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Résumé

Ce travail de recherche porte sur le problème de l’identification des sources de bruit en
espace clos. La motivation principale était de proposer une technique capable de localiser
et quantifier les sources de bruit à l’intérieur des véhicules industriels, d’une manière
efficace en temps. Dans cette optique, la méthode pourrait être utilisée par les industriels
à des fins de réduction de bruit, et donc construire des véhicules plus silencieux.

Un modèle simplifié basé sur la formulation par sources équivalentes a été utilisé pour
résoudre le problème. Nous montrerons que le problème est mal conditionné, dans le
sens où il est très sensible face aux erreurs de mesure, et donc des techniques dites de
régularisation sont nécessaires. Une étude détaillée de cette question, en particulier le
réglage de ce qu’on appelle de paramètre de régularisation, a été important pour assurer
la stabilité de la solution. En particulier, un critère de régularisation basé sur une approche
bayésienne s’est montré très robuste pour ajuster le paramètre de régularisation de manière
optimale.

L’application cible concernant des environnements intérieurs relativement grands, nous
a imposé des difficultés supplémentaires, à savoir: (a) le positionnement de l’antenne
de capteurs à l’intérieur de l’espace; (b) le nombre d’inconnues (sources potentielles)
beaucoup plus important que le nombre de positions de mesure. Une formulation par
pondération itérative a ensuite été proposé pour surmonter les problèmes ci-dessus de
manière à: (1) corriger pour le positionnement de l’antenne de capteurs dans l’habitacle
; (2) obtenir des résultats corrects en terme de quantification des sources identifiées. Par
ailleurs, l’approche itérative nous a conduit à des résultats avec une meilleure résolution
spatiale ainsi qu’une meilleure dynamique. Plusieurs études numériques ont été réalisées
afin de valider la méthode ainsi que d’évaluer sa sensibilité face aux erreurs de modèle.
En particulier, nous avons montré que l’approche est affectée par des conditions non-
anéchoïques, dans le sens où les réflexions sont identifiées comme des vraies sources.
Une technique de post-traitement qui permet de distinguer entre les chemins directs et
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réverbérants a été étudiée.
La dernière partie de cette thèse porte sur des validations expérimentales et appli-

cations pratiques de la méthode. Une antenne sphérique constituée d’une sphère rigide
et 31 microphones a été construite pour les tests expérimentaux. Plusieurs validations
académiques ont été réalisées dans des environnements semi-anéchoïques, et nous ont
illustré les avantages et limites de la méthode. Enfin, l’approche a été testé dans une ap-
plication pratique, qui a consisté à identifier les sources de bruit ou faiblesses acoustiques
à l’intérieur d’un bus.

Mots clés : imagerie acoustique identification de sources problèmes inverses, antennes
sphériques, méthode des sources equivalentes, régularisation, holographie acoustique de
champ proche, régularisation par approche Bayésienne.
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Abstract

This thesis is concerned with the problem of noise source identification in closed spaces.
The main motivation was to propose a technique which allows to locate and quantify
noise sources within industrial vehicles, in a time-effective manner. In turn, the technique
might be used by manufacturers for noise abatement purposes such as to provide quieter
vehicles.

A simplified model based on the equivalent source formulation was used to tackle the
problem. It was shown that the problem is ill-conditioned, in the sense that it is very
sensitive to errors in measurement data, thus regularization techniques were required.
A detailed study of this issue, in particular the tuning of the so-called regularization
parameter, was of importance to ensure the stability of the solution. In particular, a
Bayesian regularization criterion was shown to be a very robust approach to optimally
adjust the regularization parameter in an automated way.

The target application concerns very large interior environments, which imposes ad-
ditional difficulties, namely: (a) the positioning of the measurement array inside the
enclosure; (b) a number of unknowns (“candidate” sources) much larger than the num-
ber of measurement positions. An iterative weighted formulation was then proposed to
overcome the above issues by: first correct for the positioning of the array within the
enclosure and second iteratively solve the problem in order to obtain a correct source
quantification. In addition, the iterative approach has provided results with an enhanced
spatial resolution and dynamic range. Several numerical studies have been carried out to
validate the method as well as to evaluate its sensitivity to modeling errors. In particular,
it was shown that the approach is affected by non-anechoic conditions, in the sense that
reflections are identified as “real” sources. A post-processing technique which helps to
distinguish between direct and reverberant paths has been discussed.

The last part of the thesis was concerned with experimental validations and practical
applications of the method. A custom spherical array consisting of a rigid sphere and 31
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microphones has been built for the experimental tests. Several academic experimental
validations have been carried out in semi-anechoic environments, which illustrated the
advantages and limits of the method. Finally, the approach was tested in a practical
application, which consisted in identifying noise sources inside a bus at driving conditions.

Keywords: acoustical imaging, noise source identification, inverse methods, acousti-
cal holography, spherical arrays, equivalent source method, iterative weighted approach,
regularization, L-curve, Bayesian regularization.
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Résumé détaillé

Le bruit et les vibrations sont des paramètres importants pour l’évaluation du confort des
passagers et des utilisateurs des véhicules de transport, ainsi que pour l’environnement
sonore urbain. Dans ce contexte, les collectivités locales commencent à s’inquiéter de
la pollution sonore et de son impact sur la qualité de vie. Cela conduit les autorités à
imposer de nouvelles réglementations dans le but de contrôler les émissions de bruit.

C’est dans cette optique, qui s’inscrit ce travail de recherche dans le cadre du pro-
jet ACOUBUS, financé par l’Agence de l’Environnement et de la Maîtrise de l’Energie
(ADEME). L’un des objectifs principaux de ce projet est d’intégrer l’acoustique dans le
développement des nouveaux véhicules industriels, notamment les bus urbains, et par
conséquent de donner lieu à des véhicules moins bruyants et un environnement sonore
urbain plus calme. Des véhicules de transport en commun plus silencieux sont importants
à l’égard des communautés pour, entre autres:

(a) motiver les citadins à utiliser les transports en commun;

(b) offrir de meilleures conditions de travail aux opérateurs;

(c) diminuer le bruit environnemental dans les grandes agglomérations, etc.

Actuellement, les ingénieurs disposent d’un grand nombre de moyens expérimentaux
pour la caractérisation de sources. Quelques uns de ces moyens sont entre autres : l’analyse
modale, les méthodes d’analyse de voies de transfert (TPA,OPA), les méthodes d’imagerie
acoustique, etc. C’est particulièrement ce troisième groupe de méthodes qui va nous
intéresser dans cette thèse. D’une manière générale, le but des méthodes d’imagerie
acoustique est de reconstruire, localiser ou quantifier des sources de bruit, à partir de
mesures du champ acoustique (typiquement délivrées par des antennes de capteurs).
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L’étude réalisée au cours de ce travail de recherche, s’inscrit dans la partie du projet
ACOUBUS dédiée à la performance acoustique à l’intérieur des bus. L’objectif principal
est de proposer des techniques d’imagerie acoustique capables de localiser et quantifier
les sources contribuant au niveau de bruit à l’intérieur de ces véhicules. En outre, il est
important pour la technique d’être suffisamment rapide de manière à réduire le temps de
mise au point acoustique.

Le premier chapitre de cette thèse est consacré à une synthèse bibliographique des
méthodes existantes pour l’identification de sources, plus précisément les méthodes ap-
pliquées aux espaces clos. Nous avons vu que, selon la façon de résoudre ce problème,
les différentes méthodes sont classées en trois groupes, à savoir: 1) les méthodes des for-
mation de voies; 2) l’holographie acoustique de champ proche; 3) les méthodes inverses.
Nous discutons de quelques extensions sur ces méthodes afin de les appliquer aux espaces
fermés.

Une partie de la synthèse bibliographique concerne également les méthodes dites de
séparation de champ. Ces méthodes sont basées sur la mesure de la pression acoustique
et de la vitesse particulaire soit en champ proche, soit autour de la source étudiée. L’idée
est de séparer les différentes contributions du champ acoustique, par exemple, le champ
direct rayonné par la source, le champ réverbéré, le champ dû aux sources secondaires,
ou le champ diffracté par la surface source. Nous discutons également des approches
expérimentales, qui sont basées sur la mesure des chemins de propagation au lieu de les
calculer par des modèles analytiques. L’avantage de ces approches est la représentation
correcte de la propagation à l’intérieur des habitacles, l’inconvénient majeur étant le
protocole expérimental assez coûteux en temps de mesure.

Dans une dernière partie, nous présentons une synthèse des développements sur l’antennerie
acoustique, afin de mieux s’adapter à ce type d’environnement. Une partie est consacrée
aux antennes sphériques rigides et transparentes. Nous verrons que dû a leur symétrie
3D, les sphères sont bien adaptées aux mesures dans les espaces fermés.

Parmi les méthodes présentées dans la synthèse bibliographique, nous nous intéres-
sons particulièrement à la méthode des sources équivalentes (ESM). Des facteurs comme
simplicité, rapidité de calcul et la possibilité d’obtenir des résultats de localisation ainsi
que de quantification ont motivé ce choix.

Le deuxième chapitre est donc consacré à l’étude de la méthode des sources équiva-
lentes, en particulier son application aux espaces clos. Pour ce faire, nous utilisons un
modèle de potentiel de simple couche pour représenter les surfaces de l’habitacle. L’idée
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est donc de trouver la densité de ce potentiel qui représente aux mieux l’information
mesurée par une antenne de capteurs, placée à l’intérieur de l’habitacle. Nous remar-
quons que cette approche simplifiée du problème entraînera des avantages mais aussi des
inconvénients, notamment pour avoir négligé l’effet des réflexions. Ensuite, nous avons vu
que cette approche est basée sur un problème inverse et donc sensible aux difficultés liées a
ce type de problème, en particulier, la sensibilité des solutions face aux erreurs de mesure
et/ou de modèle. Des techniques dites de régularisation, sont donc nécessaires pour as-
surer la stabilité de la solution. L’aspect de la régularisation est brièvement introduit
dans le Chapitre 2 (une étude plus détaillée est présentée au chapitre suivant).

La deuxième partie du Chapitre 2 est consacrée aux modèles de propagation acous-
tique, qui vont relier les sources équivalentes aux capteurs de mesure. En particulier, nous
nous intéressons aux modèles de propagation entre sources élémentaires (monopoles) et
microphones sur l’antenne de mesure. Etant donné que nous nous sommes intéressés aux
antennes sphériques rigides, une partie de ce chapitre est dédiée à l’étude de quelques
particularités de ce type d’antenne. La rigidité de la sphère va engendrer la diffraction
des ondes acoustiques qui arrivent sur celle-ci. La prise en compte de la diffraction autour
de la sphère, par le modèle de propagation, est possible grâce à la solution de l’équation de
Helmholtz en coordonnées sphériques. Ceci est l’objet de la troisième partie du Chapitre 2.
Finalement, nous concluons ce chapitre par l’étude d’une approche d’analyse de causalité,
proposée afin de mieux comprendre les résultats d’identification, notamment la distinction
entre les vraies sources et leurs réflexions.

Le chapitre 3 est entièrement consacré à l’étude de la régularisation du problème
inverse. Nous commençons par introduire quelques aspects préliminaires sur la régular-
isation. Notamment nous utilisons la condition de Picard afin d’expliquer l’instabilité
inhérente des problèmes inverses face aux erreurs de mesure. Ensuite, nous faisons une
synthèse bibliographique des différentes méthodes de régularisation existantes dans la
littérature, avec une précision sur la méthode de décomposition en valeurs singulières
tronquée (TSVD) et la régularisation de Tikhonov. Par la suite nous discutons du prob-
lème inverse sur un point de vue Bayésien. Dans le cadre Bayésien nous considérons
les variables et inconnues du problème comme des variables aléatoires et leur nature
d’incertitudes est codée par des densités de probabilité (ddp). L’application de cette
approche aux problèmes inverses donne lieu à deux parties, à savoir:

1. un modèle de vraisemblance qui relie les observations (mesures) aux inconnues du
problème, à partir d’un modèle physique de propagation;

2. un modèle a priori, incorporant des informations disponibles sur les inconnues du
problème, avant de réaliser les mesures.
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La règle de Bayes nous montre comment rassembler ces deux modèles afin de trouver
la densité de probabilité a posteriori, qui nous donne la probabilité inverse des inconnues
(champ source) sachant les mesures. Celle-ci est la solution du problème inverse, d’où
nous pouvons obtenir plusieurs estimateurs, le maximum a posteriori (MAP) étant un
choix typique. Plus précisément, l’estimateur MAP nous donne la valeur la plus probable
des inconnues (e.g. champ source) sachant les mesures.

Ensuite nous remarquons que selon nos choix pour les ddp a priori et de vraisemblance,
nous obtenons naturellement des mécanismes de régularisation particuliers. En plus, nous
notons que des choix particuliers donnent lieu à une régularisation du type Tikhonov. En
revanche, la difficulté majeure des diverses techniques de régularisation est le réglage d’un
paramètre que l’on appelle le paramètre de régularisation.

Cela est l’objet de la deuxième partie du Chapitre 3, consacrée au problème de réglage
automatique du paramètre de régularisation. Dans ce contexte, nous montrons que le
cadre Bayésien nous ouvre des nouvelles voies pour répondre à cette question. Des critères
pour estimer ce paramètre directement à partir des données mesurées et du modèle direct,
vont découler de cette approche.

Ensuite nous étudions une méthode assez répandue dans la littérature, la courbe en
L (L-curve). Nous expliquons le principe de cette méthode et plus particulièrement les
difficultés rencontrées quand appliquée aux problèmes étudiés dans cette thèse. Plus
précisément, le critère de la courbe en L génère des discontinuités dans la sélection du
paramètre de régularisation en fonction de la fréquence. Cela introduit des discontinu-
ités non-physiques sur le spectre de puissance de la source. Nous analysons ensuite une
extension du critère de la Courbe en L afin d’éliminer ces inconvénients.

La troisième partie du Chapitre 3 est dédiée à une comparaison des différentes méth-
odes pour la sélection du paramètre de régularisation. Nous comparons, par le moyen de
simulations numériques et d’une validation expérimentale, le critères de la Courbe en L,
la validation croisée généralisée (ou GCV pour Generalized Cross-Validation) et le critère
Bayésien présenté précédemment. La performance de ces trois méthodes par rapport a
un grand nombre de paramètres a été étudiée, notamment: (a) le niveau de bruit; (b) la
fréquence d’étude; (c) le nombre d’inconnues du problème; (d) la distance entre surface
source et surface de mesure, directement liée au nombre de conditionnement de la matrice
à inverser. Cette étude nous a permis de tirer des conclusions importantes pour la suite
de ce projet. Nous avons vu que les approches GCV et courbe en L présentent des per-
formances qui varient considérablement en fonction des différents paramètres étudiés. En
revanche, le critère Bayésien s’est montré très robuste face aux différents paramètres, avec
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l’erreur la plus petite par rapport à la solution optimale. Une validation expérimentale
nous a conduit à des résultats similaires, avec toujours le critère Bayésien le plus robuste.
Ceci est illustré sur la Figure 1, où nous comparons la puissance acoustique estimée par
différentes méthodes de sélection du paramètre de régularisation. Nous observons que
la méthode GCV surestime largement la puissance dans certaines bandes de fréquence.
En plus, nous constatons les discontinuités introduites par la Courbe en L, notamment
autour des fréquences de 950 Hz et 650 Hz. Nous espérons que les résultats issus de cette
comparaison seront utiles non seulement pour la régularisation des problèmes traités dans
cette thèse, mais aussi pour ceux qui travaillent sur des problèmes inverses en acoustique.
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Figure 1: Estimation de la puissance acoustique obtenue par différents méthodes de
sélection du paramètre de régularisation. BA: critère Bayésien; GCV: validation croisée
généralisée; LC: courbe en L. La puissance de référence (ref.) a été obtenue par des
mesures avec un capteur de pression et vitesse particulaire (p-u).

Nous avons consacré la dernière partie du Chapitre 3 à l’étude de la sensibilité du
problème inverse en acoustique face à la régularisation. Ceci, est encore un des avantages
que le cadre Bayésien nous offre. Etant donné que la solution du problème inverse est
sous la forme d’une densité de probabilité (ddp) nous pouvons l’utiliser pour obtenir
différents indicateurs. Un indicateur particulièrement intéressant est la variance de cette
distribution, qui peut être facilement propagée vers les quantités acoustiques reconstruites,
par exemple, le champ source, la puissance acoustique, l’intensité acoustique, entre autres.
Cela nous permet, par exemple, de calculer des intervalles de confiance sur des quantités
reconstruites. Nous analysons deux façons de faire, une par l’utilisation des méthodes
dites MCMC (Markov chain Monte Carlo) et une deuxième par l’approximation de la
distribution a posteriori par une Gaussienne. Ces deux approches sont ensuite testées sur
des cas de simulations numériques.
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Après les considérations sur la régularisation du problème inverse, nous nous sommes
intéressés à l’application de la méthode au cas cible dans cette thèse, l’identification
de sources de bruit à l’intérieur des espaces clos. Dans ce contexte, nous avons été
initialement confrontés à deux difficultés majeures: la première liée au positionnement de
l’antenne de capteurs à l’intérieur de l’habitacle et la seconde liée au caractère très sous-
déterminé du problème. Afin de surmonter ces difficultés, une approche par pondération
itérative a été proposée.

Selon le choix de la position de l’antenne à l’intérieur de l’habitacle, la distance entre
chaque source équivalente et l’antenne de microphones peut varier considérablement. En
conséquence, les sources équivalentes qui sont plus proches de l’antenne ont besoin de
moins d’énergie pour générer un niveau de pression donné (à la position de l’antenne)
que les sources plus lointaines. Autrement dit, plus de “poids” est donné aux sources
équivalentes plus proches de l’antenne de capteurs. Ceci a été la motivation pour la
première stratégie de pondération proposée. L’idée est de considérer un nouveau problème
de minimisation, qui est pondéré par une matrice diagonale avec ces éléments diagonaux
proportionnels à la distance entre chaque source équivalente et le centre de l’antenne.

La deuxième difficulté à laquelle nous nous sommes confrontés est due au caractère
très sous-déterminé du problème qu’on cherche à résoudre. Nous avons vu que la so-
lution du problème très sous-déterminé donne lieu à des sources reconstruites avec des
caractéristiques non-physiques. Plus précisément, nous remarquons que les sources re-
construites présentent une directivité très prononcée en direction de l’antenne, engendrée
par la phase relative entre les sources identifiées. En conséquence, l’estimation de la puis-
sance acoustique est fortement sous-déterminée. Afin de surmonter cette difficulté, une
deuxième stratégie de pondération a été proposée, qui, par conception, est implémentée
de façon itérative. L’idée consiste en l’utilisation des résultats d’identification d’une étape
précédente pour pondérer un nouveau système à résoudre.

Dans la première partie du Chapitre 4 nous discutons ces deux stratégies de pondéra-
tion. Dans une deuxième partie, nous présentons des résultats de simulations numériques
afin de valider l’approche proposée. Nous observons que, la première stratégie de pondéra-
tion nous permet de corriger des effets indésirables relatifs au positionnement de l’antenne.
Ensuite, nous montrons que la résolution spatiale est considérablement amélioré par la
deuxième stratégie (pondération itérative). Nous constatons finalement que la pondéra-
tion itérative permet de contrôler l’effet lié à la sous-détermination du problème et avec
un certain nombre d’itérations la puissance acoustique identifiée converge vers la “vraie”
puissance acoustique.
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Par la suite, nous nous sommes intéressés à l’étude de la sensibilité de l’approche
proposée face aux erreurs commis lors de la simplification du problème ainsi que face à
l’hétérogénéité de la distribution des sources équivalentes. Pour cela, nous avons analysé
l’impact des réverbérations qui peuvent exister dans les environnements réels. Nous con-
statons que la méthode est sensible aux conditions non-anéchoïques, dans le sens où les
réflexions sont identifiées comme des “vraies” sources. L’amélioration de la résolution
spatiale, n’est quant à elle, pas perturbée. En ce qui concerne l’aspect quantitatif de
la méthode, nous avons vu que l’estimation de la puissance acoustique est affectée par
les réflexions. Plus précisément, nous notons l’apparition des “creux” dans le spectre de
puissance. L’intervalle de ces creux étant lié à la différence de la distance de propagation
entre la source principale et ces réflexions. Cela nous indique que ce résultat est dû aux
phénomènes d’interférence des ondes acoustiques au niveau de l’antenne de microphones.

En ce qui concerne la sensibilité de la méthode face à la distribution des sources
équivalentes, nous avons montré l’importance d’analyser les résultats de localisation à
partir des cartographies de puissance par unité de surface. Cela est nécessaire pour prendre
en compte des possibles hétérogénéités sur la distribution des sources équivalentes. En
plus, nous avons noté que l’approche classique tend à donner plus de poids aux régions
ayant une densité de sources équivalentes plus importante. En revanche, l’approche par
pondération itérative nous a permis de corriger cet effet.

Finalement, dans la dernière partie du Chapitre 4 nous présentons une application de
l’approche par l’analyse de la causalité des sources identifiées. Nous constatons que cette
approche peut être utile afin de distinguer entre des “vraies” sources et leurs réflexions.

Le dernier chapitre de cette thèse est consacré aux validations expérimentales et appli-
cations pratiques de la méthode. Pour ce faire, nous avons conçu une antenne sphérique
de microphones. Le nombre de capteurs a été limité par le nombre de voies du système
d’acquisition disponible, c’est-à-dire 32. Conséquemment nous avons réfléchi sur une dis-
tribution avantageuse pour 32 capteurs autour de la sphère. En particulier, la géométrie
d’un icosaèdre tronqué s’est avérée intéressante pour ce nombre de microphones. Ce choix
consiste à placer les microphones au centre de chacune des 32 faces de l’icosaèdre tronqué
(voir Figure 2). Ce choix nous donne une distribution avec un espacement uniforme entre
les microphones. Un avantage de cette configuration est la possibilité d’effectuer une ro-
tation de π/5 afin de doubler la densité de capteurs, en arrivant à une configuration avec
61 microphones. Cette dernière demandera l’acquisition en deux passes et la synchroni-
sation des mesures non-simultanées, donc ne pouvant être appliquée qu’à des conditions
stationnaires. La mesure de la directivité de la sphère utilisée (rayon 14,5 cm) nous a
permis de valider le modèle de diffraction utilisé.
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Figure 2: Gauche: géométrie d’un icosaèdre tronqué. Centre: distribution des points au
centre de chaque face de l’icosaèdre tronqué. Droite: Antenne sphérique de rayon 14.5
cm avec 31 microphones conçue pour les validations expérimentales.

Ensuite, plusieurs validations académiques ont été réalisées. Nous présentons initiale-
ment une première validation, dont le but a été d’étudier l’effet de la pondération par la
distance (première stratégie). Nous avons observé des effets similaires à ceux obtenus par
les simulations numériques, et la pondération par la distance nous a permis de les corriger.
Par la suite, nous présentons une validation de la deuxième stratégie de pondération. Le
but a été d’estimer la puissance acoustique d’une source, supposée omnidirectionnelle pour
la bande de fréquence étudiée, placée à l’intérieur d’une salle semi-anéchoïque. Cette vali-
dation nous a illustrée les difficultés liés à la sous-détermination du problème, notamment
le caractère hyper-directif des sources reconstruites. Des résultats de quantification ac-
ceptables ont été obtenus par la méthode de pondération itérative, avec un certain nombre
d’itérations (8 dans ce cas particulier), comme montré sur la Figure 3.
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Figure 3: Puissance acoustique en fonction de la fréquence pour : (—) mesure référence
et obtenue par l’approche de pondération itérative de la première à la huitième itération.
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Nous montrons ensuite une troisième étude expérimentale, dont le but a été de localiser
et quantifier deux sources corrélées et placées sur le sol d’une salle semi-anéchoïque (cf.
Figure 4(a)). Les résultats de cette expérimentation nous ont illustré l’amélioration de
la résolution spatiale, notamment, la contribution des deux sources a été séparée même
en basses fréquences (cf. Figure 5). En revanche, nous avons pu noter une limite de la
méthode en termes de quantification de la puissance acoustique, liée à la directivité des
sources physiques. D’après la Figure 4(b) nous pouvons noter que les sources utilisées ne
sont pas bafflées et la sortie de la chambre de compression est à une distance donnée du sol
rigide. Cette configuration a généré (dans la bande de fréquence d’étude) une source avec
des caractéristiques de directivité similaires à celles de deux monopoles en phase. Nous
avons vu que, pour une bande de fréquence donnée, l’antenne acoustique a été placée
dans une zone de directivité faible de la source. En conséquence, les capteurs de l’antenne
ont perçu très peu d’énergie rayonnée par les sources, et donc, leurs puissances ont été
sous-estimées.

(a) (b)

Figure 4: (a) Protocole expérimental montrant l’antenne sphérique et deux sources placées
sur le sol d’une salle semi-anéchoïque. (b) Détail de la source (chambre de compression).

Ensuite, nous presentons une quatrième étude afin de mettre en œuvre une technique
expérimentale pour effectuer des mesures en deux passes avec une antenne sphérique.
Pour ce faire, nous avons utilisé une technique permettant de synchroniser des mesures
non-simultanées. Cette technique requiert un nombre de références fixes au moins égal au
nombre de phénomènes physiques (sources) incohérentes. Nous avons vu que l’approche
en deux passes nous donne des résultats relativement meilleurs en hautes fréquences.

Finalement, la dernière partie du Chapitre 5 est consacrée à une application pratique
de la méthode pour localiser des faiblesses acoustiques à l’intérieur d’un bus. Pour cela,
un système double sphère développé par l’entreprise MicrodB a été utilisé pour mesurer
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Figure 5: Cartographies de débit intégrées dans la bande de fréquence de 250-800 Hz avec
une dynamique de 20 dB. (a) approche classique ; (b) troisième itération de la méthode
par pondération itérative

le champ acoustique à l’arrière d’un bus hybride (diesel et électrique) conçu par IVECO
France Irisbus (cf. Figure 6). Le système double-sphère est composé d’une sphère rigide
de rayon 15 cm et 24 microphones et une sphère transparente de rayon 40 cm, avec 24
microphones. Nous avons vu que ce système apporte des avantages en basses fréquences,
notamment une meilleure résolution spatiale. Ensuite, nous avons appliqué l’approche
par pondération itérative présentée au Chapitre 4. Les résultats d’identification nous ont
illustré l’importance de la première stratégie de pondération (pondération par la distance)
afin de corriger le positionnement de l’antenne. D’après ces résultats nous avons pu
identifier des faiblesses acoustiques au niveau des portes arrières (cf. Figure 7) ainsi qu’au
plancher bas arrière.

Comme nous avons vu dans cette thèse, l’application des techniques d’imagerie acous-
tique pour l’identification de sources à l’intérieur des espaces clos pose plusieurs difficultés.
Dans ce contexte, une approche par pondération itérative a été proposée afin de pallier à
certaines de ces difficultés. Une quantification raisonnable de la puissance acoustique des
sources identifiées a été seulement possible en utilisant l’approche itérative. En particulier,
les sources identifiées ont fourni une bonne reconstruction de la pression acoustique au
niveau de l’antenne mais une reconstruction erronée en dehors de cette région. En d’autres
termes, les sources identifiées concentrent toute leur énergie rayonnée vers l’antenne de
microphones. Compte tenu des considérations précédentes, nous proposons ici des voies
de poursuite de ces travaux. Dans ce contexte, il serait intéressant en quelque sorte
d’imposer a priori que la reconstruction soit acceptable non seulement sur la surface de
mesure, mais aussi ailleurs dans l’habitacle.
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(a) (b)

Figure 6: (a) Configuration expérimentale pour les mesures acoustiques à l’intérieur du
bus. La figure montre le système double-sphère (MicrodB) placé à l’arrière du bus. (b)
Schéma d’un bus hybride (diesel et électrique) - IVECO France Irisbus.

Figure 7: Cartographie de débit (dB ref. m3/s) intégrée sur la bande de fréquence de 440
à 490 Hz avec une dynamique de 12 dB. Ce résultat correspond à la première itération de
l’approche par pondération itérative.

