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RÉSUME ET MOTS CLÉS 

 

Résumé: La thèse porte sur la sélection de poses optimales pour la calibration géométrique et 
élasto-statique de robots industriels utilisés pour l'usinage de pièces des grandes dimensions. Une 
attention particulière est accordée à l'amélioration de la précision de positionnement du robot après 
compensation des erreurs géométriques et élasto-statiques. Pour répondre aux exigences industrielles 
des opérations d’usinage, une nouvelle approche pour la définition d'essais pour la calibration de 
robots sériels et quasi-sériels est proposée. Cette approche est basée sur un nouveau critère de 
performance, orienté applications industrielles, qui évalue la qualité du plan d'essais pour la calibration 
via la précision de positionnement du manipulateur après compensation d'erreurs, et tient compte des 
spécificités de la tâche manufacturière à réaliser au moyen de configurations tests. Contrairement aux 
travaux précédents, l'approche développée requiert seulement une mesure des positions de points et 
non d’orientation de corps rigides à l’aide d’un système de mesure externe tel qu’un laser tracker. 
Cette méthode permet ainsi d'éviter les problèmes de non-homogénéité dans les équations 
d'identification. Par ailleurs, afin de prendre en compte l'impact du compensateur de gravité, qui induit 
une chaîne cinématique fermée, le modèle de raideur est étendu en y incluant certains paramètres 
élasto-statiques dont les valeurs dépendent de la configuration du robot. Une méthodologie pour la 
calibration des modèles de compensateurs de gravité est ainsi proposée. Les avantages des techniques 
développées pour la calibration de robots industriels dédiés à des opérations d’usinage sont validés et 
mis en évidence expérimentalement, à travers la calibration géométrique et élasto-statique du robot 
industriel KUKA KR-270. 

 

Mots-clés: calibration géométrique et élasto-statique, définition d'essais de calibration, mesure 
de poses partielles, robots sériels et quasi-sériels, compensateur de gravité, robotique d’usinage 



 

ABSTRACT AND KEYWORDS 

 

Abstract: The thesis deals with the optimal pose selection for geometric and elastostatic 
calibration for industrial robots employed in machining of large parts. Particular attention is paid to the 
improvement of robot positioning accuracy after compensation of the geometric and elastostatic errors. 
To meet the industrial requirements of machining operations, a new approach for calibration 
experiments design for serial and quasi-serial industrial robots is proposed. This approach is based on 
a new industry-oriented performance measure that evaluates the quality of calibration experiment plan 
via the manipulator positioning accuracy after error compensation, and takes into account the 
particularities of prescribed manufacturing task by introducing manipulator test-poses. Contrary to 
previous works, the developed approach employs an enhanced partial pose measurement method, 
which uses only direct position measurements from an external device and allows us to avoid the non-
homogeneity of relevant identification equations. In order to consider the impact of gravity 
compensator that creates closed-loop chains, the conventional stiffness model is extended by including 
in it some configuration dependent elastostatic parameters, which are assumed to be constant for 
strictly serial robots. Corresponding methodology for calibration of the gravity compensator models is 
also proposed. The advantages of the developed calibration techniques are validated via experimental 
study, which deals with geometric and elastostatic calibration of a KUKA KR-270 industrial robot.  

 

Keywords: geometric and elastostatic calibration, design of calibration experiments, partial 
pose measurements, serial/quasi-serial industrial robots, gravity compensator, robotic-based 
machining 



 

RESUME EN FRANÇAIS 

 

SELECTION DE POSES OPTIMALES POUR L'IDENTIFICATION DES 
PARAMETRES GEOMETRQUES ET ELASTO-STATIQUES DE 

ROBOTS D'USINAGE 

 

INTRODUCTION GENERALE 

Motivation. Actuellement, les industries des secteurs automobile, navale et aéronautique tentent de 
remplacer progressivement les machines CNC par des robots industriels pour effectuer de nombreuses 
tâches de fabrication. En général, les robots industriels sont considérés comme très concurrentiels en 
raison de leur flexibilité d’utilisation, leurs grands espaces de travail et leur rentabilité. En même 
temps, la robotique d’usinage introduit quelques difficultés complémentaires. En effet, dans le cas, par 
exemple, où le robot est soumis à une charge externe substantielle durant l’usinage, les compliances 
des  liaisons deviennent non négligeables. Ainsi, afin d'obtenir une grande précision de traitement, une 
révision des modèles mathématiques et des stratégies de commande des axes est nécessaire. Cette 
pratique est l’objectif principal de cette thèse. 

Pour les procédés de fabrication pris en compte dans ce travail, le robot manipulateur travaille 
sous des sollicitations importantes due au procédé d'usinage. Ce chargement est souvent assez grand 
pour provoquer des déformations qui se concentrent dans les composants élastiques du robot utilisé. 
Les erreurs de déformations dépendent à la fois du chargement externe et des propriétés élasto-
statiques des robots. Ces déformations affectent fortement par conséquence la qualité du produit usiné. 
D'autre part, pour les applications industrielles où les forces externes appliquées à l'effecteur du 
manipulateur sont relativement faibles, les sources principales d'imprécision du robot sont les erreurs 
géométriques. Ces erreurs sont liées aux différences entre les valeurs nominales et réelles des 
paramètres caractéristiques de la géométrie des bras et des articulations. Dans ce cas, pour obtenir la 
précision de positionnement voulue pour la robotique d’usinage, les modèles mathématiques 
correspondants doivent être soigneusement calibrés avant d'être utilisées dans les algorithmes de 
commande. Pour ces deux raisons, le renforcement de modélisations géométriques et élasto-statiques, 
ainsi que l'amélioration de la précision dans l'identification des paramètres du modèle, deviennent les 
moyens de compenser les problèmes importants de déviation de l’outil durant l’usinage. 

Dans la littérature, le problème de la calibration du modèle de manipulateur a été au centre des 
travaux de la communauté de la recherche en robotique depuis plusieurs décennies. Beaucoup de 
travaux ont été menés sur la calibration géométrique, qui a été étudiée sous différents aspects (les 
méthodes de modélisation et de mesure, les algorithmes d'identification, etc.) Actuellement, une 
attention particulière est accordée à la calibration élasto-statique, mais la majorité des travaux se 
concentrent sur le développement de modèles de raideur simplifiés et l'utilisation des techniques 
d'identification classiques. L'équipe Robotique de l' IRCCyN a eu des contributions essentielles dans 
le domaine de la calibration du robot, y compris un certain nombre de travaux théoriques/pratiques et 
des logiciels pour la modélisation géométrique de robots "SYMORO+" et la calibration "GECARO" 
(Khalil and Creusot, 1997; Khalil and Lemoine, 1999), méthodologies pour l'identification de la 
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raideur articulaire (Gautier et al., 2011) (Caro, Dumas, Garnier et Furet, 2013), la modélisation de la 
raideur des manipulateurs sur-contraints (Pashkevich et al., 2009) et aussi certains travaux liés à 
l'identification des paramètres dynamiques (Gautier and Briot, 2013; Pashkevich et al., 2009). Cette 
thèse s’appuie sur ces travaux antérieurs et a pour but d’améliorer la précision des modèles de 
manipulateur existants. 

En dépit de nombreuses contributions consacrées à la calibration du robot, les problèmes de 
l'amélioration de la précision de l'identification et de la réduction de l'impact du bruit de mesure n'ont 
pas trouvé suffisamment d’écho dans la littérature., Il n’y a qu'un nombre limité de travaux sur le sujet 
(Sun and Hollerbach, 2008). Une façon d'améliorer la précision de l'identification sans augmenter le 
nombre d'essais de calibration est l'optimisation préliminaire des configurations de mesures. Cette 
approche a été considérée dans plusieurs travaux, dont les auteurs ont adapté l'idée de plan optimal 
d'essais de calibration de robot pour la sélection des configurations optimales de mesures (Khalil et al., 
1991) (Borm and Meng, 1991) (Daney, 2002). Pour définir le plan optimal, de nombreux indices de 
performance ont été proposés dans la littérature. Cependant, la majorité de ces indices ont leurs limites 
qui affectent la précision de la calibration. En outre, ils ne correspondent pas entièrement aux 
exigences industrielles et sont souvent abstraits. Pour cette raison, il est nécessaire de développer une 
nouvelle mesure de la performance pour la sélection de configurations de mesure, qui est directement 
liée aux exigences industrielles des processus d'usinage et qui vise à améliorer la précision de 
positionnement du robot après calibration. 

Objectifs de la thèse et problèmes de recherche. La thèse se concentre sur le renforcement 
des techniques de calibration des paramètres géométriques et élasto-statiques de robots afin 
d'améliorer leur précision et l'efficacité de la compensation d'erreurs. Cette méthode développée pour 
la robotique d'usinage de pièces des grandes dimensions obtient les performances recherchées au 
moyen de la définition d'essais optimaux pour la calibration du robot en  réduisant l'impact de l'erreur 
de mesure. Pour atteindre cet objectif, les problèmes suivants sont formulés et résolus dans le cadre 
dans le cadre de cette thèse de doctorat : 

Problème 1: 

 Développement d’un nouvel indice de performance, orienté applications industrielles, 
pour la définition d'essais pour la calibration et des algorithmes d'optimisation qui 
garantissent la précision requise pour les applications industrielles considérées dans 
cette thèse. 

Problème 2: 

 Développement de modèles géométrique et élasto-statique avancés de robots 
industriels utilisés pour l'usinage de pièces de grandes dimensions. Ces modèles 
doivent également permettre d’appréhender l’effet des compensateurs de gravité. 

Problème 3: 

 La validation expérimentale de la technique développée et son application pour 
l'identification des paramètres des modèles géométrique et élasto-statique de robots 
utilisés pour l'usinage de pièces de grandes dimensions dans l'industrie aéronautique. 

Organisation de la thèse. Pour résoudre les problèmes de recherche définis ci-dessus, la thèse 
est organisée de la manière suivante : 
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Le Chapitre 1 est consacré à l'état de l'art sur les particularités de la robotique d'usinage et décrit 
les techniques existantes pour la calibration géométrique et élasto-statique de robots. Une attention 
particulière est accordée aux applications de robots pour l'usinage de pièces de grandes dimensions, la 
détermination des exigences industrielles, l'analyse des travaux existants sur la calibration de robots et 
la détermination des configurations de mesures. L'objectif principal de ce chapitre est ainsi de mettre 
en évidence les limitations des techniques existantes et la nécessité de renforcer ces techniques, qui 
permettent de définir les objectifs et les problèmes de recherche de la thèse. 

Le Chapitre 2 porte sur la définition d'essais optimaux pour la calibration des paramètres 
géométriques du manipulateur. Une attention particulière est accordée à l'amélioration des techniques 
de mesure et d'optimisation utilisées pour la calibration géométrique des robots sériels. Ce chapitre 
présente un modèle géométrique complète irréductible pour des robots d’architecture sérielle, qui 
prend en compte les différentes sources d'erreur (longueurs de corps, offsets entre les liaisons, etc.) Il 
propose également un indice de performance orienté applications industrielles pour la sélection des 
configurations optimales de mesure et améliore la technique de mesure via l’utilisation de mesures des 
coordonnées cartésiennes des points à l’aide d’un système de mesure externe. Cette nouvelle approche 
vise à trouver les configurations de la calibration qui garantissent la meilleure précision de 
positionnement du robot après compensation d'écarts géométriques. Dans ce chapitre, plusieurs 
exemples de simulation illustrent les avantages de la technique développée pour la sélection des poses 
et l'amélioration de la précision. 

Le Chapitre 3 est consacré à la définition d'essais pour la calibration des paramètres élasto-
statiques du manipulateur. Une attention particulière est accordée à l'amélioration des méthodes de 
modélisation, de mesure et d'identification utilisées pour la calibration élasto-statique de robots 
industriels d'architecture sérielle, en tenant compte de la particularité de la chaîne cinématique fermée 
induite par le compensateur de gravité. Il présente la méthode de mesure renforcée pour le cas de la 
calibration élasto-statique et applique la technique des moindres carrés pondérés pour l'identification 
des paramètres correspondants. Dans ce chapitre, la mesure de performance proposée est prolongée 
dans le cas de la sélection de configurations optimales de mesure pour des essais de la calibration 
élasto-statiques. Contrairement aux travaux précédents, le modèle de la raideur du manipulateur 
développé est capable de prendre en compte l'impact des compensateurs de gravité. 

Le Chapitre 4 traite de la validation expérimentale de la technique développée pour la sélection 
de poses optimales employées dans la procédure de la calibration, où une attention particulière est 
accordée à l'amélioration de la précision de positionnement du robot industriel KUKA KR-270 installé 
sur la plate-forme robotique de production de l’IRCCyN à l’IUT de Nantes et  qui est équipé d’un 
compensateur de gravité. Il présente l'environnement des cellules de travail où les essais de calibration 
doivent être effectués. Aussi bien pour la calibration géométrique que pour la calibration élasto-
statique, les essais expérimentaux et les procédures de mesure, les configurations optimales de mesure 
et des résultats d'identification ainsi que l'analyse de la précision sont fournis. Contrairement à d'autres 
travaux, la précision du manipulateur est évaluée non seulement pour les configurations de mesure, 
mais aussi pour un plus large éventail de configurations (différentes de celles utilisées pour la 
calibration). 

Enfin, la Conclusion résume les contributions principales de la thèse et définit les perspectives 
pour les travaux futurs. 

 



- 10 - Résumé en français 

CHAPITRE 1 

MODELISATION DE MANIPULATEURS POUR LA ROBOTIQUE 
D'USINAGE ET IDENTIFICATION DES PARAMETRES DU MODELE 

Pour l'usinage de pièces de grandes dimensions, l'utilisation de robots industriels  d’architecture 
sérielle est très attrayante. En effet, ils ont un grand espace de travail et une plus grande souplesse 
d’utilisation comparés aux machines CNC. Cependant, à cause de certaines particularités de la 
cinématique du robot, les erreurs de positionnement de l'effecteur sont accumulées de bras en bras et 
affectent la précision d'usinage. Pour obtenir une précision désirée du procédé d'usinage, la commande 
du robot doit utiliser un modèle du manipulateur précis qui soit capable de compenser les erreurs 
géométriques et les déformations élastiques sous sollicitations provoquées par les forces d'usinage et 
de gravité appliquées aux composants du manipulateur.  

● LA ROBOTIQUE D'USINAGE DE PIECES DE GRANDES DIMENSIONS 

Avant d'examiner les spécificités de la robotique d'usinage, nous analysons en général les 
exigences industrielles de précision d'usinage. La présente les procédés de fabrication les plus courants 
et les tolérances typiques associées à chacun d'eux. Pour le processus de fraisage étudié dans cette 
thèse, qui est souligné ici, les tolérances désirées sont de l’ordre de 0,05-0,25 mm. Il est ainsi 
important d’évaluer leur faisabilité dans la commande de robots conventionnels sans compensation 
d'erreur. 

 

Figure 1. Tolérances typiques de différents procédés d'usinage 

Pour les robots industriels, en particulier ceux utilisés pour l'usinage de matériaux à hautes 
performances (l’Inconel 718 ou le Monel® 400 alliages de nickel-cuivre utilisé dans l'industrie 
aérospatiale), le chargement essentiel est habituellement du à l'interaction de l'outil d'usinage et la 
pièce. Pour le fraisage d'une telle matière avec la profondeur de coupe de 0,2 mm, largeur de coupe de 
8 mm et la vitesse de coupe de 2000 m/min, une force de 7 kN est requise (Klimchik, 2011). Une telle 
force est suffisante pour provoquer des déformations importantes des corps et des liaisons du robot 
industriels. Par exemple, pour le robot industriel KUKA KR240 (Dumas, 2011), une telle force peut 
provoquer des déviation de positionnement de l’ordre de 5 mm, ce qui est 20 fois plus important que 



Résumé en français - 11 - 

les tolérances de fabrication souhaitées. Ainsi, pour obtenir la précision désirée pour une bonne qualité 
d’usinage, ces déviations doivent être compensées par une stratégie appropriée de commande. 

 

Figure 2. Les différences entre la trajectoire désirée et celles obtenues avec et sans compensation 
d'erreurs (Dumas, 2011) 

Afin de montrer l'importance des paramètres de manipulateur sur la qualité de fabrication, nous 
présentons un essai d'usinage effectué à la plate-forme IRCCyN à l’IUT de Nantes. Le processus 
technologique comprend une opération de fraisage sur une pièce en utilisant un robot industriel KUKA 
KR-270. La pièce en alliage d'aluminium avec une épaisseur de 5 mm a été usinée avec un outil de 
coupe de diamètre égal à 21 mm et comprenant quatre dents. La vitesse de rotation de l'outil est égale 
à 6670 tr/mn et la vitesse d'avance est égale à 3,6 m/min. Les résultats expérimentaux liés à ce 
processus sont présentés dans la Figure 2, qui montrent les différences entre la trajectoire désirée et 
celles obtenues (en utilisant différentes stratégies de commande). Les erreurs d'usinage sans 
compensation d'erreur peuvent atteindre 0,7 mm, ce qui n'est pas acceptable pour les opérations 
d’usinage réalisées dans l'industrie aéronautique. 

● MODELES GEOMETRIQUES DE MANIPULATEURS ET IDENTIFICATION DE LEURS 

PARAMETRES 

Les modèles géométriques d’un manipulateur peuvent comprendre de nombres de paramètres 
différents. Généralement, il n'est pas possible d'identifier l'ensemble de ces paramètres à partir des 
mesures de la position de l'effecteur. En pratique, certains paramètres ne peuvent pas être identifiés 
séparément, ils sont présentés dans le modèle géométrique comme des sommes ou des combinaisons 
linéaires. Par conséquent, pour être adapté à l'identification, le modèle géométrique du manipulateur 
doit être approprié (au moyen de la réduction des paramètres redondants). 

Ce problème a été abordé dans (Everett et al., 1987), où trois propriétés pour le modèle 
géométrique approprié pour l'identification ont été définisμ la complétude, l’irréductibilité et la 
continuité. Une contribution dans ce domaine a été faite par (Zhuang et al., 1989), qui a porté sur la 
détermination du nombre minimum de paramètres géométriques de la complétude du modèle. Une 
autre solution possible basée sur la technique SVD a été proposée dans (Pashkevich, 2001), où les 
paramètres géométriques du manipulateur sont divisés en trois groupes, les paramètres identifiables, 
non identifiables et semi-identifiables. De même, une approche alternative a été proposée dans (Khalil 
and Dombre, 2004) basée sur la décomposition QR. 

En pratique, les paramètres géométriques du robot diffèrent des valeurs nominales déclarées 
dans les spécifications techniques et varient d'un robot à l'autre. Donc, pour être utilisé dans la 
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commande du robot, le modèle géométrique doit être correctement calibré pour un manipulateur donné. 
En général, la procédure de calibration est divisée en quatre étapes successives: la modélisation, les 
mesures, l'identification et l’implémentation. 

La première étape porte sur le développement d'un modèle mathématique approprié du robot. 
Lors de la deuxième étape, les mesures sont effectuées. La troisième étape porte sur l'identification des 
paramètres inconnus en utilisant certains algorithmes numériques. Enfin, la dernière étape met en 
œuvre les paramètres identifiés dans le modèle utilisé dans la commande du robot ou la technique de 
compensation. Plus en détail, deux stratégies de compensation sont décrites dans la Figure 3, où le 
modèle de manipulateur réel est considéré comme "non-nominal", contrairement au modèle "nominal" 
qui est donné dans documentation technique du robot. 

 

Figure 3. Stratégies de commande du robot avec différentes techniques de compensation des 
erreurs  
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Tableau 1 Résumé de la revue sur la calibration géométrique 

 

Open-loop methods Closed-loop methods 

Location 
measure 

Position 
measure 

Distance measure Position constraint 
Plane 

constraint 

Publications 

(Besnard and 
Khalil, 1999) 
(Zhuang et al., 

1998) 

(Bai et al., 
2003) 

(Goswami et al., 
1993) (Driels and 

Swayze, 1994) 

(Meggiolaro et al., 
2000) 

(Ikits and 
Hollerbach, 

1997) 

Measurement 
device 

Theodolite/ 
inclinometers 

LTS 
Ball-bar system/ 

Wire potentiometer 
— — 

Applications Stewart platform PUMA 560 PUMA 560 Schilling Titan II PUMA 560 

Number of 
parameters 

35/42* 27 36/24* — 23 

Number of 
configurations 

80/12 40 800/48 800 120 

Achieved 
accuracy 

0.4mm/0.5mm 0.1mm 0.08mm/0.5mm 5.7mm 0.25mm 

*The number of identified parameters varies with different parameterization methods 

Le Tableau 1 résume les travaux existants sur la calibration géométrique de robots. La meilleure 
précision a été atteinte en utilisant des mesures de position (0,1 mm en utilisant le laser tracker). 
L'efficacité des méthodes restantes est essentiellement inférieure. Pour cette raison, la mesure de 
coordonnées de l'effecteur semble prometteuse pour des applications industrielles. D'autre part, 
plusieurs problèmes se posent également ici. Par exemple, la mesure devrait fournir les coordonnées 
de position et d'orientation, mais celles-ci sont généralement calculées en utilisant les coordonnées de 
position de plusieurs points de référence. Intuitivement, cela peut causer une perte de la précision de 
l'identification. Par ailleurs, les résidus 6D ne sont pas homogènes pour être utilisés directement dans 
la méthode des moindres carrés, de sorte qu'ils devraient être normalisés dans les équations 
d'identification. Par conséquent, il est nécessaire d'améliorer les techniques de mesure en vue de 
surmonter ces difficultés. 

● MODELES ELASTOSTATIQUES DE MANIPULATEURS ET IDENTIFICATION DE LEURS 

PARAMETRES 

Les paramètres élastiques de manipulateurs peuvent être obtenus seulement à partir des essais 
de calibration. Similairement à la calibration géométrique, le cas élasto-statique comprend quatre 
étapes. Actuellement, la plupart des travaux connexes porte sur le développement de modèles de 
raideur simplifiés et appliquent les techniques d'identification classiques. En particulier, le Tableau 2 
résume les particularités principales et souligne les difficultés de la calibration élasto-statique. 

Contrairement au cas géométrique, la calibration élasto-statique est basée sur le modèle 
géométrique étendu et le modèle de raideur, et nécessite des capteurs de force supplémentaires. La 
difficulté principale est liée à l'application de la force dans des directions différentes, dont l’amplitude 
est limitée par les contraintes admissibles dans les composants du manipulateur. Celui-ci affecte 
sensiblement la précision de l'identification, qui dépend de l’amplitude de la force. 
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Tableau 2  Particularités et difficultés de la calibration élasto-statique 

Calibration steps Particularities Difficulties 

Step 1:  
Modeling 

● Extended geometric model 

● Lumped stiffness model 
● Take into account robot configurations 

and applied forces 

● Huge number of parameters 

● Influence of gravity compensator 
 

Step 2:  
Measurement 

● Measurements with two different 
loadings 

● Both position and force sensors are 
required 

● Application of force in different 
directions 

● Limited force magnitude  

Step 3:  
Identification 

● Large number of parameters must be 
identified  

● Identifiability of stiffness parameter  
● Non-homogeneity of the least-square 

objective 

● Problem of the weights assigning 

Step 4:  
Compensation 

● Compensation relies on both geometric 
and elastostatic models 

● Application of off-line compensation 
strategy only 

● Deflections depend on robot 
configurations and applied forces 

● Evaluation of the machining forces 

● Influence of the dynamic factorsμ 
oscillation and chattering effects  

Le Tableau 3 synthétise l’état de l'art de la calibration élasto-statique de robots. Tous les auteurs 
ont utilisé des méthodes qui s'appuient sur la mesure de position/orientation de l'effecteur. Puisque ces 
travaux traitent de différents robots dont les propriétés élasto-statiques diffèrent essentiellement, les 
niveaux des forces appliquées varient de 5 à 250 kg. La différence principale dans ces essais de 
calibration est liée au nombre de configurations de mesure qui diffère d'un cas à l'autre et varie de 
seulement 6 configurations allant jusqu'à 1000. Bien que les auteurs aient utilisé différents montages 
expérimentaux, ils ont pu atteindre à peu près la même précision de l’ordre de 0,3-0,7 mm. 

Tableau 3  Summary of the review on elastostatic calibration  

Publications 
Application:  
manipulator 

Applied 
forces 

Measurement devices 
N° of 
poses 

Achieved 
accuracy 

(Alici and 
Shirinzadeh, 2005) 

Motoman SK 120 0-50kg Laser sensing system  
Wrist force/torque sensor 

20 0.43 mm 

(Meggiolaro et al., 
2005) 

Patient positioning 
system 

0-136kg Leica 3D laser tracker  125 0.49 mm 

(Marie and Maurine, 
2008) 

KUKA IR663 30-100kg Three dial indicators — 0.3 mm 

(Lightcap et al., 
2008) 

Mitsubishi PA10-
6CE 

0-9.2kg MicroVal PFX454 touch 
trigger probe CMM 

10 0.71 mm 

(Wang et al., 2009) ABB IRB4400 0-30.6kg ATI Omega force sensor, 
Portable coordinate 
measurement arm 

6 0.4 mm 

(Dumas et al., 2012) KUKA KR240 0-250kg Faro laser tracker 

Spring balance 

23 0.6 mm 

(Nubiola and Bonev, 
2012) 

ABB IRB 1600-
6/1.45 

1.85-4.8kg Faro laser tracking system 1000 0.7 mm 
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● DETERMINATION DES ESSAIS OPTIMAUX POUR LA CALIBRATION DES MODELES DE ROBOTS 

Afin de réduire les erreurs d'identification, il est très attrayant d’appliquer à la calibration du 
robot les idées de la théorie de la conception d'essais. Pourtant, dans la robotique, le problème de la 
conception d'essais optimaaux de calibration n'a pas reçu suffisamment d'attention. Dans des travaux 
précédents, il a été appliqué au problème de la calibration géométrique utilisant uniquement des 
mesures de performance abstraites (développées à l'origine pour les modèles de régression linéaire) 
qui ne sont pas directement liés à la précision du robot dans les processus d'usinage. En outre, un 
nombre limité de travaux a abordé la question de la calibration élasto-statique, où les configurations de 
mesures ont été obtenues en utilisant des approches intuitives. La limite des techniques existantes pour 
la calibration géométrique et élasto-statique a été démontrée par une étude de cas pour un 
manipulateur à deux corps et deux liaisons. La précision de l'identification correspondant à tous les 
critères examinés est présentée dans la Figure 4. Cette figure montre qu'il n'y a pas de solution 
optimale unique. 

 

Figure 4. Influence des indices de performance utilisés pour la détermination des configurations de 
mesure sur la qualité d’identification des paramètres 

Par conséquent, il est nécessaire de réviser et d'améliorer les approches existantes pour la 
planification d'essais de la calibration pour l'identification des paramètres géométriques et élasto-
statiques des robots industriels. En tenant compte des spécificités des applications industrielles visées, 
il est nécessaire de développer un nouvel indice de performance pour la détermination des 
configurations de mesure et qui assure une très bonne précision de positionnement du robot sous  la 
charge. 

CHAPITRE 2 

CONCEPTION D'ESSAIS DE LA CALIBRATION DES PARAMETRES 
GEOMETRIQUES DE MANIPULATEURS 

Dans ce travail, l'objectif principal est d'atteindre la précision désirée de positionnement du 
robot en utilisant un nombre minimum d'essais. Ici, il est proposé d'introduire une étape 
supplémentaire, la conception d'essais, qui est effectuée avant que les mesures soient faites et vise à 
obtenir des configurations de mesure qui assurent de bons résultats de la calibration (précision du 
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robot après compensation d'erreurs). Il nous permet d'améliorer l'efficacité de la compensation 
d'erreurs et d'estimer la précision du robot, qui est très important pour les applications industrielles. La 
procédure modifiée comprend cinq étapes, qui sont schématiquement présentés dans la Figure 5 Dans 
cette figure, les procédures mises en évidence sont liées aux contributions principales de ce chapitre et 
sont présentées ci-dessous. 

 

Figure 5. Le schéma de la procédure de calibration du robot. 

● METHODE RENFORCEE DE MESURE DES POSES PARTIELLES  

La principale difficulté avec la méthode de mesure des poses est que les composantes 
d'orientation du manipulateur ne peuvent pas être mesurées directement, et sont calculées en utilisant 
un nombre excessif de mesures de position. Cela provoque une non-homogénéité des équations 
pertinentes d'identification qui nécessitent une normalisation ultérieure. Pour éviter ce problème, la 
méthode proposée de mesure des poses partielles utilise des mesures directes pour plusieurs points de 
référence qui sont disponibles à partir de l'appareil externe. Le problème d'optimisation correspondant 
est écrit comme suit 

 
2( )

1 1

min
m n

j j p

i

i j

i





  π
J πp  (1) 

Ici, la matrice ( )p

i

j

J  avec l'exposant " ( )p " désigne les lignes de positionnement du Jacobien 
d’identification j

iJ , l'indice " i " définit le numéro de la configuration, et l'indice " j " dénote le 
numéro du point de référence. 
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Afin d'illustrer les avantages de l'approche proposée, nous présentons un exemple numérique 
qui traite de l'identification des paramètres pour un manipulateur spatial comprenant 3 liaisons. A des 
fins de comparaison, les deux méthodes de mesure classiques et proposées sont évaluées. Les résultats 
de simulation sont résumés dans le Tableau 4, qui présente les écarts-types pour les estimations des 
paramètres: les erreurs des longueurs des corps 

il  et les offsets articulaires. L'approche proposée 
permet l'amélioration de la précision dans l'estimation de la déviation de longueur des corps de 125-
283%, tandis que l'amélioration de la précision des estimations offsets articulaires est légèrement 
inférieure, jusqu'à 233%. Cela confirme les avantages de l'approche proposée, qui conduit toujours à 
de meilleurs résultats. 

Tableau 4 Comparaison de différentes méthodes de mesure et leur influence sur la précision de 
l'identification (nombre d'itérations : 1000, nombre de configurations : 3; 0.01mm  ) 

Parameters 
Assigned 

geometric errors 

Standard deviations of parameter estimates 
Improvement 

Conventional approach Proposed approach 

1l  3 mm 0.069mm 0.018mm 283% 

2l  5 mm 0.019mm 0.006mm 217% 

3l  5 mm 0.009mm 0.004mm 125% 

1q  1 deg 0.187mdeg 0.185mdeg 1% 

2q  0.5 deg 3.742mdeg 1.123mdeg 233% 

3q  2 deg 1.432mdeg 0.866mdeg 65% 

La méthode de mesure améliorée qui fonctionne avec plusieurs points de référence donne des 
avantages sur la précision de l'identification. Dans le cadre de cette méthode, l'algorithme 
d'identification dédié est divisé en deux étapes. La première étape porte sur l'estimation de 

basep , 

baseR , j

toolp , qui sont liés à les transformations de base et d'outil. Ces vecteurs désirés peuvent être 
exprimés comme suit 

 
1

1 1

1; ; ;...
T T

m m
j j j

base base i i i i

i

n

too

i

l tool



 

              
 φ A A pp Au u  (2) 

où 
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T

robot robot

T

j robot robo

i i

i i

i

t
i

T

robot r

i

obot

    
     
 
    

I p R 0 0

0 0I p R

I p R

A

0 0

 (3) 

Les variables définissant l'emplacement des points de référence sont exprimées par ·j T j

tool base toolp R u , 
ce qui nous permet de trouver les matrices de transformation homogènes baseT  et j

toolT . A la deuxième 
étape, les paramètres géométriques du manipulateur π  sont estimés. En appliquant la technique des 
moindres carrés pour le système linéarisé des équations d'identification, c'est à dire, ( )·j j p

i i  p J π , 
les vecteurs désirés d'estimations d'erreurs géométriques peuvent être obtenus comme suit : 
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1

( ) ( ) ( )

1 1 1 1

m n m n
j p T j p j p T j

i i i i

i j i j

  



   

   
     

   
 π J J J p  (4) 

Il faut  cependant noter que pour atteindre la précision souhaitée, les étapes 1 et 2 doivent être répétées 
de manière itérative. L'algorithme présenté ci-dessus est capable de fournir une bonne estimation des 
paramètres désirés, dans le cas où les données expérimentales sont parfaites. Néanmoins, en pratique, 
les erreurs de mesure sont généralement non négligeables. Pour évaluer l'impact des erreurs de mesure 
sur la précision de l'identification des paramètres, la matrice de covariance est utilisée et est exprimée 
ci-après : 

 ( ) ( )
π π

1

2

1 1

ˆcov( ) j p T j p

i i

m n

i j




 

 
   

 
π J J  (5) 

Pour atteindre la meilleure précision, les éléments de la matrice de covariance (5) doivent être aussi 
faibles que possible. Ceci peut être réalisé par un choix approprié des configurations de mesure. 

● L'APPROCHE DE POSE TEST POUR LA CONCEPTION D'ESSAIS DE CALIBRATION 

Dans la littérature, le problème de la sélection de poses de mesure a été étudié dans un certain 
nombre de travaux, mais les approches existantes se concentrent sur la précision de l'estimation des 
paramètres, tandis que l'application industrielle à examiner nous motive à nous concentrer sur la 
précision du positionnement du robot après calibration. Pour développer une nouvelle mesure de 
performance pour la conception d'essais de calibration, il est nécessaire de prendre en compte le fait 
qu‘en pratique, la précision désirée est nécessaire à atteindre pour un espace de travail plutôt limité. 
Pour cette raison, il est proposé de limiter les configurations possibles à une seule configuration, 
appelée configuration test du manipulateur (Figure 6). 

 

1

2

{ ,..., }
ˆ( ) min

m

kE  
q q

 

Figure 6. Dispersion des erreurs de positionnement du manipulateur après la calibration et la 
mesure de performance pour la sélection des configurations de mesure 

Grâce à cette idée, le problème de l'intérêt de trouver un plan d'essais optimal, en fournissant les 
configurations de mesure, ce qui nous permet d'atteindre la plus grande efficacité de la compensation 

d'erreur de positionnement ( 0 ) pour une configuration test du manipulateur 0q  définie dans le 
processus technologique. Ici, une nouvelle mesure de performance orientée vers l'industrie est 
proposée, qui est la distance moyenne quadratique entre la position cible et la position de l'effecteur 
après calibration. Cet indice de performance est défini par l’équation suivante : 
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et peut être considéré comme la trace pondéré de la matrice de covariance ˆcov( )π , où les coefficients 
de pondération sont calculés en utilisant la configuration test. Pour un cas plus général, le processus 
d'usinage peut exiger des changements dans la posture du manipulateur et la précision désirée devrait 
être atteinte pour l'ensemble de la trajectoire. Ainsi, l'approche développée est généralisée en 
introduisant les poses multiples, le problème d'optimisation correspondant à la sélection de poses vise 
ainsi à minimiser les erreurs de positionnement maximales de l'effecteur après compensation pour 
l'ensemble de la trajectoire. 

Nous illustrerons les avantages de l'approche proposée par un exemple de la calibration 
géométrique d’un manipulateur comprenant deux  corps et des liaisons. On suppose que les longueurs 
nominales des corps diffèrent, et ces déviations doivent être identifiées au moyen de la calibration. A 
des de comparaison, les plans d'essais ont été obtenus en utilisant trois stratégies différentes: 

(i) les configurations de mesure sont générées de façon aléatoire; 

(ii) les configurations de mesure sont obtenues en utilisant l'approche classique basée sur 
le principe de D-optimalité; 

(iii) les configurations de mesure sont obtenues en utilisant l'approche proposée. 

 

Figure 7. Dispersion des erreurs de positionnement du manipulateur après calibration pour 
différents plans d'essais: cas de réglage de deux paramètres  1 2,l l   

Les résultats correspondants présentés dans la Figure 2.11 montrent que l'approche proposée 
permet d'augmenter la précision de positionnement de l'effecteur en moyenne de 18% en comparaison 
au plan D-optimal et de 48% en comparaison au plan généré aléatoirement. Par conséquent, les 
résultats présentés confirment que l'approche proposée permet l'amélioration de l'efficacité de la 
calibration et permet d’atteindre la meilleure précision de positionnement de manipulateur pour les 
configurations test définies par la tâche de fabrication. 

● AMELIORATION DE L'EFFICACITE DE LA SELECTION DE POSES OPTIMALES DE MESURE 

Pour améliorer l'efficacité de la sélection de poses de mesure, deux techniques ont été proposées: 
(i) l'application des calculs parallèles et hybrides, (ii) la production de solutions quasi-optimales à 
l'aide de plans  de la calibration de les dimensions inférieurs. 
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Afin d'obtenir l'optimum global pour le problème considéré, il est requis de nombreuses 
répétitions de l'optimisation avec des points de départ différents. Des calculs parallèles nous ont 
permis d'accélérer le processus de détermination des configurations de mesures et de profiter de 
l'architecture multi-core des ordinateurs modernes. Les calculs ont été faits sur une station de travail 
avec 12 coeurs, qui nous permet de diminuer le temps de calcul par un facteur de 10-12. En utilisant 
une approche hybride qui combine l'algorithme génétique et recherche de gradient, qui est très efficace 
en termes de temps de calcul et nous permet d'éviter la convergence vers les minima locaux. 

Au lieu d'augmenter le nombre d'essais et de résoudre le problème d'optimisation correspondant, 
il a été proposé d'utiliser une solution quasi-optimale pour la sélection de poses de mesures. D'après 
notre expérience, la diversité des configurations de mesure ne contribue pas essentiellement à 
l'amélioration de la précision si le nombre total d'essais est assez grand. Ainsi, il a été proposé de 
répéter les essais de calibration en utilisant plusieurs fois les mêmes configurations de mesure, ce qui 
nous permet de simplifier le processus d'optimisation (avec dimension inférieure) et d'accélérer les 
mesures. L'efficacité de cette technique est illustrée dans la Figure 8. 

 

Figure 8. Comparaison des solutions quasi-optimales et optimales pour la sélection de 
configurations de mesure pour la calibration du robot 

Le chapitre a été consacré à l'amélioration des techniques de mesure et d'optimisation 
employées pour la calibration géométrique des robots sériels. Les principales contributions sont dans 
le domaine de la conception d'essais de calibration, c'est à dire, la sélection optimale de configurations 
de mesure. Contrairement à d'autres travaux, l'approche développée est basée sur une nouvelle mesure 
de performance, orientée vers l'industrie, qui évalue la précision de positionnement du robot après 
compensation d'erreurs géométriques. Il convient de mentionner que les techniques développées 
peuvent être généralisés pour le cas de la calibration élasto-statique. Néanmoins, certaines 
modifications sont requises pour tenir compte des différences entre les modèles correspondants de 
manipulateurs et  les systèmes d’expérimentation. 

CHAPITRE 3 

PLANS D’EXPERIENCES POUR L’IDENTIFICATION DES 
PARAMETRES ELASTOSTATIQUES DE ROBOTS 

Le but de ce chapitre est le renforcement des techniques de la calibration élasto-statiques au 

moyen de la conception d'essais. Il est évident que certains résultats présentés dans le chapitre 2 
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peuvent être adaptés pour le cas élasto-statique. Ainsi, une attention particulière a été accordée à 
l'amélioration de la méthode de mesure des poses partielles pour le cas élasto-statique; extension de 
l'approche développée et mesure de performance correspondant pour la conception d'essais de 
calibration, ainsi que le développement d'une méthodologie pour la modélisation et la calibration des 
robots industriels équipés de compensateurs de gravité. 

● MODELISATION DE LA RAIDEUR ET IDENTIFICATION DES PARAMETRES ELASTO-STATIQUES 

Pour estimer les matrices désirées décrivant l'élasticité des éléments du manipulateur sur la base 
de la méthode VJM, le modèle élasto-statique correspondante s'écrit 

 )·( ,k A q wt k  (7) 

où (.)kA  est la matrice d'observation qui définit la correspondance entre le vecteur de compliance 
inconnue θ,1 θ,2 θ,nθ( , ,... )T

k k kk  et les déviations de l'effecteur t  sous la charge w  pour la 
configuration q . Il peut être prouvé que la matrice 

kA  peut être exprimée par les colonnes de la 
Jacobienne cinématique θJ  et la torsion externe w  de la manière suivante 

 θ,1 θ,1 θ, θ, θ,nθ θ,nθ,  ... , , ... ,k

T T T

i i
   A J J Jw wJ J Jw  (8) 

où θ,iJ  est le vecteur colonne i-ième de la matrice Jacobienne agrégée. 

Comme pour la calibration géométrique, les équations de l'identification de paramètres élasto-
statiques comprennent à la fois la position et l'orientation des composants des résidus. Pour éviter le 
problème de la non-homogénéité, nous appliquons l'idée de la méthode proposée de mesure de poses 
partielles pour le cas de la calibration élasto-statique. Le problème d'optimisation correspondant s'écrit 
comme suit 

 
2( )

1 1

( , ) min
m n

j j p

i ik i

i j 

   
k

p A q w k  (9) 

En comparaison avec le cas géométrique, il existe certaines particularités de la calibration élasto-
statique concernant les montages expérimentaux. Le montage et la procédure de mesure sont présentés 
dans la Figure 9. 

En utilisant les expressions présentées ci-dessus, les paramètres élasto-statiques peuvent être 
identifiés par un algorithme en trois étapes. A la première étape, les transformations de base et d'outil 
du manipulateur sont identifiées. Il fournit les données d'entrée pour la seconde étape, où les 
paramètres géométriques du manipulateur sont estimés. A la dernière étape, les paramètres de 
compliances k  sont obtenus sur la base de configurations de mesure présélectionnés (qui diffèrent de 
celles de la calibration géométrique) et de charge externe correspondant. L'application de la technique 
des moindres carrés pour le système d'équations d'identification, la solution fournit les estimations du 
vecteur de paramètres désiré  
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Tenant en compte que les erreurs de mesure ne sont pas i.i.d. et dépendent fortement de la direction et 
l'emplacement de la cible dans l'espace de travail du manipulateur, la technique des moindres carrés 
pondérée peut être appliquée pour l'identification. Dans ce cas, la matrice de covariance des 
paramètres est 
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où la matrice  2j j jT
i i iEΣ ε ε  désigne la covariance des erreurs de mesure et la meilleure sélection des 

coefficients de pondération correspond à l'équation 22j
i

j
i ΣW I . Ainsi, ces coefficients peuvent être 

calculés de la manière suivante : 

 0

0 ˆ
j

i j
i

w

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

 
 (12) 

où   nous permet de régler l'impact de l'estimation de la variance ˆ j
i , et 0  est un facteur de 

normalisation (attribué en utilisant la précision de la système de mesure) 

 

Figure 9. Procédure de mesures pour la calibration élasto-statique 

● EXTENSION DE L'APPROCHE DE POSE TEST POUR L’IDENTIFICATION DES PARAMETRES 

ELASTO-STATIQUES  

Les avantages de l'approche de pose test en termes d'efficacité de la calibration ont été 
démontrés dans le cas géométrique. Ainsi, il est raisonnable d'adapter cette approche et la mesure de 
performance à la calibration élasto-statique. Le problème d'optimisation pour la sélection des 
configurations de mesures est formulé de la manière suivante  
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Lorsqu’il y a plusieurs configurations tests, la conception d'essais de calibration peut être 
réduite au problème de min-max suivant : 
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0 0
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max trace min

Tel que

                               ( , ) 0,      1,
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où les matrices ( , )
i i i

C q w  décrivent les contraintes.  

Nous illustrerons les avantages de l'approche proposée par un exemple de calibration élasto-
statique d'un manipulateur à deux corps. Les résultats de la simulation pour cette étude de cas ont été 
obtenus pour les paramètres suivants: les longueurs des corps sont 1 1 ml  , 2 0.8 ml  , la magnitude 
de la force 1 NF  , la paramètre de bruit de mesure 0.1  mm. Plusieurs plans d'essais de 
calibration ont été comparés (basés sur différentes mesures de performance), en tenant compte à la fois 
la précision de l'identification des paramètres 1 2,k k   et la précision de positionnement du 
manipulateur après calibration 0 . Les résultats présentés (Tableau 5) confirment que l'approche 
proposée est attrayante pour l'industrie et offre la meilleure précision de positionnement de l'effecteur. 
Dans le chapitre 4, cette approche sera appliquée à la calibration d'un robot industriel à six degrés de 
liberté de la famille KUKA. 

Tableau 5 Comparaison de la précision de manipulateurs après calibration pour différents principes 
de la sélection de poses de mesure (manipulateur à 2 degrés de liberté, 0.1  mm) 

Experiment design principle 

Identification accuracy  

[rad/N 310 ] Manipulator 
accuracy 0  [mm] 

Improvement factor

0 0
test    

1k  
2k  

Using test-pose as 
measurement pose  

0.0888 0.2818 2.1265 1.0 

A-optimality 0.1123 0.1948 0.9544 2.2 

D-, 1O -optimality 0.0765 0.2804 0.4425 4.8 

E-, 3O -optimality 0.1416 0.1840 1.5167 1.4 

4O -optimality 0.1707 0.1840 2.2061 0.9 

Measurement pose selection 
via minimization of 0  0.0719 0.3175 0.3915 5.4 

● LA CALIBRATION ELASTO-STATIQUE POUR LES ROBOTS AVEC COMPENSATEURS DE 

GRAVITE 

Les robots industriels sont généralement équipés de différents types de compensateurs de 
gravité, ce qui complique considérablement la modélisation de la raideur de ces manipulateurs. On 
présente un modèle de raideur basé sur la méthode VJM pour un manipulateur sériel avec un 
compensateur fixé à la seconde articulation. L'attention principale est accordée à l'identification des 
paramètres du modèle et de la planification d'essais de calibration. 
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La structure mécanique du compensateur de gravité est présenté dans la Figure 10a. Le 
compensateur comporte un ressort passif fixé au premier et au second corps, ce qui induit une chaîne 
cinématique fermée qui génère le couple appliqué à la deuxième liaison du manipulateur. Il peut être 
prouvé que la raideur équivalente de la deuxième liaison (incluant à la fois le manipulateur et la 
raideur du compensateur) est exprimée ainsi : 

 
2 2 2

0
c qK K K a L     (15) 

où le coefficient 
2q  est exprimé comme suit 
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s s
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 
  (16) 

et dépend fortement de la variable articulaire 2q  et le pré-chargement initial du ressort du 
compensateur décrit par paramètre 0s . 

(a) gravity compensator of  KUKA KR-270 robot
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(b) model of gravity compensator  

Figure 10. Compensateur de gravité et son modèle 

La structure géométrique du compensateur de gravité est représentée par la Figure 10b. Ses 
principaux paramètres sont L , 

xa , ya . Le problème d'identification correspondant peut être résolu en 
deux étapes. La première étape est consacrée à la détermination de l'emplacement relatif des points P1 
et P2. Ici, pour différentes valeurs des variables articulaires 2iq , à l’aide d’un laser tracker nous avons 
obtenu les positions 

 1ip
 qui décrivent des points d'arc. Après avoir fait correspondre ces points avec 

un cercle, on peut obtenir la valeur désirée de L  (le rayon du cercle). La deuxième étape concerne 
l'identification de la position relative des points P0 et P2. L'information pertinente est extraite à partir 
des données  01

ip  et  02
ip  qui sont fournies par le laser tracker, en ciblant les marqueurs P01 et P02. 

Ici, les points sont appariés aux deux arcs de cercles de même centre. Les valeurs désirées 
xa , ya  sont 

calculées comme une projection du vecteur de différence 2 0 a p p . 

Pour le problème d'identification, les variables de conception sont les angles  2iq et les 
emplacements des marqueurs. Les fonctions objectives à minimiser sont calculées via la matrice de 
covariance qui décrit les erreurs d'identification des paramètres géométriques L  et a  à estimer. Pour 
le point P2, les conditions optimales sont 

1 2cos 0
m

i iq


 et 
1 2sin 0

m

i iq


 . Pour le point P0, les 
conditions optimales sont 

1
cos 0j

k

j



  et 

1
sin 0j

k

j



 . 

Pour tenir en compte de l'influence du compensateur, tout en conservant notre approche 
développée pour les robots sériels sans compensateur, il est proposé d'inclure dans la seconde 
articulation un ressort virtuel équivalent avec une raideur non-linéaire en fonction de la variable 
articulaire 2q . Grâce à cette idée, il est commode de considérer plusieurs paramètres indépendants 
correspondant à chaque valeur de 2q . Notons les paramètres désirés 1 21 22 3 6,( , ...), ,...,k k k k k  comme le 
vecteur k , ce qui nous permet de présenter la relation de force- déviation sous la forme 
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 ( )p

i i p B k  (17) 

où les matrices ( )p

iB  sont composées d'éléments de la matrice d'observation kiA  qui est habituellement 
utilisée dans l'analyse de la raideur des manipulateurs sériels. En utilisant ces notations, les paramètres 
élasto-statiques désirés peuvent être obtenus par : 
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Ensuite, l’expression désirée peut être écrite comme suit : 
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où qm  est le nombre d'angles 2q  différents, 

  2 21 · / · / ·cos sin cosi i i iL L a sa La s    C  (20) 

ici 2i iq   . Ainsi, la modification proposée de la technique de calibration développée nous permet 
de trouver les paramètres du manipulateur et du compensateur simultanément. 

Ce chapitre est consacré au renforcement des méthodes de modélisation, de mesure et 
d'identification utilisées pour la calibration élasto-statique de robots sériels et quasi-sériels. Les 
contributions sont dans le domaine de la conception d'essais de calibration, qui vise à améliorer la 
précision de positionnement du manipulateur utilisant un nombre limité de mesures. La limitation des 
résultats obtenus est liée aux questions de complétude du modèle. Néanmoins, pour le robot étudié, le 
modèle considéré nous a permis de compenser plus de 90% des erreurs de compliance. 

CHAPITRE 4 

VALIDATIONS EXPERIMENTALES DES TECHNIQUES DE 
SELECTION DE POSES OPTIMALES DE CALIBRATION DU ROBOT  

Suite aux chapitres précédents, l'efficacité de la calibration géométrique et élasto-statique peut 
être améliorée par la sélection appropriée des poses de mesure utilisées dans les essais de la calibration. 
Dans ce travail, un certain nombre de techniques numériques ont été proposées qui nous permettent de 
réduire l'impact des erreurs de mesure et de compenser les erreurs de positionnement du robot de 
manière optimale. Pour montrer les avantages de ces techniques, ce chapitre présente les résultats 
expérimentaux de la caliration géométrique et élasto-statique de notre robot KUKA KR-270. 

 

Figure 11. L'environnement de cellule expérimentale: (a) vue générale; (b) la dimension principale 
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La cellule de fabrication, où le robot a été installé est présenté à la Figure 11, il est situé à IUT 
de Nantes, Carquefou. Selon le procédé d'usinage considérée, la pose test du manipulateur a été défini 
par 0 (76.7 , 56.9 ,89.3 ,45.1 ,76 ,57.2 )       q  et le chargement est 0 (0,  280N,  180N,  0,  0,  0) w . 
En utilisant cette cellule robotisée, un certain nombre d'essais a été effectuée afin de calibrer les 
modèles du robot employées dans les algorithmes de compensation d'erreurs. 

● RESULTATS EXPERIMENTAUX POUR LA CALIBRATION GEOMETRIQUE 

En utilisant les données correspondent aux configurations optimales de mesure, la procédure 
d'identification en deux étapes a été appliquée. A la première étape, les transformations de base et 
d'outil ont été calculées, les résultats y compris deux emplacements de bases et trois positions de l'outil. 
A la deuxième étape, ces transformations ont été utilisées pour l'identification des paramètres 
géométriques du manipulateur avec une précision de 0,15 mm pour les paramètres linéaires et de 
0,01 degrés pour ceux angulaires. 

A des fins de comparaison, l'amélioration de la précision de manipulateur grâce à la calibration 
a été étudiée à base d'analyse de résidu avant et après calibration. Ici, deux types de résidus ont été 
examinés, ceux à base de coordonnées et de la distance. Les résultats correspondants sont présentés 
dans le Tableau 6. En particulier, les résidus maximum ont été réduits par un facteur de 4 et 3,5, tandis 
que les valeurs RMS de ces deux critères ont été réduites, respectivement, par un facteur de 5,3 et 5,5. 

Tableau 6 Évaluation de l'amélioration de la précision de manipulateur basée sur l'analyse de résidus 

Criterion  Before calibration After calibration Improvement factor 

Coordinate-based 
residuals, [mm] 

max 1.25 0.32 4.0 

RMS 0.54 0.10 5.3 

Distance-based 
residuals, [mm] 

max 1.31 0.39 3.5 

RMS 0.94 0.17 5.5 

 

Figure 12. Histogrammes de distribution du résidu dans les directions X, Y et Z après la calibration 
géométrique 

Afin d'évaluer les résultats de calibration, nous analyserons les résidus calculés à partir des 
équations d'identification pour chaque coordonnée séparément ; les histogrammes correspondants sont 
présentés dans la Figure 12. Les résidus ont tendance à suivre les distributions normale avec une 
moyenne zéro et presque le même paramètre  . C'est ce qui justifie l'utilisation de la technique des 
moindres carrés ordinaires pour l'identification des paramètres et nous permet de conclure que le 
dans nos essais est égal à 0,1 mm. Les limites statistiques n'ont pas été atteintes en raison des 
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limitations du modèle, néanmoins, la calibration géométrique permet une amélioration essentielle de la 
précision du robot. 

● RESULTATS EXPERIMENTAUX POUR LA CALIBRATION ELASTO-STATIQUE  

En utilisant les données correspondent aux configurations optimales de mesure pour  la 
calibration élasto-statique, l'identification a été effectuée par deux techniques : les moindres carrés 
ordinaire (MCO) et les moindres carrés pondérés (MCP). Les valeurs correspondantes des paramètres 
élasto-statiques sont présentées dans le Tableau 7. Les résultats montrent que les intervalles de 
confiance pour les MCO et MCP ont intersections pour tous les paramètres d'intérêt. En outre, les 
intervalles de confiance pour WLS sont toujours à l'intérieur de ceux pour les MCO et sont 
considérablement plus petits. 

Tableau 7 Résultats d’identification pour les techniques de MCO et MCP 

Parameter 
[rad µm/N] 

Ordinary 
least square 

Weighted 
least square 

Mutual location of  
Confidence Intervals 

Improvement 
factor 

1k  0.623 ±0.022  

21k  0.297 ±0.010 0.287 ±0.0003  40.5 

22k  0.287 ±0.012 0.277 ±0.0004  33.2 

23k  0.315 ±0.018 0.302 ±0.0005  33.9 

24k  0.302 ±0.032 0.293 ±0.0010  33.1 

25k  0.251 ±0.020 0.246 ±0.0007  30.1 

3k  0.396 ±0.031 0.416 ±0.0011  28.8 

4k  3.017 ±0.248 2.786 ±0.0071  35.1 

5k  3.294 ±0.506 3.483 ±0.0120  42.0 

6k  2.248 ±0.725 2.074 ±0.0267  27.2 

A base de valeurs obtenues pour  21 25,...,k k , il a été identifié un paramètre équivalent 2k , qui 
est utilisé dans la modélisation de raideur du manipulateur avec le compensateur de gravité. Les 
paramètres géométriques et élasto-statiques identifiés sont présentés dans Tableau 8. 

Tableau 8 Résultats d'identification des paramètres géométriques et élasto-statiques du 
compensateur 

Geometric parameters L , [mm] 
xa , [mm] 

ya , [mm] 

Value 184.72 685.93 123.30 

CI   0.06  0.70  0.69 

Elastostatic parameters 
ck , [rad µm/N] 0s , [mm] 0

2k , [rad µm/N] 

Value 0.144 458 0.302 

CI  ±0.031 ±27 ±0.004 
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Figure 1. La distribution de déviation dans la direction de la force de gravité 

En utilisant les configurations optimales de mesure, les paramètres élasto-statiques du 
manipulateur ont été identifiés avec la précision relative d'environ 0,7% (en moyenne). Ces résultats 
nous ont permis de compenser environ 95% des erreurs de compliance dans le sens de la force de 
gravité (voir Figure 1). La précision de positionnement sous une charge de 2.7KN est égale à 0,21 mm, 
ce qui est 11,1 fois meilleure que celle des robots non compensés (pour une direction arbitraire). 

● VALIDATION DE LA TECHNIQUE DE SELECTION DE POSES DEVELOPPEE 

Pour montrer les avantages de technique développée de sélection de poses optimales, la 
précision du manipulateur après calibration a été comparée par deux plans d'essais distincts. La 
première a été obtenue en utilisant la technique de calibration développée dans ce travail. Le deuxième 
plan utilisé configurations de mesure qui ont été sélectionnés semi-intuitivement, selon certains 
indices de performance cinématique. 
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Figure 13. Schéma de validation de la technique de sélection de poses optimales développée 
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En utilisant ces deux données de calibration, l'identification a donné deux ensembles de 
paramètres différents (Tableau 9). Ensuite, les paramètres obtenus sont utilisés pour calculer les 
positions de l'effecteur pour les configurations de validation (différentes de celles de mesure). En 
comparant ces résultats avec les mesures de positionnement correspondants, il est possible d'évaluer la 
"qualité de calibration" et les plans d'essais. Plus en détail, le schéma de validation de la technique de 
sélection de poses optimales est représenté dans la Figure 13. 

