
HAL Id: tel-00984262
https://theses.hal.science/tel-00984262v1
Submitted on 28 Apr 2014 (v1), last revised 2 Sep 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Un intergiciel qui gère des événements pour permettre
l’émergence d’interactions dynamiques et ubiquitaires

dans l’Internet des services
Laurent Pellegrino

To cite this version:
Laurent Pellegrino. Un intergiciel qui gère des événements pour permettre l’émergence d’interactions
dynamiques et ubiquitaires dans l’Internet des services. Calcul parallèle, distribué et partagé [cs.DC].
Université Nice Sophia Antipolis, 2014. Français. �NNT : �. �tel-00984262v1�

https://theses.hal.science/tel-00984262v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS

École Doctorale STIC

Sciences et Technologies de l’Information et de la Communication

THÈSE

pour l’obtention du titre de

Docteur en Sciences

Mention Informatique

présentée et soutenue par

Laurent Pellegrino

Pushing dynamic and ubiquitous
event-based interaction in the Internet

of services: a middleware for
event clouds

Thèse dirigée par Françoise Baude

et co-encadrée par Fabrice Huet

Soutenue le 3 Avril 2014

Jury

Rapporteurs Ioana Manolescu Inria Saclay - Île-de-France

Etienne Rivière Université de Neuchâtel

Examinateurs Johan Montagnat CNRS

Ester Pacitti Université de Montpellier 2

Vivien Quéma Grenoble INP

Directeur de thèse Françoise Baude Université de Nice-Sophia Antipolis

Co-encadrant de thèse Fabrice Huet Université de Nice-Sophia Antipolis

ii

iii

À mes parents et ma grande soeur,

iv

v

Résumé

Resource Description Framework (RDF) est devenu un modèle de données per-

tinent afin de décrire et de modéliser les informations qui sont partagées sur le Web.

Cependant, fournir une solution qui permet de stocker et de récupérer ces don-

nées de manière efficace tout en passant à l’échelle reste un défi majeur. Dans

le contexte de cette thèse nous proposons un intergiciel dévoué au stockage, à

la récupération synchrone mais aussi à la dissémination sélective et asynchrone

en quasi temps réel des informations de type RDF dans un environnement com-

plètement distribué. L’objectif est de pouvoir tirer parti des informations du passé

comme de celles filtrées en quasi temps réel. Dans ce but, nous avons construit

notre système sur une version légèrement modifiée du réseau Pair-à-Pair CAN à

4-dimensions afin de refléter la structure d’un n-uplet RDF. Contrairement à une

grande majorité de solutions existantes, nous avons avons fait le choix d’éviter

le hachage pour indexer les données ce qui nous permet de traiter les requêtes à

intervalles de manière efficace mais aussi de soulever des défis techniques intéres-

sants. Le filtrage des informations en quasi temps réel est permis par l’expression

des intérêts à l’aide de souscriptions basées sur le contenu des évènements futurs.

Les souscriptions sont traitées par une couche publier/souscrire conçue sur l’ar-

chitecture CAN. Nous avons proposé deux algorithmes qui permettent de vérifier

la concordance des évènements RDF avec les souscriptions enregistrées et de les

transférer vers les entités intéressées lorsque la correspondance se vérifie. Les deux

algorithmes ont été testés expérimentalement en termes de débit d’évènements

par seconde et de passage à l’échelle. Bien que l’un permet de meilleures perfor-

mances que l’autre, ils restent complémentaires pour s’assurer que tout évènement

soit notifié s’il doit l’être. En sus de la récupération synchrone et de la diffusion

asynchrone d’évènements, nous nous sommes intéressés à améliorer, avec notre

système, la répartition des données RDF qui souffrent de dissymétrie. Finalement,

nous avons consacré un effort non négligeable à rendre notre intergiciel modulaire.

Cela a permis d’améliorer sa maintenance et sa réutilisabilité puisque l’architecture

modulaire réduit le couplage entre les différents composants qui le constitue.

vi

Abstract

RDF has become a relevant data model for describing and modeling information

on the Web but providing scalable solutions to store and retrieve RDF data in a

responsive manner is still challenging. Within the context of this thesis we propose

a middleware devoted to storing, retrieving synchronously but also disseminating

selectively and asynchronously RDF data in a fully distributed environment. Its

purposes is to allow to leverage historical information and filter data near real-

time. To this aims we have built our system atop a slightly modified version of a

4-dimensional Content Addressable Network (CAN) overlay network reflecting the

structure of RDF tuples. Unlike many existing solutions we made the choice to

avoid using hashing for indexing data, thus allowing efficient range queries resolu-

tion and raising interesting technical challenges. Near realtime filtering is enabled

by expressing information preferences in advance through content-based subscrip-

tions handled by a publish/subscribe layer designed atop the CAN architecture.

We have proposed two algorithms to check RDF data or events satisfaction with

subscriptions but also to forward solutions to interested parties. Both algorithms

have been experimentally tested for throughput and scalability. Although one

performs better than the other, they remain complementary to ensure correctness.

Along with information retrieval and dissemination, we have proposed a solution

to enhance RDF data distribution on our revised CAN network since RDF infor-

mation suffers from skewness. Finally, to improve maintainability and reusability

some efforts were also dedicated to provide a modular middleware reducing the

coupling between its underlying software artifacts.

Acknowledgments

I would like to thank Françoise and Fabrice for the opportunity they gave me to

make this thesis a reality but also for their help throughout these three years and

more. Also, I would like to express my appreciation to Ioana Manolescu and

Etienne Rivière for agreeing to review this thesis but also the examiners, Johan

Montagnat, Ester Pacitti and Vivien Quéma for doing me the honor to be in

my jury.

Undeniably, I have to thank several coworkers. I think especially to Imen

and Francesco that have trained me in the research world. My thanks also go to

Bastien, Iyad, Maeva, Justine and all great persons from the SCALE and former

OASIS team but also all the people I worked with or met during this thesis.

I want also thank my family. First, all my gratitude goes to my parents who

have encouraged me during this period. I also thank my brother in law and my

sister, who despite the difficult facts of life are always in a good mood and share

their joy with others and especially me. Finally, my thanks go to Pauline aka

Popo, my great-niece, without whom this thesis would probably never come to an

end.

vii

viii

Table of Contents

List of Figures xiii

List of Listings xv

List of Tables xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition . 3

1.3 Outline and Contributions . 4

2 Background 7

2.1 The Peer-to-Peer Paradigm . 8

2.1.1 P2P overlays . 8

2.1.2 Applications . 11

2.2 Semantic Web . 13

2.2.1 RDF data model . 15

2.2.2 SPARQL query language . 18

2.3 The Publish/Subscribe Paradigm . 21

2.3.1 Interaction model . 22

2.3.2 Characteristics . 23

2.3.3 Filtering mechanisms . 24

2.4 ProActive Middleware . 26

2.4.1 Active objects . 27

2.4.2 Multi-active objects . 31

2.4.3 Components . 33

ix

x TABLE OF CONTENTS

3 Distributed RDF Storage 37

3.1 Related Work . 38

3.1.1 Centralized RDF stores . 38

3.1.2 Distributed RDF stores . 41

3.2 P2P Infrastructure for RDF . 54

3.2.1 Content Addressable Network (CAN) 55

3.2.2 Routing algorithms . 59

3.2.3 Indexing and retrieval mechanisms 65

3.3 Evaluation . 69

3.3.1 Insertion of random data . 69

3.3.2 Queries using BSBM . 70

4 Distributed RDF Publish/Subscribe 77

4.1 Related Work . 78

4.1.1 Active databases . 78

4.1.2 Conventional publish/subscribe systems 79

4.1.3 RDF-based publish/subscribe systems 81

4.2 Publish/Subscribe Infrastructure for RDF 83

4.2.1 Data and subscription model 83

4.2.2 Requirements . 88

4.2.3 Event filtering algorithms . 90

4.3 Evaluation . 113

5 Distributed RDF Load Balancing 121

5.1 Related Work . 122

5.1.1 Static load balancing . 123

5.1.2 Dynamic load balancing . 128

5.2 Load Balancing Solution . 131

5.2.1 Options and choices . 132

5.2.2 Strategies . 139

5.3 Evaluation . 141

6 Implementation 147

6.1 Middleware Design . 148

TABLE OF CONTENTS xi

6.1.1 A generic structured P2P framework 149

6.1.2 An abstract CAN library . 162

6.1.3 A CAN implementation for RDF data 163

6.2 Performance Tuning . 171

6.2.1 Multi-active objects . 172

6.2.2 Serialization . 179

6.2.3 Local storage . 182

7 Conclusion 191

7.1 Summary . 191

7.2 Perspectives . 193

7.2.1 Optimizing query and subscriptions evaluation 193

7.2.2 Increasing reliability and availability 194

7.2.3 Reasoning over RDF data . 195

A PLAY Project 197

B SocEDA Project 201

C Extended Abstract in French 205

C.1 Introduction . 205

C.1.1 Motivation . 205

C.1.2 Définition du problème . 207

C.1.3 Plan et contribution . 208

C.2 Résumé développement . 211

C.2.1 Stockage RDF distribué . 211

C.2.2 Publier/Souscrire RDF distribué 213

C.2.3 Répartition de charge RDF distribuée 214

C.2.4 Implémentation . 215

C.3 Conclusion . 216

C.3.1 Résumé . 216

C.3.2 Perspectives . 218

List of Acronyms 245

xii TABLE OF CONTENTS

List of Figures

2.1 Taxonomy of Peer-to-Peer overlays . 9

2.2 Presentation vs Semantics . 14

2.3 Semantic web stack . 15

2.4 Book description represented as an RDF graph 19

2.5 Publish/Subscribe interactions . 22

2.6 ProActive middleware features . 27

2.7 Meta object architecture . 28

2.8 Standard Fractal/GCM component . 35

3.1 RDF data storage in an RDFPeers network 42

3.2 Simple 2-dimensional CAN network . 55

3.3 Multicast keys’ scope in a 3-dimensional CAN network 62

3.4 Series of actions to insert a quadruple into a 4-dimensional CAN . . 66

3.5 Local vs remote insertion on a single peer 70

3.6 Sequential and concurrent insertions with up to 300 peers 71

3.7 Custom queries with BSBM dataset on various overlays 74

4.1 Compound Event distribution with three quadruples 86

4.2 Distribution of two subscriptions overlapping on a peer 88

4.3 Theoretical comparison between polling and pushing 108

4.4 Subscription and CE mapping leading to duplicates 111

4.5 Possible measurements to compare publish/subscribe algorithms . . 116

4.6 Performance comparison of CSMA and OSMA 117

5.1 RDF data clusters on a 2D CAN network 134

xiii

xiv LIST OF FIGURES

5.2 CAN splitting strategies comparison 138

5.3 Statistical information recording overhead 142

5.4 Static load balancing using middle vs centroid partitioning 143

6.1 Stack of main software blocks designed and/or used 148

6.2 Simplified version of the class diagram defining a peer 151

6.3 Simplified version of the class diagram defining messages 153

6.4 Simplified version of the class diagram defining a proxy 156

6.5 Sequence diagram showing a proxy interaction 157

6.6 High-level view of the EventCloud architecture 164

6.7 Public API exposed by related EventCloud proxies 166

6.8 Internal EventCloud proxies architecture 167

6.9 Internal EventCloud peer architecture 168

6.10 Internal architecture of datastores embedded by peers’ local storage 171

6.11 MAO soft limit evaluation for peers and subscribe proxies 174

6.12 Priorities effect on reconstructions with CSMA 179

6.13 Message serialization with and without the use of frozen objects . . 182

6.14 Delayer benefits when varying buffer size 186

6.15 Quadruple length effect on buffering 188

A.1 Conceptual PLAY architecture . 199

B.1 Conceptual SocEDA architecture . 203

List of Listings

2.1 Book description modeled in RDF . 17

2.2 SPARQL query example for retrieving RDF resources 20

2.3 Groups and compatibility definition using multi-active objects 32

3.1 SPARQL query example for retrieving RDF resources with filters . . 68

4.1 SPARQL subscription example . 87

4.2 Upon reception of a publication on a peer 91

4.3 Upon reception of a PublishQuadrupleRequest by a peer 93

4.4 Upon reception of a notification by a subscribe proxy 95

4.5 SPARQL subscription decomposition into sub-subscriptions 97

4.6 Handling a subscription from a proxy to a peer 98

4.7 Handling an IndexSubscriptionRequest on a peer 99

4.8 Pushing compound events to subscribers 101

4.9 Publishing and subscribing with OSMA 111

6.1 Groups and compatibility definition using MAO on a Peer 161

6.2 Priorities definition . 178

6.3 SPARQL subscription representation in RDF 184

xv

xvi LIST OF LISTINGS

List of Tables

3.1 BSBM namespaces used by the queries considered 73

3.2 Number of final results for the queries considered 73

4.1 Comparison of the two publish/subscribe algorithms proposed 119

5.1 Load balancing strategies comparison 144

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

Contents
1.1 Motivation . 1

1.2 Problem Definition . 3

1.3 Outline and Contributions 4

1.1 Motivation

In recent years the Internet traffic exchanged has grown exponentially. It is ex-

plained by the amount of information generated by users and new services that

thrive. As stated by Eric Schmidt in 2010, every two days now we create as much

information as we did from the dawn of civilization up until 2003. At this time

the amount of information was already something like five exabytes of data, he

said. Besides, with the advent of the Internet of things, a concept that refers to

uniquely identifiable objects that communicate over the Internet, we are proba-

bly just at the beginning of this exponential growth of information. For example,

Cisco expects the global IP traffic will reach 1.4 zettabytes per year in 20171.

This explosion regarding information exchanged gave birth to a new field of

computer science called Data Mining. The overall goal of data mining process

is to discover interesting patterns in large datasets. A concrete example is the

1http://goo.gl/dj85Ul

1

http://goo.gl/dj85Ul

2 CHAPTER 1. INTRODUCTION

Google Knowledge Graph [1] that provides additional valuable information when

performing a search. A more recent illustration is the scandal caused by the Prism

surveillance program operated by the United States National Security Agency

(NSA) whose the purpose is to collect and correlate meta-data from users, unknown

to them, to prevent terrorist acts.

A prerequisite to Data Mining is to aggregate streams of interest and store

incoming data for analysis. These bases of knowledge are realized by data ware-

houses that are huge repositories of data which are created by integrating data from

one or more disparate sources. When sources are outputs provided by any actor

publishing heterogeneous information over the Internet, building data warehouses

raises one main question: how to filter information of interest and correlate them

with others? A key element to answer this question consists of using structured

data to make information machine processable and machine understandable.

The Semantic Web movement has generated tremendous interest these last

years. It aims to turn the Web, i.e. Web documents, into a gargantuan database

where computers could fetch data in an homogeneous manner. The interesting

point here is that the Semantic Web community already provides a full technology

stack (RDF, SPARQL, RDFS, OWL, etc.) to address most of the issues related

to the previous question, but mainly in a synchronous and centralized2 environ-

ment. Within the context of the European PLAY project, one of the projects in

which this thesis has been developed, we are investigating how we can leverage the

Semantic Web representation model and thus the existing stack to filter, detect

and react on interesting patterns or situations. In this context, the purpose of

the PLAY project is to bring an elastic and reliable architecture for dynamic and

complex, event-driven interaction in highly distributed and heterogeneous service

systems. Such an architecture will enable ubiquitous exchange of information be-

tween heterogeneous services, providing the possibilities to adapt and personalize

their execution, resulting in the so-called situational-driven process adaptivity.

A typical example of the scenario we are trying to achieve with the PLAY

project is illustrated by the following motivating story. Let’s say that Paul is a

2In the rest of this thesis, we refer to centralized for solutions that concentrate under a single
location/front end, even if behind, several machines or physical resources are involved like it
is the case with the Master-Slave approach where a master receives and dispatches requests to
multiple slaves.

1.2. PROBLEM DEFINITION 3

businessman who has been flying from Paris to New York. He used the entertain-

ment service on board, but hasn’t finished watching the movie before the landing.

Two hours later he enters his room in the downtown hotel he booked earlier and

is pleased to see that the room entertainment service is ready to PLAY the movie

Paul was watching in the plane – of course starting where he left it.

Realizing such a scenario raises several technical questions, some of which are

introduced in the next section and addressed throughout this thesis.

1.2 Problem Definition

In this thesis we are focusing on two key problems that can be summarized by

the following two questions: How can we efficiently store and retrieve Semantic

Web data in a distributed environment? How can we pragmatically filter and

disseminate Semantic Web events to users with individual preferences?

The inherent scalability issue that arises with distributed systems has mainly

be addressed the last years by resorting to Peer-to-Peer (P2P) networks that avoid

a single point of access. However, relying on the Semantic Web model, depicted

by RDF, raises several challenges which have a direct impact on the underlying

network topology that is considered.

The first challenge stems from the expressivity level of the common SPARQL

language that is usually used to retrieve RDF data. Some may have noticed the

lexicographic similarity with SQL. The analogy is not a coincidence. SPARQL is

a query language for RDF data modeled long after SQL. Although they are quite

different since they do not achieve the exact same purpose, SPARQL supports

very complex operators that makes it as expressive or even more expressive than

SQL. In this manuscript, we will see how the data model and query language

affect many of the choices we made such as the design of the P2P architecture, the

routing algorithms and the storage of RDF data.

The second challenge is related to the filtering of RDF data from publishers to

interested parties. As explained in the motivation section, the scenario envisaged

within the PLAY project is mainly based on data-driven querying [2] that focus

on near real-time conditions that should be satisfied. A prerequisite is to filter

information of interest but not only. Events have to be stored to act as additional

4 CHAPTER 1. INTRODUCTION

context and to perform a kind of analytic on the past data. Here, Semantic Web

data have, again, a significant impact on how the Publish/Subscribe layer must be

designed. With an additional complexity since in event based systems the entities

are loosely coupled. Communications are done in an asynchronous manner, thus

providing less guarantees than the traditional request/reply message exchange pat-

tern (e.g. lack of delivery guarantee). In this context, we will see how RDF data

may be represented as events and how they differ from traditional multi-attribute

events. In addition the combination between event filtering and the storage re-

quirement triggers several questions about efficiency and consistency: e.g., how

to ensure operations ordering from a same client? which kind of throughput can

we expect? how to ensure that events are stored once they are delivered? these

questions will be discussed and addressed.

Finally, a third challenge we consider concerns load balancing and the elas-

ticity property of modern distributed systems we intend to leverage in order to

ensure a certain level of performance. We will see that the choice we made, that

consists of removing the use of hash functions to exploit more complex queries

or subscriptions than simple exact matching exposes us to load imbalances. In

real scenarios, any dataset is skewed, but here the imbalance is accentuated by

one of the characteristics of RDF data that implies some values to share common

prefixes.

1.3 Outline and Contributions

The major contribution of this thesis is the definition and the implementation of

a modular middleware for storing, retrieving and disseminating RDF data and

events in cloud environments. It is structured around three major works organized

in three dedicated chapters whose the content is summarized along with others

hereafter:

• Chapter 2 gives an overview of the main concepts and technologies we refer

to throughout this thesis. First, we introduce the Peer-to-Peer paradigm.

Then, we draw attention to the Semantic Web and discuss the main benefits

of using semantic before focusing on the Publish/Subscribe communication

1.3. OUTLINE AND CONTRIBUTIONS 5

style. Finally, we detail the ProActive middleware, which is the main tech-

nology used for implementing the middleware developed in this thesis.

• Chapter 3 presents our first contribution that relates to a distributed RDF

storage infrastructure which was introduced in [3] and awarded Best Paper

of the AP2PS 2011 conference. A brief related work section about decentral-

ized systems for storing and retrieving RDF data introduces this chapter.

Then, we introduce the popular CAN P2P protocol which is the underly-

ing P2P overlay network we rely on for routing messages and, indirectly, for

achieving scalability. Afterwards, we motivate and discuss the design choices

and the adjustments we made regarding the CAN protocol before explaining

in a second section how messages are routed with our modifications. In a

penultimate section we describe in details how RDF data is indexed in the

P2P network and how SPARQL queries are executed. Finally, we provide

the results we got by experimenting our solution on the Grid’5000 testbed.

• Chapter 4 enters into the details of our second contribution that relates

to a publish/subscribe layer for storing and disseminating RDF events. It

is built as an extension atop the infrastructure introduced in the previous

chapter and relies on the routing algorithms that were described earlier. We

start to compare existing solutions and we explain why building RDF-based

event systems differs from traditional publish/subscribe systems. Then, we

introduce our publish/subscribe infrastructure for RDF events. First, we

detail the event and subscription model suitable for RDF data we propose.

Afterwards we list the different properties our publish/subscribe system is

assumed to respect, before entering into the details of two publish/subscribe

algorithms. Their characteristics and differences are explained, discussed

and analyzed. To conclude, the algorithms we propose are evaluated in a

distributed environment with up to 29 machines. This second contribution

has been accepted and presented at Globe 2013 [4].

• Chapter 5 highlights our third contribution which is about load balancing

with RDF data. The first section summarizes how load balancing solutions

have evolved over the time and what are existing solutions to fix load im-

6 CHAPTER 1. INTRODUCTION

balances with RDF data but not only. Then, we describe our solution by

explaining the different choices that are conceivable and the ones we have

opted for. As it will be explained, our approach combines standard mech-

anisms such as online statistical information recording and gossip protocols

for exchanging load information. In a last section we discuss the results

obtained for the empirical evaluations we have made with real data.

• Chapter 6 gives an overview of the EventCloud middleware, which is the

middleware developed within the context of this thesis. The purpose of

this chapter is to give an overview of the system from an architectural and

implementation point of view. In a first step, we highlight the different

components that make up the system. Then, we summarize the different

features and show how flexible and modular the middleware is since it has

been built with clear separations between the basic subcomponents of the

whole API. In particular we see how modularity plays a significant role in

our proposed architecture and what kind of advantages it brings regarding

the components which form our infrastructure. Then, we focus on some

implementation details we have faced up to and addressed to make the system

efficient and responsive.

• Chapter 7 concludes the thesis. It reviews the contributions and presents

some research and development perspectives that may raise from this thesis.

Finally, regarding the contributions made within the context of this thesis we

can also notice that the EventCloud middeware has been tested and validated

with the different scenarios created in the PLAY project [5, 6, 7, 8, 9, 10, 11].

Besides, the EventCloud middleware has also been used and evaluated in other

contexts, for example by providing building blocks to distribute Complex Event

Processing (CEP) engines that aim to correlate multiple real-time events and past

events [12]. Another application relates to lazy data transfers where events embed

large attachments that do not need to transit through the event service. Only event

descriptions are conveyed to the EventCloud before being disseminated to inter-

ested parties. The attachments are transfered in a lazy and transparent manner

by enabling direct publisher to subscriber data exchange [13].

Chapter 2

Background

Contents
2.1 The Peer-to-Peer Paradigm 8

2.1.1 P2P overlays . 8

2.1.2 Applications . 11

2.2 Semantic Web . 13

2.2.1 RDF data model . 15

2.2.2 SPARQL query language 18

2.3 The Publish/Subscribe Paradigm 21

2.3.1 Interaction model . 22

2.3.2 Characteristics . 23

2.3.3 Filtering mechanisms . 24

2.4 ProActive Middleware . 26

2.4.1 Active objects . 27

2.4.2 Multi-active objects . 31

2.4.3 Components . 33

In this chapter we introduce and give an overview of the main concepts and

technologies we refer to throughout this thesis. First we present the Peer-to-Peer

paradigm. Then, we focus on the Publish/Subscribe communication style before

7

8 CHAPTER 2. BACKGROUND

entering into the details of the Semantic Web movement and discuss the main

benefits of using semantic. Finally, we detail the ProActive middleware, which is

the main technology used for implementing the architecture and the algorithms

introduced in the next chapters.

2.1 The Peer-to-Peer Paradigm

P2P systems have generated tremendous interest the last 15 years and are now

recognized as a key communication model to build large scale distributed appli-

cations [14]. This model differs from the traditional client/server approach where

client nodes request resources provided by a central server. With the P2P model,

all the machines or nodes (also called peers) play the same role. Each peer acts

both as a client and server. It can share its resources with other peers and make use

of those provided by some others. The resources are sources or supplies from which

benefits are produced. They can be of different types such as data, URLs, files,

disk storage, bandwidth, CPU cycles, etc. Moreover, since all nodes are suppliers,

the overall aggregated system capacity is increased compared to a client/server

model.

2.1.1 P2P overlays

In a P2P network the nodes are self-organized into an overlay network that runs

atop a physical network topology. The virtual topology of overlay networks allows

to build and deploy distributed services without having to modify the IP protocols.

In addition, unlike the client/server model, the peers communicate with each other

without any centralized coordination. As a result, the full decentralization of P2P

overlays makes them, generally, scale with respect to the number of nodes in

the network. This scalability property is one of the most prominent features of

P2P systems and explains the attractiveness of the model along with its built-in

fault tolerance, replication and load balancing properties to adapt to the arrival,

departure and failure of peers.

P2P overlays are usually classified into three main categories: unstructured,

structured and hierarchical; based on the topology construction technique that is

2.1. THE PEER-TO-PEER PARADIGM 9

used. Figure 2.1 gives an overview of the three main type of overlays we introduce

in the following subsections.

Unstructured overlays

Unstructured P2P systems belong to the first generation of P2P overlays that ap-

peared with the P2P model. They are characterized by the absence of constraints

regarding data placement and links establishment between peers. The resources

are indexed on peers at random and peers connect to each other in an arbitrary

manner. This lack of organization and structure implies to flood the whole net-

work or to use heuristics to lookup a resource, thus leading to scalability issues or

no solution for unpopular resources. On the other hand unstructured overlays are

very resilient to peers arrival and departure (phenomenon known as churn) and

that may explain their success in some domains like file sharing and streaming.

To summarize, unstructured P2P systems are often really simple to set up

and implement but provide limited guarantees, not to say no guarantee, on search

operations. Systems based on this type of overlay are numerous [15, 16, 17, 18].

Gnutella [15] is one of the first unstructured P2P network that has brought out

the problem of plenty of communication between peers. For example, in its version

0.4, the volume of data that relates to the protocol was as important as the one

generated by information exchanged as requested by end users [19].

(a) Unstructured over-
lay.

(b) Structured overlay. (c) Hierarchical overlay.

Figure 2.1 – Taxonomy of Peer-to-Peer overlays.

10 CHAPTER 2. BACKGROUND

Structured overlays

The drawbacks of unstructured P2P overlays have been intensively studied and

these efforts gave birth in 2001, with CAN [20], Chord [21] and Pastry [22], to

a new type of overlay called Structured Overlay Network (SON). SONs strive to

solve the issues that occur with their unstructured opposite by providing an upper

bound limit on the number of messages required to find a resource in the network.

This is made possible by organizing the peers in well known geometrical topologies

(hyper-cube, ring, tree, etc.) that provide interesting mathematical properties. In

return, structured overlays incur a small overhead to maintain a consistent view

of the geometrical structure among peers under churn. However, this cost is most

of the time negligible with regards to the benefits they supply.

Usually, structured P2P protocols are provided with a standard abstraction

called Distributed Hash Table (DHT) that offers a simple API [23] similar to hash

tables. It consists of two main primitives put(key, value) and get(key) that allow

respectively to store and fetch data by key. The first generation of DHTs makes use

of consistent hashing to map a key to a value and the resulting binding to a node.

Briefly speaking, consistent hashing ensures that only a fraction of keys have to

be remapped to nodes when some are joining and leaving the system. Moreover it

eliminates the occurrence of hot spots and prevent nodes from becoming swamped

by balancing the load between peers uniformly with high probability [24]. From

an architectural point of view, each peer is assigned a part of a global space

identifier like a circle and is responsible for all the keys that fall in its range.

Then, consistent hash functions such as MD5 or SHA1 are used to associate a key

to a value. Despite to the fact that the DHT abstraction is really well suited for

manipulating key/value pairs, it supports only exact matching and not complex

queries such as conjunctives and range queries. Some research efforts have been

made in this way [25, 26] but it remains an ongoing area of research depending of

the consistency, the availability, the data model but also the use case the considered

system must deal with.

2.1. THE PEER-TO-PEER PARADIGM 11

Hierarchical overlays

With their success, the design of distributed systems tends to grow in terms of

complexity and requires more intelligence and processing in routing. Hierarchical

or hybrid overlays try to fill this lack by exploiting the properties of multiple

structured and/or unstructured P2P overlays. The topology consists of several

nodes from two or more types of overlays that are organized into groups. Groups

are interconnected to form a connected graph. Each group depicts a layer that has

its own purpose and applies its own routing mechanisms.

P2P systems that are termed hybrid overlays or that refer to super peers may

be seen as a particular case of hierarchical overlays with two groups. For exam-

ple in the file sharing context, one upper level group acts as an index to locate

available resources. Then, resources are exchanged by contacting peers from the

second lower group that effectively contain the resources. Examples of hierarchical

overlays are described in [27, 28, 29, 30].

2.1.2 Applications

The P2P communication paradigm we introduced is nowadays harnessed by many

distributed applications in several domains. It is mainly used as a building block

to find, store and transfer or exchange information in a more or less safe manner.

Hereafter, we review some of the main fields of usage.

File sharing

P2P file sharing allows end-users to access any kind of media files. In this context,

the peers are end-user computers that are interconnected via Internet. File sharing

has been initially popularized with applications such as Napster [31], Bittorent [18],

Kazaa [32] and still remains popular and widely used even with the advent of

alternative solutions such as streaming, direct download, etc.

Communication and collaboration

Some years ago emails and Internet Relay Chat (IRC) were the most prominent so-

lutions to communicate with others in an asynchronous or live interactive manner.

12 CHAPTER 2. BACKGROUND

Today, Voice over IP (VoIP), instant messaging and video chat are supplement-

ing emails and IRC interactions in both enterprise and home networks. Skype1

is an application that provides these services on top of an hybrid P2P overlay.

Even though its internal architecture has changed a bit recently2, it still remains

a P2P network. Thus, many of the 300 millions connected Skype users leverage,

unwittingly, the P2P model.

Distributed Computing

Although file sharing is the most well known usage of P2P systems underlined by

the medias, especially for copyright infringements, P2P is also a prevalent model for

distributed computing. In this field we can distinguish Volunteer Computing (VC)

and Cloud Computing (CC). The idea of VC is to give the possibility to any user

who disposes of machines and an Internet connection to contribute to projects that

require a lot of computing power by donating their unused resources like CPU and

storage. The process is really simple and consists of installing an application that

turns the hosted computer into a peer that interacts with others based on a P2P

model. Many initiatives have emerged the last years based on this VC model.

Examples are SETI@home [33], Einstein@home [34] or even Bitcoin [35].

On the other side there is CC where resources are made available with some

Quality of Services by cloud providers in exchange for money. Resources are avail-

able on-demand. To achieve efficient scalability, cloud platforms such as Amazon

EC2, Google Compute Engine or Windows Azure most probably rely on fully

decentralized infrastructures similar to P2P systems.

Distributed Storage

Key/Value stores are new systems that are part of the emerging Not only SQL

(NoSQL) movement. This class of databases was initially introduced as a shift

from traditional SQL databases to enhance read and write performances by pro-

viding less guarantees (i.e. not full ACID properties) and simpler query languages.

Key/Values datastores are now used by famous companies to store billion of keys

1http://www.skype.com
2http://goo.gl/dSZu1b

http://www.skype.com
http://goo.gl/dSZu1b

2.2. SEMANTIC WEB 13

and terabytes of values in a scalable manner. The underlying structure that is used

to scale and achieve these performances in a decentralized environment is a DHT

that leverages the P2P model. NoSQL systems are numerous. The most popular

are probably Cassandra [36], Dynamo [37] and MongoDB [38]. All provide good

performances but weak consistency. Recently some systems like CATS [39] provide

affordable strong consistency and will probably strengthen the NoSQL movement

for domains like banking applications where strong consistency is critical.

2.2 Semantic Web

The World Wide Web (WWW) has become an inexhaustible source of information,

that grows at an incredible pace and is available to all at any time. This is a fact.

However, the WWW as defined at its early stages has several drawbacks. A major

issue originates from documents representation that focuses, mainly, on human-

readable contents. The information is represented by using markup languages

whose the main purpose is to make web documents pleasant to read and navigate

to users. Although these documents may contain interesting knowledge, their

underlying representation makes information processing to machines really arduous

and challenging.

The side effect of this problem is observed when users want for example to

perform a search on a specific subject. Search engines crawl Web documents

and index information based on keywords. Consequently, they deliver interesting

results with pertinent content but mixed up with a lot of irrelevant information. In

other words the results returned match the words entered by the users to perform

a search but often the context is not captured and a concise answer cannot be

deduced. Tim Bernes-Lee assessed the situation and expressed in 1998 the concept

of Semantic Web before further refining his vision in [40] as follows:

“The Semantic Web is not a separate Web but an extension of the

current one, in which information is given well-defined meaning, better

enabling computers and people to work in cooperation.”

The aims that the Semantic Web tries to achieve is really well captured by

Figure 2.2. On the left is what browsers see when a simple Web document is

14 CHAPTER 2. BACKGROUND

interpreted by a machine and on the right is what humans observe. One target

of Semantic Web is to fill the gap there is between what machines and humans

perceive.

A concrete outcome of increasingly using machine processable formats is that

now search engines can provide incredible answers to some natural questions in

a concise and relevant manner. Examples are Ask Jeeves3, the Google Knowl-

edge Graph4, or even Wolfram Alpha5. When a question like “Who was the third

president of the USA?” is submitted, these online services do not only return a

list of addresses related to some of the keywords contained in the question but in-

stead, they rely on existing facts extracted and combined from different structured

documents to deduce a direct answer along with relevant statements.

Figure 2.2 – Presentation vs Semantics (taken from [41]).

However, realizing the vision brought by Berners-Lee is not just a matter of

using a common structured representation. It requires a full technology stack,

referred as the Semantic Web stack to handle different aspects. As depicted by

Figure 2.3, it involves several concepts and abstractions whose most are standards

and guidelines formulated by the W3C. They are organized in a hierarchical

manner and each layer exploits the features and extends the capabilities of the

layers below.

3http://ask.com
4http://google.com
5http://wolframalpha.com

http://ask.com
http://google.com
http://wolframalpha.com

2.2. SEMANTIC WEB 15

The bottom layer refers to well known Web technologies that are Internation-

alized Resource Identifier (IRI) (a generalization of URI that allows Unicode char-

acters) and Unicode for interlinking, encoding and manipulating text, documents

or more generally resources. At the middle, we find standardized technologies like

RDF to model information in a machine-processable and machine-understandable

manner, SPARQL to retrieve and manipulate data stored in RDF, RDFS that

provides basic elements to organize data by sharing vocabularies but also RIF and

OWL that enable reasoning over data through rules. Finally, on the top are not

yet realized semantic web technologies that relate to logic, trust and thus security

aspects.

In the following subsections we will enter into the detail of some technologies,

concepts and abstractions we consider important for the remaining of this thesis.

URI/IRI HTTP UNICODE AUTHTHE WEB PLATFORM
SYNTAX N3/TURTLE RDFa XML JSON

GR
AP

H U
RIS

PROOF

SECURITY
TRUST

KNOWLEDGE REPRESENTATION
RDF Model

SPARQL

SEMANTICS OWL RDFS SKOS

QU
ERYAPP

LIC
ATI

ON
S

RULES RIF
LOGIC

STRUCTURE

SPECIFICATIONS & SOLUTIONSCONCEPTS & ABSTRACTIONS

Figure 2.3 – Semantic web stack (drawing by Benjamin Nowack / CC BY).

2.2.1 RDF data model

RDF [42] is a data model standardized by the W3C that aims to encode structured

information. It allows to break down any knowledge into independent statements

known as triples. A RDF triple is a 3-tuple whose components are respectively

http://creativecommons.org/licenses/by/3.0/

16 CHAPTER 2. BACKGROUND

named subject, predicate and object. The subject of a triple denotes the resource

the statement is about, the predicate refers to the property of the subject, and the

object presents the value of the property.

RDF distinguishes different building blocks as presented below:

• IRIs are a complement of URIs that conforms to the syntax defined in RFC

3987 and allows to use Unicode characters. They preserve all the benefits

from URIs and thus remain global unique identifiers of resources available

on the Web (e.g. http://www.w3.org/standards/semanticweb). The main

advantage of using IRIs and thus URIs with a resource lies in the fact that

anyone can “link to it, refer to it, or retrieve a representation of it” [43].

Consequently, they allow to reason about relationships and ease the integra-

tion of distributed information. IRIs are allowed with subjects, predicates

and/or objects components of a triple.

• Literals are a convenient and intuitive alternative to IRIs for identifying

values such as strings, numbers and dates. Literals may be plain or typed.

Plain literals are Unicode strings that are combined with an optional lan-

guage tag to identify the original langage (e.g. "привет"@ru) while typed

literals consist of a Unicode string with a datatype URI that determines how

the lexical form maps to a literal value (e.g. "7"^^xs:integer). Literal

values could for example be used to relate objects to their names. Note that

literals can only occur as a triple’s object.

• Blank nodes also known as bnodes are anonymous resources whose name or

identifier is not known or not specified (i.e. no associated URI exists). They

may be described as existential variables “simply indicating the existence of a

thing, without using, or saying anything about, the name of that thing” [44].

The scope of blank nodes is local to an RDF document. A bnode identifier

used in two separate RDF documents can refer to two different things. Blank

nodes may be the subject or the object of a triple.

http://www.w3.org/standards/semanticweb

2.2. SEMANTIC WEB 17

Representation

As mentioned previously, RDF is an abstract model that provides a general method

to decompose knowledge into triples and to put them in relation with each other

through IRIs. An interesting property that stems from this model, and that re-

inforces its flexibility, is that triples may be represented into multiple equivalent

forms. For example, if we consider the need to describe a book in RDF, a possible

way to model it is the one introduced in Listing 2.1 that rests on a simple represen-

tation in the form of a 3-tuples set. First, it describes the book title by referring

to the book through its International Standard Book Number (ISBN) URI. Then,

more information is added such as the publication date, the publisher name, the

publication generic type, but also statements about the book author (i.e. creator)

by the intermediate of a blank node used to group creator sub-properties. At this

stage we can see that, both, the ISBN and creator elements are shared between

multiple triples. This connection between triples suggests another possible manner

to represent RDF information which is a labeled directed connected graph where

nodes are the subjects or the objects of the triples, while edges refer to the predi-

cates of the RDF statements. As depicted by Figure 2.4, this visual representation

is a clear explanation of the relationship between RDF building blocks. Note that

edges are always oriented from the subjects to the objects elements of triples.

(urn:isbn :0201038013 , dc:title , "The Art of Computer Programming ")

(urn:isbn :0201038013 , dc:publisher , "Addison - Wesley ")

(urn:isbn :0201038013 , dc:creator , _: bnode72)

(urn:isbn :0201038013 , rdf:type , dc: BibliographicResource)

(_:bnode72 , foaf:firstName , " Donald ")

(_:bnode72 , foaf:familyName , "Knuth ")

(_:bnode72 , foaf:homepage , http :// www -cs - faculty . stanford .edu /~ uno)

(_:bnode72 , foaf: pastProject , urn:isbn :0201038013)

Listing 2.1 – Book description modeled in RDF as a simple set of triples.

Both representations are abstract but concrete syntaxes are required to manip-

ulate and exchange triples in real applications. RDF comes will several syntaxes

such as Notation3, N-Triples, RDF/XML, etc. Each syntax brings its advantages

and drawbacks. The main differences between them lies in the fact that some are

18 CHAPTER 2. BACKGROUND

more expressive than others. This may be due to the representation format such

as XML that involves naming elements and attributes, but also by the fact that

some syntaxes provide a methodology to aggregate redundant information (e.g.

namespaces) while others do not.

Named graphs

Carroll et al. [45] bring out in 2005 the need to provide a mechanism for talking

about RDF graphs and relations between graphs. For that, they proposed to

extend the RDF semantic and existing syntaxes with the concept of named graphs.

Concretely, named graphs provide an extra degree of liberty by extending the

notion of triples to quadruples (4-tuples). The extra piece of information that is

added, named context or graph value, is an IRI or Blank node placed at the head

of each triple and can be used to achieve different purposes. Features that have

been suggested are for example the ability to track the provenance of RDF data, to

sign RDF graphs or even to provide versioning by capturing snapshots of multiple

RDF sources.

Although named graphs are not supported in the current RDF specification

since the concept has been proposed after its publication, datastore implemen-

tations and query languages such as SPARQL already support and make use of

named graphs. In this thesis we consider quadruples, especially to fit the require-

ments we have regarding the publish/subscribe layer we propose in Chapter 4.

However, it is worth noticing that triples could be associated to a default graph

and thus behave as quadruples. Reciprocally, a quadruple could be transformed

into a triple. It is just a matter of removing one element.

2.2.2 SPARQL query language

Since the writing and publication of the first RDF draft and then the specification,

a lot of solutions have been proposed to query RDF knowledges in an efficient and

expressive manner. It includes RQL [46], SeRQL [47] and SquishQL [48]. This

fragmentation in terms of solutions to query RDF databases called out the Se-

mantic Web community that established with the W3C, a group working towards

2.2. SEMANTIC WEB 19

u
rn

:isb
n
:0

2
0
1
0
3
8
0
1
3

A
d
d
iso

n
-W

esley

d
c:B

ib
lio

g
ra

p
h
icR

eso
u
rce

b
n
o
d
e7

2

T
h
e

A
rt

o
f

C
o
m

p
u
ter

P
ro

g
ra

m
m

in
g h

ttp
:/

/
w

w
w

-cs-fa
cu

lty.sta
n
ford

.ed
u
/~

u
n
o

D
on

a
ld

K
n
u
th

dc:title

d
c
:p

u
b
lish

e
r

d
c
:c

rea
to

r

rdf:type

foaf:firstName

foaf:fam
ilyN

am
e

foaf:homepage

fo
a
f:p

a
stP

ro
jec

t

Figure 2.4 – Book description represented as an RDF graph. Oval shapes represent
IRIs, rectangles are literals and rounded triangles depict anonymous resources.
Labeled edges are predicate IRIs.

20 CHAPTER 2. BACKGROUND

a common language taking advantage of the various existing solutions. This real-

ization is called SPARQL Protocol and RDF Query Language (SPARQL).

SPARQL is now a W3C recommendation [49] that plays a very important role

in the Semantic Web community. Its foundations are based on the concept of Basic

Graph Patterns (BGPs). A BGP is a sequence (conjunction) of triple patterns

where each triple pattern is a triple that may contain variables for retrieving

unknown values, linking a triple pattern with others, or both. Two triple patterns

are linked if they share the same variable. In that case, a join is performed on this

variable for values found with each independent triple pattern.

BGPs allow to extract subsets of related nodes in an RDF graph. For example,

if we assume there exists a graph database with book definitions modeled as the

one introduced in Figure 2.4, then we can retrieve author names of all bibliographic

resources by using the SPARQL query presented in Listing 2.2. It consists of one

BGP with three triple patterns where the dot character imposes a join between

triple patterns that share common variables or the cartesian product6 between

independent triple patterns. Similarly to RDF with the notion of triple that is

extended to quadruples with the support of named graphs, triple patterns can be

extended to quadruple patterns. In this context, we can say that the query from

Listing 2.2 contains three quadruple patterns that share the same graph element

(e.g. a default graph value).

1 PREFIX dc: <http :// purl.org/dc/terms/>

2 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >

3 SELECT ? authorName WHERE {

4 GRAPH <default > {

5 ?isbn dc:type dc: BibliographicResource .

6 ?isbn dc: creator ? creator .

7 ? creator foaf: familyName ? authorName

8 }

9 }

Listing 2.2 – SPARQL query example for retrieving author names of biblio-

graphic resources modeled in RDF.

6Assuming two sets A = {x, y, z} and B = {1, 2, 3}, the cartesian product A ×B is the set of
all ordered pairs (a, b) where a ∈ A and b ∈ B.

2.3. THE PUBLISH/SUBSCRIBE PARADIGM 21

SPARQL reuses some keywords from SQL such as SELECT, FROM, WHERE,

UNION, GROUP BY, HAVING. It also allows for solution modifiers like DIS-

TINCT, ORDER BY, LIMIT and OFFSET that mimic the semantic of those

from SQL. However, a main SPARQL characteristic lies in the type of queries

supported. SPARQL supports four kinds of queries. ASK queries return a simple

boolean to indicate whether a solution exists or not. CONSTRUCT queries cre-

ate and return RDF graphs in the same manner XQuery [50] builds and returns

XML trees. DESCRIBE queries return an RDF graph that describes the resources

found. The structure of this graph is not defined in the SPARQL specification and

results often differ from an implementation to another. Finally, SELECT queries

return a set of variables and their solution in the form of result sets similarly to

relational databases. Other characteristics are BGPs building blocks that can be

combined with UNIONS, extended with OPTIONALs keywords, and drained with

FILTERs that allow to refine results with inequalities or regular expressions.

2.3 The Publish/Subscribe Paradigm

Publish/Subscribe (Pub/Sub) is a messaging pattern that allows users or client

applications called subscribers to be kept informed efficiently and gradually about

information they are interested in. Unlike one-time or synchronous queries where

users formulate meaningful inquiries about their concern and wait for an answer,

publish/subscribe systems assume that users register their needs through sub-

scriptions also dubbed continuous queries [51]. As the name suggests, continuous

queries are resolved as soon as incoming information or events match subscribers’

interests. Here, events act as a means of communication and can be seen as ac-

tions or occurrences of something that happened and may point out for example

a change or an update in the state of one or more components. Once events

are generated, they are published to an event service in charge of performing the

matching between the publications and the subscriptions that have been registered.

Then, when an event satisfies a subscription that has been previously registered,

a notification that reifies the matched event is triggered to the subscriber.

22 CHAPTER 2. BACKGROUND

2.3.1 Interaction model

The traditional workflow of interactions between the different entities that are

usually involved in a publish/subscribe system is depicted by Figure 2.5. To sum-

marize publish/subscribe systems are constituted of publishers, subscribers and an

event notification service composed of one or more brokers that form a brokering

network in charge of mediating events between publishers and subscribers. In this

type of systems flow of interactions are unidirectional and asynchronous. They go

from subscribers to the event service in order to register subscriptions with the

subscribe primitive and in two steps from publishers to subscribers through the

event service with respectively the publish and notify primitives. As illustrated

by Figure 2.5, publications produced by publishers are not necessarily forwarded

to a subscriber. Indeed, both subscribers may care about different things and the

event service may decide to discard some notifications. For instance, Subscriber

1 is receiving a notification because the published event is satisfying its interests.

However, Subscriber 2 does not receive any notification since the subscription reg-

istered in the event service is not satisfied by the event coming from the publisher.

Publisher Event service

Subscriber 1

Subscriber 2

publish

notify

subscribe

subscribe

Figure 2.5 – Publish/Subscribe interactions.

Some publish/subscribe systems also rely on an additional primitive named

advertise to publish advertisements. Advertisements are used to inform the system

about the kind of information publishers are willing to send. Their aim is to reduce

the overall information flow and thus to save time and effort in disseminating

2.3. THE PUBLISH/SUBSCRIBE PARADIGM 23

events. However, the use of advertisements is beneficial when publishers exhibit

stable publishing patterns only.

2.3.2 Characteristics

The last years publish/subscribe systems have demonstrated their flexibility, mod-

ularity and responsiveness by being used with success in a broad set of application

scenarios that range from information dissemination, network monitoring, ubiqui-

tous systems or even mobile systems. The main characteristic behind the strength

of the publish/subscribe communication style lies in its decoupling in terms of

space, time and synchronization between publishers and subscribers.

• Space decoupling refers to the identity and the location of subscribers

which is assumed not known by the publishers and reciprocally publishers

which do not hold any reference to subscribers. They are mutually unaware

of each other. This is made possible by means of the event service that

acts as a mediator. The space decoupling characteristic is very interesting

in highly dynamic environments where participants are frequently leaving or

joining the system.

• Time decoupling refers to the eventuality that publishers publish events

even though no subscriber is present, or reciprocally, subscribers register

a continuous-query when no publisher is contributing. In this way, if an

unexpected outage occurs for instance on one or more publishers, subscribers

are not strictly affected since they can still receive event notifications by

means of the event service.

• Synchronization decoupling refers to the process of triggering a publish

or subscribe operation without waiting for an acknowledgment or a response.

Communications are asynchronous. This is really analogous to how people

proceed when they exchange emails. Once an email is sent we don’t expect

to receive an answer immediately and we don’t even know whether a reply

will come back or not later. The transmission is said one-way. In that case,

we can start to do some other work while the message is in transit. In pub-

lish/subscribe, the behavior is the same. Publish and subscribe operations

24 CHAPTER 2. BACKGROUND

executed by clients return immediately, thus the clients can continue their

standard flow of execution even if the operation is not yet completely han-

dled by the event service. Consequently, a strong benefit is that operations

can implicitly overlap and thus increase parallelism.

The main advantage that lies in the fact that entities are loosely coupled is

also the major drawback of publish/subscribe systems. The mediation layer might,

under unexpected events such as power failure, network partition, etc. not trigger

notifications and when this situation occurs there is no way to know whether the

delivery has succeeded or failed. In that case, tighter coupling or strong guarantees

on the event service by providing for example replication is required.

2.3.3 Filtering mechanisms

Publish/Subscribe systems introduced the last two decades differ from an user

point of view by the expressivity of the subscription language and consequently

the filtering mechanisms that are employed for selecting events to forward and

deliver. According to this aspect, we review hereafter the main event-based filtering

mechanisms.

Channels-based filtering

The first and concrete representation of the publish/subscribe paradigm is based

on the concept of channels [52] where events are produced and forwarded to named

channels. Then, interested parties may consume all events crossing over a partic-

ular channel by pointing it with its name similar to a keyword. This scheme is the

one implemented by many forerunner systems.

Topic-based filtering

Topic/subject based filtering can be seen as an extension of the simple channel

approach. In the subject-based model, publishers annotate every event they gen-

erate with a string denoting a distinct topic. Generally, this string is expressed

as a rooted path, similar to an URI, in a tree of subjects [53]. For instance, an

online research literature database application (such as IEEE Xplore or Springer

2.3. THE PUBLISH/SUBSCRIBE PARADIGM 25

Archives) could publish events of newly available articles from the Semantic Web

research area under the topic /Articles/Computer Science/Proceedings/Web/Se-

mantic Web/. This kind of topic will then be used by subscribers which will, upon

subscription’s generation, explicitly specify the topic they are interested in with

optionally a wildcard to perform pattern matching on subject names. Based on

this subscription they will receive all related events. The topic-based model is

at the core of several systems such as Scribe [54] and Vitis [55]. A main limita-

tion of this model lies in the fact that a subscriber could be interested only in a

subset of events associated to a given topic instead of all events. In other words,

the tree-based classification severely constrains the expressiveness of the model

as it restricts events to be organized using a single path of the tree. Some inner

re-organizations are possible. A solution could consist of associating an event to

several hierarchical topics but it will lead to several issues that range from duplicate

publications and notifications to a growing number of information to exchange.

Content-based filtering

Content-based filtering provides a fine-grained approach that allows the evaluation

of filters on the whole content of the events that are published. In other words,

it is the data model and the applied predicates that exclusively determine the

expressiveness of the filters. Subscribers may express their interests by specifying

predicates over content of events they want to receive. These constraints can be

more or less complex depending on the subscriptions types and operators that

are offered by the subscription language. Available subscription predicates range

from simple comparisons, conjunctions, disjunctions to regular expressions or even

XPath expressions on XML events. Content-based filtering is now the most gen-

eral scheme supported by recent and famous publish/subscribe systems such as

Hermes [56] or JEDI [57].