Afin de surmonter les difficultés liées à l’aspect fortement sous-déterminé du problème,
les techniques qui imposent un a priori de parcimonie afin de régulariser le problème
pourraient être appropriées, comme par exemple dans les travaux de A. Peillot [Pei12] et
N. Chu et al. [CPMD11, CMDP13]. Etant donné que dans la formulation utilisée tout
au long de cette thèse le nombre de sources “réelles” est largement inférieur au nombre
de sources équivalentes (ou candidates), nous pouvons supposer que le champ source est
parcimonieux dans l’espace de reconstruction. En termes de la formulation mathématique,
au lieu de minimiser la norme l2 (i.e. l’énergie) du champ source, le nouveau problème
consisterait à minimiser sa norme l1. Contrairement à la minimisation de la norme l2,
il n’y a pas de solution analytique pour le problème de minimisation l1, et donc nous
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devons recourir à des algorithmes plus sophistiqués et complexes. Dans le cas où la base
de sources équivalentes ne peut pas être supposée parcimonieuse, il serait nécessaire de
trouver une base qui représente le champ source de manière parcimonieuse.

D’autre part, la question liée à la directivité des sources réelles semble plus difficile à
répondre. Une solution envisageable serait d’utiliser une approche similaire à celle présen-
tée par Castellini [CS10], dans laquelle les mesures sont effectuées en plusieurs endroits à
l’intérieur de l’habitacle. Une difficulté additionnelle, toutefois, serait la synchronisation
des mesures non simultanées. En effet, la possibilité de synchroniser les mesures sans avoir
besoin d’autant de références que de phénomènes incohérents est une autre perspective
pour la suite de ces travaux.
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Introduction

Noise and vibration are important parameters for the comfort of passengers and operators
inside transportation vehicles, such as buses, trains, aircrafts, among others. Communities
have been aware of noise pollution and are forcing authorities to impose new legislation
in order to regulate noise emissions. In turn, this motivates manufacturers to produce
machines and products having a quieter performance.

Let us take an example of the design of a machine or vehicle that emits noise at oper-
ating conditions. If acoustic and vibration performance is not considered since the early
design stage, noise and vibration concerns may appear very late in the design cycle, when
making changes on the product is normally expensive and of limited options. Generally
speaking, noise and vibration issues can be separated in two categories:

1. The noise level radiated by the product is not in agreement with regulations or
specifications;

2. The product presents a poor sound and vibration quality, for instance, as compared
to a different manufacturer.

Whenever any of the above conditions is not met, one might need to perform modi-
fications or design changes into the product. The first step to take is normally to char-
acterize the noise emissions, in other words, to localize the main noise sources as well as
their transfer paths. In order to identify and quantify the noise sources and transmission
paths, testing of the product is necessary. Nowadays, the engineers have at their dis-
posal several techniques, such as modal analysis, transfer path analysis (TPA) or acoustic
imaging techniques [Plu05,CG11].

In the context of noise reduction from industrial vehicles, this thesis was carried out in
the framework of the project ACOUBUS, with support provided by the ADEME. One of
the global aims of the project is to consider the acoustics at the design stage of industrial
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vehicles. In view of the communities, the acoustical performance of transportation vehi-
cles, is of importance for two main reasons: (1) contribute to a pleasant acoustic comfort
for passengers and operators, which in turn can motivate the citizens to use public trans-
portation; (2) ensure a quiet sound environment for inhabitants in general by reducing
the noise radiated by those vehicles.

The study carried out in this thesis, is within the part of the project concerned with
the acoustical performance in the interior of buses. The main objective is to propose
acoustic imaging techniques which are capable of locate and quantify the noise sources
contributing to the overall noise level inside these vehicles. In addition, it is of importance
for the technique to be fast enough such as to reduce the time required for the acoustic
adjustment.

Traditionally, the acoustic tuning of industrial vehicles is carried out by the so-called
“masking” method. The basic idea is to mask all interior surfaces with acoustic absorbent
material, such as lead plates, and to uncover each region one by one. Acoustic quantities
such as acoustic intensity are measured at each step and a contribution of each zone
to the overall noise level is estimated. Given the estimate of individual contribution,
acoustic engineers discuss potential noise abatement options. Often, several iterations are
necessary to attain a target sound level, which makes it a time consuming method.

In view of these considerations, the ideal approach based on acoustic imaging tech-
niques should be able to produce similar results to the masking method, however, using
a unique pass and without the need to cover the interior surfaces. More precisely, the
idea is to use a set of field measurements, as returned by a microphone array, in order to
identify those regions which contribute the most to the overall noise level.
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Overview of the thesis
In this Section we provide the reader with a general view of the work carried out during
this doctoral thesis. The remainder of this thesis is divided in five Chapters:

• In Chapter 1 we provide a literature survey of the various acoustic imaging tech-
niques, with special attention to those techniques applied to interior spaces. This
discussion involves techniques such as beamforming, near-field acoustic holography
as well as inverse methods. In addition, we discuss practical implementation aspects,
such as the configuration of microphone arrays.

• In Chapter 2 we present the theoretical background which is the base of following
developments in this thesis. In particular, we describe the equivalent source formu-
lation and its extension to interior problems. An introduction to the ill-posedness of
the underlying problem and few regularization techniques are then discussed. Next,
we discuss the acoustic propagation model which relates the measured acoustic pres-
sure to the set of equivalent sources used to describe the problem. The last part is
dedicated to a technique based on causality analysis which is then applied in later
chapters.

• Chapter 3 is dedicated to the issue of regularization of the inverse acoustic problem.
In the first part we discuss few preliminary aspects of regularization with emphasis
on the so-called regularization parameter. A literature review of parameter choice
techniques is then presented. Afterwards, we discuss the issue of regularization
within a Bayesian framework, which inherently produces regularization mechanisms
as well as new criteria to set-up the regularization parameter. The latter is subject
of next developments, in which we discuss the implementation of the well-known
L-curve method as well as an extension to its criterion. Finally, the last part is
devoted to an extensive comparison of parameter choice techniques by means of
both numerical and experimental validations.

• In Chapter 4, we describe an iterative weighted technique which is proposed to the
equivalent source method. This technique is proposed to overcome the issues found
in the practical application of the original equivalent source formulation to interior
problems. In particular, we propose a first weighting scheme that aims to take
into account the positioning of the array inside the enclosure. A second weighting
strategy, which is iteratively implemented, is proposed to improve the capabilities
of the method in terms of spatial resolution, dynamic range and especially, the
ability to quantify the identified acoustic sources. Several numerical simulations
are then reported in the second part of this Chapter. The aim of simulations is to
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study the capabilities of the proposed method, as well as its sensitivity with regard
to modeling errors. The last part of the Chapter discuss the application of the
causality technique presented in Chapter 2.

• In Chapter 5 we present several experimental validations and a practical application
of the proposed method. In the first part, we describe the practical design of a
spherical microphone array used for the experimental validations. Next, the two
weighting strategies described in Chapter 4 are tested by means of experimental
validations carried in a semi-anechoic chamber. In the second part, we discuss the
implementation of an experimental technique to perform acoustic measurements in
two-passes using a spherical array. The latter is an attempt to improve the high
frequency limits of the method. Finally, a practical application of the proposed
technique is reported. The application consists in identifying the noise sources or
acoustic weakness inside a bus at driving conditions.
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1
Literature Survey - Acoustic imaging in closed spaces

In the previous Chapter we have discussed few methods that are traditionally applied
to acoustic adjustment or troubleshooting inside vehicle cabins. Although robust, these
methods are usually time consuming and often require several passes to achieve the de-
sired results. The advance of signal acquisition performance and the availability of acous-
tic arrays has certainly opened many interesting research directions in this field. Various
methods have thus been proposed for noise source characterization based on array mea-
surements. Originally, these methods were intended to applications in free-field conditions
and more recently many research has been carried to extend these methods to arbitrary
environments.

In a general framework, the various methods that have been proposed in this area
may be divided into three main groups, namely: (1) beamforming methods; (2) near-field
acoustical holography (NAH) methods; (3) inverse methods. This general classification is
based on their underlying assumptions and processing to solve a given problem. Indeed,
when applied to noise source characterization, all the above methods fall in the same
category of inverse problems in the sense that, based on measured field data (effect) they
wish to identify the source properties (cause).

Over the last three decades, acoustic imaging methods have been constantly developed
and still are the subject of ongoing research. Our aim in this Chapter is thus to cover
the state-of-the-art of acoustic imaging technologies, in particular those applied to closed
spaces. In a second part we discuss the recent developments in acoustic arrays for interior
noise source applications. In the last part, we briefly present the study that has been
carried out throughout this doctoral thesis work.

1.1 Beamforming methods
Since the precursory work of Billingsley and Kinns [BK76] in 1976, the concept of beam-
forming has been extensively applied in various fields of acoustics. The basic principle
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of beamforming is to use an array of microphones whose signals are processed with the
aim to focus onto a desired position in space. This processing is consecutively performed
to a set of candidate positions, yielding the so-called array output. The noise sources
are then identified by those directions corresponding to the maximum output. Following
the advance of data acquisition systems and computer performance, several techniques to
extend and improve beamforming capabilities have been proposed in the literature. The
review of all beamforming algorithms and extensions is beyond the scope of this thesis
and the reader can refer to [Mic06] for a historical overview of acoustics applications or
to [JD93] for further insight concerning the algorithms. Our interest in this section is to
provide a review of beamforming techniques for noise source localization, in particular,
applied to confined environments.

For applications of noise source localization techniques in enclosed spaces, it is essen-
tial to distinguish between sound waves coming from the front and from the back of the
array. Since the traditional use of planar arrays with pressure microphones distributed on
a single layer does not allow one to achieve the above performance, different array config-
urations have been proposed. In this context, Pascal and Li [PL03, PL06] discussed the
use of a microphone array consisted of two closely-spaced layers, in which finite difference
approximation is employed to estimate the particle velocity. The combined information of
acoustic pressure and particle velocity allows one to distinguish between sources on both
sides of the array. Another branch of beamforming aimed at interior source localization is
based on spherical arrays, such as the spherical harmonics beamforming (SHB) presented
by Haddad and Hald [HH08]. The latter is based on a decomposition of the pressure field
(sampled on the sphere) onto a spherical harmonics basis, which is then used to “focus”
the array towards a given position in space. The array is then independently steered
towards a set of candidate positions and an output is obtained for each look direction,
the latter being defined by both azimuth and elevation angles.

The aforementioned methods rely on a free field propagation model between the focus-
ing point and the microphones on the array. Other studies, such as the one presented by
Castellini and Sassaroli [CS10], have been intended to reduce the effects of reverberation.
In their work, the latter is achieved by measuring the acoustic field with the microphone
array sequentially placed at different positions inside the enclosure. The method thus
relies on the assumption that the source field is stationary and is based on the fact that
the position in which reflection takes place on the boundaries is changed according to the
position of the microphone array. Conversely, the original source is “seen” by the micro-
phone array always at the same position, independently of the location of the array inside
the enclosure. A statistical processing of the beamforming output for all different array
positions yields a sort of “weight”, which is then used to reduce the reverberation effects.
An application of the above method inside a helicopter cabin was recently presented in
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reference [CSP+13].
Another approach to reduce the effects of reverberation was motivated by aeroacoustic

testing in closed-section wind tunnels [Fen09]. In this context, Fenech [Fen09] used the
concept of image sources to take into account the effect of the test section walls. A
modified beamforming is then constructed by adding the contribution of image sources
to the original steering vector.

The main advantages of beamforming are its simplicity, robustness and fast compu-
tation, which for instance, allows the engineer to test several configurations in a short
period of time. On the other hand, the inconvenient is the resolution depending of the
frequency, which leads to a poor resolution at low frequencies and the difficulty to obtain
correct source quantification in terms of acoustic power. Although, the latter issue may
be balanced by deconvolution techniques such as DAMAS [BH06] or CLEAN [Sij07].

1.2 Near-field acoustical holography methods

Another group of methods which can be applied to noise source identification is based
on the concept of near-field acoustical holography (NAH), introduced by Maynard et
al. [MWL85]. Originally, the NAH is based on a spatial Fourier transformation of the
pressure field spatially sampled on a surface (i.e. hologram) to the wave number domain.
The measured pressure field in the wave number domain is then projected to any surface
conformal to the hologram surface by a particular propagator. Finally, an inverse spatial
Fourier transform is taken to obtain the acoustic quantity of interest in the frequency
domain. An important feature of NAH, indeed, is that the measurements are taken in the
near field of the source, thus the so-called evanescent waves are captured, which ensures
an enhanced spatial resolution.

The application of acoustical holography techniques in non-anechoic environments was
firstly considered by Villot et al. [VCR92], who studied the radiation of plane structures
inside an enclosure. The studied problem was modeled by a radiator placed at one end of a
semi-infinite rectangular duct. The influence of the rigid boundaries is taken into account
by considering the standing waves created by the multiple reflections on the side bound-
aries. One particularity of this approach, however, is the fact that it is only applicable to
geometries expressed in separable coordinates and simple boundary conditions.

The use of double layer microphone arrays have also been proposed for NAH tech-
niques. The concept was described by Tamura [Tam90] who used this technique to sep-
arate incident and reflected waves on the surface of a test material, in order to estimate
its reflection coefficients at oblique incidence. This idea was then used to interior noise
source identification purposes [HBD+94]. The idea of separating contributions from both
sides of a planar array has also been proposed to other extensions of NAH, such as the
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statistically optimized near field acoustic holography (SONAH) [Hal06]. One of the main
features of SONAH is that it avoids spatial Fourier transforms by directly operating in
the spatial domain. The drawback of these techniques when applied to large cabins is
the large measurement time required to cover all surfaces, which limits its application to
non-stationary conditions.

Another acoustical holography technique aimed at interior source characterization has
been proposed by Williams et al. [WVHK06]. The principle is to measure the acoustic
pressure field on a spherical microphone array placed nearby an interior surface. The
measured pressure field is transformed to the spherical harmonics domain and acoustic
quantities, in particular, the acoustic intensity field is imaged on spherical surfaces con-
centric to the spherical array. Since this technique is based on the spherical NAH the
reconstruction can only be computed in a spherical volume whose outer surface does not
cross any boundaries. Applications of this technique inside an airplane during flight and
inside an automobile are reported in references [WVHK06,WT10].

One of the main advantages of techniques based on near field acoustical holography
is the enhanced spatial resolution, independent of the frequency. Indeed, the spatial
resolution is related to the inter-microphone spacing on the hologram surface. Another
advantage is the easy determination of the acoustic particle velocity from measured pres-
sured and vice versa, by means of the Euler’s equation [Wil99]. Therefore, any other
acoustic quantity depending on these two (e.g. acoustic intensity, acoustic power) can be
also determined. One practical drawback, however, is the requirement to carry measure-
ments on the near field of the source, which for certain cases (i.e. large source surfaces or
enclosures) can be time consuming.

1.3 Inverse methods

The third group of methods applied to source reconstruction are labeled here as inverse
methods. The word “inverse” in this particular context is used to group those methods
which are somehow based on a matrix inversion operation.

1.3.1 Inverse boundary element method (iBEM)

The first method discussed in this section is the inverse boundary element method (iBEM),
which was originally proposed in acoustics to overcome the limits of NAH related to the
application to arbitrarily shaped sources [GB88, VM89, Bai92]. This method is based on
the Kirchhoff-Helmholtz integral equation, which relates the acoustic pressure within a
bounded domain to the normal surface velocity and surface pressure on the bounding
surfaces. This integral equation is then discretized according to the boundary element
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method (BEM).
In the context of interior source reconstruction, Kim and Ih [KI96] illustrated (by

numerical simulations) an application of iBEM to reconstruct the source field on the
surfaces of a scaled automotive cabin. They have shown that the position of measurement
points is very important in order to obtain a correct reconstruction. In this context they
propose the use of a technique so-called effective independence (EfI) [Kam92] method in
order to optimize the position of field measurements inside the domain.

The possibility of application to complex shaped geometries and the flexibility of
measurements positions are the main advantages of iBEM over NAH. On the other hand,
a considerable number of boundary elements and nodes are required (normally 6 nodes
per wavelength) to discretize the surfaces. This restriction, in turn, limits the application
of iBEM to medium/high frequencies since the number of discretization elements become
excessively large. A further difficulty of iBEM techniques, when applied to industrial
cases, is the necessity to use model updating approaches in order to adjust the numerical
model to the real physical behavior of the structure.

1.3.2 Equivalent source methods (ESM)

A simplified alternative to iBEM, suggested by Koopmann et al. [KSF89], is the so-called
equivalent source method (ESM), whose idea originated from a calibration procedure
used for boundary element problems [KSF89]. Note that this method is also referred
to as the wave superposition method. Originally, the ESM was developed to acoustic
radiation problems from arbitrarily shaped radiators. The basic principle is that the
acoustic field generated by an arbitrary radiator can be replaced by the superposition
of fields due to a set of elementary sources (placed within the radiator). The optimal
parameters of equivalent sources (amplitude and phase) are determined such that they
match the prescribed surface velocities of the radiator. The acoustic pressure field outside
the radiator can be then easily evaluated.

Jeans and Mathews [JM92] studied the numerical stability and robustness of the equiv-
alent source formulation. Particularly, they have shown that the original formulation
presents a lack of uniqueness when the model of equivalent sources represent an imagi-
nary cavity within the radiation. This effect happens at a set of critical wave numbers
related to the eigenvalues of the interior equivalent source domain. In order to overcome
this problem they propose a hybrid formulation which combines single and double layer
potentials. Although the formulations above are aimed at forward propagation problems
(acoustic radiation), a matrix inversion is required to obtain the parameters of the equiv-
alent sources. The matrix to be inverted relates the source strength of equivalent sources
to the normal surface velocity at the evaluation points.

The application of ESM to the reconstruction of interior pressure field was discussed by
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Johnson et al. [JEBGB98]. They have used the principle of equivalent sources to compute
the acoustic pressure field inside an enclosure containing scattering objects. Two main
assumptions are made in this work: 1) the surface velocity at some evaluation positions
on the boundaries is known; 2) the position and number of sources within the enclosure
is also known. The problem is solved such that the equivalent sources, which are placed
outside the enclosure, match the prescribed surface velocity at evaluation points in a least
squares sense. Once the equivalent sources are determined the pressure field inside the
enclosure is fully determined. In this work, the equivalent sources are carefully placed
according to two strategies: 1) to coincide with the first order images of the source placed
inside the enclosure; 2) on a spherical surface of large radius compared to the enclosure
dimensions, to account for the far-field image sources.

Another method that may be viewed as a particular case of the ESM, is the so-
called Helmholtz equation least-squares (HELS) which was introduced by Wang and Wu
[WW97]. The idea is to express the pressure field as an expansion of particular solutions
to the Helmholtz equation, which for interior problems may represent acoustic modes.
The coefficients of the expansion are determined such that the assumed-form solution
match the measured pressure field in a least-squares sense. The implementation of HELS
for the reconstruction of interior pressure fields is described in reference [WY98]. It
was suggested that the number of measurement positions should be at least equal or
larger than the number of acoustic modes used to express the interior acoustic pressure
field. Reference [MW02] reports an application of the above method using synthetic
measurements generated by the boundary element method (BEM), which simulates a
rigid-walled vehicle compartment. It is argued that one of the advantages of HELS is
the fact that it is based on a direct formulation of the Helmholtz equation and thus it
is not sensitive to the problem of instability of the solution with respect to measurement
errors. On the other hand, it shows difficulty of convergence when the cavity deviates
considerably from a sphere as well as for high frequencies.

Later on, Wu [Wu04] proposed a hybrid approach in order to overcome the limitations
of NAH, namely, the reconstruction of arbitrary sources within non-anechoic environ-
ments. The method, which is a combination of HELS and iBEM, is named as hybrid
near field acoustical holography (hNAH). Particularly, the near-field acoustic pressure
measured on a surface conformal to the source is used as input to HELS which returns
the coefficients of the corresponding expansion. The coefficients of the expansion are
used to generate as much as necessary synthetic acoustic pressure on the measurement
surface. Precisely, the number of synthetic measurement positions is equal or larger than
the number of nodes used to discretize the source surface. In turn, these synthetic mea-
surements are used as input to iBEM, which finally returns the normal surface velocities
and pressures over the source surface. In the case where the source is not within an ane-
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choic environment, the measurements need to be carried on two conformal surfaces and a
modified version of HELS which includes incoming and outgoing waves on the expansion
is used.

A common aspect of many of the inverse methods cited above is their ill-conditioned
nature, in Hadamard’s sense [Han98]. In particular, their solutions are very sensitive
to errors in the measurement data. Therefore, in order to obtain reasonable solutions,
one should introduce a priori assumptions in the underlying problem that often reveals
itself in the form of the so-called regularization techniques. Many research effort has been
dedicated to the field of regularization and consequently various techniques have been
proposed in the literature. Due to its relevance to the problem studied in this thesis
work, the Chapter 3 is dedicated to the issue of regularization of the inverse acoustic
problem. A more detailed description and literature review are presented therein.

1.4 Field separation methods

More recently, researchers have been interested on the separation of acoustic fields based
on combined information of particle velocity and acoustic pressure, measured either with
two pressure microphones (p-p) or with a microphone and particle velocity probe (p-u). In
this context, Langrenne et al. [LMG07] have presented a method of field separation based
on the BEM formulation, aiming to recover the acoustic field that a source would radiate in
free-field conditions. To that purpose, the pressure field on a surface surrounding a source
within a non-anechoic environment is decomposed into “incoming” and “outgoing” fields.
While the incoming field comprises the field reflected by walls and any secondary sources
in the room, the outgoing field comprises the direct field as well as the field scattered by
the source surfaces. The proposed method firstly separates incoming and outgoing fields,
then, the outgoing field is decomposed in order to obtain the field that the source would
radiate in free-field conditions. It is shown that, indeed, the field scattered by the source
(which is assumed to be rigid) has a significant influence as long as the wavelength is of
comparable size or smaller than the source dimensions. An experimental validation of the
above approach is reported by Langrenne et al. in reference [LMG09].

The concept of separation of acoustic fields have also been proposed in conjunction
with the equivalent source method [ZJBC09]. In this context Fernandez-Grande et al.
[FGJL12] compared the reconstruction accuracy of ESM using the field separation for
different array configurations, namely: 1) a double layer of particle velocity probes (u-u);
2) a single layer of combined pressure and particle velocity probes (p-u); 3) single layer of
particle velocity probes. They have shown that reconstruction based on u-u approach is
more robust to measurement noise and less disturbed by flanking sound due to reflections.
Indeed, it has also been shown that when the perturbing sound is not critical, the single
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layer of particle velocity probes provides reasonably reconstruction and is thus a more
convenient configuration. The above is true whenever the measurements are taken at
very close range (near-field) of the source and the latter can be assumed to be rigid, since
the particle velocity generated by disturbing sources vanishes on the source surface.

Recently, an application of field separation to source identification inside a car trunk
was carried out by Garcia et al. and is reported in [GBL+12]. In this case, the separation
is performed in the spherical harmonics domain and allows one to estimate the outgoing
field radiated by the source. The measurements are carried out by a hemispherical array
of radius 0.175 m consisting of a double layer of microphones, which lays on the source
surface. The array is then consecutively moved in order to cover the whole interior source
surface, with the latter assumed to be rigid.

Yet in the context of source reconstruction within non-anechoic environments, the
method, so-called inverse patch transfer function (iPTF), was proposed by Vigoureux et
al. [VTG10]. The method, which is based on the Helmholtz integral formulation, requires
combined measurements of particle velocity and acoustic pressure over a fictitious surface
surrounding the source. The principle is to discretize both the source and measurement
surfaces into smaller surfaces so-called patches [Vig12]. The transfer matrix or impedance
matrix between patches is then computed numerically by means of a finite element model-
ing of the fictitious volume delimited by both the source and measurement surfaces. The
normal surface velocity of the source is finally obtained by computing the inverse of the
impedance matrix, which in turn is ill-conditioned, thus requiring the use of regularization
methods.

The inconvenient of field separation methods discussed above is the need to perform
measurements on the near-field and on a conformal surface surrounding the source. This
limitation, in turn, constrains these approaches to non-stationary cases and leads to time
consuming measurements to cover a large surface.

1.5 Experimental approaches (measured FRF)

A rather different approach from those discussed in previous sections is based on exper-
imental techniques. The basic idea is to obtain the propagation model between micro-
phones and candidate source positions experimentally, instead of analytically or numer-
ically. This approach was studied by Dumbacher et al. [DBHW95] for the identification
of tire noise sources. The main advantages of this technique are a more realistic rep-
resentation of the environment, by including any reverberant path between sources and
microphones, as well as no restriction on the geometry of source surfaces. On the other
hand, it raises several experimental implementation issues such as: a) the artificial source
must radiate enough sound to be detected by the array microphones in the presence of
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background noise; b) the responses measured by the microphone array must be due only
to the artificial source (this issue can be verified by inspection of coherence between input
signal and measured signal); c) for a large source surface with a required resolution the
number of measurement points can be excessive. A possible implementation is to com-
bine this technique with one of the previous approaches and perform the measurements
only at those regions previously indicated by other methods. In addition, care should be
taken when inverting the experimental frequency response functions, in order to avoid the
amplification of measurement errors.

This approach has also been tested by Holland and Nelson [HN03, HN12] in order to
quantify the source strength of acoustic sources. Experimental results with 4 correlated
sources within an anechoic room with added reflective surfaces have shown that accurate
source quantification is possible using this approach.

1.6 Causality approaches

As we have seen in previous sections, the identification of noise sources within an enclosure
is not an easy task. Several approaches to tackle this problem have been proposed in the
literature, for instance by measuring in the near-field of the source, use of field separation
techniques or by an approximate modeling of the environment. One of the difficulties
that one faces in situations involving a multi-path propagation, is the identification of
reflections along with the “real” sources. Results are of difficult interpretation in this
cases and may mislead the user to consider reflections as real sources.

In this section we discuss some techniques that may be used to gain better under-
standing in this situations, for instance, to facilitate the interpretation of results. We
anticipate that, a convenient alternative would be to determine the possible reverberant
paths and thus find which is the original source.

In this context, the analysis carried out by Bae and Kim [BK98] shed us some light into
this problem. Particularly, they proposed a technique to verify the causality between a
pair of correlated inputs. The target application was to determine the priorities between
correlated inputs to be used with Partial Coherence function approach. The causality
checking technique is based on the Hilbert transform of the FRF between inputs and
can detect a frequency dependent causality relationship. Similar idea may be used, for
instance, to evaluate the causality relationship between reconstructed sources in order
to determine possible source-reflection paths and, in addition, distinguish between real
sources and reflections. This issue is further discussed in the next Chapter and finds
its application in the numerical simulations and experimental validations respectively
presented in Chapters 4 and 5.
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1.7 Microphone array design
As we have noticed from some methods discussed above, the configuration of the acoustic
array plays an important role when solving interior noise source identification problems.
Our aim in this section is thus to provide a review of different microphone arrays proposed
in the literature, as well as some guidelines that can be used for their design.

The design of a microphone array critically depends on the desired application. Pa-
rameters such as the frequency range, the size of the object to be characterized and the
measurement environment (i.e. interior or exterior domain) are the major constraints
which will guide the user towards a given array configuration. Hereafter, we focus the
discussion in the configurations best suited for applications in closed spaces. In this par-
ticular case, it is crucial for the array the ability to distinguish between waves coming
from any direction in the space. A planar array with a single layer of pressure probes,
for instance, is usually applicable to reconstruct sound fields coming from only one side
of the array. The extension of planar arrays for interior problems applications has be-
come possible through the use of double-layer arrays. A first development in that di-
rection was the use of sound pressure measurements in two closely spaced parallel sur-
faces [Tam90,PL03,PL06,Hal06,BCC08], where the particle velocity is obtained by a finite
difference approximation of the pressure gradient. More recently, with the advent of par-
ticle velocity transducers [dB03], combined pressure and particle velocity transducers in
a single layer [JJ07,ZJBC09] and two layers of particle velocity probes [FGJL12,FGJ11]
have been proposed.

Due to its three-dimensional symmetry, a spherical geometry is well-adapted to interior
problems since it easily allows one to take into account waves coming from any direction.
In beamforming terms, a spherical configuration is able to “steer” an identical beam in any
3D direction. However, the choice of a spherical geometry raises several other questions
such as: 1) How to define its diameter? 2) How to spatially distribute the microphones?
3) How to decide between an open or a rigid configuration? The discussion provided in
the next section aims to help us to answer the above questions.

1.7.1 Spherical microphone arrays

In this section we discuss some practical aspects concerning the design and implementa-
tion of spherical microphone arrays for acoustic imaging purposes. First of all, the major
constraints that will guide the user towards a given configuration are the frequency band
of interest, the number of microphones available and the operational conditions (i.e. sta-
tionary or non-stationary acoustic field). The two first constraints are directly related to
the size or diameter of the array. Indeed, the choice of the array diameter is usually a
trade-off between low frequency robustness and sensitivity to spatial aliasing at higher
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frequencies. Particularly, for a given number of microphones, a larger radius would in-
crease the robustness at low frequencies, on the other hand the average inter-microphone
spacing would also increase, that in turn will limit the high frequency of application due
to spatial aliasing.

