions by exploiting spectral correlation in the green plane estimation, the precision is well

guaranteed.

Each pixel with coordinates (x, y) in the partially demosaiced color images is characterized

by a two-dimensional partial color denoted ÎPA. As shown in Equation (6.4), this partial

color point is composed of the available color component and the estimated second color

component.

ÎPA(x, y) =































(R(x, y), Ĝ(x, y))T if x is odd and y is even

(R̂(x, y),G(x, y))T if x is even and y is even

(Ĝ(x, y), B(x, y))T if x is even and y is odd

(G(x, y), B̂(x, y))T if x is odd and y is odd

(6.4)

6.2.1.4/ MATCHING COST

The used matching method is a local dense stereo-matching method also called window-

based approach. It respects the very assumption that the intensity levels of neighbors of

a left pixel are close to those of the same neighbors of its homologous right pixel in the

right image. So, the matching cost is defined between the window around the left pixel

and the window around the candidate right pixels in the corresponding line (epipolar line)

in the right image. The window is shifted over all possible pixels so that a matching cost

between the left pixel and each candidate in the right image is obtained. By the Winner-

Takes-All method, the final disparity estimation is realized by selecting the shift with the

lowest matching cost.

The matching cost, Sum of Squared Differences cost (SSD), is adapted as Equation (6.5),

based on Equation 3.8.

S S D(xl, y, s) =

ω
∑

i=−ω

ω
∑

j=−ω
‖ ÎlPA(xl + i, y + j) − ÎrPA(xl + i − s, y + j)‖2 (6.5)

Where ‖ •‖ is the Euclidean norm, while s is the spatial shift along the horizontal epipolar

line and ω the half-width of the (2ω + 1) × (2ω + 1) aggregation window.

Since these pixels of horizontal lines with the same parity in the left and right partially

demosaiced color images are characterized by the same two color components, we can

reasonably assume that the partial color points of two homologous pixels are similar.

Because the partial costs compare the partial color points of left and right pixels located

on the same horizontal lines, they reach an extremum when the shift is equal to the

disparity.

6.2.2/ EXPERIMENT

6.2.2.1/ EXPERIMENT PLATFORM

We use the well known Middlebury databases [HS06]. The ten datasets used in our

experiments are entitled ‘Aloe’, ‘Bowling1’, ‘Cloth1’, ‘Flowerpots’, ‘Lampshade1’, ‘Midd1’,
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‘Monopoly’, ‘Plastic’, ‘Rocks1’ and ‘Wood1’. All the datasets of 2 views are used here.

The dimensions of the images are different (measured in pixels): the full size images with

height of 1110 and width from 1240 to 1396, the half size images with height of 555 and

width from 620 to 689, the small size images with height of 370 and the width from 413

to 465.

The datasets used are illustrated in Appendix A in Fig. A.1, Fig. A.2 and Fig. A.3,

respectively. In these datasets, the color stereo images are acquired by high resolution

cameras equipped with one-single-sensor [SS02], that’s to say, the full color images are in

fact color images that have been demosaiced by a specific chip integrated in the camera.

They could contain artifacts caused by the demosaiced step. What’s more, the work of

applying a demosaicing step on CFA images, which have been generated by sampling

color components from these previously demosaiced color images, involves applying two

successive demosaicing steps on the CFA images acquired by the camera. However,

since Middlebury is the most frequently utilized databases, a comparison of performance

on different platform will be quite indispensable.

Our experiments are carried out both on CPU and GPU. For the CPU, it is an Intel(R)

Core(TM)2 Duo CPU E8400 of 3.00GHz, and each of the two cores with a cache of

6144KB. The GPU used in the experiments is a GPU GeForce GTX 570 of NVIDIA.

The system, on which the experiment is evaluated, is Ubuntu 11.04 of 32 bits. The pro-

gramming interface we used for parallel computation on GPU is Compute Unified Device

Architecture (CUDA).

6.2.2.2/ CUDA IMPLEMENTATION

Based on our experiment platform, we briefly lay out the CUDA settings and the parameter

values mentioned in our algorithm, taking an image with the size of W ×H as an example.

In our experiments, we use the two-dimension block of size 16 × 16. Each thread takes

care of one pixel and the size of grid is obtained by W+16−1
16

× H+16−1
16

for a given W × H

image. In this experiment, we have created two grids. The first one is for the SCC

estimation step, a grid of W×H threads is created and each thread takes care of one pixel

in the estimation. For the matching cost computation, a second grid of W × H threads is

employed, to compute the matching cost for every pixel at a set of given disparities and

then pick out the best homologous candidate pixel by the Winner-Takes-All method.

In the two steps, the estimation of SCC and the stereo-matching, the executions are

carried on CPU and GPU, respectively. On CPU, for these two steps, all the works are

organized serially. We stock all the date in linear by line priority and we estimate the SCC

one-by-one for all the pixels horizontally. The matching is done in the same way. On GPU,

though the data is stocked in the same way, the executions of jobs are different, referring

to Fig 6.4. The kernels carried out by multi-cores will be sent to GPU, as illustrated in Fig

6.5 (in the figure, the width and the height are the dimensions of images). Every thread

takes in charge of one partition for the estimation of SCC and for the stereo-matching

illustrated in Algorithm 4. The granularity of each execution is determined by the number

of threads per block. Since these threads are executed in parallel, the computation is

accelerated.

A matching is considered as valid when the absolute difference between the estimated

disparity and the given benchmark dω
l

(xl, y) is lower or equal to δ, which is the disparity
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Figure 6.4: CUDA processing flow on CPU and GPU in the experiments.

Figure 6.5: CUDA model in the experiments.



CHAPTER 6. GPU IMPLEMENTATION OF CELLULAR STEREO-MATCHING AGORITHMS 80

Algorithm 4 Executions on GPU.

1: Specify dimensions of grids and blocks;

2: Allocate the problem data input on GPU device memory;

3: Allocate SCC-arrays and CFA-arrays on GPU device memory;

4: Copy the problem data input on GPU device memory;

5: Kernel-1<<< ... >>> (...) // estimating the SCC for every pixel;

6: Free problem inputs;

7: Allocate estimated-disparity-array on GPU device memory;

8: Kernel-2<<< ... >>> (...) // stereo-matching by algorithm 1 for every pixel;

9: Free SCC-arrays and CFA-arrays;

10: Copy the estimated-disparity-array on CPU host memory;

11: Free estimated-disparity-array;

error tolerance. In the experiments this coefficient is set to 1.

6.2.2.3/ EXPERIMENT RESULTS

The experiments are executed on all the ten chosen datasets. The experiment results are

shown in Appendix B in Table B.1 for full size images, Table B.2 for half size images and

Table B.3 for small size images, respectively.

Here, we take the ‘Aloe’ image pair as an example. With the increase of the half-window,

the computation time increases significantly. This results from the increase of the com-

puting density. When the half-window is given as ω, for every pixel in the left image and

for their every possible candidate pixel in the right image, we should compute with a set

of (2ω + 1) × (2ω + 1) pixels to obtain the matching cost. So, when the half-window ω

increases, the computing complexity is a squared function of ω, which is a real challenge

to the capacity of the processors.

Figure 6.6: GPU outperforms CPU in terms of computation time. The average acceleration

obtained in the executions on ’Aloe’ image pair based on half-window from 1 to 10 is marked. The

acceleration increases along with the image dimensions.
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Meanwhile, with the increase of the half-window, and so, the computation intensity, CPU’s

computation time increases more importantly than GPU’s computation time. Moreover, as

illustrated in Fig. 6.6, as the image dimensions augment, the acceleration factor obtained

by using GPU has expanded from 1.75 to 20.75. This means that the GPU offers powerful

computation capacity in intense computation thanks to the parallel organization of the

blocks and the threads on GPU.

The performance of GPU is significantly influenced by the absolute dimension of the

chosen image; here the absolute dimension of an image is defined as the sum of pixels

in the image by multiplying width and height. The nearer to the complete load of the

employed streaming multiprocessor on GPU, the higher performance we get.

The Ratio of Correctly Matched Pixel (RCMP) is the percentage of the well matched

pixels in all the pixels of the image to be matched. As it is shown in Fig. 6.7, for ‘Aloe’

image pair, the RCMP reaches the smooth peak when the half-window is between 4

and 8 (for those textureless image pairs, the half-window should be bigger to have their

peak of RCMP). In fact, whatever the image type, the matching performance increases

with aggregation window half-width in a certain range. Though on CPU and on GPU, all

the single-precision floating-point computations follow the same accuracy standards. The

accuracy-loss is more important on GPU owning to the accuracy problem of floating-point,

that is why the results by CPU and that by GPU may have some deviations, especially

when some cumulations in the computation exists. In our experiments, we use the floating

point in the computation of matching cost with SSD and in the aggregation based on

fixed support window, the deviation occurs at these computations, which can explain the

tolerances between the RCMP by CPU and that by GPU shown in Fig. 6.7(b, d, f). What’s

more, the RCMP reaches the smooth peak when the half-window is between 4 and 8,

while in some textureless image pairs, the half-window should be bigger to have their

peak of RCMP. This implies that the size of the cost aggregation window has significant

influence on the matching quality. Small windows do not contain enough information to

allow a correct matching or for a unique minimum in the matching cost. At the opposite,

too large aggregation windows may cover image regions containing pixels with different

disparities, which violates the assumption of constant disparity inside the aggregation

window. The size of the cost aggregation window should be well adjusted to make sure

that only those useful pixels are covered, and it should be big enough to have sufficient

information for a good stereo-matching result. Meanwhile, since the textures on the image

vary their shapes, so, the aggregation window should be able to use the information of the

textures for a preciser matching. An adaptive window could be more suitable for a better

matching than the fixed window used in this implementation and the shifting window.

In addition, this method is also compared with the classic fixed windows matching meth-

ods, treating full color images and gray-level images, respectively, we used in former

experiments. The results are shown in Table 6.1. The percentage of bad pixel (PBP) is

the percentage of bad matched pixels in all the matched pixels and can be obtained by

PBP = 1 − RCMP. This method performs worse on all these four pairs both in matching

quality and in computation time. That is because this method requires too many refers

to the logical operations in the programming and too many branches in data treatments,

which are the real weaknesses of GPU architecture. These branches and logical opera-

tions lead to great load on to the GPU system when loading data from the memory space,

and waste GPU’s CUDA cores which are powerful in arithmetical operation, by making

them do logical works.
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(a) Compute-time of GPU and CPU on full size

datasets
(b) RCMP of GPU and CPU on full size datasets

(c) Compute-time of GPU and CPU on half size

datasets
(d) RCMP of GPU and CPU on half size datasets

(e) Compute-time of GPU and CPU on small size

datasets
(f) RCMP of GPU and CPU on small size datasets

Figure 6.7: Computation-time and rate of correctly matched pixels (RCMP) obtained with the

adapted SSD computed on the full size ‘Aloe’ stereo image pair for δ set to 1.
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Table 6.1: COMPARATIVE EVALUATION ON THE FOUR MIDDLEBURY DATASETS OF

THREE DIFFERENT SIZES BY DIFFERENT GPU PROGRAMMING VERSION. MEA-

SURED BY ‘COMPUTATION-TIME (CT)’ AND ‘PERCENTAGE OF BAD PIXEL (PBP)’

.

