
HAL Id: tel-00982804
https://theses.hal.science/tel-00982804

Submitted on 24 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A chemistry-inspired middleware for flexible execution
of service based applications

Chen Wang

To cite this version:
Chen Wang. A chemistry-inspired middleware for flexible execution of service based applications.
Other [cs.OH]. INSA de Rennes, 2013. English. �NNT : 2013ISAR0015�. �tel-00982804�

https://theses.hal.science/tel-00982804
https://hal.archives-ouvertes.fr

0.4pt0.4pt 0pt0.0 pt

THÈSE INSA Rennes
sous le sceau de l’Université Européenne de Bretagne

pour obtenir le grade de

DOCTEUR DE L’INSA DE RENNES

Spécialité : Informatique

présentée par

Chen Wang
ÉCOLE DOCTORALE : MATISSE

LABORATOIRE : IRISA – UMR6074

A Chemistry-Inspired
Middleware for Flexible

Execution of Service
Based Applications

Thèse soutenue le 28 mai, 2013

devant le jury composé de :

Christophe Cérin
Professeur à l’Université Paris XIII / Président

Zsolt Németh
Chercheur au SZTAKI, Hungarian Academy of Sciences / Rapporteur

Christian Perez
Directeur de recherche à INRIA / Rapporteur

Maurizio Giordano
Chercheur au CNR (National Research Council, Italy) / Examinateur

Cédric Tedeschi
Mâıtre de conférence à l’Université de Rennes 1 / Examinateur

Jean-Louis Pazat
Professeur à l’INSA de Rennes / Directeur de thèse

Dedicated to my parents, Liya Shi and Kening Wang.

Acknowledgments

The best and worst moments of my doctoral journey have been shared with many people.
The list of the people I need to thank will not fit to a single Acknowledgments section. I
just mention some people whose contribution is obvious.

First and foremost, I want to thank my supervisor Jean-Louis Pazat. I really appreciate
all your contributions of time, ideas, and experiences to guide my Ph.D. research. Talking
and working with you is really productive and stimulating, which lead to some publications
in the top level conferences such as SCC and CCGrid. Thank you also for giving me
so much flexibility in doing my research work, so that my contributions are not only
restricted to chemical-inspired approaches but also include some generic solutions in service
computing.

In the following, I would like to thank the committee members of my Ph.D. defense.
Christophe Cérin, thank you for being the president of the committee to preside the entire
process of my Ph.D. defense. Zsolt Németh and Christian Perez, thank you for taking
your time to read and to evaluate my thesis manuscript. Your comments are really useful
and valuable for me to improve the quality of this dissertation. Cédric Tedeschi and
Maurizio Giordano, thank you for participating in the committee. As real experts on
chemical computing, you have given interesting questions and valuable suggestions, which
provided a clear guide to succeeding researchers who might work on the chemistry-inspired
computing in the future.

Part of the work in this thesis is conducted in collaboration with Maurizio Giordano
and Claudia Di Napoli, from CNR (National Research Council), Italy. This collaboration
started from a discussion with Claudia during the CIT conference in the summer of 2010.
It was a pleasant talk and we have made the plan for this collaboration. Later, Maurizio
spent two weeks in Rennes, France. We have talked a lot about chemical computing
and we have also developed together a prototype which finally lead to a publication in
ServiceWave conference. I would like to thank both of you for this excellent work. It was
really a nice experience to work with you.

I have also to thank Thierry Priol, who introduced me to the chemistry-inspired com-
puting and service computing. I still remember the first time you picked me up at the
reception desk of INRIA Rennes in November 2008. After a nice conversation, I decided
to start a master internship with you for the upcoming 8 months on the topic of using
chemical computing to express service orchestration. This subject was totally new for me
at that time. And after this internship, thank you for providing me an opportunity to
continue this work by starting my Ph.D. research.

Meanwhile, so many thanks to the “chemists” in our research team. Cédric, I want to
thank you again for your support and help during the past three years. You gave me a lot
of suggestions on my work and my presentations, which helps people to understand my
work more easily. Hector, as two of the pioneers working on exploring the use of chemical
programming in service computing, we have spent together the most challenging times. I

1

want to thank you for your support to my work and implementations. Marko, I hope that
it is not boring to share an office with me for three years. Thanks for your comments on
my work and proofreading my papers before submissions.

All the members of Myriads research team in INRIA Rennes also deserve my sincer-
est thanks, including the ones who have already left during the past three years. Their
friendship and assistance has meant more to me than I could ever express. Especially, I
have to thank Anca, Stephania and Djawida for the wonderful flyer for my Ph.D. defense.

In addition, I have to thank the large Chinese community, that is the Chinese students,
researchers and employees living in Rennes. I feel so lucky to know everyone of you. Since
France is far away from China where I was born and then grow up, the huge differences
in culture, language and habit sometimes make the life hard. Having different kinds of
activities with you (e.g. cooking traditional Chinese food, playing Chinese music, etc.)
makes me feel that I was living not that far from home. Especially, I have to thank my
Chinese colleagues working in INRIA Rennes, my best friends, Zhaoguang Wang, Ke Sun
and Lei Yu. You have made my life more colorful. Thank you.

Last but not the least, I would like to thank my family. First, I have to thank my
parents, my mother Liya Shi and my father Kening Wang. Thank you to give birth to
me and your endless love brings me inspiration and courage, which is always my driving
force. Finally, I also have to strongly thank my girl friend (fiancee now), Jiayi Liu, a
Ph.D. student in Telecom Bretagne, France. I would like to say, I could not finish my
Ph.D. thesis without your support and love. Love you forever!

Chen Wang
Myriads Research Team - INRIA

June 2013, France

2

Contents

Table of Contents 3

List of Figures 7

List of Tables 9

List of HOCL Programs 11

Introduction 13

I backgroud 19

1 Service-Oriented Computing 21

1.1 Service-Based Application . 22

1.1.1 Web Service . 23

1.1.2 Workflow . 25

1.1.3 Quality of Service . 26

1.1.4 Service Level Agreement . 28

1.1.5 Runtime Management of Service-Based Applications 30

1.2 Instantiation of Workflow . 30

1.2.1 Static Selection v.s. Dynamic Selection. 31

1.2.2 Local Selection v.s. Global Selection. 32

1.3 Service Interaction Models . 33

1.3.1 Web Service Orchestration. 33

1.3.2 Web Service Choreography. 36

1.3.3 Decentralized Service Orchestration. 37

1.4 Runtime Adaptation of Service-Based Applications 39

1.4.1 Reactive Adaptation . 40

1.4.2 Preventive Adaptation . 42

2 Unconventional Approaches for Flexible Service Management 45

2.1 Unconventional Paradigms for Service Computing 46

2.1.1 Rule Based Systems . 47

2.1.2 Tuple-Space Based Systems . 49

2.2 Chemistry-Inspired Computing . 50

2.2.1 Gamma . 51

2.2.2 γ-Calculus . 51

2.2.3 Higher-Order Chemical Language (HOCL). 54

2.2.4 Chemistry-Inspired Service Systems 57

3

Contents

2.3 Illustrative Example: The “Best Garage” 59

II Chemistry-Inspired Middleware 63

3 Chemistry-Inspired Middleware for Flexible Execution of SBA 65

3.1 Architecture of Chemistry-Inspired Middleware 66

3.1.1 Chemical Web Service (CWS) . 66

3.1.2 Chemical Composite Service (CCS) 67

3.1.3 Interactions between Chemical Services 70

3.2 Context-Aware Service Selection . 71

3.2.1 Service Selection Based on Local Constraints 72

3.2.2 Global Service Selection . 74

3.3 Centralized Coordination Model for the Execution of Service Compositions 84

3.3.1 Chemical Service Orchestration Model 84

3.3.2 Reaction Rules to Express Complex Workflow Patterns 89

3.3.3 Runtime Adaptation of SBA . 93

3.4 Decentralized Models for Adaptive Execution of SBA 98

3.4.1 Semi-Choreography Model . 98

3.4.2 Auto-Choreography Model . 102

4 Evaluation: Implementation and Experimental Results 105

4.1 Performance Analysis of Different Execution Models 106

4.1.1 Complexity . 106

4.1.2 Cost . 108

4.1.3 Efficiency . 109

4.1.4 Flexibility . 110

4.1.5 Robustness . 111

4.2 Implementation of Middleware . 111

4.2.1 Implementation of the HOCL Compiler 112

4.2.2 I/O of HOCL programs . 113

4.2.3 Distributed Chemical Infrastructure 116

4.2.4 Implementation of the “Best Garage” Example 117

4.3 Evaluation of Different Execution Models 118

4.3.1 Experimental Setup . 118

4.3.2 Experiment 1: Comparison of the Execution Efficiency 119

4.3.3 Experiment 2: Comparison of the Adaptation Complexity 120

4.3.4 Discussion . 121

III Towards Proactive Adaptation of SBA 123

5 A Two-Phase Online Prediction Approach 125

5.1 Problem Statement: Challenges and Solutions 126

5.1.1 Context: Prevention of Global SLA Violation 126

5.1.2 Challenges . 126

5.1.3 Our Approach: A Two-Phase Online Prediction Approach 127

5.2 Estimation Phase . 128

5.2.1 Estimation of Local Execution Time 129

5.2.2 Estimation of Global Execution Time 130

4

Contents

5.3 Decision Phase . 133
5.3.1 Decision Function . 133
5.3.2 Static Decision Strategies . 135
5.3.3 Adaptive Decision Strategy. 136

5.4 Evaluation . 137
5.4.1 Experiment Setup: Realistic simulation model 138
5.4.2 Evaluation Metrics. 139
5.4.3 Experiment 1: Evaluation of Traditional Prediction Approaches . . . 140
5.4.4 Experiment 2: Evaluation of Our Approaches 141
5.4.5 Experiment 3: Evaluations over Different Workflows 142

Conclusions and Perspectives 145

Bibliography 160

IV Appendix 161

A Example of Semi-choreography: Decentralized Coordination of SBA 163
A.1 Distribution of Coordination Information 163
A.2 Decentralized Coordination of Workflow . 166

B Example of Auto-choreography 171
B.1 Execution of SBA: Decentralized Coordination of Services 171
B.2 Decentralized Adaptation of SBA . 174

B.2.1 Binding-level Adaptation for Auto-Choreography Model 174
B.2.2 Workflow Level Adaptation for Auto-Choreography Model 175

C Résumé en Français 177
C.1 Contexte . 177
C.2 Motivations . 177

C.2.1 Le calcul inspiré par la nature . 177
C.2.2 Le calcul chimique . 178
C.2.3 Objectives . 178

C.3 Contributions . 179
C.3.1 Un Middleware inspiré par la chimie 179
C.3.2 Une approche de prédiction en ligne en deux phases 183

C.4 Publications . 183
C.5 Organisation du manuscrit . 184

5

Contents

6

List of Figures

1.1 Service-Based Application . 23

1.2 Web Service Architecture . 24

1.3 Hierarchy of Service Compositions . 25

1.4 Sample Workflow . 26

1.5 Local and Global SLAs . 29

1.6 Life cycle of SBA Runtime Management . 30

1.7 Web Service Orchestration Model . 34

1.8 Web Service Choreography Model . 36

1.9 Decentralized Service Orchestration Model 39

1.10 MAPE Control-Feedback Loop . 40

2.1 Structured Workflow Definition . 47

2.2 Syntax of Molecules in γ-Calculus . 52

2.3 Rules of γ-Calculus . 52

2.4 Syntax of HOCL . 55

2.5 The Illustration of the Sample HOCL Program 57

2.6 Decentralized Chemical Frameworks for Service Coordination 1 59

2.7 Illustrative Example: the “Best Garage” . 60

3.1 Architectural Overview of the Chemistry-Inspired Middleware 67

3.2 Illustration: Creation of a New SBA Instance 70

3.3 Illustration: Movement of Molecule . 72

3.4 Offer Sets . 75

3.5 Partially Instantiated Workflow (PIW) . 76

3.6 Illustration: Generation of a New Instantiated Chain (IC-PIW) 79

3.7 Illustration: Generation of a New Instantiated Block (ISB-PIW) 80

3.8 Illustration: Workflow Transformation . 82

3.9 Illustration: Orchestration of Chemical Service 84

3.10 Workflow Pattern: Sequence . 89

3.11 Workflow Pattern: And-Split . 90

3.12 Workflow Pattern: Exclusive-Choice . 91

3.13 Workflow Pattern: Multiple-Choice . 91

3.14 Workflow Pattern: Synchronization . 92

3.15 Workflow Pattern: Simple Merge . 93

3.16 Service Orchestration Model: Binding-Level Adaptation 95

3.17 Scenario: Workflow-Level Adaptation of SBA 96

3.18 Semi-Choreography Model: Configuration of Network of Services 99

3.19 Semi-Choreography Model: Decentralized Execution of Workflow 100

3.20 Semi-Choreography Model: Binding-Level Adaptation 101

7

List of Figures

3.21 Auto-Choreography Model: Execution of Workflow 103
3.22 Auto-Choreography Model: Binding-Level Adaptation 104

4.1 Experimental Workflows . 106
4.2 Java Implementation of Chemical Concepts 112
4.3 Execution of an HOCL Program . 113
4.4 Implementation of Chemical Reactions . 113
4.5 Interaction with Users . 114
4.6 Interaction to a Remote Solution (Single Host) 115
4.7 Interaction to a Remote Solution (Multiple Hosts) 116
4.8 Distributed Chemical Infrastructures . 117
4.9 The Execution Time for Different Models 119
4.10 The Number of Additional Messages for Different Models 120
4.11 The Overall Execution Time (Including Adaptation) for Different Models . 121

5.1 Two-Phase Online Prediction Approach . 128
5.2 PERT Chart . 132
5.3 Comparison of Static Strategies . 136
5.4 Adaptive Decision Strategy . 137
5.5 Experimental Workflow . 139

A.1 Illustration: Distribution of Coordination Information 166

8

List of Tables

1.1 QoS Aggregation Function . 27
1.2 Local QoS . 28
1.3 Aggregated QoS . 28
1.4 Example of Global and Local SLAs . 30

2.1 Metaphor of Chemistry-Inspired Computing 51

4.1 Comparison of Different Models . 111

5.1 QoS Dataset . 138
5.2 Contingency Table . 140
5.3 Experimental Results: Traditional Approaches 141
5.4 Experimental Results: Evaluate Different Decision Strategies 142
5.5 Accuracy . 143
5.6 Precision . 143

9

List of Tables

10

List of HOCL Programs

2.1 A Sample HOCL Program . 57
3.1 Molecular Representation of the Workflow in the “Best Garage” Example . 69
3.2 The Definition of the Reaction Rule createSBAInstance 70
3.3 The Description of a New SBA Instance . 71
3.4 The Definition of the Reaction Rule send 71
3.5 Chemical Rules for Local Service Selection 73
3.6 Description of a Concrete Workflow for the “Best Garage” Example 74
3.7 Reaction Rules for Generating Instantiated Task (IT-PIW) 78
3.8 Reaction Rule for Generating Instantiated Chain (IC-PIW) 79
3.9 Reaction Rules for Generating AND-Split Instantiated Block (ISB-PIW) . . 81
3.10 Reaction Rules for Global QoS Verification 83
3.11 Coordination Rules for Service Orchestration 85
3.12 Invocation Rules for Service Orchestration (Defined in CCS) 86
3.13 Invocation Rules for Service Orchestration (Defined in CWS) 88
3.14 The Definition of the Reaction Rule sequence 90
3.15 The Definition of Reaction Rule and-split 91
3.16 The Definition of Reaction Rule exclusive-choice 92
3.17 The Definition of Reaction Rule multiple-choice 92
3.18 The Definition of Reaction Rule synchronization 93
3.19 The Definition of Reaction Rule simple-merge 94
3.20 Adaptation Rule for Binding-Level Adaptation (ARs) 95
3.21 Adaptation Rules for Workflow-Level Adaptation 97
3.22 New Invocation Rule for Executing the Adaptation Fragment 98
A.1 HOCL Rules for the Distribution of Workflow Fragments 164
A.2 New Instance Tuple with Updated Neighbors 165
A.3 Coordination Rules for Aggregating Coordination Information 165
A.5 Invocation Rules for Semi-Choreography (Defined by CWS) 167
A.4 Coordination Rules for Semi-Choreography 169
B.1 Coordination Rules for Auto-Choreography Mode 172
B.2 Invocation Rules for Auto-Choreography Model (Defined by CWS) 173
B.3 Invocation Rules for Auto-Choreography Model (Defined by CCS) 173

11

List of HOCL Programs

12

Introduction

1 Research Context: Service-Oriented Computing

With the continuous progress in global economy and technology, enterprises have changed
the way to do business. In the past, enterprises developed separately desktop (or Web-
based) applications to manage their business. Nowadays, the boom in global market
economy has greatly promoted the collaboration among enterprises. For example, with
the emergence of Electronic Business (E-Business) [150], more and more enterprises have
developed Web-based platforms that enable customers to learn, to select and to purchase
their products on line. The development of such platforms requires enterprises to im-
plement a variety of software modules providing different services/functionalities, such as
online payment (money transfer) services, express delivery services. However, all these
software modules can be hardly implemented and provided by a single enterprise. There-
fore, today’s business information systems call for new paradigms for designing distributed
applications that span organizational boundaries and heterogenous computing platforms.

Service-Oriented Architecture (SOA) [66] is widely adopted today by many enterprises
as a flexible solution for building loosely coupled distributed applications. From the view-
point of SOA, each software module can be provided as an internet-accessible service,
defined as a self-contained, self-describing, autonomous and platform-independent soft-
ware component that can receive requests and return computational results through a set
of well-defined and standard interfaces. Recently, the advent of cloud computing promotes
such Software-as-a-Service (SaaS) model [21]. Running over cloud infrastructures, services
are provided as public utilities, such as electricity. Following the pay-as-you-go model, a
service requester is charged based on his/her consumptions of a service, for example, the
number of requests to this service.

Service-Oriented Computing (SOC) paradigm utilizes services as fundamental building
blocks for developing applications [118]. Using SOC approaches, a distributed (business)
application can be easily developed by defining a service composition, represented by a
workflow, which integrates and coordinates a set of constituent services. All constituent
services can be provided either internally or externally from the enterprise, running on dis-
tributed infrastructures and heterogenous platforms. Compared to traditional approaches,
the development of such Service-Based Applications (SBA) can reduce the cost and com-
plexity. On one side, since SBA providers can directly reuse (or purchase) functional
modules from other service providers, both labor cost and time consumption in software
development can be greatly reduced. On the other side, constituent services are managed
independently by their own providers; accordingly, the cost in software maintenance is
dispensable for SBA providers.

13

Introduction

However, due to the distributed and loosely coupled execution environment, the ex-
ecution of SBA must be flexible in order to achieve both functional and non-functional
business goals. Flexible execution of SBA has to meet the following requirements:

1. Dynamicity : each SBA instance can be constructed on the fly in response to various
requirements of different end users.

2. Adaptability : the execution of an SBA instance is required to be adaptable to various
runtime changes (e.g. failures).

3. Autonomicity : both dynamicity and adaptability have to be realized in an autonomic
way to minimize the intrinsic complexity to operators and users.

Obviously, flexible execution of SBA exhibits a high degree of challenges as well as
complexities from both academic and practical perspectives.

2 Motivations

Such flexible service-based systems share a high degree of similarities with biological sys-
tems due to the dynamic, adaptive and distributed nature. Recently, nature-inspired
metaphors have been identified as promising approaches to model such self-adaptable and
long-lasting evolving service-based systems [135].

2.1 Nature-Inspired Computing

People have regressively learned from the nature. Throughout human’s history, a lot of
inventions and ideas have been developed with the inspiration derived from the biological
and natural world. For example, two thousand years ago, a famous Chinese carpenter
invented the saw with the inspiration from a kind of grass with teeth along its edge2. As
another example in modern times, the airplane was invented based on the study and the
analysis on bird’s wings.

From the perspective of the research scientists of computer systems, the nature is
the largest distributed system, which presents the best example on how to efficiently and
effectively build self-managed and self-adaptive distributed systems. The Nature-Inspired
Computing (NIC) [94] aims at developing computational models and algorithms inspired
from natural metaphors, including physics, chemistry, and biology, to solve practical and
complex problems in large-scale distributed systems.

Chemistry-Inspired Computing. Chemical programming model [29] is a research
branch of nature-inspired computing. It is an innovative programming paradigm for par-
allel and autonomic computing. Inspired by the metaphor from chemistry, a program is
described as a chemical solution, where all the floated molecules represent computational
elements (e.g. data). The computation is modeled as a series of reactions controlled by
a set of reaction rules. As the laws of the computation, a reaction rule specifies the con-
sumption and the production of molecules: it can modify/consume the existing molecules
(the reactant) or generate the new ones (the resultant). The computation completes when
the solution becomes inert, defined as the state where no more reaction can be triggered.

2The story can be found at http://history.cultural-china.com/en/38History6890.html

14

http://history.cultural-china.com/en/38History6890.html

Introduction

2.2 Objectives

This dissertation aims to investigate novel approaches in response to the challenges in
building flexible service-based systems. Some preliminary research work have been con-
ducted to demonstrate the feasibility and viability in using the chemical programming
model to program autonomous service-based systems [32, 31]. The main objective of this
dissertation is to extend these work by designing, developing and evaluating a chemistry-
inspired service middleware for flexible execution of SBAs. The middleware is expected to
deal with some of the most important steps in SBA’s runtime management:

The construction of SBAs: how to flexibly select constituent services? Using
the Internet as the medium, more and more services become available which can provide
the same functionality under different Quality of Service (QoS) (e.g. cost, response time,
etc.). In response to various requirements from different end users, an SBA is required to
be dynamically constructed by selecting and integrating the “most suitable” constituent
services on the fly.

The execution of SBAs: how to flexibly coordinate constituent services? Or-
chestration and choreography represent respectively the centralized and decentralized
model for service coordination [122]. Compared to the orchestration model, choreogra-
phy can improve the performance in scalability, throughput and execution time; whereas,
it also brings additional complexities and challenges, such as fault-tolerance, security and
privacy issues. Therefore, future-generation service-based system is required to be able to
flexibly select the “best” model to execute a service composition according to its execution
context.

The adaptation of SBAs: how to flexibly react to runtime failures? A running
SBA instance may fail due to the distributed, heterogenous and loosely coupled execution
environment. For example, network congestion can lead to a constituent service completely
responseless, which will in succession cause the failure in executing the corresponding SBA
instance. In this context, the execution of SBA is required to be self-adaptable on the fly
in order to react to various failures raised from functional and non-functional levels.

Additionally, on the way to build flexible service based systems, we do not restrict our
research only in investigating the chemical-based solutions. In this context, the second
objective of this thesis is to find out generic solutions, such as models and algorithms,
to respond to some of the most challenging problems in flexible execution of SBAs. For
example, how to proactively predict and avoid the occurrence of failures instead of passively
reacting to them?

3 Contributions

To achieve these objectives, the main contributions of this dissertation are two-fold:

A chemistry-inspired middleware for flexible execution of SBAs. I have pro-
posed and developed a biochemistry-inspired service middleware that models service-based
systems as distributed, self-organized and self-adaptive biochemical systems. 1) Firstly,
all the service-related concepts (e.g. services, data, etc.) are described using biochemical
metaphor, such as atoms, molecules and cells; 2) then, by using an illustrative example

15

Introduction

in the real life, we have demonstrated flexible execution of SBA in terms of a series of
pervasive chemical reactions controlled by a number of rules. The contributions of this
work cover the follows aspects.

1. Flexible selection of services3. We have defined a number of instantiation rules
that describe service selection as a series of molecular polymerization processes. Both
local and global constraints can be easily expressed using reaction rules. Different
from other traditional approaches that model service selection as a sequential or a
one-shot process, in the middleware, the services are selected in a recursive and ag-
gregation way: chemical reactions can be executed independently and concurrently.

2. Flexible coordination of services. By providing different groups of coordina-
tion rules, we have realized a centralized orchestration model as well as two decen-
tralized models to coordinate constituent services, namely semi-choreography and
auto-choreography. An SBA provider is able to specify a desirable model to execute
service compositions based on his/her execution context. Furthermore, a number
of experiments have been conducted by running two experimental workflows in the
middleware to compare different models in terms of efficiency and complexity.

3. Flexible adaptation of services. We have integrated a number of adaptation rules
in the middleware that describe reactive adaptation actions as a series of chemical
reactions. These reactions can modify the binding references or even the workflow
structures in order to cope with runtime failures raised from both functional and
non-functional aspects.

Compared to traditional approaches, chemical-based implementation exhibits some
desirable characteristics, such as higher-level abstraction, simplicity, evolvability and self-
adaptability.

Towards proactive adaptation of SBAs. The chemistry-inspired middleware has re-
alized some of the most important steps in SBA’s management life cycle, from its construc-
tion, to its execution and adaptation. However, it can only react to rather than prevent
the occurrence of failures. In this work, we get a step further to investigate proactive
adaptation [100]. The objective is to guarantee the end-to-end QoS of SBA by execut-
ing preventive adaptation actions before QoS degradations actually occur. Since runtime
adaptation is costly, one of the key challenges to efficiently implement proactive adapta-
tion is to accurately draw adaptation decision in order to avoid unnecessary adaptations.
I have proposed a two-phase online prediction approach capable of accurately forecasting
an upcoming degradation in the end-to-end QoS of a running SBA instance as early as
possible. This approach is evaluated and validated by a series of realistic simulations. The
results have shown that our approach is able to draw both accurate and timely adaptation
decision compared to other traditional prediction approaches. This contribution is more
generic, which can not only be integrated into the chemistry-inspired middleware but also
implemented by other traditional approaches.

3This work is conducted in collaboration with Claudia Di Napoli and Maurizio Giordano from CNR
(National Research Council, Italy)

16

Introduction

4 Publications

International Conferences

1. Chen Wang and Jean-Louis Pazat: A Chemistry-Inspired Middleware for Self-Adaptive
Service Orchestration and Choreography. In the 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid’2013). In Delft, The
Netherlands (May 13–16, 2013).

2. Chen Wang and Jean-Louis Pazat: A Two-Phase Online Prediction Approach for
Accurate and Timely Adaptation Decision. In the 9th IEEE International Confer-
ence on Service Computing (SCC’2012). Honolulu, Hawaii, USA (June 2012).

3. Claudia Di Napoli, Maurizio Giordano, Jean-Louis Pazat and Chen Wang: A Chemi-
cal Based Middleware for Workflow Instantiation and Execution. In the 3rd European
Conference on ServiceWave (ServiceWave’2010): 100-111. Gent, Belgium (Decem-
ber 2010).

4. Chen Wang and Jean-Louis Pazat: Using Chemical Metaphor to Express Workflow
and Service Orchestration. In the 10th IEEE International Conference on Computer
and Information Technology (CIT’2010): 1504-1511. Bradford, UK (June 2010).

National Conferences

1. Chen Wang and Jean-Louis Pazat: Un middleware inspiré par la chimie pour l’exécution
et l’adaptation flexible des applications basées sur services. In RenPar’21 (Rencon-
tres francophones du Parallélisme). Grenoble, France (January 2013).

Tutorials & Technical Reports

1. Chen Wang: A QoS-Aware Middleware for Dynamic and Adaptive Service Execu-
tion. (May 2011) Available online at HAL-INRIA: http://hal.inria.fr/hal-00794027/.

2. Chen Wang: A Middleware Based on Chemical Computing for Service Execution
- Current Problems and Solutions. (Jan. 2011) Available online at HAL-INRIA:
http://hal.inria.fr/hal-00794023/.

3. Chen Wang, Thierry Priol: HOCL Programming Guide. Technique report (Sept.
2009). Available online in HAL-INRIA: http://hal.inria.fr/hal-00705283/.

4. Chen Wang, Thierry Priol: HOCL Installation Guide. Technique report (Aug.
2009). Available online at HAL-INRIA: http://hal.inria.fr/hal-00794028/.

5 Organization of Dissertation

This dissertation is organized in three parts.

Part I: Background

In this part, we provide the context of this work.

• Chapter 1 starts with a general introduction to service-oriented computing. Some
cutting-edge research problems and the related state-of-the-art research work are
discussed.

17

Introduction

• Chapter 2 first investigates some unconventional approaches for programming service-
based systems, i.e., rule-based systems and tuple-space based systems. Then, we
present a similar but more preferable approach known as chemical programming
model. Finally, we introduce an implementation of chemical programming model
named as Higher-Order Chemical Language (HOCL).

Part II: Chemistry-Inspired Middleware

This part focuses on the first contribution of our work. We will present the design, the
implementation and the evaluation of a middleware based on chemical programming model
for flexible execution of service-based applications.

• Chapter 3 focuses on the design of the middleware. First, the architectural overview
of the middleware is illustrated. Then, we present a number of reaction rules that
describe service selection in terms of a series of chemical reactions in the middleware.
In the following, a centralized model (orchestration) and two decentralized models
(semi-choreography and auto-choreography) are introduced for autonomous service
coordination and adaptation.

• Chapter 4 focuses on the implementation and the evaluation of the middleware.
First of all, we analyze the performance of different models by using two experimen-
tal workflows. Then, we present the implementation of HOCL and the distributed
chemical infrastructures on which the middleware is running. Finally, as a proof-of-
concept validation to show its viability, a number of experiments have been conducted
by executing two experimental workflows in the middleware. The evaluation results
prove our analysis in the beginning of this section.

Part III: Towards Proactive Adaptation of SBA

In this part, we present the second contribution of our work.

• Chapter 5 discusses how to determine the best timing to proactively start adap-
tation before failures actually occur. A two-phase online prediction approach is in-
troduced to forecast an upcoming failure as early as possible while keeping a higher
prediction accuracy. This approach is evaluated based on a series of realistic simu-
lations using different kinds of workflows.

Conclusions and Perspectives

Finally, we conclude this work with the discussion on the future work.

Bibliography

In this part, a list of sources used in this dissertation are provided.

Appendix

The appendix provides some additional information (examples and source codes) to sup-
port this dissertation.

18

Part I

backgroud

19

Chapter 1

Service-Oriented Computing

Abstract. In this chapter, we introduce the background of this dissertation. First of
all, some important concepts in service-oriented computing are presented in Section 1.1.
In the following, some major research problems in service computing are discussed and
the related state-or-the-art research work are presented. Section 1.2 addresses the con-
struction of service-based applications by solving the service selection problem. Both local
and global service selection approaches are presented. Then, in Section 1.3, we introduce
both centralized and decentralized models and their implementation (tools/languages) to
execute service-based applications. Finally, Section 1.4 discusses runtime adaptation of
service-based applications in order to react to runtime changes in the execution environ-
ments, such as failures. Different types of adaptation techniques are introduced.

21

Chapter 1. Service-Oriented Computing

1.1 Service-Based Application

Service-Oriented Architecture (SOA) provides a new perspective to build rapid, low-cost,
interoperable and evolvable distributed applications. From the perspective of SOA, any
piece of code, application component or even software system can be transformed into a
network-available service. With the popularity of the Internet, a service can be consumed
remotely through a set of well-defined interfaces by means of message exchanges. In this
context, the development of a distributed application is performed by creating a Service-
Based Application (SBA) that assembles and coordinates a number of existing services
available via the Internet.

Figure 1.1 illustrates an example of SBA. Enterprise A intends to develop a service-
based application in order to provide a certain functionality to is clients. First, an abstract
workflow is defined by decomposing the expected functionality into a collection of interre-
lated tasks (or activities) that function in a logical order to achieve the ultimate business
goal. Such an abstract workflow is not executable because it lacks the binding reference
for each task. Therefore, the abstract workflow is required to be instantiated before the
execution can start. The instantiation of workflow aims to construct an executable con-
crete workflow by mapping each task ti to a specific service, noted as ws(ti), as addressed
later in Section 1.2.

A concrete workflow presents a service composition which outsources the execution
of each task ti to a specific service ws(ti). In this context, all the services involved in
a service composition are defined as constituent services (e.g., service S1, S2 and S3 in
Figure 1.1). All the constituent services can be developed based on different technologies,
provided by different enterprises/organizations and running on heterogenous platforms.
The execution of a service composition is performed by a series of interactions to all the
constituent services. Different models to coordinate the interactions among constituent
services will be introduced in section 1.3.

The advent of cloud computing promotes such Software-as-a-Service (SaaS) model.
Following the concept of “pay-as-you-go”, the consumer/requester of a service only pays a
little amount of money to the service provider for each invocation (some service providers
may offer service packages which allow unlimited invocations within a certain period).
Accordingly, compared to traditional approaches, the service-oriented paradigm enables
the SBA provider (e.g. enterprise A) to reduce the cost and the complexity in designing and
developing complex applications from scratch. Additionally, the service-based application
exhibits the following characteristics:

• Distributed resources. The service composition represents distributed computa-
tional resources, from both software level and hardware level.

• Heterogeneity. Services can be implemented in different programming languages,
and running on heterogenous platforms or system.

• Cross administration domain. Services can be developed and managed by dif-
ferent organizations/enterprises.

• Loose coupling. A service is a self-contained functional unit; thus, the modification
of a service implementation has minimum effect on others (clients).

In this section, we introduce some important concepts in service-oriented computing,
which are the basis of our discussions in the rest of this dissertation.

22

1.1. Service-Based Application

Figure 1.1: Service-Based Application

1.1.1 Web Service

Web service is the basic building block for developing Service-Based Applications (SBA).
From the above discussion, we can see that a Web service acts as a black box that encap-
sulates software and hardware resources. It can be consumed (or reused) by exchanging
messages through a set of program interfaces, which specify the message formats and com-
munications protocols. However, it is hard to find an exact definition for the term Web
service since many of them exist. In this dissertation, we use the definition provided by
W3C1:

“A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialization in con-
junction with other Web-related standards.”

From the above description, Web service refers to a software system that is reusable
remotely over an Internet protocol backbone, to name a few, Extensible Markup Language
(XML) [1] for presenting data, Simple Object Access Protocol (SOAP) [4] for transmitting
data, the Web Service Description Language (WSDL) [6] for describing service interfaces
etc. The interface is implemented by a concrete software agent, which can be a concrete
piece of software or hardware that realizes the expected functionalities.

Web Service Architecture. As shown in Figure 1.2, the Web Services architecture
consists of three roles: service provider, service requester and service registry.

1W3C (the World Wide Web Consortium) is an international community that develops open standards
to ensure the long-term growth of the Web. http://www.w3.org/TR/ws-arch/

23

http://www.w3.org/TR/ws-arch/

Chapter 1. Service-Oriented Computing

Figure 1.2: Web Service Architecture

• Service provider is the a person (or an organization) that has implemented a Web
service to provide certain computational functionalities through a set of well-defined
interfaces.

• Service requester is a person (or an organization) that consumes existing web ser-
vice(s) by means of exchanges message exchanges.

• Service registry is a directory of Web services, where service providers can publish
new services and requesters can find existing ones.

In order to make Web service architecture work, three fundamental operations have
been defined: publish, find, and bind.

• First of all, service providers have to publish their services to a service registry/broker
by advertising both functional interfaces as well as non-functional properties of its
Web services.

• In the following, a service requester needs to go to the the registry to find the Web
service(s) capable of providing the expected functionality. The registry will return
the corresponding endpoint references of the candidate Web services.

• Finally, the requester binds and interacts with all the selected Web service(s) in
order to benefit the expected functionality.

Atomic Web service VS composite Web service. According to different implemen-
tations, a service can be classified into two categories: an atomic service or a composite
service. The former represents an individual software component that provides the ex-
pected functionality; whereas the latter defines a service composition which aggregates a
number of basic and fine-grained services. An atomic service is an indivisible self-contained
piece of software. By contrast, the composite service first decomposes the realization of the
expected functionality into several inter-related tasks, and then outsources the execution
of each task to an Internet-accessible Web service. Figure 1.3 describes the hierarchy of
service composition: a composite service can aggregate both atomic and other composite
Web service(s). Please notice that either an atomic or a composite Web service describes
a service from the perspective of its implementation. However, from the viewpoint of a
service requester, any service is atomic because it can only know the interface of a Web
service but has no knowledge on how a Web service is implemented.

24

1.1. Service-Based Application

Figure 1.3: Hierarchy of Service Compositions

1.1.2 Workflow

A workflow describes the business logic by specifying the execution order of tasks (ser-
vices). The topology of a workflow is represented by a graph where the nodes represent
abstract tasks and the edges specify the dependencies between these tasks (services). Any
workflow can be transformed to a Directed Acyclic Graph (DAG) by removing loops. Two
approaches are proposed in the literature. 1) [158] introduces an unfolding method: all
the tasks between the beginning and the end of a loop are cloned K times, where K is
the maximum number of times that this loop has been executed according to the past
execution logs. 2) In [20], loops peeling is introduced as an improvement of unfolding
technique: loop iterations are represented as a sequence of branching evaluations. Each
evaluation aims to decide whether to continue or to exit the loop. Therefore, the loop
structure will not be considered in this dissertation.

In order to express complex control flow, some special nodes have to be added to the
DAG workflow representation describing complex workflow patterns [134]. As an example,
Figure 1.4 shows a concrete workflow which integrates and coordinates 10 Web services.
First of all, an and-split workflow pattern is added after S2 since the execution will be
diverged into two parallel branches when S2 is executed. Then, a synchronization workflow
pattern is located before S9 because all the execution branches will be synchronized before
the execution of service S9. Similarly, after the execution of service S3, each outgoing
branch is associated with a condition and the execution will continue to only one of them
according to the outcome of the service S3. In this case, an exclusive-split is required
after S3 and a simple-merge is used before S5. More description about complex workflow
patterns can be found in [8].

In the following, we introduce two important concepts, namely the Execution Plan
(EPL) and the Execution Path (EPA). An execution path is a sequential execution of
tasks from the first task to the last one. An execution plan is a possible execution of
workflow which contains all the tasks in parallel branches and all the tasks in only one of
exclusive branches; Let P and Q indicate respectively the number of execution plans and
paths in a workflow, nplp and npaq indicate respectively the number of the tasks included
in the execution plan eplp and execution path epaq. The workflow shown in Figure 1.4 has
three execution paths (Q=3):

• epa1 = {S1 → S2 → S3 → S4 → S6 →, S9 → S10}; (npa1 = 7)

• epa2 = {S1 → S2 → S3 → S5 → S6 → S9 → S10}; (npa2 = 7)

• epa3 = {S1 → S2 → S7 → S8 → S9 → S10}; (npa3 = 6)

25

Chapter 1. Service-Oriented Computing

Figure 1.4: Sample Workflow

and two possible execution plans (P=2):

• epl1 = {S1, S2, S3, S4, S6, S7, S8, S9, S10}; (npl1 = 9)

• epl2 = {S1, S2, S3, S5, S6, S7, S8, S9, S10}; (npl1 = 9)

The execution plan epl1 (epl2) includes all the tasks in the execution paths epa1 and epa3
(epa2 and epa3). Let probp is the probability to execute the execution plan eplp, we have
∑p=P

p=1 probp = 1. In this example, we assume that prob1 = 0.3 and prob2 = 0.7.

1.1.3 Quality of Service

The Quality of Service (QoS) reflects the non-functional performance of a Web service.
A QoS attribute indicates how well a Web service performs in terms of a specific quality
metrics. We discuss only five of them in this dissertation. More descriptions of the QoS
attributes can be found in [12].

• Cost. The cost qc(ws) is the fee that a service requester has to pay in order to
invoke Web service ws. Its value can be any non-negative float numbers.

• Time. The response time qt(ws) reflects the expected duration for delivering the
expected functionality by Web service ws. It is a positive float number measured in
seconds.

• Availability. The availability qav(ws) reflects the probability that the Web service
ws stays deliverable. Therefore, its value is a real number from 0 to 1.

• Security. The security qsec(ws) reflects the ability of the Web service ws to provide
authentication, authorization, confidentiality and data encryption. It has a set of
enumerated values, such as HIGH, MEDIUM, LOW.

• Reputation. The reputation qrep(ws) is used to measure the trustworthiness of the
Web service ws. Its value is normally calculated based on the feedback of all the
requesters in the past according to their experiences in purchasing/invoking ws. Its
value normally varies within a range of numbers, for example, a real number from 0
to 5.

A QoS attribute can be either numeric or descriptive. The quality of a numeric at-
tribute can be expressed by a number while the descriptive attribute uses an expression
to describe the quality levels. Considering the five QoS attributes mentioned above, the
cost, response time, availability and reputation are numeric QoS attributes whereas the

26

1.1. Service-Based Application

Table 1.1: QoS Aggregation Function

QoS QoS Aggregation Function Global QoS Calculation
qc aqosc(eplp) =

∑

ti∈eplp,ti←wsi

(qc(wsi)) gqosc = max{aqosc(eplp), 1 ≤ p ≤ P}

qt aqost(epaq) =
∑

ti∈epaq ,ti←wsi

(qt(wsi)) gqost = max{aqost(epaq), 1 ≤ q ≤ Q}

qav aqosav(eplp) =
∏

ti∈eplp,ti←wsi

(qav(wsi)) gqosav =
∑P

p=1 probp · aqosav(eplp)

qsec aqossec(eplp) = min{qsec(wsi
)|ti ∈ eplp, ti ← wsi} gqossec = min{qsec(wsi)|ti ← wsi}

qrep aqosrep(eplp) =
1

nplp
·

∑

ti∈eplp,ti←wsi

(qrep(wsi)) gqosrep =
∑P

p=1 probp · aqosrep(eplp)

security is a descriptive one. Moreover, a numeric QoS attribute can be either positive
or negative. For positive attributes, the higher value results in a higher quality, such as
availability and reputation; by contrast, price and execution time are negative attributes
since the greater value leads a lower quality.

QoS Aggregation. The end-to-end QoS of SBA is determined by the QoS of all com-
ponent Web services. For example, the execution time of a service composition depends
on how fast each constituent Web service responds. Before presenting how to calculate
the end-to-end QoS of SBA, we first introduce three concepts.

• Local QoS (lqos). The local QoS refers to the QoS of each constituent Web service.

• Aggregated QoS (aqos). The aggregated QoS reflects the end-to-end QoS of an
execution of SBA (an execution plan).

• Global QoS (gqos). The global QoS reflect the end-to-end quality level of an SBA
by considering all the possible execution plans.

Table 1.1 shows how to calculate the aggregated QoS and the global QoS based on
all the local ones. Different QoS attributes are aggregated using different aggregation
functions. 1) the aggregated cost of an execution plan eplp is the sum of the cost of all
the constituent services that are included in eplp. 2) The execution time is aggregated
along each execution path epaq. Its value is the sum of the response time of all constituent
services that are included in epaq. 3) An execution plan eplp is available if and only if all the
constituent services are available. In this case, the aggregated availability is the product
of the availabilities of all the constituent services in eplp. 4) The aggregated security level
depends on the lowest security level of all Web services in an execution plan eplp. 5) The
aggregated reputation is calculated by the average rating of all the constituent services in
an execution plan.

The global QoS reflects the expected end-to-end QoS for an execution of SBA, ex-
pressed as gqos = (gqosc, gqost, gqosav, gqossec, gqosrep) The global price and time are
determined by the worst execution case: the aggregated price and execution time cannot
exceed these limits for all possible execution plans. Similarly, the global security only
depends on the constituent service that implements the lowest security level. By contrast,
the availability and the reputation is calculated based on the historical information over
a long periods. The values of these attributes generally reflects all execution possibilities
(the possibilities of different execution plans have to be considered).

27

Chapter 1. Service-Oriented Computing

Table 1.2: Local QoS

QoS S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

price (e) 0.10 0.05 0.05 0.00 0.02 0.05 0.08 0.03 0.20 0.00
time (s) 10 15 12 15 5 8 15 15 25 5
availability 0.998 0.996 0.993 0.987 0.999 0.992 0.993 0.990 0.997 1.00
security +++ +++ +++ +++ ++ +++ +++ +++ +++ +++
Reputation 5 5 5 4 5 3 4 5 5 5

Table 1.3: Aggregated QoS

QoS path1 (epa1) path2 (epa2) path3 (epa3) plan1 (epl1) - 30% plan2 (epl2) - 70%
price (e) - - - 0.56 0.58
time (s) 90 80 85 - -
availability - - - 0.947 0.959
security - - - +++ ++
Reputation - - - 4.222 4.667

Example. In the following, we use an example to demonstrate the computation of the
aggregated and the global QoS of SBA. Take the workflow defined in Figure 1.4 for exam-
ple, the local QoS of all the constituent service are provided in Table 1.2. Firstly, we use
the aggregation function defined in Table 1.1 to compute the aggregated QoS. We only
demonstrate the computation of the aggregated execution time as a proof-of-concept ex-
ample. The execution time is aggregated along each execution path. Thus, the aggregated
execution time of the path epa1 is simply computed as follows:

aqost(epa1)=qt(S1)+qt(S2)+qt(S3)+qt(S4)+qt(S6)+qt(S9)+qt(S10)=90 seconds.

Similarly, the aggregated execution time of the other two execution paths are respectively
80 and 85 seconds. The aggregated values of other QoS attributes are calculated in the
similar way, which is provided in Table 1.3.

Based on the aggregated QoS, we are able to compute the global QoS of SBA. By using
the global QoS calculation function defined in Table 1.1, we can see that the global price,
execution time and security is determined by the worst case. In our example, the global
price, execution time and security level are respectively 0.58 e, 90 seconds and medium
(++). Then, the availability and reputation takes the probability into consideration. As
we have assumed, the probability to execute epl1 and epl2 are respectively 30% and 70%.
Thus, the global availability and reputation equal to 0.955 and 4.535 respectively. The
global QoS can be therefore expressed as: gqos = (0.58, 90, 0.955,MEDIUM, 4.535).

1.1.4 Service Level Agreement

A Service Level Agreement (SLA) is a mutually-agreed contract between the service re-
quester and provider, which dictates the expectations as well as obligations in regards
to how a service is expected to be provided. On one hand, the expected quality level is
formulated by specifying agreed target values for a collection of QoS attributes. On the
other hand, some penalty measures are defined in case of failing to meet these quality ex-
pectations. The definition of penalty is beyond the discussion of this thesis. Accordingly,
our discussion will focus on the definition of quality level of an SLA.

An SLA groups a set of relevant QoS attributes to specify a quality level of a Web
service which states how “well” the service is expected to respond. For the reason of

28

1.1. Service-Based Application

Figure 1.5: Local and Global SLAs

simplicity, in this dissertation, an SLA is modeled as a set of target values of QoS attributes.
As an example, a typical definition of SLA can be described as follows:

Each invocation to Web service ws costs 0.1 e, and the Web service ws is
expected to respond within 5 seconds, with an availability of 0.99.

The above SLA can be expressed as: sla(ws)=< qt = 2, qc = 0.1, qav = 0.99 >.

Local SLA and Global SLA. In the context of service-based application, the SBA
provider plays the roles of service provider as well as consumer: it consumes a group of
constituent Web services in order to provide value-added service to its customers. For
both roles, it establishes an SLA with each of its counterparts, as shown in Figure 1.5.
The SLA between the SBA and a constituent Web service is defined as local SLA, and
the one negotiated with the end requester is defined as global SLA. A local SLA reflects
the expected QoS of a specific constituent service to execute a workflow task, denoted as
lsla(Si)=< qt(Si), qc(Si), ... >, where qt(Si) and qc(Si) represent respectively the expected
time consumption and cost for invoking service Si. More QoS attributes can be used here.
Whereas the global SLA dictates the end-to-end performance of the entire SBA, denoted
as gsla=< gqost, gqosc, ... >, where gqost and gqosc specify respectively the expected
end-to-end time consumption and the overall cost for an execution of SBA.

Obviously, the definition of the global SLA depends on the local ones. As an example,
Table 1.4 lists the expected execution time and the cost defined in both global and local
SLAs for the SBA instance depicted in Figure 1.5. For each QoS attribute, the value of
global QoS can be executed by using the aggregation function introduced in Section 1.1.3.
In this example, the global execution time and global cost for for the service composition
are respectively 6,400 s and 1.4 e. As a result, the SBA provider promises that it is capable
to respond with 6,800 s (with 400 s for the cost of coordination and safety margin) at the
cost of 1.8 eper invocation (it earns 0.4 eper invocation).

29

Chapter 1. Service-Oriented Computing

Table 1.4: Example of Global and Local SLAs

QoS Attributes S1 S2 S3 S4 S5 S6 S7 S8 SBA
time (s) 600 800 1500 1500 1800 1000 1200 1000 6800
price (e) 0.1 0.3 0.05 0.0 0.15 0.5 0.1 0.2 1.8

Figure 1.6: Life cycle of SBA Runtime Management

1.1.5 Runtime Management of Service-Based Applications

Due to the dynamic and distributed execution environment, the runtime management of a
running service-based application exhibits a high degree of complexities and challenges. As
shown in Figure 1.6, the life cycle of SBA runtime management can be generally divided
into three phases.

Instantiation. The instantiation phase aims to build a concrete workflow by discovering,
selecting and integrating suitable constituent services at runtime.

Execution. The execution phase is to run an instantiated SBA instance by coordinating
all constituent services.

Adaptation. The objective of the adaptation phase is to react to runtime failures in
order to guarantee both functional and non-functional expectations in delivering the SBA.

All these phases are inter-related. Firstly, the instantiation phase is the basis of the
execution of SBA. Then, adaptation phase accepts the failures reported from the execu-
tion phase and identifies suitable adaptation plans to cope with these failures. Finally,
sometime, the adaptation plan requires the re-instantiation of (a part of) workflow. In the
rest of this section, we introduce a number of the cutting-edge research problems related
to these three phases and some state-of-art solutions.

1.2 Instantiation of Workflow

Different SBA requesters may have various non-functional requirements, for example, the
maximum cost that (s)he can afford or the expected response time. In response to different
requests, the SBA is always abstractly defined at the design time by composing a number
of inter-dependent tasks as place holders. When a request arrives, this abstract workflow
is instantiated by selecting a suitable constituent service for each task. The instantiation

30

1.2. Instantiation of Workflow

of workflow aims to construct a concrete workflow that can best fit for the requester’s
requirements. It requires several functional steps to fulfill the instantiation process.

