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Résumé

Resource Description Framework (RDF) est devenu un modèle de données per-
tinent afin de décrire et de modéliser les informations qui sont partagées sur le Web.
Cependant, fournir une solution permettant de stocker et de récupérer ces don-
nées de manière efficace tout en passant à l’échelle reste un défi majeur. Dans
le contexte de cette thèse nous proposons un intergiciel dévoué au stockage, à la
récupération synchrone mais aussi à la dissémination sélective et asynchrone en
quasi temps réel des informations de type RDF dans un environnement complè-
tement distribué. L’objectif est de pouvoir tirer parti des informations du passé
comme de celles filtrées en quasi temps réel. Dans ce but, nous avons construit
notre système sur une version légèrement modifiée du réseau Pair-à-Pair CAN à
4-dimensions afin de refléter la structure d’un n-uplet RDF. Contrairement à une
grande majorité de solutions existantes, nous avons avons fait le choix d’éviter
le hachage pour indexer les données ce qui nous permet de traiter les requêtes à
intervalles de manière efficace mais aussi de soulever des défis techniques intéres-
sants. Le filtrage des informations en quasi temps réel est permis par l’expression
des intérêts à l’aide de souscriptions basées sur le contenu des évènements futurs.
Les souscriptions sont traitées par une couche publish/subscribe conçue sur l’ar-
chitecture CAN. Nous avons proposé deux algorithmes qui permettent de vérifier
la concordance des évènements RDF avec les souscriptions enregistrées et de les
transférer vers les entités intéressées lorsque la correspondance se vérifie. Les deux
algorithmes ont été testés expérimentalement en termes de débit d’évènements
par seconde et de passage à l’échelle. Bien que l’un permet de meilleures perfor-
mances que l’autre, ils restent complémentaires pour s’assurer que tout évènement
soit notifié s’il doit l’être. En sus de la récupération synchrone et de la diffusion
asynchrone d’évènements, nous nous sommes intéressés à améliorer, avec notre
système, la répartition des données RDF qui souffrent de dissymétrie. Finalement,
nous avons consacré un effort non négligeable à rendre notre intergiciel modulaire.
Cela a permis d’améliorer sa maintenance et sa réutilisabilité puisque l’architecture
modulaire réduit le couplage entre les différents composants qui le constitue.
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Abstract

RDF has become a relevant data model for describing and modeling information
on the Web but providing scalable solutions to store and retrieve RDF data in a
responsive manner is still challenging. Within the context of this thesis we propose
a middleware devoted to storing, retrieving synchronously but also disseminating
selectively and asynchronously RDF data in a fully distributed environment. Its
purposes is to allow to leverage historical information and filter data near real-
time. To this aims we have built our system atop a slightly modified version of
a 4-dimensional Content Addressable Network (CAN) overlay network reflecting
the structure of an RDF tuple. Unlike many existing solutions we made the choice
to avoid hashing for indexing data, thus allowing efficient range queries resolu-
tion and raising interesting technical challenges. Near realtime filtering is enabled
by expressing information preferences in advance through content-based subscrip-
tions handled by a publish/subscribe layer designed atop the CAN architecture.
We have proposed two algorithms to check RDF data or events satisfaction with
subscriptions but also to forward solutions to interested parties. Both algorithms
have been experimentally tested for throughput and scalability. Although one
performs better than the other, they remain complementary to ensure correctness.
Along with information retrieval and dissemination, we have proposed a solution
to enhance RDF data distribution on our revised CAN network since RDF infor-
mation suffers from skewness. Finally, to improve maintainability and reusability
some efforts were also dedicated to provide a modular middleware reducing the
coupling between its underlying software artifacts.



Acknowledgments

I would like to thank Françoise and Fabrice for the opportunity they gave me to
make this thesis a reality but also for their help throughout these three years and
more. Also, I would like to express my appreciation to Ioana Manolescu and
Etienne Rivière for agreeing to review this thesis but also Johan Montagnat
for doing me the honor to preside my jury.

Undeniably, I have to thank several coworkers. I think especially to Imen
and Francesco that have trained me in the research world. My thanks also go to
Bastien, Iyad, Maeva, Justine and all great persons from the SCALE and former
OASIS team but also all the people I worked with or met during this thesis.

I want also thank my family. First, all my gratitude goes to my parents who
have encouraged me during this period. I also thank my brother in law and my
sister, who despite the difficult facts of life are always in a good mood and share
their joy with others and especially me. Finally, my thanks go to Pauline aka
Popo, my great-niece, without whom this thesis would probably never come to an
end.

vii



viii



Table of Contents

List of Figures xiii

List of Listings xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 The Peer-to-Peer Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 P2P overlays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 RDF data model . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 SPARQL query language . . . . . . . . . . . . . . . . . . . . . . 18

2.3 The Publish/Subscribe Paradigm . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Interaction model . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Filtering mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 ProActive Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Active objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Multi-active objects . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



x TABLE OF CONTENTS

3 Distributed RDF Storage 37
3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Centralized RDF stores . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Distributed RDF stores . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 P2P Infrastructure for RDF . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Content Addressable Network (CAN) . . . . . . . . . . . . . . 54
3.2.2 Routing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.3 Indexing and retrieval mechanisms . . . . . . . . . . . . . . . . 65

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.1 Insertion of random data . . . . . . . . . . . . . . . . . . . . . . 69
3.3.2 Queries using BSBM . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Distributed RDF Publish/Subscribe 77
4.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.1 Active databases . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.2 Conventional publish/subscribe systems . . . . . . . . . . . . . 79
4.1.3 RDF-based publish/subscribe systems . . . . . . . . . . . . . . 81

4.2 Publish/Subscribe Infrastructure for RDF . . . . . . . . . . . . . . . . 83
4.2.1 Data and subscription model . . . . . . . . . . . . . . . . . . . 83
4.2.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.3 Event filtering algorithms . . . . . . . . . . . . . . . . . . . . . 90

4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Distributed RDF Load Balancing 121
5.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1.1 Static load balancing . . . . . . . . . . . . . . . . . . . . . . . . 123
5.1.2 Dynamic load balancing . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Load Balancing Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.1 Options and choices . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.2 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 Implementation 147
6.1 Middleware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



TABLE OF CONTENTS xi

6.1.1 A generic structured P2P framework . . . . . . . . . . . . . . . 149
6.1.2 An abstract CAN library . . . . . . . . . . . . . . . . . . . . . . 162
6.1.3 A CAN implementation for RDF data . . . . . . . . . . . . . . 163

6.2 Performance Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.2.1 Multi-active objects . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.2.2 Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.2.3 Local storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7 Conclusion 191
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.2.1 Optimizing query and subscriptions evaluation . . . . . . . . . 193
7.2.2 Increasing reliability and availability . . . . . . . . . . . . . . . 194
7.2.3 Reasoning over RDF data . . . . . . . . . . . . . . . . . . . . . 195

A PLAY Project 197

B SocEDA Project 201

C Extended Abstract in French 205
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

C.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
C.1.2 Définition du problème . . . . . . . . . . . . . . . . . . . . . . . 207
C.1.3 Plan et contribution . . . . . . . . . . . . . . . . . . . . . . . . . 208

C.2 Résumé développement . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
C.2.1 Stockage RDF distribué . . . . . . . . . . . . . . . . . . . . . . 211
C.2.2 Publier/Souscrire RDF distribué . . . . . . . . . . . . . . . . . 213
C.2.3 Répartition de charge RDF distribuée . . . . . . . . . . . . . . 214
C.2.4 Implémentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

C.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
C.3.1 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
C.3.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

List of Acronyms 243



xii TABLE OF CONTENTS



List of Figures

2.1 Taxonomy of Peer-to-Peer overlays . . . . . . . . . . . . . . . . . . . . 11
2.2 Presentation vs Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Semantic web stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Book description represented as an RDF graph . . . . . . . . . . . . . 19
2.5 Publish/Subscribe interactions . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 ProActive middleware features . . . . . . . . . . . . . . . . . . . . . . . 27
2.7 Meta object architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Standard Fractal/GCM component . . . . . . . . . . . . . . . . . . . . 35

3.1 RDF data storage in an RDFPeers network . . . . . . . . . . . . . . . 42
3.2 Simple 2-dimensional CAN network . . . . . . . . . . . . . . . . . . . . 55
3.3 Multicast keys’ scope in a 3-dimensional CAN network . . . . . . . . 62
3.4 Series of actions to insert a quadruple into a 4-dimensional CAN . . 65
3.5 Local vs remote insertion on a single peer . . . . . . . . . . . . . . . . 69
3.6 Sequential and concurrent insertions with up to 300 peers . . . . . . 71
3.7 Custom queries with BSBM dataset on various overlays . . . . . . . 74

4.1 Compound Event distribution with three quadruples . . . . . . . . . 86
4.2 Distribution of two subscriptions overlapping on a peer . . . . . . . . 88
4.3 Theoretical comparison between polling and pushing . . . . . . . . . 108
4.4 Subscription and CE mapping leading to duplicates . . . . . . . . . . 111
4.5 Possible measurements to compare publish/subscribe algorithms . . 116
4.6 Performance comparison of CSMA and OSMA . . . . . . . . . . . . . 117

5.1 RDF data clusters on a 2D CAN network . . . . . . . . . . . . . . . . 134

xiii



xiv LIST OF FIGURES

5.2 CAN splitting strategies comparison . . . . . . . . . . . . . . . . . . . 138
5.3 Statistical information recording overhead . . . . . . . . . . . . . . . . 142
5.4 Static load balancing using middle vs centroid partitioning . . . . . . 143

6.1 Stack of main software blocks designed and/or used . . . . . . . . . . 148
6.2 Simplified version of the class diagram defining a peer . . . . . . . . . 151
6.3 Simplified version of the class diagram defining messages . . . . . . . 153
6.4 Simplified version of the class diagram defining a proxy . . . . . . . . 156
6.5 Sequence diagram showing a proxy interaction . . . . . . . . . . . . . 157
6.6 High-level view of the EventCloud architecture . . . . . . . . . . . . . 164
6.7 Public API exposed by related EventCloud proxies . . . . . . . . . . 166
6.8 Internal EventCloud proxies architecture . . . . . . . . . . . . . . . . . 167
6.9 Internal EventCloud peer architecture . . . . . . . . . . . . . . . . . . 168
6.10 Internal architecture of datastores embedded by peers’ local storage 171
6.11 MAO soft limit evaluation for peers and subscribe proxies . . . . . . 175
6.12 Priorities effect on reconstructions with CSMA . . . . . . . . . . . . . 179
6.13 Message serialization with and without the use of frozen objects . . 182
6.14 Delayer benefits when varying buffer size . . . . . . . . . . . . . . . . 186
6.15 Quadruple length effect on buffering . . . . . . . . . . . . . . . . . . . 188

A.1 Conceptual PLAY architecture . . . . . . . . . . . . . . . . . . . . . . . 199

B.1 Conceptual SocEDA architecture . . . . . . . . . . . . . . . . . . . . . 203



List of Listings

2.1 Book description modeled in RDF . . . . . . . . . . . . . . . . . . . . 17
2.2 SPARQL query example for retrieving RDF resources . . . . . . . . . 20
2.3 Groups and compatibility definition using multi-active objects . . . . 32

3.1 SPARQL query example for retrieving RDF resources with filters . . 68

4.1 SPARQL subscription example . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Upon reception of a publication on a peer . . . . . . . . . . . . . . . . 91
4.3 Upon reception of a PublishQuadrupleRequest by a peer . . . . . . . 93
4.4 Upon reception of a notification by a subscribe proxy . . . . . . . . . 95
4.5 SPARQL subscription decomposition into sub-subscriptions . . . . . 97
4.6 Handling a subscription from a proxy to a peer . . . . . . . . . . . . . 98
4.7 Handling an IndexSubscriptionRequest on a peer . . . . . . . . . . . . 99
4.8 Pushing compound events to subscribers . . . . . . . . . . . . . . . . . 101
4.9 Publishing and subscribing with OSMA . . . . . . . . . . . . . . . . . 111

6.1 Groups and compatibility definition using MAO on a Peer . . . . . . 161
6.2 Priorities definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.3 SPARQL subscription representation in RDF . . . . . . . . . . . . . . 185

xv



xvi LIST OF LISTINGS



List of Tables

3.1 BSBM namespaces used by the queries considered . . . . . . . . . . . 73
3.2 Number of final results for the queries considered . . . . . . . . . . . 73

4.1 Comparison of the two publish/subscribe algorithms proposed . . . . 119

5.1 Load balancing strategies comparison . . . . . . . . . . . . . . . . . . 144

xvii



xviii LIST OF TABLES



Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline and Contributions . . . . . . . . . . . . . . . . . 4

1.1 Motivation

In recent years the Internet traffic exchanged has grown exponentially. It is ex-
plained by the amount of information generated by users and new services that
thrive. As stated by Eric Schmidt in 2010, every two days now we create as much
information as we did from the dawn of civilization up until 2003. At this time
the amount of information was already something like five exabytes of data, he
said. Besides, with the advent of the Internet of things, a concept that refers to
uniquely identifiable objects that communicate over the Internet, we are proba-
bly just at the beginning of this exponential growth of information. For example,
Cisco expects the global IP traffic will reach 1.4 zettabytes per year in 20171.

This explosion regarding information exchanged gave birth to a new field of
computer science called Data Mining. The overall goal of data mining process
is to discover interesting patterns in large datasets. A concrete example is the

1http://goo.gl/dj85Ul

1
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Google Knowledge Graph [1] that provides additional valuable information when
you perform a search. A more recent illustration is the scandal caused by the Prism
surveillance program operated by the United States National Security Agency
(NSA) whose the purpose is to collect and correlate meta-data from users, unknown
to them, to prevent terrorist acts.

A prerequisite to Data Mining is to aggregate streams of interest and store
incoming data for analysis. These bases of knowledge are realized by data ware-
houses that are huge repositories of data which are created by integrating data from
one or more disparate sources. When sources are outputs provided by any actor
publishing heterogeneous information over the Internet, building data warehouses
raises one main question: how to filter information of interest and correlate them
with others? A key element to answer this question consists of using structured
data to make information machine processable and machine understandable.

The Semantic Web movement has generated tremendous interest these last
years. It aims to turn the Web, i.e. Web documents, into a gargantuan database
where computers could fetch data in an homogeneous manner. The interesting
point here is that the Semantic Web community already provides a full technology
stack (RDF, SPARQL, RDFS, OWL, etc.) to address most of the issues related
to the previous question, but mainly in a synchronous and centralized2 environ-
ment. Within the context of the European PLAY project, one of the projects in
which this thesis has been developed, we are investigating how we can leverage the
Semantic Web representation model and thus the existing stack to filter, detect
and react on interesting patterns or situations. In this context, the purpose of
the PLAY project is to bring an elastic and reliable architecture for dynamic and
complex, event-driven interaction in highly distributed and heterogeneous service
systems. Such an architecture will enable ubiquitous exchange of information be-
tween heterogeneous services, providing the possibilities to adapt and personalize
their execution, resulting in the so-called situational-driven process adaptivity.

A typical example of the scenario we are trying to achieve with the PLAY
project is illustrated by the following motivating story. Let’s say that Paul is a

2In the rest of this thesis, we refer to centralized for solutions that concentrate under a single
location/front end, even if behind, several machines or physical resources are involved like it
is the case with the Master-Slave approach where a master receives and dispatches requests to
multiple slaves.
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businessman who has been flying from Paris to New York. He used the entertain-
ment service on board, but hasn’t finished watching the movie before the landing.
Two hours later he is entering his room in the downtown hotel he booked earlier
and wow: the room entertainment service is ready to PLAY the movie Paul was
watching in the plane – of course starting where he left it.

Realizing such a scenario raises several technical questions which some are
introduced in the next section and addressed throughout this thesis.

1.2 Problem Definition

In this thesis we are focusing on two key problematics that can be summarized by
the following two questions: How can we efficiently store and retrieve Semantic
Web data in a distributed environment? How can we pragmatically filter and
disseminate Semantic Web events to users with individual preferences?

The inherent scalability issue that arises with distributed systems has mainly
be addressed the last years by resorting to Peer-to-Peer (P2P) networks that avoid
a single point of access. However, relying on the Semantic Web model, depicted
by RDF, raises several challenges which have a direct impact on the underlying
network topology that is considered.

The first challenge stems from the expressivity level of the common SPARQL
language that is usually used to retrieve RDF data. Some may have noticed the
lexicographic similarity with SQL. The analogy is not a coincidence. SPARQL is
a query language for RDF data modeled long after SQL. Although they are quite
different since they do not achieve the exact same purpose, SPARQL supports
very complex operators that makes it as expressive or even more expressive than
SQL. In this manuscript, we will see how the data model and query language
affect many of the choices we made such as the design of the P2P architecture, the
routing algorithms and the storage of RDF data.

The second challenge is related to the filtering of RDF data from publishers to
interested parties. As explained in the motivation section, the scenario envisaged
within the PLAY project is mainly based on data-driven querying [2] that focus
on near real-time conditions that should be satisfied. A prerequisite is to filter
information of interest but not only. Events have to be stored to act as additional
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context and to perform a kind of analytic on the past data. Here, Semantic Web
data have, again, a significant impact on how the Publish/Subscribe layer must be
designed. With an additional complexity since in event based systems the entities
are loosely coupled. Communications are done in an asynchronous manner, thus
providing less guarantees than the traditional request/reply message exchange pat-
tern (e.g. lack of delivery guarantee). In this context, we will see how RDF data
may be represented as events and how they differ from traditional multi-attribute
events. In addition the combination between event filtering and the storage re-
quirement triggers several questions about efficiency and consistency: e.g., how
to ensure operations ordering from a same client? which kind of throughput can
we expect? how to ensure that events are stored once they are delivered? these
questions will be discussed and addressed.

Finally, a third challenge we take care is about load balancing and the elas-
ticity property of modern distributed systems we intend to leverage in order to
ensure a certain level of performance. We will see that the choice we made, that
consists of removing the use of hash functions to exploit more complex queries
or subscriptions than simple exact matching exposes us to load imbalances. In
real scenarios, any dataset is skewed, but here the imbalance is accentuated by
one of the characteristics of RDF data that implies some values to share common
prefixes.

1.3 Outline and Contributions

The major contribution of this thesis is the definition and the implementation of
a modular middleware for storing, retrieving and disseminating RDF data and
events in cloud environments. It is structured around three major works organized
in three dedicated chapters whose the content is summarized along with others
hereafter:

• Chapter 2 gives an overview of the main concepts and technologies we refer
to throughout this thesis. First, we introduce the Peer-to-Peer paradigm.
Then, we draw attention to the Semantic Web and discuss the main benefits
of using semantic before focusing on the Publish/Subscribe communication
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style. Finally, we detail the ProActive middleware, which is the main tech-
nology used for implementing the middleware developed in this thesis.

• Chapter 3 presents our first contribution that relates to a distributed RDF
storage infrastructure which was introduced in [3] and awarded Best Paper of
the AP2PS 2011 conference. A brief related works section about decentral-
ized systems for storing and retrieving RDF data introduces this chapter.
Then, we introduce the popular CAN P2P protocol which is the underly-
ing P2P overlay network we rely on for routing messages and, indirectly, for
achieving scalability. Afterwards, we motivate and discuss the design choices
and the adjustments we made regarding the CAN protocol before explaining
in a second section how messages are routed with our modifications. In a
penultimate section we describe in details how RDF data is indexed in the
P2P network and how SPARQL queries are executed. Finally, we provide
the results we got by experimenting our solution on the Grid’5000 testbed.

• Chapter 4 enters into the details of our second contribution that relates
to a publish/subscribe layer for storing and disseminating RDF events. It
is built as an extension atop the infrastructure introduced in the previous
chapter and relies on the routing algorithms that were described earlier. We
start to compare existing solutions and we explain why building RDF-based
event systems differs from traditional publish/subscribe systems. Then, we
introduce our publish/subscribe infrastructure for RDF events. First, we
detail the event and subscription model suitable for RDF data we propose.
Afterwards we list the different properties our publish/subscribe system is
assumed to respect, before entering into the details of two publish/subscribe
algorithms. Their characteristics and differences are explained, discussed
and analyzed. To conclude, the algorithms we propose are evaluated in a
distributed environment with up to 29 machines. This second contribution
has been accepted and presented at Globe 2013 [4].

• Chapter 5 highlights our third contribution which is about load balancing
with RDF data. The first section summarizes how load balancing solutions
have evolved over the time and what are existing solutions to fix load im-
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balances with RDF data but not only. Then, we describe our solution by
explaining the different choices that are conceivable and the ones we have
opted for. As it will be explained, our approach combines standard mech-
anisms such as online statistical information recording and gossip protocols
for exchanging load information. In a last section we discuss the results
obtained for the empirical evaluations we have made with real data.

• Chapter 6 gives an overview of the EventCloud middleware, which is the
middleware developed within the context of this thesis. The purpose of
this chapter is to give an overview of the system from an architectural and
implementation point of view. In a first step, we highlight the different
components that make up the system. Then, we summarize the different
features and show how flexible and modular the middleware is since it has
been built with clear separations between the basic subcomponents of the
whole API. In particular we see how modularity plays a significant role in
our proposed architecture and what kind of advantages it brings regarding
the components which form our infrastructure. Then, we focus on some
implementation details we have faced up to and addressed to make the system
efficient and responsive.

• Chapter 7 concludes the thesis. It reviews the contributions and presents
some research and development perspectives that may raise from this thesis.

Finally, regarding the contributions made within the context of this thesis we
can also notice that the EventCloud middeware has been tested and validated
with the different scenarios created in the PLAY project [5, 6, 7, 8, 9, 10, 11].
Besides, the EventCloud middleware has also been used and evaluated in other
contexts. For example by providing building blocks to distribute Complex Event
Processing (CEP) engines that aim to correlate multiple real-time events and past
events [12]. Another application relates to lazy data transfers where events embed
large attachments that do not need to transit through the event service. Only event
descriptions are conveyed to the EventCloud before being disseminated to inter-
ested parties. The attachments are transfered in a lazy and transparent manner
by enabling direct publisher to subscriber data exchange [13].
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In this chapter we introduce and give an overview of the main concepts and
technologies we refer to throughout this thesis. First we present the Peer-to-Peer
paradigm. Then, we focus on the Publish/Subscribe communication style before
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entering into the details of the Semantic Web movement and discuss the main
benefits of using semantic. Finally, we detail the ProActive middleware, which is
the main technology used for implementing the architecture and the algorithms
introduced in the next chapters.

2.1 The Peer-to-Peer Paradigm

P2P systems have generated tremendous interest the last 15 years and are now
recognized as a key communication model to build large scale distributed appli-
cations [14]. This model differs from the traditional client/server approach where
client nodes request resources provided by a central server. With the P2P model,
all the machines or nodes (also called peers) play the same role. Each peer acts
both as a client and server. It can share its resources with other peers and make use
of those provided by some others. The resources are sources or supplies from which
benefits are produced. They can be of different types such as data, URLs, files,
disk storage, bandwidth, CPU cycles, etc. Moreover, since all nodes are suppliers,
the overall aggregated system capacity is increased compared to a client/server
model.

2.1.1 P2P overlays

In a P2P network the nodes are self-organized into an overlay network that runs
atop a physical network topology. The virtual topology of overlay networks allows
to build and deploy distributed services without having to modify the IP protocols.
In addition, unlike the client/server model, the peers communicate with each other
without any centralized coordination. As a result, the full decentralization of P2P
overlays makes them, generally, scale with respect to the number of nodes in
the network. This scalability property is one of the most prominent features of
P2P systems and explains the attractiveness of the model along with its built-in
fault tolerance, replication and load balancing properties to adapt to the arrival,
departure and failure of peers.

P2P overlays are usually classified into three main categories: unstructured,
structured and hierarchical; based on the topology construction techniques. Fig-
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ure 2.1 gives an overview of the three main type of overlays we introduce in the
following subsections.

Unstructured overlays

Unstructured P2P systems belong to the first generation of P2P overlays that ap-
peared with the P2P model. They are characterized by the absence of constraints
regarding data placement and links establishment between peers. The resources
are indexed on peers at random and peers connect to each other in an arbitrary
manner. This lack of organization and structure implies to flood the whole net-
work or to use heuristics to lookup a resource, thus leading to scalability issues or
no solution for unpopular resources. On the other hand unstructured overlays are
very resilient to peers arrival and departure (phenomenon known as churn) and
that may explain their success in some domains like file sharing and streaming.

To summarize, unstructured P2P systems are often really simple to set up
and implement but provide limited guarantees, not to say no guarantee, on search
operations. Systems based on this type of overlay are numerous [15, 16, 17, 18].
Gnutella [15] is one of the first unstructured P2P network that has brought out
the problem of plenty of communication between peers. For example, in its version
0.4, the volume of data that relates to the protocol was as important as the one
generated by information exchanged as requested by end users [19].

Structured overlays

The drawbacks of unstructured P2P overlays have been intensively studied and
these efforts gave birth in 2001, with CAN [20], Chord [21] and Pastry [22], to
a new type of overlay called Structured Overlay Network (SON). SONs strive to
solve the issues that occur with their unstructured opposite by providing an upper
bound limit on the number of messages required to find a resource in the network.
This is made possible by organizing the peers in well known geometrical topologies
(hyper-cube, ring, tree, etc.) that provide interesting mathematical properties. In
return, structured overlays incur a small overhead to maintain a consistent view
of the geometrical structure among peers under churn. However, this cost is most
of the time negligible with regards to the benefits they supply.
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Usually, structured P2P protocols are provided with a standard abstraction
called Distributed Hash Table (DHT) that offers a simple API similar to hash
tables. It consists of two main primitives put(key, value) and get(key) that allow
respectively to store and fetch data by key. The first generation of DHTs makes use
of consistent hashing to map a key to a value and the resulting binding to a node.
Briefly speaking, consistent hashing ensures that only a fraction of keys have to
be remapped to nodes when some are joining and leaving the system. Moreover it
eliminates the occurrence of hot spots and prevent nodes from becoming swamped
by balancing the load between peers uniformly with high probability [23]. From
an architectural point of view, each peer is assigned a part of a global space
identifier like a circle and is responsible for all the keys that fall in its range.
Then, consistent hash functions such as MD5 or SHA1 are used to associate a key
to a value. Despite to the fact that the DHT abstraction is really well suited for
manipulating key/value pairs, it supports only exact matching and not complex
queries such as conjunctives and range queries. Some research efforts have been
made in this way [24, 25] but it remains an ongoing area of research depending of
the consistency, the availability, the data model but also the use case the considered
system must deal with.

Hierarchical overlays

With their success, the design of distributed systems tends to grow in terms of
complexity and requires more intelligence and processing in routing. Hierarchical
or hybrid overlays try to fill this lack by exploiting the properties of multiple
structured and/or unstructured P2P overlays. The topology consists of several
nodes from two or more type of overlays that are organized into groups and groups
are interconnected to form a connected graph. Each group depicts a layer that has
its own purpose and applies its own routing mechanisms.

P2P systems that are mentioned as hybrid overlays or that refer to super peers
may be seen as a particular case of hierarchical overlays with two groups. For
example in the file sharing context, one upper level group acts as an index to
locate available resources. Then, resources are exchanged by contacting peers
from the second lower group that effectively contain the resources. Examples of
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hierarchical overlays are described in [26, 27, 28, 29].

(a) Unstructured over-
lay.

(b) Structured overlay. (c) Hierarchical overlay.

Figure 2.1 – Taxonomy of Peer-to-Peer overlays.

2.1.2 Applications

The P2P communication paradigm we introduced is nowadays harnessed by many
distributed applications in several domains. It is mainly used as a building block
to find, store and transfer or exchange information in a more or less safe manner.
Hereafter, we review some of the main fields of usage.

File sharing

P2P file sharing allows end-users to access any kind of media files. In this context,
the peers are end-user computers that are interconnected via Internet. File sharing
has been initially popularized with applications such as Napster [30], Bittorent [18],
Kazaa [31] and still remains popular and widely used even with the advent of
alternative solutions such as streaming, direct download, etc.

Communication and collaboration

Some years ago emails and Internet Relay Chat (IRC) were the most prominent so-
lutions to communicate with others in an asynchronous or live interactive manner.



12 CHAPTER 2. BACKGROUND

Today, Voice over IP (VoIP), instant messaging and video chat are supplement-
ing emails and IRC interactions in both enterprise and home networks. Skype1

is an application that provides these services on top of an hybrid P2P overlay.
Even though its internal architecture has changed a bit recently2, it still remains
a P2P network. Thus, many of the 300 millions connected Skype users leverage,
unwittingly, the P2P model.

Distributed Computing

Although file sharing is the most well known usage of P2P systems underlined by
the medias, especially for copyright infringements, P2P is also a prevalent model for
distributed computing. In this field we can distinguish Volunteer Computing (VC)
and Cloud Computing (CC). The idea of VC is to give the possibility to any user
who disposes of machines and an Internet connection to contribute to projects that
require a lot of computing power by donating their unused resources like CPU and
storage. The process is really simple and consists of installing an application that
turns the hosted computer into a peer that interacts with others based on a P2P
model. Many initiatives have emerged the last years based on this VC model.
Examples are SETI@home [32], Einstein@home [33] or even Bitcoin [34].

On the other side there is CC where resources are made available with some
Quality of Services by cloud providers in exchange for money. Resources are avail-
able on-demand. To achieve efficient scalability, cloud platforms such as Amazon
EC2, Google Compute Engine or Windows Azure most probably rely on fully
decentralized infrastructures similar to P2P systems.

Distributed Storage

Key/Value stores are new systems that are part of the emerging Not only SQL
(NoSQL) movement. This class of databases was initially introduced as a shift
from traditional SQL databases to enhance read and write performances by pro-
viding less guarantees (i.e. not full ACID properties) and simpler query languages.
Key/Values datastores are now used by famous companies to store billion of keys

1http://www.skype.com
2http://goo.gl/dSZu1b

http://www.skype.com
http://goo.gl/dSZu1b
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and terabytes of values in a scalable manner. The underlying structure that is
used to scale and achieve these performances in a decentralized environment is a
DHT that leverages the P2P model. NoSQL systems are numerous. The most
popular are probably Cassandra [35], Dynamo [36] and MongoDB [37]. All are
providing good performances but weak consistency. Recently some systems like
CATS [38] provide affordable strong consistency and will probably strengthen the
NoSQL movement for domains like banking applications where strong consistency
is critical.

2.2 Semantic Web

The World Wide Web (WWW) has become an inexhaustible source of information,
that grows at an incredible pace and is available to all at any time. This is a fact.
However, the WWW as defined at its early stages has several drawbacks. A major
issue originates from documents representation that focuses, mainly, on human-
readable contents. The information is represented by using markup languages
whose the main purpose is to make web documents pleasant to read and navigate
to users. Although these documents may contain interesting knowledges, their
underlying representation makes information processing to machines really arduous
and challenging.

The side effect of this problem is observed when users want for example to
perform a search on a specific subject. Search engines crawl Web documents
and index information based on keywords. Consequently, they deliver interesting
results with pertinent content but mixed up with a lot of irrelevant information. In
other words the results returned match the words entered by the users to perform
a search but often the context is not captured and a concise answer cannot be
deduced. Tim Bernes-Lee assessed the situation and expressed in 1998 the concept
of Semantic Web before it defines his vision in [39] as follows:

“The Semantic Web is not a separate Web but an extension of the
current one, in which information is given well-defined meaning, better
enabling computers and people to work in cooperation.”

The aims that the Semantic Web tries to achieve is really well captured by
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the Figure 2.2. On the left is what browsers see when a simple Web document is
interpreted by a machine and on the right is what humans observe. One target
of Semantic Web is to fill the gap there is between what machines and humans
perceive.

A concrete outcome of increasingly using machine processable formats is that
now search engines can provide incredible answers to some natural questions in a
concise and relevant manner. Examples are Ask Jeeves3, the Google Knowledge
Graph4, or even Wolfram Alpha5. When you submit a question like “Who was the
third president of the USA?”, these online services do not only return a list of ad-
dresses related to some of the keywords contained in the question but instead, they
rely on existing facts extracted and combined from different structured documents
to deduce a direct answer along with relevant statements.

Figure 2.2 – Presentation vs Semantics (taken from [40]).

However, realizing the vision brought by Berners-Lee is not just a matter of
using a common structured representation. It requires a full technology stack,
referred as the Semantic Web stack to handle different aspects. As depicted by
Figure 2.3, it involves several concepts and abstractions whose most are standards
and guidelines formulated by the W3C. They are organized in a hierarchical
manner and each layer exploits the features and extends the capabilities of the
layers below.

3http://ask.com
4http://google.com
5http://wolframalpha.com

http://ask.com
http://google.com
http://wolframalpha.com
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The bottom layer refers to well known Web technologies that are Internation-
alized Resource Identifier (IRI) (a generalization of URI that allows Unicode char-
acters) and Unicode for interlinking, encoding and manipulating text, documents
or more generally resources. At the middle, we find standardized technologies like
RDF to model information in a machine-processable and machine-understandable
manner, SPARQL to retrieve and manipulate data stored in RDF, RDFS that
provides basic elements to organize data by sharing vocabularies but also RIF and
OWL that enable reasoning over data through rules. Finally, on the top are not
yet realized semantic web technologies that relate to logic, trust and thus security
aspects.

In the following subsections we will enter into the detail of some technologies,
concepts and abstractions we consider important for the remaining of this thesis.
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Figure 2.3 – Semantic web stack (originally drawn by Benjamin Nowack).

2.2.1 RDF data model

RDF [41] is a data model standardized by the W3C that aims to encode structured
information. It allows to break down any knowledge into independent statements
known as triples. A RDF triple is a 3-tuple whose components are respectively
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named subject, predicate and object. The subject of a triple denotes the resource
the statement is about, the predicate refers to the property of the subject, and the
object presents the value of the property.

RDF distinguishes different building blocks as presented below:

• IRIs are a complement of URIs that conforms to the syntax defined in RFC
3987 and allows to use Unicode characters. They preserve all the benefits
from URIs and thus remain global unique identifiers of resources available
on the Web (e.g. http://www.w3.org/standards/semanticweb). The main
advantage of using IRIs and thus URIs with a resource lies in the fact that
anyone can “link to it, refer to it, or retrieve a representation of it” [42].
Consequently, they allow to reason about relationships and ease the integra-
tion of distributed information. IRIs are allowed with subjects, predicates
and/or objects components of a triple.

• Literals are a convenient and intuitive alternative to IRIs for identifying val-
ues such as strings, numbers and dates. Literals may be plain or typed. Plain
literals are Unicode strings that are combined with an optional language tag
to identify the original tong (e.g. "привет"@ru ) while typed literals consist
of a Unicode string with a datatype URI that determines how the lexical
form maps to a literal value (e.g. "7"^^xs:integer ). Literal values could
for example be used to relate objects to their names. Note that literals can
only occur as a triple’s object.

• Blank nodes also dubbed bnodes are anonymous resources whose name or
identifier is not known or not specified (i.e. no associated URI exists). They
may be described as existential variables “simply indicating the existence of a
thing, without using, or saying anything about, the name of that thing” [43].
The scope of blank nodes is local to an RDF document. A bnode identifier
used in two separate RDF documents can refer to two different things. Blank
nodes may be the subject or the object of a triple.

http://www.w3.org/standards/semanticweb
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Representation

As mentioned previously, RDF is an abstract model that provides a general method
to decompose knowledge into triples and to put them in relation with each other
through IRIs. An interesting property that stems from this model, and that re-
inforces its flexibility, is that triples may be represented into multiple equivalent
forms. For example, if we consider the need to describe a book in RDF, a possible
manner to model it is the one introduced in Listing 2.1 that rests on a simple repre-
sentation in the form of a 3-tuples set. First, it describes the book title by referring
to the book through its International Standard Book Number (ISBN) URI. Then,
more information is added such as the publication date, the publisher name, the
publication generic type, but also statements about the book author (i.e. creator)
by the intermediate of a blank node used to group creator sub-properties. At this
stage we can see that, both, the ISBN and creator elements are shared between
multiple triples. This connection between triples lets suppose another possible
manner to represent RDF information which is a labeled directed connected graph
where nodes are the subjects or the objects of the triples, while edges refer to the
predicates of the RDF statements. As depicted by Figure 2.4, this visual repre-
sentation is a clear explanation of the relationship between RDF building blocks.
Note that edges are always oriented from the subjects to the objects elements of
triples.

(urn:isbn :0201038013 , dc:title , "The Art of Computer Programming ")
(urn:isbn :0201038013 , dc:publisher , "Addison - Wesley ")
(urn:isbn :0201038013 , dc:creator , _: bnode72 )
(urn:isbn :0201038013 , rdf:type , dc: BibliographicResource )
(_:bnode72 , foaf:firstName , " Donald ")
(_:bnode72 , foaf:familyName , "Knuth ")
(_:bnode72 , foaf:homepage , http :// www -cs - faculty . stanford .edu /~ uno)
(_:bnode72 , foaf: pastProject , urn:isbn :0201038013)

Listing 2.1 – Book description modeled in RDF as a simple set of triples.

Both representations are abstracts but concrete syntaxes are required to ma-
nipulate and exchange triples in real applications. RDF comes will several syntaxes
such as Notation3, N-Triples, RDF/XML, etc. Each syntax brings its advantages
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and drawbacks. The main differences between them lies in the fact that some are
more expressive than others. This may be due to the representation format such
as XML that involves naming elements and attributes, but also by the fact that
some syntaxes provide a methodology to aggregate redundant information (e.g.
namespaces) while others do not.

Named graphs

Carroll et al. [44] bring out in 2005 the need to provide a mechanism for talking
about RDF graphs and relations between graphs. For that, they proposed to
extend the RDF semantic and existing syntaxes with the concept of named graphs.
Concretely, named graphs provide an extra degree of liberty by extending the
notion of triples to quadruples (4-tuples). The extra piece of information that is
added, named context or graph value, is an IRI or Blank node placed at the head
of each triple and can be used to achieve different purposes. Features that have
been suggested are for example the ability to track the provenance of RDF data, to
sign RDF graphs or even to provide versioning by capturing snapshots of multiple
RDF sources.

Although named graphs are not supported in the current RDF specification
since the concept has been proposed after its publication, datastore implemen-
tations and query languages such as SPARQL already support and make use of
named graphs. In this thesis we consider quadruples, especially to fit the require-
ments we have regarding the publish/subscribe layer we propose in Chapter 4.
However, it is worth to notice that triples could be associated to a default graph
and thus behave as quadruples. Reciprocally, a quadruple could be transformed
into a triple. It is just a matter of removing one element.

2.2.2 SPARQL query language

Since the writing and publication of the first RDF draft and then the specification,
a lot of solutions have been proposed to query RDF knowledges in an efficient and
expressive manner. It includes RQL [45], SeRQL [46] and SquishQL [47]. This
fragmentation in terms of solutions to query RDF databases called out the Se-
mantic Web community that established with the W3C, a group working towards
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a common language taking advantage of the various existing solutions. This real-
ization is called SPARQL Protocol and RDF Query Language (SPARQL).

SPARQL is now a W3C recommendation [48] that plays a very important role
in the Semantic Web community. Its foundations are based on the concept of Basic
Graph Patterns (BGPs). A BGP is a sequence (conjunction) of triple patterns
where each triple pattern is a triple that may contain variables for retrieving
unknown values, linking a triple pattern with others, or both. Two triple patterns
are linked if they share the same variable. In that case, a join is performed on this
variable for values found with each independent triple pattern.

BGPs allow to extract subsets of related nodes in an RDF graph. For example,
if we assume there exists a graph database with book definitions modeled as the
one introduced in Figure 2.4, then we can retrieve author names of all bibliographic
resources by using the SPARQL query presented in Listing 2.2. It consists of one
BGP with three triple patterns where the dot character imposes a join between
triple patterns that share common variables or the cartesian product6 between
independent triple patterns. Similarly to RDF with the notion of triple that is
extended to quadruples with the support of named graphs, triple patterns can be
extended to quadruple patterns. In this context, we can say that the query from
Listing 2.2 contains three quadruple patterns that share the same graph element
(e.g. a default graph value).

1 PREFIX dc: <http :// purl.org/dc/terms/>
2 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
3 SELECT ? authorName WHERE {
4 GRAPH <default > {
5 ?isbn dc:type dc: BibliographicResource .
6 ?isbn dc: creator ? creator .
7 ? creator foaf: familyName ? authorName
8 }
9 }

Listing 2.2 – SPARQL query example for retrieving author names of biblio-
graphic resources modeled in RDF.

6Assuming two sets A = {x, y, z} and B = {1, 2, 3}, the cartesian product A ×B is the set of
all ordered pairs (a, b) where a ∈ A and b ∈ B.
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SPARQL reuses some keywords from SQL such as SELECT, FROM, WHERE,
UNION, GROUP BY, HAVING. It also allows for solution modifiers like DIS-
TINCT, ORDER BY, LIMIT and OFFSET that mimic the semantic of those
from SQL. However, a main SPARQL characteristic lies in the type of queries
supported. SPARQL supports four kinds of queries. ASK queries return a simple
boolean to indicate whether a solution exists or not. CONSTRUCT queries cre-
ate and return RDF graphs in the same manner XQuery [49] builds and returns
XML trees. DESCRIBE queries return an RDF graph that describes the resources
found. The structure of this graph is not defined in the SPARQL specification and
results often differ from an implementation to another. Finally, SELECT queries
return a set of variables and their solution in the form of result sets similarly to
relational databases. Other characteristics are BGPs building blocks that can be
combined with UNIONS, extended with OPTIONALs keywords, and drained with
FILTERs that allow to refine results with inequalities or regular expressions.

2.3 The Publish/Subscribe Paradigm

Publish/Subscribe (Pub/Sub) is a messaging pattern that allows users or client
applications called subscribers to be kept informed efficiently and gradually about
information they are interested in. Unlike one-time or synchronous queries where
users formulate meaningful inquiries about their concern and wait for an answer,
publish/subscribe systems assume that users register their needs through sub-
scriptions also dubbed continuous queries [50]. As the name suggests, continuous
queries are resolved as soon as incoming information or events match subscribers’
interests. Here, events act as a means of communication and can be seen as ac-
tions or occurrences of something that happened and may point out for example
a change or an update in the state of one or more components. Once events
are generated, they are published to an event service in charge of performing the
matching between the publications and the subscriptions that have been registered.
Then, when an event satisfies a subscription that has been previously registered,
a notification that reifies the matched event is triggered to the subscriber.
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2.3.1 Interaction model

The traditional workflow of interactions between the different entities that are usu-
ally involved in a publish/subscribe system is depicted by the Figure 2.5. To sum-
marize publish/subscribe systems are constituted of publishers, subscribers and an
event notification service composed of one or more brokers that form a brokering
network in charge of mediating events between publishers and subscribers. In this
type of systems flow of interactions are unidirectional and asynchronous. They go
from subscribers to the event service in order to register subscriptions with the
subscribe primitive and in two steps from publishers to subscribers through the
event service with respectively the publish and notify primitives. As illustrated by
the Figure 2.5, publications produced by publishers are not necessarily forwarded
to a subscriber. Indeed, both subscribers may care about different things and the
event service may decide to discard some notifications. For instance, Subscriber
1 is receiving a notification because the published event is satisfying its interests.
However, Subscriber 2 does not receive any notification since the subscription reg-
istered in the event service is not satisfied by the event coming from the publisher.