Partial Demosaiced Full Color Gray level

Image Size PBP CT (s) PBP CT (s) PBP CT (s)

Rocks1

Small size 28.76 0.214 25.81 0.191 24.58 0.146

Half size 32.24 0.679 27.87 0.715 25.82 0.913

Full size 37.06 5.811 31.20 5.717 28.93 8.235

Aloe

Small size 27.08 0.214 24.96 0.192 23.96 0.115

Half size 29.33 0.698 25.78 0.697 24.94 0.68

Full size 30.26 5.955 28.98 5.875 26.04 5.595

Cones

Small size 39.18 0.234 29.77 0.229 28.76 0.276

Half size 46.98 2.123 37.36 1.548 36.91 3.024

Full size 52.14 20.569 44.85 11.502 45.16 19.881

Teddy

Small size 45.27 0.23 32.23 0.23 29.86 0.284

Half size 53.69 2.12 38.38 1.55 37.77 3.246

Full size 57.36 27.09 46.58 11.51 47.37 24.922

Avg. 39.95 5.495 32.82 3.330 31.68 5.610

In the CFA demosaicing stereo-matching, the matching cost computation is done with the

GPU parallel architecture, which is very powerful in massive mathematical computation.

The used matching cost SSD, which needs the square computation, requires more oper-

ations in comparing with some other matching costs, such as the AD and SAD, which use

only the basic arithmetic. The employment of a simpler matching cost measure could be

helpful to accelerate the computation of matching cost.

During the stereo-matching, each thread is assigned to execute the whole processing

including the matching cost computation, cost aggregation and WTA operation. The bur-

den on each thread is significant. For the memory usage, the CFA demosaicing stereo-

matching processing stores all the data on the global memory space. Each thread is in

charge of one referred pixel in the left image, that means that for every candidate, the

thread should access the global memory for intensity values needed in cost computation.

Since the global memory access has a high latency, these accesses take quite much

time, and furthermore, make the stereo-matching processing slower.

6.3/ REAL-TIME STEREO-MATCHING PROBLEM

6.3.1/ ACCELERATION MECHANISMS AND MEMORY MANAGEMENT

In last section, we have presented the color demosaicing stereo-matching method based

on WTA optimization method. The experiment results show that this method, based on

fixed cost aggregation window, does not match real-time requirement even though the

employment of GPU does accelerate the stereo-matching processing. This problem leads

us to look for a new color stereo-matching method for better matching quality and a faster
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cost aggregation strategy to better profit from GPU’s parallel architecture.

The new proposed method to reach real-time computation consists of a better mem-

ory management, and comports three important steps: new cost measure that includes

support region information, called SAD-ALD cost measure, cost aggregation in adaptive

window in cross-based support region, and a refinement step. These three steps are

organized to be implemented in the GPU’s parallel architecture.

For the purpose of improving the execution speed, we decided to partition the stereo-

matching work into two parts: first part is the cost computation and the second part is

the cost aggregation with WTA operation. Each of these two parts is assigned to one

CUDA grid. So, the threads in the first CUDA grid will only take the work of computing

the matching cost for each pixel with a set of candidates, and the second CUDA grid will

sum up the matching cost of one pixel and choose the best candidate as the estimated

disparity. A logical 3D memory space will be employed to store matching costs obtained

by the first grid. In the second part, each thread sums up its assigned pixel’s cost values.

Data reuse with shared memory is considered in this step to reduce the accesses into

the global memory space.

The method is a correlation-based technique, which falls into the class of local dense

stereo-matching approaches, and it includes the following key characters:

• A better memory management by using a 3D cost volume of size W × H × R, where

R is the maximum disparity range, and W, H the image size.

• SAD-ALD cost measure combining the adapted sum of absolute differences (SAD)

measure and the arm-length-differences (ALD), where the ALD is the difference of

the adaptive window vertical lengths.

• Adaptive cross-based region for cost aggregation. Proposed by Zhang et al.

[ZLL09], this support region is based on a cross skeleton.

• A simple refinement process with support region voting that helps repair wrong

matched pixels.

• Efficient system implementation based on CUDA programming.

The parallelism brought by GPU architecture and CUDA implementation provides signifi-

cant acceleration in running time. This method is tested on six pairs of images from Mid-

dlebury database, and for each pair of images it generates acceptable matching results in

less than 100 milliseconds. The method is compared with three different versions of the

previous CFA-implementation, and one CPU-based Dynamic Programming method, on

increasing size images. The SAD-ALD cost measure was able to provide more accurate

matching results than the fixed window aggregation method.

Section 6.3.2 presents the stereo-matching steps of the proposed method, including the

matching cost computation, cost aggregation strategy and the refinement step. Section

6.3.3 details the experiments carried out on a set of increasing size images from Middle-

bury database and against other GPU and CPU standard methods.
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6.3.2/ ADAPTIVE STEREO-MATCHING SOLUTION

6.3.2.1/ MATCHING COST

The method is a local dense stereo-matching method. It respects the very assumption

that the color intensity of neighbors of a left pixel should be close to those of the same

neighbors of its homologous right pixel in the right image. So the matching costs are

defined between the left pixel and the candidate right pixels in the corresponding line

(epipolar line) in the right image. The matching cost between the left pixel and each

candidate in the right image is computed. By the aggregation of matching cost and the

winner-takes-all (WTA) method, the final disparity estimation is realized by selecting the

candidate pixel with the lowest matching cost. In this application, we still use the WTA op-

timization method to choose the best candidate pixel in the right image for every referred

pixel in the left image.

The matching cost used here is Sum of Absolute Differences (SAD) of the three color

components at each pixel, adapted as Equation (6.6) from Equation 3.6.

S AD(xl, y, s) =
[

1
4

1
2

1
4

]

×





















|IlR(xl, y) − IrR(xl − s, y)|
|IlG(xl, y) − IrG(xl − s, y)|
|IlB(xl, y) − IrB(xl − s, y)|





















(6.6)

Where | · | is the absolute value, while s is the spatial shift along the horizontal epipolar

line (or we call it the disparity of the two pixels) and |Ili(xl, y) − Iri(xl − s, y)|(i=R,G,B) is the

absolute difference (AD) of three color components in the two chosen pixels. For the

coefficient matrix of the three color components, we choose the
[

1
4

1
2

1
4

]

according

to the Bayer Filter Mosaic, which uses twice as many green elements as red or blue to

mimic the physiology of the human eye.

Since these pixels of horizontal lines with the same parity in the left and right color im-

ages are characterized by the same three color components, we can reasonably assume

that the color points of two homologous pixels are similar. Because the matching cost

compares the color points of left pixels and right pixels located on the same horizontal

lines, it reaches an extremum when the shift s is equal to the disparity.

An assumption for matching cost aggregation is that a pixel and its homologous pixel

should have the similar support region in vertical direction. This implies that the informa-

tion about support region can be used to enhance the matching results in most regions

of the image pairs.

Given an image, an upright cross support region is constructed for every pixel. The

support region of a given pixel, such as p in Fig. 6.8, is modeled by merging the horizontal

arms of the pixels (the pixel q in Fig. 6.8) lying on the vertical arms of pixel p. Generally,

every pixel has four arms and the length of the arms is set by an endpoint pixel p′ in the

same direction that does not obey both the two following rules:

1) Dc(p, p′) < σdc and Dc(p′, p′′) < σdc, where Dc(p, p′) = max|Ii(p) − Ii(p′)|(i=R,G,B) is the

color difference between the pixel p and the pixel p′, and p′′ is the predecessor of

p′ lying between p and p′ while σdc is an empirical preset threshold value.

2) Ds(p, p′) < σds, where Ds(p, p′) = |p − p′| is the spatial distance, which is equivalent
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Figure 6.8: Cross construction of central pixel’s support region.

to absolute difference of their coordinates in the same direction (|xp−xp′ | or |yp−yp′ |),
while the σds is an empirical preset maximum length measured in pixels.

These two rules provide constraints in the four arm directions both on color similarity and

arm length with parameter σdc and σds. After the cross construction step, the support

region for pixel p is modeled by merging the horizontal arms of all the pixels lying on p′s
vertical arms, as done for q for example in Fig. 6.8.

As it is illustrated in Fig. 6.8, for a given pixel p with a support region, we define the arm-

length (AL) as equivalent to absolute difference of the coordinates in the same direction

AL = |yp − yp′ | in vertical direction and AL = |xp − xp′ | in horizontal direction. ALD =

|ALl(xl, y)−ALr(xl−d, y)| is the difference of arm-length (ALD) between homologous pixels.

Since there exist some phenomenons, such as the half-occlusion, where the homologous

pixels’ horizontal arms could be different, however, their vertical arms should be always

similar. So, we update the matching cost as Equation (6.7) with the up arm-length and

the bottom arm-length.

MatchingCost(xl, y, s) = S AD(xl, y, s) + K × (ALDup + ALDbottom) (6.7)

where the parameter K is an empirical preset value, the ALDup and ALDbottom are the ALD

for the up arm and the bottom arm, respectively.

6.3.2.2/ UPDATED COST AGGREGATION

In this step, each pixel’s matching cost over its support region is aggregated from the

initial cost volume in order to pick out the best candidate pixel.

Zhang et al. [ZLL09] have proposed a cross-based matching cost aggregation method.

We adapt this method to GPU’s parallel computation architecture.

The cross-based aggregation is carried out by a two-step-process. The first step is to

construct a support region, as is explained in last section. In the second step, referring
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Figure 6.9: Cross-based cost aggregation.

to Fig. 6.9, the aggregated costs over all pixels are computed by firstly summing up

the matching costs horizontally and secondly summing up these horizontal sum results

vertically to get the final costs.

However, in some too textured regions, the color and the shape both repeat, which leads

to degradation in matching results. Meanwhile, for some region with very small texture

shapes, the matching quality also decreases. We find that the reason for these degrada-

tions lies in the shape of aggregation support region. As shown in Fig. 6.8, we take the

pixel at the end of pixel p′s right arm as an example. For this pixel, its up arm and bottom

arm could be very short (less than 2 pixels). So, in the aggregation of its matching cost,

there will be not enough information to achieve a unique minimum in the Winner-Takes-All

processing, which leads to marching errors at this pixel. As a solution to this problem,

we artificially enlarge the arms of a pixel by two pixels, if its support region is too small

to make sure the matching cost aggregation processing can have enough information

for stereo-matching. This operation provides a slight improvement in matching results in

paying no computation time cost.