Type-based filtering

On the one hand topics tends to regroup events that present similar properties

in terms of content or in structure. However, this classification is not mandatory

and may be made based on predefined external criteria. On the other hand,

26 CHAPTER 2. BACKGROUND

with content-based filtering events are classified based on the content of events.

Consequently, to achieve the same functionality as that of topic based systems,

subscribers have to filter out irrelevant events. Type-based filtering has been

proposed to sweep away inappropriate events according to their type [58]. The

idea is to enforce a natural and inherent subscription scheme that avoids to classify

events explicitly through topics with the implicit desire to complement content-

based filtering by acting as an efficient colander to prefilter events.

2.4 ProActive Middleware

ProActive is a Java middleware, historically introduced in [59], that provides the

programming and runtime facilities to build and deploy parallel, distributed and

concurrent applications. It is built on top of standard Java APIs, namely the

RMI and introspection API. Consequently, ProActive applications can run on any

operating system that disposes of a compatible virtual machine.

Today, ProActive is a mature middleware that comes with multiple built-in

features. Figure 2.6 summarizes the main aspects the library can deal with. The

top level layer brings out the different programming models it supports (Branch &

Bound, Components, Groups, and Master-Slave). These programming models are

built upon the concept of objects that are said active because they dispose of their

own thread of control. With active objects every method invocation is handled by

the object’s thread of control. More details regarding the active object model are

given in the next subsection.

The middle layer summarizes the various services the ProActive middleware

features. It includes a fault tolerance mechanism based on a checkpointing proto-

col [60], a method to wrap legacy code in order to control and interact for instance

with MPI applications [61], but also the capability to migrate active objects [62],

a security framework for communications between remote active objects [63], and

many more.

At the bottom layer, we find infrastructure and communication related features.

It contains a deployment framework that allows to deploy active objects on mul-

tiple different infrastructures without changes in the application source code [64],

a resource/scheduler manager for dynamic provisioning and scheduling of ProAc-

2.4. PROACTIVE MIDDLEWARE 27

tive applications in cloud environments [65], and a graphical environment which

enables programmers to interactively control and debug the distribution aspect

of ProActive applications [66]. Furthermore, the library allows active objects to

communicate remotely by using several network protocols such as RMI, HTTP,

or even custom ones according to required speed, security, error detection, firewall

or NAT friendness properties. It is also possible to export active objects as Web

services and to invoke methods with the standard SOAP protocol.

Branch & Bound Components Groups Master-Slave

Active Objects

Programming
Models

Code Wrapping Distributed GC Fault Tolerance

Load Balancing Mobility Security

Middleware
Services

Deployment Monitoring Resource Manager & Scheduler

Network Protocols Web Services

Infrastructure
and

Communication

Figure 2.6 – ProActive middleware features.

Below, we review some important notions about ProActive that are extensively

used for implementing the middleware developed within this thesis.

2.4.1 Active objects

The main features of the library are based on the active object model. Active

Objects (AOs) are medium grained entities whose method invocation is decou-

pled from method execution with the help of the Meta Object Protocol (MOP)

pattern [67]. That way, developers concentrate only on the business logic of appli-

cations they develop since the distribution of active objects is transparent. Indeed,

invoking methods on remote active objects is similar to invoking a method on a

standard Java object by using the dot notation. Neither additional piece of code

to establish connections between remote entities nor specific class to extend or

28 CHAPTER 2. BACKGROUND

interface to implement, like with RMI, is required.

Figure 2.7 depicts the meta object architecture for a typical active object. On

one hand there is the active object instance that is built over an existing Java

object MyObject by extending it transparently at runtime with a Body object

that acts as an intermediate to hide network communications from a user point

of view. The Body relies on different feature meta objects to receive method calls

(also named requests once received by the Body), to execute requests, to send

optionally a reply to the caller, but also some others to handle migration, fault

tolerance, etc. On the other hand, an active object is always indirectly referenced

through a proxy and a stub which is in our case a subtype of the object MyObject

which is either pre-compiled or generated at runtime.

MyObjectStub

Proxy Network Body

Request
receiver

Request
queue Request

executor

Service
thread

...Reply
sender

MyObject

meta level

base level

Figure 2.7 – Meta object architecture.

When a user performs an invocation to the active object, this is in fact an

invocation on the stub object MyObjectStub. The stub is in charge to create a

reified representation of the invocation by building an object representation of the

method call along with its parameters before passing it to the proxy. Then, the

proxy transfers the reified invocation (i.e. the method call object) as a message to

the request receiver of the Body object, possibly through the network. Afterwards,

the method call is queued in a request queue. Later, one request is picked from the

request queue by the request executor according to a desired serving policy. Notice

2.4. PROACTIVE MIDDLEWARE 29

that with the standard active object model only one request can be executed at

once and the default policy is First In, First Out. As a consequence, data races are

prevented without using synchronized blocks. Finally, if a response is associated

to the method call that has been executed, it is returned to the caller by means of

the reply sender.

Semantic of communications

Seeing that all communications made with ProActive are through method invo-

cations, the communication’s semantics depends upon the method’s signature.

Unfortunately, the resulting invocations may not always be asynchronous. This

constraint is caused by the MOP pattern that has some limitations related to the

serialization of parameters and invocation results. Consequently, two communica-

tion idioms regarding invocations are distinguished:

• Synchronous invocations

With a synchronous method call, the caller thread is blocked until the method

completes its execution and optionally returns a result. In ProActive, a

method invocation is synchronous if the considered active object method’s

signature declares to return a non reifiable object or to throw an exception.

An object is reifiable if its associated class is declared not final, serializable

and embeds a public constructor. Primitive data type values (i.e. boolean,

char, int, etc.) are not reifiable.

• Asynchronous invocations

Unlike synchronous invocations, asynchronous method calls allow the invoker

to continue its standard flow of execution even if the method has not com-

pleted. Since ProActive introduces futures as placeholders for results, two

subtypes of asynchronous invocations are distinguished:

– One-way asynchronous invocation

If the method does not throw any exception and does not return any

result, the invocation is one-way. The invocation is asynchronous and

the process flow of the caller continues once the reified invocation has

been received by the active object.

30 CHAPTER 2. BACKGROUND

– Asynchronous invocation with futures

Methods that do not throw any exception and declare a reifiable type

as result have their invocations implicitly handled with futures. In the

same way that one-way asynchronous calls, asynchronous invocations

with futures incur a short rendez-vous at the beginning of each asyn-

chronous remote call, which blocks the caller until the call has reached

the context of the callee, in order to ensure a causal dependency. How-

ever, futures allow the process flow of the invoker to continue once the

reified invocation has been received by the active object, this even if a

result is expected. The synchronization is data based and handled by a

mechanism known as wait-by-necessity [68]. In other words, when the

caller tries to access a future, the caller thread is blocked until to re-

ceive the associated value. Since the caller thread is in a waiting state,

it cannot continue with the service of the next request.

A future may be passed as parameter of a method call, even if it is

not yet resolved. Thus, nesting method calls that return futures does

not trigger a wait-by-necessity. Once a future is used all disseminated

references are updated by means of a mechanism called automatic con-

tinuations [69].

Even though active objects are mono-threaded, which avoids data races with-

out the use of synchronized blocks, users must care about deadlocks. Consider a

simple scenario with a peer that routes a request with message passing emulated

on top of remote method invocations. In that case, when the request passes again

through the sender, with a re-entrant call, a deadlock may occur if the peer is

already waiting on itself for a response. A solution to address this issue consists

in modifying the application logic but it is often difficult to program and it incurs

several drawbacks. Another alternative is to rely on Immediate Services (ISs)7.

However, methods declared as IS are handled in their own thread but in a syn-

chronous manner regarding the caller, whatever the method signature. Moreover,

even if parallelism is improved, users must be careful about part of code to syn-

chronize explicitly with locks to prevent race conditions. Last but not least, futures

7http://goo.gl/m2oIbn

http://goo.gl/m2oIbn

2.4. PROACTIVE MIDDLEWARE 31

are no longer usable and their benefit is lost.

Multi-active objects have been proposed recently as an elegant manner to ad-

dress this issue and enhance efficiency on multicore machines. This extension is

introduced in the next subsection.

2.4.2 Multi-active objects

The Multi-Active Object (MAO) model [70] is an extension that overcomes the

limitations of the founding model, that handles requests sequentially, by allowing

method calls to be multithreaded. Its concept relies on method annotations to

decide which requests can be run in parallel with others through the definition of

compatibility groups.

Groups are declared with the @Group annotation and the assignation of meth-

ods to groups is done with the help of the @MemberOf annotation. Compatibilities

are defined between two groups through the @Compatible annotation. The idea

behind compatibilities is that two groups that are compatible may have their meth-

ods executed simultaneously. By default, groups whose compatibility is not set are

assumed conflicting with others and thus incompatible. Usually, two groups have

to be set compatible if their methods do not access the same data or if the schedul-

ing order and the concurrent accesses on the same resource are protected by the

programmer by means of locks or synchronized blocks.

Listing 2.3 gives an illustrative example on how to define multi-active groups

and compatibilities for a peer class exposing four methods, each having different

purposes. Methods leave and join belong to a structure group and are used to man-

age the overlay structure. Declaring these methods compatible would imply that

the programmer implicitly synchronizes the accesses to the common resources since

both require an exclusive access. In the same manner, joining nodes and routing

at the same time from a same peer is not recommended. Owing to the conflicting

nature of these operations, no compatibility is set. However, routing and retrieving

monitoring information are two concepts that access disjoint resources and can be

handled in parallel in the same peer. This is why a compatible annotation entry

is declared. In addition, an optional selfCompatible attribute parameter can be

specified with the definition of a group to indicate whether requests from a same

32 CHAPTER 2. BACKGROUND

group can be executed concurrently or not. In the example which has been intro-

duced, monitoring and routing groups are declared compatible and self compatible

given that associated methods should only read variable values.

1 @DefineGroups ({

2 @Group (name = " structure ", selfCompatible = false),

3 @Group (name = " routing ", selfCompatible = true),

4 @Group (name = " monitoring ", selfCompatible = true)})

5 @DefineRules ({

6 @Compatible ({" routing ", " monitoring "})})

7 public class PeerImpl {

8 @MemberOf (" structure ")

9 public JoinResponse join(Peer landmarkPeer) { ... }

10

11 @MemberOf (" structure ")

12 public void leave () { ... }

13

14 @MemberOf (" routing ")

15 public Response execute (Query query) { ... }

16

17 @MemberOf (" monitoring ")

18 public LoadInformation getLoad () { ... }

19 }

Listing 2.3 – Groups and compatibility definition using multi-active objects an-

notations for a class that embodies a peer instantiated as an active object.

Furthermore, multi-active objects provide a mean to decide about compatibility

at runtime. To do so, programmers can indicate an expression or a compatibility

function to evaluate with the help of a condition parameter to add along with the

@Compatible and/or @Group annotation. In that case an optional group parameter

is also required for the groups that are involved since the compatibility between

two requests is decided as a function depending on three parameters: the group

parameter of the two requests, and the status of the active object.

Concretely, if we refer to Figure 2.7, multi-active objects are implemented

by means of a new request executor that allows multiple threads to be spawned

and one or more request(s) to be picked from the request queue in order to be

2.4. PROACTIVE MIDDLEWARE 33

served. Briefly speaking, a request is selected, removed from the request queue

and served if it is compatible with other requests that are running and all requests

that are before it in the request queue. This default and configurable serving

policy, called First Compatible First Out, maximizes parallelism while ensuring

that two incompatible methods cannot be run in parallel.

Although multiple threads are used to enhance efficiency on multicore ma-

chines, managing too many threads can be harmful due to memory consumption

explosion or too much concurrency with regards to the number of cores available

on the machine where the active object is deployed. For this reason, the implemen-

tation of multi-active objects come also with an API to limit the maximum number

of threads used by an active object. It is possible to set either a strict limit on the

maximum number of threads to be used, or to limit only the maximum number of

threads that are active and running but not those that are in a waiting state (e.g.

the threads that are waiting for a future). The former thread management policy

is called hard limit and may obviously lead to deadlocks whereas the latter called

soft limit prevents deadlocks with re-entrant method calls.

The multi-active objects library is at the heart of the middleware we propose

within the context of this thesis. We will see in Chapter 6 that the various param-

eters to use with multi-active objects in our implementation have been empirically

tested. Also, we will highlight some minor features we have added to the library in

order to resolve some issues that may arise when it is used in complex scenarios.

2.4.3 Components

Component oriented programming provides many facilities for the development of

complex and robust applications. The building blocks are components which are

large grain software entities or modules offering predefined services. From a user

point of view, components act as black boxes that communicate with others via

provided and required interfaces. Therefore, they can be reused and composed by

third parties without any knowledge of their internal workings.

ProActive provides an implementation of Grid Component Model (GCM) [71]

based on its active object model. GCM is an extension of the popular Fractal

component model [72]. It aims to ease the programming of distributed applica-

34 CHAPTER 2. BACKGROUND

tions by targeting their design, deployment, reusability and efficiency. As Fractal,

GCM/ProActive allows for hierarchical composition, separation of functional and

non-functional concerns but also considers autonomic composition [73], collective

communications [74] and deployment.

Since GCM/ProActive inherits the hierarchical property of Fractal compo-

nents, a GCM component may exhibit a recursive structure. Thus, a component

is either a composite (i.e. composed of other components) or a primitive (i.e. a

single component that encapsulates a basic functional block). Figure 2.8 depicts

a composite component with two primitive subcomponents. Provided interfaces

to be consumed by clients, also dubbed server interfaces, are represented on the

left hand side of a component box. Interfaces drawn on the right hand side depict

required interfaces, or client interfaces, that are consumed by other components

through bindings that carry messages. On the top of a component box we find

controllers that are interfaces used to externalize non-functional aspects. Their

purpose is to manage component properties and assembly (e.g. configuration, dy-

namic reconfiguration, monitoring, security, etc.) through passive Java objects

encapsulated in the membrane of a component.

The definition of components and their bindings can be made programmatically

or through Fractal ADL files in order to be independent from the implementation,

thus requiring no recompilation. It is also worth to notice that GCM enables com-

ponents to be spread over different machines in an easy and transparent manner

by means of XML descriptors.

2.4. PROACTIVE MIDDLEWARE 35

Composite Component

Server
Interface

Primitive
Subcomponent

Functional Content

Controllers

Membrane

Figure 2.8 – Standard Fractal/GCM component.

36 CHAPTER 2. BACKGROUND

Chapter 3

Distributed RDF Storage

Contents
3.1 Related Work . 38

3.1.1 Centralized RDF stores . 38

3.1.2 Distributed RDF stores . 41

3.2 P2P Infrastructure for RDF 54

3.2.1 Content Addressable Network (CAN) 55

3.2.2 Routing algorithms . 59

3.2.3 Indexing and retrieval mechanisms 65

3.3 Evaluation . 69

3.3.1 Insertion of random data 69

3.3.2 Queries using BSBM . 70

In this chapter we present our first contribution that relates to the implemen-

tation of a distributed RDF storage infrastructure. The infrastructure that is

described was originally sketched by Imen Filali in her thesis [75]. This chapter

starts with a brief related work section about decentralized systems for storing and

retrieving RDF data. Then, we introduce the popular CAN P2P protocol which

is the underlying P2P overlay network we rely on for routing messages and, indi-

rectly, for achieving scalability. Afterwards, we motivate and discuss the design

37

38 CHAPTER 3. DISTRIBUTED RDF STORAGE

choices and the adjustments we made to the CAN protocol before explaining how

messages are routed with our modifications. In a penultimate section we describe

how RDF data is indexed in the P2P network and how SPARQL queries are ex-

ecuted. Finally, we provide the results we got by experimenting our solution on

the Grid’5000 testbed and we conclude with a summary and some perspectives.

3.1 Related Work

Although the Semantic Web movement is still relatively new, many research ef-

forts have already been made by companies and academics to improve how RDF

data, and especially how the underlying tuples are stored and then retrieved with

SPARQL. In this section we give an overview about different strategies and solu-

tions that have been proposed in both centralized and distributed environments.

3.1.1 Centralized RDF stores

Many different representations have been used over the last years to store RDF

data in a centralized environment. This is due to the fact that RDF is a data model

that does not impose any storage organization. In other words, it is a method to

express any fact in a structured manner but anyone can write down triples in

multiple different ways that still preserve the original information and structure.

However, it is important to notice that storage representations are strongly affected

by the SPARQL query language involved in the expression of queries. In SPARQL,

building blocks are BGPs made of triple patterns. Thus, the critical challenge

RDF engines try to achieve is the efficient resolution of BGPs. BGPs are usually

processed in two phases known as scan and join. First, BGPs are extracted from

a SPARQL query and decomposed into a set of triple patterns. Then, one or more

tables are scanned in order to extract intermediate results. Finally, since triple

patterns may share common variables, the resulting intermediate values have to be

joined on these variables to produce the final answer. In this context, the different

strategies adopted aim to reduce the time required to execute the two phases by

minimizing for instance the number of join operations to perform.

In its early stages, RDF stores were storing RDF data as a set of tuples in

3.1. RELATED WORK 39

relational databases. This includes for instance 3store [76], Jena [77], Oracle RDF

Match [78], RDFSuite [79] and Sesame [80]. The main state of the art strategies

are described in [81]. They may briefly be summarized as follows:

• Tuple tables are a natural approach to store RDF data in relational databases.

The idea is to put tuples (triples or quadruples) in a 3 or 4 columns table. In

this manner, each row represents an RDF statement. However, this repre-

sentation is inefficient because queries that embed for instance k quadruple

patterns with common variables require k − 1 self-joins over this very long

table. Thus, its leads to many disk accesses as it is impossible to cache the

entire table in memory.

• Property tables is another strategy that consists of building one or more

tables according to common set of attributes that occur frequently. Thus, if

subject elements are frequently associated with a common set of predicate

properties such as rdf:type, dc:title and dc:create, then a table with the sub-

ject as a key and the other attributes as the following columns is created. As

a consequence, queries that have multiple triple or quadruple patterns that

share a same subject variable are now join free. They may be resolved with

a simple scan over a predicate table as long as all attributes of a query are

covered by a single predicate table. Nevertheless, this technique has some

drawbacks. Heterogeneous records are not supported. Thus, since not all

subjects share a common set of attributes, some entries may require NULL

values. Moreover, multi-valued attributes are problematic. Especially, if a

subject has more than one object value for a given property (e.g. a book can

be written by two people), then one or more object values are duplicated.

Additionally, a query that looks at multiple property tables may require

complex joins with intermediate results.

• Vertical partitioning entails properties’ based tables creation. One two

columns table is created for each unique property (predicate). The first

column contains the subjects of all tuples that share the table predicate

whereas the second column contains the associated object values. Unlike

property tables, vertical partitioning support multi-valued attributes and

40 CHAPTER 3. DISTRIBUTED RDF STORAGE

heterogeneous records. Besides, joins give interesting performance results

because the tables are smaller than other strategies.

Solution layered above Relational Database Management Systems (RDBMs)

have quickly thrown doubts about their scalability with regards to the increas-

ingly growing set of structured information to handle. Indeed, relational DBMs

have been designed long time ago when hardware characteristics were much differ-

ent than today and where deployment was targeting a single machine. Stonebraker

et al. argue and demonstrate in [82] that major RDBMs solutions can be outper-

formed by at least 1 or 2 orders of magnitude with specialized engines targeting

specific applications requirements. Almost at the same period, Abadi et al. [81]

showed that vertically partitioning applied on a column-store outperforms an RDF

store implementation on a row-store engine (i.e. traditional relational database),

that uses tuple tables, with a factor 32. More recently, Sidirourgos et al. [83] per-

formed an independent assessment of the results and confirmed the performance

trends. Since, many systems have been reworked to provide solutions to store

and query RDF documents more efficiently. These systems that no longer rely on

RDBMs are called native RDF stores.

The idea behind native RDF stores consists of creating custom partitioning and

indexes, from time to time similar to the strategies introduced previously with re-

lational databases. However, the main difference lies in the fact that specific low

level optimizations are possible. For example, Jena TDB [84] is a native persistent

storage engine whose indexes are implemented using conventional B+Trees with

additional forward linking of the leave blocks to ease scans. B+Trees are custom

implemented and they support only what is necessary for the purpose of indexes,

thus they strip out a lot of the overhead (no row overhead: no null map, no per-

row locking, etc.). Among others, RDF3X [85] adopts a strategy similar to tuple

tables but addresses the issue about expensive self joins by creating an interesting

set of indexes. Tuples are sorted lexicographically in a compressed B+Tree, which

allows the resolution of BGPs with range scans. Also, similarly to many RDF

stores, RDF3X replaces all literals by fixed size identifiers using mapping dictio-

naries. This approach has two benefits. Frequently occurring values are stored

once and identifiers are compared must faster for equality than long strings. More

3.1. RELATED WORK 41

recently Yuan et al. proposed TripleBit [86]. Similarly to others, it uses mapping

dictionaries to improve scan and joins phases. However, unlike others, it is based

on a triple matrix storage structure that features compression for storing large

RDF graphs more efficiently.

3.1.2 Distributed RDF stores

Although centralized RDF stores are sometimes enough in production for small

workloads, they suffer from the traditional limitations of centralized approaches,

namely a single point of failure, performance bottlenecks, etc. As an alternative,

fully decentralized and distributed systems have been proposed to overcome some

of these limitations. This section presents a selected sample of research works

that support the storage of RDF data and the execution of SPARQL queries in a

distributed environment. As we will see, the solutions differ by their underlying

data storage facilities. Some are built as a pure P2P system (where there is no

centralized authority) or on top of a P2P overlay network whereas some others

rely on a NoSQL store. Regarding pure P2P solutions, we consider only those

that make use of a structured overlay. Others based on unstructured overlays such

as Edutella [87], Bibster [88] and S-RDF [89] are deliberately left aside since they

require to flood the whole network or to use heuristics to lookup a resource, which

leads to scalability issues or no solution for unpopular resources. Also, solutions

based on a Master-Worker model such as OWLIM Enterprise [90] are out of the

scope of this related work section because critical operations such as write requests

have all to pass through a single node.

RDFPeers

RDFPeers [91] is the first P2P system that came up with the idea to use DHTs

in order to implement a distributed RDF repository. It is built atop Multiple

Attribute Addressable Network (MAAN) [92] which is an extension of Chord [21].

Similarly to Chord, nodes are virtually organized into a ring. Each node owns an

identifier that represents its position in a circular identifier space of size N, and

has direct references to its predecessor and successor in the ring. A successor of a

node n is defined as the first node that succeeds n along the clockwise direction in

42 CHAPTER 3. DISTRIBUTED RDF STORAGE

Figure 3.1 – RDF data storage in an RDFPeers network (taken from [91]).

the ring space. Additionally, a node keeps m = log N routing entries, called fingers.

Fingers are successors in power of two. Finger i is equal to successor (n + 2i−1)
mod N with 1 ≤ i ≤ m. Figure 3.1 shows a RDFPeers network with 8 nodes in

a 4 bits identifier space. It also depicts the fingers of nodes N6 and N14 drawn

with dashed arrows originated from them. Data indexing and query processing

mechanisms are described below.

• Data indexing

RDFPeers considers 3-tuples only. Each RDF term is used as a DHT key at

the MAAN level. More precisely, a RDF triple labeled t = (s, p, o) is indexed

three times by applying a hash function on the subject, the predicate and

the object. Then, the triple t is stored on peers responsible for these hash

values. For better understanding consider the storage of the following three

triples inside the RDFPeers infrastructure: (info:rdfpeers, dc:creator,

info:mincai), (info:mincai, foaf:name, "Min Cai") and (info:mincai,

3.1. RELATED WORK 43

foaf:age, "28"^^xsd:integer). Figure 3.1 depicts the hash values for

all the IRIs and literal elements of these triples. Suppose now that node

N6 receives a store message that aims to insert the triple (info:mincai,

foaf:age, "28"^^xsd:integer) in the network according to the hashing

of the predicate element (i.e., foaf:age). Given that hash(foaf:age)=10, N6

will route the triple to N10, based on its fingers.

• Query processing

RDFPeers supports three kinds of queries that are summarized below.

– Atomic triple pattern queries are queries where the authors suppose

that there is always at least one constant value. For instance, a query

like (s, ?p, ?o) will be forwarded to the node responsible for hash(s). All

atomic queries take O(log N) routing hops to be resolved except queries

in the form of (?s, ?p, ?o) which require O(N) hops in a network of N

peers.

– Disjunctive and range queries are a type of query optimized by

RDFPeers through the use of a locality preserving hash function1. In-

deed, when the domain of a variable is limited to a range, the query

routing process starts from the node responsible for the lower bound.

It is then forwarded linearly until received by the peer responsible for

the upper bound. In the case of disjunctive range query like (s, p, ?o),
?o ∈ ∪n

i=1[li, ui] where several ranges have to be satisfied, intervals are

sorted in ascending order. The query is forwarded from one node to the

other, until it is received by the peer responsible for the upper bound

of last range. Disjunctive exact queries such as (s, p, ?o), ?o ∈ {v1, v2}

are resolved using the previous algorithm since they are considered as a

special case of disjunctive range queries where the lower and the upper

bounds are equal to the exact match value.

– Conjunctive queries are supported by RDFPeers as long as they

are expressed as a conjunction of atomic triples patterns or disjunctive

1Locality preserving hash functions are hash functions where the relative distance between
input values is conserved in output values.

44 CHAPTER 3. DISTRIBUTED RDF STORAGE

range queries for the same subject. Constraints’ list can be related

to predicates or/and objects. To resolve such type of query, authors

use a multi-predicate query resolution algorithm. This algorithm starts

by recursively looking for all candidate subjects on each predicate and

intersects them at each step before sending back final results to the

query originator.

Although RDFPeers supports several kinds of queries, it has a set of limitations

especially in the query resolution phase. This includes the attribute selectivity and

the restrictions made at the level of supported queries. The attribute selectivity

is related to the choice of the first triple pattern to be resolved. Low selectivity

of an attribute leads to a longer computation time to manage the local search

as well as a greater bandwidth consumption to fetch results from one node to

the other, because many triples will satisfy that constraint. As an example, the

predicate rdf:type seems to be less selective, as it can be more frequently used in

RDF triples than others (e.g. predicates that support range queries). Despite the

attribute selectivity parameter having an important impact on the performance

of the query resolution algorithm, RDFPeers does not provide a way to estimate

such a parameter. Another issue is related to conjunctive triple pattern queries

which are not fully supported and are restricted to conjunctive queries with the

same subject. Therefore, it does not support arbitrary joins.

RDFCube

Monato et al. propose RDFCube [93], an indexing scheme built along together

with RDFPeers. Their solution, that is based on a three-dimensional CAN [20]

like coordinate space, improves the execution of SPARQL queries compared to

RDFPeers by introducing an index that allows to eliminate some peers that are not

involved in the matching. To achieve this purpose, their 3-dimensional coordinate

space is made of a set of cubes that have the same size and that are called cells.

Each cell contains an existence-flag, labeled e-flag, indicating the presence (e-

flag=1) or the absence (e-flag=0) of triples in that cell. The set of consecutive

cells that belong to a line parallel to a given axis forms a cell sequence. Cells

belonging to the same plane perpendicular to an axis form the cell matrix.

3.1. RELATED WORK 45

• Data indexing

Once an RDF triple t=(s,p,o) is received, a flag is mapped to the cell of

the RDFCube where the point p=(hash(s), hash(p), hash(o)) belongs to.

Additionally, the triple is inserted in the running RDFPeers instance.

• Query processing

As for RDF triples, a query is also mapped into a cell or a plane of RDFCube

based on the hash values of its constant part(s). As a consequence, the

set of cells including the line or the plane where the query is mapped are

the candidate cells containing the desired answers. Note that RDFCube

does not store RDF triples, however, it stores bit information of e-flags.

Therefore, the interaction between RDFCube and RDFPeers is as follows.

On one hand, RDFCube is used to store (cell matrixID, bit matrix) pairs

such as the matrixID which is a matrix identifier and represents the key in

the DHT terminology, while bit matrix is its associated value. On the other

hand, RDFPeers stores the triples associated with the bit matrix information.

This bit information is basically used to speed up join query processing by

performing an AND operation between bits and transferring only the relevant

triples. As a result, this scheme reduces the amount of data that has to be

transferred between nodes.

Battré et al.

In [94], Battré et al. propose a data management strategy for DHT based RDF

stores. As many others, the proposed approach indexes a RDF triple by hashing its

subject, predicate and object. It is worth noting that the proposed solution takes

into consideration RDFS reasoning on top of DHTs by applying RDFS reasoning

rules.

• Data indexing

The main difference compared to other RDF based structured P2P ap-

proaches is that nodes host different RDF repositories in order to make a

distinction between local and incoming knowledge.

– The local triples repository stores triples that originate from each

46 CHAPTER 3. DISTRIBUTED RDF STORAGE

node. Local triples are disseminated in the network by calculating their

hash values based on subject, predicate and object terms before being

sent to nodes responsible for the appropriate parts of the DHT key

space.

– The received triples repository simply stores the incoming triples

sent by other nodes.

– The replica repository ensures triple availability under high peer

churn. The node with an identifier numerically closest to the hash

value of a triple becomes root node of the replica set. This node is

responsible for sending all triples in its received database to the replica

nodes.

– The generated triples repository stores triples that are originated

from applying forward chaining rules on the received triples repository,

and they are then disseminated as local triples to the target nodes. This

repository is used for RDFS reasoning.

In order to keep the content of the received triples repository up to date,

especially under node leaving or crashing, triples are associated with an

expiration date. Therefore, the peer responsible of that triple is in charge

of continuously sending update messages. If the triple expiration time is

not refreshed by the triple owner, it will be eventually removed from these

repositories. This approach takes care of load balancing issues specially for

uneven key distribution. For instance, the DHT may store many triples with

the same predicate rdf:type. As subject, predicate and object will be hashed,

the node responsible for the hash(rdf:type) is a target of a high load. Such

situation is managed by building an overlay tree over the DHT in order to

balance the overloaded nodes.

• Query processing

In another work [95], one of the authors proposes a query optimization al-

gorithm based on a look-ahead technique and Bloom filters [96]. Knowledge

and queries are respectively represented as model and query directed graphs.

The query processing algorithm basically performs a matching between the

3.1. RELATED WORK 47

query graph and the model graph. On one side, there is the candidate set

which contains all existing triples, and on the other side, there is a candi-

date set containing the variables. These two sets are mutually dependent,

therefore a refinement procedure has to be performed to retrieve results for a

query. This refinement proceeds in two steps. The first step starts from the

variable’s candidate set. A comparison is done with the candidate sets for

each triple where the variable occurs. If a candidate does not occur within

the triple candidate set, it has to be removed from the variable candidate set.

The second step goes the other way around, that is, it looks at the candidate

set for all the triples and removes all candidates where there is a value not

matching within the variable’s candidate set.

The look-ahead optimization aims at finding better paths through the query

graph by taking into account result set sizes per lookup instead of the number

of lookups. This yields fewer candidates to transfer but the tradeoff is that it

incurs more lookups. The other optimization, using Bloom filters, considers

candidates for a triple (x, v2, v3), where x is a fixed value and v2 and v3 are

variables. When retrieving the candidates by looking up using the fixed value

x, i.e., executing lookup(x), it may happen that the querying node might

already have candidates for the two variables. Therefore, the queried node

can reduce the results sets with the knowledge of sets v2 and v3. However,

those sets may be large, that is why authors use Bloom filters to reduce

the representation of the sets. The counterpart of using Bloom filters, is

that they yield false positives. Consequently, the final results sets which are

transferred may contain non-matching results. To remove these candidates

and thus ensuring the correctness of the query results, a final refinement

iteration is done locally.

Liarou et al.

Liarou et al. propose in [97] two query processing algorithms to evaluate con-

junctive queries over structured overlays, called Query Chain (QC) and Spread by

Value (SBV).

• Query Chain

48 CHAPTER 3. DISTRIBUTED RDF STORAGE

– Data indexing

As in RDFPeers [91], a RDF triple is indexed three times. More pre-

cisely, for a peer p that wants to publish a triple t such as t = (s, p, o),
the index identifiers of t are computed by applying a hash function on

s, p and o. Identifiers hash(s), hash(p) and hash(o) are used to locate

nodes n1, n2 and n3 that will then store the triple t.

– Query processing

In this algorithm, the query is evaluated by a chain of nodes. Inter-

mediate results flow through the nodes of this chain and the last node

in the chain delivers the result back to the query’s originator. More

formally, the query initiator, denoted by n, issues a query q composed

of q1, q2,. . . , qi patterns and forms a query chain by sending each triple

pattern to possibly different nodes, based on the hash value of constant

part of each pattern. For each of the identified nodes, the message

QEval(q, i, R, IP (x)) will be sent such that q is the query to be evalu-

ated, i the index of the pattern that is managed by the target node, R a

collection to hold intermediate results and IP the address of the query’s

originator x (i.e. the node that submits the query). When there is more

than one constant part in the triple pattern, subject will be chosen over

object and over predicate in order to determine the node responsible

for resolving this triple. While the query evaluation order can greatly

affect the algorithm performance including the network traffic and the

query processing load, authors adopt by default the order of appearance

of triple patterns in the query.

• Spread by Value

– Data indexing

In the SBV algorithm, each triple t = (s, p, o) is stored at the successor

nodes of the identifiers hash(s), hash(p), hash(o), hash(s+p), hash(s+
o), hash(p + o) and hash(s + p + o) where the + operator denotes the

concatenation of string values. By indexing each triple multiple times,

the algorithm aims to achieve a better query load distribution at the

expense of more storage space.

3.1. RELATED WORK 49

– Query processing

SBV extends the QC algorithm in the sense that a query is processed

by multiple chains of nodes. Nodes at the leaf level of these chains will

send back results to the originator. More precisely, a node submitting

a conjunctive query q in the form of q1 ∧ . . . ∧ qk sends q to a node n1

that is able to evaluate the first triple pattern q1. From this point on,

the query plan produced by SBV is created dynamically by exploiting

the values of the matching triples that nodes find at each step. As an

example, a node n1 will use the values found locally that matches q1,

to bind the variables of q2 ∧ . . . ∧ qk that are in common with q1 and

produce a new set of queries that will jointly determine the answer to

the query’s originator. Unlike the query chain algorithm, to achieve a

better distribution of the query processing load, if there are multiple

constants in the triple pattern, the concatenation of all constant parts

is used to identify nodes that will process the query.

CumulusRDF

In [98] the authors investigate the applicability of a key-value store for managing

large quantities of RDF data. Their solution dubbed Cumulus RDF is based on

Apache Cassandra [36] which is a nested key-value store that belongs to the NoSQL

movement which has emerged these last years. Cassandra’s data model relies on

column families, rows, columns and, optionally supercolumns. A column family

depicts a table from the relational world. Inside a table we find rows that embed

one or two level of nested key-value pairs depending of whether columns or super-

columns are employed. Thus, a simple row with columns looks like {row_key: {

column_key: column_value}} whereas a row with supercolumns adds one ex-

tra level of key-value pairs as represented by {row_key: {supercolumn_key:

{column_key: column_value}}}. Cassandra uses consistent hashing to dis-

tribute data. Consequently, the system exhibits the same topology as Chord but

also features and maintenance algorithms that are similar to the Chord overlay

network. Rows are assigned to nodes by hashing the row’s key and storing the

whole row, including associated columns and supercolumns, on the node which is

50 CHAPTER 3. DISTRIBUTED RDF STORAGE

the closest in the identifier space. Another simple representation of the Cassandra

model is to think about nested key-value pairs as a map of maps where the values

of the first map are distributed across the nodes according to their key.

The solution proposed by the authors for CumulusRDF follows two strategies:

one based on a hierarchical layout and another that relies on a flat layout. Both

strategies make use of Cassandra properties which have been introduced above.

• Hierarchical layout

– Data indexing

The indexing scheme of the hierarchical layout is built on supercolumns.

Each triple is indexed three times to provide the minimum indexes that

are required to execute efficiently all eight possible triple patterns [99].

Each index is a Cassandra row with supercolumns where the row key,

the supercolumn key and the column key are respectively RDF terms of

the triple to index. To index the triple t = (s, p, o), the rows {s: {p:

{o: -}}} for the index SPO, {p: {o: {s: -}}} for the index

POS and {o: {s: {p: -}}} for the index OSP are inserted in their

dedicated column family according to the type of the index.

– Query processing

A triple pattern is evaluated by using one of the three indexes according

to the fixed parts the triple pattern contains. For instance, to resolve

the triple pattern (?s, p, o), the index POS is used. By hashing the fixed

value p, the node that stores the matching supercolumns is identified.

Then, on that node a local lookup is performed with the fixed value p

on the column key. As a result we get the columns’ values matching the

initial triple pattern. These values are object RDF terms of triples that

match the fixed p value from the triple pattern. Thus, a local and final

filtering based on o is performed in order to identify matching triples.

• Flat layout

– Data indexing

The second indexing strategy proposed by the authors is based on sim-

3.1. RELATED WORK 51

ple columns and the key observation that columns’ key are sorted ac-

cording to their natural order. Therefore, it is possible to perform

range scans and prefix lookups on them. For this reason, they propose

to store indexes as {s: {po: -}}, {p: {os: -}} and {o: {sp:

-}}. However, they notice a complication with the POS index due to

the fact that some properties such as rdf:type or rdfs:label are frequent

in RDF. Rows are distributed across the nodes based on the row key,

thus when the row key is a predicate value, a few nodes may have to

store most of the triples from the whole system once. To alleviate this

issue they propose to replace the POS index with two others where the

row key is the concatenation of the predicate and object RDF terms.

Since less triples share predicate and object, the distribution is better.

These two indexes called POS1 and POS2 are respectively {po: {s:

-}} and {po: {’p’: p}}. The last index POS2 maps column values

to row keys so that it is possible to retrieve all PO row keys for a given

p, ’p’ being an hardcoded string value.

– Query processing

Similarly to the hierarchical layout, the index to use is identified ac-

cording to the fixed parts of the triple pattern to evaluate. To resolve

(s, ?p, ?o), the index SPO is used. The node containing solutions is

found by hashing the subject RDF term and the columns found are

directly returned. However, the solution for triple patterns that involve

POS indexes is a bit more complex to compute. For instance, to resolve

(?s, p, ?o) the index POS2 is required since rows may be found with

hash based lookups only and this require to know the full row key value

to hash it. Thus, a broadcast to all nodes is performed to find nodes

indexing rows that contain potential solutions. Then, the POS2 index

used to filter rows that match the fixed value p.

Both strategies have been evaluated on 4 nodes in a virtualised infrastructure.

The authors show their flat layout outperforms the hierarchical one with a factor of

almost two in terms of concurrent requests handled per second. This comes at the

price of more storage space since the hierarchical layout requires three indexes and

52 CHAPTER 3. DISTRIBUTED RDF STORAGE

the flat layout one more. Besides, the choices made in CumulusRDF are driven

by the need to retrieve RDF data by triple patterns and no discussion is given

about the execution of complex SPARQL queries. Also, the layouts proposed in

CumulusRDF may not work depending of the dataset that is considered. Indeed,

the authors propose to create indexes and to store RDF term values in column or

supercolumn keys. However, in Cassandra keys must be under 64 KB2. Even if the

size is acceptable for subject or predicate values whose their IRI representation is

not so large, the solution is inadequate for object values whose size may exceed

this limit, especially if a subject or predicate value is concatenated with an object

term.

Summary

A fair number of solutions have been proposed these last years to manage RDF

data. With the great success the Semantic Web movement has achieved and the

increasing amount of data to process, solutions have naturally evolved from a

centralized environment to a distributed one. To address issues that are inherent

to distributed systems, many works rely on P2P technologies and especially on

structured P2P networks. However, with the advent of the NoSQL movement,

a broad set of efficient systems are now available to manage information in the

context of Big Data. NoSQL systems are an alternative to relational databases that

usually sacrifice query complexity and ACID properties for more predictable query

performance and low latency read/write operations. Since 2009, NoSQL systems

are becoming more and more mature and the large variety of solutions has led to

a classification in mainly four categories that appeared progressively: key/value

oriented stores (e.g. Cassandra [36]), columns oriented stores (e.g. HBase [100]),

documents based stores (e.g. MongoDB [101]) and graph oriented stores (e.g.

AllegroGraph [102]). Each category has its advantages and drawbacks. Although

NoSQL stores belong to a new movement, many rely on well known technologies

such as P2P networks to manage distributed resources, especially because they use

consistent hashing to distribute data. This is for instance the case with Cassandra

which features a structure similar to Chord. However, some other NoSQL stores

2http://wiki.apache.org/cassandra/FAQ#max_key_size

http://wiki.apache.org/cassandra/FAQ#max_key_size

3.1. RELATED WORK 53

such as HBase make use of a master/slave architecture. HBase is built on top

of HDFS [103]. In contrary to HDFS which is a Distributed File System (DFS)

designed for the storage of large files, HBase provides fast record lookups and

updates. To make it possible, HBase internally puts data in indexed “StoreFiles”

that exist on HDFS for high-speed lookups.

A main difference between Cassandra and HBase is that the former is fully

decentralized while in the latter a master node, that is a single point of failure,

is used. Also, Cassandra offers tunable consistency whereas HBase provides only

strong consistency but with the benefit of a tight integration with the Hadoop

ecosystem. Even though strong consistency means slower operations throughput

than systems that provide eventually consistency, and thus is not appropriate for

live queries, such systems remain acceptable to execute SPARQL queries over large

datasets. Indeed, both solutions, regardless of their architecture are used daily in

production with immensely large workloads, successfully.

These industry approved systems have been used recently in some research work

to build RDF data managements systems. In DSPARQ [104], the authors propose

to combine MapReduce with MongoDB [101]. Their solution spreads triples across

the machines by using a graph partitioner. Although distributed query evaluation

is supported, triples declaring rdf:type as predicate value are dropped, thus loosing

data meaning and reducing reasoning capabilities. In H2RDF [105] the authors

leverage the HBase NoSQL store with its MapReduce interface to execute SPARQL

queries over large RDF datasets. However, they are currently unable to support

all features from the SPARQL specification. The strength of their system lies in

the fact they provide an adaptive choice among centralized and distributed join

execution for fast query responses. Recently, in [106] the authors give a fair com-

parison of four existing NoSQL solutions for processing RDF data. They consider

results obtained with the systems they have analyzed encouraging since they are

competitive against distributed and native RDF stores with respect to query time

when simple SPARQL queries with no complex filters are used. Moreover, the

authors are confident about the future of NoSQL databases as an alternative to

native RDF engines to store and manage RDF resources because they think there

is still many query optimization techniques that could be borrowed from relational

databases and applied.

54 CHAPTER 3. DISTRIBUTED RDF STORAGE

Regarding graph oriented solutions, several works have popped up recently. It

includes for instance AllegroGraph [102], Bigdata [107], Stardog3 and Trinity [108].

However, most of them are commercial and a few details about their internal

structure and behaviour is available.

With reference to commercial and industry approved systems, Amada [109]

proposes to leverage the Amazon Web Services (AWS)4 cloud computing platform

by scaling up to large RDF data volumes while focusing on efficient query op-

erations and, in particular, by enabling control over the monetary cost charged

by the AWS platform. To achieve this goal they propose to use Amazon Simple

Storage Service (S3) for storing large RDF documents, SimpleDB for maintain-

ing indexes that allows efficient query resolution and Amazon Elastic Compute

Cloud (EC2) to process queries. Finally, Amazon Simple Queue Service (SQS) is

used to synchronize their internal distributed components.

3.2 P2P Infrastructure for RDF

The brief state of the art we have presented gives an idea about the solutions and

the different systems or topologies that have been proposed or extended to support

RDF data. This section introduces the solution we have implemented, based on

the approach sketched by Imen Filali [75], a former team member. Our solution

differs from existing ones by its indexing process that does not rely on hashing. It

explains, in part, why we have not based our solution on one of the aforementioned

solutions that intensively rely on hashing. Additionally, MapReduce operations in-

troduce a high latency in data analysis which is not acceptable for extending our

system to a publish/subscribe one as we will explain in Chapter 4. Also, contrary

to existing solutions that usually decompose a SPARQL query into subqueries and

resolve them through an execution plan that executes each subquery sequentially,

we propose to handle subqueries in parallel with the aim to increase the through-

put, adding when needed a final synchronization merging operation on results. For

this purpose, we decided to rely upon the CAN network to deal with RDF infor-

mation. In the following, we describe the CAN protocol before explaining what

3http://stardog.com
4http://aws.amazon.com

http://stardog.com
http://aws.amazon.com

3.2. P2P INFRASTRUCTURE FOR RDF 55

are the features and properties we altered. Then, we explain how generic messages

are routed in our revised CAN infrastructure. Finally, we focus on the indexing

and retrieval of RDF data through SPARQL and detail the solutions we propose

along with their benefits and drawbacks.

3.2.1 Content Addressable Network (CAN)

CAN [20] is a Structured Overlay Network where the peers that compose the

network are virtually organized on a d-dimensional Cartesian coordinate space

labeled D. The coordinate space is dynamically partitioned among all peers in the

system such that each node is responsible for storing data in a zone of D.

Each zone is an hyperrectangle defined by exactly one upper bound and one

lower bound coordinate value in D. Since the coordinate space is entirely parti-

tioned, the zones abut each others in one or more dimensions. The set of peers

that abuts a given peer p is called the neighbourhood of p. Figure 3.2 depicts

a two-dimensional CAN network made of 4 peers arranged in a [0, 1] × [0, 1] co-

ordinate space. Geometrically speaking, two peers are neighbours if their edges

overlap in exactly d − 1 dimensions and abut in exactly 1 dimension.

(0,0) (1,0)

(0,1) (1,1)

1 2

3 4

Peer Resource

Figure 3.2 – Simple 2-dimensional CAN network.

CAN provides, like many structured P2P networks, a DHT abstraction. Thus,

resources are indexed by keys. Keys are computed by applying for instance d dif-

ferent uniform hash functions on the resource value to index. In this manner, each

56 CHAPTER 3. DISTRIBUTED RDF STORAGE

resource is associated to a key that is a coordinate C = (h1(value), . . . , hd(value))
corresponding to a point in D. For a uniformly partitioned space with n nodes

and d dimensions, a CAN network exhibits the following properties. Each peer

maintains 2d neighbours and the average routing path length to route a message

is (d/4) × (n1/d). A CAN network can also achieve the same scaling properties as

other popular DHTs such as Chord [21] and Pastry [22], by routing in O(log n)
hops if the number of dimensions is set to d = (log2 n)/2.

Message routing The routing algorithm that is proposed by CAN’s authors

assumes that messages and more specifically requests are routed according to keys.

A key is, as introduced previously, a coordinate in the d-dimensional space. The

routing algorithm the authors have designed allows to send an arbitrary request

to the unique peer that manages the key used for the routing. For example, if the

purpose is to route a message to store a resource, only the peer that manages the

resource key will perform the final operation that consists of storing the resource.

We summarize hereafter the process that starts with a coordinate C for a key

k associated to a resource with a resource value v. First, a peer pi is selected

at random to receive the message M to route. Once pi receives M , it applies a

simple greedy forwarding approach. The algorithm consists of choosing the closest

peer to C from the neighbours set managed by pi. The selection is done after the

computation of the euclidean distance from the center of each neighbour’s zone to

the coordinate C. The peer pj that is selected as the one with the smallest distance

value receives the message forwarded by pi. Then, the process is repeated until it

reaches a peer pfinal whose zone contains C. At this step, a response that embeds

for example v may be returned by using the same routing algorithm if the purpose

was to find a resource by key. Otherwise if the goal was to index a resource, the

key-value pair (k, v) is simply stored locally by pfinal.

Join procedure The join procedure allows a new peer to join the network by

contacting an existing one. Let say that pnew is a peer to insert into the network.

Then, the join procedure works as follow. First, a coordinate C is picked at

random from the coordinate space D. Afterwards, a join request is forwarded

towards the peer managing C by using the routing algorithm described above.

3.2. P2P INFRASTRUCTURE FOR RDF 57

The peer reached with the join request, denoted by plandmark, is the peer that has

to divide up its zone with pnew. Thus, plandmark splits its zone in two and gives

one half to pnew along with the resources managed by the zone chunk. Finally, the

neighbourhood of plandmark and pnew is updated.

Leave procedure The leave procedure allows a peer to leave gracefully a CAN

network it has previously joined. For that, the zone zleave managed by the peer

pleave that leaves must be taken over by one of the remaining peers from the

network. In this respect, the authors distinguish two cases. Either zleave may be

merged with a zone zvalid that belongs to a neighbour pvalid of pleave in such a

way that the resulting zone is still an hyperrectangle, or it cannot. In the former

case, the merging is done and the resources are forwarded from pleave to pvalid.

However, in the latter case, zleave is handed over to the peer with the smallest zone

volume from pleave’s neighbourhood. The selected peer will temporarily manage

two independent zones. Then, a background zone reassignment process, that may

imply to merge several zones in chain and thus to transfer multiple key-value pairs,

is assumed to reassign zones and ensure that the CAN network tends back towards

one zone per peer. Each peer zone remaining an hyperrectangle.

Our revised CAN settings

Most of the related work presented formerly use hash functions to index RDF data.

We have seen this is also the case by default with CAN for indexing resources.

However, hashing incurs a storage overhead when RDF tuples are manipulated

since they are stored multiple times to be found back in an efficient manner with

triple or quadruple patterns. In addition, one big drawback that is intrinsically

linked to hash functions is that it is really difficult to support range queries (looking

for values in a specified range) efficiently. There is an exception with locality

preserving hash functions, also referred to as Locality Sensitive Hashing (LSH),

but since similar items remain close together once hashed, systems using it are

facing load imbalance issues that are most of the time underestimated or ignored.

This along with an extra level of complexity incurred by hashing. To address

these disadvantages, we propose a new distributed RDF datastore architecture

that mimics the natural format of RDF tuples and does not rely on hash functions.

58 CHAPTER 3. DISTRIBUTED RDF STORAGE

Our infrastructure is built atop the CAN overlay to ensure its scalability. More

precisely the architecture rely upon a four-dimensional CAN network. The four

dimensions of the CAN coordinate space are mapped respectively to the graph,

the subject, the predicate and the object RDF terms of any RDF 4-tuple that

may be indexed. One benefit of this natural approach, that reflects the structure

of an RDF quadruple, is that a quadruple to index represents a coordinate and

thus a point in the four-dimensional Cartesian space. Moreover, as we will further

explain, the indexing does not make use of hash functions. Quadruples are routed

to the peers that manage the quadruple coordinates by means of the lexicographic

order applied on the quadruples’ RDF terms. Therefore, the CAN network is no

longer a DHT but a distributed lexicographically ordered data structure. This

approach has several advantages. First, it enables to process range queries effi-

ciently. Second, the lexicographic order preserves the data semantics so that it

gives a form of clustering of quadruples sharing a common prefix, thus improv-

ing lookup. In contrast, hashing destroys the natural ordering of information and

makes the management of complex queries tricky and expensive.