Publisher Event service

Subscriber 1

Subscriber 2

publish
noti

fy

subscr
ibe

subscribe

Figure 2.5 – Publish/Subscribe interactions.

Some publish/subscribe systems also rely on an additional primitive dubbed
advertise to publish advertisements. Advertisements are used to inform the system
about the kind of information publishers are willing to send. Their aim is to reduce
the overall information flow and thus to save time and effort in disseminating
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events. However, the use of advertisements is beneficial when publishers exhibit
stable publishing patterns only.

2.3.2 Characteristics

The last years publish/subscribe systems have demonstrated their flexibility, mod-
ularity and responsiveness by being used with success in a broad set of application
scenarios that ranges from information dissemination, network monitoring, ubiqui-
tous systems or even mobile systems. The main characteristic behind the strength
of the publish/subscribe communication style lies in its decoupling in terms of
space, time and synchronization between publishers and subscribers.

• Space decoupling refers to references, i.e. the identity and the location
of subscribers is not known by the publishers and reciprocally publishers do
not hold any reference to subscribers. They are mutually unaware of each
others. This is made possible by means of the event service that acts as a
mediator. The space decoupling characteristic is very interesting in highly
dynamic environments where participants are frequently leaving or joining
the system.

• Time decoupling refers to the eventuality that publishers publish events
even though no subscriber is present, or reciprocally, subscribers register
a continuous-query when no publisher is contributing. In this way, if an
unexpected outage occurs for instance on one or more publishers, subscribers
are not strictly affected since they can still receive event notifications by
means of the event service.

• Synchronization decoupling refers to the process of triggering a publish
or subscribe operation without waiting for an acknowledgment or a response.
Communications are asynchronous. This is really analogous to how people
proceed when they exchange by mails. Once an email is sent we don’t expect
to receive an answer immediately and we don’t even know whether a reply
will come back or not later. The transmission is said one-way. In that case,
we can start to do some other work while the message is in transit. In pub-
lish/subscribe, the behavior is the same. Publish and subscribe operations
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executed by clients return immediately, thus the clients can continue their
standard flow of execution even if the operation is not yet completely han-
dled by the event service. Consequently, a strong benefit is that operations
can implicitly overlap and thus increase parallelism.

The main advantage that lies in the fact that entities are loosely coupled is
also the major drawback of publish/subscribe systems. The mediation layer might,
under unexpected events such as power failure, network partition, etc. not trigger
notifications and when this situation occurs there is no way to know whether the
delivery has succeeded or failed. In that case, tighter coupling or strong guarantees
on the event service by providing for example replication is required.

2.3.3 Filtering mechanisms

Publish/Subscribe systems introduced the last two decades differ from an user
point of view by the expressivity of the subscription language and consequently
the filtering mechanisms that are employed for selecting events to forward and
deliver. According to this aspect, we review hereafter the main event-based filtering
mechanisms.

Channels-based filtering

The first and concrete representation of the publish/subscribe paradigm is based
on the concept of channels [51] where events are produced and forwarded to named
channels. Then, interested parties may consume all events crossing over a partic-
ular channel by pointing it with its name similar to a keyword. This scheme is the
one implemented by many forerunner systems.

Topic-based filtering

Topic/subject based filtering can be seen as an extension of the simple channel
approach. In the subject-based model, publishers annotate every event they gen-
erate with a string denoting a distinct topic. Generally, this string is expressed
as a rooted path, similar to an URI, in a tree of subjects [52]. For instance, an
online research literature database application (such as IEEE Xplore or Springer
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Archives) could publish events of newly available articles from the Semantic Web
research area under the topic /Articles/Computer Science/Proceedings/Web/Se-
mantic Web/. This kind of topic will then be used by subscribers which will, upon
subscription’s generation, explicitly specify the topic they are interested in with
optionally a wildcard to perform pattern matching on subject names. Based on
this subscription they will receive all related events. The topic-based model is
at the core of several systems such as Scribe [53] and Vitis [54]. A main limita-
tion of this model lies in the fact that a subscriber could be interested only in a
subset of events associated to a given topic instead of all events. In other words,
the tree-based classification severely constrains the expressiveness of the model
as it restricts events to be organized using a single path in the tree. Some inner
re-organizations are possible. A solution could consist of associating an event to
several hierarchical topics but it will lead to several issues that range from duplicate
publications and notifications to a growing number of information to exchange.

Content-based filtering

Content-based filtering provides a fine-grained approach that allows the evaluation
of filters on the whole content of the events that are published. In other words,
it is the data model and the applied predicates that exclusively determine the
expressiveness of the filters. Subscribers may express their interests by specifying
predicates over content of events they want to receive. These constraints can be
more or less complex depending on the subscriptions types and operators that
are offered by the subscription language. Available subscription predicates range
from simple comparisons, conjunctions, disjunctions to regular expressions or even
XPath expressions on XML events. Content-based filtering is now the most gen-
eral scheme supported by recent and famous publish/subscribe systems such as
Hermes [55] or JEDI [56].

Type-based filtering

On the one hand topics tends to regroup events that present similar properties
in terms of content or in structure. However, this classification is not mandatory
and may be made based on predefined external criteria. On the other hand,
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with content-based filtering events are classified based on the content of events.
Consequently, to achieve the same functionality as that of topic based systems,
subscribers have to filter out irrelevant events. Type-based filtering has been
proposed to sweep away inappropriate events according to their type [57]. The
idea is to enforce a natural and inherent subscription scheme that avoids to classify
events explicitly through topics with the implicit desire to complement content-
based filtering by acting as an efficient colander to prefilter events.

2.4 ProActive Middleware

ProActive is a Java middleware, historically introduced in [58], that provides the
programming and runtime facilities to build and deploy parallel, distributed and
concurrent applications. It is built on top of standard Java APIs, namely the
RMI and introspection API. Consequently, ProActive applications can run on any
operating system that disposes of a compatible virtual machine.

Today, ProActive became a mature middleware that comes with multiple built-
in features. Figure 2.6 summarizes the main aspects the library can deal with. The
top level layer brings out the different programming models it supports (Branch &
Bound, Components, Groups, and Master-Slave). These programming models are
built upon the concept of objects that are said active because they dispose of their
own thread of control. With active objects every method invocation is handled by
the object’s thread of control. More details regarding the active object model are
given in the next subsection.

The middle layer summarizes the various services the ProActive middleware
features. It includes a fault tolerance mechanism based on a checkpointing proto-
col [59], a method to wrap legacy code in order to control and interact for instance
with MPI applications [60], but also the capability to migrate active objects [61],
a security framework for communications between remote active objects [62], and
many more.

At the bottom layer, we find infrastructure and communication related features.
It contains a deployment framework that allows to deploy active objects on mul-
tiple different infrastructures without changes in the application source code [63],
a resource/scheduler manager for dynamic provisioning and scheduling of ProAc-
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tive applications in cloud environments [64], and a graphical environment which
enables programmers to interactively control and debug the distribution aspect
of ProActive applications [65]. Furthermore, the library allows active objects to
communicate remotely by using several network protocols such as RMI, HTTP,
or even custom ones according to required speed, security, error detection, firewall
or NAT friendness properties. It is also possible to export active objects as Web
services and to invoke methods with the standard SOAP protocol.

Branch & Bound Components Groups Master-Slave

Active Objects

Programming
Models

Code Wrapping Distributed GC Fault Tolerance

Load Balancing Mobility Security

Middleware
Services

Deployment Monitoring Resource Manager & Scheduler

Network Protocols Web Services

Infrastructure
and

Communication

Figure 2.6 – ProActive middleware features.

Below, we review some important notions about ProActive that are extensively
used for implementing the middleware developed within this thesis.

2.4.1 Active objects

The main features of the library are based on the active object model. Active
Objects (AOs) are medium grained entities whose method invocation is decoupled
from method execution with the help of the Meta Object Protocol (MOP) pattern.
That way, developers concentrate only on the business logic of applications they
develop since the distribution of active objects is transparent. Indeed, invoking
methods on remote active objects is similar to invoking a method on a standard
Java object by using the dot notation. Neither additional piece of code to establish
connections between remote entities nor specific class to extend or interface to
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implement, like with RMI, is required.
Figure 2.7 depicts the meta object architecture for a typical active object. On

one hand there is the active object instance that is built over an existing Java
object MyObject by extending it transparently at runtime with a Body object
that acts as an intermediate to hide network communications from a user point
of view. The Body relies on different feature meta objects to receive method calls
(also named requests once received by the Body), to execute requests, to send
optionally a reply to the caller, but also some others to handle migration, fault
tolerance, etc. On the other hand, an active object is always indirectly referenced
through a proxy and a stub which is in our case a subtype of the object MyObject
which is either pre-compiled or generated at runtime.

MyObjectStub

Proxy Network Body

Request
receiver

Request
queue Request

executor

Service
thread

...Reply
sender

MyObject

meta level

base level

Figure 2.7 – Meta object architecture.

When a user performs an invocation to the active object, this is in fact an
invocation on the stub object MyObjectStub. The stub is in charge to create a
reified representation of the invocation by building an object representation of the
method call along with its parameters before passing it to the proxy. Then, the
proxy transfers the reified invocation (i.e. the method call object) as a message to
the request receiver of the Body object, possibly through the network. Afterwards,
the method call is queued in a request queue. Later, one request is picked from the
request queue by the request executor according to a desired serving policy. Notice
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that with the standard active object model only one request can be executed at
once and the default policy is First In, First Out. As a consequence, data races are
prevented without using synchronized blocks. Finally, if a response is associated
to the method call that has been executed, it is returned to the caller by means of
the reply sender.

Semantic of communications

Seeing that all communications made with ProActive are through method invo-
cations, the communication’s semantics depends upon the method’s signature.
Unfortunately, the resulting invocations may not always be asynchronous. This
constraint is caused by the MOP pattern that has some limitations related to the
serialization of parameters and invocation results. Consequently, two communica-
tion idioms regarding invocations are distinguished:

• Synchronous invocations
With a synchronous method call, the caller thread is blocked until the method
completes its execution and optionally returns a result. In ProActive, a
method invocation is synchronous if the considered active object method’s
signature declares to return a non reifiable object or to throw an exception.
An object is reifiable if its associated class is declared not final, serializable
and embeds a public constructor. Primitive data type values (i.e. boolean,
char, int, etc.) are not reifiable.

• Asynchronous invocations
Unlike synchronous invocations, asynchronous method calls allow the invoker
to continue its standard flow of execution even if the method has not com-
pleted. Since ProActive introduces futures as placeholders for results, two
subtypes of asynchronous invocations are distinguished:

– One-way asynchronous invocation
If the method does not throw any exception and does not return any
result, the invocation is one-way. The invocation is asynchronous and
the process flow of the caller continues once the reified invocation has
been received by the active object.
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– Asynchronous invocation with futures
Methods that do not thrown any exception and declare a reifiable type
as result have their invocations implicitly handled with futures. In the
same way that one-way asynchronous calls, asynchronous invocations
with futures incur a short rendez-vous at the beginning of each asyn-
chronous remote call, which blocks the caller until the call has reached
the context of the callee, in order to ensure a causal dependency. How-
ever, futures allow the process flow of the invoker to continue once the
reified invocation has been received by the active object, this even if a
result is expected. The synchronization is data based and handled by a
mechanism known as wait-by-necessity [66]. In other words, when the
caller tries to access a future, the caller thread is blocked until to re-
ceive the associated value. Since the caller thread is in a waiting state,
it cannot continue with the service of the next request.
A future may be passed as parameter of a method call, even if it is
not yet resolved. Thus, nesting method calls that return futures does
not trigger a wait-by-necessity. Once a future is used all disseminated
references are updated by means of a mechanism called automatic con-
tinuations [67].

Even though active objects are mono-threaded, which avoids data races with-
out the use of synchronized blocks, users must care about deadlocks. Consider a
simple scenario with a peer that routes a request with message passing emulated
on top of remote method invocations. In that case, when the request passes again
through the sender, with a re-entrant call, a deadlock may occur if the peer is
already waiting on itself for a response. A solution to address this issue consists
in modifying the application logic but it is often difficult to program and it incurs
several drawbacks. Another alternative is to rely on Immediate Services (ISs)7.
However, methods declared as IS are handled in their own thread but in a syn-
chronous manner regarding the caller, whatever the method signature. Moreover,
even if parallelism is improved, users must be careful about part of code to syn-
chronize explicitly with locks to prevent race conditions. Last but not least, futures

7http://goo.gl/m2oIbn

http://goo.gl/m2oIbn
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are no longer usable and their benefit is lost.
Multi-active objects have been proposed recently as an elegant manner to ad-

dress this issue and enhance efficiency on multicore machines. This extension is
introduced in the next subsection.

2.4.2 Multi-active objects

The Multi-Active Object (MAO) model [68] is an extension that overcomes the
limitations of the founding model, that is handling requests sequentially, by allow-
ing method calls to be multithreaded. Its concept relies on method annotations
to decide which requests can be run in parallel with others through the definition
of compatibility groups.

Groups are declared with the @Group annotation and the assignation of meth-
ods to groups is done with the help of the @MemberOf annotation. Compatibilities
are defined between two groups through the @Compatible annotation. The idea
behind compatibilities is that two groups that are compatibles may have their
methods executed simultaneously. By default, groups whose compatibility is not
set are assumed conflicting with others and thus incompatible. Usually, two groups
have to be set compatible if their methods do not access the same data or if the
scheduling order and the concurrent accesses on the same resource are protected
by the programmer by means of locks or synchronized blocks.

Listing 2.3 gives an illustrative example on how to define multi-active groups
and compatibilities for a peer class exposing four methods, each having different
purposes. Methods leave and join belong to a structure group and are used to man-
age the overlay structure. Declaring these methods compatible would imply that
the programmer implicitly synchronizes the accesses to the common resources since
both require an exclusive access. In the same manner, joining nodes and routing
at the same time from a same peer is not recommended. Owing to the conflicting
nature of these operations, no compatibility is set. However, routing and retrieving
monitoring information are two concepts that access disjoint resources and can be
handled in parallel in the same peer. This is why a compatible annotation entry
is declared. In addition, an optional selfCompatible attribute parameter can be
specified with the definition of a group to indicate whether requests from a same
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group can be executed concurrently or not. In the example which has been intro-
duced, monitoring and routing groups are declared compatible and self compatible
given that associated methods should only read variable values.

1 @DefineGroups ({
2 @Group (name = " structure ", selfCompatible = false ),
3 @Group (name = " routing ", selfCompatible = true),
4 @Group (name = " monitoring ", selfCompatible = true )})
5 @DefineRules ({
6 @Compatible ({" routing ", " monitoring "})})
7 public class PeerImpl {
8 @MemberOf (" structure ")
9 public JoinResponse join(Peer landmarkPeer ) { ... }

10

11 @MemberOf (" structure ")
12 public void leave () { ... }
13

14 @MemberOf (" routing ")
15 public Response execute (Query query) { ... }
16

17 @MemberOf (" monitoring ")
18 public LoadInformation getLoad () { ... }
19 }

Listing 2.3 – Groups and compatibility definition using multi-active objects an-
notations for a class that embodies a peer instantiated as an active object.

Furthermore, multi-active objects provide a mean to decide about compatibility
at runtime. To do so, programmers can indicate an expression or a compatibility
function to evaluate with the help of a condition parameter to add along with the
@Compatible and/or @Group annotation. In that case an optional group parameter
is also required for the groups that are involved since the compatibility between
two requests is decided as a function depending on three parameters: the group
parameter of the two requests, and the status of the active object.

Concretely, if we refer to Figure 2.7, multi-active objects are implemented
by means of a new request executor that allows multiple threads to be spawned
and one or more request(s) to be picked from the request queue in order to be
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served. Briefly speaking, a request is selected, removed from the request queue
and served if it is compatible with other requests that are running and all requests
that are before it in the request queue. This default and configurable serving
policy, called First Compatible First Out, maximizes parallelism while ensuring
that two incompatible methods cannot be run in parallel.

Although multiple threads are used to enhance efficiency on multicore ma-
chines, managing too many threads can be harmful due to memory consumption
explosion or too much concurrency with regards to the number of cores available
on the machine where the active object is deployed. For this reason, the implemen-
tation of multi-active objects come also with an API to limit the maximum number
of threads used by an active object. It is possible to set either a strict limit on the
maximum number of threads to be used, or to limit only the maximum number of
threads that are active and running but not those that are in a waiting state (e.g.
the threads that are waiting for a future). The former thread management policy
is called hard limit and may obviously lead to deadlocks whereas the latter called
soft limit prevent deadlocks with re-entrant method calls.

The multi-active objects library is at the heart of the middleware we propose
within the context of this thesis. We will see in Chapter 6 that the various param-
eters to use with multi-active objects in our implementation have been empirically
tested. Also, we will highlight some minor features we have added to the library in
order to resolve some issues that may arise when it is used in complex scenarios.

2.4.3 Components

Component oriented programming provides many facilities for the development of
complex and robust applications. The building blocks are components which are
large grain software entities or modules offering predefined services. From a user
point of view, components act as black boxes that communicate with others via
provided and required interfaces. Therefore, they can be reused and composed by
third parties without any knowledge of their internal workings.

ProActive provides an implementation of Grid Component Model (GCM) [69]
based on its active object model. GCM is an extension of the popular Fractal
component model [70]. It aims to ease the programming of distributed applica-
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tions by targeting their design, deployment, reusability and efficiency. As Fractal,
GCM/ProActive allows for hierarchical composition, separation of functional and
non-functional concerns but also considers autonomic composition [71], collective
communications [72] and deployment.

Since GCM/ProActive inherits the hierarchical property of Fractal compo-
nents, a GCM component may exhibit a recursive structure. Thus, a component
is either a composite (i.e. composed of other components) or a primitive (i.e. a
single component that encapsulates a basic functional block). Figure 2.8 depicts
a composite component with two primitive subcomponents. Provided interfaces
to be consumed by clients, also dubbed server interfaces, are represented on the
left hand side of a component box. Interfaces drawn on the right hand side depict
required interfaces, or client interfaces, that are consumed by other components
through bindings that carry messages. On the top of a component box we find
controllers that are interfaces used to externalize non-functional aspects. Their
purpose is to manage component properties and assembly (e.g. configuration, dy-
namic reconfiguration, monitoring, security, etc.) through passive Java objects
encapsulated in the membrane of a component.

The definition of components and their bindings can be made programmatically
or through Fractal ADL files in order to be independent from the implementation,
thus requiring no recompilation. It is also worth to notice that GCM enables com-
ponents to be spread over different machines in an easy and transparent manner
by means of XML descriptors.
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Figure 2.8 – Standard Fractal/GCM component.
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Distributed RDF Storage
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In this chapter we present our first contribution that relates to the implemen-
tation of a distributed RDF storage infrastructure. The infrastructure that is
described was originally proposed by Imen Filali in her thesis [73]. This chapter
starts with a brief related works section about decentralized systems for storing
and retrieving RDF data. Then, we introduce the popular CAN P2P protocol
which is the underlying P2P overlay network we rely on for routing messages and,
indirectly, for achieving scalability. Afterwards, we motivate and discuss the de-
sign choices and the adjustments we made regarding the CAN protocol before
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explaining how messages are routed with our modifications. In a penultimate sec-
tion we describe how RDF data is indexed in the P2P network and how SPARQL
queries are executed. Finally, we provide the results we got by experimenting our
solution on the Grid’5000 testbed and we conclude with a summary and some
perspectives.

3.1 Related Works

Although the Semantic Web movement is still relatively new, many research ef-
forts have already been made by companies and academies to improve how RDF
data, and especially how the underlying tuples are stored and then retrieved with
SPARQL. In this section we give an overview about different strategies and solu-
tions that have been proposed in both centralized and distributed environments.

3.1.1 Centralized RDF stores

Many different representations have been used over the last years to store RDF
data in a centralized environment. This is due to the fact that RDF is a data model
that does not impose any storage organization. In other words, it is a method to
express any fact in a structured manner but anyone can write down triples in
multiple different ways that still preserve the original information and structure.
However, it is important to notice that storage representations are strongly affected
by the SPARQL query language involved in the expression of queries. In SPARQL,
building blocks are BGPs made of triple patterns. Thus, the critical challenge
RDF engines try to achieve is the efficient resolution of BGPs. BGPs are usually
processed in two phases known as scan and join. First, BGPs are extracted from
a SPARQL query and decomposed into a set of triple patterns. Then, one or more
tables are scanned in order to extract intermediate results. Finally, since triple
patterns may share common variables, the resulting intermediate values have to be
joined on these variables to produce the final answer. In this context, the different
strategies adopted aim to reduce the time required to execute the two phases by
minimizing for instance the number of join operations to perform.

In its early stages, RDF stores were storing RDF data as a set of tuples in
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relational databases. This includes for instance 3store [74], Jena [75], Oracle RDF
Match [76], RDFSuite [77] and Sesame [78]. The main state of the art strategies
are described in [79]. They may briefly be summarized as follows:

• Tuple tables are a natural approach to store RDF data in relational databases.
The idea is to put tuples (triples or quadruples) in a 3 or 4 columns table. In
this manner, each row represents an RDF statement. However, this repre-
sentation is inefficient because queries that embed for instance k quadruple
patterns with common variables require k − 1 self-joins over this very long
table. Thus, its leads to many disk accesses as it is impossible to cache the
entire table in memory.

• Property tables is another strategy that consists of building one or more
tables according to common set of attributes that occur frequently. Thus, if
subject elements are frequently associated with a common set of predicate
properties such as rdf:type, dc:title and dc:create, then a table with the sub-
ject as a key and the other attributes as the following columns is created. As
a consequence, queries that have multiple triple or quadruple patterns that
share a same subject variable are now join free. They may be resolved with
a simple scan over a predicate table as long as all attributes of a query are
covered by a single predicate table. Nevertheless, this technique has some
drawbacks. Heterogeneous records are not supported. Thus, since not all
subjects share a common set of attributes, some entries may require NULL
values. Moreover, multi-valued attributes are problematic. Especially, if a
subject has more than one object value for a given property (e.g. a book can
be written by two people), then one or more object values are duplicated.
Additionally, a query that looks at multiple property tables may require
complex joins with intermediate results.

• Vertical partitioning entails properties’ based tables creation. One two
columns table is created for each unique property (predicate). The first
column contains the subjects of all tuples that share the table predicate
whereas the second column contains the associated object values. Unlike
property tables, vertical partitioning support multi-valued attributes and
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heterogeneous records. Besides, joins give interesting performance results
because the tables are smaller than other strategies.

Solution layered above Relational Database Management Systems (RDBMs)
have quickly thrown doubts about their scalability with regards to the increas-
ingly growing set of structured information to handle. Indeed, relational DBMs
have been designed long time ago when hardware characteristics were much differ-
ent than today and where deployment was targeting a single machine. Stonebraker
et al. argue and demonstrate in [80] that major RDBMs solutions can be outper-
formed by at least 1 or 2 orders of magnitude with specialized engines targeting
specific applications requirements. Almost at the same period, Abadi et al. [79]
showed that vertically partitioning applied on a column-store outperforms an RDF
store implementation on a row-store engine (i.e. traditional relational database),
that uses tuple tables, with a factor 32. More recently, Sidirourgos et al. [81] per-
formed an independent assessment of the results and confirmed the performance
trends. Since, many systems have been reworked to provide solutions to store
and query RDF documents more efficiently. These systems that no longer rely on
RDBMs are called native RDF stores.

The idea behind native RDF stores consists of creating custom partitioning and
indexes, from time to time similar to the strategies introduced previously with re-
lational databases. However, the main difference lies in the fact that specific low
level optimizations are possible. For example, Jena TDB [82] is a native persistent
storage engine whose indexes are implemented using conventional B+Trees with
additional forward linking of the leave blocks to ease scans. B+Trees are custom
implemented and they support only what is necessary for the purpose of indexes,
thus they strip out a lot of the overhead (no row overhead: no null map, no per-
row locking, etc.). Among others, RDF3X [83] adopts a strategy similar to tuple
tables but addresses the issue about expensive self joins by creating an interesting
set of indexes. Tuples are sorted lexicographically in a compressed B+Tree, which
allows the resolution of BGPs with range scans. Also, similarly to many RDF
stores, RDF3X replaces all literals by fixed size identifiers using mapping dictio-
naries. This approach has two benefits. Frequently occurring values are stored
once and identifiers are compared must faster for equality than long strings. More
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recently Yuan et al. proposed TripleBit [84]. Similarly to others, it uses mapping
dictionaries to improve scan and joins phases. However, unlike others, it is based
on a triple matrix storage structure that features compression for storing large
RDF graphs more efficiently.

3.1.2 Distributed RDF stores

Although centralized RDF stores are sometimes enough in production for small
workloads, they suffer from the traditional limitations of centralized approaches,
namely a single point of failure, performance bottlenecks, etc. As an alternative,
fully decentralized and distributed systems have been proposed to overcome some
of these limitations. This section presents a selected sample of research works
that support the storage of RDF data and the execution of SPARQL queries in a
distributed environment. As we will see, the solutions differ by their underlying
data storage facilities. Some are built as a pure P2P system (where there is no
centralized authority) or on top of a P2P overlay network whereas some others
rely on a NoSQL store. Regarding pure P2P solutions, we consider only those
that make use of a structured overlay. Others based on unstructured overlays such
as Edutella [85], Bibster [86] and S-RDF [87] are deliberately left aside since they
require to flood the whole network or to use heuristics to lookup a resource, which
leads to scalability issues or no solution for unpopular resources. Also, solutions
based on a Master-Worker model such as OWLIM Enterprise [88] are out of the
scope of this related work section because critical operations such as write requests
have all to pass through a single node.

RDFPeers

RDFPeers [89] is the first P2P system that came up with the idea to use DHTs
in order to implement a distributed RDF repository. It is built atop Multiple
Attribute Addressable Network (MAAN) [90] which is an extension of Chord [21].
Similarly to Chord, nodes are virtually organized into a ring. Each node owns an
identifier that represents its position in a circular identifier space of size N, and
has direct references to its predecessor and successor in the ring. A successor of a
node n is defined as the first node that succeeds n along the clockwise direction in
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Figure 3.1 – RDF data storage in an RDFPeers network (taken from [89]).

the ring space. Additionally, a node keeps m = log N routing entries, called fingers.
Fingers are successors in power of two. Finger i is equal to successor (n + 2i−1)
mod N with 1 ≤ i ≤ m. Figure 3.1 shows a RDFPeers network with 8 nodes in
a 4 bits identifier space. It also depicts the fingers of nodes N6 and N14 drawn
with dashed arrows originated from them. Data indexation and query processing
mechanisms are described below.

• Data indexation
RDFPeers considers 3-tuples only. Each RDF term is used as a DHT key at
the MAAN level. More precisely, a RDF triple labeled t = (s, p, o) is indexed
three times by applying a hash function on the subject, the predicate and
the object. Then, the triple t is stored on peers responsible for these hash
values. For better understanding consider the storage of the following three
triples inside the RDFPeers infrastructure: (info:rdfpeers, dc:creator,
info:mincai), (info:mincai, foaf:name, "Min Cai") and (info:mincai,
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foaf:age, "28"^^xsd:integer). Figure 3.1 depicts the hash values for
all the IRIs and literal elements of these triples. Suppose now that node
N6 receives a store message that aims to insert the triple (info:mincai,
foaf:age, "28"^^xsd:integer) in the network according to the hashing
of the predicate element (i.e., foaf:age). Given that hash(foaf:age)=10, N6
will route the triple to N10, based on its fingers.

• Query processing
RDFPeers supports three kinds of queries that are summarized below.

– Atomic triple pattern queries are queries where the authors suppose
there is always at least one constant value. For instance, a query like
(s, ?p, ?o) will be forwarded to the node responsible for hash(s). All
atomic queries take O(log N) routing hops to be resolved except queries
in the form of (?s, ?p, ?o) which require O(N) hops in a network of N

peers.

– Disjunctive and range queries are a type of query optimized by
RDFPeers through the use of a locality preserving hash function1. In-
deed, when the domain of a variable is limited to a range, the query
routing process starts from the node responsible for the lower bound.
It is then forwarded linearly until received by the peer responsible for
the upper bound. In the case of disjunctive range query like (s, p, ?o),
?o ∈ ∪n

i=1[li, ui] where several ranges have to be satisfied, intervals are
sorted in ascending order. The query is forwarded from one node to the
other, until it is received by the peer responsible for the upper bound
of last range. Disjunctive exact queries such as (s, p, ?o), ?o ∈ {v1, v2}
are resolved using the previous algorithm since they are considered as a
special case of disjunctive range queries where the lower and the upper
bounds are equal to the exact match value.

– Conjunctive queries are supported by RDFPeers as long as they
are expressed as a conjunction of atomic triples patterns or disjunctive

1Locality preserving hash functions are hash functions where the relative distance between
input values is conserved in output values.
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range queries for the same subject. Constraints’ list can be related
to predicates or/and objects. To resolve such type of query, authors
use a multi-predicate query resolution algorithm. This algorithm starts
by recursively looking for all candidate subjects on each predicate and
intersects them at each step before sending back final results to the
query originator.

Although RDFPeers supports several kinds of queries, it has a set of limitations
especially in the query resolution phase. This includes the attribute selectivity and
the restrictions made at the level of supported queries. The attribute selectivity
is related to the choice of the first triple pattern to be resolved. Low selectivity
of an attribute leads to a longer computational time to manage the local search
as well as a greater bandwidth consumption to fetch results from one node to
the other, because many triples will satisfy that constraint. As an example, the
predicate rdf:type seems to be less selective, as it can be more frequently used in
RDF triples than others (e.g. predicates that support range queries). Despite the
attribute selectivity parameter having an important impact on the performance
of the query resolution algorithm, RDFPeers does not provide a way to estimate
such a parameter. Another issue is related to conjunctive triple pattern queries
which are not fully supported and are restricted to conjunctive queries with the
same subject. Therefore, it does not support arbitrary joins.

RDFCube

Monato et al. propose RDFCube [91], an indexation scheme built along together
with RDFPeers. Their solution, that is based on a three-dimensional CAN [20]
like coordinate space, improves the execution of SPARQL queries compared to
RDFPeers by introducing an index that allows to eliminate some peers that are not
involved in the matching. To achieve this purpose, their 3-dimensional coordinate
space is made of a set of cubes that have the same size and that are called cells.
Each cell contains an existence-flag, labeled e-flag, indicating the presence (e-
flag=1 ) or the absence (e-flag=0 ) of triples in that cell. The set of consecutive
cells that belong to a line parallel to a given axis forms a cell sequence. Cells
belonging to the same plane perpendicular to an axis form the cell matrix.
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• Data indexation
Once an RDF triple t=(s,p,o) is received, a flag is mapped to the cell of
the RDFCube where the point p=(hash(s), hash(p), hash(o)) belongs to.
Additionally, the triple is inserted in the running RDFPeers instance.

• Query processing
As for RDF triples, a query is also mapped into a cell or a plane of RDFCube
based on the hash values of its constant part(s). As a consequence, the
set of cells including the line or the plane where the query is mapped are
the candidate cells containing the desired answers. Note that RDFCube
does not store RDF triples, however, it stores bit information of e-flags.
Therefore, the interaction between RDFCube and RDFPeers is as follows.
On one hand, RDFCube is used to store (cell matrixID, bit matrix) pairs
such as the matrixID which is a matrix identifier and represents the key in
the DHT terminology, while bit matrix is its associated value. On the other
hand, RDFPeers stores the triples associated with the bit matrix information.
This bit information is basically used to speed up join query processing by
performing an AND operation between bits and transferring only the relevant
triples. As a result, this scheme reduces the amount of data that has to be
transferred between nodes.

Battré et al.

In [92], Battré et al. propose a data management strategy for DHT based RDF
stores. As many others, the proposed approach indexes a RDF triple by hashing its
subject, predicate and object. It is worth notice that the proposed solution takes
into consideration RDFS reasoning on top of DHTs by applying RDFS reasoning
rules.

• Data indexation
The main difference compared to other RDF based structured P2P ap-
proaches is that nodes host different RDF repositories in order to make a
distinction between local and incoming knowledge.

– Local triples repository stores triples that originate from each node.
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Local triples are disseminated in the network by calculating their hash
values based on subject, predicate and object terms before being sent
to nodes responsible for the appropriate parts of the DHT key space.

– Received triples repository simply stores the incoming triples sent
by other nodes.

– Replica repository ensures triple availability under high peer churn.
The node with an identifier numerically closest to the hash value of a
triple becomes root node of the replica set. This node is responsible for
sending all triples in its received database to the replica nodes.

– Generated triples repository stores triples that are originated from
applying forward chaining rules on the received triples repository, and
they are then disseminated as local triples to the target nodes. This
repository is used for RDFS reasoning.

In order to keep the content of the received triples repository up to date,
especially under node leaving or crashing, triples are associated with an
expiration date. Therefore, the peer responsible of that triple is in charge
of continuously sending update messages. If the triple expiration time is
not refreshed by the triple owner, it will be eventually removed from these
repositories. This approach takes care of load balancing issues specially for
uneven key distribution. For instance, the DHT may store many triples with
the same predicate rdf:type. As subject, predicate and object will be hashed,
the node responsible for the hash(rdf:type) is a target of a high load. Such
situation is managed by building an overlay tree over the DHT in order to
balance the overloaded nodes.

• Query processing
In another work [93], one of the authors proposes a query algorithm with opti-
mizations based on a look-ahead technique and Bloom filters [94]. Knowledge
and queries are respectively represented as model and query directed graphs.
The query processing algorithm basically performs a matching between the
query graph and the model graph. On one side, there is the candidate set
which contains all existing triples, and on the other side, there is a candi-
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date set containing the variables. These two sets are mutually dependent,
therefore a refinement procedure has to be performed to retrieve results for a
query. This refinement proceeds in two steps. The first step starts from the
variable’s candidate set. A comparison is done with the candidate sets for
each triple where the variable occurs. If a candidate does not occur within
the triple candidate set, it has to be removed from the variable candidate set.
The second step goes the other way around, that is, it looks at the candidate
set for all the triples and removes all candidates where there is a value not
matching within the variable’s candidate set.

The look-ahead optimization aims at finding better paths through the query
graph by taking into account result set sizes per lookup instead of the number
of lookups. This yields fewer candidates to transfer but the tradeoff is that it
incurs more lookups. The other optimization, using Bloom filters, considers
candidates for a triple (x, v2, v3), where x is a fixed value and v2 and v3 are
variables. When retrieving the candidates by looking up using the fixed value
x, i.e., executing lookup(x), it may happen that the querying node might
already have candidates for the two variables. Therefore, the queried node
can reduce the results sets with the knowledge of sets v2 and v3. However,
those sets may be large, that is why authors use Bloom filters to reduce
the representation of the sets. The counterpart of using Bloom filters, is
that they yield false positives. Consequently, the final results sets which are
transferred may contain non-matching results. To remove these candidates
and thus ensuring the correctness of the query results, a final refinement
iteration is done locally.

Liarou et al.

Liarou et al. propose in [95] two query processing algorithms to evaluate con-
junctive queries over structured overlays, called Query Chain (QC) and Spread by
Value (SBV).

• Query Chain

– Data indexation
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As in RDFPeers [89], a RDF triple is indexed three times. More pre-
cisely, for a peer p that wants to publish a triple t such as t = (s, p, o),
the index identifiers of t are computed by applying a hash function on
s, p and o. Identifiers hash(s), hash(p) and hash(o) are used to locate
nodes n1, n2 and n3 that will then store the triple t.

– Query processing
In this algorithm, the query is evaluated by a chain of nodes. Inter-
mediate results flow through the nodes of this chain and the last node
in the chain delivers the result back to the query’s originator. More
formally, the query initiator, denoted by n, issues a query q composed
of q1, q2,. . . , qi patterns and forms a query chain by sending each triple
pattern to possibly different nodes, based on the hash value of constant
part of each pattern. For each of the identified nodes, the message
QEval(q, i, R, IP (x)) will be sent such that q is the query to be evalu-
ated, i the index of the pattern that is managed by the target node, R a
collection to hold intermediate results and IP the address of the query’s
originator x (i.e. the node that submits the query). When there is more
than one constant part in the triple pattern, subject will be chosen over
object and over predicate in order to determine the node responsible
for resolving this triple. While the query evaluation order can greatly
affect the algorithm performance including the network traffic and the
query processing load, authors adopt the default order for which the
triple patterns appear in the query.

• Spread by Value

– Data indexation
In the SBV algorithm, each triple t = (s, p, o) is stored at the successor
nodes of the identifiers hash(s), hash(p), hash(o), hash(s+p), hash(s+
o), hash(p + o) and hash(s + p + o) where the + operator denotes the
concatenation of string values. By multiple indexation of the same
triple, the algorithm aims to achieve a better query load distribution at
the expense of more storage space.
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– Query processing
SBV extends the QC algorithm in the sense that a query is processed
by multiple chains of nodes. Nodes at the leaf level of these chains will
send back results to the originator. More precisely, a node submitting
a conjunctive query q in the form of q1 ∧ . . . ∧ qk sends q to a node n1

that is able to evaluate the first triple pattern q1. From this point on,
the query plan produced by SBV is created dynamically by exploiting
the values of the matching triples that nodes find at each step. As an
example, a node n1 will use the values found locally that matches q1,
to bind the variables of q2 ∧ . . . ∧ qk that are in common with q1 and
produce a new set of queries that will jointly determine the answer to
the query’s originator. Unlike the query chain algorithm, to achieve a
better distribution of the query processing load, if there are multiple
constants in the triple pattern, the concatenation of all constant parts
is used to identify nodes that will process the query.

CumulusRDF

In [96] the authors investigate the applicability of a key-value store for managing
large quantities of RDF data. Their solution dubbed Cumulus RDF is based on
Apache Cassandra [35] which is a nested key-value store that belongs to the NoSQL
movement which has emerged these last years. Cassandra’s data model relies on
column families, rows, columns and, optionally supercolumns. A column family
depicts a table from the relational world. Inside a table we find rows that embed
one or two level of nested key-value pairs depending of whether columns or super-
columns are employed. Thus, a simple row with columns looks like {row_key: {
column_key: column_value}} whereas a row with supercolumns adds one ex-
tra level of key-value pairs as represented by {row_key: {supercolumn_key:
{column_key: column_value}}}. Cassandra uses consistent hashing to dis-
tribute data. Consequently, the system exhibits the same topology as Chord but
also features and maintenance algorithms that are similar to the Chord overlay
network. Rows are assigned to nodes by hashing the row’s key and storing the
whole row, including associated columns and supercolumns, on the node which is
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the closest in the identifier space. Another simple representation of the Cassandra
model is to think about nested key-value pairs as a map of maps where the values
of the first map are distributed across the nodes according to their key.

The solution proposed by the authors for CumulusRDF follows two strategies:
one based on a hierarchical layout and another that relies on a flat layout. Both
strategies make use of Cassandra properties which have been introduced above.

• Hierarchical layout

– Data indexation
The indexing scheme of the hierarchical layout is built on supercolumns.
Each triple is indexed three times to provide the minimum indexes that
are required to execute efficiently all eight possible triple patterns [97].
Each index is a Cassandra row with supercolumns where the row key,
the supercolumn key and the column key are respectively RDF terms of
the triple to index. To index the triple t = (s, p, o), the rows {s: {p:
{o: -}}} for the index SPO, {p: {o: {s: -}}} for the index
POS and {o: {s: {p: -}}} for the index OSP are inserted in their
dedicated column family according to the type of the index.

– Query processing
A triple pattern is evaluated by using one of the three indexes according
to the fixed parts the triple pattern contains. For instance, to resolve
the triple pattern (?s, p, o), the index POS is used. By hashing the fixed
value p, the node that stores the matching supercolumns is identified.
Then, on that node a local lookup is performed with the fixed value p

on the column key. As a result we get the columns’ values matching the
initial triple pattern. These values are object RDF terms of triples that
match the fixed p value from the triple pattern. Thus, a local and final
filtering based on o is performed in order to identify matching triples.

• Flat layout

– Data indexation
The second indexing strategy proposed by the authors is based on sim-
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ple columns and the key observation that columns’ key are sorted ac-
cording to their natural order. Therefore, it is possible to perform
range scans and prefix lookups on them. For this reason, they propose
to store indexes as {s: {po: -}}, {p: {os: -}} and {o: {sp:
-}}. However, they notice a complication with the POS index due to
the fact that some properties such as rdf:type or rdfs:label are frequent
in RDF. Rows are distributed across the nodes based on the row key,
thus when the row key is a predicate value, a few nodes may have to
store most of the triples from the whole system once. To alleviate this
issue they propose to replace the POS index with two others where the
row key is the concatenation of the predicate and object RDF terms.
Since less triples share predicate and object, the distribution is better.
These two indexes called POS1 and POS2 are respectively {po: {s:
-}} and {po: {’p’: p}}. The last index POS2 maps column values
to row keys so that it is possible to retrieve all PO row keys for a given
p, ’p’ being an hardcoded string value.

– Query processing
Similarly to the hierarchical layout, the index to use is identified ac-
cording to the fixed parts of the triple pattern to evaluate. To resolve
(s, ?p, ?o), the index SPO is used. The node containing solutions is
found by hashing the subject RDF term and the columns found are
directly returned. However, the solution for triple patterns that involve
POS indexes is a bit more complex to compute. For instance, to resolve
(?s, p, ?o) the index POS2 is required since rows may be found with
hash based lookups only and this require to know the full row key value
to hash it. Thus, a broadcast to all nodes is performed to find nodes
indexing rows that contain potential solutions. Then, the POS2 index
used to filter rows that match the fixed value p.

Both strategies have been evaluated on 4 nodes in a virtualised infrastructure.
The authors show their flat layout outperforms the hierarchical one with a factor
of almost two in terms of concurrent requests handled per second. This at the
price of more storage space since the hierarchical layout requires three indexes and
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the flat layout one more. Besides, the choices made in CumulusRDF are driven
by the need to retrieve RDF data by triple patterns and no discussion is given
about the execution of complex SPARQL queries. Also, the layouts proposed in
CumulusRDF may not work depending of the dataset that is considered. Indeed,
the authors propose to create indexes and to store RDF term values in column or
supercolumn keys. However, in Cassandra keys must be under 64 KB2. Even if the
size is acceptable for subject or predicate values whose their IRI representation is
not so large, the solution is inadequate for object values whose size may exceed
this limit, especially if a subject or predicate value is concatenated with an object
term.