Tableau 9 Les paramètres élasto-statiques obtenus par des méthodes connues et développées 

[µrad/Nm] 
1k  2k  3k  4k  5k  6k  

Parameters, 
[This work] 

0.623 

-145°

0.297

0.278
-95° -45° 0°  

0.416 2.786 3.483 2.074 

Parameters, 
[Previous work] 

3.798 0.248 0.276 1.975 2.286 3.457 

Tableau 10 L'amélioration de la précision du manipulateur après compensation d'erreur élasto-
statique 

Criterion Coordinate-based residual, [mm] 

Before 
compensation 

After compensation Improvement factor  

[Previous work]* [This work]** [Previous work]* [This work]** 

X max 0.79 0.51 0.46 1.5  1.7 

RMS 0.51 0.23 0.21 2.1 2.4 

Y max 1.35 0.68 0.63 1.9 2.2 

RMS 0.81 0.44 0.44 1.8 1.8 

Z max 8.06 1.63 0.43 4.9 18.7 

RMS 5.82 1.17 0.21 5.0 28.0 

  Distance-based residual, [mm] 

 max 8.28 1.77 0.78 4.6 10.4 

 RMS 5.90 1.27 0.53 4.6 11.1 

*Using full-pose measurement method, semi-intuitively selected measurement configurations, corresponding 
model does not take into account the gravity compensator impact.  

**Using enhanced partial pose measurement method, optimal pose selection technique and manipulator stiffness 
model that takes into account the gravity compensator impact. 

Suite à la méthodologie de validation proposée, la précision du robot a également été évaluée en 
utilisant la stratégie de compensation d'erreur qui implémente les paramètres identifiés dans les 
travaux précédents. En comparant leurs résultats (Table 4.33), l'efficacité de la compensation a été 
augmentée par un facteur de 2,4 en utilisant presque le même nombre de configurations. Par 
conséquent, la technique de calibration développée nous permet d'augmenter sensiblement la précision 
de positionnement du manipulateur sous charge externe en utilisant nombre raisonnable de 
configurations de mesure. 
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CONCLUSIONS ET PERSPECTIVES 

CONTRIBUTIONS DE LA THESE 

Cette thèse est consacrée au renforcement des techniques de calibration de modèles 
géométriques et élasto-statiques pour des robots industriels utilisés pour l'usinage de pièces de grandes 
dimensions. Une attention particulière est accordée à l'amélioration de la précision de positionnement 
du robot au moyen de la compensation des erreurs géométriques et élasto-statiques. Les principales 
contributions sont dans le domaine de la définition d'essais pour la calibration (la sélection de poses 
optimales de mesure), ce qui permet de réduire l'impact du bruit de mesure et d'atteindre une précision 
désirée à l'aide d’un petit nombre d'essais de la calibration. Plus en détail, les principales contributions 
théoriques sont résumées comme suit: 

(i) Une nouvelle approche pour la définition d'essais pour la calibration de robots sériels 
et quasi-sériels. Cette approche utilise une nouvelle mesure de performance orientée 
vers l'industrie, qui évalue la qualité du plan de calibration via la précision de 
positionnement du manipulateur après compensation d'erreurs géométrique et élasto-
statique, et prend en compte les exigences industrielles de la tâche de fabrication 
prescrit (en utilisant une ou plusieurs configurations tests). Il est démontré que la 
mesure de performance proposée peut être présentée comme la trace pondérée de la 
matrice de covariance, où les coefficients de pondération sont définis par la 
configuration test correspondante. Cette approche nous permet de trouver les 
configurations optimales de mesure pour des essais de calibration et d'améliorer 
essentiellement la précision de positionnement du robot pour une configuration test. 

(ii) Renforcement de la méthode de mesure de poses partielles, qui utilise directement des 
mesures de positions de plusieurs points de référence de l'effecteur à l’aide d’un 
système de mesure externe. Il permet d'éviter des calculs supplémentaires des 
composants d'orientation de l'effecteur, qui causent la non-homogénéité dans les 
équations d'identification et ne nécessitent pas de normalisation (qui se pose dans le 
cas où les coordonnées de la position et l'orientation sont utilisées). Il a été démontré 
que cette méthode permet d'augmenter la précision de l'identification des paramètres. 

(iii) Approche de modélisation de la raideur pour les manipulateurs quasi-sériel avec 

compensateurs de gravité qui induit des chaînes cinématiques fermées. L'approche 
proposée est basée sur une extension du modèle conventionnelle de la raideur du 
manipulateur sériel en y incluant certains paramètres élasto-statiques dont les valeurs 
dépendent de la configuration du robot (qui sont généralement traitées comme 
constantes). La méthodologie correspondante pour la calibration des modèles de 
compensateur de gravité proposée, est capable d'identifier les paramètres géométriques 
et élasto-statiques. Contrairement à d'autres travaux, elle est basée sur la 
décomposition en valeurs singulières et utilise les informations de mesure obtenue à 
partir de capteurs de position et des codeurs.  

Les résultats théoriques obtenus ont été validés par l'étude expérimentale qui traite de la 
calibration géométrique et élasto-statique de notre robot industriel KUKA KR -270 utilisé pour le 
fraisage de pièces de grandes dimensions dans l'industrie aéronautique. Les paramètres identifiés nous 
ont permis de décrire à la fois les propriétés géométriques et élasto-statiques du manipulateur avec 
compensateur de gravité. Les modèles obtenus ont été utilisés pour la compensation d'erreur de 
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positionnement au cours du processus de fraisage. Pour le mode déchargé, les résultats de calibration 
nous ont permis d'améliorer la précision de positionnement du manipulateur par un facteur de 5,5 par 
rapport au robot non-calibré. Pour le mode chargé, la précision de positionnement correspondant 
chargé sous la force de 2.7kN est 11,1 fois meilleure que celle des robots non compensée. Par rapport 
aux travaux antérieurs consacrés à un problème similaire, le robot sous la charge est de 2,4 fois plus 
précise en raison de la sélection correcte de la pose de mesure (avec le même nombre de 
configurations utilisées pour les essais de calibration). 

LIMITES DE RÉSULTATS OBTENUS 

En dépit des avantages essentiels, l'approche développée a certaines limites qui sont 
principalement liées aux hypothèses de modélisation des manipulateurs et à la technique de calibration 
utilisée dans ce travail. Elles sont résumées comme suit: 

Limites des hypothèses de modélisation des manipulateurs: 

(i) On a supposé que la compliance du manipulateur est principalement due à l'élasticité 
des articulations et le modèle de raideur ne comprend que des ressorts virtuels 
unidimensionnels. Néanmoins, dans le cas général, la raideur du corps doit également 
être prise en compte. Cela produit un modèle de raideur plus sophistiqué, où les 
compliances des couples corps/liaison sont décrits par des matrices 6 6  qui peuvent 
être difficilement identifiés en utilisant la procédure de la calibration considérée dans 
ce travail. 

(ii) On a supposé que la force externe est appliquée à l'effecteur du robot seulement. 
Néanmoins, dans certains cas, l'influence des poids des corps doit également être prise 
en compte si elles induiront des déformations non négligeables dans les composants 
élastiques de manipulateur. Cela nécessite une révision du modèle élasto-statique 
utilisé dans ce travail. 

(iii) On a supposé que d'autres sources d'erreurs de positionnement (différents de ceux 
géométriques et élasto-statiques) sont négligeables. Ils comprennent friction/ 
contrecoup dans les articulations, les effets thermiques, les facteurs environnementaux, 
etc. Dans certains cas, ils peuvent également affecter la précision de positionnement 
du manipulateur et doivent être pris en compte. 

Limites de la technique de calibration: 

(iv) L'approche développée pour la sélection de poses optimales de mesure est basée sur la 
notion de configuration(s) test, pour lesquels la précision du robot est évaluée (après 
compensation d'erreur). Cependant, il n'est pas évident que la même précision de 
manipulation peut être atteinte pour d'autres points de l'espace de travail. 

(v) La technique de mesure utilisée à l'aide d’un laser tracker, fournissant les coordonnées 
Cartésiennes pour les points de référence pertinents. Ce type de système de mesure est 
généralement très cher et impose certaines limites pour l'essais de la calibration en 
raison de la problème de la visibilité. Comme une alternative, une autre technique de 
mesure peut être utilisée (la méthode en boucle fermé, par exemple) mais les 
expressions pertinentes devraientt être révisées, et l'origine des erreurs de mesure doit 
être redéfinie. En outre, dans le cadre de ce travail, on a supposé que les erreurs de 
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mesure proviennent du laser tracker seulement, tandis que d'autres sources telles que 
les erreurs codeurs et appareils de mesure d’efforts ont été négligés. 

Pourtant, pour les applications considérées, les limites concernant les hypothèses du modèle ne 
sont pas critiques, car la précision désirée a été atteinte dans l'étude expérimentale. En outre, il est 
possible d'étendre/modifier l'approche développée dans le but d'adapter d'autres techniques de mesure. 
Cependant, certaines des limites mentionnées ci-dessus nous donnent des directions de recherche pour 
les travaux futurs. 

PERSPECTIVES ET TRAVAUX FUTURS 

Pour généraliser les résultats obtenus et élargir le domaine d'application, il est raisonnable de 
poursuivre les recherches dans plusieurs directions et de se concentrer sur les questions suivantes: 

(i) Le renforcement de la technique développée pour la sélection de poses optimales pour 
le cas où les propriétés de la raideur du manipulateur sont décrits par des matrices qui 
décrivent l'élasticité des corps et des liaisons. Certains problèmes découlant 
comprennent la synthèse de complètude, irréductibibilité de modèle élasto-statique 
pour les robots manipulateurs et les questions d'identifiabilité des paramètres. 

(ii) L'extension de la famille de compensateurs de gravité inclus dans le modèle de raideur 
du manipulateur. Les problèmes pertinents comprennent le développement de modèles 
mathématiques qui décrivent l'élasticité du compensateur (en tenant compte de 
l'influence du vérin pneumatique, par exemple), les méthodologies et les algorithmes 
d'identification des paramètres du modèle, et la détermination d'essais de calibration. Il 
est également intéressant d'étendre/généraliser la technique pour la calibration de 
robots quasi-sériels, qui comprennent des chaînes cinématiques fermées dans le cas 
général.  

(iii) Le développement d'une technique permettant aux utilisateurs de générer 
automatiquement des configurations tests (utilisées dans l'approche proposée) à partir 
de la description basée sur la CAO du procédé d'usinage. Cette technique devrait être 
intégrée dans le logiciel de simulation fournissant la conception optimale d’essais et le 
placement optimal de la pièce par rapport au robot manipulateur. 
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GENERAL INTRODUCTION 

Motivation. At present, the automotive, shipbuilding and aerospace industries progressively 
replace the conventional CNC machines by robotic manipulators to perform numerous manufacturing 
tasks. Generally, industrial robots are considered to be very competitive due to their manufacturing 
flexibility, large workspace, cost-effectiveness, etc. At the same time, the robotic-based machining 
introduces some difficulties. For instance, in the case when robot is under substantial external loading, 
the compliances in links and joints become non-negligible. So, in order to achieve high processing 
accuracy, essential revision of relevant mathematical models and control strategies are required, which 
are in the focus of this thesis.  

For the manufacturing processes considered in this work, the robotic manipulator usually works 
under significant loading, which is generated during the machining process. This loading is often high 
enough to cause essential deformations in the elastic components of an industrial robot (particularly 
with a serial architecture). The corresponding compliance errors depend on both the external loading 
and robot elastostatic properties. They highly influence the quality of final machined product. On the 
other hand, for the industrial applications where the external forces applied to the manipulator end-
effector are relatively small, the prime source of the manipulator inaccuracy is the geometric errors. 
These errors are associated with the differences between the nominal and actual values of the link/joint 
parameters. They can be also induced by the non-perfect assembling of different links and lead to 
shifting and/or rotation of the frames associated with different elements, which are normally assumed 
to be matched and aligned. In these cases, to achieve the desired positioning accuracy for robotic-
based machining, corresponding mathematical models should be carefully calibrated before being 
employed in the control algorithms. For this reason, enhancement in manipulator geometric and 
stiffness modeling, as well as accuracy improvement in identification of the model parameters, 
become crucial issues. 

In the literature, the problem of manipulator model calibration has been in the focus of the 
research community for several decades. Most of the efforts have been made for manipulator 
geometric calibration, which has been studied from different aspects (modeling and measurement 
methods, identification algorithms, etc) (Elatta et al., 2004; Hollerbach, 1989; Mooring et al., 1991). 
Currently, more and more attention is paid to the elastostatic calibration, but the majority of the related 
works focus on the development of simplified stiffness models and the use of conventional 
identification techniques (Alici and Shirinzadeh, 2005; Meggiolaro et al., 2005; Nubiola and Bonev, 
2012). The robotic team of IRCCyN  laboratory (where this thesis has been done) has had essential 
contributions in the area of robot calibration, including a number of theoretical/practical works and 
software packages for robot geometric modeling "SYMORO+" and calibration "GECARO" (Khalil 
and Creusot, 1997; Khalil and Lemoine, 1999), methodologies for joint stiffness identification 
(Gautier et al., 2011), stiffness modeling of overconstrained manipulators (Pashkevich et al., 2009a) 
and also some works related to the identification of the dynamic parameters (Gautier and Briot, 2013). 
This thesis uses this background and focuses on the manipulator model accuracy improvement.  

In spite of numerous works devoted to robot calibration, the issues of the identification accuracy 
improvement and reduction of the measurement noise impact have not found enough attention in the 
literature; only limited number of works directly addressed these problems (Hollerbach et al., 2008; 
Sun and Hollerbach, 2008b). One way to improve the identification accuracy without increasing the 
number of calibration experiments is preliminary optimization of the measurement configurations (so-
called design of experiments). This approach has been considered in several works (Borm and Meng, 
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1991; Daney, 2002; Khalil et al., 1991), where the authors adapted the idea of optimal plan of 
experiments (which was originally developed for linear regression models) to robot calibration for 
selection of the optimal measurement configurations. To define the optimal plan, numerous 
quantitative performance measures have been proposed. However, the majority of existing 
performance measures have their limitations that affect the calibration accuracy. Moreover, they do 
not entirely correspond to the industrial requirements and operate with abstract notions. For this reason, 
it looks rather promising to develop a new problem-oriented performance measure for measurement 
pose selection, which is related directly to the industrial requirements of relevant machining processes 
and aims at improving robot positioning accuracy after calibration. 

Thesis goal and research problems. The thesis focuses on the enhancement of robot 
calibration techniques for geometric and elastostatic parameters in order to improve the accuracy and 
efficiency of error compensation for robotic-based machining of large dimensional parts by means of 
optimal design of calibration experiments (to reduce the measurement error impact). To achieve this 
goal, the following problems are addressed and have to be solved: 

Problem 1: 

 Development of a new problem-oriented performance measure for robot calibration 
experiment design and related optimization algorithms that ensure required accuracy 
for the industrial applications considered in this thesis. 

Problem 2: 

 Development of advanced geometric and elastostatic models for heavy industrial 
robots employed in machining of large dimensional parts, which allow taking into 
account the particularities of the manipulators with gravity compensators. 

Problem 3: 

 Experimental validation of the developed calibration technique and its application for 
the identification of geometric and elastostatic model parameters for robotic work-cell 
employed in machining of large dimensional parts for aerospace industry. 

Thesis organization. To address the above defined research problems, the thesis is organized as 
follows:  

Chapter 1 is devoted to the state of the art and literature review on the particularities of robotic-
based machining and describes existing techniques for manipulator geometric and elastostatic 
calibration. Particular attention is paid to robot application for machining of large dimensional parts, 
determination of corresponding industrial requirements, the analysis of current works in robot 
calibration that employ the idea of experiment design. The main purpose of this chapter is to show the 
limitation of existing calibration techniques and the necessity of enhancing these techniques, which 
allow us to define the goal and the research problems of the thesis. 

Chapter 2 focuses on the design of experiments for calibration of manipulator geometric 
parameters. Particular attention is paid to the enhancement of measurement and optimization 
techniques employed in geometric calibration of serial industrial robots. It presents a complete, 
irreducible geometric model for serial manipulator, which takes into account different sources of error 
(link lengths, joint offsets, etc). In contrast to other works, it proposes a new industry-oriented 
performance measure for optimal measurement configuration selection and improves the partial pose 
measurement technique via using only the direct measurement data from the external device. This new 
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approach aims at finding the calibration configurations that ensure the best robot positioning accuracy 
after geometric error compensation. In this chapter, several simulation examples illustrate the benefits 
of the developed pose selection technique and corresponding accuracy improvement. 

Chapter 3 is devoted to the design of experiments for calibration of manipulator elastostatic 
parameters. Particular attention is paid to the enhancement of modeling, measurement and 
identification methods employed in the elastostatic calibration of heavy industrial robots of serial 
architecture, taking into account the particularity of the close-loop chain created by the gravity 
compensator. It presents the enhanced partial pose measurement method for the case of elastostatic 
calibration and applies the weighted least square technique for corresponding parameter identification. 
In this chapter, the proposed performance measure is extended for the case of optimal measurement 
configurations selection in elastostatic calibration experiments. In contrast to previous works, the 
developed manipulator stiffness model is able to take into account the impact of the gravity 
compensator. 

Chapter 4 deals with experimental validation of the developed optimal pose selection technique 
employed in the calibration procedure, where particular attention is paid to the positioning accuracy 
improvement of KUKA KR-270 industrial robot (that includes a gravity compensator). It presents the 
work-cell environment where the calibration experiments are carried out. For both the manipulator 
geometric and elastostatic calibration, the experimental setups and measurement procedures, optimal 
measurement configurations and relevant identification results as well as the accuracy analysis are 
provided. In contrast to other works, the manipulator accuracy is evaluated not only for the 
measurement configurations, but also for a wider set of configurations (different from those used for 
calibration).  

Finally, Conclusion summarizes the main contributions of the thesis and defines perspectives 
for future research work. 

Main contributions of the thesis. Theoretical contributions of this thesis are in the area of 
design of experiments for geometric and elastostatic calibration of industrial robots. The most essential 
results are briefly summarized below: 

(i) A new approach for calibration experiments design for serial and quasi-serial 
industrial robots. This approach employs a new industry-oriented performance 
measure, which evaluates the quality of calibration plan via the manipulator 
positioning accuracy after geometric and elastostatic error compensation. It is proved 
that this performance measure can be presented as the weighted trace of the relevant 
covariance matrix. It allows us to improve essentially the robot positioning accuracy 
for a desired manipulator test-pose. 

(ii) Enhanced partial pose measurement method, which uses direct measurements from 
the external device only and allows to avoid additional computations of orientation 
components that can cause non-homogeneity in relevant identification equation. It is 
proved that such method increases the parameter identification accuracy. 

(iii) Stiffness modeling approach for quasi-serial manipulators with gravity compensators, 
which is based on an extension of the conventional stiffness model of serial 
manipulator by including in it some configuration dependent parameters (that are 
usually treated as constants). The corresponding methodology for calibration of the 
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gravity compensator models is proposed, which is able to identify the geometric and 
elastostatic parameters.  

The obtained theoretical results have been validated via experimental study that deals with 
geometric and elastostatic calibration of KUKA KR-270 industrial robot employed in milling of large 
dimensional parts for aerospace industry. The identified set of parameters allowed us to describe both 
geometric and elastostatic properties of the manipulator and corresponding gravity compensator. The 
obtained models were used for positioning error compensation during the milling process. 

Dissemination of research results. The main results obtained in this thesis have been 
published in 16 works and have been presented in 10 international conferences. Amongst them, there 
are three papers in international journals (Applied Mechanics and Materials, Mechanics Engineering 
and Automation, and Pomiary Automatyka Robotyka), three book chapters (New Trends in 
Mechanism and Machine Science: Theory and Applications in Engineering, Springer's Lecture Notes 
in Artificial Intelligence, and Springer Computational Kinematics), proceedings of 10 international 
conferences (IEEE International Conference on Robotics and Automation, IEEE/ASME International 
Conference on Advanced Intelligent Mechatronics, IFToMM European Conference on Mechanism 
Science, IFToMM Workshop on Computational Kinematics, ASME Biennial Conference on 
Engineering Systems Design and Analysis, IFAC Conference on Manufacturing Modeling, 
Management and Control, International Conference on Intelligent Robotics and Applications, Joint 
Conferences on Mechanisms and Mechanical Transmissions (MTM) and Robotics, IEEE International 
Conference on Methods and Models in Automation and Robotics, International Conference 
Mecatronics).  

The scientific contribution of this thesis have been developed and validated experimentally in 
the framework of research projects "Modeling and control of robots for machining operation of large 
composite parts and friction stir welding" (COROUSSO), founded by "l'Agence Nationale de la 
Recherche" (ANR) and FEDER ROBOTEX, France. 
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This chapter presents a state of the art and literature review on the particularities of robotic-
based machining and describes existing techniques for manipulator geometric and elastostatic 
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determination of corresponding industrial requirements, the analysis of current works in robot 
calibration that employ the idea of experiment design. The main purpose of this chapter is to show the 
limitation of existing calibration technique and the necessity of enhancing these techniques, which 
allow defining the goal and the research problems of the thesis 
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1.1 ROBOTIC-BASED MACHINING OF LARGE DIMENSIONAL PARTS 

Machining, as one of the most important manufacturing process, is widely employed in various 
industrial applications. In particular, in the modern automotive, shipbuilding and aerospace industry, it 
is often required to process some large dimensional parts of high performance materials. For such 
applications, the industrial robot with large workspace looks very attractive and progressively replaces 
the conventional CNC machines. The obvious advantages of robotic-based machining are high 
efficiency, low manufacturing time and cost, good flexibility and ability to follow complex trajectories. 
However, this new area of robotic applications creates a number of theoretical problems that have not 
been previously considered to be essential. This section presents some of them and focuses on 
manipulator positioning error compensation in machining applications. 

1.1.1 Modern trends in machining 

Modern trends in machining aim at improving machining efficiency while reducing the 
manufacturing cost. However, these two contradictive objectives motivate researchers to find a 
compromise that ensures high manufacturing accuracy and lower cost. This compromise can be 
realized by defining suitable values of the influencing factors in the machining process (Figure 1.1). 
The most effective ways to achieve this goal are related to the optimization of tool path and 
enhancement of cutting technology. 

 

Figure 1.1 Influencing factors in the machining process (Garant, 2010) 

The first approach aims at decreasing the non-cutting time (also called "airtime" (Castelino et al., 
2003)) as well as minimizing the efforts in actuator drives by proper selection of the tool moving 
direction. As follows from the related works (Oysu and Bingul, 2009; Veeramani and Gau, 1998), the 
airtime can be quite significant when multiple tools are used or a number of small regions are 
machined. The second issue, optimization of the tool path in the manipulator workspace can be 
realized using kinematic criterion, which ensures smooth and fast end-effector motion along a 
parametric path (Nektarios and Aspragathos, 2010). 

For the second approach, there have been developed several modern manufacturing techniques 
that are aimed towards different machining processes and different industrial applications. In relevant 
literature, three main trends are usually distinguished: the high speed machining (HSM), the high 
performance machining (HPM) and the multi task machining (MTM). The specificity of each 
technique may be represented by three influencing factors in the machining process: spindle speed, 
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machine dynamics and cutting force (Garant, 2010). They are compared in Figure 1.2 for the same 
volume of material removal. In more details, these techniques are described below.  

 

Figure 1.2 Modern machining technologies and their comparison for the same material removal 
volume (Garant, 2010) 

High Speed Machining (HSM) means machining with high spindle speed (≥18000 rpm), fast 

feed rate (up to 10 m/min) and small cutting depths (0.25-2.5 mm, vary with machining process). It 
has been and will continue to be an eminent technique in the production of aerospace components, 
typically for the parts with very thing walls (Korn, 2005). The obvious advantage is the considerable 
reduction of operating time, which is achieved due to the high cutting speed. But this technique 
provides slightly compromising quality of the finished part, and can only be used in certain 
applications since the cutting depths are quite limited.  

High Performance Machining (HPM) focuses on optimizing the cutting efficiency to 
maximize the material removal rate. In practice, it is achieved by using deeper cutting depth (in times 
compared to HSM, depending on the materials) and high feed rate, while keeping the spindle speed at 
the maximum allowable level (~15000 rpm). This technique removes the largest volume of materials 
as fast as possible, which yields essential reduction of the machining time. However, it increases 
significantly the cutting forces and requires high spindle power. 

Multi Task Machining (MTM) is the most innovative and is also a rapidly growing trend in 
machining techniques, such as a turning/milling process, where the main power is applied to turning, 
while the milling is performed by auxiliary spindles with essentially less power. To take advantage of 
this technique, the cutting edge of the tool must be modified to achieve the maximum machining 
volume at lower forces. Comparing to HPM, here the same machining volume can be achieved using 
significantly low power consumption. 

It is worth mentioning that, in the production of aerospace components, the best machining 
strategy is the combination of HSM and HPM (Korn, 2005), where the manufacturing technology 
changes with different processing tasks. Such combination yields both high quality of the product and 
essential reduction of the manufacturing time. However, the high performance machining requires an 
increase of cutting force, which is not very critical for the conventional CNC-machines with rather 
stiff mechanical structure. In contrast, for robotic-based machining, these forces may cause essential 

deformations of the manipulator, which consequently affect the machining accuracy.  
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In order to reduce relevant machining errors, there exist two main approaches. The first one 
aims at increasing the machine tool or robot stiffness as well as optimal part placement in the 
workspace (Caro et al., 2013). However, increasing the mechanism stiffness obviously leads to 
decreasing of the dynamic properties (due to higher mass and inertia of the manipulator links). The 
second approach is based on robot error compensation via proper off-line (or on-line) modification of 
control program describing desired tool trajectory or by using the force feedback in the online mode. 
To implement this approach, suitable geometric and stiffness models of the robotic manipulator are 
required, which is in the focus of this thesis. 

1.1.2 Industrial requirements for machining accuracy 

Before considering specificities of robotic-based machining, let us analyze in general the 
industrial requirements for machining accuracy. Figure 1.3 presents the most common manufacturing 
processes and the typical tolerances associated with each of them. In this figure, the dark segments of 
the bars represent the tolerances required in most of the cases. The remaining parts of the bar indicate 
the less frequent cases (with either higher/lower precision that are obtained under ideal/worst 
machining conditions). For the milling process studied in this thesis, which is highlighted here, the 
desired tolerances are in the range of 0.05-0.25 mm. Let us evaluate their feasibility in conventional 
robot control, without dedicated error compensation. 

 

Figure 1.3 Typical tolerances of different machining processes (DML)  

For industrial robots, especially ones employed in machining of high performance materials, 
essential loading is usually generated by the interaction of machining tool and workpiece during the 
processing. For example, the Monel®400 nickel-copper alloy is widely used in aerospace industry due 
to its favorable mechanical and chemical-corrosion properties. For milling of such material with the 
cutting depth of 0.2 mm, cutting width of 8 mm and feed rate of 10 m/min, a 7 kN force is required 
(Klimchik, 2011). It is evident that this force is high enough to cause significant deformations of the 
robotic manipulator components. For instance, for KUKA KR-240 industrial robot (Dumas, 2011), 
such force may cause positioning deflections up to 5 mm and angular ones up to 0.2 deg, depending on 
the cutting force direction and manipulator configuration. These deflections are about 20 times higher 
than the required process tolerances. So, to achieve the desired accuracy of robotic-based machining, 
these deflections must be compensated by proper control strategy. 
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It is worth mentioning that for the alternative solution, which employs conventional CNC 
machines, the above mentioned problem is not critical (because accuracy of 50µm is quite feasible 
here). However, for machining of large dimensional parts, the CNC machines can be hardly applied. 
In particular, large-scale CNC machines (gantry, for instance) can be extremely expensive. For these 
reasons, relevant industries have a rapidly growing need for using robotic manipulator to perform the 
machining tasks. So, in order to meet the industrial requirements, improvement of the robot accuracy 
in such applications becomes a crucial issue.  

1.1.3 Robot application for machining operation 

The robotic manipulators are used in numerous industrial applications, they progressively 
replace the traditional machine centers and human workers. The application of robots has enabled the 
manufacturing industry to perform certain operations automatically, at high speeds, more precise than 
a human operator that lead to productivity improvement (Groover, 2010). Figure 1.4 presents a 
statistical overview of the use of industrial robots both in industry and for some applications. 

 

Figure 1.4 Statistical overview of the use of industrial robots (Guizzo, 2008) 

As follows from the figure, the robots have taken over a large share in both light and heavy 
industries. Generally, they are considered to be very competitive in terms of their automation, 
flexibility, safety, cost-effectiveness and other advantages. In particular, the industrial application such 
as palletizing has successfully implemented the robotic manipulators into their production chains for 
over several decades. While heavy industry requires a growing number of robots in automotive, 
shipbuilding and aerospace manufacturing, which motivate researchers and robot manufacturers to 
improve the robot stiffness and accuracy in order to meet the requirements. These application areas 
and the most recent developments are briefly presented below. 

 

Figure 1.5 End of line robotic palletizer (ICC.com) 

Industrial palletizing (packing, pick-and-

place, etc.) refers to load and unload 

products from/to a pallet. The robotic-

based automated palletizing has been 

successfully employed in many industries 

such as food processing, shipping, etc. 

since the 1980s. 

 



10 Chapter 1  Manipulator modeling for robotic-based machining and identification of the model parameters 

 

Figure 1.6 The new PowerMill robot interface for multi-
axis machining operations (Delcam, 2013)  

 

Robotic sculpting/milling and rapid 
prototyping help the designer to create a 

physical model from a conceptual design. 

Traditionally, this design-to-manufacturing 

process uses CNC machines and is quite 

time consuming, while robots are faster 

and can perform machining tasks with a 

large diversity of the lightweight materials 

(plastic, wood, foam, etc.) (Huang and 

Lin, 2003). 

 

Figure 1.7 The Great Wall motors robotic assembly line 
(Murray, 2012) 

 

Automotive manufacturing is the most 

important customer of industrial robots. 

Over 30% of all robots in use today are 

employed in automotive industry. Robots 

are able to produce consistent and high 

quality products. They are safe and cost-

effective. For example, the robots are so 

fast, they can complete the welding of an 

entire Haval SUV in just 86 seconds. 

(Murray, 2012). 

 

Figure 1.8 Automatic robot welding of complex ship 
sections (Kranendonk.com) 

 

Shipbuilding industry often involves 

machining of pieces with very large scale, 

such as profile cutting, panel welding, 

double hull welding, etc. Recently, 

Hyundai Heavy industry, one of the 

world's biggest shipbuilder, has developed 

a mini welding robot for building ships. 

Such a robot weights only 15 kg with a 

magnet in its body, and is able to attached 

to the steel walls/ceilings. One operator 

can control three robots at the same time, 

so the productivity may increase 

essentially (HHI.co). 
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Figure 1.9 Robot performs non-destructive inspection on 
a Boeing 787 (Waurzyniak, 2013) 

 

Aerospace industry. More than 

thousands of fastener locations required 

to be drilled to complete a plane. 

Industrial robots stand a great opportunity 

for relevant machining applications. 

Highly rigid robot has been developed 

specially towards aerospace application, 

with very good accuracy, about 0.1 mm, 

during the drilling process (Fanuc.co). 

Despite the above mentioned advantages, robotic manipulators are less accurate than 
conventional CNC machines (that may reach an accuracy of 50µm), especially in heavy industry 
where the robots perform manufacturing tasks with essential forces. This inaccuracy is caused by the 
influence of the external forces and by the differences between the parameter true values and the 
nominal ones. The influence of these factors on the machining accuracy depends on corresponding 
industrial applications and robot configurations. 

To show the significance of the manipulator parameters on the final manufacturing product, let 
us present a typical machining experiment performed at IRCCyN laboratory / IUT Nantes. The 
technological process includes a milling operation on a machining piece using KUKA KR-270 
industrial robot. The machining piece (Figure 1.10a) of aluminum alloy with thickness 5 mm was 
trimmed with a cutting tool of diameter 21 mm and 4 cutting teeth. The rotational speed of the tool 
was 6670 rpm and the feed rate was 3.6 m/min. In the frame of this experiment, the robot performed 
milling along certain pre-defined trajectories (Figure 1.10c).  

 

Figure 1.10 Machining experiment (Dumas, 2011) 
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Figure 1.11 Differences between the desired trajectory and the obtained ones with and without 
error compensation (Dumas, 2011) 

Experimental results related to this machining process are presented in Figure 1.11, which show 
the differences between the desired trajectory and the obtained ones (using different control strategies). 
As follows from this figure, the machining errors without error compensation can reach 0.7 mm, 
which is not acceptable for aerospace industry. It should be mentioned that in this machining 
experiment, an error compensation technique has already been applied, the "mirror" approach, which 
allowed to compensate about 50% of the machining errors (in the case when the cutting speed is equal 
to 6670 rpm). In order to achieve higher machining accuracy, let us investigate the sources of robot 
errors in machining applications. 

1.1.4 Robot errors and their compensation in machining application 

In the literature, precision of the robotic manipulator is described by three criteria: resolution, 
repeatability and accuracy (Conrad et al., 2000). The resolution defines the minimum increment that 
robot may produce. The repeatability measures the ability of a robot to return repeatedly to a given 
position. The accuracy refers to the robot ability to move precisely to a desired Cartesian location. In 
the frame of this work, the main attention will be paid to the robot accuracy that can be essentially 
improved using the calibration techniques developed in the following chapters. 

In accordance with (Khalil and Besnard, 2002; Paziani et al., 2009), the sources of manipulator 
positioning errors can be classified into two main groups: geometric errors and non-geometric ones. In 
more details, the classification of these errors is presented in Figure 1.12. It should be noted that these 
error sources may be independent or correlated. In practice, they are usually treated sequentially, 
assuming that they are statistically independent. 

Usually, in the robot applications such as packing and palletizing, or machining with light 
materials (wood or plastic, for instance), external forces/torques applied to the end-effector are 
relatively small. In this case, the primary sources of robot inaccuracy are the geometric errors, which 
are responsible for about 90% of the total positioning error (Elatta et al., 2004; Rolland, 2003). Typical 
examples of geometric errors are the differences between nominal and true values of the link lengths, 
the differences between zero values of actuator coordinates in real robot and mathematical model 
employed in control unit (the joint offsets). It is worth mentioning that they can be also caused by non-
perfect assembling of different manipulator components, which yield mismatching and misalignment 
in shifting and/or rotation of the associated frames. At present, there exists a number of well-known 
calibration techniques that allow to identify these geometric errors (Bennett et al., 1991; Daney et al., 
2006; Khalil and Dombre, 2004; Roth et al., 1987) and to compensate them efficiently either by tuning 
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the controller input (i.e. the target point location) or by straightforward modification of the geometric 
model parameters that are accessible in the robot controller.  

 

Figure 1.12 Classification of robot errors in machining applications 

Considering the geometric errors, corresponding compensation techniques are already well 
developed. Generally, when the main sources of errors are concentrated in the link lengths and/or in 
the joint offsets, straightforward compensation strategy can be applied by adjusting the geometric 
parameters employed in the robot control unit. On the other hand, if any geometric errors are not 
presented in the nominal direct/inverse models, relevant modification of the controller input is 
required. In this case, it is possible to use a relevant non-linear function that describes the error 
distribution throughout the workspace. An example of such approach has been given in (Lu et al., 
1997), where the neural network technique is applied. More detailed review of different strategies 
dedicated to geometric errors compensation will be presented in Section 1.2. 

For the robots that are employed in machining of high performance materials (such as milling, 
drilling, turning, etc), the geometric errors are usually dominated by the non-geometric ones (Bogdan 
and Abba, 2009; Cui and Zhu, 2006; Gong et al., 2000). In this case, the cutting forces/torques are 
quite high and may cause essential deformations of the manipulator components (link/joint compliance 
errors). Besides, some environmental factors (thermal effects, atmospheric pressure, etc.) may also 
affect physical properties of the manipulator components and may cause some undesirable changes. 
Nevertheless, under usual circumstances, the compliance errors are the most significant ones and may 
be responsible for over 90% of the total positioning errors. Particularly, their influence is critical for 
heavy industrial robots and manipulators with low stiffness. The compliance errors depend on two key 
factors: (i) the manipulator stiffness and (ii) the applied external loading. In addition, in some cases, 
the influence of link gravity, the effect of gravity compensation mechanisms, and the preloading in 
joints introduced to eliminate backlashes should be also considered. 

For the compliance errors, the compensation technique must rely on two components: (i) the 
manipulator stiffness matrix describing the elastostatic properties, (ii) the loading describing the 
forces/torques acting on the manipulator end-effector while performing certain manufacturing tasks. In 
this work, it is assumed that the loading can be estimated from corresponding technological process 
model. To obtain the Cartesian stiffness matrix, there exist various approaches (Akin, 2005; Angeles, 
2007; Deblaise et al., 2006). More detailed review of different stiffness modeling methods and 
compliance error compensation techniques will be presented in the Section 1.3. 
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1.2 MANIPULATOR GEOMETRIC MODEL AND IDENTIFICATION OF ITS PARAMETERS 

1.2.1 Manipulator geometric modeling 

Serial robotic manipulator is an open-loop kinematic chain with several links connected in 
sequence by either revolute or prismatic joints driven by actuators. One end of the chain is usually 
fixed to a supporting base while the other end moves within the robot workspace. The latter is often 
equipped with a technological tool (an end-effector) that is used to manipulate objects or to perform 
particular tasks. To ensure the accurate location of the robot end-effector, the geometric model 
employed in the robot controller should precisely describe the relation between the joint space and the 
Cartesian space (Waldron and Schmiedeler, 2008). Such a relation is illustrated in Figure 1.13, in 
which the inputs of the direct geometric model are the joint angles (actuator coordinates) that define 
the robot configuration, and the output is the manipulator end-effector location (position and 
orientation). The inverse problem gives the joint angles from a given robot end-effector location. In 
this review of manipulator geometric modeling methods, it is assumed that the manipulator consists of 
rigid links, and the non-geometric effects such as the gear transmissions, joint backlashes and link 
deformations due to environmental changes are negligible. 

 

Figure 1.13 The schematic representation of manipulator geometric model. 

The robot end-effector position that is defined by the vector of the Cartesian coordinates 

 , ,x y zp p pp  is usually computed using different mathematical techniques that give similar results. 
In contrast, the end-effector orientation that usually described by the vector  , ,x y z  φ  highly 
depends on the parameterization. In the robotics literature, to express the orientation, various forms 
exist. The most commonly used are the following: orthogonal rotation matrix of size 3 3 , Euler 
angles, Rodrigues parameters, lie algebra, quaternion (Aspragathos and Dimitros, 1998; Chou and 
Kamel, 1991; Funda et al., 1990; Gu, 1988; Kuipers, 1999). They have been developed for different 
applications or have been adapted to some special algorithms. For this reason, there exists different 
ways to describe the manipulator geometric model, which differ in the mathematical techniques and 
the parameterization methods. 

One of the most popular approaches used by robotics community for describing the manipulator 
kinematics is the homogeneous transformation (Paul, 1981; Paul and Zhang, 1986). In this method, the 
robot end-effector location (i.e., position and orientation) is described by a 4 4  transformation 
matrix, which includes a 3 3  rotation matrix defining the robot orientation and a 3 1  translational 
vector that defines the robot position. It should be mentioned that the angle convention of the end-
effector orientation used in the robot controller differs from one to another, so the extraction of the 
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orientation angles from the rotation matrix highly depends on it as well as the order of rotational axes. 
For example, the KUKA robot uses ABC angles (yaw-pitch-rooll convention), PUMA robot uses OAT 
angle coordinates; other Euler angles (ZYZ convention, for instance) are also used in other robots 
(Slabaugh, 1999). An alternative method is based on the screw theory, which expresses a rigid body 
transformation by a screw displacement (Funda and Paul, 1990; Huang et al., 2013). Its main 
advantage is that it avoids the use of local coordinates systems that induce singularities. To represent a 
screw motion, there are several ways which are based on Lie algebra, quaternion algebra, etc 
(Aspragathos and Dimitros, 1998; Gu, 1990; Sariyildiz and Temeltas, 2011). 

Using any modeling method, similar results in the definition of the manipulator spatial location 
can be achieved. Therefore, since the homogeneous transformation may operate with the parameters 
that are employed in the robot controller, it will be used for further computations. This method found 
wide applications both in geometric modeling and robot calibration. In the frame of this technique, the 
manipulator geometric model is defined by a sequence of transformations from the reference frame to 
the robot end-effector frame. These transformations are computed using elementary homogeneous 
matrices  , , , , ,x y z x y zT T T R R R , where T  and R  represent a pure translation and rotation about the 
related axis (Maxwell, 1951). It should be noted that the order of the sequence is quite important here 
and is defined by the robot architecture and parameterization method. In general, the transformation 
matrix that describes the manipulator geometric model can be expressed as 

  Base Link Joint Tool1
( ) ( )
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where BaseT  and ToolT  are the base and tool transformations, LinkT  and JointT  are the link and joint 
transformations; vector jπ collects the geometric parameters of each link and varies with the 
parameterization methods, where j  is the link/joint number; ,( 1,2,..., )jq j n  are the joint 
coordinates defining the robot configuration and n  is the number of joints. Generally, each 
manipulator component can be defined by six sequential elementary transformations. In fact, some of 
them are redundant and can be eliminated from the model (for example, for a revolute joint, only one 
angular motion is required). In practice, JointT  is defined by a single rotation/translation joint and can 
be expressed as 

 Joint

( ),       for a revolute joint

( ),        for a prismatic joint

i j

i j

q

q

 


R
T

T
 (1.2) 

where , ,i x y z  specifies the rotational/translational axis. In contrast, LinkT  is usually described by a 
sequence of six transformation matrices. 

In order to reduce the number of parameters, Denavit and Hartenberg proposed an approach to 
describe the transformation between adjacent links using only four parameters (Denavit and 
Hartenberg, 1955). Such benefits have been achieved using special locations of the reference frames, 
where z-axis coincides with the direction of the joint axis and x-axis is aligned with the common 
normal to the previous and current joint axes. Here, the model parameters define the shift and rotation 
between x- and z-axes and the relation between consecutive links is described by the following 
transformation matrix 

 Link ( ) ( ) ( ) ( )z j z j x j x jr d T R T T R  (1.3) 

where j  is defined by the angle between 1x j  and x j  about 1z j , noted that j j jq q    , where 

jq  is the joint offset that should be identified as a geometric parameter; r  is the distance between 

1x j  and x j  along 1z j ,   is the angle between 1z j  and about x j , and d  is the distance between 
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1z j  and z j  along x j ,  x ,zj j
 and  1 1x ,zj j   are the reference frames of the current and previous 

joints. 

This method has been widely used in many robotic applications and is very convenient for 
direct geometric modeling of serial manipulators. However in robot calibration, such parameterization 
may cause some difficulties if the axes of consecutive joints are parallel. It has been detected in 
(Mooring, 1983) that when these axes are slightly misaligned, they may produce large changes in the 
geometric parameters, which cannot be modeled by D-H parameterization. In this case, the calibration 
Jacobian is singular. For example, in the case study of (Stone, 1987), it has been pointed out that this 
singularity provides non-acceptable values of the identified parameters.  

In order to overcome this limitation, several alternative parameterization methods have been 
proposed based on the modification or extension of the D-H approach. For example, to represent small 
misalignment between the consecutive parallel axes, Hayati introduced an extra notation ( )

y j
R  

(Hayati, 1983). In this case, the link transformation matrix is defined as 

 Link ( ) ( ) ( ) ( ) ( )z j z j x j x j y jr d  T R T T R R  (1.4) 

Later on, this idea has been used in (Veitschegger and Wu, 1987) for the identification of PUMA 560 
robot. In addition, this notation is specifically defined for the case of consecutive joints with parallel 
axes, otherwise it is non-identifiable. 

Another approach has been proposed by Stone whose S-model added two extra parameters to 
the D-H model, in order to allow an arbitrary placement of link frames and avoid the problem of 
misalignment in consecutive parallel axes as well (Stone et al., 1986). In this model, the link 
transformation is expressed as 

 Link ( ) ( ) ( ) ( ) ( ) ( )z j z j x j x j z j z jd a b   T R T T R R T  (1.5) 

where j  is the angle between axes DHx j
 and Sx j

, and jb  is the distance between the origin of D-H 
link frame and S-model link frame. Using these parameters, it is also possible to obtain the D-H 
parameters as 1j j j      and 1j j jd d b   . The benefits of such a method are confirmed by 
geometric calibration of PUMA 560, where small misalignment is identified between the second and 
third joint axes. 

Whitney and Lozinski developed another 6-parameter model for the purpose of robot parameter 
identification (Whitney et al., 1985). In this method, the reference frame is located such that the y-axis 
is along the joint axis and the subsequent frame lies in the y-z plane. The link transformations contain 
six independent components, in which the rotation is parameterized by a general Roll-Pitch-Yaw 
rotational transformation, and has the following form 

 Link ( ) ( ) ( ) ( ) ( ) ( )y j y j z j z j y j x jy z   T R T T R R R  (1.6) 

where j  is the joint displacement including offset, jy  and jz  are the translational displacements 
along joint axis and the direction of the link; i , j  and j  are consecutive rotation angles about z-, 
y- and x-axes, respectively. 

The above presented approaches are summarized in Table 1.1, where the parameters as well as 
the link transformation matrices are given. The differences between the presented methods are 
illustrated in Figure 1.14, where the link frames are assigned and corresponding parameters are 
defined.  
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Figure 1.14 Existing parameterization methods for consecutive revolute joints 

Table 1.1 Summary of existing parameterization methods in manipulator geometric modeling  

Parameterization method Link transformation LinkT  Parameters jπ  

D-H model ( ) ( ) ( ) ( )z j z j x j x jr d R T T R   , , ,j j j jr d   

Hayati's model ( ) ( ) ( ) ( ) ( )z j z j x j x j y jr d  R T T R R   , , , ,j j j j jr d    

S-model ( ) ( ) ( ) ( ) ( ) ( )z j z j x j x j z j z jd r b   R T T R R T   , , , , ,j j j j j jd r b     

Whitney-Lozinski model ( ) ( ) ( ) ( ) ( ) ( )y j y j z j z j y j x jy z  R T T R R R   , , , , ,j j j j j jy z    

Although the incompleteness of D-H parameterization can be overcome by introducing extra 
parameters, it may provoke undesirable redundancy and increase the computational complexity. So, it 
does not solve the problem of singularities of the calibration Jacobian. Besides, it can be proved that 
with each new parameter, which is not significant or redundant, the model precision decreases. 
Therefore, the key issue in the geometric modeling is to find the minimum set of parameters that can 
describe the manipulator end-effector position with required accuracy after calibration. This problem 
will be in the focus of the next subsection.  

1.2.2 Geometric model suitable for identification  

As follows from previous subsection, manipulator geometric models may include different 
number of parameters. In particular, for a conventional 6-dof industrial robot, the number of 
parameters varies from 24 for DH representation to 36 for Whitney-Losinski approach. In addition, it 
is necessary to increase these numbers by 12 to describe the robot base location and the tool geometry. 
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It is clear that for the inverse and direct kinematics, number of parameters is not critical and does not 
create any particular numerical difficulties. However, to identify all these parameters from the 
measurements of the end-effector location only, usually is not possible. In practice, some parameters 
cannot be identified separately, they are presented in the geometric model as sums or linear 
combinations. Any attempt to solve the identification problem for the whole set of these parameters 
leads to the fail of the numerical routines (that is caused by singularity of the relevant aggregated 
Jacobian). Hence, to be suitable for the identification, the manipulator geometric model must be 
proper prepared (by means of reduction of redundant parameters). On the other side, the number of 
parameters should be high enough, to describe all possible variation in the link/joint geometry of the 
manipulator. In other words, the number of parameters should be minimal, but sufficient. 

The above mentioned problem has been firstly addressed in (Everett et al., 1987), where the 
authors defined three essential properties for geometric model suitable for identification: completeness, 
irreducibility and continuity. To be complete, the geometric model should contain a sufficient number 
of parameters to specify the motion of the robot end-effector for any geometry of the link and joint 
(which are assumed to be non-flexible). The irreducibility means that minimum number of 
independent parameters is included in the model. And finally, the continuity implies that small 
changes in the manipulator geometry are reflected by small changes in the parameters. For the 
geometric model that satisfies all the above mentioned requirements, the rank of the corresponding 
aggregated Jacobian  

aΠJ  is equal to the number of the parameters to be identified, and the desired 
parameters π  can be found using the following expression 

 
a a  t J π  (1.7) 

where 
at  is the vector of aggregated deviations of the manipulator end-effector location caused by 

inaccuracy in the manipulator geometry. Further, the problem of the parameter identifiability has been 
investigated by several researchers, where some analytical tools and/or numerical routines for model 
reduction were proposed (Besnard and Khalil, 2001).  

Another essential contribution in this area has been done by (Zhuang et al., 1989), who focused 
on the determination of the minimum number of geometric parameters for the model completeness. 
The authors used the screw theory and proved that, for the serial robot that consists of low-pair joints, 
this number is equal to 

 4 2 6p R PN n n    (1.8) 

where 
Rn  and 

Pn  is the number of revolute and prismatic joints, respectively. It should be mentioned 
that the number 6 in Eq. (1.8) corresponds to the base transformation, which must be also taken into 
account in the geometric model (see Eq.(1.1)).  

The above expression has been derived for the case when all components of the manipulator 
end-effector location (both position and orientation) can be measured. In the case when the orientation 
is not available (due to the limitation of measurement device), Eq.(1.8) should be replaced by  

 4 2 3p R PN n n    (1.9) 

In practice, for majority of existing robotic manipulators, which are equipped with so called "in-line" 
wrist and the links 4 and 5 cannot be distinguished in the nominal design, the number of identifiable 
parameters should be further revised. For this particular case, (Pashkevich, 2001) proposed an 
alternative expression for relative measurements that is able to take into account the above effect 

 4 2 2p R PN n n s    (1.10) 
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where s  is the number if singular rotational joints (usually 1s  or 0s  ). It should be mentioned that 
number pN  can be still decreased depending on particular architecture of the manipulator (for 
example, the model of the last link cannot be separated from the tool model). Besides, the above 
expressions are able to provide the minimum (and sufficient) number of parameters, while it does not 
give an answer to the questions about which parameters should remain in the geometric model and 
how to generate the models suitable for calibration in the simplest and more efficient way. 

One of the possible solution has been proposed in (Pashkevich, 2001), where on the first step 
the manipulator is described by obviously redundant (but sufficient) model that uses six parameters for 
each link, one parameter for each joint, six parameters for the base and six parameters for the tool. 
Further, on the second step, the model is reduced using specially developed reduction technique based 
on the SVD decomposition. In the frame of this technique, the manipulator geometric parameters are 
split into three groups, the identifiable, non-identifiable and semi-identifiable parameters, which have 
the following definitions: 

The identifiable parameters have direct influence on the robot end-effector position accuracy 
and can be independently identified by robot calibration. 

The non-identifiable parameters do not affect the manipulator end-effector position accuracy 
and should be eliminated from the geometric model. Typical example of such parameter is the tool 
orientation when the partial pose measurements (position only) are used for calibration.  

The Semi-identifiable parameters are linear dependent, their influence on the robot accuracy 
cannot be identified separately. In robot calibration, they are usually combined together in such a way 
that any element can be treated identifiable while the remaining parameters can be treated as 
redundant/non-identifiable (fixed to be equal to zero, for instance). For example, parameters 2d  and 

3d  in the robot PUMA 560 are included in the geometric model as a difference 2 3d d  and cannot be 
identified separately. For this reason, straightforward identification in such a case may lead to 
unreasonable values for both parameters. Relevant example is given in (Stone, 1987), where 
identification of 2d  and 3d  individually provided unacceptable result 2 49310.6 mmd   and 

3 49160.6 mmd  (instead of something close to the nominal values 250.0 mm and 101.0 mm), while 
the corresponding difference remains correct 2 3 149.0 mmd d  .   

In the scope of the above mentioned work (Pashkevich, 2001), the non-identifiable parameters 
are extracted by detecting zero columns in the aggregated Jacobian 

aJ  and they are eliminated from 
the model in the straightforward way. Further, to deal with the semi-identifiable parameters, the SVD-
based technique can be applied to the reduced Jacobian 

rJ , and Eq.(1.7) can be rewritten as  

 ,     1,T T

i i i aV U i r    π t  (1.11) 

where 
iU  is vector of size 1MP , iV  is a 1PN   column vector and 

i  is the element of Σ  that is a 

PMP N  matrix of the singular values; r  is the rank of matrix
rJ ; M is the dimension of 

measurement data, P is number of measured points and pN  is the number of parameters. Here, the 
matrices U ,Σ , V  are obtained using the following decomposition    

 T

r J UΣV  (1.12) 

where 1 2[ , ,..., ]rU U UU  and 1 2[ , ,..., ]rV V VV . This leads to the general solution of the linear 
system (1.7) as 

 part i i

i r




   π π V  (1.13) 
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where 
i  are arbitrary scalar values, partπ  is a partial solution of the considered system. Analysis of 

Eq.(1.13) for the desired parameters shows that the relation between the eigenvectors 
iV  and the 

parameter identifiability can be described using the following rules: 

If the thi row of the matrix 1[ ,..., ]r mV V  is equal to zero, the parameter 
iπ  is identifiable.  

If the thi column of the matrix 1[ ,..., ]rV V  is equal to zero, the parameter 
iπ  is non identifiable.  

If 0,   1,T

i i r  L π , where 0ij L  for identifiable or non-identifiable parameters, and ij ijL V  
for others, the parameter 

iπ  is semi-identifiable.  

So, this technique allows us to classify all parameters of the redundant geometric model into three 
particular groups and to obtain the complete, irreducible and continuous model that is suitable for 
identification.   

An alternative approach has been proposed in (Khalil and Dombre, 2004), which is based on the 
QR decomposition. In the frame of this method, the first step is the detection of the parameters that 
have no effect on the geometric model. Similar to the previous approach, these parameters correspond 
to the zero columns in matrix 

aJ , and are eliminated from the model parameters. On the second step, 
the number of identifiable parameters is defined by the rank of the reduced calibration Jacobian 

rJ . 
Further, the identifiable parameters are determined by those corresponding to the independent columns 
of 

rJ , by means of QR decomposition  

 
( )

Np Np

r MP MP

MP Np Np





 

 
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R
J Q

0
 (1.14) 

where Q  is an orthogonal matrix, R is a upper triangular matrix and ( )MP Np Np 0  is the zero matrix; 
Then, the non-identifiable parameters are those whose related elements on the diagonal of  the matrix 
R  that are zero or "close to zero". It should be noted that here the identifiable parameters are not 
uniquely defined, while the QR decomposition method provides those parameters that correspond to 
the first r  (rank of 

rJ ) independent columns of the reduced calibration Jacobian. In order to ensure 
some parameters to be a priori presented in the model (which are included in the geometric model 
embedded in the robot controller), it is suggested to adjust the order of the columns of 

rJ  in 
accordance with the specific rules. This simplifies integration of the identified parameters in the 
control loop. The validity of this approach has been confirmed in (Khalil and Dombre, 2004), where 
the authors identified 24 (out of 30) parameters of Stäubli robot RX-90, and 6 semi-identifiable 
parameters. 

It should be also mentioned that, it is possible to solve the model reduction problem 
straightforwardly, without using decomposition of the aggregated Jacobian. This approach has been 
proposed in (Meggiolaro and Dubowsky, 2000) and is based on evaluation the ranks of different 
subsets of 

rJ  (where the subsets are formed by eliminating one or several columns that are linked 
with the model parameters). If the rank for the subset remains the same as for the original Jacobian, 
the eliminated column corresponds to non-identifiable (or semi-identifiable) parameters and should be 
taken out from the geometric model. Otherwise, if the matrix rank decreases, the relevant parameters 
will be identifiable and should be conserved in the geometric model. This approach is quite simple and 
can be easily realized in practice, while the column elimination order is not unique, so the final set of 
parameters highly depends on the prescribed algorithm. The latter provides the user some flexibility in 
the determination of the identifiable parameters.  



1.2  Manipulator geometric model and identification of its parameters 21 

All the above presented methods provide equivalent solutions, while the SVD-based approach is 
more suitable for semi-analytical analysis. Therefore, it will be used further for generation of suitable 
geometric model for calibration of a particular manipulator. 

1.2.3 Calibration of manipulator geometric model 

In practice, the robot geometric parameters non-negligibly differ from the nominal values 
declared in technical specifications and vary from one robot to another. So, to be used in the robot 
controller, the geometric model should be properly tuned (calibrated) for a particular manipulator. In 
general, the calibration procedure is divided into four sequential steps: modeling, measurement, 
identification and implementation. Let us briefly present the key issues for each step.   

