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Abstract

Device-to-device (D2D) communication is a promising new feature in LTE-Advanced
networks. In conventional cellular networks, devices can only communicate with the
base station via uplink or downlink paths. It fails to meet the ever-increasing demand
of proximity-based social/commercial services and applications. The innovative archi-
tecture of D2D underlaying LTE networks is therefore brought up to enable efficient
discovery and communication between proximate devices. With D2D capability, devices
in physical proximity could be able to discover each other using LTE radio technology
and to communicate with each other via a direct data path. Apart from the general
social/commercial use, the LTE D2D is further expected to address Public Safety com-
munities.

This thesis is concerned with the design, coordination and testing of a hybrid D2D
and cellular network. Design requirements and choices in physical and MAC layer func-
tions to support D2D discovery and communication underlaying LTE networks are
analyzed. In addition, a centralized scheduling strategy in base station is proposed to
coordinate D2D data communication operating in LTE FDD downlink spectrum. The
scheduling strategy combines multiple techniques, including mode selection, resource
and power allocation, to jointly achieve an overall user performance improvement in a
cell. Finally the performances of D2D data communication underlaying LTE system are
calibrated in a multi-link scenario via system-level simulation. D2D data communica-
tion is scheduled by base station with the proposed scheduling method and the hybrid
D2D and cellular system is compared to pure cellular system, in which all traffics must
go through base station.

The simulation results show that considerable performance gains are achieved by en-
abling direct D2D data paths to replace conventional uplink-plus-downlink data paths
for local data traffic between proximate devices, and by allowing non-orthogonal re-
source reuse between D2D and cellular downlink transmission. The initial tests demon-
strate that the proposed scheduling method successfully mitigates interferences result-
ing from the intra-cell resource reuse.
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Résumé

La communication device-to-device (D2D) est un nouvel aspect prometteur dans les
réseaux LTE-Advanced. Dans les réseaux cellulaires traditionnels, les mobiles peuvent
seulement communiquer avec la station de base via des liaisons montantes ou descen-
dantes. Cette technologie échoue pour satisfaire la demande toujours croissante des
différents services et applications de proximité. L’architecture innovante de D2D re-
posant sur les réseaux LTE est donc mise en place pour permettre une détection ef-
ficace et une communication de proximité entre mobiles. Grâce aux communications
D2D, les mobiles de proximité sont capables de se détecter entre eux en utilisant la
technologie radio LTE et de communiquer entre eux via un lien direct. En dehors de
l’utilisation commerciale et/ou sociale de manière générale, la technologie LTE D2D
est aussi attendue pour des applications en sécurité publique.

Cette thèse porte sur la conception, la coordination et les tests d’un réseau hybride
avec la technologie D2D et les communications cellulaires. Les exigences de conception
et les choix des fonctions dans la couche physique et MAC qui permettent la détec-
tion D2D et la communication reposant sur les réseaux LTE sont analysés. De plus,
une stratégie de planification centralisée dans la station de base est proposée afin de
coordonner les communications de données D2D en liaison descendante pour le réseau
LTE FDD. Cette stratégie de planification combine de multiple techniques telles que le
mode de sélection, l’allocation des ressources et d’énergie, afin d’améliorer les perfor-
mances des utilisateurs dans une cellule. Enfin, les performances des communications
de données D2D reposant sur le système LTE sont mesurées à partir d’un simulateur,
au niveau système, avec un scénario comportant de multiples liens de communication.
L’échange de donnée via une communication D2D est coordonnée par la station de
base avec la méthode de planification proposée. Les performances du réseau hybride
D2D/cellulaire ainsi obtenu sont comparées à celles obtenues par un pure système
cellulaire dans lequel tout le trafic passe par la station de base.

Les résultats de simulation montrent des gains considérables en terme de perfor-
mances tout en permettant un lien direct pour le trafic de données local entre mobiles
de proximité et l’usage des ressources non-orthogonales entre les transmissions D2D et
les transmissions en mode descendantes cellulaires. Les premiers tests montrent que la
méthode de planification proposée réduit avec succès les interférences résultantes des
ressources intra cellulaire.

xiii





CHAPTER

1 Introduction

The concept of Device-to-Device (D2D) transmissions underlaying LTE-Advanced net-
work involves signals transmitted from one cellular user equipment (UE) being received
at another cellular user equipment without passing through cellular infrastructural
nodes (e.g. eNB, HeNB, etc.). This thesis is concerned with the usage prospects, de-
sign issues, coordination and testing of a hybrid D2D and cellular network.

Direct D2D technologies have already been developed in several wireless standards,
aiming to meet the need for efficient local data transmission required by variant services
in personal, public and industrial areas. Examples are Bluetooth, ZigBee in wireless
personal area networks (WPANs), and Wi-Fi Direct in wireless local area networks
(WLANs). The need of frequent communication between nearby devices becomes criti-
cal now with the capability of smart devices for content share, game play, social discov-
ery, etc. whereas the conventional UL/DL transmission mode in cellular network fails
to address this demand efficiently. Proximity-based social/commercial services and ap-
plications show great prospects. In order for operators to address this huge market and
to offer their subscribers ubiquitous connections, operator-controlled direct D2D trans-
missions are studied in the context of next-generation wireless communication systems,
such as LTE-Advanced and WiMAX. The D2D technologies aim to support the local
discovery, identification and to enhance the network capacity and coverage.

The coexistence of D2D transmission and cellular transmission has been
investigated in literature studies in variant forms since some ten years
ago. In some studies, D2D is used to form multi-hop link for the pur-
pose of capacity or coverage extension [Luo et al., 2003], [Bhatia et al., 2006],
[Zhao and Todd, 2006], [Papadogiannis et al., 2009], [Law et al., 2010],
[Li et al., 2008], [Raghothaman et al., 2011]. In some studies, D2D works
in ad-hoc manner and opportunistically accesses the licensed spectrum
[Sankaranarayanan et al., 2005], [Menon et al., 2005], [Huang et al., 2008],
[Huang et al., 2009]. Interests on operator-controlled direct D2D data transmis-
sion did not come out a lot until recently, when abundant usage cases of local data
transmission emerge with the popularity of smart mobile devices. Klaus Doppler in the
Nokia research center has leaded some pioneer works on in-band operator-controlled
D2D data transmission since 2008. Their published works concentrate on different cen-
tralized interference coordination techniques in base stations, including mode selection,
D2D resource allocation and power control, etc. [WIN, 2009], [Doppler et al., 2009],
[Yu et al., 2009], [Janis et al., 2009], [Doppler et al., 2010]. Some initial performance
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2 CHAPTER 1. INTRODUCTION

analysis shows considerable throughput gain resulted from D2D mode transmission
alternative to conventional UL/DL mode transmission. However in their works, the
interference coordination techniques are mostly discussed under some specific layout
setting, for example, in [WIN, 2009], [Yu et al., 2009], [Doppler et al., 2010], only one
D2D link and one cellular link are concerned, and in [Janis et al., 2009] same number
of D2D links and cellular links are imposed. The metrics for determining performance
are only locally optimized and are oversimplified. It lacks performance metrics for the
multi-link hybrid D2D and cellular system as a whole, and an integrated scheduling
strategy which works in arbitrary network layouts.

The user needs, interworking architecture, and technique choices of D2D being
integrated into advanced cellular networks were mostly left unaddressed. Schedul-
ing method and potential performance gain were not adequately exploited. It was
in this context that this thesis started in 2010, aiming at getting insight into design
of D2D-enabled LTE networks on the purpose of supporting future proximity-based
social/commercial services and applications.

Pushed by Qualcomm, D2D is proposed as a Rel.12 3GPP feature. D2D Study Item
got approved in 3GPP SA1 (Services working group) in 2011, called ProSe (Proximity-
based Services), and was complete in May 2013, at which time a corresponding Study
Item began in RAN1 (Radio Access Network Working Group) to define the necessary
support in the LTE radio interface. In the feasibilities study for ProSe [TR2, ], use cases
and potential requirements are identified for discovery and communications between
UEs that are in proximity, including network operator control, authentication, autho-
rization, accounting and regulatory aspects. A part from general commercial/social
use, it also addresses Public Safety communities that are jointly committed to LTE.
The work in D2D physical and MAC layer specification is ongoing. Discussion includes
evaluation requirements, D2D channel model, resource use, ProSe discovery and ProSe
communication, etc.

This thesis surveys the development of both in-band (operating in operator’s li-
censed band) and out-band (operating in unlicensed band) D2D technologies, together
with opportunities and requirements of integrating D2D into LTE-Advanced networks,
in order to understand the functions that LTE D2D should perform and the roles that
network operators should play.

The design of LTE D2D physical and MAC layer is a wide topic. Our work outlines
design requirements and choices in realizing two main features: D2D discovery and D2D
data communication. Options and preferred solutions to incorporate in LTE the ability
for devices to discover each other directly over the air and to communicate directly
between them are identified.

Furthermore, a scheduling method in base station to coordinate D2D data trans-
mission operating in the same licensed band is proposed. We target a very challenging
topology in which local traffics are high enough to cause overload to the cellular net-
work. The scheduling method aim to increase spectral efficiency gain (and thus offload
the network) by allowing spatial reuse of the licensed spectrum between D2D and cellu-
lar UEs. The proposed scheduler does not have constraint on D2D range and number of
D2D pairs in a cell. Therefore it can deal with different situations: both poor and good
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D2D channel conditions, dense or sparse D2D deployment. Such generic D2D schedul-
ing design is innovative, which permits to give an insight into system performances
under simulation settings that approaching reality.

We have also tested the proposed scheduler by system-level simulation in multi-link
network environment. Performance metrics, such as per user average data throughput,
cell spectral efficiency are analyzed, comparing to pure cellular networks.

In Chapter 2, the background of D2D technologies is firstly surveyed. Existing out-
band D2D technologies are presented. Focuses of literature studies on coexistence of
D2D and cellular networks are also outlined, followed by the LTE D2D standardization
process in 3GPP. Potential usages that might be promoted by cellular user proximity
are listed. To support these usages, we analyze general functions that need to be pro-
vided by LTE D2D. Implementation challenges are also discussed.

Chapter 3 aims to identify physical and MAC layer design options and preferred
solutions in order to enable devices in LTE to discover and communicate to each other
directly over the air and to allow the LTE network to enable, manage, and control
direct D2D discovery and communications under control of eNB. Related LTE phys-
ical and MAC specifications are firstly reviewed. Modifications and enhancements to
LTE that allow incorporating D2D capability are then investigated, including D2D re-
source use strategies, D2D synchronization, D2D discovery procedure and interference
management for D2D data communication.

In Chapter 4, a centralized scheduling strategy in eNB to coordinate in-band D2D
transmission under coverage is proposed. Firstly, literature studies on in-band D2D
resource coordination are reviewed, followed by an in-depth discussion on important
scheduling considerations. Different approaches and their interests are compared. Then
studied scenario and scheduling objectives are described. Suggested scheduling strate-
gies, combining multiple interference coordination techniques are detailed.

Chapter 5 evaluates the scheduler proposed in Chapter 4 through system-level sim-
ulation in a multi-link network model. A general description of evaluation methodology
is firstly given. System simulation approaches, as well as channel models are presented.
Choices of deployment scenario, network layout, parameters and assumptions are then
detailed. Performance metrics, mainly the per user average throughput and the system
spectral efficiency are simulated in different settings. Finally, the chapter is concluded
by a discussion.

Chapter 6 concludes the thesis and future research directions are proposed.





CHAPTER

2 Introduction to D2D

technologies

2.1 Overview

The main purpose of this chapter is to survey the background of D2D technologies,
the prospect of integrating D2D in cellular network, and possible requirements. As is
well-known, out-band (operating in unlicensed band) D2D technologies have been de-
veloped decades ago. Nowadays there exist several different protocols and standards,
such as Bluetooth, ZigBee, NFC, Wi-Fi Direct, etc. In section 2.2, existing out-band
D2D technologies will be presented and compared. The coexistence of D2D and cellu-
lar transmission has been brought up long time ago in some pioneer literature studies.
Basically two forms of architecture are mentioned: multi-hop D2D relay and one-hop
direct D2D between endpoints. The focus of literature studies are presented in section
2.3. Integrating D2D in LTE-Advanced network is a recent research topic that attracts
many industrial interests and is being rapidly developed in the 3GPP LTE standard-
ization. In section 2.4, firstly interests and challenges of providing D2D capabilities
in LTE network are analyzed. Then the launch of LTE D2D as study items in 3GPP
LTE standardization is introduced. Use cases and scenario that support D2D usages at
service level are drafted in 3GPP and several examples are illustrated in this section.

2.2 Existing out-band D2D technologies

Face to the great prospect of applications with wireless D2D transmission in personal,
public and industrial areas, many competitive out-band D2D technologies have already
been developed. A brief comparison of several popular D2D standards are listed in the
table below.

5



6 CHAPTER 2. INTRODUCTION TO D2D TECHNOLOGIES

Standard Bluetooth ZigBee NFC Wi-Fi Direct
Range (nom-
inal)

10m(∼100m for
Class 3 radio)

∼100m indoor
LoS, ∼ 1.6km
outdoor LoS,
extended range
due to mesh
network

<0.2m ∼200m

Discovery
energy
consumption

Low in v4.0 Low
Energy, High
otherwise

Low Low Fair with
power man-
agement

Set-up time <0.006s with
BLE, <6s other-
wise

<0.02s <0.1s <15s

Reliability Good in v4.0
due to dedicated
advertising
channels

Good due to
Mesh topology

Good due
to point-
to-point
topology

Sometimes
poor due
to asyn-
chronous
channel scan

Security vulnerable -
discovery is
unencrypted
and no trusted
authentica-
tion of device
identification

vulnerable (simi-
lar as Bluetooth)

secure due
to its ex-
treme short
range point-
to-point
topology,
encryption
supported

vulnerable
(similar as
Bluetooth)

Maximum
Rate

24 Mbps (v3.0
+HS)

250Kbps 106/212/424
Kbps

250Mbps

Strength wide range of
service sup-
port due to
co-existence
of Bluetooth
Classic/High
Speed/Low En-
ergy protocols

Low energy low
cost, mesh net-
working capabil-
ity, suitable for
sensor network
and infrared
replacement

Extremely
simple
setup,
security,
suitable for
contactless
payment

High speed
content
sharing,
game play-
ing, etc.
Pervasive
use of Wi-Fi
radio

Bluetooth

Bluetooth is probably the most well-known technology which is created by Ericsson
in 1994 and was originally developed as RS-232 data cable replacement for short-range
communications, such as phones, headsets, keyboards and mice. It was standardized
as IEEE 802.15.1, for wireless personal area network (WPAN) with fixed, portable and
moving devices within or entering personal operating space. Bluetooth technology now
goes way beyond that. High-speed data transfer (up to 24 Mbit/s) is enabled by the
use of a Generic Alternate MAC/PHY (AMP) in Bluetooth Core Specification Version
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Figure 2.1 — Bluetooth piconet and scatternet structure

3.0 +HS, where the low power connection models of Bluetooth is still used, while large
quantities of data can be transported over the high speed Wi-Fi radio. A new feature of
Bluetooth low energy (BLE) protocols is introduced in the most recent Bluetooth v4.0,
optimized for devices requiring maximum battery life instead of a high data transfer
rate, for example, in favor of WBAN (Wireless Body Area Network), IoT(Internet of
Things). BLE consumes between 1/2 and 1/100 the power of classic Bluetooth tech-
nology and enables new Bluetooth Smart devices (typically battery-operated sensors)
operating for months or even years on tiny coin-cell batteries. Classic Bluetooth, Blue-
tooth high speed, and Bluetooth low energy (BLE) protocols altogether brings up
prolific applications in different markets including automotive, consumer electronics,
health and wellness, mobile telephony, PC and peripherals, sports and fitness, and
smart-home. Bluetooth is managed by the Bluetooth Special Interest Group (SIG),
which has now more than 19,000 companies in the areas of telecommunication, com-
puting, networking, and consumer electronics. The installed based Bluetooth-enabled
devices alone reached 3.5 billion in 2012 and is forecasted to grow to almost 10 billion
by 2018 according to ABI research [ABI, a].

Bluetooth Core Specification provides both link layer and application layer defini-
tions, which includes device and service discovery as a fundamental part of the protocol.
A Bluetooth device can search for other Bluetooth devices either by scanning the local
area for Bluetooth enabled devices or by querying a list of bonded (paired) devices.
If a device is discoverable, it will respond to the discovery request by sharing some
information, such as the device name, class, and its unique MAC address. Using this
information, the device performing discovery can then choose to initiate a connection
to the discovered device.

Bluetooth technology operates in the unlicensed ISM band at 2.4 to 2.485 GHz,
using a spread spectrum, frequency hopping, full-duplex signal. The applied adaptive
frequency hopping (AFH) improves resistance to interference by avoiding using crowded
frequencies in the hopping sequence. The range of Bluetooth technology is application
specific and may vary according to class of radio used in an implementation (up to
100m).

Bluetooth standard is based upon a master-slave structure. One master may com-
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municate with up to 7 slaves in a piconet (ad-hoc computer network using Bluetooth
technology). Each device in a piconet can also simultaneously communicate with up to
7 other devices within that single piconet and each device can also belong to 7 piconets
simultaneously. Connection of multiple piconets forms a scatternet in which devices
could simultaneously play the master role in one piconet and the slave role in another.
Through this topology, a Bluetooth device is capable to connect to many devices.

ZigBee

ZigBee is best suited for periodic or intermittent data or a single signal trans-
mission from a sensor or input device, intended for embedded applications requiring
low data rate, long battery life and secure networking. Typical applications include:
smart lighting, remote control, safety and security, electric meters, medical data col-
lection, embedded sensing, etc. It is the leading standard for products in the area of
home/building automation, smart energy, health care, etc.

ZigBee is based on IEEE 802.15.4 standard, and complete the standard by adding
four main components: network layer, application layer, ZigBee device objects (ZDOs)
and manufacturer-defined application objects. Its network layer natively supports both
star and tree topology, and generic mesh networks. Radios in a mesh network can talk
to many other radios (devices) in the network, not just one. The result is that each data
packet communicated across a wireless mesh network can have multiple possible paths
to its destination. This flexibility provides high reliability and more extensive range.
One of the prominent feature of ZigBee is its low-power and its low latency. ZigBee
nodes can sleep most of the time, and can go from sleep to active mode in 30ms or less.
For this reason, ZigBee is favored in monitor and control sensor systems, especially
with battery-operated devices. But the low rate of ZigBee makes it less suitable for
social use D2D communication between mobile phones. Bluetooth and wi-Fi direct, for
example, can adapt to a much large range of mobile applications.

NFC

NFC is a set of standards for smartphones and similar devices to establish wireless
communication with each other by bringing them into close proximity, usually no more
than 10 cm. NFC uses magnetic induction between two loop antennas located within
each other’s near field, effectively forming an air-core transformer. Typical NFC appli-
cations include contactless payment, digital name card exchange, information exchange,
access control, fast pairing and connection establishment for other D2D technologies
such as Wi-Fi Direct. NFC alone does not ensure secure communications. Higher-layer
cryptographic protocols such as SSL can be used to establish a secure channel. However,
due to its extreme short range and point to point mode operation, NFC is naturally
more secure than other existing D2D technologies. According to ABI research [ABI, b],
NFC handsets shipped in 2012 is 102 million, and are anticipated to increase by 481%
from 2012 to 2015. Although NFC becomes a popular standard for smartphone D2D
connection, due to its extreme short range, similar as ZigBee, it is not suitable for most
of the D2D mobile applications.
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Figure 2.2 — Wi-Fi Direct network structure

Wi-Fi Direct

Wi-Fi (IEEE 802.11) standard is the dominant way in WLAN communication,
notably for Internet access. Although ad-hoc mode of operation is already enabled in
Wi-Fi standard, known as independent basic service set (IBSS), the poor interoperabil-
ity and standardization of setting up IBSS network, as well as the lack of security and
efficient energy use impede commercialization of direct device to device connectivity
functions. With the increasing demand of easy content sharing, display, synchroniza-
tion between proximate devices, the Wi-Fi Alliance released Wi-Fi CERTIFIED Wi-Fi
Direct specifications which define a new way for Wi-Fi devices to connect to each other
directly at typical Wi-Fi rates (up to 250Mbps) and range (up to 200 meters). Wi-Fi
Direct is initially called Wi-Fi Peer-to-Peer (P2P). As P2P, instead of D2D, is the term
used in Wi-Fi Direct specification, we conform to this terminology in the following part
of introduction to Wi-Fi Direct technology.

Wi-Fi devices will be able to form direct connection groups quickly even when an
access point or router is unavailable. But different to the ad-hoc mode operation, Wi-Fi
Direct resembles traditional infrastructure Access Point (AP) to Client operation, with
the P2P Group Owner assuming the role of the AP and the P2P Client assuming the
role of station (STA). It is rather an extension to the ubiquitous infrastructure mode
of operation with dynamic configured access point. The Wi-Fi Direct certification pro-
gram does not require special hardware, so some vendors may offer software upgrades.
However, non-upgraded legacy Wi-Fi (except 802.11b-only) devices can also connect
with a Wi-Fi Direct device by simply considering the P2P Group Owner as a traditional
AP. A Wi-Fi Direct-certified device might connect to a regular infrastructure network
and Wi-Fi Direct group at the same time. The performance of a particular group of
Wi-Fi Direct devices depends on whether the devices are 802.11a, g, or n (802.11b is
not supported), as well as the particular characteristics of the devices and the physical
environment.