Summary

A fair number of solutions have been proposed these last years to manage RDF
data. With the great success the Semantic Web movement has achieved and the
increasing amount of data to process, solutions have naturally evolved from a cen-
tralized environment to a distributed one. To address issues that are inherent
to distributed systems, many works rely on P2P technologies and especially on
structured P2P networks. However, with the advent of the NoSQL movement, a
broad set of efficient systems are now available to manage information in the con-
text of Big Data. NoSQL systems are an alternative to relational databases that
usually sacrifice query complexity and ACID properties for more predictable query
performance and low latency read/write operations. Since 2009, NoSQL systems
are becoming more and more mature and the large variety of solutions has led to
a classification in mainly four categories that appeared progressively: key/value
oriented stores (e.g. Cassandra [35]), columns oriented stores (e.g. HBase [98]),
documents based stores (e.g. MongoDB [99]) and graph oriented stores (e.g. Al-
legroGraph [100]). Each category has its advantages and drawbacks. Although
NoSQL stores belong to a new movement, many rely on well known technologies
such as P2P networks to manage distributed resources, especially because they use
consistent hashing to distribute data. This is for instance the case with Cassandra
which features a structure similar to Chord. However, some other NoSQL stores

2http://wiki.apache.org/cassandra/FAQ#max_key_size

http://wiki.apache.org/cassandra/FAQ#max_key_size
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such as HBase make use of a master/slave architecture. HBase is built on top
of HDFS [101]. In contrary to HDFS which is a Distributed File System (DFS)
designed for the storage of large files, HBase provides fast record lookups and up-
dates. To make it possible, HBase internally puts data in indexed “StoreFiles”
that exist on HDFS for high-speed lookups.

A main difference between Cassandra and HBase is that the former is fully
decentralized while in the latter a master node, that is a single point of failure,
is used. Also, Cassandra offers tunable consistency whereas HBase provides only
strong consistency but with the benefit of a tight integration with the Hadoop
ecosystem. Even though strong consistency means slower operations throughput
than systems that provide eventually consistency, and thus is not appropriate for
live queries, such systems remain acceptable to execute SPARQL queries over large
datasets. Indeed, both solutions, regardless of their architecture are used daily in
production with immensely large workloads, successfully.

These industry approved systems have been used recently in some research
work to build RDF data managements systems. In DSPARQ [102], the authors
propose to combine MapReduce with MongoDB [99]. Their solution spreads triples
across the machines by using a graph partitioner. Although distributed query
evaluation is supported, triples declaring rdf:type as predicate value are dropped,
thus loosing data meaning and reducing reasoning capabilities. In H2RDF [103]
the authors leverage the HBase NoSQL store with its MapReduce interface to
execute SPARQL queries over large RDF datasets. However, they are currently
unable to support all features from the SPARQL specification. The strength of
their system lies in the fact they provide an adaptive choice among centralized and
distributed join execution for fast query responses. Recently, in [104] the authors
give a fair comparison of four existing NoSQL solutions for processing RDF data.
They consider results obtained with the systems they have analyzed encouraging
since they are competitive against distributed and native RDF stores with respect
to query time when simple SPARQL queries with no complex filters are used.
Moreover, the authors are confident about the future of NoSQL databases as an
alternative to native RDF engines to store and manage RDF resources because
they think there is still many query optimization techniques that could be borrowed
from relational databases and applied. Finally, some graph oriented solutions such
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as AllegroGraph [100] or Bigdata [105] have been proposed but most of them are
commercial and a few details about their architecture is available.

3.2 P2P Infrastructure for RDF

The brief state of the art we have presented gives an idea about the solutions and
the different systems or topologies that have been proposed or extended to support
RDF data. This section introduces the solution we have implemented, based on
the approach proposed by Imen Filali [73], a former team member. Our solution
differs from existing ones by its indexing process that does not rely on hashing.
It explains, in part, why we do not have based our solution on one of the afore-
mentioned solutions that intensively rely on hashing. Additionally, MapReduce
operations introduce a high latency in data analysis which is not acceptable for
extending our system to a publish/subscribe one as we will explain in Chapter 4.
Also, contrary to existing solutions that usually decompose a SPARQL query into
subqueries and resolve them through an execution plan that executes each sub-
query sequentially, we propose to handle subqueries in parallel with the aim to
increase the throughput, adding when needed a final synchronization merging op-
eration on results. For this purpose, we decided to rely upon the CAN network to
deal with RDF information. In the following, we describe the CAN protocol be-
fore explaining what are the features and properties we altered. Then, we explain
how generic messages are routed in our revised CAN infrastructure. Finally, we
focus on the indexing and retrieval of RDF data through SPARQL and detail the
solutions we propose along with their benefits and drawbacks.

3.2.1 Content Addressable Network (CAN)

CAN [20] is a Structured Overlay Network where the peers that compose the
network are virtually organized on a d-dimensional Cartesian coordinate space
labeled D. The coordinate space is dynamically partitioned among all peers in the
system such that each node is responsible for storing data in a zone of D.

Each zone is an hyperrectangle defined by exactly one upper bound and one
lower bound coordinate value in D. Since the coordinate space is entirely parti-
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tioned, the zones abut each others in one or more dimensions. The set of peers
that abuts a given peer p is called the neighbourhood of p. Figure 3.2 depicts
a two-dimensional CAN network made of 4 peers arranged in a [0, 1] × [0, 1] co-
ordinate space. Geometrically speaking, two peers are neighbours if their edges
overlap in exactly d − 1 dimensions and abut in exactly 1 dimension.

CAN provides, like many structured P2P networks, a DHT abstraction. Thus,
resources are indexed by keys. Keys are computed by applying for instance d dif-
ferent uniform hash functions on the resource value to index. In this manner, each
resource is associated to a key that is a coordinate C = (h1(value), . . . , hd(value))
which depicts a point in D. For a uniformly partitioned space with n nodes and
d dimensions, a CAN network exhibits the following properties. Each peer main-
tains 2d neighbours and the average routing path length to route a message is
(d/4) × (n1/d). A CAN network can also achieve the same scaling properties as
other popular DHTs such as Chord [21] and Pastry [22], by routing in O(log n)
hops if the number of dimensions is set to d = (log2 n)/2.

(0,0) (1,0)

(0,1) (1,1)

1 2

3 4

Peer Resource

Figure 3.2 – Simple 2-dimensional CAN network.

Message routing The routing algorithm that is proposed by CAN’s authors
assumes that messages and more specifically requests are routed according to keys.
A key is, as introduced previously, a coordinate in the d-dimensional space. The
routing algorithm the authors have designed allows to send an arbitrary request
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to the unique peer that manages the key used for the routing. For example, if the
purpose is to route a message to store a resource, only the peer that manages the
resource key will perform the final operation that consists of storing the resource.
We summarize hereafter the process that starts with a coordinate C for a key
k associated to a resource with a resource value v. First, a peer pi is selected
at random to receive the message M to route. Once pi receives M , it applies a
simple greedy forwarding approach. The algorithm consists of choosing the closest
peer to C from the neighbours set managed by pi. The selection is done after the
computation of the euclidean distance from the center of each neighbour’s zone
to the coordinate C. The peer pj that is selected as the one with the smallest
distance value receives the message forwarded by pi. Then, the process is repeated
until to reach a peer pfinal whose its zone contains C. At this step, a response
that embeds for example v may be returned by using the same routing algorithm
if the purpose was to find a resource by key. Otherwise if the goal was to index a
resource, the key-value pair (k, v) is simply stored locally by pfinal.

Join procedure The join procedure allows a new peer to join an existing one.
Let say that pnew is a peer to insert into the network. Then, the join procedure
works as follow. First, a coordinate C is picked at random from the coordinate
space D. Afterwards, a join request is forwarded towards the peer managing C

by using the routing algorithm described above. The peer reached with the join
request, denoted by plandmark, is the peer that has to divide up its zone with pnew.
Thus, plandmark splits its zone in two and gives one half to pnew along with the
resources managed by the zone chunk. Finally, the neighbourhood of plandmark

and pnew is updated.

Leave procedure The leave procedure allows a peer to leave gracefully a CAN
network it has previously joined. For that, the zone zleave managed by the peer
pleave that leaves must be taken over by one of the remaining peers from the
network. In this respect, the authors distinguish two cases. Either zleave may be
merged with a zone zvalid that belongs to a neighbour pvalid of pleave in such a
way that the resulting zone is still an hyperrectangle, or it can not. In the former
case, the merging is done and the resources are forwarded from pleave to pvalid.
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However, in the latter case, zleave is handed over to the peer with the smallest zone
volume from pleave’s neighbourhood. The selected peer will temporarily manage
two independent zones. Then, a background zone reassignment process, that may
imply to merge several zones in chain and thus to transfer multiple key-value pairs,
is assumed to reassign zones and ensure that the CAN network tends back towards
one zone per peer. Each peer zone remaining an hyperrectangle.

Our revised CAN settings

Most of the related works presented formerly use hash functions to index RDF
data. We have seen this is also the case by default with CAN for indexing resources.
However, hashing incurs a storage overhead when RDF tuples are manipulated
since they are stored multiple times to be found back in an efficient manner with
triple or quadruple patterns. In addition, one big drawback that is intrinsically
linked to hash functions is that it is really difficult to support range queries (looking
for values in a specified range) efficiently. There is an exception with locality
preserving hash functions, also referred to as Locality Sensitive Hashing (LSH),
but since similar items remain close together once hashed, systems using it are
facing load imbalance issues that are most of the time underestimated or ignored.
This along with an extra level of complexity incurred by hashing. To address
these disadvantages, we propose a new distributed RDF datastore architecture
that mimics the natural format of RDF tuples and which does not rely on hash
functions.

Our infrastructure is built atop the CAN overlay to ensure its scalability. More
precisely the architecture rely upon a four-dimensional CAN network. The four
dimensions of the CAN coordinate space are mapped respectively to the graph,
the subject, the predicate and the object RDF terms of any RDF 4-tuple that
may be indexed. One benefit of this natural approach, that reflects the structure
of an RDF quadruple, is that a quadruple to index represents a coordinate and
thus a point in the four-dimensional Cartesian space. Moreover, as we will further
explain, the indexing does not make use of hash functions. Quadruples are routed
to the peers that manage the quadruple coordinates by means of the lexicographic
order applied on the quadruples’ RDF terms. Therefore, the CAN network is no
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longer a DHT but a distributed lexicographically ordered data structure. This
approach has several advantages. First, it enables to process range queries effi-
ciently. Second, the lexicographic order preserves the data semantics so that it
gives a form of clustering of quadruples sharing a common prefix, thus improv-
ing lookup. In contrast, hashing destroys the natural ordering of information and
makes the management of complex queries tricky and expensive.

To support the lexicographic order, in our revised CAN overlay, the bounds of
the CAN network are unicode characters. Unicode characters are numbers encoded
in 32 bits integers, also referred as codepoints, whose their integer representation
may range from 0 to 10FFFF16 = 1114111. For instance, the characters ’A’ and
’Z’ have respectively the codepoint values 65 and 95. The fact that coordinate
values are strings made of Unicode characters affects some operations related to
the CAN protocol since now coordinates are made of numbers in radix different
from 10. Operations such as the split operation performed during a join or even the
operation that computes the euclidean distance between two coordinates require
an update to work with any radix n. Also, to mitigate the impact of skewed
data when specific information is known about the data distribution, we allow to
define at startup the lower and upper bounds of the CAN space. For example, the
bounds may be defined to allow only the CJK Unicode block that corresponds to
Chinese ideographs usually used in the writing systems of the Chinese and Japanese
languages, occasionally for Korean, and historically in Vietnam. In case we know
that all RDF terms are expressed in this CJK block, an extra shift condition has
to be taken into account in operations working in radix n.

3.2.2 Routing algorithms

In P2P systems, information is spread among peers and expensive computations
aim to be shared between peers. The indispensable substrates to distribute data,
and work in general, are messages which are routed to peers according to a key
before being executed locally. Message routing strongly depends on messages’ type
and the kind of key associated to them. Also, message routing directly affects the
overall performance of operations. For this reason we detail hereinafter the routing
algorithms we are using in our revised CAN overlay.
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The P2P infrastructure we have designed is aiming to support RDF data. In
such a system the main operations are the insertion and the lookup of data. It is
worth notice here that these two operations require messages with different routing
processing. The reason lies in the fact that for the insertion, the message has to
reach only one peer, the one that manages the key or coordinate that contains
RDF terms from a quadruple to index. However, when data have to be retrieved,
the message has to get to one or more peers since the different pieces of information
we are interested in may potentially be located on multiple different peers. For
that purpose, we have designed two routing algorithms whose details are given
below.

Unicast routing

Unicast routing aims to route messages whose associated key is a coordinate with
fully fixed coordinate values. This type of key is referred in the rest of this dis-
sertation as a unicast key. A simple approach to route these messages may be
to reuse the default message routing algorithm proposed by the CAN’s authors.
However, as we explained previously, our CAN overlay make uses of Unicode char-
acters as coordinate values and doing so requires to compute several times the
euclidean distance between coordinates at each routing step with a radix different
from 10 (i.e. radix 1114112). This is not conceivable since the routing will incur
expensive local decisions. The reason lies in the fact that the euclidean distance
involves mathematical operators such as the multiplication or the square root that
are costly to compute with large radix. To prevent expensive computation, we in-
troduce an algorithm that solves the issue by simply comparing zones’ coordinates
with the key used to route a message.

The simple unicast routing mechanism is sketched by Algorithm 3.1. The
algorithm makes the assumption to route a message m from a peer p to the peer
managing the key k which is a coordinate made of d coordinate values. The
scheme is the following. Each dimension is iterated successively by the peer p

that is currently routing the message. The peer starts from the first dimension.
If the coordinate value k[1] (which is the first coordinate value associated to k)
is contained by p’s zone on dimension 1, then the same checking is applied on
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1: procedure UnicastRouting(m, p, k)
2: for i← 1, d do
3: if !p.getZone().contains(k[i], i) then
4: n← p.findClosestNeighbour(k, i)
5: UnicastRouting(m, n, k)
6: return
7: end if
8: end for
9: m.execute()
10: end procedure

Algorithm 3.1 – Unicast routing algorithm.

the next dimension until to have k fully managed by the peer’s zone on all the d

dimensions. In that case, the message action is executed and a response may be
returned, either directly to the requester if its reference is known or by using the
same unicast routing algorithm. However, if p’s zone does not contain k[i] on the
i-th dimension, the message m is forwarded to p’s closest neighbour that applies
in its turn the same process. The function used to find the closest neighbour
does not rely upon the euclidean distance. It simply finds in p’s neighbourhood,
the closest neighbour’s zone by comparing the bounds managed by the current
peer with coordinate values from k. At this stage, two cases may occur when the
closest neighbour function is executed. Either there is only one neighbour n that
manages k[i] on dimension i or there are two or more neighbours. In the last case
the conflict is resolved by selecting the neighbour with lexicographically the closest
zone’s bound to k[i + 1] on dimension i + 1. Then, p forwards the message along
with the key k to the selected neighbour n. Afterwards, this last applies again the
unicast routing procedure until to have all the key’s values managed by its zone.

The routing algorithm has been simulated and the results remain acceptable
since the complexity in terms of number of hops follows the same trend as the one
given by CAN’s authors.

Multicast routing

Unlike unicast routing whose purpose is to reach a unique peer, multicast routing
allows to send a message to a set of peers. The destination is appointed with the
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help of a key we refer to in this context as a multicast key. The specificity of
multicast keys is that they allow free variables in their definition. Let’s assume a
simple example with a key k = (?v1, p1, ?v2, p2) where ?v1 and ?v2 represent free
variables and the other coordinate elements fixed values. In that case, k points
out a set of peers G that manage respectively p1 and p2 on the first and third
dimension. On other dimensions, these peers may manage any value since free
variables are specified. Figure 3.3 depicts different set of peers to reach according
to distinct definition of keys with free variables on a 3D CAN.

Another interesting point to notice here is that in our revised CAN overlay,
we are using the lexicographic order on the coordinate values to route them to
the right peers. Therefore, the set of peers to reach may be further restrained
by extending free variables with the notion of bounded variables. This, with the
goal to designate more precisely a set of peer we are interested in. For instance,
the multicast key (?v1, p1, ?v2, p2), ?v1 ∈ [l, u] refers to a subset of G that possibly
reduces the number of peers that satisfy the key’s constraint by means of a bounded
variable ?v1 that force peers’ zone to contain a chunk of the interval [l, u] on the
first dimension to handle the message. Here, we assume that at most one variable is
bounded. Cases with two, three or four bounded variables have to be decomposed
into simple ones with one bounded variable each, thus requiring to route multiple
messages and aggregate results at the application level. However, the increased
cost to route a decomposed set of keys should be balanced by the fact that messages
are routed and handled in our system in parallel.

Algorithm 3.2 details how multicast messages are routed based on a multicast
key containing free variables only. The message starts from an initiator p which
is selected at random. The first step consists of finding a peer whose its zone
fully manages3 the multicast key k (line 2–7). The statements are really similar
to the unicast routing procedure introduced in Algorithm 3.1. Indeed, only the
condition on line 3 differs. This line contains an additional predicate to consider
any coordinate value, which is a variable, as managed by a peer’s zone on any
dimension. Once a peer n is detected as managing k, all other peers that satisfy
k may be reached from neighbours to neighbours. This is possible thanks to

3In that case, a peer p is said to manage a key k if its zone contains all the fixed part of k
and satisfies conditions associated to k.
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Figure 3.3 – Multicast keys’ scope according to various fixed terms in a 3-
dimensional CAN network. The graph dimension has been intentionally omitted
for the sake of the representation.
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the definition of the multicast key’s properties that allow multiple free variables
but only one bounded variable. Consequently, p invokes the multicast procedure
(line 11–18) that executes a custom action onPeerValidatingKeyConstraints to
query for example a local datastore. Then, if some neighbours satisfy k’s values
and conditions, the multicast message is forwarded to them.

Responses are optional like for the unicast routing algorithm. To support them,
a reverse path forwarding scheme must be applied. Each peer n which receives
a request and is a leaf of the multicast tree (i.e. it does not forward the request
to another neighbour) has to send back the response to the peer p from where
the request was sent. Then, p merges the responses into one and sends it back
to its predecessor. This is performed recursively until to have a final response
that reaches the initiator. This approach is required and is due to the fact that
at each response forwarding step, the peer p that receive responses is the only
one to know how many requests it has sent and, therefore, how many responses it
has to receive and merge before forwarding back an answer. Although we do not
focus on fault tolerance, as a rule of thumb we never use a direct peer reference to
send back a response. Such a method would require a major redesign to support
fault tolerance. Instead, peers are identified by their lower left zone’s bounds.
Therefore, responses are routed back based on these coordinates that have been
memorized.

It is also important to note that whenever a key with variables is processed, our
approach naively uses message flooding through each peer’s neighbours. Hence,
it may happen that a peer receives a message multiple times from different di-
mensions. Even if in practice these duplicate messages are ignored, they, however,
overload peers. Francesco Bongiovanni, a former team member, has worked on an
optimal broadcast algorithm for CAN. He has proved there exists an algorithm
that covers the whole CAN network without sending twice a message to the same
node [106]. His solution is a generalization of the efficient broadcast algorithm
proposed in M-CAN [107]. The general idea of the algorithm may be roughly
summarized as follows: a peer forwards a message to a neighbour n if n touches
the lower left zone’s bound of the peer and if n satisfies a spatial constraint defined
at the beginning of the algorithm. This optimal broadcast algorithm (in terms of
message complexity) has been implemented and evaluated in our P2P infrastruc-
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ture [108]. The experiments show that this scheme may prevent in average 750
duplicates to transit in a CAN network made of 100 peers. Also, this optimal ap-
proach reduces message delivery time compared to our naive one which generates
duplicates. In average, the message delivery time is decreased by 6.25% with 100
peers and up to 41.5% with a CAN overlay made of 500 peers.

1: procedure MulticastRouting(m, p, k)
2: for i← 1, d do
3: if !k[i].isVar() ∧ !p.getZone().contains(k[i], i) then
4: n← p.findClosestNeighbour(k, i)
5: MulticastRouting(m, n, k)
6: return
7: end if
8: end for
9: Multicast(m, p, k)
10: end procedure
11: procedure Multicast(m, p, k)
12: if m not already received then
13: m.onPeerValidatingKeyConstraints()
14: for each n ∈ p’s neighbourhood do
15: if n.getZone().satifies(k) then
16: Multicast(m, n, k)
17: end if
18: end for each
19: end if
20: end procedure

Algorithm 3.2 – Multicast routing algorithm.

However, the optimal broadcast algorithm remains limited in our context since
multicast requires to flood the whole network, even if the action is only executed
on peers validating the multicast key constraints. Indeed, with the optimal broad-
cast scheme, multiple unique propagation paths are created and to cut off some
according to multicast constraints may prevent one or more peers to receive the
message they should handle.
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3.2.3 Indexing and retrieval mechanisms

In this section we illustrate how the routing algorithms we presented previously
are used in action to index RDF quadruples but also to execute SPARQL queries.

RDF data indexing

To index RDF data (i.e. to route and store a quadruple to the right peer) we
rely upon the unicast routing algorithm. We define a unicast key based on the
quadruple’s values and route an index quadruple message. For the sake of the
explanation, consider the Figure 3.4. In this representation each peer manages
a zone whose the bounds are denoted per dimension by zgmin

and zgmax for the
graph value of a quadruple, zsmin

and zsmax for the subject value, zpmin
and zpmax

for the predicate value, and finally zomin
and zomax for the object value. In our

terminology we say that a 4-tuple q = (g, s, p, o) ∈ z if and only if ∀ RDF Term r ∈
q, zrmin

⪯ r ≺ zrmax .

insert(q)

p1 p2
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p4
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. . .
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pj

q

q
q

q

g-axis
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Figure 3.4 – Exemplary series of actions to insert a quadruple into a 4-dimensional
CAN.

Now, suppose that a peer p1 receives an insert(q) request aiming to insert
the RDF quadruple to the network. To find the peer where the quadruple will fall
in, a greedy scheme is applied. Locally, the peer p1 checks whether an element of
q is contained by its zone or not. The comparison starts with the first RDF term
of q, that is to say the graph value. Since no element of q belongs to the zone of
p1, and as g fits into the zone of p2, p1 routes the insert message to its neighbour
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p2 according to the graph axis (g-axis). The same process is triggered at each
stage. The peer p2 does it by means of the subject axis (s-axis) which in turn,
will forward the message to its neighbour p3. Once received, p3 checks whether
one of its neighbours is responsible for a zone such as q belongs to, and sends q

to p4 through the p-axis. Finally p4 examines its zone for o. Since no immediate
neighbor is managing the o value, the message is forwarded according to the object
axis (o-axis) to the neighbour with object coordinates that are closest to o, ending
up on peer pi that is responsible for storing q locally.

SPARQL query execution

Insertion but also retrieval are the more common operations that are usually per-
formed on a P2P network. Many systems such as Chord [21], Pastry [22] or even
CAN [107] rely by default on consistent hashing to uniformly spread out keys
onto peers at the cost of complex and expensive mechanisms to support range
queries. In contrary to these DHTs, our revised CAN overlay natively supports
range queries since we rely on the lexicographic order to route messages. However,
our system, as the others, does not handle by default complex requests such as
SPARQL queries. Therefore, to execute a SPARQL query q, part of the process
consists in analysing q to extract subqueries. Subqueries are elementary requests
that are handled efficiently by routing specific messages in our system. Similarly
to RDFPeers [89], we have identified atomic and range queries as subqueries. An
atomic query is a quadruple pattern from a SPARQL query that maps to a mul-
ticast key with one or more free variables according to the quadruple pattern’s
variables. A range query extends the atomic query notion by allowing at most one
bounded variables. Intuitively, this second type of query maps also to a multicast
key as introduced in Section 3.2.2. More complex query types, such as conjunctive
or disjunctive queries are supposed to be decomposed into atomic or range ones.

The full mechanism to execute a SPARQL query is sketched by Algorithm 3.3.
The execution starts from a peer p selected at random. Once the SPARQL query
q has been decomposed into subqueries (line 2), each subquery is handled in par-
allel to others. For instance, if we are handling a subquery s, first a message m

with a multicast key k is created according to s’ values and conditions (line 4–
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5). Then, m is routed from p (line 6) to the peer(s) that manage the multicast
key k based on the multicast algorithm introduced previously. Upon the recep-
tion of m on a neighbour n that validates k’s constraints, a background thread
is spawned to query n’s local RDF store by means of a SPARQL query dynam-
ically built from k. This background action is made possible by overriding the
method onPeerValidatingKeyConstraints from Algorithm 3.2. Since tuples are
retrieved in a background thread, the routing algorithm may continue to forward
m to other neighbours without waiting for the retrieval of tuples matching k. How-
ever, results have to be recovered. Fortunately, as we explained in Section 3.2.2,
the reverse forwarding path is used to route a response. Consequently, a response
reaches the peers where a local query has been triggered in background. At this
step, the termination of the background thread is awaited. The aim is to attach
to the response the tuples that have been found with the local query before it is
routed back. Finally, once all results from subqueries have been collected into a
tuples set R, a final filtering operation is applied with the help of a Strain function.
Its purpose is to filter R with the original SPARQL query q in order to resolve
SPARQL operators which have not been handled in a distributed manner (e.g.
join conditions between subqueries due to BGPs or regular expressions).

1: function ExecuteSparqlQuery(q)
2: subqueries← Decompose(q)
3: for each s ∈ subqueries do in parallel
4: m← CreateAtomicMessage()
5: k ← CreateKey(s)
6: result← Route(m,p,k)
7: R ← R ∪ {result}
8: end for
9: return Strain(R, q)
10: end function

Algorithm 3.3 – SPARQL query execution algorithm.

To better illustrate what we explained, let assume a concrete example with
bibliographic resources described in RDF (as in Section 2.2.1) and stored in our
system. A possible query could be to find all authors’ firstname who have published
bibliographic resources in 1987 or between 2010 and 2013, so that their firstname
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starts with the letter E and ends with the letter r. Listing 3.1 represents this
SPARQL query.

The decomposition for the aforementioned SPARQL query results in 5 sub-
queries. On one side there are four atomic queries which are respectively (?g, ?isbn, rdf ∶
type, dc ∶ BibliographicResource), (?g, ?isbn, dc ∶ creator, ?creator), (?g, ?isbn, dc ∶
date, 1987) and (?g, ?creator, dc ∶ firstName, ?firstName) since we do not lever-
age regular expressions at the routing level. On the other side there is one range
query for (?g, ?isbn, dc ∶ date, ?date), 2010 ≤ ?date < 2014. Similarly to the scan
phase of centralized RDF stores, tuples that satisfy each subquery are retrieved,
in parallel. Afterwards, a final filtering is applied on the resulting tuples set with
the initial SPARQL query. This last step may be seen like the usual join phase
from centralized stores. However, in our case its purpose is more general since it
allows us to transparently support operators that are not handled at the routing
level such as the regular expression on line 7.

1 SELECT ? firstName WHERE {
2 GRAPH ?g {
3 ?isbn rdf:type dc: BibliographicResource .
4 ?isbn dc:date ?date .
5 ?isbn dc: creator ? creator .
6 ? creator dc: firstName ? firstName .
7 FILTER (REGEX (? firstName , "^E.*r$")
8 && (? date = 1987 || ?date >= 2010 && ?date < 2014))
9 }

10 }

Listing 3.1 – SPARQL query example for retrieving authors’ firstname with
conditions on the publication date of bibliographic resources and the letters
contained in authors’ firstname.

3.3 Evaluation

In order to validate our P2P infrastructure for RDF data, we have performed
micro benchmarks on the French Grid’5000 testbed. The goal was twofold. First,
we wanted to evaluate the overhead induced by the distribution and the various
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software layers between the repository and the end user. Second, we wanted to
evaluate the benefits of our approach, namely the scalability in terms of concurrent
access and the overlay size.

All the experiments presented in this section have been performed on a 75
nodes cluster with 1Gb Ethernet connectivity. Each node has 16GB of memory
and two Intel L5420 processors for a total of 8 cores. For the 300 peers experiments,
there were 4 peers and 4 RDF repositories per machine, each of them running in
a separate Java Virtual Machine.

3.3.1 Insertion of random data

Single peer insertion

The first experiment performs 1000 statements insertion and we measured the
individual time for each of them, on a CAN network made of a single peer. The two
entities of this experiment, the caller and the peer, are located on the same host.
The commit interval was set to 500 ms and 1000 random statements were added.
Figure 3.5(a) shows the duration of each individual call. On average, adding a
statement took 2.074 ms with slightly higher values for the first insertions, due to
cold start.
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Figure 3.5 – Local vs remote insertion on a single peer.

In a second experiment, the caller and the peer were put on separate hosts in
order to measure the impact of a local network link on the performance. As shown
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in Figure 3.5(b), almost all add operations took less than 9 ms while less than
6.7% took more than 10 ms. The average duration for an add operation was 6 ms.

Multiple peers insertion

We have measured the time taken to insert 1000 random statements in an overlay
with different number of peers, ranging from 1 to 300. Figures 3.6(a) and 3.6(b)
show respectively the overall time when the calls are performed using a single or
50 threads. As expected, the more peers, the longer it takes to add statements
since more peers are likely to be visited before finding the correct one. However,
when performing the insertion concurrently, the total time is less dependent on the
number of peers. Depending on the various zones sizes and the first peer randomly
chosen for the insertion, the performance can vary, as can be seen with the small
downward spike on Figure 3.6(b) at around 80 peers. To measure the benefits
of concurrent access, we have measured the time to add 1000 statements on a
300 peers overlay while varying the number of threads from 1 to 50. Results in
Figure 3.6(c) show a sharp drop of the total time, clearly highlighting the benefits
of concurrent access.

3.3.2 Queries using BSBM

The Berlin SPARQL Benchmark (BSBM) [109] defines a suite of benchmarks for
comparing the performance of storage systems across architectures. The bench-
mark is built around an e-commerce use case in which a set of products is offered
by different vendors, with given reviews by consumers regarding the various prod-
ucts. The following experiment uses BSBM data with custom queries detailed
below. The dataset is generated using the BSBM data generator for 666 products.
It provides 250030 triples which are organized following several categories: 2860
Product Features, 14 Producers and 666 Products, 8 Vendors and 13320 Offers, 1
Rating Site with 339 Persons and 6660 Reviews.

Custom queries executed

Owing to the fact that we support efficiently only a subset of SPARQL, we chose
out of this benchmark specification, four queries which are executed independently
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Figure 3.6 – Sequential and concurrent insertions with up to 300 peers.
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by using a different initial peer each time. These queries use the namespaces
referenced in Table 3.1.

Q1 – Returns a graph where producers are from Germany:

CONSTRUCT {
i s o :DE <http ://www. ecommerce . com/Producers> ? producer

} WHERE {
? producer rd f : type bsbm : Producer .
? producer bsbm : country i s o :DE

}

Q2 – Returns a graph with triples containing instances of purl:Review:

CONSTRUCT {
? review rd f : type pur l : Review

} WHERE {
? review rd f : type pur l : Review

}

Q3 – Returns a graph where triples imply a rdf:type relation as predicate:

CONSTRUCT {
? s rd f : type ?o

} WHERE {
? s rd f : type ?o

}

Q4 – Returns a graph where bsbm-ins:ProductType1 instance appears:

CONSTRUCT {
bsbm− i n s : ProductType1 ?a ?b
? c ?d bsbm− i n s : ProductType1

} WHERE {
bsbm− i n s : ProductType1 ?a ?b .
? c ?d bsbm− i n s : ProductType1

}
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bsbm http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/
bsbm-ins http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
iso http://downlode.org/rdf/iso-3166/countries#
purl http://purl.org/stuff/rev#

Table 3.1 – BSBM namespaces used by the queries considered.

Q1 and Q4 are complex queries and will be decomposed into two subqueries.
Hence, we expect a longer processing time for them. The number of matching
tuples is given in Table 3.2.

Query Q1 Q2 Q3 Q4
# of results 1 6660 25920 677

Table 3.2 – Number of final results for the queries considered.

Figure 3.7 shows the execution time and the number of visited peers for pro-
cessing Q1, Q2, Q3 and Q4. Note that when a query reaches an already visited
peer, it will not be further forwarded, therefore we do not count it. Q1 is divided
into two subqueries with only a variable subject. Hence, it can be efficiently routed
and is forwarded to a small number of peers. Q2 also has one variable and thus
exhibits similar performance. Q3 has two variables so it will be routed along two
dimensions on the CAN overlay, reaching a high number of peers. Since it returns
25920 statements, the messages will carry a bigger payload than for the other
queries. Finally, Q4 generates two subqueries with two variables each, making it
the request with the highest number of visited peers. On the 300 peers network,
the two subqueries have visited more than 85 peers.

Concluding remark Regarding tuples insertion into the distributed storage,
although a single insertion has a low performance, it is possible to perform them
concurrently, leading to a higher throughput. The performance of queries is more
complex to predict since it depends on the number of subqueries, the payload
carried between peers and the number of visited peers. While the payload depends
on the request itself (number of variables and constraints), the number of peers
depends not only on the structure of the overlay but also on the randomly chosen
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peer for initiating the query.
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Figure 3.7 – Custom queries with BSBM dataset on various overlays.

Summary

In this chapter we have presented a distributed RDF storage based on a struc-
tured P2P infrastructure. RDF tuples are mapped on a four-dimensional CAN
overlay based on the value of its elements. The global space is partitioned into
zones and each peer is responsible for all the tuples falling into it. We do not
use hash functions, thus preserving the data locality. SPARQL queries are de-
composed into subqueries that are executed in parallel. We have validated our
implementation with micro benchmarks. Although basic operations like adding
tuples suffer from an overhead, the distributed nature of the infrastructure allows
concurrent accesses. In essence, we trade performance for throughput.

Obviously, our solution has some drawbacks. The first downside is that our
approach is sensitive to the distribution of data. Since we use the lexicographic
order to index data, when some RDF tuples share the same namespaces or prefixes
the probability they end up on a same peer is very high. Therefore, one or more
peers might become a hot zone. To address this issue, we will introduce and
discuss some solutions in Chapter 5. The second inconvenient with our solution
is related to the execution of SPARQL queries. We decided to handle subqueries
in parallel. However, when subqueries share common variables (i.e. require a
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join) and return tuples set with sizes that differ from one ore more orders of
magnitude, our solution requires to carry from peers to peers and until the query
initiator many tuples that would be unnecessary if subqueries were pipelined by
previously building a sequential query plan. This issue, that relates to the number
of intermediate results to convey in the network in order to solve a SPARQL query
has been highlighted empirically with our system [110]. Quilitz et al. propose
in [111] to build a query plan that executes subqueries sequentially after they
have been sorted in descending order according to the number of fixed parts and
their position (i.e., graph, subject, predicate or object of a quadruple pattern).
Indeed, subqueries with a lot of fixed part are assumed to return a few number of
tuples. Consequently, the next subquery to execute may leverage the result from
the previous one to reduce the number of intermediate results. One step forward,
in [112] the authors propose to investigate the selectivity of subqueries (i.e. an
estimation or an exact value about the number of tuples subqueries are expected
to return once executed). This way an optimal query plan may be executed.
In this respect, a perspective could be to combine our solution with an optimal
query plan to execute queries. That, with the idea to still execute in parallel
subqueries with a low selectivity or whose a bright reordering might not reduce
the bandwidth consumption. Also, another point that hurts performance and that
could be considered to enhance the execution time is related to the latency to
route messages. Peers that are close together in the underlying network topology
could be moved as neighbors at the overlay layer. Ali et al. have shown recently
in [113] that a structured P2P system improved with locality awareness and some
additional shortcuts for frequently used routes may boost performance by a factor
of two in an RDF context.
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This chapter details our second contribution that relates to a publish/subscribe
layer for storing and selectively disseminating RDF events. It is built as an ex-
tension atop the infrastructure introduced in the previous chapter and relies on
the routing algorithms that were described earlier. We start to compare existing
solutions and we explain why building RDF-based event systems differs from con-
ventional publish/subscribe systems. Then, we introduce our publish/subscribe
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infrastructure for RDF events. First, we detail the event and subscription model
suitable for RDF data we propose. Afterwards, we list the different properties or
requirements our publish/subscribe system is assumed to respect, before entering
into the details of two event filtering algorithms. Their characteristics and dif-
ferences are explained, discussed and analyzed. To conclude, the algorithms we
propose are evaluated in a distributed environment.

4.1 Related Works

Event-based systems are at the heart of publish/subscribe interactions. The ances-
tors of these systems are most probably Database Management System (DBMS)
that were the first to instigate the need for reacting to data changes. In the rest
of this section we briefly discuss solutions built on top of relational databases,
also known as active databases, whereupon we enter into the details of some well
known publish/subscribe systems and explain how they differ from RDF-based
event systems. In both cases, the major difficulty in the presented solutions is to
decide how events and subscriptions are indexed so that a matching is possible and
notifications delivered, ideally without duplicates. Also, system responsiveness is
a real challenge, especially depending on the expressivity of subscriptions. In this
context, we will see what are the tradeoffs made by system’s authors and how our
solution is placed regarding to others.

4.1.1 Active databases

Solutions such as HiPAC [114], Ode [115], Postgres [116], that are known as Active
Databases [117] rely on database triggers that are actions which are executed when
an event occurs, such as the modification of a database row or table. The benefits
of triggers are multiple. They are usually used to audit changes, replicate data or
even enhance performances by summarizing values for future queries. However,
as we already mentioned, DBMS has been designed some years ago when deploy-
ment was most of the time targeting a single machine. Also, triggers are applied
at the schema level (i.e. when a row or table is created, edited or deleted) and
do not achieve the exact same purpose as traditional publish/subscribe systems.
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In their essence, database triggers are more generic than subscriptions from pub-
lish/subscribe systems. The reason lies in the fact that database triggers rely on
Event-Condition-Action (ECA) rules that decouple and abstract the condition on
which an action is executed and the action itself. In contrary to subscriptions that
filter and forward matching events to their respective subscribers, ECA rules al-
low to express conditions based on database state values and to execute arbitrary
actions when they are satisfied. However, to express conditions based on some
state raises one main question which is how to ensure data consistency across
different machines. Many solutions exist and all relational databases implement
one since they focus on ACID properties. Nonetheless, to enforce consistency in a
distributed system has the direct and bad effect of increasing operations latency,
which is most of the time not acceptable in publish/subscribe systems since they
aim to filter information in near real-time.

4.1.2 Conventional publish/subscribe systems

In the last two decades, the flexibility, modularity and responsiveness of pub-
lish/subscribe led to the emergence of several solutions. Broadly speaking, these
systems are classified into topic-based or content-based categories according to their
expressivity. Tibco [118] and Pubsubhubbub [119] are representatives of this for-
mer category that provides limited filtering capabilities. Most prominent solutions
regarding the latter category are certainly Siena [120] and Hermes [55]. Siena,
uses covering-based routing algorithms to reduce routing entries and unnecessary
forwarding of subscriptions. However it incurs several drawbacks that are intrinsic
to the choice of the routing algorithm but also the topology that is static and
non-structured. Subscriptions are flooded to the whole network and an unsub-
scribe operation may implicitly unsubscribe to all the filters that are covered by
the former filter. Hermes relies on an extension of Pastry [22], a structured P2P
protocol named PAN. Subscriptions and publications are sent to a rendez-vous
node by means of an event dissemination trees created dynamically. Notifications
are forwarded by using reverse paths. More recently, BlueDove [121] proposes to
match publications with subscriptions atop a modified version of Cassandra [35]
in just one hop: replicating subscriptions on a selected subset of one hop away
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accessible peers and then selecting one of these replica to trigger the matching ac-
cording to load information of peers, regularly exchanged throughout the system.
Their scheme does not require reverse path forwarding neither any computation
over multiple intermediate peers.

The closest system to our is certainly Meghdoot [122]. The authors leverage
the CAN [20] logical topology as we do. Similarly to other conventional publish/-
subscribe systems, their data model is based on multiple attributes. Also, their
system is initialized with a schema that defines attributes’ name, type and domain.
Additionally, all peers are assumed to share the same schema. Events are a subset
of attributes from the schema set where each attribute is associated to a value. A
subscription is a conjunction of binary predicates over one or more attributes. The
construction of the logical space depends on the number of attributes that made
up events. Assuming that events have at most n attributes, then a CAN network
with 2n dimensions is built. Dimensions 2i and 2i−1 are in charge of managing the
attribute domain for attribute i. By using this property, events and subscriptions
are mapped to points. Events lie on the diagonal which is a line which passes by
the lower and upper bounds of the 2n-dimensional space while subscriptions are
located in the upper part delimited by the diagonal. The remaining side is left for
fault tolerance purposes. To deliver notifications, each time an event is published,
it is sent to the peer that manages the event point on the diagonal before triggering
an event propagation algorithm that aims to reach the subscriptions affected by
the event on the upper left side. The algorithm propagates the event on a selected
subset of neighbors by applying some optimizations to prevent repetitive propa-
gations. In case users subscribe for all events, their event propagation algorithm
must start from a peer that is at a corner of the CAN network, which leads to
performance bottleneck. Also, the main disadvantages of Meghdoot is that events
type, domain (e.g. from 1 to 100 for event type integer) and the maximum number
of elements per event should be defined at startup. This last parameter having a
direct impact on the structured overlay and routing performances.

The main drawback from the system introduced previously and from traditional
event-based systems in general is that they do not focus on the specific character-
istics of RDF. The first point is that most of them make use of structured records.
In a record-oriented model, events consist of named set of attribute value pairs
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where the order between pairs does not matter. In contrast, RDF building blocks
are 3-tuple or 4-tuple and RDF events are usually unbounded set of tuples where
the order of elements within a tuple is important since the self-description of RDF
comes in part from this property. In [123], the authors argue that tuples provide
a simple model that is not flexible enough because subscriptions used to express
events to receive must either specify for each tuple element an exact value or a
wildcard (e.g. an asterisk) to point out the fact that any value matches. Record-
oriented systems do not have to specify a wildcard for attributes they do not care
about. They may simply omit to specify them. Although structured records seem
more flexible from a subscription’s perspective, the authors concede that match-
ing by position in tuple-oriented systems is more efficient in practice. Despite the
last observation regarding filtering performance, to our knowledge only one non
RDF related system called JEDI [56] makes use of tuples to model events. In
this system, events are spread through dissemination trees created dynamically
after having elected a group leader, similarly to Hermes. However, each leader
must perform a global broadcast to all other brokers, which might not be scal-
able depending on how it is implemented. The second drawback with traditional
publish/subscribe systems is that they make some assumptions on events content
in terms of type, domain and size. Unfortunately, this is not appropriate to inte-
grate, filter and relay events that are produced from heterogeneous sources where
the number of attributes and their type differ from a source to another.