Step 1: Modeling. This first step focuses on the development of proper geometric model of 
robotic manipulator. In the pioneer works (Veitschegger and Wu, 1987), researches have used the 
classical DH model for robot calibration. However, this model was soon discovered to be 
discontinuous in some cases and may lead to unacceptable identification results (Mooring, 1983). So, 
several alternative approaches have been proposed to overcome these difficulties by means of 
introducing extra parameters (Hayati, 1983). Since the inclusion of additional parameters causes 
redundancy, these methods raise the problem of parameter non-identifiability, which leads to the 
necessary investigation of model completeness, irreducibility and continuity. Detail analysis and 
review on these issues concerning geometric modeling has been presented in the previous Subsection.  

Step 2: Measurement. This step involves data collecting of robot pose information. Generally, 
six parameters are required to specify the manipulator end-effector location (three translations and 
three rotations) (Driels, 1993; Driels and Swayze, 1994), but sometimes the end-effector position is 
measured only (three translations). Various calibration methods based on different measurement 
techniques were proposed, they are usually categorized as closed-loop and open-loop ones. The 
closed-loop calibration uses physical constraints on the manipulator end-link (point, line or plane 
constraints, for instance). It is claimed to be autonomous and does not require any external device 
(Ikits and Hollerbach, 1997; Meggiolaro and Dubowsky, 2000; Rauf and Ryu, 2001). However in this 
case, the manipulators must have some redundancy to perform self-motion, and the robot 
configuration should be carefully selected to satisfy particular constraints. Therefore, the open-loop 
methods have found wide applications, they measure the full or partial pose of the end-effector using 
external devices. In practice, the partial pose information is often used that provides from one to five 
dimensional measurements (Besnard and Khalil, 1999; Daney and Emiris, 2001; Rauf et al., 2006) 
instead of the full pose measures (6-dimensional location). In general, the lower dimensional 
measurement is more attractive due to the ease of data processing. For this reason, numerous external 
devices have been developed for relevant measurement methods, more details concerning those 
methods will be presented in Chapter 2. 

 Step 3: Identification. The problem of parameter identification of the robot manipulator can be 
treated as the best fitting of the experimental data (given input variables and measured output variables) 
by corresponding models. This problem has been addressed by a number of researchers who have used 
various modeling methods and identification algorithms, such as linear least square, Levenberg-
Marquardt algorithm, Kalman filtering technique and maximum likelihood estimator etc. (Mooring et 
al., 1991; Renders et al., 1991). Among them, the least square technique is the most often applied one, 
which aims at minimizing the sum of squared residuals (Rao and Toutenburg, 1999). 

 
2

( ( , )) min      1,i ig g i m   π
T q π  (1.15) 
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where ( )g   is the function for extraction of location coordinates, and 
ig  is the related measurements. 

However, there is a source of errors here if the components of the function ( )g   are not homogeneous 
(distances and angles, for instance, which can be measured in millimeter and radian, meter and degree, 
etc.). Usually, a straightforward solution is applied to overcome the non-homogeneity: assigning 
weights or normalization, but this weight assigning procedure is very non-formal and uncertain (while 
very essential for the final results). 

To solve the problem (1.15), there exist various numerical optimization algorithms such as 
gradient search, heuristic search and the others (Fletcher, 2013), which aim at providing the minimum 
of the objective function. However, these numerical techniques are often difficult to apply here due to 
large number of parameters to be tuned, that often leads to low convergence and local minima. On the 
other hand, for the case of geometric calibration, the errors in the parameters are relatively small, so 
the linearization technique can be successfully applied. In this case, the solution of a linear least square 
problem can be found straightforwardly (i.e., via the pseudo-inverse of Moore–Penrose) (Moore 1920; 
Penrose, 1955). It should be mentioned that in some particular cases (when the geometric errors are 
relatively large), the solution can only be found iteratively (linearizing the function ( )g   several times 
in the neighbourhood of current parameters).  

Step 4: Compensation. This is the last step that implements the identification results in the 
control strategy. There are two main approaches here that include some adjustments either in on-line 
or off-line modes. They are respectively based on:  

(i) modification of the control algorithm by adjusting the manipulator model embedded in 
the relevant software; 

(ii) modification of the control program by adjusting the reference trajectory, which 
defines the controller input. 

In more details, these two approaches are described in Figure 1.15, where the real (identified) 
manipulator model is referred to as the "non-nominal" one, in contrast to the "nominal" model that is 
based on the technical documentation. The corresponding inverse/direct geometric model depends on 
the actual parameters 0  π π  and the nominal ones 0π , respectively. The desired trajectory 

dt  is 
defined by a set of Cartesian locations of the manipulator end-effector (position and orientation), i.e. 

 , , , , ,xi yi zi xi yi zip p p    . The notations  , ,m m m
 t t t and  ,  , q q q  are obtained from manipulator 

trajectories and relevant joint coordinates used in different control strategies (Figure 1.15(a)-(c)), 
respectively. 

The first approach requires essential intervention in the robot control software and modification 
of the inverse/direct kinematics in accordance with the identification results. But in the most of cases, 
it cannot be applied in practice because usually the control software is not opened for the final user 
and the set of the accessible manipulator parameters (in relevant tables) is very limited. As a rule, 
these parameters correspond to the nominal manipulator geometry, so it is impossible to include some 
essential deviations in the joint axis orientation (they may be not strictly parallel or orthogonal, etc.). 
For this reason, the second approach that is based on the modification of the reference trajectory is 
applied in engineering practice (Ozaki et al., 1991). These modifications can be performed in off-line 
mode and deal with correction of the set of end-effector locations (nodes) that define the target 
trajectory. Because of the universality of this method, it found wide applications and numerous 
modifications have been proposed. For instance, neural networks has been used in (Ishiguro et al., 
1992) and (Huang et al., 2000). In practice, the most popular method is a so called "mirror technique" 
(Dumas, 2011; Chen et al., 2013), where the reference and non-compensated trajectory are 
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symmetrical with respect to the desired one (in terms of nodes). As shown in Figure 1.16, the 
machined trajectory is measured and described by a set of points  ,  1,2,...i i p . Using these points, 
the target trajectory can be generated by defining relevant set of points  ,  1,2,...i i

 p , which are 
symmetric of points ip  with respect to the desired trajectory. It is worth mentioning that such a 
technique cannot predict the errors, each time it is required to perform the machining operation in 
order to obtain the corrupted trajectory. It should be also noted that the selection of compensation 
technique highly depends on the application area and robot complexity.  

 

Figure 1.15 Robot control strategies with different errors compensation techniques 
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Figure 1.16 The "mirror" strategy for error compensation 

The above described steps 1-4, which are typical for all calibration techniques, allow final user 
to improve the robot accuracy but the degree of this improvement depends on number of factors, such 
as validity of the modeling assumptions, precision of the measurement system, manipulator 
configurations used for measurements, objective function employed in the identification algorithm, as 
well as compensation strategy. As follows from our experience, the most essential here is optimal 
selection of the measurement configurations that can be also treated as the "calibration experiments 
design" (under assumptions that the measurement errors are random variables). In other words, the 
question is how to organize in the best way the step 2 (measurements) in order to obtain the best 
results on the step 3 (identification). However, formal definition of the best set of measurement poses 
is not trivial and highly depends on the assumptions concerning the measurement errors and on the 
definition of the robot accuracy (in terms of the end-effector location or values of the model 
parameter).  

Some previous works devoted to the above mentioned problem (calibration experiments design) 
concentrated on evaluation of the covariance matrix, which describes the dispersion of the identified 
parameters caused by random distortion of the measurement data. In order to ensure high 
identification accuracy, the components of the covariance matrix should be as small as possible, which 
leads to the problem of finding the "minimum covariance matrix". In particular, several optimality 
criteria have been proposed (Franceschini and Macchietto, 2008), which deal with the trace, 
determinant, eigenvalues of the covariance matrix or its inverse (information matrix). Later, these 
concepts have been adapted to the selection of measurement poses, where several so-called 
observability indices based on SVD of the identification Jacobian were proposed (Nahvi and 
Hollerbach, 1996; Sun and Hollerbach, 2008b). However, there are still a number of open questions 
here, such as how to handle the accuracy of parameters of different units (millimeter and radian, for 
instance), how to estimate the impacts of different parameters on the end-effector position accuracy, 
etc. More details concerning these issues will be further discussed in Section 1.4. 
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1.3 MANIPULATOR ELASTOSTATIC MODEL AND IDENTIFICATION OF ITS PARAMETERS 

In industrial application, the robotic based machining is usually accompanied by essential 
forces/torques caused by technological process. In this case, the compliance errors are not negligible 
and should be considered together with the geometric ones. For this reason, the manipulator stiffness 
modeling and the identification of its elastostatic parameters become important issues. 

1.3.1 Manipulator stiffness modeling and existing approaches  

The robot stiffness describes the manipulator resistance to the deformations caused by the 
external forces/ torques applied to the end-effector (Angeles, 2007). This manipulator elasticity is 
usually defined by the 6 6  stiffness matrix 

CK  that describes the linear mapping  

 
C w K t  (1.16) 

between the end-effector displacement t  and the external forces/torques (wrench) w . The inverse of 

CK is called the compliance matrix and is usually denoted as k . In stiffness modeling of robotic 
manipulator, the matrix K is often referred to as the "Cartesian stiffness matrix", which is 
distinguished from the "Joint stiffness matrix" K  that defines the relation  

  τ K θ  (1.17) 

between the reaction forces/torques τ  to the corresponding joint deflections θ  (Ciblak and Lipkin, 
1999). Both of the stiffness matrices 

CK  and K  can be mapped to each other using the so-called 
Conservative Congruency Transformation if the external loading is small enough (Chen and Kao, 
2000; Kao and Ngo, 1999). However, if the loading is essential, the relevant mapping is described by 
more complicated equation that includes the Jacobian, its derivatives and the loading vector (Chen and 
Kao, 2002; Yi and Freeman, 1993). In more details, these issues are addressed below. 

It should be mentioned that the above equations (1.16) and (1.17) are common in robotics and 
correspond to the linear stiffness properties of the manipulator (they may be also treated as the 
generalization of the classical Hooke's law). However, there are several works that deal with the non-

linear stiffness models of robotic manipulators that should be used for the case of high loadings, 
which may provoke some specific manipulator behavior, such as buckling (sudden change of 
manipulator configuration and its elastostatic properties) (Pashkevich et al., 2009b). In robotics, both 
for linear and non-linear cases, there exist three main approaches in the manipulator stiffness modeling: 
(i) the Finite Elements Analysis (FEA), (ii) the Matrix Structural Analysis (MSA) and (iii) the Virtual 
Joint Method (VJM). Their main features, advantages and limitations can be summarized as follows. 

(i) Finite Elements Analysis (FEA). The basic idea of this method is to decompose the 
physical model of a mechanism into a number of small (but finite) elements and to introduce 
compliant relations between adjacent nodes described by corresponding stiffness matrices. These finite 
elements have a standard shape (pyramids, cubes, etc) for which the stiffness matrix can be computed 
analytically. Using this discretization, the static equilibrium equations for each node are derived, and 
they are aggregated in a global matrix expression defining relations between the applied forces/torques 
and node deflections. Then, the obtained matrix of rather large size is inverted and is used to obtain the 
desired stiffness matrix by simple extraction of proper elements. In the modern CAD software, the 
above process is fully automated and is integrated with 3D modeling of mechanical structures and 
mechanisms. An advantage of the FEA modeling is its high accuracy that is limited by the 
discretization step only. It is very attractive for robotic application, since the manipulator links/joints 
are modeled with its true dimension and shape (Akin, 2005; Bouzgarrou et al., 2004; Corradini et al., 
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2003). However, while increasing the number of finite elements, the problem of limited computer 
memory and the difficulty of high-dimension matrix inversion become critical. Besides, this matrix 
inversion may generate numerous accumulative round-off errors, which obviously reduce the accuracy. 
This also causes rather high computational efforts for the repeated re-meshing and re-computing. For 
this reason, the FEA modeling method is usually applied only at the final design stage in this 
application area (Long et al., 2003; Rizk et al., 2006).  

(ii) Matrix Structural Analysis (MSA). This method employs the main ideas of FEA but 
operates with rather large compliant elements such as beams, arcs, cables, etc. (Martin, 1966). This 
obviously leads to the reduction of computational efforts and in some particular cases, allows us to 
obtain analytical stiffness matrix. Similar to the FEA modeling, the MSA method provides 
forces/torques and displacements for each node, but here it corresponds to the connection point of two 
adjacent elements. This method has found application for the case of parallel robots, where 
manipulators include number of passive joints and closed-loop topology. In (Deblaise et al., 2006), 
this method has been used to compute the stiffness of a Delta robot whose links were approximated by 
regular beams. However, this approach is hardly applicable for the manipulator behavior in the loaded 
mode, which is very essential in machining applications. 

 

Figure 1.17 Serial industrial robot and its VJM-based stiffness model 

 (iii) Virtual Joint Modeling (VJM). This method is based on the expansion of the traditional 
rigid-body model of the robotic manipulator, where the links and joints are assumed to be rigid and 
perfect while their compliances are taken into account by additional virtual springs that are referred to 
as virtual joints. Geometrically, such approximation is equivalent to adding these joints after the 
compliant elements (links and joints) whose flexibilities are described by these virtual joints. It is 
obvious that such lumped presentation of the manipulator stiffness essentially simplifies the model. 
For this reason, at present it is the most popular stiffness modeling method in robotics. The method 
has been firstly introduced by Salisbury (Salisbury, 1980) and Gosselin (Gosselin, 1990), who 
assumed that the manipulator flexibility is localized in the actuator joints only. The derived expression 
defining relation between the joint and Cartesian stiffness matrices became a basis for the manipulator 
stiffness analysis in many research works (Chen and Kao, 2002; Majou et al., 2007; Quennouelle, 
2009). In the first works, it was strictly assumed that the links are rigid and each actuated joint is 
presented by a single one-dimensional virtual spring (Gosselin and Zhang, 2002; Pigoski et al., 1998; 
Zhang, 2000). In recent works, to take into account the links flexibilities, the number of virtual springs 
was increased up to six for each element (Pashkevich et al., 2009a). In this case, the key issue of this 
method is how to define the virtual spring parameters. One of the possible solutions has been proposed 
in (Klimchik, 2011), where the CAD models of the links were used to compute the compliance matrix 
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via FEA This leads to essential increase of VJM method accuracy that becomes comparable with the 
FEA approach, but the computational expenses are much lower.  

As follows from the above presented review and comparison study, the VJM method is the most 
attractive one for the considered application area due to its computational efficiency and acceptable 
accuracy. In the frame of this method, all types of the compliance in the manipulator are localized in 
the actuated joints and presented by virtual springs. Using this approach, the manipulator can be 
presented as the sequence of rigid links separated by the actuators and virtual joints incorporating all 
elastic properties of compliant elements. Under these assumptions, the stiffness model of the serial 
robot can be presented as shown in Figure 1.17. 

For VJM model of serial manipulator, the end-effector location t (that includes both position 
and orientation) can be defined by the extended geometric model described by the vector function  

 ( ,  )gt q θ  (1.18) 

where the vector q  includes the actuator coordinates and θ  denotes the vector of virtual joint 
coordinates. It can be proved that the static equilibrium equation can be written as (Salisbury, 1980)  

 T

   J w K θ  (1.19) 

where  ,   J g q θ θ  is the Jacobian matrix, and K  is the n n  diagonal matrix 
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that aggregates stiffness of all virtual springs (here n  is the number of the virtual joints). In order to 
find the desired stiffness matrix 

CK , the wrench-deflection relation w t  defined by equations 
(1.18) and (1.19) should be linearized in the neighborhood of the current manipulator configuration q . 
It can be proved that this relation can be presented in the form 

  T

    t J k J w  (1.21) 

that yields the following expression for the desired Cartesian stiffness matrix 

   1
T

C   


K J k J  (1.22) 

which is obtained from the comparison of expressions (1.16) and (1.21). In the literature (Li et al., 
2002), (Chen and Kao, 2000), the latter is sometimes presented in a different form as  

 T

C  K J K J  (1.23) 

which is also referred to as CCT (Conservative Congruency Transformation). 

The above presented conventional formulations (1.22) and (1.23) for the mapping of stiffness 
matrices between the Cartesian and joint spaces have been found numerous applications and 
generalizations for different types of robots (Abele et al., 2007; Arumugam et al., 2004; Tyapin and 
Hovland, 2009; Vertechy and Parenti-Castelli, 2007). However, as it has been pointed out by several 
researchers, these expressions are only valid if the robotic manipulators are at their unloaded 
equilibrium configuration, i.e. without essential external forces (Chen and Kao, 2000). For this reason, 
CCT has been revised to describe the manipulator elastostatic properties in the loaded mode and 
presented in the form 
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    11T

C w  

 K J K K J  (1.24) 

that includes an additional n n  matrix 
wK  induced by external loadings. This matrix is computed in 

the following way 
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

K q θ w
θ

 (1.25) 

and takes into account changes in the manipulator geometry under the loading via the second 
derivatives (Hessian) of the function ( ,  )T

g q θ w . Detailed proofs concerning the derivation and 
computation of matrix 

wK  are given in (Chen and Kao, 2000).  

In spite of the fact that the VJM method was originally developed for serial manipulators, it can 
be also efficiently applied to parallel robots. The basic idea is to obtain the stiffness model for each 
kinematic chain separately, then to integrate them in a unified model, assuming the corresponding 
manipulator is strictly parallel (Pashkevich et al., 2008; Xi et al., 2004). However in practice, the 
kinematic chains are often connected to different points of the end-platform, so the simple summation 
cannot be directly applied. Another problem arises when the influence of passive joints, which are 
widely used in over- and under-constrained parallel manipulators, cannot be neglected (Pashkevich et 
al., 2008; Quennouelle, 2009). Besides, for parallel robots with parallelogram-based links, essential 
modifications of the VJM method are required. Detailed review for these issues can be found in 
(Klimchik, 2011). 

Hence, for robotic application the VJM method is very attractive for stiffness modeling and 
provides reasonable trade-off between computational time and model accuracy. However, the main 
difficulty in this method is related to the evaluation of the parameters of virtual springs (i.e. the 
stiffness matrix 

i
K ). In the majority of the works, these matrices/coefficients have been obtained via 

approximations of manipulator links by symmetrical beams. In several works, the compliance matrices 
have been obtained from CAD models using virtual experiments. However, the latter approach has 
some limitations because of non-homogeneity and variations in the material properties. So, from 
engineering point of view, the most reasonable way to obtain reliable stiffness parameters (i.e. 
elements of the matrix K ) is to apply the model calibration techniques using the data from real 
experiments. This problem is considered in the following subsection.  

1.3.2 Calibration of manipulator elastostatic model  

As follows from the previous Subsection, the desired VJM-based model includes a number of 
elastostatic parameters that are not available in the datasheets provided by robot manufacturers. They 
can be evaluated using either virtual experiments in CAD environment or real experiments with 
measurement devices. First approach has been introduced in (Klimchik et al., 2013b), it is relatively 
simple but requires rather precise CAD models of the manipulator components. Using this method, it 
is possible to obtain the compliance matrices ik  for the links, however it is hardly applicable to the 
identification of joint compliances. The second approach (based on real experiments) is currently used 
to calibrate the simplified manipulator stiffness model, which includes only the joint compliances as 
the parameters. It should be mentioned that, theoretically this approach can be also used in a more 
general case where the link compliances are included in the model as well. However, in practice, there 
are some difficulties that are typical for simultaneous identification of huge number of parameters that 
essentially differ in their magnitude and may be mutually dependent. In particular, for a typical 6-dof 
serial robot, the complete set of the elastostatic parameters consists of 258 elements, whose 
magnitudes differ by the factor of 310  and there are only 32 independent ones (Klimchik et al., 2013a). 
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On the other hand, in accordance with (Becquet, 1987), the link flexibility is usually lower compared 
to joint flexibility, and is responsible for less than 5% of the compliance errors. For this reason, in this 
work, it is assumed that the links are quite rigid comparing to the joints and the stiffness parameters 
are limited by the actuator joint compliances. 

Similar to the manipulator geometric calibration (see Section 1.2), the elastostatic calibration 
includes four basic steps. However, related numerical techniques should be revised in accordance with 
the specificities of elastostatic calibration. Let us briefly describe them assuming that the manipulator 
geometric parameters are already calibrated. 

Step 1: Modeling. The aim of first step is to obtain the manipulator elastostatic model that is 
suitable for calibration. It means that the desired model should be able to take into account not only 
the changes in the manipulator configuration but also the influence of the external loadings applied to 
the end-effector, which causes deformations in all links and joints. Besides, the model must take into 
account the influence of the gravity compensator that are usually used in heavy industrial robots 
employed in modern machining processes (Ortmeier and Engelhardt, 2002; Rahman et al., 1995; 
Ulrich and Kumar, 1991). It is clear that the above mentioned problems of the model completeness 
and irreducibility (see Section 1.2) are also important here in general case, when the full-scale VJM-
based model of manipulator is used. However, because of the adapted assumptions concerning the 
dominating influence of the joint stiffness, the problem of stiffness model reduction does not arise here. 

Step 2: Measurement. For the second step, the open-loop methods (end-effector 
position/location coordinate measurements) that are used in the geometric calibration can be also 
applied to the case of elastostatic calibration (Meggiolaro et al., 2005). However, in contrast to the 
geometric calibration, here to obtain the vector of the end-effector deflections, it is required to get 
measurements for the reference points twice, with two different loadings. In practice, to simplify the 
experiment setup, one of the measurements is usually performed with zero force (without loadings). In 
this case, the end-effector deflections is computed using the difference between these two 
measurements  

 ( , ) ( , ),    1,i i i i i m   t t q w t q 0  (1.26) 

Besides, in addition to the usual external devices for the end-effector coordinate measurements, the 
force sensor is required to measure the external forces/torques iw . For example, in (Wang et al., 
2009), a portable coordinate measurement system was used for the measurement of end-effector 
coordinates and an ATI Omega force sensor was used to measure the external force acting on the robot. 
It should be mentioned that direct application of the closed-loop methods (point/plane constraints) 
require essential revision of the corresponding identification algorithm. Besides, in this case, the force 
sensors may introduce undesired compliance which also affects the identification accuracy. 

Step 3: Identification. The third step can be also treated as the best fitting between the given 
input variables (joint coordinates and external forces) and the measurement output data (the end-
effector location) using the developed models. Similar to the geometric calibration, this problem can 
be solved using the least-square technique 

 
2

( ,  ) ( , ) min     1,i i i ig i m


  
k

q θ t q w  (1.27) 

where (.)g  defines the manipulator extended geometric model, 
iq  is the vector of actuated 

coordinates for corresponding manipulator configuration, 
iθ  is the vector of robot elastostatic 

deflections and the function ( , )t q w  is the end-effector location obtained by measurements. In this 
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expression, the vectors 
iq  and ( , )i it q w  are treated as known, while the vectors 

iθ  are expressed via 
the unknown elastostatic parameters k  using the following equation 

 · ·T

i i i θ k J w  (1.28) 

where iJ  is the Jacobian matrix with respect to the virtual joints 
iθ . It should be mentioned that the 

problem of the least-square objective non-homogeneity also exists here (see subsection 1.2.3) and will 
be considered in details in the following chapter. 

Step 4: Compensation. At the last step, the obtained elastostatic model is applied for the 
compliance errors compensation. Assuming that the external loadings are given by the prescribed 
technological process, corresponding technique requires repetitive computations of the manipulator 
Jacobian J , which is presented in equation (1.21). This Jacobian highly depends on the robot 
configuration and varies essentially throughout the workspace. In contrast to the geometric error 
compensation (see Figure 1.14a), where the identified parameters can be integrated in the robot 
controller in the on-line mode using built-in geometric model, similar solution for the compliance 
errors compensation is hardly possible because there is no corresponding model in commercially 
available controllers. So, the only reasonable way is to apply the off-line error compensation, where 
the modification should be made in the control program by adjusting the reference trajectory (see 
Figure 1.18). In literature, there are also relevant compensation techniques that are based on neural 
networks, fuzzy logic, etc. (Huang et al., 2000; Yoo and Ham, 2000). Another popular method for 
compensation of compliance errors in the robotic-based machining is the so-called "mirror" technique, 
where the measurements of loadings and computation of stiffness parameters are not required 
(Dépincé and Hascoët, 2006; Seo, 1998). In the frame of this technique, the reference and corrupted 
trajectories (by compliance errors) are symmetrical to the desired one. However, to achieve the desired 
accuracy, several steps (application of the mirror technique) may be required (Dumas, 2011), more 
details concerning this method has been described in Section 1.2.3, (see Figure 1.16). So, this 
approach is only suitable for large-scale production where the manufacturing task and the workpiece 
location remain the same. 

 

Figure 1.18 Off-line compliance errors compensation strategy  
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Summary of the above presented calibration steps is presented in Table 1.2, which highlights 
the main particularities and difficulties of elastostatic calibration. In contrast to the geometric 
calibration, the elastostatic one is based on both the manipulator extended geometric model and the 
stiffness model, and requires additional force sensors. The main difficulty is related to the application 
of force in different directions, whose magnitude is limited by admissible stresses in the manipulator 
components. The latter essentially affects the identification accuracy, which depends on the force 
magnitude. 

Table 1.2 Particularities and difficulties of the elastostatic calibration 

Calibration steps Particularities Difficulties 

Step 1:  
Modeling 

● Extended geometric model 
● Lumped stiffness model 
● Take into account robot configurations 

and applied forces 

● Huge number of parameters 

● Influence of gravity compensator 
 

Step 2:  
Measurement 

● Measurements with two different 
loadings 

● Both position and force sensors are 
required 

● Application of force in different 
directions 

● Limited force magnitude  

Step 3:  
Identification 

● Large number of parameters must be 
identified  

● Identifiability of stiffness parameter  

● Non-homogeneity of the least-square 
objective 

● Problem of the weights assigning 

Step 4:  
Compensation 

● Compensation relies on both geometric 
and elastostatic models 

● Application of off-line compensation 
strategy only 

● Deflections depend on robot 
configurations and applied forces 

● Evaluation of the machining forces 

● Influence of the dynamic factorsμ 
oscillation and chattering effects  

Let us present in more details some previous results and key works in the area of the elastostatic 
calibration. This problem has been studied since 1980s. In one of the first works, Judd and Knasinski 
discovered that the flexibility in joints and in links is responsible for about 10% of the end-effector 
positioning errors (Judd and Knasinski, 1990). However, this conclusion has been made for case when 
the applied external forces are relatively small, which is not approved for the machining applications. 
As follows from our experience, in robotic-based machining (milling, for instance) the compliance 
errors dominate the geometric ones and are responsible for more than 90% of the end-effector 
deviations. On the other hand, according to the results presented in (Renders et al., 1991), the other 
error sources (such as gear transmission backlash, thermal expansion of the links, etc.) all together are 
responsible for less than 1% of the total positioning error. Some other works present an important 
influence of the thermal effect on the robot accuracy (Cherif et al., 2010; Pritschow et al., 2002) 
however this effect can be considered negligible if the robot is under similar oprerating condition 
during identification and machining.  

Later, the problem of elastostatic calibration has attracted more attention. In particular, the 
identification of non-geometric errors was in the focus of the work (Gong et al., 2000), where the 
authors used a laser tracker to calibrate an advanced model of a 6-dof robot. In the frame of this work, 
geometric and compliance errors as well as thermal expansions have been taken into account 
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sequentially. The calibration was based on 30 different measurement configurations; it allowed 
reducing the positioning error from 1.06mm to 0.08mm. Another contribution in this area has been 
presented in (Jang et al., 2001), where the authors concentrated on the elastostatic calibration of a 6-
dof welding industrial robot Daewoo DR06. It has been based on 112 measurement points regularly 

spread in a limited region of the robot workspace, where the loadings up to 15.2kg have been applied 
to generate the deformations. Corresponding end-effector locations were measured by a camera-type 
system Optotrak 6D. In this case, calibration improved the accuracy from 5.51mm to 1.87mm, which 
was acceptable for the welding application. 

A slightly different approach has been presented in (Alici and Shirinzadeh, 2005), where the 
manipulator elastostatic properties have been described by an enhanced stiffness model (1.24) that 
takes into account both the first and second order derivatives of the geometric equations (Jacobian and 
Hessians). The primary goal was to improve the accuracy of a 6-dof robot Motoman SK 120, which 
contains a parallel five-bar mechanism. To calibrate its elastostatic parameters, 20 heuristically 

selected manipulator configurations have been used. The external forces/torques have been generated 
using a cable-pully system; the magnitudes varied from 0-50kg and were measured using a wrist 
force/torque sensor. Relevant experimental setup is presented in Figure 1.19a. Corresponding stiffness 
parameters have been obtained by solving the non-linear least-square optimization problem, the 
achieved accuracy is 0.43mm. 

Another important works in this area has been devoted to the geometric and elastostatic 
calibration of medical robots used in patient positioning systems (Meggiolaro et al., 2005). Here, the 
geometric and elastostatic errors have been integrated in a unique model using polynomial 
approximation. Relevant calibration experiments have been carried out using 400 measurement 
configurations with the applied forces from 0-136kg. After calibration, the achieved accuracy was 
0.38mm (the authors stressed that the desired accuracy of 0.5mm can be achieved using 125 
configurations only). 

An alternative approach for geometric and elastostatic errors compensation for the manipulator 
with closed-loops has been introduced in (Marie and Maurine, 2008). The authors used the MSA-
based stiffness model (see Subsection 1.4.1), where the manipulator links were approximated by 
symmetrical beams whose stiffness parameters have been computed using conventional expressions 
known from the strength of material theory. This model was used for the error compensation of the 
industrial robot KUKA IR663 and allowed to achieve the accuracy of 0.3mm, which has been 
evaluated by direct measurements. Corresponding experimental setup is presented in Figure 1.19c. 
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Figure 1.19 Experimental setups of elastostatic calibration 

In the last decade, the interest to the elastostatic calibration has been increased. There are a 
number of works that differ in manipulator architecture, application area and calibration experiment 
setups. For example, in (Lightcap et al., 2008), the authors attempted to improve the positioning 
accuracy of a 6-dof robot Mitsubishi PA10-6CE considering both geometric and elastostatic 
calibration. They have used the torsional springs to represent the manipulator flexibility and to take 
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into account the deflection caused by the robot payload. In the calibration experiments, 10 manipulator 
configurations were used, the applied loadings were up to 90N and the end-effector locations have 
been evaluated by a coordinates measuring machine. In this study, the calibration allowed to reduce 
the positioning errors from 2.45mm to 0.71mm.  

Another example is the work of Wang et al. who focused on the positioning accuracy 
improvement for a 6-dof industrial robot ABB IRB4400 used for the machining (Wang et al., 2009). 
The manipulator elastostatic properties have been described by the conventional lumped model 
assuming that all flexibilities are concentrated in the actuated joints. The model parameters have been 
identified from six experiments, where the external forces have been generated using an air cylinder 
through a pulley relayed string. A portable coordinate measurement arm and the ATI Omega force 
sensor were used to measure the positions and forces respectively (see Figure 1.19b). In this case, the 
elastostatic calibration allowed reducing the end-effector positioning error from 1.8mm to 0.4mm. 

Similar stiffness model has been used in (Dumas et al., 2012), where the authors concentrated 
on calibration of a 6-dof serial robot KUKA KR240 used in milling application. They also assumed 
that the manipulator links are rigid and the joints include torsional springs describing the manipulator 
elasticity, but the model has been enhanced by including the second-order derivative term 

wK  in 
Eq. (1.24) as it has been done by (Alici and Shirinzadeh, 2005). An essential distinct feature of this 
work is the use of some intuitive approaches for selection of measurement configurations that aim at 
minimizing the matrix 

wK  influence and providing good dexterity, evaluated via the condition 
number of the kinematic Jacobian. Based on this approach, 23 manipulator configurations were 
selected for the elastostatic calibration experiments. Corresponding experimental setups are presented 
in Figure 1.19d, which include a Faro laser tracker, several retroreflectors and a mass connected to the 
robot end-effector by means of a chain and a spring balance. The authors reported that after calibration 
the end-effector positioning accuracy was about 0.6 mm. 

The most recent contributions in the area of elastostatic calibration belong to Bonev et al., who 
used an extended geometric model with 29 parameters, both geometric and elastostatic ones (Nubiola 
and Bonev, 2012). In their experiment study, they dealt with a 6-dof robot ABB IRB 1600-6/1.45 
(Figure 1.19e). To identify the desired parameters, 1000 configurations have been used, and for each 
of them several reference points were measured by a Faro laser tracking system. After calibration, the 
positioning accuracy was 0.7 mm within the entire workspace and 0.67 mm within certain cube 
volume. 

State of the art in the area of manipulator elastostatic calibration is summarized in Table 1.3. As 
follows from this table, all of the authors used the open-loop method that relies on the end-effector 
position/location measurements by means of either laser tacking system or coordinates measurement 
machine (that provided either 3D or 6D deflections). Since these works deal with different robots 
whose elastostatic properties differ essentially, the magnitudes of the applied forces vary from 5-
250 kg. The major difference in these calibration experiments was related to the number of 
measurement configurations that differs from one case to another and varies from only 6 
configurations up to 1000. In spite of the fact that the authors used different experimental setups, they 
were able to achieve roughly the same accuracy within the range of 0.3-0.7 mm. 
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Table 1.3 Summary of the review on elastostatic calibration 

Publications 
Application:  
manipulator 

Applied 
forces 

Measurement devices 
N° of 
poses 

Achieved 
accuracy 

(Alici and Shirinzadeh, 
2005) 

Motoman SK 120 0-50kg Laser sensing system  
Wrist force/torque sensor 

20 0.43 mm 

(Meggiolaro et al., 
2005) 

Patient positioning 
system 

0-136kg Leica 3D laser tracker  125 0.49 mm 

(Marie and Maurine, 
2008) 

KUKA IR663 30-100kg Three dial indicators — 0.3 mm 

(Lightcap et al., 2008) Mitsubishi PA10-
6CE 

0-9.2kg MicroVal PFX454 touch 
trigger probe CMM 

10 0.71 mm 

(Wang et al., 2009) ABB IRB4400 0-30.6kg ATI Omega force sensor, 
Portable coordinate 
measurement arm 

6 0.4 mm 

(Dumas et al., 2012) KUKA KR240 0-250kg Faro laser tracker 

Spring balance 

23 0.6 mm 

(Nubiola and Bonev, 
2012) 

ABB IRB 1600-
6/1.45 

1.85-
4.8kg 

Faro laser tracking system 1000 0.7 mm 

It is worth mentioning that in most of the relevant works the authors used the stiffness mode 
corresponding to strictly serial robotic manipulators, ignoring the fact that some of the considered 
manipulators include closed-loops created by gravity compensators and/or kinematic parallelograms 
(see Figure 1.19a-d). However, the closed-loops introduce additional elastostatic parameters that 
should be taken into account in the corresponding model (in contrast, these closed-loops do not effect 
the geometric model). For this reason, existing calibration techniques for such industrial robots should 
be enhanced adapting some results from the stiffness modeling of parallel manipulators (Deblaise et 
al., 2006; Li et al., 2002; Nagai and Liu, 2008; Pashkevich et al., 2009a). 

Another important problem that has not yet received enough attention is optimal selection of 

measurement configurations aimed at increasing the calibration accuracy (using terminology from 
statistics, this problem can be also referred to as the "calibration experiments design"). This technique 
allows achieving the desired precision using minimum number of calibration experiments, which is 
important in industrial environment. It is clear that in an industrial workshop, it is not realistic to make 
1000 measurements as in the work (Nubiola and Bonev, 2012), this process is very time and energy 
consuming, so the design of calibration experiments looks as a promising way to improve the 
calibration efficiency. This issue will be further discussed in the following section and is the primary 
subject of this work.  

1.4 OPTIMAL DESIGN OF EXPERIMENTS IN CALIBRATION OF MANIPULATOR MODELS 

In robotics, to achieve good accuracy, adequate model and precise model parameters are 
required. While in practice, the model structure is usually well known, the identification of the model 
parameters requires essential experimental work and the accuracy of the calibration results highly 
depends on the manipulator configurations. For this reason, the design of experiments (Atkinson et al., 
2007) is an important problem and an efficient tool that allows to improve the parameter identification 
accuracy by proper selection of the measurement configurations. Originally, this idea came from the 
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linear regression analysis, so let us address some basic concepts of linear regression and design of 
experiment theory, as well as their applications/modifications in robot calibration. 

1.4.1 Design of experiments for linear regression models 

The linear regression analysis is a statistical approach that allows us to obtain the linear relation 
between model input and output variables. Under this assumption, a linear regression model (see 
Figure 1.20) can be presented as 

 y Ax  (1.29) 

where x  is the 1n  input vector and y  is 1k   output vector, A  is the k n  regression matrix that is 
treated as unknown. 

 

Figure 1.20 The linear regression model 

For the identification, such a model is usually transformed into the form where the unknown 
parameters ija  are extracted from the matrix A  and are collected in a single vector 11[ ,..., ]T

nka aπ . 
So, the model (1.29) is rewritten as  

 y Xπ  (1.30) 

where X  is k nk  so-called observation matrix that depends on the input variables: 
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To find the desired parameters π , the users must carry out several experiments that provides sets of 
inputs  ,  1,i i mx  and output measurements  ,  1,i i my . So, the system of equations that is used 
for identification can be expressed as  

 ,     1,...,i i i m y X π  (1.32) 

where m  is the number of experiments. To identify the parameters π , the number of experiments 
should be high enough to ensure the rank of the aggregated observation matrix to be equal to the 
number of desired parameters n kn  , i.e. 

 
1

m

rank n

 
   
  

X

X

 (1.33) 

However, in practice, the output measurements often include errors because of the inaccuracy of 
measurement devices. For this reason, the original model should be rewritten as 

 ,     1,...,i i i i m  y X π ε  (1.34) 
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where the vector 
iε  is the measurement error that is usually assumed to be the unbiased i.i.d. 

(independent and identically distributed) random variables with zero expectation and the standard 
deviation  . Because of the measurement errors influence, the system (1.34) (which should be 
overdetermined to reduce the noise impact) cannot be solved exactly. For this reason, the least square 
approach is applied, which minimizes the sum of squared residuals. Using this method, the parameter 
estimation can be expressed as 
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1 1
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m m

T T

i i i i

i i
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It can be proved that this expression provides us with the unbiased estimate of the desired parameters, 
i.e., 

 ˆ( )E π π  (1.36) 

but for each set of the experiments providing us with the input-output values  ,  ,  1,i i i mx y , the 
estimated parameters differ from the true value π . In practice, the degree of this variation is evaluated 
by the covariance matrix, which in the case of the above adapted assumptions can be expressed as 

  
1

2 T

1

ˆcov
m

i i

i






 
  

 
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and where the matrix sum T

1

m

i ii X X  is also referred to as the information matrix. It is clear that to 
achieve the best accuracy, the covariance matrix should be as small as possible and it can be reduced 
by proper selection of input variables  ,  1,i i mx  as well as by increasing the number of experiments. 

The problem of the covariance matrix minimization is the key issue of the dedicated theory 
(design of experiments), where the notion of the "minimum covariance matrix" is formalized and 
several practical rules for selection of the input variables 

ix  are proposed. In most of the existing 
works (Franceschini and Macchietto, 2008), the optimal plans of experiments are based on a simple 
idea that, for the minimum of  ˆcov π , the input variables should differ from each other as much as 
possible (within allowable limits, of course). This idea is illustrated in Table 1.4, where several 
optimal plans are shown for two types of the regression models:  

(i) one-variable model 1 2y x    with two parameters 

(ii) two-variable model 1 1 2 2y x x    with two parameters 

It can be proved that the covariance matrices of these models can be computed using expressions 
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and 
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respectively. The corresponding covariance matrices are also presented in this table, assuming that the 
input variables are limited by certain values [ ,  ]j j jx    .  
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Table 1.4 Optimal plans of experiments for one- and two-variable models 

One-variable model Two-variable model 

Case of two measurement points: 2m   

 0

 

2

2

01
cov

2 0 1

 
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2
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2 0
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Case of three measurement points: 3m   

 0

Plan 1

 

2
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31
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8 3
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Case of three measurement points: 4m   

 0

 

2
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As follows from the presented examples, the above mentioned simple rule (to locate the 
measurement points as far as possible from each other) usually provides us with reasonably good plan 
of experiments. Nevertheless, its straightforward application may yield unacceptable results. For 
instance, in the case of 2m   and for the model (ii), maximally distant points 1 2( , )   and 

1 2( , )   provides infinite covariance matrix. Moreover, in the case of 3m  , this technique gives 
us several Pareto optimal solutions, from which the users must select a single one only. Clearly, it is 
not a trivial problem and requires some numerical criteria to compare these solutions. For this reason, 
several scalar criteria have been proposed in the related works (Driels and Pathre, 1990; Sun and 
Hollerbach, 2008a), which operate with different features of the covariance matrix (trace, determinant, 
eigenvalues, etc.). Using them, the so-called principles of A-, T-, D-, G-, E-optimality have been 
developed. Let us present them in more details in terms of the definition, advantages and drawbacks. 

A- and T-optimality operate with the trace of covariance and information matrix respectively. 
The first one is aimed at minimization on the sum of diagonal elements of the covariance matrix and 
can be expressed as 
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The second approach maximizes the sum of diagonal elements of the information matrix and can be 
written as 
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These two approaches have almost similar intuitive objectives, aiming at minimizing the average 
variances of the estimated parameters, however the optimization results might differ. In general, the T-
optimality principle is easier to apply since it deals with the information matrix (where the matrix 
inversion is not required). However, as pointed out by many authors (De Pauw, 2005; Goodwin and 
Payne, 1977; Vanrolleghem et al., 1995; Zullo, 1991), this approach is unreliable because the off-
diagonal elements of the information matrix are not included in the objective function. Besides, both 
of these criteria are hard to apply if the parameters have different units (in this case, the final results 
highly depend on their normalization). 

D-optimality is targeted at maximizing the determinant of the information matrix (or 
minimizing the determinant of the covariance matrix) and can be written as  
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It tends to give extreme importance to the parameter to which the model is most sensitive. One of the 
potential problem here is that the volume of the confidence region can be reduced thanks to the 
decrease in the variance of a particular parameter (Pinto et al., 1990; Zullo, 1991). However, the errors 
in all the other parameters may remain very large. 

G-optimality seeks to minimize the maximal diagonal elements in the covariance matrix and 
may be presented as the following form 
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where the function diag( )  extracts the diagonal elements of the covariance matrix. It has the effect of 
minimizing the maximum variance of the estimated parameters and ensures that there is no extremely 
large difference between the errors of the estimated parameters.  

E-optimality intends to minimize the maximum eigenvalue of the covariance matrix and can be 
expressed as 
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The objective of this approach is to minimize the maximum variance of all possible normalized linear 
combination of the parameter estimates. It is often used for the purpose of reducing parameter 
correlations (Franceschini and Macchietto, 2008; Sidoli et al., 2004).The linear regression analysis is a 
well studied area and the design of experiment techniques for relevant regression models have been 
properly developed. For this reason, their applications in robotics seem promising for good accuracy 
improvement in parameter identification. However, because of the non-linearity of the robot models, 
direct application may cause some problems, which will be presented in the following subsection. 

1.4.2 Limitations of conventional techniques for robot calibration 

In robotics, the main difficulty of calibration experiment design is that the robot kinematics and 
elastics cannot be described using linear models (1.29). In contrast, for the robotic manipulators, 
relevant models are highly non-linear, and the parameters are integrated in expressions in more 
complex way. So, direct application of the conventional techniques may provide unreasonable 
calibration results, which are briefly presented below. 

For illustrative purposes, let us evaluate the applicability of optimal experiment plans from the 
previous subsection (see Table 1.3) for the measurement pose selection of a two-link manipulator 
presented in Figure 1.21. It is assumed that the joint limits of this manipulator are 1 [ 180 ,180 ]q      
and 2 [ 150 ,150 ]q     , and the manipulator geometry is described by the expressions 
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where the variables ,x yp p  define the manipulator end-effector position in Cartesian space, 0
1l , 0

2l  
denote the nominal link lengths, 1q , 2q  are the actuated joint coordinates. The unknown parameters to 
be identified are denoted as 1 2,q q   and 1 2,l l  , they are respectively the joint offsets and the link 
length errors. So, here the vector of parameters is defined as 1 2 1 2( , , , )l l q q    π . 

 

Figure 1.21 Two-link planar manipulator 
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It can be easily proved that for this case, the minimum number of configurations required for the 
calibration experiments 2m  . Corresponding covariance matrix can be computed using Eq.(1.37), 
where the observation matrix X  should be substituted by the identification Jacobian J , which is 
obtained by straightforward differentiation of Eq.(1.45) with respect to the components of the vector 
π . Relevant matrix has the following analytical form 
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where ( ) ( )
1 2,i i

q q , 1,2i   define the measurement configurations ( ) ( ) ( )
1 2( , )i i i

q qq , and ,  C S   stand for 
the cosine and sine of the corresponding joint angles: ( ) ( ) ( ) ( )

2 2 2 2cos( ),  sin( )i i i i
C q S q  , and 

(1) (2)
2 2cos( )C q q   . In the above matrix, the rows (columns) 1 and 2 correspond to the parameters 

1l , 2l  and the rows (columns) 3 and 4 are related to the parameters 1 2,  q q  . It should be noted 
that this matrix does not include angles (1)

1q  and (2)
1q , so the calibration results will not vary with their 

values, and only the variables (1)
2q  and (2)

2q  are important here. 

As it has been mentioned above, to achieve the highest identification accuracy the calibration 
plans should produce the minimum covariance matrix. It is obviously a multi-objective optimization 
problem, that cannot be solved unambiguously. For this reason, let us try several intuitive approaches 
to obtain the plans of experiments. The first group of them arrives from the conventional design of 

experiments theory (see previous subsection) that motivates users to spread the measurement points as 
much as possible. This yields the following solutions 

Plan #1: 1 ( 180 ,150 )   q  and 2 (180 ,150 )  q  

Plan #2: 1 ( 180 ,150 )   q  and 2 (180 , 150 )   q  

whose covariance matrices are presented in Table 1.5. As follows from these results, plan #1 (which is 
optimal for the linear regression model) is not acceptable here, because the relevant information 
matrix is singular and the covariance matrix is infinite (in other words, the desired parameters cannot 
be obtained from this set of experiments). In contrast, plan #2 (which is unacceptable for the linear 
regression) can be used in robotics, but its optimality is not clear and relevant covariance matrix 
should be compared with other ones obtained using different ideas. 

The second group of plans can be obtained in a more straightforward way, by minimizing the 
diagonal elements of the covariance matrix (1.46), which represent the variances of the parameters 

1 1 1 2,  ,  ,  l l q q     respectively that will be further denoted as 2 2
1 4,...,  . As follows from relevant 

expressions, corresponding optimality conditions can be written as  
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Using these optimality conditions, another plan of calibration experiments was obtained 

Plan #3: 1 (0 ,90 )  q  and 2 (0 , 90 )   q  

that satisfies the first optimality condition. As follows form relevant covariance matrix presented in 
Table 1.5, in this case, the variances 2 2

1 3,...,   are 4 times smaller comparing to those obtained for 
plan #2. On the contrary, the variance 2

4  has been increased almost twice. Finally, for comparison 
purposes, one more plan was generated in more intuitive way 

Plan #4: 1 (0 ,135 )  q  and 2 (0 , 135 )   q . 

This plan is intermediate between the plans #2 and #3.  

Comparison results for the plans #2, #3 and #4 are presented in Figure 1.22 (plan #1 is not 
included since it is not acceptable because of the covariance matrix infinity). As follows from this 
figure, all these solutions can be treated as Pareto-optimal ones, i.e., they are not strictly dominated by 
each other. For instance, the reduction of the variance 2

3  always leads to increasing of 2
4 , but the 

variances 2
1  and 2

2  are reduced in a similar way. Hence, the selection of a particular plan from the 
set of acceptable ones is not a trivial problem that requires some additional efforts. It should be 
mentioned that most of the existing criteria (used in the A-, T-, G-optimality principles) cannot be 
applied here since they either sum or compare the matrix elements with different units, which is 
inconsistent from physical point of view. 

 

Figure 1.22 The Pareto-optimal solutions (normalized with respect to 1 2  , assuming 1 2 1   ) 

Another useful conclusion is related to the location of the measurement points within the space 
of allowable joint variables. It is worth mentioning that for linear regression (see Table 1.4) the 
measurement points should be spread as much as possible and are located on the boarders of the 
allowable space. However, for the manipulator studied in this subsection, the Pareto-optimal solutions 
can be located inside of this space. During our analysis, one more idea has been examined: to evaluate 
the measurement point location in other spaces (unit circle, sphere, etc.) but it has not produced any 
reasonable result because the covariance matrix (1.46) is invariant with respect to joint variables (1)

1q  
and (2)

1q .  

Therefore, the considered example shows limitations of the conventional design of experiments 
techniques that came from the linear regression analysis. For this reason, in robotics, there have been 
developed a number of special techniques and dedicated performance measures for the problem of 
measurement pose selection, which will be in the focus of following subsections.  
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Table 1.5 Different plans of calibration experiments and corresponding covariance matrices 
(case of a two-link manipulator 1 ,  1,2i il i   ) 

Measurement configuration Covariance matrix 

Group 1: conventional design of experiments 

Plan #1: 

2( 180 ,150 ),  (180 ,150 )      1q q  

1q

2q

180

150
1q 2q

150 

180 

 

inf

inf
cov

inf

inf

 
 
 
 
 
 

 

Plan #2: 

2( 180 ,150 ),  (180 , 150 )       1q q  

1q

2q

180

150
1q

2q
150 

180 

 

2 2
1 1 1 2

2 2 2
1 1 2 1 2 1 2

2 3 0 0

3 2 0 0
cov

0 0 2 2 3

0 0 2 3 2( 3 )

   

      

 
 
 

  
  

     

 

Group 2: covariance matrix minimization 

Plan #3: 

2(0 ,90 ),  (0 , 90 )      1q q  

1q

2q

180

150

150 

180 
2q

1q

 

2 2
1 1

2 2 2
1 1 2

0.5 0 0 0

0 0.5 0 0
cov

0 0 0.5 0.5

0 0 0.5 0.5( )

 
  

 
 
 
 
 

  

 

Plan 4: 

2(0 ,135 ),  (0 , 135 )      1q q  

1q

2q

180

150

150 

180 

1q

2q

 

2 2
1 1 1 2

2 2 2
1 1 2 1 2 1 2

1 2 2 0 0

2 2 1 0 0
cov

0 0 2 2

0 0 2 2 2

   

      

 
 
 

  
  

     

 

1.4.3 Design of experiments for robot calibration 

Taking into account the above mentioned difficulties and the manipulator particularities, the 
robotic experts have proposed a number of dedicated criteria for the selection of the manipulator 
measurement configurations. They are mainly based on the singular values of the identification 
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Jacobian J , and have been named as the observability indices (Sun and Hollerbach, 2008b). It should 
be mentioned that the majority of the related works are devoted to the calibration of manipulator 
geometric parameters. Let us briefly describe these indices 

Criterion 1O : Root of the singular values product. This criterion is based on the principle of D-
optimality (Borm and Meng, 1991), which seeks to maximize the geometric mean of all the singular 
values  

 
1

min max
{ ,..., }
maxs

m

n     
q q

 (1.47) 

where min  and max  are the minimum and maximum singular value of the identification Jacobian 
matrix J  computed for the measurement configurations  1,...., mq q , and 

sn  is the number of 
parameters to be identified (which should be equal to the number of non-zero singular values). This 
performance measure has been used for the calibration of Delta robot (Lintott and Dunlop, 1997).  

Criterion 2O : The inverse condition number. This criterion has been introduced in (Driels and 
Pathre, 1990), it deals with the maximization of the function 

 
1

min

{ ,..., }
max

max
m





q q

 (1.48) 

which allows us to ensure that no singular value is preferred over another such that the errors are 
homogenized, so this index is dimensionless. For this reason, this criterion has found wide 
applications for the problem of measurement pose selection for the manipulator geometric calibration 
(Huang et al., 2008; Khalil et al., 1991; Zhuang et al., 1994; Zhuang et al., 1996). However, in most of 
previous works, it was ignored an obvious fact that a good condition number cannot ensure small 
variances (relevant example is presented in the following subsection). 

Criterion 3O : The minimum singular value. This criterion aims at maximizing the minimum 
singular value: 

 
1

min
{ ,..., }
max

m

 
q q

 (1.49) 

which intends to maximize the worst observability of the parameters errors. In (Nahvi et al., 1994), 
this index along with the condition number (criterion 2O ) have been used simultaneously as the 
principle indices for the geometric calibration of a parallel robot.  

Criterion 4O : The noise amplification index. This criterion attempts to maximize the product of 
the inverse condition number and minimum singular value 

 
1

2
min

{ ,..., }
max

max
m





q q

 (1.50) 

It combines indices 2O  and 3O  in order to take into account the advantages of each. It is considered as 
an indicator of the amplification of the sensor noise and un-modeled errors (Nahvi and Hollerbach, 
1996). The bigger this index, the smaller the error impacts. The effectiveness of this index comparing 
to the others has been confirmed by calibration of a 3-dof parallel-drive robot. In this work, the idea of 
the noise amplification will be developed further (but using different approach). 

Based on the above performance measures, many of the researchers focused on the associated 

optimization problems for the geometric calibration of different types of robot. In particular, Khalil et 

al. (Khalil et al., 1991) used a conjugate-type optimization method. Zhuang et al. tried to avoid local 
minima by using simulated annealing (Zhuang et al., 1994) and genetic algorithm (Zhuang et al., 
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1996). Daney et al. developed an algorithm called the iterative one-by-one pose search (IOOPS), and 
applied it to the calibration of a Gaugh platform (Daney, 2002). In spite of the fact that these results 
are promising and provided rather good convergence for the considered case studies, the problem of 
the optimization technique efficiency for robot calibration is not solved yet for the general case. 

Although the problem of geometric calibration is rather important, the geometric errors are not 
the only sources of errors that may influence the manipulator end-effector location. For the robots that 
are used in machining process, the applied cutting forces may cause essential compliance errors that 
also have significant impacts on the end-effector location. Similar to the geometric calibration, the 
robot compliance errors also highly depend on the manipulator configurations and differ throughout 
the workspace. For this reason, the identification of elastostatic parameters becomes a crucial issue. 
However, few works had addressed this problem (Carbone and Ceccarelli, 2010; Zhou et al., 2010), 
where the design of experiments can also be obviously applied. So, let us investigate the applicability 
and limitations of the presented existing techniques for calibration experiments design for this new 
application area.  

1.4.4 Measurement pose selection for geometric and elastostatic calibration  

To show the limitations of the existing techniques for simultaneous geometric and elastostatic 
calibration, let us apply them to the two-link manipulator considered in subsection 1.4.2. To avoid the 
problem of non-homogeneity, here only the joint offsets 1 2,( )T

q q  π  are considered as the 
parameters to be identified in geometric calibration. In this case, the end-effector position of this 
manipulator can be expressed as  

 1 1 1 2 1 1 2 2

1 1 1 2 1 1 2 2

cos( ) cos( )

sin( ) sin( )
x

y

p l q q l q q q q

p l q q l q q q q

     
       

 (1.51) 

and the identification Jacobian (which is also an observation matrix here) can be computed as 

 1 1 2 1 2 2 1 2

1 1 2 1 2 2 1 2

sin( ) sin( ) sin( )

cos( ) cos( ) cos( )

l q l q q l q q

l q l q q l q q


     
     

J  (1.52) 

This matrix allows us to express the end-effector deviations as 

   p J π  (1.53) 

and has been used for computing the existing performance measures (see subsections 1.4.1 and 1.4.3) 
corresponding to different plans of experiments examined below. 

For the elastostatic calibration, it was assumed that the geometric parameters have been already 
calibrated, and only the joint compliances 1 2,( ) T

k kk  are the parameters to be identified. Under such 
assumptions and in accordance with (Pashkevich et al., 2009a), the manipulator end-effector 
displacement caused by external loadings can be written as  

 T
   p J k J F  (1.54) 

where p  defines the end-effector displacement; k  is a matrix that aggregates the joint compliances; 

J  is the kinematic Jacobian, which can be obtained using Eq.(1.52), and [ ,  ]x yF FF  is the external 
forces applied to the end-effector. For identification purposes, this relation can be transformed into the 
linearized form (1.30) and be expressed as  

  p Ak  (1.55) 

where matrix A  is the observation matrix here and has the following form 
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A  (1.56) 

where ,  S C   stand for the sine and cosine of the corresponding joint angles: 1 1sin( ),S q  

1 1cos( ) C q , 12 1 2sin( )S q q  and 12 1 2cos( )C q q  . The obtained linear relation has been further 
used for the identification of the elastostatic parameters using conventional least square approach.  