As part of the specification, there are multiple mandatory mechanisms that must
be filled by P2P devices in the group:

• P2P Discovery
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• P2P Group Operation

• P2P Power Management

The basic P2P discovery procedure consists of Device Discovery, Service Discovery
(optional), and Group Formation. Device Discovery is intended to determine which
P2P Devices may attempt to connect by Scan and Search mechanisms. The first step
of Group Formation is to determine which device will act as P2P Group Owner, for
example, by exchanging device attributes to negotiate, or by autonomous initiative.
Once the respective roles are agreed, the next step is to establish a secure communica-
tion using Wi-Fi Protected Setup. The optional Service Discovery can be performed to
determine compatibility information on the services offered by a discovered P2P De-
vice before the decision of Group Formation. Variant higher layer service advertisement
protocol types such as Bonjour and UPnP can be implemented.

P2P Group operation is very similar to Wi-Fi infrastructure BSS operation. We can
see a P2P Group Owner as a temporary AP which starts, maintains and ends a P2P
group session.

P2P power management supports power save mechanisms for both P2P Group
Owners and P2P clients. Two new procedures: Opportunistic Power Save and Notice
of Absence, allow the P2P Group Owner to be absent for defined periods in a P2P
Group with all devices fully Wi-Fi Direct capable.

Wi-Fi Direct is by far the most competitive D2D technology threatening Blue-
tooth, offering similar capabilities, with higher rate and longer range. It may penetrate
into many device segments (e.g. consumer electronics), gains the potential to replace
Bluetooth for applications that don’t rely on low energy and offer a single-technology
solution for worldwide Wi-Fi users.

2.3 The coexistence of D2D and cellular transmission

in literature studies

The coexistence of D2D and cellular transmission has been mentioned in literature
studies for about ten years. D2D in cellular network can exist in two different forms
(Figure 2.3). In one form, the pair of D2D users are endpoints (source and sink) of a
communication session. In another form, at least one D2D user of the pair act as a
relay to form a multi-hop connection between the base station and the endpoint user.
Many have proposed to leverage D2D link to increase the system capacity or cellular
network coverage, or to balance traffic load between different base stations.

Multi-hop D2D relay

Authors in [Luo et al., 2003], [Bhatia et al., 2006], [Zhao and Todd, 2006],
[Papadogiannis et al., 2009], [Law et al., 2010], [Li et al., 2008],
[Raghothaman et al., 2011] have proposed multi-hop D2D relay for cellular transmis-
sion for the purpose of cellular capacity enhancement.
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Figure 2.3 — Two forms of D2D: Direct D2D and D2D relay

In [Luo et al., 2003], the authors propose hybrid architecture with IEEE 802.11
based secondary network to increase cell’s throughput. The architecture is based on
relaying the traffic from base station to mobile nodes with better channel quality.
Received relays then use ad-hoc network to deliver information to the destination. The
authors propose several ways how to discover and select relay nodes. 3G base station
selects relays based on their DL channel quality. The authors also proposed crediting
system to motivate users to use their mobile nodes as relays. In [Bhatia et al., 2006], the
same authors extend their work to solve the issue of multicast. In pure 3G network, the
multicast throughput decreases with increase of multicast group size due to conservative
strategy (uses the lowest data rate of all the receivers). By relaying, the throughput of
3G downlink multicast can be significantly increased.

In [Zhao and Todd, 2006], different relay selection criteria are compared: ad-hoc re-
laying with low relative interference, with best link and with shortest distance. Selection
of relay based on the link quality or interference significantly overcome the selection
based on the distance.

In [Papadogiannis et al., 2009], the author proposed a dynamic UE relay selection
algorithm which reduce signaling and feedback by limiting the number of potential
relay candidates for a specific target mobile station. Comparing to the optimal relay
selection algorithm, where all the UEs in the cell are considered as candidates for a
specific target mobile station, this distance based relay candidates preselecting is proved
to significantly reduce the overhead without compromising performance.

In [Law et al., 2010], the performance of implementing multi-hop mobile relay in
downlink cellular system is analytically computed. The author argues that for the
hexagonal cellular network, by careful parametric choices, the capacity due to range
extension through multi-hop relaying can exceed that of the corresponding pure cellular
network by as much as 70%. The UE relays used are half-duplex and communication
link eNB to relay UE and UE-UE link use separate frequency band.

In [Li et al., 2008], multihop cellular networks (MCN) are investigated as promis-
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ing candidate of 4G wireless network for future mobile communications. The authors
provide survey of MCN-type architectures and split into three categories: fixed relays,
mobile relays and hybrid relays, and comprehensive comparison of those architectures
is provided. In the latter part, economics for MCNs are analyzed and the authors claim
that mobile relay is more economically feasible in the long term since they could adapt
to network growth.

Very recent work covering direct UE-UE communication for relaying has been done
by InterDigital,Inc [Raghothaman et al., 2011]. Their initial results shown more than
2 times gain in cell edge throughput and 50% gain in average cell throughput when
compared to Reuse 1 macro deployment. It is also shown that by using UE as a relay,
significant reduction in the required base station deployment density can be achieved
(up to 15 times to maintain 95% coverage with 384 kbps UL service in a Manhat-
tan Grid deployment). Moreover, power increased power consumption from relaying
is compensated by lower power consumption due to shorter connection duration from
higher data rates.

In another article [Zhou and Yang, ] , D2D relay is triggered to balance load among
neighboring cells. When one cell becomes congested, transmission between an endpoint
user and its donor cell can be relayed to a neighboring cell via multihop D2D relay.
Multihop route is established based on the number of hops, battery lifetime of the nodes
along the route and moving direction of the mobile host. This relaying architecture
allows adaptive load balancing and avoids traffic congestion by several congestion states
of the base station and reporting the congestion to the mobile nodes.

Direct D2D between endpoints

The pioneer work on the in-band coexistence between primary and secondary net-
work [Adachi T, 1998] proposed overlay system based on low power direct D2D commu-
nication between close mobile terminals. The authors show that system has advantages
of frequency reuse, reduction of interference due to low power communication and re-
duction of battery consumption. Switching to direct communication is based on the
comparison of the strength signals of base station and destination mobile terminal.

Opportunistic approach for licensed spectrum utilization based on primary and
secondary network is proposed in [Sankaranarayanan et al., 2005]. The authors as-
sume TDMA/FDMA based GSM cellular network. Secondary network operates in
non-intrusive manner and does not interact with primary network. The restriction
for secondary network is that it operates only over the resources which are unused
by primary network. The authors also assume that every device in secondary network
poses hardware that provides capability for spectrum sensing. The resources on the
downlink are utilized for secondary network operation. The sensing module obtains
slot boundaries and create up-to-date map of available slots. Then special MAC layer
is proposed which operates over GSM MAC and allows operation in unused slots. For
device discovery issue, the commonly agreed channel is proposed, over which initial
handshake and selection of desirable channel is performed. It is shown that bandwidth
utilization can be significantly improved by utilization of unused downlink spectrum.
However, such system is purely dependent on the primary network’s operation, there-
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fore it is suitable only for best effort traffic without QoS constraints. It also requires
sensing module for operation in secondary network.

In [Menon et al., 2005] impact of in-band D2D transmission on the primary net-
work is evaluated by comparison of outage probability for underlay and overlay spec-
trum sharing techniques, where underlay system is evaluated also when interference
is avoided by cognitive sensing over the wideband. The overlay system also assumes
dynamic spectrum sensing techniques. The evaluation shows that spectrum underlay
without cognitive sensing has very poor performance, thus severe impact on the pri-
mary network. They also show that spectrum underlay with utilization of cognitive
radio has better performance than spectrum overlay with cognitive radio. However, in
both cases when cognitive radio is used, perfect sensing is assumed. Moreover, con-
tinuous detection and tracking transmission opportunities require high complexity of
transmitters in the secondary network.

In [Huang et al., 2008], the authors consider overlay of an ad hoc network onto un-
derutilized uplink of FDD cellular system. Transmission network capacity is analyzed
for case of blind transmission, where transmitters of secondary network are randomly
selecting sub-channel for communication, and for the case of frequency mutual ex-
clusion, where secondary transmitters select from subset of sub-channel which is not
used by primary network. It is shown that frequency mutual exclusion outperforms
blind transmission. However, blind transmission in licensed spectrum is not realistic
due to huge impact on the primary network and frequency mutual exclusion requires
secondary transmitters to detect sub-channels unused by primary network.

In [Huang et al., 2009], the same authors analyze cellular and mobile ad-hoc net-
work coexistence in the licensed uplink spectrum and capacity trade-off. The authors
firstly review most common methods of how to share spectrum. Then the capacity
trade-off between the coexisting cellular and ad hoc networks is analyzed for spectrum
overlay and spectrum underlay. For simplicity the transmission power of transmitter
is fixed as well as distance between transmitter and receiver of secondary network.
The authors investigate impact of interference as well as when interference cancella-
tion techniques are employed. From the developed relation for transmission capacity
is clear that capacity can be increased by decreasing the distances between secondary
transceivers, by increasing the base station density and link diversity gains or by em-
ploying interference cancellation techniques.

Some recent studies on D2D communication as an underlay to a cellular network
have been leaded by Klaus Doppler in the Nokia research center. In one of their proposal
to [WIN, 2009], gains from D2D communication in terms of sum rate improvement in a
single cell scenario is evaluated compared to a single cellular user. The overall through-
put in the cell is maximized by choosing optimal spectrum sharing mode between a D2D
pair and a cellular UE. The results of this study give insights on the maximum bene-
fits in terms of overall performance that D2D underlay communication can provide. In
[Yu et al., 2009] power optimization methods are proposed to mitigate interference be-
tween D2D and macro links. The sum-rate is maximized under the maximum transmit
power and a set of rate constraints to the cellular and D2D users. In [Janis et al., 2009]
multi-user diversity in a cell is leveraged and a resource allocation scheme for mitigating
intra-cell D2D-to-DL and UL-to-D2D interference was proposed. The D2D underlay is
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optimized while a target performance level of the cellular network is maintained. In
[Doppler et al., 2009] D2D communication session setup and management mechanism
is proposed. D2D session setup using dedicated SAE signaling and supported new ad-
dress format is detailed. The application (or the user) at the requesting UE needs to
decide whether to prefer initiation of a D2D session or a regular session.

Remarks

In most literature works about integration of cellular and D2D communication,
general description of the architecture is provided and the focus is on the theoretical
anticipation of performance gain (such as system capacity, coverage extension, load
balancing, etc.). However several important considerations are lacking in the current
studies:

1. Performance metrics are often oversimplified, without taking into consideration
the overall user satisfaction.

2. Proposed schedulers are often of limited use to some specific settings, and are not
general enough to offer an adequate perception on performances that such D2D
solutions might give in a real multi-link cellular system.

3. Feasibility analysis of LTE protocol layer support is mostly overlooked. Basic tech-
nical requirements and choices for interworking of two different technologies need
to be analyzed.

2.4 LTE D2D

In 2.4.1 potential usages that might base on cellular user proximity are firstly listed.
Principle functions that need to be provided by LTE D2D in order to support these
proximity-based usages are analyzed. Implementation challenges to both operators and
device manufacturers are discussed. Then in 2.4.2 The progress of LTE D2D in 3GPP
standardization is presented. The design guideline provided by 3GPP covering different
D2D use cases and scenarios is summarized.

2.4.1 Interests and challenges of D2D-enabled LTE network

With the popularity of smart devices, and the potential huge market of proximity-based
services and applications, there is an urgent need to integrate D2D mode transmissions
in the next-generation cellular network to enable efficient discovery and communication
between proximate users, and to eventually provide ubiquitous connections and a rich
range of services to mobile users.

The potential usages that might base on mobile user proximity can be categorized
as follows:

• Commercial/social use: local discovery and interaction with connected devices,
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objects and people; personalized services built around the contextual information
obtained

• Enhanced networking: improved connectivity (coverage, speed, cost, etc) to
network services by leveraging other local devices

a. Commercial/social use: proximity-based services might involve both mobile and
fixed devices, for example, smartphones or tablets owned by private users, sensors
owned by public sectors, advertising gadgets owned by retail stores, etc. Typical
examples of usages include:

• Interactive local guidance: interactive guidance for customers, tourists, com-
muters, and users of commercial and public services, using smart beacons,
sensors and content servers embedded within objects in the environment. For
example, advertisements from nearby stores/restaurants, presentation of art
pieces in museums, flight/subway information, vacancy in parking lots, etc.
From service receivers’ perspective, a user might preset personalized interests
in order to be alerted by services from nearby area, such as notification of
a sale, ticketing, restaurant recommendations, traffic jam warning, events or-
ganization, etc. A user might also do a real-time search to find momentary
interested proximate services.

• Connection to M2M/V2V: D2D-enabled devices can serve as a controller of
Machine-to-Machine (M2M) and Vehicle-to-Vehicle (V2V) networks. They can
further provide cellular network connection to M2M/V2V, serving as gateways
between M2M/V2V and cellular networks.

• Social discovery: discovery of nearby persons linked by social network (e.g.
facebook, LinkedIn), with mutual interests (e.g. professional, personal), or at-
tending a same event (e.g. party, concert, match), etc.

• Entertainments: usually involves a large variety of personal devices, such as
mobile smart devices, game consoles, cameras, TVs, screens, storage memories.
Typically for content sharing, local gaming, and local multicasting.

b. Enhanced networking: D2D technology can be used to enhance the connectivity
of devices to an infrastructure network - typically for access to the Internet or
operator services. Usages can be divided into two sub-categories:

1) Traffic offload: from cellular infrastructure network to D2D link when the two
endpoint devices are in proximity. The D2D communication can be either in
operator’s licensed band or in WiFi band if both devices are equipped with
WLAN antenna. The traffic can be data or voice/video call. The D2D offloading
might alleviate network congestion, enforce the link quality and reduce the power
use between two proximate devices.

2) Coverage extension: A device obtains access to an infrastructure network (Inter-
net or cellular network) through the assistance of one or more devices that act
as relays or access gateways This can provide network coverage to devices that
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Figure 2.7 — D2D usage example: Entertainments

have poor or no network connectivity - such as in indoor environment, at the
edge of rural cell, or in the case of failure of local base stations.

We identify three principle functions that allow LTE D2D to address the above-
mentioned potential services.

1) D2D discovery:
D2D discovery is a process that allows devices in physical proximity to discover each
other using LTE radio technology. In the general case, this discovery is performed
within LTE network coverage and under the control of the operator (e.g. with radio
resources assigned by the operator, and authorized by the operator). But it is also
desired that discovery can be performed with partial (in which one UE of the D2D
pair is under the network coverage and another one is not) or no network coverage.
LTE D2D might support much larger discovery range comparing to other wireless
D2D technologies such as Bluetooth and Wi-Fi Direct. The use of licensed spec-
trum may allow for more reliable discovery than other D2D technologies operating
in unlicensed ISM band. The SIM card can be used for authentication and holding
discovery permissions, especially the 3rd parties/merchants permissions to discover
users. The D2D discovery developed for LTE network could even potentially replace
the Wi-Fi Direct for establishing a WLAN Wi-Fi connection between two proxi-
mate Wi-Fi capable UEs. The operator could manage the proximity information
(e.g. distance information, the network location area code, radio coverage status,
user discovery capabilities, and preference, etc.), offering to its users/partners the
opportunity to use/build advanced proximity-based services.

2) D2D data communication:
D2D data communication allows data path happening directly between proximate
D2D UEs instead of passing through eNBs. The operator could offload its network
from proximity-based service traffic by switching data traffic from an infrastructure
path to a direct D2D path with service continuity. In contrasts to the pending issues
with the current existing D2D technologies on the data/traffic protection, secured
D2D communications can be enabled by operator’s management, which will boost
the usages. The operator’s control also enables a QoS framework which provides
differential treatment based on D2D services, data traffic flows, and subscribers, etc.
In case that network coverage is not available, similar to the direct D2D discovery
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function, the direct D2D communication is expected to function autonomously with
pre-configure parameters.

3) D2D relay:
D2D relay allows multi-hop paths to be formed between an infrastructure network
(Internet or cellular network) and an endpoint UE. D2D relay can be used to enhance
data throughput of cell-edge users, but can be also used to share connection to an
endpoint UE lack of direct access to the infrastructure networks. D2D relay can
extend network coverage for both indoor and outdoor UEs, with low cost, which
complements the current coverage extension solutions in LTE using heterogeneous
network (HetNet) such as Pico cell and Femto cell.

The integration of the D2D capabilities in LTE network poses challenges to both
operators and device manufacturers. The operator is face to:

• technical complexity of service management (e.g. user preference, privacy issues,
frequency of discovery inquiries, QoS monitoring of D2D link, charging policy, etc.)

• sensitive privacy issues in tracking user location and activities, collecting user
preference and habitude, or selling user information to other actors imply privacy
stakes.

• interoperation of different operators (e.g. share spectrum, user location informa-
tion, user preference) to enable users subscribing to different operators to discover
and communicate to each other.

On device manufacturers’ side, development of D2D compatible devices with the
new discovery and direct communication capability also involves higher cost and com-
plexity. Design of sensing ability, gateway function, efficient battery consumption, ad-
vanced security, etc. can be very complicated.

2.4.2 D2D in 3GPP LTE standardization

Initially integrating D2D in LTE-Advanced network was strongly pushed by Qual-
comm, who developed previously a proprietary technology called FlashLinq into its ra-
dios that allows cellular devices to automatically and continuously discover thousands
of other FlashLinq enabled devices within 1 kilometer and communicate, peer-to-peer,
at broadband speeds without the need for intermediary infrastructure. Unlike Wi-Fi
Direct’s peer-to-peer technology, Qualcomm’s FlashLinq can share connectivity to a
cellular network. In FlashLinq discovery, public/private expressions qualifying basic
information about the device or user are mapped to tiny 128-bit packages of data to
be broadcasted. FlashLinq is a synchronous TDD OFDMA technology operating on
dedicated licensed spectrum and is featured by its high discovery range (up to a kilo-
meter), discovery capacity (thousands of nearby devices) and distributed interference
management.
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Qualcomm planned to adapt FlashLinq to the 3GPP architecture using the LTE
radio interface and proposed D2D in LTE-A as a study item in 3GPP. The work item
called ProSe(Proximity-based Services) in 3GPP TSG SA1(Services working group)
was complete in May 2013. Feasibilities study for ProSe is presented in TR 22.803
[TR2, ]. The purpose is to identify use cases and potential requirements for discovery
and communications between UEs that are in proximity, including network operator
control, authentication, authorization, accounting and regulatory aspects. A part from
Commercial/social use, it also address Public Safety communities that are jointly com-
mitted to LTE. The work in TSG SA2 (Architecture working group) is ongoing. The
purpose is to evaluate possible 3GPP technical system solutions for architectural en-
hancements needed to support ProSe based on the SA1 service requirements. TSG
RAN1 (Radio Access Network working group) study items have also been proposed for
LTE Rel 12 including two subfeatures: ProSe discovery and ProSe communications, to
define the necessary support in the LTE radio interface.

[TR2, ] covers principle use cases and scenarios of ProSe, in which conditions,
service flows and potential requirements suitable for different usage types are ana-
lyzed. This document serves as an essential guidance for D2D system design. Primary
examples of use cases and scenarios concerning general commercial/social use and
network offloading are summarized below. Public safety is omitted here as it concerns
a lot personalized services and thus many additional use cases and scenarios. The
following terms defined by 3GPP will be used in the description of D2D use cases:

• ProSe Discovery: a process that identifies that a UE is in proximity of another,
using E-UTRA.

• ProSe Communication: a communication between two UEs in proximity by
means of a E-UTRAN communication path established between the UEs. The
communication path could for example be established directly between the UEs
or routed via local eNB(s).

• ProSe-enabled UE: a UE that supports ProSe Discovery and/or ProSe Commu-
nication.

• LTE D2D: series of technologies featured ProSe capability.

Use cases and scenarios

• Restricted/open ProSe Discovery: basic scenarios for ProSe Discovery that can
be used for any application. With restricted ProSe Discovery, a ProSe-enabled
UE discovers another ProSe-enabled UE in proximity if has the permission of the
target UE, while with open ProSe Discovery, a ProSe-enabled UE discovers other
ProSe-enabled UEs without permission by the discoverable UEs. For example,
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the restricted scenario might apply to usage case of friend discovery in social
network where the personal privacy is sensible, and the open scenario might apply
to shop/restaurant advertisement, where shops and restaurants have no privacy
issue and are open to be discovered by all other ProSe-enabled UEs in proximity.
Potential requirements include, for example:

– the operator’s capability on dynamical control of the proximity criteira for
ProSe discovery

– the operator’s capability on authorization of UE discovery operation

– operator policy and user choice intervene in ProSe discovery and result in
different results

• Network ProSe Discovery: in this use case, it is the MNO (Mobile Network Oper-
ator) which verifies that one UE has the permission to discover another UE and is
in proximity of another UE. This might applies to the scenario where one UE want
to discover a specific target UE. It requires that the network be able to determine
proximity of two ProSe-enabled UEs and inform them of their proximity.

• Service continuity between infrastructure and E-UTRA ProSe Communication
paths: in this use case, the operator is able to switch user traffic (one or more
flows of the data session) from the initial infrastructure communication path to
ProSe communication path and latter return back to an infrastructure path, with-
out perceived by the users. It requires that the operator be able to dynamically
control the proximity criteria (e.g. range, channel conditions, achievable QoS) for
switching between the two communication paths. The system shall be capable of
establishing a new user traffic session with an E-UTRA ProSe Communication
path and maintaining both of the E-UTRA ProSe Communication path and the
existing infrastrucutre path, when the UEs are determined to be in range allowing
ProSe Communication.