To conclude, the data but also the subscription model are strongly related and
have a large impact on the scenarios to consider. A few works in conventional
publish/subscribe systems have based their data model on tuples. We introduce
below some event-based works made for RDF.

4.1.3 RDF-based publish/subscribe systems

RDFPeers [124] is a distributed RDF repository where peers are self-organized
into a Multi-Attribute Addressable Network (MAAN) [90]. MAAN extends Chord
[21] such that information retrieval may be performed for any triple term. Pub-
lishing a triple implies to index it three times, each one based on the hash value
of its subject, predicate and object value. Atomic, disjunctive and range subscrip-
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tions are supported with the exception of some patterns. For instance, it is not
possible to subscribe for all the information nor with some join constraints. Be-
sides, RDFPeers ignores popular terms such as rdf:type predicates and, therefore,
subscriptions involving them cannot be resolved.

In [125], Ranger et al. introduce an information sharing platform for dissemi-
nating RDF activities. Their solution relies on the Scribe [53] system that offers
a topic-based publish/subscribe system on top of Pastry. Queries are expressed in
a SPARQL dialect and registered as topics. Unlike other solutions, the algorithm
they propose does not index data a priori. Instead, their strategy relies upon find-
ing results through multicast trees built from scratch, associated with redundant
caching and cached lookups mechanisms. The peers participating to the propaga-
tion are responsible for removing duplicate results within the limit of their buffer.
This probably leading to duplicate notifications over the time.

CSBV [126] proposes a generic and DHT agnostic approach for resolving atomic
and conjunctive SPARQL subscriptions. Their scheme strongly relies on hashing
and requires to index each triple seven times. Owing to the fact that the number
of indexations that is required correspond to the combination without repetition
of the elements contained by the tuples that are published, it grows quickly up
to 15 when quadruples are considered. Subscriptions are resolved by rewriting
dynamically subscription patterns matching new incoming publications. The pub-
lish/subscribe algorithm we introduce in the next sections derives from this idea.

Recently, Shvartzshnaider et al. proposed in [127] to combine AI and Peer-to-
Peer research approaches for building a publish/subscribe system that supports
publication of arbitrary tuples and subscriptions with standing graph queries.
Their idea consists in applying Rete [128] algorithms on a Chord network to re-
solve join conditions contained by subscriptions. Basically, a Rete network acts as
a distributed cache where subscription patterns that are executed are cached along
with their results for future reuse. Thus, answers from previously executed sub-
scriptions may be reused with new subscriptions that involve similar patterns. The
authors consider tuples as primitives and allow subscriptions to match against an
unbounded flow of tuples but do not explain how memory growth is managed (i.e.
by using for instance time windows operators). Publications and subscriptions are
indexed similarly to RDFPeers (cf. Section 3.1.2) in order to create rendezvous
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nodes where the satisfaction of subscriptions is verified. Although they claim that
Rete approach is effective, no discussion is given about how duplicates are avoided
when in-memory buffers overflow. Moreover, subscriptions are formulated through
an ad-hoc scripting language and no experimental evaluation is available.

Summary

Although publish/subscribe is generating great interest these last years, the model
is not new. Many approaches have been proposed, especially in a distributed
context. Most of these systems made assumptions on events type, domain and
size to improve the overall performances. A lot are using hashing to balance data
on multiple nodes, thus implying to index the same data multiple times while
reducing range-queries efficiency. Finally, a few, not to say none, try to combine
filtering and persistent storage of RDF events for later analysis. The solution we
introduce in the next section aims to tackle these drawbacks.

4.2 Publish/Subscribe Infrastructure for RDF

The publish/subscribe infrastructure for RDF events we describe here is built atop
the infrastructure introduced in the previous chapter and as a consequence it reuses
some concepts and notions. The purpose of this extension is to offer the possibility
to react to data in a responsive manner and gradually, when events are coming.
In the following, we describe how events are modeled and how subscriptions are
expressed through our data and subscription model. Then, we present the different
requirements we place on our infrastructure in order to better explain the different
choices we made with the two and complementary event filtering algorithms we
propose.

4.2.1 Data and subscription model

The main task of distributed publish/subscribe systems is to relay data to inter-
ested parties. Information to disseminate but also interest to data are described
by an event model. Data that are published are events and interest in events



84 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

is formulated by means of subscriptions. When the time comes to decide how
events and subscriptions are represented it is really important to keep in mind
the compromise there is between expressiveness and scalability [129]. To sum-
marize, the more expressive a publish/subscribe system is, the more complex the
event filtering algorithm becomes. The direct consequence is that the efficiency of
the matching algorithm significantly affects both performance and scalability. A
second critical point to consider is about interoperability. In distributed systems
the ability to automatically interpret the information exchanged meaningfully and
accurately between heterogeneous machines is often a strong prerequisite. In our
case it is all the more true since we have as a requirement to store events for future
reuse with standard technologies from the Semantic Web stack. The publish/sub-
scribe messaging pattern already provides a method to enhance interoperability
by decoupling publishers and subscribers. However, the event model plays also
an important role. Consequently, to further improve interoperability, it is a good
practice to use an event model that reuses or extends open standards that are
platform and language independent. Our data and subscription model strive to
address these two challenges by reusing existing standards and by defining clear
limits about which kind of interest may be formulated with the filtering language
we have adopted. Our approach, described in [130], allows users to formulate
queries and subscriptions but also to insert and publish information with respec-
tively an extension of RDF and a subset of SPARQL.

Events

In our data model, events are occurrences or actions of something that happens
expressed in the RDF model using 4-tuples (i.e. quadruples) whose elements are
named RDF terms. An RDF term may be either an IRI or a Literal value. Blank
nodes are not allowed because they incur expensive mechanisms to ensure their
uniqueness in the whole system. In compensation, end-users publishing events
containing bnodes may use skolemization1 to transform bnodes to IRIs.

Regarding the granularity of events, a quadruple has a limited meaning since
it can embed only a few number of information. It is acknowledged that fine

1http://www.w3.org/TR/rdf11-concepts/#section-skolemization

http://www.w3.org/TR/rdf11-concepts/#section-skolemization
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grain events significantly complicate the programming process and reduce the per-
formance of the system [131]. We tackle this issue by introducing Compound
Events (CEs). Elements or quadruples generated at the same time by a given
source form a CE, as defined by (4.1b). Each CE is a list of quadruples where
quadruples share a common term called graph value. This term is built with a
combination of a unique source identifier and a timestamp. The purpose of this
graph value is threefold. It is used to identify the event source, the event itself
but also to offer the possibility to link together several quadruples for emulating
unbounded multi-attribute values like in conventional publish/subscribe systems.

q = (g, s, p, o) ∣ g, s, p, o ∈ RDFTerm (4.1a)
CE = (q1, ..., qi, ..., qn) ∣ qi = (g, si, pi, oi) (4.1b)

Events indexation rests upon the routing algorithms proposed in the previous
chapter. The Figure 4.1 shows how CEs are mapped to our revised CAN network.
In concrete terms, each quadruple from a CE is indexed independently. A specific
message is created per quadruple with a unicast key based on the quadruple’s
terms. Then, this message is routed until reaching the peer that manages the
quadruple’s terms. It is worth to notice here that quadruple and thus Compound
Event indexation is fully asynchronous. Each method invocation done indirectly
by a publisher to index a quadruple during a Compound Event publication returns
immediately and no response is sent back. Therefore, quadruples from a CE are
inherently indexed in parallel.

Subscriptions

Subscriptions aim to match CEs. They are content-based and formulated using
a subset of SPARQL. In essence, a subscription is basically a list of one or more
atomic and range queries called sub-subscriptions or SS. A subscription is applied
on different CEs independently, i.e. only the quadruples that belong to the same
CE can trigger a notification. More precisely, a subscription S = (SS1, SS2, ..., SSn)
is found to match a compound event CE = (q1, q2, ..., qm) if for each SSi there exists
at least a matching qj. In other words, the whole subscription should be satisfied
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Figure 4.1 – Compound Event distribution with three quadruples.

by a subset of the quadruples contained by a CE. Although SPARQL could be used
to formulate more complex subscriptions with filtering that involves patterns made
of multiple events, a domain usually known as composite event detection [132, 133]
and supported by CEP engines, we limit our system to simple event processing.
The reason lies in the fact that composite event detection enhances the expressive-
ness of event-based systems but at the price of expensive correlations to perform
in a distributed manner, thus slowing down the performance of the whole system.
Moreover, many applications do not need complex subscriptions. However, as we
will see in Chapter 6 our solution is flexible enough to be extended or combined
with additional tools (like we did in the PLAY EU project) for complex event
processing.

To better illustrate which kind of subscriptions we allow, let suppose a building
with a sensor that generates events with our data model each time a person enters
or exists from the front door. Assuming the action, the person name and age is
embedded by the CEs that are published, a possible subscription to get informed
about the name of all people who have 25 years old or more and that exit from
the front door is depicted by Listing 4.1. This example is a standard SPARQL
query that could be executed synchronously on a common RDF engine. In our
case it can be seen as a query over future events, or say in another way, as a long
standing query. However, SPARQL is a really expressive language and since we
want to ensure expressiveness while maintaining scalability, but also due to the
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different requirements we introduce in the next section, we restrict subscriptions
to a subset of SPARQL with some conditions. A subscription written with our
subscription model is assumed to be a SPARQL query that a) uses the SELECT
query form; b) contains at most one group GRAPH pattern with a graph variable;
c) returns the graph variable declared in the GRAPH pattern. Multiple triple
patterns may be used inside the graph pattern defined in the subscription. One
or more FILTER clauses are also allowed to restrict solutions. Standard logical
operators but also filter functions like REGEX, STRSTARTS, etc. are permitted.

1 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
2 PREFIX ex: <http :// example .org/v/>
3 SELECT ?g ?id ?name WHERE {
4 GRAPH ?g {
5 ?id ex: action "exits" .
6 ?id foaf:name ?name .
7 ?id foaf:age ?age
8 } FILTER (? age > 25)
9 }

Listing 4.1 – SPARQL subscription example.

The process to index and detect subscriptions that are satisfied by incoming
events depends on the event filtering algorithm considered. Thus, the scheme will
be explained while describing the proposed publish/subscribe algorithms. How-
ever, the basic scheme to decompose subscriptions before indexing them remains
the same whatever the event filtering algorithm is. It consists in extracting atomic
and range queries, named in this context sub-subscriptions, from the subscription
in order to have the possibility to send the subscription to the peers that manage
one or more of the extracted sub-subscriptions. Specifically, the subscription given
in Listing 4.1 results in a decomposition with three SSs: two atomic queries (one
on line 5 and one on line 6) and one range query (lines 7–8).

To give a brief idea of how subscriptions are mapped on a CAN network,
Figure 4.2 outlines a simple case where two subscriptions made of one SS each are
indexed on a 2D CAN network. In this specific case, the general rule to index a
subscription consists of sending the subscription to the peers responsible for the
fixed parts of the SS it embeds. Since an SS may contain free variables, it may
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reach multiple peers. Moreover, some subscriptions may overlap on a peer.

S1 = (?x, p)

S2 = (r, ?y)

m

m

t

t

(a,a) (z,a)

(a,z) (z,z)

Figure 4.2 – Distribution of two subscriptions overlapping on a peer.

4.2.2 Requirements

In addition to the data and subscription model our publish/subscribe infrastruc-
ture complies with, the system is also designed to enforce a set of properties.
We list below the different properties or requirements we decided to support and
that have, along with the models, a direct impact on how the publish/subscribe
algorithms described in the next section behave. Some are use case driven.

R1 Events and subscriptions are assumed to be submitted to the event notifi-
cation service by means of lightweight applications dubbed proxies which
represent clients of the brokering network. Publish and subscribe proxies are
distinguished. The former is used to publish events whereas the latter for-
wards subscriptions to the P2P network in charge to perform the matching
between events and subscriptions. The general purpose of proxies is to let
the possibility to enforce end-to-end properties that have not been or could
not be implemented at the P2P level.

R2 Clocks are assumed synchronized between machines inside the P2P network
with Network Time Protocol (NTP) but not between proxies that subscribe
and publish events to peers. Indeed, to synchronize all entities is not an
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acceptable assumption due to the extra overhead latency incurred by far
away machines on the Internet. However, to synchronize peers’ clocks when
peers deployment targets a closed environment like a cloud, a cluster or a
grid as it is in our case, remains an acceptable possibility.

R3 Causal ordering between publish and subscribe requests handled asynchronously
from a same proxy must be enforced to do not introduce false negative (i.e.
notifications which are not received whereas they should). However, we do
not want to enforce any delivery order between publications and/or subscrip-
tions from different proxies since the order may only be guaranteed in that
case if events are tagged with a timestamp from a global clock shared be-
tween all entities and if the communication network provides a guaranteed
fixed latency time [134]. To illustrate the issue, let consider a subscription S

which enters the P2P network and is timestamped before a publication P but
eventually P is received before S on the peer that performs the matching.
Such a scenario can occur due to the asynchronism of the operations and
the multiple hop communications between peers. Moreover, this issue arises
even if we use TCP as the underlying protocol since the connection guar-
antees delivery order between two entities only (e.g., peers, proxies-to-peer,
peer-to-user).

R4 Quadruples must eventually be stored in the P2P overlay on peers in order
to be retrieved later to compute expensive batch analysis, statistical infor-
mation or simply to help CEP engines to correlate different CEs [12] in a
distributed manner by leveraging past knowledge.

R5 Events that must be notified are notified. For instance, if we publish P1 and P2

from a same publisher and both are matching S, then the subscriber who has
subscribed with S will receive P1 and P2. However, if due to the asynchronism
P2 is notified before P1 we can detect the situation and report the issue to
the interested parties. Here, we do not focus on the fault tolerance aspect
and we let it for future works. Consequently, events and subscriptions may
be lost if some failures occur.

R6 Data indexation does not rely on hashing in order to avoid multiple index-
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ations of the same publications as it is the case for most of the existing
works. Instead, publications should be indexed according to their lexico-
graphic order. On the other side subscriptions are replicated on multiple
peers in accordance with their expressiveness. We strongly believe that a
real publish/subscribe system face more publications than subscriptions.

R7 Notifications aim to inform subscribers about events that satisfy their sub-
scription(s). We think that subscribers should have the possibility to receive
different types of notifications that carry more or less information about the
events that match subscriptions. The purpose is to enhance the delivery
time but also the end-user bandwidth consumption when full event values
are not required. Consequently, we assume a subscriber is allowed to sub-
scribe for getting either a signal, a collection of bindings (the values matching
the variables contained by the subscription) or the full compound event that
has matched its interests. This is materialized with a subscription by using
respectively Bindings, Compound Event or Signal notification listeners.

R8 Our event notification service is assumed to deliver no duplicate and no false
positive. By false positive we mean to deliver events that are not matching
a subscription.

4.2.3 Event filtering algorithms

This section introduces two publish/subscribe algorithms optimized for different
use cases. The first one, named Chained Semantic Matching Algorithm (CSMA),
is optimized for the publications while One-step Semantic Matching Algorithm
(OSMA), introduced page 109, is optimized for the subscriptions.

CSMA

The general idea of CSMA, as inspired by Liarou et al. [126] with Continuous
Spread By Value (CSBV), is to publish in parallel and perform the matching of all
the sub-subscriptions contained by a subscription sequentially. Indeed, all peers
involved in a subscription will be organized in a chain-like fashion. Only the peers
indexing the subscription can start the matching process and notify the next peers
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in the chain which, in turn, will try to find a match. The process ends when
reaching the last peers in the chain, i.e. when the whole subscription is satisfied.
We decided to start from CSBV because this algorithm is designed to balance
quadruples among peers by handling them independently and not considering a
CE as a whole.

Indexing a publication Compound events published by users to the network
are sent first to a publish proxy. The proxy relays the compound event to a peer
that timestamps the quadruples contained by the CE with the peer’s clock. This is
done on a peer and not from a proxy to satisfy R2 and R3. If the quadruples were
timestamped on the proxy side, a publication time could not be compared with a
subscription time once a publication reaches a peer because proxies and peers do
not have their clocks synchronized. Once timestamps are set, the first peer that
receives the compound event considers each quadruple from the CE independently
and sends each of them, asynchronously, to the responsible peer as depicted by
Listing 4.2. Notice that quadruples are sent along with an additional one, named
meta-quadruple. This quadruple denotes the number of quadruples contained by
a compound event and is used later to retrieve the entire compound event that
has matched a subscription in case the full CE was requested (requirement R7).
Each quadruple is sent asynchronously from a publish proxy to the event service
with the help of a specific request message that is then routed to the relevant peer
with the algorithm introduced in Section 3.2.2 since the request embeds a unicast
key where elements are RDF terms from the quadruple to index.

1 def receive ( compound_event ):
2 timestamp = now ()
3

4 for quadruple in compound_event :
5 quadruple . indexation_time = timestamp
6 async_send ( PublishQuadrupleRequest ( quadruple ))
7

8 # creates a meta - quadruple that indicates the number
9 # of quadruples contained by the compound event

10 meta_quad = create_meta_quad ( compound_event , timestamp )
11 async_send ( PublishQuadrupleRequest ( meta_quad ))
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Listing 4.2 – Upon reception of a publication on a peer.

Then, when the peer that manages the quadruple terms receives the request
that aims to index the quadruple, it triggers the matching algorithm defined in
Listing 4.3.

Quadruple matching The purpose of the matching algorithm is twofold. First,
it stores the received quadruple q to ensure that delayed subscriptions (i.e. sub-
scriptions injected in the network before the quadruple but indexed after due to
different routing steps) have a chance to be fulfilled. Second, it detects the sub-
scriptions that are fully or partially matched in case the quadruple received is not
a meta-quadruple added by the system. For each subscription S which is detected
to be matched by the new quadruple, the number of sub-subscriptions contained
by S is checked. To have S with more than one sub-subscription A means that
only one part of the whole subscription is matched. When this situation occurs, S

is rewritten into S′ as in CSBV. The rewrite operation consists of creating a new
subscription that does not contain the sub-subscription A which is verified, and
to replace in the remaining sub-subscriptions for S′ the variables from A with the
values from q. Afterwards, S′ is indexed, again, as for S, by considering the first
sub-subscription contained within S′. One additional step has to be considered
during the rewrite operation when the subscription that is analyzed was made
with a Bindings notification listener. Such a listener implies to send back to the
users only the bindings that are matching the subscription. However, we do not
want to convey the intermediate results from peers to peers when the subscrip-
tion is rewritten because the size of a literal associated to a quadruple that has
potentially matched S is not bounded: it could be some bytes or megabytes. For
this purpose, intermediate results are stored on the peer matching the SS and a
reference to that peer along with a hash value identifying the intermediate results
is added as metadata (by using a 128 bits non-cryptographic hash function) to
the rewritten subscription. The hash value allows us to carry an identifier with a
small and predefined size. Moreover, even if the identifier is unique with a high
probability, a sequence number may be concatenated to guarantee the uniqueness.
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1 def receive ( publish_request ):
2 quadruple = publish_request . quadruple
3 store( quadruple )
4

5 if not is_meta_quad ( quadruple ):
6 # finds subscriptions that have their first sub - subscription
7 # matched by the quadruple received
8 subscriptions = find_subscriptions_matching ( quadruple )
9 for subscription in subscriptions :

10 if quadruple . indexation_time >=
11 subscription . indexation_time :
12 rewrite_or_notify_subscriber ( subscription , quadruple )
13

14 def rewrite_or_notify_subscriber ( subscription , quadruple ):
15 if len( subscription ) == 1:
16 notify_subscriber (subscriber , quadruple )
17 else:
18 rewrite_and_index ( subscription , quadruple )
19

20 def rewrite_and_index ( subscription , quadruple ):
21 if subscription . listener_type is BINDINGS :
22 intermediate_result =
23 create_intermediate_result ( subscription , quadruple )
24 store( intermediate_result )
25

26 async_send ( IndexSubscriptionRequest ( rewrite ( subscription )))
27

28 def notify_subscriber ( subscription , quadruple ):
29 # filter the quadruple according to the subscription
30 # type and its variables
31 chunk = filter (quadruple , subscription )
32 async_send ( subscription .proxy_url ,
33 NotifyRequest ( subscription .id , chunk ))
34

35 if subscription . listener_type is BINDINGS :
36 # contact peers that have stored intermediate results
37 for peer , hash in subscription . intermediate_peers :
38 async_send (peer ,
39 CollectIntermediateResultsRequest (
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40 subscription .id , hash ))

Listing 4.3 – Upon reception of a PublishQuadrupleRequest by a peer.

In case the number of sub-subscriptions contained by S is one, no more quadru-
ple are necessary to match S. The only thing to do is to notify the subscriber about
a solution by using the right format in line with the original notification listener
type. According to the type of subscription listener used by the subscriber we
trigger different kind of notifications.

In case of a Signal or Compound Event (more detail follow for this last case)
listener, we send back a pair made of the subscription identifier plus the graph
value of the last quadruple that has matched the subscription. However, when
a Bindings listener is used, we replace the graph value by the values associated
to the variables matching the last SS. But, again, to trigger a notification for
Bindings implies an additional operation which involves the different peers that
store the intermediate results. These peers have to be contacted and asked to
return, in parallel, to the subscriber the missing parts of the subscription that
have been matched. Finally, when the different parts of Bindings are collected,
they are merged and the result is passed to the listener before being executed
(cf. Listing 4.4). The delivery is performed when the subscriber has received a
number of solutions equals to the number of result variables contained by the initial
subscription. The Signal case is handled immediately by executing the associated
listener.

To handle Compound Event notification listeners is a bit more complicated.
Previously, we said that when a subscription is fully matched we send back to the
subscribe proxy the graph value only, as for notification listeners of type Signal.
This graph value g is used to query synchronously all the peers that satisfy the
quadruple pattern (g, ?s, ?p, ?o). This operation is repeated periodically until to
receive all the quadruples that made up the CE matching the subscription. In-
deed, a simple query is not sufficient because all the quadruples contained by the
compound event may not be indexed when the last sub-subscription is satisfied
and in this case, notice that these quadruples were not necessary for the matching
subscription process to succeed. Moreover, we decided not to send quadruples
to the subscriber as soon as they are matching sub-subscriptions for two reasons.
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First, only the first SS but not all may be satisfied. In such a case, the intermediate
results are kept by the subscriber and overload it until an unsubscribe operation or
a garbage collection is performed. The latter potentially preventing some events
to be delivered, thus going against requirement R5. The second reason is that the
number of quadruples matching a subscription may be just a subset of the full CE.
Thus, even if intermediate matching quadruples were sent gradually, it would be
necessary to perform an extra step later to retrieve the remaining chunks.

To avoid sending back to the subscribe proxy quadruples that may have already
been received during a previous polling operation, quadruples’ position (index)
from their respective CE list are attached to the ReconstructCompoundEventRe-
quest which is sent. Thanks to this information, only new expected quadruples
are sent back and some bandwidth is saved. The polling period could also be
tuned based on an exponential backoff [135] or inversely proportional to the times
returned by such a function but it is scenario sensitive and specific.

1 def receive ( notification ):
2 subscription = find_subscription ( notification . subscription_id )
3 listener = find_listener ( notification . subscription_id )
4 listener_type = type( listener )
5

6 if listener_type is BINDINGS :
7 if get_nb_chunks_received ( notification .id) ==
8 subscription . nb_result_vars :
9 chunks = remove_and_merge_chunks ( notification .id)

10 if mark_as_delivered ( notification .id ):
11 listener . deliver ( subscription .id , chunks )
12 else:
13 memorize_chunk ( notification .id , notification .chunk)
14 elif listener_type is SIGNAL :
15 graph_value = notification .chunk
16

17 # returns False if notification .id already delivered
18 # notification id unique for a given subscription and CE
19 if mark_as_delivered ( notification .id ):
20 listener . deliver ( subscription .id , graph_value )
21 elif listener_type is COMPOUND_EVENT :
22 ce = reconstruct_compound_event ( notification )
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23 if ce is not None:
24 listener . deliver ( subscription .id ,
25 CompoundEvent ( quadruples_received ))
26

27 def reconstruct_compound_event ( notification ):
28 expected_nb_quadruples = -1
29 quadruples_received = set ()
30

31 if not mark_as_delivered ( notification .id ):
32 return None
33

34 while expected_nb_quadruples == -1
35 or not len( quadruples_received ) == expected_nb_quadruples :
36 graph_value = notification . graph_value
37

38 response = sync_send (
39 ReconstructCompoundEventRequest ( graph_value ),
40 indexes ( quadruples_received ))
41

42 for quadruple in response . new_quadruples :
43 if is_meta_quad ( quadruple ):
44 expected_nb_quadruples = get_meta_quad_value ( quadruple )
45 else:
46 quadruples_received .add( response . new_quadruples )
47

48 if not len( quadruples_received ) == expected_nb_quadruples :
49 sleep( TIMEOUT )
50

51 return CompoundEvent ( quadruples_received )

Listing 4.4 – Upon reception of a notification by a subscribe proxy.

Listing 4.4 contains some particular conditions on line 10, 19 and 31 that rely on
a Compare-and-Swap operation to prevent duplicates to be delivered (requirement
R8). Indeed, this first algorithm may suffer from duplicate notifications when an
accept all subscription (i.e. a subscription that matches any event) is handled or
a CE with objects list (i.e. a CE that contains two or more quadruples that share
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the same graph, subject and predicate but different object values) are published2.
This usually happens when there are more than one quadruple from a CE that
satisfy a same sub-subscription. In other words, the issue occurs when we have
a subscription S with n SSs, a CE with q quadruples whose m are matching S

and m > n. When such a case occurs, up to m notifications maybe triggered to
the subscribe proxy whereas only one is expected per CE in case the subscriber
subscribes for example with a Signal listener. Also, the condition on line 31 is
essential to avoid several reconstructions for a same CE since the receive and
hence the reconstruct_compound_event operations may be triggered in parallel
by different peers on a subscribe proxy for a same CE due to duplicates.

Indexing a subscription Initially, a subscription is submitted from a user
through a subscribe proxy. As for a publication, a subscription is relayed from
a proxy to a peer which is responsible for timestamping and indexing it. List-
ing 4.6 summarizes the process which is triggered once a subscription is received
by a proxy. First the SPARQL query is decomposed into atomic or range queries.
Listing 4.5 shows an example of the expected pieces to consider for indexing the
subscription from Listing 4.1 once it has been decomposed. The atomic and range
queries that result from the decomposition are the smallest request entities that
may be routed by taking advantage of the overlay structure.

1 SS_1 = (?g, ?id , ex:action , "exits")
2 SS_2 = (?g, ?id , foaf:name , ?name)
3 SS_3 = (?g, ?id , foaf:age , ?age) FILTER (? age > 25)

Listing 4.5 – SPARQL subscription decomposition into sub-subscriptions.

After the split of the subscription into pieces, a unique identifier is generated
and the subscription is conveyed to the peer the proxy is aware of as an overlay
entry point. The first peer that receives the subscription sets the indexation times-
tamp and routes the subscription asynchronously on the network to all the peers

2The simplest scenario that leads to duplicate notifications is the one involving two peers which
register an accept all subscription and a publisher that publishes a CE with 2 quadruples that
each reaches a different peer. Since the subscription is registered on both peers and quadruples
from a same CE match on two different peers, two notifications are sent towards the subscriber,
which causes duplicates if there are not filtered.
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that match the first sub-subscription. The subscription will be further distributed
among the peers in a chain like fashion. To use the first sub-subscription ensures
that the subscription is indexed at least on a peer that will receive later any pub-
lication that can match this first SS. We also pay attention to use only the SS to
avoid some extra synchronization points, and thus communications compared to
the case where the subscription would be indexed on all the peers matching any of
the SSs. Once decomposed, a subscription is represented by its atomic and range
queries and these share at least one common variable: the graph variable that
represents the CE identifier which is matching the subscription. When common
variables are shared between atomic or range queries, they have to be resolved
as an equi-join. Choosing to resolve sub-subscriptions in parallel would imply a
consensus between some peers due to equi-joins to compute and we think that
this agreement between peers is more expensive (or at least not interesting for the
few number of atomic or range queries a subscription usually embeds) than the
chain-like approach where the synchronization and agreement is implicit.

1 # subscribe on the proxy side
2 def subscribe ( sparql_query , listener ):
3 subsubscriptions = decompose ( sparql_query )
4

5 # the subscribe proxy is remotely accessible to
6 # receive notifications
7 proxy_url = get_subscribe_proxy_url ()
8

9 subscription_id =
10 hash( sparql_query , datetime .now (), proxy_url ) + proxy_id
11 subscription =
12 Subscription ( subscription_id , subsubscriptions ,
13 proxy_url , type( listener ))
14

15 memorize ( subscription_id , ( subscription , listener ))
16 async_send (peer , SubscribeRequest ( subscription ))
17 return subscription_id
18

19 # subscription received on a peer
20 def subscribe ( subscribe_request ):
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21 subscribe_request . subscription . indexation_time = now ()
22 # index subscription to all peers matching subsubscriptions [0]
23 async_send (peer ,
24 IndexSubscriptionRequest ( subscribe_request . subscription ))

Listing 4.6 – Handling a subscription from a proxy to a peer.

Subscription matching Once a peer receives an IndexSubscriptionRequest, it
triggers the matching algorithm defined in Listing 4.7. It is really similar and sym-
metric to the behavior applied for indexing a quadruple. First, the subscription
is stored in the local semantic datastore to ensure that future quadruples match-
ing the subscription have a chance to be detected. Then, a SPARQL query is
built on the fly from the subscription. This query is used to retrieve the quadru-
ples that are matching the subscription. At this step, to find some quadruples
matching the subscription implies that the subscription itself has been delayed
regarding the original timestamps-based order in which it has entered the net-
work. Finally, for each quadruple matching the subscription we apply the method
rewrite_or_notify subscriber. The behavior of this method is exactly the same
as for indexing a quadruple; it either rewrites the subscription into a new one if
some sub-subscriptions still have to be satisfied or it notifies the subscriber about
a solution.

1 def receive ( index_subscription_request ):
2 subscription = index_subscription_request . subscription
3 store( subscription )
4

5 # query the local semantic datastore
6 quadruples_matching = find_quadruples_matching ( subscription )
7

8 for quadruple in quadruples_matching :
9 if quadruple . indexation_time >=

10 subscription . indexation_time :
11 # see Listing 4.3 for details about the next call
12 rewrite_or_notify_subscriber ( subscription , quadruple )

Listing 4.7 – Upon reception of a IndexSubscriptionRequest on a peer.
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To summarize, the subscription is distributed among the peers in a chain like
fashion. Thus, the sub-subscriptions contained by the subscription are handled
step by step in the order they appear. A subscription is stored on a peer found
using the fixed parts of the first atomic query, so potentially many peers. Each
peer stores the whole subscription to be able to find the next peers to reach when a
sub-subscription is verified. The peers that store the first sub-subscription are the
head of the chain. This algorithm is designed to transparently handle the common
case and the temporal ordering discrepancy, we refer to as the happen-before
relation. As an improvement, sub-subscriptions could be shook up according to the
number of fixed parts they contain. The peers could also maintain and exchange
statistical information about the most frequently met sub-subscriptions. Thanks
to this information we could reorganize SSs embedded within a subscription such
that the less frequently seen SSs are used in first. It should improve the load-
balancing and the time to detect non-matching events but not those that fully
match a whole subscription. Therefore, this optimization is left for future work.

Avoiding polling for reconstruction

The first version of the publish/subscribe algorithm we explained has a main short-
coming. The CE listener uses polling for retrieving the quadruples which compose
a CE that satisfies a subscription. Fast polling wastes resources on peers whereas
slow polling increases the delivery time. The first and obvious improvement is to
avoid polling for users that wish to receive the full CEs content (i.e. they have
subscribed with a notification listener of type Compound Event). To carry out
this goal, we propose to use a push mechanism from peers. The push procedure
relies on another type of subscriptions called ephemeral subscriptions. The idea
is to send gradually to the subscribers the multiple quadruples that made up a
CE, this without having to poll periodically from a subscribe proxy to the P2P
network for missing chunks.

To achieve this purpose, the method notify_subscriber introduced in List-
ing 4.3, and some others, have to be edited as follows. Once a subscription S is
matched, an ephemeral subscription is indexed on the right peers. These peers will
asynchronously and lazily notify the client proxy for the different quadruples that



4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 101

compose the CE matching S as soon as they arrive. Listing 4.8 summarizes the
basic idea of the algorithm with new parts which are highlighted.

1 # called by any peer that has a subscription matched by an event
2 def notify_subscriber ( subscription , quadruple ):
3 # When a COMPOUND_EVENT listener is used , the chunk is now
4 # a quadruple and not the event identifier
5 chunk = filter (quadruple , subscription )
6 async_send ( subscription .proxy_url ,
7 NotifyRequest ( subscription .id , chunk ))
8

9 if subscription . listener_type is BINDINGS :
10 # contact the peers that have stored the intermediate
11 # results identified by a hash value
12 for peer , hash in subscription . intermediate_peers :
13 async_send (peer ,
14 CollectIntermediateResultsRequest ( subscription .id , hash ))
15 elif subscription . listener_type is COMPOUND_EVENT :
16 async_send (
17 IndexEphemeralSubscriptionRequest ( quadruple .graph ))
18

19 # handle performed on the reception of an ephemeral subscription
20 # on a peer managing it
21 def receive ( ephemeral_subscribe_request ):
22 store( ephemeral_subscribe_request )
23

24 quadruples =
25 find_quadruples_matching ( ephemeral_subscribe_request )
26 # we may have several quadruples indexed on the same peer
27 # that belong to the same CE
28 for quadruple in quadruples :
29 async_send ( ephemeral_subscribe_request .proxy_url ,
30 NotifyRequest ( ephemeral_subscribe_request .id , quadruple ))
31

32 # executed by a peer indexing a quadruple
33 def receive ( publish_request ):
34 quadruple = publish_request . quadruple
35 store( quadruple )
36
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37 subscriptions = find_subscriptions_matching ( quadruple )
38 for subscription in subscriptions :
39 if quadruple . indexation_time >= subscription . indexation_time :
40 rewrite_or_notify_subscriber ( subscription , quadruple )
41

42 ephemeral_subscriptions =
43 find_ephemeral_subscriptions_matching ( quadruple )
44 for ephemeral_subscription in ephemeral_subscriptions :
45 async_send ( ephemeral_subscription .proxy_url ,
46 NotifyRequest ( ephemeral_subscription .id , quadruple ))
47

48 # method invoked when a notification that embeds a chunk
49 # (i.e. a quadruple or bindings ) is received by a subscribe proxy
50 def receive ( notification ):
51 subscription = find_subscription ( notification . subscription_id )
52 listener = find_listener ( notification . subscription_id )
53 listener_type = type( listener )
54

55 if listener_type is BINDINGS :
56 if get_nb_chunks_received ( notification .id) ==
57 subscription . nb_result_vars :
58 chunks = remove_and_merge_chunks ( notification .id)
59 if mark_as_delivered ( notification .id ):
60 listener . deliver ( subscription .id , chunks )
61 else:
62 memorize_chunk ( notification .id , notification .chunk)
63 elif listener_type is SIGNAL :
64 graph_value = notification .chunk
65

66 # returns False if notification .id already delivered
67 # notification id unique for a given subscription and CE
68 if mark_as_delivered ( notification .id ):
69 listener . deliver ( subscription .id , graph_value )
70 elif listener_type is COMPOUND_EVENT :
71 quadruple = notification .chunk
72 if not already_delivered ( notification .id ):
73 # nb_quads_expected is initialized to -1 if not defined
74 # a pair made of two values is retrieved
75 quads , nb_quads_expected =
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76 tmp_store . get_chunks ( notification .id)
77

78 if is_meta ( quadruple ):
79 nb_quads_expected = extract_meta_value ( quadruple )
80 else:
81 quads = quads.add( quadruple )
82

83 if len(quads) == nb_quads_expected and
84 mark_as_delivered ( notification .id ):
85 listener . deliver ( subscription .id , CompoundEvent (quads ))
86 tmp_store . remove_chunks ( notification .id)
87 async_send ( RemoveEphemeralSubscriptionRequest (
88 quadruple .graph ))
89 else:
90 tmp_store . add_or_update_chunks ( notification .id ,
91 (quads , nb_quads_expected ))

Listing 4.8 – Pushing compound events to subscribers. New lines or edited parts,
compared to the solution based on polling, are highlighted.

The general behavior of the algorithm remains the same as the one that uses
pushing. A subscription is indexed on several peers and rewritten each time a
new quadruple satisfies it. However, once a peer detects a subscription which can
no more be rewritten, due to the number of sub-subscription which is equal to
one, the peer sends back to the subscriber the chunk that has fulfilled part of
the subscription (i.e. the quadruple that has matched the last sub-subscription
embed by the subscription). In addition, an IndexEphemeralSubscriptionRequest
is sent to all the peers managing the CE identifier (which is equals to the graph
value of any one of the quadruples contained by the CE). Thanks to ephemeral
subscriptions, the quadruples that are part of a CE matching a subscription, but
not involved in the matching, can be tracked down. The detection is done when
an ephemeral subscription is indexed and when a peer indexes a new quadruple.
Both sides are required to guarantee correct delivery against delayed packets, as
already explained for the default subscriptions.

The last update affects the proxy which is in charge of receiving the notifica-
tions. Each time it receives a chunk, which corresponds to a quadruple, it checks
whether the quadruple is a meta-quadruple or not. The meta-quadruple is, as we
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already explained, a quadruple that is automatically added to a CE when it is
created. This particular quadruple denotes, the number of quadruples contained
by the compound event the proxy is in charge of regenerating. Thus, when a
quadruple is analyzed as a meta-quadruple, its object value connotes the number
of quadruples which is expected before delivering the CE. While the number of
intermediate chunks received is different of the expected number of quadruples, the
quadruples are stored in a temporary datastore. Otherwise, a new CE is delivered
after having reconstructed it from the multiple chunks that are then removed from
the temporary datastore. Finally, a message is sent asynchronously to all the peers
that were indexing the ephemeral subscription in order to remove it. This request
should be supplemented by a periodic garbage collection operation, performed on
each peer, to remove the ephemeral subscriptions that should have expired. This
ensures that no memory or disk leak occurs due to remove requests that may never
reach the peers if a brutal failure occurs on a proxy.

This second version avoids polling but has a cost, that of maintaining more
states per peer and performing new actions on the reception of a quadruple, a sub-
scription or an ephemeral subscription. Also, an ephemeral subscription must not
be removed before a subscriber has received and delivered the associated CE. Thus,
to decrease the search space at each ephemeral matching operation, a garbage col-
lection is required, which is not free.

Polling vs Pushing We are now comparing polling and pushing to see what
could be the tradeoffs, especially according to the subscription and CE size. A
common case where we don’t have subscription of type accept all neither CE with
objects list nor ordering issue is assumed. Also, method calls can be made in
parallel. To compare the two solutions we identified the following parameters:

• l, the subscription chain length (number of SS);

• tci, the average time to route a request inside the P2P network;

• tco, the average time to forward a request from a proxy to a node in the P2P
network or from a peer to the outside;

• tm, the average time to match a subscription or an ephemeral subscription;
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• q, the CE size (i.e. number of quadruples);

• x, the number of poll actions required to reconstruct a full CE;

• tp, the polling period.

Both methods differ on how a CE that satisfies a subscription is reconstructed
and delivered to the corresponding subscriber. However, they perform the same
steps to detect whether a CE satisfies a subscription. A rough estimation of the
time required to perform the common steps, referred to as Tdetect_matching, is given
in first. This time can be simplified as the sum of the time required to index a
subscription, index a CE and rewrite the initial subscription until to have the last
SS that matches a quadruple from the CE which has been indexed.

Tdetect_matching = Tindex_subscription + Tindex_ce + Trewrite_subscription (4.2)

Indexing a subscription or a compound event requires to forward a payload from
a proxy to a peer before a request is routed inside the P2P network, thus requiring
tco + tci each. Although a CE contains q quadruples, only tci is required because
quadruples are dispatched in parallel. Once indexation is done, l − 1 rewriting
steps are triggered by assuming the CE satisfies the original subscription (not all
quadruples from a CE is matching the subscription). Therefore, the rewriting
operations requires (l − 1) ∗ (tm + tci) + tm.

Tindex_subscription = tco + tci = Tindex_ce (4.3)
Trewrite_subscription = (l − 1) ∗ (tm + tci) + tm (4.4)

Tdetect_matching = 2 ∗ tco + l ∗ (tm + tci) + tci (4.5)

Hence, a rough estimation of Tdetect_matching is 2 ∗ tco + l ∗ (tm + tci) + tci. Now
that the time to detect a matching is known, we start to assess the overall time
required to deliver an event with respectively polling and pushing. Again, the
times are decomposed as the sum of simpler ones for the sake of the explanations.
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Tdelivery_polling = Tdetect_matching + Tnotify_ce_id + Treconstruct_polling (4.6)

Tdelivery_pushing = Tdetect_matching + Tnotify_subscriber+
Tindex_ephemeral_subscription + Thandle_ephemeral_subscription

(4.7)

Let’s start with Tdelivery_polling. The first time Tdetect_matching is the one de-
scribed above while Tnotify_ce_id corresponds to the time that is consumed to for-
ward the graph value to the subscribe proxy in one hop, which is tco. Finally,
for Treconstruct_polling, x ∗ (tco + tci + tp) − tp is needed for sending the request and
x∗(tci+tco) for routing back the answer, hence leading to 2x∗(tco+tci)+tp∗(x−1).
As a result, the reconstruction time required when polling is used is given by
tco ∗ (2x + 3) + tci ∗ (l + 2x + 1) + tp ∗ (x − 1) + l ∗ tm.

Tnotify_ce_id = tco (4.8)
Treconstruct_polling = 2x ∗ (tco + tci) + tp ∗ (x − 1) (4.9)

Tdelivery_polling = tco ∗ (2x + 3) + tci ∗ (l + 2x + 1) + tp ∗ (x − 1) + l ∗ tm (4.10)

By applying the same reasoning to compute Tdelivery_pushing, we find that tco is
required for Tnotify_subscriber in order to send back to the subscriber the quadruple
from the CE that satisfies the last SS. Indexing the ephemeral subscription is a re-
quest sent asynchronously without future. For this reason Tindex_ephemeral_subscription

consumes tci. Then, to compute Thandle_ephemeral_subscription we assume the worst
case. Since the matching has been detected and an ephemeral subscription indexed,
at least q − l quadruples have been received by peers but only one is received by
the subscriber. In other words, at most q − 1 matchings with an ephemeral sub-
scription are still required to reconstruct the full CE and the same number of
tco to send back the chunks. Consequently, (q − l) ∗ (tm + tco) is required for
Thandle_ephemeral_subscription. Once times are added we get tco ∗ (q − l)+ q ∗ tm + l ∗ tci

for Tdeliver_pushing.
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Tnotify_subscriber = tco (4.11)
Tindex_ephemeral_subscription = tci (4.12)

Thandle_ephemeral_subscription = (q − l) ∗ (tm + tco) (4.13)
Tdelivery_pushing = tco ∗ (q − l) + q ∗ tm + l ∗ tci (4.14)

Now, we write an inequation between Tdelivery_pushing and Tdelivery_polling to see
under which value for x pushing is performing better than polling. Below is the
result we get with the parameters introduced previously.