To support the lexicographic order, in our revised CAN overlay, the bounds

of the CAN network are unicode characters. Unicode characters are numbers en-

coded in 32 bits integers, also referred as codepoints, whose integer representation

may range from 0 to 10FFFF16 = 1114111. For instance, the characters ’A’ and

’Z’ have respectively the codepoint values 65 and 95. The fact that coordinate val-

ues are strings made of Unicode characters affects some operations related to the

CAN protocol since now coordinates are made of numbers in radix different from

10. Operations such as the split operation performed during a join or even the

operation that computes the euclidean distance between two coordinates require

an update to work with any radix n. Also, to mitigate the impact of skewed data

when specific information is known about the data distribution, we allow to define

at startup the lower and upper bounds of the CAN space. For example, the bounds

may be defined to allow only the CJK Unicode block that corresponds to Chinese

ideographs usually used in the writing systems of the Chinese and Japanese lan-

guages, occasionally for Korean, and historically in Vietnam. In case we know that

all RDF terms are expressed in this CJK block, an extra shift condition has to be

taken into account in operations working in radix n.

3.2. P2P INFRASTRUCTURE FOR RDF 59

3.2.2 Routing algorithms

In P2P systems, information is spread among peers and expensive computations

aim to be shared between peers. The substrates required to distribute data, and

work in general, are messages which are routed to peers according to a key before

being executed locally. Message routing strongly depends on messages’ type and

the kind of key associated to them. Also, message routing directly affects the

overall performance of operations. For this reason we detail hereinafter the routing

algorithms we use in our revised CAN overlay.

The P2P infrastructure we have designed is aiming to support RDF data. In

such a system the main operations are the insertion and the lookup of data. It is

worth noting here that these two operations require messages with different routing

processing. The reason lies in the fact that for the insertion, the message has to

reach only one peer, the one that manages the key or coordinate that contains

RDF terms from a quadruple to index. However, when data has to be retrieved,

the message has to get to one or more peers since the different pieces of information

we are interested in may potentially be located on multiple different peers. For

that purpose, we have designed two routing algorithms whose details are given

below.

Unicast routing

Unicast routing aims to route messages whose associated key is a coordinate with

fully fixed coordinate values. This type of key is referred in the rest of this dis-

sertation as a unicast key. A simple approach to route these messages may be

to reuse the default message routing algorithm proposed by the CAN’s authors.

However, as we explained previously, our CAN overlay make uses of Unicode char-

acters as coordinate values and doing so requires to compute several times the

euclidean distance between coordinates at each routing step with a radix different

from 10 (i.e. radix 1114112). This is not conceivable since the routing will incur

expensive local decisions. The reason lies in the fact that the euclidean distance

involves mathematical operators such as the multiplication or the square root that

are costly to compute with large radix. To prevent expensive computation, we in-

troduce an algorithm that solves the issue by simply comparing zones’ coordinates

60 CHAPTER 3. DISTRIBUTED RDF STORAGE

with the key used to route a message.

1: procedure UnicastRouting(m, p, k)
2: for i← 1, d do
3: if !p.getZone().contains(k[i], i) then
4: n← p.findClosestNeighbour(k, i)
5: UnicastRouting(m, n, k)
6: return
7: end if
8: end for
9: m.execute()

10: end procedure

Algorithm 3.1 – Unicast routing algorithm.

The simple unicast routing mechanism is sketched by Algorithm 3.1. The

algorithm makes the assumption to route a message m from a peer p to the peer

managing the key k which is a coordinate made of d coordinate values. The scheme

is as follows. Each dimension is iterated successively by the peer p that is currently

routing the message. The peer starts from the first dimension. If the coordinate

value k[1] (which is the first coordinate value associated to k) is contained by p’s

zone on dimension 1, then the same checking is applied on the next dimension until

to have k fully managed by the peer’s zone on all the d dimensions. In that case,

the message action is executed and a response may be returned, either directly

to the requester if its reference is known or by using the same unicast routing

algorithm. However, if p’s zone does not contain k[i] on the i-th dimension, the

message m is forwarded to p’s closest neighbour that applies in its turn the same

process. The function used to find the closest neighbour does not rely upon the

euclidean distance. It simply finds in p’s neighbourhood, the closest neighbour’s

zone by comparing the bounds managed by the current peer with coordinate values

from k. At this stage, two cases may occur when the closest neighbour function

is executed. Either there is only one neighbour n that manages k[i] on dimension

i, or there are two or more neighbours. In the last case the conflict is resolved by

selecting the neighbour with lexicographically the closest zone’s bound to k[i+1] on

dimension i+1. Then, p forwards the message along with the key k to the selected

neighbour n. Afterwards, this last applies again the unicast routing procedure

3.2. P2P INFRASTRUCTURE FOR RDF 61

until to have all the key’s values managed by its zone.

The routing algorithm has been simulated and the results remain acceptable

since the complexity in terms of number of hops follows the same trend as the one

given by CAN’s authors.

Multicast routing

Unlike unicast routing whose purpose is to reach a unique peer, multicast routing

allows to send a message to a set of peers. The destination is appointed with the

help of a key we refer to in this context as a multicast key. The specificity of

multicast keys is that they allow free variables in their definition. Let’s assume a

simple example with a key k = (?v1, p1, ?v2, p2) where ?v1 and ?v2 represent free

variables and the other coordinate elements fixed values. In that case, k points

out a set of peers G that manage respectively p1 and p2 on the first and third

dimension. On other dimensions, these peers may manage any value since free

variables are specified. Figure 3.3 depicts different set of peers to reach according

to distinct definition of keys with free variables on a 3D CAN.

Another interesting point to notice here is that in our revised CAN overlay,

we use the lexicographic order on the coordinate values to route them to the right

peers. Therefore, the set of peers to reach may be further restrained by extending

free variables with the notion of bounded variables. This, with the goal to designate

more precisely a set of peer we are interested in. For instance, the multicast key

(?v1, p1, ?v2, p2), ?v1 ∈ [l, u] refers to a subset of G that possibly reduces the number

of peers that satisfy the key’s constraint by means of a bounded variable ?v1 that

force peers’ zone to contain a chunk of the interval [l, u] on the first dimension to

handle the message. Here, we assume that at most one variable is bounded. Cases

with two, three or four bounded variables have to be decomposed into simple ones

with one bounded variable each, thus requiring to route multiple messages and

aggregate results at the application level. However, the increased cost to route a

decomposed set of keys should be balanced by the fact that messages are routed

and handled in our system in parallel.

Algorithm 3.2 details how multicast messages are routed based on a multi-

cast key containing free variables only. The message starts from an initiator p

62 CHAPTER 3. DISTRIBUTED RDF STORAGE

predicate

ob
je

ct

subject

(a) Key values fixed on all dimensions.

predicate

ob
je

ct

subject

(b) One free variable on the last di-
mension.

predicate

ob
je

ct

subject

(c) Two free variables on the last two
dimensions.

predicate

ob
je

ct

subject

(d) Free variables on all dimensions.

Figure 3.3 – Multicast keys’ scope according to various fixed terms in a 3-
dimensional CAN network. The graph dimension has been intentionally omitted
for the sake of the representation.

3.2. P2P INFRASTRUCTURE FOR RDF 63

which is selected at random. The first step consists of finding a peer whose zone

fully manages5 the multicast key k (line 2–7). The statements are really similar

to the unicast routing procedure introduced in Algorithm 3.1. Indeed, only the

condition on line 3 differs. This line contains an additional predicate to consider

any coordinate value, which is a variable, as managed by a peer’s zone on any

dimension. Once a peer n is detected as managing k, all other peers that sat-

isfy k may be reached from neighbours to neighbours. This is possible thanks to

the definition of the multicast key’s properties that allow multiple free variables

but only one bounded variable. Consequently, p invokes the multicast procedure

(line 11–18) that executes a custom action onPeerValidatingKeyConstraints to

query for example a local datastore. Then, if some neighbours satisfy k’s values

and conditions, the multicast message is forwarded to them.

Responses are optional like for the unicast routing algorithm. To support them,

a reverse path forwarding scheme must be applied. Each peer n which receives

a request and is a leaf of the multicast tree (i.e. it does not forward the request

to another neighbour) has to send back the response to the peer p from where

the request was sent. Then, p merges the responses into one and sends it back

to its predecessor. This is performed recursively until to have a final response

that reaches the initiator. This approach is required and is due to the fact that

at each response forwarding step, the peer p that receive responses is the only

one to know how many requests it has sent and, therefore, how many responses it

has to receive and merge before forwarding back an answer. Although we do not

focus on fault tolerance, as a rule of thumb we never use a direct peer reference to

send back a response. Such a method would require a major redesign to support

fault tolerance. Instead, peers are identified by their lower left zone’s bounds.

Therefore, responses are routed back based on these coordinates that have been

memorized.

It is also important to note that whenever a key with variables is processed, our

approach naively uses message flooding through each peer’s neighbours. Hence,

it may happen that a peer receives a message multiple times from different di-

mensions. Even if in practice these duplicate messages are ignored, they, however,

5In that case, a peer p is said to manage a key k if its zone contains all the fixed part of k

and satisfies conditions associated to k.

64 CHAPTER 3. DISTRIBUTED RDF STORAGE

overload peers. Francesco Bongiovanni, a former team member, has worked on

an optimal broadcast algorithm for CAN. He has proved there exists an algorithm

that covers the whole CAN network without sending twice a message to the same

node [110]. His solution is a generalization of the efficient broadcast algorithm

proposed in M-CAN [111]. The general idea of the algorithm may be roughly

summarized as follows: a peer forwards a message to a neighbour n if n touches

the lower left zone’s bound of the peer and if n satisfies a spatial constraint defined

at the beginning of the algorithm. This optimal broadcast algorithm (in terms of

message complexity) has been implemented and evaluated in our P2P infrastruc-

ture [112]. The experiments show that this scheme may prevent in average 750

duplicates to transit in a CAN network made of 100 peers. Also, this optimal ap-

proach reduces message delivery time compared to our naive one which generates

duplicates. In average, the message delivery time is decreased by 6.25% with 100

peers and up to 41.5% with a CAN overlay made of 500 peers.

1: procedure MulticastRouting(m, p, k)
2: for i← 1, d do
3: if !k[i].isVar() ∧ !p.getZone().contains(k[i], i) then
4: n← p.findClosestNeighbour(k, i)
5: MulticastRouting(m, n, k)
6: return
7: end if
8: end for
9: Multicast(m, p, k)

10: end procedure
11: procedure Multicast(m, p, k)
12: if m not already received then
13: m.onPeerValidatingKeyConstraints()
14: for each n ∈ p’s neighbourhood do
15: if n.getZone().satifies(k) then
16: Multicast(m, n, k)
17: end if
18: end for each
19: end if
20: end procedure

Algorithm 3.2 – Multicast routing algorithm.

3.2. P2P INFRASTRUCTURE FOR RDF 65

The current implementation of the multicast uses the optimal broadcast algo-

rithm that requires flooding the whole network even if at the end the action is

only executed on peers validating the multicast key constraints. A perspective

would be to adapt the optimal broadcast algorithm to an optimal range multicast

delivery primitive. The specialization could be made by forwarding from any peer

the multicast request to a peer that satisfies multicast constraints. Then, from

this peer, the idea is to apply the optimal broadcast algorithm on a sub-CAN that

may cover a limited number of dimensions and a restricted range on each of these

dimensions.

3.2.3 Indexing and retrieval mechanisms

In this section we illustrate how the routing algorithms we presented previously

are used in action to index RDF quadruples but also to execute SPARQL queries.

RDF data indexing

To index RDF data (i.e. to route and store a quadruple to the right peer) we

rely upon the unicast routing algorithm. We define a unicast key based on the

quadruple’s values and route an index quadruple message. For the sake of the

explanation, consider Figure 3.4. In this representation each peer manages a zone

whose the bounds are denoted per dimension by zgmin
and zgmax

for the graph

value of a quadruple, zsmin
and zsmax

for the subject value, zpmin
and zpmax

for the

predicate value, and finally zomin
and zomax

for the object value. In our terminology

we say that a 4-tuple q = (g, s, p, o) ∈ z if and only if ∀ RDF Term r ∈ q, zrmin
⪯ r ≺

zrmax
.

Now, suppose that a peer p1 receives an insert(q) request aiming to insert

the RDF quadruple to the network. To find the peer where the quadruple will fall

in, a greedy scheme is applied. Locally, the peer p1 checks whether an element of

q is contained by its zone or not. The comparison starts with the first RDF term

of q, that is to say the graph value. Since no element of q belongs to the zone of

p1, and as g fits into the zone of p2, p1 routes the insert message to its neighbour

p2 according to the graph axis (g-axis). The same process is triggered at each

stage. The peer p2 does it by means of the subject axis (s-axis) which in turn,

66 CHAPTER 3. DISTRIBUTED RDF STORAGE

insert(q)

p1 p2

p3

p4

p5

p6

. . .

pi

pj

q

q
q

q

g-axis

s-axis

p-axis

o-axis

Figure 3.4 – Exemplary series of actions to insert a quadruple into a 4-dimensional
CAN.

will forward the message to its neighbour p3. Once received, p3 checks whether

one of its neighbours is responsible for a zone such as q belongs to, and sends q

to p4 through the p-axis. Finally p4 examines its zone for o. Since no immediate

neighbor is responsible of the o value, the message is forwarded according to the

object axis (o-axis) to the neighbour with object coordinates that are closest to o,

ending up on peer pi that is responsible for storing q locally.

SPARQL query execution

Insertion and retrieval are the more common operations that are usually performed

on a P2P network. Many systems such as Chord [21], Pastry [22] or even CAN [111]

rely by default on consistent hashing to uniformly spread out keys onto peers at the

cost of complex and expensive mechanisms to support range queries. In contrary

to these DHTs, our revised CAN overlay natively supports range queries since we

rely on the lexicographic order to route messages. However, our system, as the

others, does not handle by default complex requests such as SPARQL queries.

Therefore, to execute a SPARQL query q, part of the process consists in analysing

q to extract subqueries. Subqueries are elementary requests that are handled

efficiently by routing specific messages in our system. Similarly to RDFPeers [91],

we have identified atomic and range queries as subqueries. An atomic query is

a quadruple pattern from a SPARQL query that maps to a multicast key with

3.2. P2P INFRASTRUCTURE FOR RDF 67

one or more free variables according to the quadruple pattern’s variables. A range

query extends the atomic query notion by allowing at most one bounded variable.

Intuitively, this second type of query maps also to a multicast key as introduced in

Section 3.2.2. More complex query types, such as conjunctive or disjunctive queries

are supposed to be decomposed into atomic or range ones (i.e. subqueries).

The full mechanism to execute a SPARQL query is sketched by Algorithm 3.3.

The execution starts from a peer p selected at random. Once the SPARQL query

q has been decomposed into subqueries (line 2), each subquery is handled in par-

allel to others. For instance, if we are handling a subquery s, first a message m

with a multicast key k is created according to s’ values and conditions (line 4–

5). Then, m is routed from p (line 6) to the peer(s) that manage the multicast

key k based on the multicast algorithm introduced previously. Upon the recep-

tion of m on a neighbour n that validates k’s constraints, a background thread

is spawned to query n’s local RDF store by means of a SPARQL query dynam-

ically built from k. This background action is made possible by overriding the

method onPeerValidatingKeyConstraints from Algorithm 3.2. Since tuples are

retrieved in a background thread, the routing algorithm may continue to forward

m to other neighbours without waiting for the retrieval of tuples matching k. How-

ever, results have to be recovered. Fortunately, as we explained in Section 3.2.2,

the reverse forwarding path is used to route a response. Consequently, a response

reaches the peers where a local query has been triggered in background. At this

step, the termination of the background thread is awaited. The aim is to attach

to the response the tuples that have been found with the local query before it is

routed back. Finally, once all results from subqueries have been collected into a

tuples set R, a final filtering operation is applied with the help of a Strain function.

Its purpose is to filter R with the original SPARQL query q in order to resolve

SPARQL operators which have not been handled in a distributed manner (e.g.

join conditions between subqueries due to BGPs or regular expressions).

To better illustrate what we explained, let us assume a concrete example with

bibliographic resources described in RDF (as in Section 2.2.1) and stored in our

system. A possible query could be to find all authors’ firstname who have published

bibliographic resources in 1987 or between 2010 and 2013, so that their firstname

starts with the letter E and ends with the letter r. Listing 3.1 shows this query in

68 CHAPTER 3. DISTRIBUTED RDF STORAGE

1: function ExecuteSparqlQuery(q)
2: subqueries← Decompose(q)
3: for each s ∈ subqueries do in parallel
4: m← CreateAtomicMessage()
5: k ← CreateKey(s)
6: result← Route(m,p,k)
7: R ← R ∪ {result}
8: end for
9: return Strain(R, q)

10: end function

Algorithm 3.3 – SPARQL query execution algorithm.

SPARQL syntax.

The decomposition for the aforementioned SPARQL query results in 5 sub-

queries. On one side there are four atomic queries which are respectively (?g, ?isbn, rdf ∶

type, dc ∶ BibliographicResource), (?g, ?isbn, dc ∶ creator, ?creator), (?g, ?isbn, dc ∶

date, 1987) and (?g, ?creator, dc ∶ firstName, ?firstName) since we do not lever-

age regular expressions at the routing level. On the other side there is one range

query for (?g, ?isbn, dc ∶ date, ?date), 2010 ≤ ?date < 2014. Similarly to the scan

phase of centralized RDF stores, tuples that satisfy each subquery are retrieved,

in parallel. Afterwards, a final filtering is applied on the resulting tuples set with

the initial SPARQL query. This last step may be seen like the usual join phase

from centralized stores. However, in our case its purpose is more general since it

allows us to transparently support operators that are not handled at the routing

level such as the regular expression on line 7.

1 SELECT ? firstName WHERE {

2 GRAPH ?g {

3 ?isbn rdf:type dc: BibliographicResource .

4 ?isbn dc:date ?date .

5 ?isbn dc: creator ? creator .

6 ? creator dc: firstName ? firstName .

7 FILTER (REGEX (? firstName , "^E.*r$")

8 && (? date = 1987 || ?date >= 2010 && ?date < 2014))

9 }

10 }

3.3. EVALUATION 69

Listing 3.1 – SPARQL query example for retrieving authors’ firstname with

conditions on the publication date of bibliographic resources and the letters

contained in authors’ firstname.

3.3 Evaluation

In order to validate our P2P infrastructure for RDF data, we have performed

micro benchmarks on the French Grid’5000 testbed. The goal was twofold. First,

we wanted to evaluate the overhead induced by the distribution and the various

software layers between the repository and the end user. Second, we wanted to

evaluate the benefits of our approach, namely the scalability in terms of concurrent

access and the overlay size.

All the experiments presented in this section have been performed on a 75

nodes cluster with 1Gb Ethernet connectivity. Each node has 16GB of memory

and two Intel L5420 processors for a total of 8 cores. For the 300 peers experiments,

there were 4 peers and 4 RDF repositories per machine, each of them running in

a separate Java Virtual Machine.

3.3.1 Insertion of random data

Single peer insertion

The first experiment performs 1000 statements insertion and we measured the

individual time for each of them, on a CAN network made of a single peer. The two

entities of this experiment, the caller and the peer, are located on the same host.

The commit interval was set to 500 ms and 1000 random statements were added.

Figure 3.5(a) shows the duration of each individual call. On average, adding a

statement took 2.074 ms with slightly higher values for the first insertions, due to

cold start.

In a second experiment, the caller and the peer were put on separate hosts in

order to measure the impact of a local network link on the performance. As shown

70 CHAPTER 3. DISTRIBUTED RDF STORAGE

0
1
2
3
4
5
6

0 100 200 300 400 500 600 700 800 900 1000

Tim
e(m

s)

Statement Number
(a) On a single local peer.

0
10
20
30
40
50
60
70
80
90

0 100 200 300 400 500 600 700 800 900 1000

Tim
e(m

s)

Statement Number
(b) On a single remote peer.

Figure 3.5 – Local vs remote insertion on a single peer.

in Figure 3.5(b), almost all add operations took less than 9 ms while less than

6.7% took more than 10 ms. The average duration for an add operation was 6 ms.

Multiple peers insertion

We have measured the time taken to insert 1000 random statements in an overlay

with different number of peers, ranging from 1 to 300. Figures 3.6(a) and 3.6(b)

show respectively the overall time when the calls are performed using a single or

50 threads. As expected, the more peers, the longer it takes to add statements

since more peers are likely to be visited before finding the correct one. However,

when performing the insertion concurrently, the total time is less dependent on the

number of peers. Depending on the various zones sizes and the first peer randomly

chosen for the insertion, the performance can vary, as can be seen with the small

downward spike on Figure 3.6(b) at around 80 peers. To measure the benefits

of concurrent access, we have measured the time to add 1000 statements on a

300 peers overlay while varying the number of threads from 1 to 50. Results in

Figure 3.6(c) show a sharp drop of the total time, clearly highlighting the benefits

of concurrent access.

3.3.2 Queries using BSBM

The Berlin SPARQL Benchmark (BSBM) [113] defines a suite of benchmarks for

comparing the performance of RDF storage systems across architectures. The

3.3. EVALUATION 71

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 50 100 150 200 250 300

T
o
ta

l
T

im
e
 (

m
s)

Number of Peers

(a) Insertion of 1000 statements for a variable
number of peers with 1 thread.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200 250 300

T
o
ta

l
T

im
e
 (

m
s)

Number of Peers

(b) Insertion of 1000 statements for a variable
number of peers with 50 threads.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 5 10 15 20 25 30 35 40 45 50

T
o
ta

l
T

im
e
 (

m
s)

Number of write threads

(c) Evolution of the time for concurrent insertions
with 300 peers.

Figure 3.6 – Sequential and concurrent insertions with up to 300 peers.

72 CHAPTER 3. DISTRIBUTED RDF STORAGE

benchmark is built around an e-commerce use case in which a set of products is

offered by different vendors, with given reviews by consumers regarding the various

products. The following experiment uses BSBM data with custom queries detailed

below. The dataset is generated using the BSBM data generator for 666 products.

It provides 250030 triples which are organized following several categories: 2860

Product Features, 14 Producers and 666 Products, 8 Vendors and 13320 Offers, 1

Rating Site with 339 Persons and 6660 Reviews.

Custom queries executed

Owing to the fact that we support efficiently only a subset of SPARQL, we chose

out of this benchmark specification, four queries which are executed independently

by using a different initial peer each time. These queries use the namespaces

referenced in Table 3.1.

Q1 – Returns a graph where producers are from Germany:

CONSTRUCT {

i s o :DE <http ://www. ecommerce . com/ Producers> ? producer

} WHERE {

? producer rd f : type bsbm : Producer .

? producer bsbm : country i s o :DE

}

Q2 – Returns a graph with triples containing instances of purl:Review:

CONSTRUCT {

? review rd f : type pur l : Review

} WHERE {

? review rd f : type pur l : Review

}

Q3 – Returns a graph where triples imply a rdf:type relation as predicate:

CONSTRUCT {

? s rd f : type ?o

} WHERE {

3.3. EVALUATION 73

? s rd f : type ?o

}

Q4 – Returns a graph where bsbm-ins:ProductType1 instance appears:

CONSTRUCT {

bsbm− i n s : ProductType1 ?a ?b

? c ?d bsbm− i n s : ProductType1

} WHERE {

bsbm− i n s : ProductType1 ?a ?b .

? c ?d bsbm− i n s : ProductType1

}

bsbm http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/
bsbm-ins http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
iso http://downlode.org/rdf/iso-3166/countries#
purl http://purl.org/stuff/rev#

Table 3.1 – BSBM namespaces used by the queries considered.

Q1 and Q4 are complex queries and will be decomposed into two subqueries.

Hence, we expect a longer processing time for them. The number of matching

tuples is given in Table 3.2.

Query Q1 Q2 Q3 Q4
of results 1 6660 25920 677

Table 3.2 – Number of final results for the queries considered.

Figure 3.7 shows the execution time and the number of visited peers for pro-

cessing Q1, Q2, Q3 and Q4. Note that when a query reaches an already visited

peer, it will not be further forwarded, therefore we do not count it. Q1 is divided

into two subqueries with only a variable subject. Hence, it can be efficiently routed

and is forwarded to a small number of peers. Q2 also has one variable and thus

exhibits similar performance. Q3 has two variables so it will be routed along two

dimensions on the CAN overlay, reaching a high number of peers. Since it returns

74 CHAPTER 3. DISTRIBUTED RDF STORAGE

25920 statements, the messages will carry a bigger payload than for the other

queries. Finally, Q4 generates two subqueries with two variables each, making it

the request with the highest number of visited peers. On the 300 peers network,

the two subqueries have visited more than 85 peers.

Concluding remark Regarding tuples insertion into the distributed storage,

although a single insertion has low performance, it is possible to perform them

concurrently, leading to a higher throughput. The performance of queries is more

complex to predict since it depends on the number of subqueries, the payload

carried between peers and the number of visited peers. While the payload depends

on the request itself (number of variables and constraints), the number of peers

depends not only on the structure of the overlay but also on the peer initiating

the query.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

N
u
m

b
e
r

o
f

V
is

it
e
d
 P

e
e
rs

Number of Peers

Q1
Q2
Q3
Q4

(a) Execution time.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 50 100 150 200 250 300

T
o
ta

l
T

im
e
 (

m
s)

Number of Peers

Q1
Q2
Q3
Q4

(b) Messages overhead.

Figure 3.7 – Custom queries with BSBM dataset on various overlays.

Summary

In this chapter we have presented a distributed RDF storage based on a struc-

tured P2P infrastructure. RDF tuples are mapped on a four-dimensional CAN

overlay based on the value of its elements. The global space is partitioned into

zones and each peer is responsible for all the tuples falling into a zone. We do

not use hash functions, thus preserving the data locality. SPARQL queries are

3.3. EVALUATION 75

decomposed into subqueries that are executed in parallel. We have validated our

implementation with micro benchmarks. Although basic operations like adding

tuples suffer from an overhead, the distributed nature of the infrastructure allows

concurrent accesses. In essence, we trade performance for throughput.

Obviously, our solution has some drawbacks. The first downside is that our

approach is sensitive to the distribution of data. Since we use the lexicographic

order to index data, when some RDF tuples share the same namespaces or prefixes

the probability they end up on a same peer is very high. Therefore, one or more

peers might become a hot zone. To address this issue, we will introduce and

discuss some solutions in Chapter 5. The second inconvenient with our solution

is related to the execution of SPARQL queries. We decided to handle subqueries

in parallel. However, when subqueries share common variables (i.e. require a

join) and return tuples set with sizes that differ from one ore more orders of

magnitude, our solution requires to carry from peers to peers and until the query

initiator many tuples that would be unnecessary if subqueries were pipelined by

previously building a sequential query plan. This issue, that relates to the number

of intermediate results to convey in the network in order to solve a SPARQL query

has been highlighted empirically with our system [114]. Quilitz et al. propose

in [115] to build a query plan that executes subqueries sequentially after they

have been sorted in descending order according to the number of fixed parts and

their position (i.e., graph, subject, predicate or object of a quadruple pattern).

Indeed, subqueries with a lot of fixed parts are assumed to return a few number of

tuples. Consequently, the next subquery to execute may leverage the result from

the previous one to reduce the number of intermediate results. One step forward,

in [116] the authors propose to investigate the selectivity of subqueries (i.e. an

estimation or an exact value about the number of tuples subqueries are expected

to return once executed). This way an optimal query plan may be executed.

In this respect, a perspective could be to combine our solution with an optimal

query plan to execute queries. That, with the idea to still execute in parallel

subqueries with a low selectivity or whose a bright reordering might not reduce

the bandwidth consumption. Also, another point that hurts performance and that

could be considered to enhance the execution time is related to the latency to

route messages. Peers that are close together in the underlying network topology

76 CHAPTER 3. DISTRIBUTED RDF STORAGE

could be moved as neighbors at the overlay layer. Ali et al. have shown recently

in [117] that a structured P2P system improved with locality awareness and some

additional shortcuts for frequently used routes may boost performance by a factor

of two in an RDF context.

Chapter 4

Distributed RDF

Publish/Subscribe

Contents
4.1 Related Work . 78

4.1.1 Active databases . 78

4.1.2 Conventional publish/subscribe systems 79

4.1.3 RDF-based publish/subscribe systems 81

4.2 Publish/Subscribe Infrastructure for RDF 83

4.2.1 Data and subscription model 83

4.2.2 Requirements . 88

4.2.3 Event filtering algorithms 90

4.3 Evaluation . 113

This chapter details our second contribution that relates to a publish/subscribe

layer for storing and selectively disseminating RDF events. It is built as an ex-

tension atop the infrastructure introduced in the previous chapter and relies on

the routing algorithms that were described earlier. We start to compare existing

solutions and we explain why building RDF-based event systems differs from con-

ventional publish/subscribe systems. Then, we introduce our publish/subscribe

77

78 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

infrastructure for RDF events. First, we detail the event and subscription model

suitable for RDF data we propose. Afterwards, we list the different properties or

requirements our publish/subscribe system is assumed to respect, before entering

into the details of two event filtering algorithms. Their characteristics and dif-

ferences are explained, discussed and analyzed. To conclude, the algorithms we

propose are evaluated in a distributed environment.

4.1 Related Work

Event-based systems are at the heart of publish/subscribe interactions. The ances-

tors of these systems are most probably Database Management System (DBMS)

that were the first to instigate the need for reacting to data changes. In the rest

of this section we briefly discuss solutions built on top of relational databases,

also known as active databases, whereupon we enter into the details of some well

known publish/subscribe systems and explain how they differ from RDF-based

event systems. In both cases, the major difficulty in the presented solutions is to

decide how events and subscriptions are indexed so that a matching is possible and

notifications delivered, ideally without duplicates. Also, system responsiveness is

a real challenge, especially depending on the expressivity of subscriptions. In this

context, we will see what are the tradeoffs made by system’s authors and how our

solution is placed regarding to others.

4.1.1 Active databases

Solutions such as HiPAC [118], Ode [119], Postgres [120], that are known as Active

Databases [121] rely on database triggers that are actions which are executed when

an event occurs, such as the modification of a database row or table. The benefits

of triggers are multiple. They are usually used to audit changes, replicate data or

even enhance performances by summarizing values for future queries. However,

as we already mentioned, DBMS has been designed some years ago when deploy-

ment was most of the time targeting a single machine. Also, triggers are applied

at the schema level (i.e. when a row or table is created, edited or deleted) and

do not achieve the exact same purpose as traditional publish/subscribe systems.

4.1. RELATED WORK 79

In their essence, database triggers are more generic than subscriptions from pub-

lish/subscribe systems. The reason lies in the fact that database triggers rely on

Event-Condition-Action (ECA) rules that decouple and abstract the condition on

which an action is executed and the action itself. In contrary to subscriptions that

filter and forward matching events to their respective subscribers, ECA rules al-

low to express conditions based on database state values and to execute arbitrary

actions when they are satisfied. However, to express conditions based on some

state raises one main question which is how to ensure data consistency across

different machines. Many solutions exist and all relational databases implement

one since they focus on ACID properties. Nonetheless, to enforce consistency in a

distributed system has the direct and bad effect of increasing operations latency,

which is most of the time not acceptable in publish/subscribe systems since they

aim to filter information in near real-time.

4.1.2 Conventional publish/subscribe systems

In the last two decades, the flexibility, modularity and responsiveness of pub-

lish/subscribe led to the emergence of several solutions. Broadly speaking, these

systems are classified into topic-based or content-based categories according to their

expressivity. Tibco [122] and Pubsubhubbub [123] are representatives of this for-

mer category that provides limited filtering capabilities. Most prominent solutions

regarding the latter category are certainly Siena [124] and Hermes [56]. Siena,

uses covering-based routing algorithms to reduce routing entries and unnecessary

forwarding of subscriptions. However it incurs several drawbacks that are intrinsic

to the choice of the routing algorithm but also the topology that is static and

non-structured. Subscriptions are flooded to the whole network and an unsub-

scribe operation may implicitly unsubscribe to all the filters that are covered by

the former filter. Hermes relies on an extension of Pastry [22], a structured P2P

protocol named PAN. Subscriptions and publications are sent to a rendez-vous

node by means of event dissemination trees created dynamically. Notifications

are forwarded by using reverse paths. More recently, BlueDove [125] proposes to

match publications with subscriptions atop a modified version of Cassandra [36]

in just one hop: replicating subscriptions to a selected subset of one hop away

80 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

accessible peers and then selecting one of these replica to trigger the matching ac-

cording to load information of peers, regularly exchanged throughout the system.

Their scheme does not require reverse path forwarding neither any computation

over multiple intermediate peers.

The closest system to our is certainly Meghdoot [126]. The authors leverage

the CAN [20] logical topology as we do. Similarly to other conventional publish/-

subscribe systems, their data model is based on multiple attributes. Also, their

system is initialized with a schema that defines attributes’ name, type and domain.

Additionally, all peers are assumed to share the same schema. Events are a subset

of attributes from the schema set where each attribute is associated to a value.

A subscription is a conjunction of binary predicates over one or more attributes.

The construction of the logical space depends on the number of attributes that

made up events. Assuming that events have at most n attributes, then a CAN

network with 2n dimensions is built. Dimensions 2i and 2i − 1 are in charge of

managing the attribute domain for attribute i. By using this property, events and

subscriptions are mapped to points. Events lie on the diagonal which is a line

which passes through the lower and upper bounds of the 2n-dimensional space

while subscriptions are located in the upper part delimited by the diagonal. The

remaining side is left for fault tolerance purposes. To deliver notifications, each

time an event is published, it is sent to the peer that manages the event point on

the diagonal before triggering an event propagation algorithm that aims to reach

the subscriptions affected by the event on the upper left side. The algorithm prop-

agates the event on a selected subset of neighbors by applying some optimizations

to prevent repetitive propagations. In case users subscribe to all events, their

event propagation algorithm must start from a peer that is at a corner of the CAN

network, which leads to performance bottleneck. Also, the main disadvantages of

Meghdoot is that events type, domain (e.g. from 1 to 100 for event type integer)

and the maximum number of elements per event should be defined at startup.

This last parameter having a direct impact on the structured overlay and routing

performances.

The main drawback from the system introduced previously and from traditional

event-based systems in general is that they do not focus on the specific character-

istics of RDF. The first point is that most of them make use of structured records.

4.1. RELATED WORK 81

In a record-oriented model, events consist of named set of attribute value pairs

where the order between pairs does not matter. In contrast, RDF building blocks

are 3-tuple or 4-tuple and RDF events are usually unbounded set of tuples where

the order of elements within a tuple is important since the self-description of RDF

comes in part from this property. In [127], the authors argue that tuples provide

a simple model that is not flexible enough because subscriptions used to express

events to receive must either specify for each tuple element an exact value or a

wildcard to point out the fact that any value matches. Record-oriented systems

do not have to specify a wildcard for attributes they do not care about. They

may simply omit to specify them. Although structured records seem more flexible

from a subscription’s perspective, the authors concede that matching by position

in tuple-oriented systems is more efficient in practice. Despite the last observation

regarding filtering performance, to our knowledge only one non RDF related sys-

tem called JEDI [57] makes use of tuples to model events. In this system, events

are spread through dissemination trees created dynamically after having elected

a group leader, similarly to Hermes. However, each leader must perform a global

broadcast to all other brokers, which might not be scalable depending on how it

is implemented. The second drawback with traditional publish/subscribe systems

is that they make some assumptions on events content in terms of type, domain

and size. Unfortunately, this is not appropriate to integrate, filter and relay events

that are produced from heterogeneous sources where the number of attributes and

their type differ from a source to another.

To conclude, the data but also the subscription model are strongly related and

have a large impact on the scenarios to consider. A few works in conventional

publish/subscribe systems have based their data model on tuples. We introduce

below some event-based works made for RDF.

4.1.3 RDF-based publish/subscribe systems

RDFPeers [128] is a distributed RDF repository where peers are self-organized

into a Multi-Attribute Addressable Network (MAAN) [92]. MAAN extends Chord

[21] such that information retrieval may be performed for any triple term. Pub-

lishing a triple implies indexing it three times, each one based on the hash value

82 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

of its subject, predicate and object value. Atomic, disjunctive and range subscrip-

tions are supported with the exception of some patterns. For instance, it is not

possible to subscribe for all the information nor with some join constraints. Be-

sides, RDFPeers ignores popular terms such as rdf:type predicates and, therefore,

subscriptions involving them cannot be resolved.

In [129], Ranger et al. introduce an information sharing platform for dissemi-

nating RDF activities. Their solution relies on the Scribe [54] system that offers

a topic-based publish/subscribe system on top of Pastry. Queries are expressed in

a SPARQL dialect and registered as topics. Unlike other solutions, the algorithm

they propose does not index data a priori. Instead, their strategy relies upon find-

ing results through multicast trees built from scratch, associated with redundant

caching and cached lookups mechanisms. The peers participating to the propaga-

tion are responsible for removing duplicate results within the limit of their buffer.

This probably leads to duplicate notifications over time.

CSBV [130] proposes a generic and DHT agnostic approach for resolving atomic

and conjunctive SPARQL subscriptions. Their scheme strongly relies on hashing

and requires to index each triple seven times. Owing to the fact that the number

of indexations that is required corresponds to the combination without repetition

of the elements contained by the tuples that are published, it grows quickly up

to 15 when quadruples are considered. Subscriptions are resolved by rewriting

dynamically subscription patterns matching new incoming publications. The pub-

lish/subscribe algorithm we introduce in the next sections derives from this idea.

Recently, Shvartzshnaider et al. proposed in [131] to combine AI and Peer-to-

Peer research approaches for building a publish/subscribe system that supports

publication of arbitrary tuples and subscriptions with standing graph queries.

Their idea consists in applying Rete [132] algorithms on a Chord network to re-

solve join conditions contained by subscriptions. Basically, a Rete network acts as

a distributed cache where subscription patterns that are executed are cached along

with their results for future reuse. Thus, answers from previously executed sub-

scriptions may be reused with new subscriptions that involve similar patterns. The

authors consider tuples as primitives and allow subscriptions to match against an

unbounded flow of tuples but do not explain how memory growth is managed (i.e.

by using for instance time windows operators). Publications and subscriptions are

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 83

indexed similarly to RDFPeers (cf. Section 3.1.2) in order to create rendezvous

nodes where the satisfaction of subscriptions is verified. Although they claim that

Rete approach is effective, no discussion is given about how duplicates are avoided

when in-memory buffers overflow. Moreover, subscriptions are formulated through

an ad-hoc scripting language and no experimental evaluation is available.

Summary

Although publish/subscribe has been generating great interest these last years, the

model is not new. Many approaches have been proposed, especially in a distributed

context. Most of these systems made assumptions on events type, domain and size

to improve the overall performances. Many systems use hashing to balance data

on multiple nodes, thus implying to index the same data multiple times while

reducing range-queries efficiency. Finally, a few, not to say none, try to combine

filtering and persistent storage of RDF events for later analysis. The solution we

introduce in the next section aims to tackle these drawbacks.

4.2 Publish/Subscribe Infrastructure for RDF

The publish/subscribe infrastructure for RDF events we describe here is built atop

the infrastructure introduced in the previous chapter and as a consequence it reuses

some concepts and notions. The purpose of this extension is to offer the possibility

to react to data in a responsive manner and gradually, when events are coming.

In the following, we describe how events are modeled and how subscriptions are

expressed through our data and subscription model. Then, we present the different

requirements we place on our infrastructure in order to better explain the different

choices we made with the two and complementary event filtering algorithms we

propose.

4.2.1 Data and subscription model

The main task of distributed publish/subscribe systems is to relay data to inter-

ested parties. Information to disseminate but also interest for data are described

84 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

by an event model. Data that are published are events and interest in events

is formulated by means of subscriptions. When the time comes to decide how

events and subscriptions are represented it is really important to keep in mind

the compromise there is between expressiveness and scalability [133]. To sum-

marize, the more expressive a publish/subscribe system is, the more complex the

event filtering algorithm becomes. The direct consequence is that the efficiency of

the matching algorithm significantly affects both performance and scalability. A

second critical point to consider is about interoperability. In distributed systems

the ability to automatically interpret the information exchanged meaningfully and

accurately between heterogeneous machines is often a strong prerequisite. In our

case, this is all the more true since we have as a requirement to store events

for future reuse with standard technologies from the Semantic Web stack. The

publish/subscribe messaging pattern already provides a method to enhance inter-

operability by decoupling publishers and subscribers. However, the event model

plays also an important role. Consequently, to further improve interoperability, it

is a good practice to use an event model that reuses or extends open standards

that are platform and language independent. Our data and subscription model

strive to address these two challenges by reusing existing standards and by defin-

ing clear limits about which kind of interest may be formulated with the filtering

language we have adopted. Our approach, described in [134], allows users to for-

mulate queries and subscriptions but also to insert and publish information with

respectively an extension of RDF and a subset of SPARQL.

Events

In our data model, events are occurrences or actions of something that happens

expressed in the RDF model using 4-tuples (i.e. quadruples) whose elements are

named RDF terms. An RDF term may be either an IRI or a Literal value. Blank

nodes are not allowed because they incur expensive mechanisms to ensure their

uniqueness in the whole system. In compensation, end-users publishing events

containing bnodes may use skolemization1 to transform bnodes to IRIs.

Regarding the granularity of events, a quadruple has a limited meaning since

1http://www.w3.org/TR/rdf11-concepts/#section-skolemization

http://www.w3.org/TR/rdf11-concepts/#section-skolemization

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 85

it can embed only a few pieces of information. It is acknowledged that fine

grain events significantly complicate the programming process and reduce the per-

formance of the system [135]. We tackle this issue by introducing Compound

Events (CEs). Elements or quadruples generated at the same time by a given

source form a CE, as defined by (4.1b). Each CE is a list of quadruples where

quadruples share a common term called graph value. This term is built with a

combination of a unique source identifier and a timestamp. The purpose of this

graph value is threefold. It is used to identify the event source, the event itself

but also to offer the possibility to link together several quadruples for emulating

unbounded multi-attribute values like in conventional publish/subscribe systems.

q = (g, s, p, o) ∣ g, s, p, o ∈ RDFTerm (4.1a)

CE = (q1, ..., qi, ..., qn) ∣ qi = (g, si, pi, oi) (4.1b)

Events indexing rests upon the routing algorithms proposed in the previous

chapter. Figure 4.1 shows how CEs are mapped to our revised CAN network. In

concrete terms, each quadruple from a CE is indexed independently. A specific

message is created per quadruple with a unicast key based on the quadruple’s

terms. Then, this message is routed until reaching the peer that manages the

quadruple’s terms. It is worth to notice here that quadruple and thus Compound

Event indexation is fully asynchronous. Each method invocation done indirectly

by a publisher to index a quadruple during a Compound Event publication returns

immediately and no response is sent back. Therefore, quadruples from a CE are

inherently indexed in parallel.

Subscriptions

Subscriptions aim to match CEs. They are content-based and formulated using

a subset of SPARQL. In essence, a subscription is basically a list of one or more

atomic and range queries called sub-subscriptions or SS. A subscription is applied

on different CEs independently, i.e. only the quadruples that belong to the same

CE can trigger a notification. More precisely, a subscription S = (SS1, SS2, ..., SSn)
is found to match a compound event CE = (q1, q2, ..., qm) if for each SSi there exists

86 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

(a,a) (z,a)

(a,z) (z,z)

CE =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

q1

q2

q3

Figure 4.1 – Compound Event distribution with three quadruples.

at least a matching qj. In other words, the whole subscription should be satisfied

by a subset of the quadruples contained by a CE. Although SPARQL could be used

to formulate more complex subscriptions with filtering that involves patterns made

of multiple events, a domain usually known as composite event detection [136, 137]

and supported by CEP engines, we limit our system to simple event processing.

The reason lies in the fact that composite event detection enhances the expressive-

ness of event-based systems but at the price of expensive correlations to perform

in a distributed manner, thus slowing down the performance of the whole sys-

tem. Moreover, many applications do not need complex subscriptions. However,

as we will see in Chapter 6 our solution is flexible enough to be extended or com-

bined with additional tools (like we did in the PLAY project) for complex event

processing.

To better illustrate which kind of subscriptions we allow, let us suppose a

building with a sensor that generates events with our data model each time a

person enters or exits from the front door. Assuming the action, the person name

and age are embedded in the CEs that are published, a possible subscription to

get informed about the name of all people who have 25 years old or more and that

exit from the front door is depicted by Listing 4.1. This example is a standard

SPARQL query that could be executed synchronously on a common RDF engine.

In our case it can be seen as a query over future events, or say in another way, as a

long standing query. However, SPARQL is a really expressive language and since

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 87

we want to ensure expressiveness while maintaining scalability, but also due to the

different requirements we introduce in the next section, we restrict subscriptions

to a subset of SPARQL with some conditions. A subscription written with our

subscription model is assumed to be a SPARQL query that a) uses the SELECT

query form; b) contains at most one group GRAPH pattern with a graph variable;

c) returns the graph variable declared in the GRAPH pattern. Multiple triple

patterns may be used inside the graph pattern defined in the subscription. One

or more FILTER clauses are also allowed to restrict solutions. Standard logical

operators but also filter functions like REGEX, STRSTARTS, etc. are permitted.

1 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >

2 PREFIX ex: <http :// example .org/v/>

3 SELECT ?g ?id ?name WHERE {

4 GRAPH ?g {

5 ?id ex: action "exits" .

6 ?id foaf:name ?name .

7 ?id foaf:age ?age

8 } FILTER (? age >= 25)

9 }

Listing 4.1 – SPARQL subscription example.

The process to index and detect subscriptions that are satisfied by incoming

events depends on the event filtering algorithm considered. Thus, the scheme will

be explained while describing the proposed publish/subscribe algorithms. How-

ever, the basic scheme to decompose subscriptions before indexing them remains

the same whatever the event filtering algorithm is. It consists in extracting atomic

and range queries, named in this context sub-subscriptions, from the subscription

in order to have the possibility to send the subscription to the peers that manage

one or more of the extracted sub-subscriptions. Specifically, the subscription given

in Listing 4.1 results in a decomposition with three SSs: two atomic queries (one

on line 5 and one on line 6) and one range query (lines 7–8).

To give a brief idea of how subscriptions are mapped on a CAN network,

Figure 4.2 outlines a simple case where two subscriptions made of one SS each are

indexed on a 2D CAN network. In this specific case, the general rule to index a

subscription consists of sending the subscription to the peers responsible for the

88 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

fixed parts of the SS it embeds. Since an SS may contain free variables, it may

reach multiple peers. Moreover, some subscriptions may overlap on a peer.

S1 = (?x, p)

S2 = (r, ?y)

m

m

t

t

(a,a) (z,a)

(a,z) (z,z)

Figure 4.2 – Distribution of two subscriptions overlapping on a peer.

4.2.2 Requirements

In addition to the data and subscription model our publish/subscribe infrastruc-

ture complies with, the system is also designed to enforce a set of properties.

We list below the different properties or requirements we decided to support and

that have, along with the models, a direct impact on how the publish/subscribe

algorithms described in the next section behave. Some are use case driven.

R1 Events and subscriptions are assumed to be submitted to the event notifi-

cation service by means of lightweight applications dubbed proxies which

represent clients of the brokering network. Publish and subscribe proxies

are distinguished. The former is used to publish events whereas the latter

forwards subscriptions to the P2P network in charge to perform the match-

ing between events and subscriptions. The general purpose of proxies is to

allow enforcing end-to-end properties that have not been or could not be

implemented at the P2P level.

R2 Clocks are assumed synchronized between machines inside the P2P network

with Network Time Protocol (NTP) but not between proxies that subscribe

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 89

and publish events to peers. Indeed, to synchronize all entities is not an

acceptable assumption due to the extra overhead latency incurred by far

away machines on the Internet. However, to synchronize peers’ clocks when

peers deployment targets a closed environment like a cloud, a cluster or a

grid as it is in our case, remains an acceptable possibility.

R3 Causal ordering between publish and subscribe requests handled asynchronously

from a same proxy must be enforced to avoid introducing false negative (i.e.

notifications which are not received whereas they should). However, we do

not want to enforce any delivery order between publications and/or subscrip-

tions from different proxies since the order may only be guaranteed in that

case if events are tagged with a timestamp from a global clock shared be-

tween all entities and if the communication network provides a guaranteed

fixed latency time [138]. To illustrate the issue, let us consider a subscription

S which enters the P2P network and is timestamped before a publication P

but eventually P is received before S on the peer that performs the match-

ing. Such a scenario can occur due to the asynchronism of the operations and

the multiple hop communications between peers. Moreover, this issue arises

even if we use TCP as the underlying protocol since the connection guar-

antees delivery order between two entities only (e.g., peers, proxies-to-peer,

peer-to-user).

R4 Quadruples must eventually be stored in the P2P overlay on peers in order

to be retrieved later to compute expensive batch analysis, statistical infor-

mation or simply to help CEP engines to correlate different CEs [12] in a

distributed manner by leveraging past knowledge.

R5 Events that must be notified are notified. For instance, if we publish P1 and P2

from a same publisher and both are matching S, then the subscriber who has

subscribed with S will receive P1 and P2. However, if due to the asynchronism

P2 is notified before P1 we can detect the situation and report the issue to

the interested parties. Here, we do not focus on the fault tolerance aspect

and we let it for future work. Consequently, events and subscriptions may

be lost if some failures occur.

90 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

R6 Data indexing does not rely on hashing in order to avoid multiple indexations

of the same publications as it is the case for most of the existing work. In-

stead, publications should be indexed according to their lexicographic order.

On the other side subscriptions are replicated on multiple peers in accordance

with their expressiveness. We strongly believe that a real publish/subscribe

system face more publications than subscriptions.

R7 Notifications aim to inform subscribers about events that satisfy their sub-

scription(s). We think that subscribers should have the possibility to receive

different types of notifications that carry more or less information about the

events that match their subscriptions. The purpose is to enhance the de-

livery time but also the end-user bandwidth consumption when full event

values are not required. Consequently, we assume a subscriber is allowed

to subscribe for getting either a signal, a collection of bindings (the values

matching the variables contained by the subscription) or the full compound

event that has matched its interests. This is materialized with a subscrip-

tion by using respectively Bindings, Compound Event or Signal notification

listeners.

R8 Our event notification service is assumed to deliver no duplicate and no false

positive. By false positive we mean to deliver events that are not matching

a subscription.

4.2.3 Event filtering algorithms

This section introduces two publish/subscribe algorithms optimized for different

use cases. The first one, named Chained Semantic Matching Algorithm (CSMA),

is optimized for the publications while One-step Semantic Matching Algorithm

(OSMA), introduced on page 109, is optimized for the subscriptions.

CSMA

The general idea of CSMA, as inspired by Liarou et al. [130] with Continuous

Spread By Value (CSBV), is to publish in parallel and perform the matching of all

the sub-subscriptions contained by a subscription sequentially. Indeed, all peers

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 91

involved in a subscription will be organized in a chain-like fashion. Only the peers

indexing the subscription can start the matching process and notify the next peers

in the chain which, in turn, will try to find a match. The process ends when

reaching the last peers in the chain, i.e. when the whole subscription is satisfied.

We decided to start from CSBV because this algorithm is designed to balance

quadruples among peers by handling them independently and not considering a

CE as a whole.

Indexing a publication Compound events published by users to the network

are sent first to a publish proxy. The proxy relays the compound event to a peer

that timestamps the quadruples contained by the CE with the peer’s clock. This is

done on a peer and not from a proxy to satisfy R2 and R3. If the quadruples were

timestamped on the proxy side, a publication time could not be compared with a

subscription time once a publication reaches a peer because proxies and peers do

not have their clocks synchronized. Once timestamps are set, the first peer that

receives the compound event considers each quadruple from the CE independently

and sends each of them, asynchronously, to the responsible peer as depicted by

Listing 4.2. Notice that quadruples are sent along with an additional one, named

meta-quadruple. This quadruple denotes the number of quadruples contained by

a compound event and is used later to retrieve the entire compound event that

has matched a subscription in case the full CE was requested (requirement R7).