• ProSe-assisted WLAN Direct Communications: WLAN direct communication can
be used between ProSe-enabled UEs with WLAN capability when they are in WiFi
Direct communications range, based on ProSe Discovery and WLAN configuration
information from the 3GPP EPC. It requires that the switch is subject to oper-
ator policy and user consent. the operator is able to switch data session between
infrastructure path and WLAN ProSe communication path. Furthermore, several
use cases related to ProSe-assisted WLAN Direct Communications are proposed,
including:

– Service management and continuity for ProSe Communication via WLAN:
It requires that the infrastructure network shall be able to determine whether
two ProSe-enabled UEs are within WLAN direct communications range and
whether the WLAN direct link can provide the necessary QoS to support the
end user application. It shall ensure service continuity, and be capable of QoS
requirements of all data flows when negotiating a communication path switch
for a given end user application.
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– Concurrent E-UTRAN Infrastructure and WLAN proximity communication:
It requires that the EPC shall allow these two communication paths concur-
rently used between ProSe enabled UEs.

– Network Offloading via WLAN ProSe Communication:
It requires that the EPC shall be able to request a UE to perform a path
switch between the infrastructure path and WLAN direct path for some or
all of the UE’s traffic sessions based on the load in the 3GPP network.

• ProSe Application Provided by the Third-Party Application Developer: the op-
erator may provide ProSe capability features in a series of APIs to third-party
application developers for application development. Benefiting from the cooper-
ation between the operator and third-party application developers, the user can
download and use a rich variety of new ProSe applications created by third-party
application developers. It requires that the operator’s network and the ProSe-
enabled UE shall provide a mechanism to identify, authenticate and authorize the
third-party application to use ProSe capability features. The operator shall be able
to charge for use of ProSe Discovery and Communication by an application.

2.5 Conclusion

In this chapter, the background of D2D technologies is introduced. Four popular out-
band wireless D2D technologies: Bluetooth, ZigBee, NFC, Wi-Fi Direct have been
presented. Their usage cases, market prospects, network structure, PHY/MAC charac-
teristics (rate, power, range, etc.) are compared. The topic of integrating D2D into cel-
lular network has appeared in literature study decades ago but has not received enough
attention. The hybrid D2D and cellular network architecture in literature study can
be roughly divided into two categories: Multi-hop D2D relay and direct D2D between
endpoints. D2D relay is mainly proposed to increase the cellular network capacity or
coverage, or to balance traffic load between different base stations. Although in some
works, direct D2D communication between endpoint UEs does have been proposed to
replace inefficient UL/DL mode transmission between proximate UEs, as the usages
were quite limited before the emergence of 4G network and smartphone, the literature
studies were not abundant.

As the need of proximity-based services increases rapidly with the popularity of
smart mobile devices, integrating D2D into the LTE-Advanced network appears as
a promising solution and attracts great interests. The potential usages are analyzed
and are categorized into social/commercial use and networking enhancement. To ad-
dress these potential usages, three principle functions: direct D2D discovery, direct
D2D communication and D2D relay, are identified. Challenges to operators and device
manufacturers are also anticipated.

With the increasing interests shown by industrial actors in integrating D2D into
LTE network, study items of LTE D2D are taking off in different 3GPP technical
specification groups, from service level to physical and MAC layer. Apart from so-
cial/commercial use, 3GPP decided that LTE D2D should also address public safety
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communities. The progress of LTE D2D in 3GPP standardization is presented. The
LTE D2D system design guideline is completed in 2013 by 3GPP, which analyses con-
ditions, service flows and potential requirements that are necessary for supporting vari-
ant proximity-based usages. Principle use cases and scenarios covered by this guideline
for general commercial/social use and network offloading are summarized.



CHAPTER

3 Physical and MAC layer

characteristics of LTE

D2D

3.1 Overview

In the previous chapter, three principle functions: D2D discovery, D2D data commu-
nication and D2D relay, which allow LTE D2D to address potential usages, have been
identified. In this chapter, the focus is on the D2D discovery function and D2D data
communication function only. We aims to identify physical and MAC layer design
options and preferred solutions in order to realize these two D2D functions in LTE
PHY/MAC framework. However, proposing a complete PHY/MAC layer design solu-
tion is far beyond the capability of this individual thesis work. This chapter highlights
design aspects related to resource use, synchronization, random channel access and in-
terference management, which are cruxes to D2D discovery function and to D2D data
communication function.

A generic design of D2D discovery and transmission procedures across all the sce-
narios is preferred. Three coverage scenarios can be distinguished:

• In coverage: Both D2D transmitter and receiver are under the network coverage.

• Out of coverage: Both D2D transmitter and receiver are out of network coverage.

• Partial coverage: Either D2D transmitter or receiver is out of network coverage.

It is required that in-band D2D operates under the control of network when the
network coverage is available so that the impact of in-band D2D transmission to the
current LTE network is manageable. That is to say, the network is able to identify,
authenticate and authorize D2D UEs participating in D2D discovery, and is able to
determine resources and power of direct D2D transmissions. Meanwhile, a design that
allows UEs to perform D2D functions whether they are under network coverage or out-
of-coverage is desired. However, as in-coverage is the main situation for both general
and public safety specific scenarios [TR2, ], a design considering network control is the
essential start. Additional self-organization features enabling D2D functions without
coverage could be built on that main D2D system afterwards. This allows simplifying

23
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implementation and specification. It is worth noting that D2D should work in inter-
operator scenario where D2D transmitter and receiver locate in different operatorsâ
network. The inter-operator scenario, together with the out of network scenario, implies
that D2D transmitter and receiver might be originally not synchronized to each other
and the initialization of D2D link should be able to act in an asynchronous fashion.

Another important requirement is that the D2D design should reuse as much as
possible the current LTE physical and MAC features in order to minimize core and RF
specification impacts from the integration of D2D into LTE radio access.

It is crucial to understand existent LTE physical and MAC framework in order to
integrate D2D functions. Therefore in this Chapter, key LTE physical and MAC layer
characteristics and procedures for both uplink and downlink transmissions are firstly
reviewed. Design options and preferred solutions, for random channel access in D2D
discovery, and for interference management of D2D data communication, are identified.

3.2 LTE Physical and MAC layer Specifications

In this section, LTE physical and MAC layer specifications, relevant to our considera-
tion of D2D discovery and communication design, are reviewed.

Channel access methods are fundamentals in wireless communication system, and
are tightly related to resource allocation method and interference management tech-
niques. In section 3.2.1, Orthogonal Frequency-Division Multiple Access (OFDMA)
downlink channel access method and Single-Carrier Frequency Division Multiple Ac-
cess (SC-FDMA) uplink channel access method used in LTE network are presented. It
is required that in-band D2D link use compatible channel access method so that the
intra-spectrum interference is manageable.

In order for two entities to communicate efficiently, it is essential that the transmit-
ter and the receiver have the same notion of time. Furthermore, OFDM-based channel
access is highly sensitive to carrier frequency errors. Therefore both timing and fre-
quency synchronization should be achieved at the initial stage of communication. An
LTE UE can only be scheduled for transmission with an eNB if its transmission tim-
ing is synchronized to the eNB. In LTE, UEs synchronize its downlink timing and
frequency to eNB via cell search procedure, and its uplink timing to eNB via uplink
Random Access. The transmitter of synchronization signals include its identity in the
synchronization signals in order to be identified by the receiver. The detailed LTE
downlink and uplink synchronization procedures are presented in section 3.2.2, for
a better understanding of D2D synchronization issues and D2D discovery procedure
design.

Once a UE get synchronized to eNB and authenticated by the network, its downlink
or uplink transmission is scheduled by the eNB. Resource assignment is based on chan-
nel estimation and is conveyed to UEs via control signaling. The concrete transmission
procedure is introduced in section 3.2.3.

Section 3.2.4 presents the interference scenario in current LTE networks. Interfer-
ence coordination techniques specified for macro inter-site scenario and macro-pico
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Figure 3.1 — Resource Allocation Principle in LTE

scenario are introduced.

3.2.1 Channel Access Method

A channel access method allows terminals connected to the same transmission medium
to share the same communication channel. A channel access method is based on a
physical layer multiplexing method, and concerns MAC layer protocols dealing with
issues such as addressing, assigning multiplex channels to different users, and avoiding
collisions. It is critical to achieving good system performance. The LTE downlink adopts
OFDMA as multiple access method. It is an extension of OFDM modulation scheme
to the implementation of a multiuser communication system. In OFDMA, subsets of
subcarriers are distributed to different users at the same time so that multiple users
can be scheduled to receive data simultaneously. In LTE, OFDMA is combined with
time partition so that the basic unit of resources allocated to one user is a subset of
subcarriers for a specific time duration. This basic unit in LTE consists of 12 continuous
subcarriers for a duration of 1 ms (one slot) is termed a Resource Block (RB), which is
the smallest unit of resource that can be allocated to one user. Such an OFDMA/TDMA
mixed strategy used in LTE downlink is depicted in Figure 3.1.

It enables a scheduler to assign resources dynamically and flexibly, based on time-
variant frequency-selective channel of each user, and thus makes it possible to achieve
high spectral efficiency and QoS of each individual. The primary advantage of OFDM
over single-carrier schemes is its robustness against multipath distortions. Channel
equalization at the receiver can be highly simplified due to the flat channel condition
over a narrow band (a subset of subcarriers) created by OFDM mechanism.

However, one of the major drawbacks of multicarrier transmission is the high peak-
to-average power ratio (PAPR) of the transmit signal. Time domain signal of OFDM
symbol varies strongly due to the fact that it is actually the superposition of sinusoidal
waves, each corresponds to a frequency domain data symbol independently modulated
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Figure 3.2 — Loss of orthogonality due to inaccurate frequency offset

by a different subcarrier (such that the amplitude of each sinusoidal wave depends on
the corresponding constellation point presenting the frequency domain data symbol).
The high PAPR causes inefficient power consumption and challenges amplifier design.

Therefore in LTE uplink, where UE power efficiency is demanding and costly am-
plifier is unaffordable, SC-FDMA featuring low PAPR is adopted as multiple access
method. The SC-FDMA signal looks like single-carrier, but is actually generated in a
multicarrier process very similar to OFDMA. However, unlike OFDM, in SC-FDMA
the signal modulated onto a given subcarrier is not a single data symbol but a linear
combination of all the data symbols transmitted at the same time instant. Therefore
in each symbol period, all the transmitted subcarriers of an SC-FDMA signal carry
a component of each modulated data symbol. In time domain the superposition of
sinusoids has its single-carrier property, which results in a much lower PAPR.

3.2.2 Frequency and timing synchronization

The design of an OFDMA system poses stringent requirement on frequency and timing
synchronization. OFDMA is highly sensitive to Carrier Frequency Offset (CFO) and
time-varying channels. Carrier Frequency Offset refers to the difference between radio
frequencies in the transmitter and the receiver. Frequency errors typically arise from a
local oscillator frequency drifts between the transmitter and the receiver. It might also
result from phase noise in the receiver, or relative movement between the transmitter
and the receiver (Doppler spread). Inaccurate compensation of Carrier Frequency Offset
destroys orthogonality among subcarriers and produces Inter-Carrier Interference (ICI),
as illustrated in Figure 3.2.

OFDMA is insensitive to timing synchronization errors as long as the misalignment
remains within the CP duration. However, Inter-Symbol Interference (ISI) and ICI
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Figure 3.3 — Cell Search Procedure

may occur with long-delay-spread channels. Initial timing in LTE is normally acquired
by the cell-search and synchronization procedures. Thereafter, for continuous tracking
of the timing-offset, two classes of approach exist, based on either CP correlation or
Reference Signals (RSs).

In LTE, the frequency and timing synchronization is accomplished by cell search
procedure and uplink random access. The cell search procedure allows UE acquiring
symbol and frame timing, and compensate carrier frequency errors resulted from mis-
match of the local oscillators between the transmitter and the receiver as well as the
Doppler shift caused by any UE motion. The cell search synchronization procedure
leverages two specially designed downlink broadcast signals: the Primary Synchroniza-
tion Signal (PSS) and the Secondary Synchronization Signal (SSS). These two signals
not only enable the frequency and timing synchronization, but also indicate the physi-
cal layer cell identity, the cyclic prefix length and cell duplex mode (Frequency Division
Duplex (FDD) or Time Division Duplex (TDD)). Depending on whether it concerns the
initial synchronization or the neighbour cell identification, after the detection of these
two signals, the user either decodes the Physical Broadcast CHannel (PBCH) to ac-
quire crucial system information, or detects Reference Signals (RS) transmitted from
neighbour cells for cell reselection or handover. The cell search and synchronization
procedure is summarized in Figure 3.3.

The detection of the PSS has to be non-coherent, as the UE does not have a priori
knowledge of the channel at the beginning of cell search synchronization. The con-
struction of the PSS is from Zadoff-Chu (ZC) sequences, which is in particular suitable
for non-coherent detection due to its flat frequency-domain autocorrelation property
and its low frequency offset sensitivity. The fixed position of the PSS in a radio frame
enables a UE to acquire the slot boundary timing independently of the Cyclic Prefix
(CP) length.

The detection of the SSS is coherent, based on the assumption that the channel
coherence time is significantly longer than the elapsed time between PSS and SSS (one
OFDM symbol in FDD and four OFDM symbols in TDD). The position of the SSS in
FDD and TDD is different, in addition, the CP length is unknown a priori to the UE,
therefore by checking for the SSS at four possible positions, cell duplex mode and CP
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length can be both determined. The PSS in every subframe is the same, therefore the
detection of PSS does not accomplish frame timing acquisition. The SSS in the first
and second subframe alternates, enabling the UE to establish the position of the 10ms
radio frame boundary.

In the frequency domain the PSS and SSS are mapped onto the central six Resource
Blocks (RBs), indifferent to the system bandwidth, which allows the UE to identify
the system center frequency. The downlink system bandwidth is informed by System
Information (SI) carried by PBCH. PBCH is also mapped onto the central six RBs
regardless of the system bandwidth as PSS and SSS as the UE have no prior knowledge
of the system bandwidth.

Uplink time synchronization for a UE must be achieved in order that a UE can send
uplink data or control information to eNB. Contrarily to the downlink broadcast way,
the uplink received waveform is a mixture of signals transmitted by multiple users, each
affected by its proper synchronization errors. Therefore signals of each user must be sep-
arated from the others in order to successfully synchronize the timing and frequency. In
LTE the uplink time synchronization is achieved via Random Access CHannel (RACH)
and contention is resolved by leveraging a preamble signature. The RACH comes in
two forms, allowing access to be either contention-based or contention-free. In order
to reduce the latency of synchronization procedure, the eNB has the option to initiate
contention-free procedure in certain cases by assigning a dedicated preamble signature.
Contention-based RACH is applicable in all use-cases and is initiated by a UE by ran-
domly choosing a random access preamble signature. The Contention-based random
access procedure consists of four-steps:

Step 1
The UE randomly chooses a random access preamble signature. Similar to the
PSS used in downlink synchronization, the preamble signature is also based on ZC
sequences.

Step 2
The eNB sent the Random Access Response (RAR) and addressed with a Ran-
dom Access Radio Network Temporary Identifier (RA-RNTI), identifying the time-
frequency slot in which the preamble was detected. UEs collided by selecting the
same signature in the same preamble time-frequency resource whould each receive
the RAR. If the UE does not receive a RAR within a time window pre-configured
by the eNB, it goes to Step 1 and selects another preamble signature. The RAR
conveys the identity of the detected preamble, a timing alignment for uplink trans-
mission, an initial uplink resource grant for transmission of the Step 3 message,
and a temporary Cell Radio Network Temporary Identifier (C-RNTI).

Step 3
The UE send the Layer2/Layer3 (L2/L3) message on the assigned Physical Up-
link Shared CHannel (PUSCH). It carries the C-RNTI if the UE already has on
(RRC_CONNECTED UEs) or an initial UE identity (the SAE Temporary Mobile
Subscriber Identity (S-TMSI) or a random number). Colliding UEs are not aware
of their collision, and will also collide in the same uplink time-frequency resources
when transmitting their L2/L3 message.
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Figure 3.4 — Contention-based RACH procedure

Step 4
The contention resolution message uses HARQ. It is addressed to the UE identity
(C-RNTI or an initial UE identity) whose L2/L3 message in Step 3 has been
successfully decoded and is followed by the HARQ feedback transmitted by the
UE which detects its own identity in the contention resolution message. Other UEs
understand there was a collision, transmit no HARQ feedback, and can quickly
exit the current random access procedure and start another one.

3.2.3 Transmission procedure basics

In order to communicate with an eNB, the UE must firstly identify the broadcast
transmission from an eNB and synchronize to it. This is achieved by means of spe-
cial synchronization signals embedded in the OFDM structure described before. In
RRC_CONNECTED, the E-UTRAN allocates radio resources to the UE to facilitate
the transfer of data via shared data channels. The dynamic frequency and time re-
source allocation is indicated by a control channel, which should be monitored by the
UE. In downlink transmission, the UE estimates the channel condition based on the
reference signals inserted in the OFDM structure in order to perform coherent demod-
ulation. Similarly, in uplink transmission, coherent demodulation is also facilitated by
reference signal based channel estimation. The uplink DeModulation RSs (DM-RSs)
of a given UE occupies the same bandwidth as its PUSCH/PUCCH transmission and
are time-multiplexed with the data symbols.

The scheduling strategy is not specified by the standard, but is left to operators’
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Figure 3.5 — Contention-free RACH procedure

choices. Most scheduling strategy need information about channel conditions, buffer
status, priorities of data flows, interference from neighboring cells, etc.

The radio channel condition is a key factor to the UE performance. The quality of
the signal depends on the channel quality, the level of interference from other trans-
mitters, and the noise level. In order to optimize system capacity and coverage, the
transmitter should try to match the modulation, coding scheme to the variations in re-
ceived signal quality for each user. This technique is called link adaptation or adaptive
modulation and coding (AMC). Furthermore, the radio channel condition contributes
to higher spectral efficiency as the multi-user scheduling in time and frequency can
take advantage of the user channel frequency selectivity.

Information about the channel conditions at the eNB is obtained in different manner
in LTE downlink and uplink. In downlink, it is usually the UE which measures the
instantaneous channel status and report to the network the recommended transmission
configuration on the downlink shared channel. In uplink, the eNB may directly make
its own estimate of the channel status by using Sounding Reference Signals (SRSs) or
other signals transmitted by the UEs.

The channel status report in downlink is the recommended value based on UE
estimation. The eNB’s final decision is not necessarily the same. It might consist of one
or several pieces of information: Channel-quality indication (CQI), representing the
data rate that can be supported by the channel, taking into consideration the SINR
and the characteristics of the UE’s receiver. A CQI points to a modulation scheme
and coding rate combination predefined in CQI table. Rank indication (RI), providing
the preferred number of spatial-multiplexing transmission layers in MIMO system.
Precoder matrix indication (PMI), providing the preferred beamforming pattern in
each spatial-multiplexing transmission layer in MIMO system.
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3.2.4 Interference coordination

Resources allocated to different users in a macro cell are usually orthogonal to avoid
intra-cell interference. Main interference might come from transmitters in neighbouring
cells on the same resources known as Inter-Cell Interference (ICI) and might impact
the throughput performance, especially that of cell-edge users. In LTE Rel.10 hetero-
geneous network deployments is supported, where small cells (picocells or femtocells)
overlay within the coverage area of macrocellular network. Heterogeneous deployments
sharing the same spectrum enables higher spectral reuse but present more challenge to
interference coordination.

In LTE Rel. 8/9, the main mechanism for Inter-Cell Interference Coordination
(ICIC) for homogeneous macrocellular networks is normally assumed to be frequency-
domain-based. In downlink it is possible to exchange signalling between eNBs over the
X2 interference to indicate the plan of transmit power on different frequency bands.
In uplink it is possible for an eNB to inform neighboring eNBs of the measurements
of the average uplink interference plus noise on different frequency bands or its plan
on cell-edge user resource allocation in the near future. The scheduling strategy of the
eNB may impose restrictions on resource use in time and/or frequency in order to avoid
ICI. In uplink, the eNB can also control the power offset for cell edge UEs in order to
compensate their vulnerability to ICI.

In LTE Rel.10, time-domain enhanced ICIC (eICIC) techniques are introduced,
mainly focused on co-channel interference mitigation of the control channels in macro-
pico scenario. As the pico eNB has much lower transmission power than macro eNB,
the interference received from the macro eNB would be significantly higher. Frequency-
domain based interference avoidance mechanism is of limited benefit for the synchro-
nization signals, Physical Broadcast Channel (PBCH), cell-specific Reference Signals
(RSs) or control channels (PDCCH, PCFICH, and PHICH) as their time-frequency
locations are fixed. Time-domain eICIC in LTE Rel.10 uses Almost Blank Subframes
(ABSs) to reduce downlink transmission power and/or activity in certain subframes
of one layer of cells in order to mitigate the interference from macro eNB towards the
UEs served by the picocell.