• Advertise. First, each service provider has to publish its Web service by describing
both functional and non-functional properties in a publicly available registry so that
other enterprises are able to find it and then consume it.

• Discover. The registry provides the discover function so that a service requester is
able to find the services with his/her expected functionality.

• Select. If the requester has found multiple functional-equivalent services, (s)he has
to select the best one(s) based on different criteria.

• Bind. Finally, each workflow task has to bind to the selected service in order to
outsource the computation for the required functionality.

Since the advertise and discover functions are always addressed by the service registry
(refer to Figure 1.2), our discussion focuses on the implementation of the selection and
bind functions. Compared to the bind function, service selection is more complicated and
challenging. Using Internet as the medium, more and more Web services are available
today. Therefore, it is possible to have multiple functional-equivalent candidate Web
services to execute a certain task. With the widespread proliferation of Web services,
quality of service (QoS) becomes a significant factor in distinguishing functional-equivalent
Web services. A service class is defined as a set of Web services that can provide the same
functionality but differ in quality of services. The service selection process aims to select
exact one Web service from the service class of each task in order to construct a concrete
workflow. Given an abstract workflow with N tasks, denoted as awf={ti|1 ≤ i ≤ N}.
The relative service class for each task ti is defined as SCi={Si,j |1 ≤ j ≤ Mi}, Mi is the
number of services in service class SCi. The objective of instantiation is to construct a
concrete workflow cwf={ti → Si,k|1 ≤ i ≤ N, 1 ≤ k ≤ Mi} by mapping each abstract
task ti to a selected Web service Si,k. In this section, different selection approaches are
introduced.

1.2.1 Static Selection v.s. Dynamic Selection.

The selection and integration of constituent services can be performed either at design
time or at runtime. The design-time service selection refers to the static service selection
that reflects provider-centric business model. In this context, an SBA provider selects
different sets of services to predefine multiple concrete workflows at design time, which
can execute the SBA on different quality levels. The requester can select a specific quality
level to execute the SBA that best fits for his/her nonfunctional requirements (preferences
or constraints).

For example, the SBA provider pre-defines two concrete workflows: cwf1 and cwf2.
cwf1 integrates high quality (e.g. fast response time) but costly Web service for each task,
whereas cws2 uses low-cost or even free web services which have limited and unassured
non-functional qualities. Therefore, the SBA can be provided on two levels: higher quality
level (but expensive) by executing cwf1 and lower quality level (but cheap) by executing
cwf2. Then the requester can purchase a suitable level to execute the SBA according to
his/her budget.

By contrast, runtime service selection presents client-centric business model. In this
context, a requester explicitly expresses his/her QoS constraints and preferences, and all

31

Chapter 1. Service-Oriented Computing

the constituent services are selected at runtime so that the global QoS of entire service
composition can satisfy the end requester’s QoS requirements. Compared to static service
selection, dynamic selection exhibits a high degree of dynamicity in customizing the quality
quality level of SBA.

1.2.2 Local Selection v.s. Global Selection.

Dynamic service selection introduces the optimization problem which can be solved either
locally or globally. The local approaches aim to select the best candidate for each task
separately. Accordingly, it is more efficient but the requester’s constraints on the end-to-
end QoS cannot be ensured.

1.2.2.1 Local Service Selection

In [47], the eFlow system is proposed that allows nodes (tasks) to have service selection
rules. When the eFlow engine tries to execute an activity it calls a service broker that
executes the service selection rules and returns a list of candidate services (with ranking
information). [104] introduces an approach for QoS specification and service selection.
The selection algorithm takes into account both the trustworthiness of a service provider
and the relative benefit offered by a provider with respect to the requester-specified QoS
criteria. In [79], the authors present an architecture for dynamic Web service selection
within a workflow enactment process. The dynamic selection of services is performed
through a Proxy Service interacting with a Discovery Service and an Optimization Service.

In [158], the authors present AgFlow: a middleware platform that enables QoS driven
service composition. Two alternative service selection approaches are discussed: local
optimization and global planning. The local approach implements a greedy algorithm
that selects the best candidate for each activity individually; The global approach selects
the services by separately optimizing each execution path. As demonstrated in [19], this
global approach cannot always guarantee the global QoS. In [13], the authors presented
a hybrid approach that combines global optimization with local selection. The idea is
to firstly decompose global QoS constraints into a set of local ones by using Mixed Inte-
ger Programing (MIP), and then the best candidate is selected locally for each activity
independently. When QoS decomposition results in a set of restrictive local constraints,
the local selection may fail. Hence, a service composition cannot be always successfully
identified even though it actually exists.

1.2.2.2 Global Service Selection

By contrast, the global selection approaches aim to identify a service composition that can
meet the requester’s end-to-end QoS requirements. In [19], the authors prove that global
service selection is equivalent to a Multiple-choice Multi-dimensional Knapsack Problem
(MMKP) [73], which is proved to be NP-Hard. As a result, identifying the best service
composition often results in a higher time complexity. The solution can be generally
classified by two categories: 1) the service selection is formulated as an optimization
model and an optimizer (such as CPLEX [3]) is used to compute the optimal solution. 2)
some heuristic algorithms are proposed to find a near optimal (sub-optimal) solution in
less time.

Optimization approaches. In [19], the service selection is modeled as a Mixed Integer
Linear Programming (MILP) problem where both local and global QoS constraints can

32

1.3. Service Interaction Models

be specified. Their work is extended in [20] by introducing loop peeling and negotiation
technique. The experimental results shows that it is effective for large processes even with
severe constraints. [154] proposes two optimization models for solving service selection
problem: combinatorial model and graph model. Using combinatorial model, service se-
lection is modeled as a Multiple-choice Multiple-dimension Knapsack Problem (MMKP);
And the graph model formulates the selection problem as Multi-Constrained Optimal Path
(MCOP) problem [87]. But the combinational model is only suitable for linear workflows.

Heuristic approaches. As argued in [14], linear programming is not suitable for run-
time service selection since the time complexity to obtain the optimal solution is ex-
ponential. In addition, the objective of service selection is to find out a feasible service
composition rather than the best one that can satisfy the end requester’s requirements. Ac-
cordingly, other approaches propose heuristic algorithms to efficiently find a near-optimal
solution. In [155], the authors extend both models they proposed in [154] to the general
workflow case and introduce a heuristic algorithm for each model to find near-optimal so-
lutions in polynomial time, which is more suitable for real-time service selections. In [98],
the authors present a heuristic algorithm based on clustering techniques, which exhibits
satisfying efficiency in terms of time cost and optimality.

1.3 Service Interaction Models

After the instantiation phase, a concrete service composition is constructed and the SBA
is ready for the execution. The execution of a service composition is performed by coordi-
nating all the constituent services, by means of message exchange, so that they are able to
collaborate in order to achieve the ultimate business goal. Orchestration and choreography
are two perspectives to model service interactions in executing a service composition [122].

• Web Service Orchestration. First, service orchestration presents the perspective
of centralized coordination model. By implementing an executable business process
(e.g. WS-BPEL [5]), the business logic and execution order are expressed from a
single party’s viewpoint. The business process is executed by a centralized execution
engine which coordinates a series of invocations to all constituent services.

• Web Service Choreography. By contrast, service choreography refers to de-
centralized and cooperative service coordination. From the perspective of service
choreography, the centralized coordination is eliminated and the coordination is dis-
tributed among all constituent services. As a result, each constituent service, acting
as a peer, can interact directly with each other. The execution of a service compo-
sition is thus performed by peer-to-peer collaborations among all participants.

Different coordination models exhibit different degrees of complexity and efficiency.
In this section, we are going to present some state-of-the-art implementations of both
centralized and decentralized coordination models and discuss their advantages as well as
the limitations .

1.3.1 Web Service Orchestration.

Service orchestration refers to the centralized coordination of constituent services. The
most common approach to implement a Web service orchestration is to use an orchestra-
tion language (e.g. WS-BPEL [5]) to define an executable business process. It can be

33

Chapter 1. Service-Oriented Computing

Figure 1.7: Web Service Orchestration Model

executed by a centralized engine, e.g., a Workflow Management System (WFMS), which
coordinates a series of invocations to all constituent services, as shown in Figure 1.7. From
the perspective of the service orchestration, a constituent service has no knowledge about
how a service composition is defined. As a result, each constituent service is not aware of
the existence of other participants. For example, the Web service S2, S3 and S4 in Fig-
ure 1.7 do not know each other. They only communicate with the centralized coordinator,
namely the business process implemented by enterprise A. In the following, we are going
to present several platforms for describing and executing Web service orchestration.

WS-BPEL Engine. WS-BPEL (Business Process Execution Language for Web Ser-
vices) [5] is the most widely used orchestration language. As announced by OASIS (Orga-
nization for the Advancement of Structured Information Standards) 2, the development of
WS-BPEL aims at enabling users to describe business process activities as Web services
and define how they can be connected to accomplish specific tasks.

Using BPEL, a business processes can be described in both abstract and executable
ways. An abstract process refers to an abstract workflow that lacks concrete operational
details. It can serve a descriptive role, with more than one possible use case, including
observable behavior and process template. Whereas an executable business processes
represents a concrete workflow, which can be executed by a BPEL engine to actually
coordinate the constituent services in business interactions. When a BPEL process receives
a request from the end requester, a new instance is created. Each instance starts with the
receive operation that receives the invocation data from the end requester, and terminates
with a reply activity that returns the final computing results to the end requester. In
between, a number of activities are defined and connected in order to describe the workflow.

Activities can be divided into 2 classes: basic and structured. A basic activity expresses
an elemental functional unit of a business process. For example, the invoke activity calls a
Web service with the required data and the assign activity initiates or assigns a value to a

2OASIS is a not-for-profit consortium that drives the development, convergence and adoption of open
standards for the global information society. https://www.oasis-open.org/

34

1.3. Service Interaction Models

variable. A running BPEL instance also supports fault handling mechanisms, a compensate
activity is used to undo a part of past execution in case of encountering runtime errors.
By contrast, a structured activity can be seen as a block of constructs, or a container,
which prescribes the relationship of several activities (can be both basic and structured).
For example, the sequence and flow activity describes respectively the sequential and the
parallel execution of a set of activities. The if activity expresses the conditional semantics
of the execution and the while activity defines a loop of execution. A scope activity divides
the BPEL program into several blocks.

Then, the BPEL file is executed by a BPEL engine, which interprets the description of
workflow and executes the flow chart of tasks by coordinating a series of invocations to all
constituent services. A variety of implementations of BPEL engine exist. To name a few,
ActiveVOS [9], Apache ODE [17], Oracle BPEL Process Manager [114], IBM WebSphere
Process Server [80] and etc. An overview and a comparison of different BPEL engines can
be found in http://en.wikipedia.org/wiki/Comparison_of_BPEL_engines.

Workflow Management Systems. One of the advantage of BPEL is that it is proposed
by a standardization committee and supported by many key IT industry players. However,
a number of alternative workflow description language exists, which are implemented by
some workflow management systems. In the following, we are going to present several
popular workflow management systems which can be used to describe and run Web service
orchestrations.

YAWL (Yet Another Workflow Language) [152] is an orchestration language based on
high-level Petri net. It supports multiple instances, composite tasks, complex workflow
patterns, etc. Using YAWL, a workflow is described as a set of extended workflow nets
which form a hierarchy architecture: atomic tasks is represented by the leaves and a
composite task refers to a sub EWF-net at a lower level. The YAWL engine is a fully
open-source workflow system which provides a graphical editor for developers to design
workflow. With the built-in verification functionality, the developers are able to detect
potentially errors. It also has open interfaces based on Web standards, which enable
developers to plug-in existing applications and to extend and customize the system in
many ways.

Kepler [85] is a free software system for designing, executing, reusing, evolving, archiv-
ing, and sharing scientific workflows. Kepler builds upon the Ptolemy II framework, de-
veloped at the University of California, Berkeley. Kepler workflows can be exchanged in
XML using Ptolemy’s Modeling Markup Language (MoML). The workflow is defined by
a composition of actors, which are connected through the ports.

SCUFL (Simplified Conceptual United Flow Language) [132] is a data-flow oriented
workflow description language. Using SCUFL, each execution step is described as a pro-
cessor that represents a web service or another executable application component. A
processor receives raw data from its input(s), processes the data and generates the results
to its output(s). Therefore, the workflow is described as a set of pipes that link all the
processors. SCUFL is used by Taverna [131], an open source domain independent Work-
flow Management System for designing and executing scientific workflows, such as the
applications for bioinformatics, chemoinformatics, astronomy and etc.

The Pegasus Workflow Management System [121] executes workflow-based applications
on heterogenous environments including desktops, campus clusters, grids, and clouds. The
workflow is described as a directed acyclic graph composed of tasks and data dependencies
between them. It can map abstract and high-level workflow description, especially scientific
workflows, onto a set of distributed available computing resources, perform optimizations,

35

http://en.wikipedia.org/wiki/Comparison_of_BPEL_engines

Chapter 1. Service-Oriented Computing

Figure 1.8: Web Service Choreography Model

and reliably execute the steps in the appropriate order. This makes workflows portable by
enabling the user to define the workflow once, and run it anywhere.

More detailed presentation and comparison of current implementations of service or-
chestration engine and WFMS can be found in [67].

1.3.2 Web Service Choreography.

The simplicity is the most important advantage of the orchestration model. First, each
constituent service only needs to interact with the centralized coordinator, from whom
it receives the invocation message. It is not required to do any coordination task for an
execution of SBA. Secondly, the centralized engine facilitates the runtime management of
the execution of service composition, such as the reactions to failures. The coordinator has
the global view on the execution state of workflow, thus it is capable to make appropriate
decision when failures arise. Finally, the centralized control exhibits better security. Some
runtime decisions depend on the internal business policies of an enterprise (e.g. selection
among exclusive branches). Accordingly, the provider does not want to distribute such
policies to other constituent services for decentralized coordination.

However, the centralized control may result in performance degradation. 1) Since all
the messages have to go back to the centralized execution engine each time rather than
delivered directed between constituent services, the overall execution time may increase.
2) The centralized execution engine or WFMS introduces the bottleneck of the service-
based system, which may lead to huge network traffic, especially when big data exchange
is required. 3) The centralized orchestrator becomes a potential Single Point of Failure
(SPF). It can become unavailable (e.g. responseless) in case of overload, especially for
large-scale service composition with complex workflow.

In contrast to the orchestration model, Web service choreography is proposed for de-
centralized coordination of Web services. The word choreography is defined as:

Dancers dance following a global scenario without a single point of control.3,

Web service choreography models the execution of a service composition as a dance, each
constituent Web service acts as a dancer, which does a part of computational task ac-
cording to the behaviors of the other participants. As a result, unlike the service orches-

3The definition is from Wikipedia [7], the free encyclopedia.

36

1.3. Service Interaction Models

tration model which requires a centralized orchestrator to coordinate constituent services,
choreography model represents the autonomous and collaborative cooperation among all
constituent services.

As shown in Figure 1.8, a workflow is described collaboratively by all constituent
services. A description of workflow specifies the role that each service plays in a service
composition and their relationship. Each constituent service keeps a copy of workflow
description so that they are aware of the global data and control flow. For example, when
Web service S1 completes the computation, instead of returning the result to the SBA, it
forwards directly the computational result to Web service S2. In the following, service S2

will start the computation immediately and then forwards the result directly to S3. As a
result, by interpreting the global description of workflow, each participant knows 1) when
to start the computation, 2) its job in a service composition and 3) how to forward the
results.

Choreography Languages. The Web Services Choreography Description Language
(WS-CDL) [136] is an XML-based language that describes peer-to-peer collaborations of
Web Services by defining, from a global viewpoint, their common and complementary ob-
servable behavior. Let’s Dance [157] is a visual choreography language targeted at business
analysts. It does not allow any technology-specific configurations. However, interface be-
havior descriptions out of the global interaction model can be generated. BPEL4Chor [58]
is the choreography extension for BPEL. The extensions facilitate a seamless integration
between service choreographies and orchestrations. Here, choreographies serve as starting
point for generating participant behavior descriptions for each service which are then used
for implementing new services or for adapting existing services. Vice versa, bottom-up
approaches, where existing BPEL processes are interconnected, are helpful for analyzing
the overall interaction behavior between services and optimizing it. Since BPEL is an
accepted standard and has a defined execution semantics, we use it as foundation for de-
scribing choreographies. as WS-CDL comes with its own set of control flow constructs
that can hardly be mapped to those of BPEL. Due to the limited space, the details of the
other choreography languages, such as ScriptOrc [38], Multiagent Protocols (MAP) [35],
are not provided here.

1.3.3 Decentralized Service Orchestration.

Limitations of the orchestration and the choreography models. Compared to
the orchestration model, service choreography can improve the performance in throughput,
scalability and response time due to the cooperative interaction and collaborative coordi-
nation. On one side, data can be passed directly from the source to the destination rather
than travel by the centralized coordination point. Therefore, the execution of a service
composition is more efficient and fast, especially when big data exchange is required. On
the other side, by removing the centralized orchestrator, the performance bottleneck and
SPF has been eliminated, which improves the scalability and robustness of the system.

However, the implementation of service choreography presents a high degree of com-
plexity and challenge in the context of service collaboration across enterprise boundaries.

Design-time complexity. Firstly, the greatest challenges result from the develop-
ment of a choreography of services. All constituent services are developed and managed
independently by different organizations across heterogeneous platforms. Therefore, the
direct communication between them may lead to some runtime problems, for example, the
interface mismatch. In this scenario, each service provider is required to modify his/her

37

Chapter 1. Service-Oriented Computing

Web service (interface) in accordance with other service providers. However, it brings
additional cost and complexity. Moreover, it is unpractical for the provider of each con-
stituent service since the modification of the interface of its service will lead to the failures
in serving with other clients.

An alternative solution is to develop a special copy of service with the same implemen-
tation, the mediated interfaces and the coordination information (e.g. each constituent
service has to know its preceding and succeeding services). However, this solution is nei-
ther unpractical. On one side, in the context of on-demand execution of SBA, a service
composition is identified at runtime during the instantiation phase. Thus it is challenging
to generate a set of connectable copies of constituent services at runtime. On the other
side, a choreography of service presents a high level of dynamicity. For example, for an-
other execution instance of SBA in Figure 1.8, a different service composition is identified,
which may not include service S2 any more. Therefore, it is costly to generate a copy of
service for only one-shot usage.

Runtime complexity. Furthermore, without a centralized controller, the runtime
management of service choreography is challenging. For example, in this distributed and
loosely coupled execution environment, a constituent service may become responseless due
to the failures from infrastructural level. Such a responseless constituent service may not
be noticed by the other participants, which will lead to the execution of the entire service
composition incompletable.

Security and privacy. Finally decentralized coordination can lead to privacy and
security issues. As stated before, each participant is required to do a part of coordination
task, the SBA provider is required to distribute some policies (e.g. decision algorithms)
to other enterprises. Such information may include highly private business information,
which is not possible to be distributed to other organizations.

The needs for decentralized orchestration. The orchestration model introduces
performance bottleneck and scalability problem, whereas the choreography model is com-
plicated to manage due to both design-time and runtime challenges. Thus, some research
work propose decentralized orchestration model, which takes the advantages from both
models. As illustrated in Figure 1.9, the idea is to break the workflow description file (e.g.
BPEL file) into several smaller pieces. All pieces of code, also defined as orchestration frag-
ments are distributed on a number of inter-connected physical machines. Each machine
is configured with an orchestration engine that is able to interpret the orchestration frag-
ment and to execute a part of service composition. By this means, the centralized point
of coordination is replaced by a group of coordinators, which can increase the parallelism
and improves the performance in terms of throughput, response time and availability.
Moreover, all the machines are managed by the SBA provider (e.g., enterprise A in Fig-
ure 1.9), which can easily resolve the problems raised by cross-organizational execution
environment.

Implementation of decentralized orchestration. [50] requires each constituent Web
service to implement a business process engine in order to execute a part of code. How-
ever, [120] argues the limitation of such “pure” choreography model in the context of the
collaboration across administrative domains. The authors present the FOCAS framework
which executes the fragments of a service composition on a set of internal inter-connected
orchestration engines. Similarly, in [91], the authors introduce a distributed agent-based
orchestration engine in which each agent is able to execute a portion of business process
and collaborate with others. The fault handling issue for decentralized coordination is

38

1.4. Runtime Adaptation of Service-Based Applications

Figure 1.9: Decentralized Service Orchestration Model

addressed in [48]. By placing fault handlers in each partition, a failure can be captured
and propagated to the corresponding handler.

1.4 Runtime Adaptation of Service-Based Applications

Due to the loosely coupled execution environment, the execution of SBA may fail, or fail
to meet the required quality level. For example, a constituent service may take longer
time to respond due to the network congestion; moreover, infrastructure failures can cause
a service completely responseless. Therefore, the execution of SBA is required to be
adaptable to both functional and non-functional failures [44, 49]. The generic solution
for building self-adaptive service system is to implement the MAPE control-feedback loop
(Monitor-Analyze-Plan-Execute) [84], which is comprised of four functions (as shown in
Figure 1.10).

• Monitor. Firstly, the execution each SBA instance is monitored by intercepting
communication messages in order to collect a series of events;

• Analyze. The events generated by the monitor function are used to evaluate the
quality state of a running SBA instance and to analyze the need for adaptation;

• Plan. Once an adaptation decision is determined, a suitable adaptation plan (e.g.
a list of adaptation actions) is identified;

• Execution4. Finally the relative countermeasures of an adaptation plan are applied
to this running SBA instance.

4The term execution here refers to the execution of an adaptation plan rather than the execution of the
workflow.

39

Chapter 1. Service-Oriented Computing

Business Process

Monitor Analyze Plan Execute
events decision actions

applymessage

Figure 1.10: MAPE Control-Feedback Loop

Based on the different implementations of the MAPE loop, all the approaches for run-
time adaptation of SBA can be classified into two categories with different objectives. 1)
Firstly, reactive adaptation aims to recover the execution from runtime failures by exe-
cuting some remedial countermeasures. The objective is to cope with failures so as to
guarantee the completion of an execution of SBA. 2) By contrast, preventive adaptation
approaches rely on the prediction of an upcoming failure in the future so that the adap-
tation actions can be executed before failures actually occur. The objective is to prevent
the occurrence of failures. In this section, we are going to introduce some state-of-the-art
work for both reactive and preventive adaptations.

1.4.1 Reactive Adaptation

The reactive adaptation aims to build a self-healing service-based systems[123]: adap-
tation plans will be executed once a runtime failure is detected (based on the monitor
function). In the following, we first introduce different types of failures and then present
the corresponding adaptation plans.

1.4.1.1 Runtime Failures

Generally speaking, a failure can be classified into two categories, functional failure and
non-functional failure.

Functional (Infrastructural) level failures. A functional failure refers to a runtime
error that will lead to the execution of SBA undeliverable, which means that the execution
completes with error or even cannot complete. The cause of a functional failure can be
manifold. In this dissertation, our discussion only focuses on the failures raised from the
infrastructural level. For example, an invocation/response message can be lost due to
the network problem. Or the server where a constituent service is hosted may become
responseless due to too many invocations.

Non-functional (Quality-of-Service) level failures. As we have introduced in Sec-
tion 1.1.4, an SBA provider may establish a global SLA with its clients. In this case, the
QoS level failure refers to degradation of the end-to-end QoS that leads to the violation of
the global SLA. For example, an SBA provider promises to reply within an expected du-
ration. However, since some of the constituent services may respond slowly, the execution
of this SBA instance may take longer time than expected.

1.4.1.2 Reactive Adaptation Plans

In the context of reactive adaptation, the analyze function is implemented as an event-
based trigger. Once a certain type of failure is reported (by the monitor function), a
suitable adaptation plan is then selected and executed. In the following, we present several

40

1.4. Runtime Adaptation of Service-Based Applications

adaptation plans to cope with both functional and non-functional level failures introduced
above.

Change Binding reference. The change of a binding reference refers to the substi-
tution of a constituent service by another functional-equivalent one. It always aims to
respond to functional level failures, for example, the recovery from the failure in invoking
a constituent service.

Some research work aim to extend WS-BPEL (engine) to support self-adaptive BPEL
process [101, 102, 93, 34]. WS-BPEL provides fault handlers as the interfaces to define
adaptation plans. [130] presents a self-healing BPEL process engine named SH-BPEL
engine. By building plug-ins to the existing BPEL engines, the authors propose different
levels of recovery mechanisms. [101] extends BPEL with annotations. BPEL designers can
specify recovery plans as annotations at the design time. And then the annotated BPEL
will be translated to a standard BPEL that can be interpreted by any BPEL engine. By
using this approach, no change in BPEL execution engine is required for realizing recovery
actions. In [93], the authors propose a declarative approach to specify fault-handling
adaptation plan by a set of Event- Condition-Action (ECA) rules. These ECA rules are
then integrated with normal business logic to generate the fault-tolerant BPEL process.

Some systems are developed as add-ons to the existing BPEL framework/engine in
order to provide reactive adaptability. In [18], the framework PAWS is developed for
flexible and adaptive execution of service-based processes. But it requires SBA providers
to specify both local and global QoS constraints at designing phase. These local constraints
are used as criteria to select, bind and replace partner services at runtime. In [103], the
authors introduce VieDame, a system that can monitor BPEL processes by intercepting
SOAP messages, and then select/replace partner services at runtime based on various
strategies. However, the endpoints of all candidate services are stored in a local repository.

Recompose workflow. Workflow recomposition refers to recompose (a part of) the
rest of workflow5 by re-selecting and re-binding each unexecuted task to a new functional-
equivalent constituent service with better expected QoS. The objective of workflow recom-
position is to improve the end-to-end quality of SBA when a QoS failure arises.

Some research work model service adaptation as a re-instantiation process [158, 19, 20].
Therefore, most of service selection approaches presented in Section 1.2.2 can be directly
reused. In [75], the authors investigate adaptation of service composition based on work-
flow patterns. An adaptation plan is identified according to the execution logic between
the failed task and its neighbors. For different workflow patterns, the adaptation can be
execution either by replacing a constituent service or recomposing a part of workflow. The
cost for identifying and executing adaptation plan is also considered.

Modify workflow structure. Sometime, the adaptation is required to modify the work-
flow structure. For example, the execution of a task fails but no alternative one is found.
SBA provider may substitute the failed task by another workflow fragments that can pro-
vide the same functionality. Or sometime, SBA provider has to modify the control flow or
data flow due to the change of policy. Moreover, it is also possible to optimize the global
QoS by modifying the workflow structure (a possible solution for QoS level failures). To
the best of our knowledge, due to a high level of complexity, runtime modification of
workflow structure is not widely studied. A similar work can be found in [82].

5Here, the rest of workflow refers to the part of workflow tasks that are left unexecuted yet.

41

Chapter 1. Service-Oriented Computing

1.4.2 Preventive Adaptation

Different from reactive adaptation, preventive adaptation aims to execute the correspond-
ing adaptation plan once a failure is predicted (rather than occurred). Therefore, all the
adaptation plans introduced above can be also used for the preventive adaptation to pre-
vent the occurrence of failures. The key challenge to implement preventive adaptation
is to determine the need for adaptation in order to draw accurate adaptation decisions
(the analyze function). All existing approaches to implement the analyze function can be
classified into two categories.

• Offline analysis. Offline approaches can decide when and how to proactively exe-
cute adaptation plans by reasoning the causes of the past failures. The adaptation
aims at preventing failures for the future executions rather than the ongoing ones.

• Online prediction (proactive adaptation). By contrast, online approaches is
able to prevent the failures for each running SBA instance by predicting an upcoming
failure. And thereby, preventive adaptation is proactively execute in order to avoid
the occurrences of failures.

1.4.2.1 Offline Analysis Approaches.

The offline approaches reason global SLA violations on the composition model level and
cannot prevent SLA violation for each running instance. In [40], the authors present
MoDe4SLA (Monitoring Dependencies for SLAs) approach to analyze SLA dependen-
cies during development phase and then monitor these dependencies at runtime. Based
on the past executions, a feedback is provided to SBA providers showing which partner
service performs good and which performs bad. Finally, by analyzing the event log of
past executions, If a partner service often violates its local SLA, it is then replaced by a
functional-equivalent service with better QoS. In this way, SBA provider can replace the
service that can hardly meet local SLA with a functional equivalent one with better quality.
Later, this work is improved in [41] by introducing formalization of dependency analysis
and feedback models. [92] uses structural equation to model the QoS measurement of
web services. Then, the change of quality of service can be quantitatively predicted by
using prediction mechanism of structural equation model. In [15], the authors argue that
most of QoS prediction approaches are based on time series forecasting models that can-
not guarantee accurate QoS forecasting where these models are based on a homogeneity
(constant variation over time) assumption [42]. To address this limitation, the authors
integrates ARIMA and GARCH models in order to capture the QoS attributes’ volatility
and to provide accurate forecasts.

1.4.2.2 Online Prediction Approaches.

The existing online prediction approaches in the literature can forecast the failures raised
by either functional failures or non-functional deviations.

Online testing approaches. Some research work use online testing techniques to test
all constituent services in parallel to the execution of an SBA instance. By this means,
an upcoming functional failure can be forecasted before its real occurrence. [77] presents
the PROSA framework, which defines key activities to initiate online testing either on the
binding level or on the service composition level, and thereby proactively triggers the adap-
tation process. [64] investigates how to guarantee functional correctness of conversational

42

1.4. Runtime Adaptation of Service-Based Applications

services. The authors propose a novel approach enabling proactive adaptations through
just-in-time testing. Online testing approach is helpful to detect potential functional fail-
ures but it can hardly be aware of the deviation of the end-to-end QoS. Furthermore, it
requires each consistent service to provide a test mode (e.g. free interfaces for testing).

Runtime verification. Our research work belongs to the latter case, which predicts
SLA violation by asserting non-functional deviations that might happen at the end of
the execution (e.g. delay). Some research work use runtime verification techniques to
determine the necessity of adaptation and to trigger preventive adaptation. In [128], the
authors introduce SPADE approach: after the execution of each task, if the local SLA
is violated, SPADE uses both monitored data and the assumptions to verify whether the
global SLA can be still satisfied. If it reveals that the global SLA is tent to be violated,
the adaptation is accordingly triggered. However, early verifications are largely based on
the assumptions rather than monitored data, thus they are inaccurate and can lead to
many unnecessary adaptations.

Machine learning. Other research work use machine learning techniques in order to
provide precise predictions and avoid unnecessary adaptations. In [90], a set of concrete
points are defined in the workflow as checkpoints. Each checkpoint is associated with
a predictor, which is implemented by a regression classifier. When the execution of the
workflow reaches to a checkpoint, the corresponding predictor is activated and uses the
knowledge learned from past executions to predict whether the global SLA will be violated.
This work is extended in [89] by proposing the PREvent framework, which integrates
event-based monitoring, runtime prediction of SLA violations and automated runtime
adaptations. Such checkpoint-based prediction approach has some limitations: firstly,
some misbehavior (e.g. huge delay) between two checkpoints cannot be handled in time.
In the meantime, the best adaptation opportunity might be lost. Furthermore, poorly
selected checkpoint(s) may lead to undesirable results, such as unnecessary adaptations.
But the selection of optimal checkpoints is complicated and challenging, especially for
complex workflows.

Event-Driven Approach Some online prediction approaches are based on processing
runtime events. Event-processing aims to autonomously response to the change of exe-
cution environment by analyzing and processing streams of information (data) generated
(monitored) at runtime. [65] introduces proactive event-driven computing. The authors
extend the event processing agent model to include two more type of agents: predictive
agents and proactive agents. predictive agents are able to predict a (collection of) possible
failures in the future while proactive agents dynamically computes optimal adaptation
plans. In [159] presents a novel event-driven QoS prediction system that is able to forecast
key performance indicators (KPI) based on a collection of event-analysis techniques.

43

Chapter 1. Service-Oriented Computing

44

Chapter 2

Unconventional Approaches for
Flexible Service Management

Abstract. Traditional approaches to implement Web service compositions exhibit some
limitations, such as inflexibility in expressing service coordination and reacting to runtime
changes. In this chapter, we investigate some unconventional approaches that are con-
sidered as suitable to program service-based systems due to better flexibility and adapt-
ability. Firstly, in Section 2.1, both rule-based systems and tuple-space based systems are
introduced. In the following, our discussion in Section 2.2 focuses on a similar but more
preferable approach known as chemical programming model. Some preliminary research
work in using chemical-based approaches for expressing and managing service-based ap-
plications are presented. Finally, Section 2.3 provides a real-life example of SBA that will
be used in the rest part of this dissertation to illustrate our approach.

45

Chapter 2. Unconventional Approaches for Flexible Service Management

2.1 Unconventional Paradigms for Service Computing

Traditional approaches to implement a Web service composition rely on the use of exe-
cutable languages (such as WS-BPEL [5]) to define a business process. The coordination
of service is expressed by a number of structured activities in terms of XML-based spec-
ifications. Each structured activity acts as a block (or a container), defined by a pair of
XML labels, which describes the relationship of all the activities included in between. For
example, all the activities defined between <sequence> and </sequence> labels will by
executed in sequential order. In this case, a service composition is defined as a monolithic
block, which comprises a hierarchy of structured activities.

However, these traditional approaches have several limitations. First of all, the defini-
tion of a business process is cumbersome, especially for complex workflows which comprise
a lot of logical expressions (e.g. parallel and exclusive branches). Take the workflow WF1

defined in Figure 2.1(a) for example, using traditional approaches, its definition is pro-
vided in Figure 2.1(d), which is composed of a number of nested structured activities.
More complex workflows will result in a higher level of nesting depth (imagine that the
description for a large-scale scientific workflow can be a disaster).

Furthermore, this kind of structured workflow definition is incapable to express un-
structured workflow. As analyzed in [95], for a given workflow, if every split workflow
pattern (e.g. AND-split, XOR-split, etc.) has exactly one corresponding join workflow
pattern (e.g. synchronization, simple-merge, etc), it is defined as a structured workflow ;
otherwise, it is an unstructured workflow. For example, the workflow WF2 depicted in Fig-
ure 2.1(b) is an unstructured workflow. Obviously, it is challenging to describe workflow
WF2 by using structured definition. Some research work [95, 160, 74, 133] investigate the
transformation of an unstructured workflow to a BPEL-compatible structured workflow.
However, it is challenging to prove that workflow transformation can succeed for all kinds
of unstructured workflow Moreover, the transformation process can bring additional cost
and complexity (from both design time and runtime).

Additionally, the structured process definition is rigid and hard to maintain. As an
example, due to the modification of business policy, the SBA provider wants to modify
workflow WF2 to WF2’ depicted in Figure 2.1(c). Using traditional approaches, such mod-
ification of workflow structure presents a high level of complexity, especially at runtime.
Moreover, sometimes, a structured workflow can be modified to an unstructured one. In
this case, a tiny modification on the structure of workflow can lead to the completely
redesign of the entire process.

Finally, the execution of such a business process is based on centralized execution en-
gines, which may raise the performance limitation in execution time and throughput. In
response to these problems, some research work have proposed the decentralized execution
of service compositions, as we have discussed in Section 1.3. However, the partitioning
of workflow is still a complex and challenging task by using these traditional approaches.
Moreover, it lacks generic partitioning approaches that can be applied to all kinds of work-
flow with little human’s involvement. Finally, the distribution of workflow fragments is
often performed at design time rather than runtime. Such statical decentralized execution
model can hardly react to the ever-changing execution environment.

Thereby, new paradigms are required to meet the needs for flexible expression and
execution of service composition. In this section, we introduce both rule-based systems
and tuple space based systems as a promising paradigm for flexibly expressing service
coordination.

46

2.1. Unconventional Paradigms for Service Computing

(a) Workflow WF1

(b) Workflow WF2

(c) Workflow WF2’ (d) Structured Definition of WF1

Figure 2.1: Structured Workflow Definition

2.1.1 Rule Based Systems

As stated in [53], “The most significant changes do not come from re-engineering work-
flow, but from rethinking rules”. As a result, the rule-based system is considered as an
appropriate approach for workflow management due to better flexibility and adaptability
[115, 126, 125]. Using rule-based approach, the execution logic between any two services
(expressed by the edges between any two tasks) are expressed by a rule. As an example,
the definition of rule R1 below describes the sequential execution order between two tasks
S6 and S7 of the workflow WF2 given in Figure 2.1(b).

R1 = if task t6 is executed then execute task t7

Complex workflow patterns can also be expressed in the similar way. For example, the
computation of task t5 and t7 have to be synchronized before executing task t8, which is
dictated by the rule R2 defined below:

R2 = if task t5 is executed & task t7 is executed then execute task t8

By this means, a workflow is described by a number of rules rather that a hierarchy
of structured tasks. Each rule only describes the relationship between a task and its
precedent(s)/successor(s). Therefore, unstructured workflows can also be expressed.

Additionally, the workflow can be flexibly managed by manipulating these rules. Con-
sider the example addressed before, the modification of the workflow WF2 to WF ′2 (refer
to Figure 2.1) only needs the modifications of few rules. Since a synchronization pattern
is inserted before task t7, the rule R1 is simply rewritten to R′1, defined as follows:

R′1 = if task t6 is executed & task t5 is executed then execute task t7

Meanwhile, the rule R2 is re-write to R′2 that expresses the sequential execution order
between task t7 and t8:

47

Chapter 2. Unconventional Approaches for Flexible Service Management

R′2 = if task t7 is executed then execute task t8

From this example, we can see that the rule-based approaches exhibit a high degree of
flexibility in both expressing and managing workflows. In this section, different rule-based
systems are introduced.

2.1.1.1 Pure rule-based system.

[115] introduce a framework for business rule driven service composition. First, the au-
thors introduce a phased approach for developing and managing service compositions.
The life-cycle of service composition consists five phases, including definition, scheduling,
construction, execution and evolution. Then, a framework is proposed to implement the
entire life-cycle as rule-based systems. The construction and execution of a service com-
position is managed by a set of structure rules, data rules, constraint rules, resource rules
and exception rules. Finally, the authors argue that rule-based approach is more flexible
and dynamic compared to traditional approach and it can also reduce the time and effort
to develop and manage service compositions.

A rule-based workflow management system for Web service composition is presented in
[147]. The coordination of Web services is expressed by a set of Event-Condition-Action
rules (ECA-rules). ECA-rules are originally used in active database systems [119]. An
ECA-rule is triggered by a predefined event E, if the condition C holds, the action A is
finally executed. The event can be either a primitive one or a composite one (by composing
multiple primitive events). The authors argue that ECA-rules are suitable for expressing
workflow because 1) it is easy to understand for the developers and 2) it can easily express
complex workflow. Later in [55], this work is extended by introducing the formalization
of ECA rule-based workflow modeling and an algorithm for event composition/decompo-
sition. Finally, a real WFMS is implemented with a Graphic User Interface (GUI) that
helps users to quickly and easily develop workflows.

[148] introduces a framework for adaptive orchestration (FARAO), which uses a set of
Condition-Action (CA) rules to manage the data flow. CA rules are created by three steps.
First, a number of CA rules can be automatically derived based on the WSDL files of all
constituent services, which reflect the data dependencies between services. Then, these
rules are extended by merging business rules to determine the decision making during the
execution of workflow. Finally, users can also add additional control-flow constraints to
express the execution orders, e.g., execution sequence. The authors state that one of the
advantages is that, some CA rules are generic so that they can be reused for different
workflows.

2.1.1.2 Hybrid rule-based system.

However, as discussed in [53, 125], the pure rule-based system is not appropriate since
there is no global view on the service composition. Furthermore, it is separated from the
standard approach, namely WS-BPEL. So that the users are always required to learn new
knowledge on how to write rules to express business logic. As a result, the authors propose
a hybrid approach for expressing Web service compositions by integrating the rule-based
systems to the existing BPEL-based approaches.

People argue that it is a good way to separate the design of data flow and business rules.
Since the ultimate business goal does not change frequently, the data flow is thus hardly
modified. By contrast, business policies are determined by the global market, which evolves
fast. Different policies achieve the ultimate business goal by selecting different execution

48

2.1. Unconventional Paradigms for Service Computing

paths. In this context, the separation of data flow and business rules can greatly reduce
the complexity to maintain service composition. SBA provider only need to modify the
implementation of business rules (or add new rules) according to the execution context
(market).

[53] presents a hybrid approach, which breaks the service composition logic into busi-
ness process and business rules that exist and evolve independently. Two alternative
implementations of business rules are introduced. One is based on Aspect-Oriented Pro-
gramming technique that is able to weave business rules into BPEL frames [54] and the
other is based on Business Rule System (BRS) [126, 105].

Another similar work [125] presents how to integrate business rules into BPEL specifi-
cation in a service-oriented way. This paper indicates that it is hard to realize the direct
communication between a BPEL engine and a business rule engine. So the authors pro-
pose to expose business rules as services, which increases the reusability of rules within an
enterprise domain. An Enterprise Service Bus (EBS) [51] is proposed as a middleware for
integration platform.

2.1.2 Tuple-Space Based Systems

People do exchanges quite often in the daily life. For example, in the colleges, students
often borrow books or lecture notes from others; professors need distribute teaching ma-
terials to the students; boys often send cards to girls. However, face-to-face delivery each
time is not efficient in our busy daily life. In this context, people do the exchange in a
more effective way: using mailbox. Often, a college has a wall of mailboxes, where each
student has his/her personal one. If you want to give something to others, you just need
to put it in his/her mailbox. On the other side, you may also find the surprise in your
own mailbox.

Tuple space, working as the mailboxes, is a repository of tuples that can be accessed
concurrently. Thus, it is an asynchronous interaction paradigm for distributed and parallel
computing. As an illustrative example, consider that there are a group of processors that
produce pieces of data and a group of processors that use these data. Producers post
their data as tuples in the space, and the consumers then retrieve data from the space
that match a certain pattern1. Linda [10] is a coordination language that implements
tuple-space based model.

Some research work investigate the use of such tuple-space based approach for service
coordination, named as “tuple-space based Web Service composition”. By using the tuple
space, the interaction between services can be greatly decoupled. The general idea is that
each service manages a tuple space. If a service SR wants to call another service SC , it
just needs to write a request tuple into the tuple space of SC . SC is able to get the request
tuple from its space and then do the related jobs to fulfill the expected functionality. After
the computation, SC will write back the results into the tuple space of SR and so that SR

is able to get it. (It works exactly similar to the mailbox example.)

[70] presents an infrastructure and the corresponding tools named TSSuite to support
web service modeling, design and management. TSSuite works based on TSpace [151],
which extends the tuple space to handle web services. As a proof of concept, the au-
thors present an intelligent printer system, where each service manages a tuple space. If
there are some request tuples in the space, services will perform the real action or call
another service. By this way, the workflow is divided into several sub workflows, which
are distributed in the internal or external region of an organization. This has greatly

1From Wikipedia. http://en.wikipedia.org/wiki/Tuple_space

49

http://en.wikipedia.org/wiki/Tuple_space

Chapter 2. Unconventional Approaches for Flexible Service Management

enhanced the fault-tolerant and parallel access. The tuple-space based orchestration can
be improved by using notification. When a service has finished its job, it writes back the
results into the tuple space as well as notifies the original business process to come and
get it. By this mean, the service requester need not periodically check if it the result has
come out.

[97] presents a tuple space for XML and its implementation in Web service orchestra-
tion, named xSpace. The authors give an example for business process orchestration. In
this example, the workflow controller uses xSpace to put in requests for the next workflow
task and reads the results from xSpace before deciding the next executing step. Different
kinds of XML documents describe the results of different steps and the controller does an
associative search to determine whether any document with the expected type is available
for processing. Currently, the ongoing research is to integrate a notification system to
xSpace.

2.2 Chemistry-Inspired Computing

Rule-based systems present a high flexibility in expressing and managing service compo-
sitions, and tuple space based systems promote the synchronization in the interactions
between services. According, we began to think: how about combining both of them?

In this section, we are going to introduce another unconventional approach known as
chemical computing [30, 29, 24, 28], which shares a lot of similarities with both rule-based
and tuple space based approaches. It is designed originally for parallel and autonomic
computing. Inspired from chemistry, computation is described as a series of chemical re-
actions. A program is described as a chemical vessel (or a chemical solution) that contains
mixed chemical substances defined in terms of atoms/molecules. The chemical solution
is implemented by the multiset2, which extends the concept of set with multiplicity. An
element can be presented only once in a set whereas many times in a multiset. The time
of its occurrence is defined as multiplicity. For example, {1, 3, 1} is a multiset but not a
set because the multiplicity of the integer “1” equals to 2.

All the molecules, defined by a number of program objects (e.g. Java objects), rep-
resent the computing resources, such as data. The computation (e.g. data processing)
is performed by a series of chemical reactions controlled by a set of rules. Similar to
chemical equations that reflect nature laws by specifying the reactant and resultant of a
chemical reaction, a rule implements a specific algorithm by defining the input and output
of a certain computation process. In this context, a chemical reaction is implemented as
a multiset rewriting process [88], which can generate a (number of) new molecule(s) by
consuming a (part of) existing one(s) in the solution. Chemical reactions are performed
as the falls of dominos tiles: the output molecule(s) of a rule may activate other rules
and trigger a series of new reactions in succession. The computation completes when the
solution becomes inert - that is to say, no rule in the solution can still be active, and
so that no reaction can be triggered any more. When such a stable state is reached, the
final result is obtained and left in the multiset. The metaphor of chemical computing is
summarized in Table 2.1.

Chemistry-inspired computing shares a great degree of similarities with both rule-based
and tuple-space based approaches. On one hand, the core of a chemical program is the
definition of rules that direct the computation. On the other hand, the reactions take
place in chemical solutions, which performs like a tuple space. Accordingly, by taking

2In the remaining part of this dissertation, we use the terms solution and multiset interchangeably.

50

2.2. Chemistry-Inspired Computing

Table 2.1: Metaphor of Chemistry-Inspired Computing

Traditional Approach Chemical Metaphor Chemical Implementation
program chemical vessel (solution) multiset
computing resources molecules program objects
algorithms (control) chemical equation rules
computation chemical reactions multiset rewriting

the advantages from both approaches, we believe that chemistry-inspired computing can
be a promising candidate for programming service-based system. In the following, our
discussion starts with the the evolution of chemical programming models that have imple-
mented chemical computing. And then some chemistry-inspired approaches for modeling
autonomous and adaptive service-based systems are introduced.

2.2.1 Gamma

To the best of our knowledge, Gamma is the first chemical programming model proposed
in 1986 [26] and later extended in [27] as a formalism for parallel computing through a
chemical metaphor. The computation in Gamma is performed by a series of multiset
rewriting processes controlled by a set of rules. A rule defines a chemical reaction by
specifying how to rewrite the multiset, namely the consumption of the existing molecules
and the creation of new ones. The definition of a rule is composed of 2 parts: condition
and action. If the condition is held by a portion of elements, they will be replaced by other
elements according to the action part. As a simple example, to compute the maximum
number in a non-empty multiset, the following rule is defined:

replace x, y by x if x>= y

Under the control of this rule, any two integers, say x and y respectively, will react
and the smaller one will be removed (in case that two integers have the same value, any
one of them can be removed). Then if this rule is put into the following multiset: {1, 2,
4, 6, 5, 7, 8, 9, 9}. x and y can match any pair of integers, for example, x ←4, y ←1.
In this case, the integer “1” will be removed from the multiset. Accordingly, when the
computation completes, only the maximum number (9) can be finally left in the multiset.

Gamma expresses implicitly the parallelism. The programmers do not need to explic-
itly specify the sequentiality of reactions. At runtime, a rule can autonomously direct
multiple reactions at the same time. Hence, different reactions can take place simulta-
neously and independently. Under this context, the execution of a Gamma program is
non-deterministic. The molecules react randomly with others. Therefore, different execu-
tions of a Gamma program may result in different execution orders (sequences of reactions).
More introduction about Gamma formalism can be found in [28].

2.2.2 γ-Calculus

γ-calculus [29, 24] can be seen as a higher order extension for Gamma. The syntax of
molecules in γ-calculus is shown in Figure 2.2. A molecule can be any of the following four
types: 1) a variable x ; 2) a γ-abstraction which stands for a reaction rule by replacing
a molecule of pattern P by molecule M; the pattern P can match either a molecule, a
compound molecule or an inert solution; 3) a compound molecule built with the associative

51

Chapter 2. Unconventional Approaches for Flexible Service Management

M := x ; variable

| (γ(P).M) ; γ-abstraction (reaction rule)

| (M1, M2) ; compound molecule

| (<M>) ; solution

P := x ; matches any molecule

| P1,P2 ; matches a compound molecule

| <P> ; matches an inert solution

Figure 2.2: Syntax of Molecules in γ-Calculus

γ-Reduction:

(γ<x>.M),<N> →γ M[x:=N] if Inert(N)
∨

Hidden(x,M);

α-Conversion:

γ<x>.M ≡ γ<y>.M[x:=y] with y fresh;

Commutativity:

M1,M2 ≡ M2,M1 ;
Associativity:

M1, (M2,M3) ≡ (M1,M2),M3 ;

Figure 2.3: Rules of γ-Calculus

and commutative constructor (,); 4) a solution which isolate the molecule M from other
molecules.

Figure 2.3 lists some rules of γ-calculus. The γ-reduction rule applies the γ-abstraction
(reaction rule) to a solution, which can extract its inside molecules. When the rule γ<x>.M
is applied to a solution <N>, either of the following two conditions has to be satisfied:
1) Inert (N): the content N of the solution argument is a closed term made exclusively
of abstractions or exclusively of solutions (which may be active). 2) Hidden (x, N): the
variable x occurs in M only as <x>. Therefore <N> can be active since no access is done
to its contents. While an α-conversion is like a method of substitution, we replace all x by
y in M and build another form.