6.3.2.3/ SIMPLE REFINEMENT

After the previous step, the disparity maps of both the left image and the right image

contain some outliers in certain regions that should be corrected by further operations. A

simple refinement is carried out after detecting these outliers.

The outliers in the estimated disparity maps are detected with left-right consistency check

as introduced in Section 3.3.6. These detected outliers are these errors that should be

corrected. The most current accurate stereo-matching algorithms use segmented regions

for outlier handing [Hir08, YWY+09], which are not suitable for GPU architecture. Here,

what we use is a simple voting refinement in reusing the support region information. We

still take the pixel p in the left image as an example, all the reliable disparities lying in

its cross-based support region are sorted by their disparity values. The disparity value

which repeats the most (has the most votes) is denoted as d̂′Lp . Its repeating frequency

is denoted as Fp(d̂′
Lp

). The number of reliable pixels are denoted as S r
p and the total
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number of pixels in its support region are denoted as S p. The disparity value of outlier

pixel p is then replaced with d̂′Lp if these inequations in Equation 6.8 and 6.9 hold true,

where, σF and σS are empirical preset threshold values. If not, the p′s disparity will be

updated with nearest reliable disparity [SS02] in its support region.

Fp(d̂′
Lp

)

S r
p

> σF (6.8)

S r
p

S p

> σS (6.9)

Figure 6.10: Improvement result from the different enhancements in stereovision processing.

We found that the different enhancements in cost computation, adaptive window aggre-

gation and refinement step can evidently reduce the errors in most regions, as shown in

Fig. 6.10. As shown in the figure, the ambiguities in the regions covered by red and green

frames are reduced.

6.3.3/ EXPERIMENT

To access the efficiency of our stereo model, we compare its performance with those

reached by some other methods, such as the CFA demosaicing color stereo-matching

method, the standard method for color images and the dynamic-programming method.

The experiments are carried out with the image pairs from Middlebury’s database [HS06].

Each dataset of this database is made up of a pair of stereo images and the ground-truth

disparity map.

Among the 24 datasets provided in this database, we have selected six pairs (“Rocks1”,

“Aloe”, “Tsukuba”, “Cones”, “Teddy” and “Venus”) for the experiments in this section. Fig.

A.4 in Appendix A shows the contents of these six image pairs: the left image, the right

image and the ground-truth disparity map.

6.3.3.1/ CUDA IMPLEMENTATION

Given an image with size of W×H, we briefly lay out the CUDA settings and the parameter

values in our algorithm.
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In our experiments, we use two-dimension blocks with size of 16× 16. Every thread takes

care of one pixel at the three steps: matching cost computation, cost aggregation and

refinement. So, for the W×H image, there are three CUDA grids containing W×H threads

distributed to the three matching steps. The size of grid is obtained by W+16−1
16

× H+16−1
16

.

In the cost computation step, a grid is created with W × H threads. Every thread takes

care of one pixel for the matching cost value computation at a set of given disparities.

These cost values are kept in the memory space for the following steps. In the cost

aggregation step, the kernel employs one thread for one pixel to take care of its matching

cost aggregation and the Winner-Takes-All processing aiming at a winner pixel from a set

of candidate pixels. Here, more data will be loaded into the on-chip memory space for

fast access, and the use of shared memory is considered.

For the simple refinement, the platform does the executions concurrently on the estimated

disparity images. A third grid with size of W ×H is employed to make sure that each pixel

has one thread for its refinement processing.

The experiment parameters are given in Table 6.2 which are kept constant in all the

experiments.

Table 6.2: EXPERIMENT PARAMETERS.

K σdc σds σF σS

1.12 12 10 0.4 0.55

6.3.3.2/ EXPERIMENT RESULTS

We tested our method on the standard image pairs from the Middlebury datasets. The

four pairs of images with three different sizes (measured in pixels) are shown in Table 6.3

Table 6.3: EXPERIMENT INPUT IMAGE SIZES, MEASURED IN PIXELS.

Small size Half size Full size

Rocks1 425×370 638×555 1276×1110

Aloe 427×370 641×555 1282×1110

Cones 450×375 900×750 1800×1500

Teddy 450×375 900×750 1800×1500

We first compare our method with three other methods that we implement also on GPU.

These methods are the partial demosaicing matching method originally executed on GPU

in Section 6.2 and the classic fixed windows matching methods treating full color images

and gray-level images, respectively. The results are shown in Table 6.4. The PBP col-

umn reports the percentage of bad pixels (PBP), whereas the CT column reports the

computation time in seconds. We can verify that our adaptive method competes with the

other ones on all these four pairs both in matching quality and in computation time, as it

is shown in Fig. 6.11 more intuitively. It is worth noting that near-real time computation

is achieved for the small size images, since computing time may reduce to about less

than 100 ms. Not like most other methods in the Middlebury evaluation based on GPU,
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our method puts most of the data on the global memory space and carefully treats the

coalescence of memory access with proper programming structures and adapted usage

of cached memory space of GPU such as shared memory and texture memory, which

makes our method very extensible and scalable for large image pairs.

Table 6.4: COMPARATIVE EVALUATION ON THE FOUR MIDDLEBURY DATASETS

OF THREE DIFFERENT SIZES. MEASURED BY ‘COMPUTATION TIME (CT) ’ AND

‘PERCENTAGE OF BAD PIXELS (PBP)’ .

Partial Demosaiced Full Color Gray level GPU Ada

Image Size PBP CT (s) PBP CT (s) PBP CT (s) PBP CT (s)

Rocks1

Small size 28.76 0.214 25.81 0.191 24.58 0.146 24.28 0.068

Half size 32.24 0.679 27.87 0.715 25.82 0.913 24.91 0.239

Full size 37.06 5.811 31.20 5.717 28.93 8.235 28.40 2.275

Aloe

Small size 27.08 0.214 24.96 0.192 23.96 0.115 23.69 0.063

Half size 29.33 0.698 25.78 0.697 24.94 0.68 24.22 0.217

Full size 30.26 5.955 28.98 5.875 26.04 5.595 25.99 2.180

Cones

Small size 39.18 0.234 29.77 0.229 28.76 0.276 18.90 0.079

Half size 46.98 2.123 37.36 1.548 36.91 3.024 35.26 0.812

Full size 52.14 20.569 44.85 11.502 45.16 19.881 44.18 6.159

Teddy

Small size 45.27 0.23 32.23 0.23 29.86 0.284 23.67 0.112

Half size 53.69 2.12 38.38 1.55 37.77 3.246 36.09 0.999

Full size 57.36 27.09 46.58 11.51 47.37 24.922 45.98 6.783

Avg. 39.95 5.495 32.82 3.330 31.68 5.610 28.84 1.666

We also compared our method to a standard dynamic-programming (DP) matching

method on CPU. The results are presented in Table 6.5, and in Fig. 6.12 and Fig. 6.13

more intuitively. These two methods can achieve similar matching quality, but our method

outperforms the dynamic-programming method in computation time with about five to ten

times acceleration. On the four small size image pairs, the dynamic-programming method

can finish its work in less than half a second, however, our system has work done within

100 milliseconds.

Some disparity results are presented in Fig. 6.14. These results concern the four images

allowed in the Middlebury database for general comparison and ranking. These images

are the small size images ‘Tsukuba’, ‘Venus’, ‘Teddy’ and ‘Cones’. The ranking evalua-

tions obtained from Middlebury database are shown in Fig. 6.15. Our method gives back

its best results for the ‘Venus’ image pair. Generally speaking, the matching quality of the

method is not very competitive in comparing with some other very sophisticated methods

on CPU, especially for the ‘Tsukuba’ image pair. In some regions of this image pair, near

the shoulder or the lamp for example, the color is too dark and the color components’

values are far out of the ordinary, this introduces noise to the matching method. Different

from the methods on CPU, that take at least half a second to do the stereo-matching, our

method requires only 0.017 seconds for ‘Tsukuba’ pair, 0.053 seconds for ‘Venus’ pair,

0.079 seconds for ‘Cones’ pair, and 0.112 seconds for ‘Teddy’ image pair. Our method

on GPU brings significant speedup even comparing to dynamic-programming method on

CPU. While in running time, the step of cost aggregation occupies the biggest proportion.
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(a) Comparison on computation-time (s).

(b) PBP(%) comparison results.

Figure 6.11: Comparison of the methods on the ‘Aloe’ image pair.

(a) Estimated disparity map by Dy-

namic Programming.

(b) Estimated disparity map by cellular

method.

Figure 6.12: Visualization of the density maps on the ‘Cones’ image pair.
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(a) Comparison on computation-time (s).

(b) PBP(%) comparison results.

Figure 6.13: Comparison to Dynamic Programming on ‘Aloe’ image pair.
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Table 6.5: COMPARATIVE EVALUATION WITH DP ON THE FOUR MIDDLEBURY

DATASETS OF THREE DIFFERENT SIZES. MEASURED BY ‘COMPUTATION TIME

(CT) ’ AND ‘PERCENTAGE OF BAD PIXELS (PBP)’ .

CPU DP1 GPU Ada2

Image Size PBP CT (s) PBP CT (s)

Rocks1

Small size 25.49 0.509 24.28 0.068

Half size 27.71 1.811 24.91 0.239

Full size 27.85 14.194 28.40 2.275

Aloe

Small size 26.90 0.544 23.69 0.063

Half size 28.46 1.842 24.22 0.217

Full size 29.72 14.534 25.99 2.180

Cones

Small size 21.57 0.583 18.90 0.079

Half size 28.89 4.903 35.26 0.812

Full size 35.32 37.736 44.18 6.159

Teddy

Small size 20.80 0.590 23.67 0.112

Half size 27.95 4.881 36.09 0.999

Full size 33.51 37.704 45.98 6.783

Avg. 27.85 9.986 28.84 1.666

Figure 6.14: Matching results for the four basic Middleburry image pairs ‘Tsukuba’, ‘Venus’,

‘Teddy’ and ‘Cones’. Estimated disparity map in first row and disparity matching error maps in

second row with threshold 1, where the errors in unoccluded and occluded regions are marked in

black and gray separately.
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Figure 6.15: The rankings of our method in the Middlebury database with the error percentages

in different regions.

6.4/ CONCLUSION

In this chapter, we have presented two stereovision methods that fit into a general GPU

cellular parallel model: the demosaicing stereo-matching method on CFA images and the

real-time stereo-matching method based on adaptive cost aggregation.