Each quadruple is sent asynchronously from a publish proxy to the event service

with the help of a specific request message that is then routed to the relevant peer

with the algorithm introduced in Section 3.2.2 since the request embeds a unicast

key where elements are RDF terms from the quadruple to index.

1 def receive (compound_event):

2 timestamp = now ()

3

4 for quadruple in compound_event :

5 quadruple . indexing_time = timestamp

6 async_send (PublishQuadrupleRequest (quadruple))

7

8 # creates a meta - quadruple that indicates the number

92 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

9 # of quadruples contained by the compound event

10 meta_quad = create_meta_quad (compound_event , timestamp)

11 async_send (PublishQuadrupleRequest (meta_quad))

Listing 4.2 – Upon reception of a publication on a peer.

Then, when the peer that manages the quadruple terms receives the request

that aims to index the quadruple, it triggers the matching algorithm defined in

Listing 4.3.

Quadruple matching The purpose of the matching algorithm is twofold. First,

it stores the received quadruple q to ensure that delayed subscriptions (i.e. sub-

scriptions injected in the network before the quadruple but indexed after due to

different routing steps) have a chance to be fulfilled. Second, it detects the sub-

scriptions that are fully or partially matched in case the quadruple received is not

a meta-quadruple added by the system. For each subscription S which is detected

to be matched by the new quadruple, the number of sub-subscriptions contained

by S is checked. To have S with more than one sub-subscription A means that

only one part of the whole subscription is matched. When this situation occurs, S

is rewritten into S′ as in CSBV. The rewrite operation consists of creating a new

subscription that does not contain the sub-subscription A which is verified, and

to replace in the remaining sub-subscriptions for S′ the variables from A with the

values from q. Afterwards, S′ is indexed, again, as for S, by considering the first

sub-subscription contained within S′. One additional step has to be considered

during the rewrite operation when the subscription that is analyzed was made

with a Bindings notification listener. Such a listener implies to send back to the

users only the bindings that match the subscription. However, we do not want

to convey the intermediate results from peers to peers when the subscription is

rewritten because the size of a literal associated to a quadruple that has potentially

matched S is not bounded: it could be some bytes or megabytes. For this purpose,

intermediate results are stored on the peer matching the SS and a reference to

that peer along with a hash value identifying the intermediate results is added as

metadata (by using a 128 bits non-cryptographic hash function) to the rewritten

subscription. The hash value allows us to carry an identifier with a small and

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 93

predefined size. Moreover, even if the identifier is unique with a high probability,

a sequence number may be concatenated to guarantee the uniqueness.

1 def receive (publish_request):

2 quadruple = publish_request . quadruple

3 store(quadruple)

4

5 if not is_meta_quad (quadruple):

6 # finds subscriptions that have their first sub - subscription

7 # matched by the quadruple received

8 subscriptions = find_subscriptions_matching (quadruple)

9 for subscription in subscriptions :

10 if quadruple . indexing_time >=

11 subscription . indexing_time :

12 rewrite_or_notify_subscriber (subscription , quadruple)

13

14 def rewrite_or_notify_subscriber (subscription , quadruple):

15 if len(subscription) == 1:

16 notify_subscriber (subscriber , quadruple)

17 else:

18 rewrite_and_index (subscription , quadruple)

19

20 def rewrite_and_index (subscription , quadruple):

21 if subscription . listener_type is BINDINGS :

22 intermediate_result =

23 create_intermediate_result (subscription , quadruple)

24 store(intermediate_result)

25

26 async_send (IndexSubscriptionRequest (rewrite (subscription)))

27

28 def notify_subscriber (subscription , quadruple):

29 # filter the quadruple according to the subscription

30 # type and its variables

31 chunk = filter (quadruple , subscription)

32 async_send (subscription .proxy_url ,

33 NotifyRequest (subscription .id , chunk))

34

35 if subscription . listener_type is BINDINGS :

36 # contact peers that have stored intermediate results

94 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

37 for peer , hash in subscription . intermediate_peers :

38 async_send (peer ,

39 CollectIntermediateResultsRequest (

40 subscription .id , hash))

Listing 4.3 – Upon reception of a PublishQuadrupleRequest by a peer.

In case the number of sub-subscriptions contained by S is one, no more quadru-

ple are necessary to match S. The only thing to do is to notify the subscriber about

a solution by using the right format in line with the original notification listener

type. According to the type of subscription listener used by the subscriber we

trigger different kind of notifications.

In case of a Signal or Compound Event (more detail follow for this last case)

listener, we send back a pair made of the subscription identifier plus the graph

value of the last quadruple that has matched the subscription. However, when

a Bindings listener is used, we replace the graph value by the values associated

to the variables matching the last SS. But, again, to trigger a notification for

Bindings implies an additional operation which involves the different peers that

store the intermediate results. These peers have to be contacted and asked to

return, in parallel, to the subscriber the missing parts of the subscription that

have been matched. Finally, when the different parts of Bindings are collected,

they are merged and the result is passed to the listener before being executed

(cf. Listing 4.4). The delivery is performed when the subscriber has received a

number of solutions equals to the number of result variables contained by the initial

subscription. The Signal case is handled immediately by executing the associated

listener.

To handle Compound Event notification listeners is a bit more complicated.

Previously, we said that when a subscription is fully matched we send back to the

subscribe proxy the graph value only, as for notification listeners of type Signal.

This graph value g is used to query synchronously all the peers that satisfy the

quadruple pattern (g, ?s, ?p, ?o). This operation is repeated periodically until to

receive all the quadruples that made up the CE matching the subscription. In-

deed, a simple query is not sufficient because all the quadruples contained by the

compound event may not be indexed when the last sub-subscription is satisfied

and in this case, notice that these quadruples were not necessary for the matching

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 95

subscription process to succeed. Moreover, we decided not to send quadruples

to the subscriber as soon as they are matching sub-subscriptions for two reasons.

First, only the first SS but not all may be satisfied. In such a case, the intermediate

results are kept by the subscriber and overload it until an unsubscribe operation or

a garbage collection is performed. The latter potentially preventing some events

to be delivered, thus going against requirement R5. The second reason is that the

number of quadruples matching a subscription may be just a subset of the full CE.

Thus, even if intermediate matching quadruples were sent gradually, it would be

necessary to perform an extra step later to retrieve the remaining chunks.

To avoid sending back to the subscribe proxy quadruples that may have already

been received during a previous polling operation, quadruples’ position (index)

from their respective CE list are attached to the ReconstructCompoundEventRe-

quest which is sent. Thanks to this information, only new expected quadruples

are sent back and some bandwidth is saved. The polling period could also be

tuned based on an exponential backoff [139] or inversely proportional to the times

returned by such a function but it is scenario sensitive and specific.

1 def receive (notification):

2 subscription = find_subscription (notification . subscription_id)

3 listener = find_listener (notification . subscription_id)

4 listener_type = type(listener)

5

6 if listener_type is BINDINGS :

7 if get_nb_chunks_received (notification .id) ==

8 subscription . nb_result_vars :

9 chunks = remove_and_merge_chunks (notification .id)

10 if mark_as_delivered (notification .id):

11 listener . deliver (subscription .id , chunks)

12 else:

13 memorize_chunk (notification .id , notification .chunk)

14 elif listener_type is SIGNAL :

15 graph_value = notification .chunk

16

17 # returns False if notification .id already delivered

18 # notification id unique for a given subscription and CE

19 if mark_as_delivered (notification .id):

96 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

20 listener . deliver (subscription .id , graph_value)

21 elif listener_type is COMPOUND_EVENT :

22 ce = reconstruct_compound_event (notification)

23 if ce is not None:

24 listener . deliver (subscription .id ,

25 CompoundEvent (quadruples_received))

26

27 def reconstruct_compound_event (notification):

28 expected_nb_quadruples = -1

29 quadruples_received = set ()

30

31 if not mark_as_delivered (notification .id):

32 return None

33

34 while expected_nb_quadruples == -1

35 or not len(quadruples_received) == expected_nb_quadruples :

36 graph_value = notification . graph_value

37

38 response = sync_send (

39 ReconstructCompoundEventRequest (graph_value),

40 indexes (quadruples_received))

41

42 for quadruple in response . new_quadruples :

43 if is_meta_quad (quadruple):

44 expected_nb_quadruples = get_meta_quad_value (quadruple)

45 else:

46 quadruples_received .add(response . new_quadruples)

47

48 if not len(quadruples_received) == expected_nb_quadruples :

49 sleep(TIMEOUT)

50

51 return CompoundEvent (quadruples_received)

Listing 4.4 – Upon reception of a notification by a subscribe proxy.

Listing 4.4 contains some particular conditions on line 10, 19 and 31 that rely on

a Compare-and-Swap operation to prevent duplicates to be delivered (requirement

R8). Indeed, this first algorithm may suffer from duplicate notifications when an

accept all subscription (i.e. a subscription that matches any event) is handled or

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 97

a CE with objects list (i.e. a CE that contains two or more quadruples that share

the same graph, subject and predicate but different object values) are published2.

This usually happens when there are more than one quadruple from a CE that

satisfy a same sub-subscription. In other words, the issue occurs when we have

a subscription S with n SSs, a CE with q quadruples whose m are matching S

and m > n. When such a case occurs, up to m notifications may be triggered to

the subscribe proxy whereas only one is expected per CE in case the subscriber

subscribes for example with a Signal listener. Also, the condition on line 31 is

essential to avoid several reconstructions for a same CE since the receive and

hence the reconstruct_compound_event operations may be triggered in parallel

by different peers on a subscribe proxy for a same CE due to duplicates.

Indexing a subscription Initially, a subscription is submitted from a user

through a subscribe proxy. As for a publication, a subscription is relayed from

a proxy to a peer which is responsible for timestamping and indexing it. List-

ing 4.6 summarizes the process which is triggered once a subscription is received

by a proxy. First the SPARQL query is automatically decomposed into atomic

or range queries. Listing 4.5 shows an example of the expected pieces to con-

sider for indexing the subscription from Listing 4.1 once it has been decomposed.

The atomic and range queries that result from the decomposition are the smallest

request entities that may be routed by taking advantage of the overlay structure.

1 SS_1 = (?g, ?id , ex:action , "exits")

2 SS_2 = (?g, ?id , foaf:name , ?name)

3 SS_3 = (?g, ?id , foaf:age , ?age) FILTER (? age > 25)

Listing 4.5 – SPARQL subscription decomposition into sub-subscriptions.

After the split of the subscription into pieces, a unique identifier is generated

and the subscription is conveyed to the peer the proxy is aware of as an overlay

entry point. The first peer that receives the subscription sets the indexing times-

2The simplest scenario that leads to duplicate notifications is the one involving two peers
which register an accept all subscription and a publisher that publishes a CE with 2 quadruples
each reaching a different peer. Since the subscription is registered on both peers and quadruples
from a same CE match on two different peers, two notifications are sent towards the subscriber,
which causes duplicates if there are not filtered.

98 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

tamp and routes the subscription asynchronously on the network to all the peers

that match the first sub-subscription. The subscription will be further distributed

among the peers in a chain like fashion. Using the first sub-subscription ensures

that the subscription is indexed at least on a peer that will receive later any pub-

lication that can match this first SS. We also pay attention to use only the SS to

avoid some extra synchronization points, and thus communications compared to

the case where the subscription would be indexed on all the peers matching any of

the SSs. Once decomposed, a subscription is represented by its atomic and range

queries and these share at least one common variable: the graph variable that

represents the CE identifier which is matching the subscription. When common

variables are shared between atomic or range queries, they have to be resolved

as an equi-join. Choosing to resolve sub-subscriptions in parallel would imply a

consensus between some peers due to equi-joins to compute and we think that

this agreement between peers is more expensive (or at least not interesting for the

few number of atomic or range queries a subscription usually embeds) than the

chain-like approach where the synchronization and agreement is implicit.

1 # subscribe on the proxy side

2 def subscribe (sparql_query , listener):

3 subsubscriptions = decompose (sparql_query)

4

5 # the subscribe proxy is remotely accessible to

6 # receive notifications

7 proxy_url = get_subscribe_proxy_url ()

8

9 subscription_id =

10 hash(sparql_query , datetime .now (), proxy_url) + proxy_id

11 subscription =

12 Subscription (subscription_id , subsubscriptions ,

13 proxy_url , type(listener))

14

15 memorize (subscription_id , (subscription , listener))

16 async_send (peer , SubscribeRequest (subscription))

17 return subscription_id

18

19 # subscription received on a peer

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 99

20 def subscribe (subscribe_request):

21 subscribe_request . subscription . indexing_time = now ()

22 # index subscription to all peers matching subsubscriptions [0]

23 async_send (peer ,

24 IndexSubscriptionRequest (subscribe_request . subscription))

Listing 4.6 – Handling a subscription from a proxy to a peer.

Subscription matching Once a peer receives an IndexSubscriptionRequest, it

triggers the matching algorithm defined in Listing 4.7. It is really similar and sym-

metric to the behavior applied for indexing a quadruple. First, the subscription

is stored in the local semantic datastore to ensure that future quadruples match-

ing the subscription have a chance to be detected. Then, a SPARQL query is

built on the fly from the subscription. This query is used to retrieve the quadru-

ples that are matching the subscription. At this step, to find some quadruples

matching the subscription implies that the subscription itself has been delayed

regarding the original timestamps-based order in which it has entered the net-

work. Finally, for each quadruple matching the subscription we apply the method

rewrite_or_notify subscriber. The behavior of this method is exactly the same

as for indexing a quadruple; it either rewrites the subscription into a new one if

some sub-subscriptions still have to be satisfied or it notifies the subscriber about

a solution.

1 def receive (index_subscription_request):

2 subscription = index_subscription_request . subscription

3 store(subscription)

4

5 # query the local semantic datastore

6 quadruples_matching = find_quadruples_matching (subscription)

7

8 for quadruple in quadruples_matching :

9 if quadruple . indexing_time >=

10 subscription . indexing_time :

11 # see Listing 4.3 for details about the next call

12 rewrite_or_notify_subscriber (subscription , quadruple)

Listing 4.7 – Upon reception of a IndexSubscriptionRequest on a peer.

100 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

To summarize, the subscription is distributed among the peers in a chain like

fashion. Thus, the sub-subscriptions contained by the subscription are handled

step by step in the order they appear. A subscription is stored on a peer found

using the fixed parts of the first atomic query, so potentially many peers. Each peer

stores the whole subscription to be able to find the next peers to reach when a sub-

subscription is verified. The peers that store the first sub-subscription are the head

of the chain. This algorithm is designed to transparently handle the common case

and the temporal ordering discrepancy, we refer to as the happen-before relation.

As an improvement, sub-subscriptions could be reordered according to the number

of fixed parts they contain. The peers could also maintain and exchange statistical

information about the most frequently met sub-subscriptions. Thanks to this

information we could reorganize SSs embedded within a subscription such that

the less frequently seen SSs are used first. It should improve the load balancing

and the time to detect non-matching events but not those that fully match a whole

subscription. Therefore, this optimization is left for future work.

Avoiding polling for reconstruction

The first version of the publish/subscribe algorithm we explained has a main short-

coming. The CE listener uses polling for retrieving the quadruples which compose

a CE that satisfies a subscription. Fast polling wastes resources on peers whereas

slow polling increases the delivery time. The first and obvious improvement is to

avoid polling for users that wish to receive the full CEs content (i.e. they have

subscribed with a notification listener of type Compound Event). To carry out

this goal, we propose to use a push mechanism from peers. The push procedure

relies on another type of subscriptions called ephemeral subscriptions. The idea

is to send gradually to the subscribers the multiple quadruples that made up a

CE, this without having to poll periodically from a subscribe proxy to the P2P

network for missing chunks.

To achieve this purpose, the method notify_subscriber introduced in List-

ing 4.3, and some others, have to be edited as follows. Once a subscription S is

matched, an ephemeral subscription is indexed on the right peers. These peers will

asynchronously and lazily notify the client proxy for the different quadruples that

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 101

compose the CE matching S as soon as they arrive. Listing 4.8 summarizes the

basic idea of the algorithm with new parts which are highlighted.

1 # called by any peer that has a subscription matched by an event

2 def notify_subscriber (subscription , quadruple):

3 # When a COMPOUND_EVENT listener is used , the chunk is now

4 # a quadruple and not the event identifier

5 chunk = filter (quadruple , subscription)

6 async_send (subscription .proxy_url ,

7 NotifyRequest (subscription .id , chunk))

8

9 if subscription . listener_type is BINDINGS :

10 # contact the peers that have stored the intermediate

11 # results identified by a hash value

12 for peer , hash in subscription . intermediate_peers :

13 async_send (peer ,

14 CollectIntermediateResultsRequest (subscription .id , hash))

15 elif subscription . listener_type is COMPOUND_EVENT :

16 async_send (

17 IndexEphemeralSubscriptionRequest (quadruple .graph))

18

19 # handle performed on the reception of an ephemeral subscription

20 # on a peer managing it

21 def receive (ephemeral_subscribe_request):

22 store(ephemeral_subscribe_request)

23

24 quadruples =

25 find_quadruples_matching (ephemeral_subscribe_request)

26 # we may have several quadruples indexed on the same peer

27 # that belong to the same CE

28 for quadruple in quadruples :

29 async_send (ephemeral_subscribe_request .proxy_url ,

30 NotifyRequest (ephemeral_subscribe_request .id , quadruple))

31

32 # executed by a peer indexing a quadruple

33 def receive (publish_request):

34 quadruple = publish_request . quadruple

35 store(quadruple)

36

102 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

37 subscriptions = find_subscriptions_matching (quadruple)

38 for subscription in subscriptions :

39 if quadruple . indexing_time >= subscription . indexing_time :

40 rewrite_or_notify_subscriber (subscription , quadruple)

41

42 ephemeral_subscriptions =

43 find_ephemeral_subscriptions_matching (quadruple)

44 for ephemeral_subscription in ephemeral_subscriptions :

45 async_send (ephemeral_subscription .proxy_url ,

46 NotifyRequest (ephemeral_subscription .id , quadruple))

47

48 # method invoked when a notification that embeds a chunk

49 # (i.e. a quadruple or bindings) is received by a subscribe proxy

50 def receive (notification):

51 subscription = find_subscription (notification . subscription_id)

52 listener = find_listener (notification . subscription_id)

53 listener_type = type(listener)

54

55 if listener_type is BINDINGS :

56 if get_nb_chunks_received (notification .id) ==

57 subscription . nb_result_vars :

58 chunks = remove_and_merge_chunks (notification .id)

59 if mark_as_delivered (notification .id):

60 listener . deliver (subscription .id , chunks)

61 else:

62 memorize_chunk (notification .id , notification .chunk)

63 elif listener_type is SIGNAL :

64 graph_value = notification .chunk

65

66 # returns False if notification .id already delivered

67 # notification id unique for a given subscription and CE

68 if mark_as_delivered (notification .id):

69 listener . deliver (subscription .id , graph_value)

70 elif listener_type is COMPOUND_EVENT :

71 quadruple = notification .chunk

72 if not already_delivered (notification .id):

73 # nb_quads_expected is initialized to -1 if not defined

74 # a pair made of two values is retrieved

75 quads , nb_quads_expected =

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 103

76 tmp_store . get_chunks (notification .id)

77

78 if is_meta (quadruple):

79 nb_quads_expected = extract_meta_value (quadruple)

80 else:

81 quads = quads.add(quadruple)

82

83 if len(quads) == nb_quads_expected and

84 mark_as_delivered (notification .id):

85 listener . deliver (subscription .id , CompoundEvent (quads))

86 tmp_store . remove_chunks (notification .id)

87 async_send (RemoveEphemeralSubscriptionRequest (

88 quadruple .graph))

89 else:

90 tmp_store . add_or_update_chunks (notification .id ,

91 (quads , nb_quads_expected))

Listing 4.8 – Pushing compound events to subscribers. New lines or edited parts,

compared to the solution based on polling, are highlighted.

The general behavior of the algorithm remains the same as the one that uses

pushing. A subscription is indexed on several peers and rewritten each time a

new quadruple satisfies it. However, once a peer detects a subscription which can

no more be rewritten, due to the number of sub-subscription which is equal to

one, the peer sends back to the subscriber the chunk that has fulfilled part of

the subscription (i.e. the quadruple that has matched the last sub-subscription

embed by the subscription). In addition, an IndexEphemeralSubscriptionRequest

is sent to all the peers managing the CE identifier (which is equal to the graph

value of any one of the quadruples contained by the CE). Thanks to ephemeral

subscriptions, the quadruples that are part of a CE matching a subscription, but

not involved in the matching, can be tracked down. The detection is done when

an ephemeral subscription is indexed and when a peer indexes a new quadruple.

Both sides are required to guarantee correct delivery against delayed packets, as

already explained for the default subscriptions.

The last update affects the proxy which is in charge of receiving the notifica-

tions. Each time it receives a chunk, which corresponds to a quadruple, it checks

whether the quadruple is a meta-quadruple or not. The meta-quadruple is, as we

104 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

already explained, a quadruple that is automatically added to a CE when it is

created. This particular quadruple denotes, the number of quadruples contained

by the compound event the proxy is in charge of regenerating. Thus, when a

quadruple is analyzed as a meta-quadruple, its object value denotes the number

of quadruples which is expected before delivering the CE. While the number of

intermediate chunks received is different of the expected number of quadruples, the

quadruples are stored in a temporary datastore. Otherwise, a new CE is delivered

after having reconstructed it from the multiple chunks that are then removed from

the temporary datastore. Finally, a message is sent asynchronously to all the peers

that were indexing the ephemeral subscription in order to remove it. This request

should be supplemented by a periodic garbage collection operation, performed on

each peer, to remove the ephemeral subscriptions that should have expired. This

ensures that no memory or disk leak occurs due to remove requests that may never

reach the peers if a brutal failure occurs on a proxy.

This second version avoids polling but has a cost, that of maintaining more

states per peer and performing new actions on the reception of a quadruple, a sub-

scription or an ephemeral subscription. Also, an ephemeral subscription must not

be removed before a subscriber has received and delivered the associated CE. Thus,

to decrease the search space at each ephemeral matching operation, a garbage col-

lection is required, which is not free.

Polling vs Pushing We are now comparing polling and pushing to see what

could be the tradeoffs, especially according to the subscription and CE size. A

common case where we don’t have subscription of type accept all neither CE with

objects list nor ordering issue is assumed. Also, method calls can be made in

parallel. To compare the two solutions we identified the following parameters:

• l, the subscription chain length (number of SS);

• tci, the average time to route a request inside the P2P network;

• tco, the average time to forward a request from a proxy to a node in the P2P

network or from a peer to the outside;

• tm, the average time to match a subscription or an ephemeral subscription;

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 105

• q, the CE size (i.e. number of quadruples);

• x, the number of poll actions required to reconstruct a full CE;

• tp, the polling period.

Both methods differ on how a CE that satisfies a subscription is reconstructed

and delivered to the corresponding subscriber. However, they perform the same

steps to detect whether a CE satisfies a subscription. A rough estimation of the

time required to perform the common steps, referred to as Tdetect_matching, is given

first. This time can be simplified as the sum of the time required to index a

subscription, index a CE and rewrite the initial subscription until the moment

when we have the last SS that matches a quadruple from the CE which has been

indexed.

Tdetect_matching = Tindex_subscription + Tindex_ce + Trewrite_subscription (4.2)

Indexing a subscription or a compound event requires to forward a payload

from a proxy to a peer before a request is routed inside the P2P network, thus

requiring tco + tci each. Although a CE contains q quadruples, only tci is required

because quadruples are dispatched in parallel. Once indexing is done, l−1 rewriting

steps are triggered by assuming the CE satisfies the original subscription (not all

quadruples from a CE is matching the subscription). Therefore, the rewriting

operations requires (l − 1) ∗ (tm + tci) + tm.

Tindex_subscription = tco + tci = Tindex_ce (4.3)

Trewrite_subscription = (l − 1) ∗ (tm + tci) + tm (4.4)

Tdetect_matching = 2 ∗ tco + l ∗ (tm + tci) + tci (4.5)

Hence, a rough estimation of Tdetect_matching is 2 ∗ tco + l ∗ (tm + tci) + tci. Now

that the time to detect a matching is known, we start to assess the overall time

required to deliver an event with respectively polling and pushing. Again, the

times are decomposed as the sum of simpler ones for the sake of the explanations.

106 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

Tdelivery_polling = Tdetect_matching + Tnotify_ce_id + Treconstruct_polling (4.6)

Tdelivery_pushing = Tdetect_matching + Tnotify_subscriber+
Tindex_ephemeral_subscription + Thandle_ephemeral_subscription

(4.7)

Let’s start with Tdelivery_polling. The first time Tdetect_matching is the one de-

scribed above while Tnotify_ce_id corresponds to the time that is consumed to for-

ward the graph value to the subscribe proxy in one hop, which is tco. Finally,

for Treconstruct_polling, x ∗ (tco + tci + tp) − tp is needed for sending the request and

x∗(tci+tco) for routing back the answer, hence leading to 2x∗(tco+tci)+tp∗(x−1).
As a result, the reconstruction time required when polling is used is given by

tco ∗ (2x + 3) + tci ∗ (l + 2x + 1) + tp ∗ (x − 1) + l ∗ tm.

Tnotify_ce_id = tco (4.8)

Treconstruct_polling = 2x ∗ (tco + tci) + tp ∗ (x − 1) (4.9)

Tdelivery_polling = tco ∗ (2x + 3) + tci ∗ (l + 2x + 1) + tp ∗ (x − 1) + l ∗ tm (4.10)

By applying the same reasoning to compute Tdelivery_pushing, we find that tco is

required for Tnotify_subscriber in order to send back to the subscriber the quadruple

from the CE that satisfies the last SS. Indexing the ephemeral subscription is a re-

quest sent asynchronously without future. For this reason Tindex_ephemeral_subscription

consumes tci. Then, to compute Thandle_ephemeral_subscription we assume the worst

case. Since the matching has been detected and an ephemeral subscription indexed,

at least q − l quadruples have been received by peers but only one is received by

the subscriber. In other words, at most q − 1 matchings with an ephemeral sub-

scription are still required to reconstruct the full CE and the same number of

tco to send back the chunks. Consequently, (q − l) ∗ (tm + tco) is required for

Thandle_ephemeral_subscription. Once times are added we get tco ∗(q − l)+ q ∗ tm + l ∗ tci

for Tdeliver_pushing.

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 107

Tnotify_subscriber = tco (4.11)

Tindex_ephemeral_subscription = tci (4.12)

Thandle_ephemeral_subscription = (q − l) ∗ (tm + tco) (4.13)

Tdelivery_pushing = tco ∗ (q − l) + q ∗ tm + l ∗ tci (4.14)

Now, we write an inequality between Tdelivery_pushing and Tdelivery_polling to see

under which value for x pushing is performing better than polling. Below is the

result we get with the parameters introduced previously.

Tdelivery_pushing < Tdelivery_polling (4.15)

tco ∗ (q − l) + q ∗ tm + l ∗ tci < tco ∗ (2x + 3) + tci ∗ (l + 2x + 1)
+ tp ∗ (x − 1) + l ∗ tm

(4.16)

x ∗ (−2tci − 2tco − tp) < tco ∗ (l − q + 3) + tm ∗ (l − q) − tp + tci (4.17)

x > tco ∗ (l − q + 3) + tm ∗ (l − q) − tp + tci

−2tci − 2tco − tp

(4.18)

Figure 4.3 depicts the possible values for x when we set parameters to m = 1,

tci = 12, tco = 80, tp = 500 according to experiments and vary the number of

quadruples per CE along with the subscription size. In that case we get f(l, q) =
(81∗ l−81∗q−248)/−684 and Tdelivery_pushing < Tdelivery_polling when x > f(l, q). In

conclusion, the figure allows to deduce that the difference of performance strongly

depends of the CE size whereas the subscription length has much less effect since

the plan sketched by f(l, q) is inclined and its slope mainly depends of parameter

q. Also, the larger CE size is, the higher the number of poll operations is required

to have pushing that beats polling. This suggests that pushing is beneficial for

moderate CE sizes.

Unsubscribing Regarding a subscription S composed of l sub-subscriptions, to

perform an unsubscribe operation consists of removing the indexed subscription S,

the subscriptions originating from S (due to rewrite operations), the intermediate

108 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

2 4 6 8 10 1214 1618 20

5101520253035404550

0
2
4
6
8

f(l,q)

f(l,q) = (81*l - 81*q - 248) / -684

lq

Figure 4.3 – Theoretical comparison between polling and pushing (Tdelivery_pushing <
Tdelivery_polling when x > f(l, q)).

results if the original subscription requires to receive notifications as Bindings, and

finally invalidating some caches used to improve access time to subscriptions.

To reach all the peers that contain the information to remove, two solutions

are possible. Either an unsubscribe request is routed by following the path used

to index S and each rewritten subscription S′, S′′, ..., S(l−1) recursively (each sub-

scription has an identifier and rewritten ones know the identifier of their originator)

or, it is possible to send an unsubscribe request to each sub-subscription directly.

Indeed, each rewritten subscription is subsumed by a sub-subscription from S.

The former solution is interesting because a rewritten subscription S′′ is sup-

posed to contain less variables than S′, hence the longer the chain is, the lower the

number of peers to contact. However, it implies routing many requests. Suppos-

ing that n compound events have matched S, n × (l − 1) rewritten subscriptions

are indexed and the same number of unsubscribe requests must be forwarded. In

contrast, the latter solution needs only l − 1 requests to reach the necessary peers

but because it uses the sub-subscriptions from S which have not been rewritten

the set of peers to multicast is greater.

Finally, an unsubscribe operation is not atomic due to the multiple peers to

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 109

reach for updating their state. While an unsubscribe request is handled, the state

of the subscribe proxy must be updated and a simple test added in the method

called for receiving the notifications. The purpose of this update is to discard the

notifications which are received for a subscription for which an unsubscribe request

has been initiated.

OSMA

Regardless of the variant based on the first algorithm (polling or pushing) when a

CE is published, the matching is not performed in parallel. Rather, it is initiated

by the peer which stores the first SS. Let’s say a subscription contains more than

one SS, the matching with the second SS is not performed while the first SS is

not satisfied, thus incurring a sequential evaluation. To alleviate this issue, we

propose a second algorithm, called OSMA, which allows for parallel matching of

same sub-subscriptions while avoiding the chain like approach.

The basic idea behind this second algorithm is to reduce the time spent to

match a subscription by removing when possible the chain we had in the first

algorithm and thus reducing the number of messages that are exchanged between

peers. This version is optimized for the general, and hopefully most common case,

where operations from a same proxy are received by peers in the same order they

have been published. However, the new mechanism introduced with this algorithm

can handle the temporal ordering issue, at a cost. In this new scheme, subscriptions

and publications are handled as described in Listing 4.9. When a new CE is

published, it is indexed by sending its whole content to each of the peers managing

each one of the quadruples it contains. On the contrary, the subscriptions are still

indexed as with the previous variants of the algorithm by forwarding a subscription

to all the peers managing only one of the sub-subscriptions and for example, the

first one. This behavior ensures that the matching between subscriptions and

publications is performed locally without additional steps in the optimistic case

where a subscription sent from a proxy before a publication is indexed before the

publication. However, the local matching is performed at the extra cost of some

more data to convey on the network. To choose only one sub-subscription for

indexing the subscription is a sufficient condition because at least one quadruple

110 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

from a CE published through a proxy will reach the peer that contains the sub-

subscription, if the CE is supposed to match the overall subscription. Upon the

reception of a publication, a peer stores only the quadruple which has been used

for routing the full CE, not all the quadruples. This ensures that at the end the

quadruples from a same CE are eventually distributed on several peers as in the

first algorithm. However, the full CE is also carried by the publication request to

improve the time to detect the subscriptions which are satisfied. Therefore, just

after the storage of the quadruple which has been received, we try to detect the

subscriptions which are matched by using the full CE. However, a notification is

sent back if the publication we are manipulating is not part of a CE which has

already been handled. This condition is essential to ensure that two quadruples

from the same CE indexed on the same peer and matching a same subscription do

not generate duplicate notifications. Then, for each subscription found, we trigger

a OneStepNotifyRequest to send back to the subscriber the chunks it is interested

in.

Avoiding duplicates Similarly to the first algorithm, duplicate notifications

may be generated. To prevent duplicates and ensure that only one peer sends

the notification with this second algorithm, we apply the following rule. A peer

notifies a match if and only if it is responsible for the first of the matching events

contained by the CE. Let consider for the sake of the explanations a 2-dimensional

CAN network with two peers. In this context, quadruples and SSs are pairs made

of two values. Duplicates are possible if we have for instance S = (?x, r) and a

compound event CE = (q1, q2, q3) so that q1 = (d, d), q2 = (s, r) and q3 = (g, r). As

depicted by Figure 4.4, in that case the subscription is indexed on both peers. Since

q2 and q3 are satisfying S, if the rule to avoid duplicates is not applied, each peer

notifies independently the subscriber with the full CE. When the responsibility is

checked, duplicates are prevented because q2 which is indexed on the right side

peer is the first quadruple in the CE list that matches S which is not the case for

q3. Consequently, the left side peer does not trigger a notification which avoids

duplicates.

It is worth notice that the chain approach from the first algorithm is still used

during the indexing of a subscription when it is detected as delayed regarding some

4.2. PUBLISH/SUBSCRIBE INFRASTRUCTURE FOR RDF 111

r q3 q2

q1

(a,a) (z,a)

(a,z) (z,z)

CE

Figure 4.4 – Subscription (blue line) and CE (green boxes) mapping leading to
duplicates.

quadruples. This means that the subscriptions that are detected as matching a

CE during the indexing of a publication may be a non-rewritten subscription or

a rewritten subscription. The later case occurs when a subscription S published

before a CE matching S is indexed between for example two quadruples of the same

CE (q1 → S → q2). When S is indexed on the peer that contains q1, q1 is detected

as matching S and S as delayed. Thus, S is rewritten by applying the same

algorithm as for other variants. A full (one step) matching cannot be performed

because we don’t have the entire compound event. However, when q2 is received

with a PublishQuadrupleRequest, because we have at our disposal the full CE, we

are able to short-circuit the chain algorithm to send back to the subscriber the right

information. This is done implicitly by sending a OneStepNotifyRequest on line

35-36, regardless the subscription type (rewritten or not). Finally, if a subscription

S is delayed and indexed after all the quadruples of a same CE matching S, then

the chain algorithm is recursively applied on the rewritten subscriptions and as for

the algorithm variant based on pushing, some ephemeral subscriptions have to be

handled for CE listener.

1 # upon reception of a publication on a peer

2 def publish (compound_event):

3 indexing_time = now ()

4 # set timestamp on each quadruple contained by the CE

112 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

5 compound_event . set_indexing_time (indexing_time)

6

7 for quadruple in compound_event :

8 # request carrying the full compound event to each peer

9 # managing a quadruple from the compound event

10 async_send (

11 IndexPublishQuadrupleRequest (compound_event , quadruple))

12

13 # the meta - quadruple is required in case we fallback to CSMA

14 # due to ordering issues

15 meta_quadruple =

16 create_meta_quad (compound_event , indexing_time)

17 async_send (PublishQuadrupleRequest (meta_quadruple))

18

19 # upon reception of an index publish quadruple request

20 def receive (publish_request):

21 compound_event = publish_request . compound_event

22 quadruple = publish_request . quadruple

23

24 store(quadruple)

25

26 subscriptions = find_subscriptions_matching (compound_event)

27

28 for subscription in subscriptions :

29 # create notification content according to the

30 # subscription type and variables

31 chunks = filter (compound_event , subscription)

32 # notifies a match if and only if the peer is responsible

33 # for the first quadruple matching the first sub - subscription

34 if responsible (subscription , compound_event):

35 async_send (subscription .proxy_url ,

36 OneStepNotifyRequest (subscription .id , chunks)

37

38 # handle ephemeral subscriptions that are waiting for

39 # a result due to the ordering issue

40 ephemeral_subscriptions =

41 find_ephemeral_subscriptions_matching (quadruple)

42 for ephemeral_subscription in ephemeral_subscriptions :

43 async_send (ephemeral_subscription .proxy_url ,

4.3. EVALUATION 113

44 NotifyRequest (ephemeral_subscription .id , quadruple))

45

46 # upon reception of a notification on a subscribe proxy

47 def receive (notification):

48 subscription = find_subscription (notification . subscription_id)

49 listener = find_listener (notification . subscription_id)

50 listener_type = type(listener)

51

52 # the notification which is received contains all the necessary

53 # chunks due to a matching performed in one step

54 if type(notification) is OneStepNotifyRequest :

55 # create the result to deliver according to

56 # the type of the notification listener

57 result = create_result (notification , listener .type)

58 listener . deliver (subscription .id , result)

59 async_send (

60 RemoveEphemeralSubscriptionRequest (

61 notification . quadruples [0]. graph))

62 else:

63 # same as Listing 4.8 from line 55 to 91

Listing 4.9 – Publishing and subscribing with OSMA. Only methods which have

been edited compared to CSMA are showed. Parts that differ are highlighted.

The main benefit of this second algorithm is the expected low latency for

subscribers. As soon as the CE reaches the peer responsible for the first matching

event, a notification is triggered. Also there is no need for a reconstruction phase

because the Compound Event can be directly sent to the subscriber. However,

this is done at the cost of bandwidth since the whole Compound Event is sent

to multiple peers. Besides, note that this second algorithm cannot deal with the

situation where a subscription is created before an event but reaches a peer after.

Correctly managing this case requires falling back to CSMA, which we do.

4.3 Evaluation

The experiments introduced hereafter have been performed on 29 nodes of the

Grid’5000 testbed. Each machine embeds a Xeon E5520 @ 2,26 GHz with 32

114 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

GB RAM, a hard disk drive at 7200 RPM. The partition used for data storage is

an EXT3 partition mounted with options noatime and nobarrier for performance

reasons. Java 7 was used with JVM option -server. Each result is the average

execution on 6 runs where the first run is laid aside due to JVM warmup.

The workload we have used is made of x synthetic events and y subscriptions

that are generated to be distributed uniformly among the available peers. This

allows us to evaluate the performance of the algorithms when the number of peers

involved is the largest. Subscriptions are generated to embed k quadruple pat-

terns of the form (?g, ?s1, p1, ?o1) ∧ (?g, ?o1, p2, ?o2) ∧ . . .∧ (?g, ?ok−1, pk, ?ok).
Compound Events are generated to evenly match subscriptions by affecting ap-

proximatively the same number of quadruples per peer. Although quadruples are

synthetic, the distribution is not perfect due to the graph value that is shared

among quadruples from a same CE but also because CEs are generated to match

path queries.

Before entering into the explanation of the different experiments we made, it

is worthwhile to explain the different values we have measured and which ones

we retain to compare algorithms. Figure 4.5 summarizes a simple benchmark

configuration where one publisher publishes N compound events and a subscriber

subscribes to consume all the events published. Publications are indicated as

p1, ..., pN , notifications as n1, ..., nN while Tp(pi) and Td(ni) represent respectively

the time at which the publication i has been published from the publisher and

the time at which notification ni has been delivered on the subscriber. With this

simple configuration we have defined several metrics to compare the performance

of the algorithms:

End-to-End throughput gives the number of events handled per unit of time

from an end-to-end perspective. Mathematically, it is defined by computing

the formula N/(Td(nN) − Tp(p1)) where Td(nN) − Tp(p1) is the time elapsed

between the first publication from the publisher Tp(p1) and the last notifi-

cation received on the subscriber Td(nN).
Subscriber throughput gives the number of events handled per unit of time

from a subscriber point of view. It is computed as N/(Td(nN)−Td(n1)) where

Td(nN) − Td(n1) is the time elapsed between the first notification received

4.3. EVALUATION 115

by the subscriber Td(n1) and the last notification received by the subscriber

Td(nN).

Point-to-Point latency gives an idea of the average latency required for an event

to be published, handled by the brokering system and delivered to the sub-

scriber. It is computed with the formula (N∑
i=1

Td(ni) − Tp(pi)) /N .

Each measurement is valuable and shows a critical characteristic of the sys-

tem. Although all measurements are computed, we consider mostly the subscriber

throughput in the following experimentations in order to keep the explanations

concise.

In the first experiment we evaluate the effect of increasing the network size.

For this purpose we place one peer per machine and vary the total number of

peers from 1 to 25. There is only one subscriber with a subscription made of k = 5

patterns. One publisher publishes 3 × 103 CEs, each one containing 5 quadruples

for an approximate size of 670 Bytes. Figure 4.6(a) depicts the average subscriber

throughput, i.e. the throughput perceived on the subscriber when the network

size is increased. OSMA outperforms CSMA by a factor of 5.43 according to the

median value. This difference is explained by the matching which is performed

in one step with OSMA whereas CSMA requires a number of steps equals to the

number of SS contained by a subscription that is satisfied, thus, increasing the

number of routing steps required.

In a second experiment we evaluate the effect of varying the number of publi-

cations. Figure 4.6(b) shows that the throughput on the subscriber is constantly

increasing with OSMA when the number of publications increases. This is because

the overlay is not working at its full capacity when x = 30×103 CEs are published.

On the contrary, with CSMA, the subscriber throughput decreases quickly with the

number of publications. This behavior is explained by the reconstruction process

which overloads peers with requests, slowing the publications and the notifica-

tions. Because the time required to complete the experiments is too large when

more than 21000 CEs are published with CSMA, some values are omitted.

The third experiment evaluates the impact of varying the number of subscrip-

tions registered in the system. The scenario consists in one subscriber subscribing

116 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

P2P Network

Publish
Proxy

Subscribe
Proxy

Tp

Td

pN

pi

p1

n1

ni
nN

Figure 4.5 – Possible measurements to evaluate and compare the proposed pub-
lish/subscribe algorithms.

with various number of subscriptions. The subscriptions are generated to match

when possible an equal number of Compound Events.

Figure 4.6(c) shows the subscriber throughput for 1 to 60 subscriptions. With

OSMA the throughput decreases almost linearly with the number of subscriptions

in the system. The reason lies in the indexing of the subscription. Since it relies on

the first sub-subscription which contains only a predicate as fixed term, only half

of the peers of the overlay are actually participating in the matching. Also, some

of them have multiple subscriptions to check for each Compound Event received,

which is a costly operation with the underlying storage engine we are using. On the

contrary, CSMA remains almost stable with a throughput that varies around 92

CEs per second. This effect may be explained by the rewritten subscriptions that

are generated once a first sub-subscription is satisfied. A rewritten subscription

contains in our case more fixed parts than its parent and is indexed against po-

tentially less and on different peers, thus, increasing the number of peers involved

in the matching.

In a fourth experiment we test the effect of varying the number of peers when

selective subscriptions are replaced by a subscription that accepts all events (cf.

Figure 4.6(d)). In such a situation, all peers index the subscription represented

by the SPARQL query SELECT ?g WHERE { GRAPH ?g { ?s ?p ?o }}. As ex-

4.3. EVALUATION 117

 0

 50

 100

 150

 200

 250

 300

 350

1 5 9 13 17 21 25

S
u
b
sc

ri
b
er

 t
h
ro

u
g
h
p
u
t

(c
o
m

p
o
u
n
d
 e

v
en

t/
s)

Number of peers

CSMA
OSMA

(a) Impact of overlay size. 3000 CEs pub-
lished, one subscription of k = 5 quadruple
patterns.

 0

 100

 200

 300

 400

 500

 600

3000 9000 15000 21000 27000 30000

S
u
b
sc

ri
b
er

 t
h
ro

u
g
h
p
u
t

(c
o
m

p
o
u
n
d
 e

v
en

t/
s)

Number of compound events published

CSMA
OSMA

(b) Impact of the number of publications.
25 peers, one subscription (k = 5).

 50

 100

 150

 200

 250

 300

1 10 20 30 40 50 60

S
u
b
sc

ri
b
er

 t
h
ro

u
g
h
p
u
t

(c
o
m

p
o
u
n
d
 e

v
en

t/
s)

Number of subscriptions

CSMA
OSMA

(c) Impact of the number of subscriptions.
25 peers and 3000 CEs published.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 5 9 13 17 21 25

S
u
b
sc

ri
b
er

 t
h
ro

u
g
h
p
u
t

(c
o
m

p
o
u
n
d
 e

v
en

t/
s)

Number of peers

CSMA
OSMA

(d) Scalability with one accept-all subscrip-
tion. 3000 CEs published.

 0

 20000

 40000

 60000

 80000

 100000

3000 9000 15000 21000 27000 30000

T
im

e
to

 s
to

re
 a

ll
 C

E
s

(m
s)

Number of compound events published

CSMA
OSMA

(e) Time to store publications on peers. 25
peers, no subscription, 25 quadruples per
CE.

Figure 4.6 – Performance comparison of CSMA and OSMA.

118 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

plained in Section 4.2.3, CSMA generates a lot of duplicate notifications in this

situation, which limits the scalability. Since OSMA always performs a single noti-

fication, the throughput increases with the number of peers.

In a penultimate experiment, we measure the time taken to store different

number of publications with no subscription registered on peers. Results are de-

picted on Figure 4.6(e). Unlike previous experiments CE size is increased to 25

quadruples. The time required to complete benchmark runs is directly related

to the bandwidth consumption since no matching is performed. Indeed, the only

difference between the two algorithms with this configuration is the quantity of

information conveyed from peers to peers. The time to store the published events

quickly differs between CSMA and OSMA when the number of publications in-

creases from 3000 to 30000. It confirms that OSMA requires more time than

CSMA to forward events to peers that are responsible to store quadruples. Thus,

it will require more bandwidth than CSMA.

Finally, we compare CompoundEvent, Binding and Signal listeners on a eight

peers configuration. When OSMA is used, we get that subscribing with a Binding

or Signal listener never increases performances by more than 3% compared to the

case where a CompoundEvent listener is used. The reason lies in the fact that

OSMA applies almost the same scheme whatever the listener used is. The clear

difference is the size of the answer sent back from peers to subscribers. Since our

configuration uses gigabit Ethernet, it explains the small effect. Scenarios with

limited bandwith between subscribers and peers will most probably benefit from

choosing the right listener according to their needs. The impact is much different

when CSMA is used because the actions but also the number of communications

required to notify solutions greatly differ. Our tests show that using a Signal or

Binding listener increases the subscriber throughput by at least 5, thus strength-

ening the reason to have different subscription listeners.

In conclusion, the experiments show that OSMA outperforms CSMA in terms

of throughput and scalability at the cost of a higher bandwidth consumption. Its

only limitation is that it cannot enforce the happen-before relation and hence,

depending on the use case, some applications will have to rely on CSMA.

4.3. EVALUATION 119

Summary

In this chapter we have introduced a publish/subscribe infrastructure based on the

RDF data model and SPARQL filter model. Subscribers can express their interests

using a subset of the SPARQL language and events are published as RDF data. We

rely on a multi-dimensional indexing space and lexicographical order to distribute

both the publications and subscriptions on an overlay. Compared to previous

works, our scheme does not require multiple indexing of the same publication,

thus reducing the storage space. We have proposed two algorithms for matching

subscriptions with events. The first one, CSMA, is based on the canonical chain

approach. It reduces the bandwidth used when publishing at the cost of a longer

matching time. It can also handle ordering issues which can happen when a same

client submits both publications and subscriptions. The second one, OSMA, uses a

fully distributed approach which leads to good performance at the cost of a slightly

heavier publication process. To summarize, the different properties of the two

algorithms are presented in Table 4.1. Both algorithms have been experimentally

tested for throughput and scalability.

Routed
Element

Matching
Steps

Duplicates
Happen-
Before

CSMA
Individual
quadruples

Multiple,
Chain-like and
Reconstruction

Yes, filtering
required

Enforced

OSMA
Whole

Compound
Event

Single No
Requires
CSMA

Table 4.1 – Comparison of the two publish/subscribe algorithms proposed.

120 CHAPTER 4. DISTRIBUTED RDF PUBLISH/SUBSCRIBE

Chapter 5

Distributed RDF Load Balancing

Contents
5.1 Related Work . 122

5.1.1 Static load balancing . 123

5.1.2 Dynamic load balancing 128

5.2 Load Balancing Solution 131

5.2.1 Options and choices . 132

5.2.2 Strategies . 139

5.3 Evaluation . 141

In the previous chapters we have introduced a solution for respectively storing,

querying RDF data and selectively disseminating RDF events. In this context,

RDF information used for the experiments was synthetic because our desire was

to assess the throughput of our solutions when the system works at its maximum

capacity. However, real RDF data is highly skewed and it affects how information

may be shared between nodes. The issue is caused by some RDF terms that are

more frequent than others, especially predicates. Usually, hashing is employed to

enhance distribution however this last is pointless when the imbalance is caused by

popular terms since the same inputs produce the same hash values. This chapter

introduces a solution to distribute fairly, with our architecture, RDF data which

experiences a high degree of skewness. First, we introduce some related work about

121

122 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

load balancing in structured P2P networks to describe common strategies. Then,

we position ourselves and we describe our solution by identifying what are our

criteria and the different mechanisms involved. Finally, we conclude with some

experiments which assess the utility of our solution with real workloads.

5.1 Related Work

Load balancing is at the heart of many P2P works to address the performance

issues that stem from load imbalance on peers. Imbalances may be caused by

an unfair partitioning of network identifiers between peers, frequent arrival and

departure of peers but also the heterogeneity in terms of bandwidth, storage and

processing capacity between machines where peers are deployed. Other reasons

can be related to the variation of size, popularity and lexicographic similarities

among resources handled by P2P networks (the last three being critical with RDF

data). The work that consider this area of research can be classified into two

main groups: static or dynamic. In the former, the system load is assumed stable.

No continuous insertions or deletions are performed and queries remain similar.

Solutions are sometimes based strictly on a fixed and preconfigured set of rules.

Furthermore, churn is often evicted and the load balancing decision is assumed to

be taken during the join of a peer. The latter enables decisions and adaptations at

runtime while taking into account endless data insertions but also turnover among

peers, namely arrival and departure.

In structured P2P networks, peers manage part of a common identifier space,

which is a circle segment, an hypercube subset or a subtree. Usually, resources

or data that have to be indexed into the network are assigned to an identifier

from the common identifier space to enable routing based on the range a peer is

responsible for. This identifier can be the data itself or a hash value associated

to the information when a DHT or consistent hashing are at the basis of the

indexing scheme. Eventually, the information is indexed on the peer managing the

resource identifier. To address load balancing issues in structured P2P networks,

especially regarding the distribution of data, several load balancing strategies have

been proposed based on replication or relocation. The model followed by the

strategies usually consists in controlling resources location, peers location or both.

5.1. RELATED WORK 123

However, many variants are conceivable based on indirections, identifiers or range

space reassignation and virtual peers1. Besides, designing a load balancing solution

requires to consider additional parameters such as the overload criteria to take into

account, how overload is detected and how load information is exchanged. This

variety of parameters has led to the definition of multiple solutions that sometimes

differ by minor but subtle changes. Hereafter are introduced some solutions we

find relevant in our context.

5.1.1 Static load balancing

Rao et al.

In [140] the authors suggest three different strategies based on virtual peers to

address the issue of load balancing in P2P systems that provide a DHT abstraction.