In the following, we provide a concrete example to illustrate how to apply these rules.
First of all, we define a γ-abstraction add one as follows, which add any integer by one.

add one = γ< x >.< x+ 1 >

Then, we consider the following multiset which contains an add one γ-abstraction and a
solution with an integer 5, denoted as add one,< 5 >. Since the condition Inert(< 5 >) is
held, the γ-reduction rule can be applied. x maps to the integer 5, and after the reaction,
the multiset contains only one element: < 6 >.

γ-calculus is expressive. A reaction rule can be defined as one-shot or N-shot. A
one-shot rule can be applied only once, after the reaction, it is consumed. By contrast,
a N-shot rule will never be consumed and can be applied by any number of times. The
reaction rule add one that we have defined in the previous example is a one-shot rule. As
an example, an N-shot rule is defined to performed addition operation. The rule add is
defined as follows:

add = γ< x >.γ< y >.< x+ y >, add

Then, consider the following multiset: add, < 2 >, < 3 >. First of all, the molecule < 2 >

can react with the reaction rule add, after the first step of reaction, the multiset looks like:

52

2.2. Chemistry-Inspired Computing

< 3 >, γ< y >.< 2 + y >, add

Then, the new γ-abstraction can be applied on the molecule < 3 >. After the reaction,
the content of multiset becomes:

< 5 >, add

We can see that after the addition operation, the rule add is put into the multiset again.
Therefore, the reaction can be continued by one step more. Finally, the multiset contains
only one γ-abstraction as follows:

γ< y >.< 5 + y >, add

Two fundamental extensions. γ-calculus is very expressive, whereas compared to the
original Gamma and other chemical models, it lacks two fundamental features: 1) it can
not conditionally trigger a reaction; 2) it can only react with one element at a time, if you
want to react with several elements (i.e.: to perform an addition), you need to take several
steps to get all the parameters and make the computations (such as the above example).
In the following, we introduce two extensions to γ-calculus in response to these problems.

1. Conditional reaction. We rewrite the γ-abstraction as γc-abstraction by adding
conditions to the abstractions. γc-abstraction is expressed as:

γ<x>⌊M0⌋.M1

It is equal to the Gamma expression “replace x by M1 if M0”. As a consequence,
besides holding either of the Inert() or Hidden() condition, the reaction condition M0

has to be tested as true before the reaction can start. Improvement with conditional
reaction helps us to perform type checking and pattern-matching, which confines the
reaction within a certain type of elements (e.g. operations only for integers). As an
example, suppose that you want to decrease any positive integer by 1, the following
γc-abstraction can be defined:

decreaseByOne = γ < x > ⌊x > 0⌋.< x− 1 >, decreaseByOne

The following example describes how γc-abstraction can be applied.

decreaseByOne, < 0 >,< 1 >,< −1 >→ decreaseByOne, < 0 >,< 0 >,< −1 >

With the requirement that the value of integer has to be greater than 0, the rule
contertToOne can only react to < 1 >. After the reaction, < 1 > is replace by < 0 >

and no reaction can be triggered any more.

2. Atomic capture. γ-abstraction can be extended to γn-abstraction so that it can
capture multiple molecule as reactant, expressed as follows:

γ (<x1>. . .<xn>).M

It equals to the Gamma expression: replace x1, ..., xn by M. In this scenario, the
reaction can occur only when it gets all the expected molecules; otherwise, no reaction
will take place. As an example, using γn-abstraction, the addition operation can be
described as follows:

53

Chapter 2. Unconventional Approaches for Flexible Service Management

addA=γ(< x >,< y >).< x+ y >, addA

Compare the the formal example, the reaction only takes once, as illustrated below:

addA, < 2 >,< 3 > →γ addA, < 5 >

After the first reaction, since the γn-abstraction addA cannot get two inert solutions
with an integer, so the multiset becomes inert.

2.2.3 Higher-Order Chemical Language (HOCL).

In the following, we introduce a chemical programing language, named Higher-Order
Chemical Language (HOCL) [23], which implements γ-Calculus.

2.2.3.1 HOCL Syntax

The syntax of HOCL is defined in Figure 2.4, which extends the previous models with
types, pairs, empty solutions, naming and expressive patterns.

Types. Since a multiset may contain the molecules of different types (such as strings,
integers, etc.), the extension of types is useful in pattern matching for the selection of the
reactable molecules. The pattern-matching rule is expressed as:

match(x::T,N) = { x → N} if Type(N) � T

As an example, the following reaction rule γ(x::int, y::int).x+y can be only applied to
integers. In HOCL, any a type is a subtype of the universal type, denoted by ⋆ (∀T,
T� ⋆). A variable of the universal type can match any numbers of molecules of any types,
even for an empty one (the example of an empty molecule is provided later on).

Pairs. A pair is denoted by “P1:P2”, a colon is used as chemical bond that connects two
isolated molecules. The pattern-matching rule for pairs is:

match((P1:P2),(N1:N2)) = φ1 ⊕ φ2 if match(P1,N1)=φ1
∧

match(P1,N1)=φ2

Generally, the notion of pair can be extended by using several colons to connect multiple
fields. As a result, a pair can be defined in the following form (P1:P2:...:Pn). In this case,
a pair is also called a tuple. A tuple can be regarded as a struct in C language, which, like
an union, groups multiple variables into a single record.

Empty solution. The notion of empty solution in HOCL is raised since that after
reactions, the multi-set might become empty. This is caused by the universal pattern.
Considering the following example:

< 2, 3, 4, 5, 6 >, γ < x, ω > .⌊x > 1⌋.< ω >

The reaction rule removes a number x if x is greater than 1. When there is only one
integer left in the multiset, say 6, x will match 6 and ω will match an empty molecule,
which means nothing. Therefore, by applying this rule to the multiset, all the numbers
will be removed. After reaction, the solution becomes an empty one.

54

2.2. Chemistry-Inspired Computing

Solution

S ::= <M> ; solution

| <> ; empty solution

Molecules

M ::= x ; variable

| M1, M2 ; compound molecule

| A ; atom

Atoms

A ::= x ; variable

| [name=]γ(P)⌊V⌋.M ; reaction rule, possibly named

| S ; solution

| V ; basic value

| (A1:A2) ; pair

Basic Values

V ::= x | 0 | 1 | ... | V1+V2 | -V1| ... ; integer

| true | false | V1
∧

| ... ; boolean

| V1=V2 | V1≤V2 | ...
| ‘‘String" | ... ; String or expressions

Patterns

P ::= x::T ; matches an molecule of type T

| ω ; matches any molecule even empty

| name = x ; matches a named reaction

| <P> ; matches an inert solution

| (P1:P2) ; matches a pair

| P1,P2 ; matches a compound molecule

Types

T ::= B ; basic type

| T1× T2 ; product type

| ⋆ ; universal type

Basic Types

B ::= Int | Bool | String

Figure 2.4: Syntax of HOCL

Name. To facilitate its reuse, a rule can be named (or tagged) by using the syntax name
= γ(P).⌊V ⌋.M. The pattern-matching rule for named reactions rule is:

match((name=x),(name=N)) = { x → N}

More details about the introduction to HOCL syntax can be found in [23].

2.2.3.2 HOCL Grammars

In this part, we describe how to write HOCL programs. An HOCL program is composed
of two parts: rule definition and solution organization.

55

Chapter 2. Unconventional Approaches for Flexible Service Management

Rule definition. The definition of a chemical rule follows the pattern:

let rule name = replace(-one) P by M if C

• The let keyword assigns a name to a definition of chemical rule.

• A rule can be either one-shot or N-shot. Using HOCL, N-shot rules are defined with
the replace keyword whereas one-shot rules are declared by using the replace-one
keyword.

• Next, the replace(-one) keyword defines the patterns of a list of input molecules P
(as the reactants). Each input molecule is defined with a specific type using double
colons (noted as varName::type). Both primitive types (e.g. integer, string, etc) or
complex types (e.g. Java objects) are supported. During the execution of a chemical
reaction, each variable is mapped to a molecule of the required type.

• On the other side, the by keyword indicates how to generate the output molecules
(as the resultant). The existing molecules can be modified here, or even new ones
can be generated.

• Finally, the if keyword is optional which denotes the condition under which the
reaction can take place.

Solution organization. The chemical solution is implemented by a multiset, expressed
by a pair of marks “<” and “>”; in between all the elements are defined as molecules,
such as data, rules as well as sub-multisets. A molecule can be either atomic or complex.
An atomic molecule represents a basic individual unit that takes part in the reactions,
such as an integer. Particularly, chemical rules and inert sub-solutions are two kinds of
special atomic molecules, which can also be manipulated by other rules (explained later
on). By contrast, a complex molecule is a collection of atomic molecules, denoted as a
tuple: M1:M2:...:Mn. A single colon is used as the chemical bond that connects two atomic
molecules. More information about how to write HOCL programs can be found in [144].

2.2.3.3 Sample HOCL Program

In Program 2.1, a sample HOCL program is defined to compute the sum of all the even
numbers for a given set of integers. Three rules are defined: 1) firstly, the rule evenNum
removes all odd numbers: it reacts with any an integer x, if x is not the multiple of 2, it
will be removed. The variable w is defined as a universal type (using “?” mark), which
represents all the remaining molecules in a (sub-)solution. As illustrated in Figure 2.5(a),
w represents all the other integers except x in this case. 2) Once all odd numbers have been
removed, the sub-solution becomes inert. Thus it can be manipulated as a normal atomic
molecule. The rule replaceRule will extract all the even numbers (represented by w here)
from it, and replace the rule evenNum by a new rule sum. Please note that replaceRule is a
one-shot rule (defined by the keyword replace-one), which can be applied only once since
it is consumed after the reaction. 3) In the following, the rule sum performs the addition
operation by replacing any pair of integers with their sum. The execution sequence of
this sample program is vividly illustrated in Figure 2.5(b), the active rule for each step
is marked with a star (*). After all reactions have been completed, the global solution
reaches the inert state and the final result is left in the solution.

56

2.2. Chemistry-Inspired Computing

Program 2.1: A Sample HOCL Program

1 let evenNum =

2 replace x::int, ?w

3 by w

4 if x%2!=0

5 let sum =

6 replace x::int, y::int

7 by x+y

8 let replaceRule =

9 replace-one <evenNum, ?w>

10 by sum, w

11 <replaceRule , <evenNum, 1, 2, 3, 4, 5, 6, 7, 8>>

(a) The Execution of the Chemical Rule evenNum

(b) The Execution Sequence

Figure 2.5: The Illustration of the Sample HOCL Program

2.2.4 Chemistry-Inspired Service Systems

From the above-introduced example, we can conclude that the execution of a chemical
program has the following characteristics:

1. Implicitly parallel: a number of reactions can take place independently and con-
currently to each other.

2. Non-deterministic: for each reaction, the reactant molecules are chosen randomly;

3. Higher-order: the execution is able to react to runtime execution context by re-
placing old reaction rules by new ones, which present new computational algorithm-
s/policies.

4. Evolving: new molecules, either rules or data, can be put into a chemical solution
at runtime and then immediately take part in the chemical reactions.

57

Chapter 2. Unconventional Approaches for Flexible Service Management

All these characteristics share a large degree of similarities with the objective of build-
ing self-adaptive and long-lasting evolving service-based systems, for example, flexible
management of SBAs. Some preliminary work have investigated and discussed the viabil-
ity of using chemical programming model to express service coordination. [108] presents
a highly abstract coordination framework for distributed workflow enactment based on
γ-calculus. The coordination is performed in single global multiset named coordination
solution, inside of which, resources are presented by the sub-solutions. It is demonstrated
that all basic and complex workflow patterns can be expressed in a declarative way us-
ing the γ-calculus. The authors extend this work in [109] by introducing fault tolerance,
resource control, constrained resource matching, etc.

In addition, some research work investigate the use of HOCL for modeling service
coordination. [25] demonstrate how to use HOCL rules to express the coordination of
resources for executing desktop grid-based applications. Through a simple example, the
authors argue that HOCL can be a good candidate for grid programming and coordination
due to some desirable properties such as implicit parallel and autonomic nature. Later,
[32, 31] investigates the utilization of HOCL to express service coordination by develop-
ing a simple but practical example. This work demonstrates that complex coordination
structures such as sequence, parallel, mutual exclusion, etc, can be expressed using HOCL
rules. Based on this work, in [139], a framework is proposed to define the workflow and
to express service orchestration using chemical concepts. The authors have proven that
most of WS-BPEL constructs, such as invoke, reply, receive, sequence, flow, thrown etc.,
can be expressed using HOCL rules.

Additionally, other research work aims to use chemical programming to construct an
executable concrete workflow by means of selecting appropriate services [71, 59, 62, 60].
A task can be executed by multiple functional-equivalent services. And each service ei

can be delivered by a time interval ∆tei=Tei-t
i
e. The service selection aims at selecting

a service for each task so that the execution of workflow can successfully complete. The
authors modeled workflow as a complex molecule and each service candidate acts as an
atom. The service selection is performed by a series of chemical reactions that connect
each task molecule to a suitable service atom, with the consideration of time constraints
and dependencies of any two adjacent tasks. The selection is an evolving process that
new offers can come freely at runtime. Later in [60], the authors extend this work by
introducing lazy instantiation of workflows. The workflow can be partially instantiated
due to some conditional constructs, such as if-then nodes. However, these work aims at
seeking a feasible solution rather than a (sub-)optimal one.

The work presented in [67, 68, 69] share some similarities with our work. First, the
authors point out that most of afore-mentioned work relies on a centralized multiset as
the coordination space. And they argue that this centralized architecture suffers from a
poor scalability, low reliability, communication bottlenecks and privacy issues. In response
to this problem, two decentralized chemical frameworks are proposed for the coordination
and the execution of service composition. 1) Figure 2.6(a) illustrates the HOCL-TS WMS
architecture, a shared-space multiset is used as the communication mechanism for sharing
coordination information and data among all Web services. This work is validated later in
[69] by implementing a scientific workflow management system. However, the shared-space
multiset is still implemented by a centralized multiset, which is publicly writable and read-
able. This centralized implementation suffers from poor scalability. 2) The HOCL-P2P
WMS architecture is shown in Figure 2.6(b), each constituent service can directly talk with
each other. This work is similar to both choreography models proposed in this dissertation

3Both figures are borrowed from [67].

58

2.3. Illustrative Example: The “Best Garage”

(a) HOCL-TS WMS architecture (b) HOCL-P2P WMS architecture

Figure 2.6: Decentralized Chemical Frameworks for Service Coordination 3

(introduced later in Section 3.4). However, HOCL-P2P WMS architecture requires the
link between any two constituent services to be predefined at design time. Therefore, it is
incapable to meet the requirement for building flexible service-based system, where con-
stituent services are selected at runtime. Additionally, no failure recovery nor adaptation
issue has been addressed. Our models exhibit better flexibility: the configuration, coordi-
nation or even adaptation are performed at runtime, in an autonomous way. This work
can be integrated with the distributed chemical runtime [113, 110, 111, 112], By building
an additional layer based on the peer-to-peer communication protocol [129], the execution
of HOCL programs can be easily deployed over a large-scale infrastructures.

2.3 Illustrative Example: The “Best Garage”

In this dissertation, we use an automobile repair shop as a living example to illustrate our
approach: the “Best Garage”4 provides car reparation services for its customers. An SBA
is implemented for autonomous management of the reparation process. The reparation
of a customer’s car follows the workflow illustrated in Figure 2.7, which coordinates a
collection of interrelated tasks:

• First of all, an evaluation is performed in task t1 to preliminarily determine the prob-
lem of the car (noted as Probcar) and to estimate the complexity of the reparation
(in terms of reparation time and cost).

• In the following, the reparation is continued to one of the two exclusive branches.
Based on the preliminary diagnostic, the garage evaluates whether it is capable to
deal with the problem. If it could, the car is then sent to a specific workshop for the
reparation (task t2).

• Otherwise, the car will be sent to a partner garage to outsource the reparation of the
car. The price and expected time consumption for the reparation are also estimated.
However, the outsourcing process is not aware by the customer.

• Finally, the customer is required to pay the cost of bill in task t4 after the completion
of reparation.

4The “Best Garage” is a fictitious automobile shop which does not really exist. Any existences of actual
automobile shops with the same name are coincidental.

59

Chapter 2. Unconventional Approaches for Flexible Service Management

Figure 2.7: Illustrative Example: the “Best Garage”

Each task can be executed by a Web service. As shown in Figure 2.7, a number of
functional-equivalent services co-exist for executing a task.

• First, either a senior technician or an assistant technician can be invited for the
evaluation. The “Best Garage” has developed two Web services, WS-SeniorT and
WS-JuniorT, to schedule respectively senior and assistant technicians. When a re-
quest arrives, the Web service sends a message to an available technician with the
job information and marks his/her status as “occupied”. When a technician finishes
the evaluation job, his/her status is changed to “available” again so that (s)he is
able to accept new jobs.

• The reparation of a car in the “Best Garage” is managed by Web service WS-
RepManager. It requires the identity of the car as input, and reserves the available
resources for the reparation, such as workshop, engineers etc. After the reparation,
it returns the summary of reparation and the bill of costs.

• In case that the reparation is not able to be solved locally, the “Best Garage” seeks
for the solution from its partner automobile repair shop named “Car Experts!”5. The
partner garage provides a Web service WS-fastRepareCar which accepts a request
for reparation as input, then analyzes the problem and proposes the price and the
expected time. After the reparation, the car will be returned to the “Best Garage”
with a summary of reparation and the bill of costs.

• Finally, multiple possibilities are provided to the customer for the payment. For
example, the WS-payByCard Web service enables the customer to pay by credit
card; whereas the WS-payByCheque allows the customer to pay by check.

5Similar to the “Best Garage”, any existences of actual automobile shops with the same name are
coincidental.

60

2.3. Illustrative Example: The “Best Garage”

This example uses a simple workflow to illustrate service collaboration across multiple
administrative domains. First of all, for each task, there may be multiple functional-
equivalent services available (e.g., task t1 and t4). Then, different services may provided
either internally by the “Best Garage” (e.g., CWS-SeniorT), or externally by different
third-party service providers (e.g., CWS-payByCard). Moreover, some Web services are
also implemented as composite web services that assembles and coordinates a number of
services to create a value-added service. For example, WS-RepManager may coordinates
several sub-tasks in order to manage the entire reparation process. However, from the
requester’s point of view (i.e. the “Best Garage”), it acts as a normal atomic service.
Finally, we can see that everything can be a service. Behind the interface of a Web
service, the concept of service means a wide range of things. For example, human resources
(technician), real generic service (e.g. reparation service) or computational functionality
(e.g., online payment/money transfer services).

61

Chapter 2. Unconventional Approaches for Flexible Service Management

62

Part II

Chemistry-Inspired Middleware

63

Chapter 3

Chemistry-Inspired Middleware
for Flexible Execution of SBA

Abstract. In this chapter, we introduce a middleware inspired from chemical computing
for flexible execution of SBA. The service-based system is described and implemented using
the chemistry-inspired metaphor. First of all, the architectural overview of the middleware
is introduced in Section 3.1. Using the chemical metaphor, the middleware can be seen
as a distributed and autonomic chemical system: service selection, interaction, coordina-
tion and adaptation are modeled as a series of pervasive chemical reactions performed by
molecular polymerization, decomposition and movement. Later in Section 3.2, we address
the context-aware service selection problem. In order to construct an executable concrete
workflow (represented by a service composition), the selection of suitable services can be
perform at runtime with the consideration of both local and global constraints. Having a
concrete workflow constructed, Section 3.3 and Section 3.4 present respectively centralized
and decentralized models for executing and adapting service compositions.

65

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

3.1 Architecture of Chemistry-Inspired Middleware

The architectural overview of the chemistry-inspired middleware is illustrated in Figure 3.1.
The middleware represents an additional layer between the (service-based) application
layer and the (service) implementation layer. It can be seen as a medium by which Web
services can be coordinated and consumed by service-based applications. Since the mid-
dleware shares the responsibility for runtime management of SBA (e.g., selection, coordi-
nation and adaptation of services), the application layer becomes thinner and the burdens
of SBA providers can be reduced.

Using the chemical metaphor, the middleware is modeled as as a global service pool
where a number of chemical abstractions of services are floated, named as chemical services.
Each chemical service represents a self-contained software agent. Accordingly, a chemical
service is defined by a chemical solution of molecules that acts as a self-managed autonomic
chemical system. Similar to a real-world Web services, a chemical service can also be either
atomic or composite, according to the different roles that it plays.

• Chemical Web Service (CWS). A CWS is the middleware-level image of a real-world
Web service. It refers to an atomic chemical service, which is the basic and indivisible
functional unit in the middleware. A CWS is able to provide the expected function-
ality to other chemical services in the middleware by outsourcing the invocations to
a connected real-world Web service. Therefore, it acts as a service consumer for a
real-world Web service as well as a service provider in the middleware.

• Chemical Composite Service (CCS). By contrast, a CCS represents middleware-level
service composition, which realizes the expected functionality by assembling and
coordinating a number of chemical services in the middleware. As a result, it plays
the role of service consumer in the middleware whereas service provider for the SBA
application layer (the end requesters of SBA).

An SBA is mapped to a CCS in the middleware, which implements a solution of
molecules to express the workflow and the coordination of chemical services. Service coor-
dination is performed by means of interactions among chemical services in the middleware.
The middleware-level service interaction is modeled as the movement of molecules from
one chemical solution to another (as depicted by the dotted arrow in Figure 3.1). In this
section, we present how to express (chemical) services and their interactions using chemical
concepts.

3.1.1 Chemical Web Service (CWS)

Figure 3.1 illustrates four CWSes for the constituent Web services in the “Best Garage”
example. A CWS can be seen as the chemical reflection of a real-world Web service. A
one-to-one mapping is established between a CWS and the corresponding real-world Web
service. A CWS acts as a bridge by which a real-world Web service can be consumed in the
middleware. On one side, it receives invocation requests from other chemical services and
then forwards the invocation messages to the connected Web service; one the other side, it
receives the computational results from the connected Web service and then returns them
to the corresponding requesting chemical service(s).

A CWS can connect to either an atomic Web service or a composite one. For example,
WS-SeniorT Web service in Figure 3.1 may be developed originally as a software module
that schedules the available senior technicians. And then this software module is made
available on line as a Web service. By contrast, WS-fastRepairCar Web service can be

66

3.1. Architecture of Chemistry-Inspired Middleware

Figure 3.1: Architectural Overview of the Chemistry-Inspired Middleware

implemented as a service composition, defined by WS-BPEL and executed by one of
the BPEL engines introduced in Section 1.3.1. However, the detailed implementation
of workflow is not visible to the corresponding chemical service CWS-fastRepareCar. As a
result, from the perspective of middleware, all real-world Web services (both atomic and
composite ones) are regarded as atomic services .

A chemical Web service is implemented by a chemical solution where all floated molecules
represent the meta-data (e.g. endpoint reference and interface descriptions) of the con-
nected Web service. Each CWS solution contains a special molecule named connector,
which takes charge of interacting with the connected Web service. The connector is a Java
object which implements a Java Web service client for the connected Web service. By
manipulating the connector, a number of rules are defined to control the interactions with
both real-world and chemical services. Once a CWS receives an invocation request from
another chemical service in the middleware, these rules are able to pick up the invocation
parameters from its solution and then pass them to the connector. The connector trans-
lates the molecule-based invocation message to the standard one, and then forwards it to
the connected Web service. Later, when the result from the connected Web service arrives,
it will be translated again to a set of chemical molecules and finally written back to the
solution of the corresponding chemical service. Concrete examples will be introduced in
Section 3.3.

3.1.2 Chemical Composite Service (CCS)

Instead of interacting with a real-world Web service to provide the expected functionality,
a Chemical Composite Service (CCS) reuses and assembles the functionalities provided by
other chemical services to achieve the ultimate functionality required by the corresponding

67

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

SBA. In this context, an SBA is modeled as an autonomic chemical system that expresses a
service composition using chemistry-inspired concepts: the workflow topology is abstractly
modeled as a compound molecule and service coordination is expressed by a set of rules.

Molecular representation of workflow. The workflow specifies data flow by coordi-
nating a collection of interrelated tasks. Using chemical metaphor, each task is defined by
a task complex molecule, denoted by a task tuple:

“Task”:task id :func:stat :<“In”:wfp in:<>,“Out”:wfp out:<>>:cws sol

A task tuple is composed of six parts: 1) a constant string (“Task”) acts as the declaration
of a task tuple. 2) task id (string type) is the unique identifier of a task in the workflow.
3) func (string type) indicates the functional requirement of this task. 4) stat is defined
as an enumerated type with a number of enumerators indicating the runtime execution
state of a task, such as “Abstract”, “Concrete”, “Executing”, “Executed” etc. Later in
this section, we will explain the meaning of each state. 5) The “In” and “Out” sub-
solutions include respectively all the direct precedents and successors of this task. wfp in
and wfp out dictate respectively the coordination relationship with all its precedents and
all its successors (e.g. all successors have to be executed exclusively or concurrently). 6)
Finally, cws sol is the signature of the relative CWS that is bound to execute this task. The
signature is the unique identifier of a chemical solution in the middleware, expressed as:
solName@IP addr/host name. It can be used to identify and to locate a chemical solution
in the middleware so as to pass a set of molecules, as explained later in Chapter 4.2. For
the reason of simplicity, we use only solName in the rest of our discussion1. The binding
reference cws sol of an abstract task equals to Null.

Thereby, the workflow can be expressed as a cell that includes a number of task
molecules, defined by a workflow tuple:

“Workflow”:<>

A workflow tuple starts with a constant string (“Workflow”) and followed by a sub-solution
that contains a number of task tuples. As a concrete example, Program 3.1 provides the
description for the molecular representation of the workflow used in the “Best Garage”
example. Task t1 and t4 are abstractly defined and suitable services will be selected and
integrated at runtime based on the specific execution context, as addressed later in Sec-
tion 3.2. By contrast, the binding reference of task t2 and t3 are concretely predefined since
each task can be executed by only one specific chemical web service, CWS-RepManager
and CWS-fastRepairCar respectively. After the execution of t1, either t2 or t3 can be
executed. Therefore, the output workflow pattern of t1 is defined by an XOR-split pat-
tern. Similarly, the execution of t4 can start whenever either t2 or t3 completes, the input
workflow pattern of t4 is expressed by an XOR-join (also know as simple-merge) workflow
pattern [8]. Please note that we are able to describe both abstract workflow as well as
concrete workflow using molecular representation.

Reaction rules for workflow execution. The execution of workflow is modeled as a
series of chemical reactions controlled by a set of reaction rules. The CCS solution also
defines a set of rules that describe service coordination, invocation and adaptation as a
series of molecular decomposition, polymerization and movement processes. Based on the
different functionalities and objectives, all the reaction rules can be classified into three
categories:

1And we assume that any two chemical solution have different names.

68

3.1. Architecture of Chemistry-Inspired Middleware

Program 3.1: Molecular Representation of the Workflow in the “Best Garage” Example

1 "Workflow":<

2 "Task":"t1":"diagnostic":"Abstract":<

3 "In":"Start":<Null>,"Out":"XOR-split":<"t2","t3">>:Null,

4 "Task":"t2":"reparation":"Concrete":<

5 "In":"Seq":<"t1">,"Out":"Seq":<"t4">>:"CWS-RepManager",

6 "Task":"t3":"reparation":"Concrete":<

7 "In":"Seq":<"t1">,"Out":"Seq":<"t4">>:"CWS-fastRepairCar",

8 "Task":"t4":"billing":"Abstract":<

9 "In":"XOR-join":<"t2","t3">,"Out":"END":<Null>>::Null,

10 CRs, IRs, ARS

11 >

• Coordination Rules (CRs). The coordination rules schedule the execution of
workflow tasks by deciding when to start the execution of a task based on the exe-
cution states of the other task(s). In Section 3.3.2, a number of CRs are presented
to express complex workflow patterns.

• Invocation Rules (IRs). Invocation rules manage middleware-level service invo-
cations. Each task ti is associated with an invocation rule, noted as invokeTi. An
invocation rule takes charge of preparing and sending an invocation message to the
corresponding chemical service. More examples of IRs can be found in Section 3.3.

• Adaptation Rules (ARs). Adaptation rules react to runtime failures during the
execution of workflow. Failures can come from either functional level (e.g. a re-
sponseless constituent service) or non-functional level (e.g. a late response). SBA
provider can express various adaptation plans using ARs for different execution con-
texts. Runtime adaptation issue will be addressed in Section 3.3.3.

Creation of a new SBA instance. As shown in Figure 3.1, a request to execute the
SBA will result in the creation of a new SBA instance that serves the corresponding SBA
requester. Once a new SBA instance is created, the SBA writes an invocation demand
to the solution of the corresponding CCS with 1) a unique identification string for this
SBA instance and 2) the initial parameters provided by the end requester. An invocation
demand is expressed as the following tuple:

“Invoke”:inst id :<parameter>

It consists of three parts: 1) a constant string (“Invoke”) as the declaration of an invoke
demand; 2) inst id is the identification string of the relative SBA instance; 3) a sub-
solution includes all the invocation parameters provided by the end customers. Using the
“Best Garage” as an example, a sample invocation tuple is provided as follows:

“Invoke”:“CCS-BestGarage001”:<“Car”:<“Type”:“RARE”,“ID”:“ABCDEF”>>

The emergence of such an invocation tuple in the solution of CCS will activate the
rule createSBAInstance, as defined in Program 3.2. The creation of a new SBA instance
is similar to the cell replication process, as shown in Figure ??. A new instance tuple
is created based on the predefined workflow tuple: all the contents of the workflow tu-
ple, including the molecular workflow representation as well as all the rules for service

69

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Program 3.2: The Definition of the Reaction Rule createSBAInstance

1 let createSBAInstance =

2 replace "Invoke":inst_id::String:<?parameters >,"Workflow":<?wf_def>

3 by "Workflow":<wf_def>,

4 "Instance":<"Instance_id":inst_id,wf_def ,"Data":<parameter >, InstRs>

Figure 3.2: Illustration: Creation of a New SBA Instance

coordination, invocation and adaptation, are copied to the new instance sub-solution. Ad-
ditionally, the new instance sub-solution contains some supplementary information. 1) A
unique instance inst id. 2) A “Data” sub-solution to stock the instance data, such as the
initial parameters and the intermediate results of each task. 3) A number of instantiation
rules (InstRs) that dictate how to select chemical services in order to construct a concrete
and executable workflow (introduced later in Section 3.2). As a proof-of-concept example,
in response to the above-mentioned invocation tuple, Program 3.3 provides the description
of a new SBA instance created for responding the above sample invocation demand.

Please note that the original workflow tuple defined in Program 3.1 is inert, but the
sub-solution of an instance tuple is active due to the introduction of instantiation rules.
In this context, once a new instance tuple is generated, a series of chemical reactions will
start to instantiate the workflow, as presented in Section 3.2. After the instantiation, a
number of reactions will be launched in succession to execute this service composition, as
we will present later in Section 3.3 and Section 3.4.

3.1.3 Interactions between Chemical Services

In HOCL implementation, a chemical solution is not a closed space. The put primitive is
defined to write a (number of) molecule(s) to a remote chemical solution. It requires two
parameters: 1) the signature of the chemical solution where you want to pass the molecules
and 2) the molecules that are expected to pass. Details about the implementation of the
put primitive can be found in Section 4.2.

Therefore, by calling the put primitive, the chemical rule send is defined in the middle-
ware to automate the interaction between chemical services: when a molecule of a specific
pattern is produced, it will be automatically sent to a remote multiset by certain rules.
As defined in Program 3.4, once some molecules (noted by w) are wanted to be sent to
another solution dest, w has to be packaged into a “To send” tuple, noted as follows:

“To send” : dest :< w >

70

3.2. Context-Aware Service Selection

Program 3.3: The Description of a New SBA Instance

1 "Instance":<

2 "Instance_id":"CCS-BestGarage001",

3 "Task":"t1":"diagnostic":"Abstract":<

4 "In":"Start":<Null>,"Out":"XOR-split":<"t2","t3">>:Null,

5 "Task":"t2":"reparation":"Concrete":<

6 "In":"Seq":<"t1">,"Out":"Seq":<"t4">>:"CWS-RepManager",

7 "Task":"t3":"reparation":"Concrete":<

8 "In":"Seq":<"t1">,"Out":"Seq":<"t4">>:"CWS-fastRepairCar",

9 "Task":"t4":"billing":"Abstract":<

10 "In":"XOR-join":<"t2","t3">,"Out":"END":<Null>>::Null,

11 ARs, IRs, ARS, InstRs,

12 "Data":<"Car":<"Type":"RARE", "ID":"ABCDEF">>

13 >

Program 3.4: The Definition of the Reaction Rule send

1 let send =

2 replace "To send":dest:<?w>, ?l

3 by l

4 if put(dest, w)

The emergence of such a “To send” tuple in the local solution will activate the rule send,
which calls the put primitive to write the molecule w to the chemical solution dest.

Figure 3.3 presents a concrete example to illustrate the execution of the rule send.
cws1 and cws2 are two chemical solutions, which may be running on different machines
and cws1 contains the rule send. During the reactions in the solution of cws1, a “To send”
tuple is generated by another reaction rule which indicates to pass a string “message!”
to the remote solution cws2. And then, the rule send is activated, which consumes the
“To send” tuple and transfers the string to the remote solution cws2. Please note that for
the reason of simplicity, we only use the solution name instead of the full signature of a
chemical solution in the rest of this dissertation.

3.2 Context-Aware Service Selection

SBA providers can define the workflow either in a concrete or an abstract manner. The
former approach requires an SBA provider to directly specify a service composition which
can deliver the expected functionality by means of service collaboration. By contrast, for
the abstract approach, an SBA provider only describes the workflow in an abstract way, at
design time, by coordinating a set of abstract tasks with specific functional requirements.
The abstract workflow cannot be executed since each task lacks the binding reference so
that the required functionality of each task cannot be delivered. Therefore, the workflow
is required to be instantiated at runtime before the execution can start.

The instantiation of workflow refers to the selection of a suitable service for each task
from a number of candidates which can provide the same functionality2 but differ in Quality

2As we stated in the previous chapters, the interface mediation is not considered in this dissertation.
Hence, two services capable of providing the same functionality refers to two services with the same
interface.

71

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Figure 3.3: Illustration: Movement of Molecule

of Services (QoS). Different combinations of services can result in different compositions
of services, followed by the same workflow structure. Two distinct service compositions
may lead to different end-to-end QoS of SBA. Therefore, compared to concretely defined
workflows, dynamic instantiation of abstract workflows provides more flexibility in building
SBAs.

However, dynamic instantiation also brings additional challenges, as we have discussed
in Section 1.2. In this section, we introduce how to select suitable services at runtime by
means of chemical reactions in the middleware. Section 3.2.1 addresses service selection
based on local constraints and Section 3.2.2 discusses the global service selection problem.

3.2.1 Service Selection Based on Local Constraints

In this section, we use the “Best Garage” as an illustrative example to demonstrate service
selection based on local constraints. In this example, two tasks are concretely predefined
(task t2 and t3): the binding information for both tasks are explicitly provided by SBA
providers, as described in Program 3.1. However, task t1 and t4 have to bind to suitable
services according to the specific execution context. The selection of service for each task
has to follow some local constraints which can be determined by either the business policies
or the customer’s preferences.

3.2.1.1 Business policy driven service selection

Sometimes, business policies provide the guidelines to decide how to select services in
a specific execution context. We use the following scenario to illustrate business policy
driven service selection.

Selection scenario 1: choose a suitable technician. Task t1 can bind to either a
senior or an assistant technician service. The selection of a technician follows the following
rules: 1) for an ordinary car, an assistant is invited for the diagnosis; 2) a rare-type car
(such as a vintage car or a sports car) has to be diagnosed by a senior technician.

In the middleware, each business policy can be expressed by a (set of) reaction rule(s).

72

3.2. Context-Aware Service Selection

Program 3.5: Chemical Rules for Local Service Selection

1 % Chemical Rules for Business Policy Driven Service Selection

2 let bindT1ToExpert =

3 replace-one "Data":<"Car":<"Type":"RARE", ?w>,?l>,

4 "Task":"t1":"diagnostic":"Abstract":<?k>:Null

5 by "Data":<"Car":<"Type":"RARE", w>,l>,

6 "Task":"t1":"diagnostic":"Concrete":<k>:"CWS-SeniorT"

7 let bindT1ToAssistant =

8 replace-one "Data":<"Car":<"Type":"ORDINARY", ?w>,?l>,

9 "Task":"t1":"diagnostic":"Abstract":<?k>:Null

10 by "Data":<"Car":<"Type":"ORDINARY", w>,l>,

11 "Task":"t1":"diagnostic":"Concrete":<k>:"CWS-JuniorT"

12

13 % Chemical Rule for Customer Preference Driven Service Selection

14 let prebindT4 =

15 replace-one "Task":"t4":"billing":"Abstract":<?k>:Null

16 by "Task":"t4":"billing":"Concrete":<k>:"CWS-payByCard"

As a proof of concept, we provide two reaction rules in Program 3.5 that implement
the business policies used in selection scenario 1. First of all, the rule bindT1ToExpert
describes the policy for binding the senior technician service. We suppose that the “Best
Garage” has a list that classifies all the models of cars into two different types: ordinary
cars and rare cars. Accordingly, the type of a car can be determined when a client comes to
the garage, and it is provided as an initial parameter to create an SBA instance (it can be
found in the “Data” sub-solution of an SBA instance). Therefore, the rule bindT1ToExpert
checks the type of the car and binds the abstract task t1 to CWS-SeniorT if the type of
the car is classified as “RARE”. Meanwhile, the runtime state of task t1 is changed from
“Abstract” to “Concrete”. On the other hand, the rule bindT1ToAssistant is similarly
defined to bind task t1 to CWS-JuniorT for an ordinary car. Please note that both rules
are defined as one-shot rule.

3.2.1.2 Customer preference driven service selection

However, sometimes the selection of service is determined by the customer’s preferences.
Consider the following scenario.

Selection scenario 2: choose the mode of payment. The customer has multiple
possible ways to pay the bill. As a proof of concept, we only consider two of them, namely
to pay directly by credit card or to pay by check. The selection of the payment mode
depends on the customer’s preference.

However, the customer’s preference is sometimes unavailable at the beginning of the
execution. For example, the customer can select the mode of payment only when (s)he is
asked to pay the bill of cost (the execution of workflow arrives to the task t4). Moreover,
even though the preference is provided at the beginning, it still can be changed during
the execution. As a result, in the middleware, the task always pre-binds to the service
that is most likely to be selected according to the past executions at the beginning of
the execution. Later, when the execution arrives to that task, if the customer provides a
different preference, some adaptation rules can be simply applied to changed the binding
reference (introduced later in Section 3.3.3). As an example, in Program 3.5, the rule

73

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Program 3.6: Description of a Concrete Workflow for the “Best Garage” Example

1 "Instance":<

2 "Instance_id":"CCS-BestGarage001",

3 "Task":"t1":"diagnostic":"Concrete":<

4 "In":"Start":<Null>,"Out":"XOR-split":<"t2","t3">>:"CWS-SeniorT",

5 "Task":"t2":"reparation":"Concrete":<

6 "in":"Seq":<"t1">,"Out":"Seq":<"t4">>:"CWS-RepManager",

7 "Task":"t3":"reparation":"Concrete":<

8 "In":"Seq":<"t1">,"Out":"Seq":<"t4">>:"CWS-fastRepairCar",

9 "Task":"t4":"billing":"Concrete":<

10 "In":"XOR-join":<"t2","t3">,"Out":"End":<Null>>:"CWS-payByCard"

11 "Data":<"Car":<"Type":"RARE", "ID":"ABCDEF">>

12 >

prebindT4 is defined to pre-bind task t4 to CWS-payByCard, since most of customers have
finally payed directly using the credit card in the past. By applying the rule prebindT4,
task t4 becomes a concrete task.

By executing reaction rules for local service selection, the sample SBA instance pro-
vided in Program 3.3 can be fully instantiated. As a proof-of-concept example, we assume
an execution context for repairing a sport car, the context-aware service selection finally
lead to the construction of the sample concrete workflow described in Figure 3.6. This
sample workflow will be used in the rest of our discussions to illustrate our approaches,
for example, the coordination models for executing a service composition.

3.2.2 Global Service Selection

However, sometimes service selection is required to be performed with the consideration
of global constraints. A global constraint describes the (QoS) restriction in service selec-
tion that involves multiple (or all the) tasks. For example, the services selected for two
consecutive tasks have to be connectable, which means they should have the same (or
similar) interface definition so that they can talk to each other. Furthermore, sometimes,
the selection of services also has to satisfy the aggregated QoS of a sub-graph of workflow
(e.g., in the medical-care context, some critical tasks are expected to be finished within
a limited time duration) or even the global QoS over the entire SBA (e.g. the customer
expects to get the response within a certain duration).

In our illustrative example, global service selection is not needed, since the time and
cost for the reparation is estimated by the SBA provider according to the preliminary
diagnostic of the car. The customer is not allowed to impose any QoS constraints on
the entire reparation process, because (s)he lacks professional knowledge. However, our
approach is able to be extended to express service selection with the consideration of global
constraints. In this section, we present how to model global service selection in terms of
chemical reactions.

3.2.2.1 Problem Definition

Most of approaches proposed in the literature assume that a provider can deliver a service
on only one quality level. In this case, a service provider is selected from a service class,
defined as a group of service providers that can deliver the same functionality. However,
in the reality, a service provider is able to provide its service on multiple QoS levels in

74

3.2. Context-Aware Service Selection

Figure 3.4: Offer Sets

order to meet the requirements of different customers. Take the telecommunication service
providers for example, when you want to sign a mobile phone contract, you might have
multiple choices for the providers (Vodafone, Orange, etc.) and each provider may offer
you multiple service packages with different QoS and cost.

We borrow the concept of offer from the example of telecommunication providers. In
the middleware, each service provider can define multiple offers to advertise its services on
different levels. An offer describes both functional and non-functional aspects of a service
delivery as well as the identification information of the related service provider, denoted
by an offer tuple:

“Offer”:cwsi :fi :<“QoS”:qi>

An offer tuple is composed of four parts: 1) a constant string “Offer” as a declaration of an
offer tuple; 2) cwsi is the signature of the related chemical service which defines this offer;
3) fi is the functionality that cwsi is expected to provide; 4) finally, a sub-solution is used
to encapsulate a number of QoS expectations. As a proof of concept, we only consider the
expected response time and cost in our discussion.

By this means, the service selection problem is transformed to the selection of appro-
priate offers: a service is selected if and only if one of its offers is selected by a service
composition. An offer set (OS) is defined as OSi = {o

j
i |1 ≤ j ≤Mi}, where o

j
i represents

the jth offer that can execute task ti and Mi is the number of offers in OSi, as depicted in
Figure 3.4. A concrete workflow is constructed by binding each activity ti to an appropri-
ate offer in the related offer set OSi, denoted as cwf = {ti ← oni

i |1 ≤ i ≤ n; 1 ≤ ni ≤Mi}.
By introducing the concept of offer, our approach is also applicable to the case that a
provider can deliver a service on more than one quality levels.

3.2.2.2 Partially Instantiated Workflow (PIW).

Before discussing how to perform global service selection using chemical reactions, we first
introduce the concept of Partially Instantiated Workflow (PIW). A PIW is a structured
sub-graph of a concrete workflow, which has to meet the following requirements: 1) each
PIW has only one source task (the entry point) and one sink task (the exit point); 2) If
the source task is distinct from the sink task, all the successors (precedents) of the source

75

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

(a) IT-PIW: Instantiated Task (b) IC-PIW: Chain of Instantiated Tasks

(c) ISB-PIW: Instantiated Structured Block

(d) Counter Example 1 (e) Counter Example 2

Figure 3.5: Partially Instantiated Workflow (PIW)

(sink) task belong to the PIW. 3) For all the other tasks except the source and sink tasks,
their precedent(s) and successor(s) belong to this PIW. 4) Each task in a PIW is a concrete
task with binding reference.

According to this definition, a PIW can be classified into four categories:

• Instantiated Task (IT-PIW). First of all, an IT-PIW refers to single concrete
task. As illustrated in Figure 3.5(a), an instantiated task ti can be seen the basic
PIW that acts as the building block of other complex PIWs. Task ti is the source
task as well as the sink task of this PIW.

• Instantiated Chain (IC-PIW). Then, a chain of instantiated tasks is also a PIW.
As depicted in Figure 3.5(b), an instantiated chain presents a line of instantiated
tasks {ti → ...→ tp}, which are expected to be executed in sequential order.

• Instantiated Structured Block (ISB-PIW). An ISB-PIW presents a more com-
plicated PIW. As illustrated in Figure 3.5(c), an ISB PIW is sub-workflow composed
of several ICs/ITs. This sub-workflow has to meet the above-mentioned 4 require-
ments. Figure 3.5 also provides some counter examples. Neither the instantiated

76

3.2. Context-Aware Service Selection

sub-workflow in Figure 3.5(d) nor the one in Figure 3.5(e) is an ISB-PIW. The for-
mer workflow violates the second requirement since it has two sink tasks. The latter
workflow violates the third requirement, since tk is one of the successors of ti but it
is not included in the sub-workflow.

• Fully Instantiated Workflow (FIW). A FIW is a special PIW that refers to a
fully instantiated workflow, in other words, every task in the workflow has bound to
a selected constituent service3. The source task of a FIW equals to the first task of
the workflow and the sink task is the last task of the workflow.

Using the chemical metaphor, a PIW is expressed as a complex molecule, which is
defined by a PIW tuple:

“PIW”:<“Source”:ti,“Sink”:tj,“QoS”:<?qos piw>,a list of instantiate task tupes >

A PIW tuple starts with a constant string “PIW” and followed by a solution which includes
the information of a PIW: 1) the identity of the source task; 2) the identity of the sink
task; 3) the aggregated QoS of this PIW described by a “QoS” sub-solution; 4) a list
of instantiated task tuples. And an instantiated task extends a task tuple with the QoS
expectations, denoted as:

“IT”:task id :func:stat :<“QoS”:<?qos >,?neighbors>:cws sol

As a concrete example, the PIW in Figure 3.5(a) can be expressed as follows:

“PIW”:<

“Source”:“ti”,“Sink”:“ti”,“QoS”:<“Time”:5.0, “Price”:0.1>,

“IT”:“ti”:“fi”:“Concrete”:<

“In”:wfp in:<?in >,“Out”:wfp o:<?out >,“QoS”:<“Time”:5.0,“Price”:0.1>

>:“CWSi”

>

with the offer oji in Figure 3.5(a) defined as:

“Offer”:“CWSi”:“fi”:<“Time”:5.0, “Price”:0.1>

3.2.2.3 Chemical Reactions for Global Service Selection

The instantiation of workflow with the consideration of global constraints is modeled
as a recursive process of building PIWs: from the construction of a set of simple ITs to
complicated ICs and ISBs, until the entire workflow is fully instantiated. The instantiation
completes when a FIW is identified.

Construction of instantiated tasks (IT-PIWs). The instantiation process starts
with local offer elimination. The objective is to remove the offers that cannot meet the
local (QoS) constraints. For example, SBA provider may want a specific task to complete
within a certain time duration. In this case, all offers with longer expected response time
will be removed. As an example, the reaction rule eliminateOfferForTaskTi defined in
Figure 3.7 removes all the offers for task ti (with the required functionality fi) with the

3Although the word fully instantiated and partially instantiated are a little contradicting, but both of
them follow the same molecular description so that we defined FIW as a special type of PIW.

77

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Program 3.7: Reaction Rules for Generating Instantiated Task (IT-PIW)

1 % Reaction rule for local elimination

2 let eliminateOfferForTaskTi =

3 replace "Offer":cws:fi:<"Time":t,?w>,

4 "Task":ti:f_req:"Abstract":<?k>:Null

5 by "Task":ti:f_req:"Abstract":<?k>:Null

6 if f_req.equals(fi) && t>5.0

7

8 % Reaction rule for generating IT-PIW

9 let instantiateTask =

10 replace "Offer":cws:fi:<?w>,

11 "Task":id_task:f_req:"Abstract":<?k>:Null

12 by "Task":id_task:f_req:"Abstract":<k>:Null,

13 "IT":id_task:f_req:"Concrete":<k,"QoS":<w>>:cws

14 if f_req.equals(fi)

15 let generateIT -PIW =

16 replace "IT":id_task:f_req:"Concrete":<k,"QoS":<w>>:cws

17 "PIW":<

18 "Source":id_task, "Sink":id_task, "QoS":<w>,

19 "IT":id_task:f_req:"Concrete":<k,"QoS":<w>>:cws

20 >

expected response time longer than 5 seconds. These chemical reactions consume (remove)
all the unsuitable offers.

After the local elimination of offers, all local constraints can be satisfied and then we
can consider how to recursively build PIWs in order to construct a FIW. The first step is to
generate a number of basic IT-PIWs based on different possibilities for instantiating a task.
For each task in the workflow, the rule instantiateTask defined in Figure 3.7 is applied
to generate an instantiated task tuple based on each offer for this task (L.13). Then, the
rule generateIT-PIW is activated to construct an IT-PIW based on each instantiated task.
Both source task and sink tasks of this PIW point to this task (L.18). The aggregated
QoS of this IT PIW equals to the expected QoS of this instantiated task (represented by
w in L.16). After the first-round reactions, all qualified offers are transformed to a number
of IT-PIWs.

Construction of instantiated chains (IC-PIWs). In the following, the instantiation
of workflow is performed by sequentially connecting PIWs. First, two connectable IT-
PIWs can be aggregated to construct an instantiated chain (IC-PIW); and then, smaller
IC-PIWs can be aggregated along an execution path to form bigger ones. The construction
of IC-PIW is performed as cell fusion process, as illustrated in Figure 3.6. Each PIW can
be seen as a cell, which encapsulates a number of molecules to express an instantiated
sub-graph of workflow. If the sink task of a PIW (noted as PIW1) and the source task
of another PIW (noted as PIW2) are sequentially connected, two PIWs will merge into a
bigger PIW cell which represents a longer instantiated chain. In this context, the source
task of the new PIW is the source task of PIW1, and the sink task of the new PIW is the
sink task of PIW2.