The comparison study has been carried out for this manipulator with the following parameters: 
the link lengths: 21 1m, 0.8ml l  , and the force magnitude 1NF  . The measurement accuracy has 
been defined by the parameter 0.1mm  . The corresponding numerical results for the case of one 
calibration experiment for different optimization objectives are presented in Table 1.6 and Table 1.7 
for geometric and elastostatic calibration respectively. They include corresponding optimal 
measurement poses (obtained by optimization of relevant objectives) and the identification accuracy of 
the model parameters. To simplify the comparison, the identification accuracy is also presented in 
Figure 1.23. 

Table 1.6 Comparison of measurement poses for geometric calibration 

Experiment design 
principle 

Optimal Poses [deg] Identification Accuracy 3[rad 10 ]  

1q  2q  1q
   

2q
   

Conventional approach 

A-optimality 64.3 114.2 0.110 0.136 

T-optimality 87.5 0 inf inf 

D-optimality -80.3 -90.0 0.100 0.160 

G-optimality 55.8 -121.5 0.115 0.133 

E-optimality 90.5 -128.7 0.128 0.128 

SVD-based approach 

1O -optimality -137.3 -90.0 0.100 0.160 

2O -optimality 30.7 -134.6 0.140 0.126 

3O -optimality 90.5 -128.7 0.128 0.128 

4O -optimality -180.0 131.5 0.133 0.127 

As follows from these results, the obtained optimal measurement configurations differ from one 
criterion to another, and the identification accuracy presented in Figure 1.23. shows that there is no 
unique optimal solution that satisfies all criteria simultaneously. It should be mentioned that in both 
cases of calibration (geometric and elastostatic), the results corresponding to the T-optimality principle 
are not included because unreasonable plans (manipulator singular configurations) were generated, 
from which the desired parameters cannot be obtained. For the case of geometric calibration, relevant 
experiment plans provide a set of Pareto-optimal solutions, which do not dominate each other. For the 
case of elastostatic calibration, the solutions obtained using the principles 2O - and 4O -optimality are 
dominated by the other ones, and the remaining solutions are also Pareto-optimal. These plans can be 
all considered as optimal in different senses, and from which the users are not able to choose a single 
one. In fact, the main disadvantage of these approaches is that their optimization objectives are not 
directly related to the robot accuracy, which is a critical issue in industry. So, despite that they may 



1.4  Optimal design of experiments in calibration of manipulator models 47 

improve the identification accuracy for the model parameters, they cannot provide desired precision 
for the robot end-effector location. 

Table 1.7 Comparison of measurement poses results for elastostatic calibration 

Experiment design 
principle 

Optimal Poses [deg] Identification Accuracy 3[rad/N 10 ]  

1q  2q  
1k

   
2k

   

Conventional approach 

A-optimality -82.5 98.4 0.1123 0.1948 

T-optimality 0 0 inf inf 

D-optimality 45.9 -63.8 0.0765 0.2804 

G-optimality -155.2 -64.9 0.0727 0.3437 

E-optimality -89.2 -108.9 0.1416 0.1840 

SVD-based approach 

1O -optimality 45.9 -63.8 0.0765 0.2804 

2O -optimality 97.5 143.1 0.3187 0.3187 

3O -optimality -89.2 -108.9 0.1416 0.1840 

4O -optimality -93.3 118.5 0.1707 0.1840 

 

Figure 1.23 Identification accuracy for different approaches to calibration experiments design 

Hence, in order to achieve high calibration accuracy for the manipulator parameters (both 
geometric and elastostatic ones), as well as for the end-effector location, it is important to define a 
proper objective for measurement pose selection. As follows from our experience, an appropriate 
performance measure should satisfy the following requirements:  

(a) it should be able to evaluate the parameters with different units  

(b) it should minimize the maximum errors in the identified parameters 
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(c) it should detect the model parameter errors impact on the end-effector location 
accuracy.  

Based on these requirements, the existing approaches have been evaluated qualitatively, and the 
corresponding results are presented in Table 1.8. 

Table 1.8 Summary of the existing approaches to calibration experiment design 

Experiment design 
principle 

Requirement (a) Requirement (b) Requirement (c) 

A-optimality —  — 

T-optimality —  — 

D-optimality  — — 

G-optimality —  — 

E-optimality  — — 

1O  -optimality  — — 

2O  -optimality  — — 

3O -optimality  — — 

4O -optimality  — — 

As follows from the presented results, all existing principles of experiment design provide 
solutions for which at least one requirement cannot be satisfied. On the other hand, relevant design 
objectives are not directly related to the robot accuracy. Hence, taking into account the specificities of 
the application area studied in this work, it is required to develop a new industry-oriented performance 
measure for the calibration experiment design, which ensures high positioning accuracy of the robot 
manipulator under the loading caused by technological process. 
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1.5 SUMMARY: THESIS GOAL AND RESEARCH PROBLEMS 

In machining of large dimensional parts, application of industrial robots looks very attractive 
since they provide large workspace and more flexibility comparing to conventional CNC-machines. 
But because of some particularities of robot kinematics, the end-effector positioning errors are 
accumulated from link to link and affect on the machining accuracy. Besides, in this application, the 
elastic deflections of the robot transmissions and links become significant and comparable with the 
geometric errors that are traditionally studied in robotic literature. For this reason, to achieve desired 
accuracy of the machining process, robot control must rely on the accurate manipulator model that is 
able to compensate both the geometric errors and the elastic deformations under loadings caused by 
the machining force/torque and the gravity forces applied to the manipulator components. 

However in practice, most of the model parameters are unknown, only nominal values of the 
principal geometric parameters can be extracted from the manufacturer datasheet, and they often differ 
from the real ones that should be used in robot controllers. On the other hand, the manipulator elastic 
parameters can be obtained from the calibration experiments only. So, the identification accuracy for 
both geometric and elastic parameters becomes critically important.  

To reduce the identification errors, it is very attractive to apply to the robot calibration the ideas 
from the design of experiment theory. Nevertheless in robotics, the problem of optimal calibration 
experiment design has not got enough attention. In previous works, it has been applied to the problem 
of geometric calibration only using some abstract performance measures that are not directly related to 
the robot accuracy in machining applications. Besides, very limited number of works addressed the 
issue of elastostatic calibration, where measurement configurations have been obtained using intuitive 
approaches. Therefore, it is required essential revision and enhancement of existing approaches in 
calibration experiments planning for identification of both geometric and elastostatic parameters of 
robotic manipulators.  

To address the above described problem, the goal of the thesis is formulated as follows: 
enhancement of robot calibration techniques for geometric and elastostatic parameters in order to 
increase the accuracy and efficiency of error compensation for robotic-based machining of large 
dimension parts by means of optimal design of calibration experiments (to reduce the measurement 
error impact). To achieve this goal, the following problems have to be solved: 

Problem 1: 

 Development of a new problem-oriented performance measure for robot calibration 
experiment design and related identification algorithms that ensure required accuracy for industrial 
application studied in this work. 

Problem 2: 

 Development of advanced geometric and elastostatic models for heavy industrial robots 
employed in machining of large dimensional parts, which allow to take into account the particularities 
of the manipulators with gravity compensator and coupling between actuated joints. 

Problem 3: 

 Application of the developed calibration technique for the identification of geometric and 
elastostatic model parameters for robotic work-cell employed in machining of large dimensional parts 
for aerospace industry. 
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This chapter is devoted to the design of experiments for calibration of manipulator geometric 
parameters. Particular attention is paid to the enhancement of measurement and optimization 
techniques employed in geometric calibration of serial industrial robots. It presents a complete, 
irreducible geometric model for serial manipulator, which takes into account different sources of error 
(link lengths, joint offsets, etc). In contrast to other works, it proposes a new industry-oriented 
performance measure for optimal measurement configuration selection and improves the partial pose 
measurement technique via using only the direct measurement data from the external device. This new 
approach is aimed at finding the calibration configurations that ensure the best robot positioning 
accuracy after geometric error compensation. In this chapter, several simulation examples illustrate the 
benefits of the developed pose selection technique and corresponding accuracy improvement 
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2.1 INTRODUCTION 

The standard engineering practice in industrial robotics assumes that the closed-loop control is 
employed on the level of actuated joint coordinates. On the contrary, the spatial location of the 
manipulator end-effector is defined by the open-loop control, which is based on computation of 
direct/inverse transformations that provide the correspondence between joint angles and Cartesian 
coordinates of the end-effector. So, the robot accuracy highly depends on the validity of the related 
mathematical expressions used for the computation of the end-effector position and orientation. These 
transformations of the related geometric model employed in the robot control algorithm include a 
number of parameters, which often differ from their nominal values due to manufacturing tolerances. 
Real values of these parameters can be identified from the calibration experiments, where the 
identification accuracy becomes very important. 

In robotic literature, the problem of geometric calibration is already well studied and has been in 
the focus of the research community for many years (Roth et al., 1987). As reported by a number of 
authors, the manipulator geometric errors are responsible for about 90% of the total positioning error. 
Besides the errors in link lengths and joint offsets, they can be also induced by the non-perfect 
assembling of different links and arise in shifting and/or rotation of the frames associated with 
different elements, which normally are assumed to be matched and aligned. It is clear that the 
geometric errors do not vary with the manipulator configuration, while their influence on the 
positioning accuracy depends on the latter. At present, there exists various calibration techniques that 
are able to identify these errors using different measurement methods (full/partial pose information 
measures, line/plane constraints, etc.) for both serial and parallel robots. Moreover, the identified 
errors can be efficiently compensated either by adjusting the controller input (the target point) or by 
direct modification of the model parameters used in the robot controller. 

Among numerous publications devoted to robot geometric calibration, limited number of works 
directly address the problem of parameter identification accuracy and reduction of the impact of 
measurement errors. Despite the fact that the calibration accuracy may be improved by 
straightforwardly increasing the number of experiments, the measurement configurations may also 
affect the robot calibration. It has been shown that the latter may significantly improve the 
identification accuracy (Driels and Pathre, 1990). Intuitively, using diverse manipulator configurations 
for different experiments seems perfectly corresponds to the basic idea of the classical experiment 
design theory, which intends to spread the measurements as much distinct as possible. However, the 
classical results are mostly obtained for very specific models (such as the linear regression) and cannot 
be applied directly due to non-linearity of the relevant expressions of robot geometric model. 

Nevertheless, there are few works where the problem of optimal pose selection for robot 
calibration has been studied (Daney et al., 2005; Sun and Hollerbach, 2008b). In order to compare the 
plans of experiments, several quantitative performance measures have been proposed and used as the 
objectives of the optimization problem associated with the optimal sets of measurement poses. 
Currently, there exist two main trends in defining the objectives. The first one is based on the 
conventional optimality criteria that operate with covariance matrix norms. Another one is the 
observability indices, which are based on the singular values of the identification Jacobian (condition 
number, for instance). However, these approaches deal with rather abstract notions that do not directly 
relate to the robot accuracy and may lead to some unexpected results (when the condition number is 
perfect, but the parameter estimation errors are rather high). Besides, it usually requires very intensive 
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and time consuming computations caused by a poor convergence of the optimization and high 
dimension of the search space (number of calibration experiments multiplied by the manipulator joint 
number). Therefore, for the industrial applications, a new problem-oriented performance measure is 
required. 

Before presenting the developed approach, let us first describe the classical calibration 
procedure. In general, it is divided into four sequential steps: modeling, measurement, identification 
and implementation (Bernhardt et al., 1993). The first step focuses on the development of appropriate 
mathematical model. At the second step, related measurements (calibration experiments) are carried 
out. The third step deals with identification of the unknown parameters using certain numerical 
algorithms. And finally, the last step implements the identified parameters in the robot model used in 
the controller or in relevant compensation technique. 

In this work, the primary goal is to achieve the desired robot positioning accuracy using 
minimum number of experiments. Here it is proposed to introduce an additional step, the design of 

experiments, which is performed before measurements and is aimed at obtaining the set of 
measurements poses that ensures good calibration results (robot accuracy after error compensation). It 
allows us to improve the efficiency of error compensation and estimate the robot accuracy that is quite 
important for industrial applications. 

 

Figure 2.1 The schematic of robot calibration procedure 

The modified procedure includes five steps, which are schematically presented in Figure 2.1. 
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S1: The first step (modeling) is aimed at developing a suitable geometric model, which properly 
describes the relation between the manipulator geometric parameters (link lengths and joint angles) 
and the end-effector location (position and orientation).  

S2: The second step (design of experiments) is aimed at choosing optimal measurement 
configurations. It should rely on an appropriate performance measure, which takes into account the 
particularities of technological process. It should be also able to obtain solution within the work-cell 
constraints, and to adjust the number of experiments based on the error estimation.  

S3: The third step (measurements) deals with carrying out calibration experiments using the 
obtained configurations. Depending on the measurement methods (measurement tools and devices, 
marker location, etc.), it may provide different experimental data (the end-effector position/location, 
etc.). Detail review on the measurement methods is presented in Section 2.3, where comparison study 
is also provided.  

S4: At the fourth step (identification) the errors in geometric parameters are computed using the 
corresponding model and proper identification algorithm. Using the experimental data, it is possible to 
evaluate identification accuracy for the parameters of interest.  

S5: At the last step (implementation), the geometric errors are compensated by modification of 
the geometric parameters embedded in the robot controller. In the case when some errors can not be 
balanced in the controller, the off-line error compensation technique is required. This technique should 
compensate the manipulator errors via modification of the target trajectory.  

Using the parameters covariance matrix obtained in step 4, it is possible to predict the end-
effector positioning accuracy for a given trajectory. It is clear that the proposed scheme of robot 
calibration procedure allows to improve the calibration efficiency for given number of experiments (or 
to minimize the number of experiments for given accuracy) and to predict the robot accuracy after 
error compensation before carrying out experiments.  

As follows from the detailed literature analysis in this area, the steps 1, 3, 4 and 5 in the 
calibration procedure have been almost well studied (Elatta et al., 2004; Roth et al., 1987), while the 
step 2 still requires essential revision in terms of the applicability to particular manufacturing process 
where the robot is used. Hence, the goal of this Chapter is the enhancement of calibration technique 
for manipulator geometric parameters by means of the design of experiments. Particular problems that 
should be considered here are the following: 

(i) Development of an industry-oriented performance measure which has clear physical 
meaning that is related to robot accuracy, and ensures the best positioning accuracy 
after error compensation. 

(ii) Enhancement of the numerical techniques employed in calibration experiment design 
(measurement pose selection).  

(iii) Validation of the developed technique by application examples that deal with 
geometric calibration of planar and spatial manipulators. 

To address these problems, the remainder of the chapter is organized as follows. Section 2.2 
presents a suitable manipulator geometric model for calibration purposes (complete, irreducible 
model). In Section 2.3, several existing measurement methods are compared and an enhanced partial 
pose measurement method is proposed. Sections 2.4 deals with dedicated identification algorithms for 
manipulator geometric parameters. Section 2.5 proposes a new approach for measurement pose 
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selection and its generalization for the case of complex trajectory. Section 2.6 focuses on efficiency 
improvement of the developed measurement pose selection technique. And finally, Section 2.7 
summarizes the main results and contributions of this chapter. 

2.2 MANIPULATOR GEOMETRIC MODELING 

2.2.1 Complete, irreducible geometric model for serial manipulator 

As follows from the literature review presented in Section 1.2, the standard D-H model may not 
be suitable for the robot calibration. To avoid this difficulty, some modifications have been proposed 
that however introduce some redundancy, which may cause non-identifiability of certain parameters. 
This redundancy can be eliminated by applying either numerical or analytical techniques (Meggiolaro 
and Dubowsky, 2000; Schröer et al., 1997; Zhuang et al., 1992) that allow us to obtain an appropriate 
model, which is usually referred to as "complete, irreducible and continuous" one. Let us present one 
of these techniques, which is described in details in (Pashkevich, 2001). 

In the frame of the notations that are defined in Section 1.2 and assuming that the manipulator 
links are rigid enough and the non-geometric factors are negligible in this level of calibration, the 
general expression of the geometric model for a n -dof serial manipulator can be described as a 
sequence of homogeneous transformations  

   int 1 1 1 int( ) ( ,π ) ( ) ... ( ,π ) ( ) ( )base b jo q Link L jo n qn Link Ln tool tq q            T q T π T T π T T π T π  (2.1) 

where T  with different indices denote the relevant matrices of size 4 4 , q  is the vector of the 
actuated joint coordinates, while the vectors 

bπ , 
tπ , Ljπ  and the scalars πqj  are the manipulator 

geometric parameters corresponding to the base, tool, links and joints, respectively. In literature (see 
subsection 1.3), there are a number of techniques that allows us to obtain the manipulator model of 
such type, which is definitely complete but includes redundant parameters to be eliminated (methods 
of Hayati, Whitney-Losinski, etc.). In this work, we will use the model generation technique that is 
based on dedicated analytical elimination rules and includes the following steps: 

Step 1. Construction of the complete and obviously reducible model in the form of 
homogeneous matrices product. 

● The base transformation 
base x y z x y z b

   T T T T R R R  

● The joint and link transformations int, ,jo j Link jT T  

(i) For revolute joint    int, , , ,πjo j Link j e j j qj u v u v Lj
q  T T R T T R R  

(ii) For prismatic joint    int, , , ,πjo j Link j e j j qj u v Lj
q  T T T R R  

where je is the joint axis, ju  and jv  are the axes orthogonal to je . 

● The tool transformation tool x y z x y z t
   T T T T R R R  

Step 2. Elimination of non-identifiable and semi-identifiable parameters in accordance with 
specific rules for different nature and structure of consecutive joints. 

● For the case of consecutive revolute joint  , ,πe j j qjqR  

(i) if 1j je e , eliminate the term 
1, ju L 

R  or 
1, jv L 

R  that corresponds to e j,R ; 

(ii) if 1j je e , eliminate the term , j ku L 
T  or , j kv L 

T that defines the translation 
orthogonal to the joint axes, for which k  is minimum ( 1k  ). 
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● For the case of consecutive prismatic joint  , ,πe j j qjqT  

(i) if 1j je e , eliminate the term 
1, ju L 

T  or 
1, ju L 

T  that corresponds to ,e jT ; 

(ii) if 1j je e , eliminate the term , j ku L 
T  or , j kv L 

T that defines the translation in 
the direction of axis je , for which k  is minimum ( 1k  ). 

 

Figure 2.2 Manipulator segment with perpendicular and parallel axes 

To demonstrate this technique, let us show how to apply it to the manipulator segment 
consisting of two links and three successive revolute joints. Figure 2.2 illustrates the corresponding 
frame assignments, where the joint axis je  is perpendicular to 1je  and parallel to 1je . For this 
particular architecture, the joint and link transformations can be written as 

  
1

1 1 1 1( ) ( ) ( )
jj

z j j x y x y y j j x z x z y j jLL
q q q q q q


               T R T T R R R T T R R R  (2.2) 

where the terms 
1, jy L 

R  and , jz LT (or , jx LT ) should be eliminated from the model according to the 
above presented elimination rules. In more details, since 1j je e  and je  is directed along the y-axis, 
so the term 

1, jy L 
R , which is the rotation around the y-axis in the preceding link, should be eliminated. 

Similarly, since 1j je e , the term , jz LT (or , jx LT ), which is the translation in the preceding link that are 
orthogonal to the y-axis, should be also eliminated. This yields the following irreducible model of this 
segment:  

  
1

1 1 1 1( ) ( ) ( )
jj

z j j x y x y j j x x z y j jLL
q q q q q q


               T R T T R R T R R R  (2.3) 

 

Figure 2.3 The industrial serial robot KUKA KR270 and its geometric model.  
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Let us apply the above presented technique to the industrial robot KUKA KR270 (See 
Figure 2.3), which is used in experimental validations of this thesis. For this manipulator that includes 
six revolute joints, the complete (but redundant) model contains 42 parameters and can be presented as 

 

 

   
21

3 54

6

1 1 2 2

3 3 4 4 5 5

6 6

( ) ( )

 ( ) ( ) ( )

 ( )

x y z x y z z x y x y y x z x z Lb L

y x z x z x y z y z y x z x zL LL

x y z y z x y z x y zL t

q q q q

q q q q q q

q q

               

             

          

T T T T R R R R T T R R R T T R R

R T T R R R T T R R R T T R R

R T T R R T T T R R R

 (2.4) 

It should be mentioned that the nominal values of some parameters can be found in the manufacturer 
datasheets (see Table 2.1), but the remaining ones are assumed to be equal to zero. 

Table 2.1 Nominal geometric parameters of KUKA KR270 industrial robot 

Parameter 1d  2d  3d  4d  5d  6d  

Nominal values (mm) 750 350 1250 1100 -55 230 

Applying the elimination rules for the case of consecutive revolute joints, the following 
parameters are sequentially eliminated from the redundant model (2.4):  

1 1(x y z x y z zb
q q     T T T T R R R R ) x y x y T T R R

1
2 2( )y x z

L

q q       R T T
2

3 3 ( )

x z
L

y x z xq q

   

   

R R

R T T R
3

4 4( )z x y z y
L

q q      R R T T R
4

5 5( )z y x
L

q q      R R T z xT R
5

6 6 (

z
L

x q q

   

  

R

R ) y T zT yR zR
6

x y z x
L

    T T T R yR zR
t

 
 

(2.5) 

Here, it is worth to make the following remarks: 

Remark 1 In the redundant model (2.4), it has been already taken into account that the 
nominal geometric parameter 1d  (shift of the robot base along z-axis) cannot 
be identified separately from the base transformation. 

Remark 2 For the first and the last joints, which are connected to the robot base and tool 
respectively, the offsets 1q  and 6q  are treated as semi-identifiable 
parameters. So, they are eliminated from the manipulator geometric model and 
are incorporated in the base and tool parameters. However, the actuated joint 
variables 1q  and 6q  must be retained in the model.  

Remark 3 The geometric parameters of the last link cannot be identified separately from 
the tool transformation. So, it is reasonable to include these parameters in the 
tool transformation. 

Remark 4 In the case when only position measurements are available, the tool 
orientations are not known. So, the parameters of the rotational 
transformations  , ,x y z t

R R R  corresponding to the tool are treated as non-
identifiable.  

Remark 5 Six parameters describing the base transformation and three parameters that 
define tool transformation can be treated as known (there are dedicated 
techniques to identify them separately). 
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This finally allows us to obtain the complete and irreducible geometric model for the considered 
manipulator that includes 18 principle parameters to be identified 

 
   

 
2 31

54

1 2 2 3 3

4 4 5 5 6

( ) ( ) ( )

         ( ) ( ) ( )

robot z x y x y x x z y x z zL LL

x y z z y z z xLL

q q q q q

q q q q q

            

          

T R T T R R T R R R T T R

R T T R R T R R
 (2.6) 

This model will be further used for geometric calibration of the industrial robot KUKA KR270 and 
optimal selection of the measurement poses. For the convenience, let us collect these parameters in a 
single vector  

      1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5                                     x y x x x z x z z y z z z zp p q p q p p q p p q p         π  (2.7) 

where jq  is the joint offset, , ,xj yj zjp p p  and , ,xj yj zj    are the relevant translational and rotational 
parameters, and j  indicates the joint/link number. For these parameters, the corresponding nominal 
values are  

      0 2 3 4 50 0 0 0 0 0 0 0 0 0 0 0 0 0d d d dπ  (2.8) 

where the geometric meaning of 2 5,...,d d  is illustrated in Figure 2.3 and the numerical values are 
provided in Table 2.1.  

It should be noted that in industrial practice, the end-effector location is usually presented in 
more compact (but equivalent) form which includes only six values: three Cartesian coordinates 

 , ,x y zp p p and three orientation angles  , ,x y z   . For robot KUKA KR270 they are denoted as 

 , ,x y z and  , ,a b c  respectively. Relevant transformation from/to the homogeneous matrix 
presentation to/from this vector form are described by the following expressions: (Angeles, 2007)  

Direct transformation. For a given robot end-effector location  , , , , ,x y z a b c , the 
homogeneous transformation matrix T  is computed as  

cos( )cos( ) cos( )sin( )sin( ) sin( )cos( ) sin( )sin( ) cos( )cos( )sin( )

cos( )sin( ) cos( )cos( ) sin( )sin( )sin( ) cos( )sin( )sin( ) cos( )sin( )

sin( ) cos( )sin( ) cos( )cos( )

0 0 0 1

b a a b c a c c a c a b x

b a c a c a b c b a a c y

b b c b c z

  
     

 

T




 (2.9) 

Inverse transformation. For a given homogeneous transformation matrix T , the location 
vector can be obtained using the following expressions 

(i) The position vector is simply: 

 1,4 2,4 3,4,     ,     x y z  T T T  (2.10) 

 

(ii)  The orientation angles vary with different cases:  

(a) For the case when 3,1 1T  

 
3,2 3,3

2,1 1,1

3,1 3,3 3,3

3,1 1,1 3,3 1,1

3,1 2,1 3,3 2,1

atan2( , )

atan2( , )

atan2( , cos( )),      if  0

atan2( cos( ) , ),     if  0  and  0 

atan2( sin( ) , ),      if  0  and  0

c

a

c

b a

a





 


   
   

T T

T T

T T T

T T T T

T T T T

 (2.11) 
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(b) For the case when 3,1 1R , their exist infinite number of solutions for 
angles c  and a  due to their dependency, so 

 

3,1

1,2 1,3

1,2 1,3

asin( )

atan2( , ),    if  sin( ) 1

atan2( , ),    if  sin( ) 1

b

c a b

a c b



  
    

T

T T

T T

 (2.12) 

 where one of the rotational angles c or a  should be fixed in order to 
compute the other one. 

In the following sections, these direct and inverse transformations will be used for computing 
end-effector location of robot KUKA KR270 required for some numerical routines employed in 
parameter identification algorithms. 

2.2.2 Linearization of the manipulator geometric model 

The geometric model (2.1) presented in the previous subsection allows us to compute the end-
effector location for any given values of the actuated coordinates q  (provided that the manipulator 
parameters π  are known). However, for calibration purposes, it is usually required a linearized 
version of this model allowing to evaluate the influence of the small variations of q  and π . So, let us 
assume that the geometric model (2.1) can be written as the vector function 

  ,gt q π  (2.13) 

where the vector ( , )Tt p φ  defines the manipulator end-effector location (position and orientation), 
vector q  contains all actuated joint coordinates, and vector 0 π π π  collects all geometric 
parameters and their deviations. Using the general expression defined in Eq. (2.13), the actual location 
of the manipulator end-effector, which incorporates the geometric errors can be written as 

  0,g  t q π π  (2.14) 

Usually in practice, the geometric errors π  are relatively small, so the following linearized model 
can be used 

 0
0

( , )
( , )

g
g


  


q π

t q π π
π

 (2.15) 

where 0( , )g q π π  is defined as the identification Jacobian πJ . So, Eq. (2.15) can be rewritten as 

 0 π  t t J π  (2.16) 

where 0 0( , )gt q π  is the end-effector location computed using the nominal geometric parameters. 

There are different ways to compute the identification Jacobian matrix J , either analytically or 
numerically (Coleman and Verma, 1996; Khalil and Creusot, 1997). Let us present one of the methods 
that is based on semi-analytical differentiation (Pashkevich et al., 2009a). In the frame of this method, 
the general transformation matrix of the manipulator geometric model is presented in the following 
form 

      1 2, ,base toolrobot       T T T q π H π T q π T  (2.17) 

where the terms  1 ,T q π  and  2 ,T q π  are the transformation matrices on the left and right sides of 
the currently considered parameter π . Besides, here the matrix  H π  refers to the elementary 
homogeneous transformation (which is either a translation or a rotation) related to the parameter π . 
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Using this presentation, the partial derivatives of T  with respect to the parameter π  can be computed 
using the matrix product  

      1 2, ,base toolrobot         T T T q π H π T q π T  (2.18) 

where  H π  is the differential transformation matrix, which can be easily obtained analytically (See 
Table 2.2). It should be mentioned that these derivatives are computed in the neighborhood of the 
nominal values 0π . So, taking into account that many of the nominal parameters are equal to zero, 
additional simplification can be done (see the last column in Table 2.2, where relevant notations 

,...,Tx Rz
 H H  are introduced). 

Table 2.2 Elementary homogeneous transformation matrices and their derivatives 

Elementary 
transformation 

Homogeneous matrix 

 H  

Matrix derivative 

  H  
Zero-value  

matrix derivative 

 Translation 

 x pT  

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

p 
 
 
 
 
 

 

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 
 
 
 
 
 

 

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

Tx

 
 
  
 
 
 

H  

 y pT  

1 0 0 0

0 1 0

0 0 1 0

0 0 0 1

p

 
 
 
 
 
 

 

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 
 
 
 
 
 

 

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

Ty

 
 
  
 
 
 

H  

 z pT  

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

p

 
 
 
 
 
 

 

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 
 
 
 
 
 

 

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

Tz

 
 
  
 
 
 

H  

 Rotation 

 x R  

1 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

 
 

 
  
 
 
 

 

0 0 0 0

0 sin cos 0

0 cos sin 0

0 0 0 0

 
 

 
   
 
 
 

 

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

Rx

 
   
 
 
 

H  

 y R  

cos 0 sin 0

0 1 0 0

sin 0 cos 0

0 0 0 1

 

 

 
 
 
 
 
 

 

sin 0 cos 0

0 0 0 0

cos 0 sin 0

0 0 0 0

 

 

 
 
 
  
 
 

 

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

Ry

 
 
  
 
 
 

H  

 z R  

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

 
 

 
 
 
 
 
 

 

sin cos 0 0

cos sin 0 0

0 0 0 0

0 0 0 0

 
 

  
  
 
 
 

 

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

Rz

 
 
  
 
 
 

H  
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Further, since any homogeneous matrix T  can be represented as  , ;  ,  1T R p 0 , where R  is 
the corresponding rotation matrix of size 3 3 , and p  is the 3 1  translation vector, the desired 
columns of the identification Jacobian J  can be extracted from the matrix T  in the following way: 

 

● The position part of the Jacobian column is simply the vector p , so  

            1, 1,4 2, 2,4 3, 3,4
,     ,            

    J T J T J T   (2.19) 

● The orientation part can be computed in a similar way but current orientation of the 
manipulator end-effector must be taken into account: 

      1 1 1

4, 5, 6,3,2 1,3 2,1
,     ,            

                   J T T J T T J T T  (2.20) 

 

To demonstrate this method, let us show how to apply it to a manipulator segment whose 
geometric model contains the following transformations 

      1 1 1 1 1 2 2( ) ( )z x x y y x x yq q p p q q        T R T T R R  (2.21) 

and where the geometric parameters are collected in the vector  1 1 1 1 2, , , ,x y xq p p q  π . Assuming 
that their nominal values are  0 0, ,0,0,0dπ , the derivatives  ,  1,...,5  T  can be written as  

 

 

 
 
 

1 1 2

2 1 2

3 1 2

4 1 2

5 1 2

( )    ( )

( )    ( )

( )     ( )

( )     ( )

( )     ( ) 

z Rz x y

z Tx y

z x Ty y

z x Rx y

z x Ry y

q d q

q q

q d q

q d q

q d q

   

   

   

   

   

T R H T R

T R H R

T R T H R

T R T H R

T R T H R

 (2.22) 

Using these expressions, the columns of the desired identification Jacobian J  can be easily extracted 
from the above matrices using the rules defined in (2.19) and (2.20) 

 

1 1 1

1 1 1

1 1

1 1

sin( ) cos( ) sin( ) 0 0

cos( ) sin( ) cos( ) 0 0

0 0 0 0 0

0 0 0 cos( ) sin( )

0 0 0 sin( ) cos( )

1 0 0 0 0

d q q q

d q q q

q q

q q



  
 
 
 

   
 
 
  

J  (2.23) 

Now let us apply this method to the computation of the identification Jacobian of robot KUKA 
KR270 whose geometric model has been presented in previous subsection and which is used in 
experimental validation of this thesis. This model contains 18 parameters to be identified (see 
expression (2.6)). Corresponding derivatives  ,  =1,...,18 T  with respect to these parameters have 
the following forms that are presented in Table 2.3. To avoid very tedious analytical expressions, it is 
prudent to compute the matrices T  numerically and to apply to them the extraction rules (2.19) and 
(2.20) presented above. This allows us to avoid obvious problems related to numerical differentiation 
and to obtain the desired Jacobian matrix J  of size 6 18 . In the following sections, this matrix will 
be used for some numerical computations required for the identification of the manipulator geometric 
parameters of robot KUKA KR270. 
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Table 2.3 Matrix derivatives for geometric model of robot KUKA KR270 

Paramete
r 

Matrix derivative  

1x
p       1 1 2 3 3 4 5 4 5 6( )    ( ) ( ) ( ) ( ) ( )

base z Tx y x y x z x y x tool
q q d q d d q q q       T T R H R T R T T R R R T  

1y
p         2 1 2 2 3 3 4 5 4 5 6( )     ( ) ( ) ( ) ( ) ( )

base z x Ty y x y x z x y x tool
q d q d q d d q q q       T T R T H R T R T T R R R T  

1x
         3 1 2 2 3 3 4 5 4 5 6( )     ( ) ( ) ( ) ( ) ( )

base z x Rx y x y x z x y x tool
q d q d q d d q q q       T T R T H R T R T T R R R T  

2q         4 1 2 2 3 3 4 5 4 5 6( )     ( ) ( ) ( ) ( ) ( )
base z x Ry y x y x z x y x tool

q d q d q d d q q q       T T R T H R T R T T R R R T  

2x
p       5 1 2 2 3 4 5 4 5 6( ) ( )    ( ) ( ) ( ) ( )

base z x y Tx y x z x y x tool
q d q q d d q q q       T T R T R H R T T R R R T  

2z
         6 1 2 2 3 3 4 5 4 5 6( ) ( )     ( ) ( ) ( ) ( )

base z x y x Rz y x z x y x tool
q d q d q d d q q q       T T R T R T H R T T R R R T  

2x
         7 1 2 2 3 3 4 5 4 5 6( ) ( )     ( ) ( ) ( ) ( )

base z x y x Rx y x z x y x tool
q d q d q d d q q q       T T R T R T H R T T R R R T  

3q         8 1 2 2 3 3 4 5 4 5 6( ) ( )     ( ) ( ) ( ) ( )
base z x y x Ry y x z x y x tool

q d q d q d d q q q       T T R T R T H R T T R R R T  

3x
p       9 1 2 2 3 3 5 4 5 6( ) ( ) ( )    ( ) ( ) ( )

base z x y x y Tx z x y x tool
q d q d q d q q q       T T R T R T R H T R R R T  

3z
p       10 1 2 2 3 3 4 4 5 6( ) ( ) ( )     ( ) ( ) ( )

base z x y x y x Tz x y x tool
q d q d q d q q q       T T R T R T R T H R R R T  

3z
         11 1 2 2 3 3 4 5 4 5 6( ) ( ) ( )     ( ) ( ) ( )

base z x y x y x z Rz x y x tool
q d q d q d d q q q       T T R T R T R T T H R R R T  

4q         12 1 2 2 3 3 4 5 4 5 6( ) ( ) ( )    ( ) ( ) ( )
base z x y x y x z Rx x y x tool

q d q d q d d q q q       T T R T R T R T T H R R R T  

4y
p         13 1 2 2 3 3 4 5 4 5 6( ) ( ) ( ) ( )    ( ) ( )

base z x y x y x z x Ty y x tool
q d q d q d d q q q       T T R T R T R T T R H R R T  

4z
p         14 1 2 2 3 3 4 5 4 5 6( ) ( ) ( ) ( )    ( ) ( )

base z x y x y x z x Tz y x tool
q d q d q d d q q q       T T R T R T R T T R H R R T  

4z
         15 1 2 2 3 3 4 5 4 5 6( ) ( ) ( ) ( )    ( ) ( )

base z x y x y x z x Rz y x tool
q d q d q d d q q q       T T R T R T R T T R H R R T  

5q         16 1 2 2 3 3 4 5 4 5 6( ) ( ) ( ) ( )    ( ) ( )
base z x y x y x z x Ry y x tool

q d q d q d d q q q       T T R T R T R T T R H R R T  

5z
p         17 1 2 2 3 3 4 5 4 5 6( ) ( ) ( ) ( ) ( )    ( )

base z x y x y x z x y Tz x tool
q d q d q d d q q q       T T R T R T R T T R R H R T  

5z
         18 1 2 2 3 3 4 5 4 5 6( ) ( ) ( ) ( ) ( )    ( )

base z x y x y x z x y Rz x tool
q d q d q d d q q q       T T R T R T R T T R R H R T  

2.3 MEASUREMENT METHODS IN ROBOT CALIBRATION 

In robot calibration, there exist various measurement methods that differ in measurement data 
structure (the manipulator end-effector position and orientation, position only, distance to the base 
point, etc.), and relevant equipments for external measurements (laser tracker, ball-bar system and the 
others) (Mooring et al., 1991). In fact, the structure of the obtained data highly depends on the 
employed measurement devices, whose precision affects the accuracy of the calibration results. So, in 
order to achieve high accuracy, proper selection of a measurement method becomes a very important 
issue. In practice, the evaluation of a good measurement system is based on numerous factors such as 
the cost, easy-to-use, the set-up time, measurement and tracking performance, accuracy and 
measurement volume. To find a suitable method for the considered application, several existing (and 
commonly used) measurement techniques as well as their efficiency are reviewed below. 
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2.3.1 Existing measurement methods 

In the literature, the existing measurement techniques (Figure 2.4) are classified into two 
categories, the open-loop methods and the closed-loop ones. Let us sequentially investigate these two 
types of methods. 

 

Figure 2.4 Classification of the existing measurement techniques for manipulator calibration 

The open-loop methods use external measurement devices to measure the manipulator end-
effector pose information for a number of configurations. This class includes the most popular 
measurement techniques for robot calibration, but there are still some open questions concerning the 
impact of utilizing different data types (full/partial pose information) on the calibration accuracy. Here, 
two main approaches are presented, which are based on the absolute end-effector coordinates 
measurement and the relative distance measurement. 

Calibration using the end-effector coordinates. In this method, external device are required 
(such as a laser tracking system (LTS, Figure 2.5), coordinates measuring machine, inclinometers, etc.) 
to measure either the manipulator end-effector position or the location with respect to the user defined 
world frame. Here, the number of measured components can vary from six (full pose information) to 
only one (partial pose information). Advanced LTS is able to provide either the 6D location 
coordinates  

 ( , , , , , )T

x y z x y zp p p   t  (2.24) 

or the 3D position  

 ( , , )T

x y zp p pp  (2.25) 

of the robot end-effector. It should be mentioned that the orientation components ( , , )x y z    provided 
by the measurement systems are always computed by some embedded software using Cartesian 
coordinates of several reference points { , , 1,2,3,...}xj yj zjp p p j  . 

The above described measurement techniques have been used in the majority of the proposed 
calibration methods. For example, such approach has been applied in (Besnard and Khalil, 1999) for 
calibration of a 6-dof parallel manipulator, where two inclinometers were used to measure the 
orientation of the moving platform. They concluded that using 80 configurations, 35 geometric 
parameters can be identified that ensured a robot position accuracy of 0.4mm. In (Zhuang et al., 1998), 
the authors applied a full pose measurement with a single theodolite for the calibration of Stewart 
platform. In total, 42 parameters have been identified, including the assembling errors of the platform 
and U-joints as well as the leg length offsets. The calibration experiments have been carried out using 
12 different configurations, and the obtained s.t.d. of position errors is about 0.5mm. According to 
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(Khalil et al., 2000), it is possible to identify maximum number of parameters for the same 
parameterization method using 6D measurement. However, this technique is generally very costly and 
time consuming. 

 

Figure 2.5 Open-loop measurement methods and related external devices. 

Calibration using distance measurement. In this method, the calibration is based on the relative 
pose information of the manipulator end-effector location. Usually, the distance between the robot 
end-point and the origin of the reference frame (the base frame of measurement system) is measured. 
This measurement also requires an external device, such as an extendable ball-bar system (Figure 2.5), 
a linear variable differential transformer, etc. Such distance can be also computed from the model, 
using the Cartesian coordinates of the end-effector 

 2 2 2( ) ( ) ( )r r r

x x y y z zd p p p p p p       (2.26) 

where coordinates ( , , )r r r

x y zp p p  define the position of the reference point. So, the residual is defined as 
the difference between the measured and computed distances between the end-point of a given robot 
configuration and user defined reference point (the origin of the frame defined by the measurement 
device).  

Such a method has been used in (Goswami et al., 1993), where the authors presented a 
calibration system with the ball-bar connected to a steel sphere attached to the robot end-effector and a 
magnetic chuck mounted on the table. It has been proved that using this approach, it is possible to 
identify 36 independent geometric parameters for PUMA 560 manipulator. Totally, 800 configurations 
have been used for the calibration and the s.t.d. of the position errors has been reduced to 0.08mm. 
Another technique described in (Driels, 1993) also deals with the calibration of PUMA robot, where 
the measurement data have been obtained from the wire potentiometer attached to the robot end-
effector. According to the experimental validations (carried out with 48 configurations), the position 
error has been reduced from 10mm to 0.5mm. 

In contrast to the previous measurement method (providing 6D or 3D end-effector coordinates), 
the distance measurement requires less expensive equipment and can still be easily implemented. 
However, the measurement volume is limited by the accessible space of the employed measurement 
device, and is much smaller comparing with location/position measurement. Besides, since this 
method provides only one scalar value as output data (the distance), more configurations are required 
to identify the desired parameters. Consequently, the calibration efficiency is reduced. 
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The closed-loop methods use physical constraints imposed on the manipulator end-effector 
instead of external measurements. Usually, they are implemented by attaching the robot end-effector 
to certain fixed environment (a point or a plane) and forming a mobile closed chain. So, the related 
calibration is based on the actuator values only that provides the input values for the identification 
algorithm. Two main approaches are usually used in relevant literature, which are based on point and 
plane constraints correspondingly. 

Calibration using point constraint. In this method, the calibration is based on the values of 
actuator coordinates for a set of configurations, for which the robot end-effector is attached to a fixed 
contact point (Bennett et al., 1991). It is assumed that this point is known and defined by either 6D 
location coordinates 

 0 0 0 0 0 0 0( , , , , , )T

x y z x y zp p p   t  (2.27) 

or 3D position coordinates  

 0 0 0 0( , , )T

x y zp p pp , (2.28) 

and that the manipulator can reach with multiple configurations. In this technique, the residual is 
defined by the difference between the known position/location of the fixed point and the computed 
position/location, which is evaluated using the obtained actuator coordinates and nominal parameters. 

The effectiveness of this method has been studied in (Meggiolaro et al., 2000), where the 
authors investigated the so-called "single end-point contact" calibration. The method has been 
evaluated experimentally for a Schilling Titan II hydraulic manipulator, where 800 measurements 
have been carried out. As a result, the absolute accuracy of the robot has been increased by the factor 
of 8 and achieved the level of 5.7mm. 

The main advantage of this method is that the external devices are not required. So, the 
calibration experimental setup is much easier. Moreover, the measurement volume is not constrained 
by the accessibility of the measurement system. On the other hand, the closed chain must have some 
redundancy in order to perform self-motion. For instance, for the planar manipulator, at least 3-dof are 
required and for the spatial manipulator 4-dof are required (Meggiolaro et al., 2000). 

 

Figure 2.6 Closed-loop measurement methods. 

Calibration using plane constraint. In this approach, the calibration is also based on the values 
of actuator coordinates for a set of configurations, for which the robot end-effector reference point is 
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constrained to belong the same plane (Zhong and Lewis, 1995). The corresponding set of manipulator 
end-effector position is defined as follows 

  1 2, ,..., , 1,...,T

a m i c i m  p p p p a p , (2.29) 

where a  is the vector of plane coefficients and c  is a scalar constant. For this method, the residual is 
defined as the difference between the known product T

i ca p  defining the plane and the computed 
product, which is found using the obtained actuator coordinates and nominal parameters. 

One of the first works based on this method (Ikits and Hollerbach, 1997) was devoted to the 
calibration of robot PUMA 560. Here, 120 configurations were used and the end-effector has been 
equipped with a special sensor to detect the touching of the plane. For comparison purposes, open-
loop method has been also applied, where 60 positions were measured using Optotrak 3D motion 
tracking system. As a result, the plane constraint method was able to identify 23 independent 
parameters, while the position measurement can identify 27 parameters. The achieved robot accuracy 
is about 0.25mm. 

Similar to the previous method (point constraint), this technique also requires the values of the 
manipulator actuator coordinates only, which is an essential advantage in terms of experimental costs. 
However, the measurement configurations must be carefully selected to avoid collinearities (Ikits and 
Hollerbach, 1997). Besides, as it has been confirmed by several authors, for this method the number of 
identifiable parameters is less than for other open-loop methods (Khalil et al., 2000). 

Table 2.4 Summary of different measurement methods 

 

Open-loop methods Closed-loop methods 

Location 
measure 

Position 
measure 

Distance measure Position constraint 
Plane 

constraint 

Publications 

(Besnard and 
Khalil, 1999; 
Zhuang et al., 

1998) 

(Bai et al., 
2003) 

(Driels and 
Swayze, 1994; 
Goswami et al., 

1993) 

(Meggiolaro et al., 
2000) 

(Ikits and 
Hollerbach, 

1997) 

Measurement 
device 

Theodolite/ 
inclinometers 

Laser tracker 
Ball-bar system/ 

Wire potentiometer 
— — 

Applications Stewart platform PUMA 560 PUMA 560 Schilling Titan II PUMA 560 

Number of 
parameters 

35/42* 27 36/24* — 23 

Number of 
configurations 

80/12 40 800/48 800 120 

Achieved 
accuracy 

0.4mm/0.5mm 0.1mm 0.08mm/0.5mm 5.7mm 0.25mm 

*The number of identified parameters varies with different parameterization methods 

Summary of different measurement methods used in manipulator calibration (both open-loop 
and closed-loop ones) is presented in Table 2.4. As follows from them, the best accuracy has been 
achieved by using position and distance measurements (about 0.1mm for industrial LTS). However, 
the latter approach requires 20 times more measurement configurations. The efficiency of the 
remaining methods is essentially lower (in spite of the fact that they allowed to improve the robot 
accuracy). For this reason, the end-effector coordinates measurement looks promising for industrial 
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applications. On the other hand, several essential problems also arise here. For instance, the location 
measurement should provide both position ( , , )x y zp p p  and orientation coordinates ( , , )x y z   , but 
the latter are usually computed using position coordinates of several reference points. Intuitively, these 
may lead to some loss of the identification accuracy. Besides, the 6D residuals are non-homogeneous 
to be directly used in the least-square objective, so they should be normalized in relevant identification 
equations. Therefore, it is required to enhance the measurement techniques in order to overcome these 
difficulties. 

2.3.2 Enhancing of partial pose measurement method  

As follows from previous subsection, the most attractive method for industrial applications is 
the partial pose measurement that requires evaluation of the end-effector Cartesian coordinates only 
(without orientation). On the other hand, this simplification does not allow user to identify certain 
manipulator parameters that can be estimated via the end-effector orientation only. For this reason, this 
subsection proposes an intermediate technique, where the orientation is not computed directly but is 
incorporated in the identification equations via the Cartesian coordinates of several reference points. 
Let us present this technique and compare it with the conventional one. 

For the conventional full pose measurement technique, the desired parameters are identified 
from the linearized geometric model (2.16), which can be rewritten as 

 π ,   1,2,...i i i m   t J π  (2.30) 

where ( , , , , , )T

i xi yi zi xi yi zip p p          t  is the pose deviation caused by small variation in the 
model parameters π . It is clear that the corresponding system of linear equations can be solved with 
respect to π  if the number of experiments m is sufficiently high and the manipulator configurations 
{ , 1, }i i mq  are different to ensure non-singularity of relevant observation matrix used in the 
identification procedure. It is obvious that for this technique, each configuration 

iq  produces six scalar 
equations to be used for the identification. Corresponding optimization problem allowing to compute 
the desired parameters π  is often written as follows  

 
2

1

min
m

i

i i 


    π
t J π , (2.31) 

without paying attention to the non-homogeneity of the residual components (millimeters and radians). 
In some cases, the position and orientation components are normalized before computing the squared 
sum, but it is a non-trivial step affecting the accuracy (in practice, the normalization factors are usually 
defined intuitively). 

 

Figure 2.7 Typical manipulator mounting flange with several reference points 
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The main difficulty with this conventional technique is that the orientation components 
( . ). T

yixi zi    cannot be measured directly. So, these angles are computed using excessive number of 
measurements for the same configuration 

iq , which produce Cartesian coordinates 
{ , ) | 1,( , ; 3}j j j

xi yi zi

T
p pp j n n   for several reference points of the measurement tool attached to the 

manipulator mounting flange (Figure 2.7). Hence, instead of using 3mn  scalar equations, that can be 
theoretically obtained from the measurement data, this conventional approach uses only 6m  scalar 
equations for the identification. This may obviously lead to some loss of the parameter estimation 
accuracy.  

To overcome this difficulty, the proposed technique is based on reformulation of the 
optimization problem (2.31) using only the data directly available from the measurement system, i.e. 
the Cartesian coordinates of all reference points j

ip  (see Figure 2.7). This idea allows us to obtain 
homogeneous identification equations where each residual has the same unit (mm, for instance), and 
the optimization problem is rewritten as follows 

 
2( )

1 1

min
m n

j j p

i

i j

i





  π
J πp  (2.32) 

Here, the matrix ( )p

i

j

J  with the superscripts " ( )p " denotes the position rows of the corresponding 
identification Jacobian j

iJ , the index " i " defines the manipulator configuration number, and the index 
" j " denotes the reference point number. An obvious advantage of this formulation is its simplicity 
and clarity of the residual vector norm definition (conventional Euclidian norm can be applied here 
reasonably, the normalization is not required). So, the problem of the weighting coefficient selection 
does not exist in this case. In fact, under the assumption that measurement errors are modeled as a set 
of i.i.d. random values (similar for all directions x, y, z and for all measurement configurations), the 
optimal linear estimator should have equal weights for all equations. Besides, the most important issue 
is related to the potential benefits in the identification accuracy, since the total number of scalar 
equations incorporated in the least-square objective increases from 6m  to 3mn . 

In order to illustrate the benefits of the proposed approach, let us present a numerical example 
that deals with parameter identification for a 3-link spatial manipulator, whose geometry is described 
by the following equations 
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 (2.33) 

where 1 2 3,,q q q  are the actuated manipulator coordinates and 1 2 3,,l l l  are the link lengths to be 
identified. Figure 2.8 illustrates the considered manipulator architecture, the placements of 
measurement points as well as the input data of parameter identification for both approaches. For this 
case study, the conventional and proposed calibration techniques can be described as follows.  

Approach #1 (conventional): The identification is based on the manipulator end-point location 
(full pose information) 0 0 0( , )t p φ , which is computed from the position measurement of three 
reference points  1 2 3, ,p p p . For the considered example, relevant expression for the position 
component can be presented as 
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 1 2 3
0 3

 


p p p
p  (2.34) 

and the orientation component is computed using the equations 

  
 

0

0 0 0

0 1 0 1 0 1 0

0

atan2 ,

atan2 ( ) ,( )

x

y y x

z x x z z

p p

p p p p





                   p p

 (2.35) 

So, each identification equation includes six scalar expressions and can be written as 

 
0 0

0 ( ) ( )

0

| ,  |
T

p 
 

        
p p

p
J J π

φ
 (2.36) 

where the notations ( )p
J  and ( )

J  refer to the position and orientation part in the Jacobian matrix 
computed at the robot end-point 0p .  

 

 

Figure 2.8 Input data for two identification approaches  

Approach #2 (proposed): The identification is based on the partial pose information, where 
three measurement points  1 2 3, ,p p p  are directly included in the objective function to be minimized 
by the identification algorithm. In this case, the identification Jacobian matrix contains only the 
position part ( )p

J , and the corresponding identification equations can be written as 
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where the Jacobian matrices 
1 2 3

( ) ( ) ( )| ,   | ,   |p p p
  p p pJ J J  are different and computed at the reference 

points  1 2 3, ,p p p . It should be mentioned that these shifts (from the conventional end-point 0p  to the 
reference points 1 2 3, ,p p p ) are included in corresponding tool transformations  1  2  3,  ,  tool tool toolT T T  (see 
equation (2.1)), which must be treated separately. Assuming that the measurement tool geometry is 
known and the reference points are symmetrical with respect to the tool axes, corresponding 
transformations from 0p  to 1 2 3, ,p p p  can be presented as 
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where d  is the radius of the circle where the reference points are located (see Figure 2.7). 

To compare the efficiency of the above approaches, the simulation study has been carried out. 
Within this study, the following manipulator parameters have been assigned: 1 1ml  , 2 0.8ml  , 

3 0.6ml  . It was assumed that the geometric errors in the link lengths and the actuated joint offsets 
are respectively 1 3.0mml  , 2 2.0mml  , 3 5.0mml   and 1 1.0degq  , 2 0.5degq  , 

3 2.0degq  . Besides, it was also assumed that the measurements errors are non-biased i.i.d. random 
variables with the standard deviation 0.01mm  . The desired parameters were estimated using three 
measurement configurations, which were generated randomly. To obtain reliable statistics, the 
calibration experiments have been repeated 1000 times. 

Simulation results are summarized in Table 2.5, which presents the standard deviations for the 
estimates of the parameters 

il  and 
iq  (corresponding mean values are very close to zero). As 

follows from these results, the proposed approach ensures the accuracy improvement in the estimation 
of the link length deviations 

i
l  by 125-283%, while the accuracy improvement for the joint offsets 

estimations 
i

q  is slightly less, up to 233%. This confirms advantages of the proposed approach, but it 
should be mentioned that these numbers are obtained for particular set of the measurement 
configurations and particular normalization factor utilized in the approach #1. However, as follows 
from our study, approach #2 always provides better results. 

Table 2.5 Comparison of different measurement methods and their influence on the 
identification accuracy (number of iterations : 1000; number of configurations : 3;

0.01mm  ) 

Parameters 
Assigned 

geometric errors 

Standard deviations of parameter estimates 
Improvement 

Approach #1 Approach #2 

1l  3 mm 0.069mm 0.018mm 283% 

2l  5 mm 0.019mm 0.006mm 217% 

3l  5 mm 0.009mm 0.004mm 125% 

1q  1 deg 0.187mdeg 0.185mdeg 1% 

2q  0.5 deg 3.742mdeg 1.123mdeg 233% 

3q  2 deg 1.432mdeg 0.866mdeg 65% 

Therefore, the proposed approach #2 that is based on partial pose information is rather 
promising and it will be further used for calibration experiments in this work. In contrast to the 
conventional methods, the proposed technique uses only direct measurements for several reference 
points with different tool transformations. It allows us to avoid the problem of non-homogeneity of the 
relevant optimization objective and does not require any normalization (which arises in the case when 
full pose residuals are used). It should be mentioned that for the measurement of robot end-effector 
position coordinates, a laser tracking system Leica AT-901 is available in IRCCyN laboratory. 
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Corresponding dedicated identification algorithms that employ this measurement technique is 
presented in the following Section. 

2.4 IDENTIFICATION OF MODEL PARAMETERS 

Using the manipulator geometric model presented in Section 2.2 and experimental data obtained 
by measuring end-effector positions (see Section 2.3), it is possible to identify the desired manipulator 
parameters. This problem can be treated as the best fitting of the measurement results by Eq. (2.1) 
describing the manipulator geometry. It is clear that, to find the desired parameters, sufficient number 
of experiments should be performed that provide a set of end-effector position coordinates for 
different manipulator configurations. Moreover, to reduce the measurement noise impact, number of 
experiments is usually redundant (i.e. more than sufficient) and relevant system of the identification 
equations is over-determined. So, its solution can be obtained using the least-square method. Another 
approach allowing us to increase the identification accuracy is based on enhancing the conventional 
measurement techniques. This Section presents a dedicated identification algorithm corresponding to 
the improvement proposed in Subsection 2.3.2 and relevant accuracy analysis. 

2.4.1 Identification algorithm for the enhanced partial pose method 

In previous works (Bai et al., 2003; Goswami et al., 1993), etc., the parameter identification 
algorithms are mainly based on the minimization of the least-square objectives that are derived 
assuming that the measurement tool has a single reference point (see Eq.(2.31)). However, as follows 
from previous Section, utilization of the enhanced measurement method that operates with several 
reference points gives some advantages in the identification accuracy. For this reason, it is required to 
revise the existing identification techniques, taking into account both modification of the objective 
function and increasing of the number of parameters (because each reference point induces additional 
parameters).  