As the load balancing issue is hard to address in its full generality, they make

the assumption that the load imbalance is due to the lack of one resource only:

storage, bandwidth or CPU. Moreover, their solutions are supposed to transfer

the load between highly loaded and lightly nodes by moving virtual peers only

and the load on virtual peers is assumed stable during the execution of their load

balancing scheme. Furthermore, the system is considered static in the sense that

peers do not join and leave the system continuously.

Their first scheme called one-to-one involves two peers to decide whether a

load transfer must be performed or not. The process is basic and simply consists

of contacting a randonly chosen peer. If the peer that received the message is

heavily loaded, then a transfer may take place between the two nodes. The second

scheme relies on directories indexed on top of the existing overlay. These directories

form a meta overlay where each directory, indexed on a node, is in charge of

maintaining the load that may be reported. Load information about virtual peers

is piggybacked by periodic advertisements sent from lightly loaded nodes. The

assignment between light nodes and directories does not change over time, as the

1Virtual peers is an abstraction for several peers hosted on a same physical node/machine.
Traditionally in a P2P network, a peer is a node or machine. On the contrary, a virtual peer is
a peer that can be deployed with some other virtual peers on the same physical node. Upon the
detection of an underloaded or overloaded peer, virtual peers are reassigned to other nodes in
order to maintain the machine load under a given threshold.

124 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

number of directories is static. Periodically, the heavy nodes also report virtual

peers load to their specific assigned directory. This request is also used as a

sampling request to examine the directory where the load is reported. Indeed,

once a directory receives a sampling request from a heavily loaded node, it looks at

the local entries reported by lightly loaded nodes to find the best virtual peer that

can be transferred from the heavily loaded node to a lightly loaded node contained

by the directory. Thus, in contrast to the first scheme, this one-to-many approach

considers several lightly loaded nodes to make the transfer decision. Their third

variant extends the first two by matching many heavily loaded nodes to many

lightly loaded nodes. Similarly to the second scheme, directories are used. Each

node reports periodically its complete load information to a given directory. Once

a directory has received enough information from nodes, it triggers a three phases

algorithm that consists of a) transferring virtual peers from heavily loaded nodes

to a global pool; b) reassigning virtual peers from the pool to lightly loaded nodes

without creating any new heavily loaded nodes; c) dislodging virtual peers that

have not been reassigned during phase b by swapping the largest virtual peer (in

terms of load) from the pool with a lightly loaded node and coming back to step

b while some entries remain in the global pool.

Their simulation results show that the first two approaches are able to balance

the load within 80% of the optimal value and the third based on many-to-many

sampling can achieve 95% of the optimal value. However, these results are achieved

by performing several load balancing rounds, from around 50 with the best scheme

to 20000 with the worst scheme depicted by the one-to-one strategy, but no indi-

cation is given regarding the convergence in terms of execution time.

Bayers et al.

In [141] the authors investigate the direct applicability of the power of two choices

paradigm [142] on the Chord P2P network for addressing load imbalances in terms

of items per peer. The authors debate over the approach taken in the original

Chord paper that consists of using virtual peers. They make an analogy with

the standard balls and bins problem [143] with n items and n peers to show that

even with perfectly uniform assignments of the circle segments to peers, the load

5.1. RELATED WORK 125

remains unbalanced. In addition, they claim that using at least O(log n) virtual

peers per node leads to a high number of neighbors to maintain per peer which

is not acceptable due to heartbeat messages that are exchanged periodically to

detect failures.

The scheme they apply to balance the load between peers can be summarized

in a few lines. The node that wishes to insert an item applies d hash functions on

the item key and gets back d identifiers (each hash function is assumed to map

items onto a ring identifier). Afterwards, a probing request is sent in parallel for

each identifier from the identifiers computed previously and the peers managing

the identifiers answer with their load. Once load information is retrieved, the

peer with the lowest load is adopted for indexing the item. The lookup operation

from an item key is similar to the insertion and consists of querying the d peers

whose at most one will successfully locate the item. While the search operation is

parallelizable, the authors are concerned about the network traffic caused by get

operations and propose a simple variant. In addition to storing the item at the

least loaded peer pi, this variant consists of adding a redirection pointer to pi on

all other peers pj where j ≠ i. Thus, a lookup can be achieved by using only one

hash function among d at random. The experimental results show that using two

hash functions (d = 2) is enough to achieve a better load balancing with their two

choices strategy rather than using a limited number of virtual peers and provides

almost the same benefits as using an unlimited number of virtual peers. However,

their context is restricted to items with equal size and popularity. Moreover, the

proof they give about the maximum load expected on a peer with high probability,

when the two choices method approach is used, rests upon the previous mentioned

restriction and the fact that items are inserted sequentially. In the paper it is not

very clear whether this restriction holds for all the introduced properties or not.

Last but not least, to ensure recovery from crashes but also to prevent expensive

mechanisms for keeping references up to date in case of churn, the variant of their

insertion scheme that uses redirection pointers assumes a soft state approach (i.e.

the keys and their value are periodically re-inserted) which limits the applicability

of their solution.

126 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

Meghdoot

Closer to our work in terms of network topology considered, the authors exploit

in [126] the characteristics of CAN and their publish/subscribe system (Meghdoot)

properties to balance the load when new peers are admitted into the system. They

distinguish subscriptions load from events load given that they have to be handled

differently. In the former case, subscriptions load on that peer is proportional to the

number of subscriptions stored on it. Reducing the number of subscriptions on a

peer decreases the load of that peer. Thus, their idea is to split the peer zone so that

the number of subscriptions is evenly divided with the peer that joins. The latter

case addresses the load imbalance with events. The new and the old zone may fall

in the propagation path of many events and splitting the zone as for subscriptions

may, in addition to the existing peer, overload the peer that joins. Therefore, the

authors propose to create alternate propagation paths by using replication. When

a new peer pj joins a peer pi overloaded by events, the zone from pi is replicated,

instead of shared to pj along with its subscriptions. In addition the neighbors

are updated to keep track of pj in a replica list. Finally, events are balanced

during the propagation of an event to be matched with candidate subscriptions by

picking, on the peer that executes the routing decision, one replica peer out of the

list of replicas in a round robin fashion. This replication strategy improves load

balancing, data availability and performances. Also, to locate a heavily loaded

node during a join operation, each peer in the system propagates periodically its

load with its neighbors. This knowledge is then used during the join procedure to

forward the operation to the heaviest loaded neighbor step by step until to reach

a peer that has a load higher than any of its neighbors.

Similarly to other static solutions, the authors assume the existence of an

oracle to decide when peers have to join the system. However, the system is not

able to adapt itself to improve the load imbalance. As they explain for their

experiments, they define an injection period where a new peer joins the system

after each simulated event with a probability of 10%, until the total number of

peers reaches an expected bound.

5.1. RELATED WORK 127

RCAN

In [144] the authors introduce a solution for improving load imbalance on an

extended version of CAN. Their system named RCAN [145] differs from CAN

regarding the neighbor entries maintained on each peer for routing the requests.

In addition to the standard immediate neighbors, every peer controls a number

of links towards peers in the system that are at distance inverse of the power of

2 along each dimension of the identifier space. The number of links maintained

per dimension is assumed to be in O(log n) where n is the number of zones in

the system, when the multi-dimensional space is split uniformly. These additional

neighbors have the benefit to reduce the routing complexity because instead of

applying a greedy scheme where a request is forwarded to an adjacent neighbor

step by step, the request bypasses some stages similarly to Chord with its finger

table. Regarding load balancing, the authors leverage the additional long links that

each peer maintains to probe faraway peers periodically without having to send

at random messages that are routed through several intermediate peers. Then,

these samples are reused during a join operation to know what is the best peer

to join for improving the load imbalance. In their paper the authors make, as for

previous solutions, strong assumptions about the machines that are assumed to

be homogeneous, the data that is supposed to have the same size and popularity

but also the load balancing decision that is taken during join operations.

Battré et al.

A few attempts have been made about load balancing with RDF data. Battré

et al. propose in [94] a solution for solving the bad distribution of popular RDF

terms stored on a DHT. It consists of creating an overlay tree atop the existing

Pastry [22] overlay at the cost of more indirections and datastores to maintain

per peer. Peers are assumed capable of detecting overloads. Upon the detection

of a load imbalance, a peer splits its current dataset into two parts. The first

half remains on the current peer database along with a reference to a new peer

that contains another database to store the second half of data that is transferred.

Due to the new references that are attached to peers, further steps are required

to resolve queries. Thus, the evaluation of a query consists of following the new

128 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

references and looking at the new datastores in addition to the standard lookup

mechanism. This leads to a query resolution in O(log n + d) where n denotes the

number of nodes in the DHT and d the depth of the tree. No experimental result

nor evaluation methodology is given.

RDFPeers

In RDFPeers [92], the authors decide to simply ignore popular RDF terms and

do not use them for indexing data. The authors make an analogy with English

language where the words “a” and “the” occur frequently but are not valuable as

search terms. However, we think this comparison is not appropriate. For instance,

RDF predicate rdf:type is a popular resource for reasoning purposes, and to evade

this term implies to preclude queries or subscriptions that perform filtering on this

term. Although the authors rely on hashing to leverage the uniform keys distri-

bution among peers, the frequency count distribution of non-popular RDF terms

is still skewed and the difference between the minimum and maximum number of

data contained by each peer remains large. To achieve a better load imbalance

they propose a load balancing scheme based on successors probing. Their solution

derives from [146] and aims to provide peer keys distribution adaptive to the data

distribution. It consists essentially in performing random walks by creating a set

of keys that are used to route probing requests. Upon the reception of a probing

request, the peer returns the numbers of RDF resources that would be transferred

if a join was performed (by assuming the interval managed by the peer that is

joined is split into two). Once the results are gathered on the request initiator,

the new node joins the system by using the key that transfers the heaviest load in

terms of triples. The experiments the authors provide show their scheme reduces

load imbalance to much less than an order of magnitude.

5.1.2 Dynamic load balancing

A second wave of work based on dynamic load balancing has been proposed. Most

of them are theoretical and try to provide a guarantee on the maximum imbalance

and load moved on the system at any time.

5.1. RELATED WORK 129

Godfrey et al.

Godfrey et al. propose in [147] an extension of a previous work on static load

balancing [140] (introduced in Section 5.1.1). This work complements the last

by considering dynamic structured P2P systems. In this way they relax some

assumptions to allow continuous data insertion and deletion, peers churn and the

skewed distribution of data during load balancing decision. Their purpose remains

the same and consists of minimizing the load imbalance and the amount of load

moved. As in [140] they rely on virtual peers to move load and they assume

one bottleneck only in the system. Besides, they leverage their previous many-to-

many scheme (for periodic load balancing) combined with an additional emergency

threshold to boost the decision mechanism.

Bienkowsky et al.

In [148] the authors focus on structured P2P networks based on a ring topology.

They explain that the communication load and the amount of data a peer stores

depend heavily on the length of the interval it manages. That way they define a

smoothness parameter that depicts the average interval length managed by peers in

the system with the goal to have each peer managing an interval whose the length

is the closest to the smoothness parameter. To accomplish their aim they count on

a randomized algorithm where each peer probes periodically during a predefined

number of rounds another peer managing an identifier selected at random. Then,

according to the probing information and predecessor information they can round

by round force peers to join and leave the network to reach their ideal smoothness

value. They prove their distributed scheme works with high probability and that

its cost in terms of peer migration is optimal. However, their algorithm implies to

estimate the total number of peers in the system, to sometimes block some peers

for a few rounds and to tune several parameters. Furthermore, in contrary to the

previous work, node churn is not allowed during rebalancing.

Vu et al.

More recently, Vu et al. propose in [149] a structured P2P agnostic solution for

load balancing in dynamic context based on histograms. The peers are bundled

130 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

into non-overlapping groups that constitute the bins of the histogram maintained

on each peer. The histogram acts as an approximate global view of the system to

know the load distribution. The load propagation follows a gossip scheme where

a peer forwards its updated load if the ratio between the new load and the load

sent before is greater than a parameter M . They prove that if the maximum

load imbalance between a peer and the average load of a group of peers from a

histogram is k, then the maximum load imbalance ratio of the system is k2. In

addition, they give a relation between M and k so that M can be chosen to keep

the maximum load imbalance ratio of the system under a given threshold. A

peer is detected as overloaded or underloaded when its load is respectively twice

the average load of any group in its histogram or half the average load of any

group in its histogram. Although their system makes explicit some interesting

properties, it remains sometimes unclear how non-overlapping groups are created

and maintained dynamically.

Mercury

In [25] the authors present Mercury, a system made to support range queries on

top of a structured P2P network constructed by using multiple interconnected

ring layers where each ring is named a hub. Each hub manages the indexing of

an attribute from a predefined schema. Mercury does not use hash functions for

indexing data and suffers from non-uniform data partitioning among peers as data

requires to be assigned continuously for supporting range queries. Owing this

bad data distribution the authors propose load balancing mechanisms based on

low overhead random sampling to create an estimate of the data value and load

distribution. Basically, each peer periodically sends a probing request to another

peer using random routing. This request has a TTL value set to log n where

n is an approximate value of the number of peers in the system used to know

when the routing steps must stop. Furthermore, peers periodically probe their

d-neighborhood. The combination of these methods offers a global system load

assessment whose values are collected into histograms maintained on peers. The

authors show this approach is enough for effective load balancing because their

system topology is an expander graph with a good expansion rate. In other words,

5.2. LOAD BALANCING SOLUTION 131

with a small number of edges in their network topology everyone can reach other

edges by many paths.

5.2 Load Balancing Solution

In this section we introduce and discuss the first different mechanisms considered

and applied for addressing RDF load balancing issues that occur with the archi-

tecture we propose. These mechanisms focus on improving the bad distribution of

RDF data with the purpose at second on enhancing the involvement of peers with

the publish/subscribe matching algorithms.

To better understand the options we have but also the choices we have made, it

is worth explaining why some RDF terms are more popular than others. Let’s start

with the unequal popularity of predicates. The latter may be explained by how

semantic is added to RDF data through the definition of vocabularies (i.e. ontolo-

gies). Ontologies allow to describe different concepts but each concept may have

many instances. In concrete terms, a processor is a concept characterized by many

properties such as its model name, number of cores, etc. However, many instances

exist, that is, different processors having different properties. Since properties are

usually identified in the RDF model as predicates, multiple instances may reuse

the same predicates. At a lesser degree, popularity can also be caused by the same

value shared between tuples’ subjects and objects. Sharing RDF terms allows to

link pieces of information modeled in RDF. Therefore, the bigger and the more

frequently used an ontology is, the greater the probability to have skewed RDF

terms becomes.

Previously, the emphasis was placed on RDF terms popularity. The reason lies

in the fact that whatever approach is taken to spread RDF data on nodes, using

hashing or not, the final distribution is bad. However, systems that do not rely

on hashing, as the one we propose which indexes data based on the lexicographic

order, are exposed to one additional problem. The issue is about IRI prefixes

used with RDF terms that are often similar. Using hashing solves the problem

because even small changes in input values generate different hash values that

are distributed uniformly with high probability in the identifier space managed

by peers. The situation is different when the lexicographic order is used. RDF

132 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

terms with same prefixes force data to be indexed on the same or successive peers.

Balancing data thus requires in that case to change the identifier range managed

by peers.

In the next section we identify and describe the stages through which we must

pass in order to define our load balancing solution, along with the different options

that are conceivable and the ones which have been selected. To limit the number

of alternatives but also to position our solution regarding existing works, we have

made some decisions based on our system’s properties and the context where it

is used. First, our main goal is to balance RDF data added synchronously or

published asynchronously to the system. To this aim, our approach relies on peers

relocation and not replication since this last is well known to improve data access

by balancing queries load but not data itself. Second, we assume that no knowl-

edge about ontologies associated to information received by the system is available

because some sources are hidding this information. The argument is that vocabu-

laries allow to infer confidential facts which is for instance forbidden when sharing

medical data across Europe. Since no upstream knowledge is available, balancing

is assumed to appear after data has reached its final destination, not at the en-

trance of the system. Third, to leverage the existing join and leave operations, our

solution is assumed to rely on virtual peers and therefore ousts solutions based

on data relocation only which incur expensive mechanisms to maintain up to date

pointers. One additional alternative to virtual peers would be to shift bounds man-

aged by peers without moving them from a node to another with the help of a join

or leave operation. This strategy is part of a thesis started by Maeva Antoine.

More details will be available in her forthcoming manuscript. Fourth, peers are

assumed deployed on homogeneous machines. It is a reasonable hypothesis since

the middleware we propose targets deployment over a cluster. Finally, our solution

aims to support dynamic load balancing, that is autonomous balancing decisions

at runtime.

5.2.1 Options and choices

Designing a load balancing solution involves multiple stages and many potential

alternatives we have identified and summarized in the following. The steps that

5.2. LOAD BALANCING SOLUTION 133

are described also explain some of our choices and act as the basis to comprehend

the strategies we propose in the next section.

Detecting load imbalances

Before balancing load imbalances, disproportion in terms of load must be detected.

It implies to know which load criteria are involved and how their variation could be

measured on peers. Once these first questions are answered, the next step consists

in deciding if a peer is enduring an heavy amount of work with respect to the

selected criteria.

Measuring load Previously, we mentioned that our main goal is to adjust load

for RDF data handled by the system. In this context our main criterion is the

number of quadruples per peer. However, when working with RDF data it is clear

that some quadruples are bigger than others. This is especially true for quadruples

with literal object values that permit unbounded plain text descriptions. Even

though quadruples’ length depends of information sources, our system is storing

on disk all incoming data. Since disks are resources with limited capacity, it could

be worthy to consider quadruples’ size as an additional criterion. Concretely, let’s

consider a case where a lot of quadruples are stored on a first peer and a few on a

second. In that case, disk space consumption may be greater on the second than

the first if quadruples on the second peers have larger RDF terms. Consequently,

a second criteria is defined for disk space consumption. The load is measured

for the two aforementioned criteria. The measurement for the first criterion is

accomplished by recording the number of quadruples handled and stored by a peer.

However, the second measurement is more subtle and must not be computed by

summing RDF terms’ size. The reason lies in the fact that most centralized RDF

engines do not store quadruples as they come but rather by using indirection tables

that eliminate duplicated RDF terms to prevent excessive disk usage. Therefore,

disk consumption is measured by computing the ratio between the number of

megabytes written on the disk by the peer local storage and the partition size in

megabytes where the data is located.

134 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

Deciding about imbalance The next stage is about the process involved to

detect whether a peer is experiencing an imbalance or not. In general, taking

decision requires to compare loads between peers to deduce their state. Intuitively,

the states in which a peer may fall are overloaded, underloaded or normal, i.e. not

overloaded neither underloaded. However, not all load balancing solutions define

and detect underloads. In our case we think it may be useful because RDF terms

have different popularities and clusters of quadruples often emerge. Concretely,

this is materialized by one or a few adjacent peers from the identifier space receiving

all quadruples and many indexing no information. Figure 5.1 depicts a CAN

cutting that exhibits the issue. Peers 2, 4, 5 and 6 could be detected as underloaded

regarding others. In that case peer 5 could leave and rejoin peer 7 to offload half

of its load. Also, peers 2 and 1 could be merged in order to reduce routing steps

but it is out of the scope according to the criteria specified above.

(a,a) (z,a)

(a,z) (z,z)

1

2

3 4 5

6 7

Figure 5.1 – RDF data clusters on a 2D CAN network.

The natural continuation is to explain how a peer knows that it is overloaded

or underloaded. The process can be summed up by the function sketched on

Algorithm 5.1. It takes five parameters:

• C, a criteria list sorted by descending order according to priority in which

imbalances are handled. Criteria are assumed static and defined before the

system starts;

• M , a load measurements list containing load measurements associated to

5.2. LOAD BALANCING SOLUTION 135

criteria defined in C. Measurements are assumed to represent load snapshots

per criteria at the time the imbalance must be detected;

• E, a system load estimation list containing the system load estimation value

for each criteria defined in C. This list plays a key role in the decision

process. How it is built is discussed hereafter;

• K1 and K2, parameter constants defined per criteria before the system starts

up. Their purpose is to keep the load per criteria close to a factor. The pa-

rameters also prevent oscillations. By setting them to high values, imbalances

are spotted less often.

Based on parameters, the function respectively detects a peer as overloaded

or underloaded if its load for a criteria C[i] is respectively K1[i] times greater or

K2[i] times lower than the estimate E[i] associated to the criteria C[i] that is

observed (K2[i] must be lower or equal to K1[i]). The order in which criteria

are defined matters since it defines priorities in which imbalances are detected.

The detection process is sequential for the simple reason that load measurements

are not necessarily expressed in the exact same unit but also the fact that actions

required to fix imbalances depends of criteria. To conclude, while remaining simple,

this load detection model easily supports the definition of multiple independent

criteria.

Regarding parameter E, its purpose is to offer an approximate value of the sys-

tem load per criteria. By choosing E values close to the average system load, a peer

may compare its load per criteria according to values in E and react accordingly to

balance the load (by using for instance the schemes proposed in the next section)

in order to keep the load per criteria close to a factor k (when k =K1[i] =K2[i]).

Therefore, how E values are computed is critical. Many solutions are conceivable.

The simple one is to use purely local knowledge by defining constant values for E.

For instance, if a criteria is the number of quadruples per peer, the estimate value

could be set to the number of peers divided by the total number of events the

system is assumed to receive. Although this solution is merely static in the sense

that some system’s parameters are known before its instantiation (e.g. number of

peers and total number of data to handle), it may be useful in the context where

136 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

the system is not so dynamic and the number of machines limited. In that case

the system starts from one machine and new ones are added when the first reaches

its maximum capacity defined by threshold values in E.

1: function EvaluateLoadState(C, M, E, K1, K2)
2: ▷ i, load measurement index
3: ▷ m, load measurement value
4: for i, m ∈M do
5: if m ⩾ E[i] ×K1[i] then
6: return LoadState(Overloaded, C[i])
7: end if
8: if m < E[i] ×K2[i] then
9: return LoadState(Underloaded, C[i])

10: end if
11: end for
12: return LoadState(Normal)
13: end function

Algorithm 5.1 – Load state estimation algorithm.

The second alternative is to populate E with values that represent the average

system load per criteria. It implies to share knowledge about loads between peers.

To disseminate these information messages must be exchanged and as a result a

pull or push approach is possible. The push model was selected for two reasons.

The first is that only an approximation is required, thus receiving new load values

in time for computing an average result or later due to the asynchronism of the push

model is not strictly speaking an issue. The second reason lies in the fact that

probing peers with synchronous requests incurs higher bandwidth consumption

because of roundtrip. Once the model to appraise peers utilization is defined, many

solutions still exist to disseminate load information. Load may be piggybacked by

usual requests but it implies that the convergence time about the rumor that

relates to the load depends of the system usage which prevents decisions when

part is idling. More simply the load can be periodically forwarded to immediate

neighbors, the k-neighbors, broadcasted to all the peers or sent to peers selected

at random or based on heuristics. Work around gossip-based protocols are a great

source of inspiration [150]. As we will see, the gossip protocol used is the main

differentiation parameter for the strategies we propose in Section 5.2.2.

5.2. LOAD BALANCING SOLUTION 137

Balancing the load

Once an overload or underload is detected, the next stage is to fix it. To this

aim, each criteria is associated to two functions. The first defines how to correct

underloads whereas the second details how to regulate an overload. Whatever the

implementation is, both methods require to select who will receive part of the

imbalance and to define how the imbalance may be fairly shared. The next two

paragraphs describe these two actions.

Selecting imbalance receiver The process to select the imbalance receiver

strongly depends of imbalances type, namely whether it relates to an overload

or an underload. The rule is that load has to be taken by a lightly loaded peer

when an overload is endured. However, underloads can be handled by a lightly or

heavily loaded peer. The latter is a better plan because it helps reducing overloads

while fixing underloads. The selection process can leverage information previously

exchanged and aggregated on peers about load (cf. paragraph explaining how

imbalance is detected) in order to elect the right peer to perform relocation with.

Unfortunately, when fixing overloads, there are cases where no peer which is an

active member of the network respects the previous rule. For instance, all peers

may be experiencing an overload. In that case, a solution is to allocate a new peer

on a new machine. To enhance the allocation time, a remedy is to preallocate a

pool of peers ready to join overloaded ones.

Sharing load evenly The final stage for balancing load once the type and a

receiver is identified is to share as fairly as possible the resource which caused the

imbalance. If the resource is balanced uniformly and if overloaded and underloaded

peers perform the same, at the end the system should eventually converge to a

steady state. Sharing load is strongly related to the criteria that are managed.

In the following is described load sharing for our solution. Both criteria taken

into consideration with our system are about quadruples and their size per RDF

term. By default the CAN protocol allows to share peers’ zone by splitting them

sequentially per dimension (i.e. splitting a peer zone on dimension two whereas

no split on dimension one was made is not allowed to avoid routing in O(n))
and at the middle. The issue with the middle approach is that, as depicted by

138 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

Figure 5.2(a), depending of how quadruples are mapped on the system identifier

multiple splits are required. Moreover, as many peers as the number of splits are

involved since by default a peer manages one zone only. Intuitively, a solution

is to split at the median value instead of the middle but it has two drawbacks.

First, computing the exact median value requires sorting RDF terms which is not

conceivable. Second, it enables fair partitioning for our first criteria which is about

the number of quadruples per peer but it leaves out our second criteria regarding

RDF terms size. The right method is to compute the centroid per RDF term, this

is what we do for each quadruple handled by the system. In this way, zones are

split based on centroid values. The benefit is clearly identifiable on Figure 5.2(b).

(a) Cutting based on middle. (b) Cutting based on centroid.

Figure 5.2 – CAN splitting strategies comparison for sharing load about RDF data.
Dashed lines depict required zone’s splits.

The configuration requires with the default CAN scheme 5 splits whereas the

new one based on centroid incurs 1 split only. Although cutting is enhanced,

depending on how quadruples are arranged (e.g. if they are all aligned on a single

dimension) up to d − 1 splits, where d is the number of dimensions in the CAN

network, may still be required to balance the resources. When the issue occurs, up

to d − 1 peers (referred to in the following as cutting peers) managing no resource

may be injected. Since they manage no resource, these last are candidate for

underload balancing in a near future which will cause additional and superfluous

work to the CAN network. The situation could be easily dodged by making cutting

peers join a same node. Even better, another solution would be to allow the peer

5.2. LOAD BALANCING SOLUTION 139

taking the load to manage several zones, the ones from the cutting peers. This

way, the overhead incurred by the management of multiple peers per node is almost

hidden. The former approach is probably easier to support since it leverages virtual

peers whereas the latter requires changes in routing algorithms but also join and

leave procedures since multiple zones are potentially managed by peers.

5.2.2 Strategies

The previous section shapes the premises of a load balancing strategy. However, a

few questions are left open, especially regarding how some aforementioned param-

eters are set. Their definition lead to at least two main load balancing strategies,

namely absolute or relative, whose details are given below.

Absolute load balancing

The absolute load balancing strategy aims to detect imbalances without exchang-

ing information between peers. To achieve this goal threshold values are config-

ured per criteria and passed to peers when they are deployed. These last are

upper bound values that allow to signal an overload once they are exceeded. Con-

cretely, defining such a behaviour implies to set parameters introduced with the

function on Algorithm 5.1 to specific values. By setting K1[i] to 1, K2[i] to 0

and E[i] to the desired threshold values, the load state estimation function works

with local knowledge only. Obviously, purely local decisions have an impact on

the effectiveness of the strategy, this is what we will see with the experiments.

Relative load balancing

The second strategy is about relative load balancing. Relative because local load

measurements are compared to an average system load to decide whether an im-

balance is experienced. To estimate the average system load measurements are

exchanged between peers. Peers in charge of receiving load information depends

of the gossip protocol used. As we will see with the experiments a basic strategy

can be to forward load information to immediate neighbors. However, another

conceivable approach is to use a mechanism similar to Mercury [25] that consists

140 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

of a) sending peers’ load on the vicinity of each peer but also b) to execute pe-

riodic random walks to capture an approximate view of the global system load.

Our system architecture is built atop CAN whose topology is a finite connected

graph that meets the requirements of an expander graph. In other words, with a

small number of edges in the network topology every peer can reach other edges by

many paths. Since in [151] the authors have shown that random walks are superior

to flooding in some cases of practical interest with expander graphs, applying the

aforementioned gossip strategy could provide interesting results.

Optimization The gossip protocol employed could also be tweaked similarly to

what is proposed in [149] by defining a parameter p, p > 1 so that a peer only needs

to report its load if the ratio between the new load and the previous load that was

sent before is greater than p. In this manner some messages are periodically evicted

and peers are relieved. However, this is an additional parameter that affects the

convergence time of the algorithm and it would require intensive benchmarks.

Upstream load balancing

Upstream load balancing is a strategy that complements the ones introduced pre-

viously. In 3.2.2 we explained that quadruples are routed according to their RDF

term values. The idea with upstream load balancing is to index quadruples by

considering their RDF terms once they have been passed to a function that ap-

plies a transformation to improve skewed distribution due to common prefixes.

Such a function could consist of removing for instance the namespace from IRI

values associated to RDF terms. Therefore, if we have several quadruples with

predicate values that share the same namespace, the information is indexed by

keeping the predicate local part only. To better understand, let us consider the

Dublin Core [152] vocabulary. It defines an ontology with multiple metadata for

describing resources in their generalities. This vocabulary contains for example

the predicates dc:title and dc:creator where dc refers to the standard Dublin Core

namespace2. The removal operation consists in cutting out the characters until

the last / or # character. Thus, dc:title and dc:creator are indexed lexicographi-

2http://purl.org/dc/elements/1.1

http://purl.org/dc/elements/1.1

5.3. EVALUATION 141

cally by using respectively title and creator. As the last two values differ from the

first character whereas the old values differ after the first thirty two characters,

they have much more chances to be indexed on two different peers than before.

However, this probability highly depends on the CAN space splitting and the RDF

data to index. Although this scheme brings a few improvements it cannot dete-

riorate load balancing. Similarly to prefix removal, another solution may be to

compare during request routing the bounds of a zone managed by a peer and the

RDF term values based on the reverse RDF term value so that skewed prefixes

less impact data placement on peers. The advantage of this second approach com-

pared to prefix removal is that it incurs no overhead since it may be implemented

by redefining how the function that performs the comparison during routing be-

haves. However, both methods must be used when exact matching only is required

with subscriptions or synchronous SPARQL queries because they incur flooding to

find all matching results when filter constraints are specified. Consequently, this

last solution should be enabled as a complement to one of both methods (prefix

removal or reverse comparison) presented previously when the usage context is

well defined.

5.3 Evaluation

The experiments presented in this section have been restrained to some key eval-

uations. Load balancing is assessed for a network configuration initialized with

one peer. Furthermore, only overloads are considered by setting parameter K2[i]

for the decision function to 0. Once detected, imbalances are corrected by making

new peers, deployed on dedicated and preallocated machines, to join the ones that

are heavily loaded. Load balancing involving relocations is let for future work.

In contrary to evaluations made in previous chapters, the following experi-

ments rely on real data extracted from a Twitter3 data flow by writing an adapter

in Python. The workload is about 104 CEs, each embedding 9 quadruples. Since

one meta-quadruple is automatically generated per CE, at the end the P2P net-

work handles 105 quadruples. To allow reproducibility but also to make a fair

3https://dev.twitter.com/docs/streaming-apis

https://dev.twitter.com/docs/streaming-apis

142 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

comparison between the different strategies that are evaluated, the same workload

is reused in all the experiments.

The first assessment is about the overhead induced by statistical information

recording. Figure 5.3 depicts the time required to acknowledge the insertion of

quadruples when statistical information recording is respectively disabled or en-

abled. Each result is the average time from five runs whose the first two are let

aside due to JVM warmup. Computing the mean or the centroid in the same

thread increases the overall insertion time by approximatively 3.45. The overhead

is explained by the fact that RDF term values are converted in radix 10 and back

to 1114112 (the radix associated unicode characters) for computing online mean

or centroid values. To address the issue, a thread pool is introduced. By using

a hard drive disk our experiments have shown that two threads are required to

hide the overhead induced by the computation of statistical information. Finally,

estimating the mean or the centroid makes almost no difference.

0

50000

100000

150000

200000

Same thread One thread Two threads

T
ot

al
In

se
rt

io
n

T
im

e
(m

s)

Background Thread Count

recording disabled
mean recording

centroid recording

Figure 5.3 – Statistical information recording overhead.

Before evaluating the absolute and relative strategies, we have performed an

experiment to see what could be the best distribution. The scheme consists of

5.3. EVALUATION 143

injecting the workload on a single peer and once all quadruples have been stored

to start load balancing iterations. Each load balancing iteration consists of picking

a new peer from the preallocated pool of peers and to make it join the one from

the network that is the most loaded, thus simulating an oracle. The action is

repeated until to have a network containing 32 peers. To show the interest of

using statistical information, the experiments have been performed, as depicted

on Figure 5.4, by using zones cutting based on their middle or centroid values

recorded on the fly. By applying the default CAN rule, which cuts zones at their

middle, the workload is distributed on 4 peers only. However, the same experiment

using centroid values distributes the load on all peers with almost two-thirds that

have their load close to the ideal distribution. Although the distribution is not

perfectly distributed, it is greatly improved.

1

10

100

1000

10000

100000

N
um

be
r

of
Q

ua
dr

up
le

s
pe

r
pe

er
(l

og
sc

al
e)

Distribution with 32 peers

centroid based cutting
middle based cutting
perfect distribution

Figure 5.4 – Static load balancing using middle vs centroid partitioning.

To compare results for a same configuration (i.e. same workload and number

of peers), a good estimator is the coefficient of variation, also known as the relative

standard deviation. It is expressed as a percentage by dividing the standard de-

viation by the mean times 100. In the following we use this estimator to compare

144 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

strategies. For information, the coefficients are 559.4% and 69.5% when the middle

and centroid methodologies are respectively applied with the static load balancing

experiment presented above, thus showing that centroid performs better because

this last value is eight times lower than the previous.

Finally, we have compared the absolute and relative strategies. For the abso-

lute one, the threshold value is set to the number of quadruples divided by the

final number of peers, which gives 3125. The relative strategy does not rely on

global knowledge, and K1[i] was set to 1.1 so that overload is detected when local

measurements on peers is greater than or equals to 1.1 times the estimate value

computed by receiving load information from immediate neighbors. The parameter

K1 was set according to previous experiments that let suppose the best distribution

is achieved for this value. Table 5.1 shows the results obtained according to the

strategy applied and correlated with the results got for the static load balancing

experiment that exhibits the best distribution that can be achieved according to

the relative standard deviation (69.5%). In summary, the relative standard devi-

ation is almost twice as large (119.75%) as the best when the absolute strategy

is applied. Similarly, the relative strategy performs worse than the static load

balancing solution but it achieves a better distribution (96.57%) than the abso-

lute strategy and this without using global knowledge. Besides, since more peers

are receiving RDF data, more nodes are involved to answer subscriptions with

the pub/sub layer, thus increasing the throughput in terms of CEs received per

second.

Static load balancing Dynamic load balancing

Middle Centroid Absolute Relative

Relative stddev 559.4% 69.5% 119.75% 96.57%

Table 5.1 – Load balancing strategies comparison.

5.3. EVALUATION 145

Summary

This chapter has presented and briefly analyzed two strategies for balancing RDF

data on our revised CAN network. The central idea is to share overloads be-

tween peers by splitting peer zones not at their middle as suggested by the default

CAN protocol but at the point that fairly balance RDF data. This is made by

recording centroid values of RDF terms per dimension. Then, the strategies that

are proposed mainly differ with respect to how imbalances are detected. The first

uses global knowledge whereas the second relies on information exchanged between

peers. Experiments have shown the latter strategy performs better than the for-

mer. Although the solution we propose is far from ideal in the sense that RDF data

are not as well distributed as it could, the strategies enhance the distribution on

peers, the involvement of peers and thus the throughput when publish/subscribe

is used.

It is worth mentioning the presented solution is an unfinished work and many

points would require more intensive investigations and experimentations. Also,

many faces of our work could be enhanced. For instance, the gossip protocol to

use would require refinements by implementing optimizations, relative to load dis-

semination, proposed in Section 5.2. Furthermore, before allocating new peers,

relocation should be envisaged. One additional direction is to consider more crite-

ria such as queries load, subscriptions or even CPU and bandwidth consumption.

Since our balancing model has been designed with the idea to support multiple

independent criteria, adding new ones should not be arduous.

146 CHAPTER 5. DISTRIBUTED RDF LOAD BALANCING

Chapter 6

Implementation

Contents
6.1 Middleware Design . 148

6.1.1 A generic structured P2P framework 149

6.1.2 An abstract CAN library 162

6.1.3 A CAN implementation for RDF data 163

6.2 Performance Tuning . 171

6.2.1 Multi-active objects . 172

6.2.2 Serialization . 179

6.2.3 Local storage . 182

In this chapter we introduce and give details about the implementation of the

EventCloud (EC) middleware which is the software used to assess the different al-

gorithms and features which have been presented in the previous chapters. First,

we start to review the software architecture associated to the EventCloud middle-

ware by focusing on its modularity and the key software elements that interact

together. Then, in a second time we discuss how we have tuned performances by

applying different methods at several levels for the different performance bottle-

necks which have been identified throughout the development of the middleware.

It includes a custom cache layer but also serialization and MAOs improvment.

147

148 CHAPTER 6. IMPLEMENTATION

6.1 Middleware Design

The EventCloud middleware has been designed from scratch and implemented by

using the ProActive Programming middleware. This gives us the opportunity to

build the whole system on concepts and abstractions that may be easily reused,

extended or replaced. Contrary to an integrated architecture, where no clear sep-

aration exists between software elements, here key elements are identified. Given

that the implementation is in Java, we make an intensive use of Maven1 to man-

age the lifecycle of the project but also to keep the architecture structured and

modular by associating multiple modules to the system elements, thus isolating

functionnalities. This way, only the modules that are required may be loaded.

Besides, the modular architecture and the manner to proceed allows to replace or

add any software element or module without affecting the rest of the system.

CAN Implementation for RDF Data

Abstract CAN Library

Structured P2P Framework

ProActive Programming

Figure 6.1 – Stack of main software blocks designed and/or used. Colored blocks
have been designed from scratch. The color intensity depicts also the level of
abstraction.

The Content Addressable Network protocol is at the core of the EventCloud

infrastructure. As depicted by Figure 6.1, to make the architecture as modular

as possible, the CAN network that is used with the EventCloud is defined on top

of a stack made of four main software blocks: the existing ProActive Program-

ming middleware at the bottom which abstracts communications, the structured

1http://maven.apache.org

http://maven.apache.org

6.1. MIDDLEWARE DESIGN 149

P2P framework above that provides reusable concepts to design structured P2P

networks and then just below the EventCloud specific CAN implementation, an

abstract CAN implementation that provides the subsistence minimum to connect

peers and route messages in a CAN topology. The following sections discuss in

details how these main software blocks have been designed and implemented.

6.1.1 A generic structured P2P framework

The generic structured P2P library is at the core of the middleware we have de-

signed. This first block is a bunch of interfaces and classes that provide the neces-

sary abstractions and reusable concepts to ease the implementation of structured

P2P protocols with the ProActive Programming framework.

Peers representation

Figure 6.2 depicts a simplified version of the classes that describe the structure

of the generic library for creating a model of a peer. The first step to design the

library was to identify the key operations that are common to any structured P2P

protocol. The Peer interface defines the signature of these operations that allow

basic interactions such as creating a network, joining another peer, leaving a net-

work or sending operations and routing messages as we will see later. However, a

peer implementation is not specific to a protocol. It is mainly used to exhibit the

common operations remotely and to manage the state of a peer (i.e. whether it

has already joined a network or not). Thus, the second step consists in deciding

how a peer is specialized for a given network. In object oriented programming,

composition or inheritance may be used. However, it is acknowledged that com-

position is usually more flexible than inheritance and allows the container class

to be more stable in the long term [153]. For this reason, common structured

P2P operations are delegated to a StructuredOverlay by means of composition.

This last is an abstract class maintaining attributes and methods that are still

commons to any structured P2P network but that should not be made public to

external users since they are useful for protocol implementers only. Besides, a

StructuredOverlay implements a DataHandler interface that abstracts the storage

on peers. The interface defines only a few methods that allow to assign data but

150 CHAPTER 6. IMPLEMENTATION

also to retrieve or remove data according to a space managed by a peer during a

join or leave operation. A protocol implementation is made by using the provided

abstractions and creating a concrete class that inherits from StructuredOverlay,

such as a CanOverlay or ChordOverlay implementation. The manner to proceed

is in fact an application of the Strategy design pattern that allows to select an

algorithm’s behaviour at runtime. This way, the implementer may rely on existing

methods and values from StructuredOverlay, override methods to further improve

features that are then tasted by users with polymorphism.

Now that peers may be defined for different protocols, we have to determine how

they are instantiated and disclosed remotely in order to interact with others. In

ProActive, remote entities are represented by Active Objects or GCM components.

We have chosen to associate a peer to a GCM component because components

allow a clear separation of functional and non-functional concerns while improving

reusability, which is an interesting property for adding monitoring in the future.

Communications between peers

P2P networks are designed to share resources among interconnected peers and

resources are made available to others or looked up by enabling communications

between peers. In structured P2P networks, peers are organized in a structured

way so that they manage part of a global identifier space. Consequently, there is

at least two manners to point out a peer, either its remote reference is known and

it may be contacted directly, or only a key that is contained by the space interval

one ore more peers maintain is specified. In this last case, routing is required to

find out the final destination. We detail hereafter how our generic P2P library is

designed to support both communication types.

Operations Operations are special messages that are sent by invoking remotely

the receive method on a Peer stub. Their purpose is to hide operations that

should not be exposed to users while keeping the Peer interface untouched. Oper-

ations are declined in two flavours, RunnableOperations that return no result and

CallableOperations that give back a ResponseOperation. Both may be invoked

asynchronously since ResponseOperation is reifiable. Beyond that, the two opera-

tion classes extend an abstract Operation class that can be used to implement for

6.1. MIDDLEWARE DESIGN 151

«interface»
Peer

+ create() throws NetworkAlreadyJoinedException
+ join(Peer) throws NetworkAlreadyJoinedException, PeerNotActivatedException
+ leave() throws NetworkNotJoinedException
+ receive(CallableOperation) : ResponseOperation
+ receive(RunnableOperation)
+ route(Message)
+ getOverlayId() : OverlayId
+ getType() : OverlayType

PeerImpl

«interface»
DataHandler

+ assignDataReceived(Serializable)
+ retrieveDataIn(Space) : Serializable
+ removeDataIn(Space) : Serializable

StructuredOverlay

CanOverlay

ChordOverlay

Figure 6.2 – Simplified version of the class diagram defining a peer.

152 CHAPTER 6. IMPLEMENTATION

instance permission checking or even to define compatibility with others requests

as we will see in Section 6.1.1.

Messages A message is a specific envelope that contains an information to de-

liver or an action to execute on a set of peers according to a key. Figure 6.3 shows

the class diagram describing the model for messages and the abstractions required

for routing them. Messages are essential elements of the whole architecture. They

are modeled as an abstract Message class. This class contains common attributes

such as an identifier, a key that is used to know whether a message received on

a peer has to be delivered or not, but also others instance fields that maintain

statistics (e.g. the number of hops), which is particularly useful to assess the per-

formance of a routing algorithm. The Message class is subclassed with two child

classes which are the Request and Response classes. The reason lies in the fact that

requests and responses do not share the exact same behaviour and states. The for-

mer saves values about the time at which the request has been dispatched whereas

the latter keeps the number of hops related to the routing of the response only.

However, a Response references a Request when it is built to have access to the re-

quest attributes that are necessary to compute some measurements once a response

has been delivered (e.g. the round-trip delay time). Not all requests necessarily

generate a response. The distinction between requests that yield responses and

those that do not is made with the help of the responseProvider instance field that

contains an instance of the ResponseProvider class which describes if a response

has to be created and how.

In both cases a Message is routed according to a Key. Routing is performed

from a peer by calling the one-way route method. The call to the route method

results to an invocation of the same method name on the embedded overlay object,

that itself delegates the routing to the initial message instance that is routed, by

double dispatch [154]. This way, the routing decision is taken at runtime by the

concrete message’s type that knows which kind of router to use. The router that

is used to route a message is abstracted through a Router interface that defines a

public method named makeDecision. This method is executed each time a message

reaches a new peer. It takes as parameters the message object and the overlay on

which the message has been received to know whether the destination is reached

6.1. MIDDLEWARE DESIGN 153

or if further routing is required. Besides, decoupling a Router from a Message

allows different messages to reuse existing routing algorithms. For instance if we

define a multicast algorithm for CAN that uses a multicast key to make the routing

decision, this specific router could be used to route messages whose purpose is to

retrieve quadruples but also for those that aim to remove quadruples since only

the action to perform once the destination is reached differs. This behavior that is

specific to any Message is defined by overriding the onDestinationReached method.

«interface»
Routable<K extends Key>

+ getRouter() : Router<? extends Message<K>, K extends Key>
+ route(StructuredOverlay)
+ onDestinationReached(StructuredOverlay)

Message<K extends Key>

id : MessageId
hopCount : int
key : Key

Request

dispatchTimestamp : long
responseProvider : ResponseProvider

Response

outboundHopCount : int

+ getLatency() : long

«interface»
Router

+ makeDecision(StructuredOverlay, Message)
handle(StructuredOverlay, Message)
route(StructuredOverlay, Message)

Figure 6.3 – Simplified version of the class diagram defining messages.

Bootstrapping

In overlay networks, bootstrapping usually refers to the procedure to discover

peers that are already member of a running P2P network. To enable peers’ dis-

covery, references to peers that are part of a P2P network are retained by trackers.

154 CHAPTER 6. IMPLEMENTATION

Trackers are GCM components organized into a fully connected mesh network that

forms an entry point to a P2P network. The view is maintained between all the

trackers with the help of the collective group communication feature provided by

ProActive [155]. Compared to an RMI registry, a tracker is a protocol agnostic

registry.

It may be argued that fully connected networks are not scalable, however track-

ers are assumed to be deployed, in our context, on stable nodes and peers on

a trusted infrastructure such as a datacenter. Moreover, peers’ references are

lightweight objects and trackers are supposed to track only some references to

peers from a P2P network, not all. The idea is to always have access to one ref-

erence in order to interact with a running network. Obviously, there is a tradeoff

between the number of references that are kept and how operations are initially

balanced on the P2P network since the less references are available, the less entry

points can be used. For this reason, references are saved according to a configurable

probability. To enforce the storage probability, create, join and leave operations

on peers are delegated to trackers. To insert a peer into a P2P network, an inject

method is called on a tracker with a peer stub. This last method allows to call

the create or join method on the specified stub, depending on whether the peer

is the first to join the network or not. Moreover, the method inject ensures that

the peer reference is saved if it has to be while multiple injection strategies may

be supported. Other methods are remotely accessible such as a takeout procedure

that applies a similar behaviour as the inject one but for asking a peer to leave

the network. Finally, to have the possibility to discover references, getPeers and

getRandomPeer methods are provided by trackers. In case trackers’ scalability

is an issue, they could be organized in a structured P2P network such as Chord.

However, our experiments showed this is not required on trusted environment with

an acceptable number of peers.

Although trackers are deployed on stable nodes, IP addresses are not easy to

remember, especially with the advent of IPv6. A solution could be to rely on

the Domain Name System (DNS). By associating an address record to the IP

addresses of trackers, a set of tracker can be identified through a simple and easy

to remember domain name. This way, users benefit also of the load balancing

property applied during the resolution of domain names, which allows to balance

6.1. MIDDLEWARE DESIGN 155

load among trackers with an associated IP address declared in the records.

Proxies

We have seen in the previous section that trackers are entry points to a network

created with our abstractions. When a user, an external application, or more gen-

erally an entity wants to interact with a P2P network, it has to know at least a

domain or a subdomain name that once resolved, points to the IP address of one

tracker. Afterwards, the entity has to contact this tracker in order to get back a

peer reference that can be used to route for instance a message. To prevent users

from this off-putting sequence of actions we have introduced the notion of proxies.

A proxy represents a gateway between a P2P network and an entity that wish to

collaborate together. As depicted by Figure 6.4, a proxy offers multiple methods

to forward a Request, but also a method to receive responses. The reason lies in

the fact that all communications made in the P2P network are one-way, as we ex-

plained previously. When the sendv method is used, the dispatching is delegated

to a MessageDispatcher which simply forwards the request to a peer after having

retrieved its reference from a tracker. However, others send methods that entail

responses require more processing. In that case, the MessageDispatcher instance

forwards the request, as for the sendv method, but waits for a response. The

synchronization point is created on the proxy by suspending the thread in charge

of sending the request with the help of the Java monitors. The suspended thread

wakes up when the response arrives. The correlation between a request and its

response is made based on a unique identifier set on each request before being dis-

patched. It is worth notice that synchronization points for requests with responses

could have been managed transparently by using ProActive futures. However, fu-

tures entail to use the same path for a request and its response, thus forcing to

cross unnecessary peers with potentially large payloads. For instance, a request

with an unicast constraint that does not require to retrieve back information on

peer crossed during the routing may have its response sent directly from the peer

handling the request to the proxy.

The send method that takes three parameters, and whose the first is a list

of requests, is particularly useful to dispatch multiple requests whose responses

156 CHAPTER 6. IMPLEMENTATION

should be merged together before being delivered to users. The idea is to combine

responses at the edges of the P2P network to reduce the final response size and

as a consequence the time required to transfer the result from the P2P network to

proxies. The merge operation is defined through a ResponseCombiner by using a

Context.

Proxy

- messageDispatcher : MessageDispatcher
- proxyCache : ProxyCache

+ sendv(Request)
+ send(Request) : Response
+ send(List<Request>, Context, ResponseCombiner) : Response
+ receive(Response)

Figure 6.4 – Simplified version of the class diagram defining a proxy.

Beyond easing interactions, a proxy has multiple advantages. It shifts synchro-

nization points from the P2P network to users which prevents deadlocks in case of

churn or failure. Additionally, a proxy features a cache mechanism that prevents

contacting trackers each time a request has to be dispatched, thus improving rout-

ing latency. Finally, proxies may be used to provide enhanced filtering capabilities

outside a P2P network or to enforce end-to-end properties.

To better explain how a proxy behaves, Figure 6.5 depicts a sequence diagram

that shows how objects introduced so far operate with one another and in what

order for sending a request and routing back a response. Let’s assume an entity

e whose its desire is to dispatch a request req that generates a result through a

response res. First, e invokes the send method on a proxy instance with the request

object req. As aforementioned, the first action to perform is to get a reference to

a peer that is an active member of a P2P network. To do so, the proxy contacts

its ProxyCache instance c that aims to keep in local references to active peers.

The first time it is contacted, the cache store is empty and has to be populated.

The action is achieved by calling the remote method getPeers on a tracker. Peer

references that are returned are stored in the ProxyCache. Then, one among those

available is picked at random and used to forward the request on the P2P network.

Futures interactions with c result in local actions only. The dispatching of req is

6.
1.

M
ID

D
L

E
W

A
R

E
D

E
SI

G
N

15
7

getPeers()
peers

getRandomPeer()

selectPeer()

peer

dispatch(req)

route(req)

suspend(req)
route(req)

route(req)

route(o)

makeDecision(o,req)

onDestinationReached(o)

createResponse()

res

handle(o,req)

route(res)

route(res)

route(res)

route(o)

makeDecision(o,res)

onDestinationReached(o)

receive(res)

handle(o,res)

awake(res)

res

send(req)

res

e:Entity proxy:Proxy d:MessageDispatcher c:ProxyCache t:Tracker req:Request r:Router res:Response o:Overlay p:Peer

opt

F
ig

ur
e

6.
5

–
Se

qu
en

ce
di

ag
ra

m
sh

ow
in

g
a

pr
ox

y
in

te
ra

ct
io

n
to

se
nd

a
re

qu
es

t
an

d
to

re
ce

iv
e

a
re

sp
on

se
on

a
P

2P
ne

tw
or

k
m

od
el

ed
w

it
h

th
e

pr
op

os
ed

ab
st

ra
ct

io
ns

.