In the first implementation, we have presented a partial demosaicing scheme specially

designed for stereo-matching of CFA images. By analyzing the CFA image directly, this

method can handle the stereo-matching in case of single-CCD cameras usage. This

method has three main technique characters: the matching cost for CFA image, the es-

timated second color component based on Hamilton’s estimate method, and cost aggre-

gation window. The results show that this method is well suitable for GPU’s parallel archi-

tecture but has some limits since it does not match real-time computation, and solution

quality should be improved. Meanwhile, the cost aggregation is carried on fixed windows,

which leads to errors in textured regions. So, a more efficient and accurate aggregation

strategy should be devised for computation acceleration and quality improvement.

In the second implementation, we present a stereo-matching method suitable to GPU’s

parallel architecture with good performance, when looking at the trade-off between accu-

racy and computation time. The method is formed of three steps: SAD-ALD cost measure

computed in 3D cost volume, cost aggregation in adaptive window in cross-based sup-

port regions and a refinement step to reduce the matching errors in the disparity results.

Every step is completely distributed between the many threads so that this method clearly

fits to the general cellular parallel model. Experiment results show the accuracy and the

efficiency of the method: it can handle the four pairs of images from Middlebury dataset

within roughly 100 milliseconds, with acceptable matching quality both in non-occluded

regions and depth discontinuities. Furthermore, the approach scales well as the image

sizes increase, even if the volume cost that depends on the disparity range increases the

memory consumption.

Although the running time is short, the implementation in real-time is still a great chal-

lenge. As the cost aggregation step takes the biggest proportion of running time, looking

for a more efficient way to further accelerate cost aggregation and finding out a set of ro-

bust experiment parameters to improve matching quality can be interesting topics for fu-
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ture studies. The performance of these stereo-matching methods shows that the parallel

model based on GPU’s multi-cores can well adapt the classic stereo-matching methods,

and can achieve high acceleration in treating such stereo-matching problems. Since the

images can be seen as representing Euclidean spaces, we can now see in next chapter

how structured meshing generation or transportation routing problem in plane fit into the

cellular parallel model.





7
GPU IMPLEMENTATION OF CELLULAR

MESHING ALGORITHMS

7.1/ INTRODUCTION

In this chapter, we give the details about the two GPU applications of the cellular parallel

SOM algorithm. The two applications are the balanced structured mesh problem applied

on disparity map, and the well-known Euclidean traveling salesman optimization problem.

For both applications, the solution we propose is based on the Kohonen’s self-organizing

map learning algorithm because of its ability to generate a topological grid that reflects a

distribution map, and its ability to be a natural massive parallel algorithm. Here, we detail

implementation on GPU with CUDA code interface.

We present experiments for the structured mesh generation. We detail GPU implemen-

tation and experimental results. Here, the disparity map stands for a density distribution

that reflects the proximity of objects to the camera in 3D space. The goal is to generate

a compressed structured hexagonal mesh where the nearest objects are provided with

more details than objects which are far from the camera. The grid is then used to recon-

struct and represent the 3D surface of the scene. We also present experiments for the

Euclidean TSP. The approach is applied to instances of well-known databases. That are,

Euclidean TSPLIB problems and National TSPs with up to 33708 cities. Tests are carried

out on both GPU and CPU, and these two types of implementation are compared and

discussed.

In complement, this section includes the following topics:

• Discussion about implementation with CUDA code, memory management, warp

divergence.

• Evaluation on elaborate experiments and comparison with regard to both solution

quality and running time.

• Systematic comparison to serial implementation according to the increase of input

size.

The chapter contains three main sections. We first present the common part of the

GPU/CUDA algorithm for both applications. Then, we detail experiments for the balanced

structured meshing application, and for the traveling salesman problem application, re-

spectively.
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7.2/ GPU IMPLEMENTATION OF PARALLEL SOM

7.2.1/ PLATFORM BACKGROUND AND MEMORY MANAGEMENT

During our experimental study, we have used the following platforms:

• On the CPU side: An Intel(R) Core(TM) 2 Duo CPU E8400 processor running at

2.67 GHz and endowed with four cores and 4 Gbytes memory. It is worth noting

that only one single core executes the SOM process in our CPU implementation.

• On the GPU side: A Nvidia GeForce GTX 570 Fermi graphics card endowed with

480 CUDA cores (15 streaming multi-processors with 32 CUDA cores each) and

1280 Mbytes memory.

We use the Compute Unified Device Architecture (CUDA) programming interface for GPU

to implement our SOM parallel model for both balanced structured meshing and travel-

ing salesman problem. In the CUDA programming model, the GPU works as a SIMT

co-processor of a conventional CPU. It is based on the concept of kernels, which are

functions written in C executed in parallel by a given number of CUDA threads. These

threads will be launched onto GPU’s streaming multi-processors and executed in parallel.

Hence, we apply CUDA threads as the parallel processing units in our model.

All CUDA threads are organized into a two level concepts: CUDA grid and CUDA block.

A kernel has one grid which contains multiple blocks. Every block is formed of multiple

threads. The dimension of grid and block can be one-dimension, two-dimension or three-

dimension. Each thread has a threadId and a blockId, which are built-in variables defined

by the CUDA runtime to help user locate the thread’s position in its block as well as its

block’s position in the grid.

In our applications, we use two-dimensional bocks that are adjusted in size for best per-

formance, knowing that the total number of threads (cell matrix size) will always be de-

pendent on the problem size only. In order to improve coalescing memory accesses, we

systematically organized data structure tables in such way that two consecutive threads

necessarily address two consecutive memory locations in a table. In other words, the

indexes to address memory tables are identical to the indexes of the threads themselves.

In that way, the next thread systematically refers to the next data location in a same ta-

ble. Also, we will see that thread divergence often occurs, since branching instructions

strongly depend on data distribution. We will study divergence effects for the TSP appli-

cation specifically.

7.2.2/ CUDA PROGRAM FLOW

The CUDA program flow of GPU implementation is presented in Algorithm 5. Lines 2, 4,

7, 8, 11, and 13 are implemented with CUDA kernel functions that will be executed by

GPU threads in parallel. The kernel function in Line 2 is used for calculating each cell’s

density value, i.e. the number of element points or sum of pixel intensities in each cell.

After all the cells’ density values are obtained, the maximum one is found. This last work

in Line 3 is done on CPU since it is done only one time and does not directly concern

the main behavior. Note that computing a maximum value is a trivial job even when done

on GPU. Then, the cells’ activation probabilities are computed according to the activation
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Algorithm 5 CUDA program flow.

1: Initialize data and perform CPU to GPU data transfers;

2: Calculate cells’ density values;

3: Find the max cell density value;

4: Calculate cells’ activated probabilities;

5: for ite← 0 To MAX IT E do

6: if ite% MEMORY REUS E S ET RAT E == 0 then

7: Set seeds for random number generators;

8: Generate random numbers;

9: end if

10: if ite% CELL REFRES H RAT E == 0 then

11: Refresh cells;

12: end if

13: Parallel SOM process;

14: Modify SOM parameters (radius and intensity);

15: end for

16: Perform GPU to CPU data transfers and save results;

formula of Equation 5.6 by the kernel function of Line 4. In each iteration of the program,

each cell needs two random numbers: one is used for cell activation and the other is used

to extract input point in the activated cell. With respect to the large scale input instances

with huge cellular matrix and numerous iterations, the random numbers generated via

kernel functions shown in Line 7 and Line 8 are stored in a fixed size area due to the

limited GPU global memory. Every time these random numbers are used out, a new

set of random numbers are generated at the beginning of the next iteration depending

of constant rate factor called MEMORY REUS E S ET RAT E. The random number

generators we use in Line 7 and Line 8 are from Nvidia CURAND library [NVI12a].

Line 10 and Line 11 concern the cell refreshing. Each cell has data structures where to

deposit information of the number and indexes, in the neuron grid, of the grid nodes it

contains. This information may change during each iteration, since nodes continuously

move on the plane and may change their cell locations. It appears by experiments, that it

can be sufficient to make the refreshing of the cell contents based on a lower rate refresh

rate coefficient, called CELL REFRES H RAT E. The cell contents are refreshed via

kernel function in Line 11. Note that neurons’ locations are moved in the plane at each

single iteration, whereas their indexes memorized in cells are only refreshed based on

a lower rate. Then, the parallel SOM process takes place with kernel function of Line

13. After the parallel SOM process is done, the SOM parameters will be modified getting

prepared to do the next iteration. Note that no data transfers occur between CPU and

GPU, in both senses into the main loop, except the passing of kernel parameters, such

as data pointers and SOM parameters, that are neighborhood radius and intensity for

learning rule.

As shown in Algorithm 5, the four GPU kernel functions: Seed setup, Random number

generation, Cell refresh, and Parallel SOM are launched many times during the program.

We calculate each kernel’s running time with CUDA event API [NVI12a]. A running time

statistical result of the program handling pcb442 TSP instance with 100000 iterations is

shown by Table 7.1. The data, which is mean value of 10 runs, shows that the most time

consuming kernel clearly is parallel SOM. More thorough examination shows that cellular
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Table 7.1: RUNNING TIME OF EACH KERNEL.

Kernel name Running time (ms)

Seed setup 49.48

Random number generation 51.44

Cell refresh 1062.48

Parallel SOM 3631.23

spiral search is the most consuming part of the parallel SOM.

Overall, the host code (CPU side) of the program is mainly used for flow control and the

entire GPU threads synchronization by sequentially calling separate kernel functions. For

all the kernel functions, one thread handles one cell and the number of threads launched

by each kernel is no less than the number of cells.

7.2.3/ PARALLEL SOM KERNEL

Algorithm 6 GPU parallel SOM Kernel flow.

1: Locate cell position associated to current thread;

2: Check if the cell is activated;

3: if the cell is activated then

4: Select a point in the cell, randomly or by roulette wheel;

5: Perform a spiral search within a certain range;

6: Modify positions of the winner neuron and its neighbors;

7: end if

The parallel SOM kernel function is applied in Line 13 of main CUDA Algorithm 5 and

is further illustrated by Algorithm 6. Firstly, it locates the cell’s position by its threadId

and blockId. Then, the thread checks if the cell is activated or not, by comparing the

cell’s activated probability to a random number with value between 0 and 1. If the cell is

activated, the thread randomly selects an input data point covered by the cell by using

a second random number with value between 0 and the cell’s density value (number

of points or sum of pixel intensities). If the input are pixels, a roulette wheel according

pixel intensity is performed to select to input pixel point. If the input are cities, a simple

uniform choice is done to get the city point. After that, the thread performs a spiral search

within a certain range on the grid for finding the closest neuron to the selected point. The

maximum number of cells that a thread has to search equals (range × 2 + 1)2. As shown in

Fig. 7.1, if the spiral search range is set to 2, the thread will search in current cell, the eight

cells around, and the sixteen cells around the first range. The number of cells a thread

has to search equals (range × 2 + 1)2. After finding the winner neuron, the thread carries

out learning process via modifying positions of the winner neuron and its neighbors. All

the neurons’ locations are stored in GPU global memory, which is accessible to all the

threads. Like all the multi-threaded applications, different threads may try to modify one

same neuron’s location at the same time, which causes race conditions. In order to

guarantee a coherent memory update, we use the CUDA atomic functions, which can

perform a read-modify-write atomic operation without interference from any other threads.
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Figure 7.1: Spiral search range.