Tdelivery_pushing < Tdelivery_polling (4.15)

tco ∗ (q − l) + q ∗ tm + l ∗ tci < tco ∗ (2x + 3) + tci ∗ (l + 2x + 1)
+ tp ∗ (x − 1) + l ∗ tm

(4.16)

x ∗ (−2tci − 2tco − tp) < tco ∗ (l − q + 3) + tm ∗ (l − q) − tp + tci (4.17)

x > tco ∗ (l − q + 3) + tm ∗ (l − q) − tp + tci

−2tci − 2tco − tp

(4.18)

Figure 4.3 depicts the possible values for x when we set parameters to m = 1,
tci = 12, tco = 80, tp = 500 according to experiments and vary the number of
quadruples per CE along with the subscription size. In that case we get f(l, q) =
(81∗ l−81∗q−248)/−684 and Tdelivery_pushing < Tdelivery_polling when x > f(l, q). In
conclusion, the figure allows to deduce that the difference of performance strongly
depends of the CE size whereas the subscription length has much less effect since
the plan sketched by f(l, q) is inclined and its slope mainly depends of parameter
q. Also, the larger CE size is, the more the number of poll operations is required
to have pushing that beats polling. This suggesting that pushing is beneficial for
not so large CE sizes.

Unsubscribing Regarding a subscription S composed of l sub-subscriptions, to
perform an unsubscribe operation consists in removing the indexed subscription S,
the subscriptions originating from S (due to rewrite operations), the intermediate
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Figure 4.3 – Theoretical comparison between polling and pushing (Tdelivery_pushing <
Tdelivery_polling when x > f(l, q)).

results if the original subscription requires to receive notifications as Bindings, and
finally to invalidate some caches used to improve access time to subscriptions.

To reach all the peers that contain the information to remove, two solutions
are possible. Either an unsubscribe request is routed by following the path used
to index S and each rewritten subscription S′, S′′, ..., S(l−1) recursively (each sub-
scription has an identifier and rewritten ones know the identifier of their originator)
or, it is possible to send an unsubscribe request to each sub-subscription directly.
Indeed, each rewritten subscription is subsumed by a sub-subscription from S.

The former solution is interesting because a rewritten subscription S′′ is sup-
posed to contain less variables than S′, hence the longer the chain is the less the
number of peers to contact is. However, it implies to route a lot of requests.
Supposing that n compound events have matched S, thus n × (l − 1) rewritten
subscriptions are indexed and the same number of unsubscribe requests must be
forwarded. In contrast, the latter solution needs only l − 1 requests to reach the
necessary peers but because it uses the sub-subscriptions from S which have not
been rewritten the set of peers to multicast is greater.

Finally, an unsubscribe operation is not atomic due to the multiple peers to
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reach for updating their state. While an unsubscribe request is handled, the state
of the subscribe proxy must be updated and a simple test added in the method
called for receiving the notifications. The purpose of this update is to discard the
notifications which are received for a subscription whose an unsubscribe request
has been initiated.

OSMA

Regardless of the variant based on the first algorithm (polling or pushing) when a
CE is published, the matching is not performed in parallel. Rather, it is initiated
by the peer which stores the first SS. Let’s say a subscription contains more than
one SS, the matching with the second SS is not performed while the first SS is
not satisfied, thus incurring a sequential evaluation. To alleviate this issue, we
propose a second algorithm, called OSMA, which allows for parallel matching of
same sub-subscriptions while avoiding the chain like approach.

The basic idea behind this second algorithm is to reduce the time spent to
match a subscription by removing when possible the chain we had in the first
algorithm and thus reducing the number of messages that are exchanged between
peers. This version is optimized for the general, and hopefully most common case,
where operations from a same proxy are received by peers in the same order they
have been published. However, the new mechanism introduced with this algorithm
can handle the temporal ordering issue, at a cost. In this new scheme, subscriptions
and publications are handled as described in Listing 4.9. When a new CE is
published, it is indexed by sending its whole content to each of the peers managing
each one of the quadruples it contains. On the contrary, the subscriptions are still
indexed as with the previous variants of the algorithm by forwarding a subscription
to all the peers managing only one of the sub-subscriptions and for example, the
first one. This behavior ensures that the matching between subscriptions and
publications is performed locally without additional steps in the optimistic case
where a subscription sent from a proxy before a publication is indexed before the
publication. However, the local matching is performed at the extra cost of some
more data to convey on the network. To choose only one sub-subscription for
indexing the subscription is a sufficient condition because at least one quadruple
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from a CE published through a proxy will reach the peer that contains the sub-
subscription, if the CE is supposed to match the overall subscription. Upon the
reception of a publication, a peer stores only the quadruple which has been used
for routing the full CE, not all the quadruples. This ensures that at the end the
quadruples from a same CE are eventually distributed on several peers as in the
first algorithm. However, the full CE is also carried by the publication request to
improve the time to detect the subscriptions which are satisfied. Therefore, just
after the storage of the quadruple which has been received, we try to detect the
subscriptions which are matched by using the full CE. However, a notification is
sent back if the publication we are manipulating is not part of a CE which has
already been handled. This condition is essential to ensure that two quadruples
from the same CE indexed on the same peer and matching a same subscription do
not generate duplicate notifications. Then, for each subscription found, we trigger
a OneStepNotifyRequest to send back to the subscriber the chunks it is interested
in.

Avoiding duplicates Similarly to the first algorithm, duplicate notifications
may be generated. To prevent duplicates and ensure that only one peer sends
the notification with this second algorithm, we apply the following rule. A peer
notifies a match if and only if it is responsible for the first of the matching events
contained by the CE. Let consider for the sake of the explanations a 2-dimensional
CAN network with two peers. In this context, quadruples and SSs are pairs made
of two values. Duplicates are possible if we have for instance S = (?x, r) and a
compound event CE = (q1, q2, q3) so that q1 = (d, d), q2 = (s, r) and q3 = (g, r). As
depicted by Figure ??, in that case the subscription is indexed on both peers. Since
q2 and q3 are satisfying S, if the rule to avoid duplicates is not applied, each peer
notifies independently the subscriber with the full CE. When the responsibility is
checked, duplicates are prevented because q2 which is indexed on the right side
peer is the first quadruple in the CE list that matches S which is not the case for
q3. Consequently, the left side peer does not trigger a notification which avoids
duplicates.

It is worth notice that the chain approach from the first algorithm is still used
during the indexation of a subscription when it is detected as delayed regarding
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Figure 4.4 – Subscription (blue line) and CE (green boxes) mapping leading to
duplicates.

some quadruples. This means that the subscriptions that are detected as matching
a CE during the indexation of a publication may be a non-rewritten subscription
or a rewritten subscription. The later case occurs when a subscription S published
before a CE matching S is indexed between for example two quadruples of the same
CE (q1 → S → q2). When S is indexed on the peer that contains q1, q1 is detected as
matching S and S as delayed. Thus, S is rewritten by applying the same algorithm
than the other variants. A full (one step) matching cannot be performed because
we don’t have the entire compound event. However, when q2 is received with a
PublishQuadrupleRequest, because we have at our disposal the full CE, we are
able to short-circuit the chain algorithm to send back to the subscriber the right
information. This is done implicitly by sending a OneStepNotifyRequest on line
35-36, regardless the subscription type (rewritten or not). Finally, if a subscription
S is delayed and indexed after all the quadruples of a same CE matching S, then
the chain algorithm is recursively applied on the rewritten subscriptions and as for
the algorithm variant based on pushing, some ephemeral subscriptions have to be
handled for CE listener.

1 # upon reception of a publication on a peer
2 def publish ( compound_event ):
3 indexation_time = now ()
4 # set timestamp on each quadruple contained by the CE
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5 compound_event . set_indexation_time ( indexation_time )
6

7 for quadruple in compound_event :
8 # request carrying the full compound event to each peer
9 # managing a quadruple from the compound event

10 async_send (
11 IndexPublishQuadrupleRequest ( compound_event , quadruple ))
12

13 # the meta - quadruple is required in case we fallback to CSMA
14 # due to ordering issues
15 meta_quadruple =
16 create_meta_quad ( compound_event , indexation_time )
17 async_send ( PublishQuadrupleRequest ( meta_quadruple ))
18

19 # upon reception of an index publish quadruple request
20 def receive ( publish_request ):
21 compound_event = publish_request . compound_event
22 quadruple = publish_request . quadruple
23

24 store( quadruple )
25

26 subscriptions = find_subscriptions_matching ( compound_event )
27

28 for subscription in subscriptions :
29 # create notification content according to the
30 # subscription type and variables
31 chunks = filter ( compound_event , subscription )
32 # notifies a match if and only if the peer is responsible
33 # for the first quadruple matching the first sub - subscription
34 if responsible ( subscription , compound_event ):
35 async_send ( subscription .proxy_url ,
36 OneStepNotifyRequest ( subscription .id , chunks )
37

38 # handle ephemeral subscriptions that are waiting for
39 # a result due to the ordering issue
40 ephemeral_subscriptions =
41 find_ephemeral_subscriptions_matching ( quadruple )
42 for ephemeral_subscription in ephemeral_subscriptions :
43 async_send ( ephemeral_subscription .proxy_url ,
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44 NotifyRequest ( ephemeral_subscription .id , quadruple ))
45

46 # upon reception of a notification on a subscribe proxy
47 def receive ( notification ):
48 subscription = find_subscription ( notification . subscription_id )
49 listener = find_listener ( notification . subscription_id )
50 listener_type = type( listener )
51

52 # the notification which is received contains all the necessary
53 # chunks due to a matching performed in one step
54 if type( notification ) is OneStepNotifyRequest :
55 # create the result to deliver according to
56 # the type of the notification listener
57 result = create_result ( notification , listener .type)
58 listener . deliver ( subscription .id , result )
59 async_send (
60 RemoveEphemeralSubscriptionRequest (
61 notification . quadruples [0]. graph ))
62 else:
63 # same as Listing 4.8 from line 55 to 91

Listing 4.9 – Publishing and subscribing with OSMA. Only methods which have
been edited compared to CSMA are showed. Parts that differ are highlighted.

The main benefit of this second algorithm is the expected low latency for
subscribers. As soon as the CE reaches the peer responsible for the first matching
event, a notification is triggered. Also there is no need for a reconstruction phase
because the Compound Event can be directly sent to the subscriber. However,
this is done at the cost of bandwidth since the whole Compound Event is sent
to multiple peers. Besides, note that this second algorithm cannot deal with the
situation where a subscription is created before an event but reaches a peer after.
Correctly managing this case requires falling back to CSMA, which we do.

4.3 Evaluation

The experiments introduced hereafter have been performed on 29 nodes of the
Grid’5000 testbed. Each machine embeds a Xeon E5520 @ 2,26 GHz with 32
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GB RAM, a hard disk drive at 7200 RPM. The partition used for data storage is
an EXT3 partition mounted with options noatime and nobarrier for performance
reasons. Java 7 was used with JVM option -server. Each result is the average
execution on 6 runs where the first run is laid aside due to JVM warmup.

The workload we have used is made of x synthetic events and y subscriptions
that are generated to be distributed uniformly among the available peers. This
allows us to evaluate the performance of the algorithms when the number of peers
involved is the largest. Subscriptions are generated to embed k quadruple pat-
terns of the form (?g, ?s1, p1, ?o1) ∧ (?g, ?o1, p2, ?o2) ∧ . . .∧ (?g, ?ok−1, pk, ?ok).
Compound Events are generated to evenly match subscriptions by affecting ap-
proximatively the same number of quadruples per peer. Although quadruples are
synthetics, the distribution is not perfect due to the graph value that is shared
among quadruples from a same CE but also because CEs are generated to match
path queries.

Before entering into the explanation of the different experiments we made, it
is worthwhile to explain the different values we have measured and which ones
we retain to compare algorithms. Figure 4.5 summarizes a simple benchmark
configuration where one publisher publishes N compound events and a subscriber
subscribes to consume all the events published. Publications are indicated as
p1, ..., pN , notifications as n1, ..., nN while Tp(pi) and Td(ni) represent respectively
the time at which the publication i has been published from the publisher and
the time at which notification ni has been delivered on the subscriber. With this
simple configuration we have defined several metrics to compare the performance
of the algorithms:

End-to-End throughput gives the number of events handled per unit of time
from an end-to-end perspective. Mathematically, it is defined by computing
the formula N/(Td(nN)− Tp(p1)) where Td(nN)− Tp(p1) is the time elapsed
between the first publication from the publisher Tp(p1) and the last notifi-
cation received on the subscriber Td(nN).

Subscriber throughput gives the number of events handled per unit of time
from a subscriber point of view. It is computed as N/(Td(nN)−Td(n1)) where
Td(nN) − Td(n1) is the time elapsed between the first notification received
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by the subscriber Td(n1) and the last notification received by the subscriber
Td(nN).

Point-to-Point latency gives an idea of the average latency required for an event
to be published, handled by the brokering system and delivered to the sub-
scriber. It is computed with the formula (

N

∑
i=1

Td(ni) − Tp(pi)) /N .

Each measurement is valuable and shows a critical characteristic of the sys-
tem. Although all measurements are computed, we consider mostly the subscriber
throughput in the following experimentations in order to keep the explanations
concise.

In the first experiment we evaluate the effect of increasing the network size.
For this purpose we place one peer per machine and vary the total number of
peers from 1 to 25. There is only one subscriber with a subscription made of k = 5
patterns. One publisher publishes 3 × 103 CEs, each one containing 5 quadruples
for an approximate size of 670 Bytes. Figure 4.6(a) depicts the average subscriber
throughput, i.e. the throughput perceived on the subscriber when the network
size is increased. OSMA outperforms CSMA by a factor of 5.43 according to the
median value. This difference is explained by the matching which is performed
in one step with OSMA whereas CSMA requires a number of steps equals to the
number of SS contained by a subscription that is satisfied. Thus, increasing the
number of routing steps required.

In a second experiment we evaluate the effect of varying the number of publi-
cations. Figure 4.6(b) shows that the throughput on the subscriber is constantly
increasing with OSMA when the number of publications increases. This is because
the overlay is not working at its full capacity when x = 30×103 CEs are published.
On the contrary with CSMA the subscriber throughput decreases quickly with the
number of publications. This behavior is explained by the reconstruction process
which overloads peers with requests, slowing the publications and the notifica-
tions. Because the time required to complete the experiments is too large when
more than 21000 CEs are published with CSMA, some values are omitted.

The third experiment evaluates the impact of varying the number of subscrip-
tions registered in the system. The scenario consists in one subscriber subscribing
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Figure 4.5 – Possible measurements to evaluate and compare the proposed pub-
lish/subscribe algorithms.

with various number of subscriptions. The subscriptions are generated to match
when possible an equal number of Compound Events.

Figure 4.6(c) shows the subscriber throughput for 1 to 60 subscriptions. With
OSMA the throughput decreases almost linearly with the number of subscriptions
in the system. The reason lies in the indexing of the subscription. Since it relies on
the first sub-subscription which contains only a predicate as fixed term, only half
of the peers of the overlay are actually participating in the matching. Also, some
of them have multiple subscriptions to check for each Compound Event received,
which is a costly operation with the underlying storage engine we are using. On the
contrary, CSMA remains almost stable with a throughput that varies around 92
CEs per second. This effect may be explained by the rewritten subscriptions that
are generated once a first sub-subscription is satisfied. A rewritten subscription
contains in our case more fixed parts than its parent and is indexed against po-
tentially less and on different peers, thus, increasing the number of peers involved
in the matching.

In a fourth experiment we test the effect of varying the number of peers when
selective subscriptions are replaced by a subscription that accepts all events (cf.
Figure 4.6(d)). In such a situation, all peers index the subscription represented
by the SPARQL query SELECT ?g WHERE { GRAPH ?g { ?s ?p ?o }}. As ex-
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(c) Impact of the number of subscriptions.
25 peers and 3000 CEs published.
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plained in Section 4.2.3, CSMA generates a lot of duplicate notifications in this
situation, which limits the scalability. Since OSMA always performs a single noti-
fication, the throughput increases with the number of peers.

In a penultimate experiment, we measure the time taken to store different
number of publications with no subscription registered on peers. Results are de-
picted on Figure 4.6(e). Unlike previous experiments CE size is increased to 25
quadruples. The time required to complete benchmark runs is directly related
to the bandwidth consumption since no matching is performed. Indeed, the only
difference between the two algorithms with this configuration is the quantity of
information conveyed from peers to peers. The time to store the published events
quickly differs between CSMA and OSMA when the number of publications in-
creases from 3000 to 30000. It confirms that OSMA requires more time than
CSMA to forward events to peers that are responsible to store quadruples. Thus,
it will require more bandwidth than CSMA.

Finally, we compare CompoundEvent, Binding and Signal listeners on a eight
peers configuration. When OSMA is used, we get that subscribing with a Binding
or Signal listener never increases performances by more than 3% compared to the
case where a CompoundEvent listener is used. The reason lies in the fact that
OSMA applies almost the same scheme whatever the listener used is. The clear
difference is the size of the answer sent back from peers to subscribers. Since our
configuration uses gigabit Ethernet, it explains the small effect. Scenarios with
limited bandwith between subscribers and peers will most probably benefit from
choosing the right listener according to their needs. The impact is much different
when CSMA is used because the actions but also the number of communications
required to notify solutions greatly differ. Our tests show that using a Signal or
Binding listener increases the subscriber throughput by at least 5, thus strength-
ening the reason to have different subscription listeners.

In conclusion, the experiments show that OSMA outperforms CSMA in terms
of throughput and scalability at the cost of a higher bandwidth consumption. Its
only limitation is that it cannot enforce the happen-before relation and hence,
depending on the use case, some applications will have to rely on CSMA.
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Summary

In this chapter we have introduced a publish/subscribe infrastructure based on the
RDF data model and SPARQL filter model. Subscribers can express their interests
using a subset of the SPARQL language and events are published as RDF data. We
rely on a multi-dimensional indexing space and lexicographical order to distribute
both the publications and subscriptions on an overlay. Compared to previous
works, our scheme does not require multiple indexing of the same publication,
thus reducing the storage space. We have proposed two algorithms for matching
subscriptions with events. The first one, CSMA, is based on the canonical chain
like approach. It reduces the bandwidth used when publishing at the cost of a
longer matching time. It can also handle ordering issues which can happen when a
same client submits both publications and subscriptions. The second one, OSMA,
uses a fully distributed approach which leads to good performance at the cost
of a slightly heavier publication process. To summarize, the different properties
of the two algorithms are presented in Table 4.1. Both algorithms have been
experimentally tested for throughput and scalability.

Routed
Element

Matching
Steps Duplicates Happen-

Before

CSMA Individual
quadruples

Multiple,
Chain-like and
Reconstruction

Yes, filtering
required Enforced

OSMA
Whole

Compound
Event

Single No Requires
CSMA

Table 4.1 – Comparison of the two publish/subscribe algorithms proposed.
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In the previous chapters we have introduced a solution for respectively storing,
querying RDF data and selectively disseminating RDF events. In this context,
RDF information used for the experiments was synthetic because our desire was
to assess the throughput of our solutions when the system works at its maximum
capacity. However, real RDF data is highly skewed and it affects how information
may be shared between nodes. The issue is caused by some RDF terms that are
more frequent than others, especially predicates. Usually, hashing is employed to
enhance distribution however this last is pointless when the imbalance is caused by
popular terms since the same inputs produce the same hash values. This chapter
introduces a solution to distribute fairly, with our architecture, RDF data which
experiences a high degree of skewness. First, we introduce some related works
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about load balancing in structured P2P networks to describe common strategies.
Then, we position ourselves and we describe our solution by identifying what are
our criteria and the different mechanisms involved. Finally, we conclude with some
experiments which assess the utility of our solution with real workloads.

5.1 Related Works

Load balancing is at the heart of many P2P works to address the performance
issues that stem from load imbalance on peers. Imbalances may be caused by
an unfair partitioning of network identifiers between peers, frequent arrival and
departure of peers but also the heterogeneity in terms of bandwidth, storage and
processing capacity between machines where peers are deployed. Other reasons
can be related to the variation of size, popularity and lexicographic similarities
among resources handled by P2P networks (the last three being critical with RDF
data). The works that consider this area of research can be classified into two
main groups; either static or dynamic. In the former, the system load is assumed
stable. No continuous insertions or deletions are performed and queries remain
similar. Solutions are sometimes based strictly on a fixed and preconfigured set
of rules. Furthermore, churn is often evicted and the load balancing decision is
assumed to be taken during the join of a peer. The latter enables decisions and
adaptations at runtime while taking into account endless data insertions but also
turnover among peers, namely arrival and departure.

In structured P2P networks, peers manage part of a common identifier space,
which is a circle segment, an hypercube subset or a subtree. Usually, resources
or data that have to be indexed into the network are assigned to an identifier
from the common identifier space to enable routing based on the range a peer is
responsible for. This identifier can be the data itself or a hash value associated
to the information when a DHT or consistent hashing are at the basis of the
indexing scheme. Eventually, the information is indexed on the peer managing the
resource identifier. To address load balancing issues in structured P2P networks,
especially regarding the distribution of data, several load balancing strategies have
been proposed based on replication or relocation. The model followed by the
strategies usually consists in controlling resources location, peers location or both.
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However, many variants are conceivable based on indirections, identifiers or range
space reassignation and virtual peers1. Besides, designing a load balancing solution
requires to consider additional parameters such as the overload criteria to take into
account, how overload is detected and how load information is exchanged. This
variety of parameters has led to the definition of multiple solutions that sometimes
differ by minor but subtle changes. Hereafter are introduced some solutions we
find relevant in our context.

5.1.1 Static load balancing

Rao et al.

In [136] the authors suggest three different strategies based on virtual peers to
address the issue of load balancing in P2P systems that provide a DHT abstraction.
As the load balancing issue is hard to address in its full generality they make
the assumption that the load imbalance is due to the lack of one resource only:
storage, bandwidth or CPU. Moreover, their solutions are supposed to transfer
the load between highly loaded and lightly nodes by moving virtual peers only
and the load on virtual peers is assumed stable during the execution of their load
balancing scheme. Furthermore, the system is considered static in the sense that
peers do not join and leave the system continuously.

Their first scheme called one-to-one involves two peers to decide whether a
load transfer must be performed or not. The process is basic and simply consists
of contacting a randonly chosen peer. If the peer that received the message is
heavily loaded, then a transfer may take place between the two nodes. The second
scheme relies on directories indexed on top of the existing overlay. These directories
form a meta overlay where each directory, indexed on a node, is in charge of
maintaining the load that may be reported. Load information about virtual peers
is piggybacked by periodic advertisements sent from lightly loaded nodes. The
assignment between light nodes and directories do not change over time, as the

1Virtual peers is an abstraction for several peers hosted on a same physical node/machine.
Traditionally in a P2P network, a peer is a node or machine. On the contrary, a virtual peer is
a peer that can be deployed with some other virtual peers on the same physical node. Upon the
detection of an underloaded or overloaded peer, virtual peers are reassigned to other nodes in
order to maintain the machine load under a given threshold.
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number of directories is static. Periodically, the heavy nodes also report virtual
peers load to their specific assigned directory. This request is also used as a
sampling request to examine the directory where the load is reported. Indeed,
once a directory receives a sampling request from a heavily loaded node, it looks at
the local entries reported by lightly loaded nodes to find the best virtual peer that
can be transferred from the heavily loaded node to a lightly loaded node contained
by the directory. Thus, in contrast to the first scheme, this one-to-many approach
considers several lightly loaded nodes to make the transfer decision. Their third
variant extends the first two by matching many heavily loaded nodes to many
lightly loaded nodes. Similarly to the second scheme, directories are used. Each
node reports periodically its complete load information to a given directory. Once
a directory has received enough information from nodes, it triggers a three phases
algorithm that consists of a) transferring virtual peers from heavily loaded nodes
to a global pool; b) reassigning virtual peers from the pool to lightly loaded nodes
without creating any new heavily loaded nodes; c) dislodging virtual peers that
have not been reassigned during phase b by swapping the largest virtual peer (in
terms of load) from the pool with a lightly loaded node and coming back to step
b while some entries remain in the global pool.

Their simulation results show that the first two approaches are able to balance
the load within 80% of the optimal value and the third based on many-to-many
sampling can achieve 95% of the optimal value. However, these results are achieved
by performing several load balancing rounds, from around 50 with the best scheme
to 20000 with the worst scheme depicted by the one-to-one strategy, but no indi-
cation is given regarding the convergence in terms of execution time.

Bayers et al.

In [137] the authors investigate the direct applicability of the power of two choices
paradigm [138] on the Chord P2P network for addressing load imbalances in terms
of items per peer. The authors debate over the approach taken in the original
Chord paper that consists of using virtual peers. They make an analogy with
the standard balls and bins problem [139] with n items and n peers to show that
even with perfectly uniform assignments of the circle segments to peers, the load
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remains not well balanced. In addition, they claim that using at least O(log n)
virtual peers per node leads to a high number of neighbors to maintain per peer
which is not acceptable due to heartbeat messages that are exchanged periodically
to detect failures.

The scheme they applied to balance the load between peers can be summarized
in a few lines. The node that wishes to insert an item applies d hash functions on
the item key and gets back d identifiers (each hash function is assumed to map
items onto a ring identifier). Afterwards, a probing request is sent in parallel for
each identifier from the identifiers computed previously and the peers managing
the identifiers answer with their load. Once load information is retrieved, the peer
with the lowest load is adopted for indexing the item. The lookup operation from
an item key is similar to the insertion and consists of querying the d peers whose
at most one will successfully locate the item. While the search operation is par-
allelizable, the authors care about the network traffic provoked by get operations
and propose a simple variant. In addition to storing the item at the least loaded
peer pi, this variant consists of adding a redirection pointer to pi on all other peers
pj where j ≠ i. Thus, a lookup can be achieved by using only one hash function
among d at random. The experimental results show that using two hash functions
(d = 2) is enough to achieve a better load balancing with their two choices strategy
rather than using a limited number of virtual peers and provides almost the same
benefits as using an unlimited number of virtual peers. However, their context is
restricted to items with equal size and popularity. Moreover, the proof they give
about the maximum load expected on a peer with high probability, when the two
choices method approach is used, rests upon the previous mentioned restriction
and the fact that items are inserted sequentially. In the paper it is not very clear
whether this restriction holds for all the introduced properties or not. Last but not
least, to ensure recovery from crashes but also to prevent expensive mechanisms
for keeping references up to date in case of churn, the variant of their insertion
scheme that uses redirection pointers assumes a soft state approach (i.e. the keys
and their value are periodically re-inserted) which limits the applicability of their
solution.
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Meghdoot

Closer to our work in terms of network topology considered, the authors exploit
in [122] the characteristics of CAN and their publish/subscribe system (Meghdoot)
properties to balance the load when new peers are admitted into the system. They
distinguish subscriptions load from events load given that they have to be handled
differently. In the former case, subscriptions load on a peer is proportional to the
number of subscriptions stored on it. Reducing the number of subscriptions on a
peer decreases the load on a peer. Thus, their idea is to split the peer zone so that
the number of subscriptions is evenly divided with the peer that joins. The latter
case addresses the load imbalance with events. The new and the old zone may fall
in the propagation path of many events and splitting the zone as for subscriptions
may, in addition to the existing peer, overload the peer that joins. Therefore, the
authors propose to create alternate propagation paths by using replication. When
a new peer pj joins a peer pi overloaded by events, the zone from pi is replicated,
instead of shared to pj along with its subscriptions. In addition the neighbors
are updated to keep track of pj in a replica list. Finally, events are balanced
during the propagation of an event to be matched with candidate subscriptions by
picking, on the peer that executes the routing decision, one replica peer out of the
list of replicas in a round robin fashion. This replication strategy improves load
balancing, data availability and performances. Also, to locate a heavily loaded
node during a join operation, each peer in the system propagates periodically its
load with its neighbors. This knowledge is then used during the join procedure to
forward the operation to the heaviest loaded neighbor step by step until to reach
a peer that has a load higher than any of its neighbors.

Similarly to other static solutions, the authors assume the existence of an
oracle to decide when peers have to join the system. However, the system is not
able to adapt itself to improve the load imbalance. As they explain for their
experiments, they define an injection period where a new peer joins the system
after each simulated event with a probability of 10%, until the total number of
peers reaches an expected bound.
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RCAN

In [140] the authors introduce a solution for improving load imbalance on an
extended version of CAN. Their system named RCAN [141] differs with CAN
regarding the neighbor entries maintained on each peer for routing the requests.
In addition to the standard immediate neighbors, every peer controls a number
of links towards peers in the system that are at distance inverse of the power of
2 along each dimension of the identifier space. The number of links maintained
per dimension is assumed to be in O(log n) where n is the number of zones in
the system, when the multi-dimensional space is split uniformly. These additional
neighbors have the benefit to improve the routing complexity because instead of
applying a greedy scheme where a request is forwarded to an adjacent neighbor
step by step, the request bypasses some stages similarly to Chord with its finger
table. Regarding load balancing, the authors leverage the additional long links that
each peer maintains to probe faraway peers periodically without having to send
at random messages that are routed through several intermediate peers. Then,
these samples are reused during a join operation to know what is the best peer
to join for improving the load imbalance. In this paper the authors make, as for
previous solutions, strong assumptions about the machines that are assumed to
be homogeneous, the data that is supposed to have the same size and popularity
but also the load balancing decision that is taken during join operations.

Battre et al.

A few attempts have been made about load balancing with RDF data. Battre et
al. propose in [92] a solution for solving the bad distribution of popular RDF terms
on DHT. It consists of creating an overlay tree atop the existing Pastry [22] overlay
at the cost of more indirections and datastores to maintain per peer. Peers are
assumed capable of detecting overloads. Upon the detection of a load imbalance, a
peer splits its current dataset into two parts. The first half remains on the current
peer database along with a reference to a new peer that contains another database
to store the second half of data that is transferred. Due to the new references
that are attached to peers, further steps are required to resolve queries. Thus, the
evaluation of a query consists of following the new references and looking at the
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new datastores in addition to the standard lookup mechanism. This leads to a
query resolution in O(log n+d) where n denotes the number of nodes in the DHT
and d the depth of the tree. No experimental result nor evaluation methodology
is given.

RDFPeers

In RDFPeers [90], the authors decide to simply ignore popular RDF terms and
do not use them for indexing data. The authors make an analogy with English
language where the words “a” and “the” occur frequently but are not valuable as
search terms. However, we think this comparison is not appropriate. For instance,
RDF predicate rdf:type is a popular resource for reasoning purposes, and to evade
this term implies to preclude queries or subscriptions that perform filtering on this
term. Although the authors rely on hashing to leverage the uniform keys distri-
bution among peers, the frequency count distribution of non-popular RDF terms
is still skewed and the difference between the minimum and maximum number of
data contained by each peer remains large. To achieve a better load imbalance
they propose a load balancing scheme based on successors probing. Their solution
derives from [142] and aims to provide peer keys distribution adaptive to the data
distribution. It consists essentially in performing random walks by creating a set
of keys that are used to route probing requests. Upon the reception of a probing
request, the peer returns the numbers of RDF resources that would be transferred
if a join was performed (by assuming the interval managed by the peer that is
joined is split into two). Once the results are gathered on the request initiator,
the new node joins the system by using the key that transfers the heaviest load in
terms of triples. The experiments the authors provide show their scheme reduces
load imbalance to much less than an order of magnitude.

5.1.2 Dynamic load balancing

A second wave of works based on dynamic load balancing has been proposed. Most
of them are theoretical and try to provide a guarantee on the maximum imbalance
and load moved on the system at any time.
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Godfrey et al.

Godfrey et al. propose in [143] an extension of a previous work on static load
balancing [136] (introduced in Section 5.1.1). This work complements the last
by considering dynamic structured P2P systems. In this way they relax some
assumptions to allow continuous data insertion and deletion, peers churn and the
skewed distribution of data during load balancing decision. Their purpose remains
the same and consists of minimizing the load imbalance and the amount of load
moved. As in [136] they rely on virtual peers to move load and they assume
one bottleneck only in the system. Besides, they leverage their previous many-to-
many scheme (for periodic load balancing) combined with an additional emergency
threshold to boost the decision mechanism.

Bienkowsky et al.

In [144] the authors focus on structured P2P networks based on a ring topology.
They explain that the communication load and the amount of data a peer stores
depends heavily on the length of the interval it manages. That way they define a
smoothness parameter that depicts the average interval length managed by peers in
the system with the goal to have each peer managing an interval whose the length
is the closest to the smoothness parameter. To accomplish their aim they count on
a randomized algorithm where each peer probes periodically during a predefined
number of rounds another peer managing an identifier selected at random. Then,
according to the probing information and predecessor information they can round
by round force peers to join and leave the network to reach their ideal smoothness
value. They prove their distributed scheme works with high probability and that
its cost in terms of peer migration is optimal. However, their algorithm implies to
estimate the total number of peers in the system, to sometimes block some peers
for a few rounds and to tune several parameters. Furthermore, in contrary to the
previous work, node churn is not allowed during rebalancing.

Vu et al.

More recently, Vu et al. propose in [145] a structured P2P agnostic solution for
load balancing in dynamic context based on histograms. The peers are bundled
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into non-overlapping groups that constitute the bins of the histogram maintained
on each peer. The histogram acts as an approximate global view of the system to
know the load distribution. The load propagation follows a gossip scheme where
a peer forwards its updated load if the ratio between the new load and the load
sent before is greater than a parameter M . They prove that if the maximum
load imbalance between a peer and the average load of a group of peers from a
histogram is k, then the maximum load imbalance ratio of the system is k2. In
addition, they give a relation between M and k so that M can be chosen to keep
the maximum load imbalance ratio of the system under a given threshold. A
peer is detected as overloaded or underloaded when its load is respectively twice
the average load of any group in its histogram or half the average load of any
group in its histogram. Although their system makes explicit some interesting
properties, it remains sometimes unclear how non-overlapping groups are created
and maintained dynamically.

Mercury

In [24] the authors present Mercury, a system made to support range queries on
top of a structured P2P network constructed by using multiple interconnected
ring layers where each one is named a hub. Each hub manages the indexation
of an attribute from a predefined schema. Mercury does not use hash functions
for indexing data and suffers from non-uniform data partitioning among peers as
data requires to be assigned continuously for supporting range queries. Owing
this bad data distribution the authors propose load balancing mechanisms based
on low overhead random sampling to create an estimate of the data value and load
distribution. Basically, each peer periodically sends a probing request to another
peer using random routing. This request has a TTL value set to log n where
n is an approximate value of the number of peers in the system used to know
when the routing steps must stop. Furthermore, peers periodically probe their
d-neighborhood. The combination of these methods offers a global system load
assessment whose values are collected into histograms maintained on peers. The
authors show this approach is enough for effective load balancing because their
system topology is an expander graph with a good expansion rate. In other words,
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with a small number of edges in their network topology everyone can reach other
edges by many paths.

5.2 Load Balancing Solution

In this section we introduce and discuss the different mechanisms considered and
applied for addressing RDF load balancing issues that occur with the architecture
we propose. These mechanisms focus in a first time on improving the bad distri-
bution of RDF data with the purpose at the ende to enhance the involvement of
peers with the publish/subscribe matching algorithms.

To better understand the options we have but also the choices we have made,
it is worth explaining why some RDF terms are more popular than others. Let’s
start with the unequal popularity of predicates. This last may be explained by how
semantic is added to RDF data through the definition of vocabularies (i.e. ontolo-
gies). Ontologies allow to describe different concepts but each concept may have
many instances. In concrete terms, a processor is a concept characterized by many
properties such as its model name, number of cores, etc. However, many instances
exist, that is, different processors having different properties. Since properties are
usually identified in the RDF model as predicates, multiple instances may reuse
the same predicates. In a lower degree, popularity can also be caused by the same
value shared between tuples’ subjects and objects. Sharing RDF terms allows to
link pieces of information modeled in RDF. Therefore, the bigger and the more
frequently used an ontology is, the greater the probability to have skewed RDF
terms becomes.

Previously, the emphasis was placed on RDF terms popularity. The reason lies
in the fact that whatever approach is taken to spread RDF data on nodes, using
hashing or not, the final distribution is bad. However, systems that do not rely
on hashing, as the one we propose which indexes data based on the lexicographic
order, are exposed to one additional problem. The issue is about IRI prefixes
used with RDF terms that are often similar. Using hashing solves the problem
because even small changes in input values generate different hash values that
are distributed uniformly with high probability in the identifier space managed
by peers. The situation is different when the lexicographic order is used. RDF
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terms with same prefixes force data to be indexed on the same or successive peers.
Balancing data thus requires in that case to change the identifier range managed
by peers.

In the next section we identify and describe the stages through which we must
pass in order to define our load balancing solution, along with the different options
that are conceivable and the ones which have been selected. To limit the number
of alternatives but also to position our solution regarding existing works, we have
made some decisions based on our system’s properties and the context where it
is used. First, our main goal is to balance RDF data added synchronously or
published asynchronously to the system. To this aim, our approach relies on
peers relocation and not replication since this last is well known to improve data
access by balancing queries load but not data itself. Second, we assume that
no knowledge about ontologies associated to information received by the system is
available because some sources are hidding this information. The argument is that
vocabularies allow to infer confidential facts which is for instance forbidden when
sharing medical data across Europe. Since no upstream knowledge is available,
balancing is assumed to appear after data has reached its final destination, not at
the entrance of the system. Third, to leverage the existing join and leave operations
our solution is assumed to rely on virtual peers and therefore ousts solutions based
on data relocation only which incur expensive mechanisms to maintain up to date
pointers. One additional alternative to virtual peers would be to shift bounds
managed by peers without moving them from a node to another with the help of a
join or leave operation. This strategy is part of a thesis started by Maeva Antoine.
More details will be available in her forthcoming manuscript. Fourth, peers are
assumed deployed on homogeneous machines. It is a reasonable hypothesis since
the middleware we propose targets deployment over a cluster. Finally, our solution
aims to support dynamic load balancing, that is autonomous balancing decisions
at runtime.

5.2.1 Options and choices

Designing a load balancing solution involves multiple stages and many potential
alternatives we have identified and summarized in the following. The steps that
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are described also explain some of our choices and act as the basis to comprehend
the strategies we propose in the next section.

Detecting load imbalances

Before balancing load imbalances, disproportion in terms of load must be detected.
It implies to know which load criteria are involved and how their variation could be
measured on peers. Once these first questions are answered, the next step consists
in deciding if a peer is enduring an heavy amount of work with respect to the
selected criteria.

Measuring load Previously, we mentioned that our main goal is to adjust load
for RDF data handled by the system. In this context our main criterion is the
number of quadruples per peer. However, when working with RDF data it is clear
that some quadruples are bigger than others. This is especially true for quadruples
with literal object values that permit unbounded plain text descriptions. Even
though quadruples’ length depends of information sources, our system is storing
on disk all incoming data. Since disks are resources with limited capacity, it could
be worthy to consider quadruples’ size as an additional criterion. To strengthen
our thought, let’s consider a case where a lot of quadruples are stored on a first
peer and a few on a second. In that case, disk space consumption may be greater
on the second than the first if quadruples on the second peers have larger RDF
terms. Consequently, a second criteria is defined for disk space consumption. The
load is measured for the two aforementioned criteria. The measurement for the
first criterion is accomplished by recording the number of quadruples handled and
stored by a peer. However, the second measurement is more subtle and must not
be computed by summing RDF terms’ size. The reason lies in the fact that most
centralized RDF engines do not store quadruples as they come but rather by using
indirection tables that eliminate duplicated RDF terms to prevent excessive disk
usage. Therefore, disk consumption is measured by computing the ratio between
the number of megabytes written on the disk by the peer local storage and the
partition size in megabytes where the data is located.
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Deciding about imbalance The next stage is about the process involved to
detect whether a peer is experiencing an imbalance or not. In general, taking
decision requires to compare loads between peers to deduce their state. Intuitively,
the states in which a peer may fall are overloaded, underloaded or normal, i.e. not
overloaded neither underloaded. However, not all load balancing solutions define
and detect underloads. In our case we think it may be useful because RDF terms
have different popularities and clusters of quadruples often emerge. Concretely,
this is materialized by one or a few adjacent peers from the identifier space receiving
all quadruples and many indexing no information. Figure 5.1 depicts a CAN
cutting that exhibits the issue. Peers 2, 4, 5 and 6 could be detected as underloaded
regarding others. In that case peer 5 could leave and rejoin peer 7 to offload half
of its load. Also, peers 2 and 1 could be merged in order to reduce routing steps
but it is out of the scope according to the criteria specified above.

(a,a) (z,a)

(a,z) (z,z)
1

2
3 4 5

6 7

Figure 5.1 – RDF data clusters on a 2D CAN network.

The natural continuation is to explain how a peer knows that it is overloaded
or underloaded. The process can be summed up by the function sketched on
Algorithm 5.1. It takes five parameters:

• C, a criteria list sorted by descending order according to priority in which
imbalances are handled. Criteria are assumed static and defined before the
system starts;

• M , a load measurements list containing load measurements associated to
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criteria defined in C. Measurements are assumed to represent load snapshots
per criteria at the time the imbalance must be detected;

• E, a system load estimation list containing the system load estimation value
for each criteria defined in C. This list plays a key role in the decision
process. How it is built is discussed hereafter;

• K1 and K2, parameter constants defined per criteria before the system starts
up. Their purpose is to keep the load per criteria close to a factor. The pa-
rameters also prevent oscillations. By setting them to high values, imbalances
are spotted less often.

Based on parameters, the function respectively detects a peer as overloaded
or underloaded if its load for a criteria C[i] is respectively K1[i] times greater or
K2[i] times lower than the estimate E[i] associated to the criteria C[i] that is
observed (K2[i] must be lower or equals to K1[i]). The order in which criteria
are defined matters since it defines priorities in which imbalances are detected.
The detection process is sequential for the simple reason that load measurements
are not necessarily expressed in the exact same unit but also the fact that actions
required to fix imbalances depends of criteria. To conclude, while remaining simple,
this load detection model easily supports the definition of multiple independent
criteria.