158 CHAPTER 6. IMPLEMENTATION

made by a MessageDispatcher that knows how to dispatch requests. Internally, it

stores in a table an entry for the request id for which a response is expected, then it

forwards the request to a peer by invoking the asynchronous route method. That,

before suspending the current thread with a Java wait call on the entry which has

been previously stored. The peer that receives the call to route the message req

delegates it to its concrete overlay implementation that itself brings the routing

decision to the runtime message type that knows which router to use. The action is

done by double dispatch to obtain the overlay and message instance as parameter

of the method makeDecision executed on a router. From the parameters, the

router is able to decide whether the message requires further routing or not. Let’s

say that we have only one peer that manages the key carried by the message, then,

the user action is executed with a call to onDestinationReached and a response

is created by using the ResponseProvider contained in the req object. Once the

response is created and attributes are set, it is routed back. Similarly to requests,

the routing is fully abstracted and how routers operate is consequently application

and use case dependent. It may be decided to use the reverse forwarding path

or to send back the answer to the proxy in one hop. The response eventually

reaches the proxy with an invocation of its remote method dubbed receive. Upon

its execution, the method retrieves the entry, attaches the response to the entry

and wakes up the thread that was waiting the response with a Java notify call on

the entry. That way, the sending thread is awaken, retrieves the response from

the entry which has just been updated and returns res to e. It may be observed

that a proxy must be remotely accessible to receive responses routed in one-way,

for this reason a proxy is a remote object. It is designed as a GCM/ProActive

component using the multi-active objects extension similarly and for the same

reasons as peers.

Configuring multi-active objects

Working with multi-active objects (cf. Section 2.4.2) requires three main actions:

1. Identifying whether a soft or hard limit must be used;

2. Defining groups and compatibilities in order to improve parallelism by han-

dling when possible some requests in parallel to others;

6.1. MIDDLEWARE DESIGN 159

3. Evaluating empirically the correct value for the limit defined previously.

We are now discussing about the type of the limit used for the various remote

objects introduced with the generic structured P2P library. Up to now three

kinds of remote objects have been introduced: trackers, peers and proxies. All

three are GCM/ProActive components that make use of a multi-active serving

policy. For trackers we use a hard limit because no re-entrant call are performed.

However, proxies and peers handle re-entrant calls, either to dispatch messages or

by handling operations through a join or leave request for instance. Therefore,

both rely on a soft limit. The values set for the different limits are discussed in

Section 6.2.1 since their definition fall within performance tuning.

Although proxies define a soft limit, deadlocks may still occur when requests

with responses are dispatched. The reason lies in the manner threads are sus-

pended to await responses. It is done by using java monitors, which bypass the

multi-active object library. Consequently, the request executor is not aware that

a thread has been suspended and it considers a sleeping thread as running, which

leads to inconsistent states when a decision to schedule requests is made. A solu-

tion could be to use futures and wait-by-necessity but it is not a viable solution

as we already explained. Thus, to address the issue two new methods have been

added to the multi-active objects API so that it is possible to decrement and

increment manually the number of active threads.

Regarding the definition of multi-active groups and compatibilities, it remains

simple for trackers and proxies. With a tracker, methods that are used to re-

trieve peer references are members of a group named parallel, which declares to be

compatible with itself so that all methods in this group can be executed simultane-

ously. Other methods used to inject and takeout peer references, but also the one

used to connect a tracker to another, do not declare a group membership. This

way, they are executed in FIFO order and in mutual exclusion with other methods

from the parallel group. Similarly, a proxy defines a parallel group and assigns

all its remote methods to this group. In that case, to achieve mutual exclusion,

the reponsability is handed over to the programmer. The reason lies in the fact

that not all the method requires a full synchronization. Besides, the management

of this specific case may be handled easily and efficiently with a finer granularity.

160 CHAPTER 6. IMPLEMENTATION

Thereby, thread-safe data structures are used to prevent race conditions when re-

quests and responses are respectively dispatched and received through an instance

of MessageDispatcher which maintains awaited message identifiers.

Compatibility definition is more complex for peers. That’s because a peer ex-

hibits remote methods whose execution differs from a structured P2P protocol

implementation to another. For instance, the compatibility between two opera-

tions received on a peer may depend of the concrete operations type but also the

peer state. Fortunately, the multi-active object library allows to decide about com-

patibility at runtime with the help of compatibility functions (cf. Section 2.4.2).

Listing 6.1 shows the groups that are defined along with the compatibilities that

are loaded to the framework for a peer implementation. Six groups are declared

(line 2–11). The first group dubbed readImmutableStateOnly is used to serve in

parallel to others, and itself, all requests that simply access or read and return an

immutable field value. For example, the methods getOverlayId, getType, equals or

even hashCode from the Peer implementation are member of this group. As a rule

of thumb, this first group can be considered when dealing with multi-active ob-

jects. Then, the next two groups (join and leave) are associated to the respective

methods of the same name. Finally, receiveCallableOperation, receiveRunnableOp-

eration and routing are associated to their respective methods in the Peer interface,

namely the methods receive(CallableOperation), receive(RunnableOperation) and

route(Message).

Although join and leave requests are not compatible with themselves, groups

definition is required to define what is their compatibility with messages and op-

erations. The reason lies in the fact that a join may require to update neighbors

and to wait for a reentrant call with the reception of an operation. Similarly, some

messages, such as monitoring messages may be executed while a join request is

being served.

Then, after the definition of groups, compatibilities between groups are de-

clared (line 13–40). It is done for each possible combination of the groups by using

the @Compatible annotation. The interesting point here is that we have intro-

duced a specific condition parameter. This parameter allows to specify the name

of the function to use for deciding whether two groups are compatible. To define a

compatibility function that depends of a peer state, the name of the compatibility

6.1. MIDDLEWARE DESIGN 161

function is prefixed with the this. keyword. This way, when the multi-active ob-

jects framework attempts to check compatibility for two methods that belong to

the groups associated to the condition, the compatibility function is searched in

the peer implementation which allows to access to the instance fields it contains,

these last characterizing its current state. In our case, each compatibility function

local to a peer has its implementation delegated to the StructuredOverlay instance

embedded by the peer so that the value returned is defined per overlay implemen-

tation and is not common to all P2P protocols. When the compatibility depends

of the parameters only, the prefix this. is ommited and the function is looked up

in the class specified with a group-parameter (line 9–10).

Finally, the routing group is defined as self-compatible. We have made this

choice because most of the time routing implies to access data structures that are

not updated at the same time. The only issue to care about is when a message

reaches its final destination and that an action is executed. Since, two messages

may reach the same peer at the same time, the same action or two actions that

touch the same data structures or counters may be executed at the same time.

When this issue occurs, it is up to the programmer to synchronize what is required.

As a result, only part of the routing process requires synchronization.

1 @DefineGroups ({

2 @Group (name=" readImmutableStateOnly ", selfCompatible =true),

3 @Group (name="join", selfCompatible =false),

4 @Group (name="leave", selfCompatible =false),

5 @Group (name=" receiveCallableOperation ", selfCompatible =true ,

6 parameter ="org.ow2 ... operations . CallableOperation ",

7 condition ="this. areCompatible "),

8 @Group (name=" receiveRunnableOperation ", selfCompatible =true ,

9 parameter ="org.ow2 ... operations . RunnableOperation ",

10 condition =" isCompatible "),

11 @Group (name=" routing ", selfCompatible =true)})

12 @DefineRules ({

13 // readImmutableStateOnly is compatible with all other groups

14 @Compatible (value ={" readImmutableStateOnly ", "join"}),

15 @Compatible (value ={" readImmutableStateOnly ", "leave"}),

16 @Compatible (value ={" readImmutableStateOnly ",

17 " receiveCallableOperation "}),

162 CHAPTER 6. IMPLEMENTATION

18 @Compatible (value ={" readImmutableStateOnly ",

19 " receiveRunnableOperation "}),

20 @Compatible (value ={" readImmutableStateOnly ", " routing "}),

21 // callable operations compatibility

22 @Compatible (value ={" receiveCallableOperation ", "join"},

23 condition ="this. isCallableCompatibleWithJoin "),

24 @Compatible (value ={" receiveCallableOperation ", "leave"},

25 condition ="this. isCallableCompatibleWithLeave "),

26 @Compatible (value ={" receiveCallableOperation ", " routing "},

27 condition ="this. isCallableCompatibleWithRouting "),

28 // runnable operations compatibility

29 @Compatible (value ={" receiveRunnableOperation ", "join"},

30 condition ="this. isRunnableCompatibleWithJoin "),

31 @Compatible (value ={" receiveRunnableOperation ", "leave"},

32 condition ="this. isRunnableCompatibleWithLeave "),

33 @Compatible (value ={" receiveRunnableOperation ", " routing "},

34 condition =" isCompatibleWithRouting "),

35 // callable and runnable operations are jointly compatible

36 // under some conditions

37 @Compatible (value ={

38 " receiveCallableOperation ",

39 " receiveRunnableOperation "},

40 condition ="this. areCompatible ")})

41 public class PeerImpl extends AbstractComponent

42 implements PeerInterface , PeerAttributeController {

43 // ...

44 }

Listing 6.1 – Groups and compatibility definition using multi-active objects an-

notations on a Peer implementation.

6.1.2 An abstract CAN library

The second software block concerns the abstract CAN library. It is designed

by reusing the generic structured P2P framework. Protocol specific features are

defined in an abstract CanOverlay class that inherits from StructuredOverlay. A

CAN overlay is mainly characterized by the zone and the neighbors it stores.

The neighbors are organized in a data structure per dimension and direction.

6.1. MIDDLEWARE DESIGN 163

That’s way neighbors of interest may be quickly identified, updated and removed

during a join, leave or route operation. The zone definition has also required

some attention to support multiple representations of its elements. A zone or

hyperrectangle in a d-dimensional Cartesian space may be represented by an upper

and lower bound. These bounds are usual points made of coordinates. However,

points may be depicted as numeric, alphanumeric or even Unicode values. The

last being the solution we have adopted. To make the coordinates independent of

their representation, an abstract class defines common methods such as one that

splits a coordinate in its middle, or others that are used to compare coordinates

and points together. Then, multiple coordinate implementations may be provided.

By default, only one for coordinates modeled as floating point values in radix 10

is provided.

The routing algorithms, introduced in Chapter 3, based on unicast and mul-

ticast constraints have been implemented at this level. Although both versions

of the multicast routing algorithms have been implemented (the naive and the

optimal one), the optimal based on broadcast is enabled by default since it avoids

many duplicates.

Finally, it is worth mentioning that the different features that are provided at

this level are designed to work for any number of dimensions a CAN network is

supposed to be instantiated with.

6.1.3 A CAN implementation for RDF data

The upper software block (cf. Figure 6.1) corresponds to the concrete implemen-

tation of our EventCloud middleware. Figure 6.6 sketches a high-level view of

the architecture. It involves an extended version of the software blocks and thus

elements which have been described above, namely peers and proxies. Beyond

trackers that maintain references to some peers and serve as the entry points to a

4-dimensional Content Addressable Network, the structured P2P network is made

of peers. As we explained in Chapters 3, 4 and 5, peers are in charge of storing

RDF data, subscriptions, to perform the matching between both but also to as-

sist with the resolution of SPARQL queries while keeping data well balanced. To

achieve this purpose their internal is designed with multiple software elements (i.e.

164 CHAPTER 6. IMPLEMENTATION

artifacts) whose each has its own role.

4-dimensional
Content Addressable Network

Tracker1Tracker2 Tracker3

Publish
Proxy

PutGet
Proxy

Subscribe
Proxy

Figure 6.6 – High-level view of the EventCloud architecture.

Proxies, which allow interactions with the CAN network from external entities

(i.e. applications or users), are proposed in three flavours: PutGet, Subscribe and

Publish. PutGet proxies allow the addition and the removal of RDF data but also

the retrieval of semantic information through the distributed execution of SPARQL

queries based on the traditional and synchronous query/response model. Subscribe

and publish proxies leverage the asynchronous publish/subscribe communication

style. The first is used to submit subscriptions and to deliver notifications that are

matching whereas the second is used to publish new information to the brokering

network. Similarly to peers, dedicated software elements are defined and reused

between proxies.

In the next sections we discuss proxies and peers internals. We will further see

that one of the goals when designing the middleware was its modularity (i.e. to

be able to easily change, modify, replace or reuse some parts).

EventCloud proxies

Proxies at the EventCloud level reuse by composition the proxy abstraction intro-

duced in the Section 6.1.1 since all proxies require to interact with a CAN network

by sending messages. However, each EventCloud proxy behaves differently and

6.1. MIDDLEWARE DESIGN 165

exposes a different API. Public APIs are sketched in Figure 6.7. The important

point to notice here is that we do not make use directly of an existing RDF Java

API for RDF specific abstractions (e.g. Quadruple, SPARQL query results, etc.).

Instead, we introduce our own RDF abstractions, even if then the abstractions

we provide are bound to objects from a standard RDF API, the native one pro-

vided by Jena. The reason to do so lies in the fact that, at the time we started

to design our system, most of the existing RDF API were not serializable which

is really not handy to work with in a distributed context. Moreover, some RDF

abstractions such as the quadruple one requires to store publish/subscribe specific

values like the time at which a quadruple has been published, which is again not

supported by existing APIs. Additionally, SPARQL query responses may contain

extra information related to the infrastructure where the execution took place

such as the number of hops required, the execution time, etc. Besides, the added

value to expose to users our own RDF abstractions is that the dependency to an

RDF API (such as Jena [156] or Sesame [80]) is isolated in our abstraction. Thus,

moving from one to another just consists in plugging a new implementation of

our abstractions. In the past, we have successfully swapped from Sesame to Jena

without impacting the other parts of the architecture.

Some may argue we could use RDF2Go [157] which is an abstraction over

triple and quadruple stores that allows developers to program against RDF2Go

interfaces and choose or change the implementation later easily. However, RDF2Go

interfaces are not serializable, maintained sporadically and the overhead induced

by the library was not negligible at the time we tested it. Therefore, we have put

this solution aside.

Internally, proxies share common software elements. Figure 6.8 depicts what

are those that are reused between proxies. For instance, with a PutGet Proxy, the

execution of a SPARQL query involves three software elements, namely a Query-

PlanGenerator, a QueryDecomposer and a QueryPlanExecutor. The first is in

charge of creating an execution graph for subqueries (atomic and range queries)

extracted from the input query thanks to the second software element that is the

QueryDecomposer. Then, the third traverses vertices (i.e. subqueries) to dispatch

them in parallel (in our current implementation) with the help of a MessageDis-

patcher. Although some software elements are limited to a unique component,

166 CHAPTER 6. IMPLEMENTATION

«interface»
PutGetAPI

+ add(Quadruple) : boolean
+ add(Collection<Quadruple>) : boolean
+ delete(Quadruple) : boolean
+ find(QuadruplePattern) : List<Quadruple>
+ executeSPARQLAsk(String) : SparqlAskResponse
+ executeSPARQLConstruct(String) : SparqlConstructResponse
+ executeSPARQLDescribe(String) : SparqlDescribeResponse
+ executeSPARQLSelect(String) : SparqlSelectResponse

«interface»
SubscribeAPI

+ subscribe(Subscription, BindingNotificationListener)
+ subscribe(Subscription, CompoundEventNotificationListener)
+ subscribe(Subscription, SignalNotificationListener)
+ unsubscribe(SubscriptionId)

«interface»
PublishAPI

+ publish(CompoundEvent)
+ publish(Collection<CompoundEvent>)

Figure 6.7 – Shortened public API with essential methods exposed by related
EventCloud proxies.

6.1. MIDDLEWARE DESIGN 167

some others such as the QueryDecomposer is shared between a PutGet Proxy and

a Subscribe Proxy. Indeed, the later also needs to extract sub-subscriptions which

are in fact subqueries since SPARQL is used as the subscription language. Simi-

larly, all proxies interact with a structured P2P network through message passing

and thus, share the same MessageDispatcher software element provided from the

proxy abstraction introduced in Section 6.1.1.

Message Dispatcher

PutGet Proxy

Subscribe API

Query Decomposer

Message Dispatcher

Notification Receiver

Subscribe Proxy

Publish API

Message Dispatcher

Publish Proxy

PutGet API

Query Plan Generator

Query Decomposer

Query Plan Executor

Figure 6.8 – Internal EventCloud proxies architecture.

To improve interoperability, the different proxies presented above may be ex-

posed as a SOAP web service. Furthermore, it may be decided that publish and

subscribe proxies interfaces are exposed by using our own WSDL or the WS-

Notification [158] one that aims to standardize publish/subscribe interactions in

web services. In this last case, translators are provided by the EventCloud mid-

dleware to translate plain old XML payloads to and from XML2.

EventCloud peers

Peers internal is much different than proxies. However, peers behave the same and,

consequently, share software elements. Figure 6.9 highlights these elements whose

most of them do not work in isolation. Rather, they require frequent interactions.

Below, their functions and their relations are explained.

2http://goo.gl/cv3iJH

http://goo.gl/cv3iJH

168 CHAPTER 6. IMPLEMENTATION

Peer i

Load Balancing
Manager

Local
Storage

4D CAN
Overlay P2P Substrate

Delayer Publish/Subscribe Matcher

Events
Datastore

Subscriptions
Datastore

Colander
Datastore

Figure 6.9 – Internal EventCloud peer architecture for an arbitrary peer i. Red
arrows depict reusable abstractions.

P2P substrate This software element is responsible for maintaining the CAN

infrastructure, routing messages and accessing the local storage through the delayer

abstraction. The 4-dimensional CAN overlay is managed through an extended

version of the CAN overlay provided with the abstract CAN library. Extended

because the overlay has to interact with EventCloud specific software elements

such as the semantic repositories it embeds, a publish/subscribe matcher, or even

a load balancing manager it may optionally run. As a reminder, the default CAN

overlay is responsible for maintaining a description of the zone managed by the

current peer and an up-to-date list of its neighbors only.

Regarding routing, the algorithms implemented at the lower level require to

compare peer’s zone coordinates with coordinates extracted from quadruples. To

make it possible, a unicode coordinate implementation is provided so that coordi-

nate values may be floating points in radix different from 10. Manipulations on

digits from coordinates to perform for instance a split during a join operation are

performed with the help of the Apfloat [159] high performance arbitrary precision

6.1. MIDDLEWARE DESIGN 169

arithmetic library. However, comparison between a quadruple coordinate and a

zone coordinate is made by comparing directly unicode values since they are real

numbers represented in the same radix. Let’s consider for example zcl = subj and

zcu = uzo, two zone coordinates, respectively the lower and upper bound coordi-

nates a quadruple coordinate qc = http ∶ //example.org/subject has to be compared

to. The first step consists in checking whether an upstream load balancing strat-

egy is enabled. In case it is, for instance prefix removal, the associated function

is applied as explained in Section 5.2.2. Thus, qcs = subject is obtained. Then,

qcs is compared to zcl and zcu, character by character by using at most all the

characters from zcl and zcu, as it would be done with digits from decimal num-

bers. In that case, qcs is detected as greater than zcl and lower than zcu, thus

qc is assumed managed by the peer zone on the specified coordinate dimension.

The consequence of this scheme is that the extra cost of working with big radix

remains acceptable since it has little impact on the routing performance.

Delayer The delayer software element acts as an intermediate between the local

storage, the P2P substrate, and the publish/subscribe matcher abstraction. Its

purpose is to buffer incoming data that has to be written to the disk because

the commit of data to disk is an expensive operation. Also, since data require

to be stored before being notified, the matching between buffered data and sub-

scriptions is delayed. Buffered data and subscriptions are sent to the publish/sub-

scribe matcher for checking the satisfaction between events and already stored sub-

scriptions (and/or symmetrically between subscriptions and already stored events)

when they are flushed from the buffer only. The main benefit to delay the matching

is that it leads to fewer queries to perform on the local storage. Without buffering

and delaying a query has to be performed per event or subscription received in

order to find matching payloads whereas when delaying is enabled, all queries may

be wisely merged into one that is executed only once, when the buffer is flushed.

Internally, this software element implements a configurable policy to flush

buffered data and trigger delayed operations when a threshold is reached (e.g. the

time passed since last commit aka commit interval, number of elements received

such as quadruples, compound events or subscriptions). The potential impact of

this solution on the overall performance of the system is discussed in Section 6.2.3.

170 CHAPTER 6. IMPLEMENTATION

Publish/Subscribe matcher The publish/subscriber matcher is the software

element in charge to apply one of the Publish/Subscribe algorithm (CSMA or

OSMA) we have presented in Chapter 4. It registers subscriptions and checks the

satisfaction of subscriptions with events it receives (and already stored). Addi-

tionally, the matcher caches locally the most recently used subscriptions to avoid

as much as possible expensive interactions with the local storage.

Local storage The local storage is ultimately responsible for storing data and

processing queries locally. It is important for the P2P infrastructure to be inde-

pendent from the storage implementation. All references are isolated through an

abstraction layer whose the role is to manage the differences between data struc-

tures and API between the P2P and the storage implementations. However, some

requests require the access to a local datastore to read or write some information.

The storage abstraction is bound to three datastores that, each, encapsulates a

Jena TDB [84] instance and optionally a stats recorder. As depicted by Figure 6.10,

the stats recorder instance may be used by the load balancing manager to retrieve

an estimation of the load in terms of quadruples, and this per dimension because

the centroid or mean is computed per RDF term value from quadruples.

Regarding the datastores, one is used for storing subscriptions, another to store

RDF data that are added synchronously or published asynchronously (events data-

store), and a last to filter intermediate results returned during the execution of

a SPARQL query (colander datastore). This last datastore is used mainly to

compute joins between quadruple sets returned with the execution of atomic and

range queries during the handling of a SPARQL query. It is also used to support

SPARQL operators that are not managed in a distributed manner. Using three

datastore instances has several benefits. In our case, they are at least two reasons

for having an independent subscription and events datastore. First, it allows to

easily distinguish subscriptions from business data without having to add a flag,

additional quadruples or even to create a complex quadruple representation. Sec-

ond, a Jena TDB instance supports transactions with multiple concurrent readers

but only one writer at a time. By using two datastore instance, concurrent writes

against the subscription datastore and the events datastore can be performed at

the same time.

6.2. PERFORMANCE TUNING 171

Stats Recorder

Jena TDB

Datastore

Load Balancing
Manager

File System

P2P
Substrate

Figure 6.10 – Internal architecture of datastores (subscriptions, events and colan-
der datastores) embedded by peers’ local storage. Red arrows depict reusable
abstractions.

Load balancing manager The load balancing manager, when enabled, encap-

sulates a load balancing strategy to apply in order to share load imbalances. It may

rely on the load balancing strategies introduced in Section 5.2.2, namely absolute

or relative. To achieve its purpose each load balancing strategy has to measure the

load associated to its peer. Since our criteria are about RDF data, this is made

through interactions with the local storage that maintains statistical information

about data distribution per dimension. Interactions with the P2P substrate are

also required when load information should be exchanged with neighbours or other

members of the P2P network, especially with the relative load balancing strategy.

Regarding this last, the manner load information is disseminated has its own ab-

straction which allows to plug different gossip strategies. Although only imbalances

related to quadruples are taken into consideration for the moment, load balancing

software elements has been design to support multiple independent criteria. Fi-

nally, how imbalances are fixed with the help of peer allocations or relocations is

isolated in a dedicated software element that enables sharing between criteria.

6.2 Performance Tuning

Throughout the implementation of the EventCloud middleware, we identified dif-

ferent bottlenecks. The purpose of this section is to summarize different solutions

we have proposed, implemented and evaluated to enhance the performances of the

whole system.

172 CHAPTER 6. IMPLEMENTATION

6.2.1 Multi-active objects

Initially, the middleware has been implemented by using standard Active Objects

with Immediate Services (ISs). ISs enable remote method invocations to be pro-

cessed immediately by spawning new threads. The benefit is that they allow to

take advantage of multicore machines whereas the default serving policy provided

by ProActive, which enqueues incoming requests and handle them one by one

through a single thread, cannot. However, the main drawback is that ISs break

Active Objects’ semantic. Therefore, all ISs calls are handled synchronously which

entails the caller thread to block until it receives the results. Besides, ISs do not

impose a limit about the number of threads to spawn and require to manage mu-

tual exclusion manually, which allows finer control than MAOs but at the price of

more complex and longer pieces of code to write.

Once a first version of the MAO library was available, we started to analyze its

use inside the EventCloud middleware. The first step was to assess and compare

the performance between an implementation of our solution with ISs and another

with multi-active objects [160]. As a result we observed that the solution based on

MAOs is in the best case identical in terms of performance obtained or even slower

to our previous implementation based on ISs. It suggests the original implementa-

tion was already well parallelized. However, MAOs require less threads to achieve

almost the same performance. The reason lies in the fact that, unlike ISs, MAOs

do not have to use a dedicated thread to perform an asynchronous remote method

invocation since methods without return type that are not declaring to throw an

exception are handled asynchronously.

Thereafter, the MAO implementation has become more stable and we decided

to keep it for the EventCloud middleware and to investigate how performance

could be tweaked. This lead to an empirical definition of soft and hard limits used

with AOs and the introduction of priorities, as explained below.

Hard and soft limit definition

Defining properly MAO limits is a tricky process because it implies to consider

many factors. Indeed, value must be set according to the machine architecture

where experiments are made but it also depends of requests’ type executed, their

6.2. PERFORMANCE TUNING 173

frequency, the compatibilities defined and the type of task performed once a re-

quest is executed. For instance, requests performing I/Os will most likely slow

down the execution of other requests that are a consequence of the one being exe-

cuted. Increasing the number of threads that may be executed concurrently may

be advantageous if some independent and non I/O intensive requests (i.e. memory

bound) can be processed while I/O requests are in progress, otherwise the benefit

is less obvious. Another non trivial issue to monitor that may inhibit the effect of

increasing MAO limits relates to threads contention. The situation occurs when

multiple threads are waiting for a lock that is currently being held by another

thread. In that case, boosting the number of threads heighten contention and

makes the application leads to worse performance.

In the following we describe how MAO limits have been empirically defined

for the publish/subscribe layer. In this context, entities that are involved are

publish and subscribe proxies but also peers. Publish proxies, which do not trigger

reentrant calls, define a hard limit that prevents to use more than t threads at any

moment for handling requests. Publishing events is an asynchronous process that is

really fast, experiments showed us that increasing t does not increase throughput

at the subscriber. Peers simply enqueue requests faster but since they perform

routing and matching at a slower rate than the one at which publications are

received, increasing t is not beneficial. For this reason we set t to the number of

cores available on the machine where the publish proxy is running.

The next step consists in finding the best MAO limit for peers. Peers define

a soft limit that restricts the number of threads running but allows, as opposed

to a hard limit, an unlimited number of threads to wait (e.g. for futures) in

order to prevent deadlocks with reentrant calls. To help us to choose properly the

appropriate limit value, we have performed experiments based on a configuration

with OSMA involving one publish proxy, one subscribe proxy and one peer, each on

a dedicated machine with 8 cores. By pushing the handling capacity of the peer

to its limits and deciding MAO limit based on this scenario, the value remains

also suitable for configurations with multiple peers. To this aims, 15000 CEs are

published, each embedding 5 quadruples. Only one path query subscription with

k = 5 (the number of quadruple patterns linked together) is registered.

Intuitively, to assess MAO limit at a low level, a method is to trace the number

174 CHAPTER 6. IMPLEMENTATION

 0

 10

 20

 30

 40

T
o
ta

l
T

h
re

ad
 C

o
u
n
t

Elapsed Time

1
4
6

8
16
32

(a) Threads usage by varying soft limit
value on peer.

 0

 5

 10

 15

 20

R
u
n
n
in

g
 T

h
re

ad
 C

o
u
n
t

Elapsed Time

1
4
6

8
16
32

(b) Running threads usage by varying soft
limit value on peer.

 0

 10

 20

 30

W
ai

ti
n
g
 T

h
re

ad
 C

o
u
n

t

Elapsed Time

1
4
6

8
16
32

(c) Waiting threads usage by varying soft
limit value on peer.

 225

 240

 255

 270

 285

 300

1 4 6 8 16 32

S
u
b
sc

ri
b
er

 T
h
ro

u
g
h
p
u
t

(C
E

/s
)

Soft Limit Value

(d) Subscriber throughput when varying
soft limit value on peer.

 1

 2

 3

 4

T
o
ta

l
T

h
re

ad
 C

o
u
n
t

Elapsed Time

1
2
4

8
16
32

(e) Threads usage on subscribe proxy by
varying number of peers.

 0

 10

 20

 30

 40

T
o
ta

l
T

h
re

ad
 C

o
u
n
t

Elapsed Time

d=15
d=30

(f) Threads usage on subscribe proxy with
16 peers by simulating delivery actions.

Figure 6.11 – MAO soft limit evaluation for peers and subscribe proxies (threads
usage is approximated with a bezier curve to get readable figures).

6.2. PERFORMANCE TUNING 175

of threads used by the MAO framework during a benchmark execution for different

soft limit values. We performed this assessment in a first experiment and we have

got the results depicted on Figure 6.11(a). These last clearly show that at any time

the number of threads used is almost equal to the value set for the soft limit, thus

suggesting the peer is running at its maximum capacity. However, by considering

all threads without taking into account their state (i.e. whether they are running

or waiting), nothing more may be deduced.

Consequently, our next two experiments have consisted in varying, again, the

soft limit from 1 to 32 and, for the values used, to trace the number of threads run-

ning and waiting. In our case waiting threads are threads which are blocked for a

lock acquisition in order to enter a synchronized block or method at the EventCloud

level since no future is triggered given that all publish/subscribe method calls are

asynchronous with OSMA. Results are depicted respectively on Figure 6.11(b) for

running threads and Figure 6.11(c) for waiting threads. The former figure shows

that no more than 13 threads are running at any time whatever the soft limit is.

Thus, setting a value higher than 13 for the soft limit has no benefit. The latter

figure allows us to approximate the optimal value we are looking for but also to

identify a potential bottleneck. Indeed, after a thorough check, all waiting threads

are in fact blocked threads waiting for acquiring the lock on our delayer datas-

tructure that acts as a cache layer for handling new events. Since the number of

threads waiting is rising when the soft limit is greater or equals to 8, it strongly

suggests contention among threads to obtain the lock to our delayer datastructure.

A solution could be to explore a new implementation that entails less locking to

improve scalability. However, this is left as a future task since many optimizations

we have made may no longer hold, thus requiring intensive tests and benchmarks.

In conclusion, it seems more appropriate to set the soft limit to 6 than 8 for

peers deployed on 8 cores machines since this value incurs less contention among

threads. To confirm this choice, we have performed a new experiment that com-

pares the subscriber throughput obtained for different MAO limits. Results depict

on Figure 6.11(d) show that the throughput increases when the soft limit varies

from 1 to 6 but declines for higher values, hence strengthening our previous find-

ing. For information, this last experiment has not been presented earlier because

it may be argued that results are affected by some other layers of the application

176 CHAPTER 6. IMPLEMENTATION

since subscriber throughput is measured at the subscriber side which is outside

the P2P network. Previous experiments eliminate this possibility.

Finally, we have studied subscribe proxies. A subscribe proxy may receive no-

tifications from multiple different peers at the same time. Furthermore, subscribe

proxies’ requests are much less exposed to contention than peers’ requests because

a subscribe proxy makes use internally of concurrent maps for marking an event

as received but also for finding to which subscription a notification is intended for.

Based on these two observations, the next experiment adopts the same benchmark

configuration as before but aims to compare the total number of threads used on

the subscriber when the number of peers involved is increased from 1 to 32 by

power of two for a soft limit set to 32. As depicted by Figure 6.11(e), the number

of threads increases to some extent with the number of peers but never exceeds

3. The reason lies to the fact that a subscribe proxy handles notifications quickly

but at a rate that is bounded and slightly slower than the one at which they are

sent by peers. To corroborate our discovery and to show that threads usage de-

pends also in part of the delay at which notifications are handled at the subscriber

side, we performed an experiment that varies the delivery time. In this purpose,

the listener registered with the initial subscription on the subscriber makes sleep

for d milliseconds the thread delivering the notification. This way, the listener is

simulating an action taking approximatively d milliseconds to handle each event

notification. Figure 6.11(f) depicts results for two runs, one with d set to 15 and

another with d set to 30. Compared to results on Figure 6.11(e) where d was set

to 0, we observe that threads usage is greatly increased, thus suggesting that de-

livery actions taking time may take advantage from a high MAO limit. However,

this limit must be selected carefully, especially if the action involves locking since

this last generates contention among threads thus causing poor performance when

MAO limit is increased, as we have seen for peers.

To summarize, selecting the appropriate MAO soft limit for subscribe proxies

strongly depends of the action performed with the listener registered along with the

subscription, which is use case dependent. However, since no contention occurs by

default and because threads are spawned only when required and garbage collected

a few time after they complete, we set the default soft limit value equals to the

number of cores available on the machine where the subscribe proxy is deployed

6.2. PERFORMANCE TUNING 177

to face potential overload if the number of peers is sharply increased.

Priorities

Multi-active objects enable concurrent requests execution but the default serving

policy does not allow to control scheduling between compatible requests. This

lack of control may lead to poor response time. Let’s consider a concrete example

we have faced with while experimenting the first version of our publish/subscribe

algorithm based on polling. In this scenario, events are emitted to peers in batch

through request of type P . Then, peers perform the matching and forward a no-

tification to subscribers that trigger a reconstruction based on an identifier. The

reconstruction consists in routing one or more synchronous requests of type R for

retrieving chunks that make up the event a subscriber has been notified about.

Once requests of type R reach peers, they are queued into the request queue of

their respective peer. However, requests of type R that are the last actions to be

completed before delivering events are not served until requests of type P (which

arrived before in the request queue) are executed or the last requests of type P

that predate requests of type R are being executed and some threads become free,

despite the fact that requests of type R are compatible with requests of type P . Re-

quests are simply scheduled in the order they are detected as compatible. This last

depending of the order in which requests are queued in the request queue. Conse-

quently, in the presented example reconstruction requests are delayed, thus having

a negative outcome on the latency perceived by subscribers to receive matching

events.

In summary, our goal was to propose a mean to improve efficiency by reduc-

ing the scheduling time of critical requests. To this aim, we have extended the

multi-active framework and its meta language based on annotations to enable the

definition of priorities. Priority relationship between requests is based on integers.

Listing 6.2 gives an example for improving the scheduling time of reconstruction re-

quests discussed above. The set of priorities is embedded by a @DefinePriorities

annotation at the header of an AO class. Inside, priorities are defined with the

help of the @Priority annotation which requires at least the method name and

the priority level attributes, others are optional.

178 CHAPTER 6. IMPLEMENTATION

1 @DefinePriorities ({

2 @Priority (level =1, boostThreads =1, name="route",

3 parameters ={ ReconstructCompoundEventRequest . class })

4 })

5 public class SemanticPeerImpl {

6 // ...

7 }

Listing 6.2 – Priorities definition.

Priority level is an integer that ranges from −231 to 231−1. Methods that satisfy

no priority constraint are assigned to a default and implicit priority constraint

with priority level 0. The method name defines method calls that are assigned

to the priority rule. The optional parameter attributes are used to assign the

priority constraint to method calls whose parameters are of the specified types.

The boostThreads attribute is useful to prevent starvation issues that may occur

when priorities are applied. It defines the number of extra threads that may be

used by the MAO framework in addition to the number of threads permit for the

hard or soft limit. However, boost threads are spawned when the soft or hard limit

is reached only. Finally, priorities are also settable programmatically to have the

possibility to enable or disable priority rules according to properties.

Internally priorities are implemented with a few changes to the request executor

provided with the MAO framework. By default incoming requests are put in a

request queue, then compatible requests are pulled out in a ready queue. Once

a thread completes a request execution, a new request is picked from the ready

queue for execution. Our priority selection is applied during this last phase. Thus,

a request may overtake another request according to priorities defined if both

requests are compatible.

To assess the effect of our solution we executed the scenario described previ-

ously with and without priorities. Results are sketched on Figure 6.12. Enabling

priorities allows to keep reconstructions time almost constant whereas without

priorities the reconstruction time depends of the position at which reconstruction

requests have been enqueued compared to publications. Therefore, when a burst

of publications predates reconstruction requests, these last take up to 10000 times

6.2. PERFORMANCE TUNING 179

longer to complete without priorities than with priorities.

10

100

1000

10000

100000

1e+06

R
ec

on
st

ru
ct

io
n

T
im

e
(i

n
m

s)
lo

gs
ca

le

Elapsed Time

without priorities
with priorities

Figure 6.12 – Priorities effect on reconstructions with CSMA.

The presented solution has been implemented and integrated in the ProActive

code base. Now, Justine Rochas is investigating within the context of her thesis

a new manner to express priority relationship based on a dependency graph [161].

6.2.2 Serialization

The mechanism provided by default with Java to marshall objects, which simply

consists in implementing a Serializable interface, is really handy but not efficient,

especially for exchanging messages in a publish/subscribe system where respon-

siveness plays an important role. The main issues are the following:

• Marshalling and unmarshalling require the serialization mechanism to dis-

cover information about the object instance it is serializing. Using the default

one, all field values are discovered by reflection;

• Classes that do not define a serialVersionUID field, that is used during de-

serialization to verify that the sender and receiver of a serialized object have

180 CHAPTER 6. IMPLEMENTATION

loaded classes for that object that are compatible, compel the default seri-

alization mechanism to compute one. This involves going through all fields

and methods to generate a hash value;

• Serialized classes and their serializable superclasses have their descriptions

sent in the output stream.

To solve the performance problems mentioned above, Java allows to define our

own serialization behavior through the Externalizable interface. Obviously, this

efficiency comes at a price, that of defining manually how fields are encoded and

updating this definition when the characterization of the class to marshall changes.

In our case, we have used externalization (i.e. custom serialization) for our custom

RDF data types wrapping existing ones from the Jena API. Since data types

provided by Jena are not serializable, the overhead induced to support custom

marshalling was not too high in comparison of using the default mechanism. The

benefit of using custom serialization or frozen objects, as we will explain below,

is not to save bytes to exchange but mainly some time required to encode and

decode exchanged information.

Frozen objects

Whether it is to update the state of some peers, to handle SPARQL queries or

more generally to execute a request, messages are exchanged between peers. By

default, a deep copy of the message that is sent on the wire is made for each remote

method call that routes a message to its destination. Since messages are routed

from peers to peers in multiple steps, the data that are piggybacked by messages

are serialized and deserialized at each hop whereas only the final receiver is most

of the time interested by the information that are conveyed within a message. To

prevent expensive serializations, we have introduced the concept of frozen objects

that aim to fully serialize and deserialize transferred objects only once.

To freeze an object graph, we propose a simple FrozenObjectGraph class that

encapsulates an object graph which has been previously serialized as a byte array.

This class has also the particularity to implement the Java Externalizable interface

in order to define its own serialization behavior and thus avoiding the overhead

6.2. PERFORMANCE TUNING 181

from the default Java mechanism. In addition, a FrozenObjectGraph disposes

of one method called unfreeze that deserializes the original object from the byte

array and, thus, returns a deep copy of the initial object that was frozen. This last

method is used to retrieve back the object value, once the message that embeds

the frozen object is required. It is usually invoked when the message reaches its

final destination.

Compared to a scenario where a message routed in N hops requires N full seri-

alizations and deserializations, up to N−1 expensive operations may be saved when

frozen objects are used. Indeed, with frozen objects, the value is fully serialized

and deserialized respectively before the first hop and after the last hop. Conse-

quently, only 1 full serialization is required. The remaining N −1 serializations are

made on byte arrays, which is more efficient than a full object serialization on non

primitive data types.

To assess the effect of using FrozenObjectGraph objects, we have performed

measurements by varying two parameters: the type of the object to freeze and the

size of the object that is frozen. The results show the time required to perform

4× 104 deep copies (serialization + deserialization) of a message with and without

the use of frozen objects for a message that embeds either a simple quadruple or a

compound event made of 10 quadruples. The number of serializations we propose

to use corresponds to approximatively 104 messages to route if we assume that

messages are routed on a 4 dimensional CAN network with 256 peers since the

average routing path in this configuration is equals to 4. Results are depicted

on Figure 6.13. They show the percentage difference, in terms of time required

between the solution that relies on the default serialization mechanism provided

by Java and the one that uses frozen objects, when the message that is deeply

copied embeds either a quadruple or a compound event. When a quadruple is

used, we can see that the usage of frozen objects is interesting when the sum of

characters contained by RDF terms is greater than 128. In this last case, the

use of frozen objects improves the execution time by 3% and up to 27% when

the size of a quadruple reaches 512 characters. The effect of using frozen objects

is strengthened when an object with a larger object graph, such as a compound

event, is considered.

Quadruples’ size is really scenario dependent, however to evaluate the benefits

182 CHAPTER 6. IMPLEMENTATION

0

20

40

60

80

100

16 32 64 128 228 256 512

P
er

ce
nt

ag
e

di
ffe

re
nc

e

Quadruple size
(total number of characters)

Compound Event
Quadruple

Figure 6.13 – Message serialization with and without the use of frozen objects.

in a standard and realistic use case, we have measured the average size of quadru-

ples for 108 entries from the DBpedia dataset provided for the Billion Triples

Challenge 20123. As a result we get that quadruples contain in average 228 char-

acters. For this size, frozen objects improve the marshalling time by 8% with a

simple quadruple and by 71% when a compound event with 10 quadruples is used.

The effect of using frozen objects could be further improved by using compression

but it is left for future work.

6.2.3 Local storage

As we explained previously, the local storage on peers is made of multiple datastore

instances, each one being bound to a Jena TDB repository. The main reason is that

it reduces contention when concurrent read/write operations must be performed

for events and subscriptions at the same time. To further reduce the time required

to execute SPARQL queries, we have introduced some rules applicable for queries

3http://km.aifb.kit.edu/projects/btc-2012/

http://km.aifb.kit.edu/projects/btc-2012/

6.2. PERFORMANCE TUNING 183

involved in the publish/subscribe matching. First, SPARQL queries are not passed

to the Jena engine as simple strings. Instead, SPARQL queries are manually built

as a SPARQL Abstract Syntax Tree (AST)4, also known as an algebra in the

Jena terminology. It prevents parsing a sequence of characters and performing a

lexical analysis for queries that are always built using the same model. Second,

static optimizations applied by Jena on queries (which consist of transforming a

SPARQL algebra before its query execution begins by reordering filter expressions,

BGP, etc.) are disabled. It is assumed that queries we build are already optimized.

Subscriptions storage How subscriptions are stored and detected as matching

events requires some explanations. To keep persisted information homogeneous it

has been decided to store subscriptions in RDF. Doing so entails to define how

subscriptions are expressed in RDF. Listing 6.3 gives an example for the SPARQL

subscription presented in Listing 4.1. The first eight quadruples (line 1–9) are meta

information about the subscription, namely its identifiers, the content of the full

query, its type that defines how solutions have to be notified (i.e. as bindings, CEs

or signals), the time at which it enters the P2P network, and a subscriber reference

to send back matching events. Multiple identifiers are associated to a subscription

because, as explained in Chapter 4, a subscription may be rewritten several times.

Initially, the original subscription identifier (oid) and the current subscription

identifier (id) are set to the same value but the parent identifier (pid) is undefined.

Once a rewriting is performed, for instance S is rewritten to S′, S′pid is set from Sid

and S′id to a new value that uniquely identifies the rewritten subscription. Chaining

identifiers is useful for unsubscribing as explained in 4.2.3, but also to detect some

situations. For instance, let’s take as an example a subscription S received on a

peer for indexation. If an event is detected as matching S, its indexation time

lower than the one for the matching event and Spid is undefined, then its means

that an ordering issue occurred for a just submitted subscription.

To provide fast access to quadruples related to a specific subscription, its meta-

data or subsubscriptions’ metadata, the graph value of each quadruple from a

RDF subscription payload contains an URN identifying the subscription (e.g. like

4An AST is a tree representation of the abstract syntactic structure of a language or grammar
associated to a language where leaves depict tokens of the grammar.

184 CHAPTER 6. IMPLEMENTATION

urn:ec:s:1 on Listing 6.3). Similarly, the subject value embeds either the original

subscription identifier or a subsubscription identifier (e.g. urn:ec:ss:1). In the

former case it allows fast access to subscription metadata whereas in the latter it

grants direct access to subsubscription metadata.

Finally, the most important decision is how subsubscriptions are modeled to

detect if subscriptions are fulfilled for a given CE or quadruple. A simple solution

is to store the SPARQL query as String and when required, to load back all

subscriptions, inserting the CE or the quadruples to check the satisfaction with

into an in-memory dataset and to execute each subscription against the dataset

to find back solutions. Although the implementation is easy, it does not scale

with respect to the number of subscriptions. To address the issue we propose to

split each subsubscription from a subscription into pieces, as depicted on lines

10–17 and 19–26. Fixed RDF terms values are put as object value of quadruples.

When a variable is declared in a subsubscription, a custom URN is used instead.

This way, it is possible to define a matching SPARQL query that finds identifiers of

subscriptions that are satisfied by a given CE or quadruple. In an abstract manner,

subscriptions are transformed as data and events as simple query patterns. It may

also be noticed that each subsubscription defines a quadruple containing as object

value the name of the variables involved in the subsubscription (see lines 17 and

26). The purpose is to help solving subscriptions registered with a binding listener

since in that case values associated to variables only must be notified.

Unfortunately, subsubscriptions involving filter constraints (range queries) are

not addressed by our previous discussion. Currently, to support range queries we

apply the solution we presented without considering filters and then, thanks to

an extra quadruple added to the RDF representation that defines if the original

subscription contains filters, we are able to detect if solutions found require refine-

ments. In this last case, intermediate solutions are put in an in-memory dataset

and refined by reexecuting the original subscription. Ideally, the expression tree

associated to filter constraints should be tokenized and put in way that allows the

matching SPARQL query to consider filter constraints.

1 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:oid , "1")

2 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:pid , "1")

6.2. PERFORMANCE TUNING 185

3 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:id , "1")

4 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:query , " SELECT ...}")

5 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:type , "2")

6 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:itime , "2013 -12 -12 T11 :01:14.977")

7 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:subscriber ,

8 "rmi :// oops.inria.fr :1099/ subscribe -proxy -40 c1d51b ")

9 (urn:ec:s:1, urn:ec:s:1, urn:ec:s:iref , urn:ec:ss :1)

10 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:id , urn:ec:ss :1)

11 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:index , "0")

12 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:g, urn:ec:var)

13 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:s, urn:ec:var)

14 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:p,

15 http :// example .org/v/ action)

16 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:o, "exits ")

17 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:varnames , "g=g,s=id")

18 ...

19 (urn:ec:s:1, urn:ec:ss:1, urn:ec:ss:id , urn:ec:ss :3)

20 (urn:ec:s:1, urn:ec:ss:3, urn:ec:ss:index , "0")

21 (urn:ec:s:1, urn:ec:ss:3, urn:ec:ss:g, urn:ec:var)

22 (urn:ec:s:1, urn:ec:ss:3, urn:ec:ss:s, urn:ec:var)

23 (urn:ec:s:1, urn:ec:ss:3, urn:ec:ss:p,

24 http :// xmlns.com/foaf /0.1/ age)

25 (urn:ec:s:1, urn:ec:ss:3, urn:ec:ss:o, "exits ")

26 (urn:ec:s:1, urn:ec:ss:3, urn:ec:ss:varnames , "g=g,s=id ,o=age ")

Listing 6.3 – SPARQL subscription representation in RDF.

Buffering and delaying

Jena TDB provides support for transactions. In our implementation transactions

are used to avoid unexpected or undesirable results when interleaving operations

on a datastore (read/write) occur due to the execution of some requests in par-

allel. Transactions ensure ACID properties: atomicity, consistency, isolation and

durability. Although the last is crucial to ensure that information persist through

crashes, not all scenarios require this level of confidence. Moreover, ensuring no

information loss would require much more work, especially at the P2P level by

replicating events and subscriptions but also at the ProActive level by storing in-

coming requests in a safe manner to replay them in the same order. Since fault

186 CHAPTER 6. IMPLEMENTATION

tolerance is not the main contribution of this thesis, we assume some loss of infor-

mation is acceptable. Nevertheless, the manner the publish/subscribe algorithm is

designed implies that events which are not stored are not notified, therefore sub-

scribers cannot reference events that are potentially lost. To prevent loss against

power outages or hardware component failures, buffered data should be journaled,

with the overhead it induces.

110

120

130

140

150

160

170

180

190

200

20 100 200 300 400 500 600 700 800 900 1000

P
er

ce
nt

ag
e

D
iff

er
en

ce

Buffer Size (number of quadruples,
CEs or subscriptions to receive before flushing)

40 characters per quadruple
228 characters per quadruple

Figure 6.14 – Delayer benefits when varying buffer size.

Even if the advantage of buffering data and delaying operations is rather

straightforward, experiments are required to determine the buffer size under which

the best throughput is obtained, in particular with OSMA, when data and opera-

tions are handled in batches. To achieve this empirical assessment, the benchmark

has been set up on a single machine (with a SAMSUNG HD103SJ hard disk drive)

hosting one peer, a publisher publishing 5000 CEs and a subscriber that regis-

ters a path query. Each CE contains 5 quadruples but the size of each quadruple

remains an experiment parameter. The policy applied by the delayer is to flush

data when the buffer is full (its size in terms of quadruples, CEs or subscriptions

is reached) or 500ms have elapsed since the last commit. In a first experiment, we

6.2. PERFORMANCE TUNING 187

vary the buffer size from 20 to 1000 for two different size of quadruples: 40 and 228

characters. To compare results, the percentage difference in terms of throughput

(CE/s) at the subscriber side is computed. The calculation is performed between

values obtained for the buffer size tested and the one got for a buffer of size 1

which simulates a disabled delayer. Figure 6.14 clearly shows the benefit of using

a delayer. The throughput is increased by up to 179% and 176% when respectively

40 and 228 characters are used per quadruple. It may also be noticed that both

curves follow the same trend even if the size in terms of characters per quadruple

differs. The throughput, and thus the percentage difference skyrockets as soon as

the buffer size increases but quickly stabilizes. Since less than 5% improvement is

achieved when the buffer size exceeds 120, it has been decided to select this last

value as the default one for the delayer policy.

Although both curves follow the same trend when CE size and consequently the

buffer size is low, increasing greatly CEs size decreases performances earlier. To

highlight the issue but also to identify possible reasons, we replayed the previous

experiment for larger quadruple sizes and measured, in addition to the percentage

difference in terms of throughput, the average time required to flush the buffer to

the disk when its capacity is set to 120.

Figure 6.15 shows the results we get for quadruple sizes ranging from 40 to

6400 characters which corresponds approximatively to 0.5 KB and 64 KB per CE.