The rule generateInstChain defined in Program 3.8 implements the aggregation of two
instantiated chains. A bigger IC-PIW (L.10-16) is constructed by merging the contents
of two connectable smaller PIWs (L.02-05 and L.06-09). All the instantiated tasks from
both PIWs are copied into the new PIW, and the aggregated QoS of the new PIW is also

78

3.2. Context-Aware Service Selection

Figure 3.6: Illustration: Generation of a New Instantiated Chain (IC-PIW)

Program 3.8: Reaction Rule for Generating Instantiated Chain (IC-PIW)

1 let generateInstChain =

2 replace "PIW":<

3 "IT":t_p:f_p:"Concrete":<"Out":"Seq":<t_out>,?w1>:cws_p,

4 "Source":t_i,"Sink":t_p,"QoS":<"Time":tm1,"Price":pr1>,?l1

5 >,

6 "PIW":<

7 "IT":t_m:f_m:"Concrete":<"In":"Seq":<t_in>,?w2>:cws_m,

8 "Source":t_m,"Sink":t_s,"QoS":<"Time":tm2,"Price":pr2>,?l2

9 >

10 by "PIW":<

11 "Source":t_i, "Sink":t_s,

12 "IT":t_p:f_p:"Concrete":<"Out":t_out,?w1>:cws_p,

13 "IT":t_m:f_m:"Concrete":<"In":t_in,?w2>:cws_m,

14 "QoS":<"Time":(tm1+tm2),"Price":(pr1+pr2)>,

15 l1,l2

16 >

17 if t_out.equals(t_m) && t_in.equals(t_p) && Cond_g

calculated. In this case, both the response time and cost are aggregated based on the
addition function.

This reaction is based on the following conditions (L.17): 1) both chains have to be
sequentially connected. The first PIW has only one successor which points to the source
task of the second PIW, and the second PIW has only one precedent which points to the
the sink task of the first PIW. 2) Some global constraints (optional), noted by Cond g,
have to be satisfied if it is defined. As we have introduced in the beginning of this section,
the expression of the global constraints Cond g varies according to the execution contexts.
Please note that Cond g can be a compound conditional statement which expresses two
or more conditions to be tested.

In the following, we provide a concrete example to express Cond g. Considering the
context of arrangement of professors to give courses to the students in a college, each
professors proposes several available time intervals for giving his/her courses. In this
context, each available intervals can be seen as an offer, which specifies the expected

79

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Figure 3.7: Illustration: Generation of a New Instantiated Block (ISB-PIW)

duration by which a service (course) can be delivered. Each offer has two QoS attributes:
“Start time”:tm s and “Terminate time”:tm t, indicating respectively the expected start
time and termination time. Therefore, two services can be connected if and only if the
termination time of the first offer is earlier than the start time of the second one. In this
case, the Cond g can be expressed as: tm t1.earlyThan(tm s2).

Construction of instantiated structured blocks (ISB-PIW). Having presented
the instantiation of a sequential executed tasks, in the following, we will discuss how PIWs
can be aggregated over complex workflow patterns to construct instantiated structured
block (ISB-PIW). A structured block is a subgraph of workflow where 1) each split node
is associated with exactly one join node and vice versa and 2) each path in the workflow
graph originating in a split node leads to its corresponding join node. As an example,
Figure 3.7 depicts four PIWs, noted respectively as PIW1, PIW2, PIW3 and PIW4. The
sink task of PIW1 connects to the source tasks of PIW2 and PIW3; on the other side,
the sink tasks of both PIW2 and PIW3 connect to the source task of PIW4. In this case,
all four PIWs can be merged into a bigger structured instantiated block. The source task
of the new PIW is the source task of PIW1 and the sink task of the new PIW is the sink
task of PIW4.

Suppose that after the execution of PIW1, both PIW2 and PIW3 in Figure 3.7 will
be executed in parallel. Then, the executions of two PIWs have to be synchronized before
executing PIW4. The rule generateISBAndSplitSync defined in Program 3.9 implements
the construction of an ISB-PIW in this context. It requires four PIW tuples as the input
molecules. Since two branches are executed in parallel, the aggregated execution time
depends on the PIW with longer expected execution time (L.20). However, the aggregated

80

3.2. Context-Aware Service Selection

Program 3.9: Reaction Rules for Generating AND-Split Instantiated Block (ISB-PIW)

1 let generateISBAndSplitSync =

2 replace "PIW":<

3 "IT":t_p:f_p:"Concrete":<"Out":"AND-Split":<t_out1,t_out2 >,?w1>:cws1:<?

qos1>,

4 "Source":t_i,"Sink":t_p,"QoS":<"Time":tm1,"Price":pr1>,?l1

5 >,

6 "PIW":<

7 "Source":t_m,"Sink":t_s,"QoS":<"Time":tm2,"Price":pr2>,?l2

8 >,

9 "PIW":<

10 "Source":t_k,"Sink":t_u,"QoS":<"Time":tm3,"Price":pr3>,?l3

11 >,

12 "PIW":<

13 "IT":t_c:f_c:"Concrete":<"In":"Sync":<t_in1,t_in2>,?w4>:cws4:<?qos4>,

14 "Source":t_c,"Sink":t_e,"QoS":<"Time":tm4,"Price":pr4>,?l4

15 >

16 by "PIW":<

17 "Source":t_i, "Sink":t_e,

18 "IT":t_p:f_p:"Concrete":<"Out":"AND-Split":<t_out1,t_out2 >,?w1>:cws1

:<?qos1>,

19 "IT":t_c:f_c:"Concrete":<"In":"Sync":<t_in1,t_in2>,?w4>:cws4:<?qos4>,

20 "QoS":<"Time":(tm1+tm4+MAX(tm2,tm3)),"Price":(pr1+pr2+pr3+pr4)>,

21 l1,l2,l3,l4

22 >

23 if t_out1.equals(t_m)&&t_out2.equals(t_k)&&t_in1.equals(t_s)&&t_in2.equals

(t_u)&&Cond_g

price is still the sum price of all four PIWs. Please note that the global constraints Cond g

can be similarly expressed as we have introduced before.

As a proof of concept, we have only provided the reaction rules for generating ISB-PIW
based on and-split and synchronization workflow patterns. However, other combination of
different workflow patterns for the split and join node can be also expressed using reaction
rules in the similar way (e.g. XOR-Split and Simple-Merge, etc). The difference lies in the
fact that different functions are used for calculating the aggregated QoS of the new PIW,
as we have presented in section 1.1.3.

3.2.2.4 Workflow Transformation.

In the above-introduced example, the rule generateISBAndSplitSync can only be applied
to construct an ISB with two branches, since it explicitly specifies that the sink task of
the first PIW (defined as tp) requires two successors, namely as tout1 and tout2 (L.03).
However, SBA provider may define a workflow with more than two parallel or exclusive
execution branches. For example, the workflow in Figure 3.8(a) cannot activate the rule
generateISBAndSplitSync since it comprises three parallel execution branches. In this case,
the SBA provider has to define new rules to instantiate a workflow with an any number of
branches. The definitions of these rules are similar to the rule generateISBAndSplitSync,
except that they require more PIWs as input molecules.

Our objective is to provide a set of generic rules that can be used to instantiate all
types of workflow with minimum effort of SBA providers. For this purpose, we are going to
introduce workflow transformation which is able to transform any structured workflow to
a standard structured workflow. A standard structured workflow is a sub-set of structured

81

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

(a) Original Workflow (Before the Transformation)

(b) Transformed Workflow (After the Transformation)

Figure 3.8: Illustration: Workflow Transformation

workflow where each split/join node can only have two successors/precedents.

The objective of workflow transformation is to ensure that each split/join node has
only two successors/precedents so that the rule generateISBAndSplitSync can be used in
generic cases. To achieve that, new virtual tasks are created and added into the workflow.
A virtual task can be seen as a place holder in the workflow that has no functional nor non-
functional properties. In order to transform the workflow in Figure 3.8(a) into a standard
structured workflow, two virtual task (t1v and t2v) are created and added into the workflow.
As illustrated in Figure 3.8(b), t1v is a successor of task tp and the precedent of both task
ti and tk while t2v is a successor of task te, tu and the precedent of task tc. The expected
time and cost of t1v and t2v are all 0.0. For the workflow with more than three branches, the
workflow transformation can be performed similarly in a recursive way. By this means,
the original workflow can be transformed to a standard structured workflow.

In the following, all the instantiation rules can be applied to construct a fully instan-
tiated workflow. To instantiate the workflow presented in Figure 3.8(b), a number of
IT-PIWs are firstly constructed; Then several IC-PIWs are built by aggregating IT-PIWs
along all three execution chains: {tm,...,ts}, {ti,...,te} and {tk,...,tu}. Later, the rule gen-
erateISBAndSplitSync is applied to construct the ISB-PIW for the subgraph of workflow
{t1v,...,t

2
v}. And finally the rule generateISBAndSplitSync is used again to build a fully

instantiated workflow.

3.2.2.5 Aggregated/Global QoS Verification.

Sometimes, global service selection is expected to meet the constraints on the aggregated
QoS of a subgraph of workflow or the entire workflow. Take the workflow in Figure 3.8 for
example, suppose that the SBA provider expects the execution of the subgraph of workflow
{tm, ... , ts} to be finished within 15 seconds at the cost of less than 0.8 euros. The rule
defined in Program 3.10 describes the verification of such global constraints. It reacts with
any a FIW that starts with the task tm and ends with the task ts. After verifying the

82

3.2. Context-Aware Service Selection

Program 3.10: Reaction Rules for Global QoS Verification

1 let verifyAggQoSConstraint1 =

2 replace "PIW":<"Source":"t_m","Sink":"t_s","QoS":<"Time":t,"Price":pr>, l>

3 by l

4 if t>15 || pr>0.8

aggregated QoS of this FIW, if the expected execution time is greater than 15s or the cost
is over 0.8 euros, this FIW tuple will be consumed and all the instantiated tasks included
in it will be released (represented by l in L.03).

We suppose that for each task in the workflow, multiple IT-PIWs can be constructed
(multiple offers can provide the expected functionality requirement of each task). In the
following, if a PIW for the subgraph of workflow {ti, ... , tj} can meet the expected QoS,
it can be used later to construct the fully instantiated workflow. To the contrary, if it
cannot meet the required QoS requirements, all the instantiated tasks will be released and
then, the instantiation rule introduced in Figure 3.7 will be re-applied to re-generate a
number of IT PIWs. And all these “new” (fresh) IT-PIWs will be recombined to build
(different) IC-PIWs and ISB-PIW to instantiated the subgraph of workflow {ti, ... , tj}.
Then, the rule verifyAggQoSConstraint1 will be used again to check the aggregated QoS
of all new PIWs for the subgraph of workflow {ti, ... , tj}. In this case, the verification of
aggregated QoS is always performed until 1) all PIWs for this subgraph of workflow can
meet the QoS requirements or 2) an fully instantiate has been constructed.

3.2.2.6 Discussion.

In the middleware, the instantiation process is performed by a series of continuous reac-
tions that never stop until a fully instantiated workflow is constructed. This approach
exhibits some advantages as well as limitations. First of all, traditional approaches for ser-
vice selection rely on building optimization models or heuristic algorithms, which require
SBA providers to develop extra tools that are able to transform a BPEL description of
workflow to some mathematical models or vice versa. In chemistry-inspired middleware,
no transformation is required so that both design-time and runtime complexity can be
reduced. Moreover, the instantiation and execution can be performed in parallel since
both processes are described as chemical reactions and different reactions can take place
concurrently. Therefore, in some cases (e.g., no constituent service is found for a task),
the execution can start before the construction of a FIW completes. Finally, our approach
is adaptable to the evolving execution environment. For example, during the instantiation
process, if an offer with better QoS is found, it can be dynamically added into the solution
and then immediately participate into the instantiation reactions.

However, this approach also presents some limitations (to be solved in the future
work). First, the instantiation may not be able to identify a FIW when global constraints
are required, even a possible solution exists. This is because the selection of molecules is
non-deterministic. Suppose all the PIWs constructed in the first round cannot meet the
global QoS constraints according to aggregated QoS Verification. As introduced above,
all the instantiated tasks will be released and the second-round reconstruction will start.
However, the second-round instantiation may produce the same PIWs as the first round
(each rule selects the same input molecules). This may lead to the instantiation into a
dead-lock loop that never ends (although it presents a low probability). Moreover, even
if a concrete workflow is successfully identified, this non-deterministic selection process

83

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Figure 3.9: Illustration: Orchestration of Chemical Service

may take long time to complete if a lot of global constraints are specified. Finally, the
instantiation rules for global selection of service can be used only for structured workflow.
PIWs are aggregated based on structured workflow, either a sequential path or a pair of
split node and join node.

3.3 Centralized Coordination Model for the Execution of
Service Compositions

Up to now, we have presented the creation and the instantiation of a new SBA instance.
Then, this SBA instance can be executed by running the instantiated workflow. The
execution of a concrete workflow refers to the coordination of all constituent services so
that they can cooperate in order to fulfill the ultimate business goal. Both centralized and
decentralized coordination models have been introduced in Section 1.3. In this section,
we are going to illustrate implementation of the centralized coordination model, known as
service orchestration, using chemical metaphor in the middleware.

3.3.1 Chemical Service Orchestration Model

In the context of service orchestration, CCS plays the role of the centralized orchestrator,
as depicted in Figure 3.9. A number of reaction rules are defined in the solution of CCS
(more precisely, in the sub-solution of each running SBA instance) in order to manage the
execution of service compositions, for example, to control the execution order of constituent
chemical services. As introduced, according to different functionalities, all the reaction
rules in the solution of CCS can be classified into three categories, namely the invocation
rules (IRs), coordination rules (CRs) and adaptation rules (ARs). In this section, we will
introduce a number of CRs and IRs; the ARs will be addressed in Section 3.3.3.

Example of service orchestration. As a proof of concept, we use the “Best Garage” as
an example to illustrate the implementation of the orchestration model in the middleware.
A possible concrete service composition has been instantiated after the local selection of
services, as described in Program 3.6. Once the instantiation process completes, the sub-
solution of this SBA instance becomes inert. At this moment, the CR startExeOrch in the
solution of CCS is activated. As defined in Program 3.11, it modifies the runtime state
of the first task, noted by ts, from “Concrete” to “Executing” (L.06). Using the “Best
Garage” example, the task tuple ts is mapped to t1; thus the runtime state of t1 will be

84

3.3. Centralized Coordination Model for the Execution of Service Compositions

set to “Executing”. By this means, some invocation rules in this instance sub-solution will
be activated to trigger a series of chemical reactions in the middleware that execute the
service composition by the orchestration model.

Program 3.11: Coordination Rules for Service Orchestration

1 let startExeInstOrch =

2 replace "Instance":<

3 "Task":t_s:f_s:"Concrete":<"In":"Start":<Null>,?w>:cws_s, ?l

4 >

5 by "Instance":<

6 "Task":t_s:f_s:"Executing":<"In":"Start":<Null>,w>:cws_s, l

7 >

8 let correlateResult =

9 replace "Reply":inst_id1:cws:<?result>,

10 "Instance":<"Instance_id":inst_id2 ,?w>

11 by "Instance":<"Instance_id":inst_id2 ,"reply":cws:<result>,w>

12 if inst_id1.equals(inst_id2)

13 let completeTask =

14 replace "reply":cws:<"Result":<?result>>,"Data":<?d>,

15 "Task":ti:fi:"Invoking":<?w>:binding

16 by "Task":t_i:f_i:"Executed"<w>:binding,

17 "Data":<result,d>

18 if cws.equals(binding)

19 let selectBranchCasePos =

20 replace "Data":<"Problem":p::String, ?w>,

21 "Task":"t1":"diagnostic":"Executed":<?w1>:binding1::String,

22 "Task":"t2":"reparation":"Concrete":<?w2>:binding2::String

23 by "Data":<"Problem":p, w>,

24 "Task":"t1":"diagnostic":"Executed":<w1>:binding1,

25 "Task":"t2":"reparation":"Executing":<w2>:binding2

26 if p.equals("EASY")

27 let selectBranchCaseNeg =

28 replace "Data":<"Problem":p::String, ?w>,

29 "Task":"t1":"diagnostic":"Executed":<?w1>:binding1::String,

30 "Task":"t3":"reparation":"Concrete":<?w3>:binding3::String

31 by "Data":<"Problem":p, w>,

32 "Task":"t1":"diagnostic":"Executed":<w1>:binding1,

33 "Task":"t3":"reparation":"Executing":<w3>:binding3

34 if p.equals("HARD")

35 let completeExeOrch =

36 replace "Instance":<

37 "Task":t_e:f_e:"Executed":<"Out":"End":<Null>,?w>:cws_e, ?l

38 >

39 by "Instance":"Completed":<

40 "Task":t_e:f_e:"Executed":<"Out":"End":<Null>,w>:cws_e, l

41 >

1. First of all, the IR invokeT1 will react to task tuple t1 with the runtime state of
“Executing”. As defined in Program 3.12, it prepares an invocation request for
executing task t1, described by an “Invoking” tuple (L.06):

“Invoking”:cws:<“operation”:op, ?parameters>

An invocation request indicates the operation (op) of a chemical service (cws) to be
invoked as well as a number of invocation parameters (name-value pairs).

85

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Program 3.12: Invocation Rules for Service Orchestration (Defined in CCS)

1 let invokeT1 =

2 replace "Data":<"Car":<"ID":id, ?w1>, ?w2>

3 "Task":"t1":"diagnostic":"Executing":<?w3>:cws_1,

4 by "Data":<"Car":<"ID":id, w1>, w2>,

5 "Task":"t1":"diagnostic":"Invoking":<w3>:cws_1,

6 "Invoking":cws_1:<"operation":"diagnose","car_id":id>

7 let invokeT2 =

8 replace "Data":<"Car":<"ID":id,"Time_Exp":q_t,?w1>, ?w2>,

9 "Task":t2:"reparation":"Executing":<?w3>:cws_2

10 by "Data":<"Car":<"ID":id,"Time_Exp":q_t,w1>, w2>,

11 "Task":t2:"reparation":"Invoking":<w3>:cws_2,

12 "invoking":cws_2:<"operation":"repare","car_id":id,"Time_C":q_t>

13 let invokeT3 =

14 replace "Data":<"Car":<"ID":id,?w1>, ?w2>,

15 "Task":t3:"reparation":"Executing":<?w3>:cws_3

16 by "Data":<"Car":<"ID":id,w1>, w2>,

17 "Task":t3:"reparation":"Invoking":<w3>:cws_2,

18 "Invoking":cws_3:<"operation":"repare","car_id":id>

19 let invokeT4 =

20 replace "Data":<"payment":<"Card_No":num,"Password":pw>,?w1>, ?w2>,

21 "Task":t4:"billing":"Executing":<?w3>:cws_4

22 by "Data":<"Car":<w1>, w2>

23 "Task":t4:"billing":"Invoking":<w3>:cws_4,

24 "Invoking":cws_4:<"operation":"payByCard","card_num":num,"password":pw>

25 let prepareInvocationMsg =

26 replace "Invoking":cws:<?parameters >,

27 "Instance_id":inst_id

28 by "Instance_id":inst_id

29 "To_send":cws:<

30 "Invoke_orch":"CCS-BestGarage":inst_id:<parameters >

31 >

2. The generation of an invocation request will activate the rule prepareInvocationMsg
(defined in Program 3.12) in succession to generate a concrete invocation message
for the corresponding chemical service. An invocation message is defined by an
“Invoke orch” tuple (L.30), defined as:

“Invoke orch”:requester :inst id :<“operation”:op, ?parameters>

It extends the an invocation request with the signature of the CCS and the instance
ID (inst id). This invocation message is put into a “To send” tuple (L.29-31). In
our execution context, the following tuple is generated by applying this rule:

“To send”:“CWS-SeniorT”<
“Invoke orch”:“CCS-BestGarage”:“CCS-BestGarage001”:<

“operation”:“diagnose”,“car id”:id>,
>

Then, the rule send becomes active and passes the invocation message to the solution
of CWS-SeniorT.

3. In the following, the execution is continued in the solution of CWS-SeniorT. The
arrival of an invocation tuple will trigger a series of reactions in its solution. The

86

3.3. Centralized Coordination Model for the Execution of Service Compositions

rule invoke diagnose orch defined in Program 3.13 can get the invocation parame-
ters from the invocation tuple (L.03-04), and then interact with the WS-SeniorT
Web service by calling the invoke method defined by the connector (L.07). If the
invocation succeeds, the invoke method will return a result tuple that packages the
computational result, defined as:

“Result”:<?result >

Otherwise, in case that a runtime failure arises, the invoke method will return an
error tuple which contains the detail about the failure, noted as:

“Error”:<?error >

Later, the response (either positive or negative) will be packaged in a “Reply” tuple
(L.07) with the information of the corresponding instance ID as well as the signature
of CWS-SeniorT (used by CCS-BestGarage to know from whom this response comes
from). In our execution context, the following reply tuple can be generated:

“Reply”:“CCS-BestGarage001”:“CWS-SeniorT”:<
“Result”:<“Problem”:“EASY”, “Time”:120, “Cost”:50>

>

In this case, the evaluation result shows that the car can be directly repair by the
“Best Garage” since the problem is easy, the estimated reparation time and cost are
respectively 120 hours and 50 e. This tuple is encapsulated in a “To send” tuple so
that it can be returned to CCS-BestGarage in succession by the rule send.

4. Later, in the solution of CCS-BestGarage, the reply from a constituent chemical ser-
vice will activate the CR correlateResult. As defined in Program 3.11, the reply tuple
will be passed from the the solution of CCS to the sub-solution of the corresponding
SBA instance (L.11).

5. Then, the emergence of a reply tuple in an instance sub-solution will activate the
generic CR completeTask. As defined in Program 3.11, it sets the runtime state of the
corresponding task from “Invoking” to “Executed” (L.16) and then puts the com-
putational result to the “Data” sub-solution (L.17). Please note here, it requires the
reply really contains a result tuple rather than an error tuple (L.14). The processing
of an error reply will be addressed later in Section 3.3.3.1. In our execution context,
the state of t1 is marked as “Executed”, the diagnosed problem and estimated time
and cost are put into the “Data” sub-solution.

6. Once task t1 has been executed, one of the two CRs will be activated for selecting
a succeeding task to continue the execution. As defined in Program 3.11, select-
BranchCasePos and selectBranchCaseNeg express the XOR-split workflow pattern
after the execution of task t1. Firstly, if the the problem is evaluated as “EASY”
(L.26), the rule selectBranchCasePos forwards the execution to task t2 by changing
the state of t2 to “Executing” (L.25). On the other hand, the rule selectBranch-
CaseNeg is similarly defined, which marks the state of task t3 as “Executing” if the
problem is considered as “HARD” (L.27-34). For our future explication, we assume
the execution is finally forwarded to task t2.

87

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Program 3.13: Invocation Rules for Service Orchestration (Defined in CWS)

1 //The IR defined in CWS-SeniorT chemical Web service

2 let invoke_diagnose_orch =

3 replace connector ,"invoke_orch":requester:inst_id:<

4 "operation":"diagnose","car_id":id>

5 by connector ,

6 "to_send":requester:<

7 "Reply":inst_id:"CWS-SeniorT":<connector.invoke("diagnose",id)>

8 >

9

10 //The IR defined in CWS-RepManager chemical Web service

11 let invoke_repare_orch =

12 replace connector ,"invoke_orch":requester:inst_id:<

13 "operation":"repare","car_id":id>

14 by connector ,

15 "to_send":requester:<

16 "Reply":inst_id:"CWS-SeniorT":<connector.invoke("repare",id)>

17 >

18

19 //The IR defined in CWS-payByCard chemical Web service

20 let invoke_payByCard_orch =

21 replace connector ,"invoke_orch":requester:inst_id:<

22 "operation":"payByCard","card_num":num,"pw":pw>

23 by connector ,

24 "to_send":requester:<

25 "Reply":inst_id:"CWS-SeniorT":<connector.invoke("payByCard",num,pw)>

26 >

7. In the following, the IR invokeT2 defined in Program 3.12 becomes active. Similarly
to invokeT1, it prepares an invocation message to CWS-RepManager for executing
task t2. And then, it marks the runtime state of task t2 as “Invoking”.

8. The invocation message will be sent to the solution of CWS-RepManager, where the
rule invoke repair orch is activated to invoke the real Web service “WS-RepManager”
and to generate a reply tuple. Its definition is similar to invoke diagnose orch, as
provided in Program 3.13.

9. The reply tuple from CWS-RepManager is sent to the solution of CCS-BestGarage,
and then passed to the sub-solution of the corresponding instance. Then, the run-
time state of t2 is set to “Executed” by the CR completeTask. At this moment, the
coordination rule simpleMerge is activated which expresses the simple-merge work-
flow pattern before task t4. The definition of this rule will be introduced later in
Section 3.3.2 (refer to Program 3.19). By executing the rule simpleMerge, the state
of task t4 is set to “Executing”.

10. Similar to previous steps, the invocation rule invokeT4 is able to generate an in-
vocation message for executing task t4, which is sent to the solution of CWS-
payByCard. The rule invoke payByCard orch in Program 3.13 will interact with
the WS-payByCard Web service for paying the bill of cost. The result (successful
or not) is encapsulated in a reply tuple and finally returned to the sub-solution of
this running SBA instance. This result will finally change the state of task t4 from
“Invoking” to “Executed”.

88

3.3. Centralized Coordination Model for the Execution of Service Compositions

Figure 3.10: Workflow Pattern: Sequence

11. When the last task has been executed, the instance tuple is marked as “Completed”
by the CR completeExeOrch in the solution of CCS-BestGarage, as defined in Pro-
gram 3.11. Up to now, the execution of an SBA instance is completed. The SBA
provider can define another set of rule to return the final result to SBA requester.
As the limited space, we do not provide the details of these rules.

Discussion. From the above example, we can conclude that the service orchestration is
performed by a series of distributed chemical reactions in the middleware. On one side, the
solution of a CCS plays the role of the centralized orchestrator. Most of the coordination
rules are generic4 that aim to direct the order of service invocations by manipulating the
state of tasks. By contrast, all the invocation rules are specific5, since each invocation
rule has to deals with different invocation parameters thus it can hardly be generic. On
the other side, each constituent performs respectively a simple task. Once an invocation
tuple arrives to its solution, it invokes the connected Web service. Later, when the result
is received, it encapsulates and returns the result to the requesting CCS. All constituent
service have no knowledge about the internal logic of SBA and thus they do not participate
in coordination of services.

3.3.2 Reaction Rules to Express Complex Workflow Patterns

From the above example, we can see that the coordination rules only manipulate on the
state of tasks by deciding which task to be executed next. Once the state of a task is
changed to “Executing”, a corresponding invocation rule will be activated to prepare and
send invocation messages. However, we have only illustrated the expression of exclusive
branches in the above example. In this section, we are going to illustrate how to express
other complex workflow patterns using reaction rules.

Sequence. The sequence pattern refers to the sequential execution of two tasks. As
illustrated in Figure 3.10, tj is the only successor of ti, and ti is the only precedent of tj .
Therefore, task ti and tj are sequentially executed: the completion of executing task ti
will start the execution of task tj .

The CR sequence defined in Program 3.14 describes the implementation of sequence
workflow pattern in terms of chemical reactions. It requires two task tuples as the input
molecules, identified respectively as ti and tj . ti has already been executed whereas tj
remains unexecuted (L.02-03). If ti and tj are sequentially connected (verified in L.06),
the runtime state of tj is set to “Executing” (L.05), which will later activate the IR
invokeTj to invoke the corresponding service. By this means, the execution is sequentially
handed over from ti to tj . Please note that the rule sequence is a generic rule, that can
be used for all sequential execution of tasks in a workflow.

4Generic rules can be used for different workflows without any modification (e.g., startExeInstOrch).
So they can be provided directly by the middleware.

5Specific rules describes special policies/knowledges used for a certain SBA (e.g., invokeT1). Therefore,
they have to be defined directly by the SBA provider.

89

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Program 3.14: The Definition of the Reaction Rule sequence

1 let sequence =

2 replace "Task":ti:fi:"Executed":<"Out":"Seq":<nextTask>,w1>:bi,

3 "Task":tj:fj:"Concrete":<"In":"Seq":<prevTask >,?w2>:bj

4 by "Task":ti:fi:"Executed":<"Out":"Seq":<nextTask >,w1>:bi,

5 "Task":tj:fj:"Executing":<"In":"Seq":<prevTask>,w2>:bj

6 if tj.equals(nextTask) && ti.equals(prevTask)

Figure 3.11: Workflow Pattern: And-Split

AND-split. The AND-split pattern refers to the parallel execution of multiple tasks.
As illustrated in Figure 3.11, task ti has n outgoing branches and the kth branch starts
with the task tjk (1 ≤ k ≤ n). Under the control of the AND-split pattern, the completion
of task ti will start the execution of all its n successors in parallel.

The rule and-split defined in Program 3.15 describes the reactions that model the
control of parallel executions of tasks. Each reaction requires two task tuples as input
molecules. ti is an executed task which has a number of outgoing tasks to be executed
in parallel and nextTask is one of its successors (L.02). tj is an unexecuted task which
has only one precedent prevTask (L.03). If tj is one of successors of ti (L.06), its runtime
state will be changed to “Executing” (L.05). In this case, the execution is continued to tj .
Suppose ti has n successors, the rule and-split is required to be applied by n times so that
the state of all the successors can be changed to “Executing”. Similar to the rule sequence,
the rule and-split is also a generic rule that can be applied to all and-split patterns in a
workflow.

Exclusive-Choice. Exclusive choice is also known as XOR-split. As illustrated in Fig-
ure 3.12, after the completion of task ti, there are multiple choices to pass the flow. How-
ever, only one of its successors can be selected to continue the execution. The selection of
each successor is associated with a special condition predefined by the SBA provider.

Suppose that when the condition condj1 holds, the execution will passed to task tj1 af-
ter the execution of ti. As an example, the rule exclusive-choice-j1 defined in Program 3.16
describes the reaction that selects task tj1 to continue the execution. It requires two task
tuples, similar as before, tj is one of the successors of ti (L.06). If the condition condj1
is tested to be true, the runtime state of task tj will be marked as “Executing” (L.05).
Different from previous coordination rules, an exclusive choice pattern is expressed by a
set of rules. Each rule has to specify the condition under which a specific successor can
be executed. Obviously, these rules are not generic. In Section 3.3.1, a concrete example
of the exclusive-choice workflow pattern is provided by using the “Best Garage” scenario.

90

3.3. Centralized Coordination Model for the Execution of Service Compositions

Program 3.15: The Definition of Reaction Rule and-split

1 let and-split =

2 replace "Task":ti:fi:"Executed":<"Out":"AND-Split":<nextTask,w1>,w2>:bi,

3 "Task":tj:fj:"Concrete":<"In":"Seq":<prevTask >,?w3>:bj

4 by "Task":ti:fi:"Executed":<"Out":"AND-Split":<nextTask ,w1>,w2>:bi,

5 "Task":tj:fj:"Executing":<"In":"Seq":<prevTask>,w3>:bj

6 if tj.equals(nextTask) && ti.equals(prevTask)

Figure 3.12: Workflow Pattern: Exclusive-Choice

Figure 3.13: Workflow Pattern: Multiple-Choice

Multiple-Choice. Multiple-choice is similar to exclusive-choice, the difference lies in the
fact that the execution can be passed to one or multiple outgoing branches. As a concrete
example illustrated in Figure 3.13, after the completion of task ti, if the condition cond1
holds, the first k tasks (noted as tj1, ... , tjk) will be executed in succession.

The reaction rule multiple-choice-1 defined in Program 3.17 describes such process as
the following chemical reactions. It requires two task tuple ti and tj , and tj is one of the
successors of ti. If the condition Cond1 is tested to be true, and tj equals to one of the
following tasks, tj1, ..., tjk, then the runtime state of tj is set to “Executing”. Meanwhile,
similar rules can be defined to express the mechanisms to select other sets of successors
under different conditions. Similar to exclusive-choice, the rules for expressing multiple-
choice are neither generic. A specific set of rules are required for each multiple-choice
pattern in a workflow.

Synchronization. After discussing some important workflow patterns for the divergence
of multiple execution branches, we now present how to express the workflow patterns for
the convergence of branches. First of all, the synchronization pattern is used to synchro-
nize multiple execution branches. It is always used together with an AND-split workflow

91

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Program 3.16: The Definition of Reaction Rule exclusive-choice

1 let exclusive -choice-j1 =

2 replace "Task":ti:fi:"Executed":<"Out":"Exclusive -Choice":<nextTask ,?w1>,

?w2>:bi,

3 "Task":tj:fj:"Concrete":<"In":"Seq":<prevTask >,?w3>:bj

4 by "Task":ti:fi:"Executed":<"Out":"Exclusive -Choice":<nextTask ,w1>, w2>:

bi,

5 "Task":tj:fj:"Executing":<"In":"Seq":<prevTask>,w3>:bj

6 if tj.equals(nextTask) && ti.equals(prevTask) && Condj1

Program 3.17: The Definition of Reaction Rule multiple-choice

1 let multiple-choice -1 =

2 replace "Task":ti:fi:"Executed":<

3 "Out":"Multiple-Choice":<nextTask ,?w1>, ?w2>:bi,

4 "Task":tj:fj:"Concrete":<"In":"Seq":<prevTask >,?w3>:bj

5 by "Task":ti:fi:"Executed":<"Out":"AND-Split":<nextTask ,w1>, w2>:bi,

6 "Task":tj:fj:"Executing":<"In":"Seq":<prevTask>,w3>:bj

7 if tj.equals(nextTask) && ti.equals(prevTask) && Cond1 && (tj.equals("tj1

")||..||tj.equals("tjk"))

Figure 3.14: Workflow Pattern: Synchronization

pattern. As depicted in Figure 3.14, the execution of task tj can starts only when all of
its precedents have completed the execution.

The synchronization is realized by the cooperation of a pair of reaction rules, as defined
in Program 3.18. First of all, the rule synchronization requires two task tuples ti and tj ,
and ti is one of the precedents of tj . Once ti is executed, its name is removed from the “In”
sub-solution of task tj . When all the precedents of tj have completed, the “In” sub-solution
becomes empty. At this moment, the second rule synchronization-done is automatically
activated (as indicated in L.08, it requires an empty “In” sub-solution), which changes the
runtime state of tj to “Executing”. The synchronization rules are generic, which can be
applied to all synchronization patterns in a workflow.

Simple-Merge. It is also known as XOR-join. In contrast to synchronization, the
simple-merge pattern provides a means of merging two or more distinct branches without
synchronizing them. As illustrated in Figure 3.15, task tj has a number of precedents.
The execution of tj can start if any precedent task has completed the execution. It is
frequently used in conjunction with the exclusive-choice pattern.

The rule simple-merge defined in Program 3.19 describes such process. For any two

92

3.3. Centralized Coordination Model for the Execution of Service Compositions

Program 3.18: The Definition of Reaction Rule synchronization

1 let synchronization =

2 replace "Task":ti:fi:"Executed":<Out":"Seq":nextTask ,?w1>:bi,

3 "Task":tj:fj:"Concrete":< "In":"Sync":<prevTask ,?w2>,?w3>:bj

4 by "Task":ti:fi:"Executed":<"Out":"Seq":nextTask ,w1>:bi,

5 "Task":tj:fj:"Concrete":<"In":"Sync":<w2>,w3>:bj

6 if tj.equals(nextTask) && ti.equals(prevTask)

7 let synchronization -done =

8 replace "Task":tj:fj:"Concrete":<"In":"Sync":<>,?w3>:bj

9 by "Task":tj:fj:"Executing":<"In":"Sync":<>,w3>:bj

Figure 3.15: Workflow Pattern: Simple Merge

task ti and tj , ti is one of the precedents of tj . If ti is executed (L.02) and tj (L.04) is still
unexecuted, the runtime state of tj is set to “Executing”. After the first completion of a
precedent, the runtime state of tj has already changed to “Executing”. The completion
of other precedents later will not trigger this rule because it requires the convergency task
with a state of “Concrete”. Therefore, for each simple merge pattern, this rule can be
applied only once. The simple-merge rule is also a generic rule.

Discussion. From the above presentation, we can conclude that the coordination of
service can be flexibly expressed using chemical rules in the middleware. First of all,
each complex workflow pattern can be easily expressed by simple and few reaction rules.
Furthermore, since each split pattern and join pattern are expressed separately, they can be
flexibly combined (e.g. AND-split combined with simp-merge). Finally, without structured
blocks to express the execution order of services, our approach is also able to express
unstructured workflow (arbitrary workflow structures).

3.3.3 Runtime Adaptation of SBA

The execution of SBA involves multiple Web services from different organizations that are
executed on distributed computing resources. In such a distributed and loosely coupled
execution environment, the execution of an SBA instance may fail, or fail to meet the
required quality level. For example, a constituent service may take longer time to respond
due to network congestion; moreover, infrastructure failures can cause a service completely
responseless. In response to this evolving execution environment, runtime self-adaptation
is crucial for service management systems. The adaptive execution reflects the capability
to recompose a (part of) workflow on the fly while unexpected failures arise.

In this section, we present runtime adaptation for the service orchestration model. In
the middleware, the adaptation can be performed either on the binding level or on the

93

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Program 3.19: The Definition of Reaction Rule simple-merge

1 let simple-merge =

2 replace "Task":ti:fi:"Executed":<

3 "Out":"Seq":<nextTask >,?w1>:bi,

4 "Task":tj:fj:"Concrete":<

5 "In":"Simple-Merge":<prevTask ,?w2>,?w3>:bj

6 by "Task":ti:fi:"Executed":<"Out":"Seq":<nextTask >:bi,

7 "Task":tj:fj:"Executing":<"In":"Simple-Merge":<prevTask,w2>,w3>:bj

8 if tj.equals(nextTask) && ti.equals(prevTask)

workflow level. Section 3.3.3.1 discusses how recover from functional failures by changing
binding references. Then, Section 3.3.3.2 presents the adaptation of SBA by modifying
the workflow structure in response to non-functional failures.

3.3.3.1 Binding Level Adaption of SBA

Failures are unavoidable during the invocations to constituent services due to the dis-
tributed and loosely coupled environment. On one side, all constituent Web services are
managed externally by different organizations. The SBA provider lacks the control over
the implementations and infrastructures of these third-party Web services. On the other
side, using the Internet as the communication medium increases the unreliability. For
example, due to the network congestion, an invocation message may be lost so that the
corresponding third-party Web service becomes responseless. In this case, the adaptation
can be performed on the binding level: the failed task will be re-executed by rebinding to
another functional-equivalent chemical service.

The binding-level adaptation for service orchestration is illustrated in Figure 3.16.
During the execution of a service orchestration, when an invocation to a Web service
WSi is failed, the corresponding chemical Web service CWSi will get a reply message
containing an error tuple which provides the detailed information about the failure (e.g.
invalid WSDL address or connection time-out). This error message will be packaged into
a reply tuple and then sent to the CCS. The reception of such an error reply will activate
a number of adaptation rules (ARs) defined in the solution of CCS to execute the relative
countermeasures. By selecting another chemical service (noted as CWS′i) that can provide
the same functionality and then updating the binding reference of the failed task, a new
invocation message is generated for CWS′i to re-execute the failed task. In the following, we
will use the “Best Garage” as a proof-of-concept example to illustrate the implementation
of the binding-level adaptation in terms of chemical reactions.

Adaptation scenario 1. The invocation to the WS-payByCard Web service may fail.
The cause can be manifolds, for example, a temporary network problem may lead to
WS-payByCard inaccessible. In this case, the task t4 will be automatically rebound to
CWS − payByCardPro, which provides the same functionality as CWS-payByCard but
promises the 100% availability at the cost of 0.1 euro per invocation.

In this scenario, once the payment using credit card is failed, CWS-payByCard chemical
service will reply to CCS-BestGarage with an error message. Then, this error reply will
be passed into the sub-solution of the corresponding SBA instance by CR correlateResult
(as defined in Program 3.11). In the following, the presence of an error reply in the sub-
solution of an SBA instance will trigger a series of chemical reactions in the middleware

94

3.3. Centralized Coordination Model for the Execution of Service Compositions

Figure 3.16: Service Orchestration Model: Binding-Level Adaptation

Program 3.20: Adaptation Rule for Binding-Level Adaptation (ARs)

1 let detectFailedTask =

2 replace "Reply":cws:<"error":<?w1>>,

3 "Task":ti:fi:"Invoking":<?w2>:binding

4 by "Task":t_i:f_i:"Failed"<w2>:binding,

5 if cws.equals(binding)

6 let adaptPayByCardFailure =

7 replace "Task":"t4":"billing":"Failed":<?l>:"CWS-payByCard",

8 by "Task":"t4":"billing":"Executing":<?l>:"CWS-payByCardPro"

to execute the corresponding binding-level adaptations that aim to resume the execution.

1. First, the emergence of such an error reply will activate the AR detectFailedTask in
the sub-solution of this instance . As defined in Figure 3.20, it can detect a reply
tuple with error information and then marks the runtime state of the corresponding
task as “Failed”. In the context of the adaptation scenario 1, the state of task t4 is
set to “Failed”.

2. The change of the state of task t4 will activate the AR adaptPayByCardFailure. As
defined in Figure 3.20, it rebinds task t4 to a new chemical service CWS-PayByCardPro
and changes the state of t4 back to “Executing”. By this means, the state of the
whole SBA instance rolls back to the moment before CWS-payByCard was previ-
ously invoked last time. The difference is that a different constituent chemical service
is bound and invoked this time.

3. In the following, the IR invokeT4 defined in Program 3.12 becomes active again
to prepare an invocation request to re-execute task t4. As we have introduced in
Section 3.3.1, a new invocation request for invoking CWS-PayByCardPro activates
the IR prepareInvocationMsg again to generate a “To send” tuple with the concrete
invocation message. By this means, the invocation message will be passed to the
solution of CWS-PayByCardPro so that the execution of this SBA instance can
complete with success.

95

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Figure 3.17: Scenario: Workflow-Level Adaptation of SBA

3.3.3.2 Workflow Level Adaptation of SBA

Sometimes, the SBA is required to be adapted on the workflow-level in order to achieve
the ultimate business goal. The workflow-level adaptation refers to the modification of
the workflow structure for a running SBA instance, namely to add or to remove tasks on
the fly. Such workflow-level adaptation is similar to the workflow transformation process
introduced in Section 3.2.2. We use the following scenario to present how adaptation can
be performed on the workflow level.

Adaptation scenario 2. Since the problem of a car may be much more complicated
than formerly estimated, the reparation may take longer time than expected. Remember
that after the execution of task t1, the expected time duration for the reparation (qt) has
been estimated by a technician, which can be seen as a part of the SLA between the client
and the “Best Garage”. In order to avoid the reputation degradation, the “Best Garage”
expects to rent a car for its client until the reparation completes.

In order to implement this adaptation scenario, a new task ta has to be added in
parallel with the delayed task (either t2 or t3 depends on the execution context). Task ta
invokes CWS-fastRentCar chemical service which provides car rental service. We assume
that the delay is caused by the execution of task t2. As a result, the adaptation workflow
fragment will be connected in parallel with task t2, as depicted in Figure 3.17. First of
all, since t2 and ta are executed in parallel, an AND-split and a synchronization workflow
patterns are used to connect both tasks. Then, in our workflow model, two complex
workflow patterns cannot be directly connected. As a result, two virtual tasks t1v and t2v
are required to be added in order to perform the coordination task. Both virtual tasks
connect the adaptation fragment to the original workflow. Finally, task t2 updates its
neighbor information by disconnecting the links to both task t1 and t4. In this case, both
edge t3 and e4 in Figure 3.17 will be removed.

In the context of service orchestration, the CCS implements the centralized control
on the execution of workflow. The sub-solution of each running SBA instance includes a
number of monitor rules which monitor the progress of each running SBA instance. If a
delay is produced during the reparation process, the runtime state of the relative executing
task is changed from “Invoking” to “Delayed”. Due to the limited space, the definitions
of monitor rules are not provided here. Using the scenario presented in Figure 3.17 as
an example, we assume that the state of task t2 is marked as delayed. The change of its
runtime state will lead to a series of chemical reactions that perform the above-introduced
workflow transformation process, controlled by a number of adaptation rules (ARs) defined

96

3.3. Centralized Coordination Model for the Execution of Service Compositions

Program 3.21: Adaptation Rules for Workflow-Level Adaptation

1 let adaptWorkflowDelay =

2 replace "Task":t_i:f_i:"Delayed":<?w>:cws

3 by "Task":"t_v1":Null:"Executed":<"Out":"AND-Split":<t_i, "t_a">>:Null,

4 "Task":"t_v2":Null:"Concrete":<"In":"Sync":<t_i, "t_a">>:Null,

5 "Task":t_i:f_i:"Invoking":<"In":"Seq":<"tv1">,"Out":"Seq":<"t_v2">>:cws,

6 "Task":"t_a":"carRenting":"Executing":<

7 "In":"Seq":<"tv1">,"Out":"Seq":<"t_v2">>:"CWS-fastRentCar"

8 connectAdaptFragToT1 , connectAdaptFragToT4 , invokeTa

9 if t_i.equals("t2") || t_i.equals("t3")

10 let connectAdaptFragToT1 =

11 replace-one "Task":"t_v1":Null:"Executed":<"Out":wfp:<t_d,"t_a">>:Null,

12 "Task":"t1":f_1:"Executed":<"Out":"XOR-Split":<t_out,?p>,?l>:cws

13 by "Task":"t1":f_1:"Executed":<"Out":"XOR-Split":<"t_v1",p>,l>:cws

14 "Task":"t_v1":Null:"Executed":<"In":"Seq":<"t1">,"Out":wfp:<t_d,"t_a">>:

Null

15 if t_d.equals(t_out)

16 let connectAdaptFragToT4 =

17 replace-one "Task":"t_v2":Null:stat1:<"In":wfp:<t_d,"t_a">>:Null,

18 "Task":"t4":f_4:stat2:<"In":wfp:<t_in,?p>,?l>:cws

19 by "Task":"t4":f_4:stat2:<"In":wfp:<"t_v1",p>,l>:cws

20 "Task":"t_v2":Null:stat1:<"Out":"Seq":<"t4">,"In":wfp:<t_d,"t_a">>:Null

21 if t_d.equals(t_in)

in Program 3.21.

1. Firstly, the AR adaptaWorkflowDelay is able to detect a delay during the reparation
and it resets the state of the delayed task back to (task t2 in the above-mentioned
scenario) “Invoking” . Moreover, it creates a number of new tasks that define the
adaptation fragment. 1) task tv1: it defines the virtual task t1v with a runtime state
“Executed” (L.03). It has two successors executed in parallel: the delayed task ti
and the new task ta. 2) task tv2: it defines the virtual task t2v which is not executed
yet (L.04). It synchronizes the inputs from both the delayed task ti and the new
task ta and it has only one successor t4. 3) task ta: it is bound to CWS-fastRentCar,
which provides the car rental service (L.06-07). It has only one precedent tv1 and
one successor tv2. The runtime state of ta is set to “Executing”, which will activate
the IR invokeTa in succession to start the execution of this task.

2. Meanwhile, four rules have been added. 1) connectAdaptFragToT1 : it connects the
adaptation fragment to the task t1. The connection is performed by modifying the
neighborhood information of the related tasks. As defined in Program 3.21, it reads
the successors of task tv1 (L.11), one of the successor is fixed (ta) and the other (td)
represents the delayed task. And then, it removes the edge between t1 and td, and
builds a new edge between t1 and tv1. 2) The rule connectAdaptFragToT1 is similarly
defined to connect the adaptation fragment to task t4. 3) invokeTa: as defined in
Program 3.22, it prepares and sends an invocation message to CWS-fastRentCar in
order to execute task ta. 4) invokeVirtualTask : as we will explained later, it dictates
the execution of a virtual task.

3. After the execution of the rule adaptaWorkflowDelay, all four new rules become
active. Thus, a series of chemical reactions will take place concurrently, as described
above. After these reactions, the instance solution becomes inert, and both task t2

97

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Program 3.22: New Invocation Rule for Executing the Adaptation Fragment

1 let invokeTa =

2 replace "Task":"t_a":"carRenting":"Executing":<?w>:cws

3 by "Task":"t_a":"carRenting":"Invoking":<w>:cws,

4 "Invoking":"CCS-BestGarage":<"operation":"rent">

5 let invokeVirtualTask =

6 replace "Task":t_v:Null:"Executing":<?w>:Null

7 by "Task":t_v:Null:"Executed":<w>:Null

and ta are being executed in parallel. Then, after the reparation, the requester is
notified to come to get its repaired car. The completion of the execution of both t2
and ta active the CRs presented in Figure 3.18 to execute synchronization workflow
pattern. In the context of this new workflow, the execution of workflow arrives to
the virtual task tv2. As a normal task, its state is changed to “Executing”.

4. The execution of a virtual task is performed by the rule invokeVirtualTask defined
in Program 3.22. As we have introduced, the virtual task has no real functional
requirement, it is only a place holder. Thus, once its state is marked as “Executing”,
the rule invokeVirtualTask will reset its state as “Executed”. In the following, the
CR sequence presented in Program 3.14 will be activated to start the execution of
task t4. The rest of the execution is similar to the process that we have presented in
Section 3.3.1.

3.4 Decentralized Models for Adaptive Execution of SBA

As we have analyzed in Section 1.3, the orchestration model presents some performance
limitations in scalability, throughput and execution time due to the centralized point of
coordination. In this section, we are going to introduce two decentralized models for
executing service compositions in the middleware: namely semi-choreography and auto-
choreography. The former relies on the distribution of workflow fragments and coordination
rules to realize decentralized service coordination; whereas the latter regards the service
composition as an autonomic cell, which can be cloned, fused, and passed among the
solutions of all the constituent services for the execution.