Regarding parameter E, its purpose is to offer an approximate value of the sys-
tem load per criteria. By choosing E values close to the average system load, a peer
may compare its load per criteria according to values in E and react accordingly to
balance the load (by using for instance the schemes proposed in the next section)
in order to keep the load per criteria close to a factor k (when k = K1[i] = K2[i]).
Therefore, how E values are computed is critical. Many solutions are conceivable.
The simple one is to use purely local knowledge by defining constant values for E.
For instance, if a criteria is the number of quadruples per peer, the estimate value
could be set to the number of peers divided by the total number of events the
system is assumed to receive. Although this solution is merely static in the sense
that some system’s parameters are known before its instantiation (e.g. number of
peers and total number of data to handle), it may be useful in the context where
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the system is not so dynamic and the number of machines limited. In that case
the system starts from one machine and new ones are added when the first reaches
its maximum capacity defined by threshold values in E.

1: function EvaluateLoadState(C, M, E, K1, K2)
2: ▷ i, load measurement index
3: ▷ m, load measurement value
4: for i, m ∈ M do
5: if m ⩾ E[i] ×K1[i] then
6: return LoadState(Overloaded, C[i])
7: end if
8: if m < E[i] ×K2[i] then
9: return LoadState(Underloaded, C[i])
10: end if
11: end for
12: return LoadState(Normal)
13: end function

Algorithm 5.1 – Load state estimation algorithm.

The second alternative is to populate E with values that represent the average
system load per criteria. It implies to share knowledge about loads between peers.
To disseminate these information messages must be exchanged and as a result a
pull or push approach is possible. The push model was selected for two reasons.
The first is that only an approximation is required, thus receiving new load values
in time for computing an average result or later due to the asynchronism of the push
model is not strictly speaking an issue. The second reason lies in the fact that
probing peers with synchronous requests incurs higher bandwidth consumption
because of roundtrip. Once the model to appraise peers utilization is defined, many
solutions still exist to disseminate load information. Load may be piggybacked by
usual requests but it implies that the convergence time about the rumor that
relates to the load depends of the system usage which prevents decisions when
part is idling. More simply the load can be periodically forwarded to immediate
neighbors, the k-neighbors, broadcasted to all the peers or sent to peers selected at
random or based on heuristics. Works made around gossips protocols are a great
source of inspiration [146]. As we will see, the gossip protocol used is the main
differentiation parameter for the strategies we propose in Section 5.2.2.
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Balancing the load

Once an overload or underload is detected, the next stage is to fix it. To this
aim, each criteria is associated to two functions. The first defines how to correct
underloads whereas the second details how to regulate an overload. Whatever the
implementation is, both methods require to select who will receive part of the
imbalance and to define how the imbalance may be fairly shared. The next two
paragraphs describe these two actions.

Selecting imbalance receiver The process to select imbalance receiver strongly
depends of imbalances type, namely whether it relates an overload or an underload.
The rule is that load has to be taken by a lightly loaded peer when an overload
is endured. However, underloads can be handled by a lightly or heavily loaded
peer. The latter is a better plan because it helps reducing overloads while fixing
underloads. The selection process can leverage information previously exchanged
and aggregated on peers about load (cf. paragraph explaining how imbalance is
detected) in order to elect the right peer to perform relocation with. Unfortu-
nately, when fixing overloads, there are cases where no peer which is an active
member of the network respects the previous rule. For instance, all peers may be
experiencing an overload. In that case, a solution is to allocate a new peer on a
new machine. To enhance the allocation time, a remedy is to preallocate a pool
of peers ready to join overloaded ones.

Sharing load evenly The final stage for balancing load once the type and a
receiver is identified is to share as fairly as possible the resource which causes the
imbalance. If the resource is balanced uniformly and if overloaded and underloaded
peers perform the same, at the end the system should eventually converges to a
steady state. Sharing load is strongly related to the criteria that are managed.
In the following is described load sharing for our solution. Both criteria taken
into consideration with our system are about quadruples and their size per RDF
term. By default the CAN protocol allows to share peers’ zone by splitting them
sequentially per dimension (i.e. splitting a peer zone on dimension two whereas
no split on dimension one was made is not allowed to avoid routing in O(n))
and at the middle. The issue with the middle approach is that, as depicted by



138 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

Figure 5.2(a), depending of how quadruples are mapped on the system identifier
multiple splits are required. Moreover, as many peers as the number of splits are
involved since by default a peer manages one zone only. Intuitively, a solution
is to split at the median value instead of the middle but it has two drawbacks.
First, computing the exact median value requires sorting RDF terms which is not
conceivable. Second, it enables fair partitioning for our first criteria which is about
the number of quadruples per peer but it leaves out our second criteria regarding
RDF terms size. The right method is to compute the centroid per RDF term, this
is what we do for each quadruple handled by the system. In this way, zones are
split based on centroid values. The benefit is clearly identifiable on Figure 5.2(b).

(a) Cutting based on middle. (b) Cutting based on centroid.

Figure 5.2 – CAN splitting strategies comparison for sharing load about RDF data.
Dashed lines depict required zone’s splits.

The configuration requires with the default CAN scheme 5 splits whereas the
new one based on centroid incurs 1 split only. Although cutting is enhanced,
depending on how quadruples are arranged (e.g. if they are all aligned on a single
dimension) up to d − 1 splits, where d is the number of dimensions in the CAN
network, may still be required to balance the resources. When the issue occurs, up
to d − 1 peers (referred to in the following as cutting peers) managing no resource
may be injected. Since they manage no resource, these last are candidate for
underload balancing in a near future which will cause additional and superfluous
work to the CAN network. The situation could be easily dodged by making cutting
peers join a same node. Even better, another solution would be to allow the peer
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taking the load to manage several zones, the ones from the cutting peers. This
way, the overhead incurred by the management of multiple peers per node is almost
hidden. The former approach is probably easier to support since it leverages virtual
peers whereas the latter requires changes in routing algorithms but also join and
leave procedures since multiple zones are potentially managed by peers.

5.2.2 Strategies

The previous section shapes the premises for a load balancing strategy. However, a
few questions are left open, especially regarding how some aforementioned param-
eters are set. Their definition leads to at least two main load balancing strategies,
namely absolute or relative, whose details are given below.

Absolute load balancing

The absolute load balancing strategy aims to detect imbalances without exchang-
ing information between peers. To achieve this goal threshold values are config-
ured per criteria and passed to peers when they are deployed. These last are
upper bound values that allow to signal an overload once they are exceeded. Con-
cretely, defining such a behaviour implies to set parameters introduced with the
function on Algorithm 5.1 to specific values. By setting K1[i] to 1, K2[i] to 0
and E[i] to the desired threshold values, the load state estimation function works
with local knowledge only. Obviously, purely local decisions has an impact on the
effectiveness of the strategy, this is what we will see with the experiments.

Relative load balancing

The second strategy is about relative load balancing. Relative because local load
measurements are compared to an average system load to decide whether an im-
balance is experienced. To estimate the average system load measurements are
exchanged between peers. Peers in charge of receiving load information depends
of the gossip protocol used. As we will see with the experiments a basic strategy
can be to forward load information to immediate neighbors. However, another
conceivable approach is to use a mechanism similar to Mercury [24] that consists
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of a) sending peers’ load on the vicinity of each peer but also b) to execute pe-
riodic random walks to capture an approximate view of the global system load.
Our system architecture is built atop CAN whose topology is a finite connected
graph that meets the requirements of an expander graph. In other words, with a
small number of edges in the network topology every peer can reach other edges by
many paths. Since in [147] the authors have shown that random walks are superior
to flooding in some cases of practical interest with expander graphs, applying the
aforementioned gossip strategy could provide interesting results.

Optimization The gossip protocol employed could also be tweaked similarly to
what is proposed in [145] by defining a parameter p, p > 1 so that a peer only needs
to report its load if the ratio between the new load and the previous load that was
sent before is greater than p. In this manner some messages are periodically evicted
and peers are relieved. However, this is an additional parameter that affects the
convergence time of the algorithm and it would require intensive benchmarks.

Upstream load balancing

Upstream load balancing is a strategy that complements the ones introduced pre-
viously. In 3.2.2 we explained that quadruples are routed according to their RDF
term values. The idea with upstream load balancing is to index quadruples by
considering their RDF terms once they have been passed to a function that ap-
plies a transformation to improve skewed distribution due to common prefixes.
Such a function could consist of removing for instance the namespace from IRI
values associated to RDF terms. Therefore, if we have several quadruples with
predicate values that share the same namespace, the information is indexed by
keeping the predicate local part only. To better understand, let us consider the
Dublin Core [148] vocabulary. It defines an ontology with multiple metadata for
describing resources in their generalities. This vocabulary contains for example
the predicates dc:title and dc:creator where dc refers to the standard Dublin Core
namespace2. The removal operation consists in cutting out the characters until the
last / or # character. Thus, dc:title and dc:creator are indexed lexicographically

2http://purl.org/dc/elements/1.1

http://purl.org/dc/elements/1.1
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by using respectively title and creator. As the last two values differ from the first
character whereas the old values differ after the first thirty two characters, they
have much more chance to be indexed on two different peers than before. However,
this probability highly depends on the CAN space splitting and the RDF data to
index. Although this scheme brings a few improvements it cannot deteriorate load
balancing. Similarly to prefix removal, another solution may be to compare during
request routing the bounds of a zone managed by a peer and the RDF terms values
based on the reverse RDF terms value so that skewed prefixes less impact data
placement on peers. The advantage of this second approach compared to prefix re-
moval is that it incurs no overhead since it may be implemented by redefining how
the function that performs the comparison during routing behaves. However, both
methods must be used when exact matching only is required with subscriptions or
synchronous SPARQL queries because they incur flooding to find all matching re-
sults when filter constraints are specified. Consequently, this last solution should
be enabled as a complement to one of both methods (prefix removal or reverse
comparison) presented previously when the usage context is well defined.

5.3 Evaluation

The experiments presented in this section have been restrained to some key eval-
uations. Load balancing is assessed for a network configuration initialized with
one peer. Furthermore, only overloads are considered by setting parameter K2[i]
for the decision function to 0. Once detected, imbalances are corrected by making
new peers, deployed on dedicated and preallocated machines, to join the ones that
are heavily loaded. Load balancing involving relocations is let for future work.

In contrary to evaluations made in previous chapters, the following experi-
ments rely on real data extracted from a Twitter3 data flow by writing an adapter
in Python. The workload is about 104 CEs, each embedding 9 quadruples. Since
one meta-quadruple is automatically generated per CE, at the end the P2P net-
work handles 10ˆ5 quadruples. To allow reproducibility but also to make a fair
comparison between the different strategies that are evaluated, the same workload

3https://dev.twitter.com/docs/streaming-apis

https://dev.twitter.com/docs/streaming-apis
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is reused in all the experiments.
The first assessment is about the overhead induced by statistical information

recording. Figure 5.3 depicts the time required to acknowledge the insertion of
quadruples when statistical information recording is respectively disabled or en-
abled. Each result is the average time from five runs whose the first two are let
aside due to JVM warmup. Computing the mean or the centroid in the same
thread increases the overall insertion time by approximatively 3.45. The overhead
is explained by the fact that RDF term values are converted in radix 10 and back
to 1114112 (the radix associated unicode characters) for computing online mean
or centroid values. To address the issue, a thread pool is introduced. By using
a hard drive disk our experiments have shown that two threads are required to
hide the overhead induced by the computation of statistical information. Finally,
estimating the mean or the centroid makes almost no difference.
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Figure 5.3 – Statistical information recording overhead.

Before evaluating the absolute and relative strategies, we have performed an
experiment to see what could be the best distribution. The scheme consists of
injecting the workload on a single peer and once all quadruples have been stored
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to start load balancing iterations. Each load balancing iteration consists of picking
a new peer from the preallocated pool of peers and to make it join the one from
the network that is the most loaded, thus simulating an oracle. The action is
repeated until to have a network containing 32 peers. To show the interest of
using statistical information, the experiments have been performed, as depicted
on Figure 5.4, by using zones cutting based on their middle or centroid values
recorded on the fly. By applying the default CAN rule, which cuts zones at their
middle, the workload is distributed on 4 peers only. However, the same experiment
using centroid values distributes the load on all peers with almost two-thirds that
have their load close to the ideal distribution. Although the distribution is not
perfectly distributed, it is greatly improved.
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Figure 5.4 – Static load balancing using middle vs centroid partitioning.

To compare results for a same configuration (i.e. same workload and number
of peers), a good estimator is the coefficient of variation, also known as the relative
standard deviation. It is expressed as a percentage by dividing the standard devi-
ation with the mean times 100. In the following we use this estimator to compare
strategies. For information, the coefficients are 559.4% and 69.5% when the middle
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and centroid methodologies are respectively applied with the static load balancing
experiment presented above, thus showing that centroid performs better because
this last value is eight times lower than the previous.

Finally, we have compared the absolute and relative strategies. For the absolute
one, threshold value is set to the number of quadruples divided by the final number
of peers, which gives 3125. The relative strategy does not rely on global knowledge,
and K1[i] was set to 1.1 so that overload is detected when local measurements
on peers is greater than or equals to 1.1 times the estimate value computed by
receiving load information from immediate neighbors. The parameter K1 was
set according to previous experiments that let suppose the best distribution is
achieved for this value. Table 5.1 shows the results obtained according to the
strategy applied and put it in correlation with the results got for the static load
balancing experiment that exhibits the best distribution that can be achieved
according to the relative standard deviation (69.5%). In summary, the relative
standard deviation is almost twice as large (119.75%) as the best when the absolute
strategy is applied. Similarly, the relative strategy performs worse than the static
load balancing solution but it achieved a better distribution (96.57%) than the
absolute strategy and this without using global knowledge. Besides, since more
peers are receiving RDF data, more nodes are involved to answer subscriptions
with the pub/sub layer, thus increasing the throughput in terms of CEs received
per second.

Static load balancing Dynamic load balancing

Middle Centroid Absolute Relative

Relative stddev 559.4% 69.5% 119.75% 96.57%

Table 5.1 – Load balancing strategies comparison.

Summary

This chapter has presented and briefly analyzed two strategies for balancing RDF
data on our revised CAN network. The central idea is to share overloads between
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peers by splitting peer zones not at their middle as suggested by the default CAN
protocol but at the point that fairly balance RDF data. This is made by recording
centroid values of RDF terms per dimension. Then, the strategies that are pro-
posed mainly differ regarding how imbalances are detected. The first uses global
knowledge whereas the second relies on information exchanged between peers.
Experiments have shown the latter strategy performs better than the former. Al-
though the solution we propose is far from ideal in the sense that RDF data are
not as well distributed as it could, the strategies enhance the distribution on peers,
the involvement of peers and thus the throughput when publish/subscribe is used.

It is worth mentionning the presented solution is an unfinished work and many
points would require more intensive investigations and experimentations. Also,
many faces of our work could be enhanced. For instance, the gossip protocol to
use would require refinements by implementing optimizations, relative to load dis-
semination, proposed in Section 5.2. Furthermore, before allocating new peers,
relocation should be envisaged. One additional direction is to consider more crite-
ria such as queries load, subscriptions or even CPU and bandwidth consumption.
Since our balancing model has been designed with the idea to support multiple
independent criteria, adding new ones should not be arduous.
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Implementation
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In this chapter we introduce and give details about the implementation of the
EventCloud (EC) middleware which is the software used to assess the different al-
gorithms and features which have been presented in the previous chapters. First,
we start to review the software architecture associated to the EventCloud middle-
ware by focusing on its modularity and the key software elements that interact
together. Then, in a second time we discuss how we have tuned performances by
applying different methods at several levels for the different performance bottle-
necks which have been identified throughout the development of the middleware.
It includes a custom cache layer but also serialization and MAOs improvment.

147
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6.1 Middleware Design

The EventCloud middleware has been designed from scratch and implemented by
using the ProActive Programming middleware. This gives us the opportunity to
build the whole system on concepts and abstractions that may be easily reused,
extended or replaced. In contrary to an integrated architecture, where no clear sep-
aration exists between software elements, here key elements are identified. Given
that the implementation is in Java, we make an intensive use of Maven1 to man-
age the lifecycle of the project but also to keep the architecture structured and
modular by associating multiple modules to the system elements, thus isolating
functionnalities. This way, only the modules that are required may be loaded.
Besides, the modular architecture and the manner to proceed allows to replace or
add any software element or module without affecting the rest of the system.

CAN Implementation for RDF Data

Abstract CAN Library

Structured P2P Framework

ProActive Programming

Figure 6.1 – Stack of main software blocks designed and/or used. Colored blocks
have been designed from scratch. The color intensity depicts also the level of
abstraction.

The Content Addressable Network protocol is at the core of the EventCloud
infrastructure. As depicted by the Figure 6.1, to make the architecture as modular
as possible, the CAN network that is used with the EventCloud is defined on top
of a stack made of four main software blocks: the existing ProActive Program-
ming middleware at the bottom which abstracts communications, the structured

1http://maven.apache.org

http://maven.apache.org
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P2P framework above that provides reusable concepts to design structured P2P
networks and then just below the EventCloud specific CAN implementation, an
abstract CAN implementation that provides the subsistence minimum to connect
peers and route messages in a CAN topology. The following sections discuss in
details how these main software blocks have been designed and implemented.

6.1.1 A generic structured P2P framework

The generic structured P2P library is at the core of the middleware we have de-
signed. This first block is a bunch of interfaces and classes that provide the neces-
sary abstractions and reusable concepts to ease the implementation of structured
P2P protocols with the ProActive Programming framework.

Peers representation

Figure 6.2 depicts a simplified version of the classes that describe the structure
of the generic library for creating a model of a peer. The first step to design the
library was to identify the key operations that are common to any structured P2P
protocol. The Peer interface defines the signature of these operations that allow
basic interactions such as creating a network, joining another peer, leaving a net-
work or sending operations and routing messages as we will see later. However, a
peer implementation is not specific to a protocol. It is mainly used to exhibit the
common operations remotely and to manage the state of a peer (i.e. whether it
has already joined a network or not). Thus, the second step consists in deciding
how a peer is specialized for a given network. In object oriented programming,
composition or inheritance may be used. However, it is acknowledged that com-
position is usually more flexible than inheritance and allows the container class
to be more stable in the long term [149]. For this reason, common structured
P2P operations are delegated to a StructuredOverlay by means of composition.
This last is an abstract class maintaining attributes and methods that are still
commons to any structured P2P network but that should not be made public to
external users since they are useful for protocol implementers only. Besides, a
StructuredOverlay implements a DataHandler interface that abstracts the storage
on peers. The interface defines only a few methods that allow to assign data but
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also to retrieve or remove data according to a space managed by a peer during a
join or leave operation. A protocol implementation is made by using the provided
abstractions and creating a concrete class that inherits from StructuredOverlay,
such as a CanOverlay or ChordOverlay implementation. The manner to proceed
is in fact an application of the Strategy design pattern that allows to select an
algorithm’s behaviour at runtime. This way, the implementer may rely on existing
methods and values from StructuredOverlay, override methods to further improve
features that are then tasted by users with polymorphism.

Now that peers may be defined for different protocols, we have to determine how
they are instantiated and disclosed remotely in order to interact with others. In
ProActive, remote entities are represented by Active Objects or GCM components.
We have chosen to associate a peer to a GCM component because components
allow a clear separation of functional and non-functional concerns while improving
reusability, which is an interesting property for adding monitoring in the future.

Communications between peers

P2P networks are designed to share resources among interconnected peers and
resources are made available to others or looked up by enabling communications
between peers. In structured P2P networks, peers are organized in a structured
way so that they manage part of a global identifier space. Consequently, there is
at least two manners to point out a peer, either its remote reference is known and
it may be contacted directly, or only a key that is contained by the space interval
one ore more peers maintain is specified. In this last case, routing is required to
find out the final destination. We detail hereafter how our generic P2P library is
designed to support both communication types.

Operations Operations are special messages that are sent by invoking remotely
the receive method on a Peer stub. Their purpose is to hide operations that
should not be exposed to users while keeping the Peer interface untouched. Oper-
ations are declined in two flavours, RunnableOperations that return no result and
CallableOperations that give back a ResponseOperation. Both may be invoked
asynchronously since ResponseOperation is reifiable. Beyond that, the two opera-
tion classes extend an abstract Operation class that can be used to implement for
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«interface»
Peer

+ create() throws NetworkAlreadyJoinedException
+ join(Peer) throws NetworkAlreadyJoinedException, PeerNotActivatedException
+ leave() throws NetworkNotJoinedException
+ receive(CallableOperation) : ResponseOperation
+ receive(RunnableOperation)
+ route(Message)
+ getOverlayId() : OverlayId
+ getType() : OverlayType

PeerImpl

«interface»
DataHandler

+ assignDataReceived(Serializable)
+ retrieveDataIn(Space) : Serializable
+ removeDataIn(Space) : Serializable

StructuredOverlay

CanOverlay

ChordOverlay

Figure 6.2 – Simplified version of the class diagram defining a peer.
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instance permission checking or even to define compatibility with others requests
as we will see in Section 6.1.1.

Messages A message is a specific envelope that contains an information to de-
liver or an action to execute on a set of peers according to a key. Figure 6.3 shows
the class diagram describing the model for messages and the abstractions required
for routing them. Messages are essential elements of the whole architecture. They
are modeled as an abstract Message class. This class contains common attributes
such as an identifier, a key that is used to know whether a message received on
a peer has to be delivered or not, but also others instance fields that maintain
statistics (e.g. the number of hops), which is particularly useful to assess the per-
formance of a routing algorithm. The Message class is subclassed with two child
classes which are the Request and Response classes. The reason lies in the fact that
requests and responses do not share the exact same behaviour and states. The for-
mer saves values about the time at which the request has been dispatched whereas
the latter keeps the number of hops related to the routing of the response only.
However, a Response references a Request when it is built to have access to the re-
quest attributes that are necessary to compute some measurements once a response
has been delivered (e.g. the round-trip delay time). Not all requests necessarily
generate a response. The distinction between requests that yield responses and
those that do not is made with the help of the responseProvider instance field that
contains an instance of the ResponseProvider class which describes if a response
has to be created and how.

In both cases a Message is routed according to a Key. Routing is performed
from a peer by calling the one-way route method. The call to the route method
results to an invocation of the same method name on the embedded overlay object,
that itself delegates the routing to the initial message instance that is routed, by
double dispatch [150]. This way, the routing decision is taken at runtime by the
concrete message’s type that knows which kind of router to use. The router that
is used to route a message is abstracted through a Router interface that defines a
public method named makeDecision. This method is executed each time a message
reaches a new peer. It takes as parameters the message object and the overlay on
which the message has been received to know whether the destination is reached



6.1. MIDDLEWARE DESIGN 153

or if further routing is required. Besides, decoupling a Router from a Message
allows different messages to reuse existing routing algorithms. For instance if we
define a multicast algorithm for CAN that uses a multicast key to make the routing
decision, this specific router could be used to route messages whose the purpose
is to retrieve quadruples but also for those that aim to remove quadruples since
only the action to perform once the destination is reached differs. This behavior
that is specific to any Message is defined by overriding the onDestinationReached
method.

«interface»
Routable<K extends Key>

+ getRouter() : Router<? extends Message<K>, K extends Key>
+ route(StructuredOverlay)
+ onDestinationReached(StructuredOverlay)

Message<K extends Key>

# id : MessageId
# hopCount : int
# key : Key

Request

# dispatchTimestamp : long
# responseProvider : ResponseProvider

Response

# outboundHopCount : int

+ getLatency() : long

«interface»
Router

+ makeDecision(StructuredOverlay, Message)
# handle(StructuredOverlay, Message)
# route(StructuredOverlay, Message)

Figure 6.3 – Simplified version of the class diagram defining messages.

Bootstrapping

In overlay networks, bootstrapping usually refers to the procedure to discover
peers that are already member of a running P2P network. To enable peers’ dis-
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covery, references to peers that are part of a P2P network are retained by trackers.
Trackers are GCM components organized into a fully connected mesh network
that forms an entry point to a P2P network. The view is maintained between all
the trackers with the help of the collective group communication feature provided
by ProActive [151]. Compared to an rmiregistry, a tracker is a protocol agnostic
registry.

It may be argued that fully connected networks are not scalable, however track-
ers are assumed to be deployed, in our context, on stable nodes and peers on
a trusted infrastructure such as a datacenter. Moreover, peers’ references are
lightweight objects and trackers are supposed to track only some references to
peers from a P2P network, not all. The idea is to always have access to one ref-
erence in order to interact with a running network. Obviously, there is a tradeoff
between the number of references that are kept and how operations are initially
balanced on the P2P network since the less references are available, the less entry
points can be used. For this reason, references are saved according to a configurable
probability. To enforce the storage probability, create, join and leave operations
on peers are delegated to trackers. To insert a peer into a P2P network, an inject
method is called on a tracker with a peer stub. This last method allows to call
the create or join method on the specified stub, depending on whether the peer
is the first to join the network or not. Moreover, the method inject ensures that
the peer reference is saved if it has to be while multiple injection strategies may
be supported. Other methods are remotely accessible such as a takeout procedure
that applies a similar behaviour as the inject one but for asking a peer to leave
the network. Finally, to have the possibility to discover references, getPeers and
getRandomPeer methods are provided by trackers. In case trackers’ scalability is
an issue, they could be organized in a structured P2P network such as Chord.
However, our experiments showed this is not be required on trusted environment
with an acceptable number of peers.

Although trackers are deployed on stable nodes, IP addresses are not easy to
remember, especially with the advent of IPv6. A solution could be to rely on
the Domain Name System (DNS). By associating an address record to the IP
addresses of trackers, a set of tracker can be identified through a simple and easy
to remember domain name. This way, users benefit also of the load balancing
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property applied during the resolution of domain names, which allows to balance
load among trackers with an associated IP address declared in the records.

Proxies

We have seen in the previous section that trackers are entry points to a network
created with our abstractions. When a user, an external application, or more gen-
erally an entity wants to interact with a P2P network, it has to know at least a
domain or a subdomain name that once resolved, points to the IP address of one
tracker. Afterwards, the entity has to contact this tracker in order to get back a
peer reference that can be used to route for instance a message. To prevent users
from this off-putting sequence of actions we have introduced the notion of proxies.
A proxy represents a gateway between a P2P network and an entity that wish to
collaborate together. As depicted by Figure 6.4, a proxy offers multiple methods
to forward a Request, but also a method to receive responses. The reason lies in
the fact that all communications made in the P2P network are one-way, as we ex-
plained previously. When the sendv method is used, the dispatching is delegated
to a MessageDispatcher which simply forwards the request to a peer after having
retrieved its reference from a tracker. However, others send methods that entail
responses require more processing. In that case, the MessageDispatcher instance
forwards the request, as for the sendv method, but waits for a response. The
synchronization point is created on the proxy by suspending the thread in charge
of sending the request with the help of the Java monitors. The suspended thread
wakes up when the response arrives. The correlation between a request and its
response is made based on a unique identifier set on each request before being dis-
patched. It is worth notice that synchronization points for requests with responses
could have been managed transparently by using ProActive futures. However, fu-
tures entail to use the same path for a request and its response, thus forcing to
cross unnecessary peers with potentially large payloads. For instance, a request
with an unicast constraint that does not require to retrieve back information on
peer crossed during the routing may have its response sent directly from the peer
handling the request to the proxy.

The send method that takes three parameters, and whose the first is a list
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of requests, is particularly useful to dispatch multiple requests whose responses
should be merged together before being delivered to users. The idea is to combine
responses at the edges of the P2P network to reduce the final response size and
as a consequence the time required to transfer the result from the P2P network to
proxies. The merge operation is defined through a ResponseCombiner by using a
Context.

Proxy

- messageDispatcher : MessageDispatcher
- proxyCache : ProxyCache

+ sendv(Request)
+ send(Request) : Response
+ send(List<Request>, Context, ResponseCombiner) : Response
+ receive(Response)

Figure 6.4 – Simplified version of the class diagram defining a proxy.

Beyond to ease interactions, a proxy has multiple advantages. It shifts syn-
chronization points from the P2P network to users which prevents deadlocks in
case of churn or failure. Additionally, a proxy features a cache mechanism that
prevents contacting trackers each time a request has to be dispatched, thus im-
proving the routing latency. Finally, proxies may be used to provide enhanced
filtering capabilities outside a P2P network or to enforce end-to-end properties.

To better explain how a proxy behaves, Figure 6.5 depicts a sequence diagram
that shows how objects introduced so far operate with one another and in what
order for sending a request and routing back a response. Let’s assume an entity
e whose its desire is to dispatch a request req that generates a result through a
response res. First, e invokes the send method on a proxy instance with the request
object req. As aforementioned, the first action to perform is to get a reference to
a peer that is an active member of a P2P network. To do so, the proxy contacts
its ProxyCache instance c that aims to keep in local references to active peers.
The first time it is contacted, the cache store is empty and has to be populated.
The action is achieved by calling the remote method getPeers on a tracker. Peer
references that are returned are stored in the ProxyCache. Then, one among those
available is picked at random and used to forward the request on the P2P network.
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Figure 6.5 – Sequence diagram showing a proxy interaction to send a request and
to receive a response on a P2P network modeled with the proposed abstractions.
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Futures interactions with c result in local actions only. The dispatching of req is
made by a MessageDispatcher that knows how to dispatch requests. Internally, it
stores in a table an entry for the request id for which a response is expected, then it
forwards the request to a peer by invoking the asynchronous route method. That,
before suspending the current thread with a Java wait call on the entry which has
been previously stored. The peer that receives the call to route the message req

delegates it to its concrete overlay implementation that itself brings the routing
decision to the runtime message type that knows which router to use. The action is
done by double dispatch to obtain the overlay and message instance as parameter
of the method makeDecision executed on a router. From the parameters, the
router is able to decide whether the message requires further routing or not. Let’s
say that we have only one peer that manages the key carried by the message, then,
the user action is executed with a call to onDestinationReached and a response
is created by using the ResponseProvider contained in the req object. Once the
response is created and attributes are set, it is routed back. Similarly to requests,
the routing is fully abstracted and how routers operate is consequently application
and use case dependent. It may be decided to use the reverse forwarding path
or to send back the answer to the proxy in one hop. The response eventually
reaches the proxy with an invocation of its remote method dubbed receive. Upon
its execution, the method retrieves the entry, attaches the response to the entry
and wakes up the thread that was waiting the response with a Java notify call on
the entry. That way, the sending thread is awaken, retrieves the response from
the entry which has just been updated and returns res to e. It may be observed
that a proxy must be remotely accessible to receive responses routed in one-way,
for this reason a proxy is a remote object. It is designed as a GCM/ProActive
component using the multi-active objects extension similarly and for the same
reasons as peers.

Configuring multi-active objects

Working with multi-active objects (cf. Section 2.4.2) requires three main actions:

1. Identifying whether a soft or hard limit must be used;



6.1. MIDDLEWARE DESIGN 159

2. Defining groups and compatibilities in order to improve parallelism by han-
dling when possible some requests in parallel to others;

3. Evaluating empirically the correct value for the limit defined previously.

We are now discussing about the type of the limit used for the various remote
objects introduced with the generic structured P2P library. Up to now three
kinds of remote objects have been introduced: trackers, peers and proxies. All
three are GCM/ProActive components that make use of a multi-active serving
policy. For trackers we use a hard limit because no re-entrant call are performed.
However, proxies and peers handle re-entrant calls, either to dispatch messages or
by handling operations through a join or leave request for instance. Therefore,
both rely on a soft limit. The values set for the different limits are discussed in
Section 6.2.1 since their definition fall within performance tuning.

Although proxies define a soft limit, deadlocks may still occur when requests
with responses are dispatched. The reason lies in the manner threads are sus-
pended to await responses. It is done by using java monitors, which bypass the
multi-active object library. Consequently, the request executor is not aware that
a thread has been suspended and it considers a sleeping thread as running, which
leads to inconsistent states when a decision to schedule requests is made. A solu-
tion could be to use futures and wait-by-necessity but it is not a viable solution
as we already explained. Thus, to address the issue two new methods have been
added to the multi-active objects API so that it is possible to decrement and
increment manually the number of active threads.

Regarding the definition of multi-active groups and compatibilities, it remains
simple for trackers and proxies. With a tracker, methods that are used to re-
trieve peer references are members of a group named parallel, which declares to be
compatible with itself so that all methods in this group can be executed simultane-
ously. Other methods used to inject and takeout peer references, but also the one
used to connect a tracker to another, do not declare a group membership. This
way, they are executed in FIFO order and in mutual exclusion with other methods
from the parallel group. Similarly, a proxy defines a parallel group and assigns
all its remote methods to this group. In that case, to achieve mutual exclusion,
the reponsability is handed over to the programmer. The reason lies in the fact
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that not all the method requires a full synchronization. Besides, the management
of this specific case may be handled easily and efficiently with a finer granularity.
Thereby, thread-safe data structures are used to prevent race conditions when re-
quests and responses are respectively dispatched and received through an instance
of MessageDispatcher which maintains awaited message identifiers.

Compatibility definition is more complex for peers. That’s because a peer ex-
hibits remote methods whose execution differs from a structured P2P protocol
implementation to another. For instance, the compatibility between two opera-
tions received on a peer may depend of the concrete operations type but also the
peer state. Fortunately, the multi-active object library allows to decide about com-
patibility at runtime with the help of compatibility functions (cf. Section 2.4.2).
Listing 6.1 shows the groups that are defined along with the compatibilities that
are loaded to the framework for a peer implementation. Six groups are declared
(line 2–11). The first group dubbed readImmutableStateOnly is used to serve in
parallel to others, and itself, all requests that simply access or read and return an
immutable field value. For example, the methods getOverlayId, getType, equals or
even hashCode from the Peer implementation are member of this group. This first
group can be considered as a rule of thumb when dealing with multi-active ob-
jects. Then, the next two groups (join and leave) are associated to the respective
methods of the same name. Finally, receiveCallableOperation, receiveRunnableOp-
eration and routing are associated to their respective methods in the Peer interface,
namely the methods receive(CallableOperation), receive(RunnableOperation) and
route(Message).

Although join and leave requests are not compatible with themself, groups
definition is required to define what is their compatibility with messages and op-
erations. The reason lies in the fact that a join may require to update neighbors
and to wait for a reentrant call with the reception of an operation. Similarly, some
messages, such as monitoring messages may be executed while a join request is
being served.

Then, after the definition of groups, compatibilities between groups are de-
clared (line 13–40). It is done for each possible combination of the groups by using
the @Compatible annotation. The interesting point here is that we have intro-
duced a specific condition parameter. This parameter allows to specify the name
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of the function to use for deciding whether two groups are compatible. To define a
compatibility function that depends of a peer state, the name of the compatibility
function is prefixed with the this. keyword. This way, when the multi-active ob-
jects framework attempts to check compatibility for two methods that belong to
the groups associated to the condition, the compatibility function is searched in
the peer implementation which allows to access to the instance fields it contains,
these last characterizing its current state. In our case, each compatibility function
local to a peer has its implementation delegated to the StructuredOverlay instance
embedded by the peer so that the value returned is defined per overlay implemen-
tation and is not common to all P2P protocols. When the compatibility depends
of the parameters only, the prefix this. is ommited and the function is looked up
in the class specified with a group-parameter (line 9–10).

Finally, the routing group is defined as self-compatible. We have made this
choice because most of the time routing implies to access data structures that are
not updated at the same time. The only issue to care about is when a message
reaches its final destination and that an action is executed. Since, two messages
may reach the same peer at the same time, the same action or two actions that
touch the same data structures or counters may be executed at the same time.
When this issue occurs, it is up to the programmer to synchronize what is required.
As a result, only part of the routing process requires synchronization.

1 @DefineGroups ({
2 @Group (name=" readImmutableStateOnly ", selfCompatible =true),
3 @Group (name="join", selfCompatible =false ),
4 @Group (name="leave", selfCompatible =false ),
5 @Group (name=" receiveCallableOperation ", selfCompatible =true ,
6 parameter ="org.ow2 ... operations . CallableOperation ",
7 condition ="this. areCompatible "),
8 @Group (name=" receiveRunnableOperation ", selfCompatible =true ,
9 parameter ="org.ow2 ... operations . RunnableOperation ",

10 condition =" isCompatible "),
11 @Group (name=" routing ", selfCompatible =true )})
12 @DefineRules ({
13 // readImmutableStateOnly is compatible with all other groups
14 @Compatible (value ={" readImmutableStateOnly ", "join"}),
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15 @Compatible (value ={" readImmutableStateOnly ", "leave"}),
16 @Compatible (value ={" readImmutableStateOnly ",
17 " receiveCallableOperation "}),
18 @Compatible (value ={" readImmutableStateOnly ",
19 " receiveRunnableOperation "}),
20 @Compatible (value ={" readImmutableStateOnly ", " routing "}),
21 // callable operations compatibility
22 @Compatible (value ={" receiveCallableOperation ", "join"},
23 condition ="this. isCallableCompatibleWithJoin "),
24 @Compatible (value ={" receiveCallableOperation ", "leave"},
25 condition ="this. isCallableCompatibleWithLeave "),
26 @Compatible (value ={" receiveCallableOperation ", " routing "},
27 condition ="this. isCallableCompatibleWithRouting "),
28 // runnable operations compatibility
29 @Compatible (value ={" receiveRunnableOperation ", "join"},
30 condition ="this. isRunnableCompatibleWithJoin "),
31 @Compatible (value ={" receiveRunnableOperation ", "leave"},
32 condition ="this. isRunnableCompatibleWithLeave "),
33 @Compatible (value ={" receiveRunnableOperation ", " routing "},
34 condition =" isCompatibleWithRouting "),
35 // callable and runnable operations are jointly compatible
36 // under some conditions
37 @Compatible (value ={
38 " receiveCallableOperation ",
39 " receiveRunnableOperation "},
40 condition ="this. areCompatible ")})
41 public class PeerImpl extends AbstractComponent
42 implements PeerInterface , PeerAttributeController {
43 // ...
44 }

Listing 6.1 – Groups and compatibility definition using multi-active objects an-
notations on a Peer implementation.

6.1.2 An abstract CAN library

The second software block concerns the abstract CAN library. It is designed
by reusing the generic structured P2P framework. Protocol specific features are
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defined in an abstract CanOverlay class that inherits from StructuredOverlay. A
CAN overlay is mainly characterized by the zone and the neighbors it stores.

The neighbors are organized in a data structure per dimension and direction.
That’s way neighbors of interest may be quickly identified, updated and removed
during a join, leave or route operation. The zone definition has also required
some attention to support multiple representations of its elements. A zone or
hyperrectangle in a d-dimensional Cartesian space may be represented by an upper
and lower bound. These bounds are usual points made of coordinates. However,
points may be depicted as numeric, alphanumeric or even Unicode values. The
last being the solution we have adopted. To make the coordinates independent of
their representation, an abstract class defines common methods such as one that
splits a coordinate in its middle, or others that are used to compare coordinates
and points together. Then, multiple coordinate implementations may be provided.
By default, only one for coordinates modeled as floating point values in radix 10
is provided.

The routing algorithms, introduced in Chapter 3, based on unicast and mul-
ticast constraints have been implemented at this level. Although both versions
of the multicast routing algorithms have been implemented (the naive and the
optimal one), the optimal based on broadcast is enabled by default since it avoids
many duplicates.

Finally, it is worth mentioning that the different features that are provided at
this level are designed to work for any number of dimensions a CAN network is
supposed to be instantiated with.

6.1.3 A CAN implementation for RDF data

The upper software block (cf. Figure 6.1) corresponds to the concrete implemen-
tation of our EventCloud middleware. Figure 6.6 sketches a high-level view of
the architecture. It involves an extended version of the software blocks and thus
elements which have been described above, namely peers and proxies. Beyond
trackers that maintain references to some peers and serve as the entry points to a
4-dimensional Content Addressable Network, the structured P2P network is made
of peers. As we explained in Chapters 3, 4 and 5, peers are in charge of storing
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RDF data, subscriptions, to perform the matching between both but also to as-
sist with the resolution of SPARQL queries while keeping data well balanced. To
achieve this purpose their internal is designed with multiple software elements (i.e.
artifacts) whose each has its own role.

4-dimensional
Content Addressable Network

Tracker1Tracker2 Tracker3

Publish
Proxy

PutGet
Proxy

Subscribe
Proxy

Figure 6.6 – High-level view of the EventCloud architecture.

Proxies, which allow interactions with the CAN network from external entities
(i.e. applications or users), are proposed in three flavours: PutGet, Subscribe and
Publish. PutGet proxies allow the addition and the removal of RDF data but also
the retrieval of semantic information through the distributed execution of SPARQL
queries based on the traditional and synchronous query/response model. Subscribe
and publish proxies leverage the asynchronous publish/subscribe communication
style. The first is used to submit subscriptions and to deliver notifications that are
matching whereas the second is used to publish new information to the brokering
network. Similarly to peers, dedicated software elements are defined and reused
between proxies.

In the next sections we discuss proxies and peers internals. We will further see
that one of the goals when designing the middleware was its modularity (i.e. to
be able to easily change, modify, replace or reuse some parts).
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EventCloud proxies

Proxies at the EventCloud level reuse by composition the proxy abstraction intro-
duced in the Section 6.1.1 since all proxies require to interact with a CAN network
by sending messages. However, each EventCloud proxy behaves differently and
exposes a different API. Public APIs are sketched with Figure 6.7. The important
point to notice here is that we do not make use directly of an existing RDF Java
API for RDF specific abstractions (e.g. Quadruple, SPARQL query results, etc.).
Instead, we introduce our own RDF abstractions, even if then the abstractions
we provide are bound to objects from a standard RDF API, the native one pro-
vided by Jena. The reason to do so lies in the fact that, at the time we started
to design our system, most of the existing RDF API were not serializable which
is really not handy to work with in a distributed context. Moreover, some RDF
abstractions such as the quadruple one requires to store publish/subscribe specific
values like the time at which a quadruple has been published, which is again not
supported by existing APIs. Additionally, SPARQL query responses may contain
extra information related to the infrastructure where the execution took place
such as the number of hops required, the execution time, etc. Besides, the added
value to expose to users our own RDF abstractions is that the dependency to an
RDF API (such as Jena [152] or Sesame [78]) is isolated in our abstraction. Thus,
moving from one to another just consists in plugging a new implementation of
our abstractions. In the past, we have successfully swapped from Sesame to Jena
without impacting the other parts of the architecture.

Some may argue we could use RDF2Go [153] which is an abstraction over
triple and quadruple stores that allows developers to program against RDF2Go
interfaces and choose or change the implementation later easily. However, RDF2Go
interfaces are not serializable, maintained sporadically and the overhead induced
by the library was not negligible at the time we tested it. Therefore, we have put
this solution aside.