Another parameter that must be adjusted is the sphere configuration. Both rigid
[HH08,SLD10] and transparent sphere [MD06] configurations have been previously stud-
ied in the literature and are already commercially available. The main advantages and
inconvenient of each are summarized in what follows.

In terms of practical construction the rigid configuration is somewhat more simple
than an open sphere that would require a custom structure. The rigid sphere, however
is limited in size, either due to a practical constraint of mobility or physically by the
scattering effect due to the rigid body. Indeed, as we shall see in the next Chapter,
the scattering effects can be carefully taken into account into the propagation model of
incoming waves, however, at the expense of a higher computational cost. In addition, the
scattering phenomenon yields a better numerical robustness in comparison to an open
sphere configuration, which shows a numerical instability at some particular frequencies.
This behavior for the open sphere is observed for analysis based on the spherical harmonics
decomposition, more details on this issue can be found in references [Raf05,BR07]. Recent
research studies have been carried to propose configurations to avoid this problem, for
instance the use of cardioid microphones or a dual-sphere configuration [BR07]. A further
advantage of the rigid configuration is the fact that the rigid spherical baffle provides an
artificial directivity to the microphones, which in turn enhances the ability of the array
to distinguish waves coming from the front or from the back of the array.

Another practical advantage of the rigid configuration is that the interior of the sphere
can serve as housing for cables and other necessary equipment. The open sphere, in turn,
offers the possibility for larger arrays, that could be beneficial at low frequencies for
instance. A good compromise to enlarge the operating bandwidth is to combine a rigid
sphere of small diameter with a open sphere of large diameter, at the expense of a larger
number of microphones, as proposed in reference [CDPL12].

An additional parameter that also must be adjusted is the microphone distribution
or sampling scheme on the sphere. Due to practical constraints such as the number of
channels of an acquisition system or the cost of acoustic probes, the acoustic field must
be sampled at discrete spatial positions over the sphere. Similarly to sampling in time
domain, the spatial sampling of the acoustic field on a sphere is subject to a limited
bandwidth to avoid aliasing. For analysis based on the spherical Fourier transform, the
conversion from spatial domain to spherical harmonics domain requires an integration of a
function (e.g. acoustic pressure) over a sphere. In practice this integration is approximated
by a finite summation which is truncated up to a maximum order N. In order to have a
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negligible error in the integration up to a given order N, the number of microphones or
spatial samples should be [AW02,WT10]:

L ≥ (N + 1)2, (1.1)

where L is the number of microphones. Equation (1.1) may be interpreted as a spatial and
spherical version of Shannon-Nyquist theorem, such that this condition must be respected
in order to have an aliasing free result. However, as shown by Rafaely et al. [RWB07],
in practice this condition depends on the distribution of microphones over the sphere.
In turn, the choice of the sampling scheme is usually a compromise between simplicity
of the arrangement and the required number of microphones to perform an aliasing-free
decomposition.

The design of spherical microphone arrays has been the subject of various researches,
mainly in connection with spherical harmonics formulation [Raf05,AW02,LD07]. In this
context, Rafaely [Raf05] provides an analysis of different types of errors that these mi-
crophone arrays are subjected, namely: a) measurement noise; b) inaccuracy on the posi-
tioning of microphones and c) spatial aliasing error. It was shown that at low frequencies
measurement noise and positioning error have a similar contribution to the global noise
and at higher frequencies the aliasing errors predominate. In addition, it was shown that
the choice of sampling scheme has mainly influence on the spatial aliasing performance,
other errors being independent of the microphone distribution.

The distribution or sampling of points on the sphere with the aim to minimize the
number of required points for a given order N has been widely studied. The reader
may refer to references [Raf05,RWB07,LD07,Zot09,AR12,HS96,FM99] for more detailed
information.

In Section 5.1 we discuss the practical implementation of a microphone array for the
applications studied in this thesis.
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2
Study of the equivalent source method for interior

domain problems

Based on the review given in the previous chapter, the equivalent source method is rec-
ognized as the one that best suits the target application and specifications in this work.
Several advantages of the ESM motivated this choice, such as its flexibility to embrace
irregular source geometries, relatively low computational cost, combined noise source lo-
calization and quantification and its model simplicity.

Particularly, one of the main interests in this thesis is towards the combination of the
equivalent source method with spherical arrays, for interior noise identification. As we
shall see, this is a highly underdetermined and ill-posed problem, thus a special attention
is also given to the critical aspect of regularization of this acoustical inverse problem. The
latter issue is specially covered in the next Chapter.

Our aim in this chapter is to give an outline of the equivalent source method which is
the base for the subsequent developments in this thesis. A particular care will be addressed
to the extension of ESM for interior domain problems. Afterwards, few preliminary
aspects of inverse problems, such as their ill-posedness and the need for regularization will
be discussed. Next, the combination of ESM with spherical array of microphones will be
investigated with emphasis on the propagation models used for the source reconstruction.
Given an estimate of the reconstructed source field (in terms of the source strength of
equivalent sources), we explain how to assess other acoustic quantities, namely the acoustic
pressure field and the radiated acoustic power. Finally, we discuss the implementation of
a post-processing tool which aims to provide further insight into the reconstructed source
field.
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2.1 The equivalent source concept

In the late eighties, Koopmann [KSF89] introduced the equivalent source concept into the
field of acoustics. In its original formulation the method was proposed for sound radiation
problems from sources of arbitrary geometry. Assuming that the normal velocity on the
surface of a radiator is known, the idea is to find a set of equivalent sources (placed on
an arbitrary surface within the radiator) that matches the prescribed normal velocity.
Once the ideal source strength of equivalent sources is obtained, the acoustic pressure
field on the surface of the radiator can be easily predicted. Basically, the method reduces
to the solution of an inverse problem for the equivalent source coefficients and a forward
propagation model is then used to predict the exterior pressure field.

Later on, Jeans and Mathews [JM92] proposed an extension of the method by using
a combination of single and double-layer potentials (monopoles and dipoles) to model
the equivalent sources. The main motivation of the latter is to avoid the nonuniqueness
problem at the eigenvalues of the interior source surface, used to model the actual source.

Johnson et al. [JEBGB98] then investigated the equivalent source method for interior
and scattering problems. The formulation is based on the a priori knowledge of the
surface velocity at the boundaries of an enclosure. In this case, a set of equivalent sources
placed outside the enclosure can be driven to match the prescribed surface velocities at the
boundaries. The identified equivalent sources are then used to evaluate the pressure field
inside the enclosure. The location of equivalent sources are carefully chosen according
to two criteria: firstly, to coincide with the first order images of the real source (which
is inside the enclosure); and secondly on a large sphere surrounding the enclosure, to
account for higher order images (far field). Therefore, the application of the method
depends on: (a) the knowledge of the real sources position inside the enclosure; (b) prior
knowledge of the normal velocity at several “control points” on the boundaries and (c)
the characterization of the boundary behavior in terms of its admittance at the “control
points”.

Since in the cases studied in this thesis no information of acoustic quantities at the
boundaries of the cabin is available, the above matching criterion can not be verified. On
the other hand, we indeed have a set of field measurements delivered by a microphone
array, which in turn can be used as a compatibility criterion. The idea is to find an
equivalent source distribution that reproduces the information on the measured surface
with minimum discrepancy. However, as we shall see in the next sections, this is not an
easy task, specially due to the inherent ill-posedness of the underlying problem.
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2.2 Extension to interior domain problems

The formulation for the interior problem is based on the Kirchhoff-Helmholtz equation,
which defines that the pressure field inside an enclosure is fully determined by the normal
particle velocity and acoustic pressure at the boundaries plus the acoustic sources within
the enclosure. The geometry of the problem is depicted in Figure 2.1.

p(r)

u(rb) 

r

rb

q(rs)
rs

Vi

G

x

y

z

Figure 2.1: The figure shows a volume Vi which is enclosed by a boundary Γ with normal
surface velocity u(rb). Acoustic receivers are defined by p(r) and internal sources by
q(rs).

According to the Kirchhoff-Helmholtz equation [Les88] and an implicit harmonic time
dependence of the form ejwt, the pressure anywhere in the enclosure is given by:

p(r) = ∫
Γ
[p(rb)

∂G(r∣rb)
∂n

+ jωρu(rb)G(r∣rb)]dΓ + ∫
Vi

jωρq(rs)G(r∣rs)dVi, (2.1)

where the position vectors, r, rb and rs respectively correspond to an evaluation position
inside the enclosure, a point on the surface and the location of any source inside the
volume. The angular frequency is ω, ρ is the density of the fluid and G(r∣rb) is the (known)
Green’s function of the medium between positions r and rb. This integral equation gives
us the direct formulation of the interior problem. In particular, the first integral has
the contribution of two terms, namely: (a) a distribution of monopoles corresponding
to a single layer potential; (b) a distribution of dipoles corresponding to a double layer
potential. The last integral represents the contribution of sources within the volume.

Our interest in this work is on the inverse problem, that is, the identification of the
(unknown) source distribution on the bounding surface Γ. Indeed, one way to proceed
is to consider both single and double layer potentials. However, this would require the
precise knowledge of the bounding geometry as well as a refined discretization scheme,
such as typically given by boundary element methods. This is, in fact, the approach used
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by the inverse boundary element method, which seeks to numerically solve this integral
equation (see, for example, [KI96]).

A simplified formulation of this interior problem is based on the equivalent source
method. This approach consists in avoiding the direct use of the Kirchhoff-Helmholtz
equation (2.1) by identifying a set of equivalent sources that matches the conditions
(originally the normal particle velocity) at the boundaries. If this requirement is met, the
equivalent sources are also able to reproduce the acoustic field within the domain. In this
case, equation (2.1) is simplified and the acoustic pressure inside the enclosure is given
by

p(r) = ∫
Vo

jωρq(re)G(r∣re)dVo + ∫
Vi

jωρq(rs)G(r∣rs)dVi, (2.2)

where Vo is the volume outside the boundary Γ and re is the vector which gives the
position of the e-th equivalent source. This equation gives us the acoustic field inside the
enclosure as a function of both internal sources q(rs) and equivalent sources q(re).

Typically, for sound radiation problems (i.e. direct formulation), the normal velocity
distribution on the actual source surface is frequently known a priori. In this case, the
properties of equivalent sources are determined by minimization of the error between the
prescribed normal velocity distribution and the one generated by the equivalent sources.
Conversely, for back propagation or inverse problems the information on the boundaries
is usually unknown, thus requiring a different matching criterion. What we do often have
at our disposal in this cases, is a set of acoustic measurements (e.g. acoustic pressure) in
the field. The alternative is then to force the equivalent source distribution to reconstruct
an acoustic field such that it matches the one given by the set of field measurements.

From now on, we assume that there is no sources within the volume bounded by Γ,
thus the second integral in equation (2.2) is set to zero. In addition, we define a set of
measurement or control points within the enclosure, as shown in Figure 2.2. In turn, this
information is used to identify the equivalent source distribution over a fictitious surface,
as shown in Figure 2.2.

We remark at this point that, as long as in this case the “matching” surface (field
measurements) is usually significantly far from the equivalent source surface, the position
of the latter relative to the actual enclosure does not introduces the singularities1 in the
formulation as observed in [KSF89]. In addition, we remark that a major simplification of
the problem is made by considering a single layer potential only. Indeed, by making this
assumption we are neglecting the boundary effects such as reflections and, as we shall see
in Chapter 4, this may introduce few inconvenient consequences.

Assuming that the acoustic pressure is measured at M discrete positions and N equiva-
1More precisely, these correspond to singularities in the Green’s function as the equivalent source

distribution approaches the matching surface, which in [KSF89] is the actual surface of the radiator.
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Figure 2.2: Geometry of the problem used for the equivalent sources formulation. The
figure shows a set of discrete measurement positions p(rm) and the equivalent source
distribution.

lent sources are used in the model, we can write the following linear system, using a matrix
notation:

p = Gq + n, (2.3)

where p ∈ CM is a vector of complex measured acoustic pressure, q ∈ CN the volume
velocity of equivalent sources, n ∈ CM accounts for measurement noise and G ∈ CM×N is a
matrix of Green’s functions. The solution of the linear system in Equation (2.3) depends
on the problem size. In the case M = N , the matrix G is square and its inverse can be
computed, thus leading to a unique solution. When the number of measurement positions
is greater than the number of equivalent sources (M > N), the system is overdetermined
and has no solution. In this case, the key is to find a solution that minimizes the residual
p − Gq, in a least-squares sense. More precisely, the idea is to find q that minimizes
∥p −Gq∥2. The solution of this minimization problem is given by the left pseudo-inverse
of G

q̂ = (GHG)−1GHp, (2.4)

where H stands for the complex conjugate (Hermitian) transpose. However, when no a
priori on the underlying problem is available and one seeks to find noise sources in a rather
large space (e.g. in the interior of a bus) the number of equivalent sources used to map
the surfaces is usually greater than the number of discrete measurements (M ≪ N). The
system is thus underdetermined and has an infinite number of solutions. The common
approach in this case is to seek the solution of minimum squared norm which satisfies the
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equality p = Gq. More strictly, one must solve the following minimization problem:

minimize ∥q∥2

subject to p = Gq.

A solution of the above problem can be obtained by using a Lagrange multiplier [Bra83]
which yields the following cost function

J(q,q∗, λ) = qHq + λH(Gq − p) + λT (G∗q∗ − p∗), (2.5)

where J is the Lagrangian, λ a Lagrange multiplier and the last term in the right hand
side, which is the complex conjugate of the constraint, is used to make the Lagrangian
real valued. Setting the derivative of J with respect to q∗ to zero and keeping q as a
constant leads to

q +GHλ = 0. (2.6)

Premultiplying Equation (2.6) by G and using the constraint relation p = Gq yields

Gq +GGHλ = 0
p +GGHλ = 0

λ = −(GGH)−1p. (2.7)

Substituting for the Lagrange multiplier λ into Equation (2.6) gives the least norm solu-
tion:

q̂ = GH(GGH)−1p, (2.8)

from which we notice the appearance of the right pseudo-inverse of G. Although this
approach provides a unique solution for the underdetermined system, it is often a useless
solution, specially because it is not stable with respect to errors in the measured data p.
This issue will be covered in the next section.

2.3 Ill-posedness of the problem

We start the discussion in this section by reconsidering the integral equation that models
our problem, that is, Equation (2.2). Keeping the assumption that there is no sources
inside the enclosure and limiting the equivalent sources to be located on a closed surface
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(Γe), we can rewrite this equation as

p(r) = jωρ∫
Γe

G(r∣re)q(re)dΓe. (2.9)

Since our aim is to reconstruct the source field q(re) based on the measurements in p(r),
this equation becomes an integral equation, particularly, a Fredholm equation of the first
kind. This equation, which models a variety of problems in physics, is a classical example
of ill-posed problems [Han98]. The term ill-posed goes back to Jacques Hadamard, who in
the early 20th century defined that to be well-posed, a problem must satisfy the following
three conditions:

1. The solution exists.

2. The solution is unique.

3. The solution depends continuously on the problem data.

If any of these conditions is not respected, the problem is said to be ill-posed. The
first condition is related to the feasibility of the problem and is normally satisfied for the
problems studied in this thesis. The second condition is rarely satisfied since the proposed
model is highly under-determined. Finally, the last condition concerns the stability of the
solution with regard to small variations on the measured data. The solutions based on
the pseudo-inverse of G presented in the previous section, satisfy Hadamard’s conditions
1 and 2, however the stability condition is not guaranteed. This means that small amount
of noise in the measured pressure, for instance, might lead to large perturbations on the
reconstructed source field. A remedy to ill-posed problems is often to reformulate them
(normally by imposing additional requirements to the solution) such that the new problem
is more stable to the perturbations. This is the central point of regularization techniques
which will be discussed hereafter.

2.3.1 Tikhonov regularization

A classical technique to regularize ill-posed problems is the so-called Tikhonov regulariza-
tion [AT76]. The idea is to include a term in the minimization that is the squared norm of
the solution weighted by a regularization parameter η, the following minimization problem
holds

q̂(η) = Argmin{∥p −Gq∥2 + η2∥q∥2} , (2.10)

where η2 controls the weight between the residual and the solution norms. The key is
to find a suitable regularization parameter η that produces a solution that is useful and
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fits the measurement data well enough. The solution of this minimization problem can
also be obtained by setting the derivative with respect to q to zero. The following results
holds

q̂(η) = GH(GGH + η2I)−1p, (2.11)

where I is the identity matrix of dimension M .
A critical aspect, however, is how to automatically set the regularization parameter

with few prior information on the underlying problem. Several approaches have been
proposed in that context, such as the Morozov discrepancy principle [MNA84], the Gen-
eralized Cross-Validation (GCV) [GHW79], the L-curve method [HO93], and the Nor-
malized Cumulative Periodgram (NCP) [HKK06, RO08], to cite only a few. Due to its
crucial importance to the solution of the inverse problems in this thesis, the next chapter
is dedicated to the issue of regularization of the inverse acoustic problem. We shall give a
deeper insight into the selection of reasonable regularization parameters and an extensive
comparison of different methods will be provided.

2.3.2 Singular Value Decomposition

The singular value decomposition is a powerful mathematical tool that allows us to gain
more insight into the inverse problem. The singular value decomposition of the rectangular
matrix G yields

G = U⌈S⌋VH , (2.12)

where, for M < N , U ∈ CM×M is a unitary matrix and V ∈ CN×M such that VHV = IM .
The columns of U and V are respectively the left and right singular vectors. In turn,
S ∈ RM×M is a diagonal matrix with singular values stored in decreasing order s1 ≥ s2 ≥
. . . sM ≥ 0. If we insert the singular value decomposition of G into Equation (2.11) we
obtain the result

q̂(η) = V(S2 + η2I)−1SUHp. (2.13)

From this particular solution we clearly notice the role of Tikhonov regularization as
a filter of singular values. Indeed, the singular values that are on the order of magnitude
of the regularization parameter will be amplified by η2, while the singular values larger
than η2 remain nearly unaltered. The smallest singular values are more sensitive to noise
in the data and their simple inversion often leads to a high amplification of errors.
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2.4 Radiated acoustic pressure field

Once the reconstructed volume velocity of equivalent sources is obtained, their radiated
acoustic pressure over the space can be computed. The Green’s function between adjacent
equivalent sources is used to obtain the acoustic pressure on the position of equivalent
sources due to the neighbors sources. The acoustic pressure at the position of the e-th
equivalent source is given by

p(re) = jωρ
N

∑
i=1
i≠e

G(re∣ri)q(ri), (2.14)

in which the requirement i ≠ e is simply to avoid the computation of the acoustic pressure
due to the equivalent sources at their self-position and N is the number of equivalent
sources. Figure 2.3 provides a geometric representation of the position vectors in Equation
(2.14).

q(ri)

ri

re

p(re)

z

y

x

Figure 2.3: Geometry of the problem used for the computation of the radiated acoustic
pressure by the reconstructed equivalent sources.

This information is useful to provide further insight into the properties of the recon-
structed source field. It will be particularly handful to explain some limitations of the
highly under-determined system of equations, as we shall see in Chapter 4. The radiated
acoustic pressure by equivalent sources is also essential to the computation of the radiated
acoustic power, as we shall see in the next section.
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2.5 Radiated acoustic power

The acoustic power radiated by an elementary source is not only dependent on its strength
(volume velocity), it also depends on the pressure field in which it is inserted. This means
that, the presence of other correlated sources will modify the sound power radiated by
the elemental source. Since the total radiated acoustic power is given by the integral of
the normal active intensity over a surface Σ surrounding the source, we have

We = ∫
Σ
I⃗(rs)dΣ, with I⃗(rs) =

1
2R{p(rs)u∗(rs)} , (2.15)

where R(a) is the real part of a and ∗ the complex conjugate. The acoustic pressure and
particle velocity on the surrounding surface are given by

p(rs) = pi(rs) + po(rs) (2.16a)
u(rs) = ui(rs) + uo(rs) (2.16b)

where pi and ui are the acoustic pressure and particle velocity due to the monopole inside
Σ and po and uo are the acoustic quantities due to the sources outside the surface Σ.
Thus, we can decompose total radiated acoustic power as follows

We =
1
2R{∫

Σ
pi(rs)u∗i (rs)dΣ + ∫

Σ
po(rs)u∗o(rs)dΣ

+∫
Σ
pi(rs)u∗o(rs)dΣ + ∫

Σ
po(rs)u∗i (rs)dΣ} .

(2.17)

Let us now define Σ as a spherical surface centered on the monopole and with a
vanishingly small radius. Since all other sources are located outside the spherical surface,
the net flux of uo through Σ tends to zero, hence

∫
Σ
uo(rs)dΣ = 0. (2.18)

Equation (2.17) then simplifies to

We =
1
2R{∫

Σ
pi(rs)u∗i (rs)dΣ + ∫

Σ
po(rs)u∗i (rs)dΣ} . (2.19)

The acoustic pressure and particle velocity at the position rs due to the monopole
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inside the surface Σ are given by

pi(rs) = jρckq(re)
e−jkrs

4πrs
(2.20)

ui(rs) = jkq(re)
e−jkrs

4πrs
(1 − j

krs
) n⃗, (2.21)

where q(re) is the identified volume velocity of the equivalent source at position re, rs is
the length of the vector rs and n⃗ is the normal to the surface Σ. These expressions can
be further simplified when the radius rs becomes small, and we have

pi(rs) =
jρckq(re)

4πrs
(2.22)

ui(rs) =
jkq(re)

4πrs
(1 − j

krs
) n⃗. (2.23)

Substituting Equations (2.22) and (2.23) into the right hand side of Equation (2.19)
and remembering that q(re)q∗(re) = ∣q(re)∣2 yields

We =
1
2R{∫

Σ

ρck2 ∣q(re)∣2

(4πrs)2 (1 + j
krs

) n⃗dΣ + po∫
Σ

−jkq∗(re)
4πrs

(1 + j
krs

) n⃗dΣ} . (2.24)

Since the normal to the surface n⃗ is always on the same direction as the vector pointing
from the center of the sphere to a position on its surface and the radius is constant over
Σ, we have

We =
1
2 (ρck

2 ∣q(re)∣2

(4πrs)2 4πr2
s +R{−jkpoq∗(re)

4πrs
(1 + j

krs
)4πr2

s}) . (2.25)

If we consider that j/krs ≫ 1 as rs becomes vanishingly small we also have

We =
1
2 (ρck

2 ∣q(re)∣2

4π +R{poq
∗(re)

4πr2
s

4πr2
s}) , (2.26)

that finally simplifies to

We =
ρck2 ∣q(re)∣2

8π + R{poq∗(re)}
2 , (2.27)

with po the acoustic pressure at the position re due to the other correlated sources, as
given by Equation (2.14). The first term on the right hand side of Equation (2.27) is the
acoustic power produced by the monopole in isolation. The second term is the influence
of other sources, which depends on the relative phase between po and q(re). This term
is maximum when po and q(re) are in phase and minimum if they are out of phase.
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Therefore, Equation (2.27) tells us that the acoustic power of an elementary source is
not a strictly positive quantity. Indeed, if the volume velocity q(re) and the pressure
generated by neighbor sources po are out of phase and the latter is sufficiently large, the
total radiated acoustic power might be negative, which corresponds to a sink of energy.

2.6 Acoustics in spherical coordinates

Up to this point we did not entered into the details of the propagation operator G. As
we have seen in Chapter 1, in order to accurately model the sound field in the interior
of enclosures, numerical techniques such as BEM, FEM or the image source method
(ISM) at some extent, are normally required. However, the effectiveness of these methods
strongly depends on the frequency and on the knowledge of several other parameters,
such as the impedance of surfaces and their precise geometry. On the other hand, the
equivalent source method simplifies the problem by using a set of elementary sources (such
as monopoles and dipoles) to model the original sources. Although the consideration of
the interior surfaces of a vehicle as a combination of monopoles radiating into free-field is
a strong assumption, it allows a significant simplification of the underlying problem.

An important factor that must be taken into account in the propagation model is the
shape or type of the microphone array. According to the review in Chapter 1, several
microphone arrays have been proposed for noise source identification issues. Spherical
microphone arrays are advantageous due to their 3D symmetry and specially the rigid
configuration, which enjoys certain advantages over the transparent sphere. However, a
somewhat rigid surface will surely perturb the sound field around its body, due to the
scattered sound waves. Thus, the consideration of the scattered waves is of importance
to correctly model the sound field measured by a rigid spherical surface.

Since rigid spherical microphone arrays are adopted in the framework of this thesis,
we provide in this section a careful analysis of the underlying theory. Our aim is to derive
the analytical expressions of the wave propagation models used throughout this work.
In the first part we review the solution of the wave equation in spherical coordinates,
with emphasis on the solution to interior problems. In the second part, we establish
the expressions which give the acoustic pressure on the surface of a sphere due to a
monopole-like source and a plane wave. Finally, we present an analysis of the truncation
errors closely related to the aforementioned expressions.

2.6.1 Solution of the Helmholtz equation

The solution of the wave equation is well detailed in many text books in the field of
acoustics (see for example [Wil99, GD05]). We start by considering the time dependent
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wave equation for the sound pressure p(r, t), which is written as:

∆p(r, t) − 1
c2
∂2p(r, t)
∂t2

= 0, (2.28)

where ∆ is the Laplacian, r is a position vector in space, c is the speed of sound and ∂2/∂t2

is the second derivative with respect to time. Assuming a harmonic time dependence of
ejωt, the time dependent sound pressure can be written as:

p(r, t) = 1
2π ∫

∞

−∞
p(r, ω)ejωtdω, (2.29)

where ω is the angular frequency.

Taking the Fourier transform of the wave equation and replacing the second derivative
with respect to time of Equation (2.29) yields the Helmholtz equation

∆p(r, ω) + k2p(r, ω) = 0, (2.30)

where k = ω/c is the wavenumber. For the sake of notational simplicity, we hereafter omit
the ω sign on the frequency dependent sound pressure, that is p(r, ω) = p(r). Equation
(2.30) is a partial differential equation that can be solved according to the definition of
the Laplacian in the desired coordinate system. We are particularly interested on the
spherical coordinate system and the wave equation then reads [Wil99,GD05]:

1
r2

∂

∂r
(r2∂p(r)

∂r
) + 1

r2 sin θ
∂

∂θ
(sin θ∂p(r)

∂θ
) + 1

r2 sin2 θ

∂2p(r)
∂φ2 + k2p(r) = 0, (2.31)

with the spherical coordinate system relative to the Cartesian coordinates shown in Figure
2.4. Separation of variables is the usual approach to solve this equation, and the acoustic
pressure reads

p(r) = R(kr)Φ(φ)Θ(θ) (2.32)

This procedure leads to three known differential equations, namely: (a) a spherical
Bessel differential equation for the radial dependency; (b) a linear differential equation
for the angular part depending on φ; (c) an associated Legendre differential equation
for the angular part depending on θ. In turn, their corresponding solutions are respec-
tively given by [WA04]: (a) spherical Bessel and Neumann functions or spherical Hankel
functions of first and second kind; (b) sinus and cosines or complex exponentials and (c)
Legendre functions of first and second kind. The solutions of both angular parts are often
conveniently combined into a single function, the spherical harmonic Y m

l (θ, φ).
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(r, θ, ϕ)
r

Figure 2.4: Cartesian and spherical coordinate systems employed throughout this thesis.
The azimuth angle φ measured from the x-axis in the xy plane ranges from 0○ to 360○
and the elevation angle θ measured from the z-axis ranges from 0○ to 180○.

The total solution of the Helmholtz equation in spherical coordinates is a combination
of the aforementioned solutions. However, the selection of feasible solutions depends
on the underlying problem (e.g. interior or exterior problems) as well as on the sign
convention used for the harmonic dependence of the sound field. For instance, for interior
problems (all souces outside a given boundary) the selected functions must be non-singular
in a bounded domain kr < krs, rs being the source boundary. In this case, the spherical
Neumann functions are discarded since they exhibit a singularity at kr = 0 (see Figure
B.1). Another constraint that must be respected is the Sommerfeld’s radiation condition,
which states that any finite extent source in free-field must provide a positive dissipation
of energy into the far-field [GD05]. According to the analysis given in Appendix B and
the selected time convention (ejωt), the only appropriate function to describe a radiating
field in this case is the spherical Hankel function of second kind h

(2)
l .