3.4.1 Semi-Choreography Model

The semi-choreography model separates the control of coordination from the control of
adaptation. Each constituent service is able to coordinate the interaction messages with
other participants, but it cannot react to runtime failures. All the failures have to be
processed by a centralized adaptation engine, namely the solution of CCS6.

3.4.1.1 Execution of Workflow: Decentralized Coordination of Services

In the context of service choreography, each constituent service can directly interact with
other participants (constituent services) without a centralized point of control (e.g. a

6That is why the word “semi” is used to define this model: from the perspective of service coordination,
it implements the service choreography model; however, from the perspective of adaptation, it is still
similar to the orchestration model.

98

3.4. Decentralized Models for Adaptive Execution of SBA

(a) Distribution of Coordination Information

(b) Network of Services

Figure 3.18: Semi-Choreography Model: Configuration of Network of Services

business process). Accordingly, service coordination is performed by all the participants
in a collaborative way: each constituent service can be seen as an intelligent agent that is
able to decide what to do according to the message exchanges with other participants. The
semi-choreography model describes such decentralized service collaboration as a network of
services7, where all the constituent services can be seen as virtually connected as a network
according to the global execution plan (data flow and control flow). A network of services
models a service composition as a pipeline transport network system: the execution of
a service composition is modeled as the transportation of goods (e.g. gases or liquids)
through a (number of) pipe(s), from the source (task) to the destination (task).

Since all constituent services are developed and managed independently by different
organizations, the key to implement decentralized coordination lies in establishing the
network of services. In this context, the execution of a service composition is performed
by two steps. First, the configuration step is to set up the network of services by means of
distributing coordination information. Then in the execution step, a service composition
is executed by a series of direct interactions between constituent services that follow the
pre-configured network of services.

7Although the term network of service is used in other papers with different meaning, in this dissertation,
a network of services refers to a virtually configured service choreography.

99

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Figure 3.19: Semi-Choreography Model: Decentralized Execution of Workflow

Configuration: distribution of coordination information. In order to construct
a network of services, each constituent service requires the coordination information in
order to know: 1) the data flow information. For example, who are its neighbors, in
other words, from whom it is expected to get the input(s) and to whom it is expected to
forward to results; 2) the control flow information. For example, how to coordinate the
incoming/outgoing messages with its neighbors, often expressed by the complex workflow
patterns. As introduced, the concrete workflow describes both the data and control flow
from a global viewpoint. Accordingly, in order to configure a service choreography, the
CCS has to distribute (part of) concrete workflow description to all constituent services.

In this context, a number of rules are defined by the CCS to partition the concrete
workflow into several pieces of workflow fragments. Each fragment represents a part of
global data flow and control flow from the local perspective of a specific participant. A
workflow fragment is defined by a “WF Fragment” tuple, described as follows:

“WF Fragment”:signature ccs:inst id :<task tuple(s), coordination rules>

It is composed of four parts: 1) a constant string (“WF Fragment”) as the declaration of
a tuple for a workflow fragment. 2) The signature of CCS (signature ccs). This is used by
each constituent service to report a runtime failure, as introduced later on. 3) The instance
identification information (inst id). It is used for differentiating the workflow fragments
from different instances of the same CCS. 4) a sub-solution which includes a (set of) task
tuple(s) that present(s) a partial view on the global data flow and a number of reaction
rules that describe the control flow.

In the following, CCS has to distribute these workflow fragments to all the constituent
chemical services, as shown in Figure 3.18(a). After the distribution of workflow frag-
ments, each constituent chemical service knows its neighbors and how to coordinate the
interaction(s) with them. Accordingly, all the constituent chemical services can be seen as
virtually inter-connected, and the network of services is constructed (described in Figure
3.18(b)). In Appendix A.1, we use the “Best Garage” as a proof-of-concept example to
present the implementation of the semi-choreography model in the middleware.

Decentralized Execution Of Service Compositions. Having the network of services
preconfigured, the execution of a service composition can start by sending an invocation

100

3.4. Decentralized Models for Adaptive Execution of SBA

Figure 3.20: Semi-Choreography Model: Binding-Level Adaptation

message to the first CWS of the network of services, such as CWS1 in Figure 3.19. An
invocation message is defined by an “Invoke chore” tuple, which is similar to an invocation
message of the orchestration model, noted as:

“Invoke chore”:from:inst id :<?parameters >

An invocation message includes the information about the signature of the requester
(from), the instance identification (inst id), and a sub-solution of the invocation parame-
ters. Once such an invocation tuple arrives to the solution of a constituent service, it will
be moved to the sub-solution of the workflow fragment with the same instance identifi-
cation. Then, the coordination rules defined in the workflow fragment are able to decide
whether to start the invocation to the connected Web service or to wait for other invoca-
tion messages (e.g. for a synchronization task). Later, after the invocation to the concrete
Web service, the computational result is written into the sub-solution of the corresponding
workflow fragment. In the following, the coordination rules will generate and send a (num-
ber of) new invocation message(s) to (all the) succeeding CWS(es). In this context, the
interactions are performed directly among all chemical services without the intervention
of CCS, as illustrated in Figure 3.19. After the execution, the final result will be finally
returned to the solution of the CCS. In Appendix A.2, we use the “Best Garage” example
to demonstrate the implementation of such decentralized coordination of services.

3.4.1.2 Centralized Adaptation of Services

In the context of service semi-choreography, CCS distributes local coordination information
(workflow fragment) to all the constituent services. Hence, the coordination of services
can be performed in a collaborative way. However, the CCS does not tell constituent
CWSes how to react to failures. This is because the execution of an adaptation plan
sometime requires a global view on the service composition (e.g. to modify the workflow
structure). Therefore, an adaptation plan cannot be successfully executed by a CWS if
it has incomplete information. In this context, the adaptation of semi-choreography is
performed in a centralized way. CCS acts as the centralized adaptation engine. Once a
failure arises, it has to be reported to the CCS. By defining a number of adaptation rules,
the CCS will then tell the corresponding CWS(es) how to copy with such failures.

In the following, we are going to illustrate the binding-level adaptation for the semi-
choreography model. As depicted in Figure 3.20, once a failure arises during the invocation
to Web service WSi, the corresponding chemical Web service CWSi will generate and send

101

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

an error reply to the CCS. Such an error response is described by an “Error Invoke” tuple
that encapsulates the entire workflow fragment for CWSi, defined as follows:

“Error Invoke”:ccs:inst id:<?wf fragment >

The arrival of an error tuple in the solution of the CCS will activate the corresponding
adaptation rules (ARs) which lead to a series of reactions to recover from a binding-level
failure. Compared to the orchestration model, the adaptation of semi-choreography model
exhibits a higher degree of complexity . Firstly, the CCS will update the molecular rep-
resentation of workflow by replacing CWSi by an alternative constituent service CWS′i.
Then, a new workflow fragment is generated and sent to CWS′i with the expected invo-
cation parameters. Meanwhile, the substitution of a constituent service can lead to the
inconsistency problem for a network of services. As an example,CWSj may be still wait-
ing the input from CWSi, although CWSi is not involved in the service choreography
anymore. Therefore, the CCS also has to send an updated workflow fragment for each
of the succeeding services of CWSi (e.g., CWSj in Figure 3.20). In the following, each
succeeding service will update its local copy of workflow fragment. By this means, the
network of services is reconfigured.

On the other side, the arrival of a new workflow fragment to the solution of CWS′i will
lead to the execution of the failed task by invoking the Web service WS′i, as illustrated
in Figure 3.20. After the invocation, the coordination rules defined in the sub-solution of
the workflow fragment will generate a new invocation message for CWSj . By this means,
the execution of workflow has successfully arrived to CWSj , the rest of execution will be
performed as formerly expected.

The workflow-level adaptation is performed in the similar way. The modification of
workflow structure can also lead to the changes in the pre-configured network of services.
Therefore, the CCS has to distribute an updated/new/cancelation workflow fragment for
each constituent CWS that is involved in this modification. For example, due to the
modification of the workflow, some unexecuted task(s) may be removed form the workflow.
In this case, a cancelation message has to be sent to each corresponding CWS(es) since
they will never be invoked any more. Since the implementation of adaptation for the semi-
choreography model is complicated, with so many complex reaction rules defined, we do
not provide the details of those rules in this dissertation for the reason of simplicity. The
source code can be found at: https://scm.gforge.inria.fr/svn/myriads/software/
chen/2013/middleware/.

3.4.2 Auto-Choreography Model

The semi-choreography model presents a high degree of complexity at both design time
and runtime. On one side, its implementation requires a larger number of reaction rules
which describe a series of more complex reactions than the orchestration model. On
the other side, it is costly in establishing network of services as well as in adapting to
runtime failures, since a great number of coordination messages have to be generated and
distributed over the network. In this section, we are going to introduce auto-choreography
model, which exhibits a lower complexity as well as a higher autonomicity and efficiency.

3.4.2.1 Decentralized Coordination of Services

Metaphor: composition cell. From the perspective of auto-choreography, a service
composition is modeled as an autonomic composition cell, which encapsulates a set of

102

https://scm.gforge.inria.fr/svn/myriads/software/chen/2013/middleware/
https://scm.gforge.inria.fr/svn/myriads/software/chen/2013/middleware/

3.4. Decentralized Models for Adaptive Execution of SBA

Figure 3.21: Auto-Choreography Model: Execution of Workflow

molecules to express a self-managed and self-adaptable service composition. In this con-
text, a service composition is executed by the moving the corresponding composition cell
among all constituent chemical services. Receiving a composition cell, a constituent service
can read both data and coordination information from it, then do the related job, write
new information (result) and finally forward it to the succeeding service(s). When the
execution completes, the whole cell, including the final results, will be returned to CCS.

As a result, auto-choreography can be seen as a “moving” service orchestration. All the
constituent services can act as the coordinator in turn. When a composition cell arrives
to a CWS, all the reaction rules (CRs, IRs and ARs) are available by reading the contents
from the composition cell. Thus each constituent service has the knowledge about the
entire data flow (expressed by molecular workflow representation), control flow (expressed
by CRs) as well as a collection of predefined adaptation plans (expressed by ARs). In this
case, service coordination and adaptation (if necessary) can be thus performed locally in
its solution.

As an example, Figure 3.21 illustrates the execution of a service composition by the
auto-choreography model. Firstly, the CCS starts the execution by sending the composi-
tion cell to the first chemical service CWS1. Then, the execution continues in the solution
of CWS1. The IRs in the composition cell can be activated to prepare the invocation
parameters for executing the first task. CWS1 is able to read these parameters from
the composition cell and then invoke the corresponding concrete Web service. After the
invocation, the result will be written back to the composition cell. In the following, the
CRs in the composition cell can be activated to decide which task(s) to execute next. By
reading such information8 from the composition cell, CWS1 will forward the composition
cell to the succeeding participant, i.e., CWS2. Then, the execution of the composition cell
is carried out in the similar way in the solution of CWS2 and CWS3. Finally, the entire
composition cell, including the final results, will be returned to CCS. In Appendix B.1, we
will demonstrate the implementation of the auto-choreography model by using the “Best
Garage” example.

3.4.2.2 Decentralized Adaptation of Services

The composition cell also includes a number of adaptation rules (ARs). Therefore, it is
capable of reacting to runtime failures without requesting CCS. Once a failure happens,

8Actually, the information refers to the output molecules of a series of chemical reactions directed by a
number of coordination rules in the composition cell.

103

Chapter 3. Chemistry-Inspired Middleware for Flexible Execution of SBA

Figure 3.22: Auto-Choreography Model: Binding-Level Adaptation

the adaptation plan can be executed locally in the solution of a constituent service. The
execution of adaptation plan is controlled by the same collection of rules as the orchestra-
tion model. In the following, we use the adaptation scenario 1 (binding-level adaptation)
presented in Section 3.3.3.1 as a proof of concept to illustrate how decentralized service
adaptation is performed for auto-choreography model.

Figure 3.22 depicts the binding-level adaptation for auto-choreography. Once a Web
serviceWSi is failed, the corresponding chemical Web service CWSi will receive an “Error”
reply tuple which indicate the detail of failure (this is similar to the orchestration model).
Such an error reply will inject into the corresponding composition cell and immediately
a series of adaptation rules will be activated to change the binding information. Once
the adaptation is performed, CWSi is able to read the information about the new service
composition from the composition cell and then it will pass the entire cell to the new
chemical service, noted by CWS′i, which is expected to re-execute this failed task. CWSi’
connects to the Web service WS′i which is able to provide the same functionality as WSi.
After the invocation, CWS′i will forward the entire composition cell to the succeeding
chemical service, for example, CWSj . In this scenario, the adaptation is performed in
a decentralized and autonomous way: each running CWS acts as the coordinator, the
recovery can be performed locally and the execution is resumed autonomously.

The workflow-level adaptation can be performed in the same way. A number of ARs
can be activated as runtime (the condition of activation depends on the specific adaptation
plan) and then modify the workflow structure in the local solution of a constituent service.
In the following, the execution of a composition cell (movement of the composition cell)
will follow the new workflow. In Appendix B.2, we use the “Best Garage” as an illustrative
example to present the implementation of both binding-level and workflow-level adaptation
for the auto-choreography model.

104

Chapter 4

Evaluation: Implementation and
Experimental Results

Abstract. In this chapter, the performance of the chemistry-inspired middleware is eval-
uated. The evaluation aims to compare the performance of the three coordination models
presented in the previous chapter so as to find out the advantages as well as the limita-
tions of each model under different execution contexts. Therefore, the evaluation results
presented in this chapter is the basis for our future work in building context-aware service
middleware, where an SBA instance can be executed by selecting the most suitable coor-
dination model according to its runtime execution context. Section 4.1 first analyzes the
performance of different coordination models in executing the experimental workflows by
using a variety of performance metrics. Then, the distributed implementation of the mid-
dleware is presented in Section 4.2. Finally, in Section 4.3, a number of experiments are
conducted by executing both experimental workflows using different coordination models
in the middleware. The experimental results prove our analysis in Section 4.1.

105

Chapter 4. Evaluation: Implementation and Experimental Results

4.1 Performance Analysis of Different Execution Models

The discussion in this chapter is based on two different types of experimental workflows
depicted in Figure 4.1.

• LONG SEQ workflow presents the execution of a long sequence of tasks. The exe-
cution starts from task t1 and terminates with task t20. All the tasks are executed
in sequential order.

• WIDE PAR workflow presents the parallel executions of a large number of tasks.
After task t0, the execution is diverged into 10 parallel branches, and each branch
includes 2 tasks. When the executions in all branches have been completed, task t21
will finally be executed.

(a) LONG SEQ (b) WIDE PAR

Figure 4.1: Experimental Workflows

In the following, we are going to analyze the performances of different coordination
models by means of various performance metrics. The analysis result is summarized in
Table 4.1 at the end of this section.

4.1.1 Complexity

Our discussion starts with the complexity of different models, from both design-time and
runtime perspectives.

Design-Time Complexity

Generally speaking, the chemistry-inspired middleware presents a low complexity at design
time. A chemical Web service (CWS) can be created automatically by using CWSCreator.
It is a command-line tool provided by the middleware that is able to create a chemical
Web service by requiring two parameters: 1) the expected name of the CWS and 2) the
URL (if the WSDL file is available via Internet) or the path (if the WSDL file is accessible
from the local disk of the computer) of the WSDL file that describes a real-world Web
service. By parsing the WSDL file, an HOCL program can automatically be generated
which defines a chemical solution with all the expected molecules (e.g. connector, etc.)

106

4.1. Performance Analysis of Different Execution Models

and rules (e.g. IRs, etc). Hence, if a Web service is already implemented outside the
middleware (with an available WSDL), the related chemical image can be easily created
in the middleware without any prerequisites on chemical computing.

The development of a CCS is more complex. Currently, an SBA provider is required
to manually write an HOCL program that defines the chemical solution of CCS with all
expected molecules and reaction rules. However, as we have demonstrated that most of
BPEL constructs can be expressed by using generic reactions rules, one of our ongoing work
is to develop a tool, named CCSCreator, that is able to generate the HOCL program for
CCS by parsing a BPEL business process: the molecular representation of workflow and all
the coordination rules for the service orchestration (since a BPEL process defines a service
orchestration) can be automatically created. Nevertheless, since each SBA provider has
different adaptation plans, (s)he has to define the adaptation rules by hand. In the future,
we aim to develop some graphic tools to facilitate SBA providers to specify adaptation
plans (specifying the change of bindings, etc.). By using these tools, the complexity in the
development of a service orchestration can be greatly reduced.

From the previous chapters, we can see that most of coordination rules, invocation
rules and adaptation rules for the orchestration model can be directly re-used by the
auto-choreography model. Only few rules require some minor modifications. Therefore,
once the reaction rules for orchestration model have been defined, the development of
auto-choreography brings little additional design-time complexity. By contrast, compared
to auto-choreography model, semi-choreography requires to re-write a respectively larger
amount of reaction rules, which lead to a higher complexity at design time.

Runtime Complexity

Having analyzed the design-time complexity, we are going to discuss the runtime complex-
ity of different models.

Coordination complexity. The execution of a service orchestration is simpler com-
pared to both choreography models, since each constituent service only needs to interact
with the centralized coordinator: it receives an invocation request, performs the compu-
tation and returns the computational results. A CWS does not need to know any details
about the service composition (such as the coordination information). Compared to orches-
tration model, auto-choreography presents a higher coordination complexity. To execute
a service composition, each constituent service has to interpret the composition cell in
order to decide what to do. Additionally, to execute parallel branches, the cell cloning
and cell fusion processes can bring additional runtime complexity. Semi-choreography is
considered as the most complex one since it requires the partitioning of workflow and the
distribution of workflow fragment in order to pre-configure the collaboration of services
before the execution can actually start. During the execution, when an invocation message
arrives, a CWS also has to interpret the corresponding workflow fragment in order to know
what to do.

Adaptation complexity. Runtime adaptation of a service orchestration is simple due
to the centralized adaptation engine. Once a failure arises, a CWS only needs to report the
failure to CCS, and CCS is able to react to these failures by generating a new invocation
message to another alternative chemical service. By contrast, semi-choreography presents
the highest complexity in service adaptation. Similar to orchestration model, it also relies
on a centralized adaptation engine. However, each modification of the service composition

107

Chapter 4. Evaluation: Implementation and Experimental Results

(on either binding or workflow level) will result in the generation and the distribution
of a number of updated workflow fragments. All related CWSes have to update their
local copy of workflow fragment in order to guarantee the consistency of the network of
services. Finally, compared to the centralized adaptation engine, auto-choreography has
a medium complexity. On one side, since the adaptation can be executed locally by each
constituent service, the complexity of adaptation is reduced. On the other side, if some
global modifications (e.g. workflow-level adaptation) are required, the cell cloning and cell
fusion introduce additional complexities.

4.1.2 Cost

The cost in executing a service composition is evaluated by 1) the number of messages
interchanged between the CCS and CWSes; 2) the network traffic raised by passing these
messages. In the following, we use both experimental workflows to investigate the cost of
service coordination and adaptation.

Cost in Service Coordination

Number of messages. First, to execute the LONG SEQ workflow by the orchestration
model, the CCS needs to interact with each of the 20 constituent services only once and
each interaction requires two messages, namely an invocation message and a response mes-
sage. Therefore, the total number of exchanged messages is 40. Using semi-choreography
model, in the configuration phase, the CCS has to firstly distribute a coordination message
to each of all 20 constituent services (thus totally 20 messages). Then in the execution
phase, the CCS first sends an invocation messages to service S1; then 19 interactions
are needed for executing the workflow; finally S20 will return the final result to the CCS
(totally 21 messages). Thus, the total number of exchanged messages comes to 41 for
semi-choreography model. By contrast, auto-choreography model does not require the
configuration phase, the execution of workflow is similar to semi-choreography model. As
a result, it requires only 21 messages to execute a service composition.

The execution of the WIDE PAR workflow is performed in the similar way. The
orchestration model requires 44 messages since two messages are transmitted to interact
with each of the 22 constituent services. Semi-choreography model has to distribute 22
coordination messages to all the constituent services in the configuration phase. And then,
it requires 32 messages to execute the service composition. Accordingly, the total number
of messages comes to 54. Finally, auto-choreography model only needs 32 messages to get
the final computational result.

From the above discussion, we can conclude that auto-choreography generates the
fewest number of messages. Since semi-choreography relies on the distribution of coordi-
nation information, the greatest number of message exchanges are required. Finally, the
orchestration model generates a medium number of messages compared to the other two
models.

Network traffic. In order to evaluate the network traffic, we have the following as-
sumptions. First we suppose that each constituent service replies what it has received. In
this context, all the invocation messages have the same size, noted by TInv. Second, each
workflow fragment (for the semi-choreography model) is supposed to have the same size,
noted by TFrag. Finally, the total size of all the workflow fragments is roughly considered

to be equal to the size of the composition cell, noted as TCc (
∑N

i=1 TFrag(ti) = TCc, with
N the total number of tasks).

108

4.1. Performance Analysis of Different Execution Models

In this context, to execute the LONG SEQ workflow, the communication cost for
orchestration model equals to 40*TInv. The network traffic of semi-choreography is com-
posed of two parts: TCc (cost for distributing all workflow fragments) + 21*TInv (cost for
coordinating constituent services). The communication cost of auto-choreography model
equals to 21*TCc, since the entire composition cell is transmitted during each interaction
between constituent service. The network traffic for executing the WIDE PAR workflow
can be evaluated in the similar way. The communication costs for orchestration model,
semi-choreography model and auto-choreography model are respectively 44*TInv, TCc +
32*TInv and 32*TCc.

Cost in Service Adaptation

Runtime adaptation aims to modify service compositions by executing adaptation plans.
As we have introduced, the modification can be performed either on the binding level
or on the workflow level. Different SBA providers may define various adaptation plans.
However, all binding-level adaptation plans behave in the similar way, namely to replace
the failed service by an alternative one. Therefore, we are going to analyze the scenario
of binding-level adaptation presented in Section 3.3.3.1 in order to investigate the cost of
adaptation.

First of all, in the context of service orchestration, a binding-level adaptation requires
2 additional messages (an error message and a new invocation message) to execute a task
compared to a regular execution, as illustrated in Figure 3.16. So the additional network
traffic is 2*TInv

1. The semi-choreography model is also based on a centralized adaptation
engine but it is more costly than the orchestration model. As illustrated in Figure 3.20,
apart from an error message and a new invocation message, the CCS also has to distribute
a (number of) updated workflow fragments to the neighbor(s) of the failed task. Thus, the
additional network traffic comes to 2*TInv+M*TFrag, with M the number of neighbors of
the failed task. By contrast, the binding-level adaptation for auto-choreography is simple,
the failed CWS is able to execute the adaptation plan locally and then directly forwards
the whole composition cell to the alternative CWS (refer to Figure 3.22). Thus, only one
additional message is required, which lead to the additional network traffic by TCc.

From the above discussion, we can see that semi-choreography model presents a higher
complexity in runtime adaptation compared to the other two models. The adaptation for
both orchestration model and auto-choreography model generates few number of messages
and little additional network traffic.

4.1.3 Efficiency

The efficiency of a coordination model is directly determined by its complexity and cost.
In the following, we are going to investigate the efficiency of different models for ser-
vice coordination and adaptation. The results of this investigation will be proved by the
experimental results in Section 4.3.

End-to-End Execution Time.

The efficiency for service coordination can be directly measured by the end-to-end execu-
tion time of a service composition. To execute the same workflow, a more efficient model
will result in less execution time. Firstly, we assume that each CWS takes the same time

1For the reason of simplicity, we assume that the size of an error message and the size of an invocation
message are the same, namely equal to TInv

109

Chapter 4. Evaluation: Implementation and Experimental Results

to response. In this context, the differences in the end-to-end execution time result from
the transmission of messages. Then, we suppose that the network is fair and stable, which
means the same speed is guaranteed for transmitting all the messages. Accordingly, the
transmission time of a message is determined by the total size of all the messages.

We have analyzed the communication cost when we were investigating the network
traffic. The total size of the interchanged messages for all three models have been calcu-
lated. As a result, when the size of each invocation messages is small (e.g. each constituent
service only requires a string as the invocation parameter), TInv is negligible compared to
TCc (TInv ≪ TCc). In this context, the orchestration model leads to the least communica-
tion cost and auto-choreography model generates the greatest network traffic. By contrast,
when a large amount of data exchange is required, the invocation parameter takes almost
all the size of a composition cell (TCc ≈ TInv). Due to the direct interactions between
constituent services, the auto-choreography model results in the least network traffic but
the orchestration model becomes the most costly one.

Reactive Time (to failures).

The efficiency for runtime service adaptation can be measured by the reactive time to
failure. In the following, we use binding-level adaptation as an example to analyze the
adaptation efficiency for different models. As we have analyzed before, the adaptation of
service semi-choreography generates a number of updated workflow fragments. Therefore,
its reactive time is respectively longer due to the distribution of these messages. By
contrast, the orchestration model and auto-choreography model generate respectively 2
and 1 additional messages once a failure arises. Accordingly, they are less complex and
more efficient. In case of big data exchange, the auto-choreography model is theoretically
twice more effective than the orchestration model. However, when the size of invocation
parameter is small, the reactive time of the orchestration model can be much faster than
the auto-choreography model.

4.1.4 Flexibility

The flexibility refers to the ability to adapt to the changes in the conditions or circum-
stances on the fly. First, with a centralized adaptation engine, the orchestration and
semi-choreography models present better flexibility for runtime service adaptation. An
SBA provider is able to define and add new adaptation rules at runtime in response to
the failures which are unexpected before the execution. However, this is impossible for
the auto-choreography model. Because once the composition cell has left the solution of
CCS, the CCS will totally loss the control over it. It does not even know where it is nor
which constituent CWS is processing it. Therefore, all the adaptation plans have to be
defined before the execution start. In this context, once an unknown failure arises, the
composition cell will be suspended since it does not know how to react to such failures.
An alternative solution is to return a “suspending” composition cell to the CCS in order
to add new adaptation rules, which brings additional complexities.

Second, the orchestration model is considered more flexible than semi-choreography
model due to the up-to-date runtime state of workflow execution. Since all the messages
have to be passed by the CCS, the CCS has a clear view on the runtime execution state
of each constituent service. However, in the context of semi-choreography, the knowledge
of CCS on the global execution state of workflow may be inconsistent with the actual
one. Therefore, the execution state of some tasks are unknown during the execution (CCS
cannot know the execution state of a task except that a constituent service has reported

110

4.2. Implementation of Middleware

Table 4.1: Comparison of Different Models

Metrics Orchestration Semi-Chore Auto-Chore
Complexity
Design Time Low High Medium
Runtime (Coordination) Low High Medium
Runtime (Adaptation) Low High Medium
Cost (Coordination)
Num. of Msg Medium High Low
Network Traffic (Large Data) High Medium Low
Network Traffic (Complex WF) Low Medium High
Cost (Adaptation)
Num. of Msg Medium High Low
Network Traffic (Large Data) High High Low
Network Traffic (Complex WF) Low High High
Efficiency
Execution Time (Large data) High Medium Low
Execution Time (Complex WF) Low Medium High
Reactive Time (Large data) Medium High Low
Reactive Time (Complex WF) Low High Low
Flexibility High Medium Low
Robustness High Low Medium

a failure). In this case, some of the workflow-level adaptation plans cannot be executed
since workflow-level adaptation usually can only operate on unexecuted tasks.

4.1.5 Robustness

The robustness refers to how well the execution of a service composition can cope with
runtime failures. As we have demonstrated, all the three models are able to react to
runtime failures raised from both functional or non-functional levels. However, they have
different degrees of robustness.

Firstly, from the above discussions, we can see that semi-choreography presents the
lowest degree of robustness. On one side, the execution of workflow-level adaptation plans
may fail due to the inconsistent execution state. On the other side, its adaptation depends
on the distribution of updated workflow fragments, which may become the potential cause
of another failure. For example, an adaptation message may be delayed (the cause of a
new non-functional failure) or even lost (the cause of a new functional failure). Then,
compared to the orchestration model, auto-choreography is less robust because it may not
successfully react to all kinds of failures (e.g. an unknown failure).

4.2 Implementation of Middleware

Each chemical service in the middleware, either a CWS or a CCS, is implemented by an
HOCL program that defines a solution of molecules and reaction rules to realize the ex-
pected functionality. Most reaction rules defined by these HOCL programs are introduced
in Chapter 3 and Appendix A-B. In this section, we provide the details in the implemen-
tation of the middleware. We first introduce the implementation of the HOCL compiler
in Section 4.2.1 and Section 4.2.2. Then, Section 4.2.3 presents the distributed chemical

111

Chapter 4. Evaluation: Implementation and Experimental Results

Figure 4.2: Java Implementation of Chemical Concepts

infrastructures on which the middleware can be running. Finally, the implementation of
the “Best Garage” example based on the distributed chemical infrastructures is presented
in Section 4.2.4.

4.2.1 Implementation of the HOCL Compiler

We will briefly introduce the implementation of the HOCL compiler. The HOCL Compiler
is developed by Dr.Yann Radenac during his PhD thesis [124]. The compiler works on top
of Java platform. As defined by the syntax of HOCL in Figure 2.4, first, all the chemical
concepts can be seen as atoms. Thus, the HOCL compiler defines the Atom abstract class.
An atom Java object can be constructed by one of the following types: ExternalObject,
ReactionRule, Solution and Tuple, which describe respectively the basic values, reaction
rules, chemical solutions and tuples. Second, a molecule can be an ensemble of one or more
atoms. Therefore, the Molecule class implements a list to contain the atoms. Finally, a
solution can contain any number of molecules. By this means, a solution object can contain
a complex molecule that is composed of different types of atoms, such as tuples, reaction
rules, basic values or even sub-solutions. The relationship of various Java class is depicted
in Figure 4.2.

The execution of an HOCL program follows the process illustrated in Figure 4.3. First
of all, the compilation of an HOCL program will generate a number of Java classes. Each
reaction rule defined by an HOCL program leads to the generation of a new Java class
by extending the ReactionRule class. The name of the rule is used as the name of the
corresponding Java class. Moreover, since each HOCL program defines a chemical solution
of molecules, an HOCL program is finally translated to a new Java class that extends the
Solution class (e.g. the class Prog1 in Figure 4.2). According, the compilation of an HOCL
program will generate a set of new special Java classes (which extend the common ones).

Then, the execution of an HOCL program is thus performed by executing these Java
programs. A new instance of the relative program class will be instantiated (e.g. new
Prog1()). The Solution class defines a reduce method to carry out chemical reactions. For
each rule defined in a solution, if reactable molecules are detected, they will by removed
from the list, and new molecule(s) will be generated and added to the list. As an example,
Figure 4.4 vividly illustrates a chemical program defined with several rules (namely rule1,
rule2 and sum), integer numbers as well as strings. As a proof of concept, the definition
of a specific rule sum is provided. It requires two integer numbers as the input molecules,
and produces the sum of both integers as the output molecule. For each input molecule, an
iterator is created. Then, both iterators have to traverse all the possible combinations2 of

2As we analyze later, such brute-force methods for detecting reactable molecules causes the low efficiency

112

4.2. Implementation of Middleware

Figure 4.3: Execution of an HOCL Program

Figure 4.4: Implementation of Chemical Reactions

the molecules in the solution in order to discover possible reactions. As shown in Figure 4.4,
once two integers are detected (e.g. 100 and 1), they will be removed and their sum (101)
will be added to the end of the list. As a result, the execution of an HOCL program
is performed by calling the reduce method of the program Java object. The execution
continues until the solution arrives to the inert state, which means that all the remaining
molecules in the solution are non-reactable according to all the chemical rules defined in
the solution. And the computation results are finally left in the final solution.

4.2.2 I/O of HOCL programs

Using the original HOCL compiler, an HOCL program is modeled as a closed solution:
all the elements have to be defined before execution. By this means, the reactions are
performed as a one-shot process: when all reactable molecules have been consumed, the
execution terminates. Hence, it cannot reflect the dynamic and evolving nature of chem-
ical computing model. In response to such challenges, I have improved the compiler by
introducing I/O mechanisms. A chemical solution is thus able to get the new elements
either from the users or from remote HOCL programs.

Interaction with Users. In order to dynamically add or remove elements from a chem-
ical solution at runtime, the Solution class also defines two additional methods.

• Firstly, the add method requires a Molecule object as input parameter, and adds
it to the end of its internal list. When a molecule is added and if the state of this
solution is marked as inert, the reduce method will be called since the new molecules
may reactable with others according to some reaction rules.

• Furthermore, the remove method can get 1) a Molecule object and remove the first
occurrence of this molecule from the list (if it is present) or 2) an index number and
remove the molecule at the specified position in the list.

of HOCL.

113

Chapter 4. Evaluation: Implementation and Experimental Results

Figure 4.5: Interaction with Users

Then, each program class is generated with a shell program. When an HOCL program
is executed, the reactions do not start immediately. Instead, the user enters to a shell,
which provides a number of operations to manage the chemical solution of this HOCL
program, as depicted in Figure 4.5.

put The put operation first enables the user to create a molecule of a specific type, and
then adds the new molecule into the solution by calling the add method defined by
the Solution class. Users can add 1) a new Java object by providing the parameters
required by the constructor, as well as 2) a new chemical concept such as a tuple, a
solution or even a rule.

get The get operation first lists all the molecules in a solution and enables the user to
select a specific one to delete by calling the remove method defined by the Solution
class.

run The run operation starts the chemical reactions in the solution by calling the reduce
method of the Solution class.

print The user can check the current content of solution by using the print operation,
which calls the toString method of the Solution class in order to display the content
of the solution on the terminal window.

By using these commands, users can manage the chemical solution at runtime more
flexibly. More information about how to use the shell can be found in [143].

Interaction with Remote HOCL Programs. However, it is unpractical for the users
to add new molecules by hand, especially for the case where a large number of data
exchange is needed. Accordingly, it is more important to get molecules directly from
other programs. By using the improved HOCL compiler, the HOCL program is translated
into a number of Java artifacts which are running on top of Java RMI (Remote Method
Invocation) framework. Some Java RMI modules are integrated for interactions between
chemical programs.

First of all, each HOCL program registers its chemical solution with a unique name in
the local RMI registry when it is executed. The registration is performed by calling the
bind method defined by the Java RMI modules. As illustrated in Figure 4.6, two solutions
of HOCL programs are registered respectively with the name sol1 and sol2. When an
HOCL program (defined as the client) wants to interact with a remote one (defined as the
server), it looks up the name of the server’s program solution in the local RMI registry.

114

4.2. Implementation of Middleware

(a) Bind

(b) Lookup & Add Molecule

Figure 4.6: Interaction to a Remote Solution (Single Host)

And then, the client program downloads a stub of server’s solution object, which has the
same interfaces as the original one. By calling put method provided by the server’s stub,
the client is able to transfer any molecules to the stub. The stub marshals the arguments
using object serialization, and sends the marshaled molecules to the server. On the server
program side, the call is received by a skeleton, which is responsible for unmarshaling the
arguments and invoking the server’s implementation of the put method. By this means, an
HOCL program is able to write any molecules to remote chemical solutions. This process
is illustrated in Figure 4.6.

In the previous example, both client and server HOCL programs have to be running
on the same machine. However, such remote interaction mechanism can be extended to
the distributed implementations. Suppose that we have several machines, and on each
machine, multiple HOCL programs are running. As illustrated in Figure 4.7, n HOCL
programs are running on machine A andm HOCL programs are running on the machine B.
First of all, every HOCL program registers with a unique name3 in its local RMI register.
Then, if the client program solk wants to write molecules to a remote solution soll which
is located on a different machine, it has to look up soll in the registry of machine B, and
gets the stub of soll. Since different JVMs are running on different machines, client HOCL
program also needs to download the class definition of the soll from machine B. As a
result, Machine B has to specify the code base pointing to a repository accessible publicly
through Internet. Some protocols can be used such as HTTP server or FTP server. At
this moment, the client program is able to interpret the stub of soll and then it performs
in the similar way as the case that both programs are running on a single machine.

Automated Interaction with Reaction Rules By manipulating the RMI communi-
cator, the put primitive is defined to encapsulate the entire process depicted in Figure 4.7

3Two solutions on different machines may have the same name.

115

Chapter 4. Evaluation: Implementation and Experimental Results

(a) Bind

(b) Lookup & Add Molecule

Figure 4.7: Interaction to a Remote Solution (Multiple Hosts)

to write any molecules into a specific remote chemical solution. It requires two arguments:
the signature of the server solution (sol name@dest IP) and the molecules to send (MOL).
As introduced, the signature of the server solution is composed of two parts: 1) the name
of the server solution (denoted sol name) and 2) the IP address of the machine on which
the server HOCL program is running (noted (dest IP)). Therefore, by using the signature
of the server solution, the client program is able to get the corresponding stub object as
well as its definition. Then, the molecule MOL can be written to the remote solution by
calling the put method defined by the stub. Therefore, several rules can be created to
write a molecule of a specific type to a remote solution once the molecule is generated.

4.2.3 Distributed Chemical Infrastructure

Since an HOCL program is able to freely talk to remote HOCL programs running on
distributed machines, the middleware can be running over the distributed infrastructures,
defined as the Distributed Chemical Infrastructures. As illustrated in Figure 4.8, Firstly,
each chemical service (either CWS or CCS) is defined by an HOCL program. Then,
all HOCL programs are deployed over distributed infrastructures, such as a cluster or
a federation of clusters, with a number of physical machines inter-connected by a Local
Area Network (LAN) or the Internet. Each physical node is configured with an HOCL
compiler for compiling and executing HOCL programs. As a result, each node can be seen
as a Chemical Virtual Machine (CVM) which is capable to provide the chemical runtime

116

4.2. Implementation of Middleware

Figure 4.8: Distributed Chemical Infrastructures

environment for running chemical reactions. In our experiments, the distributed chemical
infrastructure is set up over the Grid’5000 platform [2]. We have reserved 8 nodes in
paradent cluster in Rennes, France, and a CVM is configured on each physic node.

4.2.4 Implementation of the “Best Garage” Example

As a preliminary prototype for validation, we have implemented the “Best Garage” illus-
trative example.

Implementation Setup. 1) First of all, an HOCL program is created as the chemical
representation of SBA. It defines a solution which includes the molecular workflow repre-
sentation as well as most of the above-introduced rules for service coordination, invocation
and adaptation. 2) Each constituent Web service in Figure 2.7 is implemented as a JAVA
Web service and deployed in Apache AXIS2 [16] Web service engine hosted on a single
machine. In response to service invocations, each Web service sleeps for a certain time to
simulate the execution time and then returns the result by randomly selecting an item from
a predefined list. For example, WS-SeniorT predefines a table which provides a number
of possible diagnostic results with different values for parameters (diagnosed problem, es-
timated time and cost). Once an invocation arrives, WS-SeniorT will randomly select an
entry (represented by a line in this table) as the diagnostic result. 3) Using CWSCreator,
an HOCL program is automatically created for each constituent service. 4) Finally, each
HOCL program (1 CCS and 7 CWSes) is deployed on a distinct CVM.

Simulation of Different Scenarios. In order to validate our approach, we simulated
all the scenarios that we have presented in this paper:

• Dynamic binding. We ran 100 SBA instances with cars of different types. AThus,
task t1 can be bound to either CWS-SeniorT or CWS-JuniorT according to the
execution context.

• Binding-level adaptation. During all 100 executions, we temporarily removed the
WS-payByCard Web service from the AXIS2 engine in order to simulate the in-

117

Chapter 4. Evaluation: Implementation and Experimental Results

frastructure failure: the WS-payByCard Web service was not accessible within that
duration. In this case, task t4 is expected to rebind to CWS-payByCardPro service.

• Workflow-level adaptation. Both WS-RepManager and WS-fastRepairCar requires
the estimated time (qt) as one of input parameters. And their sleep time varies
from 0.85*qt to 1.15*qt (uniform distribution). The solution of each SBA instance
composes a timer, which monitors the execution time. If the estimated time (qt)
will be violated right away, it will put an “ALERT” molecule in the solution. This
molecule will start the workflow-level adaptation.

Results. All 100 executions have been successfully completed: 1) for all 100 requests,
task t1 has bound to the correct diagnostic technician services; 2) 22 executions have en-
countered the failures while invoking toWS-payByCard Web service, andWS-payByCardPro
service were successfully rebound; 3) 33 executions took longer time then expected; for
each of them, the car rental service was bound and invoked.

4.3 Evaluation of Different Execution Models

In this section, we present a number of experiments conducted using the distributed im-
plementation of chemistry-inspired middleware to evaluate the efficiency and complexity
of different models that we have presented in Section 3.

4.3.1 Experimental Setup

The experiments are based on the two experimental workflow presented in Figure 4.1.
First, for each workflow, an HOCL program is developed to describe the corresponding
CCS by defining its molecular presentation of workflow as well as a number of reaction
rules (such as CRs, ARs and IRs). Each task ti can be executed by two CWSes: the default
chemical service cws di and an alternative one cws ai. All the constituent chemical services
are automatically generated based on two experimental concrete Web services.

In our experiments, we have implemented two experimental Web services in Java, noted
respectively WS1 and WS2. WS1 requires a string s as input, sleeps for 5 seconds and
finally returns s as the result. WS2 behaves in the same way as WS1, except that it has a
probability of τcr (0 ≤ τcr ≤ 1) to return an error string message. An error message aims
to simulate a runtime invocation failure. For example, the concrete Web service is not
accessible due to network problem. Both Web services are running on Apache AXIS2 Web
service engine [16] on a single machine outside the distributed chemical infrastructures.

For both CCSes, the default CWS of each task is created based on WS2 whereas the
alternative one connects to WS1. In this case, the default CWS of each task cws di has
a possibility of τcr to reply with a an error tuple but the alternative one cws ai is always
reliable. Each task ti pre-binds to cws di at the design time. Once a failure is reported
by cws di, the failed task ti will rebind to cws ai. Since each constituent service returns
what it has received, we can initiate an invocation message that is used to invoke all the
constituent services. By this means, all the invocation messages have the same size, which
satisfies our assumption in Section 4.1.2.

For each execution of an experimental workflow, all the chemical services (HOCL pro-
grams) are uniformly distributed to all the nodes of the distributed chemical infrastruc-
tures. By activating different sets of rules, the execution can start from CCS by different
models. In the following, we present 2 groups of experiments to evaluate respectively the
efficiency and complexity of different models.

118

4.3. Evaluation of Different Execution Models

1 1K 100K 250K 500K 1M
100

110

120

130

Message Size (Byte)

E
x
e
c
u
t
io
n
T
im

e
(s
)

orchestration

semi-choreography

auto-choreography

(a) LONG SEQ

1 1K 100K 250K 500K 1M

20

25

30

35

Message Size (Byte)

E
x
e
c
u
t
io
n
T
im

e
(s
)

orchestration

semi-choreography

auto-choreworkflow

(b) WIDE PAR

Figure 4.9: The Execution Time for Different Models

4.3.2 Experiment 1: Comparison of the Execution Efficiency

The first experiment is to evaluate the efficiency of different models by comparing the
execution time. In this experiment, τcr is set to 0.0, which indicates that no error message
will be generated and thus no adaptation is needed. As we have discussed, the size of
each interaction message is determined by the size of the initial parameter. In order to
simulate different execution contexts, the size of the initial parameter can vary from 0
(empty string) to 1MB (randomly generated string). For a given initial parameter, each
workflow are executed 10 times for each model, and we calculate the average execution
time. The ideal execution time (without consideration of transmission cost) of LONG SEQ
and WIDE PAR workflow are respectively 100 seconds and 20 seconds. The result is
presented in Figure 4.9.

Execution context 1: large workflow. When the size of invocation message is small,
the communication cost for each invocation message is negligible. As a result, the orches-
tration model and the semi-choreography model have almost the same execution time.
Both models perform efficiently in executing the experimental workflow: the coordina-
tion of more than 20 constituent services only brings less than one second extra time.
Whereas, the auto-choreography model is less efficient in this context. As we have dis-
cussed in Section 4.1.3, although the auto-choreography model requires less interactions
for an execution of workflow, if the size of a composition cell is much larger than the size
of an invocation message (TInv ≪ TCc), it still takes a little longer time to complete an
execution of workflow since the transmission of a composition cell is much more costly
than transmitting an invocation message.

Execution context 2: big data exchange. When the size of invocation parameter
increases, the execution time of service orchestration increases more rapidly than the
other two models. In the context where the big data exchange is required (TCc ≈ TInv),
the orchestration model requires more than 10% time to execute a workflow than both
choreography models. This is because that the size of the workflow definition can be
neglected compared to the size of the invocation parameter. Therefore, the size of a
composition cell can be considered as the same to the size of the invocation parameter.
But the orchestration model requires more numbers of interactions. Furthermore, the

119

Chapter 4. Evaluation: Implementation and Experimental Results

0.0 0.2 0.4 0.6 0.8 1.0

0

50

Crash Rate

M
e
ss
a
g
e
N
u
m
b
e
r

orchestration

semi-choreography

auto-choreworkflow

(a) LONG SEQ

0.0 0.2 0.4 0.6 0.8 1.0

0

50

Crash Rate

M
e
ss
a
g
e
N
u
m
b
e
r

orchestration

semi-choreography

auto-choreworkflow

(b) WIDE PAR

Figure 4.10: The Number of Additional Messages for Different Models

execution time of two choreography models become more close as the size of invocation
parameter increases. This is because they follow the same interaction model and the
size of the messages exchanged between constituent services for both models are almost
the same (the semi-choreography model transmits the invocation parameter whereas the
auto-choreography model transmits the composition cell).

4.3.3 Experiment 2: Comparison of the Adaptation Complexity

The second experiment is to investigate the adaptation complexity of different models. The
crash rate ofWS1 τcr varies from 0.0 to 1.0 by a step of 0.2. For a specific τcr, each workflow
are executed 10 times for each model, and we records the average overall execution time
as well as the number of additional messages which are generated by runtime adaptation.
In this experiment, the message size is set to 500KB.

Additional messages for binding-level adaptation. First, as Figure 4.10 demon-
strates, the adaptation of auto-choreography is simple with only few additional messages
generated. This is because of its autonomic nature, as we have analyzed in Section 4.1.3,
the composition cell can be self-adapted locally by each constituent service and only one
additional message is required for each binding-level failures. By contrast, the adapta-
tion of the semi-choreography model depends on a centralized adaptation engine and the
re-distribution of updated workflow fragments. Thus, it exhibits the highest complexity
(in terms of a great number of additional messages). Compared to these two models,
orchestration presents a medium complexity. Please note that in Figure 4.11(b), the ex-
perimental results in executing WIDE PAR workflow by the orchestration model with a
crash rate of respectively 60% and 80% have almost the same number of adaptation mes-
sages (represented by the blue line). This is accidental since two sets of experiments have
encountered almost the same number of failures.

Reactive time for binding-level adaptation. Figure 4.11 illustrates the overall ex-
ecution time of a workflow for different models when failures arise. As the crash rate
increases, the execution time of both service orchestration and semi-choreography increase
more rapidly than auto-choreography, for both experimental workflows. The gradient of

120

4.3. Evaluation of Different Execution Models

0.0 0.2 0.4 0.6 0.8 1.0
110

120

130

140

Crash Rate

E
x
e
c
u
t
io
n
T
im

e
(s
)

orchestration

semi-choreography

auto-choreworkflow

(a) LONG SEQ

0.0 0.2 0.4 0.6 0.8 1.0

25

30

35

40

Crash Rate

E
x
e
c
u
t
io
n
T
im

e
(s
)

orchestration

semi-choreography

auto-choreworkflow

(b) WIDE PAR

Figure 4.11: The Overall Execution Time (Including Adaptation) for Different Models

each curve can reflect the adaptation cost, showing the additional execution time compared
to non-failure execution, namely the total reactive time to failures.

Firstly, for the LONG SEQ workflow, since all the tasks are sequentially executed, only
one task can fail at one time. Both the orchestration and semi-choreography models rely
on the centralized adaptation engine, they have the similar adaptation cost. Whereas for
auto-choreography, the running CWS can execute adaptation actions locally. Accordingly
it is the most efficient model which results in the best overall execution time when failures
happen often.

For WIDE PAR workflow, multiple failures can take place concurrently. In this case,
auto-choreography still presents a high efficiency since each running CWS can execute
adaptation actions independently (see Figure 4.11(b)). The other two models rely on
a centralized execution engine but the performance of the semi-choreography model is
a disaster when more and more failures arise. At this time, different from LONG SEQ
workflow, failures can take place concurrently and each failure will lead to the distribution
of a number of updated workflow fragments. Accordingly, when failures occur often, it
suffers from heavy transmission loads which leads to higher adaptation cost compared to
the orchestration model.

4.3.4 Discussion

From the above presentation and experimental results, the following observations can be
concluded.

• Orchestration model exhibits low design-time complexity and medium runtime com-
plexity. It presents a low efficiency in executing the workflow with large data ex-
changes, but a low cost as well for executing runtime adaptation. Therefore, it is
suitable for executing inter-organizational commercial workflow that requires less
data exchanges and failures may arise often since all constituent services can be
largely distributed over the world.

• Semi-choreography model has a high design-time complexity; but it can always result
in better response time due to the direct interaction between constituent services.
However, the runtime adaptation exhibits high complexity, especially in the context

121

Chapter 4. Evaluation: Implementation and Experimental Results

where failures occur frequently. Accordingly, semi-choreography is suitable for build-
ing intra-organizational service compositions, where few failures can arise. Moreover,
in this context, all workflow fragments can be pre-installed in all constituent services
since the SBA manager has the control on all constituent services.

• Auto-choreography model brings medium design-time complexity. However, since
the coordination and adaptation can be performed directly by each running service,
it presents both low runtime complexity and high efficiency. Therefore, this model
is suitable for executing data-intensive workflows, where a large amount of data
exchange is required (e.g. scientific workflows).