Internally, proxies share common software elements. Figure 6.8 depicts what
are those that are reused between proxies. For instance, with a PutGet Proxy,
the execution of a SPARQL query involves three software elements, namely a
QueryPlanGenerator, a QueryDecomposer and a QueryPlanExecutor. The first is
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«interface»
PutGetAPI

+ add(Quadruple) : boolean
+ add(Collection<Quadruple>) : boolean
+ delete(Quadruple) : boolean
+ find(QuadruplePattern) : List<Quadruple>
+ executeSPARQLAsk(String) : SparqlAskResponse
+ executeSPARQLConstruct(String) : SparqlConstructResponse
+ executeSPARQLDescribe(String) : SparqlDescribeResponse
+ executeSPARQLSelect(String) : SparqlSelectResponse

«interface»
SubscribeAPI

+ subscribe(Subscription, BindingNotificationListener)
+ subscribe(Subscription, CompoundEventNotificationListener)
+ subscribe(Subscription, SignalNotificationListener)
+ unsubscribe(SubscriptionId)

«interface»
PublishAPI

+ publish(CompoundEvent)
+ publish(Collection<CompoundEvent>)

Figure 6.7 – Shortened public API with essential methods exposed by related
EventCloud proxies.
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in charge to create an execution graph for subqueries (atomic and range queries)
extracted from the input query thanks to the second software element that is the
QueryDecomposer. Then, the third traverses vertices (i.e. subqueries) to dispatch
them in parallel (in our current implementation) with the help of a MessageDis-
patcher. Although some software elements are limited to a unique component,
some others such as the QueryDecomposer is shared between a PutGet Proxy and
a Subscribe Proxy. Indeed, the later also needs to extract sub-subscriptions which
are in fact subqueries since SPARQL is used as the subscription language. Simi-
larly, all proxies interact with a structured P2P network through message passing
and thus, share the same MessageDispatcher software element provided from the
proxy abstraction introduced in Section 6.1.1.

Message Dispatcher

PutGet Proxy

Subscribe API

Query Decomposer

Message Dispatcher

Notification Receiver

Subscribe Proxy

Publish API

Message Dispatcher

Publish Proxy

PutGet API

Query Plan Generator

Query Decomposer

Query Plan Executor

Figure 6.8 – Internal EventCloud proxies architecture.

To improve interoperability, the different proxies presented above may be ex-
posed as a SOAP web service. Furthermore, it may be decided that publish and
subscribe proxies interfaces are exposed by using our own WSDL or the WS-
Notification [154] one that aims to standardize publish/subscribe interactions in
web services. In this last case, translators are provided by the EventCloud mid-
dleware to translate plain old XML payloads to and from XML2.

2http://goo.gl/cv3iJH

http://goo.gl/cv3iJH
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EventCloud peers

Peers internal is much different than proxies. However, peers behave the same and,
consequently, share software elements. Figure 6.9 highlights these elements whose
most of them do not work in isolation. Rather, they require frequent interactions.
Below, their functions and their relations are explained.

Peer i

Load Balancing
Manager

Local
Storage

4D CAN
Overlay P2P Substrate

Delayer Publish/Subscribe Matcher

Events
Datastore

Subscriptions
Datastore

Colander
Datastore

Figure 6.9 – Internal EventCloud peer architecture for an arbitrary peer i. Red
arrows depict reusable abstractions.

P2P substrate This software element is responsible for maintaining the CAN
infrastructure, routing messages and accessing the local storage through the delayer
abstraction. The 4-dimensional CAN overlay is managed through an extended
version of the CAN overlay provided with the abstract CAN library. Extended
because the overlay has to interact with EventCloud specific software elements
such as the semantic repositories it embeds, a publish/subscribe matcher, or even
a load balancing manager it may optionally run. As a reminder, the default CAN
overlay is responsible for maintaining a description of the zone managed by the
current peer and an up-to-date list of its neighbors only.



6.1. MIDDLEWARE DESIGN 169

Regarding routing, the algorithms implemented at the lower level require to
compare peer’s zone coordinates with coordinates extracted from quadruples. To
make it possible, a unicode coordinate implementation is provided so that coordi-
nate values may be floating points in radix different from 10. Manipulations on
digits from coordinates to perform for instance a split during a join operation are
performed with the help of the Apfloat [155] high performance arbitrary precision
arithmetic library. However, comparison between a quadruple coordinate and a
zone coordinate is made by comparing directly unicode values since they are real
numbers represented in the same radix. Let’s consider for example zcl = subj and
zcu = uzo, two zone coordinates, respectively the lower and upper bound coordi-
nates a quadruple coordinate qc = http ∶ //example.org/subject has to be compared
to. The first step consists in checking whether an upstream load balancing strat-
egy is enabled. In case it is, for instance prefix removal, the associated function
is applied as explained in Section 5.2.2. Thus, qcs = subject is obtained. Then,
qcs is compared to zcl and zcu, character by character by using at most all the
characters from zcl and zcu, as it would be done with digits from decimal num-
bers. In that case, qcs is detected as greater than zcl and lower than zcu, thus
qc is assumed managed by the peer zone on the specified coordinate dimension.
The consequence of this scheme is that the extra cost of working with big radix
remains acceptable since it has little impact on the routing performance.

Delayer The delayer software element acts as an intermediate between the local
storage, the P2P substrate, and the publish/subscribe matcher abstraction. Its
purpose is to buffer incoming data that have to be written to the disk because
the commit of data to disk is an expensive operation. Also, since data require
to be stored before being notified, the matching between buffered data and sub-
scriptions is delayed. Buffered data and subscriptions are sent to the publish/sub-
scribe matcher for checking the satisfaction between events and already stored sub-
scriptions (and/or symmetrically between subscriptions and already stored events)
when they are flushed from the buffer only. The main benefit to delay the matching
is that it leads to fewer queries to perform on the local storage. Without buffering
and delaying a query has to be performed per event or subscription received in
order to find matching payloads whereas when delaying is enabled, all queries may
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be wisely merged into one that is executed only once, when the buffer is flushed.
Internally, this software element implements a configurable policy to flush

buffered data and trigger delayed operations when a threshold is reached (e.g. the
time passed since last commit aka commit interval, number of elements received
such as quadruples, compound events or subscriptions). The potential impact of
this solution on the overall performance of the system is discussed in Section 6.2.3.

Publish/Subscribe matcher The publish/subscriber matcher is the software
element in charge to apply one of the Publish/Subscribe algorithm (CSMA or
OSMA) we have presented in Chapter 4. It registers subscriptions and checks the
satisfaction of subscriptions with events it receives (and already stored). Addi-
tionally, the matcher caches locally the most recently used subscriptions to avoid
as much as possible expensive interactions with the local storage.

Local storage The local storage is ultimately responsible for storing data and
processing queries locally. It is important for the P2P infrastructure to be inde-
pendent from the storage implementation. All references are isolated through an
abstraction layer whose the role is to manage the differences between data struc-
tures and API between the P2P and the storage implementations. However, some
requests require the access to a local datastore to read or write some information.

The storage abstraction is bound to three datastores that, each, encapsulates a
Jena TDB [82] instance and optionally a stats recorder. As depicted by Figure 6.10,
the stats recorder instance may be used by the load balancing manager to retrieve
an estimation of the load in terms of quadruples, and this per dimension because
the centroid or mean is computed per RDF term value from quadruples.

Regarding the datastores, one is used for storing subscriptions, another to store
RDF data that are added synchronously or published asynchronously (events data-
store), and a last to filter intermediate results returned during the execution of a
SPARQL query (colander datastore). This last datastore is used mainly to com-
pute joins between quadruple sets returned with the execution of atomic and range
queries during the handling of SPARQL query. Besides it is also used to support
SPARQL operators that are not managed in a distributed manner. Using three
datastore instances has several benefits. In our case, they are at least two reasons
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for having an independent subscription and events datastore. First, it allows to
easily distinguish subscriptions from business data without having to add a flag,
additional quadruples or even to create a complex quadruple representation. Sec-
ond, a Jena TDB instance supports transactions with multiple concurrent readers
but only one writer at a time. By using two datastore instance, concurrent writes
against the subscription datastore and the events datastore can be performed at
the same time.

Stats Recorder

Jena TDB

Datastore

Load Balancing
Manager

File System

P2P
Substrate

Figure 6.10 – Internal architecture of datastores (subscriptions, events and colan-
der datastores) embedded by peers’ local storage. Red arrows depict reusable
abstractions.

Load balancing manager The load balancing manager, when enabled, encap-
sulates a load balancing strategy to apply in order to share load imbalances. It may
rely on the load balancing strategies introduced in Section 5.2.2, namely absolute
or relative. To achieve its purpose each load balancing strategy has to measure the
load associated to its peer. Since our criteria are about RDF data, this is made
through interactions with the local storage that maintains statistical information
about data distribution per dimension. Interactions with the P2P substrate are
also required when load information should be exchanged with neighbours or other
members of the P2P network, especially with the relative load balancing strategy.
Regarding this last, the manner load information is disseminated has its own ab-
straction which allows to plug different gossip strategies. Although only imbalances
related to quadruples are taken into consideration for the moment, load balancing
software elements has been design to support multiple independent criteria. Fi-
nally, how imbalances are fixed with the help of peer allocations or relocations is
isolated in a dedicated software element that enables sharing between criteria.
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6.2 Performance Tuning

Throughout the implementation of the EventCloud middleware, we identified dif-
ferent bottlenecks. The purpose of this section is to summarize different solutions
we have proposed, implemented and evaluated to enhance the performances of the
whole system.

6.2.1 Multi-active objects

Initially, the middleware has been implemented by using standard Active Objects
with Immediate Services (ISs). ISs enable remote method invocations to be pro-
cessed immediately by spawning new threads. The benefit is that they allow to
take advantage of multicore machines whereas the default serving policy provided
by ProActive, which enqueues incoming requests and handle them one by one
through a single thread, cannot. However, the main drawback is that ISs break
Active Objects’ semantic. Therefore, all ISs calls are handled synchronously which
entails the caller thread to block until it receives the results. Besides, ISs do not
impose a limit about the number of threads to spawn and require to manage mu-
tual exclusion manually, which allows finer control than MAOs but at the price of
more complex and longer pieces of code to write.

Once a first version of the MAO library was available, we started to analyze its
use inside the EventCloud middleware. The first step was to assess and compare
the performance between an implementation of our solution with ISs and another
with multi-active objects [156]. As a result we observed that the solution based on
MAOs is in the best case identical in terms of performance obtained or even slower
to our previous implementation based on ISs. It suggests the original implementa-
tion was already well parallelized. However, MAOs require less threads to achieve
almost the same performance. The reason lies in the fact that, unlike ISs, MAOs
do not have to use a dedicated thread to perform an asynchronous remote method
invocation since methods without return type that are not declaring to throw an
exception are handled asynchronously.

Thereafter, the MAO implementation has become more stable and we decided
to keep it for the EventCloud middleware and to investigate how performances
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could be tweaked. This lead to an empirical definition of soft and hard limits used
with AOs and the introduction of priorities, as explained below.

Hard and soft limit definition

Defining properly MAO limits is a tricky process because it implies to consider
many factors. Indeed, value must be set according to the machine architecture
where experiments are made but it also depends of requests’ type executed, their
frequency, the compatibilities defined and the type of task performed once a re-
quest is executed. For instance, requests performing I/Os will most likely slow
down the execution of other requests that are a consequence of the one being exe-
cuted. Increasing the number of threads that may be executed concurrently may
be advantageous if some independent and non I/O intensive requests (i.e. memory
bound) can be processed while I/O requests are in progress, otherwise the benefit
is less obvious. Another non trivial issue to monitor that may inhibit the effect of
increasing MAO limits relates to threads contention. The situation occurs when
multiple threads are waiting for a lock that is currently being held by another
thread. In that case, boosting the number of threads heighten contention and
makes the application exhibit worse performance.

In the following we describe how MAO limits have been empirically defined
for the publish/subscribe layer. In this context, entities that are involved are
publish and subscribe proxies but also peers. Publish proxies, which do not trigger
reentrant calls, define a hard limit that prevents to use more than t threads at any
moment for handling requests. Publishing events is an asynchronous process that is
really fast, experiments showed us that increasing t does not increase throughput
at the subscriber. Peers simply enqueue requests faster but since they perform
routing and matching at a slower rate than the one at which publications are
received, increasing t is not beneficial. For this reason we set t to the number of
cores available on the machine where the publish proxy is running.

The next step consists in finding the best MAO limit for peers. Peers define
a soft limit that restricts the number of threads running but allows, as opposed
to a hard limit, an unlimited number of threads to wait (e.g. for futures) in
order to prevent deadlocks with reentrant calls. To help us to choose properly the
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appropriate limit value, we have performed experiments based on a configuration
with OSMA involving one publish proxy, one subscribe proxy and one peer, each on
a dedicated machine with 8 cores. By pushing the handling capacity of the peer
to its limits and deciding MAO limit based on this scenario, the value remains
also suitable for configurations with multiple peers. To this aims, 15000 CEs are
published, each embedding 5 quadruples. Only one path query subscription with
k = 5 (the number of quadruple patterns linked together) is registered.

Intuitively, to assess MAO limit at a low level, a method is to trace the number
of threads used by the MAO framework during a benchmark execution for different
soft limit values. We performed this assessment in a first experiment and we have
got the results depicted on Figure 6.11(a). These last clearly show that at any time
the number of threads used is almost equals to the value set for the soft limit, thus
suggesting the peer is running at its maximum capacity. However, by considering
all threads without taking into account their state (i.e. whether they are running
or waiting), nothing more may be deduced.

Consequently, our next two experiments have consisted in varying, again, the
soft limit from 1 to 32 and, for the values used, to trace the number of threads run-
ning and waiting. In our case waiting threads are threads which are blocked for a
lock acquisition in order to enter a synchronized block or method at the EventCloud
level since no future is triggered given that all publish/subscribe method calls are
asynchronous with OSMA. Results are depicted respectively on Figure 6.11(b) for
running threads and Figure 6.11(c) for waiting threads. The former figure shows
that no more than 13 threads are running at any time whatever the soft limit is.
Thus, setting a value higher than 13 for the soft limit has no benefit. The latter
figure allows us to approximate the optimal value we are looking for but also to
identify a potential bottleneck. Indeed, after a thorough check, all waiting threads
are in fact blocked threads waiting for acquiring the lock on our delayer datas-
tructure that acts as a cache layer for handling new events. Since the number of
threads waiting is rising when the soft limit is greater or equals to 8, it strongly
suggests contention among threads to obtain the lock to our delayer datastructure.
A solution could be to explore a new implementation that entails less locking to
improve scalability. However, this is left as a future task since many optimizations
we have made may no longer hold, thus requiring intensive tests and benchmarks.
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(a) Threads usage by varying soft limit
value on peer.
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(b) Running threads usage by varying soft
limit value on peer.
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(c) Waiting threads usage by varying soft
limit value on peer.
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(e) Threads usage on subscribe proxy by
varying number of peers.
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16 peers by simulating delivery actions.

Figure 6.11 – MAO soft limit evaluation for peers and subscribe proxies (threads
usage is approximated with a bezier curve to get readable figures).
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In conclusion, it seems more appropriate to set the soft limit to 6 than 8 for
peers deployed on 8 cores machines since this value incurs less contention among
threads. To confirm this choice, we have performed a new experiment that com-
pares the subscriber throughput obtained for different MAO limits. Results depict
on Figure 6.11(d) show that the throughput increases when the soft limit varies
from 1 to 6 but declines for higher values, hence strengthening our previous find-
ing. For information, this last experiment has not been presented earlier because
it may be argued that results are affected by some other layers of the application
since subscriber throughput is measured at the subscriber side which is outside
the P2P network. Previous experiments eliminate this eventuality.

Finally, we have studied subscribe proxies. A subscribe proxy may receive no-
tifications from multiple different peers at the same time. Furthermore, subscribe
proxies’ requests are much less exposed to contention than peers’ requests because
a subscribe proxy makes use internally of concurrent maps for marking an event
as received but also for finding to which subscription a notification is intended for.
Based on these two observations, the next experiment adopts the same benchmark
configuration as before but aims to compare the total number of threads used on
the subscriber when the number of peers involved is increased from 1 to 32 by
power of two for a soft limit set to 32. As depicted by Figure 6.11(e), the number
of threads increases to some extent with the number of peers but never exceeds
3. The reason lies to the fact that a subscribe proxy handles notifications quickly
but at a rate that is bounded and slightly slower than the one at which they are
sent by peers. To corroborate our discovery and to show that threads usage de-
pends also in part of the delay at which notifications are handled at the subscriber
side, we performed an experiment that varies the delivery time. In this purpose,
the listener registered with the initial subscription on the subscriber makes sleep
for d milliseconds the thread delivering the notification. This way, the listener is
simulating an action taking approximatively d milliseconds to handle each event
notification. Figure 6.11(f) depicts results for two runs, one with d set to 15 and
another with d set to 30. Compared to results on Figure 6.11(e) where d was set
to 0, we observe that threads usage is greatly increased, thus suggesting that de-
livery actions taking time may take advantage from a high MAO limit. However,
this limit must be selected carefully, especially if the action involves locking since
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this last generates contention among threads thus causing poor performance when
MAO limit is increased, as we have seen for peers.

To summarize, selecting the appropriate MAO soft limit for subscribe proxies
strongly depends of the action performed with the listener registered along with the
subscription, which is use case dependent. However, since no contention occurs by
default and because threads are spawned only when required and garbage collected
a few time after they complete, we set the default soft limit value equals to the
number of cores available on the machine where the subscribe proxy is deployed
to face potential overload if the number of peers is sharply increased.

Priorities

Multi-active objects enable concurrent requests execution but the default serving
policy does not allow to control scheduling between compatible requests. This
lack of control may lead to poor response time. Let’s consider a concrete example
we have faced with while experimenting the first version of our publish/subscribe
algorithm based on polling. In this scenario, events are emitted to peers in batch
through request of type P . Then, peers perform the matching and forward a
notification to subscribers that trigger a reconstruction based on an identifier.
The reconstruction consists in routing one or more synchronous requests of type R

for retrieving chunks that make up the event a subscriber has been notified about.
Once requests of type R reach peers, they are queued into the request queue of their
respective peer. However, requests of type R that are the last actions to complete
before delivering events are not served until requests of type P (which arrived
before in the request queue) are executed or the last requests of type P that predate
requests of type R are being executed and some threads become free, despite the
fact that requests of type R are compatible with requests of type P . Requests are
simply scheduled in the order they are detected as compatible. This last depending
of the order in which requests are queued in the request queue. Consequently, in
the presented example reconstruction requests are delayed, thus having a negative
outcome on the latency perceived by subscribers to receive matching events.

In summary, our goal was to propose a mean to improve efficiency by reduc-
ing the scheduling time of critical requests. To this aim, we have extended the
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multi-active framework and its meta language based on annotations to enable the
definition of priorities. Priority relationship between requests is based on integers.
Listing 6.2 gives an example for improving the scheduling time of reconstruction re-
quests discussed above. The set of priorities is embedded by a @DefinePriorities
annotation at the header of an AO class. Inside, priorities are defined with the
help of the @Priority annotation which requires at least the method name and
the priority level attributes, others are optional.

1 @DefinePriorities ({
2 @Priority (level =1, boostThreads =1, name="route",
3 parameters ={ ReconstructCompoundEventRequest . class })
4 })
5 public class SemanticPeerImpl {
6 // ...
7 }

Listing 6.2 – Priorities definition.

Priority level is an integer that ranges from −231 to 231−1. Methods that satisfy
no priority constraint are assigned to a default and implicit priority constraint
with priority level 0. The method name defines method calls that are assigned
to the priority rule. The optional parameter attributes are used to assign the
priority constraint to method calls whose parameters are of the specified types.
The boostThreads attribute is useful to prevent starvation issues that may occur
when priorities are applied. It defines the number of extra threads that may be
used by the MAO framework in addition to the number of threads permit for the
hard or soft limit. However, boost threads are spawned when the soft or hard limit
is reached only. Finally, priorities are also settable programmatically to have the
possibility to enable or disable priority rules according to properties.

Internally priorities are implemented with a few changes to the request executor
provided with the MAO framework. By default incoming requests are put in a
request queue, then compatible requests are pulled out in a ready queue. Once
a thread completes a request execution, a new request is picked from the ready
queue for execution. Our priority selection is applied during this last phase. Thus,
a request may overtake another request according to priorities defined if both
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requests are compatible.
To assess the effect of our solution we executed the scenario described previ-

ously with and without priorities. Results are sketched on Figure 6.12. Enabling
priorities allows to keep reconstructions time almost constant whereas without
priorities the reconstruction time depends of the position at which reconstruction
requests have been enqueued compared to publications. Therefore, when a burst
of publications predates reconstruction requests, these last take up to 10000 times
longer to complete without priorities than with priorities.
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Figure 6.12 – Priorities effect on reconstructions with CSMA.

The presented solution has been implemented and integrated in the ProActive
code base. Now, Justine Rochas is investigating within the context of her thesis
a new manner to express priority relationship based on a dependency graph [157].

6.2.2 Serialization

The mechanism provided by default with Java to marshall objects, which simply
consists in implementing a Serializable interface, is really handy but not efficient,
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especially for exchanging messages in a publish/subscribe system where respon-
siveness plays an important role. The main issues are the following:

• Marshalling and unmarshalling require the serialization mechanism to dis-
cover information about the object instance it is serializing. Using the default
one, all field values are discovered by reflection;

• Classes that do not define a serialVersionUID field, that is used during de-
serialization to verify that the sender and receiver of a serialized object have
loaded classes for that object that are compatible, compel the default seri-
alization mechanism to compute one. This involves going through all fields
and methods to generate a hash value;

• Serialized classes and their serializable superclasses have their descriptions
sent in the output stream.

To solve the performance problems mentioned above, Java allows to define our
own serialization behavior through the Externalizable interface. Obviously, this
efficiency comes at a price, that of defining manually how fields are encoded and
updating this definition when the characterization of the class to marshall changes.
In our case, we have used externalization (i.e. custom serialization) for our custom
RDF data types wrapping existing ones from the Jena API. Since data types
provided by Jena are not serializable, the overhead induced to support custom
marshalling was not too high in comparison of using the default mechanism. The
benefit of using custom serialization or frozen objects, as we will explain below,
is not to save bytes to exchange but mainly some time required to encode and
decode exchanged information.

Frozen objects

Whether it is to update the state of some peers, to handle SPARQL queries or
more generally to execute a request, messages are exchanged between peers. By
default, a deep copy of the message that is sent on the wire is made for each remote
method call that routes a message to its destination. Since messages are routed
from peers to peers in multiple steps, the data that are piggybacked by messages
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are serialized and deserialized at each hop whereas only the final receiver is most
of the time interested by the information that are conveyed within a message. To
prevent expensive serializations, we have introduced the concept of frozen objects
that aim to fully serialize and deserialize transferred objects only once.

To freeze an object graph, we propose a simple FrozenObjectGraph class that
encapsulates an object graph which has been previously serialized as a byte array.
This class has also the particularity to implement the Java Externalizable interface
in order to define its own serialization behavior and thus avoiding the overhead
from the default Java mechanism. In addition, a FrozenObjectGraph disposes
of one method called unfreeze that deserializes the original object from the byte
array and, thus, returns a deep copy of the initial object that was frozen. This last
method is used to retrieve back the object value, once the message that embeds
the frozen object is required. It is usually invoked when the message reaches its
final destination.

Compared to a scenario where a message routed in N hops requires N full seri-
alizations and deserializations, up to N−1 expensive operations may be saved when
frozen objects are used. Indeed, with frozen objects, the value is fully serialized
and deserialized respectively before the first hop and after the last hop. Conse-
quently, only 1 full serialization is required. The remaining N −1 serializations are
made on byte arrays, which is more efficient than a full object serialization on non
primitive data types.

To assess the effect of using FrozenObjectGraph objects, we have performed
measurements by varying two parameters: the type of the object to freeze and the
size of the object that is frozen. The results show the time required to perform
4× 104 deep copies (serialization + deserialization) of a message with and without
the use of frozen objects for a message that embeds either a simple quadruple or a
compound event made of 10 quadruples. The number of serializations we propose
to use corresponds to approximatively 104 messages to route if we assume that
messages are routed on a 4 dimensional CAN network with 256 peers since the
average routing path in this configuration is equals to 4. Results are depicted
on Figure 6.13. They show the percentage difference, in terms of time required
between the solution that relies on the default serialization mechanism provided
by Java and the one that uses frozen objects, when the message that is deeply
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copied embeds either a quadruple or a compound event. When a quadruple is
used, we can see that the usage of frozen objects is interesting when the sum of
characters contained by RDF terms is greater than 128. In this last case, the
use of frozen objects improves the execution time by 3% and up to 27% when
the size of a quadruple reaches 512 characters. The effect of using frozen objects
is strengthened when an object with a larger object graph, such as a compound
event, is considered.
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Figure 6.13 – Message serialization with and without the use of frozen objects.

Quadruples’ size is really scenario dependent, however to evaluate the benefits
in a standard and realistic use case, we have measured the average size of quadru-
ples for 108 entries from the DBpedia dataset provided for the Billion Triples
Challenge 20123. As a result we get that quadruples contain in average 228 char-
acters. For this size, frozen objects improve the marshalling time by 8% with a
simple quadruple and by 71% when a compound event with 10 quadruples is used.
The effect of using frozen objects could be further improved by using compression
but it is let for future work.

3http://km.aifb.kit.edu/projects/btc-2012/

http://km.aifb.kit.edu/projects/btc-2012/
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6.2.3 Local storage

As we explained previously, the local storage on peers is made of multiple datastore
instances, each one being bound to a Jena TDB repository. The main reason is that
it reduces contention when concurrent read/write operations must be performed
for events and subscriptions at the same time. To better improve the time required
to execute SPARQL queries, we have introduced some rules applicable for queries
involved in the publish/subscribe matching. First, SPARQL queries are not passed
to the Jena engine as simple strings. Instead, SPARQL queries are manually built
as a SPARQL Abstract Syntax Tree (AST)4, also known as an algebra in the
Jena terminology. It prevents parsing a sequence of characters and performing a
lexical analysis for queries that are always built using the same model. Second,
static optimizations applied by Jena on queries (which consist of transforming a
SPARQL algebra before its query execution begins by reordering filter expressions,
BGP, etc.) are disabled. It is assumed that queries we build are already optimized.

Subscriptions storage How subscriptions are stored and detected as matching
events requires some explanations. To keep persisted information homogeneous it
has been decided to store subscriptions in RDF. Doing so entails to define how
subscriptions are expressed in RDF. Listing 6.3 gives an example for the SPARQL
subscription presented in Listing 4.1. The first eight quadruples (line 1–9) are meta
information about the subscription, namely its identifiers, the content of the full
query, its type that defines how solutions have to be notified (i.e. as bindings, CEs
or signals), the time at which it enters the P2P network, and a subscriber reference
to send back matching events. Multiple identifiers are associated to a subscription
because, as explained in Chapter 4, a subscription may be rewritten several times.
Initially, the original subscription identifier (oid) and the current subscription
identifier (id) are set to the same value but the parent identifier (pid) is undefined.
Once a rewriting is performed, for instance S is rewritten to S′, S′

pid is set from Sid

and S′
id to a new value that uniquely identifies the rewritten subscription. Chaining

identifiers is useful for unsubscribing as explained in 4.2.3, but also to detect some
situations. For instance, let’s take as an example a subscription S received on a

4An AST is a tree representation of the abstract syntactic structure of a language or grammar
associated to a language where leaves depict tokens of the grammar.
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peer for indexation. If an event is detected as matching S, its indexation time
lower than the one for the matching event and Spid is undefined, then its means
that an ordering issue occurred for a just submitted subscription.

To provide fast access to quadruples related to a specific subscription, its meta-
data or subsubscriptions’ metadata, the graph value of each quadruple from a
RDF subscription payload contains an URN identifying the subscription (e.g. like
urn:ec:s:1 on Listing 6.3). Similarly, the subject value embeds either the original
subscription identifier or a subsubscription identifier (e.g. urn:ec:ss:1 ). In the
former case it allows fast access to subscription metadata whereas in the latter it
grants direct access to subsubscription metadata.

Finally, the most important decision is how subsubscriptions are modeled to
detect if subscriptions are fulfilled for a given CE or quadruple. A simple solution
is to store the SPARQL query as String and when required, to load back all
subscriptions, inserting the CE or the quadruples to check the satisfaction with
into an in-memory dataset and to execute each subscription against the dataset
to find back solutions. Although the implementation is easy, it does not scale
with respect to the number of subscriptions. To address the issue we propose to
split each subsubscription from a subscription into pieces, as depicted on lines
10–17 and 19–26. Fixed RDF terms values are put as object value of quadruples.
When a variable is declared in a subsubscription, a custom URN is used instead.
This way, it is possible to define a matching SPARQL query that finds identifiers of
subscriptions that are satisfied by a given CE or quadruple. In an abstract manner,
subscriptions are transformed as data and events as simple query patterns. It may
also be noticed that each subsubscription defines a quadruple containing as object
value the name of the variables involved in the subsubscription (see lines 17 and
26). The purpose is to help solving subscriptions registered with a binding listener
since in that case values associated to variables only must be notified.

Unfortunately, subsubscriptions involving filter constraints (range queries) are
not addressed by our previous discussion. Currently, to support range queries we
apply the solution we presented without considering filters and then, thanks to
an extra quadruple added to the RDF representation that defines if the original
subscription contains filters, we are able to detect if solutions found require refine-
ments. In this last case, intermediate solutions are put in an in-memory dataset



6.2. PERFORMANCE TUNING 185

and refined by reexecuting the original subscription. Ideally, the expression tree
associated to filter constraints should be tokenized and put in way that allows the
matching SPARQL query to consider filter constraints.

1 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:oid , "1")
2 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:pid , "1")
3 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:id , "1")
4 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:query , " SELECT ...}")
5 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:type , "2")
6 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:itime , "2013 -12 -12 T11 :01:14.977")
7 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:subscriber ,
8 "rmi :// oops.inria.fr :1099/ subscribe -proxy -40 c1d51b ")
9 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:iref , urn:ec:ss :1)

10 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:id , urn:ec:ss :1)
11 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:index , "0")
12 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:g, urn:ec:var)
13 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:s, urn:ec:var)
14 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:p,
15 http :// example .org/v/ action )
16 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:o, "exits ")
17 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:varnames , "g=g,s=id")
18 ...
19 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:id , urn:ec:ss :3)
20 (urn:ec:s:1, urn:ec:ss:3, urn:ec:ss:index , "0")
21 (urn:ec:s:1, urn:ec:ss:3, urn:ec:ss:g, urn:ec:var)
22 (urn:ec:s:1, urn:ec:ss:3, urn:ec:ss:s, urn:ec:var)
23 (urn:ec:s:1, urn:ec:ss:3, urn:ec:ss:p,
24 http :// xmlns.com/foaf /0.1/ age)
25 (urn:ec:s:1, urn:ec:ss:3, urn:ec:ss:o, "exits ")
26 (urn:ec:s:1, urn:ec:ss:3, urn:ec:ss:varnames , "g=g,s=id ,o=age ")

Listing 6.3 – SPARQL subscription representation in RDF.

Buffering and delaying

Jena TDB provides support for transactions. In our implementation transactions
are used to avoid unexpected or undesirable results when interleaving operations
on a datastore (read/write) occur due to the execution of some requests in par-
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allel. Transactions ensure ACID properties: atomicity, consistency, isolation and
durability. Although the last is crucial to ensure that information persist through
crashes, not all scenarios require this level of confidence. Moreover, ensuring no
information loss would require much more work, especially at the P2P level by
replicating events and subscriptions but also at the ProActive level by storing in-
coming requests in a safe manner to replay them in the same order. Since fault
tolerance is not the main contribution of this thesis, we assume some loss of infor-
mation is acceptable. Nevertheless, the manner the publish/subscribe algorithm is
designed implies that events which are not stored are not notified, therefore sub-
scribers cannot reference events that are potentially lost. To prevent loss against
power outages or hardware component failures, buffered data should be journaled,
with the overhead it induces.
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Figure 6.14 – Delayer benefits when varying buffer size.

Even if the advantage of buffering data and delaying operations is rather
straightforward, experiments are required to determine the buffer size under which
the best throughput is obtained, in particular with OSMA, when data and opera-
tions are handled in batches. To achieve this empirical assessment, the benchmark
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has been set up on a single machine (with a SAMSUNG HD103SJ hard disk drive)
hosting one peer, a publisher publishing 5000 CEs and a subscriber that regis-
ters a path query. Each CE contains 5 quadruples but the size of each quadruple
remains an experiment parameter. The policy applied by the delayer is to flush
data when the buffer is full (its size in terms of quadruples, CEs or subscriptions
is reached) or 500ms have elapsed since the last commit. In a first experiment, we
vary the buffer size from 20 to 1000 for two different size of quadruples: 40 and 228
characters. To compare results, the percentage difference in terms of throughput
(CE/s) at the subscriber side is computed. The calculation is performed between
values obtained for the buffer size tested and the one got for a buffer of size 1
which simulates a disabled delayer. Figure 6.14 clearly shows the benefit of using
a delayer. The throughput is increased by up to 179% and 176% when respectively
40 and 228 characters are used per quadruple. It may also be noticed that both
curves follow the same trend even if the size in terms of characters per quadruple
differs. The throughput, and thus the percentage difference skyrockets as soon as
the buffer size increases but quickly stabilizes. Since less than 5% improvement is
achieved when the buffer size exceeds 120, it has been decided to select this last
value as the default one for the delayer policy.

Although both curves follow the same trend when CE size and consequently the
buffer size is low, increasing greatly CEs size decreases performances earlier. To
highlight the issue but also to identify possible reasons, we replayed the previous
experiment for larger quadruple sizes and measured, in addition to the percentage
difference in terms of throughput, the average time required to flush the buffer to
the disk when its capacity is set to 120.

Figure 6.15 shows the results we get for quadruple sizes ranging from 40 to
6400 characters which corresponds approximatively to 0.5 KB and 64 KB per CE.
To better highlight the cause, we put in correlation on the figure the average
time required to flush data to the disk. When quadruple size per CE is lower
than 600 characters the commit time remains almost stable. However, when it
exceeds 600, which corresponds to roughly 80 KB per CE or 970 KB by considering
the buffer capacity, the time required to write buffered data to disk starts to
increase exponentially. The issue is strongly visible when quadruples contain 6400
characters, which requires to have approximatively 7.7 MB in the buffer before
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flushing data to the disk. Thus, we concluded the performance penalty is probably
coming from Jena TDB that does not support large batch commits. When large
payloads have to be considered, a solution could be to monitor incoming CE size
and to adjust the buffer size accordingly.
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Figure 6.15 – Quadruple length effect on buffering.

Summary

To validate and evaluate our solution along with the proposed algorithms, we have
designed and implemented the EventCloud middleware which is a computer soft-
ware that provides a distributed datastore service on top of a 4-dimensional CAN
network to store and retrieve quadruples through SPARQL but also to manage
events represented in RDF. The EventCloud middleware has been implemented in
Java. It relies on the ProActive Programming library and its multi-active objects
extension to respectively distribute components and leverage multi-core processors
by handling when possible some requests in parallel to others. Special attention
has been given to make the architecture modular, thus improving reusability and
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flexibility. Also, performance bottlenecks have been studied and some solutions
proposed.

Another assessment of our solution is its integration in the platforms developed
within the context of the PLAY and SocEDA projects whose the objectives and
their respective architecture are presented in appendix A and B. Criteria evaluated
have been performances, stability and usability [158, 159]. It is worth mention-
ing that some features have been encouraged by the projects we were involved in.
However, their utility is not restrained to their specific contexts. It includes for
instance the efforts we spent to provide XML/RDF translators or to make the de-
ployment of the EventCloud P2P network agnostics to cloud platforms by reusing
and extending abstractions provided by GCM deployment and ProActive. Another
example is the EventCloud management Web service we have introduced to man-
age multiple EventCloud instances and its associated webapp, prototyped with
Flask5, that aims to make the management more convenient to administrators.
This webapp allows to create, delete, list EventCloud instances but also proxies
through SOAP messages sent to the management web service. To achieve its pur-
pose, this last relies on multiple software abstractions such as an EventClouds
registry to maintain a reference about running instances and their associated de-
ployment configurations but also a node provider to abstract how and from where
nodes from real infrastructures, going to host peers, are retrieved. Obviously,
these deployment and management tools, can be reused to manage EventCloud
instances inside an organization or between several. More details about the addi-
tional features built around the core of the EventCloud middleware are described
in projects’ deliverables [9, 160, 161, 162, 163].

The code base that makes up the core of the EventCloud contains approxima-
tively forty five thousand lines of code along with thirty thousand lines of comments
and more than 260 unit tests. The whole is distributed among six hundred and
fifty files publicly available at http://eventcloud.inria.fr.

5http://flask.pocoo.org

http://eventcloud.inria.fr
http://flask.pocoo.org
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7.1 Summary

RDF has become a relevant data model for describing and modeling information
on the Web while remaining fairly simple and intuitive. However, to manage and
store RDF information in a continuous or batch manner has raised many questions
and faced us with scalability issues when processing it in a distributed context.
The main outcome of this thesis is a middleware devoted to storing, retrieving
synchronously but also disseminating selectively and asynchronously RDF data.

Our first contribution relates to the design of a distributed infrastructure for
storing and processing RDF data and SPARQL queries in a synchronous context
by using the traditional query/response model. The architecture is based on a
four-dimensional CAN overlay where RDF tuples are indexed according to the
lexicographic order of their elements. This scheme avoids to use hash functions
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and prevents to store the same information multiple times. Furthermore, lexico-
graphic data indexing enables efficient support for range queries. Although basic
operations like adding RDF data suffer from an overhead compared to a centralized
solution, the distributed nature of the infrastructure allows concurrent accesses.
Therefore, SPARQL queries are evaluated by decomposing them into subqueries
that are executed in parallel.

The second contribution of this thesis is about a publish/subscribe layer for
storing and selectively disseminating RDF events. We have proposed a data
and subscription model respectively based on an extension of RDF and a sub-
set of SPARQL. Furthermore, we have designed two publish/subscribe algorithms,
namely CSMA and OSMA that aim different requirements. The first, CSMA,
inspired by Liarou et al., performs the matching with events and subscriptions
sequentially but is able to fix time ordering issues between publish and subscribe
operations originating from a same host. On the contrary, the second, OSMA, uses
a fully distributed approach that enables to match publications and subscriptions
directly in one step, thus leading to better performance but at the cost of a slightly
heavier bandwidth consumption. Experiments have shown that both algorithms
are complementary depending of the scenario that is considered.

Our third contribution is about load balancing. Distributed RDF systems suf-
fer from a skewed distribution of RDF terms. Tuples with RDF terms that occur
more frequently than others are indexed on a few nodes which creates hotspots.
With regard to this issue, we have presented and evaluated strategies to improve
RDF data balancing on our revised CAN structured P2P network. The solution
we propose combines some existing techniques such online statistical information
recording and gossip protocols. The former allows us to disseminate load measure-
ments between peers so that the load balancing decision is taken by comparing
peers’ load with an average system load computed according to measurements
exchanged. Once an imbalance is detected, previously recorded statistical infor-
mation about RDF data per dimension allow us to decide how peers’ zone of
responsibility may be split to fairly share the imbalance. Experiments have shown
that the overhead induced by online statistical data recording remains acceptable
and forcing new peers to join overloaded peers by splitting the zone based on
recorded information may greatly decrease load imbalances.
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Finally, we have dedicated efforts to provide at the implementation level a flexi-
ble and modular middleware with clear separations between the software elements.

7.2 Perspectives

In the following we give some outlooks that can be explored with respect to the
work presented in this thesis, especially some possible hints to broaden for enhanc-
ing the efficiency and the added value of the proposed middleware.

7.2.1 Optimizing query and subscriptions evaluation

As we started to highlight in their respective chapters, queries evaluation and sub-
scriptions matching algorithms introduced could take advantage of the following
research fields.

Improving query plan execution

Chapter 3 has shown that distributed SPARQL query execution depends on the
complexity of the queries and the search space. Our approach consists in decom-
posing a query into subqueries and to execute subqueries independently and in
parallel. However, when subqueries share common variables (i.e. require a join)
and return tuples sets with sizes that differ from one or more orders of magnitude,
our solution requires to carry from peers to peers and until the query initiator
many tuples that would be unnecessary if subqueries were pipelined by previously
building a sequential execution plan. Therefore, a perspective would be to pro-
vide query plans suitable for SPARQL queries involving subqueries sharing vari-
ables. Nevertheless, our parallel approach remains advantageous for independent
subqueries. Thus, a step forwards would be to generate query plans by combining
parallel execution of independent subqueries and pipelining of those requiring joins.
Works done in [111] and [112] to respectively improving query plan execution by
reordering triple patterns and estimating selectivity are probably great resources
to consult. To further improve data transfers compression techniques could be
applied [164]. One more consideration for improving execution time could be to
remodel our overlay structure with locality awareness such that peers which are
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neighbors in the overlay network are put close physically. Ali et al. have shown
in [113] that a structured P2P system improved with locality awareness and some
additional shortcuts may boost performance by a factor of two in an RDF context.

Subscriptions summarization

Designing a publish/subscribe system raises many questions. Depending of the
context where it is used, one main challenge to tackle is to manage many sub-
scriptions. Since subscriptions are entries registered on peers, when subscriptions
are handled independently, the larger the number, the more expensive end-to-end
delivery becomes due to increased processing. Subscription summarization has
been proposed to alleviate this issue [165]. The purpose is to find subsumption
relationships between interests from subscriptions in order to combine them in
a summarized subscription thus reducing bandwidth consumption, storage over-
head and messages exchanged between peers for performing the matching against
events. Multiple approaches have been proposed these last years [166, 167, 168].
Applying such a technique to our solution will further improve performances.

7.2.2 Increasing reliability and availability

Even though routing algorithms from the proposed middleware has been designed
with fault tolerance in mind to prevent a full redesign in the future, managing
reliability and increasing availability has been let aside. Our middleware would
strongly benefit from a solution to allow a safe recovery in case of peers failure, this
incurring among others to support fault tolerance at the level of the Multiactive
objects framework. Regarding this last point, more details will be provided in the
upcoming thesis of Justine Rochas. In addition, a good starting point to increase
availability, reliability but also read performances and thus synchronous SPARQL
query evaluation could be to investigate replication. Either by studying existing
replication solutions such as the one proposed in the original CAN paper [107],
that proposed by Meghdoot’s authors [122] or investigating new ones less sensitive
to churn as proposed in [169].



7.2. PERSPECTIVES 195

7.2.3 Reasoning over RDF data

RDF is a great data model for writing globally interchangeable information. How-
ever, recording semantics or meaning requires other standards from the Semantic
Web stack such as RDFS and/or OWL (cf. Figure 2.3). These last allow to de-
fine vocabularies, similarly to schemas, by defining elements used in an application,
their domain, their type, their relationships but also possible constraints regarding
their usage. In other words, RDFS and OWL technologies provide a solid base for
understanding and thus inferring potentially relevant information. This purpose
is usually materialized by computing the closure of RDF graphs which consists in
making all implicit information explicit by applying all RDFS/OWL rules on RDF
data until no new data is derived. Interpreting RDFS and OWL vocabularies and
their entailment rules in a distributed and scalable manner remains a challenge
and would be an interesting perspective to exploit the real potential of RDF [170,
171, 172].