Finally, the general solution for both interior and exterior problems can be written as

p(r) =
∞

∑
l=0

l

∑
m=−l

[blmjl(kr) + clmh(2)l (kr)]Y m
l (θ, φ), (2.33)

where r = (r, θ, φ), blm and clm are coefficients depending on boundary conditions and the
nature of sources, jl(kr) are the spherical Bessel functions, and Y m

l (θ, φ) are the spherical
harmonics depending on the elevation θ and azimuth φ angles.
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2.6.2 Solution for Interior Problems

The geometry of the problem studied throughout this thesis is depicted in Figure 2.5.
It can be seen that all the sources to be reconstructed lie outside the boundary ΓB. In
addition, the underlying problem depends on the properties of the measurement boundary
ΓM . For instance, if the latter is transparent, we are dealing with a pure interior problem.
On the other hand, if the measurement surface is assumed to be rigid, a scattered field
will be produced, with waves propagating outwards the surface ΓM . Thus, in this case,
we have a “mixed” problem, since the rigid body may be viewed as an additional source.

S1

Sn

S2 GB

S3

Figure 2.5: Geometry of the problem studied in this thesis. All the sources are located
outside the region delimited by ΓB. Depending on the properties of the measurement
boundary ΓM it is either an interior problem or a “mixed” problem. The reconstruction
of the source field outwards the measurement surface is an inverse problem.

Let us first consider a purely incident sound field on the measurement surface. In this
case, the acoustic pressure at any point on the sphere is completely given by the first set
of solutions from Equation (2.33), which models an interior problem. It follows that

pi(r) =
∞

∑
l=0

l

∑
m=−l

blmjl(kr)Y m
l (θ, φ), (2.34)

where the coefficients blm are obtained according to the source properties, as we shall see
later.

In the case of a perfectly transparent sphere this expression describes the whole mea-
sured sound field. This is not the case, however, for a somewhat rigid sphere which
“perturbs” the sound field by generating scattered waves. The latter are propagated out-
wards the rigid spherical surface and are thus described by outgoing spherical waves. The
scattered acoustic pressure can thus be defined by traveling wave type solutions of the
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Helmholtz equation as follows

ps(r) =
∞

∑
l=0

l

∑
m=−l

clmh
(2)
l (kr)Y m

l (θ, φ). (2.35)

The total acoustic pressure field is simply given by the sum of the incident and scat-
tered sound fields:

pt = pi + ps. (2.36)

Assuming a perfectly rigid sphere of radius a, we have that the particle velocity must
vanish on its surface, that is r = a. The following boundary condition holds:

un(r = a) =
∂pt
∂r

∣
r=a

= ∂(pi + ps)
∂r

∣
r=a

= 0. (2.37)

Inserting equations (2.34) and (2.35) into equation (2.37) allows us to obtain the
following relationship between the coefficients blm and clm:

clm = −blm
j′l(ka)
h
′(2)
l (ka)

, (2.38)

where j′l(ka) stands for the first derivative of the spherical Bessel function and h
′(2)
l (ka)

for the first derivative of the spherical Hankel function of second kind. Inserting Equation
(2.38) back into Equation (2.35) and evaluating the expression in equation (2.36) yields
the total pressure field:

pt(r) =
∞

∑
l=0

⎛
⎝
jl(kr) −

j′l(ka)
h
′(2)
l (ka)

h
(2)
l (kr)

⎞
⎠

l

∑
m=−l

blmY
m
l (θ, φ). (2.39)

This equation gives the total acoustic pressure (incident plus scattered) in any position
in the space delimited by r ≥ a. The coefficients blm depend on the assumed source
properties and in the next sections they are obtained for a monopole-like source as well
as for a plane wave.

2.6.3 Point source expansion

The key to obtain the coefficients blm, is to express incident waves (e.g. plane waves,
spherical waves) in terms of a series expansion of spherical harmonics. Let us consider
the case of a spherical wave generated by a point source, which in terms of Cartesian
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coordinates we have the following closed-form Green’s function:

G(r∣rs) =
e−jk∥r−rs∥

4π∥r − rs∥
, (2.40)

where r and rs respectively corresponds to position vectors of the receiver and the source.
An expansion of the above expression in spherical coordinates can be written as [WA04]

G(r∣rs) = −jk
∞

∑
l=0

⎧⎪⎪⎨⎪⎪⎩

jl(kr)h(2)l (krs), rs > r
jl(krs)h(2)l (kr), rs < r

⎫⎪⎪⎬⎪⎪⎭

l

∑
m=−l

Y m
l (θ, φ)Y m∗

l (θs, φs), (2.41)

where we notice two cases depending on the position of the source relative to the ob-
servation point in the problem. Since in this work we are always concerned with source
fields surrounding the measurement surface, we hereafter consider only the case rs > r.
Comparing the concerned expression to the solution of the Helmholtz equation for an
incident wave (2.34) gives us the coefficients blm for an incident spherical wave:

blm = −jkh(2)l (krs)Y m∗
l (θs, φs). (2.42)

Inserting the coefficients above back into equation (2.39) yields the following expression
for the total acoustic pressure field:

pt(r∣rs) = −jk
∞

∑
l=0

h
(2)
l (krs)

⎛
⎝
jl(kr) −

j′l(ka)
h
′(2)
l (ka)

h
(2)
l (kr)

⎞
⎠

l

∑
m=−l

Y m
l (θ, φ)Y m∗

l (θs, φs), (2.43)

where rs = (rs, θs, φs).

The above expression gives the total pressure field (incident plus scattered by a rigid
sphere of radius r = a) at any position in the space delimited by a ≤ r ≤ ΓB. For the
acoustic pressure directly on the surface of the sphere (r = a), equation (2.43) yields:

pt(ra∣rs) = −jk
∞

∑
l=0

h
(2)
l (krs)

⎛
⎝
jl(ka) −

j′l(ka)
h
′(2)
l (ka)

h
(2)
l (ka)

⎞
⎠

l

∑
m=−l

Y m
l (θ, φ)Y m∗

l (θs, φs), (2.44)

where in this case ra = (a, θ, φ). We may simplify this rather extensive expression by
firstly putting the terms in parenthesis in a common denominator and recognizing that
the numerator holds the Wronskian relation [WA04,Wil99]:

jl(x)h′(2)l (x) − j′l(x)h
(2)
l (x) = 1

jx2 (2.45)

In addition, we may also use the addition theorem for spherical harmonics [WA04,GD05],
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that establishes:

Pl(cosΘ) = 4π
2l + 1

l

∑
m=−l

Y m
l (θ, φ)Y m∗

l (θs, φs), (2.46)

where Pl is the Legendre polynomial of order l and Θ is the angle between the directions
defined by (θ, φ) and (θs, φs), respectively representing a vector pointing from the center
of the sphere to a microphone on its surface and the direction of an incoming wave, as
shown in Figure (2.6). Giving these two vectors (rs, rm), they form an angle which is
defined as

Θ = arctan(∥rs × rm∥
rs ⋅ rm

) . (2.47)

x

y

z

ϕm

ϕs

θm
θs

Θ

rs

rm

Figure 2.6: Angle Θ between the direction of an incoming wave (rs) and the vector defining
the position of a receiver (rm).

Finally, by using the relations from equations (2.45) and (2.46), the expression yielding
the total acoustic pressure on the surface of a rigid sphere simplifies to:

pt(ra∣rs) = −
1

4πka2

∞

∑
l=0

h
(2)
l (krs)
h
′(2)
l (ka)

(2l + 1)Pl(cosΘ) (2.48)

Inserting the source term corresponding to a point source, that is jωρQ = jckρQ, we
finally have:

pt(ra∣rs) = −
jρcQ
4πa2

∞

∑
l=0

h
(2)
l (krs)
h
′(2)
l (ka)

(2l + 1)Pl(cosΘ) (2.49)
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The numerical evaluation of the spherical radial functions entering in equation (2.49) is
facilitated by the following relationships

h
(2)
l (x) ≡ jl(x) − jyl(x) =

√
π

2x
[Jl+1/2(x) − jYl+1/2(x)] , (2.50)

where Jl(x) and Yl(x) are respectively the Bessel and Neumann functions, which are both
implemented in MATLAB®. The derivative of the spherical Hankel function h′(2)l (x) may
be computed by using the important recurrence relation [WA04]:

f ′l (x) = fl−1(x) −
n + 1
x

fl(x), (2.51)

where fl may be replaced by any of the spherical functions jl, yl, h(1)l or h(2)l .

2.6.4 Plane wave expansion

We can derive similar expression for the case of an incident plane wave coming from the
direction θs, φs. In order to compute the spherical wave expansion of the incident plane
wave, we can take the limit of equations (2.40) and (2.41) as rs →∞. Considering firstly
the limit of the Green’s function in equation (2.40), for the denominator we simply have
∥r − rs∥ ≈ rs [WA04], while for the numerator we need to be more precise because of the
complex exponential, which leads to:

∥r − rs∥ ≈ rs − rsn ⋅ r, asrs →∞, (2.52)

where rsn is a unit vector pointing in the direction of rs. To obtain the limit of equation
(2.41) as rs →∞, we may use the far field approximation of the spherical Hankel function
of second kind [WA04]:

h
(2)
l (krs) ≈ jl+1 e

−jkrs

krs
(2.53)

Inserting these limits back into equations (2.40) and (2.41) yields

e−jkrs

4πrs
ejkrsn ⋅r = −jk

∞

∑
l=0

jl(kr)jl+1 e
−jkrs

krs

l

∑
m=−l

Y m
l (θ, φ)Y m∗

l (θs, φs). (2.54)

Simplifying both sides yields the spherical expansion of a plane wave:

ejkrsn ⋅r = 4π
∞

∑
l=0

jljl(kr)
l

∑
m=−l

Y m
l (θ, φ)Y m∗

l (θs, φs). (2.55)
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Therefore we directly obtain the blm coefficients for an incident plane wave by compar-
ing equation (2.55) to the expression which describes an incident field solution to the
Helmholtz equation (2.34), yielding

blm = 4πjlY m∗
l (θs, φs). (2.56)

Inserting these coefficients into equation (2.39) which describes the total pressure field
(incident plus scattered) on the surface of a rigid sphere and using the same simplifications
as for the spherical wave case, yields the acoustic pressure on the surface of a rigid sphere
due to a plane wave

pt(ra∣(θs, φs)) =
−j
k2a2

∞

∑
l=0

jl

h
′(2)
l (ka)

(2l + 1)Pl(cosΘ) (2.57)

As we have seen, all the expressions describing the acoustic pressure field on the surface
of a rigid sphere depend on a summation over an infinite number of orders l. However, in
practice the summation must be truncated up to a finite order L. In the next section we
investigate the errors due to the truncation and provide some guidelines for the selection
of a reasonable truncation order.

2.6.5 Study of the truncation error

The computation of the total pressure field on the surface of a rigid sphere, either due
to a point source (equation (2.49)) or to a plane wave (equation (2.57)), requires the
evaluation of a sum over an infinite number of orders l. In practice, the sum must be
approximated by a truncated version up to a given order L. The aim of this section
is to provide some guidelines on how to choose a suitable order L which gives a good
balance between approximation errors and computational cost. As a reference, we firstly
compute the approximation errors for the case of an open sphere since in this case we
have a closed-form expression (2.40) of the free-field Green’s function. In the studied
case (i.e. sources outside the evaluated domain), the expansion of equation (2.40) in the
spherical harmonics domain is given by equation (2.41) for rs > r. In order to estimate
the approximation errors, we consider a sphere of radius a = 0.145 m with 31 microphones
and 200 sources at varying distances from the center of the array. The source’s azimuth
and elevation angles are respectively drawn from U(0,2π) and U(0, π), where U stands
for the uniform distribution. The average magnitude errors are evaluated as

εmag =

√
∑Mi=1∑Nj=1 ∣G(ri∣rj) − Ĝ(ri∣rj, L)∣

2

√
∑Mi=1∑Nj=1 ∣G(ri∣rj)∣2

, (2.58)
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where M is the number of microphones, N is the number of simulated sources and L the
order used in the expansion. In turn, G(ri∣rj) is the exact expression of Green’s function
given in (2.40) and Ĝ(ri∣rj, L) its approximation up to order L. The average phase error
is defined as:

εphase = ( 1
MN

M

∑
i=1

N

∑
j=1

(∠G(ri∣rj) −∠Ĝ(ri∣rj, L))2)
1/2

. (2.59)

We evaluate the errors for orders L ranging from 0 up to 40 and for a wide frequency
range. Figure 2.7 shows the magnitude errors in dB as a function of frequency and order
L for different distances from the center of the array. We defined ρ in the figure as the
adimensional distance (ρ = rs/a). We only show the results for distances up to 1.5m since
results for higher distances were essentially the same. Firstly, we notice a somewhat lin-
ear behavior of errors with frequency as ρ increases. In addition, we notice that above a
given order depending on the frequency, the errors stop to decrease and reach the level
of machine precision (≈ 10−16). We remark that distances smaller than 0.3 m were not
consider in the analysis since in practice the array is normally not placed that close to a
surface. Similar results were obtained for the averaged phase error (see Figure 2.8). Com-
paring to the previous results, we notice that the phase errors tend to zero faster than the
magnitude errors, indicating that a criterion to bound the order L for magnitude errors
may suffice for the phase.
Given this reference, we now proceed to the analysis for the rigid sphere. Unfortunately,

we have no closed-form solution for the total pressure on the rigid sphere since the scat-
tering effects can only be evaluated in the spherical harmonics domain. Therefore, to
use as a “true” reference we evaluate the expression in equation (2.48) up to an order
L = 50 (note that this choice was based on the results for the open sphere). Indeed, we
see in Figure 2.9 that the results are very similar to the open sphere case and the same
observations follows.

The definition of a normalized frequency as in reference [DM98], may help us to provide
some guidelines for a good choice of the order L

µ = f 2πa
c

= 2πa
λ

= ka, (2.60)

where 2πa/c is the time that it takes for a wave to travel once around the sphere. Notice
that when µ = 1 the wavelength equals the circumference of the sphere. As a rule of
thumb, to achieve approximation errors in the order of 10−9 we may choose L as

L > 1.2ka + 8(ρ + 1)
ρ

, ρ > 1, (2.61)
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Figure 2.7: Averaged magnitude error as given in equation (2.58) for the open sphere
configuration. The results are given for different distances (rs) from the center of the
array and a frequency range between 10 Hz to 5 kHz. Results for longer distances
rs > 1.5 m are not shown since they are essentially identical.
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Figure 2.8: Averaged phase error in degrees [○] as given in equation (2.59) for the open
sphere configuration. The results are given for different distances (rs) from the center of
the array.
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Figure 2.9: Averaged magnitude error as given in equation (2.58) for the rigid sphere
configuration. The results are given for different distances (rs) from the center of the
array. Results for longer distances rs > 1.5 m are not shown since they are essentially
identical.
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Figure 2.10: Averaged phase error in degrees [○] as given in equation (2.59) for the rigid
sphere configuration. The results are given for different distances (rs) from the center of
the array.

45
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0066/these.pdf 
© [A. Pereira], [2013], INSA de Lyon, tous droits réservés



with ρ = rs/a the adimensional distance from the center of the array. This choice is
illustrated in Figure 2.11. It can be seen that this criterion allows one to keep the ap-
proximation errors small and avoids the computation of unnecessary orders specially at
low frequencies, which leads to a saving in computational time.
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Figure 2.11: Averaged magnitude error as a function of normalized frequency (ka) for
the rigid sphere configuration. The results are given for different distances (rs) from the
center of the array. The figure also shows the regression line from equation (2.61) used to
bound the number of orders to be evaluated.

2.7 Causality analysis of identified sources
As we have noticed, the proposed method is based on a rather strong assumption of a
free-field propagation of acoustic waves inside the enclosure. In practice, this is usually
not the case in the interior of vehicles such as buses, due to the presence of acoustic
reflecting materials. Therefore, depending on the strength of the reflected waves, they
will have a significant contribution to the measured acoustic pressure. As a consequence,
in addition to the original sources, their first order reflections may be reconstructed, what
can be misleading if one essentially wishes to identify the original sources of noise. On
the other hand, the knowledge of the regions where the reflection takes place may be
advantageous in some situations. We can imagine, for instance a situation in which no
design modifications can be performed around the original noise source, one alternative
would be to eliminate its reflections by adding absorbing material on those regions where
reflections take place.

46
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0066/these.pdf 
© [A. Pereira], [2013], INSA de Lyon, tous droits réservés



In order to obtain further insight into the reconstructed source field, a technique
based on a causality analysis of the identified sources is proposed. Let us first consider the
simplified model represented in Figure 2.12. It basically models a sound source positioned
at r1 and radiating inside an enclosure. Assuming that one boundary is a sound reflective
surface, a first order reflection will take place at position r2. Thus, the microphone array
will perceive the two incoming waves and since they are originated from the same source
they are mutually correlated. In this case, the reconstructed source field will indicate
the presence of two sources, one corresponding to the reflected wave and another to
the original sound source. Assuming that the user has few a priori information on the
position of real sources before making the experiment, it is not evident to decide whether
the identified sources are actually two different sources or they share a source-reflection
relationship.

p(rm)
rm

q(r1)

q(r2)

Figure 2.12: Simplified model of the underlying problem. The enclosure is modeled by
a set of equivalent sources and the sound field is measured by an array of microphones.
The figure shows a sound source located at the position r1 along with its first reflection
which takes place at position r2.

The basic idea of the proposed approach is to analyze the causality relations between
the reconstructed sources in order to identify those corresponding to reflected waves.
Based on Cauchy’s Integral Theorem, a linear system is causal if the real and imaginary
parts of its corresponding frequency response function (FRF) are the Hilbert transform
pair [BK98]. Assuming that R(ω) and J(ω) are respectively the real and imaginary parts
of a frequency response function H(ω), they should satisfy the following Hilbert transform
pair [BK98]:

R(ω0) = −
1
π ∫

∞

−∞

J(ω)
ω − ω0

dω and J(ω0) =
1
π ∫

∞

−∞

R(ω)
ω − ω0

dω, (2.62)
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Thus, the causality relation between a pair of identified sources can be checked by
the Hilbert transform pair of the real and imaginary parts of their corresponding transfer
functions, which is given by:

H12(ω) =
q(r2, ω)
q(r1, ω)

and H21(ω) =
q(r1, ω)
q(r2, ω)

, (2.63)

If H12(ω) satisfies equation (2.62), then q(r1) must have caused q(r2), conversely, if
H21(ω) satisfies equation (2.62) then q(r2) must have caused q(r1). In this particular case,
it is clear that q(r2) is a reflection of q(r1) and thus H12(ω) should satisfy the Hilbert
transform pair. This approach may be used as a post-processing tool for the source
reconstruction method, thus providing a better comprehension of identified sources. An
application is demonstrated in Chapter 5 by means of a numerical simulation as well as
an experimental validation.
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3
Regularization of the inverse problem

As we have seen in Chapter 2, the achievement of useful source reconstruction results
critically depends on the regularization of the problem. More precisely, it depends on the
actual setting of a reasonable regularization parameter. Due to its relevance and impor-
tance to the proposed method, this chapter is dedicated to the matter of regularization
of the inverse problem.

We start by introducing few preliminary aspects of regularization, with emphasis on
the inherent instability of ill-posed problems with respect to measurement errors. A brief
review of the most widely used regularization techniques is then provided. Next, we
address the acoustic inverse problem within the Bayesian framework, which inherently
yields to regularization mechanisms and particularly offers natural justification for the
use of the well-known Tikhonov regularization.

In the second part of this Chapter we provide further insight into the issue of selecting
the necessary amount of regularization, which is yet a critical aspect of most regularization
techniques. In this context, we show how to pursue within the Bayesian formulation in
order to adjust the regularization parameter. Furthermore, we also discuss the intuitive
L-curve method, for which an extension of its criterion is proposed.

Finally, an important contribution of this work, the last part is devoted to an exten-
sive comparison of parameter choice methods by means of numerical and experimental
validations. The guidelines that shall be provided here serve not only for the purpose of
this thesis but also for anyone who faces inverse problems in acoustics.

3.1 Preliminary aspects of regularization
In Section 2.3.1 we briefly introduced the concept of “regularization” of a discrete ill-posed
problem. Basically, the idea behind regularization is to “modify” the original problem by
imposing requirements to the solution, such that the new problem is more stable (less
sensitive to measurement errors) and approximates the exact solution.
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The immediate question that follows from the above definition is the practical meaning
of the word “stable”. To answer this question we propose to investigate the inherent
instability of ill-posed problems by means of the so-called discrete Picard Condition. The
latter follows from the Picard Condition for the continuous inverse problem and from
the relationship between the SVD and the singular value expansion (SVE). A complete
analysis of the mathematical background which leads to this condition is outside the scope
of this thesis and the reader is referred to references [Han90,Han98,Han10] for a thorough
description.

3.1.1 The discrete Picard condition

We start by rewriting the expression for the reconstructed source field in equation (2.8) in
terms of the singular value decomposition (SVD) of the rectangular matrix G. We thus
have:

q̂ = V⌈S⌋−1UHp =
M

∑
i=1

uHi p
si

vi, (3.1)

where si is the i-th singular value on the diagonal of matrix S. We recall that this is
the “naive” solution of the problem, that for underdetermined systems corresponds to the
least norm solution. From the rightmost expression in equation (3.1) we emphasize the
ratio between the coefficients ∣uHi p∣ and the singular values si, which gives us an indication
of how the measured data is coupled to the inverse model.

This discussion brings us to the following criterion for the satisfaction of the discrete
Picard condition (DPC). The DPC is satisfied if for all numerically non-zero singular
values si, the coefficients ∣uHi p∣, on the average, decay to zero faster than si [Han90]. This
is to avoid that the smaller singular values si over amplify the coefficients ∣uHi p∣, yielding
a useless solution for any practical purposes. We emphasize at this point that the decay
do not need to be monotonic, as long as, on the average the coefficients ∣uHi p∣ decay faster
than si.

The checking for this condition can be done by visual inspection of a plot, as the
example shown in Figure 3.1. However, for an acoustic problem which is generally solved
for each frequency line, this approach is not feasible. In reference [Han90] Hansen pro-
posed the moving geometric mean to numerically check for the satisfaction of the Picard
condition:

µi = s−1
i

⎛
⎝

i+k

∏
j=i−k

∣uHj p∣
⎞
⎠

1/(2k+1)

, i = k + 1, . . . ,M − k (3.2)

where k is the size of the averaging window and M is the number of numerically non-zero
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singular values si. Typical values of k are 1, 2 or 3 and the Picard condition is satisfied up
to the i-th term for which the coefficients µi decay monotonically to zero. In acoustics, the
Picard condition was used by Gauthier et al [GCP+11] to compare different microphone
array configurations for sound field reproduction.

An example of the Picard plot extracted from numerical simulations is shown in Figure
3.1, for: (a) an exact right hand side (i.e. no noise in the simulated acoustic pressure)
and (b) acoustic pressure perturbed with additive complex Gaussian noise. As we can
see, for the noise-free case the coefficients ∣uHi p∣ and the singular values exhibit a similar
decay and the DPC seems to be satisfied. On the other hand, when noise is added to the
acoustic pressure, the coefficients ∣uHi p∣ settle at some level depending on the amount of
noise in p. If, for the latter case, the “naive” solution in equation (3.1) is computed, it
will be essentially dominated by those terms from which the DPC is not satisfied. For
this particular case, it corresponds to i > 19 for a signal-to-noise ratio of 50 dB and i > 5
for a SNR of 20 dB.
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Figure 3.1: Singular values si and coefficients ∣uHi p∣ for: (a) noise-free simulated acoustic
pressure; (b) acoustic pressure perturbed with additive complex Gaussian noise of different
signal-to-noise ratio (SNR).

The violation of the discrete Picard condition is a simple explanation for the insta-
bility of an ill-posed inverse problem with respect to measurement errors. Finally, the
above discussion gives us a hint on how to handle this situation, particularly we want
to filter those coefficients that violate the discrete Picard condition and over amplify the
measurement noise. This is precisely the aim of the regularization techniques which will
be discussed in the next section.
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3.2 Regularization techniques

From the previous discussion it became clear that the noisy coefficients ∣uHi p∣ associated
to the smaller singular values are responsible for useless reconstructed source fields using
the “naive” solution in Equation (3.1). An approach that immediatelly follows is to avoid
those noisy coefficients by truncating the summation in equation (3.1) up to k components:

q̂k =
k

∑
i=1

uHi p
si

vi, (3.3)

where k must be chosen in order to keep only the significant components, thus avoiding the
amplification of errors due to the inversion of the smaller singular values. This method
is often called truncated SVD (TSVD) or spectral cut-off. The choice of a reasonable
truncation parameter k may be done by inspection of the Picard plot or more commonly
by parameter selection methods which will be investigated in the next section.

As previously introduced in Section 2.3.1, another regularization approach is the well-
known Tikhonov regularization, which is certainly the prevailing approach in acoustics
and vibration problems [NY00,YN00,Wil01,TT03,MT04,Lec09]. Similarly to the TSVD,
Tikhonov regularization corresponds to a filtered version of the inverse operator. As we
shall see later on in this chapter, Tikhonov regularization may also be naturally derived
from a Bayesian perspective. The Tikhonov solution for the reconstructed source field may
be written in terms of a explicit relation between singular values and the regularization
parameter, as follows

q̂η =
M

∑
i=1

s2
i

s2
i + η2

uHi p
si

vi, (3.4)

where the terms s2
i /(s2

i +η2) are often referred to as filter factors, which are approximately
1 for si ≫ η and approach s2

i /η2 for si ≪ η. From this analysis we observe that Tikhonov
regularization imposes a smoother filtering of singular values in comparison to the cut-off
filter of TSVD. However, a critical aspect of the above techniques is how to automatically
determine a reasonable amount of “filtering”, especially when no a priori information
about the noise in the data is available. For TSVD it translates into the setting of the
truncation parameter k and for Tikhonov regularization into the parameter η.

Recent publications in acoustics propose different regularization techniques, such as it-
erative methods (beneficial when dealing with large-scale problems) [VWHH12], Tikhonov
regularization in its general form (i.e. by the use of discrete smoothing norms) [GCP+11],
and regularization techniques by enforcing an a priori of sparsity [CDP+12,CMDP13], to
cite only a few. Most of them still depend on either a regularization parameter that must
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be optimally tuned or on a stopping rule for the iterative methods.
The issue of selecting a good amount of regularization is still the subject of current

research. Several strategies have been developed in this perspective, however, at the
present time, there is still no absolutely universal method that is robust and always
produces good results. Amongst the parameter choice methods traditionally used in the
field of acoustics and vibration, we may cite the Generalized Cross Validation (GCV)
[GHW79], the L-curve [HO93], the Normalized Cumulative Periodogram (NCP) [HKK06,
RO08] and the Morozov discrepancy principle [MNA84]. The latter depends on a good
estimate of the measurement noise level, that may not be available in practice. NCP is
a relatively recent method whose idea is to track the aspect of the residual error as the
regularization parameter changes and select the parameter for which the residual can be
considered as close as possible to white noise. The L-curve, due to its intuitive character
and ease of implementation, is probably one of the most widely used parameter choice
method in acoustics [SHRH03,ZJBC09,LMG09].

Several papers in the literature provide comparisons of different parameter choice
methods, either applied in acoustics [Wil01, KN04, GH08, Lec09, SHRH03, MT04] or in
vibrations [CTT07]. In a more general context (i.e. outside the field of acoustics), ref-
erence [BL11] provides an extensive comparison of several parameter choice methods by
means of a large simulation study. A general conclusion is that the behavior of each
method is very problem-dependent and no consensus on which one is the best has been
reached.

By introducing a Bayesian formulation of the acoustic inverse problem, the work car-
ried by J. Antoni [Ant12] has afforded new perspectives into the automated selection of
the regularization parameter.

Among the aforementioned parameter selection methods, we discuss in more detail
the L-curve, for which we propose an extension to its criterion, as well as the criteria
derived from a Bayesian approach. In the last part of this Chapter we present an extensive
comparison of methods by means of numerical simulations and an experimental validation.

3.3 Regularization within the Bayesian framework

Before we discuss the issue of regularization into detail, we shall provide a brief intro-
duction to the Bayesian formulation (which affords a statistical interpretation to the
inverse problem) as well as point out its main differences from traditional deterministic
approaches.