7.3/ APPLICATION TO BALANCED STRUCTURED MESH PROBLEM

7.3.1/ CUDA IMPLEMENTATION SPECIFICITIES

Based on our experimental platform, given an image of size W × H, we first determine

the size of the cellular matrix that defines the total number of threads used. To each cell

of the cellular matrix is assigned a single thread. Since we want a linear relationship

between the thread number and the image size, we divide each dimension of the image

by a constant factor that will be the same for all experiments. Based on such image de-

composition between threads, we define the size of each CUDA block, and deduce the

number of blocks necessary, hence the size of the CUDA grid. It appears in experiments,

because of thread divergence within blocks and hence warps, that the best performance

was reached with blocks having each a single thread. Hence, only parallelism from inde-

pendent streaming multiprocessors appears to have some important benefit in this imple-

mentation. Threads within warps inside a same block are thus subject to warp divergence

that may introduce serialization on the computation.

The CUDA code follows the CUDA program in Algorithm 5. It is composed of an initial-

ization phase, followed by the iteration of the main loop of the algorithm. At initialization,

two kernels compute the random numbers activation probabilities, that are assigned to

each cell. Also, a kernel for random number generation is called at the beginning of the

simulation. The data generated by these kernels are kept on the global memory space

for following steps. Into the main loop iteration step, two kernels are applied to carry out

the SOM processing. The first kernel is responsible to refresh the cellular matrix at a

given lower rate. The second kernel handles the main process of SOM: the extraction of

pixel, finding the closest topological grid node by spiral search, and learning step. Note

that these two kernels are executed tmax times, and that the number of parallel training

procedures executed at each iteration depends on the number of simultaneous activated

cells.
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7.3.2/ EXPERIMENTS OVERVIEW AND PARAMETERS

In this section, the parallel cellular model is mainly experimented with two set of tests:

the first set of tests consists of a comparative evaluation between the GPU and the CPU

applied on four disparity images of small sizes, the second set of tests concerns the

application to larger size disparity maps in order to compare the performance of GPU

and CPU as the image size increases. All the images used are from the stereo dataset of

Middlebury [HS06], the four image pairs used in these tests (‘Tsukuba’, ‘Venus’, ‘Teddy’

and ‘Cones’) are illustrated in Fig. A.4 in Appendix A. The parameters which are kept

constant for all tests on CPU and GPU are given in Table 7.2. For each of the two sets of

tests, the supplemental parameters are presented in Table 7.3 and 7.4, respectively.

Table 7.2: EXPERIMENT PARAMETERS.

MNPC1 αinit α f inal σinit σ f inal CPU CRR2 GPU CRR3

200 1 0.01 24 1 4 000 50

1 Maximum Nodes Per Cell. 2 CPU cell refresh rate. 3 GPU cell refresh rate

In Table 7.3, are given the parameters for the first set of experiments. The neural network

grid size, called mesh size, is obtained by W/co × H/co. Coefficients co are set to 6, 4,

3, 3 for the four disparity images, respectively. Because of its size, the mesh can be

considered as a compressed representation of the 3D surface defined by the disparity

map. The cellular matrix sizes are obtained by W/20 × H/20 for all images. It should be

noted that the number of iterations on CPU corresponds to serial operations, and that

the number of iterations on GPU corresponds to parallel operations. In Table 7.4, are

given the parameters for the second set of experiments. The coefficient co for the three

different image sizes are 3, 3, 6, respectively. The cellular matrix sizes are still obtained

by W/20 × H/20.

Table 7.3: EXPERIMENT PARAMETERS FOR COMPARATIVE EVALUATIONS ON CPU AND

GPU.

Image Image size grid size cellular size iteration CPU iteration GPU

Tsukuba 384 × 288 64 × 48 20 × 15 1 000 000 1 500

Venus 434 × 383 110 × 96 22 × 20 1 000 000 1 500

Teddy 450 × 375 150 × 125 23 × 19 1 000 000 1 500

Cones 450 × 375 150 × 125 23 × 19 1 000 000 1 500

Table 7.4: EXPERIMENT PARAMETERS FOR LARGE SIZE IMAGES ‘CONES’.

Image size grid size cellular size iteration CPU iteration GPU

450 × 375 150 × 125 23 × 19 1 000 000 1 500

900 × 750 300 × 250 45 × 38 1 000 000 1 500

1800 × 1500 300 × 250 90 × 75 2 000 000 1 500
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7.3.3/ EXPERIMENTS RESULTS

In the first set of experiments on CPU and GPU, four input disparity images are con-

sidered with varying characteristics of sizes and textures. The comparative results are

presented in Table 7.5 and two examples of visual results are presented on Fig. 7.2 and

Fig. 7.3. The result values in the table are average values over five runs for each dis-

parity image. The column ‘Cost(%)’ stands for the objective of the balanced structured

mesh problem. It is the criteria that measures the adequacy of node density concentra-

tion between mesh and disparity map. The column ‘CT(s)’ stands for computation time

measured in seconds. The parallel cellular model on GPU outperforms the serial model

on computation time with similar cost minimization. Computation time takes about from

0.7 seconds to 1.2 seconds on GPU and from 6 seconds to 8 seconds on CPU. This

leads to an acceleration factor of about 7 times faster in average. Besides the speedup,

quality of results are roughly similar for both implantations.

(a) (b)

(c) (d)

Figure 7.2: Meshing of the ’Tsukuba’ image. (a) Input disparity map. (b) Density sampling. (c)

Meshing for Tsukuba image. (d) Visualization on 3D space.

The Fig. 7.2(a-c) illustrates a GPU result on the ‘Tsukuba’ image. In (a), is shown the
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Table 7.5: MESHING EVALUATION RESULTS ON THE FOUR MIDDLEBURY DATA SETS OF

SMALL SIZE.

CPU GPU

Image Size Cost(%) CT (s) Cost(%) CT (s)

Tsukuba 384 × 288 24.86 5.99 25.70 0.768

Venus 434 × 383 19.82 6.77 24.92 0.896

Teddy 450 × 375 22.52 7.48 23.14 1.2

Cones 450 × 375 19.30 7.86 22.6 1.18

disparity map. In (b), is shown a sampling of the disparity map obtained by extraction

of 10 000 points with a roulette wheel mechanism. This sample has been obtained after

having removed the background small density values from the disparity map, and after

augmenting the contrast in it. Then, objects that are closer to the camera have higher

density values. In (c), is shown the adapted 2D mesh obtained by the GPU SOM algorithm

applied to the modified disparity map. In Fig. 7.2(a), whiter regions are nearer to the

camera view-point. In (b), such nearest regions present higher density of extracted points.

In (c), the adapted grid presents higher density of neural network nodes on such regions,

with respect of the topology of the scene. That is, proximity of grid points reflects proximity

in Euclidean space.

A second illustration of the GPU meshing process is given in Fig. 7.3(a-d) on the ‘Teddy’

example. The image in (a) represents the left color stereo-image. A sampling of the

disparity map, after removing background and augmenting contrast, is presented in (b),

and the 2D adapted mesh in (c). The image in (d) presents the surface reconstruction

in 3D space obtained by using the adapted mesh. Note that this mesh can be seen as

a compressed representation of the 3D surface, such that objects closest to the camera

have higher resolution and their details more finely represented. The meshing results of

other two small size disparity maps, ‘Venus’ and ‘Cones’, are shown in Fig. 7.4.

Table 7.6: MESHING EVALUATION RESULTS ON LARGE SIZE VERSIONS OF

‘CONES’ IMAGE.

CPU GPU

Image Size Cost(%) CT (s) Cost(%) CT (s)

ConesT 450 × 375 19.30 7.86 22.6 1.18

ConesH 900 × 750 20.38 10.78 22.1 2.9

ConesF 1800 × 1500 17.50 24.14 15.38 9.3

In the second set of experiments dealing with larger size disparity images, we use the

Cones image to perform the comparative evaluation. The numerical results are given in

Table 7.6 and resumed in Fig. 7.5. Here again, the GPU parallel cellular model outper-

forms its CPU counterpart in computation time for similar result quality. With the increase

of image size, the performance in cost minimization of the GPU model augments sub-

stantially, whereas computation time slightly increases. In average, the GPU acceleration

factor about 3 looks moderate. This indicates that it should be of interest to better under-

stand and control warp divergence. We analyze that point in the next application.
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(a) (b)

(c) (d)

Figure 7.3: Meshing of ’Teddy’ disparity map. (a) Original left color image. (b) Density sampling.

(c) Meshing of Teddy image. (d) Visualization on 3D space.
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(a) (b) (c)

(d) (e) (f)

Figure 7.4: Meshing of ‘Venus’ and ‘Cones’ disparity map. First column is density sampling.

Second column is meshing result in 2D space. Third column is visualization on 3D space.

(a) (b)

Figure 7.5: Comparative evaluation between CPU and GPU for the increasing size ‘Cones’ im-

ages: (a) Comparison of relationship between computation time and image size in pixels. (b)

Comparison of relationship between cost and image size in pixels.
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7.4/ APPLICATION TO LARGE SCALE EUCLIDEAN TSP

7.4.1/ WARP DIVERGENCE ANALYSIS

In the CUDA architecture, a warp refers to a collection of 32 threads that are “woven

together” and get executed in lockstep [NVI12b]. At every line in kernel function, each

thread in a warp executes the same instruction on different data. When some of the

threads in a warp need to execute an instruction while others in the same warp do not,

this situation is known as warp divergence or thread divergence. Under normal circum-

stances, divergent branches simply result in performance degradation, with some threads

remaining idle while the other threads actually execute the instructions in the branches.

The execution of threads in a warp with divergent branches are therefore carried out

sequentially, resulting in performance degradation.

(a) (b)

(c) (d)

Figure 7.6: Branch Efficiency with different search ranges.