3.3 LTE D2D PHY and MAC layer design choices

After reviewing LTE physical and MAC layer specifications, in this section we will
propose D2D design choices, taking into consideration the compatibility and impacts
to the current LTE physical and MAC framework. We start with resource use and syn-
chronization issues, which are fundamental and determinative to transmission efficiency
and are common to both D2D discovery and D2D data communication functions. Then
design aspects of D2D discovery and D2D data communications are analyzed separately.
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3.3.1 General consideration of D2D resource use

In principle, D2D may use a combination of UL and DL spectrum for FDD and UL and
DL subframes for TDD. Modification on RF design of current UE devices is necessary.
The problem is quite different for TDD UE and FDD UE. In TDD, the traditional
half-duplex UE antenna put constraints on D2D transmission. As conventional TDD
UEs are not able to transmit and receive at the same time, when UEs are transmitting
in D2D mode, it cannot receive downlink signals from eNB at the same time. Therefore,
UEs transmitting in D2D mode might miss important information transmitted from
eNB. Similarly, in TDD uplink scenario, D2D receiver cannot transmit signals to eNB
in the mean time. An advanced full duplex antenna might allow a D2D UE to transmit
and to receive simultaneously on the same carrier, but can have the problem of leakage,
antenna size, and high cost, etc. Therefore full duplex antenna is not a practical solution
for the moment. An alternative solution can be time resource partition for cellular and
D2D transmission, which effectively avoid this simultaneous transmission and reception
problem, but at the expense of spectral efficiency gain. In case that spectral efficiency
is a concern, it is possible to trade off scheduling complexity for spectral efficiency, for
example, use semi-static time resource partition or even dynamic scheduler for resource
allocation.

In FDD systems, UEs do not conventionally transmit signals on the downlink spec-
trum or receive on uplink spectrum. Therefore, in-band D2D requires implementations
on UE RF to enable transmitting and/or receiving on an additional spectrum. In addi-
tion, the same isolation problem as what we mentioned in TDD case might also occur.
RF interference can be severe when a UE receives on the DL band from eNB and trans-
mits on the DL band to another UE at the same time, and vice versa for the UL band.
Implementation of full duplex D2D is technically difficult as the requirement of RF
isolation between Tx and Rx chains may be quite severe. Alternatively, D2D resource
could be scheduled to avoid concurrent transmission and receiving on the same band.

For in-band D2D transmission, it is possible to allocate dedicated resources, or to
allow overlapping resource use between D2D transmission and cellular transmissions.
In dedicated resource use, a certain part of licensed spectrum is reserved uniquely to
D2D transmission, and therefore interference between D2D and cellular transmissions
is avoided. But this method makes worse use of spectrum than overlapping resource
use, as it does not adapt to D2D load in a cell.

In overlapping resource use, interference avoidance is quite challenging. It is possible
to avoid intra-cell interference by, for example, centrally assigning orthogonal resources
to D2D and cellular UEs in the same cell. However, avoidance of inter-cell interference
between D2D and cellular transmission in neighbor cells requires cooperation of neigh-
boring eNBs to jointly perform inter-cell interference coordination, which can be highly
complicated. The performance gain of the overlapping resource use scheme therefore
largely depends on the applied interference management techniques. Note that resource
allocation and many other interference management techniques are effective only when
transmissions are synchronized. The D2D synchronization issues will be analyzed in
the following section.
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3.3.2 Synchronization

Synchronization is fundamental and determinative to transmission efficiency. Synchro-
nized communication allows efficient spectral reuse with interference coordination. In
synchronous mode, energy consumption of transmission is much lower.

As introduced before, transmission of data and control channels in current LTE
system is basically time-synchronized. Multi-carrier modulation, such as OFDMA or
SC-FDMA, requires not only time synchronization but also tight frequency synchro-
nization. Typically only synchronization errors of up to a few percent of the subcarrier
spacing are tolerable in OFDM systems. Therefore if D2D uses multi-carrier modula-
tion as in LTE DL and UL, tight time and frequency synchronization are required in
order that interference can be coordinated.

LTE synchronization is achieved through unsynchronized procedures and channels.
DL synchronization is conducted by eNBs broadcasting PSS/SSS every 5ms. “Always
on” DL synchronization is indispensable so that UEs will not miss important system
information and UEs receive DL data in an efficient way. On the contrary, UL synchro-
nization is conducted in an “on demand” fashion. A UE that is inactive for a certain
period of time is allowed to lose uplink synchronization to save UE battery and radio
resources. It resumes UL synchronization procedure through random access channel
PRACH when it has signals to transmit.

To support D2D services in LTE, new channels, signals, and procedures need to
be developed and it is fundamental to consider which D2D channel/procedure shall
operate in a synchronous way, and which ones can operate in an asynchronous way.

D2D discovery is required to work in cellular networks where the cells are not time-
synchronized (e.g. inter-operator discovery), and in scenarios where there are only
partial or no network coverage. It is necessary that discovery is able to operate in an
asynchronous fashion. Other unsynchronized operation might include control signaling
procedures for setting up connections or triggering a session between connected entities.

It is preferred, however, that D2D discovery and control signalling procedures men-
tioned above can perform in a synchronized fashion whenever they are allowed, so
that performance advantages of synchronous transmission can be fully exploited. The
method to achieve “always on” synchronization for D2D UEs will be explained after-
wards.

D2D device discovery can be followed by direct communication if necessary, which
includes a session setup and resource assignment procedure. It is desired that time
synchronization be achieved before session setup, for example, in D2D discovery phrase,
so that direct communication can take full advantage of synchronous transmission
(resource and energy efficient, interference controllable, etc.).

Time synchronization techniques can be classified into two categories: global syn-
chronization and local synchronization. Global synchronization requires that all the
UEs in the network agree on the same time and each UE tries to minimize its offset
with respect to all other UEs. Global synchronization has two approaches: synchronize
directly to a common global reference such as GPS, and synchronize via network-wide
message exchanging. Neither of these two approaches is suitable for LTE D2D. In the
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first approach, time synchronization is accurate, but the implementation cost of hard-
ware receiver to decode the out-of-band clock signal (e.g. a GPS) is high. In addition,
GPS signals have poor penetration through walls and therefore, this is not a suitable
solution for indoor UEs. In the second approach, high messaging overhead might be
incurred, and synchronization accuracy might be poor in large-scale network. UEs need
to regularly monitor the synchronization channels to acquire their neighborsâ synchro-
nization references. Due to user mobility and time-varying topology, convergence might
be slow. Furthermore, such scheme would have large impact on LTE specifications and
UE implementations. Finally, global synchronization assumption is not compatible with
the requirements for D2D to be operated between cells and different operators, which
are typically not globally synchronized.

Different from global synchronization, in local synchronization, UEs are not syn-
chronized to a unique common reference, but to a local reference. Since D2D commu-
nication will be local, local synchronization is more suitable where a UE reduces the
offsets with respect to the neighbors. The local reference can be the cellular network, a
UE cluster head (device acting as local synchronization master and broadcasting D2D
synchronization signals), or one of the devices in a D2D pair. The cellular network
should have higher priority as a synchronization reference as it is more reliable. In case
that a UE is out of coverage, it can either send request for synchronization relaying, or
start broadcasting own synchronization signals.

Local synchronization can either be performed in an “always on” fashion or in an “on
demand” fashion. In “always on” fashion, a UE continuously tracks the reference timing
and adjusts its timing error, whereas in “on demand” fashion, a UE synchronizes to a
local reference node only when needed (e.g. synchronize to a target UE when a D2D
communication channel is going to be established). The “always on” fashion might lead
to more efficient D2D discovery. For instance, if D2D UEs have a common notion of
time, they can broadcast and detect D2D discovery signals in assigned time resources.
This organized D2D discovery activities could be much more efficient in resource use
and UE battery life than random unsynchronized D2D discovery.

In order to take advantage of efficient synchronous transmission, it is preferred that
D2D UEs keep synchronized to an available local reference node whenever they are in
coverage of a cellular network or a UE cluster head. The “always on” synchronization
can be achieved by letting local reference nodes regularly transmit synchronization sig-
nals. The design challenge lies in timing inconsistency resolution. Interference can occur
when asynchronous local reference nodes transmit synchronization signals simultane-
ously. Decoding time multiplexed synchronization signals can be difficult. If these local
reference UEs are under the network coverage, it might be desired that the network
coordinates the timing error between different local reference UEs in the cell to avoid
interferences from unaligned synchronization signals. For example, the network can
allocate to each reference UE the resource, the power and the period for D2D synchro-
nization signal transmission. In order to limit signaling overhead, the coordination can
function in a semi-persistent way. The resource reserved to different local reference UEs
can be time-division multiplexed or frequency-division multiplexed. eNBs can further
assign to each reference UE the synchronization signature that should be transmitted
in order to avoid collision. In LTE, initial synchronization signals PSS and UL random
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access preambles are both constructed from ZC sequences, which can be recovered from
multiplexed signals due to its flat frequency-domain autocorrelation property and its
low frequency offset sensitivity. ZC sequence enables low receiver complexity for de-
coding and is suitable to be reused to construct D2D synchronization signals. Reusing
ZC sequence structure reduces costs on UE RF modification.

On the other hand, if local reference UEs are out of the coverage of the network, tim-
ing inconsistency between neighbouring reference UEs should be resolved by additional
protocols, otherwise interference could be a problem.

Another constraint in synchronization signal design is the potential high power
consumption on the reference UE side. In LTE, synchronization signals are broadcasted
by eNB every 5ms, which would be a drain on the UE battery if D2D synchronization
signals are broadcasted so often. A low duty cycle should be used to conserve UE power.

3.3.3 D2D discovery

To fulfill the requirements for the purpose of D2D discovery over the air, two functions
are essential:

1. Proximity detection: UEs can be aware of the existence of other nearby UEs sup-
porting D2D.

2. Identity detection: UE can detect the identification of nearby UEs supporting D2D.

The procedure of D2D discovery generally starts with proximity detection, followed
by identity detection. To realize proximity detection, an obvious solution is to apply
a scan/search mechanism using beacon sequences, as used in other D2D technologies,
e.g. Bluetooth and Wi-Fi Direct. A UE, which is willing to be detected by nearby
UEs, can broadcast beacon sequences. As the detection of beacon sequences can be
the first contact of two D2D UEs, and as D2D transmitter and receiver might be
originally unsynchronized (e.g. in different operatorsâ network, or in out-of-network
scenario), UEs must be able to decode asynchronous beacon sequence. It is preferred
that synchronization can be achieved through beacon sequence at the initial stage of
D2D discovery so that subsequent messages can benefit from synchronized transmission.
A structure similar to RACH preamble in LTE UL synchronization can be applied to
beacon sequence design if SC-FDMA is used for D2D, or PSS/SSS like synchronization
signals can be applied if OFDMA is used for D2D.

After the transmission of beacon sequence for proximity detection, there are two
ways to convey UE identity associated with the beacon sequence: either by transmitting
a subsequent message containing its identity or via network signalling. In the latter
method, UEs report their detected beacon sequences to the network, and the network
may inform UE the corresponding identity by higher level signalling. However, this
method incurs additional overhead and power consumption. Moreover, if either of the
discovering and discovered UEs is out of network coverage, special signalling mechanism
needs to be designed for identity detection. For example, either the out-of-coverage UE
tries to get access to network through UE relay, either an alternative UE-UE identity
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exchange mode is designed for out-of-coverage case. On the contrary, the first method
offers a network coverage independent discovery solution and it simplifies signalling
design. Both proximity detection and identity detection are based on discovery signal,
therefore inquiring of the identity and service related information from the network
could be avoided. It will be interesting to investigate if the structure of transmitting
a beacon sequence plus a subsequent message can offer a universal solution for all use
cases and discovery types.

Due to network dynamics such as UE mobility, UE’s turning on/off, etc., the set of
UEs in proximity of a UE can change over time. UEs should regularly perform detection
in order to update its knowledge of proximate UEs. UEs that want to be discoverable
need to regularly transmit discovery signals. In order to allow an efficient discovery, a
UE which wants to participate in discovery should be able to perform discovery whether
it is in RRC_CONNECTED state or RRC_IDLE state. New RRC states may need
to be defined with respect to discovery. The design should scale to allow large number
of UEs to participate in discovery.

Full duplex D2D is excluded due to the self-interference problem and high cost. Half
duplex D2D operation is assumed, where a UE transmitting discovery signals can not
receive discovery signals transmitted by other UEs. This leads to the need of arranging
transmission and receiving turns in a way that UEs have the possibility to detect other
UE’s signal in a reasonable time. The most power efficient arrangement will be that
half of the UEs in a group are transmitting while the other half is listening on one
time instant, and on another time instant, the compositions of the transmitting and
receiving groups are changing in order that two UEs will not always transmit at the
same time and fail to detect each other. The recomposition of the transmitting and
receiving groups can be randomly decided by each UE on its own, or under the network
control. The latter is evidently more resource efficient. Furthermore, the number of UEs
that can transmit simultaneously depends on the multiplexing method and available
discovery resources on each time instant.

The resource use of D2D discovery signal is a key design factor and can be decom-
posed into several design choices:

1. Whether D2D uses dedicated resources or overlapping resources with cellular trans-
missions.

2. Whether D2D operates in DL or UL resources.

3. In case of dedicated resource use, how to multiplex D2D discovery signals with
cellular transmission.

4. How do multiple D2D links multiplex.

As mentioned in section 3.3.1, if D2D uses dedicated resource, interference from D2D
transmission to cellular transmission could be avoided, whereas if D2D uses overlap-
ping resources with cellular transmission, interference management can be challenging.
Asynchronous discovery signals transmitted from D2D UEs out-of coverage or from
D2D UEs belonging to other operatorsâ networks might beyond the control of an eNB.
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Therefore D2D discovery signals using overlapping resources might severely interfere
cellular transmission. As a result, dedicated resource use is preferred in order to protect
cellular communications.

D2D can operate in both UL and DL resources. However, using UL resources only
has several advantages. Firstly, existing LTE UE RF transceiver can be reused and
implementation cost can be saved. Secondly, regulatory constraints in some countries
obstruct UEs in FDD deployment from transmitting on the DL band. Therefore D2D
discovery using UL band in FDD system and UL subframes in TDD system is preferred.

When operating in UL resources, D2D and UL transmission can either be frequency
multiplexed, or time multiplexed. Frequency multiplexing implies that discovery re-
sources are spread out in time, and thus UEs participating in discovery need to be
awake for a longer duration, which leads to inefficient power consumption. Time mul-
tiplexing is efficient for receiver energy consumption, for example, some subframes are
reserved for D2D discovery and PUSCH does not appear in these subframes.

A UE participating in discovery is often interested in discovering all the UEs in
proximity. The signals received from multiple UEs can be time multiplexed, frequency
multiplexed or code multiplexed.

• Code multiplexed discovery signals are vulnerable to near-far problem. The re-
ceived discovery signals from D2D UEs located far from the detecting UE might
be of much lower power than those from D2D UEs located nearby. As a result,
low-power signals could be hardly recovered from the mixed signals. Therefore
code multiplexing is not suitable for D2D discovery signals.

• Time multiplexing is resource inefficient. We have proposed previously that to
save energy, D2D discovery resources should not disperse in time, and therefore it
is preferred that discovery resources rather spread out in frequency, for example,
some subframes are reserved for D2D discovery, in which PUSCH does not appear.
In another word, the reserved resources for D2D discovery will be narrow in time
and large in frequency. As a result, time multiplexing is resource inefficient as
it can serve only a few D2D transmitters, which can not satisfy the large-scale
discovery need. Meanwhile the total band is allocated to each D2D, which is more
than necessary as discovery signals contain very few bits.

• Frequency multiplexing is more suitable for large-scale discovery activities than
time multiplexing and the near-far problem is less severe than code multiplexing.
However, decoding parallel signals increase the receiver computational cost and the
dynamic range of the receiver limits the number of beacons that can be successfully
detected in the same subframe.

The proposed resource use scheme is illustrated in Figure 3.6.

A network-assisted D2D discovery procedure (Figure 3.7) can be described as fol-
lows:

1. eNB makes semi-static resource reservation for discovery activities, and broadcast
it to all the UEs in the cell. UEs are therefore informed of the resources in which
they could detect discovery signals.
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Figure 3.6 — Possible design of discovery resource use
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Figure 3.7 — Network-assisted D2D discovery procedure

2. UEs, which are willing to be discovered, request for resources grant.

3. eNB dynamically assigns resources to each individual D2D UE which has requested
for resources.

4. UEs transmit their beacon sequence and subsequent messages in allocated re-
sources, in order to be detected and identified. Other UEs listen to discovery
signals on reserved resources.

3.3.4 D2D data Communication

Contrary to D2D discovery signal, which contains only a few bits, D2D data traffic often
involves data streaming, local gaming, etc., and thus can be much heavier. In addition,
the total traffic varies a lot in time. Therefore dedicated resource use is inefficient for
D2D data communication. Overlapping resource use with cellular transmission is highly
desired in order to make better use of the scarce licensed spectrum.

The key problem in overlapping resource use is interference management. Most
importantly, interference from D2D to cellular transmission should be strictly controlled
by the network in order to protect cellular transmission when D2D UEs are in coverage
or in partial coverage. Management of inter-D2D interference is also necessary for
efficient D2D data Communications. In LTE, intra-cell interference is managed by an
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Figure 3.8 — Near-far problem in hybrid network with overlapping resource use

eNB by orthogonalizing the resources allocated to UEs whereas inter-cell interference
is naturally alleviated by associating UEs to the strongest eNB.

When D2D using overlapping resource is introduced in a cell, the interference sce-
nario becomes much more complicated. The prominent near-far problem might occur,
as a receiver is not necessarily closer to its corresponding transmitter than to other
transmitters in network, as illustrated in Figure 3.8. This near-far problem also exists
in LTE small cell. For example in femtocell case, macrocell UEs may experience large
interference when they move close to closed subscriber group HeNBs (CSG-HeNBs). In
picocell case, Cell Range Expansion (CRE) enables higher user offloading from macro-
cell eNodeBs on to picocells, by requiring UEs preferentially select a picocell eNodeB
even when it is not the strongest cell. Therefore the UEs connecting to the picocell
eNodeB with large-bias CRE can suffer from severe interference from the macrocell
eNodeB since the received signal power of the macrocell eNodeB is larger than that of
picocell eNodeB for such UEs.

In small cell case, a low-power node has certain autonomy to allocate a group
of carriers to its subscribers within its coverage. Interference is mostly controlled by
coordinating lower-power nodes and high-power eNBs (advanced ICIC techniques), in
resource allocation and power control. While in D2D case, both D2D resources and
power should be under the networkâs control in order that the coordination between
hybrid macrocell and D2D communications using overlapping resources is achieved and
near-far problem is avoided.

To coordinate the hybrid communication and to achieve efficient resource reuse, we
identified four techniques that can be used.

1. Resource allocation: Resource can be orthogonal between D2D and cellular trans-
missions, and/or among D2D transmissions in order to alleviate intra-cell interfer-
ence. However, the spectrum might be underutilized, which leads to suboptimal
system performance. Intra-cell resource reuse based on location information or
SINR estimation might lead to an optimal use of resources.

2. Power control: Power control is another key elements to manage interference and to
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solve the near-far problem. Power control is also applicable to cases where network
control is not available.

3. HARQ: HARQ is a retransmission mechanism, which can enhance D2D perfor-
mance in a spatial reuse scheme by simple repetition of D2D transmission in
multiple subframes. Useful signal energy is accumulated at the D2D receiver and
D2D transmission range is extended. HARQ is especially beneficial to D2D trans-
missions out of network coverage, where interference can be severe, and required
transmission range of public safety applications can be long (at the order of kilo-
meters).

4. Mode selection: mode selection allows a soft switch between D2D mode and con-
ventional UL/DL mode communications in order to achieve efficient resource use,
which should be decided by eNB.

Usually eNBs are the main entities to perform coordination, and the central co-
ordination in eNBs requires signaling support, for example, reports of channel mea-
surement, assignments of resources and power, etc. We can distinguish three levels of
centralization.

• Fully centralized: In LTE and other cellular technologies, the operation of mobile
terminal is fully controlled by the network. Fully centralized control over D2D data
Communications implies that eNB is responsible for all functions that relate to air
interface parameters such as transmission mode, resource allocation, power control,
feedback mode, etc. The centralized coordination optimizes the usage of spectrum
resources and minimizes the interferences as QoS of each D2D link is controlled.
It is suitable for scenarios where a small number of D2D UEs communicate with
each other over long time period. However, it does not scale well. As the amount
of D2D pairs increases, the coordination complexity and signaling overhead may
become unaffordable.

• Partly centralized: In this design option, a part of the eNB functions is delegated
to UE terminal. For instance, the eNB still performs major control functions such
as mode selection, resource management, etc. But the control of each particular
D2D transmission is left to UEs, with the necessary configuration and assistance
information provided by the network. In case that the D2D density is high, this
approach is more attractive than a fully centralized approach as it scales well and
may substantially reduce system overhead and eNB design complexity without
necessarily sacrificing performance. The drawback of this partly centralized design
is that it cannot be directly applied for out of network coverage scenario, similar
to fully centralized approach.

• Distributed: This design option assumes that the channel access and interference
control functions are implemented at the UE side. It may require election of a
cluster head or coordinator node (as in some already implemented distributed
protocols: Bluetooth, Wi-Fi Direct, etc.). It requires no network assistance, in-
stead, it uses contention-based protocols which implies low efficiency in resource
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Figure 3.9 — Partly-centralized D2D resource assignment on group-basis VS. fully-
centralized D2D resource assignment on pair-basis

use and weakness in interference control and collision resolution. Therefore when
network node is available, distributed protocols should be avoided. While in out-of
coverage case, this is the only way in which D2D can function.

It can be seen that the choice of centralization level should depend on D2D deploy-
ment. When network nodes (eg. eNBs) are absent, distributed control of D2D data
communication is the only way to work. Whereas centralized control is preferred when
network nodes are available. In the scenarios where a cell contains only a small number
of D2D UEs, full-centralized control over each D2D pair might be the most convenient
choice. On the other hand, if D2D density is high and D2D traffic is opportunistic,
partly centralized coordination can be much more efficient than fully centralized coor-
dination. We propose partly centralized resource allocation scheme where eNBs assign
resources to D2D UEs on group basis rather than on pair basis.