To better highlight the cause, we put in correlation on the figure the average

time required to flush data to the disk. When quadruple size per CE is lower

than 600 characters the commit time remains almost stable. However, when it

exceeds 600, which corresponds to roughly 80 KB per CE or 970 KB by considering

the buffer capacity, the time required to write buffered data to disk starts to

increase exponentially. The issue is strongly visible when quadruples contain 6400

characters, which requires to have approximatively 7.7 MB in the buffer before

flushing data to the disk. Thus, we concluded the performance penalty is probably

coming from Jena TDB that does not support large batch commits. When large

payloads have to be considered, a solution could be to monitor incoming CE size

and to adjust the buffer size accordingly.

188 CHAPTER 6. IMPLEMENTATION

130

140

150

160

170

180

40 228 400 600 800 1600 3200 6400
40

50

60

70

80

90

P
er

ce
nt

ag
e

D
iff

er
en

ce

C
om

m
it

T
im

e
(i

n
m

s)

Number of Characters
per Quadruple

Percentage difference
Average commit time

Figure 6.15 – Quadruple length effect on buffering.

Summary

To validate and evaluate our solution along with the proposed algorithms, we have

designed and implemented the EventCloud middleware which is a computer soft-

ware that provides a distributed datastore service on top of a 4-dimensional CAN

network to store and retrieve quadruples through SPARQL but also to manage

events represented in RDF. The EventCloud middleware has been implemented in

Java. It relies on the ProActive Programming library and its multi-active objects

extension to respectively distribute components and leverage multi-core processors

by handling when possible some requests in parallel to others. Special attention

has been given to make the architecture modular, thus improving reusability and

flexibility. Also, performance bottlenecks have been studied and some solutions

proposed.

Another assessment of our solution is its integration in the platforms developed

within the context of the PLAY and SocEDA projects whose the objectives and

their respective architecture are presented in appendix A and B. Criteria evaluated

have been performances, stability and usability [162, 163]. It is worth mention-

6.2. PERFORMANCE TUNING 189

ing that some features have been encouraged by the projects we were involved in.

However, their utility is not restrained to their specific contexts. It includes for

instance the efforts we spent to provide XML/RDF translators or to make the de-

ployment of the EventCloud P2P network agnostics to cloud platforms by reusing

and extending abstractions provided by GCM deployment and ProActive. Another

example is the EventCloud management Web service we have introduced to man-

age multiple EventCloud instances and its associated webapp, prototyped with

Flask5, that aims to make the management more convenient to administrators.

This webapp allows to create, delete, list EventCloud instances but also proxies

through SOAP messages sent to the management web service. To achieve its pur-

pose, this last relies on multiple software abstractions such as an EventClouds

registry to maintain a reference about running instances and their associated de-

ployment configurations but also a node provider to abstract how and from where

nodes from real infrastructures, going to host peers, are retrieved. Obviously,

these deployment and management tools, can be reused to manage EventCloud

instances inside an organization or between several. More details about the addi-

tional features built around the core of the EventCloud middleware are described

in projects’ deliverables [9, 164, 165, 166, 167].

The code base that makes up the core of the EventCloud contains approxima-

tively forty five thousand lines of code along with thirty thousand lines of comments

and more than 260 unit tests. The whole is distributed among six hundred and

fifty files publicly available at http://eventcloud.inria.fr.

5http://flask.pocoo.org

http://eventcloud.inria.fr
http://flask.pocoo.org

190 CHAPTER 6. IMPLEMENTATION

Chapter 7

Conclusion

Contents
7.1 Summary . 191

7.2 Perspectives . 193

7.2.1 Optimizing query and subscriptions evaluation 193

7.2.2 Increasing reliability and availability 194

7.2.3 Reasoning over RDF data 195

7.1 Summary

RDF has become a relevant data model for describing and modeling information

on the Web while remaining fairly simple and intuitive. However, to manage and

store RDF information in a continuous or batch manner has raised many questions

and faced us with scalability issues when processing it in a distributed context.

The main outcome of this thesis is a middleware devoted to storing, retrieving

synchronously but also disseminating selectively and asynchronously RDF data.

Our first contribution relates to the design of a distributed infrastructure for

storing and processing RDF data and SPARQL queries in a synchronous context

by using the traditional query/response model. The architecture is based on a

four-dimensional CAN overlay where RDF tuples are indexed according to the

lexicographic order of their elements. This scheme avoids to use hash functions

191

192 CHAPTER 7. CONCLUSION

and prevents to store the same information multiple times. Furthermore, lexico-

graphic data indexing enables efficient support for range queries. Although basic

operations like adding RDF data suffer from an overhead compared to a centralized

solution, the distributed nature of the infrastructure allows concurrent accesses.

Therefore, SPARQL queries are evaluated by decomposing them into subqueries

that are executed in parallel.

The second contribution of this thesis is about a publish/subscribe layer for

storing and selectively disseminating RDF events. We have proposed a data

and subscription model respectively based on an extension of RDF and a sub-

set of SPARQL. Furthermore, we have designed two publish/subscribe algorithms,

namely CSMA and OSMA that aim different requirements. The first, CSMA,

inspired by Liarou et al., performs the matching with events and subscriptions

sequentially but is able to fix time ordering issues between publish and subscribe

operations originating from a same host. On the contrary, the second, OSMA, uses

a fully distributed approach that enables to match publications and subscriptions

directly in one step, thus leading to better performance but at the cost of a slightly

heavier bandwidth consumption. Experiments have shown that both algorithms

are complementary depending of the scenario that is considered.

Our third contribution is about load balancing. Distributed RDF systems suf-

fer from a skewed distribution of RDF terms. Tuples with RDF terms that occur

more frequently than others are indexed on a few nodes which creates hotspots.

With regard to this issue, we have presented and evaluated strategies to improve

RDF data balancing on our revised CAN structured P2P network. The solution we

propose combines some existing techniques such as online statistical information

recording and gossip protocols. The former allows us to disseminate load measure-

ments between peers so that the load balancing decision is taken by comparing

peers’ load with an average system load computed according to measurements

exchanged. Once an imbalance is detected, previously recorded statistical infor-

mation about RDF data per dimension allow us to decide how peers’ zone of

responsibility may be split to fairly share the imbalance. Experiments have shown

that the overhead induced by online statistical data recording remains acceptable

and forcing new peers to join overloaded peers by splitting the zone based on

recorded information may greatly decrease load imbalances.

7.2. PERSPECTIVES 193

Finally, we have dedicated efforts to provide at the implementation level a flexi-

ble and modular middleware with clear separations between the software elements.

7.2 Perspectives

In the following we give some outlooks that can be explored with respect to the

work presented in this thesis, especially some possible hints to broaden for enhanc-

ing the efficiency and the added value of the proposed middleware.

7.2.1 Optimizing query and subscriptions evaluation

As we started to highlight in their respective chapters, queries evaluation and sub-

scriptions matching algorithms introduced could take advantage of the following

research fields.

Improving query plan execution

Chapter 3 has shown that distributed SPARQL query execution depends on the

complexity of the queries and the search space. Our approach consists in decom-

posing a query into subqueries and to execute subqueries independently and in

parallel. However, when subqueries share common variables (i.e. require a join)

and return tuples sets with sizes that differ from one or more orders of magnitude,

our solution requires to carry from peers to peers and until the query initiator

many tuples that would be unnecessary if subqueries were pipelined by previously

building a sequential execution plan. Therefore, a perspective would be to pro-

vide query plans suitable for SPARQL queries involving subqueries sharing vari-

ables. Nevertheless, our parallel approach remains advantageous for independent

subqueries. Thus, a step forwards would be to generate query plans by combining

parallel execution of independent subqueries and pipelining of those requiring joins.

Works done in [115] and [116] to respectively improving query plan execution by

reordering triple patterns and estimating selectivity are probably great resources

to consult. To further improve data transfers compression techniques could be

applied [168]. One more consideration for improving execution time could be to

remodel our overlay structure with locality awareness such that peers which are

194 CHAPTER 7. CONCLUSION

neighbors in the overlay network are put close physically. Ali et al. have shown

in [117] that a structured P2P system improved with locality awareness and some

additional shortcuts may boost performance by a factor of two in an RDF context.

Subscriptions summarization

Designing a publish/subscribe system raises many questions. Depending of the

context where it is used, one main challenge to tackle is to manage many sub-

scriptions. Since subscriptions are entries registered on peers, when subscriptions

are handled independently, the larger the number, the more expensive end-to-end

delivery becomes due to increased processing. Subscription summarization has

been proposed to alleviate this issue [169]. The purpose is to find subsumption

relationships between interests from subscriptions in order to combine them in

a summarized subscription thus reducing bandwidth consumption, storage over-

head and messages exchanged between peers for performing the matching against

events. Multiple approaches have been proposed these last years [170, 171, 172].

Applying such a technique to our solution will further improve performances.

7.2.2 Increasing reliability and availability

Even though routing algorithms from the proposed middleware has been designed

with fault tolerance in mind to prevent a full redesign in the future, managing

reliability and increasing availability has been let aside. Our middleware would

strongly benefit from a solution to allow a safe recovery in case of peers failure, this

incurring among others to support fault tolerance at the level of the Multiactive

objects framework. Regarding this last point, more details will be provided in the

upcoming thesis of Justine Rochas. In addition, a good starting point to increase

availability, reliability but also read performances and thus synchronous SPARQL

query evaluation could be to investigate replication. Either by studying existing

replication solutions such as the one proposed in the original CAN paper [111],

that proposed by Meghdoot’s authors [126] or investigating new ones less sensitive

to churn as proposed in [173].

7.2. PERSPECTIVES 195

7.2.3 Reasoning over RDF data

RDF is a great data model for writing globally interchangeable information. How-

ever, recording semantics or meaning requires other standards from the Semantic

Web stack such as RDFS and/or OWL (cf. Figure 2.3). These last allow to de-

fine vocabularies, similarly to schemas, by defining elements used in an application,

their domain, their type, their relationships but also possible constraints regarding

their usage. In other words, RDFS and OWL technologies provide a solid base for

understanding and thus inferring potentially relevant information. This purpose

is usually materialized by computing the closure of RDF graphs which consists in

making all implicit information explicit by applying all RDFS/OWL rules on RDF

data until no new data is derived. Interpreting RDFS and OWL vocabularies and

their entailment rules in a distributed and scalable manner remains a challenge

and would be an interesting perspective to exploit the real potential of RDF [174,

175, 176].

Finally, another perspective could be to explore a solution based on a slightly

adapted version of the MapReduce model for loading RDF events and handling

continuous queries using SPARQL [177], with the aim to compare performances

with our solution. More details will be available in the forthcoming thesis of

Sophie Ge Song. In yet another direction, an outlook could be to investigate

the applicability of graph databases (e.g. Trinity [108] or Stardog1) for storing,

retrieving and selectively disseminating RDF data at very large scale.

1http://stardog.com

http://stardog.com

196 CHAPTER 7. CONCLUSION

Appendix A

PLAY Project

The aim of the PLAY project1 is to provide an event marketplace platform which

collects information in near real-time from many, heterogeneous, and distributed

event sources, processes these events in a complex manner, and, after discovering

something relevant, forwards such a situation (combination of events) to the par-

ties interested in that issue. One of the specificities of the platform being that

events are represented in RDF. To summarize, the PLAY event marketplace is a

framework for dynamic and complex, event-driven interactions for the Web since it

enables the integration of semantic sources, the efficient management of the situa-

tion of interests (described as complex event patterns), a distributed complex event

processing in order to cope with the high throughput of events, a dynamic pub-

lish/subscribe mechanism in order to enable the responsiveness in highly changing

environments, and a service adaptation process that reacts on the signal from the

process/environment in order to change the flow of running processes. The overall

architecture, as it is depicted in Figure A.1, consists of five building blocks:

• The Distributed Service Bus (DSB) that provides the SOA and EDA (Event

Driven Architecture) infrastructure for components and end user services.

It acts as the basis for service deployments, and processes (BPEL, BPMN),

routing synchronous and asynchronous messages from services consumers to

service providers. Based on the principles of the system integration paradigm

of Enterprise Service Bus. The DSB is distributed by nature. In concrete

1http://www.play-project.eu

197

http://www.play-project.eu

198 APPENDIX A. PLAY PROJECT

terms, the DSB is the entry point of the platform that maps events to internal

components of the platform;

• The Governance component that allows users to get information about ser-

vices and events. The Governance component extends a standard Service-

based governance tool by adding governance mechanisms for event-based

systems. Its role is to provide ways to govern services and events. It pro-

vides standards-based APIs and a graphical user interface;

• The EventCloud that provides storage and forwarding of events. The role

of the Event Cloud is a unified API for manipulating events, real-time or

historic. Its purpose is to store incoming events while filtering some events

to notify only those that are of interest for the DCEP that will then execute

more complex queries involving time window operators;

• The DCEP (Distributed Complex Event Processing) component that has the

role of detecting complex events and reasoning over events by means of event

patterns defined in logic rules. To detect complex events, DCEP subscribes

to the EventCloud for any simple event defined in the event patterns at

a given point in time. It may also, depending of the pattern, query the

EventCloud to retrieve historical information for correlating them with the

ones received in near real-time;

• The Platform Services component that incorporates several functional ad-

ditions to the platform as a whole. The Query Dispatcher has the role of

decomposing and deploying user subscriptions in pieces supported by the

Event Cloud and DCEP respectively, taking into account the expressivity

supported by the two target components. The Event Metadata compo-

nent stores information about events, such as source descriptions, event type

schemas, etc., to enable the discovery of relevant events for an event con-

sumer and to provide data to the subscription recommender. The ESR and

SAR component form the Event Subscription Recommender (ESR) and Ser-

vice Adaptation Recommender (SAR). ESR will recommend subscriptions

to services based on service context and event semantics from the metadata.

Thus, ESR will provide assistance to services that will have the option to be

199

subscribed to specific events at the right time without the services having

complete knowledge about the supply in the marketplace at a given time.

The objective of SAR is to suggest service administrators, changes (adap-

tations) of their services’ configurations, composition or workflows, in order

to overcome problems or achieve higher performance. Based on recognized

situations, SAR will be able to define adaptation pointcuts (points in a ser-

vice flow that need to be adapted as a reaction to a certain situation) and

advices (what to adapt and how based on a number of service adaptation

strategies).

Platform

Services

DCEP

events

events

query

query

meta

G
o
v
e
r
n
a
n
c
e

Q
u
e
ry

D
is
p
a
tc
h
e
r

query

query

DSB

recomm.discovery

ESR,

SAR

Event

Meta-

data
EventCloud

meta

Figure A.1 – Conceptual PLAY architecture.

200 APPENDIX A. PLAY PROJECT

Appendix B

SocEDA Project

Although some aspects are similar to PLAY, the purpose of the SocEDA project1

is rather different. Its objective is to develop and validate an elastic and reliable

federated SOA architecture for dynamic and complex event-driven interaction in

large highly distributed and heterogeneous service systems. Such architecture will

enable exchange of contextual information between heterogeneous services, provid-

ing the possibilities to optimize and personalize the execution of them according to

social network information while addressing Quality of Service (QoS) requirements.

Events which are exchanged are assumed to described in plain old XML payloads

to provide a platform that is compatible with legacy applications. The platform

architecture is depicted in Figure B.1 and consists of the following components:

• The SeaCloud, for Services/Events Administration Cloud, is the frontal of

SocEDA runtime framework. It allows clients to subscribe to a specific pro-

ducer, to add CEP rules or deploy BPEL process through dedicated editors

developed within the context of the project;

• The Distributed Service Bus (DSB) is an extension of the open source En-

treprise Service Bus provided by PetalsLink called Petals ESB. It is made of

three essential components: an adaptation service, a proxy event manager

and a workflow engine. The adaptation service is designed to provide agility

(seen as the combination of detection and adaptation). It allows on one

1https://www.soceda.org

201

https://www.soceda.org

202 APPENDIX B. SOCEDA PROJECT

hand to detect if on going processes meet the requirements of the current

situation and adapt them if required. The proxy event manager maintains

the list of event producers for a given topic. It can be considered as a broker

for event producer. Finally, the workflow engine exposes an API to observe

and command an instance of process at runtime to adapt it according to

some events. This component relies on EasyBPEL, a reflexive BPEL 2.0

Engine. To summarize, the DSB enables legacy services to connect to the

platform. Published events are forwarded to the SeaCloud. Services that

have subscribed may either be adapted according to the situations that are

induced or receive inferred facts as notifications;

• The Governance allows a user to discover all topics (type of event) and all

event producers known on a service infrastructure. Additionally, it supports

Quality of Services (QoS) as the definition of SLA contracts by using the

WS-Agreement standard;

• The EventCloud is in charge to store all incoming events the platform re-

ceives. Moreover, it filters simple events to reduce the input of the DiCEPE

component that has to perform complex correlations. Historical events are

accessible by the DiCEPE to correlate historic and real-time events. Since

the platform deals with plain old XML payloads, the EventCloud embeds

translators to convert payload from and to RDF. Although publish/sub-

scribe systems have the habit to hide publishers’ source from the rest of

the system, the EventCloud optionally allows to keep track of any publisher

endpoint address in order to interact, when required, with the Social Filter.

• The Social Filter operates on a social network of services to compute the

strength of the relationships between them. The EventCloud uses a rela-

tionship strength threshold or a ranking of the destination services to select

the most trustworthy services. In concrete terms, the EventCloud accepts

to process (notify) the events that the source service received from target

services with which it has high relationship strength whereas it discards the

ones received from target services with low relationship strength. The social

filter provides an interface to define relationships between services.

203

• The DiCEPE aims to detect complex events using events from various sources

such as federated SOAs, and to share out those new complex events, which

have been identified as business events, to enrich the whole event process.

Inputs come from the EventCloud that prefilters some irrelevant events with

simple operators. Others detections that require correlation between multi-

ple events are let to the DiCEPE. Facts inferred are sent to the SeaCloud

that forwards them to the DSB to perform adaptation.

• Monitoring is in charge of collecting monitoring information about services

and events. It offers a web-based frontend interface that allows getting in-

formation and statistics about running infrastructure in term of services and

events. The monitoring component relies on EasierBSM to monitor service

providers or event producers. It is part of the process to detect SLO (Service

Level Objective)/ELO (Event Level Objective) violation which are prereq-

uisites to ensure QoS.

EventCloud

SeaCloud

DiCEPE

Monitoring

Adaptation Service

Proxy Event Manager

Workflow Engine

DSB

Governance

query discovery

events

events

events

query eventsevents

monitoring events

Social

Filter

Figure B.1 – Conceptual SocEDA architecture.

204 APPENDIX B. SOCEDA PROJECT

Annexe C

Extended Abstract in French

Un intergiciel qui gère des événements pour per-
mettre l’émergence d’interactions dynamiques et
ubiquitaires dans l’Internet des services.

C.1 Introduction

C.1.1 Motivation

Ces dernières années, le trafic Internet échangé a augmenté de façon vertigineuse.

Cette explosion est expliquée par la quantité d’informations générée par les utilisa-

teurs et les nouveaux services qui se développent à un rythme effrainé. Comme l’a

déclaré Eric Schmidt en 2010, tous les deux jours maintenant nous créons autant

d’informations que ce que nous en avons produit depuis l’aube de la civilisation

jusqu’en 2003. A cette date, la quantité d’information représentait déjà quelque

chose comme cinq exaoctets de données, a-t-il dit. En outre, avec l’avènement de

l’"Internet des objets", concept qui se réfère à des objets identifiables de manière

unique communiquant sur Internet, nous n’en sommes probablement qu’au début

de cette croissance exponentielle de l’information. Pour exemple, Cisco prévoit que

le trafic IP mondial atteindra 1,4 zettaoctets par an en 20171.

Cette explosion concernant les informations échangées a donné naissance à un

nouveau domaine de la science informatique appelé Data Mining. L’objectif global
1http://goo.gl/dj85Ul

205

http://goo.gl/dj85Ul

206 ANNEXE C. EXTENDED ABSTRACT IN FRENCH

du processus d’exploration de données est de découvrir des tendances intéressantes

dans de grands ensembles de données. Un exemple concret est Google Knowledge

Graph [1] qui fournit des informations supplémentaires utiles lorsque vous effectuez

une recherche. Un exemple plus récent est le scandale provoqué par le programme

de surveillance prisme exploité par l’Agence Nationale de la sécurité Américaine

(NSA), dont le but est de collecter et de corréler les méta-données des utilisateurs,

à leur insu, pour prévenir les actes terroristes.

Une condition préalable à l’exploration de données est d’agréger des flux d’in-

térêt et de stocker les données entrantes pour l’analyse. Ces bases de connaissances

sont concrétisées par des entrepôts de données qui sont d’énormes dépôts de don-

nées créées par l’intégration des données provenant d’une ou plusieurs sources

disparates. Lorsque les données source proviennent d’acteurs hétérogènes sur In-

ternet, la construction d’entrepôts de données soulève une question principale :

comment filtrer les informations d’intérêt et les corréler avec les autres ? Un élé-

ment clé pour répondre à cette question consiste à utiliser des données structurées

afin de les rendre analysables et compréhensibles par des machines.

Le mouvement du Web sémantique a suscité un intérêt considérable ces dernières

années. Il vise à transformer le Web, à savoir les documents Web, en une base de

données gigantesque dans laquelle les ordinateurs peuvent extraire des données

d’une manière homogène. Le point intéressant ici est que la communauté du Web

sémantique fournit déjà une pile complète de technologies (RDF, SPARQL, RDFS,

OWL, etc.) pour répondre à la plupart des problèmes liés à la question précédente,

mais principalement dans un environnement synchrone et centralisé. Dans le cadre

du projet européen PLAY, l’un des projets dans lequel cette thèse a été dévelop-

pée, nous étudions comment nous pouvons tirer parti du modèle de représentation

du Web sémantique et donc de la pile existante pour filtrer, détecter et réagir

lorsque des situations intéressantes se produisent. Dans ce contexte, l’ objectif du

projet PLAY est d’apporter une architecture élastique et fiable pour l’interaction

événementiel dynamique et complexe dans les systèmes de services hautement dis-

tribués et hétérogènes. Une telle architecture permettra l’échange d’informations

omniprésentes entre les services hétérogènes, tout en offrant d’adapter et de per-

sonnaliser leur exécution, ce qui mène à la fameuse adaptation de processus dirigée

par les situations.

C.1. INTRODUCTION 207

C.1.2 Définition du problème

Dans cette thèse, nous nous concentrons sur deux problématiques clés que l’on

peut résumer par les deux questions suivantes : Comment pouvons-nous stocker

efficacement et récupérer des données du Web sémantique dans un environnement

distribué ? Comment pouvons-nous faire un filtrage pragmatique et diffuser des

événements du Web sémantique pour les utilisateurs ayant des préférences indi-

viduelles ?

La question inhérente au passage à l’échelle qui se pose avec les systèmes dis-

tribués a été grandement étudiée ces dernières années et consiste à avoir recours

aux réseaux Pair-à-Pair (P2P) qui évitent un point d’accès unique. Toutefois, s’ap-

puyer sur le modèle du Web sémantique, représenté par RDF, soulève plusieurs

défis qui ont un impact direct sur la topologie du réseau sous-jacent qui est con-

sidéré.

Le premier défi provient du niveau d’expressivité du language SPARQL qui

est habituellement utilisé pour récupérer des données RDF. Certains ont peut-

être remarqué la similitude lexicographique avec SQL. L’analogie n’est pas une

coïncidence. SPARQL est un langage de requête pour les données RDF qui a été

développé longtemps après SQL. Bien qu’ils soient tout à fait différents, car ils

n’ont pas tout à fait les même objectifs, SPARQL supporte des opérateurs très

complexes, ce qui le rend aussi expressif voire plus expressif que SQL. Dans ce

manuscrit, nous allons expliquer comment le modèle de données et le langage

de requête affectent un grand nombre de choix que nous avons fait tels que la

conception de l’architecture P2P, les algorithmes de routage et le stockage des

données RDF.

Le deuxième défi est lié au filtrage de données RDF publiées par les éditeurs

aux parties intéressées. Comme expliqué dans la partie C.1.1, le scénario envis-

agé dans le projet PLAY est principalement basée sur l’interrogation guidée par

les données [2] qui mettent l’accent sur des conditions en quasi-temps réel qui

doivent être satisfaites. Une condition préalable est de filtrer l’information d’in-

térêt mais pas seulement. Les événements doivent être stockés et agir comme un

contexte supplémentaire afin de pouvoir réaliser une sorte d’analyse sur les données

passées. Les données du Web sémantique ont, encore une fois, un impact signifi-

208 ANNEXE C. EXTENDED ABSTRACT IN FRENCH

catif sur la façon dont la couche Publier/Souscrire doit être conçue. Cependant,

cela génère une complexité supplémentaire car dans les systèmes à évènements, les

entités sont faiblement couplées. Les communications sont effectuées de manière

asynchrone, ce qui fournit moins de garanties par rapport au modèle d’échange

de messages requête/réponse traditionnel (par exemple de l’absence de garantie

de livraison). Dans ce contexte, nous allons voir comment les données RDF peu-

vent être représentées comme des événements et comment elles diffèrent des tradi-

tionnels évènements multi-attributs. En outre, la combinaison entre le filtrage des

événements et le stockage soulève plusieurs questions sur l’efficacité et la cohérence

du système envisagé : par exemple, comment s’assurer que l’ordre des opérations

envoyées depuis un même client est respecté ? à quel type de débit peut-on s’atten-

dre ? comment faire en sorte que les événements soient enregistrés une fois qu’ils

ont été notifiés ? ces questions seront examinées et traitées par la suite.

Enfin, un troisième défi à prendre en compte concerne la répartition de charge

et la propriété d’élasticité des systèmes distribués modernes dont nous avons l’in-

tention de tirer parti afin d’assurer un certain niveau de performance.

Nous allons voir que le choix que nous avons fait et qui consiste à ne pas

utiliser de fonction de hachage afin de supporter des requêtes ou souscriptions plus

complexes que la simple correspondance exacte, nous expose à des déséquilibres de

charge. Dans la vie courante, la distribution des données est souvent biaisée, mais

ici le déséquilibre est accentué par l’une des caractéristiques des données RDF qui

implique que certaines valeurs partagent des préfixes communs.

C.1.3 Plan et contribution

La principale contribution de cette thèse est la définition et la mise en œuvre d’un

middleware modulaire pour le stockage, la récupération et la diffusion des données

RDF et des événements dans des environnements de type cloud. La thèse est struc-

turée autour de trois travaux majeurs organisés en quatres chapitres dédiés dont le

contenu est résumé ci-après. Mais avant cela il convient de préciser sommairement

le contenu des autres chapitres venant en complément :

• Le Chapitre 2 donne un aperçu des principaux concepts et technologies

auxquels nous nous réferrons tout au long de cette thèse. Tout d’abord, nous

C.1. INTRODUCTION 209

introduisons le paradigme Pair-à-Pair. Ensuite, nous attirons l’attention sur

le Web sémantique et nous discutons des principaux avantages d’utiliser la

sémantique avant de se concentrer sur le modèle de communication Publier/-

Souscrire. Enfin, nous détaillons le middleware ProActive, qui est la princi-

pale technologie utilisée pour mettre en œuvre le middleware développé dans

le cadre de cette thèse.

• Le Chapitre 3 présente notre première contribution qui se rapporte à une in-

frastructure de stockage RDF distribuée, introduite dans [3] et élue meilleur

papier de la conférence AP2PS 2011. Une section courte des travaux con-

nexes sur les systèmes décentralisées pour stocker et récupérer des données

RDF introduit ce chapitre. Ensuite, nous présentons le populaire protocole

P2P CAN qui définie la topologie sous-jacente du réseau P2P sur laquelle

nous nous appuyons pour le routage des messages et, indirectement, pour

passer à l’échelle. Suivra une discussion sur les choix de conception et les

ajustements que nous avons faits en ce qui concerne le protocole CAN avant

d’expliquer dans une deuxième partie comment les messages sont achem-

inés avec nos modifications. Dans une avant-dernière section, nous décrivons

en détail comment les données RDF sont indexées dans le réseau P2P et

comment les requêtes SPARQL sont exécutées. Enfin, nous fournissons les

résultats que nous avons obtenus par l’expérimentation de notre solution sur

le banc d’essai Grid’5000.

• Le Chapitre 4 entre dans les détails de notre deuxième contribution met-

tant en avant une couche de publier/souscrire pour le stockage et la dif-

fusion des événements RDF. Elle est construite comme une extension sur

l’infrastructure mise en place dans le chapitre précédent et s’appuie sur les

algorithmes de routage descrits plus tôt. Nous commençons par comparer les

solutions existantes et nous expliquons pourquoi les systèmes d’événements

basés sur RDF diffèrent des systèmes publier/souscrire traditionnels. Ensuite,

nous présentons notre infrastructure publier/souscrire pour événements RDF

avec un détail du modèle d’évènements et de souscription, approprié pour

les données RDF, que nous proposons. Puis, nous énumérons les différentes

propriétés que notre système de publier/souscrire est supposé respecter avant

210 ANNEXE C. EXTENDED ABSTRACT IN FRENCH

d’entrer dans les détails de deux algorithmes publier/souscrire. Leurs carac-

téristiques et leurs différences sont expliquées, discutées et analysées. Pour

conclure, les algorithmes que nous proposons sont évalués dans un environ-

nement distribué avec un maximum de 29 machines. Cette deuxième contri-

bution a été acceptée et présentée durant la conférence Globe 2013 [4].

• Le Chapitre 5 met en évidence notre troisième contribution qui se réfère à

la répartition de charge avec les données RDF. La première section résume

comment les solutions de répartition de charge ont évoluées au fil du temps

et quelles sont les solutions pour corriger les déséquilibres de charge avec

les données RDF. Ensuite, nous avons décrit notre solution en expliquant les

différents choix qui sont envisageables et ceux pour lesquels nous avons optés.

Notre approche combine des mécanismes standards tels que des protocoles

d’échange d’informations par rumeur ou encore l’enregistrement à la volée

de statistiques dans le but d’améliorer la distribution des donnés. Dans une

dernière section, nous présentons les résultats obtenus pour les évaluations

empiriques que nous avons réalisées avec des données réelles.

• Le Chapitre 6 donne un aperçu de l’intergiciel EventCloud, qui est l’intergi-

ciel développé dans le cadre de cette thèse. Le but de ce chapitre est de don-

ner un aperçu du système du point de vue l’architecture et l’implémentation.

Dans un premier temps, nous mettons en évidence les différents composants

qui constituent le système. Ensuite, nous résumons ses différentes caractéris-

tiques et nous montrons en quoi l’intergiciel est flexible et modulaire. En

particulier, nous voyons comment la modularité joue un rôle important dans

l’architecture proposée et quel genre d’avantages cela apporte en ce qui con-

cerne les composants qui forment notre infrastructure. Ensuite, nous nous

concentrons sur quelques problèmes d’implémentation auxquels nous avons

dû faire face et que nous avons corrigés afin de rendre le système plus efficace

et réactif.

• Le Chapitre 7 conclut la thèse. Il passe en revue les contributions et présente

quelques perspectives de recherche et de développement que soulève cette

thèse.

C.2. RÉSUMÉ DÉVELOPPEMENT 211

Par ailleurs, concernant les contributions qui ont pu être réalisées, nous pouvons

noter que l’intergiciel EventCloud a été testé et validé avec les différents scénarios

créés dans le cadre du projet PLAY [5, 6, 7, 8, 9, 10, 11]. L’intergiciel EventCloud

a également été utilisé et évalué dans d’autres contextes. Par exemple, il offre

les briques de base pour distribuer des moteurs CEPs visant à corréler plusieurs

événements en temps réel avec d’autres du passé [12]. Une autre application con-

cerne les transferts de données paresseux dans laquelle les événements intègrent des

pièces jointes volumineuses qui n’ont pas besoin de transiter par le service d’évène-

ments. Seules les descriptions d’événements sont transmises à l’EventCloud avant

d’être diffusées aux parties intéressées. Les attachements joints sont transférés de

manière paresseuse et transparente au travers d’un échange direct entre émetteurs

d’évènements et souscripteurs [13].

C.2 Résumé développement

Le travail abordé dans ce manuscrit de thèse est développé dans quatre chapitres

principaux. Ci-après est précisé un résumé en Français de chacun de ces chapitres.

C.2.1 Stockage RDF distribué

Ce premier chapitre présente une infrastructure de stockage RDF distribuée basée

sur réseau P2P structuré. Les uplets RDF sont mappés sur un CAN à quatre

dimensions selon la valeur des éléments du uplet considéré. L’espace du réseau

P2P est partitionné en zones et chaque pair est responsable d’une zone ainsi que

de tous les uplets se trouvant à l’intérieur. Nous n’utilisons pas de fonction de

hachage afin de préserver la localité des données. Les requêtes SPARQL sont dé-

composés en sous-requêtes qui sont exécutées en parallèle. Nous avons validé notre

implémentation à l’aide de micro expérimentations. Bien que les opérations de

base comme l’ajout de uplets souffrent d’un surcoût, la nature de l’infrastructure

distribuée permet des accès concurrent. En substance, nous échangeons des per-

formances pour un meilleur débit.

De toute évidence notre solution présente certains inconvénients. Le premier

est que notre approche est sensible à la distribution des données. Comme nous util-

212 ANNEXE C. EXTENDED ABSTRACT IN FRENCH

isons l’ordre lexicographique pour indexer les données, lorsque certains uplets RDF

partagent le même espace de noms ou préfixes, la probabilité qu’ils se retrouvent

sur un même pair est très élevée. Par conséquent, un ou plusieurs pairs peuvent

devenir un goulot d’étranglement du système. Pour résoudre ce problème, nous

avons présenté des solutions dans le Chapitre 5. Le deuxième inconvénient avec

notre solution est lié à l’exécution de requêtes SPARQL. Nous avons décidé de

traiter chaque sous-requête indépendamment en parallèle. Toutefois, lorsque les

sous-requêtes partagent des variables communes (i.e. exigent une jointure) et re-

tournent des ensembles de uplets avec des tailles qui diffèrent d’un ou plusieurs or-

dres de grandeur, notre solution nécessite de transporter de pairs en pairs jusqu’à

l’initiateur de la requête, plusieurs uplets qui ne seraient pas nécessaires si les

sous-requêtes étaient exécutées en série grâce à la construction préalable d’un plan

d’exécution séquentiel. Ce problème qui est lié au nombre de résultats intermé-

diaires à transférer dans le réseau afin de résoudre une requête SPARQL a été

mis en évidence de façon empirique avec notre système [114]. Quilitz et al. pro-

pose dans [115] de construire un plan de requêtes qui exécute des sous-requêtes

successivement après avoir été triées dans l’ordre décroissant en fonction du nom-

bre de parties fixes et de leur position (i.e. graphe, sujet, prédicat ou objet d’un

motif de quadruplet). En effet, les sous-requêtes avec une multitude de parties

fixes sont supposées renvoyer moins de résultats que d’autres qui impliqueraient

un plus grand nombre de variables lorsque le jeu de donnée est assez grand. Par

conséquent, la sous-requête à exécuter peut exploiter le résultat de la précédente

afin de réduire le nombre de résultats intermédiaires. Un pas en avant a été franchi

puisque dans [116] les auteurs proposent d’étudier la sélectivité de sous-requêtes

(i.e une estimation ou une valeur exacte du nombre de uplets qu’une sous-requête

est sensée renvoyer une fois exécutée). De cette façon, un plan de requête optimal

peut être défini. Une perspective pourrait être de combiner notre solution avec

celle précédemment décrite pour réaliser un plan de requête optimal. L’idée est de

toujours exécuter en parallèle les sous-requêtes avec une sélectivité faible ou bien

d’exécuter celles qui, avec un arrangement intelligent, ne peuvent pas réduire la

consommation de bande passante induite par le transfert abondant de résultats

intermédiaires. Aussi, un autre point qui affecte les performances systèmes con-

cerne la latence de routage des messages. Pour améliorer le temps d’exécution,

C.2. RÉSUMÉ DÉVELOPPEMENT 213

la structure logique du réseau P2P CAN pourrait être revue afin de prendre en

compte la localité physique des pairs qui le compose, ceci afin de rapprocher les

nœuds proches physiquement de façon à réduire la latence. Ali et al. ont montrés

dans [117] qu’un système P2P structuré qui prend en compte la localité physique

des machines, et qui ajoute quelques raccourcis supplémentaires, peut améliorer

les performances d’un facteur de deux dans un contexte RDF.

C.2.2 Publier/Souscrire RDF distribué

Ce second chapitre introduit une infrastructure publier/souscrire basée sur le mod-

èle de données RDF et le modèle de filtre SPARQL. Les souscripteurs peuvent ex-

primer leur intérêts en utilisant un sous-ensemble du langage SPARQL et les évène-

ments sont publiés comme données RDF. Nous nous appuyons sur une indexation

multi-dimensionnelle et l’ordre lexicographique pour distribuer les publications et

les souscriptions sur la structure logique associée au réseau P2P.

Élément
routé

Matching Doublons
Happen-
Before

CSMA
Quadruplets
individuels

Multiple,
Séquentiel et

Reconstruction

Oui, filtrage
requis

Imposé

OSMA
Compound

Event
complet

Unique étape Non
Exige
CSMA

Table C.1 – Comparaison des algorithmes publier/souscrire proposés.

Contrairement à la grande majorité des systèmes existants, notre solution ne

nécessite pas d’indexer de multiple fois la même publication, limitant ainsi l’espace

de stockage nécessaire. Nous avons proposé deux algorithmes pour tester la cor-

respondance entre les souscriptions et les événements publiés. Le premier, CSMA,

est basé sur une approche séquentielle. Cela limite la bande passante utilisée lors

214 ANNEXE C. EXTENDED ABSTRACT IN FRENCH

des publications en contre partie d’un temps plus long pour détecter les souscrip-

tions qui sont vérifiées. Il peut également gérer les problèmes d’ordonnancement

des requêtes entre des publications et des souscriptions qui proviennent d’un même

hôte. Le second, OSMA, utilise une approche totalement distribuée ce qui conduit

à de bonnes performances mais un temps requis légèrement plus important dans le

processus de publication. Pour résumer, les différentes propriétés de ces deux algo-

rithmes sont présentées dans le tableau C.1. Ils ont été testés expérimentalement

en terme de débit par seconde et de passage à l’échelle.

C.2.3 Répartition de charge RDF distribuée

Ce troisième chapitre présente et analyse brièvement deux stratégies pour répartir

équitablement les données RDF sur notre version révisée du réseau CAN. L’idée

centrale est de partager les surcharges entre pairs en divisant les zones des pairs

non pas en leur milieu comme suggéré par le protocole CAN par défaut mais

au point qui équilibre la distribution des données RDF. Cela est rendu possible

par l’enregistrement des valeurs de barycentre de termes RDF par dimension.

Ensuite, les différentes stratégies qui sont proposées diffèrent principalement par

la façon dont les déséquilibres sont détectés. La première suppose une connaissance

globale tandis que la seconde s’appuie sur des informations échangées entre pairs

périodiquement. Nos expériences ont montré que la seconde stratégie donne de

meilleurs résultats que la première. Bien que la solution que nous proposons soit

loin d’être idéale dans le sens ou les données RDF ne sont pas aussi bien distribuées

que ce qu’elles pourraient l’être, les stratégies proposées améliore la distribution,

l’impliquation des pairs et donc le débit de sortie quand la couche publier/souscrire

est utilisée.

Il convient de mentionner que la solution présentée est un travail inachevé.

Plusieurs points nécessiteraient d’être examinés plus en profondeur et des expéri-

mentations plus intensives devraient menées. De plus, de nombreux aspects de la

solution présentée pourraient être améliorés. Par exemple, le protocole de diffusion

de charge des pairs pourrait être optimisé en mettant en œuvre ce qui est proposé

dans la Section 5.2. En outre, avant d’allouer de nouveaux pairs, la délocalisa-

tion sur des pairs existants devrait être envisagée. Une orientation supplémentaire

C.2. RÉSUMÉ DÉVELOPPEMENT 215

pourrait être de considérer plusieurs critères tels que la charge d’exécution des

requêtes synchrones, des souscriptions, la consommation CPU voire la bande pas-

sante utilisée. Puisque notre modèle de répartition de charge a été conçu avec l’idée

de prendre en charge plusieurs critères indépendants, en ajouter de nouveaux ne

devrait pas être difficile.

C.2.4 Implémentation

Finalement, le quatrième chapitre détaille le système mis en œuvre. Pour valider

et évaluer notre solution avec les algorithmes proposés, nous avons conçu et implé-

menté l’intergiciel EventCloud qui est une application fournissant un service dis-

tribué de stockage d’informations par dessus un réseau CAN à 4-dimensions pour

stocker et récupérer des quadruplets à l’aide de SPARQL mais également pour

gérer des événements représentés en RDF. L’intergiciel EventCloud a été implé-

menté en Java. Il s’appuie sur la bibliothèque de programmation ProActive et son

extension des objets multi-actifs afin de respectivement distribuer les composants

et tirer parti des processeurs multi-core en exécutant, lorsque cela est possible,

des requêtes en parallèle à d’autres. Une attention particulière a été portée sur la

modularité de l’architecture, améliorant ainsi la réutilisation et la flexibilité. En

outre, les goulots d’étranglement de performance ont été étudiés et des solutions

proposées.

Un autre apport de notre solution est son intégration dans les plates-formes

développées dans le cadre des projets PLAY et SocEDA dont les objectifs et archi-

tecture respectifs sont présentés dans l’annexe A and B. Les critères évalués ont

été la performance, la stabilité et la facilité d’utilisation [162, 163]. Il est à noter

que certaines fonctionnalités ont été encouragées par les projets dans lesquels nous

avons été impliqués. Toutefois, leur utilité n’est pas uniquement limité aux projets.

Cela comprend par exemple nos efforts pour fournir un traducteur XML/RDF ou

bien encore le temps passé à rendre le déploiement du réseau P2P EventCloud

plateforme agnostique en réutilisant et en étendant les abstractions fournies par le

déploiement GCM et ProActive. Un autre exemple est le service Web EventClouds,

prototypé avec Flask2, que nous avons introduit afin de pouvoir gérer plusieurs in-

2http://flask.pocoo.org

http://flask.pocoo.org

216 ANNEXE C. EXTENDED ABSTRACT IN FRENCH

stances EventCloud, ce qui vise à rendre la gestion plus pratique pour les admin-

istrateurs tout en augmentant l’interopérabilité. Cette application Web permet de

créer, supprimer, visualiser la liste des EventClouds et des proxies disponibles par

l’intermédiaire de messages SOAP envoyés au service Web. Pour atteindre son but,

ce dernier s’appuie sur plusieurs abstractions telles qu’un registre EventClouds afin

de maintenir une référence sur les instances disponibles et leur configuration de dé-

ploiement associée, mais aussi un fournisseur de nœuds pour abstraire la manière

et l’infrastructure à partir desquelles les nœuds sont récupérés. Évidemment ces

outils de déploiement et de gestion peuvent être réutilisés pour gérer les instances

EventCloud à l’intérieur d’une organisation ou entre plusieurs organisations. Plus

de détails sur les fonctionnalités supplémentaires construites autour du noyau de

l’intergiciel EventCloud sont donnés dans les livrables de projets [9, 164, 165, 166,

167].

La base du code qui constitue le noyau de l’EventCloud contient approximative-

ment quarante cinq mille lignes de code ainsi que trente mille lignes de commen-

taires et plus de 260 tests unitaires. L’ensemble est réparti entre six cent cinquante

fichiers accessibles publiquement à l’adresse http://eventcloud.inria.fr.

C.3 Conclusion

C.3.1 Résumé

RDF est devenu un modèle de données pertinent pour la description et la modéli-

sation de l’information sur le Web tout en restant relativement simple et intuitif.

Cependant, gérer et de stocker des informations RDF de manière synchrone ou

asynchrone a soulevé de nombreuses questions qu’en au problème de passage à

l’échelle dans un contexte distribué. Le résultat principal de cette thèse est un

intergiciel dédié au stockage, à la récupération synchrone mais aussi à la diffusion

sélective et asynchrone des données RDF.

Notre première contribution concerne la conception d’une infrastructure dis-

tribuée pour le stockage et le traitement de données RDF et de requêtes SPARQL

dans un contexte synchrone en utilisant le modèle requête/réponse traditionnel.

L’architecture est basée sur une topologie logique CAN à quatre dimensions où

http://eventcloud.inria.fr

C.3. CONCLUSION 217

les uplets RDF sont indexés selon l’ordre lexicographique de leurs éléments. Le

système n’utilise pas de fonctions de hachage et évite ainsi de stocker les mêmes

informations plusieurs fois. En outre, l’indexation de données selon l’ordre lexi-

cographique permet de traiter de manière efficace les requêtes à intervalles. Bien

que les opérations de base comme l’ajout de données RDF souffrent d’une sur-

charge par rapport à une solution centralisée, la nature distribuée de l’infrastruc-

ture permet des accès concurrents. Les requêtes SPARQL sont ainsi évaluées en

les décomposant en sous-requêtes qui sont exécutées en parallèle.

La deuxième contribution de cette thèse est une couche de publier/souscrire

pour le stockage et la diffusion sélective des événements RDF. Nous avons proposé

un modèle de données et de souscription respectivement basé sur une extension

de RDF et un sous-ensemble de SPARQL. En outre, nous avons conçu deux al-

gorithmes publier/souscrire, à savoir CSMA et OSMA, chacun visant des besoins

différents. Le premier, CSMA, inspiré par Liarou et al., effectue la concordance en-

tre les évènements et les souscriptions en séquentiel mais est en mesure de fixer les

problèmes d’ordonnancement des requêtes entre des publications et des souscrip-

tions qui proviennent d’un même hôte. Au contraire, le second, OSMA, utilise une

approche totalement distribuée permettant de faire correspondre les publications

et les abonnements directement en une seule étape, ce qui conduit à de meilleures

performances mais dans ce cas la consommation de bande passante est légèrement

plus importante. Les expériences menées ont montré que les deux algorithmes sont

complémentaires en fonction du scénario considéré.

Notre troisième contribution concerne la répartition de charge. Les systèmes

distribués RDF souffrent d’une répartition inégale des termes RDF. Les uplets avec

des termes RDF qui apparaissent plus fréquemment que d’autres sont indexés sur

plusieurs nœuds ce qui engendre des surcharges. Dans ce contexte, nous avons

présenté et évalué des stratégies pour améliorer la répartition des données RDF

entre les différents pairs de la version révisée du réseau P2P CAN. La solution

que nous proposons combine des techniques existantes basées sur des protocoles

de diffusion d’information par rumeur et l’enregistrement de statistiques associées

aux données. La première technique nous permet de diffuser la charge mesurée sur

chaque pair afin que la décision de répartition de charge soit prise en comparant

la charge de pairs avec une charge moyenne du système calculé en fonction des

218 ANNEXE C. EXTENDED ABSTRACT IN FRENCH

mesures échangées. Une fois qu’un déséquilibre est détecté, les statistiques enreg-

istrées sur les données RDF par dimension nous permettent de décider comment la

zone de responsabilité de pairs peut être fractionnée pour répartir équitablement

le déséquilibre. Des expériences ont montré que la surcharge induite par l’enreg-

istrement de données statistiques à la volée reste acceptable et le fait de forcer de

nouveaux pairs à joindre les pairs surchargés en divisant leur zone sur la base des

informations enregistrées peut grandement diminuer les déséquilibres de charge.

Enfin, nous avons consacré des efforts à fournir au niveau de l’implémentation

un intergiciel flexible et modulaire avec des séparations claires entre les différents

éléments logiciels qui le compose.

C.3.2 Perspectives

Dans ce qui suit nous proposons quelques perspectives qui pourraient être ex-

plorées, en particulier quelques pistes pour améliorer l’efficacité et la valeur ajoutée

de l’intergiciel proposé.

Optimiser l’évaluation des requêtes et des souscriptions

Comme nous avons commencé à le mettre en évidence dans leurs chapitres respec-

tifs, l’évaluation des requêtes SPARQL synchrones mais aussi les algorithmes de

correspondance de la couche publier/souscrire pourraient profiter des domaines de

recherche suivants.

Améliorer l’exécution du plan de requête Le chapitre 3 a montré que l’exé-

cution des requêtes SPARQL distribué dépend de la complexité des requêtes et

de l’espace de recherche. Notre approche consiste à décomposer une requête en

sous-requêtes et d’exécuter les sous-requêtes de façon indépendante et en paral-

lèle. Toutefois, lorsque les sous-requêtes partagent des variables communes (i.e.

nécessitent une jointure) et retournent des ensembles de uplets avec des tailles

qui diffèrent d’un ou plusieurs ordres de grandeur, notre solution nécessite de

transporter de pairs en pairs jusqu’à l’initiateur de la requête. Plusieurs uplets

ne seraient alors pas nécessaires si les sous-requêtes étaient exécutées en série

en construisant auparavant un plan d’exécution séquentiel. Par conséquent, une

C.3. CONCLUSION 219

piste serait de construire des plans d’exécution de requêtes qui soient appropriés

pour les requêtes SPARQL impliquant des sous-requêtes partageant des variables

communes. Néanmoins, notre approche parallèle reste avantageuse pour les sous-

requêtes indépendantes. Ainsi, une avancée consisterait à générer des plans de re-

quêtes en combinant l’exécution en parallèle de sous-requêtes indépendantes avec

l’exécution en série de celles qui nécessitent des jointures. Les travaux effectués

dans [115] et [116] pour améliorer respectivement l’exécution des plans d’exécu-

tion des requêtes en réorganisant les triple patterns, mais aussi estimer leur sélec-

tivité, sont probablement des ressources intéressantes à consulter. Pour améliorer

davantage les transferts de données, des techniques de compression pourraient être

appliquées [168]. Par exemple, afin d’améliorer le temps d’exécution, il pourrait

être envisagé de remodeler la structure logique du réseau P2P CAN en prenant

en compte la localité physique des pairs qui le compose, ceci afin de rapprocher

les nœuds proches physiquement pour réduire la latence. Ali et al. ont montré

dans [117] qu’un système P2P structuré qui prend en compte la localité physique

des machines, et qui ajoute quelques raccourcis supplémentaires, peut améliorer

les performances d’un facteur de deux dans un contexte RDF.

Synthétiser les souscriptions Concevoir un système publier/souscrire soulève

de nombreuses questions. Selon le contexte dans lequel il est utilisé, un défi ma-

jeur est de gérer un nombre important de souscriptions. Étant donné que les

souscriptions sont enregistrées sur les pairs, lorsque chaque souscription est gérée

indépendamment, plus le nombre est important, plus le temps de traitement aug-

mente. Pour remédier à ce problème une solution est de synthétiser un ensemble

de souscriptions en une seule [169]. Le but est de trouver des relations de sub-

somption entre les intérêts de plusieurs souscriptions afin de les combiner en une

nouvelle résumée réduisant ainsi la consommation de bande passante, le surplus de

stockage et le nombre de messages échangés entre pairs pour effectuer la correspon-

dance contre les événements. Plusieurs approches ont été proposées ces dernières

années [170, 171, 172]. L’application d’une telle technique à notre solution perme-

ttrait d’améliorer encore plus ses performances.

220 ANNEXE C. EXTENDED ABSTRACT IN FRENCH

Améliorer la fiabilité et la disponibilité

Même si les algorithmes de routage de l’intergiciel proposé ont été conçus en ayant

à l’esprit la gestion de la tolérance aux pannes pour éviter une refonte complète

à l’avenir, la gestion de la fiabilité et de la disponibilité n’a pas été implémentée.

Notre intergiciel tirerait un avantage intéressant d’une solution permettant un

redémarrage en toute sécurité en cas de défaillance des pairs, cela impliquant

entre autre de supporter la tolérance aux pannes au niveau des objets multi-actifs.