According to our trial tests, the most time consuming kernel function is parallel SOM. One

of the reasons is that there exists warp divergence when this kernel is being executed,

because it has an unpredictable spiral search process in it. The spiral search is carried

out in each cell of the search range, one by one, and it stops immediately when the thread

finds a nearest neuron. As a result, different threads may stop at different times. Also, the

more cells each thread is going to search in, the severer this problem gets. Hence, differ-

ent search range settings have different influences on warp divergence. When the block

size is set to 256, which is usually enough to fulfill the streaming multi-processor with ade-

quate warps for the GPU device with CUDA capability 2.0, the highest branch efficiencies
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(ratio of non-divergent branches to total branches [NVI12a]) of all executions with search

range of 1, 2, and 3 are 90.1%, 87.2%, and 85.9%, respectively, as collected by NVIDIA

Visual Profiler, shown in Fig. 7.6(a-c). In theory, the less threads are put in one block,

the less warp divergence occurrences will appear. Extremely, if there is only one thread

in a block, then, there will definitely not be warp divergence. However, the decrease of

threads in each block implies the decrease of the CUDA cores usage associated to each

streaming multi-processor. In order to analyze the trade-off between performance and

number of thread in a block, we have tested a set of different combinations of grid size

and block size for the SOM kernel. The configuration, which makes the kernel run fastest,

is with block size of 8 with highest branch efficiency of 96.9%.

7.4.2/ EXPERIMENTS OVERVIEW AND PARAMETERS

Table 7.7: EXPERIMENT PARAMETERS.

αinit α f inal σinit σ f inal iterations δ CRRa SSRb MRSRc

GPU1 1 0.01 12 1 100000 1 1 1 1000

CPU1 1 0.01 12 1 100000 × N − 100 1 −
GPU2 1 0.01 100 1 100000 1 1 3 1000

CPU2 1 0.01 100 1 10000 × N − 100 3 −

1 Tests of small size instances. 2 Tests of large size instances.
a Cell refresh rate. b Spiral search range. c Memory reuse set rate.

We have done our tests with two groups of instances from either National TSPs 1 and

TSPLIB database [Rei91]. One group consists of four small size instances from 124 cities

to 980 cities, while the other consists of four large size instances from 8246 cities to 33708

cities. The parameter settings for the two groups are shown in Table 7.7. As discussed in

Section 5.4, Tmax × ⌈
√

N × λ⌉2 parallel SOM operations will be carried out as an extreme

case by the GPU SOM program, with N the input instance size and λ set to 1.1. For

the tests of small size instances, we set the total number of sequential iterations of the

CPU version to Tmax ×N, in order to make the total SOM operations approximately similar

between GPU version and CPU version, and to reach similar quality results. Whereas for

the tests with large size instances, we set it to Tmax × N/10, also to achieve similar quality

results and because GPU operations depend on the cell activation probabilities and may

be less than N at each GPU parallel iteration.

7.4.3/ COMPARATIVE GPU/CPU RESULTS ON LARGE SIZE TSP PROBLEMS

All the tests are done on a basis of 10 runs per instance. For each test case is reported

the percentage deviation, called “%PDM”, to the optimum tour length of the mean solution

value obtained, i.e. %PDM = (mean length− optimum)× 100/optimum. As well, is reported

the percentage deviation from the optimum of the best solution value found over 10 runs,

called “%PDB”. Finally, is also reported the average computation time per run in seconds,

called “Sec”.

1Refer to http://www.math.uwaterloo.ca/tsp/world/countries.html

http://www.math.uwaterloo.ca/tsp/world/countries.html
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Table 7.8: TEST RESULTS ON SMALL SIZE INSTANCES.

GPU CPU

Problem Optimal %PDM %PDB Sec %PDM %PDB Sec

pr124 59030 2.52 1.07 3.30 4.73 1.85 9.88

pcb442 50778 5.18 3.41 4.00 5.26 3.24 42.13

u724 41910 6.19 4.96 4.64 6.29 4.67 85.61

lu980 11340 5.47 3.40 4.47 8.97 4.58 125.88

Average 4.84 3.21 4.10 6.31 3.59 65.88

Table 7.9: TEST RESULTS ON LARGE SIZE INSTANCES.

GPU CPU

Problem Optimal %PDM %PDB Sec %PDM %PDB Sec

ei8246 206171 8.31 7.12 71.38 7.33 6.88 614.36

fi10639 520527 6.93 6.49 66.63 8.94 8.10 952.35

d15112 1573084 8.20 7.66 109.28 7.35 7.14 1761.23

bm33708 959304 6.07 5.85 254.22 7.28 7.04 7936.33

Average 7.38 6.78 125.38 7.73 7.29 2816.07

(a) (b)

Figure 7.7: Test results of small size instances.

(a) (b)

Figure 7.8: Test results of large size instances.



CHAPTER 7. GPU IMPLEMENTATION OF CELLULAR MESHING ALGORITHMS 110

As shown in Fig. 7.7 and Fig. 7.8, and in Table 7.8 and Table 7.9, respectively, for the

two instance groups, our GPU parallel SOM approach outperforms its counterpart CPU

sequential version both on small size and large size instances, for similar tour length

results. For small size instances, the ratio of CPU time by GPU time (called acceleration

factor) varies from roughly factor 3 to factor 28, as the instance size grows. For large size

instances, it varies from roughly factor 9 to factor 31 for the maximum size instance with

up to 33708 cities. We think that the acceleration factor augmentation indicates a better

streaming multi-processor occupancy as the instance size grows. We can note that the

execution time of GPU version increases in a linear way with a very weak increasing

coefficient, when compared to the CPU version execution time. We consider that such

results are encouraging in that the parallel SOM model should really exploit the benefits

of multi-processors, as the number of physical cores will augment in the future.

7.5/ CONCLUSION

In this chapter, we have presented a CUDA implemention of the cellular GPU parallel

model for self-organizing map and its application to structured mesh generation and trav-

eling salesman problem. The structured mesh generation problem is presented as a

NP-hard balanced clustering problem in the plane, and the SOM process is used as an

heuristic to deal with it. In the same way, we have presented the CUDA implementation of

self-organizing map and application to large scale Euclidean traveling salesman problems

with up to 33708 cities. While the GPU implantation for meshing was roughly three time

faster than CPU, we get an acceleration of about factor 30 for TSP GPU implementation.

Problem of warp divergence looks prominent in first application, while it has less impact

in second application. We should more closely studied warp divergence in the future to

better exploit warp parallelism that manages threads into blocks. Test results show that

our GPU model has linear increasing execution time with a very weak increasing coef-

ficient when compared to the CPU version, for both small size instances and large size

instances. The theoretical computation time of our model is based on a parallel execution

of many spiral search of closest points, each one having a time complexity in O(1) in av-

erage when dealing with a uniform, or at most a bounded data distribution. We would like

to reach the theoretical computation acceleration factor N, with N the problem size. But

when trying solving a Euclidean NP-hard optimization problem, the price to pay comes

from the many concurrent accesses and interactions, together with memory uncoalesc-

ing and warp divergence, that clearly introduce serialization into the parallel computation.

However, actual acceleration factors obtained look promising and will help define in the

future the best adequate relationship between the abstract computation model and the

physical multi-core platform.



III
CONCLUSIONS AND PERSPECTIVES





8
CONCLUSION

8.1/ GENERAL CONCLUSION

We have presented some parallel GPU models that allow to improve the effectiveness in

computation for optimization problems defined in the Euclidean space. One difficulty is

finding effective parallel computation strategies that match the computation capacity of

GPU architectures. We presented the cellular GPU parallel model as a way of looking at

problem resolution of spatially distributed problems, where data stand for entities in the

plane or 3D space. The repetition of many locally distributed operations is the basis for

parallel computation of the solution. The goal was to allow both dealing with large size

problems and provide substantial acceleration factors by massive parallelism. The main

characteristic of the cellular model is that it decomposes the plane into an appropriate

number of cellular units, each responsible of a constant part of the input data. Each cell

corresponds to a single processing unit. However, the exploitation of parallel model is

not trivial and many issues related to the GPU memory hierarchical management and its

parallel processing architecture have to be considered. Certainly, the many concurrent

accesses and interactions, together with memory uncoalescing and warp divergence due

to data distribution dependence, clearly introduce serialization into the parallel compu-

tation. Finding the best adequate relationship between abstract computation model and

physical multi-core platform remains a challenge.

The main characteristics of the cellular parallel GPU model proposed are summarized

hereafter:

• Distributed solution computation from scratch (no need of a construction method)

and no central control.

• Low granularity level based on data decomposition.

• Linear association of GPU resources to input data for large problem size handling.

• Extensive experiments according to problem size.

• Systematic report of solution quality and computation time.

Applications presented in this document should help clarify the benefit of GPU usage

on some complex but naturally distributed optimization problems. They are from two

interconnected domains: image stereo-matching domain, where each parallel processing

unit naturally corresponds to a single pixel of the image, and structured mesh generation

by using the self-organizing map neural network, where each processing unit represents
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a local area of the plane with its data. Application to the standard Euclidean traveling

salesman problem completes the evaluation. More precisely, the document presented

four GPU applications. The first application concerns a stereo-matching problem for color

stereovision. Taking an image pair as input, the output is a disparity map that represents

depths in the 3D scene. The goal was to implement and compare GPU/CPU versions

of a winner-takes-all local dense stereo-matching method dealing with CFA (color filter

array) image pairs. It is clear that the method naturally fits into the cellular approach.

While a simple and naı̈ve GPU implementation can accelerate the CPU counterpart, this

naive method was not able to guarantee real-time requirement. The GPU speedup factor

over CPU was of 20 times faster for the CFA image pairs, but computation time was

about 0.2s for a small image pair. The second application focused on the possible GPU

improvements to reach near real-time stereo-matching computation. By a better memory

management, the use of adaptive windows and specific filters, the near real-time parallel

stereovision algorithm takes about 0.017s for a small image pairs. Computation times

obtained correspond to ones of the fastest records of the Middlebury benchmark with

moderate solution quality. Several GPU versions were considered, and the results were

also compared to a CPU dynamic sequential programming approach.

The third and fourth applications deal with a cellular GPU implementation of the self-

organizing map in the plane. The third problem makes a relationship to the stereo-

matching application by addressing mesh generation according to a disparity map. Mesh

generation allows 3D surface visualization and compressed representation of topology.

The approach was tested on Middlebury database to gauge the GPU acceleration factor

and quality obtained. The last application studied was the Euclidean traveling salesman

problem (TSP) with large scale instances with up to 33708 cities. The mesh is now a ring

structure that matches cities. In both applications, GPU implementations allow substan-

tial acceleration factors over CPU versions, as the problem size increases and for similar

quality results. In a general manner, we evaluated the effectiveness of our cellular parallel

model through extensive experiments, systematically reporting quality and computation

time according to problem instance size. At the moment of writing, we have not found

in the literature GPU implementations able to address such large size TSP instances in

GPU. We think that this is because current GPU optimization applications to the TSP

are memory consuming algorithms, such as ant colony, genetic algorithm or k-opt local

search. The acceleration factor for the GPU parallel self-organizing map over the CPU

version on the largest TSP problem with 33708 cities was 30 times faster. We think that

such acceleration factor is substantial and encouraging with regards to other approaches.