122

Part III

Towards Proactive Adaptation of
SBA

123

Chapter 5

A Two-Phase Online Prediction
Approach

Abstract. In the previous chapters, we have presented how to flexibly react to runtime
failures raised from either functional or non-functional level during the execution of SBA.
However, such reactive adaptation adopts some remedial actions that can only ensure
the successful completion of an execution of SBA rather than prevent the occurrence of
these failures. The execution of remedial actions brings additional cost in terms of time
consumption and other computational resources. Accordingly, the end-to-end QoS of SBA
may degrade. As an example, the execution of an SBA instance may take respectively
longer time when failures have occurred. By contrast, proactive adaptation aims to identify
the needs for adaptation by forecasting an upcoming failure in the future. Preventive
actions can be executed to improve the quality of the service-based systems before failures
actually arise. As introduced in Section 1.4, both functional and non-functional failures
can be avoided by applying proactive adaptations. In this chapter, our discussion will focus
on the proactive adaptation for avoiding non-functional failures, for example, a running
SBA instance fails to meet the expected end-to-end QoS. We are going to introduce a
two-phase online prediction approach capable of drawing accurate and timely decisions for
starting adaptation proactively in order to guarantee the end-to-end QoS of SBA.

125

Chapter 5. A Two-Phase Online Prediction Approach

5.1 Problem Statement: Challenges and Solutions

It is crucial for SBA providers to guarantee the end-to-end QoS of their SBAs since the
end-to-end QoS directly determines the experiences of the end users. Better end-to-end
QoS will enhance an end user’s satisfaction as well as the reputation of an SBA. For
instance, if an SBA always responds slowly, its clients may go to other SBA providers that
can offer the same functionality.

5.1.1 Context: Prevention of Global SLA Violation

In this section, our discussion focuses on the context of preventing global SLA violation.
As we have introduced in Section 1.1.4, some SBA providers may establish global SLAs
with their end users. For example, an SBA provider promises to respond within a limited
duration at a certain cost. The definition of the global SLA is based on all local SLAs
between the SBA provider and each constituent service. The illustration of global and
local SLAs can be found in Figure 1.5 and a concrete example was provided in Table 1.4.
In this context, the degradation of the end-to-end QoS (e.g. delays) can result in the
violation of global SLA, which will in succession lead to some undesirable results to SBA
providers, such as reputation degradation as well as penalties. Accordingly, SBA providers
have to guarantee the end-to-end QoS of each running SBA instance to avoid global SLA
violation.

5.1.2 Challenges

Due to the loosely coupled and distributed execution environment, it is challenging for
SBA providers to guarantee the end-to-end QoS. First of all, the SBA’s end-to-end QoS
is determined by the QoS of all constituent services. For example, the execution time
of an SBA instance depends on how fast each constituent service responds. However, in
such distributed execution environment, the QoS of each constituent service can be hardly
ensured. For instance, a constituent service may take longer time to respond due to the
network congestion. Additionally, since all constituent services are provided by different
organizations, the SBA provider often lacks the control over these third-party constituent
services, such as the management of their computational resources (e.g. infrastructures).

In this case, an SBA provider is required to monitor the incoming/outgoing messages
of each running SBA instance in order to perceive some misbehaviors (e.g. the response
of a constituent service may arrive later than expected). Accordingly, (s)he is able judge
whether some preventive adaptation actions are needed by analyzing the runtime execu-
tion state of a running SBA instance. For example, if it notices that one of the constituent
service responds late, a proactive adaptation plan can be executed to rebind (some) un-
executed task(s) to other alternative services with better expected response time. By this
means, the end-to-end response time of this SBA instance can still meet the expected value
defined in the global SLA.

Compared to reactive adaptation, proactive adaptation is more challenging. The main
challenge is to accurately analyze the needs for adaptation at runtime in order to ac-
curately trigger the preventive adaptation (represented by the analyze phase in MAPE
control-feedback loop presented in Figure 1.10). In the context of reactive adaptation,
adaptation decisions can be easily made since the need for adaptation is straight-forward:
each failure will immediately trigger the execution of relative adaptation plans for recov-
ering the execution. By contrast, for proactive adaptation, adaptation decisions rely on

126

5.1. Problem Statement: Challenges and Solutions

the prediction of a failure1 in the future. An accurate prediction approach has to meet
the following requirements (challenges):

• Effectiveness. An effective approach can successfully predict as many SLA viola-
tions as possible. In the extreme cases, the most effective prediction approach can
successfully predict all the global SLA violations.

• Precision. An effective approach may not be precise due to many false predictions,
which alert the upcoming SLA violations that have not occurred in the end2. A
false prediction will lead to unnecessary adaptations that can bring additional cost
and complexity: on one hand, runtime adaptation is costly since more resources
are required to identify and to execute an adaptation plan; on the other hand, the
execution of a preventive adaptation plan may become the cause of new failures.

In addition to the requirements on the accuracy, the second challenge lies in the effi-
ciency. An effective decision approach has to meet the following requirements:

• Timing. It is desirable to start the adaptation as early as possible: late decisions
are usually precise but less useful, since the best adaptation opportunities might be
missed, and the benefit of preventive adaptation is diminished.

• Efficiency. The decision approach must be efficient (in terms of time consumption
for drawing adaptation decision) in order to meet the critical time constraint at
runtime.

5.1.3 Our Approach: A Two-Phase Online Prediction Approach

In response to all above-mentioned challenges, we propose a two-phase online prediction ap-
proach. As shown in Figure 5.1, an adaptation decision is proactively determined through
the following steps.

• Start. Listen to the events emitted from theMonitor component, once the execution
of a task ti is completed, the two-phase online prediction algorithm is started.

• Step 1: check the completion of the execution. If the execution of workflow has
not yet been finished, go to step 2; otherwise, the algorithm is terminated with the
silence state, which means that no output will be generated and thus no adaptation
plan will be proactively executed.

• Step 2: evaluation of the end-to-end QoS. The values of all QoS attributes de-
fined in the global SLA (e.g. execution time) are re-evaluated based on the monitored
data and the estimation of the execution in the future.

• Step 3: estimation of global SLA violation. From each QoS dimension, the
evaluated value is compared with the target value defined in the global SLA. If a
violation is tent to happen, a suspicion of SLA violation is reported and go to step 4;
otherwise, the algorithm ends with the state silence.

1In the context of our discussion in this chapter, the failure refers to the degradation of the end-to-end
QoS compared to the expected values.

2As we introduce later, a prediction approach can be evaluated by deactivating the execution of pre-
ventive adaptation actions.

127

Chapter 5. A Two-Phase Online Prediction Approach

Figure 5.1: Two-Phase Online Prediction Approach

• Step 4: evaluation of the suspicion. A suspicion of SLA violation will not
directly trigger the proactive adaptation process. Instead, the trustworthy level of
the suspicion is evaluated for a more precise decision on whether to accept or to
neglect this suspicion.

• Step 5: decision for proactive adaptation. If the suspicion is accepted, our ap-
proach terminates with the warning state by predicting an upcoming SLA violation
and drawing the decision for identifying and executing proactive adaptation plans.
Otherwise, the algorithm ends with silence state.

The core of our approach is two-phase evaluations: the estimation phase (step 2, 3)
evaluates whether the global SLA is tent to be violated and the decision phase (step 4,
5) evaluates how likely the suspected violation will actually occur. An additional phase of
evaluation can bring higher accuracy in making adaptation decisions since all inaccurate
early suspicions are neglected in the decision phase. As a proof of concept, our discussion
will focus on the execution time in the rest of this chapter. We are going to illustrate how
to use the two-phase online prediction approach to accurately forecast a probable delay
when the execution of SBA completes. In the following, Section 5.2 and Section 5.3 will
highlight respectively the estimation phase and the decision phase. Finally, our approach
will be evaluated in Section 5.4

5.2 Estimation Phase

As presented in Section 1.1.3, the end-to-end (global) execution time of an SBA instance
(noted by qGt) depends on the local execution time of each task ti, denoted by qLt (ti).
However, the estimation of qGt for a running SBA instance is much more complicated
since qLt remains unknown for some of the tasks. For a running SBA instance, the runtime
state of a task can be classified into two categories:

• Completed, referring to the tasks whose executions have already been completed (the
corresponding constituent services have already replied). For each completed task
tc, the local execution time equals to its measured execution time (noted by qMt (tc)),

128

5.2. Estimation Phase

defined as the real time consumption for executing task tc (qLt (tc) = qMt (tc)). We
assume that qMt (tc) is known at the moment of estimation by using event-based
monitoring techniques [89].

• Uncompleted, including the tasks that are being executed, adapted as well as the
ones whose executions have not been started yet. The local execution time of an
uncompleted task tu is unknown at the moment of estimation. Accordingly, in order
to estimate qGt of a running SBA instance, the first step is to estimate the probable
execution time for each uncompleted task, noted as qEt (tu). Then, q

E
t (tu) is used as

the local execution time to compute the global execution time of this running SBA
instance (qLt (tu) = qEt (tu)).

In this section, we first present both static and dynamic methods to estimate local
execution time for each uncompleted task and then we introduce an efficient tool for rapid
estimation of the global execution time at runtime.

5.2.1 Estimation of Local Execution Time

The local execution time of a task tu depends on how fast the corresponding constituent
service (noted by S(tu)) responds. Some research work [89] propose to use arithmetic mean
value of the last n measured response time of S(tu) as q

E
t (tu). However, the performance of

this method is largely affected by outliers. Suppose that the last 10 measures of response
time are: 940ms, 1,020ms, 1,050ms, 1,000ms, 970ms, 1,100ms, 1,020ms, 24,060ms, 960ms,
980ms. Obviously, there is an outlier (24,060ms) and the cause can be manifold (e.g.
temporary network congestion). In this case, the arithmetic mean equals to 3,310ms,
which cannot properly reflect the probable response time of S(ti). In addition, this method
cannot be used when there is no (sufficient) historical information. For example, in the
context of on-demand SBA execution, a task may bind to a constituent service that has
never been invoked before.

In the following, we provide both dynamic and static methods for estimating the local
execution time of an uncompleted task tu. We assume that SBA provider has recorded
the response time of all constituent services that have been invoked before.

Dynamic estimation of local execution time. Dynamic method can be applied when
S(tu) has been selected and invoked in the past executions of SBA. First of all, it looks into
the past records for the information about the response time of S(tu). If enough historical
information is found, the approaches presented in [78] can be used to firstly detect and
remove the outliers. Then, the arithmetic mean is computed as qEt (tu). A more efficient
alternative solution is to directly use the median value of the last n measures. In the
previous example, the median value is 1 000ms: five measures are less or equal to it and
five are greater, including the outlier. Compare to the arithmetic mean (3,308ms), the
median value can better reflect the possible response time in the near future.

Static estimation of local execution time. In case of no (sufficient) historical infor-
mation about S(tu), the static method is automatically activated. Instead of dynamically
computing qEt (tu) based on the historic information, static method uses fixed value ac-
cording to the execution state of each uncompleted task.

• If tu is being executed and its execution has already taken longer time than the
expected value defined in the local SLA (noted as qt(tu)), the real execution time

129

Chapter 5. A Two-Phase Online Prediction Approach

qRt (tu) (defined as the real time consumption since the start of the execution of tu)
is used as the estimation (qEt (tu) = qRt (tu)).

• Otherwise, the target value defined in the local SLA is directly used as the estimation
(qEt (tu) = qt(tu)). In this case, it is straightforward to trust the service provider.

5.2.2 Estimation of Global Execution Time

After the estimation of local execution time for uncompleted tasks, the local execution
time of each task can be obtained according to Formula 5.1:

Local execution time : qLt (t) =

{

qMt (t); if t ∈ {completed tasks}
qEt (t); if t ∈ {uncompleted tasks}

(5.1)

The local execution time of a completed (or an uncompleted) task equals to the mea-
sured (or estimated) response time of the corresponding constituent service. By this means,
the global execution time of a running SBA instance (qGt) can be estimated by aggregating
local execution time of each task along all the execution paths, as we have introduced in
Section 1.1.3. qGt is then compared with the expected response time of SBA defined in
the global SLA (noted as gqost). If qGt is greater than gqost, a suspicion of global SLA
violation (noted by S) is reported. Otherwise, the estimation phase is terminated with the
silence state and no output will be generated. The output of the estimation phase follows
the Formula 5.2.

output :

{

S =< TD, TS >; if qGt > gqost
Null; otherwise

(5.2)

A suspicion S is expressed by a suspicion tuple noted by < TD, TS >. It includes
two attributes. Firstly, TD measures the degree of the estimated delay with respect to the
global execution time. As indicated by Formula 5.3, TD refers to the ratio of the estimated
delay to the expected global execution time.

TD =
qGt − gqost

gqost
(5.3)

Then, TS is the time stamp by which this suspicion tuple is generated. It is measured
by the percentage (in terms of the execution time) of the execution that have completed at
the moment of estimation. The computation of TS follows Formula 5.4, where AT refers
to the accumulated execution time of this SBA instance and gqost is the expected global
execution time defined in the global SLA. TS can reflect the degree on the completion of
a workflow execution.

TS =
AT

gqost
(5.4)

For the reason of simplicity, we name TD as the estimated delay and TS as the com-
pletion degree in the rest of our discussions. By this means, once a suspicion of global
SLA violation is reported, the suspicion tuple is evaluated in the decision phase in order
to decide whether or not to start proactive adaptation, as presented later in Section 5.3.

130

5.2. Estimation Phase

More efficient estimation of global execution time. However, the above-mentioned
estimation approach can hardly meet the requirement on the efficiency since runtime ag-
gregation of QoS is costly and time-consuming, especially for complex and unstructured
workflows. After the completion of a task ti, the q

L
t (ti) can be updated by replacing qEt (ti)

by qMt (ti). Accordingly, the global execution time is required to be re-estimated, even
though most of tasks have not updated their local execution time. In the following, we
introduce the Program Evaluation and Review Technique (PERT) [57] as an efficient tool
for rapid runtime estimation of global execution time. PERT was originally developed for
planning, monitoring and managing the progress of complex projects. In our approach,
PERT is used to monitor the workflow execution and to facilitate decision making. For
each task ti, it maintains the following additional information:

• The Expected Start Time (EST): TE(ti). This is the expected time3 by which the
execution of task ti can start in case that all its precedents task can accomplish on
schedule.

• The Latest Finish Time (LFT): TL(ti). This is the latest time by which the execution
of task ti has to complete without causing the delay of the ongoing execution instance
in case that all its succeeding task can accomplish on schedule.

• The slack time: S(ti). This is the maximum acceptable delay during the execution
of task ti.

• The critical path CP . A path is a sequential execution of tasks from the beginning
to the end of a workflow. CP is one of the execution paths with all tasks having the
least slack time.

All the information is then presented on an X-Y chart. The X-axis represents the
accumulated execution time, while the Y-axis is the list of tasks that are composed in the
workflow. Each task ti is represented by a single horizontal bar which starts from TE(ti)
and ends with TL(ti). The length of the bar corresponds to the maximum acceptable
duration for executing a task, under the assumption that all the other tasks complete on
schedule. A bar is composed of two parts, the solid part represents qLt (ti) and the hollow
part reflects S(ti). Finally, the tasks on the critical path are marked by a star (⋆). A
concrete example of PERT chart will be provided later on.

Construction of PERT. The PERT chart is initially constructed based on both global
and local SLAs by the following steps:

1. First of all, the TE is computed for each task ti. The computation of TE(ti) follows
the Formula 5.5. First of all, obviously, for the first task (start) ts, TE(ts) = 0. In
the following, the computation of TE is performed in sequential order along each
execution path. If a task belongs to multiple execution paths which lead to different
values, the maximum value will be used (e.g. a syntonization task can start only
when all incoming branches have completed the execution).

TE(ti) =

{

0; ti = ts
max{TE(tj) + qLt (tj)|tj ∈ {direct precedents of ti}}; ti 6= ts

(5.5)

3The time used in this chapter is logical time, which is measured by the accumulated time consumptions
since the start of the execution.

131

Chapter 5. A Two-Phase Online Prediction Approach

time(ms)
X

Y
task

1000 2000 3000 4000 5000 6000 7000

⋆t8

⋆t7

t6

t5

⋆t4

⋆t3

⋆t2

⋆t1 0 600 800

600 1400 1600

1400 2900 3100

2900 4400 4600

1400 3200 3600

3200 4200 4600

4400 5600 5800

5600 6600 6800

Figure 5.2: PERT Chart

2. Then, the TL of each task is computed following Formula 5.6. First, for the last task
(end) tn, TL(tn) equals to the expect global execution time defined in the global SLA
(gqost). In the following, the computation of TL is performed in the reverse order
along each execution path. If a task belongs to multiple execution paths which lead
to different values, the minimum value will be used (e.g. an and-split task has to be
completed without delaying all outgoing branches.).

TL(ti) =

{

gqost; ti = tn
min{TL(tk)− qLt (tk)|tk ∈ {direct successors of ti}}; ti 6= tn

(5.6)

3. Having both TE(ti) and TL(ti), the slack time for each task can be calculated using
Formula 5.7. Please note that the expected execution time of each task qLt (ti) is
known from the corresponding local SLA.

S(ti) = TL(ti)− TE(ti)− qLt (ti) (5.7)

Using the illustrative example in Section 1.1.4 (the workflow defined in Figure 1.5 with
all local and global SLAs given in Table 1.4), the corresponding PERT chart is initially
computed and depicted in Figure 5.2.

Update of PERT. The PERT chart can be dynamically updated in order to reflect the
most up-to-date runtime execution state of a running SBA instance. For example, when
the execution of a task completes, its local execution time can be updated by replacing the
formerly estimated value by the really measured one. The update of local information can
lead to partial reconstruction of PERT chart by recomputing some of the above-mentioned
information (e.g. the completed tasks do not need to be recomputed), which can be seen
as the adjustments of some bars along the X-axis. In this context, the cost in updating
PERT chart is negligible. Anyhow, the update of PERT chart can be performed while the
running SBA instance is waiting for the response from constituent service(s). Thus it will
not bring extra time consumption to the execution of SBA instance. The update can be
triggered either periodically, or based on checkpoints or events (e.g. after each “receive”
event).

Use of PERT. By using the PERT chart, the estimation of global execution time is
simplified, which follows the Formula 5.8.

132

5.3. Decision Phase

output :

{

S =< TD, TS >, with TD = AT−TL(ti)
gqost

; if AT > TL(ti)

Null; otherwise
(5.8)

When a task ti is finished, the real accumulated execution time AT at this moment can
be easily measured. If AT is greater than TL(ti), the global execution time is estimated to
be violated by AT − TL(ti), and a suspicion tuple S=<TD, TS> is accordingly generated
(the computation of TS still follows Formula 5.4).

In the following, we provide a possible execution of the workflow defined in Figure 1.5
in order to demonstrate how to use the PERT chart defined in Figure 5.2 to efficiently
estimate a global execution time.

1. First, suppose the execution of task t1 takes 580ms. In this case, the accumulated
execution time after the completion of t1 is 580ms. Since 580ms is less than 800ms,
which defined by TL(t1), the estimation phase terminates with the silence state
according to Formula 5.8.

2. Then, suppose the execution of task t2 costs 900ms. At this moment, the accu-
mulated execution time comes to 1480ms (580ms+900ms). Please note that the
execution of t2 was delayed by 100ms, since the expected execution time was 800ms
as defined by the local SLA in Table 1.4. However, the accumulated execution time is
still below the value defined by TL(t2), therefore no suspicion of global SLA violation
will be reported.

3. In the following, task t3 and t4 will be executed in parallel. Suppose that the exe-
cution of task t3 completes in 1,700ms. This time, the accumulated execution time
equals to 3,180ms, which is greater than TL(t3) (from Figure 5.2, we can see that
TL(t3) equals to 3,100ms). Accordingly, a violation of global SLA is suspected and
the following suspicion is reported:

S =< 3180−3100
6800 , 31806800 >=< 0.0012, 0.468 >.

This suspicion tuple indicates that: after 46.8% of the execution has completed, the
global execution time is estimated to take 0.12% more than formerly expected.

In this way, instead of running complex aggregation function, each estimation on the
global execution time only requires a single comparison operation. Therefore, using PERT
chart can greatly improve the efficiency in estimating the global execution time.

5.3 Decision Phase

Once a suspicion of global SLA violation is reported, the decision phase is activated to
decide whether or not the proactive adaptation is needed. In this section, both static and
adaptive decision strategies are introduced to evaluate the trustworthy level of a suspicion
in order to accurately identify the need for proactive adaptation.

5.3.1 Decision Function

A suspicion of global SLA violation is determined based on the estimation of future exe-
cution. Therefore, the suspected violation may not definitely happen in the end. In order
to evaluate the confidence level of a suspicion S, we introduce the concept of reliability of

133

Chapter 5. A Two-Phase Online Prediction Approach

suspicion, denoted as τs. τs is defined by a positive real number: greater value indicates
a stronger suspicion of global SLA violation that is more probably to occur in the future.
The value of τs is determined by the two attributes of the corresponding suspicion tuple,
namely the estimated delay (TD) and the completion degree (TS). Generally speaking,
we have the following common knowledges:

1. Knowledge K1: early suspicions are less reliable, since the global SLA violations are
suspected based more on the estimated values than the measured ones. By contrast,
along with the execution, as more and more local execution time have been measured,
a late suspicion is considered as more reliable.

2. Knowledge K2: greater estimated delay refers to a more reliable suspicion. Since it
reflects a worse runtime execution state, the violation of global SLA is more likely
to happen.

Take the following three suspicions for example:

S1=<0.082, 0.125>, S2=<0.082, 0.561> and S3=<0.015, 0.561>

First, S1 and S2 have the same estimated delay with different completion degrees. Ac-
cording to the knowledge K1, the delay estimated by S2 is more likely to happen so that
τs(S2) should be greater than τs(S1). Second, S2 and S3 are generated at the same time
with different estimated delays. Followed by the knowledge K2, S2 is stronger than S3

and thus it has greater reliability.

However, this knowledge is too abstract for SBA providers to draw decisions for proac-
tive adaptations, since they can only roughly tell whether a suspicion is strong or weak
(compared to another suspicion). In our approach, we aim to express these abstract knowl-
edges by defining an evaluation function F , which associates τs with both TD and TS,
denoted by:

τs(S) = F (TD, TS) (5.9)

By this means, once a suspicion of global SLA violation is reported at runtime, its
reliability can be calculated. Meanwhile, an SBA provider is required to specify a threshold
of reliability, noted as ρw, to express his/her minimum acceptable expectation on the
reliability of suspicion. A suspicion S will be accepted if τs(S) is greater than ρw; otherwise,
it will be neglected. Therefore, a suspicion of global SLA violation will lead to a real
decision for proactive adaptation if and only if the Formula 5.10 is satisfied.

F (TD, TS) > ρw (5.10)

Since ρw is a constant given by the SBA provider at design time, Formula 5.10 can be
thus rewritten to Formula 5.11, with FD(TD, TS) = F (TD, TS)− ρw:

FD(TD, TS) > 0 (5.11)

Formula 5.11 is called the decision function(decision curve). Since each suspicion is
described by two attributes, it can be represented by a point on an X-Y 2-dimensional
coordinate plane, with X-axis measuring TS and Y-axis representing TD. In this context,
the Formula 5.11 outlines the decision area on the X-Y coordination plane4. By this

4In this scenario, since both TS andTD can be only positive real values, our discussion focus on the
first quadrant.

134

5.3. Decision Phase

means, when an suspicion is reported, if the corresponding point belongs to the decision
area, the final decision for adaptation will be made; otherwise, it will be neglected.

In the following, we provide three static strategies and an adaptive strategy to define
decision functions. Static strategy relies on an SBA provider’s experiences and knowl-
edges to explicitly specify a decision function that expresses the relationship between the
maximum acceptable estimated delay with respect to the completion of execution. By con-
trast, adaptive strategy uses machine learning techniques to build a classifier that learns
the knowledge from past suspicions in order to predict whether or not the Formula 5.11
can be satisfied once a suspicion is reported.

5.3.2 Static Decision Strategies

An SBA provider can define the decision function based on his/her knowledges or experi-
ences. In the following, we are going to present three different types of decision functions
that can be applied in different execution contexts.

Qualitative strategy. The idea of qualitative strategy follows the knowledge K1, since
early suspicions are considered as inaccurate, they all will be neglected regardless how large
the estimated delay is; by contrast, all late suspicions, even with small estimated delays,
will be accepted. The SBA provider has to specify a threshold of completion, noted as δt,
which tells an early suspicion from a late one: a suspicion with TS greater than δt will
be considered as a late one with a high level of reliability, and thus it will be accepted;
otherwise, it will be neglected. Using this strategy, the decision is made based on only TS

whereas TD is not taken into consideration. Accordingly, the decision function is defined
as follows:

FD
qual(TD, TS) = TS − δt > 0 (5.12)

The decision area of the qualitative strategy is defined by Formula 5.12, which is
depicted by the shaded area in Figure 5.3(a). Figure 5.3(d) illustrates the three sample
suspicions provided in Section 5.3.1. Using qualitative strategy, S1 is outside the decision
area so that it is considered as an inaccurate early decision and it will be neglected; whereas
both S2 and S3 will be accepted.

Quantitative strategy. The main limitation of qualitative strategy is that the adapta-
tion cannot be triggered until a certain percentage of workflow has been executed, despite
the fact that a huge delay may arise at the beginning of the execution, such as S1. In
order to react to such problem as early as possible, quantitative strategy evaluates a sus-
picion with the consideration of both TS and TD. In this case, the SBA provider specifies
a decision function based on his/her own experience. As a proof-of-concept example, a
possible quantitative decision function is given by Formula 5.13.

F
quan
D (TD, TS) = TD − (1− TS)

3
2 ∗ p > 0, with p = 0.05 (5.13)

The decision area is illustrated by the shaded area above the curve outlines in Fig-
ure 5.3(b). Accordingly, suspicion S1 and S2 will be accepted whereas S3 will be neglected.

Hybrid strategy. The quantitative strategy may not accept a suspicion with slight
delays when the execution is approaching to the end, such as S3. In some cases, since
most part of workflow has been executed, a slight delay can also finally lead to a great

135

Chapter 5. A Two-Phase Online Prediction Approach

TS

TD

1ρt0

Completion of Execution

E
st
im

a
te
d
D
el
ay

decision area

(a) Qualitative Strategy

TS

TD

1ρt0

Completion of Execution

E
st
im

a
te
d
D
el
ay decision area

(b) Quantitative Strategy

TS

TD

1ρt0

Completion of Execution

E
st
im

at
ed

D
el
ay decision area

(c) Hybrid Strategy

x

y

1ρt0

Completion of Execution

M
ax

al
lo
w
ed

d
el
ay
(s
)

S1×
S2
×

S3×

(d) Sample Suspicions

Figure 5.3: Comparison of Static Strategies

penalty due to global SLA violation. The hybrid strategy is more critical: by specifying
δt, if TS is greater than δt, the qualitative strategy is applied. That is to say, S will
be absolutely accepted. Otherwise, the quantitative strategy is applied. Accordingly, its
decision function follows Formula 5.12 when TS < δt and follows Formula 5.13 otherwise.

The decision area of hybrid strategy is depicted in Figure 5.3(c). We can see that
the hybrid strategy is more strict than both qualitative and quantitative strategies, since
its decision area covers the decision area of both qualitative and quantitative strategies.
Using hybrid strategy, all three sample suspicions in Figure 5.3(d) will be accepted.

5.3.3 Adaptive Decision Strategy.

Static decision strategies are useful when insufficient historical information is available.
However, from the long-run perspective, it has the following limitations: first of all, it is a
challenging task for SBA providers to manually identify a suitable decision function based
on his/her past experiences: sometimes such experience is hard to express using a regular
function. Additionally, once defined, the evaluation function cannot be self-adjusted (but
can be manually modified by SBA providers) in order to automatically improve the quality
of decision.

The adaptive strategy models adaptation decision as a classification problem. First
of all, in the training phase, no adaptation plan will be actually identified and executed.
Therefore, the correctness of a suspicion (noted by CS) can be evaluated when the relative
execution of workflow terminates: if the global SLA is actually violated in the end, this
suspicion is proved as correct (CS=true); otherwise, it is marked as a false one (CS=false).

136

5.4. Evaluation

Figure 5.4: Adaptive Decision Strategy

By this means, after an execution of SBA instance completes, all the reported suspicion
tuples can be transformed into a set of5 suspicion records. A suspicion record is described
by two numeric attributes (TD and TS) and a categorical attribute (CS) that is defined
as the class (can be either true or false), denoted as follows:

SR =< TD, TS,CS >

In the training phase, an SBA is executed N times, and all the collected suspicion records
are organized into a training dataset, as illustrated in Figure 5.4. The dataset is often
depicted as a table, with each row representing a suspicion record.

Based on machine learning technique [43], a classifier6 is built to progressively learn
the knowledge from past experiences, namely the dataset. The knowledge implements the
decision function by means of either a set of complex functions, or a decision tree, or a
number of rules (depending on different implementation of classifier). Compared to static
strategies, the decision area of the adaptive strategy is usually irregular (sometimes, it is
impossible to outline its decision area on an X-Y coordinate plane).

Later in the prediction phase, once a suspicion is reported, the corresponding suspicion
tuple is used as the input of the classifier. The classifier is able to determine the class of
this new suspicion based on its knowledge and the attributes of this suspicion . If it is
classified as correct (CS=true), it means that the Formula 5.11 is satisfied and the adap-
tation decision is accordingly made; otherwise, this suspicion is neglected. The classifier
is required to be retrained (update the knowledge) to improve the prediction quality. The
retraining can be carried out in one of the following ways: 1) after every N predictions,
2) periodically (after a fixed duration), 3) on-demand by the SBA provider.

In order to ensure the prediction accuracy, the dataset is required to be cleaned in
order to detect and correct (or remove) corrupt (or inaccurate) suspicion records from the
training dataset. Due to the limited space, the topic of data cleansing is out of the scope
of this dissertation. Interested readers can refer to [43].

5.4 Evaluation

Our approach is evaluated and validated by a set of experiments built on a realistic sim-
ulation model, since real implementation is costly, which requires to implement the entire
MAPE control loop as well as dealing with some other challenging problems of on-demand
SBA execution, such as service selection, or interface mediation.

5Since no adaptation plan will be proactive executed, an execution of SBA instance may report multiple,
one, or even no suspicion, which depends on the execution.

6We use the existing classifiers implemented by WEKA machine learning toolkit [72].

137

Chapter 5. A Two-Phase Online Prediction Approach

Table 5.1: QoS Dataset

ClientIP WSID Time (ms) DataSize HTTP Code HTTP Message
35.9.27.26 8451 2736 582 200 OK
35.9.27.26 8460 804 14419 200 OK
35.9.27.26 8953 20176 2624 -1 java.net.SocketTimeoutException:

connect timed out

5.4.1 Experiment Setup: Realistic simulation model

Virtual Service

The objective of two-phase online prediction approach is to predict failures in the future
that are raised from non-functional level, namely QoS degradations. As a result, for each
constituent service, we are only interested in how it responds rather than what it responds.
In this context, instead of invoking real-world Web services, each task is bound to a Virtual
Service (VS). A virtual service is a Web service that does not provide any functionality:
it returns what it has received. But it simulates the non-functional aspects of a service
invocation (e.g. response time, availability).

We have created 100 virtual services based on the realistic QoS datasets provided
by [163]. The datasets record the non-functional performances (such as response time,
throughput, etc.) of a large number of real-world service invocations. The authors have
invoked 100 Web services from 150 distributed service clients located all over the world.
The datasets contain 150 files, where each file includes 10,000 Web service invocations
performed by one service client to all 100 Web services (in this case, each Web service has
been invoked for about 100 times). A sample dataset is illustrated in Table 5.1.

By using the datasets, a virtual service is created by collecting all the invocation records
to the same Web service in a file. By using these records, each virtual service defines two
methods:

1. simulate() randomly selects one of the past records to simulate the non-functional
aspects of an invocation.

2. getExpectedRT () determines the expected response time by specifying a percentage
threshold φ, which indicates the percentage of past invocations which can respond
within the expected value. In our experiments, in order to create a scenario with
high violation rate, φ is set to 0.6. In other words, an invocation to a virtual service
has 40% possibility to violate local SLA.

Simulate an execution of SBA.

Our experiments are based on the experimental workflow depicted in Figure 5.5, which
composes 8 tasks and two parallel execution paths. An execution of this SBA is simulated
through three stages:

1. In the first stage, an SBA instance is created by binding each task ti to a randomly
selected virtual service, denoted as vs(ti). Then, the local SLA for each task ti can
be generated by completing a template with the expected response time of vs(ti)
(calling the vs(ti).getExpectedRT () method). Next, the global SLA is generated by

138

5.4. Evaluation

Figure 5.5: Experimental Workflow

computing the expected end-to-end execution time using aggregation functions [81].
Finally, based on both local and global SLAs, a PERT chart is constructed.

2. The second stage simulates the execution of this SBA instance. First of all, each se-
lected virtual service vs(ti) simulates the response time (calling the vs(ti).simulate()
function) as the real execution time of task ti. Then, by running aggregation func-
tions along all execution paths, the real accumulated execution time by which the
execution of task ti is completed can be computed, denoted as AT (ti). Next, a col-
lection of “receive” events are created with the corresponding timestamp, denoted
as Recv= <ti, AT (ti)>.

3. Finally in the third stage, these “receive” events are sorted by the timestamp and
then sequentially processed: firstly, if AT (ti) > TL(ti), a set of predictors are acti-
vated to make adaptation decision based on different strategies. A predictor is a Java
object that implements a specific decision strategy. After the prediction, the PERT
chart is updated and the static method is used for estimations of local execution
time.

5.4.2 Evaluation Metrics.

Contingency table metrics [127] are used to investigate how accurately a prediction ap-
proach works. Two phase online prediction approach can terminate with two possible
states: warning or silence (refer to Figure 5.1). Using the contingency table, as shown in
Table 5.2, a warning is defined as a positive decision (P), which asserts that the global SLA
will be violated in the near future; by contrast, a silence is formally named as a negative
decision (N) which decides that no adaptation was needed for the entire duration of the
execution. In order to evaluate the quality of decision, no adaptation plan will really be
identified and executed. For a positive decision, if a violation is really occurred in the end,
it is proven to be a true positive (TP); otherwise, it is a false positive (FP). Similarly,
a negative decision can be either a true negative (TN) if no violation really happens at
the end of execution, or otherwise a false negative (FN). Based on the contingency table,
different evaluation metrics are defined as follows:

• Accuracy (a). It is the ratio of all correct decisions to the number of all decisions:

a =
TP + TN

TP + TN + FP + FN
=

TP + TN

T
(5.14)

A greater value indicates a more accurate prediction approach.

• Effectiveness (e). It is the ratio of all correct silences to the number of all silences:

e =
TN

TN + FN
(5.15)

139

Chapter 5. A Two-Phase Online Prediction Approach

Table 5.2: Contingency Table

Real: violated Real: not violated Sum
Prediction: violated True Positive (TP) False Positive (FP) Positive
(warning) (correct warning) (false warning) (P)
Prediction: not violated False Negative (FN) True Negative (TN) Negative
(silence) (false silence) (correct silence) (N)
Sum Violations (V) Compliance (C) Total (T)

A greater value suggests that more violation can be successfully predicted, thus the
prediction approach is more effective.

• Precision (p). It is the ratio of all correct warnings to the number of all warnings:

p =
TP

TP + FP
(5.16)

A greater value implies a higher reliability for each warning, therefore the prediction
approach is more precise.

• Decision Time (dt). Only positive decisions have dt. It is measured by the maximum
number of tasks that have already been completed on different execution paths while
the proactive adaptation decision is made.

5.4.3 Experiment 1: Evaluation of Traditional Prediction Approaches

In this experiment, the traditional prediction approaches are evaluated, namely the check-
point based approaches and runtime verification approaches. Firstly, after each task ti
(1 ≤ i ≤ 8) in the experimental workflow, a checkpoint Ci is defined as a possible decision
time point, as illustrated in Figure 5.5. 8 predictors are created based on a single check-
point: predictor Pi (1 ≤ i ≤ 8) can decide only when the execution of workflow reaches to
checkpoint Ci. Please note that the decisions of P8 must be definitely accurate because all
its decisions are determined after the execution of workflow has completed. In addition,
two predictors are defined based on multiple checkpoints: P9 is activated at both C2 and
C7 while P10 can decide at either C4 or C6. Therefore, P9 can be seen as the logical dis-
junction of P2 and P7 since P9 will alert a warning of SLA violation when either P2 or P4

(or both of them) alerts a warning. Similarly, P10 is the logical disjunction of P4 and P6.
We run 1000 executions of SBA, Table 5.3 summarizes the performance of all predictors.

Decisions based on a single checkpoint. The results show that, by using a single
checkpoint, it is hard to draw both early and accurate adaptation decision. First of all,
the results have proved that early decisions are less accurate. Due to the large number of
FP and FN decisions, P1 and P2 result in lower accuracy, precision as well as effectiveness.
By contrast, as the most part of workflow has been executed, P7 performs largely better
but its decisions come too late to carry out effective preventive adaptations (only one task
remains unexecuted). Furthermore, the other four predictors perform poorly since they
are based on the checkpoints located on two parallel execution branches. In the context of
on-demand execution, each execution of SBA selects different sets of constituent services.
Therefore, the critical path can be only determined at runtime due to on-demand service

140

5.4. Evaluation

Table 5.3: Experimental Results: Traditional Approaches

Metrics P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

TP 191 243 171 211 165 191 397 441 406 359
FP 156 146 59 45 61 41 39 0.0 162 79
FN 250 198 270 230 276 250 44 0.0 35 82
TN 403 413 500 514 498 518 559 520 397 480
a 0.59 0.66 0.67 0.73 0.66 0.71 0.92 1.0 0.8 0.84
e 0.43 0.55 0.39 0.48 0.37 0.43 0.90 1.0 0.92 0.81
p 0.72 0.74 0.90 0.92 0.89 0.93 0.93 1.0 0.71 0.86
dt 1 2 3 4 3 4 5 6 2.95 4.0

selection. If a task (checkpoint) is not on the critical path, it has thus a larger slack time
and a longer delay can be tolerated. Therefore, from its local perspective, the execution
is considered as running well and no warning will be reported. That explains why P3, P4,
P5 and P6 have less FP decisions but a tremendous number of FN decisions, which lead
to a poor performance on average.

Decisions based on multiple checkpoints. An additional checkpoint can bring an-
other chance to report (either true or false) warnings of SLA violations. Take P9 for
example, if a violation is failed to be predicted by P2, it still has chance to be alerted
by P7. Thus, compared to P2, P9 has greatly improved the TP number; meanwhile, only
few FP decisions are additionally produced due to the high accuracy of P7. On the other
side, compared to P7, although P9 does get some quality degradation, but the decision
time is improved by 2 execution steps. This is the same for P10, compared to P4 and P6,
both accuracy and effectiveness are significantly improved. However, as an extreme case,
we assume that a predictor Px is the logical disjunction of all predictors Pi (1 ≤ i ≤ 1).
So Px can draw adaptation decisions at all possible checkpoints. It is similar to runtime
verification techniques introduced in Section 1.4.2: whenever a deviation is estimated, the
adaptation decision is made. In this case, any a predictor from P1 to P8 decides, Px will
also decide. Thus, Px cannot have less FP numbers than P1. Such a high FP number will
result in a poor precision. From all above discussions, we can see that it is challenging to
determine both early and accurate adaptations decisions.

5.4.4 Experiment 2: Evaluation of Our Approaches

In the second experiment, both static and adaptive decision strategies presented in this
thesis are evaluated. The qualitative predictor Pql implements qualitative strategy by
specifying the weight threshold δt to 0.65. The quantitative predictor Pqt implements the
evaluation function given in Formula 5.13. This function can tolerate greater deviation
at the beginning of the execution (as shown in Figure 5.3(b)). Additionally, the hybrid
predictor Phb invokes Pqt when TS is less than 0.65, and uses Pql otherwise. Finally, the
adaptive predictor Pad implements a set of classifiers based on WEKA machine learning
toolkit [72]. All the suspicions reported in the first experiment are used to generate a set
of suspicion records, which are organized in the dataset file in the following form

@relation knowledge

@attribute delay real

@attribute weight real

@attribute violation {true, false}

141

Chapter 5. A Two-Phase Online Prediction Approach

Table 5.4: Experimental Results: Evaluate Different Decision Strategies

Metrics P7 P9 P10 Pql Pqt Phb Pad

a 0.91 0.82 0.84 0.94 0.95 0.92 0.94
e 0.90 0.93 0.81 1.0 1.0 1.0 0.95
p 0.91 0.74 0.87 0.89 0.91 0.86 0.93
dt 5 3.04 4 4.2 3.9 3.8 3.8

@data

0.082, 0.125, true

...

During the training phase (Step 1 in Figure 5.4), all classifiers are used to learn the
knowledge from the dataset, and their performances are evaluated by cross-validation.
When a new suspicion is reported, the classifier with the best predictive accuracy is then
used for the prediction (Step 2 in Figure 5.4). Each classifier requires at least 300 historical
suspicion records (min training size=300); if the dataset contains more than 1000 records,
it selects the 1000 most recent items (max training size=1000). The retraining is carried
out for every 200 predictions.

Another 1000 executions are carried out to evaluate our approach. As a comparison,
the three predictors with the best decision quality in the first experiment, namely P7, P9

and P10, are also used. The performance of different predictors is shown in Table 5.4.

Comparison of different strategies. First of all, we can see that the quality of all
static and adaptive decision strategies can be considered on the same level. Please note
that: 1) Pql decides later than the other three strategies, since it can decide only when a
certain part of workflow has been executed. 2) As introduced, Phb is more critical than Pql

and Pqt: it prefers FP predictions rather than FN ones. Thus it accepts more suspicions
than other two two strategies, which can result in a lower precision whereas a higher
effectiveness. 3) Static strategies can successfully prevent almost all of SLA violations
(luckily, in this experiment, no SLA violation has been missed). Meanwhile, adaptive
strategy has a lower rate of false silence (5%).

Comparison of our approach with traditional approach. Secondly, compared to
checkpoint based predictors (single-step predictions), the results show that our approach
can make more accurate adaptation decisions as early as possible. First of all, the decision
quality of our approach can be considered on the same level as P7. But our approach
improves the decision time by more than one execution step. Secondly, P9 decides a
little earlier than our approaches (less than one execution step), but our approach has a
remarkable improvement in accuracy (over 10%), effectiveness (5% higher on average) and
precision (15% better). Finally, compare to P10, our approaches have almost the same
decision time but better accuracy (≈10%) as well as higher effectiveness (≈15%).

5.4.5 Experiment 3: Evaluations over Different Workflows

In order to evaluate the performance of our approach over different workflows, we create
three fictitious workflows without real meanings:

• WF1: a linear workflow with 9 tasks (a single execution path);

142

5.4. Evaluation

Table 5.5: Accuracy

WF Pql Pqt Phd Pad

1 0.93 0.93 0.91 0.96

2 0.90 0.94 0.89 0.95

3 0.91 0.93 0.89 0.97

Table 5.6: Precision

WF Pql Pqt Phd Pad

1 0.88 0.90 0.85 0.95

2 0.83 0.90 0.81 0.95

3 0.83 0.88 0.80 0.96

• WF2: a medium workflow with 17 tasks and 6 execution paths;

• WF3: a complex workflow with 30 tasks and 9 execution paths.

For each workflow, we firstly simulate 300 executions to initiate the dataset of suspicion
records, and then 1000 simulations are carried out by using Pql, Pqt, Phb and Pad. Table 5.5
and Table 5.6 summarize respectively the accuracy and the precision of different predictors.
From the experimental results, we have the following observations:

1. our approach is not limited to a specific workflow and it can perform well for different
kinds of workflows;

2. adaptive strategy makes decisions based on the knowledge learned from the past
executions, thus its performance can always be maintained at a high level when used
for different workflows;

3. the performances of static strategies depend on the predefined evaluation function:
as the second experiment demonstrates, a suitable evaluation function can perform
as well as adaptive strategy; otherwise, it may get a little performance degradation
but it is still fairly good (compared to other approaches).

143

Chapter 5. A Two-Phase Online Prediction Approach

144

Conclusions and Perspectives

With the advent of cloud computing and Software-as-a-Service (SaaS), service-oriented
computing has been adopted today by many enterprises as a flexible solution for building
loosely-coupled Service-Based Applications (SBA). An SBA can be created by defining a
workflow to coordinate a set of third-party Web services that are running on heterogenous
platforms and distributed infrastructures. Due to this dynamic, distributed, and long-last
evolving environment, flexible execution of SBA is a crucial but challenging issue from
both academic and industrial perspectives. In this dissertation, we have discussed the
flexible execution and adaptation of SBAs.

Contributions

This dissertation has the following contributions:

A Chemistry-Inspired Middleware for Flexible Execution of Service-Based Ap-
plications. Inspired from chemistry, service-based systems are modeled as distributed,
self-organized and self-adaptive chemical systems. Services and data are described us-
ing biochemical concepts such as cells and molecules. By defining a variety of reaction
rules, service selection, coordination and adaptation are described as a series of pervasive
chemical reactions in the middleware. This work has the following contributions.

1. Context-aware selection of services7. In the middleware, an SBA can be ab-
stractly defined at design time and suitable constituent services can be selected and
integrated on the fly according to specific execution context. The selection of services
can follow both local and global constraints. By introducing the concept of Partially
Instantiated Workflow (PIW), service selection is performed as a recursive process to
construct PIWs, from simple ones to complex ones, until the entire workflow is fully
instantiated. The constructions of PIWs can be carried out in parallel rather than
a sequential or one-shot process adopted by other approaches. The contribution of
this work leads to the publication [63].

2. Flexible coordination of services. Traditional service orchestration approaches
(e.g. WS-BPEL) have some limitations, such as static nature, inflexibility to express
unstructured workflow, etc. I have investigated the use of chemical programming
model for more flexible expression of service orchestration. Service composition
is described as a compound molecule and service coordination is expressed by a

7This work is conducted in collaboration with CNR (Italian National Research Council)

145

Conclusion and Perspectives

group of reaction rules. We have shown that 1) most of BPEL constructs can be
equivalently expressed using reactions rules and 2) complex workflow patterns as
well as unstructured workflows can be described by defining a group of rules. This
work is summarized in the publications [139], [141].

3. Flexible adaptation for SBAs. Due to the distributed environment, the execution
of SBAs may fail or fail to meet the expected end-to-end QoS. SBA providers have
to define a number of adaptation plans to react to various runtime failures. By using
chemical programming model, a variety of adaptation plans can be easily expressed in
terms of reactions rules with a high degree of flexibility. By using a real-life example
as a proof of concept, we have demonstrated a number of chemical reactions capable
of modifying the binding references or even the workflow structures on the fly in
response to either functional or non-functional runtime failures. The summary of
this work can be found in the publication [141], [142].

4. Decentralized execution models for SBA. Without centralized point of coordi-
nation, choreography model is much more complicated than orchestration model. In
this dissertation, we have introduced two choreography models for self-adaptive ser-
vice coordination across organizational boundaries, namely semi-choreography and
auto-choreography. We have shown that the coordination rules and adaptation rules
for orchestration model can be directly reused (or with little modifications) for both
choreography models. The contribution of this work is presented in the publica-
tion [141].

5. Distributed implementation of middleware. All above-mentioned work have
been validated by a number of real implementation. First, as a proof-of-concept
validation to show its viability, we have implemented a real-life SBA in the middle-
ware. All chemical services are implemented using Higher-Order Chemical Language
(HOCL) and running over distributed infrastructures (Grid’5000). In the following,
in order to evaluate the performance of different models, we have conducted a num-
ber of experiments by executing two experimental workflows in the middleware. Part
of the experimental results have contributed to the publication [141].

A Two-Phase Approach for Accurate and Timely Adaptation Decision. SLA
violations can lead to some undesirable results to SBA providers, such as reputation
degradation and penalty payment. Proactive adaptation aims at executing preventive
adaptation actions before SLA violations actually occur. One of the key challenges is to
accurately draw adaptation decisions: on one side, it is desirable to avoid as many as SLA
violations by executing preventive adaptation actions (effectiveness); on the other side,
since runtime adaptation is costly, we aim to avoid unnecessary adaptations (precision).
In response to this challenge, I have proposed a two-phase online prediction approach.
Adaptation decisions can be made by predicting an upcoming end-to-end QoS degrada-
tion through two-phase evaluations. 1) First, the estimation phase monitors the execution
of workflow based on Program Evaluation and Review Technique (PERT) and evaluates
whether the end-to-end QoS degradation is probably to occur. If that is the case, a sus-
picion of degradation is reported. 2) Then, the decision phase evaluates how likely the
suspected degradation will actually occur based on the knowledge learned from past ex-
periences by using machine learning technique. This approach is validated and evaluated
through a series of realistic simulations. The results have shown that the two-phase ap-
proach is able to draw not only accurate but also timely adaptation decisions compared

146

Conclusion and Perspectives

to other traditional prediction approaches. The presentation of this work can be found in
our publication [140].

Perspectives

Our future work will concentrate on two research directions: firstly, we aim to improve the
reliability and flexibility of the middleware; furthermore, we would like to extend HOCL
with new features in order to improve its efficiency.

Improvement of Reliability and Flexibility of Middleware

Elastic Distributed Chemical Infrastructures. All the experiments presented in
this dissertation have been conducted on distributed chemical infrastructures. However,
all the nodes are pre-configured with chemical runtime to execute chemical programs. And
then, the SBA providers have to manually distribute HOCL programs to different nodes.
In the future, we aim to build flexible distributed chemical infrastructures by integrating
a number of components capable of managing infrastructures at runtime. By this means,
SBA providers are able to submit their requests for deploying and executing chemical
programs but do not need to consider how these programs can be executed. New chemical
virtual machines can be configured (or the idled ones can be released) according to the
execution context.