En ce qui concerne ce dernier point, plus de détails seront fournis dans la thèse

qu’est en train de réaliser Justine Rochas. Un bon point de départ pour améliorer

la disponibilité, la fiabilité, mais aussi la performance des opérations de lecture

et donc l’évaluation des requêtes SPARQL synchrones pourrait être d’étudier la

réplication. Cela pourrait se faire par l’étude de solutions de réplication existantes

telles que celles proposées dans le document CAN original [111], les auteurs de

Meghdoot [126] ou encore par la recherche de nouvelles moins sensibles à l’arrivée

et aux départs fréquents de pairs, comme proposé dans [173].

Raisonner sur les données RDF

RDF est un modèle de données idéal pour l’écriture d’informations destinées à être

échangées à l’échelle mondiale. Toutefois, capturer la sémantique ou la signification

des informations nécessite d’autres normes de la pile du Web sémantique comme

RDFS et/ou OWL (cf. Figure 2.3) . Ces derniers permettent de définir des vo-

cabulaires en définissant les éléments utilisés dans une application, leur domaine,

leur type, leurs relations, mais aussi les contraintes possibles concernant leur util-

isation. En d’autres termes, les technologies RDFS et OWL fournissent une base

solide pour comprendre et déduire de nouvelles informations pertinentes. Cet ob-

jectif est généralement matérialisé en calculant la fermeture transitive d’un graphe

RDF. Cela consiste à rendre toute information implicite, explicite en appliquant les

règles RDFS/OWL sur les données RDF jusqu’à ce qu’aucune nouvelle donnée ne

soit dérivée. Interpréter les vocabulaires RDFS et OWL avec les règles d’inférence

qui leur sont associées de manière distribuée, tout en passant à l’échelle, reste un

défi et serait une perspective intéressante à creuser afin de pouvoir exploiter le

potentiel réel de RDF [174, 175, 176].

C.3. CONCLUSION 221

Pour conclure, un autre point de vue pourrait être d’explorer une solution basée

sur une version légèrement adaptée du modèle MapReduce afin de charger des

événements RDF et traiter des requêtes continues en utilisant SPARQL [177],

dans le but de comparer les performances avec notre solution. Plus de détails

seront fournis dans la thèse de Sophie Ge Song. Dans une toute autre direction,

il pourrait être envisagé d’étudier l’applicabilité des bases de données de type

graphe (par exemple Trinity [108] ou Stardog3) pour le stockage, la récupération

et la diffusion sélective de données RDF à très grande échelle.

3http://stardog.com

http://stardog.com

222 ANNEXE C. EXTENDED ABSTRACT IN FRENCH

Bibliography

[1] Amit Singhal. Introducing the knowledge graph: things, not strings. Official

google blog, 2012. url: http://googleblog.blogspot.fr/2012/05/

introducing-knowledge-graph-things-not.html (cited on pp. 2, 206).

[2] Darko Anicic, Paul Fodor, Roland Stuhmer, and Nenad Stojanovic. Event-

driven approach for logic-based complex event processing. In Computational

Science and Engineering. Volume 1. IEEE, 2009, pages 56–63 (cited on

pp. 3, 207).

[3] Imen Filali, Laurent Pellegrino, Francesco Bongiovanni, Fabrice Huet, Françoise

Baude, et al. Modular P2P-based approach for RDF data storage and re-

trieval. In Proceedings of the international conference on Advances in P2P

Systems, 2011 (cited on pp. 5, 209).

[4] Laurent Pellegrino, Fabrice Huet, Françoise Baude, and Amjad Alshabani.

A distributed publish/subscribe system for RDF data. In, Proceedings of

the international conference on Data Management in Cloud, Grid and P2P

Systems (Globe). Springer, 2013 (cited on pp. 5, 210).

[5] G. Mentzas, D. Apostolou, Yannis Verginadis, V. Tsalikis, Nenad Sto-

janovic, Roland Stuehmer, Jean-Pierre Lorré, Christophe Hamerling, Françoise

Baude, and Francesco Bongiovanni. D1.1 State of the art. Project De-

liverable PLAY. 2011. url: http : / / play - project . eu / documents /

viewdownload/3/13 (visited on 08/18/2013) (cited on pp. 6, 211).

[6] Yiannis Verginadis, Nikos Papageorgiou, Yannis Patiniotakis, Aurélie Charles,

Matthieu Lauras, Frédérick Benaben, Anne-Marie Barthe, Sébastien Trup-

til, Roland Stuehmer, Nenad Stojanovic, Françoise Baude, Fabrice Huet,

Francesco Bongiovanni, Laurent Pellegrino, Christophe Hamerling, Philippe

223

http://googleblog.blogspot.fr/2012/05/introducing-knowledge-graph-things-not.html
http://googleblog.blogspot.fr/2012/05/introducing-knowledge-graph-things-not.html
http://play-project.eu/documents/viewdownload/3/13
http://play-project.eu/documents/viewdownload/3/13

224 BIBLIOGRAPHY

Gibert, Osvaldo Cocucci, Bratislav Stoiljkovic, and Zivota Jankovic. D1.3

Requirements analysis. Project Deliverable PLAY. 2011. url: http://

play-project.eu/documents/viewdownload/3/15 (visited on 08/18/2013)

(cited on pp. 6, 211).

[7] Roland Stuehmer, Ljiljana Stojanovic, Nenad Stojanovic, Yiannis Verginadis,

Laurent Pellegrino, and Christophe Hamerling. D1.4 PLAY conceptual ar-

chitecture. Project Deliverable PLAY. 2011. url: http://play-project.

eu/documents/viewdownload/3/19 (visited on 08/18/2013) (cited on

pp. 6, 211).

[8] Françoise Baude, Francesco Bongiovanni, Laurent Pellegrino, and Vivien

Quema. D2.1 Requirements EventCloud. Project Deliverable PLAY. 2011.

url: http://play-project.eu/documents/summary/3/20 (visited on

08/18/2013) (cited on pp. 6, 211).

[9] Iyad Alshabani, Françoise Baude, Laurent Pellegrino, Bastien Sauvan, Philippe

Gibert, Christophe Hamerling, Yiannis Verginadis, Sébastien Truptil, and

Roland Stuehmer. D2.5.1 PLAY federated middleware specification and

implementation v1. Project Deliverable PLAY. 2012. url: http://play-

project.eu/documents/summary/3/131 (visited on 08/18/2013) (cited on

pp. 6, 189, 211, 216).

[10] Laurent Pellegrino, Françoise Baude, Iyad Alshabani, and Roland Stuehmer.

D3.3 PLAY platform quality of service. Project Deliverable PLAY. 2013.

url: http://play-project.eu/documents/summary/3/238 (visited on

12/10/2013) (cited on pp. 6, 211).

[11] Christophe Hamerling, Laurent Pellegrino, Roland Stuehmer, Philippe Gib-

ert, and Yiannis Verginadis. D5.1.2 Integrated PLAY platform & platform

manual v1. Project Deliverable PLAY. 2012. url: http://play-project.

eu/documents/summary/3/201 (visited on 08/18/2013) (cited on pp. 6,

211).

[12] Laurent Pellegrino, Iyad Alshabani, Françoise Baude, Roland Stuehmer,

and Nenad Stojanovic. An approach for efficiently combining real-time and

past events for ubiquitous business processing. In International workshop

http://play-project.eu/documents/viewdownload/3/15
http://play-project.eu/documents/viewdownload/3/15
http://play-project.eu/documents/viewdownload/3/19
http://play-project.eu/documents/viewdownload/3/19
http://play-project.eu/documents/summary/3/20
http://play-project.eu/documents/summary/3/131
http://play-project.eu/documents/summary/3/131
http://play-project.eu/documents/summary/3/238
http://play-project.eu/documents/summary/3/201
http://play-project.eu/documents/summary/3/201

BIBLIOGRAPHY 225

on Semantic Business Process Management (SBPM), 2012 (cited on pp. 6,

89, 211).

[13] Quirino Zagarese, Gerardo Canfora, Eugenio Zimeo, Iyad Alshabani, Lau-

rent Pellegrino, and Françoise Baude. Efficient data-intensive event-driven

interaction in SOA. In Proceedings of the ACM Symposium on Applied Com-

puting (SAC). ACM, 2013, pages 1907–1912 (cited on pp. 6, 211).

[14] Mark Jelasity and A-M Kermarrec. Ordered slicing of very large-scale over-

lay networks. In Peer-to-Peer Computing. IEEE, 2006, pages 117–124 (cited

on p. 8).

[15] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network. In

Peer-to-Peer Computing. IEEE, 2001, pages 99–100 (cited on p. 9).

[16] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W Hong. Freenet:

a distributed anonymous information storage and retrieval system. In De-

signing Privacy Enhancing Technologies. Springer, 2001, pages 46–66 (cited

on p. 9).

[17] Spyros Voulgaris, Daniela Gavidia, and Maarten Van Steen. Cyclon: inex-

pensive membership management for unstructured P2P overlays. Journal

of Network and Systems Management, 13(2):197–217, 2005 (cited on p. 9).

[18] Bram Cohen. The BitTorrent protocol specification. 2008 (cited on pp. 9,

11).

[19] Sebastian Ertel. Unstructured P2P networks by example: Gnutella 0.4,

Gnutella 0.6. url: http://ra.crema.unimi.it/turing/materiale/

admin/corsi/sistemi/lezioni/m3/m3_u2_def/ceravolo_file2.pdf

(visited on 07/30/2013) (cited on p. 9).

[20] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. A scalable content-addressable network. Volume 31(4). ACM, 2001

(cited on pp. 10, 44, 55, 80).

[21] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari

Balakrishnan. Chord: a scalable peer-to-peer lookup service for internet

applications. In ACM SIGCOMM Computer Communication Review. Vol-

ume 31. (4). ACM, 2001, pages 149–160 (cited on pp. 10, 41, 56, 66, 81).

http://ra.crema.unimi.it/turing/materiale/admin/corsi/sistemi/lezioni/m3/m3_u2_def/ceravolo_file2.pdf
http://ra.crema.unimi.it/turing/materiale/admin/corsi/sistemi/lezioni/m3/m3_u2_def/ceravolo_file2.pdf

226 BIBLIOGRAPHY

[22] Antony Rowstron and Peter Druschel. Pastry: scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. In Middleware.

Springer, 2001, pages 329–350 (cited on pp. 10, 56, 66, 79, 127).

[23] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, and Ion Stoica.

Towards a common API for structured peer-to-peer overlays. In, Peer-to-

Peer Systems II, pages 33–44. Springer, 2003 (cited on p. 10).

[24] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,

and Daniel Lewin. Consistent hashing and random trees: distributed caching

protocols for relieving hot spots on the World Wide Web. In Proceedings of

the ACM symposium on Theory of Computing. ACM, 1997, pages 654–663

(cited on p. 10).

[25] Ashwin Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mercury: sup-

porting scalable multi-attribute range queries. Computer Communication

Review, 34(4):353–366, 2004 (cited on pp. 10, 130, 139).

[26] Changxi Zheng, Guobin Shen, Shipeng Li, and Scott Shenker. Distributed

segment tree: support of range query and cover query over DHT. In Inter-

national workshop on Peer-to-Peer Systems (IPTPS), 2006 (cited on p. 10).

[27] Luis Garces-Erice, Ernst W Biersack, Keith W Ross, Pascal A Felber, and

Guillaume Urvoy-Keller. Hierarchical peer-to-peer systems. Parallel Pro-

cessing Letters, 13(04):643–657, 2003 (cited on p. 11).

[28] Dmitry Korzun and Andrei Gurtov. Survey on hierarchical routing schemes

in "flat"distributed hash tables. Peer-to-Peer Networking and Applications,

4(4):346–375, 2011 (cited on p. 11).

[29] Ming Xu, Shuigeng Zhou, and Jihong Guan. A new and effective hierarchical

overlay structure for peer-to-peer networks. Computer Communications,

34(7):862–874, 2011 (cited on p. 11).

[30] Mourad Amad, Ahmed Meddahi, Djamil Aissani, and Zonghua Zhang.

HPM: a novel hierarchical peer-to-peer model for lookup acceleration with

provision of physical proximity. Journal of Network and Computer Appli-

cations, 2012 (cited on p. 11).

BIBLIOGRAPHY 227

[31] LLC Napster. Napster, 2001. url: http://www.napster.com (visited on

07/30/2013) (cited on p. 11).

[32] Jaan Tallinn Ahti Heinla Priit Kasesalu. KaZaA. 2011. url: http://www.

kazaa.com (visited on 07/30/2013) (cited on p. 11).

[33] David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.

SETI@Home: an experiment in public-resource computing. Communica-

tions of the ACM, 45(11):56–61, 2002 (cited on p. 12).

[34] BP Abbott, R Abbott, R Adhikari, P Ajith, B Allen, G Allen, RS Amin, SB

Anderson, WG Anderson, MA Arain, et al. Einstein@home search for peri-

odic gravitational waves in early s5 ligo data. Physical review d, 80(4):042003,

2009 (cited on p. 12).

[35] Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2009.

url: http://www.bitcoin.org/bitcoin.pdf (visited on 07/30/2013)

(cited on p. 12).

[36] Avinash Lakshman and Prashant Malik. Cassandra: a structured storage

system on a P2P network. In Proceedings of the symposium on Parallelism

in Algorithms and Architectures. ACM, 2009, pages 47–47 (cited on pp. 13,

49, 52, 79).

[37] Giuseppe Decandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-

lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,

Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-

value store. In Symposium on Operating Systems (SOSP). Volume 7, 2007,

pages 205–220 (cited on p. 13).

[38] Kyle Banker. MongoDB in action. Manning Publications Co., 2011 (cited

on p. 13).

[39] Cosmin Arad, Tallat Mahmood Shafaat, and Seif Haridi. CATS: lineariz-

ability and partition tolerance in scalable and self-organizing key-value

stores. Technical report. Swedish Institute of Computer Science, 2012. url:

http://soda.swedish-ict.se/5260/1/cats-sics-tr-2012-04.pdf

(visited on 08/19/2013) (cited on p. 13).

http://www.napster.com
http://www.kazaa.com
http://www.kazaa.com
http://www.bitcoin.org/bitcoin.pdf
http://soda.swedish-ict.se/5260/1/cats-sics-tr-2012-04.pdf

228 BIBLIOGRAPHY

[40] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web.

Scientific American, 284(5):28–37, 2001 (cited on p. 13).

[41] Ben Adida, Ivan Herman, Manu Sporny, and Mark Birbeck. RDFa 1.1

primer: rich structured data markup for Web documents, 2012. url: http:

//www.w3.org/TR/xhtml-rdfa-primer/ (visited on 08/07/2013) (cited

on p. 14).

[42] Ora Lassila and Ralph R Swick. Resource description framework (RDF)

model and syntax specification, 1999 (cited on p. 15).

[43] Nigel Shadbolt, Wendy Hall, and Tim Berners-Lee. The semantic web re-

visited. Intelligent Systems, 21(3):96–101, 2006 (cited on p. 16).

[44] Patrick Hayes and Brian McBride. RDF semantics. 2004. url: http://

www.w3.org/TR/rdf-mt/ (visited on 12/12/2013) (cited on p. 16).

[45] Jeremy J Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named

graphs, provenance and trust. In Proceedings of the international conference

on World Wide Web. ACM, 2005, pages 613–622 (cited on p. 18).

[46] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plex-

ousakis, and Michel Scholl. RQL: a declarative query language for RDF.

In Proceedings of the international conference on World Wide Web. ACM,

2002, pages 592–603 (cited on p. 18).

[47] Jeen Broekstra and Arjohn Kampman. SeRQL: a second generation RDF

query language. In Proceedings of SWAD-Europe workshop on Semantic

Web Storage and Retrieval, 2003, pages 13–14 (cited on p. 18).

[48] Libby Miller, Andy Seaborne, and Alberto Reggiori. Three implementations

of SquishQL, a simple RDF query language. In, The Semantic Web - ISWC,

pages 423–435. Springer, 2002 (cited on p. 18).

[49] Eric Prud’Hommeaux, Andy Seaborne, et al. SPARQL query language for

RDF. W3C recommendation, 15, 2008. url: http://www.w3.org/TR/rdf-

sparql-query (visited on 08/08/2013) (cited on p. 20).

http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/rdf-sparql-query

BIBLIOGRAPHY 229

[50] Scott Boag, Don Chamberlin, Mary F Fernández, Daniela Florescu, Jonathan

Robie, Jérôme Siméon, and Mugur Stefanescu. XQuery 1.0: an XML query

language. W3C working draft, 12, 2003 (cited on p. 21).

[51] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous

queries over append-only databases. Volume 21(2). ACM, 1992 (cited on

p. 21).

[52] Timothy H Harrison, David L Levine, and Douglas C Schmidt. The design

and performance of a real-time CORBA event service. ACM SIGPLAN

Notices, 32(10):184–200, 1997 (cited on p. 24).

[53] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The information

bus: an architecture for extensible distributed systems. In ACM SIGOPS

Operating Systems Review. Volume 27. (5). ACM, 1994, pages 58–68 (cited

on p. 24).

[54] Miguel Castro, Peter Druschel, A-M Kermarrec, and Antony IT Rowstron.

SCRIBE: a large-scale and decentralized application-level multicast infras-

tructure. Selected Areas in Communications, 20(8):1489–1499, 2002 (cited

on pp. 25, 82).

[55] Fatemeh Rahimian, Sarunas Girdzijauskas, Amir H Payberah, and Seif

Haridi. Vitis: a gossip-based hybrid overlay for internet-scale publish/sub-

scribe enabling rendezvous routing in unstructured overlay networks. In In-

ternational Parallel & Distributed Processing Symposium (IPDPS). IEEE,

2011, pages 746–757 (cited on p. 25).

[56] Peter R Pietzuch and Jean M Bacon. Hermes: a distributed event-based

middleware architecture. In International conference on Distributed Com-

puting Systems Workshops. IEEE, 2002, pages 611–618 (cited on pp. 25,

79).

[57] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI

event-based infrastructure and its application to the development of the

OPSS WFMS. Software Engineering, 27(9):827–850, 2001 (cited on pp. 25,

81).

230 BIBLIOGRAPHY

[58] Patrick Thomas Eugster. Type-based publish/subscribe. PhD thesis. Swiss

Federal Institute of Technology in Lausanne, 2001 (cited on p. 26).

[59] Denis Caromel, Wilfried Klauser, and Julien Vayssiere. Towards seamless

computing and metacomputing in Java. Concurrency Practice and Experi-

ence, 10(11-13):1043–1061, 1998 (cited on p. 26).

[60] Francoise Baude, Denis Caromel, Christian Delbé, and Ludovic Henrio.

A hybrid message logging-cic protocol for constrained checkpointability.

In, Euro-Par Parallel Processing, pages 644–653. Springer, 2005 (cited on

p. 26).

[61] Françoise Baude, Denis Caromel, Nicolas Maillard, and Elton Mathias. Hi-

erarchical mpi-like programming using GCM components as implementa-

tion support. In CoreGRID workshop: Grid Systems, Tools and Environ-

ments, 2006 (cited on p. 26).

[62] Françoise Baude, Denis Caromel, Fabrice Huet, and Julien Vayssiere. Com-

municating mobile active objects in java. In High Performance Computing

and Networking. Springer, 2000, pages 633–643 (cited on p. 26).

[63] Isabelle Attali, Denis Caromel, and Arnaud Contes. Deployment-based se-

curity for grid applications. In, International Conference on Computational

Science, pages 526–533. Springer, 2005 (cited on p. 26).

[64] Françoise Baude, Denis Caromel, Fabrice Huet, Lionel Mestre, and Julien

Vayssière. Interactive and descriptor-based deployment of object-oriented

grid applications. In Proceedings of the international symposium on High

Performance Distributed Computing (HPDC). IEEE, 2002, pages 93–102

(cited on p. 26).

[65] Denis Caromel, Cédric Dalmasso, Christian Delbé, Fabrice Fontenoy, and

Oleg Smirnov. OW2 proactive parallel suite: building flexible enterprise

clouds. ERCIM News, 2010(83):38–39, 2010 (cited on p. 27).

[66] Françoise Baude, Alexandre Bergel, Denis Caromel, Fabrice Huet, Olivier

Nano, et al. IC2D: interactive control and debugging of distribution. In,

Large-Scale Scientific Computing, pages 193–200. Springer, 2001 (cited on

p. 27).

BIBLIOGRAPHY 231

[67] Gregor Kiczales. The art of the metaobject protocol. MIT press, 1991 (cited

on p. 27).

[68] Denis Caromel. Towards a method of object-oriented concurrent program-

ming. Communications of the ACM, 36(9):90–102, 1993 (cited on p. 30).

[69] Denis Caromel and Ludovic Henrio. A theory of distributed objects: asyn-

chrony, mobility, groups, components. Springer, 2005 (cited on p. 30).

[70] Ludovic Henrio, Fabrice Huet, and Zsolt István. Multi-threaded active ob-

jects. In Coordination Models and Languages. Springer, 2013, pages 90–104

(cited on p. 31).

[71] Françoise Baude, Denis Caromel, Cédric Dalmasso, Marco Danelutto, Vladimir

Getov, Ludovic Henrio, and Christian Pérez. GCM: a grid extension to frac-

tal for autonomous distributed components. Annals of Telecommunications,

64(1-2):5–24, 2009 (cited on p. 33).

[72] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and

Jean-Bernard Stefani. The fractal component model and its support in

Java. Software: Practice and Experience, 36(11-12):1257–1284, 2006 (cited

on p. 33).

[73] Françoise Baude, Ludovic Henrio, and Paul Naoumenko. A component

platform for experimenting with autonomic composition. In Proceedings

of the international conference on Autonomic Computing and Communi-

cation Systems. ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering), 2007, page 8 (cited on p. 34).

[74] Francoise Baude, Denis Caromel, Ludovic Henrio, and Matthieu Morel.

Collective interfaces for distributed components. In Cluster Computing and

the Grid (CCGRID). IEEE, 2007, pages 599–610 (cited on p. 34).

[75] Imen Filali. Improving resource discovery in P2P systems. PhD thesis. Uni-

versity of Nice-Sophia Antipolis, 2011. url: http://www.theses.fr/

2011NICE4012 (cited on pp. 37, 54).

[76] Stephen Harris and Dr Nicholas Gibbins. 3store: efficient bulk RDF storage,

2003. url: http://www.aktors.org/technologies/3store (visited on

08/23/2013) (cited on p. 39).

http://www.theses.fr/2011NICE4012
http://www.theses.fr/2011NICE4012
http://www.aktors.org/technologies/3store

232 BIBLIOGRAPHY

[77] Kevin Wilkinson, Craig Sayers, Harumi A Kuno, Dave Reynolds, et al.

Efficient RDF storage and retrieval in Jena2. In International workshop

on Semantic Web and Databases (SWDB). Volume 3, 2003, pages 131–150

(cited on p. 39).

[78] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan

Srinivasan. An efficient SQL-based RDF querying scheme. In Proceedings

of the international conference on Very Large Data Bases (VLDB). VLDB

Endowment, 2005, pages 1216–1227 (cited on p. 39).

[79] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris Plex-

ousakis, and Karsten Tolle. The ICS-FORTH RDFSuite: managing volumi-

nous RDF description bases. In SemWeb, 2001 (cited on p. 39).

[80] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. Sesame: a

generic architecture for storing and querying rdf and rdf schema. In, The

Semantic Web — ISWC, pages 54–68. Springer, 2002 (cited on pp. 39, 165).

[81] Daniel J Abadi, Adam Marcus, Samuel R Madden, and Kate Hollenbach.

Scalable semantic web data management using vertical partitioning. In Very

Large Data Base (VLDB). VLDB Endowment, 2007, pages 411–422 (cited

on pp. 39, 40).

[82] Michael Stonebraker, Samuel Madden, Daniel J Abadi, Stavros Harizopou-

los, Nabil Hachem, and Pat Helland. The end of an architectural era: (it’s

time for a complete rewrite). In Proceedings of the international conference

on Very large data bases (VLDB). VLDB Endowment, 2007, pages 1150–

1160 (cited on p. 40).

[83] Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels Nes, and

Stefan Manegold. Column-store support for RDF data management: not

all swans are white. Proceedings of the VLDB Endowment, 1(2):1553–1563,

2008 (cited on p. 40).

[84] Andy Seaborne. Jena TDB. 2009. url: http://jena.apache.org/documentation/

tdb (visited on 08/22/2013) (cited on pp. 40, 170).

http://jena.apache.org/documentation/tdb
http://jena.apache.org/documentation/tdb

BIBLIOGRAPHY 233

[85] Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable

management of RDF data. The VLDB Journal, 19(1):91–113, 2010 (cited

on p. 40).

[86] Pingpeng Yuan, Pu Liu, H Jin, W Zhang, and L Liu. TripleBit: a fast and

compact system for large scale RDF data. Very Large Data Base (VLDB),

6(7):517–528, 2013 (cited on p. 41).

[87] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sin-

tek, Ambjörn Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch.

EDUTELLA: a P2P networking infrastructure based on RDF. In Pro-

ceedings of the international conference on World Wide Web. ACM, 2002,

pages 604–615 (cited on p. 41).

[88] Peter Haase, Jeen Broekstra, Marc Ehrig, Maarten Menken, Peter Mika,

Mariusz Olko, Michal Plechawski, Pawel Pyszlak, Björn Schnizler, Ronny

Siebes, et al. Bibster: a semantics-based bibliographic peer-to-peer system.

In, The Semantic Web - ISWC, pages 122–136. Springer, 2004 (cited on

p. 41).

[89] Jing Zhou, Wendy Hall, and David De Roure. Building a distributed in-

frastructure for scalable triple stores. Journal of Computer Science and

Technology, 24(3):447–462, 2009 (cited on p. 41).

[90] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov, Zdravko

Tashev, and Ruslan Velkov. OWLIM: a family of scalable semantic reposi-

tories. Semantic Web, 2(1):33–42, 2011 (cited on p. 41).

[91] Min Cai and Martin Frank. RDFPeers: a scalable distributed RDF repos-

itory based on a structured peer-to-peer network. In Proceedings of the

international conference on World Wide Web. ACM, 2004, pages 650–657

(cited on pp. 41, 42, 48, 66).

[92] Min Cai, Martin Frank, Jinbo Chen, and Pedro Szekely. MAAN: a multi-

attribute addressable network for grid information services. Journal of Grid

Computing, 2(1):3–14, 2004 (cited on pp. 41, 81, 128).

234 BIBLIOGRAPHY

[93] Akiyoshi Matono, Said Mirza Pahlevi, and Isao Kojima. RDFCube: a P2P-

based three-dimensional index for structural joins on distributed triple

stores. In, Databases, Information Systems, and Peer-to-Peer Computing,

pages 323–330. Springer, 2007 (cited on p. 44).

[94] Dominic Battré, Felix Heine, André Höing, and Odej Kao. On triple dissem-

ination, forward-chaining, and load balancing in DHT based RDF stores.

In Proceedings of the international conference on Databases, Information

Systems, and Peer-to-Peer Computing. Springer-Verlag, 2005, pages 343–

354 (cited on pp. 45, 127).

[95] Felix Heine. Scalable P2P based RDF querying. In Proceedings of the inter-

national conference on Scalable information systems. ACM, 2006, page 17

(cited on p. 46).

[96] Burton Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970 (cited on p. 46).

[97] Erietta Liarou, Stratos Idreos, and Manolis Koubarakis. Evaluating con-

junctive triple pattern queries over large structured overlay networks. In,

The Semantic Web - ISWC, pages 399–413. Springer, 2006 (cited on p. 47).

[98] Günter Ladwig and Andreas Harth. CumulusRDF: linked data management

on nested key-value stores. In International workshop on Scalable Semantic

Web Knowledge Base Systems (SSWS), 2011, page 30 (cited on p. 49).

[99] Andreas Harth and Stefan Decker. Optimized index structures for querying

RDF from the web. In Third Latin American Web Congress. IEEE, 2005,

10–pp (cited on p. 50).

[100] Lars George. HBase: the definitive guide. O’Reilly Media, Inc., 2011 (cited

on p. 52).

[101] Kristina Chodorow. MongoDB: the definitive guide. O’Reilly, 2013 (cited

on pp. 52, 53).

[102] Jans Aasman. Allegro graph: RDF triple database. Technical report. Franz

Incorporated, 2006. url: http://www.franz.com/agraph/allegrograph/

(visited on 10/14/2013) (cited on pp. 52, 54).

http://www.franz.com/agraph/allegrograph/

BIBLIOGRAPHY 235

[103] Dhruba Borthakur. HDFS architecture guide. Hadoop Apache Project, 2008.

url: https://hadoop.apache.org/docs/r0.19.0/hdfs_design.pdf

(visited on 11/29/2013) (cited on p. 53).

[104] Raghava Mutharaju, Sherif Sakr, Alessandra Sala, and Pascal Hitzler. D-

SPARQ: distributed, scalable and efficient RDF query engine. In Interna-

tional Semantic Web Conference (Posters & Demos), 2013, pages 261–264

(cited on p. 53).

[105] Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios Tsoumakos, and Nec-

tarios Koziris. H2RDF: adaptive query processing on RDF data in the cloud.

In Proceedings of the international conference on World Wide Web. ACM,

2012, pages 397–400 (cited on p. 53).

[106] Philippe Cudré-Mauroux, Iliya Enchev, Sever Fundatureanu, Paul Groth,

Albert Haque, Andreas Harth, Felix Leif Keppmann, Daniel Miranker, Juan

Sequeda, and Marcin Wylot. NoSQL databases for RDF: an empirical eval-

uation. In The Semantic Web - ISWC. Springer, 2013 (cited on p. 53).

[107] Bryan Thompson. Bigdata. 2004. url: http://www.bigdata.com (visited

on 10/15/2013) (cited on p. 54).

[108] Bin Shao, Haixun Wang, and Yatao Li. The Trinity graph engine. Microsoft

Research, 2012. url: http://research.microsoft.com/pubs/161291/

trinity.pdf (visited on 01/09/2014) (cited on pp. 54, 195, 221).

[109] Francesca Bugiotti, François Goasdoué, Zoi Kaoudi, and Ioana Manolescu.

RDF data management in the Amazon cloud. In Proceedings of the Joint

EDBT/ICDT Workshops. ACM, 2012, pages 61–72 (cited on p. 54).

[110] Francesco Bongiovanni and Ludovic Henrio. A mechanized model for CAN

protocols. In Fundamental Approaches to Software Engineering (FASE).

Vittorio Cortellessa and Dániel Varró, editors. Volume 7793. In Lecture

Notes in Computer Science. Springer, 2013, pages 266–281 (cited on p. 64).

[111] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker. Ap-

plication level multicast using content-addressable networks. In, Networked

Group Communication, pages 14–29. Springer, 2001 (cited on pp. 64, 66,

194, 220).

https://hadoop.apache.org/docs/r0.19.0/hdfs_design.pdf
http://www.bigdata.com
http://research.microsoft.com/pubs/161291/trinity.pdf
http://research.microsoft.com/pubs/161291/trinity.pdf

236 BIBLIOGRAPHY

[112] Ludovic Henrio, Fabrice Huet, and Justine Rochas. An optimal broadcast

algorithm for content-addressable networks. In, International conference On

Principles of Distributed Systems (OPODIS), 2013 (cited on p. 64).

[113] Christian Bizer and Andreas Schultz. The berlin SPARQL benchmark. In-

ternational Journal on Semantic Web and Information Systems (IJSWIS),

5(2):1–24, 2009 (cited on p. 70).

[114] Maeva Antoine, Françoise Baude, and Fabrice Huet. Évaluation d’une ar-

chitecture de stockage RDF distribuée. In 23èmes journées francophones

d’Ingénierie des Connaissances, 2012. url: http://hal.inria.fr/hal-

00908461 (visited on 09/09/2013) (cited on pp. 75, 212).

[115] Bastian Quilitz and Ulf Leser. Querying distributed RDF data sources with

SPARQL. In, The Semantic Web: Research and Applications, pages 524–

538. Springer, 2008 (cited on pp. 75, 193, 212, 219).

[116] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer,

and Dave Reynolds. SPARQL basic graph pattern optimization using se-

lectivity estimation. In Proceedings of the international conference on World

Wide Web. ACM, 2008, pages 595–604 (cited on pp. 75, 193, 212, 219).

[117] Liaquat Ali, Thomas Janson, Georg Lausen, and Christian Schindelhauer.

Effects of network structure improvement on distributed RDF querying. In,

Data Management in Cloud, Grid and P2P Systems, pages 63–74. Springer,

2013 (cited on pp. 76, 194, 213, 219).

[118] Umeshwar Dayal, Barbara Blaustein, Alex Buchmann, Upen Chakravarthy,

Meichun Hsu, R Ledin, Dennis McCarthy, Arnon Rosenthal, Sunil Sarin,

Michael J. Carey, et al. The Hipac project: combining active databases and

timing constraints. ACM Sigmod Record, 17(1):51–70, 1988 (cited on p. 78).

[119] Narain Gehani and Hosagrahar Visvesvaraya Jagadish. Ode as an active

database: constraints and triggers. In Very Large Data Bases (VLDB). Vol-

ume 91, 1991, pages 327–336 (cited on p. 78).

[120] Michael Stonebraker, Eric N. Hanson, and Spyros Potamianos. The Postgres

rule manager. IEEE Transactions on Software Engineering, 14(7):897–907,

1988 (cited on p. 78).

http://hal.inria.fr/hal-00908461
http://hal.inria.fr/hal-00908461

BIBLIOGRAPHY 237

[121] Matthew Morgenstern. Active databases as a paradigm for enhanced com-

puting environments. Information Sciences Institute, 1983 (cited on p. 78).

[122] I. TIBCO. TIB/Rendezvous white paper. Palo alto, california, 1999 (cited

on p. 79).

[123] B. Fitzpatrick, B. Slatkin, and M. Atkins. Pubsubhubbub protocol. 2010.

url: http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-

core-0.3.html (visited on 09/13/2013) (cited on p. 79).

[124] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evaluation of

a wide-area event notification service. Transactions on Computer Systems

(TOCS), 19(3):332–383, 2001 (cited on p. 79).

[125] M. Li, F. Ye, M. Kim, H. Chen, and H. Lei. A scalable and elastic publish/-

subscribe service. In Parallel & Distributed Processing Symposium (IPDPS).

IEEE, 2011, pages 1254–1265 (cited on p. 79).

[126] Abhishek Gupta, Ozgur D Sahin, Divyakant Agrawal, and Amr El Ab-

badi. Meghdoot: content-based publish/subscribe over P2P networks. In

Proceedings of the international conference on Middleware. Springer-Verlag

New York, Inc., 2004, pages 254–273 (cited on pp. 80, 126, 194, 220).

[127] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed event-based sys-

tems. Volume 1. springer Heidelberg, 2006 (cited on p. 81).

[128] M. Cai, M. Frank, B. Yan, and R. MacGregor. A subscribable peer-to-

peer RDF repository for distributed metadata management. Web Seman-

tics: Science, Services and Agents on the World Wide Web, 2(2):109–130,

2004 (cited on p. 81).

[129] D. Ranger and J.F. Cloutier. Scalable peer-to-peer RDF query algorithm. In

Web Information Systems Engineering (WISE). Springer, 2005, pages 266–

274 (cited on p. 82).

[130] Erietta Liarou, Stratos Idreos, and Manolis Koubarakis. Continuous RDF

query processing over DHTs. In, The Semantic Web - ISWC, pages 324–

339. Springer, 2007 (cited on pp. 82, 90).

http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html
http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html

238 BIBLIOGRAPHY

[131] Y. Shvartzshnaider, M. Ott, and D. Levy. Publish/subscribe on top of

DHT using RETE algorithm. Future Internet Symposium (FIS):20–29, 2010

(cited on p. 82).

[132] Charles L Forgy. Rete: a fast algorithm for the many pattern/many object

pattern match problem. Artificial intelligence, 19(1):17–37, 1982 (cited on

p. 82).

[133] Antonio Carzaniga, David S Rosenblum, and Alexander L Wolf. Challenges

for distributed event services: scalability vs expressiveness. Proceedings of

Engineering Distributed Objects:72–78, 1999 (cited on p. 84).

[134] Laurent Pellegrino, Françoise Baude, and Iyad Alshabani. Towards a scal-

able cloud-based RDF storage offering a pub/sub query service. In Interna-

tional conference on Cloud Computing, GRIDs, and Virtualization, 2012,

pages 243–246 (cited on p. 84).

[135] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. Exploiting

an event-based infrastructure to develop complex distributed systems. In

Proceedings of the international conference on Software Engineering. IEEE,

1998, pages 261–270 (cited on p. 85).

[136] Christoph Liebig, Mariano Cilia, and Alejandro Buchmann. Event com-

position in time-dependent distributed systems. In Proceedings of the in-

ternational conference on Cooperative Information Systems. IEEE, 1999,

pages 70–78 (cited on p. 86).

[137] Peter R Pietzuch, Brian Shand, and Jean Bacon. Composite event detection

as a generic middleware extension. IEEE Network, 18(1):44–55, 2004 (cited

on p. 86).

[138] Masoud Mansouri-Samani and Morris Sloman. GEM: a generalized event

monitoring language for distributed systems. Distributed Systems Engineer-

ing, 4(2):96, 1997 (cited on p. 89).

[139] Byung-Jae Kwak, Nah-Oak Song, and Leonard E Miller. Performance anal-

ysis of exponential backoff. IEEE Transactions on Networking, 13(2):343–

355, 2005 (cited on p. 95).

BIBLIOGRAPHY 239

[140] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp,

and Ion Stoica. Load balancing in structured P2P systems. In, Peer-to-

Peer Systems II, pages 68–79. Springer, 2003 (cited on pp. 123, 129).

[141] John Byers, Jeffrey Considine, and Michael Mitzenmacher. Simple load bal-

ancing for distributed hash tables. In, Peer-to-Peer Systems II, pages 80–

87. Springer, 2003 (cited on p. 124).

[142] Michael David Mitzenmacher. The power of two choices in randomized load

balancing. PhD thesis. University of California, 1996 (cited on p. 124).

[143] Martin Raab and Angelika Steger. Balls into bins - A simple and tight

analysis. In, Randomization and Approximation Techniques in Computer

Science, pages 159–170. Springer, 1998 (cited on p. 124).

[144] Djelloul Boukhelef and Hiroyuki Kitagawa. Dynamic load balancing in

RCAN content addressable network. In Proceedings of the international

conference on Ubiquitous Information Management and Communication.

ACM, 2009, pages 98–106 (cited on p. 127).

[145] Djelloul Boukhelef and Hiroyuki Kitagawa. Multi-ring infrastructure for

content addressable networks. In, On the Move to Meaningful Internet Sys-

tems, pages 193–211. Springer, 2008 (cited on p. 127).

[146] Antonios Daskos, Shahram Ghandeharizadeh, and Xinghua An. PePeR: a

distributed range addressing space for peer-to-peer systems. In, Databases,

Information Systems, and Peer-to-Peer Computing, pages 200–218. Springer,

2004 (cited on p. 128).

[147] Brighten Godfrey, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp,

and Ion Stoica. Load balancing in dynamic structured P2P systems. In Con-

ference of the IEEE Computer and Communications Societies. Volume 4.

IEEE, 2004, pages 2253–2262 (cited on p. 129).

[148] Marcin Bienkowski, Miroslaw Korzeniowski, and Friedhelm Meyer auf der

Heide. Dynamic load balancing in distributed hash tables. In, Peer-to-Peer

Systems IV, pages 217–225. Springer, 2005 (cited on p. 129).

240 BIBLIOGRAPHY

[149] Quang Hieu Vu, Beng Chin Ooi, Martin Rinard, and Kian-Lee Tan. Histogram-

based global load balancing in structured peer-to-peer systems. IEEE Trans-

actions on Knowledge and Data Engineering, 21(4):595–608, 2009 (cited on

pp. 129, 140).

[150] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computa-

tion of aggregate information. In Proceedings of the symposium on Founda-

tions of Computer Science. IEEE, 2003, pages 482–491 (cited on p. 136).

[151] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random walks in

peer-to-peer networks: algorithms and evaluation. Performance Evaluation,

63(3):241–263, 2006 (cited on p. 140).

[152] Stuart Weibel, John Kunze, Carl Lagoze, and Misha Wolf. Dublin core

metadata for resource discovery. Internet Engineering Task Force RFC,

2413:222, 1998 (cited on p. 140).

[153] Elisabeth Freeman. Head first design patterns. O’Reilly Media, Inc., 2004

(cited on p. 149).

[154] Radu Muschevici, Alex Potanin, Ewan Tempero, and James Noble. Multiple

dispatch in practice. Acm sigplan notices, 43(10):563–582, 2008 (cited on

p. 152).

[155] Laurent Baduel, Françoise Baude, and Denis Caromel. Asynchronous typed

object groups for grid programming. International Journal of Parallel Pro-

gramming, 35(6):573–614, 2007 (cited on p. 154).

[156] Brian McBride. Jena: implementing the RDF model and syntax specifica-

tion. In SemWeb, 2001 (cited on p. 165).

[157] Max Voelkel. Writing the semantic web with Java. In Cdh seminar galway,

2005 (cited on p. 165).

[158] Steve Graham, David Hull, and Bryan Murray. Web services notification.

OASIS Standard, 2006. url: https://www.oasis-open.org/committees/

tc_home.php?wg_abbrev=wsn (visited on 12/07/2013) (cited on p. 167).

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

BIBLIOGRAPHY 241

[159] Mikko Tommila. A high performance arbitrary precision arithmetic pack-

age. 2001. url: http://www.apfloat.org/apfloat_java (visited on

12/01/2013) (cited on p. 168).

[160] Alexandre Bourdin. Contribution au développement de la plateforme dis-

tribuée PLAY. Apprenticeship Report. 2012 (cited on p. 172).

[161] Ludovic Henrio and Justine Rochas. Declarative Scheduling for Active Ob-

jects. In Symposium On Applied Computing. Sung Y. Shin, editor. ACM

Special Interest Group on Applied Computing. ACM, pages 1–6. url:

http://hal.inria.fr/hal-00916293 (cited on p. 179).

[162] Iyad Alshabani, Alexandre Bourdin, Philippe Gibert, Christophe Hamer-

ling, Matthieu Lauras, Laurent Pellegrino, Roland Stuehmer, and Yiannis

Verginadis. D5.2.1 Assessment of the PLAY integrated platform. Project

Deliverable PLAY. 2012. url: http://play- project.eu/documents/

summary/3/205 (visited on 12/10/2013) (cited on pp. 188, 215).

[163] Yiannis Verginadis, Yoannis Patiniotakis, Nikkos Papageorgiou, Roland

Stuehmer, and Iyad Alshabani. D5.2.2 Assessment of the PLAY integrated

platform v2. Project Deliverable PLAY. 2013. url: http://play-project.

eu/documents/summary/3/245 (visited on 12/10/2013) (cited on pp. 188,

215).

[164] Iyad Alshabani, Bastien Sauvan, Roland Stuehmer, and Thomas Morsellino.

D2.5.2 PLAY federated middleware specification and implementation v2.

Project Deliverable PLAY. 2013. url: http://play-project.eu/documents/

summary/3/239 (visited on 12/10/2013) (cited on pp. 189, 216).

[165] Nicolas Salatgé. D1.2.1 Overall framework model. Project Deliverable SocEDA.

2013. url: http://goo.gl/NRhuXB (visited on 12/10/2013) (cited on

pp. 189, 216).

[166] LIG and I3S. D2.3.1 EventCloud: state-of-the-art and requirements. Project

Deliverable SocEDA. 2013. url: http : / / goo . gl / Y8LfQL (visited on

12/10/2013) (cited on pp. 189, 216).

http://www.apfloat.org/apfloat_java
http://hal.inria.fr/hal-00916293
http://play-project.eu/documents/summary/3/205
http://play-project.eu/documents/summary/3/205
http://play-project.eu/documents/summary/3/245
http://play-project.eu/documents/summary/3/245
http://play-project.eu/documents/summary/3/239
http://play-project.eu/documents/summary/3/239
http://goo.gl/NRhuXB
http://goo.gl/Y8LfQL

242 BIBLIOGRAPHY

[167] LIG and Liris. D2.3.2 Federated middleware specification and implementa-

tion v1. Project Deliverable SocEDA. 2013. url: http://goo.gl/oNL1tc

(visited on 12/10/2013) (cited on pp. 189, 216).

[168] Javier D Fernandez, Miguel A Martinez-Prieto, Claudio Gutierrez, Axel

Polleres, and Mario Arias. Binary RDF representation for publication and

exchange (hdt). Web Semantics: Science, Services and Agents on the World

Wide Web, 2013 (cited on pp. 193, 219).

[169] Gero Mühl. Large-scale content-based publish-subscribe systems. PhD the-

sis. Darmstadt University of Technology, 2002. url: http://tuprints.

ulb.tu-darmstadt.de/274/1/dissFinal.pdf (visited on 01/08/2014)

(cited on pp. 194, 219).

[170] Peter Triantafillou and Andreas Economides. Subscription summarization:

a new paradigm for efficient publish/subscribe systems. In International

Conference on Distributed Computing Systems (ICDCS). IEEE, 2004, pages 562–

571 (cited on pp. 194, 219).

[171] Guoli Li, Shuang Hou, and H-A Jacobsen. A unified approach to rout-

ing, covering and merging in publish/subscribe systems based on modified

binary decision diagrams. In International Conference on Distributed Com-

puting Systems (ICDCS). IEEE, 2005, pages 447–457 (cited on pp. 194,

219).

[172] KR Jayaram and Patrick Eugster. Split and subsume: subscription normal-

ization for effective content-based messaging. In International Conference

on Distributed Computing Systems (ICDCS). IEEE, 2011, pages 824–835

(cited on pp. 194, 219).

[173] Ali Ghodsi, Luc Onana Alima, and Seif Haridi. Symmetric replication for

structured peer-to-peer systems. In, Databases, Information Systems, and

Peer-to-Peer Computing, pages 74–85. Springer, 2007 (cited on pp. 194,

220).

[174] Zoi Kaoudi, Iris Miliaraki, and Manolis Koubarakis. RDFS reasoning and

query answering on top of DHTs. In, The Semantic Web - ISWC, pages 499–

516. Springer, 2008 (cited on pp. 195, 220).

http://goo.gl/oNL1tc
http://tuprints.ulb.tu-darmstadt.de/274/1/dissFinal.pdf
http://tuprints.ulb.tu-darmstadt.de/274/1/dissFinal.pdf

BIBLIOGRAPHY 243

[175] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank Van Harmelen.

Scalable distributed reasoning using MapReduce. In, The Semantic Web -

ISWC, pages 634–649. Springer, 2009 (cited on pp. 195, 220).

[176] Eyal Oren, Spyros Kotoulas, George Anadiotis, Ronny Siebes, Annette ten

Teije, and Frank van Harmelen. Marvin: distributed reasoning over large-

scale semantic web data. Web Semantics: Science, Services and Agents on

the World Wide Web, 7(4):305–316, 2009 (cited on pp. 195, 220).

[177] Trong-Tuan Vu and Fabrice Huet. A lightweight continuous jobs mecha-

nism for mapreduce frameworks. In International symposium on Cluster,

Cloud and Grid Computing (CCGrid). IEEE, 2013, pages 269–276 (cited

on pp. 195, 221).

244 BIBLIOGRAPHY

List of Acronyms

ADL Architecture Description Language . 34

AO Active Object . 27

API Application Programming Interface. .10

AST Abstract Syntax Tree . 183

AWS Amazon Web Services . 54

BGP Basic Graph Pattern . 20

BSBM Berlin SPARQL Benchmark . 70

CAN Content Addressable Network. .vi

CC Cloud Computing . 12

CE Compound Event . 85

CEP Complex Event Processing . 6

CJK Chinese, Japanese, and Korean . 58

CPU Central Processing Unit . 8

CSBV Continuous Spread By Value . 90

CSMA Chained Semantic Matching Algorithm . 90

DBMS Database Management System . 78

DFS Distributed File System . 53

DHT Distributed Hash Table . 10

DNS Domain Name System . 154

EC EventCloud . 147

245

246 LIST OF ACRONYMS

EC2 Elastic Compute Cloud. .54

ECA Event-Condition-Action . 79

GCM Grid Component Model . 33

IP Internet Protocol . 1

IRC Internet Relay Chat . 11

IRI Internationalized Resource Identifier .15

IS Immediate Service . 30

ISBN International Standard Book Number . 17

JVM Java Virtual Machine . 114

LSH Locality Sensitive Hashing . 57

MAAN Multiple Attribute Addressable Network. .41

MAO Multi-Active Object . 31

MOP Meta Object Protocol . 27

NoSQL Not only SQL . 12

NSA National Security Agency . 2

NTP Network Time Protocol . 88

OSMA One-step Semantic Matching Algorithm . 90

OWL Web Ontology Language . 15

P2P Peer-to-Peer. .3

Pub/Sub Publish/Subscribe. .21

RDBMS Relational Database Management System . 40

RDF Resource Description Framework . v

RDFS RDF Schema. .15

RIF Rule Interchange Format . 15

S3 Simple Storage Service . 54

SON Structured Overlay Network. .10

247

SPARQL SPARQL Protocol and RDF Query Language . 20

SQL Structured Query Language . 3

SQS Simple Queue Service . 54

SS Sub-Subscription . 87

TTL Time To Live . 130

URI Uniform Resource Identifier . 15

URL Uniform Resource Locator .8

VoIP Voice over IP . 12

VC Volunteer Computing . 12

W3C World Wide Web Consortium . 14

WWW World Wide Web. .13

248 LIST OF ACRONYMS

	List of Figures
	List of Listings
	List of Tables
	Introduction
	Motivation
	Problem Definition
	Outline and Contributions

	Background
	The Peer-to-Peer Paradigm
	P2P overlays
	Applications

	Semantic Web
	RDF data model
	SPARQL query language

	The Publish/Subscribe Paradigm
	Interaction model
	Characteristics
	Filtering mechanisms

	ProActive Middleware
	Active objects
	Multi-active objects
	Components

	Distributed RDF Storage
	Related Work
	Centralized RDF stores
	Distributed RDF stores

	P2P Infrastructure for RDF
	Content Addressable Network (CAN)
	Routing algorithms
	Indexing and retrieval mechanisms

	Evaluation
	Insertion of random data
	Queries using BSBM

	Distributed RDF Publish/Subscribe
	Related Work
	Active databases
	Conventional publish/subscribe systems
	RDF-based publish/subscribe systems

	Publish/Subscribe Infrastructure for RDF
	Data and subscription model
	Requirements
	Event filtering algorithms

	Evaluation

	Distributed RDF Load Balancing
	Related Work
	Static load balancing
	Dynamic load balancing

	Load Balancing Solution
	Options and choices
	Strategies

	Evaluation

	Implementation
	Middleware Design
	A generic structured P2P framework
	An abstract CAN library
	A CAN implementation for RDF data

	Performance Tuning
	Multi-active objects
	Serialization
	Local storage

	Conclusion
	Summary
	Perspectives
	Optimizing query and subscriptions evaluation
	Increasing reliability and availability
	Reasoning over RDF data

	PLAY Project
	SocEDA Project
	Extended Abstract in French
	Introduction
	Motivation
	Définition du problème
	Plan et contribution

	Résumé développement
	Stockage RDF distribué
	Publier/Souscrire RDF distribué
	Répartition de charge RDF distribuée
	Implémentation

	Conclusion
	Résumé
	Perspectives

	List of Acronyms