Let us assume that the measurement tool has n  reference points ( 3n  ) that are used to 
estimate relevant vectors of the Cartesian coordinates ( , , )j j j j

i xi yi

T

zip p pp  for m  manipulator 
configurations 

iq . In this notation, the subscript " i " and subscript " j " denote the experiment number 
and reference point number, respectively. Correspondingly, the manipulator geometric model (2.1) can 
be rewritten as  

 · ·( , ) ;   1, ,  1,j

base r

j

i obot i tool i m j n  T T T q π T  (2.39) 

where the vectors j

ip  are incorporated in the fourth column of j

iT , the matrix baseT  defines the robot 
base location, the matrices , 1,t l

j

oo j nT  describe the locations of the reference points that are observed 
by the measurement system (see Figure 2.7). Here, the matrix function ( , )robot iT q π  describes the 
manipulator geometry and depends on the current values of the actuated coordinates 

iq  and the 
parameters π  to be estimated. Taking into account that any homogeneous transformation matrix b

aT  
can be split into the rotational b

aR  and translational b

ap  components and presented as 

 
1

b b

b a a

a

 
  
 

R p
T

0
, (2.40) 

the vector of the reference point positions , 1,j

i j np  (that are measured in calibration experiments) 
can be expressed in the following form 

 ( , ) ( , ) ;   1, ,  1,j j

i base base robot i base robot i tool i m j n       p p R p q π R R q π p . (2.41) 
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This allows us to obtain 3mn  scalar equations for the calibration purposes, where 3n   and m  is high 
enough to ensure identifiability of the desired parameters. 

Applying the least-square method, the corresponding optimization problem can be presented as  

 
2

{ , , , }1 1

( , ) ( , ) min
j

base base tool

m n
j j

i base base robot i base robot i tool

i j 

      
p R p π

p p R p q π R R q π p  (2.42) 

where the following vectors/matrices are treated as unknowns:  

 the 3 1  vector 
basep  and 3 3  orthogonal matrix 

baseR  defining the position and 
orientation of the base coordinate system; 

 the set of 3 1  vectors  ,  1,j

tool j np  defining the reference point positions on the 
measurement tools; 

 the set of manipulator geometric parameters included in the vector π . 

The main difficulty with this optimization problem is that some of the unknowns are included in the 
objective function in highly non-linear way. So, to solve this problem, numerical optimization 
technique is required. However in practice, the deviations in the model parameters are relatively small, 
which allows us to linearize the manipulator geometric model (2.41). This leads to a linear least-
square problem, whose solution can be obtained straightforwardly with the matrix pseudo-inverse. 
However, to simplify computations, here it is proposed to apply the linearization technique 
sequentially and separately with respect to two different subsets of the model parameters 
(corresponding to the base/tool transformations and the manipulator geometry). Consequently, the 
identification procedure is split into two steps. In the frame of this approach, the first step deals with 
the estimation of 

basep , 
baseR , j

toolp , which are related to the base and tool transformations (assuming 
that the manipulator parameters are known). The second step focuses on the estimation of π  under the 
assumption that the base and tool components are already identified. In order to ensure that the desired 
identification accuracy can be achieved, these two steps are repeated iteratively. More details 
concerning these steps are presented below. 

Step 1. For the first step, taking into account that the errors in the base orientation are relatively 
small, the matrix 

baseR  is presented in the following form  

  ~base base φR I  (2.43) 

where I  is a 3 3  identity matrix, vector 
baser  includes the deviations in the base orientation angles, 

and the operator "[~] " transforms the vector of these angles ,( ), T

x y z  φ  into the skew symmetric 
matrix as  

  
0

~ 0
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z

z
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y x
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 
   
  

φ  (2.44) 

This leads to the following presentation of expression (2.41) 

  ~base robot robot base

j i i i j

i toorobo lt     p p p p R uφ  (2.45) 

that can also be rewritten in a matrix form as 

 ~j i i i

i
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robot robot robo s
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p
p p I p R φ

u
 (2.46) 
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where i

robotp  and i

robotR  are defined as follows  

 
( , )

( , )

robot robot i

robot robot i

i

i





p p q π
R R q π

 (2.47) 

and  

 bas

j j

to eol toolu R p  (2.48) 

Here the vectors 
basep , 

baseφ  and , 1,j

tool j nu  are treated as unknowns. 

Applying to the linear system (2.46) the linear least-square technique, the desired vectors 
defining the base and tool transformation parameters can be expressed as follows 
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where 
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and the residuals are integrated in a single vector 1 ...( , ), n T

i i i   p p p . Finally, the variables defining 
the location to the reference points are computed using expression (2.48) as ·j T j

tool base toolp R u . This 
allows us to find the homogeneous transformation matrices 

baseT  and j

toolT  that are contained in 
expression (2.39). 

Step 2. On the second step, the manipulator geometric parameters π  are estimated. For this 
purpose, the principal system (2.39) is linearized and rewritten in the form 

 ( )·j j p

i rob

i

ot i p Jp π  (2.51) 

where the superscript " ( )p " denotes the positional components (first three rows) of the corresponding 
matrices, π  is the vector of geometric errors, the matrix j

iJ  is the identification Jacobian computed 
for the configuration 

iq  with respect to the reference point j . For the computational convenience, 
expression (2.51) can be presented in the following form 

 ( )·j j p

i i  p J π  (2.52) 

where j j

i i ob t

i

r o  pp p  is the residual vector corresponding to the -thj  reference point for the -thi

manipulator configuration. 

Applying to this system the least-square technique, the desired vectors of geometric errors π  
can be obtained as 
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( ) ( ) ( )

1 1 1 1

m n m n
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 π J J J p  (2.53) 

It should be noted that, to achieve the desired accuracy, the steps 1 and 2 should be repeated iteratively. 

Hence, the above presented identification algorithm is able to provide the estimation of the 
manipulator geometric parameters as well as the matrices of the base and tool transformations. 
However, the obtained identification results usually include some dispersion caused by the errors that 
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obviously exist in the experimental data. So, in order to achieve desired identification accuracy, the 
influence of these errors should be evaluated, which will be in the focus of the following subsection. 

2.4.2 Influence of the measurement errors on the identification accuracy 

In practice, different sources of error may affect the identification accuracy. They include the 
measurement errors of the external measurement device providing the end-effector position 
coordinates (laser tracker in our case), the errors in the actuator encoders (internal measurement 
devices) giving the manipulator joint coordinates that depend on encoder resolution, etc. Besides, 
some assumptions concerning the manipulator model (the link rigidity, for instance) also effect the 
identification accuracy. It is clear that, all these sources of error can be hardly taken into account in 
calibration. For this reason, only the most significant of the above mentioned sources of error should 
be considered in the accuracy analysis. As follows from our experience, the inaccuracy of external 
measurement system has the most significant impact on the robot positioning accuracy, comparing to 
other sources of error that can be assumed negligible in the frame of geometric calibration. 

Under these assumptions, the basic equation of calibration (2.52) should integrate the 
measurement errors and is expressed as 

 ( )   · ;  1, ,  1,j j p j

i i i i m j n     p J π ε  (2.54) 

where the vectors ( , , )j j j j T

i xi yi zi  ε  denote the additive random errors, which are usually assumed to 
be unbiased and independent identically distributed (i.i.d.) with the standard deviation  . Then, using 
Eq. (2.53), the estimates of the desired parameters can be presented as  
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where the second term describes the stochastic component. As follows from this expression, the 
considered identification algorithm provides the unbiased estimate of the desired parameters, i.e., 

ˆ( )E   π π  

where ( )E   denotes the mathematical expectation of the random value one. Correspondingly, the 
covariance matrix of π , which defines the identification accuracy, can be computed as 
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Further, after some transformations and taking into account the statistical properties of the 
measurement errors (which are assumed to be similar for all reference points, all manipulator 
configurations and all directions, in accordance with expression   2T

i iE ε ε I ), the desired 
covariance matrix can be simplified to 

 ( ) ( )
π π

1

2

1 1

ˆcov( ) j p T j p

i i

m n
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
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Hence, the impact of the measurement errors on the identified values of the geometric parameters is 
defined by the matrix sum ( ) ( )

π π1 1

m n j p T j p

i ii j   J J  that in literature is also called the information matrix. 
It is clear that to achieve the best accuracy, the elements of covariance matrix (2.57) should be as 
small as possible. This requirement can be satisfied by proper selection of the experiment input data 
(i.e., the measurement configurations { ,  1, }i i mq ) as well as by increasing the number of 
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experiments m . Since the latter is rather time consuming, it is reasonable to investigate the first 
approach.  

The problem of manipulator measurement pose selection is the key issue of calibration 
experiments design, where the notion of "optimal measurement pose" is formalized and several scalar 
criteria are proposed (see Section 1.5). As follows from our analysis, the existing approaches have 
different effects on the parameter identification accuracy. The main disadvantage of these approaches 
is that the relevant optimization objectives are not directly related to the manipulator positioning 
accuracy (they usually focus on the parameter identification accuracy). Hence, in order to achieve 
simultaneously high accuracy both for the manipulator parameters and for the end-effector position (or 
to find reasonable trade-off), it is required to define a proper objective for measurement pose selection, 
taking into account the specificities of the application area studied in this work. This motivates the 
research direction presented in the following Section. 

2.5 OPTIMAL SELECTION OF MEASUREMENT CONFIGURATIONS 

The problem of optimal selection of the manipulator measurement configurations has been 
studied in a number of works (Daney et al., 2005; Huang et al., 2008; Imoto et al., 2009; Zhuang et al., 
1996), where several different criteria have been proposed for the corresponding optimization 
procedure. Using these criteria, relevant plans of experiments (i.e. sets of measurement configurations) 
may be generated, which improve the identification accuracy comparing to the non-optimal plans 
obtained randomly or intuitively. However, as it has been shown in Section 1.4, different criteria may 
provide sets of measurement configurations that are difficult to compare and select the best one of 
them (usually, they are Pareto-optimal with respect to the identification accuracy of each parameter, 
see Figure 1.22). Moreover, the conventional optimization criteria operate with some abstract 
performance measures that are not directly related to the manipulator positioning accuracy after 
calibration, which is the primary goal for the industrial application studied in this work. For this reason, 
this Section proposes a new approach for calibration experiments design that has two distinct features 
compared to the conventional ones: (i) optimization based on a new industrial-oriented performance 
measure that evaluates the manipulator positioning accuracy after calibration; (ii) utilization of 
experimental data obtained by means of the enhanced partial pose measurement method. The 
following Subsections present detailed description of this approach and an illustrative example 
confirming its advantages. 

2.5.1 New approach for calibration experiment design 

Generally, the robot calibration allows us to estimate the values of the manipulator parameters 
using experimental data corrupted by the measurement noise. For this reason, the parameters estimates 
are not exactly equal to the true values, they vary from one set of experiments to another and can be 
treated as random variables. As follows from previous Section, relevant identification algorithms 
provide unbiased estimates (i.e. their expectation is equal to the true values) but their dispersion 
essentially depends on the set of measurement configurations that provides the experimental data for 
the identification. Hence, it is reasonable to select the measurement configurations in the best way, in 
order to ensure the lowest impact of the measurement errors on the parameter estimates. In literature, 
this problem is known as the "calibration experiments design" and has been studied in a number of 
works, but existing approaches concentrate on the accuracy of the parameter estimation (defined by 
the relevant covariance matrix (2.57)), while the considered industrial application motivates us to 
focus on the manipulator positioning accuracy after calibration. 
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Figure 2.9 Dispersion of the manipulator positioning errors after calibration and performance 
measure for selection of measurement configurations (for given single target point) 

In more details, the notion of manipulator positioning accuracy after calibration is illustrated in 
Figure 2.9. It is assumed here that the desired end-effector position is 

dp , but without calibration, the 
end-effector is located at the point 0p  (computed using nominal geometric model, i.e., 0 0( , )gp q π , 
where 0q  is obtained from equation 0 0( , )d gp q π  via the inverse kinematics). For each set of 
experimental data, calibration yields the parameter estimates ˆ

kπ  that allow us to partially compensate 
the positioning errors by computing the joint coordinates 

kq  from the equation ˆ( , )d k kgp q π  and to 
locate the end-effector at the point ( , )k kgp q π . As a result, the end-effector goes closer to the 
desired position 

dp . Evaluating the points 
kp  distribution in general, it should be mentioned that they 

are concentrated around 
dp  in such way that  

 1 2mean( , ,...) dp p p  (2.58) 

So, the target position can be treated as the center. To evaluate their dispersion with respect to the 
desired position, relevant distances  

 =  ,    1,2,...k k d k  p p  (2.59) 

can be used. This leads to the following statistical performance measure 

     0 =
T

k d k dE  p p p p  (2.60) 

which is the root-mean-square distance between the target position and the end-effector position after 
calibration. This indicator is used below to describe the geometric errors compensation efficiency. It is 
clear that the performance measure 0  is directly related to the manipulator accuracy in engineering 
sense, which justifies its application in this work.  

To apply this performance measure to the calibration experiment design, it is necessary to take 
into account that the influence of the geometric errors on the end-effector position varies from one 
configuration to another and essentially differs throughout the workspace. So in practice, the desired 
accuracy is usually required to be achieved for rather limited workspace area (for example, where the 
workpieces are located in the robotic cell). For this reason, it is proposed to limit the possible 
manipulator configurations by a single one (the machining configuration, for instance), which will be 
further referred to as the manipulator test-pose. To develop a new approach to calibration experiments 
design that utilizes the above proposed ideas, let us introduce several basic definitions: 
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Definition 1. The plan of experiments is a set of manipulator configurations { ,  1, }i i mq  that 
are used for the measurements of the end-effector positions { , 1, , 1, }j

i i m j n p  
and for further identification of the desired parameters π . 

Definition 2. The efficiency of manipulator positioning error compensation 0  is the root-
mean-square distance between the desired manipulator end-effector position 
and the position obtained after application of the error compensation technique 
(see Figure 2.9). 

Definition 3. The manipulator test-pose is a particular robot configuration 0q  (that is usually 
specified in relevant technological process), for which it is required to achieve 
the best compensation of the positioning errors (i.e. 0 min  ). 

In the frame of the adopted notations and assuming that the manipulator geometric model is 
linearized, the distance ˆ

k  can be computed as the Euclidean norm of the vector ( )
0
p

k k p J π , 
where the subscript ' 0 ' in the identification Jacobian ( )

0
p

J  is related to the test pose 0q  and 
ˆδ k k π π π  is the difference between the estimated and true values of the robot geometric parameters. 

Further, taking into account expression (2.55) and the assumptions concerning the measurement errors 
that are treated as unbiased and i.i.d. random variables (see Subsection 2.4.2), it can be easily proved 
that the expectation   0kE  p . So, the points 

kp  that the end-effector attains after compensation are 
centred around the desired position 

dp , as shown in Figure 2.9.  

The dispersion of these points can be evaluated by the variance  T

k kE  p p  which in 
accordance with the above definition is equal to the square of the performance measure 0 . This 
yields the expression 

  2 ( ) ( )
0 0 0

p T pT
E     π J J π  (2.61) 

which can be rewritten as  

   2 ( ) ( )
0 0 0trace Tp p T

E    J π π J  (2.62) 

using the identity equation trace( )T T   p p p p . Further, by applying Eq. (2.57) and taking into 
account that the term ( )T

E  π π  is the covariance matrix of the geometrical error estimates, i.e., 
ˆ( ) cov( )T

E   π π π , the desired expression can be presented in the final form as  
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As follows from this expression, 2
0  can be treated as the weighted trace of the covariance matrix 

ˆcov( )π , where the weighting coefficients are computed using the test-pose joint coordinates 0q . 
Hence, the proposed performance measure has obvious advantage compared to the previous ones (see 
Section 1.4), which operate with "pure" trace of this matrix and involve straightforward summing of 
its diagonal elements (which may be of different units). 

Based on this performance measure, the calibration experiments design can be reduced to the 
following optimization problem  

 ( ) ( )

1

( ) ( )
0 0

{ ...
π π

}
1 1

trace min
i m

m n
p p

i j

j p T j p T

i i 



 

  
     


q q

JJ JJ  (2.64) 



2.5  Optimal selection of measurement configurations 77 

whose solution gives a set of the desired measurement configurations  1,..., mq q . Hence, in the frame 
of the proposed approach, the calibration quality (evaluated via the error compensation accuracy 0 ) 
is completely defined by the set of Jacobian matrices  ( ) ( )

1 ,...,p p

m J J  that depend on the manipulator 
configurations  1,..., mq q , while the Jacobian matrix ( )

0
p

J  corresponding the test-pose 0q  defines the 
weighting coefficients. It is worth mentioning that the conventional approaches based on the A- and T-
optimality principles (see Section 1.4) use simplified objective functions where the matrix trace is 
non-weighted. The efficiency of the proposed approach will be illustrated in the following Subsection 
(for the case of two-link planar manipulator). In Chapter 4, this approach will be applied to calibration 
of a 6-dof industrial robot of KUKA family.  

2.5.2 Generalization for the case of multiple test configurations 

The above presented approach is developed for the accuracy estimation for a single test 
configuration. However in practice, it is often required to perform machining along rather long and 
complex trajectories (which is common for aerospace and ship building industries). This type of 
motions may require significant changes in the manipulator posture and the desired accuracy should be 
achieved for the whole machining trajectory. For this reason, it is reasonable to extend the test-pose 
based approach for a more general case, where changes in the manipulator configurations while 
performing technological task are essential. In this case, the goal of the calibration experiments design 
is to choose the measurement configurations that minimize the maximum end-effector positioning 
errors after compensation (evaluated as the root-mean-square distance) for the entire trajectory. 
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{ ,..., }
ˆmax ( ) min

m
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E  
q q

 

Figure 2.10 Performance measure for selection of measurement configurations that ensure high 
precision along the given trajectory 

This idea is illustrated in Figure 2.10, where the desired trajectory and the trajectory after 
compensation are presented. It is assumed that the compensation is based on the parameter estimates 
ˆ

kπ  obtained using the k-th set of measurement data. The desired trajectory is defined by a set of node 
points { ,  1,2,...}ds s p , corresponding manipulator configurations can be found from 0 0( , )ds sgp q π  
via the inverse kinematics. The distances between corresponding points of two trajectories are denoted 
as ˆ{ ,  , 1,2,...}ks k s  . This allows us to define a set of manipulator test-poses 0{ ,  1, }s ss nq  and to 
introduce the following performance measure 

  2

0max ˆmax ( )ks
s

E   (2.65) 
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that evaluates the highest positioning accuracy along the trajectory. It is clear that this definition 
perfectly corresponds engineering practice, where the quality of the machining is usually evaluated by 
the highest machining error. 

Definition 4. The efficiency of manipulator positioning error compensation during machining 

trajectory is the maximum root-mean-square distance 0max  between the 
desired manipulator end-effector position and the position obtained after 
application of the error compensation technique. 

Definition 5. The multiple manipulator test-poses is a set of particular robot configurations 

0{ ,  1,.2,...}s s q  along the machining trajectory, where the desired end-effector 
positions { ,  1,2,...}ds s p  are used as the reference points and for which the 
highest efficiency of error compensation should be achieved (i.e. 0max min  ). 

Using these definitions and applying the technique from Subsection 2.5.1, the generalized 
performance measure for multiple test configurations can be presented as 
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where the matrix ( )
0
p

sJ  is computed for the test-pose joint coordinates 0sq , the superscript " ( )p " 
denotes the positional components of the corresponding matrices, the subscript " 0s " indicates the 

-ths  test configurations, the subscript " i " and superscript " j " refer to the measurement configuration 
number and the reference point number. Using this performance measure, the calibration experiment 
design (i.e., optimal selection of measurement configurations) reduces to the following min-max 
problem 
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whose solution provides a set of the desired manipulator configurations  1,..., mq q . It is clear that the 
problem (2.67) is numerically more complicated compared to the previous one (2.64), but it suits 
better to the notion of machining accuracy studied in this work.  

It is also worth mentioning that the performance measure (2.65) can be easily adapted to other 
applications that differ from the machining. For example, for the pick-and-place operation, where the 
robot performs its task at two target positions only, two test-poses are enough to achieve the best 
accuracy after geometric error compensation. Similarly, for machining of large-dimensional 
workpieces, several reference points can be introduced corresponding to different machining areas. To 
demonstrate the efficiency of the proposed approach, following subsection contains an illustrative 
example that deals with experiment design of geometric calibration of 2-dof. manipulator (more 
complicated examples are presented in Section 2.6 and Chapter 4). 

2.5.3 Comparison analysis of proposed and conventional approaches 

Let us illustrate the advantages of the test-pose based approach by an example of the 
geometrical calibration of two-link planar manipulator. It is assumed that the nominal link lengths 
differ from the real ones, and these deviations should be identified by means of calibration. In this case, 
the manipulator end-effector position can be expressed as  
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where 
xp  and yp  define the end-effector position, 1 2,l l  and 1 2,l l   are the nominal link lengths and 

their deviations (which should be identified), 1 2,q q  are the joint coordinates that define the 
manipulator configuration. It can be proved that in this case the parameter covariance matrix does not 
depend on the angles 1iq  and is expressed as  
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where the vector 1 2( , )l l  π  denotes the parameters of interest, m  is the number of experiments 
and   is the s.t.d. of the measurement noise.  

For comparison purposes, the plans of experiments have been obtained using three different 
strategies: 

(i) the measurement configurations are generated randomly; 

(ii) the measurement configurations are obtained using the conventional approach based 
on D-optimality principle; 

(iii) the measurement configurations are obtained using the proposed test-pose based 
approach (see Subsection 2.5.1). 

For the first approach (i), the measurement configurations are obtained in a trivial way, using 
random generator scaled within the joint limits. For the conventional approach (ii), where the D-
optimality principle was used (that has been proved to be efficient in many applications), the 
performance measure is equal to the determinant of the covariance matrix (2.69) and can be easily 
derived as 
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As follows from this expression, this criterion leads to the minimization of the term 2
21

( cos )
m

ii
q

 . So, 
the minimum value of the determinant (2.70) is equal to 22

m  and it is reached when 
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It should be mentioned that this condition is also valid for the application of A- and G-optimality 
principle. 

For the proposed approach (iii), it is assumed that the application of a single test configuration 

10 20( , )q q  is considered. In this case, the basic expression for the performance measure 2
0  (2.63) can 

be presented as 
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Hence, the minimum value of 2
0  is equal to 
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and it is achieved when 
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It should be mentioned that general solution of equation (2.74) for m  configurations can be replaced 
by the decomposition of the whole configuration set by the subsets of 2 and 3 configurations (while 
providing the same identification accuracy). This essentially reduces computational complexity and 
allows user to reduce number of different measurement configurations without loss of accuracy.  

Using the above presented expressions, the proposed and conventional approaches can be 
compared analytically and numerically. In particular, the test pose 10 20( , )q q , the conventional 
approach (ii) ensures the positioning accuracy after compensation 2 22c m  , while for the 
proposed one (iii), similar performance measure is equal to 2 2 2

0min 20 20cos (1 sin )m q q    . 
Corresponding values are compared in Table 2.6, which proves that using the proposed approach for 
the calibration experiment design allows us to improve the positioning accuracy up to 41%. 

Table 2.6 Accuracy comparison of the proposed and conventional approaches 

Test-pose ( 20q ), [deg] 0° 30° 60° 90° 120° 150° 180° 

2 2
0 /

c
   0.5 0.75 0.83 1 0.83 0.75 0.5 

Accuracy  
improvement 

41% 15% 10% 0% 10% 15% 41% 

To illustrate advantages of the proposed approach, Figure 2.11 presents simulation results for 
manipulator position errors after compensation corresponding to three different sets of measurement 
configurations employed in calibration. It is assumed that the manipulator parameters are 

21 1m, 0.8ml l  ; the number of measurement configurations 2m  ; the test configuration is defined 
by the vector 0 ( 45 ,20 ) q , and the s.t.d. of the measurement errors is mm1  . In accordance 
with the above presented optimality conditions (see equations (2.71) and (2.74)), the following 
measurement configurations have been found: 

Plan #1: 1 (0 , 10 ) q  and 2 (0 ,10 )q , which is randomly generated; 

Plan #2: 1 (0 , 90 ) q  and 2 (0 ,90 )q , which satisfies Eq. (2.71); 

Plan #3: 1 (0 , 46 ) q  and 2 (0 ,46 )q , which satisfies Eq. (2.74). 

To obtained reliable statistics, the calibration experiments have been repeated 100 times. 
Corresponding results presented in Figure 2.11 show that the proposed approach allows us to increase 
accuracy of the end-effector position on average by 18% comparing to the D-optimal plan and by 48% 
comparing to the randomly generated plan.  

In the frame of this example, a more complicated case has been studied when the set of 
parameters to be calibrated includes both the link length deviations  1 2,l l   and the joint offsets 

 1 2,q q  . In this case, the calibration was based on three measurements configurations ( 3m  ) and 
the following plans of experiment have been generated: 
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Figure 2.11 Dispersion of manipulator positioning errors after calibration for different plans of 
 experiments: case of tuning two parameters  1 2,l l   

Plan #1: 1 (0 , 10 ) q , 2 (0 ,0 )q  and 3 (0 ,10 )q ; 

Plan #2: 1 (0 , 120 ) q , 2 (0 ,0 )q  and 3 (0 ,120 )q ; 

Plan #3: 1 (0 , 57 ) q , 2 (0 ,0 )q  and 3 (0 ,57 )q . 

Simulation results corresponding to this case study are presented in Figure 2.12. As follows from them, 
the proposed approach allows us to increase the manipulator positioning accuracy by 18% compared 
to the D-optimal plan and by 56% comparing to the randomly generated plan. 

 

Figure 2.12 Dispersion of manipulator positioning errors after calibration for different plans of 
experiments: case of tuning four parameters  1 2 1 2, , , ql ql      

Hence, the presented results confirm that the proposed performance measure is attractive for 
practicing engineers and allows us to avoid the multi-objective optimization problem that arises while 
minimizing all elements of the covariance matrix (2.57) simultaneously. In addition, using this 
approach, it is possible to find a balance between the accuracy of different geometrical parameters 
whose influence on the final robot accuracy is unequal. 

Summarizing Section 2.5 in general, it is worth mentioning that the proposed approach allows 
essential improvement of the calibration efficiency and to achieve the best manipulator positioning 
accuracy for the user-defined test configurations related to the manufacturing task (in contrast to the 
conventional approaches that are targeted at the best parameter identification accuracy). However, for 
typical industrial robots whose model includes very high number of parameters (over 25, see 
Section 2.2), relevant optimization becomes extremely time consuming. For this reason, the next 
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Section focuses on the efficiency improvement of the numerical routines employed in the selection of 
optimal measurement configurations. 

2.6 EFFICIENCY IMPROVEMENT OF MEASUREMENT POSE SELECTION  

Using the test-pose based approach for calibration experiment design proposed in the previous 
Section, it is possible to find the optimal set of measurement configurations that ensures the best 
manipulator end-effector positioning accuracy after calibration. It is clear that analytical solutions of 
relevant optimization problems (2.64) and (2.67) can hardly be obtained (for example, when the 
number of parameters to be identified is very high, the analytical computations of the matrix inversion 
in these expressions are hardly possible). So, applying a numerical optimization technique is the only 
reasonable way, but the convergence rate, the total computational time and ability to attain the global 
minimum become key issues. For this reason, several conventional optimization techniques are 
examined below, where comparison studies are presented. In order to improve their efficiency, two 
techniques that are adapted to the test-pose based approach have been proposed: (i) application of 
parallel and hybrid computations; (ii) generation of quasi-optimal solutions using lower-dimensional 
calibration plans. The following Subsections present detailed presentations of these issues. 

2.6.1 Analysis of the conventional numerical optimization techniques 

The simplest way to solve the optimization problem (2.64) for the measurement pose selection 
is to apply conventional optimization techniques incorporated in commercial mathematical software 
(MathWorks.com). It is clear that the straightforward search with regular grid is non-acceptable 
because of high complexity and enormous number of solutions to be compared. For this reason, three 
other algorithms have been examined: (i) random search, (ii) gradient search, and (iii) genetic 
algorithm. Their comparison study is presented below and summarized in Table 2.7 and Table 2.8, 
where two criteria have been used: the computational time and the ability to find optimal solution 
(evaluated via the manipulator accuracy after calibration 0 , see Subsection 2.5.1). The computational 
experiments have been carried out using Matlab optimization toolbox, which was run on a computer 
with 3.46GHz processor (12MB Cache L2). For all computational experiments, it was assumed that 
the s.t.d. of the measurement errors is equal to 0.03 mm (which corresponds to the accuracy of the 
Leica laser tracker used in our industrial experiments). 

The benchmark example deals with the calibration experiments design for 6-dof industrial 
manipulator, whose geometric model has been presented in Section 2.2. As follows from relevant 
Eq.(2.6), this model includes 18 principle geometric parameters as well as 9 parameters corresponding 
to the base and tool transformations that should be identified via calibration. But for the benchmark 
example, to reduce the computational efforts and evaluate the algorithm capability before applying to 
the problem of real dimension, only nine of the most essential parameters were identified (which have 
major impact on the positioning accuracy). They include the link lengths 2 5{ ,..., }d d  whose nominal 
values are known and the joint offsets 1 5{ ,..., }q q   (see Figure 2.3). This allowed us to obtain 
realistic assessments of the conventional optimization techniques capabilities with respect to the 
considered problem where the number of design variables is very high (72 for 12 measurement 
configurations). 

The first of the examined algorithm (i) is based on the straightforward selection of the best 
solution from the set of ones generated in a random way. For this study, 10,000 solutions were 
obtained for different numbers of measurement configurations  3,4,6,12m . As follows from the 
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results (see Table 2.7 and Table 2.8), this algorithm is very fast and requires less than 2 minutes to find 
the best solution. However, the optimal solution provided by this method is essentially worse than 
those obtained using other algorithms (by 15-30%). 

The second algorithm (ii) employs the gradient search with built-in numerical evaluation of the 
derivatives that is available in Matlab. The starting points were generated randomly and, to avoid 
convergence to the local minima, the optimization search has been repeated 5000 times (starting from 
different points). In this case, the best result in terms of the desired objective 0  was obtained, but 
computational cost was very high (it can reach a hundred hours). So, this technique is hardly 
acceptable in practice. It is worth mentioning that reduction of the iteration number is rather dangerous 
here, because there are a number of local minima that the algorithm can converge to (see Table 2.7 
that includes the minimum, maximum and average values of 0  obtained for randomly generated 
starting points). Moreover, as follows from our experience, 5000 iterations are also not enough here. 

Table 2.7 Accuracy of conventional optimization techniques (case of 6-dof manipulator,   
initial points are random) 

Algorithm 
Performance 

measure, [mm] 

Number of measurement configurations 

3m   4m   6m   12m   

Random Search 

min
0  0.0825 0.0607 0.0519 0.0360 

mean
0  1.9155 0.1939 0.0905 0.0500 

max
0  29.8780 14.9746 0.5608 0.0804 

Gradient Search 

min
0  0.0637 0.0521 0.0426 0.0302 

mean
0  0.0862 0.0610 0.0477 0.0335 

max
0  0.6534 0.2333 0.1319 0.0681 

Genetic Algorithm 

min
0  0.0638 0.0521 0.0427 0.0301 

mean
0  0.0689 0.0529 0.0433 0.0305 

max
0  0.0802 0.0615 0.0446 0.0309 

Table 2.8 Computational time of examined optimization techniques (case of 6-dof manipulator) 

Algorithm 
Number of measurement configurations 

3m   4m   6m   12m   

Random Search 41 sec 47 sec 1.0 min  1.7 min 

Gradient Search 24.2 h 37.5 h 56.3 h 103.6 h 

Genetic Algorithm 6.5 h 8.3 h 10.5 h 15.4 h 

The third of the examined techniques (iii) applies genetic algorithm (the built-in GA function in 
Matlab) that is based on adaptive heuristic search. The optimization has been repeated 100 times with 
population size 50 and 20 generations (initial populations were randomly generated). For illustrative 
purposes, Figure 2.13 presents the efficiency of this algorithm for selection of three measurement 
configurations ( 3m  ). It shows the algorithm convergence as well as divergence of the optimal 
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solutions with respect to computing time. As follows from this figure, the optimization results are 
highly sensitive to the selection of initial population. In particular, the diversity of the optimal 
solutions got from sequential GA runs is about 25%. So, to achieve the global minimum, the GA 
should be repeated many times, which leads to essential increase of the computational efforts (more 
than 6 hours of computations for the considered example). However, compared to gradient search, GA 
provides acceptable accuracy (only 2% worse) while the computational time is 4 times less. 

 

Figure 2.13 Efficiency of genetic algorithm for selection of three measurement poses for 6-dof 
manipulator (population size 50, generation number 20) 

As follows from the obtained results, the random search is rather fast but inefficient here, since 
it may produce non-acceptable solutions. In contrast, the gradient search is able to find the global 
minimum provided that it is repeated many times with different starting points (which is very 
expensive from computational point of view). As a compromise, the genetic algorithm provides 
intermediate results in terms of accuracy and computational time. However, for problems of the real 
industrial size, the performances of the GA are also not sufficient. For this reason, the following 
Subsections are devoted to the improvement of the numerical optimization techniques employed in 
selection of optimal measurement configurations. 

2.6.2 Hybrid approach to optimal configuration selection 

Since the considered problem requires numerous repetitions of the optimization with different 
initial values, applying parallel computing looks attractive to speed up the design process and to take 
advantage of multi-core architecture available in modern computers. To evaluate benefits of the 
parallel computing, the same benchmark example has been considered and two algorithms have been 
examined: (ii)' parallel gradient search, and (iii)' parallel GA with the same parameter settings. The 
computations were carried out on a workstation with 12 cores (processors with 3.46GHz 12MB Cache 
L2) The obtained results are presented in Table 2.9, which gives the computational time for different 
number of measurement poses (the attained value of the objective function 0  is very close to those 
presented in Table 2.7).  

The obtained results are quite expected and confirm essential reduction of computational efforts. 
For both optimization methods, the consumed time has been decreased by the factor of 10-12 
(compared to the results in Table 2.8). However, it is not enough yet to solve the problem of real 
industrial size, where several dozen of parameters should be identified, instead of nine in the 
benchmark example. 
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Table 2.9 Reduction of computational time using parallel computing 

Algorithm 
Number of measurement configurations 

3m   4m   6m   12m   

Parallel (vs Sequential) 
Gradient Search 

2.1 h  
(24.2 h) 

3.2 h 
(37.5 h) 

4.9 h 
(56.3 h) 

8.9 h 
(103.6 h) 

Parallel (vs Sequential) 
Genetic Algorithm 

36 min 
(6.5 h) 

41 min 
(8.3 h) 

52 min 
(10.5 h) 

1.5 h 

(15.4 h) 

To take the advantages of both examined algorithms (the gradient search and GA) and 
efficiency of the parallel implementation, a hybrid technique has been developed. It should be 
mentioned that some software packages (Matlab, etc.) already implement this idea and use the final 
solution from GA as the initial point of gradient search. However, since the randomly generated initial 
populations in GA may cause high diversity of the optimal solutions, the selection of these initial 
values is also an important issue. For this reason, the embedded hybrid option in GA cannot be 
directly used and requires additional modifications. To improve the efficiency of the existing 
technique, the starting point selection strategy for the gradient search has been modified. To ensure 
better convergence to the global minimum, it has been proposed to use the best half of final points 
obtained from GA as the starting points for the gradient search. From our point of view, it ensures 
better diversity of the starting points and allows us to avoid convergence to the local minima.  

 

Figure 2.14 Efficiency of the hybrid approach for selection of three measurement poses for 6-dof 
manipulator (combination of parallel gradient search and parallel genetic algorithm) 

The proposed modification has been evaluated using the same benchmark example. For 
comparison purposes, Figure 2.14 presents the convergence of the hybrid method for the problem of 
optimal selection of three measurement configurations studied in the previous Subsection (see 
Figure 2.13). It shows the initial points (obtained from GA), optimal solutions as well as the solution 
improvement with respect to time. As follows from the figure, the hybrid algorithm converges much 
faster (computing time is less than 2 min for 3m  ), but if the number of measurement poses is 
increased up to 12, the computational time is over 1.6 hour that is still unacceptable for industrial 
problems.  
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2.6.3 Quasi-optimal solution for measurement configuration selection 

Generally, as follows from the identification theory, the only way to improve calibration 
accuracy is to increase the number of measurements (provided that the reduction of the measurement 
errors is not possible). However, for the manipulator calibration problem, each measurement is 
associated with a certain robot configuration that also has influence on the final accuracy. It is clear 
that the best result is achieved if all measurement poses are different and have been optimized during 
the calibration experiment design. On the other hand, as follows from our experiences, the diversity of 
the measurement poses does not contribute significantly to the accuracy improvement if m  (the total 
number of measurements) is high enough. This allows us to propose an alternative technique, which 
uses the same measurement configurations several times (allowing to simplify and speed up the 
measurements). This approach can be also referred to as the "reduction of problem dimension". 

To explain the proposed approach in more details, let us assume that the problem of the optimal 
pose selection has been solved for the number of different configurations that is equal to m , and the 
obtained calibration plan ensures the positioning accuracy 0

m . Using these notations, let us evaluate 
the calibration accuracy for two alternative strategies that employ total number of experiments k m : 

Strategy #1 (conventional): the measurement configurations are found from the full-scale 
optimization of size k m . 

Strategy #2 (proposed): the measurement configurations are obtained by simple repetition of 
the configurations got from the low-dimensional optimization problem of size m  (i.e. 
at each configuration, the measurements are repeated k  times). 

It is clear that the calibration accuracy 0
km  for the strategy #1 is better than the accuracy 

corresponding to the strategy #2 that can be expressed as 0
m

k . However, as follows from our 
study, this difference is quite small if the total number of measurements is high enough ( 12km  , in 
this case), while the number of different configurations m  is larger than 3. This allows us to 
essentially reduce the size of optimization problem employed in the optimal selection of measurement 
poses without significant impact on the positioning accuracy. 

To demonstrate the validity of the proposed approach, the benchmark example from 
Subsection 2.6.1 has been solved using the strategies #1 and #2, assuming that the total number of 
measurements is equal to 12 (i.e. using different factorizations such as 12 1 ,  6 2 , 4 3 , 3 4 ). 
Relevant results are presented in Table 2.10 and Figure 2.15, where the first lines of the table give the 
accuracy 0  and the last line shows the computational time. As follows from them, the factorization 
12 1 , where all measurement poses are different, is only 6% better comparing to the factorization 
3 4  where measurements are repeated 4 times in 3 different configurations. At the same time, the 
factorizations  6 2  and 4 3  give almost the same results as the factorization 12 1 . On the other 
hand, the computational time of the optimal pose generation for 3m   is much lower than for 12m  . 
Hence, as follows from these results, repeating experiments with optimal plans obtained for the lower 
number of configurations provides almost the same performance as "full-dimensional" optimal plan. 
Obviously, this reduction of the measurement pose number is very attractive from an engineering 
viewpoint. This technique will be used for the selection of optimal measurement configurations in the 
following chapters. 
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Table 2.10 Efficiency of the quasi-optimal solutions (evaluated via 0 ) for calibration experiment 
design problem: case of a 6-dof manipulator, repetitions of measurements 

Number of 
measurements 

Accuracy 
[mm] 

Number of different configurations 

3m   4m   6m   12m   

3km   min
0  0.0637 

(3 1)     

4km   min
0   

0.0521 
(4 1)    

6km   min
0  0.0450 

(3 2)   
0.0426 

(6 1)   

12km   min
0  0.0319 

(3 4)  
0.0301 
(4 3)  

0.0301 
(6 2)  

0.0301 
(12 1)  

Computational time 38min 45min 56min 1.6h 

 

Figure 2.15 Comparison of quasi-optimal and optimal solutions for selection of measurement 
configurations for robot calibration 

Summarizing Section 2.6, it can be concluded that the proposed enhancements of the dedicated 
numerical routines allows us to improve essentially the efficiency of the measurement pose selection 
procedure for calibration. In particular, the application of parallel and hybrid approaches significantly 
reduce the computational time (by the factor of 65 for the considered benchmark example). However, 
the most essential result has been achieved by replacing the strictly optimal solutions by quasi-optimal 
ones, obtained by simple repetition of measurement configurations corresponding to the lower-
dimensional case. For instance, repeating three times the configurations obtained for 4m   leads to 
the accuracy loss by 0.32% only comparing to the optimal solution for 12m   (while the 
computational time reduces more than twice). This idea gives us very efficient way of simplification 
of the measurement pose selection procedure, which is attractive for practice engineers. 
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2.7 SUMMARY 

The chapter is devoted to the enhancement of measurement and optimization techniques 
employed in geometric calibration of serial industrial robots. The main contributions are in the area of 
calibration experiments design, i.e. selection of the optimal measurement configurations. In contrast to 
other works, the developed approach is based on a new industry-oriented performance measure, which 
evaluates the robot positioning accuracy after geometric error compensation.  

In more details, the contributions of Chapter 2 can be formulated as follows 

(i) Enhanced partial pose measurement method that allows us to increase the 
identification accuracy and to avoid straightforward computation of the manipulator 
end-effector orientation, which causes the non-homogeneity in relevant performance 
measure used for the identification and corresponding numerical difficulties. 

(ii) New approach for the calibration experiment design that employs a new industry-
oriented performance measure, which evaluates the quality of calibration plan via the 
manipulator positioning accuracy after errors compensation, and takes into account the 
industrial requirements of the prescribed manufacturing task (using one or several test-
poses).  

(iii) Efficient measurement poses selection technique that is based on the reduction of the 
relevant optimization problem dimension (and replication of the measurement poses) 
and computation of the optimal measurement configurations using parallel and hybrid 
algorithms, which allow us to decrease the computational time while achieving the 
desired accuracy. 

The main results of Chapter 2 have been presented in international conferences (Klimchik et al., 
2013f), (Klimchik et al., 2012b), (Wu et al., 2013b) (Klimchik et al., 2011),(Wu et al., 2013a), and 
have been submitted to international journal (Klimchik et al., 2013g). 

It should be mentioned that the developed techniques can be generalized for the case of 
elastostatic calibration. However, some modifications are required to take into account the differences 
in corresponding manipulator models and experimental setup. These issues will be considered in 
Chapter 3. 
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This chapter focuses on the design of experiments for calibration of manipulator elastostatic 
parameters. Particular attention is paid to the enhancement of modeling, measurement and 
identification methods employed in the elastostatic calibration of heavy industrial robot of serial 
architecture, taking into account the particularity of the close-loop chain created by the gravity 
compensator. It presents the enhanced partial pose measurement method for the case of elastostatic 
calibration and applies the weighted least square technique for corresponding parameter identification. 
In this Chapter, the proposed performance measure is extended for the case of optimal measurement 
configurations selection in elastostatic calibration experiments. In contrast to previous works, the 
developed manipulator stiffness model is able to take into account the impact of the gravity 
compensator. 
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3.1 INTRODUCTION 

In robotic-based machining, the manipulators are required to perform certain tasks, where 
essential forces are applied to the end-effector, and create non-negligible deformations in links and 
joints. As follows from our experiences, these deformations may be responsible for over 90% of the 
end-effector positioning errors in machining applications. Usually, these errors can be compensated by 
adjusting the controller input program (describing the target trajectory), which requires knowledge of 
exact values of the elastostatic parameters. In contrast to geometric parameters, the elastostatic ones 
are usually not provided by robot manufacturers. Therefore, the only way is to identify them from 
experiments, either virtual experiments in CAD environment or real experiments in robotic work-cell. 
It should be noted that the accuracy of the identified parameters highly depends on the precision of 
measurement system and the set of robot configurations used for calibration, which consequently 
affects the quality of the machining process. This Chapter focuses on the robotic manipulator accuracy 
improvement via optimization of measurement configurations used in elastostatic calibration. 

The problem of elastostatic calibration has increasingly attracted attention of robot experts in 
the last decades (Duelen and Schröer, 1991; Gong et al., 2000). In the early studies, it was claimed that 
the non-geometric errors are responsible for only 10% of total positioning inaccuracy (Renders et al., 
1991). Later, it was discovered by several researchers that the compliance errors have major impacts 
on the robot accuracy in the case when the external loadings are essential (Meggiolaro et al., 2005). 
Since then, many approaches have been developed for calibration of elastostatic parameters that differ 
in modeling methods, measurement setups and application areas (see Section 1.4). There are also 
several works devoted to simultaneous calibration of both geometric and non-geometric parameters, 
where extended models have been proposed to include different error sources such as gear 
transmission backlash, thermal expansion, etc (Gong et al., 2000; Judd and Knasinski, 1990; Renders 
et al., 1991). Similar to geometric parameters, the elastostatic ones are also assumed to be constant and 
do not vary with the robot configurations. However, the Cartesian stiffness matrix, which influences 
the end-effector positioning accuracy under the loadings, highly depends on the robot poses.  

In the majority of related works devoted to manipulator elastostatic calibration, the 
measurement configurations have been determined either randomly or were regularly spread in the 
robot workspace. To our knowledge, only a single work addressed the problem of measurement 
configuration selection for elastostatic calibration, using some intuitive approaches based on 
manipulator kinematic performance (Dumas et al., 2012). However, it is not evident that the kinematic 
criteria are able to provide the optimal measurement configurations for elastostatic calibration, which 
provide the desired positioning accuracy. For this reason, this problem requires additional study, 
where the particularities of elastostatic model must be taken into account.  

It should be mentioned that elastostatic calibration differs from the geometric ones in many 
aspects. Therefore, relevant calibration procedure introduced in Chapter 2 should be revised. The 
modified procedure includes five steps, which are schematically presented in Figure 3.1 and briefly 
described below.  

S1: The first step (modeling) is aimed at developing suitable (i.e. complete and non-redundant) 
stiffness model for elastostatic calibration and extended geometric model, which properly describe the 
manipulator elastostatic properties and the end-effector deflections.  
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Figure 3.1 Schematics of robot elastostatic calibration procedure 

S2: The second step (design of experiments) is aimed at choosing optimal measurement 
configurations and corresponding external forces causing elastostatic deflections. It should rely on an 
appropriate performance measure, which takes into account specificities of the technological process. 
and work-cell geometric and physical constraints. The primary goal here is to achieve the desired 
positioning accuracy using minimum number of calibration experiments (for given statistical 
properties of the measurement noise). 

S3: The third step (measurement) deals with carrying out calibration experiments using the 
obtained configurations. In contrast to geometric calibration, here the end-effector position should be 
measured twice for each robot configuration: before and after applying the loading. The required end-
effector displacements are computed as their difference. In addition, the applied loadings should be 
measured using the force sensor. The output of this step is the set of the end-effector deflections and 
corresponding loadings. 

S4: At the fourth step (identification), the desired elastostatic parameters are computed using 
extended geometric and elastostatic models, measured deflections and forces, and proper identification 
algorithm. At this step, the identification accuracy for the model parameters as well as the expected 
positioning accuracy are also evaluated. 
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S5: At the last step (implementation), the elastostatic errors are compensated by adjusting the 
controller input program (describing the target trajectory) using the identified parameters. Here, the 
on-line compensation strategy is hardly applicable since it is usually impossible to integrate the 
manipulator elastostatic model in industrial robot controller.  

As follows from the detailed literature analysis presented in Section 1.4, there are still a number 
of open questions in elastostatic calibration that require further investigation. Among them, there is a 
problem of enhancement of elastostatic calibration techniques by means of the design of experiments, 
which is the goal of this Chapter. It is clear that some results presented in Chapter 2 can be adapted for 
elastostatic calibration. So, particular problems to be addressed here can be specified as follows  

(i) Extension of the test-pose based approach and corresponding performance measure for 
elastostatic calibration experiment design, which allows achieving the highest 
positioning accuracy after compliance errors compensation. 

(ii) Adapting the developed measurement pose selection technique, enhanced partial pose 
measurement method and corresponding identification algorithm to the case of 
elastostatic calibration. 

(iii) Development of methodology for modeling and elastostatic calibration of heavy 
industrial robots with gravity compensators. 

To address these problems, the remainder of the chapter is organized as follows: Section 3.2 
presents a suitable manipulator elastostatic model for calibration proposes. In Section 3.3, the 
enhanced partial pose measurement method is extended for the elastostatic case. Section 3.4 focuses 
on identification algorithms for manipulator elastostatic parameters (which employs the weighted 
square technique). Section 3.5 deals with optimal selection of measurement poses for elastostatic 
calibration based on an extension of the proposed test-pose approach. In Section 3.6, a new approach 
is developed for calibration of heavy industrial robots with gravity compensator. Finally, Section 3.7 
summarizes the main results and contributions of this chapter. 

3.2 MANIPULATOR ELASTOSTATIC MODELING  

As follows from the literature review presented in Section 1.3, the virtual joint method (VJM) is 
the most attractive method for manipulator stiffness modeling (Chen and Kao, 2000; Majou et al., 
2007; Quennouelle, 2009). In the frame of this approach, there has been proposed several alternative 
techniques for manipulator stiffness modeling that differ in number of parameters and dimensions of 
virtual springs describing the link/joint elastostatic properties (Gosselin and Zhang, 2002; Pashkevich 
et al., 2009a; Zhang, 2000). This Section presents the stiffness modeling background for a general 
serial manipulator, justifies the utilization of one-dimensional springs for milling robots and focuses 
on the identifiability issues. 

3.2.1 Stiffness modeling background 

Let us consider the elastostatic model of a general serial manipulator, which consists of a fixed 
“Base”, a serial chain of flexible “Links”, a number of flexible actuated joints “Ac” and an “End-
effector” (Figure 3.2). In this work, it is assumed that all links are separated by either rotational or 
translational joints. Such architecture can be found in most of industrial serial robots.  
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Figure 3.2 Serial manipulator and its VJM-based elastostatic model 

To evaluate the stiffness of the considered manipulator, let us apply the virtual joint method 
(Gosselin, 1990), which is based on the lump modeling approach. According to this approach, the 
original rigid model should be extended by adding virtual joints (localized springs), which describe 
elastic deformations of the links. Besides, virtual springs are included in the actuated joints, in order to 
take into account the stiffness of the transmission and control loop. Under these assumptions, the 
kinematic chain can be described by the following serial architecture (Pashkevich et al., 2009a): 

(a) a rigid link between the manipulator base and the first actuated joint described by the 
constant homogeneous transformation matrix BaseT ; 

(b) several flexible actuated joints described by the homogeneous matrix function 

Joint Ac( )j j j
q T , which depends on the actuated joint variable j

q  and the virtual joint 
variable Ac

j  that takes into account the joint compliances;  

(c) a set of rigid links, which are described by the constant homogeneous transformation 
matrices Link

jT ; 

(d) a set of 6-d.o.f. virtual joints that take into account the link flexibility and are 
described by the homogeneous matrix function VJM Link( )jT θ  which depends on the 
virtual joint variables Link x y z φx φy φz( , , , , , )j j j j j j j     θ  corresponding to the 
translation/rotation deflections in/around the axes x, y, z; 

(e) a rigid link from the last joint to the end-effector, described by the constant 
homogeneous matrix transformation ToolT . 

In the frame of these notations, the extended kinematic expression defining the end-effector 
location subject to variations of all joint coordinates can be described as a sequence of homogeneous 
transformations 

 1 1 1 1
Base Joint Ac Link VJM Link Joint Ac Link VJM Link Tool( ) ( ) ... ( ) ( )n n n n

q q                 T T T T T T T T Tθ θ  (3.1) 

where n  is the number of links/joints, and the components Base Joint Link VJM, (.),   ,  (.)j j jT T T T  and ToolT  
may be factorized with respect to the terms including the joint variables (in order to simplify the 
computation of the derivatives). It should be mentioned that here the transformation matrices 

Base Link Tool,  and jT T T are treated as knowns and they depend on the geometric parameters Base Link,  π π , 

Toolπ  that have been already calibrated (see Chapter 2).  

Using this expression, the manipulator end-effector location ( , )Tt p φ  (position 
( , , )T

x y zp p pp  and orientation x y z( , , )T  φ ) can be extracted from the homogeneous matrix T  
using the technique proposed in (Pashkevich et al., 2009a) and described as  

 ( , )gt q θ  (3.2) 

where the function (.)g  defines the manipulator extended geometric model, including the vector 

1 2 n( , , ..., )T
q q qq  that aggregates all actuated coordinates, and the vector 2 θ1 n( , , ..., )T  θ  that 
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collects all virtual joint coordinates, θn  is the total number of the virtual joints. It should be noted that 
here the values of coordinates q  are completely defined by the robot controller, while the values of 
virtual joint coordinates θ  depend on the external loading w  applied at the robot end-effector. 

To take into account manipulator stiffness properties, let us assume that variations in the virtual 
joint variables θ  generate the reaction forces/torques applied to the corresponding links that are 
evaluated by the following linear equation (that can be treated as a generalized Hooke's law for the 
manipulator in virtual joint space) 

 θ θ τ K θ  (3.3) 

where the vector (1) (2) (nθ)
θ θ θ θ( , , ..., )T  τ  aggregates the virtual joint reactions, 

(1) (2) (nθ)
θ θ θ θ( , , ..., )diagK K K K  is the aggregated virtual spring stiffness matrix, and (i)

K  is the spring 
stiffness matrix of the corresponding link/joint. It should be noted that the size of this matrix varies 
with the dimension of corresponding virtual springs, usually, 1 1  for joint stiffness and 6 6  for link 
stiffness.  

Further, let us apply the principle of virtual work assuming that the joints are given small, 
arbitrary virtual displacements Δθ  in the equilibrium neighbourhood. Then, the virtual work of the 
external wrench w  applied to the end-effector along the corresponding displacement Δt  is equal to  

 θ·( ) ΔT
w  w J θ  (3.4) 

where θ ( , ) /g  J q θ θ  is the Jacobian with respect to the virtual joints θ , which can be computed 
analytically or semi-analytically, using the factorization technique presented in Section 2.2. On the 
other hand, for the internal forces θτ , the virtual work is equal to  

 θ ΔT
w   τ θ  (3.5) 

Therefore, since in the static equilibrium the total virtual work is equal to zero for any virtual 
displacement, the equilibrium conditions can be derived as  

 θ θ
T τ J w  (3.6) 

This gives additional expressions describing the force/torque propagation from the joints to the end-
effector that should be considered simultaneously with the extended geometric equation (3.2). 

Combining the virtual joint reaction equation (3.3), the equilibrium condition (3.6) and the 
linearized geometric model θΔ  t J θ , it is possible to write static equations  

 θ θ θ; 0T     t J J K θθ w  (3.7) 

describing elastostatic properties of the considered manipulator. In these equations, the end-effector 
displacement Δt  is treated as the model input and the external wrench w  is the model output, which 
corresponds to the representation of the manipulator stiffness matrix in the following form 

  C·Δw K t  (3.8) 

where CK  is the desired Cartesian stiffness matrix of the considered manipulator for given robot 
configuration q . To find this matrix, equation (3.7) can be presented in the matrix form  

 
θ

θ
T

θ

     
           

0 J w t

J K θ 0
 (3.9) 

Solving this system of equations for w , yields the following force-deflection relation  

 1
θ θ θΔ T   t J K J w   (3.10) 
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that allows us to express the manipulator Cartesian stiffness matrix as 

   11
C θ θ θ

T
  K J K J  (3.11) 

where the matrix 1
θ
K  is usually denoted as θk  and so-called the compliance matrix.  

In engineering practice, the Cartesian stiffness matrix CK  is treated as the most detailed 
description of manipulator elastostatic properties at given workspace point, but it varies from one 
configuration to another. To compute this matrix, it is required to have the manipulator elastostatic 
parameters θk  that should be identified via relevant calibration experiments. It should be mentioned 
that that force-deflection relation (3.10) is not yet suitable for identification of the elastostatic 
parameters. Therefore, the following Subsection focuses on driving stiffness model suitable for 
calibration. 

3.2.2 Stiffness model suitable for calibration  

Similar to the geometric calibration, suitability of the stiffness model for the elastostatic 
calibration is related to the notions of completeness and irreducibility. Here, to be complete, the model 
should contain a sufficient number of the elastostatic parameters that are able to describe all possible 
end-effector deflections caused by the external loadings. The irreducibility means that the model 
includes a minimum set of independent parameters that ensures its completeness. To obtain the desired 
stiffness model that satisfy these two requirements, the corresponding force-deflection relation (3.10) 
should be presented in a more convenient form and should be analyzed using the algebraic tools 
developed for geometric calibration (see Section 2.2). First, let us address this problem in the general 
case, assuming that both the link and joint stiffness are essential. 

To estimate the desired matrices describing the elasticity of the manipulator components (i.e., 
compliances of the virtual springs presented in Figure 3.2), the corresponding elastostatic model (3.8) 
should be rewritten as 

  (i) (i) (i)
θ θ θ1

·
n T

i
    J k Jt w  (3.12) 

where t  is the vector of the end-effector deflection under the loading w , the matrices (i)
θk  denote 

the link/joint compliances that should be identified via calibration experiments, and the matrices (i)
θJ  

are corresponding sub-Jacobians obtained by fractioning of the aggregated Jacobian (1) (2)
θ θ θ[ , ,...]J J J . 

Further, to be in agreement with conventional identification techniques, the model (3.12) should be 
presented as a linear function with respect to the desired parameters (i.e., the elements of the matrices 

(i)
θk ), which are convenient to collect in a single vector θ,1 θ,2 θ,nθ( , ,... )T

k k kk . This yields the 
following expression 

 )·( ,k A q wt k  (3.13) 

where (.)kA  is so-called observation matrix that defines the mapping between the unknown 
compliance vector k  and the end-effector deflections t  under the loading w  for the manipulator 
configuration q . It can be proved that the matrix 

kA  can be expressed via the columns of the 
Jacobian θJ  and the external wrench w  in the following way 

 θ,1 θ,1 θ, θ, θ,nθ θ,nθ,  ... , , ... ,k

T T T

i i
   A J J Jw wJ J Jw  (3.14) 

where θ,iJ  is the -thi column vector of the aggregated Jacobian matrix.  