Contrary to fully centralized coordination, where resources are assigned by eNB
to each UE, the proposed partly centralized resource allocation takes two steps. In
the first step, a set of resources is assigned by eNB to a local D2D cluster head.
In the second step, the D2D cluster head decides how to share the resources among
D2D links in the cluster. Resources assignment on group basis can be very practical
in groupcast scenario or in hotspot areas and the two-step allocation method can
substantially reduce the eNB signalling overhead. The difference of group-based and
pair-based resource allocation scheme is illustrated in Figure /reffig:D2Dgrouppair.

3.4 Conclusion

In this chapter, physical and MAC layer design requirements, options and preferred
solutions for a good function of D2D discovery and D2D data communication in LTE
networks are discussed.

Our study concentrates on design aspects of resource use, synchronization, random
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channel access and interference management, which are most essential to D2D discovery
and D2D data communication. Relevant LTE characteristics and procedures, including
channel access method, frequency and timing synchronization, transmission procedure
basics, and interference coordination methods, have been firstly reviewed. The impact
on current LTE physical and MAC layer specifications has been taken into consideration
in the design of LTE D2D. The reuse of existing LTE characteristics has been favored.

The main contribution of this chapter is summarized as follows:

• General consideration of D2D resource use is discussed. We investigated necessary
modification on UE RF design to support D2D transmission and consequent con-
straints that might be put on D2D resource use in both TDD and FDD systems.
Dedicated and overlapping resource use between in-band D2D and cellular trans-
mission are compared. Advantages and disadvantages of each resource use scheme
are distinguished.

• Synchronization choices, which are determinative to transmission efficiency, are
investigated. Advantages of synchronized communication are pointed out and we
proposed that D2D channel and procedure operate in synchronized way whenever
they are allowed. Possible techniques to realize a synchronous D2D system have
been analyzed and we proposed that D2D UEs achieves “always on” synchroniza-
tion to a local reference node in order to take advantage of efficient synchronized
transmission. Relevant issues, such as choices of local reference node, synchroniza-
tion signal structure, and power consumption, are discussed.

• Design of D2D discovery signal structure, discovery resource multiplexing, and dis-
covery procedure is proposed. A beacon sequence structure similar to LTE RACH
preamble is proposed to realize proximity detection. Two different way to convey
UE identity are compared. Transmitting a message containing UE identity via
a direct D2D link, associated with the beacon sequence, is a more generic de-
sign comparing to using network signalling to convey UE identity as it can work
also in out-of-coverage case. Different discovery resource multiplexing methods are
compared. A possible solution is proposed in which: dedicated resources for D2D
discovery are reserved periodically in LTE uplink resources, dedicated resources
for D2D discovery consist of continuous subframes in which PUSCH does not ap-
pear (time multiplexing with PUSCH), and in these reserved discovery subframes,
D2D links are frequency multiplexed. Finally, a network-assisted D2D discovery
procedure is proposed in case of in-coverage.

• Interference coordination techniques are proposed for D2D data communication
using overlapping resource with cellular transmission. Overlapping resource use is
preferred for D2D data communication in order to make better use of the scarce
licensed spectrum. Near-far interference problem that can be caused by overlap-
ping resource use is investigated. Four techniques are put forward to coordinate the
hybrid D2D and cellular communication and to achieve efficient resource reuse. Co-
ordination with three different centralization levels is discussed: fully centralized,
partly centralized, and distributed. We propose that the choice of centralization
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level depends on D2D deployment. Furthermore, a deployment-dependent resource
allocation strategy is proposed for D2D data communication.





CHAPTER

4 Coordinated Scheduling

of in-band D2D data

communication

4.1 Introduction

The purpose of this chapter is to propose a scheduling method in eNB to coordi-
nate in-band (use licensed spectrum) D2D data transmission. The ultimate aim of the
scheduling is to fulfill the expectations of all the users in LTE network, whether they
are transmitting in D2D mode or in UL/DL mode.

As mentioned in the previous chapter, the key problem in D2D data communication
is interference management. Two kinds of interference are introduced by in-band D2D:
inter-D2D interference, and interference between D2D and cellular transmission. Partic-
ularly, the interference from D2D to cellular transmission should be strictly controlled
to minimize the impact of D2D transmission on existing LTE cellular transmissions.

The most essential technique to manage interference is resource assignment. How
to efficiently allocate resources to users in a cellular system with hybrid modes of
transmission is the crux to an overall user performance gain. A scheduling algorithm
tends towards the best possible performance, while do not imply severe complexity and
signaling overhead need to be designed.

In section 4.2, literature studies on in-band D2D resource coordination is firstly re-
viewed, followed by an in-depth discussion on important scheduling considerations. Sec-
tion 4.3 describes assumed scenario in our study and scheduling objectives. A complete
scheduling solution is proposed in section 4.4. Section 4.5 concludes the contribution
of this chapter.

4.2 Scheduling issues in coordinated in-band D2D

scheduling

In this section, literature studies on in-band D2D resource coordination is reviewed.
Their focuses and deficiencies are analyzed. Important scheduling considerations are
discussed.

45
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4.2.1 Literature studies on in-band D2D resource coordination

Although efficient spectrum sharing between D2D and cellular UEs is quite a new
topic, paradigms of spectrum sharing in cognitive radio networks have been widely
studied. In a network supporting cognitive radio, unlicensed users (secondary users)
sense the spectrum of wireless service providers (WSPs) and opportunistically use the
spectrum that is normally assigned to licensed users (primary users) but not being
used at a particular time and geographic location. The admission of a secondary user
to the spectral resources is often called admission control. Both centralized and dis-
tributed admission control methods have been investigated in literature studies. Many
have used a SINR-based criterion and have assumed the constraints that the interfer-
ence caused by secondary users on the primary network has to be kept below a max-
imum allowable limit, [Xing et al., 2007], [Islam et al., 2007], [Le and Hossain, 2008],
[Kim et al., 2008], [Tadrous et al., 2010], [Tadrous et al., 2011] for example.

Inspired by the admission control works (notable [Tadrous et al., 2011]) in cognitive
radio networks, the authors of [Liu et al., 2012] propose a coordinated set-based admis-
sion control (SAC) algorithm for D2D links. The optimization criterion of centralized
admission control algorithm SAC is to maximize the number of admitted D2D links,
with QoS and power constraints. The capacity of the admitted set is further maximized
by distributed power optimization (DPO). Due to the fact that capacity optimization
is not directly treated in a centralized scheduler, the complexity is reasonable.

A simplified admission control mechanism is taken by articles [Doppler et al., 2009],
[Janis et al., 2009], [Yu et al., 2009] by assuming that a cellular resource block is ad-
mitted by only one D2D link in the cell. D2D resource and power are under full control
of eNB in order to avoid intra-cell interference.

Yet in another article [Xu et al., 2010], resources of each D2D link are decided in
a distributed way, using contention-based CSMA/CA protocol in D2D MAC layer. A
certain level of coordination is achieved as eNB provides additional position information
to D2D users in order that D2D links avoid reusing the same spectrum as UL UEs which
locate closely to D2D receivers, in which way interference from UL UE to D2D receivers
is avoided.

Some studies concentrate on D2D transmission in UL channels [Liu et al., 2012],
[Xu et al., 2010], [Yu et al., 2009]. In [Liu et al., 2012], interference is controlled
through a centralized set-based admission control algorithm. Under the transmit power
limit and QoS constraints, a set of D2D UEs that can sharing the same resources with
UL UE is calculated iteratively by the algorithm. eNB should gather channel conditions,
QoS level and other related information from D2Ds. However in a practical system,
this exchange of information is too much to be realistic. In [Xu et al., 2010], the author
assumes that LTE fractional power control can be used in D2D so that interference
from D2D to eNB can be avoided efficiently. On the contrary, interference from UL UE
to D2D is addressed. Each D2D pair autonomously determines the resource allocation
and interference is avoided by using position informations tracked and broadcasted by
eNB. In [Yu et al., 2009], interference is mitigated through power optimization in reuse
mode and mode switching if reuse mode becomes inefficient.
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In [Doppler et al., 2009], [Janis et al., 2009], [Chen et al., 2012], D2D reusing both
DL and UL channels are both studied. In [Doppler et al., 2009], interference from
D2D to cellular UEs are controlled through power limitation and mode switching. In
[Janis et al., 2009], interference from D2D to eNB in UL channel and from DL UE to
D2D in DL channel is limited by power control. User diversity in macro cell is exploited
to further mitigate interference.

Some articles addressing centralized D2D scheduling also propose that eNBs, as cen-
tral coordinators, could choose the most efficient transmission mode for each potential
D2D pair. That is to say, after detecting data flows between a pair of UE transmit-
ter and receiver in proximity, the eNB decide whether this pair of UEs is scheduled in
D2D mode using D2D resource allocation strategy, or in conventional UL plus DL mode
using UL and DL resources respectively. Some articles propose that D2D mode selec-
tion is performed before D2D link establishment. In [J. E. Korneluk and Rodrigues, ],
[L. Sun and Jia, ], a D2D distance dependent criterion is suggested to switch between
D2D mode and UL/DL mode. Authors of [Xu and Wang, 2012] distinguish two scenar-
ios: D2D UEs and cellular UEs share the same RBs and use different RBs. For the first
scenario, a minimum interference sustained by eNB is considered to make the decision
on transmission mode. Whereas a system throughput based mode selection criterion is
proposed for the second scenario.

[Doppler et al., 2009], [Yu et al., 2009], [Doppler et al., 2010] propose that D2D
mode selection is performed during resource allocation phase: Three modes are com-
pared:

• Non orthogonal resource sharing mode: RBs are shared between a D2D link and
a cellular link.

• Orthogonal resource division mode: D2D links use resources that are unoccupied
by cellular UEs.

• Cellular mode: D2D traffic is relayed via eNB as in conventional UL/DL mode.

Scenario of [Yu et al., 2009], [Doppler et al., 2010] contains only one D2D link and one
cellular link. For each RB, the eNB selects one out of the three modes to maximize the
sum rate. In [Doppler et al., 2009], the total spectrum is split into several subbands.
Both cellular UE and D2D UE are assigned to a single subband at a time. eNB assigns
the mode for a UE peer offering the highest throughput taking into account the amount
of resources each mode will get.

4.2.2 Considerations on scheduling hybrid D2D and cellular

transmissions

In section 4.2.1, scheduling methods of in-band D2D transmission in literature studies
have been reviewed.

• Different choices on how the cellular spectrum is reused by D2D links are proposed.
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– Concerning the centralization level of eNB’s control over D2D resource man-
agement, fully centralized, partly centralized and distributed D2D resource
management have all covered by literature studies.

– Concerning the way multiple D2D links access the spectrum, SINR-based
admission control algorithm is mentioned. Frequency/time multiplexing way
on per-cell basis is also investigated.

– Concerning the D2D usage of spectrum, UL resources only or DL resources
only or both UL and DL resources could be possible.

– Concerning the selection of transmission mode, both large-scale parameter de-
pendent and small-scale parameter dependent algorithm have been suggested.
With the former, the decision of whether using D2D mode or UL/DL mode
is usually made before D2D link establishment, whereas with the later, the
mode selection is performed dynamically, as the channel condition changes.

• Many have proposed power control techniques associated with resource allocation
to mitigate the interference resulted from resource reusing. The focus is mostly on
the control of interference from D2D transmission to cellular transmission. Some
has also investigated in the techniques to control interference from cellular to D2D
transmissions.

• Resource allocation is usually optimized according to targeting performance met-
rics. Some has proposed aggregate throughput gain as performance metric. Yet
some consider D2D as secondary users, and macro links are scheduled firstly ig-
noring D2D users, so that cellular and D2D links are optimized separately.

However, it still lacks a mature solution to efficiently allocate resources to users in a
cellular system with hybrid modes of transmission to achieve overall user performance
gain. To fulfill this goal, some important scheduling considerations that are not fully
addressed by the literature works are discussed below.

1) System performance metrics
The general goal of scheduling algorithm in eNB is to allocate the RBs and trans-
mission powers for each subframe in order to optimize a function of a set of
performance metrics, for example maximum/minimum/average throughput, max-
imum/minimum/average delay, total/per-user spectral efficiency or outage prob-
ability. In a practical system, the purpose of scheduling is typically to fulfill the
expectations of as many users of the system as possible, taking into account the
QoS requirements of their respective applications [Stefania Sesia, 2011]. For full-
buffer traffic model, well-known performance metrics include the maximum chan-
nel to interference ratio (MCI) [Pokhariyal et al., 2006], the proportional fair (PF)
[Norlund et al., 2004], earliest deadline first (EDF) [Chiussi and Sivaraman, 1998],
etc. MCI exploits the frequency-selective channel to maximize the sum of the trans-
mitted data rates to all users. It is a typical example of opportunistic scheduling.
While PF scheduler (PFS) pays also attention to latency, and ensures a minimum
data rate for each user rather than maximizes total data rate. It makes a flexi-
ble compromise between opportunistic scheduling and fair scheduling, and is often
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considered as a practical scheduling criteria. EDF is designed to deal with realtime
QoS constraints regardless to the momentary user’s channel quality. In a hybrid D2D
cellular system, cellular transmission quality should still be maintained in priority.
Introduction of D2D mode should not impair the fulfillment of cellular UE expecta-
tions. Therefore, eNBs should take control over D2D resource management to limit
interference impact resulted from D2D transmission on cellular transmission, as well
as to limit inter-D2D interference. It is generally difficult to solve an optimization
problem that jointly describes the D2D and cellular performance metrics. To sim-
plify the computational complexity, separability of optimization problems for D2D
and cellular resource allocation is usually desired.

Optimization problems reflecting a global view of system performance is often lack-
ing in the literature studies of hybrid D2D and cellular network. For example, sev-
eral articles propose to allocate D2D resources according to an aggregate throughput
gain in a resource block, which only targets a local optimization criterion, and there-
for fail to achieve optimal performances in a system point of view. The concrete
optimization problem formulation depends on the D2D traffic type and specified
scheduling objectives.

2) A generic scheduling strategy
A real system contains multiple links and multiple cells, and both good-conditioned
links and bad-conditioned links. Therefore scheduling method should be generic
enough to deal with arbitrary network layout (e.g. with random number of links)
and arbitrary channel conditions, instead of being limited to some specific cases.
Such scheduling design is challenging when mutual interference from spatial resource
reuse by multiple links in the system is taken into consideration. In LTE Rel. 8 and
9, frequency domain based Inter-Cell Interference Coordination (ICIC) is used to
jointly allocate resources for users in neighbouring macro cells. With the integration
of in-band D2D into the LTE cells, the spectrum is more densely reused, with more
spontaneous reuse topology, and thus the scheduling becomes more complicated.

In addition, the D2D architecture introduces a new scheduling choice, which allows
flexible switch between D2D mode and conventional UL/DL mode. Unlike in current
LTE system, where the association of UEs to base stations are decided before link
establishment, the switch between D2D mode and UL/DL mode transmission can
be a frequency/time dependent scheduling choice. The mode selection choice enables
more efficient resource use, adapting to channel conditions, especially that of D2D
links. A generic scheduling should be capable to treat poor D2D links properly, as
well as good D2D links. Mode selection is a key technique to be incorporated into
scheduling strategy to address outage D2D users.

A generic scheduling for overlaying spectrum use in hybrid D2D and cellular system
with moderate complexity is required. However, such a generic scheduler design in
literature studies is scarce. Some authors propose resource allocation strategies for
the scenario that only one D2D pair and one UE exist in the cell. The resulted
scheduling method can not be evidently extended to scenarios containing multiple
links as system performance metrics are lacking. To work with arbitrary number of
D2D links, some have also proposed distributed scheduling strategies, but a cen-



50
CHAPTER 4. COORDINATED SCHEDULING OF IN-BAND D2D DATA

COMMUNICATION

tralized scheduling strategy is required by LTE D2D to enable eNBs to control the
D2D resource use. Some authors propose centralized resource allocation strategies
for arbitrary number of D2D links, based on a SINR criterion, which need itera-
tive measurement, computation, and feedback of evolving interference level in each
iteration of SINR computation, and therefore can be way too complicated to be
implemented in a real system.

3) Realistic complexity and signaling overhead
As already mentioned in the considerations of “system performance metrics” and “a
generic scheduling strategy”, realistic complexity is highly desired for a scheduling
to work in a practical system. The formulation of optimization problems should
make a compromise between optimal intended performance metrics and optimiza-
tion complexity. It has been proposed that the way to simplify the resolution of
system performance metrics can be to keep a certain level of separability in for-
mulation of optimization problems for D2D and cellular resource allocation. The
resolution of system performance metrics should not imply rapidly increasing com-
plexity with the increase of link numbers. Iterative SINR-based resource scheduling
method should be avoided as the number of iteration will largely depend on the
number of links and the interference level in each iteration of SINR computation
evolves, which actually implies iterative measurement, computation, and feed back
of evolving interference channels which is not realistic.

Signaling overhead of scheduling strategies is another concern in a practical system.
In a centralized scheduling method, channel state feedback and resource assignment
are via control signaling. An important constraint for the efficiency of centralized
scheduling algorithm is the accuracy of the eNB’s knowledge of the channel quality
for the active UEs in the cell. The manner in which such information is provided to
the scheduler in LTE differs between uplink and downlink transmissions. In practice,
for the downlink this information is provided through the feedback of Channel Qual-
ity Indicators (CQIs) by UEs, while for the uplink the eNodeB may use Sounding
Reference Signals (SRSs) or other signals transmitted by the UEs to estimate the
channel quality. The frequency with which CQI reports and SRS are transmitted
is configurable by the eNB, allowing for a trade-off between the signaling overhead
and the availability of up-to-date channel information. If the most recent CQI re-
port or SRS was received a significant time before the scheduling decision is taken,
the performance of the scheduling algorithm can be significantly degraded. Due to
the introduction of in-band D2D, an interference aware scheduler requires much
more channel measurements and feedback overhead. It is critical to have scheduling
method which balances well between best possible performance and affordable over-
heads, in order that signaling overheads does not impede the efficiency of a practical
system.

One solution that can be adopted to alleviate overheads is that eNB does not take
full control of D2D data Communications. For example, eNB only provides addi-
tional information to D2D, and D2D users make their own decision in resource use
and power control. Another solution is that eNB scheduler makes decision on long-
term channel parameters such as pathloss parameters, instead of instant channel
states. Therefore the frequency of measurements and feedback can be reduced. This
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method works when user mobility is low. eNB can also vary the scheduling cycle
according to different QoS requirements. For example, assign D2D fixed frequency
resources and power for a period of time.

4.3 Description of studied scenario and objectives

This thesis studies the D2D offloading effect. To this end, we examine a cellular net-
work which, originally is overloaded by D2D traffic. This can be modeled by assuming
high density of D2D UEs and resource consuming D2D traffic (imaging the usage cases
of multimedia sharing, local gaming, etc). Meanwhile, D2D is less likely to be used for
services like voice video call,etc, therefore we can reasonably suppose that D2D traffic
is not delay-demanding and the index of QoS can be D2D data rate averaged over time.
We would like to know, if with proper interference management, D2D mode could ben-
efit cellular network by offloading local traffic. Therefore we need to define coordination
functions in eNB, and propose resource allocation and power assignment strategies in
eNB (and in D2D too, if D2D is not centrally scheduled by eNB). This work is inter-
ested in examining the interference management potentiality of a totally centralized
scheduler in eNB. We also want this scheduler to be general enough, performs well in
any condition of D2D distance or D2D number. That is to say, this scheduler should be
able to judge at what distance D2D mode becomes no more interesting than UL/DL
mode, and be able to deal with user fairness in high density case.

Our objective is to check the maximum offloading capability of D2D, therefore we
do not suppose that D2D is of lower priority as many articles do. On the contrary,
we let D2D UEs reuse as many resources as possible as long as macro transmissions
are not impaired. With this strategy, it is possible that D2D obtains much higher rate
than macro UEs. However, it does not mean that we prioritize D2D to macro UEs in
the hybrid network. We aim at proposing a eNB scheduler which maximizes spectral
efficiency gain while guaranteeing an improved overall user throughput. The overall
user throughput can be judged by CDF(Cumulative Distribution Function) versus per
UE throughput or by CDF versus SINR degradation per UL/DL transmission.

A FDD cellular network and DL spectrum sharing is considered. We study a single
cell scenario, containing M DL UEs and N potential D2D pairs. We would like to
distinguish two terms used in this chapter: “potential D2D” and “D2D”. As we said
before, whether D2D mode is adopted or not will be left to the decision of eNB scheduler
in our study. “potential D2D” is a term we use, before transmission mode selection, to
designate a pair of nearby source-sink UEs. However, potential D2D does not necessarily
operate in D2D mode. “D2D” points to a pair of UEs scheduled in D2D mode by mode
selection algorithm. For example, we might have K DL UEs and J D2D pairs after
mode selection. But the total number of active links in DL spectrum does not change,
which means that: J +K = M +N , J ≤ N and K ≥ M .

We assume that all the users in the cell are of low velocity, therefore channel char-
acteristics vary slowly over time.
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Figure 4.1 — Resource sharing between DL UE and D2D UE. Solid lines indicate
useful links. Dashed lines indicate interference links. Transmit power P and channel

gain G are illustrated.