The first very practical difference between deterministic and statistical approaches is
that, in the latter, one admits lack of information by modeling the problem unknowns as
random variables and the nature of uncertainty is coded into probability density functions
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[Rob01, CS08]. In addition, the Bayesian framework offers a natural way of taking into
account pieces of qualitative information which are available prior to measurements. The
application of the statistical point of view to inverse problems leads us to distinguish two
major parts, the “likelihood” model and the “prior” model. The essence of both models
and their direct interpretation into source reconstruction problems are:

• likelihood model: expresses the probability distribution of the measured data (acous-
tic pressure in this case) in terms of the problem unknowns, i.e. source coefficients.
It is completely established by the knowledge of the direct model and the noise
probability distribution.

• prior model: this part is responsible to incorporate any prior information on the
problem unknowns (source parameters) into the a priori probability density func-
tion.

Bayes’ rule tells us how to assemble these two pieces of information in order to obtain
the “posterior” probability density function (pdf), that is the “inverse probability” of the
source field given the measurement data. Indeed, in the Bayesian framework, the “pos-
terior” pdf is the solution of the inverse problem. Another difference from deterministic
approaches follows from this discussion: the concept of “solution” is not reduced to a
single value but to a probability distribution of possible values from which we can draw
different estimates, the maximum a posteriori (MAP) estimator being a common choice.
In the next sections, we shall see how particular choices for the likelihood and prior models
naturally gives rise to the classical Tikhonov regularization and how we can pursue within
the Bayesian formalism to intrinsically adjust the necessary amount of regularization.

Let us first rewrite the underlying problem given in equation (2.9) by explicitly ex-
panding the unknown source field onto a known spatial basis φk(r):

q(r) ≈
K

∑
k=1
ckφk(r), K ≥M, (3.5)

where ck are source coefficients and the spatial basis is assumed to be normalized such
that ∫Γ ∣φk(r)∣2dΓ(r) = 1. Inserting the expansion into equation (2.9) yields the following
direct model in matrix form:

p = Hc + n (3.6)

where p ∈ CM is a vector of measured acoustic pressure, c ∈ CK a vector of source
coefficients, and n ∈ CM accounts for measurement noise. The matrix H ∈ CM×K is the
associated propagator with elements given by [H]ij = ∫ΓG(ri∣r)φj(r)dΓ(r), i = 1, ...,M ,
j = 1, ...,K. Notice that since the problem is formulated in the frequency domain, we are
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working with complex quantities. The corresponding inverse problem basically consists
in identifying K unknown source coefficients ck. In the next sections we shall see how the
Bayesian formulation can be used to solve this problem by assigning probability density
functions to the variables.

3.3.1 Likelihood function

The most natural variable in equation (3.6) to be represented by a pdf is the measurement
noise in vector n. In this context, we assign a complex Gaussian pdf to model n. A
plausible justification for this choice results from the fact the we are working in frequency
domain and the acoustic pressure is measured in time domain. Thus, a Fourier transform
is usually applied in order to obtain the acoustic pressure at a given angular frequency ω.
Indeed, it is the passage from time to frequency domain that, owing to the Central Limit
theorem applied to the Fourier Transform [Cra46], cause the variable to tend towards a
Gaussian distribution.

In this work n is assumed with zero mean, i.e. E{n} = 0, where E stand for the
expected value; this is because any residual bias should be captured by the direct model
as is inherent to the definition of “measurement” noise. The noise covariance is de-
fined as E{nnH} = β2Ωn where H stands for the conjugate transpose operator, β2 is
the unknown expected noise energy, and Ωn is a known matrix which gives the correla-
tion coefficients between the different components the noise field, normalized such that
Trace{Ωn} = dim(n) =M . In the case in which no a priori information on the nature of
the noise field is available, one may simple choose Ωn equal to the identity matrix, i.e. a
spatially white noise. Thus, the probability density function of the noise, noted by [n∣β2]
is given by the following complex Gaussian distribution

[n∣β2] = NC(0, β2Ωn) =
1

πMβ2M ∣Ωn∣
exp (−β−2∥n∥2

Ωn
) , (3.7)

where the notation NC stands for “complex Normal” and ∣Ωn∣ is the determinant of matrix
Ωn, which is ∣Ωn∣ = 1 for Ωn = I. In addition, by notational convention ∥n∥2

Ωn
= nHΩ−1

n n
represents the squared norm of vector n with metric Ωn. Consequently, the pdf of the
measured pressure p is also a complex Gaussian

[p∣c, β2] = NC(Hc, β2Ωn) =
1

πMβ2M ∣Ωn∣
exp (−β−2∥p −Hc∥2

Ωn
) , (3.8)

with the pdf [p∣c, β2] defined as the “likelihood function”, which gives us the direct
probability of the measurement data allowed by the model in equation (3.6) given the
random fluctuations of the measurement noise.
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3.3.2 Prior probability density function

In this section we discuss the prior probability density function which is assigned to
the unknown source parameters. Particularly, the prior pdf expresses what one knows
or believes about the unknown variables of interest before making the experiments and
shows much more flexibility than the likelihood model.

Our first assumption is that the complex-valued source field is a priori of zero mean
(in the ensemble average) and with covariance matrix E{ccH} = α2Ωc where α2 is the
unknown source energy and Ωc a known matrix of correlation coefficients. In addition,
the matrix Ωc is normalized such that Trace{Ωc} = dim(c) = K. The setting of Ωc

depends on the actual problem and some a priori information on the source field that the
user may possess. A typical choice is to assume that values at two different positions on
the source are uncorrelated (i.e. a spatially white source field), which leads to Ωc = I.
Indeed, the latter is an implicit assumption to most methods based on deterministic
approaches. We finally remark that this is an a priori assumption and it does not impede
the reconstruction of a sources presenting mutual correlation.

The last assumption concerns the prior probability density function of the unknown
source parameters. Again, a complex Gaussian distribution is chosen, leading to:

[c∣α2] = NC(0, α2Ωc) =
1

πKα2K ∣Ωc∣
exp (−α−2∥c∥2

Ωc
) , (3.9)

where conditioning on α2 is explicitly reminded. The above choice is motivated by prac-
tical reasons, specifically, it will lead to tractable calculations and naturally give rise to
well-known regularization mechanisms. In addition, we anticipate that the choice of the
prior pdf will be directly related to the traditional regularization concept. In this context,
the particular choice of a complex Gaussian will act such as to favor those solutions of
low energy.

3.3.3 Posterior probability density function and MAP estimate

The solution to the inverse problem is finally returned by the posterior pdf [c∣p, α2, β2]
which assigns probabilities to possible values of coefficients ck’s once the measurements
are taken. Bayes rule indicates how this pdf is obtained from updating the prior pdf
[c∣α2] with the likelihood function [p∣c, β2]. Namely,

[c∣p, α2, β2] = [p∣c, β2][c∣α2]
[p∣α2, β2]

, (3.10)

58
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0066/these.pdf 
© [A. Pereira], [2013], INSA de Lyon, tous droits réservés



where

[p∣α2, β2] = ∫ [p∣c, β2][c∣α2]dc (3.11)

is the “evidence” which will play a major role in deriving the Bayesian regularization
criterion later on in section 3.4.1. As we can notice from equation (3.10), Bayes rule
allows us to express an inverse probability in terms of direct probabilities. Once the
full pdf [c∣p, α2, β2] is known, a relevant point estimate of the unknown vector c can be
returned by the most probable value after observing the data, i.e. the maximum of the
posterior pdf in equation (3.10) – the so-called “maximum a posteriori estimate” (MAP).

In what follows, we explain how to determine the MAP estimate for the unknown
source field c. Firstly, we substitute for the pdf’s given in equations (3.8) and (3.9) into
the right hand side of equation (3.10). Notice that the denominator (i.e. the “evidence”)
in equation (3.10) does not depend explicitly on the unknown source vector c and thus will
not enter into the maximization. Next, taking the opposite of the logarithm we convert
maximization into minimization and the MAP estimate of c is the vector which minimizes
the following quadratic cost function:

ĉ = Argmax{NC(Hc, β2Ωn)NC(0, α2Ωc)}

= Argmin{− ln(NC(Hc, β2Ωn)NC(0, α2Ωc))}

= Argmin{M ln(β2) +K ln(α2) + β−2∥p −Hc∥2
Ωn

+ α−2∥c∥2
Ωc

} . (3.12)

Expanding the terms in the third equality explicitly depending on c yield the following
cost function:

J(c,c∗) = (pH − cHHH)Ω−1
n (p −Hc) + η2cHΩ−1

c c, (3.13)

in which the following relation was introduced

η2 = β
2

α2 . (3.14)

Taking the derivative of equation (3.13) with respect to c and setting the result to zero
yields

dJ(c,c∗)
dc

= cHHHΩ−1
n H + η2cHΩ−1

c − pHΩ−1
n H = 0

= (HHΩ−1
n H + η2Ω−1

c )c = HHΩ−1
n p, (3.15)
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which finally yields the estimate:

ĉ = (HHΩ−1
n H + η2Ω−1

c )−1HHΩ−1
n p. (3.16)

Keeping in mind that the system is underdetermined, i.e. K ≥ M , a more convenient
equivalent expression for ĉ can be obtained by using the so-called matrix inversion lemma
[Hjø11], which is given by:

(A +BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1, (3.17)

with A,B,C and D arbitrary matrices with the constraint that A and C are invertible.
Applying the matrix inversion lemma to the matrix:

(HHΩ−1
n H + η2Ω−1

c )−1

in equation (3.16), with the following definitions

A = η2Ω−1
c , B = HH , C = Ω−1

n , D = H,

and after several algebraic manipulations (see Appendix C.1 for a detailed derivation),
yields the following result, :

ĉ = ΩcHH (HΩcHH + η2Ωn)
−1 p. (3.18)

Indeed, the consideration of a complex Gaussian prior through the Bayesian framework
has “mechanically” produced a regularized solution of the Tikhonov type – see e.g. Refs.
[Han98, TA77]. The significance of the regularization parameter η2 given in equation
(3.14) is clearly that of a noise-to-signal ratio (NSR) (ratio of expected noise energy β2

to expected source energy α2). A similar interpretation is found in early references on
classical NAH [Wil01], outside the Bayesian framework, and in statistical approaches such
as SONAH [Hal09].

Further insight into the regularized solution (3.18) can be obtained by considering the
following singular value decomposition:

Ω−1/2
n HΩ1/2

c =
M

∑
k=1
skukvHk (3.19)

with right hand side parameters as previously discussed (see Section 2.3.2). Substituting
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for into equation (3.18), one has the simple result

ĉ = Ω1/2
c V ⌈ sk

s2
k + η2 ⌋UHΩ−1/2

n p (3.20)

where ⌈ak⌋ symbolizes a diagonal matrix with generic diagonal element ak. As we have
previously seen in Section 3.2, this is the structure of a generalized pseudo-inverse of H
where the smallest singular values sk are progressively filtered out from the inversion, i.e.
sk/(s2

k+η2) ≃ 1/sk if sk ≫ η2 and sk/(s2
k+η2) ≃ 0 if sk ≪ η2 so as to prevent instability due

to over-amplification of measurement noise or simply numerical overflow when H is ill-
conditioned. However, as common to all regularization techniques, the difficulty remains
in how to optimally adjust the value of the parameter η2 when no information on the
noise level is available. The aim of the next section is to explain how this is obtained
within the Bayesian formalism.

3.4 Choosing the regularization parameter

3.4.1 Bayesian regularization criteria

In this section we discuss how to pursue within the Bayesian formalism in order to estimate
η2 directly from the measured data and the model which relates the latter to the problem’s
unknowns. Indeed, this is a great advantage of the Bayesian approach which naturally
answers this question, conversely to other methods cited in Section 3.2, which are rather
imposed ad hoc. From now on, we distinguish two possible strategies: (1) the estimation
of η2 indirectly as the ratio of the most probable values of β2 and α2 and (2) the estimation
of η2 directly from the marginal pdf of η2 by selecting its value of maximum probability.

More precisely, the first strategy leads to the following problem:

η̂2
Joint =

β̂2

α̂2 , where (α̂2, β̂2) = Argmax[α2, β2∣p], (3.21)

with [α2, β2∣p] the pdf of α2 and β2 given the measurements p. In turn, the second
strategy formally writes:

η̂2
MAP = Argmax[η2∣p] where [η2∣p] = ∫ [α2, β2 = α2, η2∣p] ∣∂β

2

∂η2 ∣dα
2, (3.22)

with ∣∂β2/∂η2∣ = α2 standing for the Jacobian of the change of variables (α2, β2)↦ (α2, η2).
In what follows, the two strategies are discussed into a unified treatment since they

share the same elements, namely: (1) the evaluation of the likelihood function [p∣α2, β2];
(2) the definition of the prior [α2, β2] and (3) the evaluation of the posterior pdf [α2, β2∣p].
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In addition, for the subsequent developments we consider the reconstructed source field
expressed in terms of the singular value decomposition, i.e. equation (3.20).

3.4.1.1 Likelihood function for regularization

The likelihood function [p∣α2, β2] is obtained from marginalizing the likelihood function
[p∣c, β2] of section 3.3.1 over c, which is nothing else than the “evidence” defined in
equation (3.11). Based on equations (3.8) and (3.9), the exact expression of the likelihood
is given as follows:

Proposition 1.

[p∣α2, β2] = NC (0, α2HΩcHH + β2Ωn) (3.23a)

=
exp (−α−2∑Mk=1

∣yk ∣
2

s2
k
+η2 )

πMα2M ∣Ωn∣∏M
k=1(s2

k + η2)
(3.23b)

where yk is the k-th element of vector

y = UHΩ−1/2
n p, (3.24)

the projection of the measurements on the array subspace.

Proof. : see Appendix D.1

3.4.1.2 Prior pdf for regularization

The Bayesian framework offers the possibility to take any a priori information that the
user might have on either the noise β2 or source energies α2. This is known as a hierarchical
Bayes approach [Rob01]. In this work, we assume that no knowledge on these parameters
is available a priori, and thus we simply set the prior pdf [α2, β2] ∝ 1 (with ∝ the
“proportional” sign). This choice may be viewed as the “worst case”, in the sense that all
outcomes of those parameters have the same probability a priori.

3.4.1.3 Joint pdf of noise and source energies

Given all the above preliminaries, one can now evaluate the joint pdf of the parameters
(α2, β2) given the measurements in p, that is

[α2, β2∣p] ∝ [p∣α2, β2][α2, β2]
= NC (0, α2HΩcHH + β2Ωn) , (3.25)
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with the prior [α2, β2] ∝ 1 as discussed in the previous Section. In addition, Bayes’
rule has been used and all quantities not explicitly depending on α2 and β2 have been
factored out. Again, we turn maximization into minimization by taking the opposite of
the logarithm of equation (3.25) and we insert the expression of the complex Gaussian
given in equation (3.23b). Finally, the MAP estimates of (α2, β2) are given as follows:

(α̂2, β̂2) = Argmax{ln (NC (0, α2HΩcHH + β2Ωn))}

= Argmin{M lnα2 + ln ∣Ωp∣ + ∥p∥2
Ωp

} (3.26)

where Ωp = α2HΩcHH +β2Ωn. The cost function to be minimized with respect to α2 and
β2 then reads:

JJoint(α2, β2) =
M

∑
k=1

ln (α2s2
k + β2) +

M

∑
k=1

∣yk∣2
α2s2

k + β2 , (3.27)

as expressed in terms of the singular value decomposition (3.19) and the elements of vector
y defined in equation (3.24).

The minimization of the cost function JJoint(α2, β2) is detailed hereafter. Let us first
introduce the change of variables (α2, β2)↦ (α2, η2). Then, setting the derivative of

JJoint(α2, η2) =
M

∑
k=1

ln (s2
k + η2) + 1

α2 (
M

∑
k=1

∣yk∣2
s2
k + η2) +M lnα2 (3.28)

with respect to α2 to zero, one immediately gets the following MAP estimate of α2

α̂2 = 1
M

(
M

∑
k=1

∣yk∣2
s2
k + η2) . (3.29)

Unlike the source energy, there is no closed-form solution for the regularization pa-
rameter η2. Substituting for α̂2 in expression (3.28), we finally have

η̂2
Joint = Argmin JJoint(η2) (3.30)

with

JJoint(η2) ≜ JJoint(α̂2, η2) −M

JJoint(η2) =
M

∑
k=1

ln (s2
k + η2) +M ln α̂2. (3.31)

Thus, the estimate of the regularization parameter η̂2
Joint is obtained by minimization

of the above cost function with respect to η2. In practice, this minimization can be
carried out by firstly defining a grid of candidate values for η2. A convenient choice for
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latter should span the range of singular values given by the decomposition in (3.19). For
instance, the lower and higher values of η2 respectively at the order of the minimum and
maximum singular value. Next, a refined search can be carried out by techniques such
as the dichotomy method. In turn, the MAP estimate of the noise energy, if needed, is
given by β̂2 = α̂2 × η̂2

Joint.

3.4.1.4 Marginal pdf of the regularization parameter

As anticipated in Section 3.4.1, the second strategy to estimate the regularization pa-
rameter from the data is to directly find its posterior pdf, [η2∣p], without requiring the
intermediate estimates of the noise and source energies, α̂2 and β̂2. The exact expression
of [η2∣p] is carried out by marginalization of the joint pdf [α2, β2∣p] in equation (3.25).
Particularly, we obtain the following result:

Proposition 2.

[η2∣p]∝
⎛
⎝
η2 (

M

∑
k=1

∣yk∣2
s2
k + η2)

M−2 M

∏
k=1

(s2
k + η2)

⎞
⎠

−1

. (3.32)

Proof. : see Appendix D.2

The value of maximum probability of the above pdf can be obtained using the same
strategy as before. More specifically, we take the opposite of the logarithm of (3.32) thus
turning maximization into minimization. After few algebraic manipulations we obtain
the following MAP estimate of the regularization parameter:

η̂2
MAP = Argmin JMAP(η2) (3.33)

with

JMAP(η2) ≜
M

∑
k=1

ln (s2
k + η2) + (M − 2) ln α̂2

= JJoint(η2) − 2 ln α̂2, (3.34)

and α̂2 as previously given in equation (3.29).

3.4.1.5 Comparison of strategies

It is anticipated that the two estimates η̂2
Joint and η̂2

MAP found in Sections 3.4.1.3 and
3.4.1.4 must be closely related – since JMAP = JJoint−2 ln α̂2 according to equation (3.34) –
although they have no reason to be identical since the MAP estimate of a ratio is generally
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Figure 3.2: In most practical situations η̂2
Joint and η̂2

MAP are found nearly equal (see left
panel). One exception is when the SNR is so poor that JJoint tends to see only noise, thus
rejecting its minimum to infinity and returning an unbounded value of the regularization
parameter. Such a situation is forbidden by JMAP which, by construction, advantageously
forces a finite value of η2 (see right panel).

not equal to the ratio of the MAP estimates. Indeed, since −2 ln α̂2 is a monotonically
increasing function of η2, it comes that

η̂2
MAP ≤ η̂2

Joint, (3.35)

meaning that η̂2
MAP in general yields a “less regularized” solution than η̂2

Joint. In addition,
the term −2 ln α̂2 acts as a penalty that forbids solutions (i.e. source fields) with zero
energy α2. This is confirmed by the asymptotic behavior of JJoint and JMAP as η2 → ∞,
given as follows:

JJoint(η2) ∼ CM, as η2 →∞ (3.36a)
JMAP(η2) ∼ 2 ln η2, as η2 →∞, (3.36b)

with C a constant. Notice that JJoint tends to a constant while JMAP still grows to infinity.
This property might be advantageous in some low SNR configurations where JJoint tends
to “see” only noise and thus returns an infinite value for η̂2

Joint. Figure 3.2 illustrates the
above remarks by means of an example selected from the simulations to be presented in
Section 3.5.1.

3.4.2 L-curve

The L-curve basically consists in a plot (on a logarithm scale) of the norm of the regu-
larized solution ∥q̂η∥ against the corresponding residual norm ∥p −Gq̂η∥ for all potential
values of the regularization parameter η. The principle is based on the existence of a
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distinct corner which separates the horizontal part of the curve, where the regularization
errors dominate, from the vertical part, where the perturbation errors dominate. The
vertical part is characterized by a sharp decrease of the norm ∥q̂η∥ for small regulariza-
tion parameters η, whereas the horizontal part represents a significantly increase of the
residual norm with η while the norm of the regularization solution only slightly decreases.
A simulation example is used to clarify this behavior. The simulation parameters are the
same as those to be presented in Section 4.2. The exact (known) source field q0 is used
to simulate the acoustic pressure at some field points, represented by the vector p0. A
complex Gaussian noise stacked in the vector n is added to simulated pressure with the
condition ∥n∥ ≤ ∥p0∥. The simulated acoustic pressure is then given as

p = Gq0 + n. (3.37)

Hereafter, we consider two cases for the right hand side of equation (3.37): (a) a
noise-free right hand side (i.e. n = 0); (b) a right hand side consisting of only noise. The
L-curve corresponding to both cases is shown in Figure 3.3. As can be seen, for small
regularization parameters η, the curve is dominated by perturbation errors (red dashed
curve) and from a certain value of η the regularization errors start to dominate (black solid
curve). The L-curve corresponding to a perturbed right hand side will be a combination
of these two curves.

From this analysis we observe that the idea of the method is to find a regulariza-
tion parameter corresponding to the corner of the L-curve, which is a trade-off between
the minimization of the regularized solution and its residual norm. Since the regulariza-
tion parameter is continuous for Tikhonov regularization, the L-curve is also continuous
and, consequently, twice differentiable. Therefore, it is straightforward to compute its
curvature by means of the formula [HO93]:

κ(η) = ρ′υ′′ − ρ′′υ′
((ρ′)2 + (υ′)2)3/2 , (3.38)

where ρ = log (∥p −Gq̂η∥), υ = log (∥q̂η∥), and the superscripts ′ and ′′ denote the first
and second derivatives with respect to the regularization parameter η. Therefore, the
L-curve validation is equivalent to find the regularization parameter which maximizes the
curvature in equation (3.38). Nevertheless, in practical applications one may deal with
cases in which the corner of the L-curve is not clearly identified, as we shall see in the
next sections.
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Figure 3.3: Example of L-curve for a noise-free right hand side n = 0 (black solid line)
and for a right hand side with only noise (red dashed line). The behavior of the curve for
a perturbed right hand side p + n is merely a combination of the above curves.

3.4.3 Extending the L-curve criterion

The idea proposed in this section was based on the behavior of the L-curve’s curvature
(as a function of the frequency) for source reconstruction problems. More specifically, we
noticed that discontinuities on the reconstructed acoustic power of sources are related to
some particular behaviors of the L-curve. Two different cases have been distinguished
based on numerical and experimental observations: (1) the L-curve’s curvature exhibits
multiple local maxima and (2) the curvature presents negative local maxima. Indeed, an
analysis carried out in reference [BF09] has shown that the L-curve may have several local
convex corners. In addition, the presence of more than one “corner” has been observed by
authors in other applications such as, near-field acoustical holography [Gom08] or damage
detection problems [LL10].

The approach proposed in this work consists of an extension of the classic L-curve
criterion by considering the several local maxima as candidate solutions and computing
a final solution as a weighted combination of them. In reference [HR12], an approach
based on the linear combination of several candidate solutions is also proposed, however,
in this case the candidate solutions are computed from different regularization methods
and different parameter choice criteria. It was shown by numerical examples that in many
cases the linear combination approach provides a better estimate of the desired solution
than any of the candidate solutions [HR12].
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3.4.3.1 Multiple local maxima

The classic L-curve criterion for Tikhonov regularization consists in selecting the solution
which maximizes the curvature function in equation (3.38). Assuming that local maxima
can also carry potential information to the solution, the above criterion may not yield
the best regularized solution. For instance, let us consider a case in which the L-curve’s
curvature function in equation (3.38) has two closely spaced local maxima with similar
magnitude. As long as the use of Tikhonov regularization leads to the choice of a solution
between several quasi-solutions, there is no obvious reason why favor one solution over
the other. A different perspective to deal with this case may be to combine the two po-
tential solutions in order to consider the information that each can afford to the problem.
Following these considerations, a weighting procedure is proposed to account for possible
local maxima.

The proposed procedure for this case consists on three steps: (1) check for the exis-
tence of local maxima; (2) discard the negligible maxima by taking into account only those
maxima which are greater than an attenuated version the global maximum, for instance,
κ(ηi) ≥ 0.25κmax (see Figure 3.4); (3) filter out the maxima corresponding to highly ener-
getic solutions by considering only those with solution norm ∥qη∥ smaller than the norm
of the minimum potential solution amplified by a factor, for instance, ∥qηi

∥ ≤ 2∥qη∥min
(see Figure 3.5).

η1 ηη2

Figure 3.4: Schematic representation of the L-curve’s curvature as a function of the
regularization parameter showing multiple local maxima.

After the selection of potential regularized solutions, the weight attributed to each of
them is given by:

Pηi
= κ(ηi)

s

∑
i=1
κ(ηi)

, (3.39)

where s is the number of potential solutions and ηi is the regularization parameter cor-
responding to the ith solution. Therefore, the final solution for this particular case is
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Figure 3.5: Schematic L-curve for the case with multiple local maxima.

obtained as follows:

q̂η =
s

∑
i=1

q̂ηi
Pηi

. (3.40)

3.4.3.2 Negative local maxima

In this part we direct the analysis to circumstances in which the log-log L-curve is concave.
Looking at the evolution of the L-curve’s curvature as a function of frequency, we notice
that as the system becomes less ill-conditioned, the maximum of curvature decreases until
it reaches a negative value. Using the classic curvature maximization approach, when the
local maximum becomes just slightly smaller than zero, no regularization will be used,
which in turn, generates a discontinuity on the reconstructed source spectrum (see Figure
3.7). Based on this observation, the method presented here consists in weighting the regu-
larized and non-regularized solutions. One can note that the existence of a negative local
maximum is directly connected to the presence of a negative local minimum. According
to this condition, the weights are computed as the ratio between the curvature extrema,
given by:

Pr =
κmax(η) − κmin(η)

∣κmin(η)∣
and Pnr = 1 − Pr, (3.41)

where κmax(η) and κmin(η) respectively corresponds to the negative local maximum and
minimum (see Figure 3.6). In addition, Pr and Pnr are the weights given to the regularized
and non-regularized solutions. The final solution for the reconstructed source strength is
then:

q̂ = q̂nrPnr + q̂rPr (3.42)
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η

Figure 3.6: Schematic representation of the L-curve’s curvature as a function of the
regularization parameter showing a negative local maxima.

In this manner, the weight given to each solution, viz. regularized and non-regularized,
will depend on the difference between the local extrema. For instance, when the negative
local maximum is just slightly greater than the negative local minimum, the weight applied
to the regularized solution will be significantly smaller than the one given to the non-
regularized one.

3.4.3.3 Experimental illustration

An experimental academic validation has been carried out to illustrate improvements gen-
erated by the proposed method. The studied source is a compression driver coupled to a
tube system (22 mm diameter) with three openings, constituting three correlated acoustic
monopoles in the frequency range of interest (f < 2kHz). The source is placed in a semi-
anechoic room at 20 cm in front of a rectangular 6 × 5 microphone array, sampling the
acoustic field with a constant step of 10 cm. The virtual monopoles to be identified are
distributed on the source plane, over a rectangular surface of 80× 70 cm (the microphone
array aperture extended by 10cm on edges), with a resolution of 4 cm. The equivalent
source distribution is placed on the plane coinciding with the physical tube openings and
the total number of source DOFs is 483. The idea of the equivalent source method is used
to estimate the acoustic source strength (volume velocity) of the equivalent sources at the
source plane. The sound power is then directly obtained from the source strength distri-
bution assuming a monopole source radiation and taking into account the pressure field
in which the equivalent sources are inserted. In this case, real sources are omnidirectional
in the frequency range of interest, the acoustic power of the equivalent sources can thus
be assumed to be representative of the acoustic power of the real sources.

The sound radiated from an open-ended tube can be approximated by the radiation
of a point source for wavelengths much larger than the tube radius [dBB08]. Hence,
by measuring the acoustic intensity at a distance r of the source and multiplying by a
spherical surface of radius r one can obtain the sound power radiated by the monopole.
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Here, the acoustic intensity generated by each opening is measured using a Microflown
p-u probe at 5 cm from the exit, not closer to avoid the high sensitivity to phase mismatch
errors between the pressure and particle velocity probes in the very near field. Another
reason is to limit the uncertainties on the distance r. These measurements will constitute
the reference to assess the reliability of quantification results.