In practice, to estimate the manipulator elastostatic parameters, the user must carry out 
sufficient number of experiments that provide sets of input variables { , , 1, }i i i mq w  and output 



3.2  Manipulator elastostatic modeling 97 

variables { , 1, }i i mt . Corresponding system of identification equations can be presented in an 
aggregated form as 

 ·aa k At k  (3.15) 

where the vector 1 2( , ,..., )T

a m    t t t t  collects the end-effector deflections of all experiments, 

 1 2;  ; ... ;ka k k kmA A A A  denotes the aggregated observation matrix, m  is the number of experiments, 
and the subscript ' a ' is referred to the operation of aggregation. To be suitable for the identification, 
the system of equations (3.15) should be non-singular, i.e., the rank of the matrix 

kaA  should be equal 
to the number of parameters to be identified n . This condition may be satisfied only when the 
manipulator elastostatic model is irreducible and number of measurement configurations is high 
enough. If the stiffness model includes redundant parameters, i.e., ( )karank nA , it is possible to 
apply the model reduction technique presented in geometric modeling part of this work (see 
Sections 1.2 and 2.2), but the matrix 

kaA  should be used for the analysis instead of the aggregated 
Jacobian matrix 

aJ . It allows us to separate the set of the desired parameters into three groups of 
identifiable, non-identifiable or semi-identifiable ones (using SVD decomposition technique, for 
instance). 

One of the essential particularities of elastostatic calibration is that the dimension of the desired 
parameter vector k  is very high in general case (because each compliance matrix (i)

θk  includes 21 
elements). For example, the elastostatic properties of a 6-dof serial manipulator with revolute joints 
can be descried using 1-dimensional spring for each actuated joint and 6-dof spring for each link. In 
total, it gives 258 parameters whose identifiability requires further study. However, as follows from 
our experiences, for serial industrial robots employed in machining, the links are usually quite rigid. 
So, the link compliances are dominated by the actuated joints compliances. For this reason, in this 
work, it is possible to use six 1-dof virtual springs localized at the joints to represent the manipulator 
elastostatic properties. It is clear that such a model is complete in geometric sense because it allows us 
to describe any end-effector deflections (expect some singular configurations that are usually out of 
the workspace suitable for machining application). It can be also proved that the model is irreducible 
and includes only identifiable parameters (six joint compliances); here, the rank of the relevant matrix 

kaA  is equal to six. In the remainder of this work, such representation will be further used to describe 
the elastostatic properties of a serial industrial robot employed in a machining work-cell.  

Using this approach, let us derive the elastostatic model of the robotic manipulator KUKA 
KR270, which is used for experimental verification. Corresponding VJM-based presentation is shown 
in Figure 3.3, where the manipulator compliance is taken into account by one-dimensional virtual 
springs localized at the actuated joints. In this case, the extended geometric model of the manipulator 
includes sequentially 

(a) a rigid link between the manipulator base and the first actuated joint 1q  described by 
the constant homogeneous transformation matrix BaseT , whose geometric parameters 
has been already identified; 

(b) six 1-dof flexible actuated joints with additional virtual springs describing the joint 
stiffness in the control loop, which are defined by the homogeneous matrix functions 

 Joint ( ),  1,6j jq j T , where jq  are the actuated joint coordinates and j  are the 
virtual joint variables;  

(c) a set of rigid links described by the constant homogeneous transformation matrices 

 Link ,  1,6j
j T , which integrate the identified geometric parameters; 
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(d) a rigid link from the last joint 6q  to the end-effector, described by the constant 
homogeneous transformation matrix ToolT . 

 

Figure 3.3 Serial industrial robot KUKR KR270 and its VJM-based stiffness model 

For this manipulator, the end-effector location subject to variations of all joint coordinates can 
be extracted from the following homogeneous transformation 
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that is further used for computing the Jacobian matrices in the calibration equation (3.13). It should be 
noted that this kinematic model includes 12 variables: 6 actuated joint coordinates 1 2 6( , ,..., )q q qq  
defining the robot configuration, and 6 virtual joint coordinates 1 2 6( , ,..., )  θ  defining deflections 
in the actuated joints. Using equations (3.7), relevant force-deflection relation can be presented as 

 θ θ
T  θ k J w  (3.17) 

which allows us to compute the joint deflections θ  assuming that the joint compliance matrix θk  is 
known. Combining equations (3.16) and (3.17), one can obtain desired elastostatic model in the form 
(3.11), which is used for identification. So, here the parameters of interest are the diagonal elements of 
the 6 6  compliance matrix θ θ1 θ2 θ6( , ,..., )diag k k kk , which are collected in a single vector k  that 
should be identified via calibration based on expression (3.13). It can be proved that the observation 
matrix 

kA  for the considered manipulator has the following form 
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 (3.18) 

where θ,ijJ  is the -tij h  element of the Jacobian matrix θJ . It should be noted that in the above equation, 
the Jacobian matrix θJ  is equivalent to the kinematic Jacobian qJ  (since all the virtual springs are 
localized at the actuated joints). In the following Sections, this model will be further used for 
numerical computations required for the elastostatic calibration of KUKA KR270 robot as well as in 
the corresponding calibration experiments design. 
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Summarizing this Section in general, it is worth mentioning that the presented modeling 
technique for elastostatic calibration is based on both the extended geometric model and lumped 
stiffness model. It is shown that the model with six one-dimensional localized virtual springs at 
actuated joints is irreducible and suitable for calibration. More details concerning relevant 
measurement methods and identification algorithms are in the focus of the following Sections. 

3.3 MEASUREMENT METHODS FOR ELASTOSTATIC CALIBRATION  

For the elastostatic calibration, the measurement system must provide a set of end-effector 
deflections corresponding to certain external forces/torques. To measure the deflections, the same 
technique can be applied as in geometric calibration, including replacing the orientation components 
by the position ones corresponding to several reference points (enhance partial pose measurement 
technique, as it has been called in Section 2.3). However, to measure the force/torque magnitude and 
direction, some additional devices are required. In addition, in the manipulator elastostatic calibration, 
a crucial issue in the measurement procedure is related to the force application. These problems are 
sequentially discussed in the following subsections. 

3.3.1 Conventional measurement methods 

One major difference between the measurement methods for geometric and elastostatic 
calibration is that the latter requires two types of measurements: (i) measurement of the manipulator 
pose (the end-effector coordinates), and (ii) measurement of the external force/torque applied to the 
end-effector (the magnitude and the direction). Figure 3.4 presents a classification of measurement 
methods for manipulator pose data and external force/torque components. Similar to the previous 
chapter (see Section 2.3), these methods are divided into two main groups (open-loop and closed-loop 
ones) that differ in experimental setup that may include or not include some mechanical constraints.  

 

Figure 3.4 Measurement methods for elastostatic calibration  

In the case of elastostatic calibration, the closed-loop measurement employs the idea of using 
physical constraints imposed between the manipulator end-effector and certain fixed environment (a 
rigid table fixed on the work-cell floor, for instance). When robot approaches corresponding target 
points, the reaction force is generated due to the resistance of the rigid obstacle, and causes joint 
deflections. To measure the generated forces/torques at the contact point, some special force sensors 
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are required, which allow to obtain one- or multi-dimensional force components. These sensors may 
be located at the robot base, at the end-effector or at the robot wrist, depending on particular 
experimental setup. Corresponding experimental data include both the measured forces iw  and the 
obtained joint deflections iq . It should be stressed that here, in contrast to geometric calibration, user 
can define several target points for the controller to generate different forces/torques for the same 
physical constraint.  

This technique has clear advantage in terms of the simplicity of force application, where no 
additional loading setup is required. However, the calibration results highly depend on the sensitivity 
and flexibility of the force measurement device employed in the measurement setup. Besides, in 
addition to the difficulty of implementation of the mechanical constraints within the work-cell 
environment, it essentially reduces the calibration workspace to a quite limited area (the surface of the 
table, for instance). This also induces some limitations in selection of optimal measurement 
configurations for calibration. 

On the other hand, the open-loop measurement methods can be easily adapted to elastostatic 
calibration. Similar to the geometric case, some external devices for measuring the manipulator end-
effector position/location coordinates are required. However here, the same reference points on the 
end-effector should be measured twice, before and after applying test loadings. To measure the 
Cartesian coordinates of these reference points, different measurement devices can be used. For 
example, (Alici and Shirinzadeh, 2005), (Meggiolaro et al., 2005) and (Nubiola and Bonev, 2012) 
used the laser-based sensing system; (Wang et al., 2009) and (Lightcap et al., 2008) utilized the 
coordinates measurement machine. It is clear that in all cases the calibration results are highly 
influenced by the precision of the corresponding measurement device and the location of the reference 
points. These issues require additional investigations and will be discussed in the following sections. 

An evident advantage of the open-loop technique is that the diversity of measurement 
configurations is higher than the closed-loop methods. However, the force application procedure is 
more complicated. To generate the elastostatic deflections, different experimental setup can be used, 
which usually include some mounting tools and weights. It should be stressed that these experimental 
setups introduce additional limitations for measurement configuration selection. Nevertheless, usually 
these limitations do not affect significantly the calibration accuracy and the workspace suitable for 
calibration is still larger than in the case of the closed-loop methods. For this reason, this approach is 
widely used in the area of elastostatic parameters identification. 

In engineering practice, applying of vertical gravity force is the most attractive solution. Such a 
force can be generated using the weights attached to the robot end-effector, the corresponding 
experimental setup is presented in Figure 3.5(a). It should be mentioned that using such simple 
arrangement and a specific tool, it is possible to generate both force and torque at the reference points. 
This approach has been used in (Dumas et al., 2012) where the authors connected some weights to the 
robot end-effector with a chain. Similarly, in (Lightcap et al., 2008), a weight rack was directly 
mounted on the end-effector. However in some cases, applying only the vertical force may be not 
sufficient for the identification of the desired stiffness parameters. For instance, if any actuated joint 
axis is parallel to the force direction, the corresponding joint compliances cannot be identified. For this 
reason, several researchers attempted to change the force direction at the robot end-effector using the 
so-called cable pulley system. This simple mechanism is illustrated in Figure 3.5(b) and allows us to 
alter the force direction from the vertical one, while applying the gravity force only. In addition, here it 
is possible to generate any desired external loadings (force and torque within the allowable limits) 
without additional expensive devices (Alici and Shirinzadeh, 2005; Wang et al., 2009). A typical 
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example of such experimental setup was given in (Wang et al., 2009), where the authors used an air 
cylinder with a pulley relayed string, where the force magnitude can be adjusted by changing the air 
pressure, and the force direction can be altered by changing the pulley position.  

 

Figure 3.5 Mechanisms for the force/torque application using the gravity force 

To obtain the required experimental data, the magnitude and direction of the applied loading 
must be carefully measured. In general, they can be measured using multi-directional force sensor or a 
dynamometer and position measurement system. In the case where the gravity force is applied without 
the pulley system, it is required to measure the force magnitude only while the force direction is 
already known (Dumas et al., 2012). In order to measure 3-dimensional force, in the work (Alici and 
Shirinzadeh, 2005) a wrist force/torque sensor was used. In another work (Wang et al., 2009), the 
authors have used ATI Omega force sensor and avoid utilization of the torque measurement since it 
has rather low accuracy. In contrast, in (Meggiolaro et al., 2005), a 6-dimensional force/torque sensor 
was used, but the precision of the measurement system and its possible influences on the final 
identification accuracy were not reported. The above described force application methods and the 
related measurement setups used in the existing works are summarized in Table 3.1. 

Table 3.1 Force application methods and measurement equipments used in existing works 

Publication Robot 
Force application 

method 
Force measurement 

equipment 

(Dumas et al., 2012) KUKA KR240-2 Connecting chain 
Spring balance 

(1D) 

(Lightcap et al., 2008) 
Mitsubishi PA10-

6CE 
Weight rack 

Known 
(1D) 

(Wang et al., 2009) ABB IRB4400 Pulley relayed string 
ATI Omega force sensor 

(3D) 

(Alici and Shirinzadeh, 
2005)  

Motoman SK120 Cable-pulley system 
Wrist force/torque sensor 

(3D) 

(Meggiolaro et al., 2005) 
Patient positioning 

system 
— 

6-axis force/torque sensor 
(6D) 

As follows from the presented review, the closed-loop measurement methods are simpler in 
terms of force application, but provide rather limited choices of measurement configurations. While 
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the open-loop methods have more complicated loading setup, however, wider range of calibration 
workspace. Taking into account the importance of optimal selection of measurement configurations 
and to simplify the experimental setup, in this work, the open-loop technique is used with the gravity 
force only. However, to improve the elastostatic calibration accuracy, the enhanced partial pose 
measurement technique proposed in the previous chapter for geometric calibration (see Section 2.3) 
can be also adapted here. This issue is discussed in details in the following Subsection.  

3.3.2 Enhanced partial pose measurement method in elastostatic calibration 

Similar to geometric calibration, the equations for the elastostatic parameters identification 
include both position and orientation components of the residuals. In engineering practice, the position 
residuals are obtained directly from conventional measurement equipment that usually provide the 
Cartesian coordinates of the reference point. On the other hand, the orientation residuals are evaluated 
indirectly via relevant trigonometric computations, using position residuals of several additional 
reference points. To avoid these computations that may provoke loss of accuracy and the problem of 
non-homogeneity in relevant optimization objective, in Section 2.3 it has been proposed the enhanced 
partial pose measurement method. Its basic idea is the following: (i) exclude from the original system 
the identification equations corresponding to the orientation residuals; (ii) include in it auxiliary 
identification equations corresponding to the position residuals of the additional reference points. Let 
us apply this idea to the case of elastostatic calibration and present some details. 

For the conventional full pose measurement technique, the desired elastostatic parameters k  are 
identified from the system of equations  

 ( , ) ,   1,2,...i k i i i m   t A q w k  (3.19) 

that are based on linearized model (3.13). Here, ( , , , , , )T

i xi yi zi xi yi zip p p          t  is the 6-
dimensional end-effector deflection vector that includes both position ( , , )T

i xi yi zip p p    p  and 
orientation ( , , )T

i xi yi zi      φ components. It is clear that this system of linear equations can be 
solved with respect to vector k  if the number of experiments m  is high enough and the measurement 
configurations defined by the input variables { , , 1, }i i i mq w  ensure non-singularity of relevant 
aggregated observation matrix 

kaA  (assuming that all model parameters are identifiable, see 
subsection 3.2.2). For this technique, each set of input variables (including the manipulator 
configuration 

iq  and the applied wrench 
iw ) produces six scalar equations to be used for the 

identification. Corresponding least-square optimization problem that allows us to obtain the desired 
parameters k  can be expressed as  
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( , ) min
m

k i i

i

i



   
k

t A q w k  (3.20) 

where the residual components are obviously non-homogeneous (for example, millimeters and 
radians). In some cases, these components are normalized before computing the squared sum, but the 
weight assigning procedure is a non-trivial step that also affects the identification accuracy. 

Similar to geometric calibration, the main difficulty with the conventional method is that the 
orientation components ( . ). T

yixi zi    cannot be measured directly, and they are computed using 
excessive number of position measurements for the same configuration. In addition to the problem of 
non-homogeneity in the optimization objective function, this also causes some loss of accuracy. So, to 
overcome this difficulty, let us adapt the proposed technique of enhanced partial pose measurement to 
the case of elastostatic calibration. In the frame of this method, the optimization problem (2.31) is 
reformulated using only the data directly available from the measurement system, i.e. the Cartesian 
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coordinates of all reference points j

ip  (see Figure 2.7). This idea allows us to obtain homogeneous 
identification equations where each residual has the same unit (millimeter, for instance). The 
corresponding optimization problem is rewritten as follows 

 
2( )

1 1

( , ) min
m n

j j p

i ik i

i j 

   
k

p A q w k  (3.21) 

Here, the matrix ( ) (.)j p

kA  with the superscripts " ( )p " denotes the position rows of the corresponding 
observation matrix (.)k

jA , the index " i " defines the manipulator configuration number, and the index 
" j " denotes the reference point number. It should be mentioned that comparing to geometric 
calibration, where only partial Jacobian matrix ( )j p

J  is used, computation of matrix j

kA  requires the 
complete Jacobian matrix θ

jJ  (see Eq.(3.18)). More detailed presentation of the above matrices will be 
given in the following Section. It is intuitively clear that this approach is promising with respect to the 
identification accuracy and the level of improvement is comparable with the case of geometric 
calibration (for particular case study presented in Section 2.3, the accuracy has been improved by 
283%).  

Comparing to the geometric calibration, there exist some particularities in elastostatic 
calibration concerning the experimental setup. One important issue is related to obtaining the end-
effector deflections, where the measurement of reference point position must be carried out twice for 
each robot configuration (before and after applying external loadings). Another problem is related to 
the magnitude and direction of the applied force/torque as well as their measurements. Besides, the 
measurement setup in the case of elastostatic calibration includes not only the device for end-effector 
coordinate measurement (i.e. laser tracker), but also some special calibration tools for force 
application and corresponding sensors for measuring its magnitude and direction. It should be noted 
that the magnitude of end-effector deflections should be higher than resolution/precision of position 
measurement device and robot repeatability. For this reason, maximum robot payload is preferable to 
be used in the calibration experiments. In more details, the measurement procedure for manipulator 
elastostatic calibration is given below: 

Step 0 Move the manipulator to a pre-selected configuration 
iq ;  

Step 1 Measure the positions of several reference points 0
j

ip  located at the manipulator end-
effector using coordinates measurement system (without external loading); 

Step 2 Apply external loadings at the robot end-effector with a given magnitude (within the 
allowable robot payload) and predefined direction; 

Step 3 Measure the positions of the same reference points j

ip  using coordinates measurement 
system (with external loadings);  

Step 4a Measure the directions of applied forces/torques iw using either the coordinates 
measurement system or multi-directional force sensor; 

Step 4b Measure the magnitudes of applied forces/torques iw  using the force sensor; 

Step 5 Collect the experimental data  ,j

i ip w ; 

Step 6 Repeat steps from 0 to 5 for m  robot configurations. 

Corresponding experimental setup and measurement devices used in this work are shown in Figure 3.6. 
They include two main components:  
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(i)  a laser tracker for the position coordinates measurement of references point #1-#3 
before and after applying external loading (in steps 1 and 3, respectively), as well as 
the position of the force application point (in step 4a);  

(ii)  a dynamometer for the measurement of force magnitude (in step 4b).  

 

 

Figure 3.6 Measurement steps for elastostatic calibration (steps 1 to 4) 

As follows from the relevant review (see previous Subsection), applying forces in different 
directions is often limited by the experimental environment. For this reason, for calibration of an 
industrial machining robot, the gravity force is preferable. However, it should be mentioned that 
applying only the gravity force may be not sufficient for identification of the desired set of 
manipulator elastostatic parameters. For instance, in serial industrial robots, the first actuated joint 
usually has a strictly vertical axis. In this case, to identify the joint compliance, the forces/torques 
applied to the robot end-effector must have horizontal (non-vertical) component. Nevertheless, this 
requirement can still be satisfied by using some additional mechanical equipment (see Figure 3.5), 
which changes the external force direction.  

The end-effector used in our elastostatic calibration experiments is presented in Figure 3.7 (it is 
also referred to as "calibration tool"). It includes four markers whose coordinates are measured by the 
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laser tracker. The gravity force is applied at the end-point 
wip  of this tool, allowing us to generate 

both external force and torque simultaneously. It should be stressed that the force/torque application 
point is different from the reference points j

ip  used for the deflection evaluation. So, the tool 
transformations should be different in corresponding equations for computing the wrench iw  and the 
position residuals j

ip . It is also worth mentioning that the calibration tool flexibility is not critical 
here, since the deflections are measured at the base of this tool. 

 

Figure 3.7 End-effector and force measurement device used for elastostatic calibration 
experiments 

To compute the external wrench j

iw  generated by the gravity force, it is necessary to take into 
account the calibration tool geometry (see Figure 3.7c). Assuming that the gravity force is applied at 
point 

wip , the original wrench at this point can be presented as the combination of the force 
(0,  0,  )T

i ziFF  and the torque (0,  0,  0)T

i M . Taking into account that the deflections are measured 
at the reference points j

ip , corresponding forces and torques at these points should be recomputed as  

 ;      ( )j j j

i i i i wi i   F F M F p p  (3.22) 

where the position coordinates 
wip  are provided by the laser tracker (using the position measurements 

for a set of points on an arc, whose center point is 
wip ). This yields the following expression for the 

torque components  
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where the vector j j

i wi i  p p p  describes the offset between the force application point and the 
reference point used for deflection evaluation. Finally, the recomputed wrench at each reference point 
can be presented as 
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  0 0 0
T

j j j

i z z yi z xiF F p F p  w  (3.24) 

As follows from this expression, the component j

zip  does not influence on the wrench j

iw . It means 
that the z-coordinate of 

wip  is not important and can be defined arbitrarily.  

Summarizing this Section in general, it is worth mentioning that the enhanced partial pose 
measurement method can be well-adapted to elastostatic calibration, where the same level of accuracy 
improvement can be potentially achieved as in the geometric calibration. The presented measurement 
setup has some advantages in terms of its simplicity and allows us to avoid using expensive multi-
dimensional force/torque measurement equipment. Some experimental results based on this 
measurement setup will be presented in Chapter 4. 

3.4 IDENTIFICATION OF ELASTOSTATIC PARAMETERS 

Using the manipulator elastostatic model presented in Section 3.2 and the experimental data 
obtained by the enhanced partial pose measurement method (the end-effector position deflections and 
corresponding external forces/torques), it is possible to identify the desired elastostatic parameters. 
This section presents the dedicated identification algorithm and relevant accuracy analysis. 

3.4.1 Identification algorithm for the enhanced partial pose method 

Let us present basic equations allowing us to compute desired elastostatic parameters from 
experimental data obtained using the partial pose measurement method. In the frame of this method, 
the coordinates of several reference points for a given configuration are used directly without 
computing the orientation angles. Similar to geometric calibration, it should also give essential 
advantages in terms of identification accuracy. However, the structure of the input data for the 
identification algorithm is different. Here, instead of the absolute position of reference points, the 
relative deflections p  and corresponding external loadings w  should be used; the actuated joint 
coordinates are required as well. Another particularity is related to the geometric model that should be 
extended to take into account both the actuated joint coordinates q  and the virtual spring coordinates 
θ . It should be stressed that at this step, elastostatic calibration, the manipulator geometric parameters 
π , the base baseT  and tool tool

jT  transformations are known and obtained via geometric calibration.  

In general case, the manipulator extended geometric model can be presented as the product of 
the following homogeneous transformation matrices  

  base robot tool,  j j  T T T q θ T  (3.25) 

where index j  corresponds to the reference point number, the matrix function  robot ,  T q θ  describes 
the manipulator geometry with respect to the actuated joint coordinates q  and the virtual joint 
coordinates θ . To identify the desired elastostatic parameters, it is required to have the manipulator 
end-effector deflection caused by two different loadings, one of which can be assigned to zero. In this 
case, it is possible to distinguish two manipulator modes: (i) unloaded mode when the external wrench 

0w  and (ii) loaded mode when 0w . It should be stressed that in the unloaded mode, the joint 
deflections are equal to zero, so the matrix function  robot ,  T q θ  can be replaced by  robot ,  T q 0 . 
Using these notations, the deflection matrix for the -thj  reference point can be expressed as  

     base robot robot tool,  ,  j j    T T T q θ T q 0 T  (3.26) 

Since any homogeneous transformation matrix can be split into rotational b
aR  and translational b

ap  
parts (see Eq.(2.40)), the latter equation can be rewritten in the following form 
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where the vector robotp  and the matrix robotR  are defined by the expression 
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R p
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0
 (3.28) 

It is worth mentioning that here the joint deflections θ  depend on the applied external wrench w , the 
vector of the actuated joint coordinates q  and the elastostatic parameters matrix θk  to be identified 
(see Eq.(3.17)). 

It should be mentioned that Eq.(3.27) is not suitable for calibration straightforwardly since the 
desired parameters θk  are integrated in the matrix functions robot (.)p  and robot (.)R . To solve this 
problem, this equation should be linearized with respect to the set of desired compliance parameters k  
and presented in the following form 

 
( )

( )

j j p
k

j j
k


   
    

      

p A
k

φ A
 (3.29) 

where jp  and jφ  are the end-effector position and orientation deflections, the matrices ( )j p
kA  and 

( )j
k
A  correspond to the position and orientation parts of the observation matrix j

kA . According to 
expression (3.14), the -thc  column vector of this matrix can be presented as  

 θ,, θ,
j T

c

j j

k c cA J J w  (3.30) 

where the 6 1  column vector of the Jacobian θ ,i cJ  contains the position part )
θ
(

,i c

pJ  and orientation part 
)

θ
(

,i c

J ; the external wrench w  includes the external 3 1  force vector F  and 3 1  torque vector M . So, 
the above expression can be rewritten as 
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After some transformations, the matrix columns ( )
,

j p
ki cA  and ( )

,
j
ki c
A  can be presented as 

 
( )

θ,c θ,c θ,c θ,c

( )
θ,c θ,c

( ) ( ) ( ) ( )
,

( ) ( ) ( )
θ,c θ,

( )
, c

j p j p j p jj p T

k c

j p j

T

j j

k c

T T



  

     

     

F MA J J J J

A J J J JF M
 (3.32) 

and finally, the matrices ( )j p
kA  and ( )j

k
A  are computed using the above derived expressions and 

presented as the following form 
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where " θn " refers to the total number of virtual joints. It should be stressed that here, in contrast to 
geometric calibration, the matrices ( )

k

j pA  and ( )
k

j A  depend on both position and orientation parts of 
the Jacobian.  

In the frame of enhanced partial pose measurement method, each calibration experiment 
produces a set of vectors { , , 1, }j

i i i j n wp q , which define the position deflections of the robot end-
effector, the corresponding actuator coordinates and the external wrenches respectively. So, the 
calibration procedure is treated as the best fitting of the experimental data  , 1, , 1, ,,j

i i i i m j n  wp q  
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by the stiffness model that can be solved using the standard least-square technique. Corresponding 
system of equations for elastostatic identification can be presented as  

 ( ) ( , )      1, , 1,j j p

i k i i i m j n    p A q w k  (3.34) 

where j

ip  is the end-effector deflection for the -thi  configuration that is computed using the 
measurement data of -thj  reference point before and after loading. In this case, only the positioning 
part of the observation matrix ( )j p

kiA  is required, and it can be computed using equations (3.32) and 
(3.33); here vector k  aggregates the desired joint compliances, which are the parameters to be 
identified.  

Applying the least-square technique to the system of equations (3.34), corresponding 
optimization problem can be expressed as  

    
 

( ) ( )

,
1 1

min
i i

m n
T

j p j j p j
ki i ki i

i j 

   q w
A k p A k p  (3.35) 

whose solution provides the estimates of the desired vector of compliances parameters 
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  
        
 k A A A p  (3.36) 

Using the above presented expressions, the elastostatic parameters can be identified via the 
three-step identification algorithm presented in Figure 3.8. At the first step, the manipulator base baseT  
and tool tool

jT transformations are identified, using dedicated algorithm presented in Subsection 2.4.1. 
It provides the input data for the second step, where the manipulator geometric parameters π  are 
estimated using Eq.(2.53), based on the obtained optimal measurement configurations. To achieve the 
desired accuracy, these two steps should be repeated iteratively. At the last step, the compliance 
parameters k  are obtained via Eq.(3.36), based on preselected measurement configurations (which 
differ from the ones in geometric calibration) and corresponding external loading. 

 

Figure 3.8 Three-step algorithm for manipulator elastostatic parameters identification 

The above presented algorithm is able to provide good estimation of the desired parameters, in 
the case when the experimental data provided in the measurement step are perfect. However, in 
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practice, the measurement data are corrupted by noise that is usually non-negligible. Its impact is 
estimated in the following subsection. 

3.4.2 Influence of the measurement errors on the identification accuracy 

It is obvious that errors cannot be avoided in the calibration experiments. In practice, the 
calibration results can be affected by different types of errors: the measurement errors induced by the 
precision of external devices, providing the reference point position coordinates; the errors caused by 
the precision of relevant force sensors that give the measurement of force components, etc. As follows 
from our experience, if the joint encoder resolution is higher than 0.01deg and the force measurement 
error is less than 0.5%, their influences are negligible compared to the precision of position 
measurement system, which in practice is about 0.05mm. Therefore, it is reasonable to evaluate the 
calibration accuracy under the influence of the position measurement errors only. Below, these errors 
will be treated as independent identically distributed (i.i.d.) random values with zero expectation and 
standard deviation  . 

Taking into account the above mentioned measurement errors properties, corresponding 
position deflections at the reference points can be expressed as  

 ( )j j p j

i ki i   p A k ε  (3.37) 

where k  is the true value of the unknown parameter and j
iε  is the measurement errors at the -thj

reference point in the -thi  experiment. Using expression (3.36), the estimates of the compliance 
parameter vector k̂  can be presented as 
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where the second term describes the stochastic component. As follows from this equation, expression 
(3.36) provides the unbiased estimates of the desired parameters, i.e., 

 ˆ( )E k k  (3.39) 

where (.)E  denotes the mathematical expectation of the random values. It can be also proved that the 
covariance matrix of k̂  that defines the identification accuracy can be computed as 
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Taking into account statistical properties of the measurement errors, i.e., 
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the intermediate term in Eq.(3.40) can be written as 
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So finally, the desired covariance matrix can be simplified to 
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Hence, for the considered problem, the impact of the measurement errors is defined by the 
matrix sum ( ) ( )

1 1

j p T j pm n

i j ki ki   A A  that is also called the information matrix. The obtained covariance 
matrix can be used for both the accuracy evaluation of the identified parameters and for the design of 
calibration experiments. On the other hand, this matrix is derived using the assumption that the 
measurement errors statistical properties are similar for all directions and for all robot configurations. 
However in practice, this assumption is not always valid and in some cases the properties of the 
measurement noise depend on robot configuration and vary from one direction to another. This issue is 
in the focus of the following subsection. 

3.4.3 Weighted least square technique for elastostatic calibration 

To identify the desired parameters, most of the robot calibration procedures employ the ordinary 
least-square technique (Rao and Toutenburg, 1999), where all identification equations are treated 
similarly, with the same weights. This approach perfectly suits to the measurement systems that 
provide roughly the same precision in all directions and in all workspace points. Mathematically, it 
corresponds to the i.i.d.-hypothesis concerning the measurement noise, such that the calibration results 
can be treated as unbiased estimates of the desired parameters. However, as follows from our 
experience, at least one of these assumptions may be violated because the precision of the position 
measurement system (laser tracker, for instance) used in the calibration experiments essentially 
depends on the direction and the target marker location in the manipulator workspace. 

To overcome this difficulty, the weighted least-square technique can be applied (Sheather, 
2009). As known from literature, for the linear regression it gives rather good improvement and allows 
essentially reducing the measurement errors impact. In the frame of this technique, it is assumed that 
the measurement noise varies from one configuration to another. In this case, to improve the 
identification accuracy, it is reasonable to modify the optimization function (3.35) and rewrite it in the 
following form 
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where the matrix ( , , )jj
i

j j
xi yi zidiag w w wW  defines the corresponding weighting coefficients. This 

leads to a slightly different expression for the parameters estimates 
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and the covariance matrix that can be computed as 
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where the matrix  2j j jT
i i iEΣ ε ε  denotes the measurement errors covariance and has the following 

structure 
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More detailed analysis of expressions (3.46) and (3.47) shows that the best selection of the weighting 
coefficients corresponds to the equation 22j

i
j
i ΣW I  that gives the following solution 
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 1j j
i iw   (3.48) 

where j
i  is the standard deviation of the measurement error at the -thj  reference point in the -thi

identification expression. Corresponding covariance matrix is expressed as 
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Hence, to assign the weighting coefficients, the measurement noise variance should be known. 
However, in practice, exact values of ,  ,j j j

xi yi zi    are unknown and the estimates can be used only. 
On the other hand, as follows from practical experience, small variations in the weighting coefficients 
are not critical and they do not affect significantly the identification accuracy. Nevertheless, if the 
weights are assigned using small number of experiments, the identification results can be 
unpredictably affected. Therefore, the problem of computing the weighting coefficients that are able to 
ensure robustness of the identification algorithm is important.  

It should be mentioned that computing j
i  based on a few measurements may have opposite 

effect, which decreases the identification accuracy. For this reason, relevant experiments should be 
carried out using a sufficient number of points in the vicinity of the same robot configuration that 
allows us to estimate s.t.d. of measurement noise for x-, y- and z-directions with a quite good precision. 
As follows from our experience, the obtained values of j

i  can be considerably higher than the 
claimed accuracy of the measurement system (0.01mm for the laser tracker used in our experiments). 
For this reason, it is proposed to introduce constant component in the j

i  that is equal to the claimed 
precision of measurement system 0 . This idea leads to the following expression for the weighting 
coefficients 

 0

0 ˆ
j

i j
i

w


  


 
 (3.50) 

where   is a scalar factor that allows us to tune the impact of the variance estimate ˆ j
i , 0  is 

normalization component that also allows us to avoid division by zero. It should be noted that this 
approach can be also applied to geometric calibration, corresponding accuracy improvement of 
calibration results will be illustrated in Chapter 4. 

As follows from above presented expressions, in order to have the smallest dispersion of the 
identification errors, it is required to have all elements in the covariance matrix as small as possible. 
This is obviously a multi-objective optimization problem, and the minimization of one element may 
increase others. In the literature, to reduce this problem to a mono-objective one, numerous scalar 
criteria have been proposed and provide rather different optimal solutions. Hence, it is quite important 
to select a proper optimization objective that ensures the best positioning accuracy of the manipulator 
under the loading. For this reason, the next section focuses on adapting the proposed test-pose based 
approach (see Chapter 2) for optimal measurement configuration selection in the case of elastostatic 
calibration, and ensures the best end-effector accuracy under external loadings. It is worth mentioning 
that the above described weighted least square technique can be only applied after obtaining real 
experiments data for the estimation of j

i . So, the design of calibration experiments should be based 
on the covariance matrix (3.43) obtained under the assumption of the i.i.d. measurement noise. 
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3.5 OPTIMAL SELECTION OF MEASUREMENT CONFIGURATIONS 

The problem of optimal measurement configurations selection for elastostatic calibration has 
been studied in very limited number of works. (Carbone and Ceccarelli, 2010; Zhou et al., 2010). On 
the other hand, numerous results in design of experiments for geometric calibration can be hardly 
applied here in straightforward way (due to essential difference between the manipulator geometric 
and elastostatic models). So, it is reasonable to extend the test-pose based approach developed in 
Chapter 2 for the case of elastostatic calibration. This approach is aimed at improving the manipulator 
positioning accuracy after calibration that perfectly suits to the industrial application considered in this 
work. This section presents detailed description of the test-pose based approach in elastostatic 
calibration as well as the efficiency improvement techniques for optimal measurement pose selection. 

3.5.1 Extension of the test-pose based approach for elastostatic calibration 

As follows from the previous study devoted to experiment design in geometric calibration, 
proper selection of the measurement configurations allows us to achieve an essential reduction of the 
measurement error impact. However, there exists an open question related to the numerical evaluation 
of this impact. Corresponding performance measure can be treated as the objective function in relevant 
optimization problem, which produces the desired plan of experiments. In the literature, the 
conventional approaches focus on minimizing the parameter identification errors based on evaluation 
of the corresponding covariance matrix. In contrast, the proposed test-pose based approach aims at 
improving the manipulator positioning accuracy, which obviously suits better the industrial 
applications. The benefits of this approach in terms of calibration efficiency have been demonstrated 
for the geometric case. So, it is reasonable to adapt the proposed approach and corresponding 
performance measure to elastostatic calibration.  

 

Figure 3.9 Dispersion of the manipulator positioning errors after calibration (for a given 
machining configuration and test loading) 

The notion of manipulator positioning accuracy in elastostatic calibration is illustrated in 
Figure 3.9, where four manipulator configurations are presented (the desired one, the configuration 
under loading before calibration, as well as the configurations after calibration with and without 
loadings). Here, it is assumed that the desired end-effector position dp  is given or can be computed 
for given configuration 0q  using manipulator direct geometric model, i.e.,  0 ,d gp q 0 . Since the 
external test loading 0w  causes the end-effector deflection p , the end-effector position before 
calibration differs from the desired one and corresponds to the point  00 ,gp q θ . For each set of 
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experimental data, calibration yields the parameters estimate vector ˆ
ik  that allows us to compensate 

the positioning errors by computing the deflection ip  and locate the end-effector at the point 1p , 
which is symmetrical to the point 0p  with respect to the target position dp  (i.e. 1 02 d p p p ). Then, 
after applying the same test loading, the end-effector is located at position ˆ

ip , which goes closer to the 
target position dp  but slightly differs from it. 

It should be noted that the obtained position ˆ
ip  highly depends on particular measurement noise 

and in practice, the points  ˆ , 1,2,...i i p  are distributed around the target position dp . These points 
define the dispersion of the positioning errors after compensation ˆ

i dp p . This vector varies with each 
particular set of experimental data, so it is reasonable to estimate it from statistical point of view 
taking into account measurement noise properties. This allows us to introduce the performance 
measure 0 , which is the root-mean-square distance between the desired position and the end-effector 
position after calibration, i.e.  

  2
0 ˆ

iE   (3.51) 

where ˆ ˆ
i i d  p p  corresponds to the dispersion distance for each set of experiment data. This 

statistical performance measure is used below to describe the elastostatic errors compensation 
efficiency and is treated as the objective function for corresponding optimization problem. To apply 
this performance measure to calibration experiment design, it is necessary to take into account that the 
influence of the compliance errors on the end-effector position varies with the manipulator 
configuration and throughout the workspace. So, an important idea of the test-pose based approach is 
that the desired accuracy is required to be achieved for rather limited workspace area, which allows us 
to limit the possible manipulator configurations by a single one (the machining configuration). Using 
these ideas, the problem of interest here is formulated as follows 

Problem: To find an optimal plan of experiments, providing the measurement configurations 
and corresponding external loadings { , ,  1, }i i i mq w , which allows us to achieve the best 
compensation of positioning errors (evaluated via 0 ) for a given manipulator test-pose and test-
loading 0 0{ , }q w  defined in relevant technological process. 

In the frame of the adapted notations and assuming that the manipulator elastostatic model is 
linearized, the distance ˆ

i  can be computed as the Euclidean norm of the vector ( )
0
p

i k i p A k , where 
the subscript ' 0 ' in the observation matrix ( )

0
p

kA  is related to the test pose 0q  and 0
ˆδ i i k k k  is the 

difference between the estimated and true values of the robot compliance parameters. Further, taking 
into account expression (3.38) and the assumptions concerning the measurement errors that are treated 
as unbiased and i.i.d. random variables (see Subsection 3.4.2), it can be easily proved that the 
expectation   0iE  p . So, the points 

kp  that the end-effector attains after compensation are centred 
around the desired position 

dp , as shown in Figure 3.9.  

The dispersion of these points can be evaluated by the variance  T

i iE  p p  which in 
accordance with the above definition is equal to the square of the performance measure 0 . This 
yields the expression 

  2 ( ) ( )
0 0 0

p T p

k k

T
E   k AA k  (3.52) 

which can be rewritten as  

   2 ( ) ( )
0 0 0trace p T p

k

T

kE   A k k A  (3.53) 
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using the identity equation trace( )T T   p p p p . Further, by applying Eq. (3.43) and taking into 
account that the term ( )T

E  k k  is the covariance matrix of the compliance parameters estimates, i.e., 
ˆ( ) cov( )T

E   k k k , the desired expression can be presented in the final form as  
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As follows from this expression, 2
0  can be treated as the weighted trace of the covariance matrix 

ˆcov( )k , where the weighting coefficients are computed using the test-pose joint coordinates 0q . 
Hence, the proposed performance measure has obvious advantage compared to the previous ones (see 
Section 1.4), which operate with "pure" trace of this matrix and involve straightforward summing of 
its diagonal elements (which may be of different units). 

Based on this performance measure, the calibration experiments design can be reduced to the 
following optimization problem  
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whose solution gives a set of the desired measurement configurations  1,..., mq q  and corresponding 
external loadings  1,..., mw w . Hence, in the frame of the proposed approach, the calibration quality 
(evaluated via the error compensation accuracy 0 ) is completely defined by the set of the observation 
matrices  ( ) ( )

1 ,...,p p

k kmA A  that depend on the manipulator configurations  1,..., mq q , while the matrix 
( )

0
p

kA  corresponding to the test-pose 0q  defines the weighting coefficients. A typical example of 
machining and measurement configurations is shown in Figure 3.10. It is obvious that they can be 
quite different from each other and the manipulator can be equipped with different end-effectors.  

 

Figure 3.10 A typical machining configuration and a measurement configuration 

To find the optimal set of measurement configurations, it is necessary to take into account 
particular constraints in the optimization problems (2.63) and (2.67). Assuming that these problems 
are solved subject to 

  ( , ) 0,      1,
i i i

i r C q w  (3.56) 

where matrices ( , )
i i i

C q w  describe constraints, which vary with different calibration cases and 
corresponding experiment environment. In particular, these constraints are imposed by the work-cell 
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design particularities and usually include the manipulator joint limits, the work-cell space limits, 
measurement equipment limitations, upper boundary of the applied forces and torques, etc. It should 
be also mentioned that some constraints are imposed to avoid collisions between the work-cell 
components and the manipulator. Besides, some directions of the applied loading are preferable for the 
reason of practical implementation. For instance, for the case of elastostatic calibration, they can be 
expressed as 
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where min
i

q  and max
i

q  are the joint limits, maxF  is the robot maximum payload, min
zp  is the minimum 

height between the end-point of the calibration tool and the work-cell floor, min
r  is the minimum 

radius to avoid collisions between the applied loading and robot body, min is the minimum angle 
between the direction of calibration tool and z-axis of robot base frame to ensure that the vertical 
loading can be applied, min

i
p  and max

i
p  are the boundaries of work-cell space. The efficiency of the 

proposed approach will be illustrated in Subsection 3.5.3 (for the case of a two-link planar 
manipulator). In Chapter 4, this approach will be applied to the calibration of a 6-dof industrial robot 
of KUKA family.  

3.5.2 Generalization for the case of multiple test configurations 

The above presented approach is developed for the accuracy evaluation based on a single test 
configuration. However, in engineering practice, it is often required to perform machining along rather 
long and complex trajectories. This type of motions may require significant changes in the 
manipulator configuration and the desired accuracy should be achieved for the whole machining 
trajectory. For this reason, it is reasonable to generalize the test-pose based approach for the case 
where changes in the manipulator configurations are essential during the machining process. In this 
case, the goal of the calibration experiments design is to choose the optimal measurement 
configurations that minimize the maximum end-effector positioning errors after compensation 
(evaluated via 0 ) for the entire trajectory. 

 

Figure 3.11 Definition of the performance measure for selection of measurement configurations  
that ensures high precision along the given trajectory 
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This idea is illustrated in Figure 2.10, where the desired trajectory and the trajectory after 
compensation are presented. It is assumed that the compensation is based on the parameter estimates 
ˆ

ik  obtained using the i-th set of measurement data. The desired trajectory is defined by a set of node 
points { ,  1,2,...}ds s p , corresponding manipulator configurations can be found from dsp  via the 
inverse kinematics. The distances between corresponding points of two trajectories are denoted as 

ˆ{ ,  , 1,2,...}is i s  . This allows us to define a set of manipulator test-poses 0{ ,  1, }s ss nq  and to 
introduce the following performance measure 

  2

0max ˆmax ( )is
s

E   (3.58) 

that evaluates the highest positioning accuracy along the trajectory. It is clear that this definition 
perfectly corresponds to the engineering practice, where the quality of the machining is usually 
evaluated by the highest machining error. Hence, in this case, the problem of interest can be defined as 
follows 

Problem: To find an optimal set of measurement configurations and corresponding external 
loadings { , ,  1, }i i i mq w , which allow us to achieve the best compensation of positioning errors 
(evaluated via the maximum root-mean-square distance 0max ), during the entire machining trajectory 
that is defined using multiple manipulator test-poses and test-loadings 0 0{ , ,  1,.2,...}s s s q w . 

Using the above presented ideas and applying the technique from Subsection 3.5.1, the 
generalized performance measure for multiple test configurations can be presented as 
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where the matrix ( )
0
p

k sA  is computed for the test-pose joint coordinates 0sq and corresponding test-
loading 0sw , the superscript " ( )p " denotes the positional components of the corresponding matrices, 
the subscript " 0s " indicates the -ths  test configuration, the subscript " i " and superscript " j " refer to 
the measurement configuration number and the reference point number, respectively. Using this 
performance measure, the calibration experiment design (i.e., optimal selection of measurement 
configurations) reduces to the following min-max problem 
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 (3.60) 

whose solution provides a set of the desired manipulator configurations  1,..., mq q  and corresponding 
external loadings  1,..., mw w . It is clear that the problem (2.67) is numerically more complicated 
compared to the previous one (2.64), but it suits better to the notion of machining accuracy studied in 
this work. To demonstrate the efficiency of the proposed approach, following subsection contains an 
illustrative example that deals with experiment design of elastostatic calibration of a 2-dof manipulator, 
more complicated examples are presented in Chapter 4. 

3.5.3 Evaluation of the test-pose based approach for elastostatic calibration 

Let us illustrate the benefits of the test-pose based approach by an example of the elastostatic 
calibration of a two-link manipulator. It is assumed that the geometric parameters are already 
calibrated and only the joint compliances  1 2,

T
k k k  are unknown, which should be identified by 
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means of calibration. Under these assumptions, the basic expression for elastostatic identification can 
be written as follows 

 1( )

2

( , )
x p

k
y

p k

p k

   
       

A q w  (3.61) 

where the position part of the observation matrix ( )p
kA  can be computed using Eq.(3.32) and Eq.(3.33), 

which yield the matrix column expression in the following form ( )
q,c, q,c

p

c

T

k A J J F . In addition, it can 
be proved that one of the variables describing the force direction and joint angle 1q  is redundant, so it 
is reasonable to fix the measurement force direction and to consider only 1q  as a variable. This allows 
us to reduce the number of design variables for the corresponding optimization problem. Besides, 
since here each measurement provides two deflections ( , )x yp p   and exactly two parameters 

 1 2,k k   should be identified, it is possible to calibrate them from a single measurement pose. So, 
taking into account all above mentioned properties and some basic expressions from previous 
subsections, corresponding optimization problem can be formulated as follows 

   
1 2

( ) ( ) 1( ) ( )
0 0

{ , }
trace minp pp T p T

k kk k
q q


A AA A  (3.62) 

where matrix ( )
0
p

kA  is defined by the given test-pose and test-loading. 

The simulation results for this case study have been obtained for the following parameters: the 
link lengths 1 1 ml  , 2 0.8 ml  , the force magnitude 1 NF  , measurement noise parameter 0.1 
mm. It is assumed that the manipulator test configuration is  0 60 , 30  q , corresponding optimal 
measurement configurations have been obtained by solving the optimization problem (3.62) and 
presented in Figure 3.12. 

 

Figure 3.12 The test pose and corresponding optimal measurement configurations for 2-dof planar 
manipulator  

As follows from this figure, the optimal measurement configurations are quite different from the 
test configuration and are located rather far from it in the workspace. For illustration purposes, all 
possible solutions have been also obtained using a grid (since relevant optimization problem contains 
only two variables). This allows us to compare different measurement pose "quality" from the 
manipulator accuracy point of view (evaluated via 0 ). Relevant plots are presented in Figure 3.13, 
which also shows the accuracy improvement factor 0 0

test    that compares the calibration results 
with the case when the test pose and measurement pose are identical. For this particular example, 
accuracy improvement factor is equal to 5.4, but it is worth mentioning that it varies with the defined 
test-pose. 
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Figure 3.13 Selection of optimal measurement configuration for a given test pose (case of 2-dof 
planar manipulator, identification of two parameters 1 2,k k   from a single 
measurement providing deflections ,x yp p  ) 

To demonstrate the advantages of the proposed approach, several different plans of calibration 
experiments have been compared, taking into account both identification accuracy for the parameters 

1 2,k k   and the manipulator positioning accuracy after calibration 0 . The examined calibration plans 
have been obtained both in straightforward way (i.e. using the test pose as the measurement pose) and 
also via optimization using different criteria. Relevant data are presented in Table 3.2 and in 
Figure 3.14, where 

1k and 
2k  denote the identification accuracy for the stiffness parameters 1 2,k k   

respectively.  

 

Figure 3.14 The Pareto-optimal solutions with respect to the criteria 
1 2
,k k   and 0  

As follows from these results, all examined calibration plans are Pareto-optimal with respect to 
the set of criteria (

1 2 0, ,k k   ). In particular, A-, D-, and E-optimality principles yield rather good 
solutions from the identification accuracy point of view, providing non-equal but rather low 

1k and 

2k ; however, corresponding positioning accuracy after calibration 0  is very moderate (nevertheless, 
they are better than the straightforward solution by the factors of 2.2, 4.8 and 1.4, respectively). In 
contrast, 4O -optimality gives almost the same values of 

1k and 
2k , but the manipulator positioning 

accuracy is the worst among all plans. It is worth mentioning that from an engineering point of view it 
is not reasonable to try to achieve the same accuracy for the parameters 1k  and 2k  because it is 
evident that the precision of 1k  has higher influence on the end-effector positioning accuracy than the 
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one of 2k . This idea is indirectly implemented in the proposed test-pose approach, which provides the 
lowest value of 

1k  and the best positioning accuracy 0 , which is 5.4 times better than the 
straightforward solution where the test pose is used for the measurement. 

Table 3.2 Comparison of manipulator accuracy after calibration for different principles for the 
measurement pose selection (2-dof manipulator, measurement noise 0.1  mm) 

Experiment design principle 

Identification accuracy  

[rad/N 310 ] Manipulator 
accuracy 0  [mm] 

Improvement factor

0 0
test    

1k  
2k  

Using test-pose as 
measurement pose  

0.0888 0.2818 2.1265 1.0 

A-optimality 0.1123 0.1948 0.9544 2.2 

D-, 1O -optimality 0.0765 0.2804 0.4425 4.8 

E-, 3O -optimality 0.1416 0.1840 1.5167 1.4 

4O -optimality 0.1707 0.1840 2.2061 0.9 

Measurement pose selection 
via minimization of 0  0.0719 0.3175 0.3915 5.4 

Hence, the presented results confirm that the proposed approach is attractive for industry and 
provides the highest end-effector positioning accuracy. In contrast to conventional ones, it allows us to 
balance the influence of each compliance parameter on the robot accuracy. It is worth mentioning that 
for the above presented example, relevant optimization problem contains only two variables. However, 
in practice, for a problem of real dimension, the number of variables can be huge, which increases the 
computational complexity and computing time. So, the next subsection deals with efficiency 
improvement of the optimization routines employed in the measurement configuration selection. 

3.5.4 Efficiency improvement of measurement pose selection 

The procedure of solving the optimization problems (2.64) and (2.67) could be very tedious for 
the case when numerous measurement configurations are required for the calibration experiments. For 
this reason, the problem of interest is to find reasonable number of different measurement 
configurations and to improve the efficiency of optimization routines employed in the measurement 
pose selection. To achieve this goal, several heuristic techniques considered in Section 2.6 can be 
applied here in order to reduce the computational time while achieving acceptable accuracy: 

(i) Fixing the measurement loading. In general case, the loadings  , 1,i i mw  applied in 
calibration experiments should be considered as the design variables of the optimization problems. In 
fact, to ensure high calibration accuracy, the maximum allowable loading should be applied in order to 
distinguish better the end-effector deflection from measurement noise. On the other hand, the force 
direction may vary but it is usually limited by the experimental environment. So in this work, it is 
proposed to fix the measurement loading and eliminate the variables 

i
w  from the optimization 

problem, which obviously allows us to reduce considerably the computational efforts (for instance, for 
serial 6-dof manipulator, number of variables has been reduced from 12 to 6 for each configuration).  
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(ii) Applying parallel computations. In order to obtain the global optimum for the considered 
problem, it is required numerous repetitions of the optimization with different starting points. As 
follows from our experience, even using thousands of them may be not enough for finding the global 
optimum but the required computational time could overcome hundreds of hours. So, it is reasonable 
to apply parallel computing technique to speed up the design process and to take advantage of multi-
core architecture in modern computers. Relevant computations in this work are carried out on a 
workstation with 12 cores, which allows us to decrease the computational time by the factor of 10-12.  

(iii) Using hybrid approach. As follows from our study of optimization algorithms, the gradient 
search based method is able to find global minimum, however, it requires numerous repetitions with 
different initial values, which is very expensive from computational point of view. On the other hand, 
another examined technique, genetic algorithm, provides slightly lower accuracy but less computation 
time. For this reason, to take the advantages of both algorithms, it has been proposed a hybrid 
approach that combines these two techniques. The idea is to modify the starting point selection 
strategy for the gradient search in order to improve the algorithm efficiency. To ensure better 
convergence to the global minimum, it has been proposed to use the best half of final solutions 
obtained from GA as the starting points for gradient search. This hybrid approach has been proved to 
be quite efficient in terms of computational time (improved by a factor of 5) and allows us to avoid 
convergence to the local minima. 

(iv) Reducing the problem dimension. In engineering practice, to improve the calibration 
accuracy, the conventional approach is to increase the number of experiments and solve the 
corresponding full-scale optimization problem for measurement poses selection. However from our 
experience, the diversity of the measurement configurations does no contribute essentially to the 
accuracy improvement if the total number of experiments is high enough. So, it is proposed to repeat 
the calibration experiments using several times the same measurement configurations, which allows us 
to simplify the optimization process (with lower dimension) and speed up the measurements. To 
demonstrate the efficiency of this technique, a comparison of quasi-optimal and optimal solutions for 
measurement pose selection for elastostatic calibration is presented in Table 3.3. Here, it is assumed 
that the total number of measurements 12m  . The last column in this table presents the manipulator 
accuracy corresponding to the solution of full-scale optimization problem (using 12 different 
configurations), while the other columns show the accuracy achieved using the quasi-optimal solutions 
associated with lower-dimensional optimizations.  

Table 3.3 Comparison of quasi-optimal and optimal solutions for measurement pose selection 
for elastostatic calibration (case of 6-dof manipulator, total number of measurements 

12m  ) 

 Number of different poses  number of repetitions ( m k ) 

Factorization 62  43  34  26  112  

min
0 , [mm 310 ] 2.445 2.338 2.335 2.283 2.282 

Loss of accuracy 7.14% 2.45% 2.32% <0.01% 0% 

Computational time 25min 48min 1.0h 1.3h 1.7h 

As follows from the table, the achieved manipulator accuracy for calibration using only 3 
different measurement configurations (repeated the experiment for 4 times) is only 2.45% less than 
using 12 different configurations. It is clear that using the quasi-optimal solutions for selection of 
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measurement configurations allows us to reduce essentially the computational efforts but without 
significant impact on the manipulator positioning accuracy. 

The contributions of above presented techniques (i),...,(iv) to the efficiency improvement for 
measurement pose selection are summarized in Table 3.4. The improvement factors for these 
techniques vary from 2 to 12 in terms of the computational time. As a result, the computational time 
can be decreased from over 200 hours to 48 minutes, which corresponds to the total improvement 
factor 250. 

Table 3.4 Efficiency improvement factors for applying different heuristic techniques (case of 
optimal pose selection with 12 measurements) 

Efficiency improvement technique Computational time Improvement factor  

Conventional optimization technique >200h  

Proposed heuristic techniques   

   (i) Fixing the measurement loading 99.3h 2.0 

   (ii) Parallel computing  8.5h 11.7 

   (iii) Hybrid approach 1.7h 5.0 

   (iv) Quasi-optimal solutions 48min 2.2 

Total >200h48min 250.0 

Summarizing Section 3.5 in general, it is worth mentioning that the proposed test-pose based 
approach and corresponding efficiency improvement techniques are well-adapted for optimal 
measurement configurations selection in elastostatic calibration. It allows us to increase essentially the 
calibration efficiency (in terms of computational time for solving relevant optimization problem) and 
to achieve the highest manipulator positioning accuracy after compensation. It should be mentioned 
that the obtained results are based on the assumption that the considered manipulator is strictly serial. 
However in practice, the industrial serial manipulators may include closed-loop chain (induced by 
gravity compensator, for instance). In this case, corresponding stiffness modeling approach and 
calibration method should be revised, which is in the focus of the next section. 