4.4 Proposed scheduling strategy

We assume that UE data rate averaged over time is the primary index of QoS in our
study case. User fairness is another important network performance index, which takes
into account service latency. Therefore PFS can well address the performance metrics
in pure cellular network. By introducing D2D mode, we expect that total capacity is
increased by frequency reuse, and overall user throughputs are improved. As stated
previously, we want to check the maximum offloading capability of D2D and we would
like to let D2D UEs reuse as many resources as possible as long as macro transmissions
are not impaired. That is to say, D2D UEs and macro UEs need to be treated differently,
the conventional PFS in pure network is no more suitable to meet our goal of hybrid
network scheduling.

When a D2D link is sharing the same resources with a DL UE, their receiving SINR
γD and γC can be formulated as:

γD =
PD ·GD

PC ·Gcd +No

γC =
PC ·GC

PD ·Gdc +No

(4.1)

where GD (resp. GC) denotes the D2D channel gain (resp. the cellular channel gain),
Gcd (resp. Gdc) is the interference channel gain from cellular transmission to D2D (resp.
from D2D to cellular transmission). PD (resp. PC) denotes the D2D transmit power
(resp. the eNB transmit power to the DL UE). No is the noise level.

It is illustrated in Figure4.1, with UEDt and UEDt denoting respectively D2D UE
transmitter and receiver, and UEC denoting cellular UE.

It can be seen that DL UEs at the cell center are generally more suitable for resource
sharing as they have more robust DL channel (larger GC) than those at the cell edge.
On the other hand, the further the DL UE is separated from the D2D transmitter, the
smaller interference (smaller Gdc) it receives. When there are many D2D pairs in a cell,
due to D2D user diversity, there are chances that a DL UE is separated from some D2D
transmitters. Whereas if there are very few D2D pairs in a cell, it is highly possible
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that a DL UE finds itself close to all the D2D transmitters and thus might suffer from
severe interference if sharing resources with D2D links. Therefore DL UEs which is
far from eNB or close to all the D2D transmitters are unlikely to share resources with
any D2D links. In order to preserve the basic transmission of these DL UEs, some DL
spectrum might need to be reserved for DL use only. In D2D scheduling, we propose
an optimization criteria which maximizes D2D reused spectrum with the constraint of
DL rate threshold.

However above all, eNB as a central coordinator should be able to eliminate inef-
ficient D2D transmission. As mentioned in 4.4.1, decision of applying D2D mode or
UL/DL mode for potential D2D traffic could be made at the initial stage of transmis-
sion, or dynamically during resource allocation phase. Generally DL UE diversity in a
cell is high enough, and chances of finding a set of DL UEs which are relatively isolated
from a specific D2D link are not small. If DL UE diversity can be fully exploited in
resource allocation, that is to say, if there is no problem of scheduling the most suitable
DL UEs for resource sharing with D2D pair, then the efficient mode depends more on
D2D link quality than on the choice of DL UE for resource sharing. In addition, D2D
channels are in slow fading, which leads to a stead choice of D2D mode over the time.
Therefore we have reason to decide the transmission mode at the initial stage, and fix
the mode during all the transmission time. However, even if D2D mode is estimated to
be more efficient than UL/DL mode at the initial stage, it can be actually less efficient
than UL/DL mode due to, for example, resource sharing with improper macro UEs.
Normally this is the job of scheduler to manage interference and ensure efficient D2D
mode transmission. In practice, if D2D links go bad for a period, handover to UL/DL
mode is always possible. In our scheduling algorithm, however, dynamic backup so-
lution which allows flexible switch between D2D and UL/DL mode is not included.
Instead of avoiding interference by falling back to UL/DL mode, our purpose is to try
to fulfill interference management task and ensure efficient D2D mode transmission by
resource allocation and power control techniques.

As stated in 4.3, we study the most challenging case where cellular network is
highly overloaded by resource consuming local traffic. It challenges not only resource
management in scheduler, but also signaling overhead in network. In order to keep
signaling overhead reasonable, we propose that D2D links are scheduled in a semi-
persistent way. This choice can be justified by the large size of buffered D2D traffic
and slow-fading characteristics of D2D channels. Semi-persistent scheduling means that
resources of a D2D pair will be kept unchanged for a period of time. Whereas dynamic
scheduling is assumed for DL UEs. In this way, semi-persistent D2D scheduling implies
that D2D is scheduled prior to DL UEs. Number of resources available to D2D users
should be adjusted in semi-persistent scheduling moment in order to meet the constraint
of DL rate threshold.

For simplicity, this thesis considers only the case that resources can be reused only
once between DL and D2D transmission. Different D2D links within the same cell use
orthogonal resources. As D2D is scheduled before DL UEs, interference management
depends mainly on resource allocation and power control to DL UEs. The idea is that
eNB exploits DL user diversity in a cell to schedule mutually isolated DL and D2D
transmission on the same resources.
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Figure 4.2 — Semi-persistent scheduling procedure in eNB

Our scheduling strategy include three parts (Figure5): Mode selection at initial
stage, allocation of resource and power to D2D links at each semi-persistent scheduling
instant and allocation of resource and power to DL UEs at each time slot (TTI).

4.4.1 Mode selection

It is at the initial stage that eNB decide whether local traffic will go in direct D2D
mode or be relayed by eNB in UL/DL mode. The decision is based on comparison of
estimated RB consumption in each mode. The mode which consumes less RBs is more
efficient and will be selected. Estimation of RB consumption is calculated by following
steps.

• Calculate achievable SNR assuming maximum transmit power.

• Find corresponding rate in MCS mapping table.

• Calculate required RB number based on required service rate.

If required RB number in D2D mode is less than the sum RB number consumed in
UL/DL mode, then D2D mode is selected.

4.4.2 D2D scheduling

D2D RB pattern is decided in semi-persistent scheduling instants, same scheduling
period for all D2D links is assumed. The main objective is to favor frequency reuse
with limited impact on DL rate. Therefore we let D2D UEs take as many resources
as possible as long as a DL rate threshold is reached. This puts the constraint on the
total number of RBs that can be occupied by D2Ds. We would also like to maintain
certain fairness among D2D UEs. The fairness can be adjusted centrally by eNB by
deciding the number of RBs for each D2D. D2D resource allocation can therefore be
decomposed into two steps:
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• Calculate the total number of RBs that can be occupied by D2D data communi-
cations according to DL rate constraints.

• Calculate the number of RBs to each D2D pair according to D2D fairness.

As explained previously in this section, DL UEs, which are not suitable for RB reuse
(i.e. cell-edge UEs), require unoccupied resources to maintain their rate. Therefore we
propose that adjustment of total D2D bandwidth depends on the minimum rate of all
DL UEs. If the threshold is attained, total D2D bandwidth can be increased, otherwise
it should be decreased. This threshold can be set to, for example, the minimum DL
rate that can be guaranteed by pure cellular network.

RBs that can be occupied by D2D data Communications are then allocated to
each D2D pair. In our study, we propose that the division of RBs among D2D pairs
takes into consideration both D2D user fairness and frequency channel selectivity. The
algorithm is described as follows:

• Number of RB for each D2D pair is decided by a D2D fairness factor.

• Once RB number for each D2D pair is decided, a frequency selective allocation
algorithm is applied:

– Estimate SINR in each RB and sort RBs in SINR order for each D2D pair.

– D2D is scheduled in round-robin order until each D2D fulfills its designated
RB number.

– Scheduled D2D takes RB in its own SINR order (take RB which has highest
SINR first).

In our study, we assume that the smallest allocation unit is 1 RB. We do not assume
the constraint of continuous RBs assignment, that is to say, multiple RBs allocated to
one UE can be discontinuous. However, we do assume that D2D transmit power per
RB should be identical on multiple RBs allocated to the same D2D UE. In addition, a
total power constraint is assumed for UE.

As stated previously, we aim at coordinating interference by resource allocation
and power optimization techniques instead of avoiding interference by switching back
to UL/DL mode. Therefore D2D transmit power should guarantee basic D2D trans-
mission.

Joint power optimization of DL transmission and D2D transmission reusing the
same resources is optimal, but is at the cost of complexity and signaling overhead. In
our study, we propose that D2D transmit power is also semi-persistently assigned, right
after the D2D resource allocation. We impose a minimum D2D SINR constraint γDmin

and a maximum DL transmit power constraint PCmax, in addition to the maximum
D2D power constraint PDmax. Required D2D transmit power is defined in a way that
the minimum D2D rate can be attained even under the maximum DL transmit power
in resource sharing scheme. On a specific RB, GD and Gcd are known, required D2D
transmit power can thus be calculated as:

PD = γDmin ·
(PCmax ·Gcd +No)

GD

(4.2)
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Suppose that the number of RBs allocated to a D2D pair is lD, maximum required
D2D transmit power over the allocated set of RBs is PD

′ , D2D transmit power per RB
for this D2D pair can be defined as:

PD = min

{

PDmax

lD
, PD

′

}

(4.3)

4.4.3 DL scheduling

As D2D transmission occupy RBs first, interference management becomes the key task
of DL scheduling. The main technique is to exploit DL UE diversity in the cell so
that mutual isolated DL and D2D transmission are scheduled on the same RB. It is
actually a user selection algorithm. The DL UE which is most suitable for resource
sharing with a D2D pair will be selected to reuse the RB occupied by this D2D link.
On the other hand, on unoccupied resources, DL UEs that are not suitable for reuse
should be given priority so that their data rates are maintained. Therefore we propose
that RBs that are occupied by D2D transmissions are scheduled first and DL resource
allocation on occupied and unoccupied RBs use different criteria. On occupied RBs,
maximizing aggregate rate of DL and D2D UEs is prioritized, whereas on unoccupied
RBs, DL UE fairness is the main consideration. We use “modified PFS criterion” in
scheduling occupied RBs and “conventional PFS criterion” in scheduling unoccupied
RBs. In the following, the conventional PFS criterion is firstly introduced, and then
the modified PFS criterion is explained.

I. The conventional PFS criterion

As it is well known, the conventional PFS criterion schedules a user when its instan-
taneous channel quality is high relative to its own average channel condition over time.
Suppose that the number of DL UEs is K and the number of RBs is L, conventional
PFS criterion applied on RB l is:

k̂ = argmax
k=1,...,K

Rlk

r̄k(t)
(4.4)

where Rlk denotes the rate of DL UE k if it is scheduled on RB l. r̄k(t) stands for the
average rate of DL UE k over a time window, and is recursively computed at each TTI:

r̄k(t) = (1−
1

tc
) · r̄k(t− 1) +

1

tc
· rk(t) (4.5)

where tc is the time window length over which fairness is imposed and rk(t) is the
accumulated throughput of user k throughout all the RBs at TTI t:

rk(t) =
L
∑

l=1

Rlk · χlk (4.6)

where χlk indicates whether RB l is allocated to user k or not, with χlk ∈ {0, 1}.

By adjusting time window length tc, the PFS criterion can flexibly balance between
maximizing throughput and UE fairness. A large time window tc tends to maximize
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the total average throughput. In fact, in the limit of a very long time window, PFS and
maximum-rate constant-power scheduling result in the same allocation of resources.
Whereas for small tc, the PFS tends towards a round-robin scheduling of users. As
the conventional PFS criterion in scheduling unoccupied RBs is to address the DL UE
fairness problem, a relative small tc will be adopted.

II. The modified PFS criterion

On occupied RBs, the main gain that is to achieve through scheduling is the spectral
efficiency gain. As in conventional PFS, a large time window tc tends to maximize the
total average throughput, a little modification can make PFS work for our purpose.
The modified PFS criterion can be formulated as follows:

k̂ = argmax
k=1,...,K

Rlj +Rlk

r̄k(t)
(4.7)

where Rlj denotes rate of D2D UE j already scheduled on RB l during the D2D semi-
persistent scheduling phase. A DL UE is scheduled in a RB when the instantaneous
aggregate rate in this RB is high relative to this DL UE’s own average rate over a
measurement time window. A relative large tc will be adopted.

It should be noted that although the modified PFS criterion is introduced after the
conventional one, occupied RBs are actually scheduled before unoccupied RBs in our
proposed DL scheduling algorithm.

On occupied RBs, we aim to optimize DL transmit power according to a maximiz-
ing aggregate rate criterion. We further impose unified constraints of maximum DL
transmit power and minimum D2D rate. Another practical constraint is the highest
rate confined by MCS. The optimal transmit power for each DL is calculated on RB
basis before DL user selection equation (4.7). That is to say, Rlk in 4.7 is rate of UE k

on RB l with optimized DL transmit power.

If taking the Shannon capacity expression to calculate rate, we can formulate the
DL power optimization problem as follows:

P̂D = argmax

[

ln(1 +
PD ·GD

PC ·Gcd +No

) + ln(1 +
PC ·GC

PD ·Gdc +No

)

]

(4.8)

submitted to four constraints: 1) maximum DL transmit power PDmax 2) minimum
D2D SINR γDmin 3) maximum required DL SINR γCmax which is sufficient to attain
the maximum rate offered by MCS 4) similarly, maximum required D2D SINR γDmax

The objective function (4.8) is known as non-convex [Tadrous et al., 2011], and is
of high complexity when linear form constraints are added. A suboptimal solution is to
pre-configure multiple transmit power levels, and search through them to find the best
power level which verifies all the constraints and gives the maximum aggregate rate.

For simplicity, maximum DL transmit power is applied on unoccupied RBs.

4.4.4 The originality of proposed scheduling strategy

In order to manage intra-cell interference resulted from spectrum reuse by D2D, we
propose a scheduler combining techniques of resource allocation, power allocation and
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mode selection. Decisions are made centrally by base station.

The proposed scheduling strategy has performance metrics targeting global user
satisfaction. Global user satisfaction usually requires well-balanced spectral efficiency
and user fairness. We propose performance metrics based on proportional fairness cri-
teria, which balance flexibly between maximizing system throughput and maintaining
cellular user fairness.

The proposed scheduling algorithm is a general algorithm targeting arbitrary net-
work layout. It has no constraints on D2D numbers or D2D distances. The total band-
widths that can be occupied by D2D communication submit to a cellular UE rate
constraint. In this way, cellular data communications are protected even in a dense
D2D deployment. Poor D2D links (eg. D2D links of long distance), are prevented from
being scheduled in D2D mode by a mode selection algorithm.

The proposed scheduling strategy has low complexity due to separate optimization
of D2D and cellular transmissions. The signalling overhead is also reduced due to low
D2D scheduling cycle.

4.5 Conclusion

In this chapter, main issues in coordinated in-band D2D scheduling is firstly analyzed
in section 4.2. Different approaches and their interest are compared. How these issues
are addressed in literature studies is also introduced.

Section 4.3 describes the hybrid scenario that we study, and presents objectives that
we aim to achieve through scheduling. In a word, we study a macro cell overloaded by
local traffic and our objective is to check the maximum offloading capability of D2D.
We concentrate on the interference scenario where frequency resources are allowed to
be reused only once between one D2D and DL transmission.

Suggested scheduling strategies are described in section 4.4 Mode selection between
D2D and traditional UL/DL modes is implemented at the initial stage of transmission.
Dynamic switch between D2D and UL/DL mode is not integrated in our scheduling
algorithm because the main purpose is to check the interference control capability
provided by resource and power allocation techniques in managing the coexistence of
D2D and DL transmissions.

We propose semi-persistent D2D scheduling for the purpose of reducing signaling
overhead in the cellular system. On the other side, scheduling D2D and DL separately
also reduces the complexity of optimization problem. Our D2D resource allocation
strategies try to fulfill multiple tasks. First of all, we aim to maximize RB number reused
by D2Ds while guaranteeing a minimum DL rate. Secondly, resource allocation among
D2D UEs takes into consideration both user fairness and frequency channel selectivity.
D2D transmit power is optimized after D2D resource allocation. The objective is to
guarantee a minimum D2D rate under the worst interference circumstance (maximum
DL transmit power).

DL UEs is scheduled dynamically. User diversity in DL scheduling is the key to
mitigate mutual interference between DL and D2D. We propose that RBs occupied by
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D2D is scheduled in the first stage. We suggest a modified PFS criterion to select DL
UEs in a way that the aggregate rate of DL UE and D2D on one RB is prioritized. RBs
unoccupied by D2D is scheduled in the second stage, with the purpose to compensate
DL UEs which did not attain satisfied rate in the previous stage of RB allocation. The
applied criterion is conventional PFS with the emphasis on the DL UE fairness.

On occupied RBs, DL transmit power is optimized on RB basis before DL UE
selection. The criterion is maximizing aggregate rate under power and rate constraints.
We suggest a suboptimal solution with moderate complexity. For simplicity, maximum
DL transmit power is applied on unoccupied RBs.
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5 System Simulation

5.1 Overview

In this chapter, a general description of evaluation methodology is firstly introduced
in Section 5.2. Radio access requirements, and corresponding evaluation approaches
are presented. System simulation is the most important approach for multi-link evalu-
ations in a network. Two essential elements in the system simulation: channel models
and link-to-system mapping are detailed. In Section 5.3, scheduling method proposed
in Chapter 4 for a hybrid cellular and D2D network is examined by system-level sim-
ulation. Choices of deployment scenario, network layout, parameters and assumptions
are firstly detailed. Performance metrics, mainly the per user average throughputs and
the system spectral efficiency are simulated in different settings. The analysis of the
simulation results is followed by a summary and discussion.

5.2 Evaluation Methodology

5.2.1 Introduction to Radio Access Requirements

International Mobile Telecommunications-Advanced (IMT-Advanced) are requirements
set by the International Telecommunication Union (ITU) in 2008, to address evolving
user needs of advanced mobile services and Internet access service offered by mobile
and fixed networks. IMT-Advanced systems support low to high mobility applications
and a wide range of data rates in accordance with user and service demands in multi-
ple user environments. IMT-Advanced has also capabilities for high-quality multimedia
applications within a wide range of services and platforms providing a significant im-
provement in performance and quality of service. The key features of IMT-Advanced
are:

• a high degree of commonality of functionality worldwide while retaining the flex-
ibility to support a wide range of services and applications in a cost efficient
manner;

• compatibility of services within IMT and with fixed networks;

• capability of interworking with other radio access systems;
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• high-quality mobile services;

• user equipment suitable for worldwide use;

• user-friendly applications, services and equipment;

• worldwide roaming capability;

• enhanced peak data rates to support advanced services and applications (100
Mbit/s for high mobility and 1 Gbit/s for low mobility were established as targets
for research).

The ITU Radiocommunication Sector (ITU-R) called for submission of candidate Radio
Interface Technologies (RITs) fulfilling the ITU-R’s requirements for IMT-Advanced.
In response to the call for proposals from ITU-R, 3GPP TSG RAN identified targets
and potential techniques for further advancement of LTE, specified as LTE-Advanced
(LTE Release 10 and beyond), which was approved by ITU-R in 2010 as IMT-Advanced
RIT.

Some of the 3GPP targets for LTE-Advanced exceed the IMT-Advanced require-
ments as LTE Releases 8 and 9 already satisfy to a large extent the requirements set
by ITU-R for the IMT-Advanced designation. In addition, 3GPP set requirements on
backward compatibility with earlier releases of LTE network which allows operators
to continue serving existing LTE customers while their network equipment is progres-
sively upgraded. Requirements on spectrum deployment and flexibility, coexistence
with legacy Radio Access Technologies (RATs), and complexity and service support
were also defined [TR3, ].

Report ITU-R M.2135 [M.2, 2009] provides guidelines for both the procedure and
the criteria to be used in evaluating IMT-Advanced RITs or Sets of RITs (SRITs) for
a number of test environments and deployment scenarios for evaluation. Evaluation
criteria and corresponding high level assessment methods are summarised in Table 5.1.

• Simulation approach includes system and link-level simulations. System simulation
shall be based on the network layout defined in Report ITU-R M.2135 [M.2, 2009].

• Analytical approach uses a straight forward calculation based on the definition in
Report ITU-R M.2134 [M.2, 2008].

• Inspection is done by reviewing the functionality and parameterisation of the pro-
posal.

These methodologies serve as a baseline for evaluating continuous enhancements in
LTE-Advanced.



5.2. EVALUATION METHODOLOGY 63

Table 5.1 — Evaluation criteria and methods
Characteristic for evaluation Method
Cell spectral efficiency Simulation (system level)
Peak spectral efficiency Analytical
Bandwidth Inspection
Cell edge user spectral efficiency Simulation (system level)
Control plane latency Analytical
User plane latency Analytical
Mobility Simulation (system and link level)
Intra- and inter-frequency handover in-
terruption time

Analytical

Inter-system handover Inspection
VoIP capacity Simulation (system level)
Deployment possible in at least one of
the identified IMT bands

Inspection

Channel bandwidth scalability Inspection
Support for a wide range of services Inspection

5.2.2 System simulation principles

Multi-cell system level simulations are to be used for evaluating the IMT-Advanced re-
quirements cell spectral efficiency, cell edge user throughput, VoIP capacity and mobil-
ity. System simulations deal with multiple links in multiple cells/sectors. Performance
metrics such as throughput and delay are gathered statistically over a large number of
independent simulation runs, called ’drops’, where a ’drop’ is defined as one simulation
run over a certain time period. During a drop (or snapshot or channel segment), the
large-scale parameters are fixed (e.g. shadow fading, pathloss, and angular spreads), but
the channel undergoes fast fading according to the motion of the terminals, resulting
in varying small-scale parameters (e.g. the changing phases of the rays). While sim-
ple models might be adequate to evaluate the performance of individual radio links,
more complex models are needed to evaluate the overall system-level reliability and
suitability of specific technologies.