The identification is processed according to different regularization strategies:

• without regularization

• with classic L-curve’s curvature maximization (no regularization in the concave case)

• with L-curve’s curvature local maximization and consideration of negative maxima

The acoustic power corresponding to each equivalent source is assessed according to
equation (2.27). The estimate of the total acoustic power for each frequency line is
obtained by an integration over the source plane.

First of all, the acoustic power integrated over the identified source distribution is
compared to the acoustic power estimated from measurements using the P-U probe. The
result is given in Figure 3.7, without regularization and with the classic L-curve principle
(maximization of the curvature).

The effect of regularization is clearly seen up to 1200 Hz. Below this frequency, the
power identified without regularization is overestimated, of about 5dB from 750 to 1000
Hz and 10dB below 750 Hz. Upon 1200 Hz, the L-curve is concave, the regularization
parameter is zero, and the regularized result is thus equal to the non regularized one.
The identified power using regularization is matching the measured one between 200 Hz
and 1700 Hz, with an error not exceeding ±2dB at each frequency. Upon 1700 Hz, the
identified power is generally underestimated. It can be explained by the spatial sampling
of the array, that becomes lower than half the acoustic wavelength.

The L-curve and its curvature are drawn in Figure 3.8 at 800 Hz and 1400 Hz, illus-
trating simple cases requiring regularization at 800 Hz, or no regularization, at 1400 Hz,
where the L-curve is concave. These results are generally satisfying, the global acoustic
power is correctly identified on a wide frequency range. However, some discontinuities are
observed on the identified power spectrum (see Figure 3.7) , because of the regularization
that is processed at each frequency. These discontinuities remain acceptable from a quan-
titative point of view, but can be interpreted as non-physical results if the source is known
to exhibit a continuous spectral density. Moreover, the identified power is continuous over
several frequency bands, and discontinuities are observed on few frequencies only, as if
the regularization process was jumping from one solution to the other at these particular
frequencies. This observation is confirmed in Figure 3.9, where the L-curve’s curvature
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Figure 3.7: Acoustic power of the source, measurements (black solid line) and identifica-
tion (dotted gray: non regularized, dashed red: regularized)
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Figure 3.8: L-curve (left) and its curvature (right) at 800 Hz (dashed black) and 1400 Hz
(solid gray).

(equation 3.38) is drawn as a function of the frequency, normalized by its maximum ab-
solute value at each frequency for clarity purpose. It is clear on this 2D representation
— that has to be maximized at each frequency — that the curvature exhibits sometimes
several local maxima corresponding to different potential solutions, that are valuable on
overlapping frequency bands. For example, one local maximum is varying continuously
between 750 and 1000 Hz, and another one is found to vary between 950 and 1050 Hz. In
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Figure 3.9: L-curve’s curvature as a function of frequency and regularization (color scale).
The figure also shows the value of η maximizing the curvature (gray dots: global maxi-
mum, gray +: local maxima).

such a case, the classic strategy consisting in maximizing the curvature leads to choose
between two potential solutions in the frequency band 950-1000 Hz. This approach leads
to a suddenly jump from one solution to the other at the frequency where the rank of the
local maxima is inverted, generating a discontinuity of about 4dB on the power spectrum
at 985 Hz. The same phenomenon (coexistence of at least 2 potential solutions in a fre-
quency band) is also the reason of the discontinuities observed at 1080, 600 and 250 Hz.
The L-curve and its curvature at 980 and 990 Hz are drawn in Figure 3.10.
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Figure 3.10: L-curve(left) and its curvature (right) at 980 Hz (dashed black) and 990 Hz
(solid gray).

The two potential solutions have comparable curvatures, but the basic curvature’s
maximization leads to choose one or the other for the two frequencies. The reconstructed
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source field at 980 Hz is shown in Figure 3.11, illustrating the two potential solutions ob-
tained at this frequency. As can be seen, the reconstructed source strength corresponding
to the local maximum (right) has a slightly lower resolution since a higher regularization
parameter is chosen, however, it is less disturbed by “ghost sources”.

Other discontinuities are observed at higher frequencies, where the regularization al-
gorithm “hesitates” between a regularized and a non regularized solution. The classic
L-curve analysis is to consider that if the curvature is always negative, the identification
do not need regularization. The L-curve and its curvature at 1295 and 1300 Hz (on both
sides of a discontinuity) are drawn in Figure 3.12.
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Figure 3.11: Reconstructed source strength at 980 Hz corresponding to the solution ob-
tained from the global maximum of curvature (left) and from the local maximum of
curvature (right).
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Figure 3.12: L-curve (left) and its curvature (right) at 1295Hz (solid gray) and 1300Hz
(dashed black).

In this frequency range, the curvature is quite always negative, but still exhibits a
maximum, just greater than zero before the discontinuity and just lower than zero after
the discontinuity, where the regularization strategy leads to choose no regularization. It
generates a discontinuity of about 2dB on the identified power spectrum. In order to
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illustrate the solutions obtained at 1300 Hz, we present in Figure 3.13 the reconstructed
source field when no regularization is used (left) and a solution corresponding to a neg-
ative local maximum (right). We can observe from this results that a small amount of
regularization is still beneficial at this frequency, since the regularized solution is much
less disturbed by “ghost sources”.

Some pragmatic considerations have been presented in earlier sections, allowing to
refine the regularization strategy in such cases. The total acoustic power estimated by
this approach is compared to results using the classic method in Figure 3.14. The refined
strategy gives satisfying results for two reasons. First of all, the identified spectral density
is continuous, showing that the combination between all potential quasi-solutions at each
frequency naturally leads to a kind of continuity of the regularization process. The second
satisfying point is that the results using the proposed refinements match measurements
better than the classic approach. This is particularly true between 900 and 1000 Hz,
but it is generally the case for each frequency band in which the classic approach was
generating discontinuities.
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Figure 3.13: Reconstructed source strength at 1300 Hz without regularization (left) and
with regularization determined by a negative local maximum (right).

3.5 Comparison of parameter choice methods

3.5.1 Numerical comparison

In order to examine the performance of the different parameter choice methods, numerical
experiments of acoustic inverse problems are presented in this section. Two reference
papers on this field are selected as benchmarks [KN04,Lec09], illustrating a wide range of
source reconstruction configurations. In both papers, the performance of GCV and the
L-curve was compared in the framework of numerical acoustic simulations. It was shown
that the behavior of both methods varies significantly with the simulation parameters
(i.e. level of measurement noise, frequency or distance between microphone array and
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Figure 3.14: Acoustic power of the source, measurements (black solid line) and identifi-
cation (dashed red : classic, solid gray : refined )

source surface) and no prevailing method could be indicated. Our aim here is to check
the effectiveness of the Bayesian regularization criterion applied to the cases investigated
in the aforementioned references. For that purpose, the geometry of the acoustic problem
treated in each reference is reproduced and is briefly recalled in the next subsections.

The direct problem employed in the simulations is given by equation (2.3) and a
free-field propagation is assumed, with Green’s function given by:

G(ri∣r) =
e−jk∥ri−r∥

4π∥ri − r∥
, (3.43)

where k = ω/c is the acoustic wavenumber, ω is the angular frequency and c is the speed
of sound. The solution of the inverse problem for the source coefficients (ĉ) is given by
equation (3.20) and the different parameter selection methods will be used to adjust the
regularization parameter η2 therein. The implemented cost functions for the GCV and
L-curve methods are exactly the same as those described in references [KN04,Lec09], and
a detailed analysis of each can be found in references [GHW79,Han92].

An indicator based on the knowledge of the exact solution of the inverse problem
(c) is obtained by computation of the mean squared error (MSE) [KN04] between c and
solutions for all potential regularization parameters. A cost function can be written as:

JMSE = ∥ĉ(η2) − c∥. (3.44)

The optimal regularization parameter is thus returned by the minimum of the cost func-
tion:

η2
MSE = argmin JMSE(η2). (3.45)
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This indicator illustrates the “best we can do” scenario and the effectiveness of each
method is evaluated as the relative error to the optimal solution, as follows:

εBA = ∥ĉBA − ĉMSE∥
∥ĉMSE∥

, εLC = ∥ĉLC − ĉMSE∥
∥ĉMSE∥

, εGCV = ∥ĉGCV − ĉMSE∥
∥ĉMSE∥

, (3.46)

where, from now on, we use the notation BA for the proposed Bayesian criterion and LC
for the L-curve. The noise term entering on the right hand side of equation (2.3), used
to simulate the acoustic pressure, consists of multiplicative and additive perturbations,
with signal-to-noise ratio (SNR) ranging from 40 dB (1% noise) to 6 dB (50% noise). The
noise term corresponding to the i-th microphone is given by:

νi = 10−SNR/20
⎛
⎜
⎝
γejθp0(ri) + δejφ

√
∥p0∥

2

M

⎞
⎟
⎠
, (3.47)

where γ and δ are zero mean Gaussian random variables with V ar(γ) = Var(δ) = 1, θ and
φ are random variables uniformly distributed between 0 and 2π, p0 is the vector of noise-
free pressure and p0(ri) its i-th component. The employed frequency band ranges from
100 Hz to 2500 Hz and the simulations are carried over 500 random trials of measurement
noise for each frequency and SNR. In addition to the relative error to the optimal solution,
a second indicator is used to evaluate the performance of different methods. It consists
in estimating the signal-to-noise ratio (SNR) a posteriori, which is given by the following
expression

ˆSNR = 1
M

M

∑
k=1
s2
k

η̂2 , (3.48)

with η̂2 the regularization parameter estimated by each method. Hence, an average of
this indicator over the number of trials can be directly compared to the SNR injected into
the simulated pressure.

A MATLAB® implementation of the codes used for the simulations is available online
[dat].

3.5.1.1 Case 1: Square system (M =K)

The geometry of this problem is reproduced from reference [KN04] and is sketched on
the left panel of Figure 3.15. A planar array of 9×9 microphones is placed at zh from a
vibrating surface modeled as a distribution of 9×9 monopole sources. The inter-source
spacing is set to be identical to the inter-microphone spacing (rs = rm). Simply one
point source is placed at the center of the source surface with volume velocity equal to
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unity. The condition number of the transfer matrix for this scenario is shown on the right
panel of Figure 3.15 for three different distances to the source plane. We observe that
as the distance is increased, the conditioning of the matrix is increased (specially at low
frequencies) and that the problem is mainly ill-conditioned at low frequencies.
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Figure 3.15: Left: Geometry of the problem for the first scenario, showing the discretized
source surface, the microphone array and the simulated point source placed at the center
of the surface. Right: Condition number for three different distances from the source
plane (zh).

The results of the simulations are given by the average of the indicator (3.46) over
all random trials. Figure 3.16 shows the results for three distances from the array to the
source surface respectively equal to zh = rs (first row), zh = 5rs (second row) and zh = 10rs
(third row), with rs = rm = 12 cm. Note that the results for the non-regularized case
(NR) are added on the last column. We observe that GCV gives satisfactory results when
the array is placed close to the source, however, when the microphone array is moved
farther away (increasing on the condition number) it provides very poor results for a
wide frequency range and all levels of noise, showing that GCV is very sensitive to the
conditioning of the problem. In fact, although GCV returned reasonable regularization for
some noise ensembles at those range, it occasionally fails to do so and this failure leads
to completely anomalous solutions, because the regularization parameter η2

GCV is too
small. This is confirmed by the histogram plot shown in Figure 3.17, which corresponds
to the 500 trials for a SNR of 30 dB, frequency of 1000 Hz and distant zh = 5rs from the
source surface. It shows the ratio between the regularization parameter estimated by each
method and the optimal one. The closer the ratio is to 1, the better is the estimate. We
note that the GCV’s histogram presents a tail towards very small values, which means a
severe underestimation of the regularization parameter. This behavior was observed for
all range of SNR and frequencies which GCV gives high relative errors εGCV .

The results of the L-curve do not present a common trend for the three studied cases,
however it is clearly not effective for high levels of measurement noise (low SNR) and at
very low frequencies. On the other hand, the results returned by the Bayesian regulariza-
tion criterion are satisfactory for the whole set of tested acoustical configurations, with
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errors rarely exceeding 20% of the optimal MSE solution. We remark that the results
returned by the cost functions JJoint and JMAP were very similar, therefore just the case
of JJoint is presented here.

Figure 3.18 finally presents the SNR estimated a posteriori as given by equation (3.48).
These results may indicate us the tendency to over- or under- regularize the solution,
although they are relatively trickier to interpret. First of all, we remark that the ensembles
in which the criteria returned η̂ = 0 and thus ˆSNR = ∞ were not taken into account
in the average. Looking first at the results for the L-curve (second column) we notice
that the regions in black correspond to cases in which the L-curve criterion yields η̂ = 0
(no regularization), whereas in other regions the SNR is generally underestimated which
leads to over-regularized solutions. The results for the GCV (third column) show that for
zh = 5rs and zh = 10rs the SNR is often overestimated and thus the solutions are highly
under-regularized. This explains the higher error levels in Figure 3.16. The Bayesian
regularization criterion is the only to yield reasonable estimates of SNR for the whole
range of configurations.

Finally, by observing the results for the optimal MSE criterion (last column), it is
interesting to notice the appearance of some patterns for zh = 5rs and zh = 10rs, which
indicate that in fact the estimated SNR is frequency dependent. Indeed, comparing this
behavior to the results of relative error for the Bayesian criterion (see first column of Figure
3.16) we realize that the “white stripes” therein exactly correspond to the aforementioned
patterns.

3.5.1.2 Case 2: Under-determined system (M ≪K)

The geometry of the second case is reproduced from reference [Lec09] and is depicted
in Figure 3.19. A planar array of 6×5 microphones is placed at a distance zh from a
source surface which is modeled by a grid of 28×23 monopole-like sources. The inter-
microphone and inter-source spacings are respectively set to 10 cm and 2 cm in both x and
y directions. This configuration models an under-determined scenario, with the number
of measurement positions much lesser than the number of unknown source coefficients.
In this case, the simulation is done by randomly placing 3 monopoles on the source
distribution and assigning random complex strength to each of them. The simulated
acoustic pressure is then perturbed with the noise model given by equation (3.47).

The same indicator (relative error to the MSE solution) is used and the results are
presented in Figure 3.20. We note that the GCV presents similar behavior to the first
scenario, producing satisfactory results when the array is placed relatively close to the
source (except at low frequencies and low SNR) and poor results when it is moved farther
away (higher condition number). The L-curve seems to treat this case better than the
previous one except at very low frequencies and a frequency band depending on the
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Figure 3.16: Average value of the relative error to the optimal (MSE) solution over 500
realizations of measurement noise. Each row corresponds to a given distance from the
array to the source surface. First row: zh = rs, second row: zh = 5rs and third row:
zh = 10rs.
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Figure 3.17: Histogram plot of the ratio between estimated and optimal regularization
parameters for Bayesian regularization (BA), L-curve and GCV. They correspond to 500
realizations of measurement noise with a SNR of 30 dB, frequency 1000 Hz and distance
source-array zh = 5rss.

array-source distance. Again, the Bayesian regularization criterion is able to produce
satisfactory results for all source-array distances and over the full range of SNR levels
and frequencies. We can notice, however, that the relative error εBA at high frequencies
and high SNR are slightly greater than the errors for the non-regularized (NR) and L-
curve (LC) cases. It is apparent that no regularization is the best option at those ranges,
indeed, the L-curve had no corner for those cases and the employed algorithm applies no
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Figure 3.18: Average value of the estimated SNR over 500 realizations of measurement
noise. The colorbar ranges from 6 to 40 dB. Each row corresponds to a given distance
from the array to the source surface. First row: zh = rs, second row: zh = 5rs and third
row: zh = 10rs.
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Figure 3.19: Left: Geometry of the problem for the second scenario. It shows the micro-
phone array, the discretized source surface and 3 point sources randomly placed at the
source surface.; Right: Condition number of the transfer matrix for distance zh equals to
10, 15 and 20 cm.

regularization. On the other hand, the Bayesian cost function still exhibits a minimum
and the solution is slightly oversmoothed. Although, as it will be shown in the next
section, introducing a small amount of regularization when the problem is not very ill-
conditioned (high frequencies on the simulations) has a small impact on the reconstructed
acoustic quantities.

We finally show in Figure 3.21 the average estimate of the SNR for different approaches.
Similarly to the first scenario, the Bayesian regularization criterion leads to fairly good
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Figure 3.20: Average value of the relative error to the optimal (MSE) solution over 500
realizations of measurement noise. Each row corresponds to a given distance from the
array to the source surface. First row: zh = 10 cm, second row: zh = 15 cm and third row:
zh = 20 cm.

estimates of SNR for all different configurations. In addition, we observe the appearance of
a transition region depending on the distance from the array to the source surface. In fact,
the transition occurs because in this range the criterion alternates between regularizing
or not the solution.

Looking now at the results for the L-curve (second column) we clearly identify the
region where the L-curve yields no regularization at all (black area). It can also be seen
that for zh = 10 and zh = 15 cm the L-curve in general underestimates the SNR level,
which in turn leads to a slightly over-regularized solution. The results for the GCV
method indicate that in general the SNR is overestimated and thus the solutions are
underestimated.

3.5.2 Experimental comparison

This section illustrates an application of the studied regularization criteria in an experi-
mental set-up. The source of interest is a driver unit connected to a piping system with
three outlets (diameter 2.2 cm), as shown in Figure 3.22. This source is a good approxi-
mation of three correlated monopoles in the frequency range of interest (200-2000 Hz). A
planar array of 6×5 microphones (inter-microphone spacing of 10 cm) is placed at 20 cm
from the plane comprising the three outlets. A fictitious source surface (on the plane of
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Figure 3.21: Average value of the estimated SNR over 500 realizations of measurement
noise. The colorbar ranges from 6 to 40 dB. Each row corresponds to a given distance
from the array to the source surface. First row: zh = 10 cm, second row: zh = 15 cm and
third row: zh = 20 cm.

outlets) with dimensions 80×70 cm2 is discretized with a constant spacing of 4 cm. The
virtual sources are modeled as point sources and the Green’s function given in equation
(3.43) is used for the inversion. Equation (3.20) is again used to solve for the source
coefficients that in this case correspond to the volume velocity (source strength) of each
virtual source. The experiment was carried out in a semi-anechoic room of dimensions
5×3.40×2 m3 and the source was driven with white random noise. The particle velocity
and the sound pressure were measured at 5 cm from each opening using a Microflown p-u
intensity probe, allowing an estimation of their acoustic power. The radiated acoustic
power is estimated by integrating the measured acoustic intensity over a spherical surface
of radius 5 cm and centered at each opening.

Amplifier

Comp. driver

0
.1

2
m

Random noise

0.8m

0.26m

Figure 3.22: Acoustic source of interest.
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Figure 3.23 shows the reconstructed source field (volume velocity) at 945 Hz using
the regularization parameter returned by the Bayesian criterion (BA), the L-curve and
GCV. It can be seen that GCV fails to compute a reasonable solution, on the other hand,
the reconstruction obtained by the L-curve and the proposed Bayesian criterion is fairly
good. The cost function at this frequency for each method is shown in Figure 3.24. We
notice that the L-curve and the Bayesian criterion yield similar regularization parameter,
yet in a more convincing way for the latter (note the presence of a local maxima on the
L-curve’s curvature). We can also observe that the minimum of the GCV function (not
visible with the employed scale) is located towards smaller values of η2, which led to the
undersmoothed solution shown in Figure 3.23 (right hand side). The reconstructed source
field at 650 Hz is shown in Figure 3.25. In this case, the GCV and the Bayesian criterion
yield similar results, on the contrary, the L-curve criterion led to a rather over-smoothed
solution. We remark that at this discrete frequency only two of the three sources radiate
significant energy, as shall be confirmed by the measurements to be presented next (see
Figure 3.28). The cost functions corresponding to this case are represented in Figure 3.26.
We note that GCV and the proposed Bayesian criterion returned similar regularization
parameters. On the other hand, the L-curve’s curvature exhibits two local maxima very
close to each other in level. A better alternative in this particular case, would rather be
to select the local maximum slightly on the left of the global maximum.
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Figure 3.23: Reconstructed source field (volume velocity) at 945 Hz corresponding to each
regularization criterion. A dynamic range of 15 dB is used for all.

The acoustic power radiated by the reconstructed source field was computed in a simi-
lar manner as in reference [CLG10]. It essentially consists of summing the power radiated
by each virtual point source in isolation and a term that is the power generated by each
source in working against the induced pressure generated by neighbor sources (see, for
example, [Fah00]). Figure 3.27 compares the reconstructed global acoustic power (as in-
tegrated over the source surface) to the reference p-u measurements. As can be seen,
the GCV results diverge at some frequencies, which are related to a severe underestima-
tion of the regularization parameter. For the L-curve, although the results are globally
satisfactory, we notice few discontinuities for instance around 650 and 970 Hz. Further
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Figure 3.24: Cost functions associated to each regularization criterion at the frequency
of 945 Hz. Left: the proposed Bayesian regularization criteria. Middle: curvature of
the L-curve (whose corner is the point with maximum curvature). Right: the GCV cost
function.
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Figure 3.25: Reconstructed source field (volume velocity) at 650 Hz corresponding to each
regularization criterion. A dynamic range of 15 dB is used for all.
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Figure 3.26: Cost functions associated to each regularization criterion at the frequency
of 650 Hz. Left: the proposed Bayesian regularization criteria. Middle: curvature of
the L-curve (whose corner is the point with maximum curvature). Right: the GCV cost
function.

investigation has shown that they are due to alternations among competing local maxima
of curvature evolving with frequency. In turn, the estimate given by the Bayesian crite-
rion is found more stable in the whole frequency range, illustrating its robustness. The
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acoustic power radiated by each opening has also been predicted and compared to the
measurements (see Figure 3.27). The predictions were obtained by carefully choosing an
integration area around each identified source, as shown on the top left panel of Figure
3.28. One can notice that a confidence interval around the point estimate returned by the
Bayesian regularization is shown in Figures 3.27 and 3.28, illustrating another advantage
of the Bayesian approach. In the next Section we discuss in detail how to obtain these
interval estimates. Finally, we can notice from Figure 3.28 that the three sources are well
located around their real positions and their individual contributions in terms of acoustic
power are fairly well predicted.
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Figure 3.27: Estimate of the total acoustic power for different regularization strategies.
The reference (ref.) was obtained from p-u measurements. The figure also shows a 98%
Bayesian confidence interval around the point estimate returned by the proposed Bayesian
criterion (BA).

3.6 Sensitivity of the acoustic inverse problem to regular-
ization

As mentioned before, the art of regularization is as risky as essential for successfully
solving the acoustic inverse problem. Therefore, it is crucial to assess which effect small
modifications in the regularization parameter will have on the reconstructed source field.
In short, the question to be addressed is how sensitive the reconstruction is to the actual
setting of the regularization parameter? One particular difficulty is the fact that η2

intervenes in a non-linear way into the estimation of the source field ĉ. Since the Bayesian
frameworks treats η2 as a random variable with a given pdf, it offers a rather unique answer
to the above question.
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Figure 3.28: Top left: reconstructed acoustic power map integrated over the frequency
band 200-1400 Hz. The + symbols are the real source positions and the dashed circles are
the integration area used to compute the partial PSD of each source. The other panels
show the PSD of each source identified by the proposed method (red) and obtained from
p-u measurements (black).

3.6.1 Markov Chain Monte Carlo sampling

The posterior pdf [η2∣p] found in Proposition 2 fully answers the goal of quantifying the
uncertainty arising from regularization. In particular, by allowing to sample values of
η2, it makes possible to propagate the variability due to regularization to any acoustical
quantity of interest functionally depending on the regularization parameter, such as the
source field, the acoustical intensity, or the acoustical power. Since such a pdf does not
seem to pertain to a standard family, one has to resort to MCMC methods, such as the
popular Metropolis-Hasting algorithm [Rob01], to sample it.

3.6.2 Gaussian approximation

Should one not require the full posterior pdf [η2∣p] but simply characterize it by its
variance, then the following simple Gaussian approximation may be useful:

Proposition 3.

[η2∣p] ≈ N (η̂2;σ2) with σ2 = (d
2JMAP(η2)
(dη2)2 )

−1

η2=η̂2

, (3.49)
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η̂2, and JMAP(η2) given in equations (3.33) and (3.34), respectively.

Proof. : see Appendix D.3

The second derivative of JMAP(η2) arising in equation (3.49) may be evaluated an-
alytically or, more simply, numerically. Such an approximation has the benefit of ease
of implementation, since it requires little more than a random generator of Gaussian
variables to propagate errors related to regularization to any reconstructed acoustical
quantity.

3.6.3 Simulation example

As previously stated, the Bayesian framework being a probabilistic approach, it allows one
to compute parameters of the pdf’s assigned to the problem unknowns. One particularly
attractive is the posterior pdf of the regularization parameter [η2∣p], whose variability can
be propagated to any acoustic quantity of interest in order to provide confidence intervals,
for instance.

Two possible ways of performing this task were discussed in Sections 3.6.1 and 3.6.2,
one by a simple Gaussian approximation of the posterior [η2∣p] and a second by its
exact evaluation using MCMC methods. Both procedures are applied here by means of
an example selected from the scenario described in Sec. 3.5.1.1. It corresponds to the
configuration with the array placed at a distance zh = rs from the source surface and
with a SNR of 30 dB. A point estimate of the regularization parameter delivered by
the Bayesian criterion is shown in Figure 3.29(a) along with its variability (filled gray
area) estimated by a MCMC procedure. Figure 3.29(a) also shows, in dashed black
lines, the confidence interval obtained by approximating the posterior pdf [η2∣p] to a
complex Gaussian distribution. The latter is obtained by numerical evaluation of the
second derivative in equation (3.49), which is related to the variance σ2 of the distribution.
We can note that the intervals given by the Gaussian approximation agree well with
those computed by MCMC up to approximately 800 Hz. Above those frequencies the
approximation of the posterior [η2∣p] by a Gaussian distribution does not hold anymore,
illustrating the limits of this approximation. The discontinuities above 1500 Hz are related
to oscillations on the condition number of the transfer matrix used in this example (see
right panel of Figure 3.15 for zh = rs), since the regularization criterion alternates between
a regularized and non regularized solution.

The reconstructed source field (volume velocity) is computed by equation (3.20), with
the Green’s function given in equation (3.43). An integration over the source surface at
each frequency gives the source spectrum (see Figure 3.29(b)) for the Bayesian regular-
ization criterion (red) and the optimal one (black). The variability of the regularization
parameter is then propagated to the reconstructed source field as shown by the filled gray
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region in Figure 3.29(b). It is interesting to note that the reconstructed volume velocity
is much more sensitive to the setting of the regularization parameter at low frequencies.
Indeed, a small variation on the regularization parameter at low frequencies leads to
higher uncertainties on the reconstructed source spectrum. On the other hand, a large
variation on η2 at higher frequencies had little effect on the reconstructed quantity. This
analysis can be further extended to the acoustic power integrated over the source sur-
face, as shown in Figure 3.29(c). We can see that the estimated acoustic power using the
Bayesian regularization criterion is fairly close to the optimal (MSE) solution. Moreover,
we note narrow confidence intervals on the acoustic power (± 0.5 dB), meaning that small
variations on the regularization parameter generates small uncertainties on this quantity.
We remark that this result is not to be interpreted as if the regularization was not impor-
tant to the reconstruction, it actually shows how sensitive is the reconstruction of these
acoustic quantities to small variations around the point estimate of the regularization
parameter.
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Figure 3.29: (a) Point estimate of the regularization parameter η2 (red) with confidence
intervals estimated by a MCMC procedure (gray region) and by a Gaussian approximation
(dashed black lines). (b) The reconstructed source spectrum using the Bayesian regular-
ization criterion (red) with a 95% confidence interval (gray region) and the optimal MSE
solution (black). (c) Global acoustic power as integrated over the source surface for the
Bayesian regularization criterion (BA) with a 98% confidence interval (gray region) and
the optimal (MSE) one.
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4
Iterative weighted equivalent source method

A description of interior noise source identification by means of an equivalent source
formulation was given in Chapter 2. We have seen how this lead to the minimization
of a underdetermined problem and we have also discussed acoustic propagation models
which relate the measurements to the unknowns of the problem. Then, in Chapter 3
we provided several mathematical considerations to solve the underlying problem, with
emphasis on how to adjust the amount of regularization to be imposed. In this Chapter,
we combine these two parts in order to solve for the target application in this thesis (i.e.
interior noise source identification). In this context, we were initially faced to two major
difficulties: the first one is related to the positioning of the array inside the enclosure and
the second one related to the high degree of underdetermination of the problem. In order
to overcome these difficulties, an iterative weighted approach is proposed here.