3.6 ELASTOSTATIC CALIBRATION FOR HEAVY INDUSTRIAL ROBOTS WITH GRAVITY 

COMPENSATORS 

For most of the heavy industrial robots used for high-precision and high-speed machining, to 
enhance robot stiffness, manufacturers tend to increase the manipulator link cross-sections that 
obviously leads to an increase of the robot mass. For this reason, the gravity forces applied to the 
manipulator components become non-negligible and also contribute to the position errors. To 
overcome this difficulty, the robots are usually equipped with different types of gravity compensators, 
which, however, considerably complicate the stiffness modeling of those heavy manipulators. To our 
knowledge, the problem of stiffness modeling and identification for the heavy manipulators with 
gravity compensators has not been studied in detail yet. Currently, the main activity in this area 
focuses on the gravity compensator design, which differs in kinematics and/or may also employ some 
software tools embedded in the robot controller (De Luca and Flacco, 2011; Takesue et al., 2011). 
This Section presents a VJM-based stiffness model for a serial manipulator with a compensator 
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attached to the second joint. The main attention is paid to the identification of the model parameters 
and calibration experiment planning. 

3.6.1 Mechanics of gravity compensator 

The mechanical structure of the gravity compensator under study is presented in Figure 3.15. 
The compensator incorporates a passive spring attached to the first and second links, which creates a 
closed loop that generates the torque applied to the second joint of the manipulator. This design allows 
us to limit the stiffness model modification by incorporating in it the compensator torque 

cM  and 
adjusting the virtual joint stiffness matrix θK  that here depends on the second joint variable 2q  only. 

 

Figure 3.15 Gravity compensator and its model 

The compensator geometrical model includes three node points P0, P1, P2, where two distances 

1 2,P P , 0 2,P P  are constants and the third one 0 1,P P  varies and depends on 2q . Let us denote them 

1 2,L P P , 0 2,a P P , 0 1,s P P . Besides, let us introduce the angles  ,   and the distances 
xa  and 

ya , whose geometrical meaning is clear from Figure 3.15b. Using these notations, the variable s  
describing the compensator spring deflection can be computed from the expression  

 2 2 2
2cos( )2s a La L q     (3.63) 

which defines the function  2s q . This mechanical design allows to balance the manipulator weight 
for any given configuration by adjusting the compensator spring preloading. It can be taken into 
account by introducing the zero-value of the compensator length 0s  corresponding to the unloaded 
spring. Under this assumption, the compensator force applied to the node P1 can be expressed as 
follows 

 0( )s c sF K s   (3.64) 

where cK  is the compensator spring stiffness. Further, the angle   between the compensator links 
P0P1 and P1P2 (see Figure 3.15) can be found from the expression 

 2sin sin( )qa s    (3.65) 

which allows us to compute the compensator torque 
cM  applied to the second joint 

 0 2(1 )/ sin( )c c s s LM a qK     (66) 

Upon differentiation of the latter expression with respect to 2q , the equivalent stiffness of the second 
joint (comprising both the manipulator and compensator stiffnesses) can be expressed as: 
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2 2 2

0
c qK K K a L     (3.67) 

where the coefficient 
2q  is expressed as follows 
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s s
         

 
  (3.68) 

and highly depends on the joint variable 2q  and the initial preloading in the compensator spring 
described by 0s . To illustrate this property, Figure 3.16 presents a set of curves 2( )q  obtained for 
different values of 0s  (the remaining parameters  , a , L  correspond to robot KUKA KR-270 
studied in the experimental part of this work, see Chapter 4). 

 

Figure 3.16 Variation of the gravity compensator impact on the equivalent stiffness of the second 
joint 

Hence, using expression (3.67), it is possible to extend the classical stiffness model of the serial 
manipulator presented in Section 3.2 by modifying the virtual spring parameters in accordance with 
the compensator properties. While in this work, such an approach is used for the particular 
compensator type (spring-based, acting on the second joint), the similar idea can be applied to other 
compensator types. It should be mentioned that the geometrical and elastostatic models of a heavy 
manipulator with a gravity compensator should include some additional parameters ( , a , L  and 

cK , 

0s  for the presented case) that are usually not included in datasheets. For this reason, the following 
subsections focus on the identification of the extended set of manipulator parameters. 

3.6.2 Identification of gravity compensator geometric parameters 

In contrast to strictly serial manipulator that can be treated as a principal mechanism of the 
considered robots (whose geometry is usually defined in datasheets and can be perfectly tuned by 
means of calibration), the geometric parameters concerning gravity compensators are usually not 
included in the technical documentation provided by the robot manufacturers. For this reason, this 
Subsection focuses on the identification of the geometrical parameters for the described compensator 
mechanism presented above. 

A. Methodology 

The geometric structure of the considered gravity compensator is presented in Figure 3.17. Its 
main parameters are denoted as L , 

xa , ya , where ·sinxa a  , ·cosya a   (see notations defined in 
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previous Subsection). As follows from the figure, the identification problem can be reduced to the 
determination of relative locations of points P0 and P1 with respect to P2.  

It is assumed that the measurement data are provided by the laser tracker whose "world" 
coordinate system is located at the intersection of the first and second actuated manipulator joints. The 
axes Y, Z of this system are aligned with the axes of joints #1 and #2 respectively, while the axis X is 
directed to ensure right-handed orthogonal basis. To obtain required data, there are several markers 
attached to the compensator mechanism (see Figure 3.17). The first one is located at point P1, which is 
easily accessible and perfectly visible (the center of the compensator axis P1 is exactly ticked on the 
fixing element). In contrast, for the point P0, it is not possible to locate the marker precisely. For this 
reason, several markers P0i are used that are shifted with respect to P0, but located on the rigid 
component of the compensator mechanism (these markers are rotating around P0 while the joint 
coordinate 2q  is actuated). It should be noted that for the adapted compensator geometric model 
(which is in fact a planar one), the marker location relative to the plane XY is not significant, since the 
identification algorithm presented in the following Subsections will ignore Z-coordinate.  

 

Figure 3.17 Geometric parameters of the gravity compensator and location of the measurement 
points labeled with markers 

Using this setting, the identification problem is solved in two steps. The first step is devoted to 
the identification of the relative location of points P1 and P2. Here, for different values of the 
manipulator joint coordinates 2{ ,  1, }iq i m , the laser tracker provides the set of vectors 1{ }ip  
describing the points that are located in an arc of the circle. After matching these points with a circle, 
one can obtain the desired value of L  (circle radius) and the Cartesian coordinates 2p  of point P2 
(circle center) with respect to the laser tracker coordinate system. 

The second step deals with the identification of the relative location of points P0 and P2. 
Relevant information is extracted from two data sets  01

ip  and  02
ip  that are provided by the laser 

tracker while targeting at the markers P01 and P02. Here, the points are matched to two circle arcs with 
the same center (explicitly assuming that the compensator model is planar), which yields the Cartesian 
coordinates 0p  of the point P0, also with respect to the laser tracker coordinate system. Finally, the 
desired values 

xa , ya  are computed as a projection of the difference vector 2 0 a p p  on the 
corresponding axis of the coordinate system. 

As follows from the presented methodology, a key numerical problem in the presented approach 
is the matching of the experimental points with a circle arc. It looks like a classical problem, however, 
there is a particularity here caused by availability of additional data  2iq  describing relative locations 
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of  points  1ip . This feature allows us to reformulate the identification problem and to achieve higher 
accuracy compared with the traditional approach.  

B. Identification algorithms 

The above presented methodology requires solution of two identification problems. The first 
one is aimed at approximating of a given set of points (with additional arc angle argument) with an arc 
circle, which provides the circle center and the circle radius. The second problem deals with an 
approximation of several sets of points by corresponding number of circle arcs with the same center. 
Let us consider them sequentially. 

Algorithm #1 To match the given set of points  ip  with additional set of angles  iq  with a 
circle arc, let us define the affine mapping 

 
i i p Ru t  (3.69) 

where [cos , sin , 0]T

i i iq qu  denotes the set of reference points located on the unit circle whose 
distribution on the arc is similar to 

ip ,   is the scaling factor that defines the desired circle radius, R  
is the orthogonal rotation matrix, t  is the vector of the translation that defines the circle center. It is 
worth mentioning that such formulation has an advantage (in terms of accuracy) comparing to a 
traditional circle approximation and it is a generalization of Procrustes problem known from the 
matrix analysis. 

Using equation (3.69), the identification can be reduced to the following optimization problem 
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which should be solved subject to the orthogonality constraint T R R I . After differentiation with 
respect to t , the latter variable can be expressed as  
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and leads to the simplification of (3.70) to 
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Further, differentiation with respect to   yields to 
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Finally, after relevant substitutions the objective function can be presented as   
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where the unknown matrix R  must satisfy the orthogonality constraint T R R I . Since the matrix R  
is included in the second term only, the problem can be further simplified to  
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and can be solved using SVD-decomposition of the matrix  
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1

m

ii

T

i
 u p UΣV  (3.77) 

where the matrices ,U V  are orthogonal and Σ  is the diagonal matrix of the singular values. Further, 
using the same approach as for the Procrustes problem, it can be proved that the desired rotation 
matrix can be computed as 

 TR VU  (3.78) 

which sequentially allows us to find the scaling factor   defining the arc radius and the vector t  
defining the arc center.  

Algorithm #2. The second problem aims at approximating several point sets    1 ,..., k

i ip p  by 
corresponding number of concentric circle arcs with the same center 0p . It should be noted that here 
the data set  iq  is not useful, since the required angles  i  are not measured directly and cannot be 
computed without having exact compensator geometry. In this case, the objective function can be 
written in a straightforward way 
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where 
jR  denotes the j-th ark radius and 0

jp  is the corresponding center point. However, for this 
formulation it can be easily proved that the optimization problem (3.79) does not lead to a unique 
solution. In fact, it gives the rotation axis passing through the center points 0

jp , which can be 
expressed as  

 0 c

j

j p p n  (3.80) 

where n  is the axis direction vector, 
cp  is a point belonging to the axis, and j  are corresponding 

scalar factors.  

To solve problem (3.79), first the objective function F  can be differentiated with respect to 2
jR  

that yields the following expression for the arc radius 
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Further, after relevant substitution, the objective fuction can be rewritten as  
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To solve the above mentioned ambiguity, additional objectives should be considered  

 2 min
j

j
R

R   (3.84) 

which leads to the following solution for the scalar parameter 
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Further, after differentiation (3.82) with respect to 
cp   
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one can compute the point on the desired rotational axis as  
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The remaining unknown vector n  can be obtained from the orthogonality constraints 

 0 0j j
T

i  p p n , 1, , 1,i m j k   that leads to the following optimization problem 
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that after substitution in it (3.80), (3.85) and (3.87) gives 
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Further, differentiation (3.89) with respect to n , the optimization problem reduces to the solving 
following homogeneous linear equation system   
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Non-trivial solution of this system can be found using the singular value decomposition of the matrix 
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where the vector n  is the last column of the matrix V . It should be mentioned that practical 
application of the latter expression is essentially simplified by the adapted assumption concerning 
orientation of the reference coordinate system (see previous subsection), the direction of the identified 
rotation axis is close to Z-direction.  

Hence, the developed algorithms allow us to identify the compensator geometrical parameters 
L , 

xa , ya  that are directly related to the above mentioned rotation center points P0, P2 and 
corresponding radii. In Chapter 4 these algorithms will be applied to the processing of the 
experimental data. 

C. Design of calibration experiments 

For the considered identification problem, the design variables are the set of angles  2iq  and 
the marker locations. The objective functions to be minimized are computed via the covariance matrix 
that describes the identification errors for the geometrical parameters L  and a  to be estimated. Since 
the two identification algorithms are independent, selection of the optimal configurations  2iq  and 
marker locations can be considered sequentially. 

Assuming that each experiment includes the additive measurement errors in the Cartesian 
coordinates iε , expression (3.74) allows us to present the variance of the parameter   in the 
following way 
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where (.)E  denotes the expectation and the orthogonal matrix R  defines the orientation of the base 
coordinate system. Following usual assumption concerning the measurement errors (independent 
identically distributed, with zero expectation and standard deviation 2  for each coordinate) that 
allows us to present the covariance error matrix as   2T

i iE ε ε I , the above expression (3.92) 
reduces to  
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Further, it can be proved that 
1

m

i

T

i i m


 u u . So, the variance (3.93) does not depend on the angles

2iq . Thus, the identification accuracy for the parameter L  depends on the number of experiments only. 

For the remaining geometrical parameter a , the identification error depends on the estimation 
precision of relative location of the points P2 and P0. Since relevant identification algorithms employ 
independent measurement data, the variance  var a  can be computed as the sum of the traces of

2cov( )t  and 0cov( )t , where 2t  and 0t  are the vectors of Cartesian coordinates for the points P2 and P0. 

For point P2, expression (3.71) leads to the following covariance matrix 
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which can be further simplified to 
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This simplification is based on the above derived expressions  1
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 2 2 /E m   and on the assumption that z-axis of the coordinate system is directed along the 
second joint axis. Hence, for the point P2, the optimization problem that is related to the design of 
calibration experiment, can be formulated as 
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This problem should be solved taking into account joint limits of the industrial robot. In the case when 
the range of angles 2q  is over  , it is possible to achieve zero value of this objective since equations 

1 2cos 0
m

i iq


  and 
1 2sin 0

m

i iq


  are solvable. It should be noted similar equations arise in 
calibration experiment design for some robots without gravity compensators and have been studied in 
details in a previous work (Klimchik, 2011). 

For the point P0, similar expression includes a set of the angles 
i  that can be recomputed to the 

joint angles 2iq  requires for the manipulator control (see Figure 3.17). Here, it is reasonable to find 
optimal marker locations on the rigid part of the gravity compensator. It can be proven that using these 
assumptions, the design of experiment reduces to the following optimization problem 
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where j  are the angles around the point P0 between the compensator spring and the j-th marker 
location. It is clear that in this case the best solution is produced by similar equations 

1
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and 
1
sin 0j

k

j



 , but contrary to (3.96), this problem can be easily solved by locating the markers 

on the opposite sides of the compensator rotation axis. 

Thus, the calibration experiment design that produces the sets of the optimal manipulator 
configurations and the marker locations described by the variables  2iq  and  j  respectively, is 
reduced to the solution of the above presented trigonometric equations that allows us essentially 
increase the calibration accuracy. 

3.6.3 Identification of gravity compensator elastostatic parameters 

In contrast to geometrical calibration, where the manipulator and compensator can be 
considered independently, in elastostatic calibration the corresponding equations cannot be separated 
and the model parameters should be identified simultaneously. This Subsection gives general ideas of 
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the developed methodology and identification algorithms, as well as the relevant calibration 
experiment design. 

A. Methodology 

In the frame of the adapted VJM-based modeling approach the desired stiffness parameters 
describe elasticity of the virtual springs located in the actuated joints of the manipulator, and also the 
elasticity and preloading of the compensator spring (see Subsection 3.6.1 for details). Let us denote 
them as , 1,6

j
k j   for the manipulator joint compliances and 0,ck s  for the compliance and 

preloading of the compensator. 

To find these parameters, the manipulator sequentially passes through several measurement 
configurations where the external loading is applied to the special end-effector described in 
Figure 3.18 (it allows to generate both forces and torques applied to the manipulator, see Section 3.3 
for detailed description for this end-effector). Using the laser tracker, the Cartesian coordinates of the 
reference points are measured twice, before and after loading. To increase identification accuracy, it is 
preferable to use several reference points (markers) and to apply the loading of the maximum allowed 
magnitude. It is worth mentioning that in order to avoid numerical singularities, the direction of the 
external loading should not be the same for all experiments (in spite of the fact that the gravity-based 
loading is the most attractive from the practical point of view). Thus, the calibration experiments yield 
the dataset that includes values of the manipulator joint coordinates  iq , applied wrenches  iw  and 
corresponding deflections of the reference points  ip . Using these data, the elastostatic parameters 

, 1,6
j

k j   and 0,ck s  should be identified. 

Figure 3.18 End-effector used for elastostatic calibration experiments 

B. Identification algorithm 

To take into account the compensator influence while retaining our previous approach 
developed for serial robots without compensator, it is proposed to include in the second joint an 
equivalent virtual spring with non-linear stiffness depending on the joint variable 2q  (see Eq.(3.67)). 
Using this idea, it is convenient to consider several independent parameters 

2 i
k  corresponding to each 

value of 2q . This allows us to obtain linear form of the identification equations that can be easily 
solved using the standard least-square technique. 

Let us denote the set of desired parameters 1 21 22 3 6,( , ...), ,...,k k k k k  as the vector k , which allows 
us to present the relevant force-deflection relations in the form 

( )p

i i p B k (3.98) 

where matrices ( )p

iB  are composed of the elements of the observation matrix 

θ,1 θ,1 θ,nθ θ,nθ,... 1, ), (T T

ki i i i i i i i m   A J J J Jw w  (3.99) 
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that is usually used in stiffness analysis of serial manipulators (See Section 3.2). Here, θ,nθiJ  denotes 
the manipulator Jacobian column, 

iw  is the applied external force, and superscript '(p)' stands for the 
Cartesian coordinates (position without orientation). It is clear that transformation from 

kiA  to ( )p

iB  is 
rather trivial and is based on the extraction from 

kiA  the first three lines and inserting in it several zero 
columns. 

Using these notations, the elastostatic parameters identification can be reduced to the following 
optimization problem 
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which leads to the following solution 
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where the parameters 1 3 6, ,...,k k k  describe the compliance of the virtual joints #1,#3,...#6, while the 
other parameters 21 22, ...k k  present an auxiliary dataset allowing to separate the compliance of the 
joint #2 and the compensator parameters 0,ck  . Using Eq.(3.67), the desired expressions can be 
written as 
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where qm  is the number of different angles 2q  in the experimental data, 

 2 21 · / · / ·cos sin cosi i i iL L a sa La s    C  (3.103) 

here 2i iq   . Thus, the proposed modification of the previously developed calibration technique 
allows us to find the manipulator and compensator parameters simultaneously. An open question, 
however, is how to find the set of measurement configurations that ensure the lowest impact of the 
measurement noise. 

C. Design of calibration experiments 

The main idea of the calibration experiment design is to select a set of robot configurations  iq
(and corresponding external loadings  iw ) that ensure the best identification accuracy. The key issue 
here is the ranging of different plans in accordance with the prescribed performance measure. In this 
work, it is proposed to use the industry oriented performance measure that evaluates the calibration 
plan quality. Its physical meaning is the robot positioning accuracy (under the loading), which is 
achieved after compliance error compensation based on the identified elastostatic parameters. 

Using the above adapted notations and assuming that each experiment includes the additive 
measurement error iε , it can be proved that the covariance matrix for the desired parameters estimates 
k̂  can be expressed as 

     1 1
( ) ( ) ( ) ( ) ( ) ( )

1 1 1
ˆcov( )

T T Tm m mp p p T p p p

i i i i i i i ii i i
E

 

  
   k B B B ε ε B B B (3.104) 

Following also usual assumption concerning the measurement errors (independent identically 
distributed, with zero expectation and standard deviation 2  for each coordinate), the above equation 
can be simplified to 
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Hence, the impact of the measurement errors on the accuracy of the identified parameters k  is defined 
by the matrix ( ) ( )

1

Tm p p

i ii B B .

It is obvious that in practice the most essential is not the accuracy of the parameters 
identification, but the accuracy of the robot positioning achieved using these parameters in control 
system. Taking into account that this accuracy highly depends on the robot configuration (and varies 
throughout the workspace), it is proposed to evaluate the calibration accuracy in a certain given "test-
pose" provided by the user. For the considered application, the test pose is related to the typical 
machining configuration 0q  and corresponding external loading 0w  related to the technological 
process. Let us denote the mean square value of the mentioned positioning error as 2

0  and the matrix 
( )p

iA  (see Eq.(3.99)) corresponding to this test pose as ( )
0

pA . 

It should be noted that that the proposed approach operates with a specific structure of the 
parameters included in the vector k , where the second joint is presented by several components 

21 22, ...k k  while the other joints are described by a single parameters 1 3 6, ...k k k . This motivates further 
re-arrangement of the vector k  and replacing it by several vectors 1 2 3 6( , , ,... )j jk k k kk  of size 6 1 . 
Using this notation, the above mentioned performance measure can be expressed as 
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where 
j

k  is the elastostatic parameters estimation error caused by the measurement noise for 2 jq . 
Further, after substituting  traceT T   p p p p  and taking into account that E( ) cov( )T
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the performance measure 2
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Based on this performance measure, the calibration experiment design can be reduced to the 
following optimization problem 
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whose solution gives a set of the desired manipulator configurations and corresponding external 
loadings. It is evident that its analytical solution can hardly be obtained and a numerical approach is 
the only reasonable one. More detailed description of the efficient technique providing optimal 
measurement configurations can be found in subsection 3.5.4. 

Summarizing this Section in general, it is worth mentioning that its main contributions lie in the 
development of the modeling methods and identification algorithms for both geometric and 
elastostatic parameters of the gravity compensator. To increase the calibration accuracy, the design of 
experiments has been used that deals with proper selection of the measurement configurations and 
marker point locations. Both geometric and elastostatic parameters identification results as well as 
relevant accuracy analysis will be provided in the following chapter. The advantages of the developed 
approach will be illustrated by experimental study of a KUKA KR-270 industrial robot.  
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3.7 SUMMARY 

The chapter is devoted to the enhancement of modeling, measurement and identification 
methods employed in the elastostatic calibration of heavy industrial robot of serial and quasi-serial 
architecture. The main contributions are in the area of calibration experiments design, which is aimed 
at the manipulator positioning accuracy improvement using limited number of measurements. 
Compared to the previous Chapter, it is assumed that the manipulator is subject of external and/or 
internal loadings that cause non-negligible deflections in links/joints. In contrast to other works, the 
developed approach is based on the proposed industry-oriented performance measure and is able to 
take into account the influence of the gravity compensator on the manipulator elastostatic properties. 
To avoid the problem of least-square objective non-homogeneity, the calibration experiments are 
based on the enhanced partial pose measurement method.  

In more details, the contributions of Chapter 3 can be summarized as 

(i) Efficient technique for optimal measurement configurations selection in elastostatic 
calibration, which is based on the industry-oriented performance measure that 
evaluates the robot positioning accuracy after the compliance errors compensation. 
Corresponding optimal measurement configurations are obtained using dedicated 
numerical procedures that are able to take into account physical constraints and to use 
advantages of hybrid and parallel computing. It has been also shown that in practice, it 
is reasonable to replace a strictly optimal solution by a set of quasi-optimal ones 
generated by simple repetition (or superposition) of measurement configurations 
obtained for lower-dimensional cases. 

(ii) Stiffness modeling approach for quasi-serial manipulators with gravity compensators 
creating closed-loop chains, which is based on extension of conventional stiffness 
model of serial manipulator by including in it some configuration dependent 
parameters (that are usually treated as constants). 

(iii) Methodology for calibration of the gravity compensator models that is able to identify 
both geometric and elastostatic parameters, which in contrast to other works, is based 
on the singular value decomposition and uses measurement information obtained from 
both position and joint sensors.  

Among limitations of the obtained results that give directions for future works, it should be 
mentioned the model completeness issues, which in this work has been not studied in full-scale (it was 
assumed that the manipulator stiffness can be described by a set of one-dimensional virtual springs 
localized in the actuated joints). Nevertheless, for the robot studied in this work, the considered model 
allowed us to compensate more than 90% of the compliance errors.  

The main results of Chapter 3 have been presented in international conferences (Wu et al., 
2012), (Klimchik et al., 2013d), (Klimchik et al., 2013e) (Klimchik et al., 2014), and have been 
published in the international journals , (Klimchik et al., 2012a; Klimchik et al., 2012c).  
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This chapter deals with experimental validation of the developed optimal pose selection 
technique employed in the calibration procedure, where particular attention is paid to the positioning 
accuracy improvement of KUKA KR-270 industrial robot (that includes a gravity compensator). It 
presents the work-cell environment where the calibration experiments are carried out. For both the 
manipulator geometric and elastostatic calibration, the experimental setups and measurement 
procedures, optimal measurement configurations and relevant identification results as well as the 
accuracy analysis are provided. In contrast to other works, the manipulator accuracy is evaluated not 
only for the measurement configurations, but also for a wider set of configurations (different from 
those used for calibration) 
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4.1 THE EXPERIMENTAL WORK-CELL ENVIRONMENT 

As follows from previous chapters, efficiency of manipulator geometric and elastostatic 
calibration can be essentially improved by means of proper selection of measurement configurations 
used in calibration experiments. In this work, a number of numerical techniques have been proposed 
that allow us to reduce the measurement noise impact and to compensate the robot positioning errors 
in the best way. To show the benefits of these techniques and their attractiveness for industrial 
applications, this chapter presents some experimental results that deal with geometric and elastostatic 
calibration of industrial robot KUKA KR-270 and employ theoretical contributions of this thesis.  

The manufacturing cell where the examined robot has been installed is presented in Figure 4.1, 
it is located at IUT de Nantes, Carquefou. The work-cell includes a 6-dof industrial serial robot KUKA 
KR-270 with six revolute joints, a machining table, a vertical tool for mounting the pieces. Their 
relative locations as well as the main dimensions of the work-cell are shown in Figure 4.1. It should be 
noted that for geometric calibration, the above mentioned equipment (that can be also treated as the 
obstacles) cause some limits for the external measurement device placement. In the case of elastostatic 
calibration, they may also affect the possibility of force application (mounting the weight without 
collisions with these objects).  

 

Figure 4.1 The experimental work-cell environment: (a) general view; (b) main dimensions 

Taking into account particularities of the technological process considered in this work (see 
Section 1.1 for details), the manipulator test-pose (configuration 0q ) has been defined in the location 
where the best robot positioning accuracy should be achieved: 

 0 (76.7 , 56.9 ,89.3 ,45.1 ,76 ,57.2 )       q  (4.1) 

It is worth mentioning that similar configuration has been used in previous work (Dumas, 2011) to 
evaluate the quality of the robot-based machining. Corresponding machining wrench used in this 
process can be computed as 

 0 (0,  280N,  180N,  0,  0,  0) w  (4.2) 

Below, it will be considered as the test-loading. From the identification theory point of view, these two 
vector define the input parameters for the calibration experiment design using the proposed test-pose 
based approach. Corresponding graphic presentation generated using robotic CAD system 
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Robotmaster is shown in Figure 4.2. It illustrates the defined test-pose, the workpiece location and the 
machining tool that is used in the milling application. It should be noted that for the considered 
problem, the geometry of the particular machining tool (including a spindle and milling tool) should 
be taken into account in relevant experiment design. 

Figure 4.2 The machining configuration (test-pose) and the workpiece location 

To achieve the highest robot positioning accuracy for the above defined test pose, 
corresponding calibration experiments design should take into account the particularities in robot 
kinematics and work-cell constraints. As shown in the above described experimental environment, 
relevant optimization problems of finding the optimal measurement configurations should be solved 
subject to the robot joint limits, the work-cell space limits, and particularly, the collisions between the 
force application equipment and work-cell obstacles in the case of elastostatic calibration. Another 
important problem is related to the manipulator gravity compensator, whose elastostatic properties are 
described by highly non-linear function. For this reason, relevant experiment design should employ 
sophisticated elastostatic model that takes into account the gravity compensator impact, aiming at 
identifying its configuration dependent compliance parameters.  

Using this robotic cell, a number of experiments has been carried out in order to calibrate 
manipulator models employed in the error compensation algorithms. For all experiments, the 
manipulator measurement configurations have been optimized by applying techniques developed in 
Chapters 2 and 3. Relevant results are presented in Sections 4.2-4.4 that sequentially addresses the 
following problems: 

(i) Calibration of the manipulator geometric parameters using the set of optimal 
measurement configurations obtained by means of techniques presented in Chapter 2. 

(ii) Calibration of the manipulator elastostatic parameters using the set of optimal 
measurement configurations obtained by means of techniques presented in Chapter 3. 

(iii) Validation of the identified manipulator parameters by evaluating the achieved robot 
positioning accuracy. 
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While presenting the experimental results, special attention will be also given to applicability of the 
developed techniques in real industrial environment. 

4.2 GEOMETRIC CALIBRATION EXPERIMENTS FOR KUKA KR-270 INDUSTRIAL ROBOT 

To confirm the applicability of the calibration techniques proposed in Chapter 2 and 
demonstrate their benefits from engineering point of view, this Section presents the experimental 
procedure, the identification results as well as the accuracy analysis for geometric calibration of the 
industrial robot KUKA KR-270.  

4.2.1 Experimental setup and measurement procedure 

To identify the desired geometric parameters, the manufacturing cell is equipped with some 
additional measuring devices that provide us with Cartesian coordinates of the references points for 
each manipulator configuration. Besides, the manipulator joint angles required for the identification 
procedure are obtained from the robot control system. So, entire experimental setup includes the 
following units: 

● 6-dof KUKA KR-270 robotic manipulator whose geometric parameters should be 
identified (repeatability of this robot is 60 µm (Kuka), details concerning its 
kinematics are presented in Section 2.2); 

● Robot control system KR-C2, which is used for changing the manipulator 
configurations and measuring the corresponding joint angles with precision ±0.0001°; 

● Special measurement tool with three reference points located on the circle of radius 
104 mm, this tool is attached to the manipulator mounting flange; 

● Laser tracker Leica AT-901 that is used to measure the Cartesian coordinates of the 
reference point with a precision of 10 µm (Leica-geosystems); 

● Laser tracker reflector that is sequentially attached to the reference points (with 
precision about 1 µm), it allows the measurement device to estimate the distances and 
compute the required Cartesian coordinates; 

● Personal computer with dedicated software connected to the laser tracker, which is 
used for data logging and their transformation in the required form. 

The experimental setup for manipulator geometric calibration is shown in Figure 4.3. It is worth 
mentioning that the calibration experiments are carried out in a limited area (smaller than the robot 
entire workspace) caused by the work-cell size limitation and different obstacles. For this reason, some 
of the manipulator configurations cannot be reached during the experiments (therefore, they are not 
included in the optimal plan).  

Another practical issue is related to the reference point visibility with respect to the laser tracker. 
For this reason, several different laser tracker locations should be used to observe the measurement 
tool in different manipulator configurations. In this experimental study, minimum number of the laser 
tracker placements have been found intuitively and verified practically. It is clear that minimization of 
the laser tracker locations is an important issue. It influences the identification accuracy since each 
placement introduces six additional parameters describing the laser tracker base location (they should 
be identified before the robot calibration). In this work, two placements for the laser tracker were used. 
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They have been defined in accordance with the optimal measurement configurations (details will be 
presented in Subsection 4.2.2). Their placements in the work-cell are presented in Figure 4.4.  

 

Figure 4.3 Experimental setup for manipulator geometric calibration 

 

Figure 4.4 Locations of the laser tracker in the work-cell (LT1 and LT2) 

To find the parameters describing the laser tracker location with respect to the manipulator base, 
it is applied an additional calibration technique. This technique uses several auxiliary reference points 
that are fixed in the work-cell environment and whose coordinates with respect to the robot base are 
known (Figure 4.5). So, measuring their positions by means of the laser tracker, it is possible to obtain 
the transformation between the robot base frame and the laser tracker frame. It should be noted that the 
laser tracker software performs this transformation automatically, so measurement output is expressed 
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directly with respect to the robot base frame, as it is assumed in all calibration algorithm presented in 
previous Chapters. 

 

Figure 4.5 Manipulator base frame calibration using work-cell environment 

To obtain required data for the manipulator geometric calibration while using the above 
described experimental setup, the measurement procedure includes the following steps: 

Step 1 Attach the measurement tool to the manipulator mounting flange and place the laser 
tracker at the first location LT1; 

Step 2 Calibrate the laser tracker base location by measuring the Cartesian coordinates of the 
work-cell reference points;  

Step 3 Move the manipulator to the first configuration Conf.#1 and measure the Cartesian 
coordinates of the end-effector reference points (providing that the reflector is visible, 
otherwise this point is measured from another laser tracker location); 

Step 4 Move the manipulator to the next configuration and repeat measurements (similar to 
Step 3) 

Step 5 Change laser tracker placement to LT2, calibrate its base frame and repeat Steps 3, 4 
for the end-effector reference points that were not visible from the previous laser 
tracker location. 

To reduce the influence of the non-geometric factors, the measurements were repeated several 
times for each configuration, with additional movements of the manipulator end-effector from a 
current location to its neighbourhood and back. As a result of this procedure, the measurement data of 
each manipulator configuration contain 27 position coordinates ( , ,x y zp p p  for each measurement, 
which is performed for three end-effector reference points P1, P2, P3, and is repeated three times 
denoted as #1, #2, #3). An example of the measurement data structure for a single manipulator 
configuration is presented in Table 4.1. 
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Table 4.1 Example of measurement data structure (for a single manipulator configuration) 

Manipulator configuration, [deg] 
Measurement 

number 
Reference 

point 

Cartesian coordinates, [mm] 

xp  yp  
zp  

(89.5, 39.4, 98.0, 28.9, 79.6, 97.7)    

#1 

P1 233.76 -2041.18 -148.10 

 

P2 69.05 -2128.94 -126.26 

P3 148.99 -2037.09 6.12 

#2 

P1 233.79 -2041.18 -148.14 

P2 69.09 -2128.94 -126.27 

P3 149.04 -2037.07 6.10 

#3 

P1 233.79 -2041.19 -148.16 

P2 69.08 -2128.95 -126.29 

P3 149.06 -2037.08 6.08 

It is worth mentioning that the whole data set obtained in experiments presented in this Section 
contains 432 coordinates , ,x y zp p p  corresponding to three sets of manipulator configurations (6 
different configurations for each set). More detail concerning selection of optimal measurement 
configurations and laser tracker placements are presented in the following subsection. 

4.2.2 Optimal measurement pose selection for geometric calibration 

While selecting the minimum number of measurement configurations, it is necessary to take 
into account that each manipulator pose produces only 6 independent equations that are used for 
identification (in spite of the fact that relevant data structure includes 27 coordinates, see Table 4.1). 
On the other hand, the set of geometric parameters to be identified includes 33 unknowns: 

(i) 18 principal parameters of the KUKA KR-270 robotic manipulator (see Section 2.2); 

(ii) 6 parameters describing the laser tracker location with respect to the robot base (both 
position and orientation); 

(iii) 9 parameters describing locations of the end-effector reference points with respect to 
the manipulator mounting flange (positions only for three points). 

Therefore, at least six different measurement configurations are required to ensure non-singularity of 
the identification Jacobian and ability to estimate the desired values. For this reason, relevant 
optimization problem aiming at determining optimal measurement poses has been solved for the 
configuration number 6m  .  

To take into account the work-cell constraints and the manipulator joint limits, the optimization 
problem for selection of measurement configurations has been formulated as follows 
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where the notations are taken from Section 2.5. In particular,   1,6i i q  denote the measurement 
configurations, the function ( ) ( )p

ig q  describes the manipulator geometric model and returns the end-
effector position coordinates of the current configuration, ( )p

iJ  is the upper half-part of the relevant 
identification Jacobian (corresponding to the position coordinates) that is computed for the 
configuration iq . Besides, 0q  denotes the manipulator test-pose that produces the weighting 
coefficients introduced via the Jacobian matrix ( )

0
p

J . The optimization constraints (4.4) take into 
account the manipulator joint limits min max[ , ]q q  and the work-cell boundaries min max[ , ]p p , whose 
values are given in Table 4.2 and Table 4.3, respectively (the intersection of these two constraints is 
shown in Figure 4.6). This optimization problem should be solved with respect to six measurement 
configurations that are described by 36 joint coordinates in total. 

Table 4.2 The joint limits of robot KUKA KR-270 

 1q  2q  3q  4q  5q  6q  

minq , [deg] -180 -145 -110 -180 -125 -180 

maxq , [deg] 180 0 155 180 125 180 

Table 4.3 The work-cell space boundaries with respect to the robot base frame 

 xp  yp  
zp  

minp , [mm] -1400 -3000 300 

maxp , [mm] 1800 2200 3500 

 

Figure 4.6 Intersection of manipulator workspace and work-cell boundaries 

This optimization problem has been solved using the MATLAB software with the built-in 
optimization functions "ga" and "fmincon", which are required for the proposed hybrid approach that 
employs the genetic algorithm and the gradient search (see Section 2.6 for details). Corresponding 
solution minimizes the objective function 0  (the proposed performance measure), which describes 
the manipulator positioning accuracy after calibration  
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where   is the measurement noise parameter that has been taken from the technical specification of 
the laser tracker and is equal to 10 µm. It should be mentioned that, in order to reduce the 
computational efforts and, to pay more attention to the parameters that can be tuned in the robot 
controller, only nine the most essential geometric parameters were considered while computing the 
Jacobian matrices ( )

0
p

J  and ( )p
iJ . They include the link lengths 2 5{ ,..., }d d  whose nominal values are 

known and the joint offsets 1 5{ ,..., }q q   that are nominally equal to zero. 

In order to find a solution as close as possible to the global minimum, the optimization 
problem (4.3) has been solved several times with different starting points. Nevertheless, three different 
solutions have been obtained that ensure almost the same value of the considered performance 
measure 0  ( 13.6 µm). Corresponding solutions are presented in Table 4.4. 

Table 4.4 Optimal measurement configurations for geometric calibration 

Configuration 
number 

Joint angle coordinates, [deg] 

1q  2q  3q  4q  5q  6q  

Set I: Solution #1 

Conf.# I.1 89.50 -39.37 98.01 28.95 -79.64 -97.70 

Conf.# I.2 60.85 -41.51 90.02 59.30 91.78 -80.24 

Conf.# I.3 86.13 -38.57 86.49 82.02 51.20 81.14 

Conf.# I.4 72.51 -53.01 80.06 -27.98 79.69 106.77 

Conf.# I.5 109.15 -50.67 98.86 37.53 96.14 -89.65 

Conf.# I.6 73.99 -145 78.59 -18.83 -101.44 85.08 

Set II: Solution #2 

Conf.# II.1 -63.31 -39.00 62.25 59.95 54.71 80.34 

Conf.# II.2 117.55 -23.03 40.25 79.09 -124.99 104.42 

Conf.# II.3 92.26 -78.34 118.79 22.39 63.06 79.51 

Conf.# II.4 126.97 -77.85 117.48 -2.42 -107.03 93.28 

Conf.# II.5 66.08 -33.86 54.47 53.00 56.71 103.85 

Conf.# II.6 100.05 -62.30 99.77 29.88 100.47 -90.13 

Set III: Solution #3 

Conf.# III.1 176.34 -109.40 90.57 8.08 -112.02 95.69 

Conf.# III.2 103.55 -31.48 88.03 66.55 -124.99 106.19 

Conf.# III.3 79.91 -49.56 88.16 51.71 57.13 84.31 

Conf.# III.4 125.36 -50.00 87.09 56.15 56.62 81.98 

Conf.# III.5 64.40 -56.37 94.21 36.49 59.40 91.04 

Conf.# III.6 128.24 -50.18 87.63 45.04 95.51 -86.18 

For comparison purposes, these solutions have been evaluated both separately and in different 
combinations, assuming that the measurements are performed 18 times in the following way: (i) 
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repeating three times the measurements in configurations from a single set; (ii) using twice 
configurations from one set and only once from the second set; (iii) using all configurations from three 
sets simultaneously (but only once). Corresponding values of 0  are presented in Table 4.5. As 
follows from this table, the diversity of manipulator configurations has almost negligible contribution 
to the improvement of robot accuracy (it is about 13.6 3  µm, the difference is less than 0.2%). This 
confirms the results from Section 2.6, which claims that using simple repetition of the optimal plan 
with lower number of measurement configurations essentially reduces the experimental complexity 
while the same calibration accuracy can be achieved. 

Table 4.5 Comparison of calibration plans with different diversity of measurement 
configurations 

Calibration plans Robot accuracy 0  ,[µm] 

(i) {Sol. #1 3} 7.85 

 {Sol. #2 3} 7.84 

 {Sol. #3 3} 7.83 

(ii) {Sol. #1 2, Sol. #2} 7.84 

 {Sol. #1 2, Sol. #3} 7.84 

 {Sol. #1, Sol. #2 2} 7.83 

 {Sol. #2 2, Sol. #3} 7.83 

 {Sol. #1, Sol. #3 2} 7.83 

 {Sol. #2, Sol. #3 2} 7.83 

(iii) {Sol. #1, Sol. #2, Sol. #3} 7.83 

The obtained measurement configurations have been used for calibration experiments for 
KUKA KR-270 industrial robot. It is worth mentioning that, in accordance with the measurement 
procedure described in previous subsection, each manipulator configuration provides 27 values of the 
position coordinates. These coordinates have been obtained using two different locations of the laser 
tracker, as it is shown in Table 4.6. However, at certain configurations, some of the reference points 
were not visible for both laser tracker locations (points P2, P3 for configurations Conf.#I.6, #III.6; 
points P3 for configurations Conf.# II.3, III.4). This problem can be solved by increasing number of 
laser tracker locations, but in practice such solution is limited by the experimental time as well as the 
work-cell constraints. On the other hand, since the calibration experiment employs two laser tracker 
placements, 6 additional parameters describing the second laser tracker location should be also 
identified. In total, the system of identification equations contains 432 expressions that can be used to 
identify the whole set of 39 geometric parameters. To achieve the highest identification accuracy, here 
it is proposed to use all measurements corresponding to 18 manipulator configurations simultaneously 
for calibration of the geometric parameters. Corresponding results and detailed accuracy analysis will 
be given in the following subsections. 
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Table 4.6 Laser tracker placements for different reference points and measurement 
configurations 

Configuration 
number 

Reference points 

P1 P2 P3 

Set I 

Conf.# I.1 LT1 LT1 LT1 

Conf.# I.2 LT2 LT1 LT1 

Conf.# I.3 LT1 LT2 LT2 

Conf.# I.4 LT1 LT1 LT2 

Conf.# I.5 LT1 LT2 LT2 

Conf.# I.6 LT2 — — 

Set II 

Conf.# II.1 LT1 LT1 LT1 

Conf.# II.2 LT1 LT1 LT1 

Conf.# II.3 LT2 LT1 — 

Conf.# II.4 LT2 LT1 LT1 

Conf.# II.5 LT1 LT1 LT2 

Conf.# II.6 LT1 LT2 LT2 

Set III 

Conf.# III.1 LT1 LT1 LT1 

Conf.# III.2 LT1 LT1 LT1 

Conf.# III.3 LT1 LT1 LT2 

Conf.# III.4 LT2 LT1 — 

Conf.# III.5 LT1 LT1 LT2 

Conf.# III.6 LT1 — — 

LT1: Reference point position measured by laser tracker placement #1 

LT2: Reference point position measured by laser tracker placement #2 

"—": Reference point position cannot be measured by both laser tracker placements 

4.2.3 Identification of manipulator geometric parameters 

Using the obtained measurement data, the two-step identification procedure has been applied 
(see Section 2.4). On the first step, the base and tool transformations have been computed, 
corresponding results are presented in Table 4.7 and Table 4.8. On the second step, these 
transformations have been used for the identification of the manipulator geometric parameters, which 
are presented in Table 4.9. It should be mentioned that in order to increase the identification accuracy, 
this two-step procedure has been repeated iteratively (280 iterations, computing time was less than two 
minutes). 
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Table 4.7 Identification results for manipulator base transformations (for geometric calibration) 

Laser tracker placement #1 

 Value, [mm] CI   Value, [deg] CI 

xp  -0.023 ±0.045 x  -0.004 ±0.001 

yp  0.010 ±0.032 y  0.001 ±0.002 

zp  0.057 ±0.044 z  -0.017 ±0.001 

Laser tracker placement #2 

 Value, [mm] CI  Value, [deg] CI 

xp  -0.099 ±0.122 x  -0.009 ±0.004 

yp  -0.098 ±0.053 y  0.006 ±0.004 

zp  -0.076 ±0.121 z  -0.013 ±0.003 

Table 4.8 Identification results for manipulator tool transformations (for geometric calibration) 

 Reference point #1 (P1) Reference point #2 (P2) Reference point #3 (P3) 

 Value, [mm] CI  Value, [mm] CI Value, [mm] CI 

xp  277.23 ±0.05 276.49 ±0.05 278.44 ±0.05 

yp  -46.53 ±0.04 -48.25 ±0.04 103.73 ±0.05 

zp  -93.87 ±0.04 94.05 ±0.05 -2.17 ±0.05 

As follows from the identification results, among the two base transformations, the first base 
location that corresponds to the laser tracker placement #1 (LT1) is identified more accurate than the 
one corresponding to the placement #2 (LT2). This is due to the fact that the number of reference 
points measured by LT1 is nearly 3 times higher than those measured using LT2 (306 and 126 
expressions respectively). It should be mentioned that the DH parameter 1d  has been excluded from 
the calibration since the laser tracker base frame was located at the intersection of the axis #1 and axis 
#2. In contrast, the tool transformations have been identified using the complete set of 432 equations. 
So, the desired geometric parameters have been identified with high accuracy, which has been 
evaluated using two different techniques (based on the statistical properties extracted from the 
covariance matrix and using the Gibbs sampling). 

The results presented in Table 4.9 include 18 parameters, some of them cannot be modified in 
the robot control software. So, it is interesting to examine the effect of reducing the number of these 
parameters by setting them to their nominal values. Relevant analysis shows that the manipulator end-
effector positioning error impact (because of such simplification) essentially differs from one 
parameter to another, and they can be split into the following groups: 

● Parameters 1 1 2 3 3 4 2 3 2 3 4{ , , , , , , , , , , }x y x x z y z z zp p p p p p q q     , the loss of accuracy 
caused by neglecting them varies from 0.10 mm to 1.03 mm; 
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● Parameters 4 5 5 1 2 5{ , , , , , }z z x x zp p q    , the loss of accuracy caused by neglecting 
them varies from 0.02 mm to 0.09 mm; 

● Parameter 4q , the loss of accuracy caused by neglecting it is equal to 4 µm. 

Comparing to the milling accuracy required for the considered milling process (0.05-0.25 mm), the 
above listed positioning error impacts are not negligible for the most of the geometric parameters. So, 
their deviations should be compensated either in geometric model embedded in the robot controller or 
at the step of generation of the machining trajectory. 

Table 4.9 Identification results for manipulator geometric parameters  

Parameter Unit Value 

Confidence interval 

Using  
covariance matrix 

Using 
Gibbs sampling 

1 2xp d   [mm] -0.353 ±0.086 ±0.102 

1yp  [mm] 0.426 ±0.272 ±0.421 

1x  [deg] 0.015 ±0.005 ±0.005 

2q  [deg] -0.007 ±0.005 ±0.004 

2 3xp d   [mm] 0.458 ±0.082 ±0.060 

2x  [deg] 0.022 ±0.014 ±0.022 

2z  [deg] -0.023 ±0.005  ±0.005 

3q  [deg] -0.023 ±0.019 ±0.013 

3 4xp d   [mm] -0.214 ±0.089 ±0.093 

3 5zp d   [mm] -0.508 ±0.363 ±0.259 

3z  [deg] -0.011 ±0.017 ±0.022 

4q  [deg] 0.001 ±0.008 ±0.009 

4yp  [mm] -0.167 ±0.113 ±0.044 

4zp  [mm] -0.018 ±0.073 ±0.044 

4z  [deg] 0.025 ±0.015 ±0.010 

5q  [deg] -0.011 ±0.027 ±0.009 

5zp  [mm] 0.016 ±0.104 ±0.041 

5z  [deg] -0.008 ±0.018 ±0.007 

For comparison purposes, the manipulator accuracy improvement due to calibration has been 
studied based on the residual analysis before and after calibration (computed using the nominal and 
identified values of geometric parameters respectively). Here, two types of residuals have been 
examined, the coordinate-based and distance-based ones. Corresponding results are presented in 
Table 4.10, which includes the maximum and root mean square (RMS) values of the relevant residuals. 
As follows from the results, both types of the residuals have been essentially reduced after calibration. 
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In particular, the maximum values have been reduced by a factor of 4 and 3.5, while the RMS values 
of these two criteria have been decreased by a factor of 5.3 and 5.5, respectively. 

Table 4.10 Evaluation of the manipulator accuracy improvement based on residual analysis 

Criterion  Before calibration After calibration Improvement factor 

Coordinate-based 
residuals, [mm] 

max 1.25 0.32 4.0 

RMS 0.54 0.10 5.3 

Distance-based 
residuals, [mm] 

max 1.31 0.39 3.5 

RMS 0.94 0.17 5.5 

Hence, the obtained results allow us to achieve good manipulator accuracy at the measurement 
configurations. So, it is reasonable to expect that using the geometric model, which integrates the 
identified parameters, the desired positioning accuracy for the given test configuration can be also 
achieved. More detailed analysis concerning the parameter identification accuracy and its impact on 
the robot positioning accuracy will be discussed in the next Subsection. 

4.2.4 Analysis of the identification results for geometric calibration 

In order to evaluate the calibration results, first let us analyze the residuals computed from the 
identification equations for each coordinate separately. Their distributions for each configuration are 
presented in Figure 4.7, corresponding histograms are shown in Figure 4.8. As follows from detailed 
analysis, the residuals tend to follow the normal probability distributions with zero mean and almost 
the same parameter  , which is equal to 0.10 mm, 0.09 mm, and 0.11 mm for X-, Y-, and Z- direction, 
respectively. The latter justifies the utilization of ordinary least square technique (with equal weights) 
for the parameter identification and allows us to conclude that the measurement noise parameter   in 
our experiment is equal to 0.1 mm. This value will be used below to evaluate the manipulator accuracy 
after calibration.  

 

Figure 4.7 Residual distribution after geometric calibration for different measurement 
configurations 



148 Chapter 4  Experimental validations of developed optimal pose selection techniques for robot calibration 

It is worth mentioning that the noise parameter   estimated from the residual analysis is 
essentially higher than the precision of the laser tracker measurement system, which is defined in the 
technical specifications as 0.01 mm. This difference can be caused by limitations of the geometric 
model, which does not take into account a number of essential features such as the elastostatic 
deformations due to gravity forces, the friction/backlash in joints and other factors that influence on 
the robot repeatability (±0.06 mm, as specified in the data sheets). Nevertheless, as it is shown below, 
geometric calibration ensures essential improvement of the robot accuracy. 

 

Figure 4.8 Histograms of residual distribution along X-, Y-, and Z-directions after geometric 
calibration 

To evaluate the robot accuracy after geometric calibration, expression (2.62) has been applied 
separately for each measurement configuration and each end-effector reference point. It allows us to 
compute a number of performance measures  

  ( ) ( )ˆ trace cov( )      1,18, 1,3j j p j p T
i ei e ei i j   J π J  (4.6) 

where i  denotes the manipulator configuration number, j  is the reference point number, the vector 

eπ  collects all 39 identified parameters (i.e. 12 parameters for two base transformations, 9 parameters 
for three tool transformations and 18 manipulator geometric parameters), the matrix ( )j p

eiJ  aggregates 
the observation matrix ( )j p

iA  (for base and tool calibration) and the geometric Jacobian matrix ( )j p
iJ  

of the manipulator, i.e., ( ) ( ) ( )[ ;  ]j p j p j p
ei i iJ A J . The covariance matrix cov( )eπ  of size 39 39  is 

computed as  
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m n
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

 

 
   

 
π J J  (4.7) 

where the noise parameter 0.1  mm has been estimated from the experimental data. Table 4.11 
summarizes the manipulator positioning errors evaluated using the geometric model and residuals after 
calibration for each measurement configuration separately. It also provides the residuals from 
minimum to maximum values of all the measurement points for each configuration. It should be noted 
that the number of measurements varies from 3 to 9 due to the visibility issue of the laser tracker. 

As follows from the numerical results presented in Table 4.11, the positioning errors evaluated 
using the model are in good agreement with the ones obtained via residual analysis (based on 
experimental data). So, the geometric model is able to provide quite reasonable estimates of the end-
effector positioning errors for all manipulator configurations, including the test-pose. Relevant 
computations show that for the considered test-pose defined by the joint coordinate vector 0q  (see 
Eq. (4.1)), it is possible to achieve a positioning accuracy of about 0.04 mm that is acceptable for the 
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considered technological process. It is worth mentioning that the positioning accuracy evaluated via 
residuals perfectly follows the Maxwell-Boltzmann distribution (with the standard deviation of 
0.07 mm). Hence, the geometric calibration experiment gives acceptable results with accuracy 
improvement by a factor of 5 compared to non-calibrated robot, but the statistical limits have not been 
achieved because of the model limitations. To overcome these difficulties, it is required to extend the 
geometric model and to consider the manipulator elastostatic errors, which will be in the focus of next 
section.  

Table 4.11 Positioning errors after geometric calibration for each measurement configuration 

Measurement 
configuration 

Number of 
measurements 

Residuals 
Positioning error  

evaluated using residuals 
Positioning error 

evaluated using the model 

  [mm] [mm] [mm] 

Conf.# I.1 9 {-0.20,...,0.14} 0.06 0.06 

Conf.# I.2 9 {-0.21,...,0.17} 0.06 0.05 

Conf.# I.3 9 {0.01,...,0.27} 0.11 0.05 

Conf.# I.4 9 {-0.12,...,0.12} 0.03 0.06 

Conf.# I.5 9 {-0.03,...,0.33} 0.07 0.05 

Conf.# I.6 3 {-0.21,...,0.31} 0.19 0.09 

Conf.# II.1 9 {-0.01,...,0.15} 0.03 0.06 

Conf.# II.2 9 {-0.15,...,0.11} 0.05 0.06 

Conf.# II.3 6 {-0.26,...,0.16} 0.12 0.06 

Conf.# II.4 9 {-0.16,...,0.10} 0.02 0.06 

Conf.# II.5 9 {-0.23,...,0.11} 0.04 0.05 

Conf.# II.6 9 {-0.20,...,0.22} 0.06 0.05 

Conf.# III.1 9 {-0.13,...,0.10} 0.03 0.06 

Conf.# III.2 9 {-0.16,...,0.10} 0.04 0.05 

Conf.# III.3 9 {-0.13,...,0.14} 0.05 0.04 

Conf.# III.4 6 {-0.25,...,0.17} 0.13 0.05 

Conf.# III.5 9 {-0.23,...,0.14} 0.06 0.04 

Conf.# III.6 3 {-0.02,...,0.15} 0.08 0.05 

4.3 ELASTOSTATIC CALIBRATION EXPERIMENTS FOR KUKA KR-270 INDUSTRIAL ROBOT 

To demonstrate the advantages of the calibration techniques presented in Chapter 3 and justify 
their attractiveness for industrial application, this Section presents the experimental procedure, the 
identification results and corresponding accuracy analysis for elastostatic calibration of KUKA KR270 
industrial robot under the loading. 

4.3.1 Experimental setup and measurement procedure 

In addition to the experimental devices used in geometric calibration, some extra tools for 
relevant force application and measurements are used in elastostatic calibration. Corresponding 
experimental setup is presented in Figure 4.9 and corresponding equipment is listed below: 
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● 6-dof KUKA KR-270 robotic manipulator whose elastostatic parameters should be 
identified (relevant stiffness model is presented in Section 3.2); 

● Robot control system KR-C2, which is used for changing the manipulator 
configurations and measuring the corresponding joint angles; 

● Special measurement tools with three reference points located on the circle of radius 
104 mm, this tool is attached to the manipulator mounting flange; 

● Special calibration tool attached to the manipulator mounting flange for force 
application, with an additional reference point for force direction measurement; 

● Dynamometer for measurement of force magnitude with precision 2.0 N; 

● Laser tracker Leica AT-901 that is used to measure the reference points Cartesian 
coordinates with precision 10 µm; 

● Laser tracker reflector that is sequentially attached to the reference points (with 
precision about 1 µm), it allows the measurement device to estimate the distances and 
compute the required Cartesian coordinates; 

● Personal computer with dedicated software connected to the laser tracker, which is 
used for data logging and their transformation in the required form. 

Compared to the geometric case, here the calibration workspace is further limited due to the force 
application equipment and safety reasons. To apply the loading, it is required certain volume in order 
to avoid collisions between the robot body and work-cell obstacles (the machining table, for instance). 
These limitations are quite essential and should be taken into account in the optimization problem of 
the measurement configurations selection. It is also worth mentioning that the problem of the laser 
tracker visibility can be solved by tuning the joint angle 1q , which does not influence on the 
optimization objective. So here, only one laser tracker location is enough for implementing all desired 
measurements.  

 

Figure 4.9 Experimental setup for manipulator elastostatic calibration 
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Figure 4.10 Laser tracker placement used in elastostatic calibration 

In the case of elastostatic calibration, the laser tracker location has been calibrated using an 
alternative technique compared to the geometric calibration. This approach is based on robot 
movements that allow us to identify separately the directions of joint axis #1 and axis #2 (that 
correspond to Z- and Y-axes of the robot base). The method includes the following steps:  

Step 1 Rotate the manipulator around the axis #1 within the reflectors vision of the laser 
tracker. For such motion, the joint coordinate 1q  varies while the coordinates 2 6,...,q q  
remain constant. The obtained measurement data (a set of points on a circle) allow us 
to define the center of rotation 1O , and the direction of the axis #1 (coinciding with the 
Z-axis of the manipulator). The latter is computed as the normal vector with respect to 
the plane defined by the measurement points. It should be noted that to increase the 
identification accuracy, the circle radius should be as large as possible. 