Reliable Distributed Chemical Infrastructures. In this dissertation, we assume
that the distributed chemical infrastructures are reliable. However, a chemical virtual
machine (CVM) may physically crash or the connection between two CVMs might be
interrupted. In the future, we aim to integrate some fault-tolerance mechanisms to build
reliable distributed chemical infrastructures. One of our ongoing work [137] is to implement
heartbeat failure detectors to notice such middleware-level failures. Each chemical service
regularly sends heartbeat messages (represented by a cell of molecules) to some of its
“neighbors”. By this means, the downtime of a CVM can be noticed since its heartbeat is
lost. Once a failure is detected, some reaction rules can be designed to replace a constituent
chemical services running on this CVM by an alternative one.

Intelligent Chemical Service Ecosystem. In the future, we expect to integrate the
two-phase online prediction approach into the chemical middleware. We aim to define a
number of learning rules that can learn from past execution experiences and generate/up-
date a set of decision rules on the fly. These decision rules represent the knowledges to
make decisions for proactive adaptations. Additionally, in the current implementation, a
service composition can be executed by different models. However, an SBA provider is
required to specify its desirable model before the execution can starts (by activating differ-
ent sets of rules). In the near future, the execution of SBA is expected to be self-adaptable
to select the “best” model to execute an SBA instance according to the execution context.

Improvement of HOCL

HOCL exhibits several desirable characteristics such as autonomicity, dynamicity, evolv-
ability, parallelism and adaptability. However, due to a higher level of abstraction, it also
presents some limitations. The future work aim to improve some of these limitations, as
stated below.

147

Conclusion and Perspectives

Efficiency. Personally, I think efficiency is the biggest obstacle for chemical program-
ming model to be widely accepted. A chemical solution may contain a huge number of
molecules, including both data and reaction rules. It is challenging to efficiently detect
reactable molecules. The current HOCL implementation uses brute-force approach: for
each rule, all possible combinations of molecules will be tested in order to find a possible
reaction. Accordingly, it is costly in terms of execution time.

Currently, we can avoid this limitation by decomposing a big HOCL program into
several smaller ones. Some reaction rules are designed to take charge of the communication
among them. By this means, each chemical program can remain in a reasonable size8 so
that the reactions are able to complete faster. Accordingly, the difference in efficiency
between a chemical program and other traditional approaches can be neglected.

In the future, we would like to improve the time consumption in executing HOCL
programs. The main challenge lies in how to efficiently detect reactable molecules.

Security. Another important issue is the security. In the current architecture, any
HOCL program can freely write a number of molecules to remote ones, and these molecules
can immediately take part in the reactions in the remote chemical solutions. This mecha-
nism promotes asynchronous communication between nodes. Nevertheless, it brings high
degree of risks. This is because the reaction rule is a special kind of molecule, it can also
be passed between chemical solutions. In this context, once an HOCL program receives
a reaction rule from another program, such an external reaction rule can lead to a series
of chemical reactions in its local chemical solution by consuming local molecules. It may
raise some severe problems.

For example, a malicious user can define a reaction rule as follows:

let malicious rule = replace x ::String, ?w by x

Once a chemical solution contains a string, the rule malicious rule will remove anything
else. In this case, if this malicious user write a cell including the rule malicious rule and
a string to a remote chemical solution, all the contents in that remote chemical solution
will be removed. Considering if a chemical service receives this rule and a string, all
its predefined molecules and rules will be removed. Accordingly, it cannot provide the
expected functionality any more and it also becomes responseless (because the rule send
is also removed, it losses the ability to pass the molecule(s) to other solutions).

In order to increase the security, in the future, we aim develop some analysis approaches
or signature-based mechanisms to decide whether an external rule can be executed.

8In the current implementation of middleware, in order to ensure the performance, each program has
less than 15 reaction rules and each rule requires less than 5 input molecules.

148

Bibliography

[1] Extensible Markup Language (XML). http://www.w3.org/XML/. 23

[2] Grid’5000. http://www.grid5000.fr. 117

[3] IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/. 32

[4] Simple Object Access Protocol (SOAP) 1.2. http://www.w3.org/TR/soap/. 23

[5] Web Services Business Process Execution Language Version 2.0. http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html. 33, 34, 46

[6] Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language.
http://www.w3.org/TR/wsdl20/. 23

[7] Wikipedia. http://en.wikipedia.org/wiki/Main_Page. 36

[8] Workflow Patterns home page. http://www.workflowpatterns.com. 25, 68

[9] ActiveVOS. ActiveVOS. http://www.activevos.com/. 35

[10] S. Ahuja, N. Carriero, and D. Gelernter. Linda and friends. Computer, 19(8):26 –34,
aug. 1986. 49

[11] Lifeng Ai, Maolin Tang, and Colin Fidge. Partitioning composite web services for
decentralized execution using a genetic algorithm. Future Generation Computer
Systems, 27(2):157 – 172, 2011.

[12] A. Al-Moayed and B. Hollunder. Quality of service attributes in web services. In
2010 Fifth International Conference on Software Engineering Advances (ICSEA),
pages 367–372, 2010. 26

[13] Mohammad Alrifai and Thomas Risse. Combining global optimization with local
selection for efficient qos-aware service composition. In Proceedings of the 18th in-
ternational conference on World wide web, WWW ’09, pages 881–890, New York,
NY, USA, 2009. ACM. 32

[14] Mohammad Alrifai, Dimitrios Skoutas, and Thomas Risse. Selecting skyline services
for qos-based web service composition. In Proceedings of the 19th international
conference on World wide web, WWW ’10, pages 11–20, New York, NY, USA, 2010.
ACM. 33

[15] Ayman Amin, Alan Colman, and Lars Grunske. An approach to forecasting qos
attributes of web services based on arima and garch models. In 2012 IEEE 19th
International Conference on Web Services (ICWS), pages 74–81. IEEE, 2012. 42

149

http://www.w3.org/XML/
http://www.grid5000.fr
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.w3.org/TR/soap/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.w3.org/TR/wsdl20/
http://en.wikipedia.org/wiki/Main_Page
http://www.workflowpatterns.com
http://www.activevos.com/

Bibliography

[16] Apache. Apache Axis2. axis.apache.org/axis2/java/core/. 117, 118

[17] Apache. Apache ODE. http://ode.apache.org/. 35

[18] Danilo Ardagna, Marco Comuzzi, Enrico Mussi, Barbara Pernici, and Pierluigi Ple-
bani. Paws: A framework for executing adaptive web-service processes. IEEE Soft-
ware, 24:39–46, 2007. 41

[19] Danilo Ardagna and Barbara Pernici. Global and local qos guarantee in web service
selection. In Business Process Management Workshops, Lecture Notes in Computer
Science, pages 32–46. Springer Berlin Heidelberg, 2006. 32, 41

[20] Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible pro-
cesses. IEEE Trans. Softw. Eng., 33(6):369–384, 2007. 25, 33, 41

[21] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58, 2010. 13

[22] Vijayalakshmi Atluri, SoonAe Chun, Ravi Mukkamala, and Pietro Mazzoleni. A
decentralized execution model for inter-organizational workflows. Distributed and
Parallel Databases, 22:55–83, 2007.

[23] J.-P. Banâtre, P. Fradet, and Y. Radenac. Generalised multisets for chemical pro-
gramming. Mathematical. Structures in Comp. Sci., 16(4):557–580, August 2006.
54, 55, 178

[24] J-P Banâtre, Pascal Fradet, and Yann Radenac. Higher-order chemical programming
style. In Unconventional Programming Paradigms, pages 84–95. Springer, 2005. 50,
51

[25] J.-P. Banatre, N. Le Scouarnec, T. Priol, and Y. Radenac. Towards “chemical”
desktop grids. In IEEE International Conference on e-Science and Grid Computing,
pages 135 –142, dec. 2007. 58

[26] Jean-Pierre Banâtre and Le Métayer Daniel. A new computational model and its
discipline of programming. Technical report, INRIA, 1986. 51

[27] Jean-Pierre Banâtre and Le Métayer Daniel. Programming by multiset transforma-
tion. Communications of the ACM (CACM), 36:98–111, 1993. 51

[28] Jean-Pierre Banâtre, Pascal Fradet, and Daniel Métayer. Gamma and the chemical
reaction model: Fifteen years after. In Multiset Processing, volume 2235, pages
17–44. 2001. 50, 51

[29] Jean-Pierre Banâtre, Pascal Fradet, and Yann Radenac. Principles of chemical pro-
gramming. Electronic Notes in Theoretical Computer Science, 124(1):133 – 147,
2005. 14, 50, 51, 178

[30] Jean-Pierre Banâtre, Pascal Fradet, and Yann Radenac. The chemical reaction
model recent developments and prospects. In Software-Intensive Systems and New
Computing Paradigms, pages 209–234. Springer, 2008. 50

150

axis.apache.org/axis2/java/core/
http://ode.apache.org/

Bibliography

[31] Jean-Pierre Banâtre and Thierry Priol. Chemical Programming of Future Service-
oriented Architectures. Journal of Software (JSW), 4(7):738–746, September 2009.
15, 58, 178

[32] Jean-Pierre Banâtre, Thierry Priol, and Yann Radenac. Service orchestration using
the chemical metaphor. In Software Technologies for Embedded and Ubiquitous Sys-
tems, Lecture Notes in Computer Science, pages 79–89. Springer Berlin Heidelberg,
2008. 15, 58, 178

[33] JP Banâtre, P Fradet, and Y Radenac. Classical coordination mechanisms in the
chemical model. From semantics to computer science: essays in honor of Gilles
Kahn. Cambridge University Press, Cambridge, 2008.

[34] Luciano Baresi, Sam Guinea, and Liliana Pasquale. Self-healing bpel processes with
dynamo and the jboss rule engine. In International workshop on Engineering of
software services for pervasive environments: in conjunction with the 6th ESEC/FSE
joint meeting, pages 11–20. ACM, 2007. 41

[35] A. Barker, C.D. Walton, and D. Robertson. Choreographing web services. IEEE
Transactions on Services Computing, 2(2):152 –166, april-june 2009. 37

[36] Umesh Bellur and Siddharth Bondre. xspace: a tuple space for xml & its application
in orchestration of web services. In Proceedings of the 2006 ACM symposium on
Applied computing, SAC ’06, pages 766–772, New York, NY, USA, 2006. ACM.

[37] Marin Bertier, Marko Obrovac, and Cédric Tedeschi. A protocol for the atomic
capture of multiple molecules on large scale platforms. In Distributed Computing
and Networking, pages 1–15. Springer, 2012.

[38] A.K. Bhattacharjee and R.K. Shyamasundar. Scriptorc: A specification language
for web service choreography. In IEEE Asia-Pacific Services Computing Conference
(APSCC ’08)., pages 1089 –1096, dec. 2008. 37

[39] W. Binder, I. Constantinescu, and B. Faltings. Decentralized orchestration of com-
positeweb services. In International Conference on Web Services (ICWS), pages 869
–876, sept. 2006.

[40] L. Bodenstaff, A. Wombacher, M. Reichert, and M.C. Jaeger. Monitoring dependen-
cies for slas: The mode4sla approach. In IEEE International Conference on Services
Computing (SCC ’08), pages 21 –29, july 2008. 42

[41] L. Bodenstaff, A. Wombacher, M. Reichert, and M.C. Jaeger. Analyzing impact fac-
tors on composite services. In IEEE International Conference on Services Computing
(SCC ’09), pages 218 –226, sept. 2009. 42

[42] George EP Box, Gwilym M Jenkins, and Gregory C Reinsel. Time series analysis:
forecasting and control, volume 734. Wiley, 2011. 42

[43] Max Bramer. Principles of Data Mining. Springer, 2007. 137

[44] Antonio Bucchiarone, Cinzia Cappiello, Elisabetta Di Nitto, Raman Kazhamiakin,
Valentina Mazza, and Marco Pistore. Design for adaptation of service-based appli-
cations: main issues and requirements. In ICSOC/ServiceWave 2009 Workshops,
pages 467–476. Springer, 2010. 39

151

Bibliography

[45] M. Caeiro, Zsolt Németh, and T. Priol. A chemical model for dynamic workflow
coordination. In 19th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), 2011.

[46] Manuel Caeiro, Zsolt Nemeth, and Thierry Priol. A chemical workflow engine for
scientific workflows with dynamicity support. InWorkflows in Support of Large-Scale
Science, 2008. WORKS 2008. Third Workshop on, pages 1–10. IEEE, 2008.

[47] Fabio Casati, Ski Ilnicki, LiJie Jin, Vasudev Krishnamoorthy, and Ming-Chien Shan.
Adaptive and dynamic service composition in eflow. In Advanced Information Sys-
tems Engineering, pages 13–31. Springer, 2000. 32

[48] Girish Chafle, Sunil Chandra, Pankaj Kankar, and Vijay Mann. Handling faults in
decentralized orchestration of composite web services. In International Conference
Service-Oriented Computing - ICSOC 2005, Lecture Notes in Computer Science,
pages 410–423. Springer Berlin Heidelberg, 2005. 39

[49] Girish Chafle, Koustuv Dasgupta, Arun Kumar, Sumit Mittal, and Biplav Srivas-
tava. Adaptation in web service composition and execution. In International Con-
ference on Web Services (ICWS’06)., pages 549–557. IEEE, 2006. 39

[50] Girish B. Chafle, Sunil Chandra, Vijay Mann, and Mangala Gowri Nanda. Decentral-
ized orchestration of composite web services. In Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters, WWW Alt.
’04, pages 134–143, New York, NY, USA, 2004. ACM. 38

[51] David A Chappell. Enterprise service bus. O’Reilly media, 2009. 49

[52] Anis Charfi and Mira Mezini. Aspect-oriented web service composition with ao4bpel.
In Web Services, pages 168–182. Springer, 2004.

[53] Anis Charfi and Mira Mezini. Hybrid web service composition: business processes
meet business rules. In Proceedings of the 2nd international conference on Service
oriented computing, ICSOC ’04, pages 30–38, New York, NY, USA, 2004. ACM. 47,
48, 49

[54] Anis Charfi and Mira Mezini. Ao4bpel: An aspect-oriented extension to bpel. World
Wide Web, 10(3):309–344, September 2007. 49

[55] Lin Chen, Minglu Li, and Jian Cao. Eca rule-based workflow modeling and imple-
mentation for service composition. IEICE Trans. INF. & SYST., Special Section on
Parallel/Distributed Computing and Networking, 2006. 48

[56] Lin Chen, Minglu Li, Jian Cao, and Yi Wang. An eca rule-based workflow design tool
for shanghai grid. In 2005 IEEE International Conference on Services Computing,
volume 1, pages 325 – 328, 2005.

[57] Desmond L. Cook. Program Evaluation and Review Technique–Applications in Ed-
ucation. 1966. 131

[58] G. Decker, O. Kopp, F. Leymann, and M. Weske. Bpel4chor: Extending bpel
for modeling choreographies. In IEEE International Conference on Web Services
(ICWS), pages 296 –303, july 2007. 37

152

Bibliography

[59] C. Di Napoli and M. Giordano. Chemical programming for adaptation in service-
based applications. In Software Services and Systems Research - Results and Chal-
lenges (S-Cube), 2012 Workshop on European, pages 38–39, 2012. 58

[60] Claudia Di Napoli, Maurizio Giordano, Zsolt Németh, and Nicola Tonellotto. Adap-
tive instantiation of service workflows using a chemical approach. In Euro-Par 2010
Parallel Processing Workshops, pages 247–255, 2010. 58

[61] Claudia Di Napoli, Maurizio Giordano, Zsolt Nemeth, and Nicola Tonellotto. A
chemical metaphor to model service selection for composition of services. In Proc.
of the 2nd Int. Workshop on Parallel, Architectures and Bioinspired Algorithms (in
conjunction with PACT’09), 2010.

[62] Claudia Di Napoli, Maurizio Giordano, Zsolt Nemeth, and Nicola Tonellotto. Us-
ing chemical reactions to model service composition. In Proceedings of the second
international workshop on Self-organizing architectures, 2010. 58

[63] Claudia Di Napoli, Maurizio Giordano, Jean-Louis Pazat, and Chen Wang. A chem-
ical based middleware for workflow instantiation and execution. In 3rd European
Conference on ServiceWave (ServiceWave), pages 100–111, 2010. 145

[64] Dimitris Dranidis, Andreas Metzger, and Dimitrios Kourtesis. Enabling proactive
adaptation through just-in-time testing of conversational services. In 3rd European
Conference ServiceWave, pages 63–75, 2010. 42

[65] Yagil Engel and Opher Etzion. Towards proactive event-driven computing. In Pro-
ceedings of the 5th ACM international conference on Distributed event-based system,
pages 125–136. ACM, 2011. 43

[66] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall Englewood Cliffs, 2004. 13

[67] Héctor Fernández. Flexible Coordination through the Chemical Metaphor for Service
Infrastructures. PhD thesis, University of Rennes 1, 2012. 36, 58

[68] Héctor Fernández, Thierry Priol, and Cédric Tedeschi. Decentralized Approach for
Execution of Composite Web Services using the Chemical Paradigm. 8th Interna-
tional Conference on Web Services (ICWS), 2010. 58

[69] Héctor Fernández, Cédric Tedeschi, and Thierry Priol. A chemistry-inspired work-
flow management system for scientific applications in clouds. In IEEE 7th Interna-
tional Conference on E-Science (e-Science), dec. 2011. 58

[70] Marcus Fontoura, Toby Lehman, Dwayne Nelson, and Thomas Truong. Tspaces
services suite: Automating the development and management of web services. In In
Proceedings of the 12th International World Wide Web Conference, 2003. 49

[71] Maurizio Giordano and Claudia Di Napoli. A chemical evolutionary mechanism for
instantiating service-based applications. In Parallel Architectures and Bioinspired
Algorithms, pages 267–286. Springer, 2012. 58

[72] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The weka data mining software: an update. SIGKDD Explor.
Newsl., 2009. 137, 141

153

Bibliography

[73] Bing Han, Jimmy Leblet, and Gwendal Simon. Hard multidimensional multiple
choice knapsack problems, an empirical study. Computers & Operations Research,
37(1):172 – 181, 2010. 32

[74] Rainer Hauser, Michael Friess, Jochen M Kuster, and Jussi Vanhatalo. Combining
analysis of unstructured workflows with transformation to structured workflows. In
Enterprise Distributed Object Computing Conference, 2006. EDOC’06. 10th IEEE
International, pages 129–140. IEEE, 2006. 46

[75] Qiang He, Jun Yan, Hai Jin, and Yun Yang. Adaptation of web service composi-
tion based on workflow patterns. In International Conference on Service-Oriented
Computing (ICSOC 2008), pages 22–37. Springer, 2008. 41

[76] Gabriel Hermosillo, Lionel Seinturier, and Laurence Duchien. Using complex event
processing for dynamic business process adaptation. In 2010 IEEE International
Conference on Services Computing (SCC),, pages 466–473. IEEE, 2010.

[77] Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and Marco Pistore. A
framework for proactive self-adaptation of service-based applications based on online
testing. In 1st European Conference ServiceWave, 2008. 42

[78] Victoria Hodge and Jim Austin. A survey of outlier detection methodologies. Artif.
Intell. Rev., 22(2):85–126, 2004. 129

[79] Lican Huang, David WWalker, Yan Huang, and Omer F Rana. Dynamic web service
selection for workflow optimisation. In Proceedings of the UK e-Science All Hands
Meeting, 2005. 32

[80] IBM. IBM WebSphere Process Server. http://www-01.ibm.com/software/

integration/wps/. 35

[81] M.C. Jaeger, G. Rojec-Goldmann, and G. Muhl. Qos aggregation for web service
composition using workflow patterns. In 8th International Enterprise Distributed
Object Computing Conference (EDOC), 2004. 139

[82] Dimka Karastoyanova, Frank Leymann, Jörg Nitzsche, Branimir Wetzstein, and
Daniel Wutke. Parameterized bpel processes: Concepts and implementation. In
Business Process Management, pages 471–476. Springer, 2006. 41

[83] Alexander Keller and Heiko Ludwig. The wsla framework: Specifying and moni-
toring service level agreements for web services. Journal of Network and Systems
Management, 11(1):57–81, 2003.

[84] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41 – 50, jan 2003. 39

[85] kepler. The Kepler Project - Kepler. https://kepler-project.org/. 35

[86] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. Springer, 1997.

[87] Turgay Korkmaz and Marwan Krunz. Multi-constrained optimal path selection.
In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, volume 2, pages 834–843. IEEE,
2001. 33

154

http://www-01.ibm.com/software/integration/wps/
http://www-01.ibm.com/software/integration/wps/
https://kepler-project.org/

Bibliography

[88] Daniel Le Métayer. Higher-order multiset processing. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 18:179–200, 1994. 50

[89] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar. Monitoring, prediction and
prevention of sla violations in composite services. In IEEE International Conference
on Web Services (ICWS’10), july 2010. 43, 129

[90] Philipp Leitner, Branimir Wetzstein, Florian Rosenberg, Anton Michlmayr,
Schahram Dustdar, and Frank Leymann. Runtime prediction of service level agree-
ment violations for composite services. In International Conference on Service-
Oriented Computing (ICSOC/ServiceWave’09), pages 176–186, 2009. 43

[91] Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. A distributed service-
oriented architecture for business process execution. ACM Trans. Web, 2010. 38

[92] Mu Li, JinPeng Huai, and HuiPeng Guo. An adaptive web services selection method
based on the qos prediction mechanism. In IEEE/WIC/ACM International Joint
Conferences on Web Intelligence and Intelligent Agent Technologies (WI-IAT’09),
volume 1, pages 395–402, 2009. 42

[93] An Liu, Qing Li, Liusheng Huang, and Mingjun Xiao. A declarative approach to
enhancing the reliability of bpel processes. In IEEE International Conference on
Web Services (ICWS’2007)., pages 272–279. IEEE, 2007. 41

[94] Jiming Liu and K.C. Tsui. Toward nature-inspired computing. Commun. ACM,
49(10):59–64, October 2006. 14, 178

[95] Rong Liu and Akhil Kumar. An analysis and taxonomy of unstructured workflows.
In Business Process Management, pages 268–284. Springer, 2005. 46

[96] Roberto Lucchi and Gianluigi Zavattaro. Wssecspaces: a secure data-driven co-
ordination service for web services applications. In Proceedings of the 2004 ACM
symposium on Applied computing, SAC ’04, pages 487–491, New York, NY, USA,
2004. ACM.

[97] Zakaria Maamar, Djamal Benslimane, Chirine Ghedira, Qusay H. Mahmoud, and
Hamdi Yahyaoui. Tuple spaces for self-coordination of web services. In Proceedings
of the 2005 ACM symposium on Applied computing, SAC ’05, pages 1656–1660, New
York, NY, USA, 2005. ACM. 50

[98] Nebil Ben Mabrouk, Sandrine Beauche, Elena Kuznetsova, Nikolaos Georgantas, and
Valérie Issarny. Qos-aware service composition in dynamic service oriented environ-
ments. In Proceedings of the 10th ACM/IFIP/USENIX International Conference on
Middleware, Middleware ’09, pages 7:1–7:20, New York, NY, USA, 2009. Springer-
Verlag New York, Inc. 33

[99] Sun Meng and Farhad Arbab. Web services choreography and orchestration in reo
and constraint automata. In Proceedings of the 2007 ACM symposium on Applied
computing, SAC ’07, pages 346–353, New York, NY, USA, 2007. ACM.

[100] Andreas Metzger, Osama Sammodi, and Klaus Pohl. Accurate proactive adaptation
of service-oriented systems. In Assurances for Self-Adaptive Systems, pages 240–265.
Springer Berlin Heidelberg, 2013. 16, 183

155

Bibliography

[101] Stefano Modafferi and Eugenio Conforti. Methods for enabling recovery actions
in ws-bpel. In On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, pages 219–236. Springer, 2006. 41

[102] Stefano Modafferi, Enrico Mussi, and Barbara Pernici. Sh-bpel: a self-healing plug-
in for ws-bpel engines. In Proceedings of the 1st workshop on Middleware for Service
Oriented Computing (MW4SOC 2006), pages 48–53. ACM, 2006. 41

[103] Oliver Moser, Florian Rosenberg, and Schahram Dustdar. Non-intrusive monitoring
and service adaptation for ws-bpel. In Proceedings of the 17th international confer-
ence on World Wide Web, WWW ’08, pages 815–824, New York, NY, USA, 2008.
ACM. 41

[104] Arun Mukhija, Andrew Dingwall-Smith, and David S Rosenblum. Qos-aware service
composition in dino. In Fifth European Conference on Web Services (ECOWS’07),
pages 3–12. IEEE, 2007. 32

[105] Christoph Nagl, Florian Rosenberg, and Schahram Dustdar. Vidre–a distributed
service-oriented business rule engine based on ruleml. In Proceedings of the 10th
IEEE International Enterprise Distributed Object Computing Conference, EDOC
’06, pages 35–44, Washington, DC, USA, 2006. IEEE Computer Society. 49

[106] Mangala Gowri Nanda. Decentralizing execution of composite web services. In In
OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 170–187. ACM
Press, 2004.

[107] NC Narendra, Karthikeyan Ponnalagu, Jayatheerthan Krishnamurthy, and
R Ramkumar. Run-time adaptation of non-functional properties of composite web
services using aspect-oriented programming. In International Conference on Service-
Oriented Computing–ICSOC 2007, pages 546–557. Springer, 2007.

[108] Z. Nemeth, C. Perez, and T. Priol. Workflow enactment based on a chemical
metaphor. In Software Engineering and Formal Methods, 2005. SEFM 2005. Third
IEEE International Conference on, pages 127 – 136, sept. 2005. 58

[109] Z. Nemeth, C. Perez, and T. Priol. Distributed workflow coordination: molecules
and reactions. In Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International, page 8 pp., april 2006. 58

[110] Marko Obrovac and Cédric Tedeschi. Distributed Chemical Computing : A Feasi-
bility Study. International Journal of Unconventional Computing, July 2012. 59

[111] Marko Obrovac and Cédric Tedeschi. On the Feasibility of a Distributed Runtime
for the Chemical Programming Model. In 14th Workshop on Advances in Parallel
and Distributed Computational Models, Shanghai, China, July 2012. 59

[112] Marko Obrovac and Cédric Tedeschi. When Distributed Hash Tables Meet Chemical
Programming for Autonomic Computing. In 15th International Workshop on Nature
Inspired Distributed Computing (NIDisC 2012), Shanghai, China, July 2012. 59

[113] Marko Obrovac and Cédric Tedeschi. Deployment and Evaluation of a Decentralised
Runtime for Concurrent Rule-based Programming Models. In 14th International
Conference on Distributed Computing and Networking (ICDCN 2013), LNCS, Mum-
bai, India, January 2013. 59

156

Bibliography

[114] Oracle. Oracle BPEL Process Manager. http://www.oracle.com/technetwork/
middleware/bpel/overview/index.html/. 35

[115] Bart Orriëns, Jian Yang, and Mike.P. Papazoglou. A framework for business rule
driven service composition. In Technologies for E-Services, Lecture Notes in Com-
puter Science, pages 14–27. 2003. 47, 48

[116] Michael P Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann.
Service-oriented computing: State of the art and research challenges. Computer,
40(11):38–45, 2007.

[117] Michael P Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann.
Service-oriented computing: a research roadmap. International Journal of Cooper-
ative Information Systems, 17(02):223–255, 2008.

[118] Mike P Papazoglou. Service-oriented computing: Concepts, characteristics and di-
rections. In Proceedings of the Fourth International Conference on Web Information
Systems Engineering (WISE’2003)., pages 3–12. IEEE, 2003. 13

[119] Norman W Paton and Oscar Dı́az. Active database systems. ACM Computing
Surveys (CSUR), 31(1):63–103, 1999. 48

[120] Gabriel Pedraza and Jacky Estublier. Distributed orchestration versus choreography:
The focas approach. In Proceedings of the International Conference on Software Pro-
cess: Trustworthy Software Development Processes, ICSP ’09, pages 75–86, Berlin,
Heidelberg, 2009. Springer-Verlag. 38

[121] Pegasus. Pegasus Workflow Management System. http://pegasus.isi.edu/. 35

[122] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46 – 52,
oct. 2003. 15, 33, 179

[123] Harald Psaier and Schahram Dustdar. A survey on self-healing systems: approaches
and systems. Computing, 91(1):43–73, 2011. 40

[124] Yann Radenac. Programmation chimique d’ordre supérieur. PhD thesis, University
of Rennes 1, 2007. 112

[125] F. Rosenberg and S. Dustdar. Business rules integration in bpel - a service-oriented
approach. In Seventh IEEE International Conference on E-Commerce Technology
(CEC), pages 476 – 479, july 2005. 47, 48, 49

[126] F. Rosenberg and S. Dustdar. Towards a distributed service-oriented business rules
system. In Third IEEE European Conference on Web Services (ECOWS’2005), nov.
2005. 47, 49

[127] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure prediction
methods. ACM Comput. Surv., 42, 2010. 139

[128] Eric Schmieders and Andreas Metzger. Preventing performance violations of ser-
vice compositions using assumption-based run-time verification. In 4th European
Conference ServiceWave, pages 194–205, 2011. 43

157

http://www.oracle.com/technetwork/middleware/bpel/overview/index.html/
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html/
http://pegasus.isi.edu/

Bibliography

[129] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In ACM
SIGCOMM Computer Communication Review, volume 31, pages 149–160. ACM,
2001. 59

[130] Sattanathan Subramanian, Philippe Thiran, Nanjangud C Narendra, Ghita Kouadri
Mostefaoui, and Zakaria Maamar. On the enhancement of bpel engines for self-
healing composite web services. In International Symposium on Applications and
the Internet, 2008. (SAINT’2008), pages 33–39. IEEE, 2008. 41

[131] Taverna. Taverna Workflow Management System. http://www.taverna.org.uk.
35

[132] D. Turi, P. Missier, C. Goble, D. De Roure, and T. Oinn. Taverna workflows: Syntax
and semantics. In IEEE International Conference on e-Science and Grid Computing,
pages 441–448, 2007. 35

[133] Wil MP Van Der Aalst and Kristian Bisgaard Lassen. Translating unstructured
workflow processes to readable bpel: Theory and implementation. Information and
Software Technology, 50(3):131–159, 2008. 46

[134] W.M.P. Van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14:5–51, 2003. 25

[135] Mirko Viroli and Franco Zambonelli. A biochemical approach to adaptive service
ecosystems. Information Sciences, 180(10):1876–1892, 2010. 14, 177

[136] W3C. Web Services Choreography Description Language Version 1.0. http://www.
w3.org/TR/ws-cdl-10/. 37

[137] Chen Wang. A qos-aware middleware for dynamic and adaptive service execution.
Technical report, INRIA, 2011. 147

[138] Chen Wang. Cell clone and fusion: Increased parallelism for auto-choreography of
services. Technical report, INRIA, 2013. 174, 175

[139] Chen Wang and J.-L. Pazat. Using chemical metaphor to express workflow and
service orchestration. In 2010 IEEE 10th International Conference on Computer
and Information Technology (CIT), pages 1504 –1511, 29 2010-july 1 2010. 58, 146

[140] Chen Wang and Jean-Louis Pazat. A two-phase online prediction approach for accu-
rate and timely adaptation decision. In 2012 IEEE Ninth International Conference
on Services Computing (SCC),, pages 218–225. IEEE, 2012. 147

[141] Chen Wang and Jean-Louis Pazat. A chemistry-inspired middleware for self-adaptive
service orchestration and choreography. In the 13th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid’2013), 2013. 146

[142] Chen Wang and Jean-Louis Pazat. Un middleware inspiré par la chimie pour
l’exécution et l’adaptation flexible des applications basées sur services. In Ren-
Par’21 (Rencontres francophones du Parallélisme), 2013. 146

[143] Chen Wang and Thierry Priol. Hocl installation guide. Technical report, INRIA,
2009. 114

158

http://www.taverna.org.uk
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

Bibliography

[144] Chen Wang and Thierry Priol. Hocl programming guide. Technical report, INRIA,
2009. 56, 178

[145] Hongbing Wang, Shizhi Shao, Xuan Zhou, Cheng Wan, and Athman Bouguettaya.
Web service selection with incomplete or inconsistent user preferences. In Interna-
tional Conference on Service-Oriented Computing, pages 83–98, 2009.

[146] Hongbing Wang, Junjie Xu, Peicheng Li, and P. Hung. Incomplete preference-driven
web service selection. In IEEE International Conference on Services Computing
(SCC ’08), volume 1, pages 75 –82, july.

[147] Yi Wang, Minglu Li, Jian Cao, Feilong Tang, Lin Chen, and Lei Cao. An eca-rule-
based workflow management approach for web services composition. In Grid and
Cooperative Computing - GCC, pages 143–148, 2005. 48

[148] Hans Weigand, Willem jan Van Den Heuvel, and Marcel Hiel. Rule-based service
composition and service-oriented business rule management. In Regulations Mod-
elling and Deployment (ReMoD’08), 2008. 48

[149] Branimir Wetzstein, Philipp Leitner, Florian Rosenberg, Ivona Brandic, Schahram
Dustdar, and Frank Leymann. Monitoring and analyzing influential factors of busi-
ness process performance. In 13th International Enterprise Distributed Object Com-
puting Conference (EDOC ’09), pages 141–150, 2009.

[150] Bernd W Wirtz. Electronic business. Gabler, 2000. 13

[151] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. T spaces. IBM
Systems Journal, 37(3):454 –474, 1998. 49

[152] YAWL. Yet Another Workflow Language. http://www.yawlfoundation.org/. 35

[153] Ustun Yildiz and Claude Godart. Towards decentralized service orchestrations. In
Proceedings of the 2007 ACM symposium on Applied computing, SAC ’07, pages
1662–1666, New York, NY, USA, 2007. ACM.

[154] Tao Yu and Kwei-Jay Lin. Service selection algorithms for composing complex ser-
vices with multiple qos constraints. In Proceedings of the Third international confer-
ence on Service-Oriented Computing, ICSOC’05, pages 130–143, Berlin, Heidelberg,
2005. Springer-Verlag. 33

[155] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services selection
with end-to-end qos constraints. ACM Trans. Web, 1(1), May 2007. 33

[156] Weihai Yu. Consistent and decentralized orchestration of bpel processes. In Proceed-
ings of the 2009 ACM symposium on Applied Computing, SAC ’09, pages 1583–1584,
New York, NY, USA, 2009. ACM.

[157] JohannesMaria Zaha, Alistair Barros, Marlon Dumas, and Arthur Hofstede. Let’s
dance: A language for service behavior modeling. In Robert Meersman and Zahir
Tari, editors, On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, volume 4275 of Lecture Notes in Computer Science, pages
145–162. Springer Berlin Heidelberg, 2006. 37

159

http://www.yawlfoundation.org/

Bibliography

[158] Liangzhao Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang. Qos-aware middleware for web services composition. IEEE Transactions
on Software Engineering, 30(5):311 – 327, may 2004. 25, 32, 41

[159] Liangzhao Zeng, Christoph Lingenfelder, Hui Lei, and Henry Chang. Event-driven
quality of service prediction. In Service-Oriented Computing–ICSOC 2008, pages
147–161. Springer, 2008. 43

[160] Wei Zhao, Rainer Hauser, Kamal Bhattacharya, and Barrett R Bryant. Compil-
ing business processes: untangling unstructured loops in irreducible flow graphs.
International Journal of Web and Grid Services, 2(1):68–91, 2006. 46

[161] Huiyuan Zheng, Jian Yang, and Weiliang Zhao. Qos analysis and service selection for
composite services. In 2010 IEEE International Conference on Services Computing
(SCC), pages 122 –129, july 2010.

[162] Huiyuan Zheng, Weiliang Zhao, Jian Yang, and A. Bouguettaya. Qos analysis for
web service composition. In IEEE International Conference on Services Computing
(SCC ’09)., pages 235 –242, sept.

[163] Zibin Zheng, Yilei Zhang, and M.R. Lyu. Distributed qos evaluation for real-world
web services. In 8th International Conference on Web Services (ICWS’10), pages 83
–90, july 2010. 138

160

Part IV

Appendix

161

Appendix A

Example of Semi-choreography:
Decentralized Coordination of
SBA

In the part, we illustrate the implementation of the semi-choreography model by using the
“Best Garage” as an illustrative example.

A.1 Distribution of Coordination Information

After the instantiation process (refer to Section 3.2.1), a concrete workflow is constructed,
as described in Program 3.6. At this moment, the sub-solution of this running SBA in-
stance becomes inert. Therefore, the generic coordination rule (CR) startExeSemiChore
in the solution of CCS is able to react with this inert instance sub-solution and start the
execution of service composition by the semi-choreography model. As defined in Program
A.1, it firstly marks this instance tuple as “Semi-Choreography” and then puts two new
CRs, namely buildFragment and buildFragmentWithCCS, into the sub-solution of this in-
stance. Both rules will immediately become active to trigger a series of chemical reactions.
The execution of the rule startExeSemiChore is vividly depicted in Figure A.1(a).

1. Firstly, the reaction rule updateNeighbor updates the neighbors of each task with the
corresponding concrete binding reference, namely the signature of the selected chemi-
cal service (L.07). Each neighbor of a task is expressed by a tuple: task id :cws signature.
Since the precedent of the first task and the successor of the last task are defined
as NULL, no concrete binding information can be found by applying the rule up-
dateNeighbor. Accordingly, the rule buildFragmentWithCCS is defined to connect
both tasks with CCS. After executing both reaction rules, the concrete binding ref-
erences of the neighbors for each task have been updated. Program A.2 provides a
description of an updated workflow after these reactions.

2. After updating the workflow, the instance sub-solution becomes inert again and thus
the CR startDistWFFragment in the solution of CCS is able to become active. As de-
fined in Figure A.1, it replaces both CRs buildFragment and buildFragmentWithCCS
(L.15) by the other two CRs, namely distributeWFFragment and startInvocation
(L.16), which will direct a series of reactions for distributing coordination informa-
tion. The execution of the rule startDistWFFragment is illustrated in Figure A.1(b).

163

Appendix A. Example of Semi-choreography: Decentralized Coordination of SBA

Program A.1: HOCL Rules for the Distribution of Workflow Fragments

1 let startExeSemiChore =

2 replace "Instance":<?w>

3 by "Instance":"Semi-Choreography":<buildFragment ,buildFragmentWithCCS ,w>

4 let updateNeighbor =

5 replace "Task":t_1:f_1:"Concrete":<in_or_out:wfp:<neighbor ,?w>,?l>:cws_1

6 "Task":t_2:f_2:"Concrete":<?l2>:cws_2

7 by "Task":t_1:f_1:"Concrete":<in_or_out:wfp:<neighbor:cws_2,w>,l>:cws_1

8 "Task":t_2:f_2:"Concrete":<l2>:cws_2

9 if neighbor.equals(t_2)

10 let buildFragmentWithCCS =

11 replace "Task":t:f:"Concrete":<in_or_out:wfp:<Null>,?l>:cws

12 by "Task":t:f:"Concrete":<in_or_out:wfp:<"t0":"CCS-BestGarage">,l>:cws

13 if wfp.equals("Start") || wfp.equals("End")

14 let startDistWFFragment =

15 replace "Instance":"Semi-Choreography":<buildFragment=x,

buildFragmentWithCCS=y,?w>

16 by "Instance":"Semi-Choreography":<distributeWFFragment ,startInvocation ,w>

17 let distributeWFFragment =

18 replace"Instance_id":inst_id ,"Task":t:f:"Concrete":<?l>:cws

19 by "Instance_id":inst_id ,"Task":t:f:"Distributed":<l>:cws

20 "To_send":cws:<

21 "WF_Fragment":"CCS-BestGarage":inst_id:<

22 "Task":t:f:"Concrete":<l>:cws, "Data":<>>>

23 let startInvocation =

24 replace-one "Task":t:f:"Distributed":<"In":"Start":<t_in:"CCS-BestGarage

">,?l>:cws,

25 "Data":<"Car":<"ID":id, ?w1>, ?w2>,"Instance_id":inst

26 by "Task":t:f:"Invoking":<"In":"Start":<t_in:"CCS-BestGarage">,l>:cws,

27 "Data":<"Car":<"ID":id, w1>,w2>,"Instance_id":inst,

28 "To_send":cws:<

29 "Invoke_chore":"CCS-BestGarage":inst:<"operation":"diagnose","car_id":id

>>

3. In the following, the reaction rule distributeWFFragment will generate a fragment
tuple based on each task tuple (L.21-22). A fragment tuple includes the information
about the corresponding task (with concrete neighbor information), the signature of
the owner (“CCS-BestGarage”), the related instance ID (inst id), as well as a data
sub-solution that is used for stocking the input/output data for this instance. Then,
the fragment tuple is put into a “To send” tuple so that it could be sent to the
solution of the corresponding chemical service (L.20-22). After the distribution of a
workflow fragment, the runtime state of the relative task is marked as “Distributed”.
The distribution of workflow fragments is illustrated in Figure A.1(c).

4. Meanwhile, CCS can also distribute a number of reaction rules to all the participants
for expressing the coordination information. Since a reaction rule is a special type
of molecule, the distribution of coordination rule can be performed in the same way
as the distribution of workflow fragments (as the limited space, the definitions of the
corresponding rules will not be provided here). All the coordination rules for a spe-
cific constituent chemical service cwsi will be packaged into an “Coordination rules”
sub-solution and sent to cwsi. For example, the rule package for CWS-SeniorT is
expressed below, which includes a number of invocation rules (e.g., invokeT1) as
well as coordination rules (introduced later on).

164

A.1. Distribution of Coordination Information

Program A.2: New Instance Tuple with Updated Neighbors

1 "Instance":<

2 "Instance_id":"CCS-BestGarage001",

3 "Task":"t1":"diagnostic":"Concrete":<"In":"Start":<"t0":"CCS-BestGarage">,

4 "Out":"XOR-split":<"t2":"CWS-RepManager","t3":"CWS-fastRepairCar">>:"CWS

-SeniorT",

5 "Task":"t2":"reparation":"Concrete":<"In":"Seq":<"t1":"CWS-SeniorT">,

6 "Out":"Seq":<"t4":"CWS-payByCard">>:"CWS-RepManager",

7 "Task":"t3":"reparation":"Concrete":<"In":"Seq":<"t1":"CWS-SeniorT">,

8 "Out":"Seq":<"t4":"CWS-payByCard">:"CWS-fastRepairCar",

9 "Task":"t4":"billing":"Concrete":<"Out":"End":<"t0":"CCS-BestGarage">,

10 "In":"XOR-join":<"t2":"CWS-RepManager","t3":"CWS-fastRepairCar">>:"CWS-

payByCard",

11 "Data":<"Car":<"Type":"RARE", "ID":"ABCDEF">>

12 >

Program A.3: Coordination Rules for Aggregating Coordination Information

1 let updateWFFragment =

2 replace "WF_Fragment":ccs1:inst_id1:<?w1>,

3 "Coordination_rules":ccs2:inst_id2:<?w2>

4 by "WF_Fragment":ccs1:inst_id1:<w1,w2>

5 if ccs1.equals(ccs2) && inst_id1.equals(inst_id2)

“To send”:“CWS-SeniorT”:<
“Coordination rules”:“CCS-BestGarage”:“CCS-BestGarage001”:<

selectBranchCasePos chore,selectBranchCaseNeg chore,invokeT1,etc
>

>

5. Since each constituent service may receive multiple coordination messages from the
same SBA instance (e.g. a workflow fragment, rule packages), all these information
can be aggregated in to a single one. The rule updateWFFragment defined in Pro-
gram A.3 is able to detect a workflow fragment and a rule package with the same
owner and instance ID. Then, the content of the rule package is copied into the
sub-solution of the workflow fragment, as illustrated in Figure A.1(d). Up to now,
each participant has a partial knowledge on the global data flow and control flow of
the service composition and they can be seen as virtually connected (the network of
services has been constructed).

6. The second rule startInvocation will generate an invocation message for the first
chemical service (with the runtime state “Distributed”) in the network of services.
As introduced, each semi-choreography invocation message is represented by an “In-
voke chore” tuple, which includes the signature of the proceeding chemical service,
the instance ID, and a sub-solution of invocation parameter (refer to L.29 in Pro-
gram A.1). In the “Best Garage” example, the invocation parameters are the same
as the ones in the orchestration invocation message. Using the previous execution
context, the rule startInvocation will generate the following message for invoking
CWS-SeniorT chemical service.

165

Appendix A. Example of Semi-choreography: Decentralized Coordination of SBA

“To send”:“CWS-SeniorT”:<
“Invoke chore”:“CCS-BestGarage”:“CCS-BestGarage001”:<

“operation”:“diagnose”, “car id”:id
>

>

(a) Start Execution of Semi-Choreography

(b) Start Partitioning Workflow

(c) Distribution of Workflow Fragments

(d) Aggregate the Coordination Information in the Solution of CWS

Figure A.1: Illustration: Distribution of Coordination Information

A.2 Decentralized Coordination of Workflow

This initial invocation message generated by the rule startInvocation is sent to CWS-
SeniorT chemical service. Similar to the dominos card, the fall of first tile of dominos
will lead to a series of falling of tiles, this invocation message will lead to a series of
chemical reactions in succession for executing the service composition. All the reaction
rules defining this process is provided in Program A.4.

1. First of all, the arrival of a semi-choreography invocation message to a chemical
service will activate the rule getInvocationMessage. First of all, it looks for the
workflow fragment with the same instance ID. Then, all the invocation parameters

166

A.2. Decentralized Coordination of Workflow

are passed into the data sub-solution of this workflow fragment (represented by p
in L.04). Meanwhile, it records the signature of the preceding chemical service that
has generated this invocation message (represented by from in L.04).

2. Once an “Invoke chore” tuple is presented in the workflow fragment of CWS-SeniorT,
the rule seq Chore start is activated. It requires 1) a task tuple ti that has only one
precedent with the sequence pattern 2) and a completed preceding service noted as
from (L.29). If from is the exact precedent of ti (L.31), that is to say the preceding
service of this CWS has completed the execution and this chemical service can start
the execution of ti. Therefore, the runtime state of ti is changed to “Executing”
(L.30).

3. In the following, the rule invokeT1 introduced this rule in Section 3.3 is reused to
prepare an invocation request for executing task t1.

4. The IR invoke diagnose semiChore in the solution of CWS-SeniorT is able to detect
the creation of such an invocation request in the sub-solution of a workflow fragment.
As defined in Program A.5, it reads the invocation parameters from the workflow
fragment, passes them to the connector and then generates an result tuple which
encapsulates the invocation response (L.05). The response can be either positive
(including invocation results) or negative (runtime failures arise). In this section, we
assume that reply is positive. As an example, a possible result tuple after invoking
WS-SeniorT can be described as follows:

“Chore Result”:“CCS-BestGarage”:“CCS-BestGarage001”:<
“Result”:<“Problem”:“EASY”,“Time”:120, “Cost”:50>

>

Program A.5: Invocation Rules for Semi-Choreography (Defined by CWS)

1 let invoke_diagnose_semiChore =

2 replace connector ,

3 "WF_Fragment":ccs:inst_id:<"Invoking":cws:<"operation":"diagnose

","car_id":id>,?w>

4 by connector , "WF_Fragment":ccs:inst_id:<w>,

5 "Chore_Result":ccs:inst_id:<connector.invoke("diagnose",id)>

5. Such a result tuple will activate the rule putResultChore. It moves the invocations re-
sults to the data sub-solution of the corresponding workflow fragment (with the same
signature and instance ID), and then change the runtime state of the corresponding
task from “Invoking” to “Executed” (L.09).

6. Once the runtime state of task t1 is changed to “Executed”, similar to the execution
of service orchestration, one of two CRs will be activated to select one of the suc-
ceeding task to continue the execution. If the problem is evaluated as easy, the rule
selectBranchCasePos chore decides to invoke the chemical service bound to t2 in suc-
cession. It extends the data sub-solution with an additional destination sub-solution
containing a list of succeeding services, noted as:

“Data”:<?data >:<?destinations >

167

Appendix A. Example of Semi-choreography: Decentralized Coordination of SBA

In the current execution context, there is only a single successor for passing the
data. Meanwhile, it consumes all the other molecules in the solution of a workflow
fragment (represented by a universal variable l in L.13). The other rule selectBranch-
CaseNeg chore is similarly defined in case of a “HARD” problem.

7. In the following, the rule invokeSucceedingService is able to detect a workflow frag-
ment that contains such an extended data tuple. It will then create a semi-choreography
invocation message with its own signature, instance ID and all the data for each suc-
ceeding service (L.24). This invocation message is packaged into a “To send tuple
so that it can be passed to the expected destination. Please note that, if multiple
destinations are specified, multiple semi-choreography invocation message will be
generated and sent. In our example, an invocation message is sent to the chemical
service bound to task t2, namely CWS-RepManager.

8. When all the destinations have been sent a copy of data, the destination sub-solution
becomes empty. The rule removeCompleteFragment detects a workflow fragment
with such an empty extended data sub-solution (L.26) and removes the entire work-
flow fragment from its solution. In our example, CWS-SeniorT will finally remove
this workflow fragment and before it completes its job in the execution this SBA
instance.

9. In the following, the execution is performed in the similar way in the solution of
CWS-RepManager. the CR seq Chore start starts the execution by marking the
runtime state of t2 as “Executing”, and finally the CR seq Chore terminate extends
the data sub-solution with a single succeeding service CWS-payByCard. In this case,
the computational results of both task t1 and t2 will be passed to CWS-payByCard.

10. The arrival of an invocation message to the solution of CWS-payByCard will activate
the CR simpleMerge, which starts the execution by changing the runtime state of
t4 to “Executing”. After the execution, the rule CR seq Chore terminate will sends
all the data sub-solution to the succeeding service: CCS-BestGarage. Please note
that the final result is also represented in the form of a normal semi-choreography
invocation message, such as the following description.