Finally, another perspective could be to explore a solution based on a slightly
adapted version of the MapReduce model for loading RDF events and handling
continuous queries using SPARQL [173], with the aim to compare performances
with our solution. More details will be available in the forthcoming thesis of
Sophie Ge Song. In yet another direction, an outlook could be to investigate
the applicability of graph databases (e.g. Trinity [174] or Stardog1) for storing,
retrieving and selectively disseminating RDF data at very large scale.

1http://stardog.com

http://stardog.com
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Appendix A

PLAY Project

The aim of the PLAY project1 is to provide an event marketplace platform which
collects information in near real-time from many, heterogeneous, and distributed
event sources, processes these events in a complex manner, and, after discovering
something relevant, forwards such a situation (combination of events) to the par-
ties interested in that issue. One of the specificities of the platform being that
events are represented in RDF. To summarize, the PLAY event marketplace is a
framework for dynamic and complex, event-driven interactions for the Web since it
enables the integration of semantic sources, the efficient management of the situa-
tion of interests (described as complex event patterns), a distributed complex event
processing in order to cope with the high throughput of events, a dynamic pub-
lish/subscribe mechanism in order to enable the responsiveness in highly changing
environments, and a service adaptation process that reacts on the signal from the
process/environment in order to change the flow of running processes. The overall
architecture, as it is depicted in Figure A.1, consists of five building blocks:

• The Distributed Service Bus (DSB) that provides the SOA and EDA (Event
Driven Architecture) infrastructure for components and end user services.
It acts as the basis for service deployments, and processes (BPEL, BPMN),
routing synchronous and asynchronous messages from services consumers to
service providers. Based on the principles of the system integration paradigm
of Enterprise Service Bus. The DSB is distributed by nature. In concrete

1http://www.play-project.eu
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terms, the DSB is the entry point of the platform that maps events to internal
components of the platform;

• The Governance component that allows users to get information about ser-
vices and events. The Governance component extends a standard Service-
based governance tool by adding governance mechanisms for event-based
systems. Its role is to provide ways to govern services and events. It pro-
vides standards-based APIs and a graphical user interface;

• The EventCloud that provides storage and forwarding of events. The role
of the Event Cloud is a unified API for manipulating events, real-time or
historic. Its purpose is to store incoming events while filtering some events
to notify only those that are of interest for the DCEP that will then execute
more complex queries involving time window operators;

• The DCEP (Distributed Complex Event Processing) component that has the
role of detecting complex events and reasoning over events by means of event
patterns defined in logic rules. To detect complex events, DCEP subscribes
to the EventCloud for any simple event defined in the event patterns at
a given point in time. It may also, depending of the pattern, query the
EventCloud to retrieve historical information for correlating them with the
ones received in near real-time;

• The Platform Services component that incorporates several functional ad-
ditions to the platform as a whole. The Query Dispatcher has the role of
decomposing and deploying user subscriptions in pieces supported by the
Event Cloud and DCEP respectively, taking into account the expressivity
supported by the two target components. The Event Metadata compo-
nent stores information about events, such as source descriptions, event type
schemas, etc., to enable the discovery of relevant events for an event con-
sumer and to provide data to the subscription recommender. The ESR and
SAR component form the Event Subscription Recommender (ESR) and Ser-
vice Adaptation Recommender (SAR). ESR will recommend subscriptions
to services based on service context and event semantics from the metadata.
Thus, ESR will provide assistance to services that will have the option to be
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subscribed to specific events at the right time without the services having
complete knowledge about the supply in the marketplace at a given time.
The objective of SAR is to suggest service administrators, changes (adap-
tations) of their services’ configurations, composition or workflows, in order
to overcome problems or achieve higher performance. Based on recognized
situations, SAR will be able to define adaptation pointcuts (points in a ser-
vice flow that need to be adapted as a reaction to a certain situation) and
advices (what to adapt and how based on a number of service adaptation
strategies).
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Figure A.1 – Conceptual PLAY architecture.
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Appendix B

SocEDA Project

Although some aspects are similar to PLAY, the purpose of the SocEDA project1

is rather different. Its objective is to develop and validate an elastic and reliable
federated SOA architecture for dynamic and complex event-driven interaction in
large highly distributed and heterogeneous service systems. Such architecture will
enable exchange of contextual information between heterogeneous services, provid-
ing the possibilities to optimize and personalize the execution of them according to
social network information while addressing Quality of Service (QoS) requirements.
Events which are exchanged are assumed to described in plain old XML payloads
to provide a platform that is compatible with legacy applications. The platform
architecture is depicted in Figure B.1 and consists of the following components:

• The SeaCloud, for Services/Events Administration Cloud, is the frontal of
SocEDA runtime framework. It allows clients to subscribe to a specific pro-
ducer, to add CEP rules or deploy BPEL process through dedicated editors
developed within the context of the project;

• The Distributed Service Bus (DSB) is an extension of the open source En-
treprise Service Bus provided by PetalsLink called Petals ESB. It is made of
three essential components: an adaptation service, a proxy event manager
and a workflow engine. The adaptation service is designed to provide agility
(seen as the combination of detection and adaptation). It allows on one

1https://www.soceda.org

201

https://www.soceda.org


202 APPENDIX B. SOCEDA PROJECT

hand to detect if on going processes meet the requirements of the current
situation and adapt them if required. The proxy event manager maintains
the list of event producers for a given topic. It can be considered as a broker
for event producer. Finally, the workflow engine exposes an API to observe
and command an instance of process at runtime to adapt it according to
some events. This component relies on EasyBPEL, a reflexive BPEL 2.0
Engine. To summarize, the DSB enables legacy services to connect to the
platform. Published events are forwarded to the SeaCloud. Services that
have subscribed may either be adapted according to the situations that are
induced or receive inferred facts as notifications;

• The Governance allows a user to discover all topics (type of event) and all
event producers known on a service infrastructure. Additionally, it supports
Quality of Services (QoS) as the definition of SLA contracts by using the
WS-Agreement standard;

• The EventCloud is in charge to store all incoming events the platform re-
ceives. Moreover, it filters simple events to reduce the input of the DiCEPE
component that has to perform complex correlations. Historical events are
accessible by the DiCEPE to correlate historic and real-time events. Since
the platform deals with plain old XML payloads, the EventCloud embeds
translators to convert payload from and to RDF. Although publish/sub-
scribe systems have the habit to hide publishers’ source from the rest of
the system, the EventCloud optionally allows to keep track of any publisher
endpoint address in order to interact, when required, with the Social Filter.

• The Social Filter operates on a social network of services to compute the
strength of the relationships between them. The EventCloud uses a rela-
tionship strength threshold or a ranking of the destination services to select
the most trustworthy services. In concrete terms, the EventCloud accepts
to process (notify) the events that the source service received from target
services with which it has high relationship strength whereas it discards the
ones received from target services with low relationship strength. The social
filter provides an interface to define relationships between services.



203

• The DiCEPE aims to detect complex events using events from various sources
such as federated SOAs, and to share out those new complex events, which
have been identified as business events, to enrich the whole event process.
Inputs come from the EventCloud that prefilters some irrelevant events with
simple operators. Others detections that require correlation between multi-
ple events are let to the DiCEPE. Facts inferred are sent to the SeaCloud
that forwards them to the DSB to perform adaptation.

• Monitoring is in charge of collecting monitoring information about services
and events. It offers a web-based frontend interface that allows getting in-
formation and statistics about running infrastructure in term of services and
events. The monitoring component relies on EasierBSM to monitor service
providers or event producers. It is part of the process to detect SLO (Service
Level Objective)/ELO (Event Level Objective) violation which are prereq-
uisites to ensure QoS.
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Adaptation Service
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query eventsevents

monitoring events
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Figure B.1 – Conceptual SocEDA architecture.
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Annexe C

Extended Abstract in French

Un intergiciel gérant des événements pour per-
mettre l’émergence d’interactions dynamiques et
ubiquitaires dans l’Internet des services.

C.1 Introduction

C.1.1 Motivation

Ces dernières années, le trafic Internet échangé a augmenté de façon vertigineuse.
Cette explosion est expliquée par la quantité d’informations générée par les utilisa-
teurs et les nouveaux services qui se développent à un rythme effrainé. Comme l’a
déclaré Eric Schmidt en 2010, tous les deux jours maintenant nous créons autant
d’informations que ce que nous en avons produit depuis l’aube de la civilisation
jusqu’en 2003. A cette date, la quantité d’information représentait déjà quelque
chose comme cinq exaoctets de données, a-t-il dit. En outre, avec l’avènement de
l’"Internet des objets", concept qui se réfère à des objets identifiables de manière
unique communiquant sur Internet, nous n’en sommes probablement qu’au début
de cette croissance exponentielle de l’information. Pour exemple, Cisco prévoit que
le trafic IP mondial atteindra 1,4 zettaoctets par an en 20171.

Cette explosion concernant les informations échangées a donné naissance à un
nouveau domaine de la science informatique appelé Data Mining. L’objectif global

1http://goo.gl/dj85Ul
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du processus d’exploration de données est de découvrir des tendances intéressantes
dans de grands ensembles de données. Un exemple concret est Google Knowledge
Graph [1] qui fournit des informations supplémentaires utiles lorsque vous effectuez
une recherche. Un exemple plus récent est le scandale provoqué par le programme
de surveillance prisme exploité par l’Agence Nationale de la sécurité Américaine
(NSA), dont le but est de collecter et de corréler les méta-données des utilisateurs,
à leur insu, pour prévenir les actes terroristes.

Une condition préalable à l’exploration de données est d’agréger des flux d’in-
térêt et de stocker les données entrantes pour l’analyse. Ces bases de connaissances
sont concrétisées par des entrepôts de données qui sont d’énormes dépôts de don-
nées créées par l’intégration des données provenant d’une ou plusieurs sources
disparates. Lorsque les données source proviennent d’acteurs hétérogènes sur In-
ternet, la construction d’entrepôts de données soulève une question principale :
comment filtrer les informations d’intérêt et les corréler avec les autres ? Un élé-
ment clé pour répondre à cette question consiste à utiliser des données structurées
afin de les rendre analysables et compréhensibles par des machines.

Le mouvement du Web sémantique a suscité un intérêt considérable ces der-
nières années. Il vise à transformer le Web, à savoir les documents Web, en une base
de données gigantesque dans laquelle les ordinateurs peuvent extraire des données
d’une manière homogène. Le point intéressant ici est que la communauté du Web
sémantique fournit déjà une pile complète de technologies (RDF, SPARQL, RDFS,
OWL, etc.) pour répondre à la plupart des problèmes liés à la question précédente,
mais principalement dans un environnement synchrone et centralisé. Dans le cadre
du projet européen PLAY, l’un des projets dans lequel cette thèse a été développée,
nous étudions comment nous pouvons tirer parti du modèle de représentation du
Web sémantique et donc de la pile existante pour filtrer, détecter et réagir lorsque
des situations intéressantes se produisent. Dans ce contexte, l’ objectif du projet
PLAY est d’apporter une architecture élastique et fiable pour l’interaction événe-
mentiel dynamique et complexe dans les systèmes de services hautement distribués
et hétérogènes. Une telle architecture permettra l’échange d’informations omnipré-
sentes entre les services hétérogènes, tout en offrant d’adapter et de personnaliser
leur exécution, ce qui mène à la fameuse adaptation de processus dirigée par les
situations.
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C.1.2 Définition du problème

Dans cette thèse, nous nous concentrons sur deux problématiques clés que l’on
peut résumer par les deux questions suivantes : Comment pouvons-nous stocker
efficacement et récupérer des données du Web sémantique dans un environnement
distribué ? Comment pouvons-nous faire un filtrage pragmatique et diffuser des
événements du Web sémantique pour les utilisateurs ayant des préférences indivi-
duelles ?

La question inhérente au passage à l’échelle qui se pose avec les systèmes distri-
bués a été grandement étudiée ces dernières années et consiste à avoir recours aux
réseaux Pair-à-Pair (P2P) qui évitent un point d’accès unique. Toutefois, s’appuyer
sur le modèle du Web sémantique, représenté par RDF, soulève plusieurs défis qui
ont un impact direct sur la topologie du réseau sous-jacent qui est considéré.

Le premier défi provient du niveau d’expressivité du language SPARQL qui
est habituellement utilisé pour récupérer des données RDF. Certains ont peut-
être remarqué la similitude lexicographique avec SQL. L’analogie n’est pas une
coïncidence. SPARQL est un langage de requête pour les données RDF qui a été
développé longtemps après SQL. Bien qu’ils soient tout à fait différents, car ils
n’ont pas tout à fait les même objectifs, SPARQL supporte des opérateurs très
complexes, ce qui le rend aussi expressif voire plus expressif que SQL. Dans ce
manuscrit, nous allons expliquer comment le modèle de données et le langage
de requête affectent un grand nombre de choix que nous avons fait tels que la
conception de l’architecture P2P, les algorithmes de routage et le stockage des
données RDF.

Le deuxième défi est lié au filtrage de données RDF publiées par les éditeurs
aux parties intéressées. Comme expliqué dans la partie C1.1??, le scénario envi-
sagé dans le projet PLAY est principalement basée sur l’interrogation guidée par les
données [2] qui mettent l’accent sur des conditions en quasi-temps réel qui doivent
être satisfaites. Une condition préalable est de filtrer l’information d’intérêt mais
pas seulement. Les événements doivent être stockés et agir comme un contexte sup-
plémentaire afin de pouvoir réaliser une sorte d’analyse sur les données passées.
Les données du Web sémantique ont, encore une fois, un impact significatif sur la
façon dont la couche Publier/Souscrire doit être conçue. Cependant, cela génère
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une complexité supplémentaire car dans les systèmes à évènements, les entités sont
faiblement couplées. Les communications sont effectuées de manière asynchrone, ce
qui fournit moins de garanties par rapport au modèle d’échange de messages requê-
te/réponse traditionnel (par exemple de l’absence de garantie de livraison). Dans
ce contexte, nous allons voir comment les données RDF peuvent être représentées
comme des événements et comment elles diffèrent des traditionnels évènements
multi-attributs. En outre, la combinaison entre le filtrage des événements et le
stockage soulève plusieurs questions sur l’efficacité et la cohérence du système en-
visagé : par exemple, comment s’assurer que l’ordre des opérations envoyées depuis
un même client est respecté ? à quel type de débit peut-on s’attendre ? comment
faire en sorte que les événements soient enregistrés une fois qu’ils ont été notifiés ?
ces questions seront examinées et traitées par la suite.

Enfin, un troisième défi à prendre en compte concerne la répartition de charge
et la propriété d’élasticité des systèmes distribués modernes dont nous avons l’in-
tention de tirer parti afin d’assurer un certain niveau de performance.

Nous allons voir que le choix que nous avons fait et qui consiste à ne pas
utiliser de fonction de hachage afin de supporter des requêtes ou souscriptions plus
complexes que la simple correspondance exacte, nous expose à des déséquilibres de
charge. Dans la vie courante, la distribution des données est souvent biaisée, mais
ici le déséquilibre est accentué par l’une des caractéristiques des données RDF qui
implique que certaines valeurs partagent des préfixes communs.

C.1.3 Plan et contribution

La principale contribution de cette thèse est la définition et la mise en œuvre d’un
middleware modulaire pour le stockage, la récupération et la diffusion des données
RDF et des événements dans des environnements de type cloud. La thèse est struc-
turée autour de trois travaux majeurs organisés en quatres chapitres dédiés dont le
contenu est résumé ci-après. Mais avant cela il convient de préciser sommairement
le contenu des autres chapitres venant en complément :

• Le Chapitre 2 donne un aperçu des principaux concepts et technologies
auxquels nous nous réferrons tout au long de cette thèse. Tout d’abord, nous
introduisons le paradigme Pair-à-Pair. Ensuite, nous attirons l’attention sur
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le Web sémantique et nous discutons des principaux avantages d’utiliser la
sémantique avant de se concentrer sur le modèle de communication Publier/-
Souscrire. Enfin, nous détaillons le middleware ProActive, qui est la princi-
pale technologie utilisée pour mettre en œuvre le middleware développé dans
le cadre de cette thèse.

• LeChapitre 3 présente notre première contribution qui se rapporte à une in-
frastructure de stockage RDF distribuée, introduite dans [3] et élue meilleur
papier de la conférence AP2PS 2011. Une section courte des travaux connexes
sur les systèmes décentralisées pour stocker et récupérer des données RDF
introduit ce chapitre. Ensuite, nous présentons le populaire protocole P2P
CAN qui définie la topologie sous-jacente du réseau P2P sur laquelle nous
nous appuyons pour le routage des messages et, indirectement, pour passer à
l’échelle. Suivra une discussion sur les choix de conception et les ajustements
que nous avons faits en ce qui concerne le protocole CAN avant d’expli-
quer dans une deuxième partie comment les messages sont acheminés avec
nos modifications. Dans une avant-dernière section, nous décrivons en détail
comment les données RDF sont indexées dans le réseau P2P et comment
les requêtes SPARQL sont exécutées. Enfin, nous fournissons les résultats
que nous avons obtenus par l’expérimentation de notre solution sur le banc
d’essai Grid’5000.

• Le Chapitre 4 entre dans les détails de notre deuxième contribution met-
tant en avant une couche de publier/souscrire pour le stockage et la dif-
fusion des événements RDF. Elle est construite comme une extension sur
l’infrastructure mise en place dans le chapitre précédent et s’appuie sur les
algorithmes de routage descrits plus tôt. Nous commençons par comparer
les solutions existantes et nous expliquons pourquoi les systèmes d’événe-
ments basés sur RDF diffèrent des systèmes publier/souscrire traditionnels.
Ensuite, nous présentons notre infrastructure publier/souscrire pour événe-
ments RDF avec un détail du modèle d’évènements et de souscription, ap-
proprié pour les données RDF, que nous proposons. Puis, nous énumérons
les différentes propriétés que notre système de publier/souscrire est supposé
respecter avant d’entrer dans les détails de deux algorithmes publier/sous-
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crire. Leurs caractéristiques et leurs différences sont expliquées, discutées et
analysées. Pour conclure, les algorithmes que nous proposons sont évalués
dans un environnement distribué avec un maximum de 29 machines. Cette
deuxième contribution a été acceptée et présentée durant la conférence Globe
2013 [4].

• Le Chapitre 5 met en évidence notre troisième contribution qui se réfère à
la répartition de charge avec les données RDF. La première section résume
comment les solutions de répartition de charge ont évoluées au fil du temps
et quelles sont les solutions pour corriger les déséquilibres de charge avec
les données RDF. Ensuite, nous avons décrit notre solution en expliquant les
différents choix qui sont envisageables et ceux pour lesquels nous avons optés.
Notre approche combine des mécanismes standards tels que des protocoles
d’échange d’informations par rumeur ou encore l’enregistrement à la volée
de statistiques dans le but d’améliorer la distribution des donnés. Dans une
dernière section, nous présentons les résultats obtenus pour les évaluations
empiriques que nous avons réalisées avec des données réelles.

• Le Chapitre 6 donne un aperçu de l’intergiciel EventCloud, qui est l’in-
tergiciel développé dans le cadre de cette thèse. Le but de ce chapitre est
de donner un aperçu du système du point de vue l’architecture et l’implé-
mentation. Dans un premier temps, nous mettons en évidence les différents
composants qui constituent le système. Ensuite, nous résumons ses diffé-
rentes caractéristiques et nous montrons en quoi l’intergiciel est flexible et
modulaire. En particulier, nous voyons comment la modularité joue un rôle
important dans l’architecture proposée et quel genre d’avantages cela apporte
en ce qui concerne les composants qui forment notre infrastructure. Ensuite,
nous nous concentrons sur quelques problèmes d’implémentation auxquels
nous avons dû faire face et que nous avons corrigés afin de rendre le système
plus efficace et réactif.

• LeChapitre 7 conclut la thèse. Il passe en revue les contributions et présente
quelques perspectives de recherche et de développement que soulève cette
thèse.
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Par ailleurs, concernant les contributions qui ont pu être réalisées, nous pouvons
noter que l’intergiciel EventCloud a été testé et validé avec les différents scénarios
créés dans le cadre du projet PLAY [5, 6, 7, 8, 9, 10, 11]. L’intergiciel EventCloud
a également été utilisé et évalué dans d’autres contextes. Par exemple, il offre les
briques de base pour distribuer des moteurs CEPs visant à corréler plusieurs événe-
ments en temps réel avec d’autres du passé [12]. Une autre application concerne les
transferts de données paresseux dans laquelle les événements intègrent des pièces
jointes volumineuses qui n’ont pas besoin de transiter par le service d’évènements.
Seules les descriptions d’événements sont transmises à l’EventCloud avant d’être
diffusées aux parties intéressées. Les attachements joints sont transférés de ma-
nière paresseuse et transparente au travers d’un échange direct entre émetteurs
d’évènements et souscripteurs [13].

C.2 Résumé développement

Le travail abordé dans ce manuscrit de thèse est développé dans quatre chapitres
principaux. Ci-après est précisé un résumé en Français de chacun de ces chapitres.

C.2.1 Stockage RDF distribué

Ce premier chapitre présente une infrastructure de stockage RDF distribuée ba-
sée sur réseau P2P structuré. Les uplets RDF sont mappés sur un CAN à quatre
dimensions selon la valeur des éléments du uplet considéré. L’espace du réseau
P2P est partitionné en zones et chaque pair est responsable d’une zone ainsi que
de tous les uplets se trouvant à l’intérieur. Nous n’utilisons pas de fonction de
hachage afin de préserver la localité des données. Les requêtes SPARQL sont dé-
composés en sous-requêtes qui sont exécutées en parallèle. Nous avons validé notre
implémentation à l’aide de micro expérimentations. Bien que les opérations de
base comme l’ajout de uplets souffrent d’un surcoût, la nature de l’infrastructure
distribuée permet des accès concurrent. En substance, nous échangeons des per-
formances pour un meilleur débit.

De toute évidence notre solution présente certains inconvénients. Le premier
est que notre approche est sensible à la distribution des données. Comme nous
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utilisons l’ordre lexicographique pour indexer les données, lorsque certains uplets
RDF partagent le même espace de noms ou préfixes, la probabilité qu’ils se re-
trouvent sur un même pair est très élevée. Par conséquent, un ou plusieurs pairs
peuvent devenir un goulot d’étranglement du système. Pour résoudre ce problème,
nous avons présenté des solutions dans le Chapitre 5. Le deuxième inconvénient
avec notre solution est lié à l’exécution de requêtes SPARQL. Nous avons décidé
de traiter chaque sous-requête indépendamment en parallèle. Toutefois, lorsque
les sous-requêtes partagent des variables communes (i.e. exigent une jointure) et
retournent des ensembles de uplets avec des tailles qui diffèrent d’un ou plusieurs
ordres de grandeur, notre solution nécessite de transporter de pairs en pairs jus-
qu’à l’initiateur de la requête, plusieurs uplets qui ne seraient pas nécessaires si
les sous-requêtes étaient exécutées en série grâce à la construction préalable d’un
plan d’exécution séquentiel. Ce problème qui est lié au nombre de résultats inter-
médiaires à transférer dans le réseau afin de résoudre une requête SPARQL a été
mis en évidence de façon empirique avec notre système [110]. Quilitz et al. propose
dans [111] de construire un plan de requêtes qui exécute des sous-requêtes succes-
sivement après avoir été triées dans l’ordre décroissant en fonction du nombre de
parties fixes et de leur position (i.e. graphe, sujet, prédicat ou objet d’un motif de
quadruplet). En effet, les sous-requêtes avec une multitude de parties fixes sont
supposées renvoyer moins de résultats que d’autres qui impliqueraient un plus
grand nombre de variables lorsque le jeu de donnée est assez grand. Par consé-
quent, la sous-requête à exécuter peut exploiter le résultat de la précédente afin
de réduire le nombre de résultats intermédiaires. Un pas en avant a été franchi
puisque dans [112] les auteurs proposent d’étudier la sélectivité de sous-requêtes
(i.e une estimation ou une valeur exacte du nombre de uplets qu’une sous-requête
est sensée renvoyer une fois exécutée). De cette façon, un plan de requête optimal
peut être défini. Une perspective pourrait être de combiner notre solution avec
celle précédemment décrite pour réaliser un plan de requête optimal. L’idée est
de toujours exécuter en parallèle les sous-requêtes avec une sélectivité faible ou
bien d’exécuter celles qui, avec un arrangement intelligent, ne peuvent pas réduire
la consommation de bande passante induite par le transfert abondant de résul-
tats intermédiaires. Aussi, un autre point qui affecte les performances systèmes
concerne la latence de routage des messages. Pour améliorer le temps d’exécution,
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la structure logique du réseau P2P CAN pourrait être revue afin de prendre en
compte la localité physique des pairs qui le compose, ceci afin de rapprocher les
nœuds proches physiquement de façon à réduire la latence. Ali et al. ont montrés
dans [113] qu’un système P2P structuré qui prend en compte la localité physique
des machines, et qui ajoute quelques raccourcis supplémentaires, peut améliorer
les performances d’un facteur de deux dans un contexte RDF.

C.2.2 Publier/Souscrire RDF distribué

Ce second chapitre introduit une infrastructure publier/souscrire basée sur le mo-
dèle de données RDF et le modèle de filtre SPARQL. Les souscripteurs peuvent
exprimer leur intérêts en utilisant un sous-ensemble du langage SPARQL et les
évènements sont publiés comme données RDF. Nous nous appuyons sur une in-
dexation multi-dimensionnelle et l’ordre lexicographique pour distribuer les publi-
cations et les souscriptions sur la structure logique associée au réseau P2P.

Élément
routé Matching Doublons Happen-

Before

CSMA Quadruplets
individuels

Multiple,
Séquentiel et
Reconstruction

Oui, filtrage
requis Imposé

OSMA
Compound

Event
complet

Unique étape Non Exige
CSMA

Table C.1 – Comparaison des algorithmes publier/souscrire proposés.

Contrairement à la grande majorité des systèmes existants, notre solution ne
nécessite pas d’indexer de multiple fois la même publication, limitant ainsi l’espace
de stockage nécessaire. Nous avons proposé deux algorithmes pour tester la cor-
respondance entre les souscriptions et les événements publiés. Le premier, CSMA,
est basé sur une approche séquentielle. Cela limite la bande passante utilisée lors
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des publications en contre partie d’un temps plus long pour détecter les souscrip-
tions qui sont vérifiées. Il peut également gérer les problèmes d’ordonnancement
des requêtes entre des publications et des souscriptions qui proviennent d’un même
hôte. Le second, OSMA, utilise une approche totalement distribuée ce qui conduit
à de bonnes performances mais un temps requis légèrement plus important dans le
processus de publication. Pour résumer, les différentes propriétés de ces deux algo-
rithmes sont présentées dans le tableau C.1. Ils ont été testés expérimentalement
en terme de débit par seconde et de passage à l’échelle.

C.2.3 Répartition de charge RDF distribuée

Ce troisième chapitre présente et analyse brièvement deux stratégies pour répartir
équitablement les données RDF sur notre version révisée du réseau CAN. L’idée
centrale est de partager les surcharges entre pairs en divisant les zones des pairs
non pas en leur milieu comme suggéré par le protocole CAN par défaut mais
au point qui équilibre la distribution des données RDF. Cela est rendu possible
par l’enregistrement des valeurs de barycentre de termes RDF par dimension.
Ensuite, les différentes stratégies qui sont proposées diffèrent principalement par
la façon dont les déséquilibres sont détectés. La première suppose une connaissance
globale tandis que la seconde s’appuie sur des informations échangées entre pairs
périodiquement. Nos expériences ont montré que la seconde stratégie donne de
meilleurs résultats que la première. Bien que la solution que nous proposons soit
loin d’être idéale dans le sens ou les données RDF ne sont pas aussi bien distribuées
que ce qu’elles pourraient l’être, les stratégies proposées améliore la distribution,
l’impliquation des pairs et donc le débit de sortie quand la couche publier/souscrire
est utilisée.

Il convient de mentionner que la solution présentée est un travail inachevé.
Plusieurs points nécessiteraient d’être examinés plus en profondeur et des expéri-
mentations plus intensives devraient menées. De plus, de nombreux aspects de la
solution présentée pourraient être améliorés. Par exemple, le protocole de diffusion
de charge des pairs pourrait être optimisé en mettant en œuvre ce qui est proposé
dans la Section 5.2. En outre, avant d’allouer de nouveaux pairs, la délocalisa-
tion sur des pairs existants devrait être envisagée. Une orientation supplémentaire



C.2. RÉSUMÉ DÉVELOPPEMENT 215

pourrait être de considérer plusieurs critères tels que la charge d’exécution des
requêtes synchrones, des souscriptions, la consommation CPU voire la bande pas-
sante utilisée. Puisque notre modèle de répartition de charge a été conçu avec l’idée
de prendre en charge plusieurs critères indépendants, en ajouter de nouveaux ne
devrait pas être difficile.

C.2.4 Implémentation

Finalement, le quatrième chapitre détaille le système mis en œuvre. Pour valider
et évaluer notre solution avec les algorithmes proposés, nous avons conçu et implé-
menté l’intergiciel EventCloud qui est une application fournissant un service dis-
tribué de stockage d’informations par dessus un réseau CAN à 4-dimensions pour
stocker et récupérer des quadruplets à l’aide de SPARQL mais également pour
gérer des événements représentés en RDF. L’intergiciel EventCloud a été implé-
menté en Java. Il s’appuie sur la bibliothèque de programmation ProActive et son
extension des objets multi-actifs afin de respectivement distribuer les composants
et tirer parti des processeurs multi-core en exécutant, lorsque cela est possible,
des requêtes en parallèle à d’autres. Une attention particulière a été portée sur la
modularité de l’architecture, améliorant ainsi la réutilisation et la flexibilité. En
outre, les goulots d’étranglement de performance ont été étudiés et des solutions
proposées.

Un autre apport de notre solution est son intégration dans les plates-formes
développées dans le cadre des projets PLAY et SocEDA dont les objectifs et ar-
chitecture respectifs sont présentés dans l’annexe A and B. Les critères évalués
ont été la performance, la stabilité et la facilité d’utilisation [158, 159]. Il est à
noter que certaines fonctionnalités ont été encouragées par les projets dans les-
quels nous avons été impliqués. Toutefois, leur utilité n’est pas uniquement limité
aux projets. Cela comprend par exemple nos efforts pour fournir un traducteur
XML/RDF ou bien encore le temps passé à rendre le déploiement du réseau P2P
EventCloud plateforme agnostique en réutilisant et en étendant les abstractions
fournies par le déploiement GCM et ProActive. Un autre exemple est le service
Web EventClouds, prototypé avec Flask2, que nous avons introduit afin de pou-

2http://flask.pocoo.org

http://flask.pocoo.org
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voir gérer plusieurs instances EventCloud, ce qui vise à rendre la gestion plus
pratique pour les administrateurs tout en augmentant l’interopérabilité. Cette ap-
plication Web permet de créer, supprimer, visualiser la liste des EventClouds et
des proxies disponibles par l’intermédiaire de messages SOAP envoyés au service
Web. Pour atteindre son but, ce dernier s’appuie sur plusieurs abstractions telles
qu’un registre EventClouds afin de maintenir une référence sur les instances dispo-
nibles et leur configuration de déploiement associée, mais aussi un fournisseur de
nœuds pour abstraire la manière et l’infrastructure à partir desquelles les nœuds
sont récupérés. Évidemment ces outils de déploiement et de gestion peuvent être
réutilisés pour gérer les instances EventCloud à l’intérieur d’une organisation ou
entre plusieurs organisations. Plus de détails sur les fonctionnalités supplémen-
taires construites autour du noyau de l’intergiciel EventCloud sont donnés dans
les livrables de projets [9, 160, 161, 162, 163].

La base du code qui constitue le noyau de l’EventCloud contient approximati-
vement quarante cinq mille lignes de code ainsi que trente mille lignes de commen-
taires et plus de 260 tests unitaires. L’ensemble est réparti entre six cent cinquante
fichiers accessibles publiquement à l’adresse http://eventcloud.inria.fr.

C.3 Conclusion

C.3.1 Résumé

RDF est devenu un modèle de données pertinent pour la description et la modéli-
sation de l’information sur le Web tout en restant relativement simple et intuitif.
Cependant, gérer et de stocker des informations RDF de manière synchrone ou
asynchrone a soulevé de nombreuses questions qu’en au problème de passage à
l’échelle dans un contexte distribué. Le résultat principal de cette thèse est un
intergiciel dédié au stockage, à la récupération synchrone mais aussi à la diffusion
sélective et asynchrone des données RDF.

Notre première contribution concerne la conception d’une infrastructure distri-
buée pour le stockage et le traitement de données RDF et de requêtes SPARQL
dans un contexte synchrone en utilisant le modèle requête/réponse traditionnel.
L’architecture est basée sur une topologie logique CAN à quatre dimensions où

http://eventcloud.inria.fr
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les uplets RDF sont indexés selon l’ordre lexicographique de leurs éléments. Le
système n’utilise pas de fonctions de hachage et évite ainsi de stocker les mêmes
informations plusieurs fois. En outre, l’indexation de données selon l’ordre lexico-
graphique permet de traiter de manière efficace les requêtes à intervalles. Bien que
les opérations de base comme l’ajout de données RDF souffrent d’une surcharge par
rapport à une solution centralisée, la nature distribuée de l’infrastructure permet
des accès concurrents. Les requêtes SPARQL sont ainsi évaluées en les décompo-
sant en sous-requêtes qui sont exécutées en parallèle.

La deuxième contribution de cette thèse est une couche de publier/souscrire
pour le stockage et la diffusion sélective des événements RDF. Nous avons proposé
un modèle de données et de souscription respectivement basé sur une extension
de RDF et un sous-ensemble de SPARQL. En outre, nous avons conçu deux al-
gorithmes publier/souscrire, à savoir CSMA et OSMA, chacun visant des besoins
différents. Le premier, CSMA, inspiré par Liarou et al., effectue la concordance
entre les évènements et les souscriptions en séquentiel mais est en mesure de fixer
les problèmes d’ordonnancement des requêtes entre des publications et des sous-
criptions qui proviennent d’un même hôte. Au contraire, le second, OSMA, utilise
une approche totalement distribuée permettant de faire correspondre les publi-
cations et les abonnements directement en une seule étape, ce qui conduit à de
meilleures performances mais dans ce cas la consommation de bande passante
est légèrement plus importante. Les expériences menées ont montré que les deux
algorithmes sont complémentaires en fonction du scénario considéré.

Notre troisième contribution concerne la répartition de charge. Les systèmes
distribués RDF souffrent d’une répartition inégale des termes RDF. Les uplets avec
des termes RDF qui apparaissent plus fréquemment que d’autres sont indexés sur
plusieurs nœuds ce qui engendre des surcharges. Dans ce contexte, nous avons
présenté et évalué des stratégies pour améliorer la répartition des données RDF
entre les différents pairs de la version révisée du réseau P2P CAN. La solution
que nous proposons combine des techniques existantes basées sur des protocoles
de diffusion d’information par rumeur et l’enregistrement de statistiques associées
aux données. La première technique nous permet de diffuser la charge mesurée sur
chaque pair afin que la décision de répartition de charge soit prise en comparant
la charge de pairs avec une charge moyenne du système calculé en fonction des
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mesures échangées. Une fois qu’un déséquilibre est détecté, les statistiques enre-
gistrées sur les données RDF par dimension nous permettent de décider comment
la zone de responsabilité de pairs peut être fractionnée pour répartir équitablement
le déséquilibre. Des expériences ont montré que la surcharge induite par l’enregis-
trement de données statistiques à la volée reste acceptable et le fait de forcer de
nouveaux pairs à joindre les pairs surchargés en divisant leur zone sur la base des
informations enregistrées peut grandement diminuer les déséquilibres de charge.

Enfin, nous avons consacré des efforts à fournir au niveau de l’implémentation
un intergiciel flexible et modulaire avec des séparations claires entre les différents
éléments logiciels qui le compose.

C.3.2 Perspectives

Dans ce qui suit nous proposons quelques perspectives qui pourraient être explo-
rées, en particulier quelques pistes pour améliorer l’efficacité et la valeur ajoutée
de l’intergiciel proposé.

Optimiser l’évaluation des requêtes et des souscriptions

Comme nous avons commencé à le mettre en évidence dans leurs chapitres respec-
tifs, l’évaluation des requêtes SPARQL synchrones mais aussi les algorithmes de
correspondance de la couche publier/souscrire pourraient profiter des domaines de
recherche suivants.

Améliorer l’exécution du plan de requête Le chapitre 3 a montré que l’exé-
cution des requêtes SPARQL distribué dépend de la complexité des requêtes et
de l’espace de recherche. Notre approche consiste à décomposer une requête en
sous-requêtes et d’exécuter les sous-requêtes de façon indépendante et en paral-
lèle. Toutefois, lorsque les sous-requêtes partagent des variables communes (i.e.
nécessitent une jointure) et retournent des ensembles de uplets avec des tailles qui
diffèrent d’un ou plusieurs ordres de grandeur, notre solution nécessite de transpor-
ter de pairs en pairs jusqu’à l’initiateur de la requête. Plusieurs uplets ne seraient
alors pas nécessaires si les sous-requêtes étaient exécutées en série en construi-
sant auparavant un plan d’exécution séquentiel. Par conséquent, une piste serait
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de construire des plans d’exécution de requêtes qui soient appropriés pour les re-
quêtes SPARQL impliquant des sous-requêtes partageant des variables communes.
Néanmoins, notre approche parallèle reste avantageuse pour les sous-requêtes indé-
pendantes. Ainsi, une avancée consisterait à générer des plans de requêtes en com-
binant l’exécution en parallèle de sous-requêtes indépendantes avec l’exécution en
série de celles qui nécessitent des jointures. Les travaux effectués dans [111] et [112]
pour améliorer respectivement l’exécution des plans d’exécution des requêtes en
réorganisant les triple patterns, mais aussi estimer leur sélectivité, sont probable-
ment des ressources intéressantes à consulter. Pour améliorer davantage les trans-
ferts de données, des techniques de compression pourraient être appliquées [164].
Par exemple, afin d’améliorer le temps d’exécution, il pourrait être envisagé de
remodeler la structure logique du réseau P2P CAN en prenant en compte la loca-
lité physique des pairs qui le compose, ceci afin de rapprocher les nœuds proches
physiquement pour réduire la latence. Ali et al. ont montré dans [113] qu’un sys-
tème P2P structuré qui prend en compte la localité physique des machines, et qui
ajoute quelques raccourcis supplémentaires, peut améliorer les performances d’un
facteur de deux dans un contexte RDF.

Synthétiser les souscriptions Concevoir un système publier/souscrire sou-
lève de nombreuses questions. Selon le contexte dans lequel il est utilisé, un défi
majeur est de gérer un nombre important de souscriptions. Étant donné que les
souscriptions sont enregistrées sur les pairs, lorsque chaque souscription est gé-
rée indépendamment, plus le nombre est important, plus le temps de traitement
augmente. Pour remédier à ce problème une solution est de synthétiser un en-
semble de souscriptions en une seule [165]. Le but est de trouver des relations
de subsomption entre les intérêts de plusieurs souscriptions afin de les combiner
en une nouvelle résumée réduisant ainsi la consommation de bande passante, le
surplus de stockage et le nombre de messages échangés entre pairs pour effectuer
la correspondance contre les événements. Plusieurs approches ont été proposées
ces dernières années [166, 167, 168]. L’application d’une telle technique à notre
solution permettrait d’améliorer encore plus ses performances.
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Améliorer la fiabilité et la disponibilité

Même si les algorithmes de routage de l’intergiciel proposé ont été conçus en ayant
à l’esprit la gestion de la tolérance aux pannes pour éviter une refonte complète
à l’avenir, la gestion de la fiabilité et de la disponibilité n’a pas été implémentée.
Notre intergiciel tirerait un avantage intéressant d’une solution permettant un
redémarrage en toute sécurité en cas de défaillance des pairs, cela impliquant
entre autre de supporter la tolérance aux pannes au niveau des objets multi-actifs.
En ce qui concerne ce dernier point, plus de détails seront fournis dans la thèse
qu’est en train de réaliser Justine Rochas. Un bon point de départ pour améliorer
la disponibilité, la fiabilité, mais aussi la performance des opérations de lecture
et donc l’évaluation des requêtes SPARQL synchrones pourrait être d’étudier la
réplication. Cela pourrait se faire par l’étude de solutions de réplication existantes
telles que celles proposées dans le document CAN original [107], les auteurs de
Meghdoot [122] ou encore par la recherche de nouvelles moins sensibles à l’arrivée
et aux départs fréquents de pairs, comme proposé dans [169].

Raisonner sur les données RDF

RDF est un modèle de données idéal pour l’écriture d’informations destinées à être
échangées à l’échelle mondiale. Toutefois, capturer la sémantique ou la signification
des informations nécessite d’autres normes de la pile du Web sémantique comme
RDFS et/ou OWL (cf. Figure 2.3) . Ces derniers permettent de définir des vo-
cabulaires en définissant les éléments utilisés dans une application, leur domaine,
leur type, leurs relations, mais aussi les contraintes possibles concernant leur uti-
lisation. En d’autres termes, les technologies RDFS et OWL fournissent une base
solide pour comprendre et déduire de nouvelles informations pertinentes. Cet ob-
jectif est généralement matérialisé en calculant la fermeture transitive d’un graphe
RDF. Cela consiste à rendre toute information implicite, explicite en appliquant les
règles RDFS/OWL sur les données RDF jusqu’à ce qu’aucune nouvelle donnée ne
soit dérivée. Interpréter les vocabulaires RDFS et OWL avec les règles d’inférence
qui leur sont associées de manière distribuée, tout en passant à l’échelle, reste un
défi et serait une perspective intéressante à creuser afin de pouvoir exploiter le
potentiel réel de RDF [170, 171, 172].
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Pour conclure, un autre point de vue pourrait être d’explorer une solution basée
sur une version légèrement adaptée du modèle MapReduce afin de charger des
événements RDF et traiter des requêtes continues en utilisant SPARQL [173],
dans le but de comparer les performances avec notre solution. Plus de détails
seront fournis dans la thèse de Sophie Ge Song. Dans une toute autre direction,
il pourrait être envisagé d’étudier l’applicabilité des bases de données de type
graphe (par exemple Trinity [174] ou Stardog3) pour le stockage, la récupération
et la diffusion sélective de données RDF à très grande échelle.

3http://stardog.com

http://stardog.com
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