Step 2 Rotate the manipulator around the axis #2 within the reflectors vision of the laser 
tracker. For such motion, the joint coordinate 2q  varies while the coordinates 

1 3 6, ,...,q q q  remain constant. The obtained measurement data (a set of points on a 
circle) allow us to define the center of rotation 2O , and the direction of the axis #2 
(which is parallel to the Y-axis of the manipulator). 

Step 3 Define the Y-axis of the manipulator that is parallel to joint axis #2 and intersects with 
its Z-axis, the intersecting point defines the origin of the manipulator base baseO .  

Step 4 Define the X-axis using the right-hand rule for the directions X, Y, Z. 

More details concerning this method are shown in Figure 4.11. Similar to the geometric case, the laser 
tracker base frame is located at the intersection of the joint axis #1 and axis #2, which is shifted along 
the Z-axis by the distance corresponding to the DH parameter 1d  (see Figure 2.3 in Chapter 2). 

According to the developed algorithms for the manipulator elastostatic calibration presented in 
Section 3.4 (which takes into account the gravity compensator impact), the experimental procedure 
can be divided into three sequential stages: (i) calibration of the gravity compensator geometry; (ii) 
calibration of the manipulator elastostatic parameters 2 6,...,k k ; and (iii) calibration of the manipulator 
elastostatic parameter 1k . These stages include several procedures briefly described below: 
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Figure 4.11 Manipulator base frame calibration using robot movements 

Stage (i) deals with the measurement of several sets of points on the circle arcs, whose centers 
allow us to define the gravity compensator geometry (see subsection 3.6.1). Corresponding 
experimental procedure includes the following steps:  

Step 1 Place the laser tracker to the pre-defined position and calibrate its base frame location 
by applying the above presented procedure based on sequential movements of the 
manipulator axis #1 and axis #2.  

Step 2 Move the manipulator to the first configuration, at which the joint angle 2 0q    and 
the other joints can be adjusted to ensure that the gravity compensator is visible for the 
laser tracker; 

Step 3 Measure the marker point positions defined on the rigid part of the gravity 
compensator; 

Step 4 Move the manipulator to the next configuration with a different value of angle 2q  and 
repeat the measurements (similar to Step 3). 

It is worth mentioning that, here the calibration technique of the laser tracker base frame allows us to 
ignore the Z-coordinates in relevant identification algorithm since only projections to the XY-plane 
are important for the considered problem. Besides, the marker locations should be selected in 
accordance with the optimal design of experiment technique proposed in Section 3.6. More details 
concerning these issues will be discussed in the following Subsection. 

Stage (ii) deals with the measurement of the end-effector position coordinates before and after 
applying external loadings, these data allow us to identify the manipulator elastostatic parameters 

2 6,...,k k . Using the above described experimental setup, the measurement procedure for manipulator 
elastostatic calibration is the following: 

Step 1 Attach the measurement tool and the force application tool to the manipulator 
mounting flange and place the laser tracker at the pre-defined location; 

Step 2 Calibrate the laser tracker base frame location by finding the directions of the joint 
axis #1 and axis #2 using robot movements; 

Step 3 Move the manipulator to the first configuration Conf.#1.1 and measure the Cartesian 
coordinates of the end-effector reference points (corresponding visibility of the laser 
tracker can be ensured by adjust the joint angle 1q ); 



4.3  Elastostatic calibration experiments for KUKA KR-270 industrial robot 153 

Step 4 Apply external loading by attaching fixed weight (corresponding gravity force 
magnitude is about 2500N); 

Step 5 Measure the Cartesian coordinates of the end-effector reference points with the 
external loading; 

Step 6 Unload the manipulator, then move it to the next configuration and repeat Steps 3, 4, 5.  

As a result of this procedure, the measurement data of each manipulator configuration contain 30 
position coordinates. An example of the measurement data structure for a single configuration is 
presented in Table 4.12. To reduce the influence of the robot repeatability, the measurements were 
performed several times for each configuration (with additional movements of the end-effector from a 
current location to its neighbourhood and back).  

Table 4.12 Example of the measurement data structure (for a single manipulator configuration) 

Manipulator configuration, [deg] 
Reference 

point 
 

Cartesian coordinates, [mm] 

xp  yp  
zp  

(85.9, 10.0, 110.0,  110.6, 43.9, 177.6)     
P1 

Before loading 306,20 -1110,12 1383,01 

 

After loading 304,09 -1109,43 1384,74 

P2 
Before loading 173,90 -1008,25 1469,24 

After loading 171,56 -1007,32 1470,31 

P3 
Before loading 290,85 -937,32 1352,33 

After loading 289,01 -936,77 1353,80 

P4 After loading 173,90 -1008,25 1469,24 

P1, P2, P3: reference points for measurement of the end-effector deflections 

P4: reference point for measurement of the force direction 

Stage (iii) deals with the calibration of joint compliance 1k  using the work-cell constraints, 
corresponding measurement procedure includes the following steps: 

Step 1 Attach the multi-directional force sensor to the manipulator mounting flange; 

Step 2 Move the manipulator to the first configuration Conf.#1 and apply external force by 
pushing the robot end-effector against the work-cell wall up to the allowable limits; 

Step 3 Record the end-effector positioning coordinates provided by the robot controller and 
measure the 6-dimensional wrench components using the force sensor; 

Step 4 Move the manipulator to the next configuration and repeat Steps 2, 3. 

It should be noted that here, it is not reasonable to apply any experiments design technique because the 
calibration area is extremely limited by the work-cell environment. More details concerning the 
experiments design and identification results for the above three experimental stages will be 
sequentially discussed in the following subsections. 

4.3.2 Identification of the gravity compensator geometry 

As follows from Section 3.6, the principal geometric parameters of the gravity compensator are 
L , 

xa  and ya  (see Figure 3.15). They can be identified using relative locations of points P0 and P1 



154 Chapter 4  Experimental validations of developed optimal pose selection techniques for robot calibration 

with respect to P2. Since the adopted geometric model is a planar one, here the laser tracker base frame 
should be defined in a particular way (to ensure that the marker locations relative to the XY-plane is 
not significant). In the frame of this technique, the Z-axis of the laser tracker is defined to be 
coincident with the joint axis #2, and the Y-axis is parallel to the joint axis #1 (it intersects with Z-axis 
at point P2). The X-axis is defined using the right-hand rule as usual. In more detail, relevant 
calibration procedure is presented in Figure 4.12. 

 

Figure 4.12 Calibration of the laser tracker base frame location for identification of gravity 
compensator geometry 

Another important issue is related to the selection of the marker point locations on the rigid part 
of the gravity compensator that are used for the measurements of corresponding circle points. In 
accordance with the proposed technique (see Subsection 3.6.1), these markers should be located on the 
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opposite sides of the compensator rotational axis, such that the optimal conditions equations 

1
cos 0

k

jj jR 


  and 
1

sin 0
k

jj jR 


  are satisfied. To increase the identification accuracy, four 
marker points are used in the calibration experiments that are denoted as P01, P02, P03 and P04 
respectively. Their locations are presented in Figure 4.13, where the radii 1 3R R  and 2 4R R , and 
the angles 3 1     and 4 2     . Corresponding measurements of the circle points while 
rotating the joint 2q  allow us to identify the desired geometric parameters 

xa  and ya  with respect to 
the point P2. The measurement data obtained for the set  2 0 , 30 , 60 , 90 , 120 , 140q              are 
provided in Table 4.13.  

Table 4.13 Measurement data for the marker point coordinates for different values of 2q  

2q , [deg]  
Position coordinates, [mm] 

1P  01P  02P  03P  04P  

0 

xp  318,99 -524,51 -461,70 -192,87 -151,33 

yp  183,71 -120,83 -264,15 17,78 -125,11 

zp  342,58 398,80 395,78 400,83 394,39 

-30 

xp  231,71 -524,77 -461,56 -193,49 -151,49 

yp  143,65 -121,54 -264,72 17,90 -124,85 

zp  342,54 398,75 395,68 400,99 394,43 

-60 

xp  176,09 -524,54 -474,05 -182,35 -152,98 

yp  65,30 -105,21 -253,34 4,84 -141,04 

zp  342,55 398,67 395,60 401,15 394,59 

-90 

xp  167,02 -519,62 -495,09 -163,69 -159,60 

yp  -30,35 -73,28 -227,82 -23,10 -171,84 

zp  342,56 398,60 395,56 401,30 394,76 

-120 

xp  206,99 -509,19 -511,35 -149,92 -171,16 

yp  -117,73 -42,59 -199,00 -53,70 -200,99 

zp  342,58 398,54 395,55 401,37 394,86 

-140 

xp  256,07 -503,35 -516,48 -145,72 

Non visible yp  -159,45 -30,51 -186,45 -66,89 

zp  342,58 398,53 395,57 401,37 

These measurement data have been processed using two identification algorithms (see 
subsection 3.6.2). The first algorithm is aimed at matching the set of points  1

ip  with additional set of 
angles  2

i
q , that allows us to identify the desired circle radius L . The second algorithm uses sets of 

point positions    01 04,...,i ip p  to determine the relative location of point P0 with respect to P2 for 
further computations of the desired parameters 

xa  and ya . The identified parameters and 
corresponding confidence intervals are presented in Table 4.14.  
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Figure 4.13 The marker point locations on the gravity compensator 

Table 4.14 Identification results for the compensator geometric parameters 

 L , [mm] xa , [mm] ya , [mm] 

Value 184.72 685.93 123.30 

CI   0.06  0.70  0.69 

The obtained geometric parameters { ,  ,  }x yL a a of the gravity compensator allow us to integrate 
the impact of the compensator into the classical VJM-based stiffness model. However, this model 
should include also some additional parameters that are related to the elastostatic properties of the 
compensator. 

4.3.3 Identification of manipulator elastostatic parameters using the gravity force 

Using the identification results for the gravity compensator geometry, it is possible to evaluate 
the variation of the equivalent stiffness of the second joint caused by the gravity compensator impact. 
As follows from Chapter 3 (see Figure 3.16), the compensator impact is highly non-linear, differs 
throughout the robot workspace and highly depends on the spring preloading 0s . Nevertheless, it is 
possible to treat the value of 2k  as a constant in the neighbourhood of each 2q . This allows us to use 
the linear system of identification equations and corresponding experiment design technique. In 
accordance with the geometric parameters of the gravity compensator and the manipulator joint limits, 
the following values of joint 2q  have been selected: 2Q { 0.01 , 25.2 , 56.9 , 99.8 , 140 }           . So, 
the desired vector of the elastostatic parameters k  includes four constant compliance parameters 

 3 4 5 6, , ,k k k k  and a 5 1  vector  21 22 25, ,...,k k k  that describes the configuration-dependent 
compliance parameters for different values of joint angle 2q . 

Using this idea, the optimization problem for selection of the measurement configurations can 
be solved for each 2q  separately. This leads to the following formulation 
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Figure 4.14 The work-cell arrangement for elastostatic calibration 

where  min max,q q  describe the joint limits,  min max, p p  define the work-cell boundaries (taking into 
account the minimum height between the end-point position of the calibration tool and the work-cell 
floor), min

r  is the minimum radius to avoid collisions between the applied loading and the robot body. 
These constraints are illustrated in Figure 4.14. Here, the matrix ( )

0
p

kA  is defined by the test-pose 

 0 0 , 56.9 ,89.3 ,45.1 ,76 ,57.2       q  and the test-loading  0 0, 280N, 180N, 0, 0,  0 w , the 
matrices ( )T

j p

kiA  depend on the manipulator configurations and on the constant measurement loading  

 0, 0, 2500N, 0, 0,  0 w .  

Table 4.15 The work-cell space boundaries for elastostatic calibration 

 xp  yp  
zp  r  

minp  [mm] -1400 -3000 800 600 

maxp  [mm] 1800 2200 3500 2930 

For this setting, the optimization problem (4.8) was solved for each value of joint 2q  and 
provided the set of optimal measurement configurations 3 6{ ,..., , 1, }i iq q i m , where 3m  . The joint 
angles 1iq  have been chosen for better visibility of the end-effector reference points for the laser 
tracker. Corresponding solutions are presented in Table 4.16. In total, 15 configurations have been 
used for calibration experiments (with 5 different values of 2q  ). For each configuration, the position 
coordinates of the reference points (P1, P2 and P3) have been measured three times, before and after 
the loading. 
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Table 4.16 Optimal measurement configurations for elastostatic calibration 

Configuration 
number 

Joint angle coordinates, [deg] 

1q  2q  3q  4q  5q  6q  

Conf.# 1.1 79.2 

-0.01 

-5.57 51.00 -97.52 -91.67  

Conf.# 1.2 63 -12.22 -56.49 41.42 150.55 

Conf.# 1.3 63 -47.98 -70.04 -61.55 177.16  

Conf.# 2.1 95 

-25.2 

33.00 129.69 -98.1 90.57 

Conf.# 2.2 95 -107.01 109.95 -61.19 174.21 

Conf.# 2.3 105 14.3 55.21 41.26 -152.97 

Conf.# 3.1 56.6 

-56.9 

44.54 -55.11 41.90 152.06 

Conf.# 3.2 56.6 64.73 -129.65 -98.26 -90.55 

Conf.# 3.3 144.8 104.49 -69.41 61.67 -6.33 

Conf.# 4.1 -41 

-99.8 

-91.68 55.12 41.53 -152.48 

Conf.# 4.2 -143 -32.64 110.31 -61.47 -6.29 

Conf.# 4.3 -143 -72.01 129.65 -98.09 90.82 

Conf.# 5.1 133 

-140 

147.68 129.64 -97.9 90.99 

Conf.# 5.2 -60 7.59 -110.09 -61.36 -174.09 

Conf.# 5.3 -60 -52.00 -124.89 -41.62 27.78 

Before applying the identification routines, the statistical properties of the measurement noise 
were evaluated. In usual engineering practice it is assumed that all measurements are corrupted by the 
same measurement noise, which induces errors 

iε  with zero expectation and diagonal covariance 
matrix 2( )T

i iE ε ε I . However, for the laser tracker used in our experiments, the precision highly 
depends on the measurement direction and varies throughout the robot workspace. In this case, the 
covariance matrix can be still assumed to be diagonal, but with non-equal diagonal terms, i.e. 

2 2 2( ) , )( ,T

i i xi yi ziE diag   ε ε , where xi , 
yi , zi  are different and vary from one configuration to 

another. This phenomenon is illustrated by the experimental data presented in Table 4.17, which 
includes dispersions for measurements along X-, Y- and Z-directions for 15 configurations. As follows 
from the presented results, the measurement noise dispersion varies from 17 μm to 153 μm and highly 
depends both on the direction (X, Y or Z) and the end-effector location in the manipulator workspace. 
In particular, for the same configuration xi , 

yi , zi  can differ by a factor of 5. Besides, from one 
configuration to another, corresponding dispersions may differ by 7 times. For this reason, the 
weighted least square technique has been applied to minimize the impact of the measurement noise. 

The desired elastostatic parameters have been computed using the two-step identification 
procedure presented in Section 3.4. On the first step, the base and tool transformations have been 
computed. The identification results for the manipulator base and tool parameters are presented in 
Table 4.18. On the second step, all measurement data as well as the obtained base and tool 
transformations have been used for the identification of the manipulator elastostatic parameters, which 
include 9 compliance coefficients  21 25 3 6,..., , ,...,k k k k . Corresponding numerical results are presented 
in Table 4.19. 
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Table 4.17 Dispersions of the deflection measurements for different configurations and directions 

Configuration 
xi

 , [μm] yi
 , [μm] 

zi
 , [μm] 

mean std mean std mean std 

Conf.# 1.1 149.7 0.8 63.7 1.1 32.9 0.4 

Conf.# 1.2 56.8 4.1 85.7 7.7 118.2 14.5 

Conf.# 1.3 97.1 8.6 70.0 5.1 43.7 7.8 

Conf.# 2.1 28.5 0.3 19.4 0.4 35.2 0.7 

Conf.# 2.2 72.4 2.8 48.1 3.5 16.9 0.5 

Conf.# 2.3 153.0 8.2 46.2 2.7 22.0 1.1 

Conf.# 3.1 111.8 6.2 65.9 3.3 53.1 4.2 

Conf.# 3.2 74.1 5.2 55.5 3.0 58.9 1.5 

Conf.# 3.3 79.8 8.7 63.2 7.3 101.6 14.9 

Conf.# 4.1 68.6 1.6 72.6 1.1 79.4 1.3 

Conf.# 4.2 80.2 3.3 36.2 1.0 25.6 2.6 

Conf.# 4.3 52.6 3.6 38.6 0.5 29.3 1.3 

Conf.# 5.1 26.2 1.1 28.9 1.3 29.4 0.4 

Conf.# 5.2 87.6 3.6 120.7 1.4 42.4 1.2 

Conf.# 5.3 89.8 5.7 52.4 3.1 50.3 1.1 

Table 4.18 Identification results for manipulator base and tool transformations 

Base parameters 

 Value, [mm] CI  Value, [deg] CI 

xp  0.27 ±0.02 x  0.31 ±0.01 

yp  -4.83 ±0.01 y  0.03 ±0.01 

zp  -3.73 ±0.01 z  -0.08 ±0.01 

Tool parameters 

 Reference point #1 (P1) Reference point #2 (P2) Reference point #3 (P3) 

 Value, [mm] CI  Value, [mm] CI Value, [mm] CI 

xp  279.49 ±0.01 279.45 ±0.01 280.37 ±0.01 

yp  -46.01 ±0.01 -44.75 ±0.01 105.68 ±0.01 

zp  -94.25 ±0.01 93.64 ±0.01 -4.90 ±0.01 

For comparison purposes, the identification has been performed using both Ordinary Least-
Square (OLS) and Weighted Least Square (WLS) techniques. For the second approach the weights 
have been computed using Eq.(3.50), where 

i  have been estimated using the residual analysis and 

0  has been assigned to 10 μm corresponding to the laser tracker precision specified by the 
manufacturer. To tune the parameter  , computations have been repeated three times for 
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{0.5,  1.0,  2.0} . Corresponding values of the elastostatic parameters are presented in Table 4.19. It 
also includes the confidence intervals computed as 3 , where the standard deviation   has been 
evaluated using the Gibbs sampling technique. The results show that the confidence intervals for OLS 
and WLS have intersections for all parameters of interest. Moreover, the confidence intervals for WLS 
are always inside confidence intervals for OLS and are considerably smaller (see Table 4.20, where 
the mutual locations of the results for OLS and WLS are shown). 

Table 4.19 Identification results for ordinary and weighted least square techniques  

Parameter 
[rad µm/N] 

Ordinary 
least square 

Weighted least square 

Ȝ=0.5 Ȝ=1.0 Ȝ=2.0 

21k  0.297 ±0.010 0.287 ±0.0003 0.287 ±0.0003 0.287 ±0.0003 

22k  0.287 ±0.012 0.277 ±0.0004 0.277 ±0.0004 0.277 ±0.0004 

23k  0.315 ±0.018 0.302 ±0.0005 0.302 ±0.0005 0.302 ±0.0005 

24k  0.302 ±0.032 0.293 ±0.0010 0.293 ±0.0010 0.293 ±0.0010 

25k  0.251 ±0.020 0.246 ±0.0007 0.246 ±0.0007 0.246 ±0.0007 

3k  0.396 ±0.031 0.416 ±0.0011 0.416 ±0.0011 0.416 ±0.0011 

4k  3.017 ±0.248 2.786 ±0.0071 2.786 ±0.0071 2.786 ±0.0071 

5k  3.294 ±0.506 3.483 ±0.0120 3.483 ±0.0120 3.483 ±0.0120 

6k  2.248 ±0.725 2.074 ±0.0267 2.074 ±0.0267 2.074 ±0.0267 

Table 4.20 Comparison of the ordinary and weighted least square techniques 

ik  Mutual location of  
Confidence Intervals 

CIOLS CIWLS OLS WLS   

21k   3.4% 0.09% 40.5 

22k   4.2% 0.13% 33.2 

23k   5.9% 0.18% 33.9 

24k   10.7% 0.33% 33.1 

25k   7.8% 0.27% 30.1 

3k   7.8% 0.26% 28.8 

4k   8.2% 0.25% 35.1 

5k   15.3% 0.34% 42.0 

6k   32.2% 1.28% 27.2 

Using the obtained values of  21 25,...,k k , it has been identified an equivalent parameter 2k , 
which is used in stiffness modeling of the manipulator with the gravity compensator. Figure 4.15 
shows its variation with respect to 2q . The identified compensator elastostatic parameters are 
presented in Table 4.21, which also includes the compensator compliance and preloading. 
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Table 4.21 Identification results for the compensator elastostatic parameters 

Elastostatic parameters  Unit Value Confidence interval  

ck  [rad µm/N] 0.144 ±0.031  

0s  [mm] 458 ±27 

0
2k  [rad µm/N] 0.302 ±0.004 

 

Figure 4.15 Compliance of equivalent non-linear spring in the second joint 

The obtained manipulator elastostatic parameters can be used to improve the robot accuracy by 
compensation of the robot deformations under the external loading. For comparison purposes, the 
accuracy improvement due to calibration has been studied based on the residual analysis. Similar to 
the geometric case, two types of residuals have been examined, the coordinate-based and distance-
based ones. Corresponding results are presented in Table 4.22, which includes the maximum and root 
mean square (RMS) values of the relevant residuals. As follows from the results, both types of the 
residuals have been essentially reduced after calibration. In particular, the maximum and RMS values 
of these two criteria have been decreased by a factor of 6.0 and 6.5 respectively. 

Table 4.22 Evaluation of the manipulator accuracy improvement based on residual analysis 

Criterion  Before calibration After calibration Improvement factor 

Coordinate-based 
residual, [mm] 

max 9.17 1.53 6.0 

RMS 2.99 0.46 6.5 

Distance-based 
residual, [mm] 

max 9.26 1.54 6.0 

RMS 5.18 0.80 6.5 

4.3.4 Identification of manipulator elastostatic parameter using work-cell constraints 

The above presented calibration technique (using the gravity force) is able to provide 
measurements for the identification of elastostatic parameters  2 6,...k k , but not for the parameter 1k , 
describing elasticity of the joint #1 whose axis is parallel to the force direction. For this reason, it is 
required to use an alternative experimental setup where the force is applied in a different direction. 
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Here, it is proposed to use the work-cell constraints (the rigid wall) in order to generate non-vertical 
force. More details of this setup are shown in Figure 4.16.  

 

Figure 4.16 Experimental setup for calibration of elastostatic parameter 1k  

As it is shown in the figure, to measure the wrench w , the robot end-effector is equipped with a 
6-dimensional force/torque sensor, ATI Theta IP68 (Ati-ia.com), whose principal parameters are 
presented in Table 4.24. Using this experimental setup, the manipulator end-effector deflections and 
corresponding force/torque have been generated by robot contact with the work-cell constraints. In this 
case, corresponding measurement data were obtained from the robot controller, while the target point 
was defined beyond the work-cell wall but the physical position of the end-effector remained the same. 
During this process, the measurement data were logging by the robot control unit. The data include the 
end-effector positions { , , }xi yi zip p p , corresponding changes in the actuator coordinates and six 
wrench components { , , , , , }xi yi zi xi yi ziF F F M M M . It should be noted that for 5 mm displacement of the 
end-effector, the deviations in robot configurations are very small (not overcome 0.3°) and can be 
neglected. The measurements have been taken progressively with small increments of the end-effector 
deflections until the maximum allowable torques in joints has been reached and the robot stopped in 
the break mode. This procedure provided us a set of measurements for the same configuration with 
different values of wrench/deflection. The calibration experiments have been carried out for three 
manipulator configurations, which are presented in Table 4.23. 

Table 4.23 Measurement configurations for calibration of elastostatic parameter 1k  

Measurement 
configuration 

Angle coordinates, [deg] 

1q  2q  3q  4q  5q  6q  

Conf.#1 136.43 -55.54 72.21 -72.11 -46.06 -25.33 

Conf.#2 125.20 -17.61 23.32 -85.15 -55.45 -8.52 

Conf.#3 -129.31 -38.83 21.81 103.06 -52.63 157.59 
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Table 4.24 Specifications of the ATI Theta IP68 force/torque sensor 

Physical parameters 

Weight Diameter Height 

9 kg 160 mm 75 mm 

Stiffness parameters 

FxK , FyK  
FzK  MxK , MyK  

MzK  

77.1 10  N/m 81.2 10  N/m 53.4 10  Nm/rad 55.3 10  Nm/rad 

Sensing ranges 

xF , yF  
zF  xM , yM  

zM  

2500 N 6250 N 400 Nm 400 Nm 

Resolution 

xF , yF  
zF  xM , yM  

zM  

1/2 N 1 N 1/20 Nm 1/20 Nm 

To identify the desired parameter 1k , the same identification algorithm has been applied (see 
Section 3.4), assuming that the compliances of the remaining joints are known. Using the 
identification results for both geometric and elastostatic parameters, it is possible to estimate the end-
effector deflections that are caused by the compliances from joints #2,...,#6 and eliminate them from 
relevant residuals. Besides, it is also required to take into account the compliances of the force/torque 
sensor, which can be easily computed using the provided stiffness values. These assumptions allow us 
to rewrite the original identification equation (3.98) as  

 ( ) ( )
1 1

p p
i i ik

   p B B k  (4.10) 

where ip  is the vector of end-effector deflections obtained from the measurements, ( )p
i
B  is the 

observation matrix corresponding to the known parameters, ( )
1

p
iB  is the observation vector 

corresponding to the unknown parameter 1k , and the vector k  aggregates the known compliance 
parameters, which include 

● 3 parameters  21 23,...,k k  corresponding to different values of 2q  (for different 
measurement configurations); 

● 4 parameters  3 6,...,k k  corresponding to joints #3,...,#6; 

● 6 parameters  ,...,Fx Mzk k corresponding to the force/torque sensor. 

For the above listed elastostatic parameters, their impacts on relevant end-effector deflections 
have been computed. This allows us to simplify the identification equations (4.10) to the following 
form 

 ( )
1 1

p

i i k p B  (4.11) 

where ( )p

i i i   p p B k  is the end-effector deflection caused by joint compliance 1k  only. Applying 
the above described identification procedure, the elastostatic parameter 1k  and its confidence interval 
have been computed, corresponding results are presented in Table 4.25. Based on relevant residual 
analysis, the developed calibration technique allows us to compensate 91.5% the manipulator end-
effector deflections and reduce the residual after calibration from 7.0 mm to 0.5 mm. 
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Table 4.25 Identification result of elastostatic parameter 1k  

Elastostatic parameters  Unit Value Confidence interval  

1k  [rad µm/N] 0.623 ±0.022 

Hence, combination of two methods based on utilization of the gravity force and the work-cell 
constraints allowed us to identify all desired elastostatic parameters of the robotic manipulator used in 
our experimental study. Next section will focus on the analysis of these results from point of view of 
robot accuracy improvement. 

4.3.5 Analysis of the identification results for elastostatic calibration 

To evaluate the calibration results, let us analyze the residuals computed from the identification 
equations for each coordinate separately. Their distributions for each configuration are presented in 
Figure 4.17, corresponding histograms are shown in Figure 4.18. As follows from  detailed analysis, 
the residuals tend to follow the normal probability distributions with zero mean but different parameter 
  values, which are equal to 0.53 mm, 0.38 mm, and 0.20 mm for X, Y, Z direction respectively. The 
latter justifies the utilization of the weighted least square technique for the parameter identification. 

 

Figure 4.17 Residual distribution after elastostatic calibration for different measurement 
configurations 

 

Figure 4.18 Histograms of residual distribution along X-, Y-, and Z-directions after elastostatic 
calibration 
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It is worth mentioning that the residuals after calibration along Z-direction (with the noise 
parameter 0.2 mm  ) are in a good agreement with those obtained in the geometric case. Here the 
  value is doubled since the measurement is performed twice for each reference point before and 
after the loading. In contrast, in X and Y-direction the error deviations are higher than expected. This 
is mainly caused by the model limitation, which is not able to describe the deflections in these two 
directions without taking into account the elastostatic property of joint #1. Nevertheless, as it is shown 
below, the elastostatic calibration ensures essential improvement of the robot accuracy. 

To evaluate the robot accuracy after elastostatic calibration, expression (3.53) has been applied 
separately for each measurement configuration and each end-effector reference point. It allows us to 
compute a number of performance measures 

 

  ( ) ( )ˆ trace cov( )      1,15,  1,3j j p j p T
i i i i j   B k B  (4.12) 

 

where i  denotes the manipulator configuration number, j  is the reference point number, the vector k  
collects all 9 identified stiffness parameters (5 configuration dependent compliance parameters 

21,..., 25k k  for different values of 2q , 4 constant compliance parameters 3,..., 6k k ), the matrix ( )j p
iB  

denotes the corresponding observation matrix. The covariance matrix cov( )k  of size 9 9  is 
computed as  
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where the matrix  2 2 2 2, ,j j j j
i xi yi zidiag   Σ  denotes the measurement errors covariance, the matrix 

2j
iW  collects the weighting coefficients, which are computed using expression (3.50). Table 4.26 

summarizes the manipulator positioning errors evaluated using the elastostatic model and residuals 
after calibration for each measurement configuration separately. It also provides the residual minimum 
and maximum values of all the measurement points for each configuration. It should be noted that the 
number of measurements is equal to 9 (3 measurements for 3 end-effector reference points) for each 
manipulator configuration. 

As follows from the results presented in Table 4.26, the positioning errors evaluated using the 
model are in a good agreement with the ones obtained via residual analysis (based on experimental 
data). It is shown that the residuals after calibration along Z-direction are essentially lower than in the 
other directions. For further comparison, the maximum and RMS values of the coordinate-based 
residuals are studied separately, corresponding results are presented in Table 4.27. In particular, the 
RMS values of the residuals along Z-direction has been decreased by a factor of 10.8, while along X- 
and Y-directions they has been reduced by a factor of 2.0 and 2.7 only. So, the developed calibration 
technique is able to compensate essentially the deflections in Z-direction (95% in average, see 
Figure 4.19).  
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Figure 4.19 Distributions of the manipulator end-effector deflections along X, Y, and Z directions:  
♦ - experimental data;  - computations based on the identified parameters 
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Table 4.26 Positioning errors after elastostatic calibration for each measurement configuration 

Measurement 
configuration 

Coordinate-based residuals, [mm] Positioning error, [mm] 

X Y Z Residual-based  Model-based  

Conf.# 1.1 {-0.02,...,0.10} {-0.18,...,0.02} {-0.08,...,0.09} 0.33 0.37 

Conf.# 1.2 {-0.39,...,0.01} {-0.61,...,0.02} {-0.30,...,0.36} 1.05 0.71 

Conf.# 1.3 {-0.74,...,-0.35} {-0.48,...,-0.17} {-0.04...,0.15} 0.16 0.36 

Conf.# 2.1 {-0.37,...,-0.28} {-0.19,...,-0.09} {-0.05,...,-0.05} 0.60 0.19 

Conf.# 2.2 {1.35,...,1.56} {0.28,...,0.41} {-0.05.,...,0.14} 0.64 0.32 

Conf.# 2.3 {-0.30,...,0.18} {-0.33,...,-0.13} {-0.04,...,0.04} 0.25 0.31 

Conf.# 3.1 {-0.40,...,0.01} {-0.35,...,-0.13} {-0.03,...,0.13} 0.17 0.39 

Conf.# 3.2 {-0.17,...,0.10} {0.11,...,0.27} {0.19,...,0.35} 0.53 0.23 

Conf.# 3.3 {-0.49,...,-0.03} {0.56,...,1.09} {-0.30,...,0.05} 0.45 0.25 

Conf.# 4.1 {-0.08,...,0.21} {0.44,...,0.69} {-0.07,....,0.03} 0.18 0.30 

Conf.# 4.2 {-0.42,...,0.11} {-0.11,...,0.14} {-0.32,...,-0.18} 0.13 0.17 

Conf.# 4.3 {-0.90,...,0.69} {-0.69,...,-0.55} {-0.38,...,-0.21} 0.04 0.23 

Conf.# 5.1 {-0.01,...,0.11} {0.12,...,024} {-0.16,...,-0.02} 0.20 0.26 

Conf.# 5.2 {0.68,...,1.07} {-0.44,...,-0.28} {0.32,...,0.65} 0.22 0.38 

Conf.# 5.3 {0.04,...,0.38} {0.02...,0.38} {-0.11...,-0.003} 0.37 0.38 

Table 4.27 Evaluation of the elastostatic parameters identification accuracy impact on the end-
effector positioning accuracy  

Criterion Coordinate-based residual, [mm] 

  Before calibration After calibration  Improvement factor  

X 
max 2.50 1.56 1.6 

RMS 1.06 0.53 2.1 

Y 
max 2.26 1.09 2.7 

RMS 1.04 0.38 2.0 

Z 
max 9.02 0.65 13.8 

RMS 2.16 0.20 10.8 

Hence, the elastostatic calibration experiment gives good results and justifies the theoretical 
contributions presented in Chapter 3. In general, the accuracy was improved by a factor of 6.5 
compared to non-compensated robot, but the statistical limits have not been achieved because of the 
model limitations. The developed elastostatic model is able to provide quite reasonable estimates of 
the end-effector positioning errors for all manipulator configurations under the loading. 

4.4 VALIDATION OF THE DEVELOPED POSE SELECTION TECHNIQUE 

4.4.1 Validation methodology 

In previous Sections, the calibration results have been evaluated for the configurations used in 
the identification of the model parameters. To justify further these results, it is reasonable to evaluate 
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them for some additional configurations (different from those employed in the calibration). In the 
frame of this idea, all available experimental data are divided into two non-overlapping subsets:  

(i) Calibration subset, which has been used for identification of the model parameters  
(15 configurations, measurements for 3 reference points, repeating 3 times); 

(ii) Validation subset, which has been used for evaluation of the model accuracy after 
calibration (5 configurations, measurements for 3 reference points, repeating 3 times). 

Then, for each measurement from the validation subset, the difference between the measured end-
effector position and the computed position (using the calibrated model) has been evaluated. This 
approach allows us to validate the model for wider set of the manipulator configurations and to avoid 
situation when the model is perfectly tuned for the measurement configurations only. Corresponding 
validation scheme is presented in Figure 4.20. 

 

Figure 4.20 Validation scheme for the calibration results 

Table 4.28 Manipulator configurations for validation of the calibration results 

Validation 
configuration 

Angle coordinates, [deg] 

1q  2q  3q  4q  5q  6q  

Conf.#v1 74.7 -40.0 41.9 36.1 92.8 88.8 

Conf.#v2 57.1 -40.0 27.9 -64.4 58.4 155.3 

Conf.#v3 72.5 -70.0 57.9 -64.4 58.4 155.3 

Conf.#v4 143.3 -70.0 77.4 -33.1 107.8 -92.4 

Conf.#v5 64.5 -120.0 107.9 -64.4 58.4 155.3 

It should be mentioned that the validation data and the calibration data have exactly the same 
structure. In particular, for all validation configurations (see Table 4.28), the end-effector position 
coordinates before and after the loading have been measured for three reference points and repeated 
three times. 

Further, to demonstrate advantages of the developed optimal pose selection technique, the 
manipulator accuracy after calibration has been compared for two distinct plans of the calibration 
experiments. The first one has been obtained using the industry-oriented performance measure and 
numerical algorithms developed in this work. In this case, the manipulator was presented as a quasi-
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serial chain (in order to take into account the gravity compensator impact), and the calibration data 
were obtained using the enhanced partial pose measurements. The second plan used measurement 
configurations that were selected semi-intuitively, in accordance with some kinematic performance 
measures (Dumas et al., 2012). Relevant manipulator model corresponds to the strict serial 
architecture, and the calibration data were obtained using conventional full-pose measurements (where 
orientation components were computed from position measurements). 

 

Figure 4.21 Validation scheme for the developed optimal pose selection technique 

Using these two sets of calibration data, the identification yielded two slightly different sets of 
manipulator parameters (Table 4.29). Then, the obtained parameters (both sets) may be used to 
compute the end-effector positions for the validation configurations. Comparing these results with the 
corresponding position measurements, it is possible to evaluate the "calibration quality" and relevant 
plans of the experiments. In more details, the validation scheme for the developed optimal pose 
selection technique is shown in Figure 4.21. In the following subsections, these methodologies will be 
applied to validate the main contributions of this work. 

Table 4.29 Manipulator elastostatic parameters obtained using known and developed approaches 

 1k  2k  3k  4k  5k  6k  

Parameters, 
µrad/Nm 

[This work] 
0.623 

-145°

0.297

0.278
-95° -45° 0°  

0.416 2.786 3.483 2.074 

Parameters, 
µrad/Nm 

[Previous work] 
3.798 0.248 0.276 1.975 2.286 3.457 
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4.4.2 Validation of the developed technique for geometric calibration 

Similar to subsection 4.2.4, in order to validate the identification results for geometric 
parameters, the manipulator positioning accuracy after error compensation has been analyzed for each 
validation configuration separately. The geometric error distributions for these configurations are 
presented in Figure 4.22, corresponding histograms of errors in x, y and z direction are shown in 
Figure 4.23. As follows from detailed analysis, the errors have zero mean values and almost the same 
standard deviation  , which is equal to 0.17 mm, 0.22 mm and 0.20 mm along X, Y, and Z directions, 
respectively. It should be noted that here the results tend to follow a normal distribution, however non-
perfectly due to the insufficient statistical data (60 coordinates in each direction). 

 

Figure 4.22 Geometric error distribution for validation configurations (from subset #2) 

 

Figure 4.23 Histograms of error distribution along X, Y, and Z directions after geometric 
calibration (for validation configurations, data subset #2) 

It is worth mentioning that the parameter   estimated from the error analysis of the validation 
data (subset #2) is higher than the one computed on the identification step (using subset #1). This 
difference is caused by the limitation of the manipulator model used for calibration that does not take 
into account elastostatic properties. More detailed information is presented in Table 4.30, which 
contains the positioning errors for each configuration and each end-effector reference point. It also 
provides the average positioning errors computed from the experimental data and using the covariance 
matrix. The results show that the model-based predicted errors are higher compared to the previous 
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case (evaluated for calibration configurations) but they are in a good agreement with the ones obtained 
from experiments. 

Table 4.30 Positioning errors after geometric compensation for each validation configuration 
(subset #2, without loading) 

Measurement 
configuration 

Positioning errors (experiments), [mm] Average positioning error, [mm] 

X Y Z 
RMS, 

experiments 
covariance 

matrix 

Conf.#v1 {-0.04,...,0.10} {-0.13,...,0.12} {-0.23,...,0.12} 0.09 0.11 

Conf.#v2 {-0.46,...,-0.18} {-0.15,...,0.03} {-0.33,...,0.02} 0.21 0.23 

Conf.#v3 {-0.04,...,0.26} {-0.26,...,0.12} {-0.47...,-0.02} 0.20 0.18 

Conf.#v4 {-0.07,...,0.18} {-0.33,...,-0.02} {-0.03,...,0.22} 0.16 0.18 

Conf.#v5 {0.04,...,0.17} {0.27...,0.49} {0.13...,0.42} 0.28 0.12 

For comparison purposes, the manipulator accuracy improvement due to geometric errors 
compensation has been also studied based on the residual analysis before and after compensation (for 
data subset #2). In particular, two types of residuals have been examined, the coordinate-based and 
distance-based ones. Relevant results are presented in Table 4.31, where the maximum and RMS 
values of corresponding criteria are provided. As follows from the obtained results, the geometric error 
compensation can ensure essential improvement of the robot accuracy. Here, the maximum errors 
have been reduced by a factor of 2.3 and 1.9 for these two criteria respectively, while the RMS errors 
have been decreased by a factor of 2.6. It should be mentioned that the above presented accuracy 
analysis has been done for the unloaded robot, the next subsection will focus on the manipulator 
accuracy under the loading. 

Table 4.31 The manipulator accuracy improvement after geometric error compensation 

Criterion  Before compensation After compensation Improvement factor 

Coordinate-based 
residuals, [mm] 

max 1.11 0.49 2.3 

RMS 0.52 0.20 2.6 

Distance-based 
residuals, [mm] 

max 1.28 0.66 1.9 

RMS 0.90 0.34 2.6 

4.4.3 Validation of the developed technique for elastostatic calibration 

Similar to Subsection 4.3.5, in order to evaluate the identification results for the elastostatic 
parameters, the manipulator positioning accuracy under loading has been analyzed separately for each 
validation configuration (data subset #2). For these configurations, the elastostatic error distributions 
after compensation are presented in Figure 4.24, corresponding histograms are shown in Figure 4.25. 
As follows from their analysis, the RMS values of these errors are equal to 0.21 mm, 0.44 mm and 
0.21 mm along X, Y, and Z directions, respectively. It should be noted that here the results of 
positioning errors tend to follow the Maxwell-Boltzmann distribution with the overall standard 
deviation of 0.14 mm, however due to the insufficient statistical data, their shapes are slightly different 
from the theoretical one. 
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Figure 4.24 Elastostatic error distributions for validation configurations (from subset #2) 

 

Figure 4.25 Histograms of error distribution along X-, Y-, and Z-directions after elastostatic 
calibration (for validation configurations, data subset #2) 

It is worth mentioning that the manipulator positioning accuracy after elastostatic errors 
compensation along X- and Z-directions (with the RMS value equal to 0.21 mm) justifies the 
effectiveness of the proposed calibration technique (provided accurate manipulator parameter 
estimations). While the accuracy along Y-direction is not perfectly improved because of the model 
limitation, which is not able to describe these deflections completely. Nevertheless, as it will be shown 
below, the elastostatic calibration ensures essential improvement of the robot accuracy. In more details, 
the positioning errors concerning each configuration and each reference point are provided in 
Table 4.32. Similar to the geometric case, the average positioning errors are computed from the 
experimental data and using the covariance matrix, corresponding results indicate good agreement 
between these two approaches. 

For comparison purposes, the manipulator accuracy improvement due to elastostatic errors 
compensation has been studied based on the error analysis before and after compensation. Relevant 
results are presented in Table 4.33, where the maximum and RMS values of the coordinate-based and 
distance-based residuals are provided. As follows from the obtained results, using the identified 
elastostatic parameters, it is possible to compensate essentially the deflections along Z-direction (96.4% 
in average). In general, the manipulator positioning accuracy has been improved by a factor of 11.1 
compared to a non-compensated robot. 
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Table 4.32 Positioning errors after elastostatic calibration for each validation configuration 
(subset #2, under loading) 

Validation 
configuration 

Coordinate-based residuals, [mm] Average positioning error, [mm] 

X Y Z RMS Model-based 

Conf.#v1 {-0.46,...,-0.24} {-0.49,...,-0.37} {-0.15,...,0.09} 0.31 0.54 

Conf.#v2 {0.07,...,0.39} {-0.52,...,-0.30} {-0.24,...,-0.09} 0.32 0.52 

Conf.#v3 {-0.03,...,0.21} {-0.63,...,-0.40} {-0.43...,-0.23} 0.36 0.26 

Conf.#v4 {0.03,...,0.21} {-0.42,...,-0.34} {-0.29,...,-0.17} 0.26 0.27 

Conf.#v5 {0.05,...,0.22} {-0.44,...,-0.34} {-0.19...,0.03} 0.25 0.22 

Table 4.33 The manipulator accuracy improvement after elastostatic error compensation 

Criterion 

Coordinate-based residual, [mm] 

Before 
compensation 

After compensation Improvement factor 

[Previous work]* [This work]** [Previous work]* [This work]** 

X 
max 0.79 0.51 0.46 1.5 1.7 

RMS 0.51 0.23 0.21 2.1 2.4 

Y 
max 1.35 0.68 0.63 1.9 2.2 

RMS 0.81 0.44 0.44 1.8 1.8 

Z 
max 8.06 1.63 0.43 4.9 18.7 

RMS 5.82 1.17 0.21 5.0 28.0 

Distance-based residual, [mm] 

max 8.28 1.77 0.78 4.6 10.4 

RMS 5.90 1.27 0.53 4.6 11.1 

*Using full-pose measurement method, semi-intuitively selected measurement configurations, corresponding
model does not take into account the gravity compensator impact.  

**Using enhanced partial pose measurement method, optimal pose selection technique and manipulator stiffness 
model that takes into account the gravity compensator impact. 

In accordance with the proposed validation methodology (see Figure 4.21), the robot accuracy 
has been also evaluated using error compensation strategy that implements the parameters identified in 
previous work (Dumas, 2011). Comparing to the previous results, the compensation efficiency has 
been increased by a factor of 2.4 using almost the same number of configurations. Hence, the above 
presented analyses confirmed the theoretical contributions presented in Chapters 2 and 3. The 
developed calibration technique allows us to increase essentially the manipulator positioning accuracy 
under external loading using reasonable number of measurement configurations. 
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4.5 SUMMARY 

The chapter is devoted to the experimental validation of the developed optimal pose selection 
technique employed in the calibration experiments. Particular attention has been paid to the 
positioning accuracy improvement of KUKA KR-270 industrial robot that includes the gravity 
compensator, and for which the influence of the compliance errors cannot be neglected. In contrast to 
other works, the manipulator accuracy has been evaluated not only for the measurement configurations, 
but also for a wider set of configurations (different from those used for calibration). 

In more details, the results of Chapter 4 can be summarized as the following 

(i) Using the optimal measurement configurations, the manipulator geometric parameters 
have been identified with the accuracy 0.15 mm and 0.01 deg for linear and angular 
ones respectively (in average). These results allowed us to achieve the manipulator 
positioning accuracy of 0.17 mm (without loading), which is 5.5 times better 
compared to the non-calibrated robot. 

(ii) Using the developed technique, the gravity compensator parameters (both geometric 
and elastostatic ones) have been identified with the accuracy of 0.48 mm and 
0.02 µrad Nm  respectively. These results allowed us to estimate the equivalent 
stiffness of joint #2 (which is configuration dependent) and to introduce a non-linear 
term in the conventional stiffness model of the robotic manipulator. 

(iii) Using the optimal measurement configurations, the manipulator elastostatic 
parameters have been identified with the relative accuracy about 0.7%. These results 
allowed us to compensate about 95% of the compliance errors in the gravity force 
direction. Corresponding positioning accuracy under a loading of 2.7KN is equal to 
0.21 mm, which is 11.1 times better than the one of non-compensated robot (for an 
arbitrary direction). 

(iv) Advantages of the developed technique for optimal measurement pose selection have 
been confirmed by relevant comparison study, which is based on the positioning 
accuracy estimation of the calibrated robot for two sets of the identified elastostatic 
parameters and for dedicated set of manipulator configurations, which are different 
from ones used for calibration. Comparison results show that, due to proper selection 
of the measurement poses, the robot accuracy under the loading has been increased by 
a factor of 2.4 (with 15 measurement configurations). 

In spite of promising results obtained in this chapter, there are still some problems that give 
directions for future work. They are caused by the limitation of the manipulator elastostatic model, 
which assumes that the compliances are localized in the actuated joints. This assumption imposes an 
obvious limit on the manipulator positioning accuracy improvement, which is not critical for this 
particular case study but should be taken into account in the general case. 

The main results of Chapter 4 have been presented/accpeted in/by international conferences 
(Klimchik et al., 2013f; Klimchik et al., 2014b; Wu et al., 2014) and have been submitted to 
international journal (Klimchik et al., 2013g). 



 

CONCLUSIONS AND PERSPECTIVES 

CONTRIBUTIONS OF THE THESIS 

This thesis was devoted to enhancement of geometric and elastostatic model calibration 
techniques for industrial robots employed in machining of large dimensional parts. Particular attention 
was paid to the robot positioning accuracy improvement by means of compensation of the geometric 
and elastostatic errors. The main contributions are in the area of the calibration experiment design (i.e. 
optimal measurement pose selection), allowing to reduce the measurement noise impact and to achieve 
desired accuracy using small number of calibration experiments. In more details, the main theoretical 
contributions are summarized as follows: 

(i) A new approach for calibration experiments design for serial and quasi-serial 
industrial robots. This approach employs a new industry-oriented performance 
measure, which evaluates the quality of calibration plan via the manipulator 
positioning accuracy after geometric and compliance error compensation, and takes 
into account the industrial requirements of the prescribed manufacturing task (using 
one or several test-poses). It is proved that the proposed performance measure can be 
presented as the weighted trace of the relevant covariance matrix, where the weighting 
coefficients are defined by the corresponding test-pose. Such approach allows us to 
find the optimal measurement configurations for calibration experiments and to 
improve essentially the robot positioning accuracy for a desired manipulator test-pose. 

(ii) Enhanced partial pose measurement method, which uses only direct position 
measurements from the external device for several end-effector reference points. It 
allows us to avoid additional computations of the end-effector orientation components, 
which cause non-homogeneity in relevant identification equations and do not require 
any normalization (which arises in the case when full pose coordinates are used, both 
position and orientation). It has been shown that such a method increases the 
parameter identification accuracy. 

(iii) Stiffness modeling approach for quasi-serial manipulators with gravity compensators 

that create closed-loop chains. The proposed approach is based on an extension of the 
conventional stiffness model of serial manipulator by including in it some 
configuration dependent parameters (that are usually treated as constants). 
Corresponding methodology for calibration of the gravity compensator models is 
proposed, which is able to identify the geometric and elastostatic parameters. In 
contrast to other works, it is based on the singular value decomposition and uses 
measurement information obtained from both position and joint sensors. 

The obtained theoretical results have been validated via experimental study that dealt with 
geometric and elastostatic calibration of a KUKA KR-270 industrial robot employed in milling of 
large dimensional parts for aerospace industry. The identified set of parameters allowed us to describe 
both geometric and elastostatic properties of the manipulator with gravity compensator. The obtained 
models were used for positioning error compensation during the milling process. For the unloaded 
mode, the calibration results allowed us to improve the manipulator positioning accuracy by a factor of 
5.5 compared to the non-calibrated robot. For the loaded mode, corresponding positioning accuracy 
under the force a force equals to 2.7kN is 11.1 times better than the one of non-compensated robot. 
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Compared to the previous work (Dumas, 2011) devoted to similar problem, the robot accuracy under 
the loading is 2.4 time higher due to proper selection of the measurement poses (with similar number 
of configurations used for calibration experiments). 

LIMITATIONS OF OBTAINED RESULTS 

In spite of the essential advantages, the developed approach has some limitations that are mainly 
related to the manipulator modeling assumptions and the calibration technique employed in this work. 
They are summarized as follows: 

Limitations of the manipulator modeling assumptions: 

(i) It was assumed that the manipulator compliance is mainly caused by the elasticity of 
the actuated joints and relevant stiffness model includes a set of one-dimensional 
virtual springs only. However, in general case, the link stiffness should be also taken 
into account. This leads to more sophisticated stiffness model, where the link/joint 
compliances are described by 6 6  matrices that can be hardly identified using the 
calibration procedure considered in this work.  

(ii) It was assumed that the external force is applied to the robot end-effector only. 
However in some cases, the influence of the link weights should be also taken into 
account if they create non-negligible deformations in the manipulator elastic 
components. This requires revision of the elastostatic model used in this work.  

(iii) It was assumed that some other sources of the positioning errors (different from the 
geometric and elastostatic ones) are negligible. They include friction/backlash in joints, 
thermal effects, environmental factors, etc. In some cases, they may also affect the 
manipulator positioning accuracy and should be taken into account. 

Limitations of the calibration technique: 

(iv) The developed approach for optimal measurement pose selection is based on the 
notion of the manipulator test-pose(s), for which the robot accuracy is evaluated (after 
error compensation). However, it is not obvious that the same manipulator accuracy 
can be achieved for other workspace points.  

(v) The employed measurement technique relies on the laser tracker, providing the 
Cartesian coordinates for the relevant reference points. This type of measurement 
device is usually quite expensive and induces some limitation for calibration 
experiments due to visibility issue. As an alternative, another measurement technique 
can be used (the closed-loop method, for instance) but relevant expressions should be 
revised, and the origin of measurement noise should be redefined. Moreover, in the 
frame of this work, it was assumed that the measurement noise comes from the laser 
tracker only, while other sources such as the actuator encoders and force measurement 
devices were neglected. 

Nevertheless, in the frame of the considered application area, the limitations concerning the 
model assumptions are not critical because the desired accuracy has been achieved in the experimental 
study. Moreover, it is possible to extend/modify the developed approach in order to adapt other 
measurement techniques. However, some of the above mentioned limitations provide us the research 
directions for future work. 
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PERSPECTIVES AND FUTURE WORK 

To generalize the obtained results and enlarge the application area, it is reasonable to continue 
research in several directions and to focus on the following issues: 

(i) Enhancement of the developed optimal pose selection technique for the case where the 
manipulator stiffness properties are described by a set of 6 6  matrices describing the 
elasticity of both links and joints. Some related problems arising here include 
synthesis of the complete, irreducible elastostatic model for robotic manipulator and 
parameter identifiability issues. 

(ii) Extending the gravity compensator family included in the manipulator stiffness model. 
Relevant problems include developing mathematical models that describe the 
compensator elasticity (taking into account the influence of pneumatic cylinder, for 
instance), methodologies and algorithms for identification of the model parameters, 
and corresponding design of calibration experiments. It is also interesting to 
extend/generalize the developed technique for calibration of quasi-serial robots, which 
include closed-loop kinematic chains in the general case. 

(iii) Developing a regular technique allowing the users to generate automatically a set of 
test-poses (employed in the proposed approach) from CAD-based description of the 
machining process. This technique should be integrated in the simulation software 
providing optimal layout design and workpiece placement with respect to the robotic 
manipulator. 
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Résumé 
 
La thèse porte sur la sélection de poses optimales pour 
la calibration géométrique et élasto-statique de robots 
industriels utilisés pour l'usinage de pièces des grandes 
dimensions. Une attention particulière est accordée à 
l'amélioration de la précision de positionnement du robot 
après compensation des erreurs géométriques et 
élasto-statiques. Pour répondre aux exigences 
industrielles des opérations d’usinage, une nouvelle 
approche pour la définition d'essais pour la calibration 
de robots sériels et quasi-sériels est proposée. Cette 
approche est basée sur un nouveau critère de 
performance, orienté applications industrielles, qui 
évalue la qualité du plan d'essais pour la calibration via 
la précision de positionnement du manipulateur après 
compensation d'erreurs, et tient compte des spécificités 
de la tâche manufacturière à réaliser au moyen de 
configurations tests. Contrairement aux travaux 
précédents, l'approche développée requiert seulement 
une mesure des positions de points et non d’orientation 
de corps rigides à l’aide d’un système de mesure 
externe tel qu’un laser tracker. Cette méthode permet 
ainsi d'éviter les problèmes de non-homogénéité dans 
les équations d'identification. Par ailleurs, afin de 
prendre en compte l'impact du compensateur de gravité, 
qui induit une chaîne cinématique fermée, le modèle de 
raideur est étendu en y incluant certains paramètres 
élasto-statiques dont les valeurs dépendent de la 
configurations du robot. Une méthodologie pour la 
calibration des modèles de compensateurs de gravité 
est ainsi proposée. Les avantages des techniques 
développées pour la calibration de robots industriels 
dédiés à des opérations d’usinage sont validés et mis 
en évidence expérimentalement, à travers la calibration 
géométrique et élasto-statique du robot industriel KUKA 
KR-270. 
 
Mots clés 
calibration géométrique et élasto-statique, définition 
d'essais de calibration, mesure de poses partielles, 
robots sériels et quasi-sériels, compensateur de 
gravité, robotique d’usinage 

 

Abstract 
 
The thesis deals with the optimal pose selection for 
geometric and elastostatic calibration for industrial 
robots employed in machining of large parts. Particular 
attention is paid to the improvement of robot positioning 
accuracy after compensation of the geometric and 
elastostatic errors. To meet the industrial requirements 
of machining operations, a new approach for calibration 
experiments design for serial and quasi-serial industrial 
robots is proposed. This approach is based on a new 
industry-oriented performance measure that evaluates 
the quality of calibration experiment plan via the 
manipulator positioning accuracy after error 
compensation, and takes into account the particularities 
of prescribed manufacturing task by introducing 
manipulator test-poses. Contrary to previous works, the 
developed approach employs an enhanced partial pose 
measurement method, which uses only direct position 
measurements from an external device and allows us to 
avoid the non-homogeneity of relevant identification 
equations. In order to consider the impact of gravity 
compensator that creates closed-loop chains, the 
conventional stiffness model is extended by including in 
it some configuration dependent elastostatic 
parameters, which are assumed to be constant for 
strictly serial robots. Corresponding methodology for 
calibration of the gravity compensator models is also 
proposed. The advantages of the developed calibration 
techniques are validated via experimental study, which 
deals with geometric and elastostatic calibration of a 
KUKA KR-270 industrial robot.  
 
Key Words 
geometric and elastostatic calibration, design of 
calibration experiments, partial pose 
measurements, serial/quasi-serial industrial robots, 
gravity compensator, robotic-based machining 
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