Link-level simulations might be adequate to evaluate the performance of individual
radio links and allow for the investigation of issues such as Multiple-Input Multiple-
Output (MIMO) gains, Adaptive Modulation and Coding (AMC) feedback, modeling
of channel encoding and decoding, developing receiver structures. However it is not
possible to reflect the effects of network-related issues such as cell planning, scheduling,
mobility handling or interference management with such simple link-level simulation.
System-level simulations are needed to evaluate the overall system-level reliability and
suitability of specific technologies. As the network size grows, it is not feasible to model
all aspects of every link explicitly. Especially the coding and decoding of the signal
require high computational resources and are typically modeled by a link to system level
mapping [Brueninghaus et al., 2005]. In system-level simulations the physical layer is
abstracted by simplified models that capture its essential characteristics with high
accuracy and low complexity. General system-level simulation takes the following steps.
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Table 5.2 — Selected deployment scenarios for evaluation and the channel models

Test
environment

Base coverage
urban

Microcellular Indoor High speed

Deployment
scenario

Urban macro-
cell scenario

Urban micro-
cell scenario

Indoor hotspot
scenario

Rural macro-
cell scenario

Channel
model

UMa
Urban macro
(LoS, NLoS)

UMi
Urban micro
(LoS, NLoS,
Outdoor-to-
indoor)

InH
Indoor hotspot
(LoS, NLoS)

RMa
Rural macro
(LoS, NLoS)

• Choose a deployment scenario, define network layout and evaluation configuration

• Generate active mobile terminals in the scenario and corresponding channel pa-
rameters for each link between base station and UE.

• Calculate channel state information

• Execute radio resource management (handover, link adaptation, scheduling, power
control, etc.)

• Calculate SINR for each link

• Map SINR to block error rate and determine if data packets were successfully
received

• Collect statistics

5.2.2.1 Test environment and channel models

Test environments are the most basic factor to be considered in the evaluation process.
The reference models are used to estimate the critical aspects, such as the spectrum,
coverage and power efficiencies. IMT-Advanced evaluation guideline has defined four
test environments and corresponding deployment scenarios and channel models that
shall be used for each test environment, shown in Table 5.2.

The test environments have been chosen such that typical and different deployments
are modelled and a wide range of performance and critical questions in system design
can be investigated in a wide range of environments.

For evaluation of radio access technologies in the four selected test environments,
a set of reliable and measurement-based channel models are needed. Channel models
have to be accurate as radio propagation has a significant impact on the performance
evaluation of wireless systems when choosing modulation and coding, in multi antenna
system design, in the selection of channel estimation method, channel equalization
and other baseband algorithm design, as well as network planning. It is necessary to
use common and uniform channel models for evaluation, comparison, and selection of
technologies.
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!

Figure 5.1 — Geometry for generating spatial parameters for base station and UE

Geometry-based stochastic channel models have been developed for system level
evaluations of multi-link models. The channel parameters are determined stochasti-
cally, based on statistical distributions extracted from channel measurement. The dis-
tributions are defined for, e.g., delay spread, delay values, angle spread, shadow fading,
and cross-polarisation ratio. The directions of the rays, rather than the locations of the
scatterers are specified. Channel realizations are generated by summing contributions
of rays (plane waves) with specific small-scale parameters like delay, power, angle-of-
arrival (AoA) and angle-of-departure (AoD). Geometry-based modelling of the radio
channel enables separation of propagation parameters and antennas. Antenna geome-
tries and radiation patterns can be defined properly by the user of the model, indepen-
dent of propagation parameters. Different scenarios are modelled by using the same
approach, but different parameters. Therefore the geometry-based stochastic channel
models allows creating of multiple double directional radio channels with arbitrary
antenna configurations for an unlimited number of propagation environment.

The IST-WINNER Phase II channel model [L. Hentila and Alatossava., 2007] forms
the basis for the ITU IMT-Advanced models. A Matlab implementation is developed
and channel coefficients are generated by a step-wise procedure illustrated in Figure
5.2.

5.2.2.2 Link-to-System Mapping

Simulating the physical layer links between multiple eNBs and UEs in a network can
be computationally prohibitive. Therefore system level simulator uses physical layer
(PHY) abstraction to predict link layer performance in a computational simple way.
The role of PHY abstraction method in OFDM system is to predict the coded block
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Figure 5.3 — PHY link-to-system mapping procedure

error rate (BLER) for a given received channel realization across the OFDM subcarriers
used to transmit the coded forward error correction (FEC) block. The input to the
PHY abstraction mapping is the post-processing SINR values at the input to the FEC
decoder.

However, as the link level BLER curves are generated assuming a frequency flat
AWGN channel response at given SINR, the set of received SINR values need to be
converted to a single effective SINR, SINReff , which can then be mapped onto the
link level curves to determine the resulting BLER. This mapping is termed effective
SINR mapping (ESM), shown in Figure 5.3.

In general, the mathematical function of ESM PHY abstraction methods can be
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described as follows:

SINReff = Φ
−1

{

1

N

N
∑

n=1

Φ(SINRn)

}

(5.1)

where SINReff is the effective SINR, SINRn is the SINR in the nth sub-carrier,
N is the number of sub-carriers used in an OFDM system and Φ(•) is an invertible
function.

There are several ESM approaches, using different functions to map the set of SINR
values to a single number. Examples include mean instantaneous capacity [28]-[30],
exponential-effective SINR Mapping (EESM, [31], [33]-[35]) and Mutual Information
Effective SINR Mapping (MIESM, [36], [37]). MIESM is by far the most accurate
mapping method for OFDM system.A block diagram for the MIESM approaches is
shown in Figure 5.4.

Given a set of N received encoder symbol SINRs from the system level simulation,
denoted as SINR1, SINR2, SINR3, · · · , SINRN , a mutual information metric is
computed. Based on the computed MI-metric an equivalent SINR is obtained and used
to look-up the BLER.

5.3 System-level simulation for D2D data Communi-

cations

We apply system-level simulation to a multi-user scenario in order to examine per-
formances of scheduling methods that we proposed in Chapter 4 for a hybrid cellular
and D2D network. The objective is to leverage D2D mode transmission to offload
heavy local traffic from cellular networks in a resource-limited scenario. The proposed
scheduling methods aim to achieve high system throughput while guaranteeing an over-
all satisfying per UE throughput. D2D offloading effect can be shown by comparing
performances of hybrid cellular and D2D networks with pure cellular networks where
only UL/DL mode is allowed.



68 CHAPTER 5. SYSTEM SIMULATION

−250 −200 −150 −100 −50 0 50 100 150 200 250

0

50

100

150

200

250

Cell sector area (m)

C
e
ll 

s
e
c
to

r 
a
re

a
 (

m
)

Figure 5.5 — Uniformly distributed UE positions with Geometry-based stochastic
modeling

5.3.1 Deployment scenario, network layout, parameters and as-

sumptions

We assume an urban macro-cell deployment scenario and apply urban macro channel
model defined by ITU (ITU UMa) for macro transmissions between eNB and UEs.
WINNER PHASE II channel model is used for system simulation. D2D channel model
is not defined by ITU and is not implemented in WINNER PHASE II channel model.
Here we use urban micro channel model (ITU UMi) for D2D link.

However links of different scenario are generated independently with WINNER
PHASE II channel model implementation and are not correlated, which might be dif-
ferent from the real case. In reality, for example, a link from an eNB to a UE and a
link from a proximate UE to this same target UE might have correlated large scale pa-
rameters such as shadowing correlation as both links might experience same obstacles
located around the target UE. This thesis focus on intra-interference management and
constrains the network layout to a single sector of a three-sector LTE hexagonal macro
cell. Performance statistics are collected over a large number of independent drops,
and in each drop UEs are generated randomly. In principle, UEs positions should be
uniformly distributed in order that over several runs, statistics of UE positions can
basically cover the whole sector area (with scenario-specific transmission range con-
straints recommended by ITU). Figure5.5 illustrates 1000 uniformly distributed UEs
covering a predefined macro sector area (minimum range 50m and maximum range
270m)

In our study, two different layout settings are configured for performance compari-
son: random D2D distance setting and fixed D2D distance setting. In the former setting,
D2D transmitters and receivers are generated onto the sector area and paired randomly.
While in the latter setting, each D2D receiver is firstly generated onto the sector area
with uniformly distributed rules, and a corresponding D2D transmitter is generated af-
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(a) a snapshot of 5 D2D pairs in random D2D distance setting
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(b) a snapshot of 5 D2D pairs in 20 m D2D distance setting

Figure 5.6 — Random and fixed D2D distance settings

terwards with a fixed D2D range. Figure5.6a (resp. Figure5.6b ) presents a snapshot in
network layout with random D2D distance setting (resp. fixed D2D distance setting).

The cumulative distribution function (CDF) of D2D distance in random D2D dis-
tance setting is shown in Figure 5.7. A 10-meter minimum distance constraint in ITU
UMi channel model is respected.

Important simulation parameters are listed in Table 5.3, more detailed channel
model parameters can be found in [WIN, 2008].

5.3.2 Simulation results

Channel characteristics

The output of channel coefficients from WINNER PHASE II channel model is
affected by four elementary elements:

• propagation path-loss,
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Figure 5.7 — CDF of D2D range in random D2D distance setting

• shadow (slow, or ’large-scale’) fading

• multipath (fast, or ’small-scale’) fading

• antenna configuration

Path loss models for the various propagation scenarios used here are given in
[M.2, 2009]. Although path loss values increase in direct proportion to transmission
distance, final channel coefficients are not, due to fading deviation and different an-
tenna configuration in different transmitters/receivers. The log-normal standard devi-
ation parameter is scenario-dependent, and is also given in [M.2, 2009]. Channel gains
of a specific transmission distance might vary ± 20dB or more. Figure 5.8 illustrates
the CDF of D2D channel gain in 20 m D2D distance setting and in random D2D range
setting.

It can be seen that one D2D UE has buffered data for a target D2D UE in the
same sector do not necessarily have good D2D channel condition. Poor D2D links with
small channel gains might also occur due to large D2D distance and/or fading. In our
proposition, they are taken into consideration by a mode selection mechanism and a
resource sharing strategy.

Mode selection influence

We name a pair of UE transmitter and receiver as a potential D2D pair when the UE
transmitter has buffered data for a target D2D UE in proximity. It is therefore possible
to be scheduled in D2D mode according to mode selection criteria. The proposed mode
selection criterion is based on comparison of spectral efficiency in D2D mode and in
UL/DL mode, and can be described by the following algorithm:



5.3. SYSTEM-LEVEL SIMULATION FOR D2D DATA COMMUNICATIONS 71

Table 5.3 — Simulation Parameters
System Parameters

Center Frequency 2GHz
DL Bandwidth 5MHz(25PRBs)

Inter-site distance 500m
Mobile velocity 3km/h
Pathloss model NLoS

Target packet error rate 10%
Antenna Parameters

Max Tx Power eNB:43dBm, UE:24dBm
Antenna configuration SISO
Maximum antenna gain eNB:17dBi, UE:0dBi

Antenna height eNB:25m, UE:1.5m
Noise Figure 7dB

Thermal noise PSD -174dBm/Hz
Receiver interference PSD -170dBm/Hz

Shadow fading Parameters
D2D lognormal std deviation 4dB
DL lognormal std deviation 6dB

DL penetration loss std deviation 5dB
Others

Simulation duration 0.2s (200TTIs) per drop
Semi-persistent scheduling period 0.02s(20TTIs)
Fairness window length in mPFS 6
Fairness window length in PFS 2

Traffic model full buffer
Highest MCS 4.5bps/Hz

DL channel model ITU UMa
D2D channel model ITU UMi

Algorithm 1 Mode selection algorithm

Ndiff = ND2D − (NUL +NDL)
if Ndiff > 0 then

UL/DL mode is selected
else

D2D mode is selected
end if

where ND2D, NUL and NDL present respectively the number of RB required by
D2D link, UL, and DL, calculated by the method proposed in Chapter 4. D2D mode
is chosen as long as estimated RB consumption in D2D mode is less than in UL/DL
mode. In Table 5.4, percentages of D2D mode being chosen for potential D2D pairs are
listed. Three different distance settings are compared, in each setting, 3000 potential
D2D pairs are analyzed as a statistical base. It can be seen that when D2D distance is
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Table 5.4 — Mode selection results
20m distance random distance 200m distance

D2D mode (%) 100% 90% 80%

short (20 m), D2D channel is usually good, and potential D2D pair is almost always
scheduled in D2D mode. Whereas with the increase of D2D distance, poor D2D channel
might occur, and the potential D2D pair is likely to be scheduled in UL/DL mode.

In Figure 5.9, histogram shows the distribution of D2D channel gains before and
after mode selection. In Figure 6a, 3000 D2D channels are counted, whereas in Figure6b,
only D2D channels that are finally scheduled in D2D mode are counted. It can be seen
that in most of the cases when D2D channel gains are below -120 dB, UL/DL mode is
chosen.

Per user average throughput

The proposed scheduler is designed to work with arbitrary number of D2D pairs in
a cell. However in the following analysis, we fix the number of potential D2D UE pairs
in the network setting in order to facilitate the comparison.

We firstly examine a sector with 5 potential D2D UE pairs and other 10 macro
DL UEs. We investigate both 20 m D2D distance setting and random D2D distance
setting. According to analysis of mode selection influence, we know that in 20 m D2D
distance setting, near 100% potential D2D pairs are scheduled in D2D mode due to
short-distance good channel conditions, while in random D2D distance setting, the rate
of being scheduled in D2D mode is 90%. Potential D2D pairs that are not scheduled
in D2D mode will use conventional UL/DL mode and their performances are classified
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(a) histogram of D2D channel gains before mode selection
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(b) histogram of D2D channel gains after mode selection

Figure 5.9 — histogram of D2D channel gains before and after mode selection in a
200 m D2D distance setting

as performances of macro UL/DL transmission. That is to say, in the sector, x UEs
(0 ≤ x ≤ 5) will receive data from D2D UE transmitters directly, while the other
15−x UEs will receive data from eNB. We assume the same number of potential D2D
UE pairs and macro DL UEs when analyzing random D2D distance setting and 20 m
D2D distance setting, and therefore the congestion in random D2D distance setting is
statistically more severe than in 20 m D2D distance setting.

In Figure 5.10 per user throughput statistics are analyzed.UEs receiving data from
D2D UE transmitters and from eNB are analyzed separately. Comparing to pure cel-
lular network containing 15 DL UEs, a 2.7 fold gain in D2D UE throughput and 1.5
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Figure 5.10 — User throughput CDF, 5 potential D2D pairs

fold gain in DL UE throughput are observed at 50% CDF level in hybrid network
with 20 m D2D distance setting. The difference between D2D UE throughput and
DL UE throughput in hybrid network is explained by the resource allocation strategy:
D2Ds are allowed to take as many resources as possible under the constraint of a DL
rate threshold. This simulation uses an estimated average DL UE rate in pure cellular
network as threshold. It can be seen from the figure that the poorest DL rate in hy-
brid network is about the same as the targeted threshold value while the overall UE
throughput (especially D2D UE throughput) is largely improved. This threshold value
can be altered for different scheduling purposes.

As shown in Figure5.8 before, in random D2D distance setting, D2D channel gains
are in average much degraded (about 30dB lower at 50% CDF level) comparing to 20
m D2D distance setting. In addition, some potential D2D UEs are actually scheduled
in UL/DL mode and split the system bandwidth orthogonally with other macro UEs.
Due to these two reasons, both D2D UE throughput gain and DL UE throughput gain
in random D2D distance setting are lower (about 25% lower) than that in 20m distance
setting. However, they are still considerably higher comparing to pure cellular network.

A denser sector with 10 potential D2D UE pairs and other 10 macro DL UEs is
examined as well. User throughput at 50% CDF level in pure cellular network con-
taining 20 DL UEs is only about 1.1 Mbps due to severe congestion, while in hybrid
network with 20 m D2D distance setting a 2.0 fold gain in average per user throughput
is achieved (Figure 5.11). In random D2D distance setting, 1.65 fold gain in D2D UE
throughput and 1.2 fold gain in DL UE throughput have been observed at 50% CDF
level.

The above performances are achieved under the condition that full Channel State
Information at the Transmitter (CSIT) is available at eNB. However, feeding back
channel gains of all transmission links in a cell to eNB is impractical. In particular,
frequency-dependent channel gains of interference channels between UEs are difficult
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Figure 5.11 — User throughput CDF, 10 potential D2D pairs

to be obtained. We assume that only average channel gain of UE-UE interference chan-
nels are known at eNB, which can be estimated based on beacon signals for example.
Performances that can be achieved by the scheduler with reduced CSIT are analyzed
in a sector with 5 potential D2D UE pairs in 20 m D2D distance setting and other
10 macro DL UEs. Comparing to full CSIT case (Figure5.12), DL UE throughputs
degrades 12% at 0.5 CDF level, while influence to D2D UE throughputs is negligible.
The reason is that the inaccuracy in UE-to-UE interference channel estimation might
result in suboptimal resource sharing, for example, a DL UE which is close to the
D2D UE transmitter is chosen for resource sharing with the D2D link. For the DL UE
that is scheduled in the same resource as the D2D link, underestimation of interference
level from the D2D transmitter might result in insufficient DL power allocation, and
therefore cause DL throughput degradation.

Cell spectral efficiency

Spectral efficiency gain is examined in Table 5.5. When D2D distance is fixed to
20m, with full CSIT, the spectral efficiency gain is almost doubled, which is close to the
full spectral reuse efficiency (9bps/Hz). As is already analyzed, D2D channels in random
distance setting are generally much weaker than those in 20 m D2D distance setting.
When the D2D channel weakens, the sum rate in reused RBs becomes interference-
limited. Therefore spectral efficiency gain in random distance setting is lower than
that in 20 m D2D distance setting. In our scheduling, exclusive resources serve to
maintain rates for certain DL UEs that are not suitable for resource sharing with
existent D2D transmissions. With the increase of D2D pairs in a cell, the probability
of finding a suitable D2D link for resource sharing becomes higher for an individual
DL UE. Due to this D2D UE diversity, the number of DL UEs that need exclusive
resources diminishes, this explains the higher spectral efficiency gain in maximum 10
D2D case than in maximum 5 D2D case. By assuming reduced CSIT, spectral efficiency
gain has a 11% degradation in random D2D distance setting and a 4% degradation in



76 CHAPTER 5. SYSTEM SIMULATION

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

user throughput (Mbps)

C
D

F

 

 

15 DL UEs in Pure

DL UE in Hybr20m full CSIT

D2D UE in Hybr20m full CSIT

DL UE in Hybr20m reduced CSIT

D2D UE in Hybr20m reduced CSIT

Figure 5.12 — Comparison of full and reduced CSIT

Table 5.5 — Spectral efficiency gain comparison

Measurements
Pure
Cellular

Hybrid
random D

Hybrid
D=20m

5 potential D2Ds, full CSIT (bps/Hz) 4.5 6.4 8.2
10 potential D2Ds full CSIT (bps/Hz) 4.5 6.8 8.7

5 potential D2Ds, reduced CSIT (bps/Hz) 4.5 5.3 7.9

20 m D2D distance setting, comparing to that under full CSIT assumption.

Fairness

Maintaining a maximum fairness among UEs is not our scheduling objective. On
the contrary, in order to maximize spectral efficiency, D2Ds are allowed to take as
many resources as possible under the constraint of a DL rate threshold. That is to
say, D2D UEs could have much higher throughputs than DL UEs in the case that the
number of D2D UEs in a cell is sparse comparing to DL UEs. For example, Figure
5.10 shows that in a sector containing 5 potential D2D links and 10 other DL UEs,
D2D UE throughput at 0.5 CDF level is about 1.8 fold of DL UE throughput in 20
m D2D distance setting. The DL fairness factor, however, is maintained in a way that
the worst DL UE throughput is about the same as that in pure cellular network.

5.3.3 Summary and discussion

To evaluate the scheduler proposed in Chapter 4, system-level simulation is executed
for a multi-link network model. We use the WINNER Phase II channel model, which
is a geometry-based stochastic channel model. Performance metrics such as per UE
throughput and spectral efficiency of the hybrid cellular and D2D network are evaluated
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in FDD DL spectrum. The simulation layout is constrained to a single sector of a three-
sectored urban macro cell.

The proposed scheduler is designed to work with arbitrary D2D distance and ar-
bitrary number of D2D pairs in a cell. However, for the analysis purpose, two D2D
distance settings: fixed D2D distance setting and random D2D distance setting, and
two user number settings: medium-density and high-density D2D deployments are sim-
ulated. In fixed D2D distance setting, D2D receivers are firstly generated randomly in
the sector area. Then for each D2D receiver, a D2D transmitter is generated with fixed
distance to the D2D receiver. In random D2D distance setting, D2D UEs are generated
randomly in the sector area, and then paired randomly.

When generating D2D UEs, it is the number of potential D2D pairs that is fixed. The
medium-density D2D deployment contains 5 potential D2D pairs and 10 other DL UEs
while the high-density D2D deployment contains 10 potential D2D pairs and 10 other
DL UEs. Potential D2D pairs designate a pair of source and sink UE in proximity.
With mode selection algorithm, certain potential D2D pairs are finally scheduled in
UL/DL mode, acting as traditional UL and DL UEs, orthogonally sharing the UL and
DL band with other macro UEs. If a potential D2D pair is scheduled in UL/DL mode,
then the UE receiver is classified as DL UE and its performances are classified as DL
UE performances in the simulation results.

The proposed mode selection algorithm chooses between D2D mode and UL/DL
mode, which is estimated to have higher spectral efficiency. Therefore the criteria de-
pends on channel gains between the transmitter UE and the receiver UE, as well as
UL channel gains between the transmitter UE and the eNB, and DL channel gains be-
tween the eNB and the receiver UE. The mode selection result shows high dependence
on channel gains between the transmitter UE and the receiver UE. The comparison
of D2D channel gains of D2D pairs being selected by mode selection algorithm and
channel gains of all potential D2D pairs before mode selection shows that the pro-
posed mode selection algorithm prevents pairs of source and sink UEs with poor D2D
channels (mostly below -120 dB) from using D2D mode.