This Chapter is organized as follows. In the first part we describe the formulation of
the proposed approach for which two different weighting strategies are discussed. The
technique is then applied to a simulation case to demonstrate its improvements as com-
pared to traditional approaches. Later on, we discuss the sensitivity of the approach
with regard to the presence of reverberation and the distribution of equivalent sources.
Finally, the last part is devoted to the application of a technique that helps us to better
comprehend the reconstructed source field.

4.1 General weighting concept
We start this section by recalling that our main goal is to locate and quantify noise
sources on the boundaries of an enclosure based on acoustical field measurements within
the enclosure. In Chapter 2 we discussed the idea to tackle this problem by the simplified
modeling of the interior surfaces by a distribution of monopoles, in such a way that they
match the acoustic field measured by a microphone array. A considerable difficulty arises
when we must cover a large area (e.g. interior of a bus) with few a priori assumptions on

91
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0066/these.pdf 
© [A. Pereira], [2013], INSA de Lyon, tous droits réservés



the main radiating regions. As discussed in Chapter 1, a well adapted geometry of micro-
phone array to perform this task in a single step1 is the spherical one, placed somewhere
inside the enclosure. The advantages of using a single step are the fast measurement time
which allows to test several configurations in a short period of time and, for the case of
vehicle noise, the possibility to apply for run-up tests or driving conditions.

The very first question that arises from the above considerations is where should one
place the microphone array when few a priori information on the position of sources is
available. In the case of transportation vehicles, a convenient choice is, for instance, at
the driver’s or passenger’s head position. Depending on this choice, the relative distance
between each equivalent source and the microphone array may differ considerably since
we are searching potential sources over the whole surrounding surfaces. As a consequence,
those equivalent sources which are closer to the microphone array will need less energy to
generate the same pressure level (at the array position) as compared to equivalent sources
placed farther away. In other words, more “weight” will be given to equivalent sources
closer to the microphone array. Indeed, this questioning was the initial motivation for the
approach presented hereafter.

In order to take into account the large range of relative distance from equivalent sources
to the center of the array we introduce an a priori assumption into the underlying problem.
It essentially consists in enforcing that each equivalent source needs equal amount of
energy to generate the same pressure field on the microphone array. In terms of the
considered problem formulation, it translates into the solution of a modified minimization
problem. To that end, let us define a diagonal matrix W with its i-th diagonal element
given by wi, which is the distance between equivalent source i and the center of the
spherical array. Instead of minimizing the norm of the reconstructed source field ∥q∥2,
we seek to minimize its weighted version ∥Wq∥2 such that the following minimization
problem is written

minimize {∥p −Gq∥2
2 + η2∥Wq∥2

2} , (4.1)

with the square diagonal matrix W ∈ RN×N . The above problem is recognized as the
general form of Tikhonov regularization in the literature [Han98,Han10]. If W is invertible
such that WW−1 = I, which is the case for any diagonal matrix with non-zero diagonal
entries, we can modify the above minimization problem by introducing the transformation
q = W−1q̃ and thus arrive at the following minimization problem:

minimize {∥p −GW−1q̃∥2
2 + η2∥q̃∥2

2} , (4.2)

1For “single step” we refer that the field quantities are measured with the microphone array placed at
a single position within the enclosure.
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which is promptly recognized as the standard-form of Tikhonov regularization, whose
solution can be written as

q̃ = G̃H(G̃G̃H + η2I)−1p, (4.3)

where G̃ is defined as G̃ = GW−1. The above solution is also conveniently expressed in
terms of the singular value decomposition G̃ = U⌈S⌋VH , which yields:

q̃ = V(S2 + η2I)−1SUHp, (4.4)

with η estimated by one of the techniques discussed in the previous chapter. The recon-
structed source field is then simply given by the back transformation:

q̂ = W−1q̃. (4.5)

Many choices are possible for the matrix W depending on our requirements or as-
sumptions regarding the solution q̂. In references [Han98, Han10], Hansen shows how to
introduce additional smoothness to the solution by solving the general form of Tikhonov
regularization, in which the term ∥Wq∥2

2 is coined as the discrete smoothing norm. In
this context, the matrix W is given by a discrete approximation of a derivative operator.
In addition, reference [CS08] discusses how to determine W from a statistical perspective,
in which the term preconditioner is used to define the role of W. Furthermore, within the
field of acoustics and for sound field reproduction purposes, the general form of Tikhonov
regularization has also been applied with the weighting matrix defined by prior beam-
forming results [GCP+11]. In the following sections we discuss how to implement the
weighting matrix in order to take into account for the positioning of the microphone ar-
ray within the enclosure as well as how to improve the properties of the solution using
the same approach implemented in an iterative manner.

4.2 First weighting strategy

The first weighting strategy that we discuss is related to the microphone array positioning
inside the enclosure. As we have introduced in the previous section, the choice for the
array position may lead to a large range of distances between equivalent sources and the
array. This, in turn can induce undesirable features on the solution as we shall see by
means of numerical simulations and experiments presented in the next Chapter.

It has been anticipated in the previous section that in order to correct for this effect,
one can enforce a priori that equivalent sources need equal energy to generate a given
pressure field on the array. This lead to the choice of a matrix W with diagonal elements
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given by:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/r1 0 0 0
0 1/r2 0 0
0 0 ⋱ 0
0 0 0 1/rN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.6)

where rN is the distance between the N -th equivalent source and the center of the array.
We remark that since this is a frequency independent matrix, the same weighting is applied
to solve for each frequency line. The application of the above weighting is hereafter
illustrated by means of a numerical simulation example.

The simulated environment is defined by a rectangular enclosure with dimensions
Lx = 4 m, Ly = 2.4 m and Lz = 2 m, chosen in order to match the dimensions of a real
room used for the experimental validation. The image source method (ISM) [AB79] is
used to simulate the acoustic pressure field on the surface of a rigid sphere due to a point
source, the latter being placed at one of the room surfaces. The monopole source with
unitary volume velocity is positioned at coordinates x = 1.2 m, y = 0 m and z = 0.5 m
and the spherical array at two different positions: (a) one relatively far from all surfaces
at x = 0.7 m, y = 1.2 m and z = 1.1 m and (b) relatively close to one surface at x = 0.3
m, y = 1.2 m and z = 1.1 m. Only the floor of the enclosure is considered as a reflective
surface (reflection coefficient βc = 0.9), other surfaces are assumed to be fully absorbents
with βc = 0. In addition, only the reflections up to order 2 are taken into account in
the image source model. We remark that the image source method is merely used to
simulate the acoustic pressure on the spherical array, the acoustic propagation used for the
reconstruction being of free-field type. The equivalent sources are regularly distributed
along the enclosure’s surfaces with inter-source spacing of 0.1 m and a rigid spherical
microphone array with 31 microphones and radius a = 0.145 m is used to sample the
acoustic field. Finally, white Gaussian noise is added to the simulated acoustic pressure
with a signal-to-noise ratio (SNR) of 25 dB.

The inverse method is firstly solved for the case without weighting and the recon-
structed volume velocity of equivalent sources is shown in Figure 4.1, for the microphone
array distant 0.65 m (left panel) and 0.35 m (right panel) from the nearest wall. It can
be seen that in both cases the method identifies “ghost sources” on the surface close to
the array (plane x = 0 in the figure). Although they are not quantitatively significant for
the first position of the array, for the second case they have similar level in comparison to
the main source. One can also see that besides the identification of the original source,
the method yet identifies the first reflection which takes place on the reflective ground.
This effect is discussed with more detail in the next sections.

The positioning of a somewhat rigid sphere at the vicinity of a reflective surface could
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Figure 4.1: Volume velocity maps for the 1000 Hz one-third octave band. The images
show 3 surfaces of the enclosure along with the spherical microphone array. Left: spherical
array placed at 0.65 m from the closest boundary (plane x = 0). Right: spherical array at
0.35 m from the closest boundary.

certainly produce an additional effect. The acoustical waves scattered by the rigid sphere
may be reflected by the neighbor boundary and, in turn, be considered as additional
incoming waves on the sphere. This is not the case for this simulation example as the
neighbor boundary is assumed to be non reflective. The effect of a nearby boundary on
the acoustic field is in fact discussed in reference [GD01], in which the concept of an image
sphere is used to model the reflection of waves scattered by the sphere. It was shown that
the this is a secondary effect as compared to the influence of the reflected waves related to
the original acoustic source. In addition, it was shown that the above effect is negligible
when the sphere is several radii distant from the nearest boundary.

The same problem is now solved by the approach presented in the previous section
and the weighting matrix given by Equation (4.6). The volume velocity maps for this
case are shown in Figure 4.2. It can be seen that the undesirable effects on the nearby
boundary are eliminated at the expense of a slightly reduction in resolution. For the
case in which the array is at 0.65 m from the closest boundary (left hand side), there
is almost no difference between the two approaches. Indeed, we can expect that when
the distances between equivalent sources and the array are not significantly different, the
proposed approach will have a minor effect.

Finally, we also analyze the behavior of the proposed approach when there is actually
a real source on the closest boundary. We proceed with the same simulation set-up as
above but with an extra source with unitary volume velocity placed at x = 0 m, y = 1.7 m
and z = 1.3 m. Figure 4.3 shows the results for the two considered approaches. It can be
seen that for the classic approach more importance is given to the source on the closest
surface, whereas the weighted approach identifies both sources with more weight assigned
to the source which is more distant to the array, yet at the expense of a reduction in
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Figure 4.2: Volume velocity maps for the 1000 Hz one-third octave band using the
weighted equivalent source method. Left: spherical array placed at 0.65 m from the
closest boundary (plane x = 0). Right: spherical array at 0.35 m from the closest bound-
ary.

resolution.

Figure 4.3: Volume velocity maps for the 1000 Hz one-third octave band for the case with
two simulated sources. Left: classical approach. Right: weighted approach.

4.3 Second weighting strategy - iterative solution

In this section we discuss a second weighting strategy which by conception needs to be
implemented in an iterative manner. The idea is to use the reconstructed source field, as
given in Equation (4.5), as a priori information to solve for a new minimization problem
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in the form of Equation (4.1). The weighting matrix for this case reads

W(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/q̂1(f) 0 0 0
0 1/q̂2(f) 0 0
0 0 ⋱ 0
0 0 0 1/q̂N(f)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.7)

where q̂N(f) (the N -th element of the vector ∣q̂∣, where ∣a∣ stands for the absolute value of
vector a) is the volume velocity corresponding to the N -th equivalent source at the discrete
frequency f . Notice that we have dropped the dependence on the regularization parameter
η by assuming that the vector q̂ is given by the optimal choice of η, as returned by the
techniques discussed in Chapter 3. At this point we emphasize the critical dependence on
a robust setting of η, in the sense that, by no means the proposed approach will return a
reasonable result if the parameter selection method fails in a previous step. In addition,
we notice that contrary to the first weighting strategy, this one depends on the frequency,
thus a different weighting matrix is computed at each frequency line.

The idea is thus to apply this weighting iteratively up to a given number of iterations or
until some convergence criterion is met. As we shall see, the number of required iterations
depends on the degree of under determination of the problem as well as on the frequency
of analysis. Furthermore, if only the localization of sources is needed, few iterations may
suffice to obtain reasonable spatial resolution. On the other hand, if precise quantification
results are also required, the number of necessary iterations is usually higher. As we shall
see, a conceivable way to adjust the number of iterations is to evaluate the energy of
the reconstructed source field at each iteration and stop the process when the difference
between consecutive iterations is less than a specified threshold. The proposed algorithm
summarizes to:

Algorithm 1:

1. define the initial weighting matrix W0 as given in equation (4.6).
2. solve the weighted system in equations (4.4) and (4.5), with
η estimated by one of the techniques discussed in Section 3.4,
output → q̂0.

3. for i = 1,2, ..., l
4. redefine the weighting matrix as: Wi = diag{∣q̂i−1∣−1} then W = W0Wi

5. solve for equations (4.4) and (4.5),
output → q̂i

6. evaluate T = ∥q̂i−1∥ − ∥q̂i∥
7. if T ≤ τ , stop the iteration process.
8. end
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The maximum number of iterations is defined by the parameter l and τ is a threshold
adjusted by the user. In most experimental and numerical situations it has been observed
that the initial iterations are marked by a significant difference on the energy of the
reconstructed source field for consecutive iteration steps. Conversely, as the iterative
method approaches convergence the difference is considerably smaller. Based on the
numerical simulations, a reasonable choice of τ could be approximately 1 or 0.5 dB.
Finally, we shall see in the next sections, that this approach considerably improves the
localization and quantification abilities of the reconstructed source field, however, at the
expense of a higher computational cost.

4.4 Application to a simple numerical case

Given the theoretical explanation of the proposed approach we provide in this section
an application to a simple numerical case. The main goal is to evaluate the localization
and quantification aspect of the method. The localization is defined here as the ability
to spatially locate the noise sources radiating acoustic power over the environment. The
quantification aspect is defined as the ability to quantify, normally in terms of acoustic
power, the noise sources located beforehand. The quantification is mainly useful for source
ranking purposes, in which the identified sources are ranked in terms of their contribution
to the observed acoustic field. In turn, this is useful for design purposes, where the
knowledge of source characteristics is important to provide to the engineer the possibility
of appropriate design changes.

4.4.1 Simulation parameters

The simulated environment is a rectangular enclosure with dimensions 5×3.4×2.2 m3. The
acoustic field is sampled by a rigid spherical array with 31 microphones at a fixed position
within the enclosure. The equivalent sources are distributed along the room boundaries
with a constant inter-source spacing of 0.2 m. In a first configuration, reflections on the
boundaries are not considered for the simulation of the “measured” acoustic pressure. The
acoustic propagation model is thus given by Equation (2.49), which relates the source
strength of a monopole to the acoustic pressure on the surface of a rigid sphere. The
simulated acoustic pressure is then perturbed with multiplicative and additive Gaussian
noise with SNR of 40 dB. In the next sections we evaluate the performance of the iterative
weighted approach in terms of source localization and quantification.

98
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0066/these.pdf 
© [A. Pereira], [2013], INSA de Lyon, tous droits réservés



4.4.2 Localization ability

In a first configuration two point sources with volume velocity equal to 0.01 m3/s are
placed at the room boundaries with coordinates defined by r1 = [1.8,3.4,1.6] m and
r2 = [3.2,3.4,1.3] m, as shown by black dots in Figure 4.4. The spherical array is placed
within the enclosure at coordinates ra = [2.3,1.4,1] m. Thus the corresponding distances
from the center of the array are respectively ∥r1 − ra∥ = 2.1 m and ∥r2 − ra∥ = 2.2 m. The
distance between the sources is ∥r1 − ra∥ = 1.4 m. The equivalent sources are uniformly
distributed over the enclosure’s boundaries with an inter-source spacing of 0.2 m, leading
to a total number of degrees of freedom (DOF) of 1745 in this case.

A common measure of the localization ability of noise source identification techniques
is the spatial resolution. It is defined as the minimum distance between two sources from
which they can be still separated (i.e. without merging into a single source). A deep
analysis of the spatial resolution is not straightforward, especially because it normally
depends on several parameters, namely: (a) frequency of interest; (b) array configuration
(e.g. array size, number and inter-microphone spacing); (c) distance between the array
and the reconstruction surface; (d) level of measurement noise. Our main interest in this
section is to show how the spatial resolution of the reconstructed source field may be
considerably improved using the iterative weighted approach. The acoustic pressure on
the spherical array is simulated by the forward propagation model described in Equation
(2.3) with propagation matrix given by Equation (2.49). The measurement noise is given
by multiplicative and additive perturbations expressed in Equation (3.47) with a SNR
of 40 dB. The inverse problem is then solved by Equation (4.5) and using the discussed
weighting strategies.

The results for the frequency of 800 Hz are shown in Figure 4.4. The images represent
the volume velocity of equivalent sources mapped onto the enclosure’s boundaries along
with the real source coordinates and the spherical microphone array. It can be seen
that for the classical solution, Figure 4.4(a), the spatial resolution is not good enough to
separate the contribution of the two sources. The results given by the proposed approach
with weighting matrix defined in Equation (4.7) are shown in Figures 4.4(b) and 4.4(c)
for the first and second iterations. As can be seen, the spatial resolution is successively
improved and with the second iteration both sources are spatially separated. Indeed, the
weighting procedure acts as a focusing on those regions more likely to radiate noise which
leads to an enhanced resolution. Similar results (not shown here) were obtained for other
discrete frequencies.
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(a) Basic solution (b) 1st iteration

(c) 2nd iteration

Figure 4.4: Volume velocity maps in dB (m3/s) for the frequency of 800 Hz using the
proposed iterative weighted approach. The dynamic range is set to 12 dB.

4.4.3 Quantification ability

In this section we study the ability of the method to properly quantify the acoustic power
of sources located beforehand. For the sake of simplicity, a case with only one source is
considered first. The simulated point source with volume velocity equal to 0.01 m3/s is
placed at coordinates rs = [3.5,3.4,1.3] m as shown in Figure 4.5. The inverse problem
is solved as in the previous section and the volume velocity maps for the frequency band
of 200-800 Hz are shown in Figure 4.5. It can be seen that the source is correctly located
on its original position. The acoustic power of each equivalent source is then computed
by using Equation (2.27). Given the acoustic power of equivalent sources, the power
corresponding to the “original” source is obtained by integration of acoustic power maps
over the position of the real source. The identified acoustic power is shown in Figure 4.6.
First of all, we can notice a severe underestimation of the acoustic power for the classic
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solution (represented by “iter 1” in the figure). In the next section we discuss the reasons
for this severe underestimaton, which as we shall see, has to do with the properties of the
identified sources (namely their directivity). We can also observe that only after several
iterations (6 in this case) the identified acoustic power converges to the simulated one,
with a good agreement over the considered frequency band.

(a) Basic solution (b) 1st iteration

Figure 4.5: Volume velocity maps in dB (m3/s) for the 200-800 Hz frequency band using
the proposed method for: (a) basic solution; (b) first iteration. The dynamic range is set
to 12 dB.
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Figure 4.6: Identified acoustic power as a function of the frequency for consecutively
iteration steps. The true acoustic power of simulated source is shown by the continuous
black line.
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4.4.4 Radiated acoustic pressure

The computation of the acoustic pressure radiated by the identified equivalent source
distribution is a useful tool which allows one to gain more insight into their radiation
properties. In the studied case, it allows us to explain the strong underestimation of
acoustic power observed in the previous section. By way of an example, the acoustic
pressure radiated by the source distribution identified in the previous section is shown in
Figure 4.7 for the 200-800 Hz frequency band. The result for the initial solution, Figure
4.7(a), readily indicates that identified sources are highly directive on the direction of the
microphone array, as if they concentrate all the radiated energy on this specific direction.
This conclusion has been reached by observing the high levels of acoustic pressure on the
boundary (y=0) which is facing the wall on which the “real” source is placed. Indeed, it is
the relative phase of equivalent sources that enforces the radiation on a specific direction
(in this case, vector pointing from the source to the microphone array) acting similarly to
a piston. This effect is more pronounced as the frequency increases, which can be noticed
in Figure 4.6 by the greater underestimation at higher frequencies. The explanation
for the underestimation results from the fact that a highly directive source needs less
acoustic power to generate the same pressure level (on the direction of its radiation axis)
as compared to a omni-directional source.

The effect of the iterative weighted approach is such that it gradually attenuates this
directive-like behavior until finally obtain a equivalent source distribution that better rep-
resents the physical source. This is illustrated in Figure 4.7(b) which shows the radiated
acoustic pressure for the fifth iteration. We notice that in this case the radiation is more
uniform. One can expect similar behavior in practice as long as real physical sources may
be approximated as radiating like a point source.

The conclusions drawn from this analysis are: (1) The highly underdetermined aspect
of the problem leads to (when minimized using the l2-norm criterion) acceptable solution
in a qualitative aspect but non-physical on a quantitative point of view. (2) The pro-
posed iterative weighted approach allows to correct for this problem at the expense of a
slightly higher computational cost; (3) The proposed approach provides not only better
quantitative results but also better spatial resolution.

4.5 Sensitivity analysis

4.5.1 Influence of enclosure’s boundaries

In practical applications, the conditions of pure free-field propagation are rarely respected,
mainly due to the reflection of waves on the enclosure’s boundaries. It is thus important
to analyze the sensitivity of the method to modeling mismatches. In the proposed formu-
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(a) Basic solution (b) 5th iteration

Figure 4.7: Acoustic pressure radiated by the identified source distribution over the fre-
quency band 200-800 Hz. The figures show all the enclosure’s boundaries except the roof,
along with the real source position (black dot) and microphone coordinates (yellow dots).
The dynamic range in both cases is 40 dB.

lation, the radiation of equivalent sources is assumed to be in free-field conditions or in
the case of a rigid sphere the scattered waves are also taken into account.

A simulation example is used to analyze the sensibility of the method to the reflection
of waves on the enclosure’s boundaries. The image source method described by Allen
and Berkley [AB79] is used to simulate the acoustic pressure on the microphone array by
modeling the reflections on the enclosure’s boundaries as image sources. An adaptation
in the model is done in order to take into account the effect of the rigid sphere. The
behavior of each boundary is represented by a reflection coefficient βc, which is related to
the absorption coefficient αc by the relation:

αc = 1 − β2
c . (4.8)

The same enclosure’s dimensions used in Section 4.4.1 are considered here, however
with the following reflection coefficients associated to the enclosure’s walls: (a) β = 0.9
for the surfaces x = 0 and x = Lx; (b) β = 0 for other surfaces. Only the reflections up
to order 2 are taken into account into the simulation. The spacing between equivalent
sources is set to 0.10 m, which leads to a number of DOF approximately equal to 7000.
The position of real sources and microphone array are also kept unchanged from those in
Section 4.4.2.

The free-field model in Equation (2.49) is used for the backpropagation problem and
the results for the frequency of 800 Hz are shown in Figure 4.8. The figure shows the
volume velocity maps in dB’s for the first 3 iterations. We can see that the method
localizes the original sources as well as their reflections on the side boundaries. Similarly
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to the case with no reflections, the iterative approach allows to separate the two sources
by increasing the spatial resolution. In the case in which few a priori information on the
position of real sources is available, it might be difficult to interpret these results in the
sense that reflections could be viewed as additional sources. As we shall see in the next
section, the causality analysis of identified sources can help the user to reach more precise
conclusions. By means of this example, we have seen that in the presence of reverberation
the method yet identifies the original sources (at the expense of identifying the reflections)
and the iterative approach still increases the spatial resolution.

(a) Basic solution (b) 1st iteration

(c) 2nd iteration

Figure 4.8: Volume velocity maps in dB (m3/s) for the frequency of 800 Hz. The dynamic
range is set to 12 dB. These results are for the model considering reverberation.

In the following, we analyze the influence of the reverberation on the ability to quantify
the identified sources. The same geometrical parameters and source position from section
4.4.3 are used, however with a reflection coefficient of β = 0.9 associated to the surfaces
x = 0 and x = Lx. Only the first order reflections are taken into account. The identified
acoustic power is shown in Figure 4.9 for the first 8 iterations. This results may be
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compared to those presented in Figure 4.6. It can be seen that the estimate of the
acoustic power for the 8th iteration are in relatively good agreement with the simulated
acoustic power. We also notice, however, the presence of dips at some discrete frequencies.
Furthermore, it has been checked that the frequency interval between consecutive dips
matches very well the frequency in which the wavelength is equal to the difference of
distances ∥rs − ra∥− ∥ri − ra∥, where rs are the Cartesian coordinates of the source, ri the
coordinates of the image source and ra the coordinates of the array center. The presence
of the dips can thus be explained by wave interferences between the original source and
its reflections on the array position.
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Figure 4.9: Identified acoustic power as a function of the frequency for consecutively
iteration steps. The true acoustic power of simulated source is shown in black. These
results correspond to the model including reflections on the enclosure’s boundaries.

As a conclusion from this analysis, we have seen that both the localization and quantifi-
cation aspects of the method are affected by the presence of reverberation in the enclosure.
The main difficulty generated by the reflections of acoustic waves is that the reflections
are also considered as incoming waves on the measurement array, and consequently the
method “sees” these waves as additional sources. Indeed, it is this difficult that limits the
application of separation methods (discussed in Chapter 1) which are based on the sepa-
ration of incoming and outgoing waves. In section 4.6 we discuss a technique to analyze
the relationship between identified sources in order to distinguish between sources and
reflections. Finally, for a mildly reverberant scenario, one can expect that the proposed
approach is yet able to provide fairly acceptable results.

4.5.2 Influence of equivalent sources distribution

In this section we study the sensitivity of the iterative weighted ESM with respect to the
heterogeneity of the equivalent sources distribution. For that purpose the same rectan-
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gular enclosure with dimensions 5 × 3.4 × 2.2 m3 is used for the numerical simulations.
Two point sources with unitary volume velocity are placed on the boundaries as shown
in Figure 4.10. A rigid spherical microphone array is used to sample the acoustic field
with 31 microphones. The equivalent sources are distributed according to: (a) a uniform
distribution with a regular inter-source spacing of 0.2 m and (b) similar distribution but
with a local refinement (inter-source spacing 0.05 m) around one of the sources.

(a) Uniform inter-source spacing (b) Locally refined

Figure 4.10: Models used to study the influence of the homogeneity of equivalent sources
distribution. (a) model with a uniform inter-source spacing of 0.2 m; (b) Model with a
local refinement (inter-source spacing 0.05 m) around source 2.

Additive white Gaussian noise is added to the simulated acoustic pressure with SNR of
60 dB. The inverse problem is solved by the iterative weighted approach and the regular-
ization parameter adjusted by the Bayesian criterion in equation (3.33). The reconstructed
volume velocity is shown in Figure 4.11 for: (a) the model with regular distribution; (b)
the model with a local refinement. As can be seen, the presence of the two sources is only
detected for the model with a regular spacing of equivalent sources. In fact, as we shall
see, volume velocity maps for irregularly spaced equivalent sources are not appropriated
for localization purposes. This is because the dynamic range in volume velocity (m3/s)
is strongly dependent on the inter-spacing between equivalent sources. As an example,
we show in Figure 4.12 the volume velocity map for the non-uniform model in which the
dynamic range was adjusted to 30 dB. In this case we can notice the presence of the
second source.

A more relevant representation, however, should consider the different range of inter-
source spacing, for instance, by mapping the acoustic power of equivalent sources per
unit of surface, as shown in Figure 4.13. Nevertheless, these results show that in fact, the
classic approach identifies the source on the refined region as the most energetic one. On
the other hand, the iterative approach is able to correct this effect from the first iteration,
as can be seen in Figure 4.13(b). This results illustrate another advantage of the iterative
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(a) (b)

Figure 4.11: Volume velocity maps integrated over the 200-2000 Hz frequency band with-
out iteration. (a) uniform grid spacing; (b) local refinement around source 2. The dynamic
range is set to 12 dB.

Figure 4.12: Volume velocity map integrated over the 200-2000 Hz frequency band using
the iterative weighted approach. The results are for the model with local refinement and
the second iteration. Notice that the dynamic range is set to 30 dB.

approach, that is the ability to correct for a non uniform equivalent sources distribution.
Given the analysis of the localization aspect, we hereafter study the influence on the

quantification ability. The acoustic power of each source is obtained by carefully choosing
an integration area around each source. The integration is carried out for each frequency
and the results are shown in Figure 4.14, for the model with a uniform distribution. It
can be seen that after 6 iterations the identified acoustic power converges to the simulated
one for both sources. The results for the model with local refinement are shown in Figure
4.15. Notice that only the results for the second source (which is located on the refined
region) are shown, since there is no significant difference for the first source as compared
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(a) classic solution (b) 1st iteration

Figure 4.13: Acoustic power maps per unit of surface for: (a) classic approach; (b) first
iteration. The dynamic range is set to 12 dB.

to the uniform case. One can observe that the results also converge to the simulated
acoustic power, however with the requirement of a higher number of iterations (8 in this
particular case).
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(a) source 1
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(b) source 2

Figure 4.14: Identified acoustic power as a function of the frequency for the first 8 iter-
ations (model with uniform grid spacing). The curve in black is the simulated acoustic
power.