Most often, applications compare CPU and GPU versions of a given algorithm that strictly

match the semantic of the sequential version. This guarantees equivalence of behavior

of the two algorithms and authors simply report the acceleration factors. Here, we also

report solution quality. This will help compare different approaches when dealing with

non standard methods. Note that the most powerful sequential heuristics for TSP use

complex data structures and specific implementation tricks that enhance and modify the

standard local search technique.

8.2/ PERSPECTIVE AND FURTHER RESEARCH DIRECTIONS

Several axis can be considered as extensions of this work. They can address a better use

of GPU resources, a better understanding of the adequate GPU implementation struc-
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ture, application and generalization to other optimization problems, extension to other

techniques, and use of other parallel platforms.

Future work should deal with verification of effectiveness of the algorithm as the number

of physical cores augments. For example, we should more closely study the impact of

the number of GPU streaming multi-processors or simple cores. It should be of interest

also to develop techniques for a better memory coalescing, better use of memory and

combination with shared memory. Improving the balance between processor loads, is of

interest for reducing warp divergence. Since processor load depends on data distribution,

it would be interesting to better study its impact on computation time. A solution for bal-

ancing the load should be to adapt the cellular decomposition of the data to its distribution

in the plane. Balanced structured meshing could be in help here, by generating a cellular

decomposition where cells share an equal quantity of data, at the condition where such

cellular decomposition is used for some subsequent problem.

Many algorithms can be developed based on an underlying parallel spiral search frame-

work for closest point findings. A simple application is Voronoı̈ tesselation computation

and Delaunay triangulation. A well-known result is O(N) computation time for Voronoı̈ tes-

sellation according to spiral search for uniform or bounded distributions of size N. We

should investigate such algorithms for mesh generation in general, even for unstructured

mesh generation approaches.

Extension to other NP-hard optimization problems can also be considered. Cellular par-

allel model could help the design of specific GPU operators embedded into more general

methods such as population based metaheuristics. Application of SOM to different types

of vehicle routing problems already exist and acceleration methods could be obtained

by GPU implantations of SOM like operators. Combination with local search operators

could also be addressed in this way. Extending the cellular model for dealing with stan-

dard neighborhood operations could be considered in the future. Rather than executing

a given step of a sequential local search in parallel, it could be envisaged to perform

some parallel distributed search where each processor would be responsible for a given

local part of the data and local improvement moves. Threads would be in competition to

improve a shared global objective function composed of many local components.

Because of the different granularity levels of parallelization, it is also of interest to study

hybrid combination of parallel systems at different levels. Coarse grain parallelism, at the

level of solution duplication, as in population based search, should be exploited in clus-

ters or standard networks of workstations, whereas fine grain parallelism at the level of

solution decomposition should be exploited on massive GPU parallel systems operating

on global and shared memory. So, when dealing with such problems in which the compu-

tations become asynchronous, using cluster of workstations or computational grids might

be more relevant.





IV
APPENDIX





A
INPUT IMAGE PAIRS

A.1/ LEFT IMAGE FOR CFA STEREO MATCHING

A.2/ RIGHT IMAGE FOR CFA STEREO MATCHING

A.3/ BENCHMARK DISPARITY FOR CFA STEREO MATCHING

A.4/ INPUT IMAGE PAIRS FOR REAL-TIME STEREO MATCHING
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(a) Aloe left image (b) Bowling1 left image (c) Cloth1 left image

(d) Flowerpots left image
(e) Lampshade1 left im-

age
(f) Midd1 left image

(g) Monopoly left image (h) Plastic left image (i) Rock1 left image

(j) Wood1 left image

Figure A.1: Left image of each tested stereo image pair from Middlebury database.
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(a) Aloe right image (b) Bowling1 right image (c) Cloth1 right image

(d) Flowerpots right im-

age

(e) Lampshade1 right

image
(f) Midd1 right image

(g) Monopoly right image (h) Plastic right image (i) Rock1 right image

(j) Wood1 right image

Figure A.2: Right image of each tested stereo image pair from Middlebury database.
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(a) Aloe disparity map
(b) Bowling1 disparity

map
(c) Cloth1 disparity map

(d) Flowerpots disparity

map

(e) Lampshade1 dispar-

ity map
(f) Midd1 disparity map

(g) Monopoly disparity

map
(h) Plastic disparity map (i) Rock1 disparity map

(j) Wood1 disparity map

Figure A.3: Benchmark disparity map of each tested stereo image pair from Middlebury

database.
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(a) Rock1 left image (b) Rock1 right image
(c) Rock1 true disparity

map

(d) Aloe left image (e) Aloe right image
(f) Aloe true disparity

map

(g) Tsukuba left image (h) Tsukuba right image
(i) Tsukuba true disparity

map

(j) Cones left image (k) Cones right image
(l) Cones true disparity

map

(m) Teddy left image (n) Teddy right image
(o) Teddy true disparity

map

(p) Venus left image (q) Venus right image
(r) Venus true disparity

map

Figure A.4: Tested image pairs from Middlebury database.





B
EXPERIMENT RESULTS

B.1/ CFA STEREO MATCHING RESULTS ON FULL SIZE IMAGES

B.2/ CFA STEREO MATCHING RESULTS ON HALF SIZE IMAGES

B.3/ CFA STEREO MATCHING RESULTS ON SMALL SIZE IMAGES
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Table B.1: THE TABLE OF COMPUTATION-TIME (S) (CT(S)) AND THE RCMP (%) OF THE

DATASETS OF FULL SIZE IMAGES IN THE EXPERIMENTS.

Image Plate Half-window

group form 1 2 3 4 5 6 7 8 9 10

Aloe

CPU
CT 453 1196 2274 3681 5449 7552 10024 12793 15879 19290

RCMP 49,17 62,19 67,69 69,76 70,63 71,01 71,06 70,97 70,76 70,47

GPU
CT 22 47 100 158 248 398 570 706 827 915

RCMP 48,35 59,69 64,92 69,26 68,22 67,23 66,94 66,44 65,79 65,44

Bowling1

CPU
CT 434 1145 2181 3531 5210 7223 9579 12221 15164 18414

RCMP 9,46 12,52 17,20 21,44 24,89 27,65 29,85 31,66 33,21 34,57

GPU
CT 23 51 113 167 224 417 527 698 793 934

RCMP 9,38 12,30 16,85 21,01 24,40 27,17 29,33 31,17 32,72 34,02

Cloth1

CPU
CT 433 1141 2169 3511 5180 7183 9534 12140 15071 18311

RCMP 50,34 68,15 79,26 84,41 86,60 87,54 87,96 88,11 88,10 88,01

GPU
CT 22 56 97 170 274 417 515 645 821 892

RCMP 49,73 67,25 78,53 83,84 86,23 86,35 86,72 86,75 86,63 86,44

Flowerpots

CPU
CT 475 1254 2384 3853 5686 7885 10483 13349 16585 20144

RCMP 8,11 8,80 12,71 16,70 20,32 23,53 26,43 28,94 31,12 33,00

GPU
CT 23 61 111 154 240 398 540 756 836 928

RCMP 7,95 8,65 12,56 16,56 18,77 67,23 23,87 25,87 27,58 29,01

Lampshade1

CPU
CT 474 1250 2377 3851 5679 7854 10406 13273 16498 20021

RCMP 8,16 7,75 10,28 13,40 16,53 19,51 22,18 24,50 26,56 28,37

GPU
CT 22 51 111 204 291 398 546 774 859 900

RCMP 8,02 7,57 10,12 13,37 15,46 15,43 15,76 16,61 17,90 18,99

Midd1

CPU
CT 540 1423 2702 4381 6463 8968 11899 15184 18870 22925

RCMP 12,72 17,41 21,77 24,92 27,11 28,71 29,91 30,86 31,64 32,15

GPU
CT 27 63 118 193 283 476 573 737 925 1006

RCMP 12,33 16,57 20,65 23,78 21,43 22,18 22,76 23,10 23,32 23,45

Monopoly

CPU
CT 488 1285 2449 3957 5840 8103 10749 13711 17042 20715

RCMP 11,73 17,53 22,60 26,84 30,26 33,12 35,58 37,62 39,24 40,55

GPU
CT 21 54 97 183 290 423 512 724 870 950

RCMP 11,49 16,91 21,68 25,80 23,29 24,90 25,26 26,61 27,97 28,45

Plastic

CPU
CT 449 1183 2251 3643 5372 7457 9878 12592 15636 18992

RCMP 5,20 5,79 7,00 8,26 9,49 10,65 11,73 12,77 13,76 14,67

GPU
CT 21 63 105 167 233 378 527 666 809 908

RCMP 5,15 5,70 6,90 7,91 9,11 10,15 10,83 11,97 12,76 14,01

Rocks1

CPU
CT 449 1184 2250 3643 5374 7453 9911 12609 15675 19027

RCMP 25,44 39,61 51,68 57,86 60,94 62,54 63,42 63,90 64,23 64,37

GPU
CT 20 46 90 171 237 391 575 685 764 896

RCMP 24,89 38,54 50,85 57,35 60,66 60,52 61,04 61,17 62,67 60,90

Wood1

CPU
CT 520 1371 2608 4222 6239 8655 11472 14637 18175 22098

RCMP 15,79 18,38 26,43 34,75 41,60 47,11 51,43 54,90 57,55 59,64

GPU
CT 21 73 117 194 281 457 573 732 911 991

RCMP 15,40 17,88 25,82 34,14 36,98 41,62 45,26 48,10 50,35 52,15

Disparity error tolerance δ = 1
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Table B.2: THE TABLE OF COMPUTATION-TIME (S) (CT(S)) AND THE RCMP (%) OF THE

DATASETS OF HALF SIZE IMAGES IN THE EXPERIMENTS.