“To sned”:“CCS-BestGarage”:<
“Invoke chore”:“CWS-payByCard”:“Best-Garage001”:<
“car id”:“ABCDEF”“Problem”:“EASY”,
“pay result”:“SUCCESS”,“Time”:120, “Cost”:50>

>

11. The arrival of such an invocation message from the chemical service that executes
the last task to the CCS will activate the CR completeExeSemiChore. As defined in
Figure A.4, it moves all the data from the invocation message to the data solution
of the corresponding SBA instance and finally marked the instance as completed
(L.43).

168

A.2. Decentralized Coordination of Workflow

Program A.4: Coordination Rules for Semi-Choreography

1 let getInvocationMessage =

2 replace "Invoke_chore":from:inst_id1:<?p>,

3 "WF_Fragment":ccs:inst_id2:<"Data":<?d>,?m>

4 by "WF_Fragment":ccs:inst_id2 <"invoke_chore":from,"Data":<p,d>,m>

5 if inst_id1.equals(inst_id2)

6 let putResultChore =

7 replace "Chore_Result":inst_id1:<"Result":<?r>>,

8 "WF_Fragment":inst_id2:<"Task":ti:fi:"Invoking":<?l>:cws,"Data":<?d>,?w>

9 by "WF_Fragment":inst_id1:<"Task":ti:fi:"Executed":<l>:cws,"Data":<d,r>,w>

10 if inst_id1.equals(inst_id2) && cws.equals(this.getSignature())

11 let selectBranchCasePos_chore =

12 replace-one "Data":<"Problem":p,?result >,?w

13 "Task":"t1":"diagnose":"Executed":<"Out":"XOR-Split":<"t2":cws_out ,?out

>,?in>:cws,?l

14 by "Data":<"Problem":p,result>:<cws_out>

15 if p.equals("EASY")

16 let selectBranchCaseNeg_chore =

17 replace-one "Data":<"Problem":p,?result >,?w

18 "Task":"t1":"diagnose":"Executed":<"Out":"XOR-Split":<"t3":cws_out ,?out

>,?in>:cws,?l

19 by "Data":<"Problem":p,result>:<cws_out>

20 if p.equals("HARD")

21 let invokeSucceedingService =

22 replace "WF_Fragment":inst_id:<"Data":<?d>:<cws_out ,?l>,?w>

23 by "WF_Fragment":inst_id:<"Data":<d>:<l>,w>,

24 "To_send":cws_out:<"Invoke_chore":this.getSignature():inst_id:<d>>>

25 let removeCompleteFragment =

26 replace "WF_Fragment":inst_id:<"Data":<?d>:<>,?w>,?l

27 by l

28 let seq_Chore_start =

29 replace "Invoke_chore":from,"Task":ti:fi:stat:<"In":"Seq":<t:precedent >,?

out>:cws

30 by "Task":ti:fi:"Executing":<"In":"Seq":<t:precedent >,out>:cws

31 if from.equals(precedent) && stat.equals("Concrete")

32 let seq_Chore_terminate =

33 replace "Task":ti:fi:"Executed":<"Out":"Seq":<t_out:cws_out >,?w>:cws,"Data

":<?d>

34 by "Data":<"Problem":p,result,d>:<cws_out>

35 let simpleMerge =

36 replace "Invoke_chore":from,"Task":ti:fi:stat:<"In":"XOR-join":<t:

precedent ,?l>,?out>:cws

37 by "Task":ti:fi:"Executing":<"In":"XOR-join":<t:precedent ,?l>,out>:cws

38 if from.equals(precedent) && stat.equals("Concrete")

39 let completeExeSemiChore =

40 replace "Instance":"Semi-Choreography":<"Instance_id":inst_id1, "Data":<?

d1>

41 "Task":t_i:f_i:stat_i:<"Out":"End":<?w>,?in>:cws_i,?l>,

42 "Invoke_chore":from:inst_id2:<?data>

43 by "Instance":"Complete":<"Instance_id":inst_id1 ,"Data":<d1,data>,

44 "Task":t_i:f_i:stat_i:<"Out":"End":<w>,in>:cws_i,l>,>

45 if inst_id1.equals(inst_id2) && from.euqals(cws_i)

169

Appendix A. Example of Semi-choreography: Decentralized Coordination of SBA

170

Appendix B

Example of Auto-choreography

In this part, we use the “Best Garage” as an example to illustrate the implementation of
the auto-choreography model in the middleware.

B.1 Execution of SBA: Decentralized Coordination of Ser-
vices

Once a concrete workflow is instantiated, the execution of a service composition by the
auto-choreography model can be started by using the coordination rule startExeAutoChore.
As defined in Program B.1, the sub-solution of an SBA instance is transformed to a
composition cell (L.06-09), described by a “Composition Cell” tuple. The composition cell
extends an instance solution by adding the signature of the corresponding SBA provider
(i.e., in our example, it equals to “CCS-BestGarage” L.07). Moreover, the state of the
first task (noted by ts) is changed to “Executing”. Then, the entire composition cell is
packaged into a “To send” tuple (L.05-10) so that it will be passed to the solution of
CWS-SeniorT.

1. When the composition cell arrives to the solution of CWS-SeniorT, the invocation
rule startInvocationAutoChore in its solution is active to write its signature into
the composition cell (L.03). As defined in Program B.2, after this reaction, the
composition cell is marked as “Executing” (L.03).

2. The injection of a CWS signature will activate the reaction in the composition cell
to prepare the corresponding invocation request for this CWS. In our execution
context, the rule invokeT1AutoChore becomes active. As shown in Program B.3,
its definition is similar to the invocation rule invokeT1 introduced in Program 3.12.
The difference is that 1) invokeT1AutoChore requires an additional input molecule:
the signature of a CWS. 2) invokeT1AutoChore generates an additional reaction rule
forwardCompositionCell as output molecule. 3) It requires one more condition to
test: it has to verify that it is in the solution of the right constituent service that is
expected to execution this task (L.11). If it is the case, similar to the rule invokeT1,
it prepares an invocation request for executing task t1.

3. In the following, a series of reactions are performed locally in the solution of CWS-
SeniorT by extracting/injecting molecules from/into the composition cell. As de-
fined in Program B.2, the coordination rule invoke diagnose wf is able to detect this
invocation request from the composition cell. It will then invoke the real Web service

171

Appendix B. Example of Auto-choreography: Decentralized Coordination of SBA

Program B.1: Coordination Rules for Auto-Choreography Mode

1 let startExeAutoChore =

2 replace "Instance":<

3 "Task":t_s:f_s:"Concrete":<"In":"Start":<Null>,?w>:cws_s, ?l

4 >

5 by "To_send":cws_s:<

6 "Composition_Cell":<

7 "Provider":"CCS-BestGarage",

8 "Task":t_s:f_s:"Executing":<"In":"Start":<Null>,w>:cws_s, l,

9 >

10 >

11 let forwardCompositionCell =

12 replace "Task":t_n:f_n:"Executing":<?w>:cws_n, ?l

13 by "To_send":cws_n:<

14 "Composition_Cell":<

15 "Task":t_n:f_n:"Executing":<w>:cws_n, l

16 >

17 >,

18 "Task":t_n:f_n:"Unknown":<?w>:cws_n, l,

19 if !cws_i.equals(this.signature)

20 let cleanCompositionCell =

21 replace "Composition_cell":"Ready":<?w>,?l

22 by l

23 let returnCompositionCell =

24 replace "Composition_cell":<

25 "Provider":ccs,

26 "Task":t_n:f_n:"Executed":<"Out":"End":<Null>,?p>:cws_n,,?w>,?l>

27 by "To_send":ccs:<

28 "Result_WF":<"Task":t_n:f_n:"Executed":<"Out":"End":<Null>,p>:cws_n,w

>,l>

29 >

30 let completeExeAutoChore =

31 replace "Result_WF":<"Instance_ID":inst_id1 ,?l1>,

32 by "Instance":"Completed":<"Instance_ID":inst_id1 ,?l1>

by manipulating the connector and creates a reply tuple in the composition cell after
the invocation completes (L.09). Meanwhile, it modifies the state of the composition
tuple to “Ready” (L.08).

4. The emergence of a reply tuple in the composition cell will activate the coordination
rule completeTask defined in Program 3.11. As we have presented before, it puts the
computational result to the “Data” sub-solution of the composition cell and then
changes the state of the corresponding task from “Invoking” to “Executed”. In this
case, after receiving the reply, the state of task t1 is changed to “Executed”.

5. In the following, the coordination rules selectBranchCasePos and selectBranchCaseNeg
are reused to select the right succeeding task to continue the execution, as we have
presented in Section 3.3.1. In the following, we suppose that finally the execution is
continued to task t2 so that it is marked as “Executing”.

6. The rule forwardCompositionCell is then activated to send a copy of composition
cell to the solution of the succeeding chemical service. As defined in Program B.1,
once a task is marked as executing, it creates a new composition cell by copying all
the contents from the original one (L.14-16). Please note that the universal variable

172

B.1. Execution of SBA: Decentralized Coordination of Services

Program B.2: Invocation Rules for Auto-Choreography Model (Defined by CWS)

1 let startInvocationAutoChore =

2 replace "Composition_cell":<?w>

3 by "Composition_cell":"Executing":<"CWS":this.getSgnature(), ?w>

4 let invoke_diagnose_wf =

5 replace "Composition_cell":"Executing":<

6 "Invoking":this.getSgnature():<"operation":"diagnose","car_id":id>,?l

7 >

8 by "Composition_cell":"Ready":<

9 "Reply":this.getSgnature():<connector.invoke("diagnose",id)>, l

10 >

11 if cws.equals("CWS-SeniorT")

Program B.3: Invocation Rules for Auto-Choreography Model (Defined by CCS)

1 let invokeT1AutoChore =

2 replace "Data":<"Car":<"ID":id, ?w1>, ?w2>,

3 "Task":t1:"diagnostic":"Executing":<?w3>:cws_1,

4 "CWS":cws_sol

5 by "Data":<"Car":<"ID":id, w1>, w2>,

6 "Task":t1:"diagnostic":"Invoking":<w3>:cws_1,

7 "Invoking":cws_1:<

8 "operation":"diagnose","car_id":id>

9 >,

10 forwardCompositionCell

11 if cws_1.equals(cws_sol)

l (L.12) is used to represent all the remaining molecules in the original composition
cell except the task tuple tn (explicitly given) and the rule forwardCompositionCell
(active rule to execute this reaction). Therefore, the new composition cell is almost
identical to the original one except that it does not include the rule forwardCompo-
sitionCell. The new copy of composition cell is encapsulate into a “To send” tuple
in order to be passed to the corresponding chemical service by the rule send

7. And then, the original composition cell becomes inert. So that the CR cleanCompo-
sitionCell in the solution of the CWS is activated. As described in Program B.1, it
once a composition cell with the state of “Ready” becomes inert, it will be remove
from the solution of a constituent service. Therefore, CWS-SeniorT will remove the
original composition cell and it completes its job in this execution of SBA instance.

8. Meanwhile, the execution is continued in the solution of CWS-RepManage with the
arrival of the composition cell. Similar to the execution of task t1, firstly, the IR
startInvocationAutoChore injects a signature tuple into the composition cell and
then the IR invokeT2AutoChore is activated to prepare the invocation request for
executing task t2 and to generate a new rule forwardCompositionCell. In the fol-
lowing, the rule invoke repare wf defined in the solution of CWS-RepManager reads
the invocation information, invokes the real-world Web service and writes a reply
tuple into the composition cell. As the limited space, the definition of these reaction
rules are not provided here. The reply tuple in the composition cell will activate the
CR simpleMerge that changes the state of task t4 to “Executing”. Accordingly, the

173

Appendix B. Example of Auto-choreography: Decentralized Coordination of SBA

entire composition cell is sent to CWS-payByCard.

9. Finally, the task t4 is similarly executed by CWS-payByCard chemical service. Once
the execution state of t4 equals to “Executed”, the chemical service knows that the
execution of workflow has completed so that it returns the composition cell to its
generator. As defined by the CR returnCompositionCell in Figure B.1, once the
termination task of a composition cell is executed, the entire composition cell is
renamed to “Result WF” and it is packaged into a “To send” tuple so that it can
be returned to the CCS of the corresponding SBA.

10. When this composition cell arrives to the corresponding CCS’s solution, the CR
completeExeAutoChore is activated to create a completed instance tuple, which is
similar to the CRs completeExeOrch and completeExeAutoChore introduced before.
Please note that all the three models start from an instance tuple and end with a
completed instance tuple. Thus, the execution model is transparent from the end
requester.

Discussion. From the above description, we can see that almost all of coordination rules
(CRs) and invocation rules (IRs) for the orchestration model can be directly reused for
the auto-choreography model. However, each CWS is required to defined several addi-
tional rules to read/write the information from/to the composition cell. But fortunately,
most of these rules are generic rules that can be reused by all CWSes (e.g., the rules in
Program B.1). Therefore, these rules can be directly provided by the middleware when a
CWS is created, which will not bring additional complexity to the providers of CWS.

Moreover, in this example, each execution of SBA can result in only one execution
path. Therefore, the execution of a service composition can be easily modeled as the
movement of a composition cell among all constituent services. In [138], we have discussed
the reaction rules that define cell clone and cell fusion process in oder to to execute parallel
branches. Due to the limited space, the details of this work is not presented here.

B.2 Decentralized Adaptation of SBA

B.2.1 Binding-level Adaptation for Auto-Choreography Model

In this part, we use adaptation scenario 1 (refer to Section 3.3.3.1) to present the binding-
level adaptation for auto-choreography model.

1. First, if the failure arises during the invocation to WS-payByCard real-world Web
service, an error reply tuple is written into the solution of the composition cell. Such
an error reply can be detected by the AR detectFailedTask that we have presented
in Program 3.20. It will change the state of task t4 to “Failed”. Then, the AR
adaptPayByCardFailure defined in Program 3.20 will rebind the task t4 to CWS-
payByCardPro and reset its runtime state to “Executing”. Up to now, all reactions
are totally the same as the orchestration model.

2. After the reaction for binding-level adaptation, the state of the failed task is reset to
“Executing”. So that the CR forwardCompositionCell defined in Program B.1 can
be activated. As we have introduced in Appendix B.1, it reacts with an executing
task and sends a copy of composition cell to the corresponding chemical service that
has just been selected and bound to this task. In our scenario, a copy of composition
cell will be sent to CWS-payByCardPro.

174

B.2. Decentralized Adaptation of SBA

3. In the following, the original composition cell becomes inert and the reaction rule
cleanCompositionCell in the solution of CWS-payByCard will be activated, as we
described in Appendix B.1. Finally, the original composition cell is removed and
CWS-payByCard finishes its job for this execution.

Discussion. From this example, we can see that the binding-level adaptation can be
performed by reusing all the adaptation rules defined for the orchestration model, which
brings no additional cost at design-time.

B.2.2 Workflow Level Adaptation for Auto-Choreography Model

In the following, we use the adaptation scenario 2 introduced in Section 3.3.3.2 to present
adaptation-level adaptation for auto-choreography model.

1. Firstly, similar to the orchestration model, when the execution of task t2 cannot
complete within the expected time, the runtime state of t2 is set to “Delayed”.
And then, the AR adaptaWorkflowDelay modifies the workflow as we have pre-
sented in Section 3.3.3.2. The difference is that, for the orchestration model, the
adaptation reactions are executed in the solution of CCS-BestGarage, whereas in
auto-choreography model, the adaptation reactions are executed in the sub-solution
of the composition cell, which is floated in the solution of CWS-RepManager.

2. After the modification of workflow, since the runtime state of task ta is “Executing”,
the reaction rule forwardCompositionCell defined in Program B.1 becomes active.
As we explained before, it generates a copy of composition cell and then sends it
to the solution of CWS-fastRentCar. In the following, the original composition cell
becomes inert (because it is waiting the result, and no reaction will take place).
Please note that the rule cleanCompositionCell cannot be applied since it requires
a composition cell with the state of “Ready” (and now, the state of the original
composition cell is “Executing”).

3. After a while, when task t2 and ta have completed, the coordination rules in both
composition cells mark the state of task tv2 as “Executing”. However, the task tv2
has no binding information, thus the rule forwardCompositionCell cannot be applied
and both composition cells will stay in the solution of the corresponding chemical ser-
vices. At this point, the reaction rule invokeVirtualTask becomes active. It changes
the state of task tv2 to “Executed”. And then some CRs mark the state of task t4
as “Executing”. As a result, both composition cells are directly sent to the solution
of CWS-payByCard, where both cells will fuse into one to synchronize the execu-
tion. The cell fusion and the execution of parallel branches for auto-choreography is
presented in [138].

175

Appendix B. Example of Auto-choreography: Decentralized Coordination of SBA

176

Appendix C

Résumé en Français

C.1 Contexte

L’Architectures Orientées Services (SOA) sont adoptées aujourd’hui par de nombreuses
entreprises car elles représentent une solution flexible pour la construction d’applications
distribuées. Une Application Basée sur des Services (SBA) peut se définir comme un
workflow qui coordonne l’ensemble des services constitutifs de l’application. L’exécution
d’une SBA est réalisée par des appels aux services constitutifs et permet une meilleure
dynamicité et adaptabilité qu’une application monolithique:

• les services constitutifs pertinents peuvent être sélectionnés et intégrés en temps réel
en fonction de leur Qualité de Service (QoS);

• la coordination de services peut être effectuer soit dans une manière centralisée soit
dans une manière décentralisée, en fonction du context d’exécution.

• la composition de services peut être dynamiquement modifiée pour réagir aux défaillances
imprévues pendant l’exécution (par exemple, un des services constitutifs pouvant de-
venir indisponible).

Par conséquent, le système d’information de l’entreprise d’aujourd’hui appelle à nouveaux
paradigmes pour une gestion flexible des applications distribuées qui enjambe les frontières
organisationnelles et plates-formes informatiques hétérogènes.

C.2 Motivations

Les besoins des architectures orientées services présentent des similarités avec la nature:
dynamicité, évolutivité, auto-adaptabilité, etc. Ainsi, il n’est pas surprenant que des
métaphores inspirées par la nature soient considérées comme des approches appropriées
pour la modélisation de tels systèmes [135].

C.2.1 Le calcul inspiré par la nature

Les gens ont régressivement appris de la nature. Par exemble, l’avion a été inventé par
l’étude et de l’analyse sur les ailes de l’oiseau. Du point de vue des chercheurs des systèmes

177

Appendix C. Résumé en Français

informatiques, la nature est le plus grand système distribué, qui présente le meilleur exem-
ple pour programmer efficacement des systèmes distribués autonomes et auto-adaptatif.
Le calcul inspiré par la nature [94] vise à développer des modèles informatiques et des algo-
rithmes inspirés par la métaphores naturelles, y compris la métaphor physique, chimique
et biologique, à résoudre des problèmes pratiques et complexes dans les systèmes distribués
à grande échelle.

C.2.2 Le calcul chimique

La programmation chimique est un paradigme innovant pour le calcul parallèle et au-
tonome [29]. Inspiré par la métaphore chimique, un programme est considéré comme une
solution chimique dans laquelle toutes les molécules représentent les éléments de calcul,
par exemple les données. Le calcul est modélisé comme une série de réactions contrôlées
par un ensemble de règles. Chaque règle précise les molécules consommées et produites par
une réaction. Une règle devient active une fois que toutes les molécules nécessaires sont
présentes dans la solution. La règle active peut alors modifier ou supprimer des molécules
existantes ainsi que générer de nouvelles molécules. Le calcul se termine lorsque la solution
passe dans un état inerte où aucune réaction ne peut être déclenchée. Le langage de pro-
grammation chimique d’ordre supérieur (HOCL) est un langage de programmation qui met
en œuvre le modèle de programmation chimique [23, 144]. L’exécution d’un programme
chimique présente les caractéristiques suivantes:

• non-déterminisme : la règle réagit avec les molécules choisies par hasard;

• parallélisme : plusieurs réactions peuvent avoir lieu indépendamment et simul-
tanément;

• évolution : les réactions ne sont jamais explicitement appelées car la résultante
d’une réaction peut activer des autres règles et déclencher une nouvelle série de
réactions;

• autonomie : une règle peut manipuler d’autres règles (le programme peut donc
s’auto-modifier afin de s’adapter automatiquement aux contexte d’exécution).

C.2.3 Objectives

Cette thèse vise à répondre aux défis de la construction de systèmes à base de services
flexibles. Certains travaux de recherche préliminaires ont été menées pour étudier la
faisabilité et la viabilité dans l’utilisation de calcul chimique pour programmer des systèmes
basés sur services autonomes [32, 31]. L’objectif principal de cette thèse est de concevoir, de
développer et d’évaluer un middleware de service en utilisant le modèle de programmation
chimique pour réaliser l’exécution flexible des SBA. Afin d’atteindre cette objectif, nous
allons discuter les problèmes de recherche suivants:

Comment à construire SBA dans une manière flexible? Utilisation de l’Internet
comme la base de communication, de plus en plus de services sont disponibles qui peuvent
fournir la même fonctionnalité sous qualités de service (QoS) différentes (par exemple le
coût, le temps de réponse, etc.). En réponse à diverses exigences des utilisateurs différents,
une SBA doit être construits sur demande en sélectionnant et en intégrant des services
adaptés à la volée.

178

C.3. Contributions

Comment à coordonner des services constitutifs dans une manière flexible?
Orchestration et chorégraphie représentent respectivement le modèle centralisé et décentralisé
pour la coordination des services [122]. Comparé avec le modèle d’orchestration, chorégraphie
peut améliorer des performances (i.e. temps d’exécution). Toutefois, il apporte également
des complexités et des défis supplémentaires, tels que des problèmes de tolérance aux
pannes, la sécurité etc. Par conséquent, le système basé sur services de future est nécessaire
de capable de choisir avec souplesse le meilleur modèle pour exécuter une composition de
service en fonction de son contexte d’exécution.

Comment à réagir aux défaillances pendant l’exécution dans une manière flexi-
ble? Une instance de SBA en cours d’exécution peut échouer en raison de l’environnement
d’exécution distribué, hétérogène et faiblement couplés. Par exemple, les défaillances
d’infrastructure peuvent causer un service totalement responseless, qui entrâınera en suc-
cession à SBA non livrable. Dans ce contexte, l’exécution de SBA est nécessaire pour
être auto-adaptatif et auto-optimisation à la volée afin de réagir à ces changements dans
l’environnement d’exécution.

En outre, nous ne limitons pas notre recherche seulement dans les enquêtes sur des
solutions à base de l’approache chimique. Dans ce contexte, le deuxième objectif de cette
thèse est de trouver des solutions génériques, tels que des modèles et des algorithmes, pour
répondre à certains des problèmes les plus difficiles sur l’exécution flexible des SBA. Par
exemple, comment à prédire et éviter l’apparition de défaillances de manière proactive
au lieu de réagir passivement à eux? Ces contributions sont plus générique, qui peut
être intégrée dans le middleware chimique ainsi que mis en œuvre par d’autres approches
traditionnelles.

C.3 Contributions

C.3.1 Un Middleware inspiré par la chimie

Le middleware peut être considérée comme un ”pool de services” (voir la figure 3.1) dans
lequel flotte l’ensemble des abstractions chimiques des services :

• chaque service Web possède une représentation chimique au niveau du middleware,
que nous appelons un Service Web Chimique (CWS). Il implémente une solution
chimique pour encapsuler les méta-données du service Web correspondant, par ex-
emple, la définition de son interface.

• l’application est représentée par un système chimique autonome que nous appelons
Service Composé Chimique (CCS). Il implémente une solution de molécules perme-
ttant d’exprimer le workflow et la coordination des services;

• un ensemble de règles sont définies pour automatiser les interactions (invocation-
s/réponses) entre les services chimiques (CWS et CCS). La transmission de messages
est modélisée par le mouvement de molécule d’une solution à une autre.

C.3.1.1 Sélection de services

Dans le middleware, un provider de SBA ne décrit que le workflow d’une manière ab-
straite au moment de la conception. Il/elle specifie la coordination d’un ensemble de
tâches abstraites avec des exigences fonctionnelles spécifiques. Ce workflow abstrait doit

179

Appendix C. Résumé en Français

être instancié par sélectionner des services constitutifs adaptés avant l’exécution peut com-
mencer. La sélection de services est réalisée par des réactions chimiques dans le middleware
en foncton des contraintes locales ou des contraintes globales. Nous présentons le concept
de workflow instanciation partielle (PIW). Un PIW est une sous-graphe structurée d’un
workflow qui doit répondre aux exigences suivantes: 1) chaque PIW a qu’une seule tâche
de source (point d’entrée) et une tâche de bout (point de sortie); 2) Si la tâche de source
est distincte de la tâche de bout, tous les successeurs (précédents) de la tâche de source
(bout) appartiennent à ce PIW. 3) Pour toutes les autres tâches à l’exception des tâches
de sources et de bout, leur précédent (s) et successeur (s) appartiennent à ce PIW. 4)
Chaque tâche dans un PIW est une tâche concrète avec la référence de liaison.

Basé sur cette définition, un workflow peut être classés en quatre catégories: tâche
instanciée (IT-PIW), châıne instancié (IC-PIW), Bloque structuré instancié (ISB-PIW),
workflow entièrement instancié (FIW). Par ce moyen, l’instanciation de workflow est
modélisée comme un processus récursif des constructions de PIWs: premièrement, un
ensemble de IT-PIWs sont construits; et puis IC-PIWs et ISB-PIWs, jusqu’à ce que
l’ensemble du workflow est entièrement instancié. L’instanciation complète quand un FIW
est identifié.

Cette approche présente certains avantages en comparant à des approaches tradi-
tionnelles. Tout d’abord, à la différence des approches traditionnelles, la séléction de
services n’a pas besoin de transformer une description de workflow à certains modèles
mathématiques ou vice versa. Donc la complexité du moment de la conception et l’exécution
peut être réduite. En outre, l’instanciation et l’exécution peuvent être effectuées en par-
allèle car les deux processus sont décrits comme des réactions chimiques et des réactions
différentes peuvent avoir au lieu simultanément. Enfin, notre approche est adaptable à
l’environnement d’exécution évolution. Par exemple, au cours du processus d’instanciation,
si une offre avec une meilleure qualité de service est trouvé, il peut être ajouté de manière
dynamique dans la solution et ensuite participer immédiatement dans les réactions d’instanciation.

C.3.1.2 L’orchestration: le modèle centralisé de coordination de services

Après l’instanciation de workflow, cette instance de SBA peut être exécuté en coordonnant
tous les services constitutifs. Le modèle d’orchestration présente la gestion de SBA d’une
manière centralisé. Premièrement, CCS spécifie le flux de données par une melécule com-
plexe. Chaque tâche est définie par une tuple de tâche, qui contient tout information de
cette tâche, par exemple, son voisins (précédents et successeurs). Ensuite, un workflow est
exprimée comme un cellule qui comprend un certain nombre de molécules de tâche, définie
par un tuple de workflow. Enfin, un certain nombre de règles de réaction sont définies dans
la solution de SCC (plus précisément, dans la sous-solution de chaque instance de SBA)
afin de gérer l’exécution des compositions de service, par exemple, pour contrôler l’ordre
d’exécution de services chimiques constitutifs. Selon les fonctionnalités différentes, toutes
les règles de réaction dans la solution du CCS peuvent être classés en trois catégories.

• Règles de coordination (CRs). Les règles de coordination prennent en charge
de coordonner l’ordre de l’exécution des tâches de workflow. Dans cette thèse, nous
avons montré que tous les modèles complexe de workflow peut être exprimé en util-
isant des règles de réaction.

• Règles d’invocation (IRs). Les règles d’invocation gérer des invocations à services
constitutifs dans le middleware. Chaque tâche ti est associée à une règle d’invocation,
a noté que invokeTi, qui prend en charge la préparation et l’envoi d’un message
d’invocation au service chimique correspondant.

180

C.3. Contributions

• Règles d’adaptation (ARs). Les règles d’adaptation réagissent à des défaillances
au cours de l’exécution du workflow. Les défaillances peuvent se produire soit au
niveau fonctionnel (par exemple, un service constitutif tombe au panne) soit au
niveau non-fonctionnelle (par exemple, une réponse tardive). Le provider de SBA
peut exprimer des plans d’adaptation différents à l’aide de la définition de ARs. Nous
avons montré l’adaptation au niveau de liaison (changement d’un service constitutif)
ou au niveau de workflow (modification de structure de workflow) dans cette thèse.

l’orchestration de services est effectuée par une série de réactions chimiques distribués
dans le middleware. D’un côté, la solution d’un CCS présente le contrôle centralisée de
coordination. La plupart des règles de coordination sont génériques. Ainsi, ils peuvent être
fournis directement par le middleware. En revanche, toutes les règles d’invocation sont
spécifiques. Par conséquent, ils doivent être définis directement par le fournisseur SBA
puisque chaque règle d’invocation doit traiter des différents paramètres d’appel ainsi il peut
difficilement être générique. De l’autre côté, chaque service chimique constituant effectue
respectivement une tâche simple. Une fois un tuple d’invocation arrive à sa solution, il
appelle le service Web connecté. Et puis, quand le résultat est reçu, il l’encapsule et le
renvoie à la solution de CCS. Tous les services constituant n’ont aucune connaissance sur
la logique interne du SBA et donc ils ne participent pas à la coordination des services. Le
modèle de l’orchestration est illustré dans figure 3.9.

C.3.1.3 La choréograpie: le modèle decentralisé de coordination de services

le modèle d’orchestration présente certaines limitations de performance (e.g., le temps
d’exécution) à cause du point centralisé de coordination. Dans cette thèse, nous présentons
également deux modèles décentralisés pour l’exécution de compositions de services dans
le middleware à savoir: semi-chorégraphie et auto-chorégraphie. Le premier modème
repose sur la répartition des fragments de workflow et les règles de coordination afin de
réaliser la coordination des services décentralisés; tandis que la seconde modèle considère
la composition de service en tant que cellule autonome, qui peut être cloné, condensé, et
passe entre les solutions de tous les services chimiques constitutifs.

Le modèle semi-choréographie. Le modèle de semi-chorégraphie sépare le contrôle
de la coordination du contrôle de l’adaptation. Chaque service constitutif est capable
de coordonner des messages d’interaction avec les autres participants, mais il ne peut
pas réagir aux défaillances d’exécution. Tous les défaillances doivent être traitées par un
moteur d’adaptation centralisé, à savoir la solution de CCS. Le modèle semi-chorégraphie
décrit cette collaboration de services décentralisés comme un réseau de services, où tous
les services constitutifs peuvent être considérées comme virtuellement connecté selon le
plan d’exécution global (flux de données et de flux de contrôle). Un réseau de services
décrit d’une composition de service en tant que système de réseau de transport par pipeline:
l’exécution d’une composition de service est modélisé comme le transport des marchandises
(par exemple des gaz ou liquides) à travers un (plusieurs) tube(s), à partir de la source
(tâche) à la destination (tâche).

Puisque tous les services constitutifs sont développés et gérés par des organisations
différentes, la clé pour mettre en œuvre la coordination décentralisée réside dans la création
du réseau de services. Dans ce contexte, l’exécution d’une composition de service est
effectuée par deux étapes. Tout d’abord, l’étape configuration est de mettre en place le
réseau de services par la distribution d’informations de coordination. Ensuite, à l’étape
exécution, une composition de service est exécutée par une série d’interactions directes

181

Appendix C. Résumé en Français

entre les services constitutifs qui suivent le réseau de services préconfiguré. Les deux étapes
de semi-choréographie sont illustré respectivement dans le figure 3.18 et le figure 3.19.

Le modèle auto-choréographie. Le modèle de semi-chorégraphie présente un degré
élevé de complexité. D’un côté, son implémentation est basé sur des définition d’un plus
grand nombre de règles de réaction qui décrivent une série de réactions plus complexes
que le modèle d’orchestration. De l’autre côté, il est coûteux en établissement d’un réseau
de services ainsi que dans l’adaptation aux défaillances d’exécution, car un grand nombre
de messages de coordination doivent être générés et distribués sur le réseau.

Du point de vue de l’auto-chorégraphie, une composition de service est modélisée
comme une cellule de composition autonome, qui encapsule un ensemble de molécules
d’exprimer une composition de services autogérés et l’auto-adaptable. Dans ce contexte,
une composition de service est exécutée par le mouvement de la cellule de composition
parmi tous les services chimiques constitutifs. En recevant une cellule de composition, un
service constitutif peut lire des données et d’information de coordination dans la cellule,
puis faire le travail relatif, écrire de nouvelle information (résultats) dedans et finalement
le transmettre au service(s) suivant(s). Lorsque l’exécution est terminée, la cellule entière,
y compris les résultats définitifs, sera retourné au CCS.

En conséquence, l’auto-chorégraphie peut être considéré comme une orchestration mo-
bile. Tous les services constitutifs peuvent être le coordonnateur à son tour. Quand une
cellule de composition arrive à un CWS, toutes les règles de réaction (CRs, IRs et ARs) sont
disponibles en lisant le contenu de la cellule de composition. Ainsi, chaque service constitu-
tif a la connaissance de la totalité du flux de donnée (exprimée par des molécules), flux de
contrôle (exprimé par CRs) ainsi que d’une collection de plans d’adaptation prédéfinis
(exprimée par ARs). Par conséquent, la coordination et l’adaptation des services (si
nécessaire) peuvent être ainsi réalisées localement dans sa solution. Le modèle d’auto-
choréographie est illustré dans le figure 3.21.

C.3.1.4 Implémentation et evaluation

Infrastructures Distribuées Chimiques. Le middleware est implémenté sur une in-
frastructure distribuée. Tout d’abord, chaque service chimique est défini par un programme
HOCL. Puis, tous les programmes HOCL que nous appelons ici une Machine Chimique
Virtuel (CVM). La CVM intègre un module de communication réalisé en Java RMI qui
met en œuvre la communication entre les programmes chimiques. Ce module de com-
munication fournit une primitive put permettant l’écriture à distance dans une solution.
Dans le prototype réalisé, le communicateur RMI est capable de localiser une solution à
distance en utilisant le nom de solution et l’adresse de la CVM où est hébergée la solution.

Evaluation des molèles de coordination différents. Nous avons évalué des modèles
de coordination différents par l’exécutions de deux workflow expérimentaux. Après anal-
yser des résultats, nous avons les observations suivantes.

• Le modèle orchestration présente une faible complexité au moment de la conception
et d’une moyen complexité au monment d’exécution. Il présente une faible efficacité
dans l’exécution de workflow avec une échanges de données de grande taille, mais
un faible coût ainsi que pour l’exécution d’adaptation exécution. Par conséquent, il
apte à exécuter le workflow inter-organisationnel qui nécessite moins d’échanges de
données et les défaillance peuvent survenir souvent car tous les services constitutifs
peuvent être distribués largement dans le monde entier.

182

C.4. Publications

• Le modèle semi-chorégraphie a une complexité élevée au moment de la conception,
mais il peut toujours donner un meilleur temps de réponse grâce à l’interaction di-
recte entre les services constitutifs. Cependant, l’adaptation présente une grande
complexité, surtout dans le contexte où les défaillances se produisent fréquemment.
En conséquence, semi-chorégraphie est approprié pour la construction d’une com-
positions de services intra-organisationnelles, où quelques défaillances arrivent pas
souvent. En outre, dans ce contexte, tous les fragments de workflow peuvent être
pré-installé dans tous les services constitutifs car le gestionnaire de SBA a le contrôle
sur tous les services constitutifs.

• Le modèle auto-chorégraphie apporte une complexité de moyenne. Toutefois, vu que
la coordination et l’adaptation peuvent être effectuées directement par chaque service
fonctionne, il présente une faible complexité d’exécution et une grande efficacité. Par
conséquent, ce modèle est adapté pour exécuter des workflow intensif de données,
où une échange de données de grande taille est requise (par exemple, les workflows
scientifiques).

C.3.2 Une approche de prédiction en ligne en deux phases

Le middleware chimique a réalisé certaines des étapes importantes dans le cycle de vie de la
gestion de la SBA, à partir de sa construction, à son exécution et d’adaptation. Toutefois,
il ne peut que réagir aux défaillances au lieu de prévenir l’avenir des défaillances. Dans ce
travail, nous étudons le problème d’adaptation proactive [100]. L’objectif est de garantir
la qualité de service de SBA de bout en bout par l’exécution des mesures d’adaptation
préventives avant les dégradations de qualité de service se produisent réellement. Car
l’exécution d’adaptation est coûteux, l’un des défis principaux pour mettre en œuvre ef-
ficacement l’adaptation proactive est de assurer la précision de décision d’adaptation afin
d’éviter les adaptations inutiles.

J’ai proposé une approche de prédiction en ligne en deux phases. Une décisions
d’adaptation peuvent être prises par la prédiction d’une dégradation de QoS de-bout-en-
bout dans le futur par des évaluations en deux phases. Tout d’abord, la phase d’estimation
surveille l’exécution du workflow basé sur Program Evaluation and Review Technique
(PERT) et évalue si une dégradation de QoS de-bout-en-bout est probablement de se pro-
duire. Si il est le cas, une suspicion de dégradation est rapporté. Ensuite, le phase de
décision évalue la probabilité que la dégradation de QoS présumée se produira réellement
basée sur les connaissances apprises des expériences du passé.

Basé sur une série de simulations réalistes, notre approche présente les propriétés
souhaitables suivantes. 1) Il est capable de prendre des décisions d’adaptation précises
pour des workflows différents: presque toutes les violations peut être prédit avec succès; en
attendant, seulement quelques adaptations inutiles seront déclenchées. 2) Avec le même
niveau de précision, notre approche peut décider le plus tôt que les approaches tradi-
tionelles. 3) En utilisant des stratégies statiques, notre approche peut encore prendre
une décision d’adaptation exacte et opportune lorsque aucune information historique (or
insuffisante) est disponible.

C.4 Publications

Les contributions présentées dans ce manuscrit ont été publiées dans plusieurs conférences
internationale et nationale avec comité de lecture.

183

Appendix C. Résumé en Français

Conférences Internationale

1. Chen Wang and Jean-Louis Pazat: A Chemistry-Inspired Middleware for Self-Adaptive
Service Orchestration and Choreography. In the 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid’2013). In Delft, The
Netherlands (May 13–16, 2013).

2. Chen Wang and Jean-Louis Pazat: A Two-Phase Online Prediction Approach for
Accurate and Timely Adaptation Decision. In the 9th IEEE International Confer-
ence on Service Computing (SCC’2012). Honolulu, Hawaii, USA (June 2012).

3. Claudia Di Napoli, Maurizio Giordano, Jean-Louis Pazat and Chen Wang: A Chemi-
cal Based Middleware for Workflow Instantiation and Execution. In the 3rd European
Conference on ServiceWave (ServiceWave’2010): 100-111. Gent, Belgium (Decem-
ber 2010).

4. Chen Wang and Jean-Louis Pazat: Using Chemical Metaphor to Express Workflow
and Service Orchestration. In the 10th IEEE International Conference on Computer
and Information Technology (CIT’2010): 1504-1511. Bradford, UK (June 2010).

Conférences Nationales

1. Chen Wang and Jean-Louis Pazat: Un Middleware Inspiré par la Chimie pour
l’Exécution et l’Adaptation Flexible des Applications Basées sur Services. In Ren-
Par’21 (Rencontres francophones du Parallélisme). Grenoble, France (January 2013).

Rapports de recherche

1. Chen Wang: A QoS-Aware Middleware for Dynamic and Adaptive Service Execu-
tion. (May 2011) Available online at HAL-INRIA: http://hal.inria.fr/hal-00794027/.

2. Chen Wang: A Middleware Based on Chemical Computing for Service Execution
- Current Problems and Solutions. (Jan. 2011) Available online at HAL-INRIA:
http://hal.inria.fr/hal-00794023/.

Rapports techniques

1. Chen Wang, Thierry Priol: HOCL Programming Guide. Technique report (Sept.
2009). Available online in HAL-INRIA: http://hal.inria.fr/hal-00705283/.

2. Chen Wang, Thierry Priol: HOCL Installation Guide. Technique report (Aug.
2009). Available online at HAL-INRIA: http://hal.inria.fr/hal-00794028/.

C.5 Organisation du manuscrit

Le reste de ce manuscrit est organisé en trois parties.

Part I: Contexte

Dans cette partie, nous présentons l’état de l’art du contexte de nos travaux.

184

C.5. Organisation du manuscrit

• Chapter 1 introduit premièrement le paradigme du calcul orienté aux services.
Ensuite, nous décrivons des problèmes de recherche et des travaux de recherche
connexes.

• Chapter 2 présente tout d’abord des approches non conventionnelles qui sont ap-
propriées pour développer des systèmes basés sur services, tels que des systèmes
basé sur règles et des systèmes basés sur tuple space. Ensuite, nous introduisons
une approche similaire mais plus préférable connu comme la modèle de programma-
tion chimique ainsi que d’un langage de programmation chimique d’ordre supérieur
(HOCL).

Part II: Middleware inspiré par la chimie

Dans cette partie, nous présentons la première contribution de nos travaux. Nous allons
présenter la conception, la réalisation et l’évaluation d’un middleware basé sur le modèle de
programmation chimique pour l’exécution flexible des applications basées sur les services.

• Chapter 3 se concentre sur la conception de middleware. Tout d’abord, la vue
d’ensemble du middleware est illustré. Ensuite, nous présentons un certain nom-
bre de règles de réactions qui décrivent la sélection de services en termes d’une
série de réactions chimiques dans le middleware. Dans ce qui suit, un modèle cen-
tralisé (orchestration) et deux modèles décentralisés (semi-choreography and auto-
choreography) sont introduites pour la coordination et l’adaptation autonome des
services.

• Chapter 4 se concentre sur l’implémentation et l’évaluation du middleware. Tout
d’abord, nous analysons les performances des modèles différents en utilisant deux
workflow expérimentales. Ensuite, nous présentons l’implémentation d’HOCL et les
infrastructures chimiques distribués sur lequel le middleware peut être exécuté. En-
fin, comme une validation pour montrer la viabilité de notre approche, nous montrons
un certain nombre d’expériences par l’exécution de deux workflow expérimentales
dans le middleware. Les résultats de l’évaluation prouvent notre analyser au début
de cette section.

Part III: Adaptation proactive pour l’exécution de SBAs

Cette partie décrit la deuxième contribution de nos travaux.

• Chapter 5 discute du problème de déterminer le meilleur moment pour commencer
adaptation proactive avant des défaillances se produisent réellement. Une approche
de prédiction en deux phases est introduit pour pouvoir prévoir une défaillance dans
le future le plus tôt possible. Cette approche est évaluée par une série de simulations
réalistes en utilisant des workflow des types différents.

Conclusions and Perspectives

résume nos contributions et présente des perspectives de recherche pour le futur.

Bibliography

Dans cette partie, une liste des sources utilisées dans cette thèse sont fournis.

185

Appendix C. Résumé en Français

Appendix

À la fin, Les annexes fournissent des informations supplémentaires (exemples et les codes
sources) pour soutenir cette thèse.

186

Résumé

Les Architectures Orientées Services (SOA) sont adoptées
aujourd'hui par de nombreuses entreprises car elles
représentent une solution flexible pour la construction
d'applications distribuées. Une Application Basée sur des
Services (SBA) peut se définir comme un workflow qui
coordonne de manière dynamique l'exécution distribuée d'un

ensemble de services. Les services peuvent être sélectionnés
et intégrés en temps réel en fonction de leur Qualité de Service
(QoS), et la composition de services peut être dynamiquement
modifiée pour réagir à des défaillances imprévues pendant
l'exécution. Les besoins des architectures orientées services
présentent des similarités avec la nature: dynamicité,
évolutivité, auto-adaptabilité, etc. Ainsi, il n'est pas surprenant
que les métaphores inspirées par la nature soient considérées

comme des approches appropriées pour la modélisation de tels
systèmes. Nous allons plus loin en utilisant le paradigme de
programmation chimique comme base de construction d'un
middleware. Dans cette thèse, nous présentons un middleware
"chimique'' pour l'exécution dynamique et adaptative de SBA.
La sélection, l'intégration, la coordination et l'adaptation de
services sont modélisées comme une série de réactions
chimiques. Tout d'abord, l'instantiation de workflow est

exprimée par une série de réactions qui peuvent être effectuées
de manière parallèle, distribuée et autonome. Ensuite, nous
avons mis en oeuvre trois modèles de coordination pour
exécuter une composition de service. Nous montrons que les
trois modèles peuvent réagir aux défaillances de type panne
franche. Enfin, nous avons évalué et comparé ces modèles au
niveau d'efficacité et complexité sur deux workflows. Nous
montrons ainsi dans cette thèse que le paradigme chimique

possède les qualités nécessaires à l'introduction de la
dynamicité et de l'adaptabilité dans la programmation basée sur
les services.

Mots Clés : SBA, orchestration, chorégraphie, calcul chimique,
instantiation de workflow, coordination de service, adaptation
proactive, prédiction de défaillance.

N° d’ordre : 13ISAR 15 / D13 - 15

Abstract

With the advent of cloud computing and Software-as-a-Service,
Service-Based Application (SBA) represents a new paradigm to
build rapid, low-cost, interoperable and evolvable distributed
applications. A new application is created by defining a
workflow that coordinates a set of third-party Web services
accessible over the Internet. In such distributed and loose
coupling environment, the execution of SBA requires a high

degree of flexibility. For example, suitable constituent services
can be selected and integrated at runtime based on their
Quality of Service (QoS); furthermore, the composition of
service is required to be dynamically modified in response to
unexpected runtime failures. In this context, the main objective
of this dissertation is to design, to develop and to evaluate a
service middleware for flexible execution of SBA by using
chemical programming model. Using chemical metaphor, the

service-based systems are modeled as distributed, self-
organized and self-adaptive biochemical systems. Service
discovery, selection, coordination and adaptation are expressed
as a series of pervasive chemical reactions in the middleware,
which are performed in a distributed, concurrent and
autonomous way. Additionally, on the way to build flexible
service based systems, we do not restrict our research only in
investigating chemical-based solutions. In this context, the

second objective of this thesis is to find out generic solutions,
such as models and algorithms, to respond to some of the most
challenging problems in flexible execution of SBAs. I have
proposed a two-phase online prediction approach that is able to
accurately make decisions to proactively execute adaptation
plan before the failures actually occur.

Keywords: SBA, orchestration, choreography, chemical

programming, workflow instantiation, service coordination,
(proactive) adaptation, prediction.

	these
	Table of Contents
	List of Figures
	List of Tables
	List of HOCL Programs
	Introduction
	I backgroud
	Service-Oriented Computing
	Service-Based Application
	Web Service
	Workflow
	Quality of Service
	Service Level Agreement
	Runtime Management of Service-Based Applications

	Instantiation of Workflow
	Static Selection v.s. Dynamic Selection.
	Local Selection v.s. Global Selection.

	Service Interaction Models
	Web Service Orchestration.
	Web Service Choreography.
	Decentralized Service Orchestration.

	Runtime Adaptation of Service-Based Applications
	Reactive Adaptation
	Preventive Adaptation

	Unconventional Approaches for Flexible Service Management
	Unconventional Paradigms for Service Computing
	Rule Based Systems
	Tuple-Space Based Systems

	Chemistry-Inspired Computing
	Gamma
	-Calculus
	Higher-Order Chemical Language (HOCL).
	Chemistry-Inspired Service Systems

	Illustrative Example: The ``Best Garage"

	II Chemistry-Inspired Middleware
	Chemistry-Inspired Middleware for Flexible Execution of SBA
	Architecture of Chemistry-Inspired Middleware
	Chemical Web Service (CWS)
	Chemical Composite Service (CCS)
	Interactions between Chemical Services

	Context-Aware Service Selection
	Service Selection Based on Local Constraints
	Global Service Selection

	Centralized Coordination Model for the Execution of Service Compositions
	Chemical Service Orchestration Model
	Reaction Rules to Express Complex Workflow Patterns
	Runtime Adaptation of SBA

	Decentralized Models for Adaptive Execution of SBA
	Semi-Choreography Model
	Auto-Choreography Model

	Evaluation: Implementation and Experimental Results
	Performance Analysis of Different Execution Models
	Complexity
	Cost
	Efficiency
	Flexibility
	Robustness

	Implementation of Middleware
	Implementation of the HOCL Compiler
	I/O of HOCL programs
	Distributed Chemical Infrastructure
	Implementation of the ``Best Garage" Example

	Evaluation of Different Execution Models
	Experimental Setup
	Experiment 1: Comparison of the Execution Efficiency
	Experiment 2: Comparison of the Adaptation Complexity
	Discussion

	III Towards Proactive Adaptation of SBA
	A Two-Phase Online Prediction Approach
	Problem Statement: Challenges and Solutions
	Context: Prevention of Global SLA Violation
	Challenges
	Our Approach: A Two-Phase Online Prediction Approach

	Estimation Phase
	Estimation of Local Execution Time
	Estimation of Global Execution Time

	Decision Phase
	Decision Function
	Static Decision Strategies
	Adaptive Decision Strategy.

	Evaluation
	Experiment Setup: Realistic simulation model
	Evaluation Metrics.
	Experiment 1: Evaluation of Traditional Prediction Approaches
	Experiment 2: Evaluation of Our Approaches
	Experiment 3: Evaluations over Different Workflows

	Conclusions and Perspectives
	Bibliography

	IV Appendix
	Example of Semi-choreography: Decentralized Coordination of SBA
	Distribution of Coordination Information
	Decentralized Coordination of Workflow

	Example of Auto-choreography
	Execution of SBA: Decentralized Coordination of Services
	Decentralized Adaptation of SBA
	Binding-level Adaptation for Auto-Choreography Model
	Workflow Level Adaptation for Auto-Choreography Model

	Résumé en Français
	Contexte
	Motivations
	Le calcul inspiré par la nature
	Le calcul chimique
	Objectives

	Contributions
	Un Middleware inspiré par la chimie
	Une approche de prédiction en ligne en deux phases

	Publications
	Organisation du manuscrit

	AvisReproJury_C.WANG
	Couverture-These-INSA-UEB-chen-wang2