In mode selection algorithm, the estimated spectral efficiency of a D2D link is
calculated by required data rate dividing minimum bandwidth that is needed to support
the required data rate under the D2D channel condition. The real spectral efficiency on
D2D pairs occupied bandwidths can be higher due to resource sharing with DL UEs,
with interference well controlled. Simulation results show that when D2D distances are
small, in a 20 m D2D distance setting, D2D mode is always selected, and the spectral
efficiency is almost doubled comparing to that in pure cellular network. In addition, the
hybrid network achieves almost the highest spectral efficiency that can be offered by
the reusing scheme. The highest spectral efficiency with the designated reusing scheme
can only be attained when D2D transmissions share the whole DL bandwidth, and
both D2D and DL transmit with the highest rate that can be supported by the highest
MCS. It strongly proofs that the proposed scheduler successfully mitigates the intra-cell
interference between D2D UEs and DL UEs reusing the same resources.

In random D2D distance setting, channel gains are usually much lower (-30 dB
lower in average) than that in 20 m D2D distance setting, but 90% of the potential
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D2D pairs are still scheduled in D2D mode according to the mode selection criteria.
The spectral efficiency has more than 1.4 fold gain comparing to pure cellular network.

In the proposed scheduling strategy, D2D links are scheduled semi-persistently, and
DL UEs are scheduled dynamically to reuse the same resources as D2D pairs. Therefore,
the more D2D pairs existent in a cell, the easier for a specific DL UE to find suitable
D2D pairs for resource sharing. Therefore in high-density D2D deployment, the spectral
efficiency gain can be higher than in medium-density D2D deployment due to D2D UE
diversity.

Optimizing spectral efficiency is the main target for the purpose of offloading. On
the other hand, however, we desire that improvements in overall UE throughputs can be
achieved. In other words, we desire that average per user data throughputs in the hybrid
system get commonly ameliorative comparing to those in the pure cellular network.
Criteria based on PFS are used to scheduling DL UEs in order to flexibly achieve the
balance between spectral efficiency and DL UE fairness. In addition, a constraint to
protect the lowest DL rate is applied when scheduling D2D UE. D2Ds are allowed
to take as many resources as possible as long as a minimum DL rate requirement is
attained. In the simulation, this minimum DL rate threshold is defined as the estimated
lowest DL rate in pure cellular network. The simulation results demonstrate that this
value is well targeted and both DL and D2D UE per user data throughputs are basically
much higher than this threshold. Comparing to per user data throughputs in pure
cellular network, in the hybrid system with 20 m D2D distance setting and medium-
density D2D deployment, a 2.7 fold gain is observed in D2D per user data throughputs
in average and a 1.5 fold gain is observed in DL per user data throughputs. D2D per
user data throughputs are especially high due to the ambitious D2D resource allocation
strategy.

In a high-density D2D deployment, local traffics between proximate UEs, if not
scheduled in D2D mode, are highly resource consuming and might congest the cellular
network. Through D2D mode offloading, DL congestion is largely alleviated. As a result,
about 2-fold gain is observed in both DL and D2D per user data throughputs in 20 m
D2D distance setting.

As explained before, D2D links with short range usually have high D2D channel
gains, and performance gains resulted from D2D mode transmission are prominent.
With the increase of D2D distance, the D2D channels degrade, the possibility of a
potential D2D pair being scheduled in D2D mode decreases, and mutual interference
augments in resource sharing scheme. Therefore D2D offloading effect is less remarkable
in random D2D distance setting than in 20 m D2D distance setting. In medium-density
D2D deployment, both D2D and DL UE throughput gain in average are about 25%
lower than that in 20 m D2D distance setting. In high-density D2D deployment, DL
UE throughput gain in average is about 37% lower than that in 20 m D2D distance
setting and D2D UE throughput gain in average is about 14% lower than that in 20 m
D2D distance setting.

The centralized interference coordination is sensitive to the availability of CSI at
eNB, whereas interference channels between UEs are usually difficult to measure and
feedback overhead can be prohibitive. When replacing full CSIT by mean channel gain
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information for all the interference channels from D2D transmitters to DL UEs, a 12%
degradation in DL per user data throughput in average is observed, while influence to
D2D per user data throughput is negligible.

To conclude, the system-level simulation results demonstrate that traffics originated
between proximate UEs can be successfully offloaded from cellular network by apply-
ing in-band D2D mode transmission. The spectral efficiency gain mainly results from
the frequency reuse between D2D and DL transmissions. The combined coordination
techniques of mode selection, resource allocation and power control successfully opti-
mize the aggregate throughput in the frequency reuse scheme. The proposed scheduling
method not only achieves high spectral efficiency gain, but also guarantees an overall
improvement in per user data throughput.





CHAPTER

6 Conclusion

Integrating D2D into LTE-Advanced networks is a promising method to support ever-
increasing demand of proximity-based social/commercial services and applications. The
objective of this work has been the analysis, design, development and evaluation of a
hybrid D2D cellular system.

This thesis begins by a brief introduction to the research interests on D2D tech-
nologies in next-generation wireless communication systems, as well as to the academic
research history and existent D2D technologies in other wireless standards.

Chapter 2 is concerned with background survey of D2D technologies and standard-
ization process of LTE D2D. Potential usages, opportunities and risks of this new
network architecture are analyzed. The contributions include:

• An informative survey of existent widely used D2D technologies in other wireless
standards and a detailed comparison of usage cases, market prospects, network
structure, PHY/MAC characteristics, etc.

• A thorough literature review of coexistent D2D and cellular networks and a pre-
sentation of D2D features in LTE standardization process.

• An analysis of LTE D2D potential usages, general functions that need to be pro-
vided, and implementation challenges.

Chapter 3 investigates physical and MAC characteristics that are required to sup-
port LTE D2D. Its contributions include:

• An introduction to current LTE physical and MAC specifications, especially those
related to our consideration of D2D discovery and communication design.

• Identification of design requirements and choices to enable devices in LTE to dis-
cover each other directly over the air.

• Identification of design requirements and choices to enable devices in LTE to com-
municate to each other directly and to enable the LTE network to control the D2D
data Communications under its coverage.

In Chapter 4, a centralized scheduling strategy in eNB is proposed to coordinate
the D2D and cellular data transmissions in the same FDD downlink band. The contri-
butions include:
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• An analysis of issues in coordinating in-band D2D data transmission underlaying
LTE network, in addition to literature reviews.

• A global consideration of both D2D and cellular users in performance metrics but
separability in optimization for D2D and cellular users. Overall per user average
throughput gain is targeted with low complexity.

• An innovative scheduling strategy with no constraint on D2D range and D2D num-
ber in the network layout, which allows calibration under more general assump-
tions. D2D is semi-persistently scheduled so that signaling overhead is reduced.

Chapter 5 introduces evaluation methodology and presents simulation results of in-
band D2D transmission coordinated by the scheduling strategy proposed in Chapter
4. Its contributions include:

• An introduction to evaluation methodology, including radio access requirements,
ITU guidelines for evaluation procedure and criteria, system simulation principles,
and channel models.

• System-level performance calibration of D2D data communication in LTE FDD
downlink spectrum.

• A demonstration that the hybrid system with proposed centralized scheduling
method largely outperforms the pure cellular system in terms of system spectral
efficiency and overall user throughputs.

The key achievement in this work has been the feasibility analysis in physical and
MAC layer functions to support direct D2D discovery and direct D2D data Commu-
nication underlaying LTE networks, the design of a centralized scheduling strategy
in eNB to coordinate intra-cell interference resulted from in-band D2D communica-
tion, and performance calibration of D2D data communication in LTE FDD downlink
spectrum via system-level simulation. The initial tests demonstrate considerable per-
formance advantages of direct D2D data transmission replacing conventional UL/DL
mode transmission for local traffic between proximate UEs.

At the moment this thesis is being concluded, the physical and MAC layer specifi-
cation for LTE D2D is under discussion in 3GPP RAN1 group. To complete the design
of physical and MAC layer for LTE D2D, a lot of aspects are to be studied in details:
D2D channel models, evaluation requirements, channel access method, synchronization
mechanism, discovery beacon design, random access procedure, discovery procedure,
resource use, frame structure, control signaling and reference signal design, etc.

The proposed scheduler works well under the ideal full CSIT assumption. Imperfec-
tion of channel information, however, due to measurement accuracy, quantization loss,
feedback delay, etc., may deteriorate scheduling efficiency and should be analyzed by
simulation.

Interference scenario in the case of D2D operating in FDD uplink spectrum is
different from that in the case of D2D operating in FDD downlink spectrum. Therefore
interference coordination methods differ in theses two cases. Potential performance
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gains in uplink reuse case are to be evaluated on the purpose of comparison with
downlink case and eventually contribute to the decision of D2D resource use.

Performances of D2D transmission are evaluated under the assumption that each
D2D pair locates in the same sector. In reality, the D2D transmitter and receiver might
locate in neighbor sectors/cells, and therefore more advanced inter-cell interference
cancellation techniques might be required, requiring joint scheduling between different
sectors/cells. Enhancements to scheduling method should be identified and performance
gains, as well as complexity and delays, should be analyzed.





Résumé de la thèse

Le concept des transmissions Device-to-Device (D2D) basées sur le réseau LTE-
Advanced (Figure 1) repose sur le fait que la transmission des signaux d’un équipement
utilisateur (UE) puisse être reçu depuis un autre équipement utilisateur sans utiliser
l’infrastructure cellulaire (eNB, HeNB, etc). Intégrer le service D2D au sein de la norme
LTE-Advanced est une méthode prometteuse pour répondre à la demande toujours
croissante des services et applications basés sur la proximité. Cette thèse a pour objec-
tif l’analyse, la conception, le développement et l’évaluation d’un réseau hybride avec
la technologie D2D et les communications cellulaires.

Dans le chapitre 2, nous avons effectué l’état de l’art des technologies D2D. Pre-
mièrement, nous avons présenté et comparé quatre technologies D2D du type out-
band : Bluetooth, ZigBee, NFC, Wi-Fi Direct. Ensuite, nous avons examiné les études
bibliographiques réalisées sur la coexistence entre la technologie D2D et les réseaux
cellulaires. Enfin, nous avons analysé les intérêts et les défis provenant de l’apport des
capacités de la technologies D2D au réseau LTE-Advanced. Aussi, nous avons introduit
le processus de standardisation 3GPP de la technologie LTE D2D.

Le chapitre 3 a pour objectif d’identifier les options de conception et les meilleures
solutions pour les couches physique et MAC. Ceci a pour but de faire en sorte que
les équipements utilisateurs puissent se détecter et communiquer directement à travers
l’air, mais aussi que le réseau LTE puisse diriger et contrôler les détections et les com-
munications D2D. Les spécifications clés des couches physiques et MAC du réseau LTE

!"!# 

UL/DL 

eNB 

UE 

Figure 1 — Transmission D2D VS. Transmission UL/DL
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sont tout d’abord examinées. Les modifications et améliorations de LTE qui permet-
tent d’incorporer les capacités liés à la technologie D2D sont ensuite recherchées. Les
discussions ont porté sur les quatre aspects suivants :

1. Considération générale sur l’utilisation des ressources D2D

Afin que l’équipement utilisateur puisse supporter les transmissions D2D, nous
avons étudié les modifications nécessaires sur la conception RF, ce qui pose des
contraintes liées à l’utilisation des ressources D2D dans les systèmes TDD et FDD.
Nous avons comparé les avantages et désavantages dans le cas des transmissions
D2D via l’utilisation des ressources dédiées, et dans le cas où celles-ci utilisent le
chevauchement des ressources avec les réseaux cellulaires.

2. Choix de synchronisation

La synchronisation est déterminante pour l’efficacité de la transmission. Nous
avons mis en évidence les avantages de la communication synchronisée et nous
avons proposé que le canal et la procédure D2D soient utilisées dès que celles-ci
sont possible. Nous avons analysé les techniques possibles pour réaliser un sys-
tème D2D synchronisé, et nous avons proposé que l’équipement utilisateur D2D
puisse se synchroniser constamment à un nœud de référence pour tirer parti de
l’efficacité des transmissions synchronisés. Nous avons aussi évoqué les points per-
tinents tels que le nœud de référence, la structure du signal de synchronisation et
la consommation énergétique.

3. Conception de la structure du signal de détection D2D, du multiplexage de
ressources dédiées à la détection, et de la procédure de détection

Pour réaliser la détection D2D, deux fonctions sont essentielles : la détection de
proximité et d’identité. Nous avons proposé que les signaux de détection D2D
soient composés tout d’abord d’une séquence de voie balise, qui est utilisée pour
la détection de proximité, et la synchronisation, et ensuite du message contenant
l’identité et les informations de service. Cette structure fonctionne aussi bien avec
et sans couverture de réseau. Nous avons comparé différentes méthodes de multi-
plexage des ressources dédiées à la détection. Et nous avons proposé (Figure 2) de
réserver les ressources uplink de LTE qui seront utilisées périodiquement pour la
détection D2D. Les ressources dédiées à la détection D2D consistent à une continu-
ité de sous-trames dans lesquelles PUSCH n’apparaît pas (multiplexage temporel
avec PUSCH), et dans ces sous-trames dédiées à la détection, les liens D2D sont
multiplexés en fréquence. Enfin, nous avons proposé une procédure de détection
sous contrôle de réseau (Figure 3).

4. Techniques de coordination d’interférences pour les communications de données
D2D utilisant les ressources en chevauchement avec les transmissions cellulaires

L’utilisation des ressources en chevauchement est préféré pour les communications
de données D2D afin de permettre une meilleure utilisation des bandes du spectre
sous licence. Nous avons étudié le problème de l’interférence due à l’effet “proche-
lointain” qui peut être causé par l’utilisation des ressources en chevauchement.
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Figure 2 — La structure de ressources dédiées à la détection
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Figure 3 — La procédure de détection sous contrôle de réseau

Quatre techniques ont été avancé pour permettre la coordination d’une commu-
nication hybride D2D et cellulaire, et pour parvenir à réutiliser les ressources effi-
cacement. La coordination de trois différents niveaux de centralisation est discuté,
à savoir une centralisation totale, partielle, ou une distribution. Pour les com-
munications de données D2D, nous avons proposé une stratégie d’allocation des
ressources, caractérisée par le niveau de centralisation, qui dépend du déploiement
D2D (Figure 4).

Dans le chapitre 4, nous avons introduit une stratégie de planification centralisée
dans eNB pour coordonner les transmissions D2D sous couverture. Les études bibli-
ographiques sur la coordination des ressources D2D “in-band” ont tout d’abord été
analysées. Puis, nous avons établi des considérations importantes sur la planification.
Différentes approches avec leurs intérêts propres sont comparées. Ensuite, nous avons
décris le scénario et les objectifs de planification. Nous avons proposé une planification
combinant des techniques d’allocation de ressource, d’énergie, et de sélection de mode.
Ces décisions sont faites de manière centralisé par les stations de base.

La procédure complète de planification est illustrée par le diagramme suivant (Fig-
ure 5). Initialement, le mode utilisant le plus efficacement les ressources est sélectionné
pour transmettre le trafic local. A chaque instant “semi-persistant” de planification, les
liens D2D sont replanifiés et le nombre de ressources disponibles pour les utilisateurs
D2D est ajusté afin de satisfaire le débit DL. A chaque slot temporel, les utilisateurs
DL sont planifiés dynamiquement. Le principal objectif de l’allocation des ressources
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Figure 4 — L’allocation des ressources avec niveaux de centralisation partielle ou
de centralisation totale

Init: Mode Selection 

D2D mode vs. UL/DL mode

DL Scheduling
1)On each RB occupied by D2D:

dynamically chooses a DL UE for RB sharing

2) On each unoccupied RB:

Unsatisfied DL UEs are scheduled to maintain fairness     

D2D Scheduling
Allocation of RBs and transmit power to D2D pairs

semi-persistent 

scheduling instant?

yes

no

Figure 5 — La procédure de planification semi-persistant dans eNB

DL est la gestion des interférences, et l’optimisation des gains de débit du système.
Le principe consiste à tirer parti de la diversité des utilisateurs dans une cellule pour
réutiliser les ressources afin de maximiser le débit additif sur les RBs occupés par
D2D. Cependant, pour les RBs inocupés, l’équité est la principale considération pour
satisfaire l’ensemble des utilisateurs cellulaires.

La mesure de performance de la stratégie de planification proposée vise la satis-
faction de l’ensemble des utilisateurs. Un bon équilibre entre l’efficacité spectrale et
l’équité parmi les utilisateurs est nécessaire pour garantir la satisfaction globale des
utilisateurs. Nous avons proposé une mesure de la performance basée sur des critères
d’équité proportionnelle, qui permettent de jouer sur l’optimisation du débit du sys-
tème, et sur la conservation de l’équité parmi les utilisateurs.

L’algorithme de planification proposée est un algorithme général pouvant gérer une
structure arbitraire de réseau. Celui-ci n’a pas de contrainte particulière sur les dis-
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Figure 6 — L’histogramme des gains de canaux D2D avant (gauche) et apès (droit)
la sélection de mode

tances D2D ou les nombres de paires D2D. La bande passante totale pouvant être oc-
cupée par les communications D2D est contrainte par le débit minimal de l’équipement
utilisateur cellulaire. De cette façon, les communications de données cellulaires sont pro-
tégées même en cas d’une présence massive des communications de données D2D. Le
mode D2D n’est pas choisi pour les liens D2D de faible qualité (par exemple les liens
D2D de longue distance) grâce à un mode sélectif de l’algorithme.

La stratégie de planification proposée est de faible complexité. Cela est dû au fait
d’avoir séparé l’optimisation des transmissions D2D des transmissions cellulaires. Le
coût de signalisation est aussi réduit grâce au faible cycle de planification.

Le chapitre 5 évalue la planification proposée au chapitre précédent à travers une
simulation au niveau système dans un modèle de réseau multi-liens. Nous avons tout
d’abord décrit la méthodologie générale d’évaluation. Les approches de la simulation au
niveau système, et les modèles des canaux sont présentés. Aussi, nous avons détaillé nos
choix de scénarios de déploiement, la structure du réseau, ses paramètres et hypothèses
faites. Les mesures de performances telles que le débit moyen par UE et l’efficacité
spectrale d’un réseau cellulaire hybride D2D sont évalués via un spectre FDD DL.

La comparaison des gains de canaux entre les paires D2D sélectionnées par
l’algorithme de sélection de mode et l’ensemble des potentielles paires D2D avant la
sélection de mode montre que l’algorithme de sélection de mode proposée empêche les
paires d’émetteur/récepteur de faible qualité (en dessous de -120dB) d’utiliser le mode
D2D (Figure 6).

Les résultats des simulations montre que lorsqu’on impose une distance D2D fixée
à 20 mètres, le mode D2D est toujours sélectionné car les liens de qualité D2D sont
satisfaisants. L’efficacité spectrale est presque doublée en comparaison avec un pur
réseau cellulaire. Cela prouve que le spectre cellulaire est efficacement réutilisé par les
communications D2D. En augmentant la distance D2D, la qualité des liens D2D se dé-
grade, ce qui devient moins avantageux pour la réutilisation des ressources. Cependant,
l’efficacité spectrale du réseau hybride est toujours beaucoup plus élevée que celle d’un
pur réseau cellulaire. L’augmentation de l’efficacité spectrale signifie que la planifica-
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Figure 7 — CDF de débit moyen par utilisateur, 5 potentielles pairs D2D
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Figure 8 — CDF de débit moyen par utilisateur, 10 potentielles pairs D2D

tion proposée a réduit les interférences intra-cellulaire provenant de la réutilisation des
ressources D2D, et qu’elle a aussi réduit le trafic présent sur le réseau cellulaire.

Le débit moyen par utilisateur est un autre indicateur clé de performance pour éval-
uer la planification car il reflète la satisfaction globale de l’utilisateur. Nous avons ef-
fectué des simulations sur deux configurations différentes: celle d’un trafic D2D moyen-
nement chargé (Figure 7), et celle avec un trafic élevé (Figure 8). Dans les deux cas, les
statistiques (présentées par CDF) montrent que le débit global de l’utilisateur est plus
élevé dans un réseau hybride intégrant le mode D2D que dans un pur réseau cellulaire.
Le débit minimum DL s’est bien trouvé être au dessus du seuil prédéfini. Cela prouve
que l’augmentation de l’efficacité spectrale ne sacrifie pas le débit moyen d’un certain
nombre d’utilisateur. La planification proposée permet donc d’atteindre la satisfaction
de l’ensemble des utilisateurs.

Nous avons tout d’abord lancé la simulation en supposant une connaissance totale
du CSIT, cela signifie qu’en pratique les mesures des canaux doivent être renvoyées à la
station de base à temps. Nous avons ensuite comparé avec les résultats de la simulation
obtenue en supposant une connaissance réduite du CSIT. Dans ce dernier cas, seul les
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Figure 9 — Comparaison entre le cas d’une connaissance totale du CSIT et le cas
d’une connaissance réduite du CSIT

gains moyen des canaux interférences UE-UE sont connus par la station de base. Bien
que l’influence du débit moyen de données D2D par utilisateur est négligeable, une
diminution du débit moyen de données DL par utilisateur est observé (Figure 9), cela
signifie que la planification centralisé est sensible à la disponibilité de CSI à la station
de base.
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