Image Plate Half-window

group form 1 2 3 4 5 6 7 8 9 10

Aloe

CPU
CT 57 148 281 453 666 917 1205 1531 1893 2288

RCMP 59,66 69,27 71,75 72,40 72,41 72,03 71,46 70,82 70,21 69,71

GPU
CT 11 38 72 118 174 233 312 409 487 527

RCMP 56,37 66,46 69,44 70,31 70,30 69,74 69,09 68,37 67,72 67,03

Bowling1

CPU
CT 54 142 269 434 638 878 1154 1465 1809 2186

RCMP 16,28 21,87 28,49 33,71 37,71 40,93 43,65 45,88 47,70 48,98

GPU
CT 13 36 54 95 157 231 298 421 499 565

RCMP 14,91 20,50 27,23 32,12 36,17 39,32 41,79 43,90 45,62 47,12

Cloth1

CPU
CT 54 141 267 432 633 872 1147 1455 1797 2172

RCMP 61,24 78,92 85,43 87,16 87,75 87,91 87,93 87,91 87,80 87,64

GPU
CT 14 38 69 105 169 211 280 367 500 534

RCMP 58,71 76,81 84,29 86,73 87,77 88,25 88,46 88,60 88,69 88,72

Flowerpots

CPU
CT 59 155 294 475 698 961 1264 1604 1982 2396

RCMP 15,86 19,64 26,72 32,95 37,85 41,50 44,37 46,45 47,98 49,08

GPU
CT 15 26 35 109 158 234 314 379 435 597

RCMP 12,92 13,81 16,04 17,36 18,56 19,47 20,36 21,02 21,59 21,98

Lampshade1

CPU
CT 59 154 292 471 692 953 1253 1591 1966 2375

RCMP 14,00 15,57 20,80 26,28 30,73 34,08 36,60 38,55 39,99 41,29

GPU
CT 15 34 70 121 161 222 299 391 436 516

RCMP 11,96 11,61 13,29 15,14 16,71 17,76 18,31 18,47 18,47 18,34

Midd1

CPU
CT 67 177 335 541 794 1094 1439 1828 2260 2732

RCMP 20,55 26,71 31,80 34,93 36,76 37,92 38,50 38,76 38,89 38,91

GPU
CT 14 39 65 120 195 214 324 414 506 586

RCMP 19,24 24,99 30,00 33,25 35,23 36,52 37,40 37,81 37,98 37,90

Monopoly

CPU
CT 61 160 302 488 716 986 1298 1647 2036 2461

RCMP 20,92 29,12 35,22 39,52 42,41 44,61 46,26 47,60 48,83 49,81

GPU
CT 15 40 74 124 188 258 347 403 476 682

RCMP 16,07 21,90 24,73 27,92 29,90 31,50 32,79 33,80 34,66 35,19

Plastic

CPU
CT 56 147 278 448 659 907 1193 1515 1871 2261

RCMP 9,39 11,39 13,98 16,43 18,79 20,87 22,67 24,16 25,44 26,58

GPU
CT 14 39 58 115 168 246 305 348 399 571

RCMP 8,18 9,92 12,05 14,26 16,40 18,30 20,11 21,83 23,32 24,62

Rocks1

CPU
CT 56 147 278 449 659 907 1194 1515 1872 2263

RCMP 36,94 53,26 63,43 67,84 70,00 71,15 71,70 72,02 72,17 72,14

GPU
CT 15 40 69 115 164 226 300 359 498 527

RCMP 35,45 51,43 62,42 67,49 69,89 71,21 72,08 72,67 72,98 73,17

Wood1

CPU
CT 65 170 323 522 766 1056 1390 1766 2183 2640

RCMP 24,82 30,77 39,16 46,62 52,84 57,79 61,52 64,19 65,99 67,19

GPU
CT 15 40 68 114 179 218 305 394 517 540

RCMP 22,90 29,31 38,17 45,58 51,33 55,84 59,33 61,84 63,43 64,40

Disparity error tolerance δ = 1
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Table B.3: THE TABLE OF COMPUTATION-TIME (S) (CT(S)) AND THE RCMP (%) OF THE

DATASETS OF SMALL SIZE IMAGES IN THE EXPERIMENTS.

Image Plate Half-window

group form 1 2 3 4 5 6 7 8 9 10

Aloe

CPU
CT 16 43 81 130 190 261 342 432 531 638

RCMP 60,70 69,88 71,73 71,80 71,38 70,78 70,17 69,63 69,08 68,48

GPU
CT 11 28 45 80 119 139 189 265 326 407

RCMP 56,66 66,72 69,79 70,50 70,57 70,38 70,16 69,03 68,96 68,38

Bowling1

CPU
CT 15 41 77 125 183 250 328 414 508 611

RCMP 18,93 25,42 32,95 39,13 44,06 47,91 50,88 52,77 53,90 54,51

GPU
CT 6 25 42 74 106 137 172 252 332 406

RCMP 16,07 20,51 25,21 28,80 32,01 34,69 36,53 37,65 37,39 36,91

Cloth1

CPU
CT 15 41 77 124 181 249 326 411 505 607

RCMP 58,69 77,10 84,29 86,47 87,19 87,50 87,65 87,66 87,56 87,31

GPU
CT 9 25 43 82 109 144 195 230 326 365

RCMP 56,53 75,63 84,10 87,34 88,98 90,03 90,74 91,25 91,70 92,14

Flowerpots

CPU
CT 17 45 85 137 200 274 359 454 558 672

RCMP 21,31 26,86 34,91 41,35 46,04 49,30 51,46 52,74 53,66 54,03

GPU
CT 8 22 50 85 123 158 196 241 357 433

RCMP 17,82 21,63 27,53 32,23 35,43 37,31 38,65 39,48 40,13 40,39

Lampshade1

CPU
CT 17 45 84 136 198 272 356 450 553 665

RCMP 17,72 19,14 24,11 28,68 32,43 35,43 37,71 39,58 41,16 42,35

GPU
CT 9 24 49 80 130 145 215 302 258 394

RCMP 15,29 16,11 19,51 22,14 24,51 26,43 27,82 29,17 30,19 30,80

Midd1

CPU
CT 19 51 97 156 228 313 409 517 636 766

RCMP 24,66 31,12 35,81 38,47 39,82 40,61 40,93 41,17 41,33 41,34

GPU
CT 12 30 64 95 130 193 235 278 371 426

RCMP 22,89 29,27 34,06 37,03 38,77 39,75 40,17 40,19 40,21 40,02

Monopoly

CPU
CT 17 46 87 141 206 282 369 467 574 690

RCMP 26,06 34,61 40,71 44,80 47,64 49,71 51,44 52,69 53,66 54,55

GPU
CT 10 23 50 74 109 167 204 225 364 425

RCMP 21,75 29,55 34,43 37,11 38,64 39,53 40,27 40,52 40,77 40,89

Plastic

CPU
CT 16 42 80 129 189 259 338 428 525 632

RCMP 12,71 15,44 18,70 21,66 24,36 26,90 28,88 30,35 31,73 32,98

GPU
CT 9 24 45 70 115 151 194 245 322 377

RCMP 10,36 11,91 13,87 15,32 16,88 18,29 19,47 20,30 21,20 21,84

Rocks1

CPU
CT 16 42 80 129 189 259 339 428 526 633

RCMP 42,95 59,04 68,07 71,78 73,49 74,11 74,23 74,22 73,94 73,59

GPU
CT 10 26 45 74 111 150 177 240 304 342

RCMP 40,24 56,36 66,48 71,01 73,61 75,09 75,90 76,39 76,70 76,86

Wood1

CPU
CT 19 49 93 150 220 302 395 499 614 738

RCMP 27,79 33,85 42,34 49,52 54,91 59,07 62,24 64,59 66,01 67,69

GPU
CT 10 29 49 79 124 183 215 290 363 427

RCMP 25,80 32,08 40,56 48,17 54,15 58,53 61,63 64,08 65,93 67,24

Disparity error tolerance δ = 1
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2005.
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[CKH07] J. C. Créput, A. Koukam, and A. Hajjam. Self-organizing maps in evolutionary

approach for the vehicle routing problem with time windows. International

Journal of Computer Science and Network Security, 7(1):103–110, 2007.
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[Geo91] P.L. George. Génération automatique de maillages. . Applications aux
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Abstract:

The work presented in this PhD studies and proposes cellular computation parallel models able to address different types of

NP-hard optimization problems defined in the Euclidean space, and their implementation on the Graphics Processing Unit

(GPU) platform. The goal is to allow both dealing with large size problems and provide substantial acceleration factors by

massive parallelism. The field of applications concerns vehicle embedded systems for stereovision as well as transportation

problems in the plane, as vehicle routing problems. The main characteristic of the cellular model is that it decomposes the

plane into an appropriate number of cellular units, each responsible of a constant part of the input data, and such that

each cell corresponds to a single processing unit. Hence, the number of processing units and required memory are with

linear increasing relationship to the optimization problem size, which makes the model be able to deal with very large size

problems.

The effectiveness of the proposed cellular models has been tested on the GPU parallel platform on four applications.

The first application is a stereo-matching problem. It concerns color stereovision. The problem input is a stereo image

pair, and the output a disparity map that represents depths in the 3D scene. The goal is to implement and compare

GPU/CPU winner-takes-all local dense stereo-matching methods dealing with CFA (color filter array) image pairs. The

second application focuses on the possible GPU improvements able to reach near real-time stereo-matching computation.

The third and fourth applications deal with a cellular GPU implementation of the self-organizing map neural network in

the plane. The third application concerns structured mesh generation according to the disparity map to allow 3D surface

compressed representation. Then, the fourth application is to address large size Euclidean traveling salesman problems

(TSP) with up to 33708 cities.

Résumé :

Le travail présenté dans ce mémoire étudie et propose des modèles de calcul parallèles de type cellulaire pour traiter

différents problèmes d’optimisation NP-durs définis dans l’espace euclidien, et leur implantation sur des processeurs

graphiques multi-fonction (Graphics Processing Unit; GPU). Le but est de pouvoir traiter des problèmes de grande taille

tout en permettant des facteurs d’accélération substantiels à l’aide du parallélisme massif. Les champs d’application visés

concernent les systèmes embarqués pour la stéréovision de même que les problèmes de transports définis dans le plan,

tels que les problèmes de tournées de véhicules. La principale caractéristique du modèle cellulaire est qu’il est fondé sur

une décomposition du plan en un nombre approprié de cellules, chacune comportant une part constante de la donnée, et

chacune correspondant à une unité de calcul (processus). Ainsi, le nombre de processus parallèles et la taille mémoire

nécessaire sont en relation linéaire avec la taille du problème d’optimisation, ce qui permet de traiter des instances de très

grandes tailles.

L’efficacité des modèles cellulaires proposés a été testée sur plateforme parallèle GPU sur quatre applications. La première

application est un problème d’appariement d’images stéréo. Elle concerne la stéréovision couleur. L’entrée du problème

est une paire d’images stéréo, et la sortie une carte de disparités représentant les profondeurs dans la scène 3D. Le but

est de comparer des méthodes d’appariement local selon l’approche winner-takes-all et appliquées à des paires d’images

CFA (color filter array). La deuxième application concerne la recherche d’améliorations de l’implantation GPU permettant

de réaliser un calcul quasi temps-réel de l’appariement. Les troisième et quatrième applications ont trait à l’implantation

cellulaire GPU des réseaux neuronaux de type carte auto-organisatrice dans le plan. La troisième application concerne

la génération de maillages structurés appliquée aux cartes de disparité afin de produire des représentations compressées

des surfaces 3D. Enfin, la quatrième application concerne le traitement d’instances de grandes tailles du problème du

voyageur de commerce euclidien comportant jusqu’à 33708 villes.
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