Finally, in order to emphasize the importance of the term of induced acoustic power
due to neighbor equivalent sources (see equation (2.27)) we plot in Figure 4.16 the acoustic
power due only to the individual equivalent sources (first term on the right hand side of
equation (2.27)). This result is to be compared to the “total” identified acoustic power in
Figure 4.15. It can be seen that, if the term of acoustic power induced by neighbors sources
is not taken into account, the simulated acoustic power is strongly underestimated. One
can expect that this term is progressively more important as more dense is the equivalent
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Figure 4.15: Identified acoustic power as a function of the frequency for the model with
a local refinement area. The results are for the source 2, which is located on the refined
region.

source distribution.
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Figure 4.16: Acoustic power due only to the individual power of equivalent sources (i.e.
first term on the right hand side of equation (2.27)) for the model with a local refinement.
The results are for the source 2.

As a conclusion of this analysis, we have seen that whenever the distribution of equiv-
alent sources is not uniform (i.e. not evenly spaced grid) one should resort to acoustic
power maps per unit of surface, for noise source localization purposes. This is required
in order to avoid misinterpretation related to the different dynamic range of identified
sources. We have also seen that the classic approach tends to favor those regions where
the inter-source spacing is more dense and that the iterative weighted approach allows to
correct this effect. In addition, the use of more compact equivalent sources distribution,
normally require a greater number of iterations to converge to the “true” acoustic power.
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4.6 Application of the causality analysis
As we have seen in previous sections, the presence of reverberation leads to the identi-
fication of reflections along with the original sources. This in turn makes it difficult to
interpret the results and draw up consistent conclusions. The major difficult in dealing
with wave reflections is that they are usually correlated to the original sources and thus
their contributions cannot be separated by signal processing techniques such as the Prin-
cipal Spectral Analysis (PSA). Thus, it is of great relevance for troubleshooting purposes,
to identify which is the original source of noise. A practical way to answer this question
would be to mask each identified “hot spot” region at a time and evaluate the impact
on other hot spots. If a reflection is masked one can expect no influence on the original
sources. On the other hand, if a real source is masked, we should notice differences in
both original source and reflections energy.

Another possible way to perform this task was discussed in section 2.7. The main idea
is to evaluate the causality relationship between the identified hot spots in order to find
those which correspond to reflections. A simulation example using the same enclosure
of previous sections is used. Two correlated sources are placed on different walls of the
enclosure (as shown in Figure 4.17). The floor of the room is considered fully rigid (βc = 1)
and other surfaces are assumed to be absorbent. The acoustic pressure is measured with
a spherical array consisting of 31 microphones and radius a = 0.145m. The reconstructed
volume velocity of equivalent sources is shown in Figure 4.17 for the 1st iteration and
frequency band 100 to 3000 Hz. As we can see, the method locates the real sources
(marked as black dots) as well as their reflections on the floor.

The frequency response function (FRF) between the identified hot spots are computed
as given by equation (2.63) and the causality relationship of each are evaluated by means of
the Hilbert transform. We firstly analyze the causality relation between hot spots labeled
1 and 3 (see Figure 4.17). The results are shown in Figure 4.18 for H13(f) and H31(f). It
can be seen that the frequency response H13(f) satisfies the causality relationship for the
whole considered frequency band leading to the conclusion that the hot spot 1 is indeed
a source and 3 its reflection. The same is also observed for the relation between hot spots
2 and 4, as shown in Figure 4.19. Finally, we also verify the causality relation between
hot spots 1 and 2, and the results are shown in Figure 4.20. In this case, no conclusion
can be made from this analysis since 1 and 2 are actually two correlated sources.
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Figure 4.17: Volume velocity map integrated over the 100-3000 Hz frequency band for
the first iteration. The position of real sources are marked as black dots. Notice that
each hot spot is labeled by a number which is used for subsequent analysis. The dynamic
range is 12 dB.
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Figure 4.18: Verification of causality relations. (—) imaginary part of the frequency
response function, (−−) Hilbert transform of the real part of the FRF. Top: H13(f);
Bottom: H31(f).
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Figure 4.19: Verification of causality relations. (—) imaginary part of the frequency
response function, (−−) Hilbert transform of the real part of the FRF. Top: H24(f);
Bottom: H42(f).
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Figure 4.20: Verification of causality relations. (—) imaginary part of the frequency
response function, (−−) Hilbert transform of the real part of the FRF. Top: H12(f);
Bottom: H21(f).
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5
Experimental validation and applications

5.1 Practical microphone array design

Following the guidelines presented in the previous sections a configuration which is well
adapted to the target applications in this work has been chosen. The frequency range of
interest is from 100 Hz to 3000 Hz and the number of microphones is limited to 32. Par-
ticularly, the truncated icosahedron geometry (see Figure 5.1) offers a convenient option
for the distribution of 32 microphones on the surface of a sphere. It is an Archimedean
solid [tru] with 12 regular pentagonal faces and 20 regular hexagonal faces and the choice
consists in placing the microphones at the center of each face. This layout distributes
microphones with a nearly uniform distance between neighbors. One of the advantages
of this solution is that due to its nearly regular angular spacing, it is flexible enough to
consider a single rotation of 36○ over the z-axis in order to obtain a configuration with 61
microphones. This option is beneficial in cases where neither real time nor simultaneous
measurements are required. In Section 5.5 , we will further investigate this flexibility by
some validation experiments carried out in two passes.

In the practical construction, the microphone positioned at the south pole was removed
to provide access for the cables outlet and mounting base. The microphones were finally
flush-mounted on a Plexiglas sphere of radius 0.145 m and thickness of 4 mm. The
constructed array is shown in Figure 5.2.

As far as we know, there is no definition in the literature on how to determine the
Shannon-Nyquist limit for spherical arrays, besides its spherical and spatial version (1.1)
for processing in the spherical harmonics domain. Normally, for planar arrays it is defined
by the inter-microphone spacing, which should not be greater than half the wavelength
of interest. In order to estimate the Shannon-Nyquist limit for the two configurations
discussed above (31 and 61 microphones) we proceed as follows. First we compute the
delaunay triangulation [BDH96, del] of microphones coordinates on the sphere. Next,
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Figure 5.1: Left: Truncated icosahedron geometry, which has 20 regular hexagonal faces
and 12 regular pentagonal faces. Middle: distribution of microphones corresponding to
the center of faces of a truncated icosahedron. Right: configuration obtained after a
36○(π/5) rotation around the z-axis.

we compute the average of the edge lengths returned by the triangulation. The average
length gives us an estimate of the inter-microphone spacing for both configurations. For
the configurations with 31 and 61 microphones we respectively have 0.65a and 0.50a,
where a is the radius of the sphere in meters. For a sphere of radius a = 0.145 m, this
gives the following high frequency limits: f31 = 1900 Hz and f61 = 2500 Hz.

Figure 5.2: Spherical array of radius 14.5 cm with 31 microphones constructed for the
validation experiments.

5.1.1 Array directivity

In order to validate the plexiglass sphere, its directivity was measured and compared to
the theoretical one. The experiments were carried out in a semi-anechoic room with the
sphere mounted on a vertical support which was manually rotated with an angular step
of 15○. The center of the sphere was 1 m from the room floor and a single microphone was
flush-mounted on the equator (θ = 90○). A tube with exit diameter 15 mm and connected
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to a driver unit [dBB08] is used as a source, which is a good approximation of a monopole
in the frequency range of interest (200 - 2000 Hz). The source was placed on the chamber
floor at a distance of 2 m from the array center. The pressure measured on the surface
of the sphere was then normalized by the free-field pressure measured at the center of
the sphere, in order to obtain the sphere-related transfer function (SRTF). Directivity
diagrams evaluated for different third octave frequency bands are shown in Figures 5.3
and 5.4. We notice that as the frequency increases and the wavelength becomes small in
comparison to the circumference of the sphere, the response at the front approaches twice
the free-field one. On the other hand, the response at the back becomes gradually smaller,
revealing the sphere’s shadowing effect. Finally, we observe that the experimental results
are in general agreement with the theoretical values, thus validating the array as a rigid
sphere model.

  0.5

  1

  1.5

  2

30

210

60

240

90

270

120

300

150

330

180 0

SRTF 250 [Hz]

 

 

  0.5

  1

  1.5

  2

30

210

60

240

90

270

120

300

150

330

180 0

SRTF 500 [Hz]

 

 

  0.5

  1

  1.5

  2

30

210

60

240

90

270

120

300

150

330

180 0

SRTF 800 [Hz]

 

 

Figure 5.3: Theoretical directivity diagrams (—) and obtained from measurements (—)
for different frequencies. The SRTF is the ratio between the pressure on the surface of
the sphere and the free-field pressure (i.e. without the sphere) at the center of the sphere.

5.1.2 Array calibration

A custom calibration procedure for the microphone array was performed. A practical
constraint is that the calibration has to be done with the microphones on the array since
they are permanently fixed. The improvised calibration device consists of a small driver-
unit in which a flexible tube is screwed. The idea is to drive the source with white noise
signal and excite the microphones with the same signal. The device is placed against each
microphone and the transfer function between the latter and the input signal is recorded.
A reference is computed by the average of transfer functions over the array and a set of
calibration curves are obtained by taking the ratio of each microphone transfer function
and the reference. The magnitude and phase of the calibration curves for all microphones
are shown in Figure 5.5. It can be seen that the fluctuations in magnitude are within the
range of ±2 dB up to approximately 3 kHz. It is believed that the increase in errors for high
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Figure 5.4: Theoretical directivity diagrams (—) and obtained from measurements (—)
for different frequencies. Note that SRTF is the ratio between the pressure on the surface
of the sphere and the free-field pressure (i.e. without the sphere) at the center of the
sphere.

frequencies is due to limitations of the calibration device. A possible alternative for the
calibration would be to place a previously calibrated microphone diaphragm-to-diaphragm
with each microphone on the array and record their respective transfer functions. A set
of calibration curves is then obtained by multiplying the ratio of transfer functions by the
sensitivity of the reference microphone.
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Figure 5.5: Calibration curves for each of the 31 microphones of the array, in magnitude
(top) and phase (bottom).
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5.2 Validation of the first weighting strategy
As we have seen in Chapter 4 an a priori information was introduced into the problem
in order to correct for the positioning of the microphone array inside an enclosure. In
this Section we present an experimental validation of the proposed weighting. The rigid
spherical array described in the previous Section is used to measure the acoustic field
inside a semi-anechoic cabin. A Microflown® acoustic source [dBB08] which consists of a
tube of small diameter (d = 15 mm) connected to a compressor driver is used. This source
is a good approximation of a monopole in the frequency range of 200 Hz to 4000 Hz. In
addition, the source is implemented with a particle velocity probe at the end of the tube,
which is used as a reference signal. The experimental set-up is shown in Figure 5.6. The
monopole source is placed facing the door at a distance of 0.46 m from the ground and
two different array positions are considered: (1) the first one relatively far from the closest
boundary; (2) near to the enclosure surface.

Figure 5.6: Measurement set-up.

The acoustic source is excited with white noise, the sampling frequency is set to 16
kHz and the recording length is 15s. The propagation model which relates the equivalent
sources to the acoustic pressure on the spherical array is given in Equation (2.49). The
complex acoustic pressure measured by each microphone is estimated by using the particle
velocity probe at the exit of the tube as a reference signal. The inverse problem is
then solved according to different strategies: (1) the classical ESM approach; (2) the
first weighting strategy and (3) the iterative weighted approach. Firstly, we present in
Figure 5.7 the results when the array is placed at the vicinity of a boundary for: (a)
the classical approach; (b) the weighted approach. It can be seen that, similarly to
the simulated example, the solution without weighting produces undesirable features, i.e.
“ghost sources”, on the nearby boundary (x = 0). On the other hand, the results using
the proposed weighted approach allows to correct this effect at the expense of a worsened
spatial resolution.
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(a) classic approach (b) weighted approach

Figure 5.7: Volume velocity maps in dB (ref. 50 nm3/s) integrated over the 1000 Hz third
octave band. The figures show the floor and two boundaries of the enclosure, along with
the microphones’ coordinates and the real source position. The spherical array is at 35
cm from the nearby boundary and the results are given for: (a) classic ESM approach;
(b) weighted approach. The dynamic range is set to 15 dB.

In addition, the iterative weighted strategy is applied for both cases (with and without
the previous weighting by distance) and the results are shown in Figure 5.8. We can notice
in Figure 5.8(a) that the iterative approach itself is able to reduce, at some extent, the
effect of “ghost sources”. For the case in which the initial weighting by distance is used,
Figure 5.8(b), the unwanted effects are completely suppressed and we can notice the
improvement in spatial resolution.

In addition, we present the results for the case in which the spherical array is placed
at 66 cm away from the closest boundary (see Figure 5.9). We can notice that the above
effects are less pronounced in this case. Indeed, the results for the classic approach, Figure
5.9(a), reveal the appearance of “ghost sources” however with energy 10 dB smaller than
the original source.

As we have noticed from the above results, the method identifies the real source
but also its first order reflection on the ground (which is not equipped with absorbent
material). This behavior may pose an extra difficulty in practical cases in which the
position of source is not known. For instance, it may mislead the user to assert that two
sources are present. A possible way to gain better understanding was discussed in the
previous Chapter. The idea is to analyze the causality relations between identified sources.
This technique is applied here with the frequency response function (FRF) between the
complex volume velocity corresponding to the real source and its image. The causality
relation is then computed and the results are shown in Figure 5.10, where the label 1 is
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(a) (b)

Figure 5.8: Volume velocity maps in dB (ref. 50 nm3/s) integrated over the 1000 Hz
third octave band. The results correspond to the 1st iteration returned by the iterative
approach for: (a) without the initial weighting by distance; (b) with the initial weighting
by distance. The dynamic range is set to 15 dB.

(a) classic approach (b) weighted approach

Figure 5.9: Volume velocity maps in dB (ref. 50 nm3/s) integrated over the 1000 Hz third
octave band. The spherical array is at 66 cm away from the nearby boundary and the
results are given for: (a) classic ESM approach; (b) weighted approach. The dynamic
range is set to 15 dB.

assigned to the real source and the label 2 to its corresponding first order reflection. It
can be seen that the frequency response H12(f) satisfies the causality relationship for the
whole considered frequency band, which helps us to state that the “source 2” is indeed a
reflection.
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Figure 5.10: Verification of causality relations. (—) imaginary part of the frequency
response function, (−−) Hilbert transform of the real part of the FRF. Top: H12(f);
Bottom: H21(f).

5.3 Validation of the iterative weighted strategy

In this section, a different experimental configuration is used to validate the iterative
approach, particularly in terms of the ability to quantify the acoustic power of identified
sources. The experiment is carried out in a semi-anechoic room with dimensions 5×3.4×2.2
m3. The same acoustic source and spherical array described in the previous section are
used here. Figure 5.11 shows the experimental set-up. The acoustic source is placed at
the floor of the chamber and is driven with white noise. The spherical array is located at
1 m from the floor and the distance from its center to the acoustic source is 1.2 m. The
particle velocity probe placed at the exit of the tube is used as a reference signal and is
used to estimate the acoustic power radiated by the source.

The inverse problem is then solved using the iterative weighting strategy discussed
in Section 4.3. The reconstructed volume velocity corresponding to the first iteration
is shown in Figure 5.12. It can be seen that the method locates the source in its cor-
rect position. In what follows, the measured reference acoustic power is compared with
the reconstructed acoustic power. First of all, we show in Figure 5.13, the estimate of
the acoustic power returned by the classic ESM. It can be readily seen a severe under-
estimation of the reference acoustic power, especially at higher frequencies. The same
observation has been found in the numerical simulation from Section 4.4.3.

As noticed before, this underestimation is related to the directivity properties of the
identified source distribution, which in turn, is due to the high degree of underdetermi-
nation of the problem. These remarks are illustrated in Figure 5.14, which shows the
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Figure 5.11: Measurement set-up.

Figure 5.12: Volume velocity map integrated over the 200-2000 Hz frequency band for the
first iteration. The position of real the source is marked by an yellow dot. The dynamic
range is 15 dB.

acoustic pressure radiated by the identified source distribution. Figure 5.14(a) gives the
results for the classic approach. As can be seen, the identified source distribution is hyper
directive in the direction of the array (notice the high pressure levels on the ceiling of
the chamber). The acoustic pressure radiated by the reconstructed source field (using
the classical approach) is shown in Figure 5.15 for different frequencies. The figure shows
the acoustic pressure evaluated at a hemi-spherical surface of radius 1 m and centered on
the source position. As can be seen, the reconstructed source field becomes more direc-
tive as the frequency is increased. This results explain why the acoustic power is more
underestimated at higher frequencies than at lower frequencies, as can be seen in Figure
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Figure 5.13: Acoustic power as a function of the frequency for: (—) measured reference
acoustic power, (−−) reconstructed by the classic approach.

5.13. In addition, we show in Figure 5.14(b) the results returned by the iterative weighted
approach after the 6th iteration. We can see that the above effect is corrected and the
radiation of identified sources agrees better with the radiation of the real source.

(a) classic approach (b) 6th iteration

Figure 5.14: Radiated acoustic pressure by the identified source distribution mapped on
the enclosure’s boundaries. The results correspond to the frequency of 700 Hz for: (a) the
classic approach; (b) the iterative weighted approach at the 6th iteration. The dynamic
range is 20 dB.

The iterative weighted approach was then applied to this case and an estimate of the
acoustic power is computed at each iteration step. The results up to the 8th iteration are
shown in Figure 5.16. It can be seen that the reconstructed acoustic power is progressively
increased until convergence to the reference acoustic power. In this particular case, 8
iterations are required to obtain a good quantification. Finally, we present in Figure 5.17
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(a) 250 Hz (b) 500 Hz

(c) 1000 Hz (d) 1600 Hz

Figure 5.15: Acoustic pressure generated by the reconstructed source field at a hemi-
spherical surface of radius 1 m and centered on the source position. The results are given
for the classic approach for (a) 250 Hz; (b) 500 Hz; (c) 1000 Hz; (d) 1600 Hz.

the estimate of the acoustic power given by the last iteration step. It can be seen that
the estimate of the acoustic power agrees well with the reference acoustic power for the
considered frequency band.
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Figure 5.16: Acoustic power as a function of the frequency for: (—) measured reference
acosutic power and returned by each iteration step from the 1st to the 8th iteration.
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Figure 5.17: Acoustic power as a function of the frequency for: (—) measured reference
acosutic power, (−−) reconstructed by the iterative weighted approach at the 8th iteration.
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5.4 Localization and quantification of two noise sources
In this section we describe an application of the proposed iterative weighted method to
locate and quantify two correlated noise sources. The experimental set-up is illustrated in
Figure 5.18. The physical sources are two small drive units which are placed on the floor of
the chamber (see Figure 5.18(a)). The distance between the two sources is approximately
1.2 m. In order to assess the acoustic power radiated by each source, the acoustic pressure
at 5 cm from each source is measured as shown in Figure 5.18(b). The estimate of the
acoustic power is obtained by assuming that the sources have a monopole-like behavior
at the given distance. These measurements will serve as a reference to check the accuracy
of the quantification results.

(a) (b)

Figure 5.18: (a) Measurement set-up showing the spherical array and two small sources
placed on the ground of a semi-anechoic chamber. (b) Acoustic pressure measurement at
5 cm from the source, which is used to estimate its the acoustic power.

The equivalent source distribution is given by an equally spaced lattice of points rep-
resenting the room surfaces, with a spacing of 0.1 m, which leads to a total number of
7000 degrees of freedom (DOF). The inverse problem is solved according to the proposed
approach and the regularization is controlled by the Bayesian criterion in Equation (3.33).
The results for the classic ESM approach are also computed for the sake of comparison.
Figure 5.19 shows the volume velocity of equivalent sources obtained by the classic ap-
proach, as well as, by the iterative weighted approach. It can be seen that for the classic
approach (Figure 5.19(a)) the two sources cannot be clearly separated, due to a poor
spatial resolution at the considered frequency band. Conversely, after few iterations of
the proposed approach (2 in this case) the two sources are already spatially separated. As
we shall see, although few iterations are sufficient in order to acquire a reasonable spatial
localization of sources, their correct quantification in terms of acoustic power requires a
higher number of iterations.
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(c) 2nd iteration
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(d) 3rd iteration

Figure 5.19: Volume velocity maps integrated over the frequency band of 250-800 Hz with
a dynamic range of 20 dB for all cases. (a) classic approach; (b) first iteration; (c) second
iteration; (d) third iteration.

In what follows, we analyze the ability of the method to quantify the acoustic power
of two correlated sources. The acoustic power of the above equivalent source distribution
is computed by means of Equation 2.27. An estimate of the acoustic power corresponding
to each physical source is obtained by the integration of the acoustic power map over a
circular surface of radius 0.3 m centered at the position of each source. Not surprisingly,
the estimated acoustic power is strongly underestimated for both sources, as shown in
Figure 5.20. The acoustic power is also estimated by the iterative approach and the
results up to the 8th iteration are reported in Figure 5.21. It can be seen that, in general,
the agreement is acceptable, except at a frequency band ranging from 900 to 1700 Hz for
the source 1 and from 1400 to 1800 Hz for the source 2, for which the acoustic power is
underestimated. Indeed, it has been verified that this is related to the radiation pattern
of the physical sources. As can be seen in Figure 5.18, the driver units are not baffled
and their outlets are at approximately 8.2 cm from the ground, thus introducing a first
order reflection.
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In order to compute the radiation pattern of a source near a rigid boundary we use
the concept of image sources. The acoustic pressure at a half circle of radius 1 m, as
shown in Figure 5.22(a), is given by the sum of acoustic pressures generated by the source
and its image. The acoustic pressure normalized by its maximum value at each frequency
is reported in Figure 5.22(b). In the experimental set-up the spherical array is at an
approximate angle of 40○ relative to the sources. By inspection of Figure 5.22(b) we can
notice that the radiation pattern exhibits a dip at this angle for those frequencies for which
the underestimation is observed. This behavior may certainly explain the underestimation
of the acoustic power. The above remarks show a limitation of the method in terms
of quantification when the radiation of real sources differs considerably from an omni-
directional radiation.
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Figure 5.20: Acoustic power as a function of the frequency for: (—) measured reference
acoustic power, (−−) reconstructed by the classic approach.

The acoustic pressure radiated by the identified source distribution is also reported
in Figure 5.23. The same remarks as in the previous section are made here, the classic
approach leads to reconstructed sources which are hyper directive towards the microphone
array. In fact, this is a consequence of the highly underdetermined aspect of the system,
in the sense that, the solution obtained by the method (among the infinite number of
solutions), has no physical meaning in this case.
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Figure 5.21: Acoustic power as a function of the frequency for: (—) measured reference
acoustic power and returned by each iteration step from the 1st to the 8th iteration.
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Figure 5.22: (a) Model used to estimated the radiation pattern of a source near a reflective
surface. A monopole source is placed at 0.08 m from the ground. The figure also shows
a set of field points placed at a half circle of radius 1 m around the source. (b) Acoustic
pressure at field points as a function of frequency. The acoustic pressure was normalized
by its maximum value at each frequency.

(a) classic approach (b) 9th iteration

Figure 5.23: Radiated acoustic pressure by the identified source distribution mapped on
the enclosure’s boundaries. The results correspond to the frequency band from 800 Hz
to 1500 Hz for: (a) the classic approach; (b) the iterative weighted approach at the 9th

iteration. The dynamic range is 15 dB.
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5.5 Multi-pass measurements using a spherical array

In Section 5.1, we have mentioned that one of the advantages of the chosen distribution
of microphones on the sphere was the possibility to perform a single rotation of π/5
radians to obtain a configuration with 61 microphones. This condition implies that the
measurements have to be applied in two passes and thus restricts the application to
stationary cases only. An additional difficulty of measurements performed in more than
one step is the requirement to synchronize non-simultaneous measurements. Our aim in
this section is to present experimental results that validate the proposed measurement
set-up. The same acoustic sources from the previous Section are used here, and the
experimental set-up is shown in Figure 5.24. The distance between the two sources is
approximately 1 m.

In what follows, we summarize how the non-simultaneous measurements (in two steps)
are synchronized. Since the cross-spectrum between moving microphones is not estimated,
the full cross-spectral matrix comprising the two measurement positions is not available.
An shown in reference [Lec09], virtual source analysis (VSA) may also be applied with a
partial cross-spectral matrix. In the context of multiple pass acquisitions, whenever the
signals measured by moving sensors are not fully coherent to each other (which is the case
in the presence of multiple incoherent physical phenomena), several static reference probes
are often required. Normally the number of reference static sensors must be at least equal
to the number of observed incoherent phenomena. In the present experimental study we
consider two uncorrelated acoustic sources, thus requiring a number of at least two fixed
reference sensors. In this case we used a fixed reference microphone placed arbitrarily in
the room (see Figure 5.25) and the second reference taken as the microphone located at
the north pole of the sphere (which remains fixed after the rotation). The partial cross-
spectral matrix SPR between moving microphones and fixed references is then computed.
SPR being a rectangular matrix with rows corresponding to outputs and columns to
references only.

The output holograms, hereafter stored in the columns of the matrix X, are then
obtained by means of the eigendecomposition of the cross-spectral matrix between fixed
references (SRR) as follows

SRR = Φ⌈Σ⌋ΦH = XRXT
R, (5.1)

with the columns of Φ being the eigenvectors of the decomposition and the diagonal
elements of Σ the eigenvalues. In addition, A stands for the conjugate of matrix A and
AT the transpose of A. The reference output vectors, stored in the columns of matrix
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Figure 5.24: Experimental set-up.

Figure 5.25: Experimental set-up showing the set of fixed references used to synchronize
the non-simultaneous measurements.

XR, can thus be obtained by

XR = Φ⌈
√

Σ⌋. (5.2)

The partial cross-spectral matrix SPR between moving microphones and fixed refer-
ences may be given by the following relationship

SPR = XXT
R, (5.3)
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with X the unknown rectangular matrix with columns defined as the output holograms
referenced to virtual sources and XR a square matrix with dimension equal to the number
of fixed references. Inserting Equation (5.2) into Equation (5.3) yields:

SPR = X⌈
√

Σ⌋ΦH , (5.4)

from which we finally obtain the output holograms based on the partial cross-spectral
matrix and on the eigendecomposition of the references cross-spectral matrix, as follows

X = SPRΦ⌈
√

Σ⌋−1. (5.5)

We finally remark that the above computations are realized for each frequency line, the
frequency dependency notation being neglected for notational simplicity. In practice, in
order to reduce the uncertainties on the spectral estimators, the elements of the references
cross-spectral matrix are averaged over the number of passes. Similarly, the elements of
the partial cross-spectral matrix are computed by means of the H1 estimator between
moving sensors and references, with reference auto-spectra estimated over the number of
passes. In order to ensure that all incoherent phenomena (sources) contributing to a given
output i are captured by the available fixed references, one can make use of the multiple
coherence function. The latter is defined as the ratio of the energy taken into account by
a given number of virtual sources over the energy of a given output, as follows [Lec09]

γi∶1,⋯,n(f) =
∑nk=1 ∣Xik(f)∣2

Sii(f)
, (5.6)

with n the number of virtual sources taken into account, Xik the element of X correspond-
ing to the i-th row and k-th column and Sii the auto-spectrum of output i. This quantity
is computed for the considered case taking into account the first two virtual sources and
the result is shown in Figure 5.26. As can be seen, the multiple coherence is generally
close to 1 except at the frequency of 1000 Hz for some outputs.

From now on, we compare the source reconstruction results obtained by the original
array and the configuration with an additional rotated position. The distribution of
microphones on the sphere for the combined configuration is shown in Figure 5.1. As can
be seen, this configuration leads to a smaller the inter-microphone spacing. This property
is advantageous in order to increase its upper frequency of application. As an example,
Figure 5.27 shows the reconstructed volume velocity integrated over 2500-3000 Hz for:
(a) one pass only; (b) combined array. By comparing both results, it can be seen that
the configuration with two passes improves the sensibility to side lobes, since the energy
of the latter is reduced in this case.

On the other hand, the above improvements are less pronounced at lower frequencies,
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Figure 5.26: Multiple coherence function as a function of the frequency for all sensors.
The multiple coherence is computed between moving microphones and the first two virtual
sources.

(a) single pass (b) two passes

Figure 5.27: Volume velocity maps integrated over the 2500-3000 Hz frequency band. (a)
results obtained by the original array with 31 microphones; (b) results for the configuration
with an extra rotation leading to 61 measurement positions. The dynamic range is 20 dB.

as shown in Figure 5.28 for the 200-600 Hz frequency band. This result is not surprising
since a denser microphone array provides little additional information at lower frequencies,
a larger array would be a better configuration at this frequency range. Nevertheless, in
combination with the iterative weighted approach, the denser array yet provides better
results in terms of spatial resolution (see Figure 5.29).

The performance of both array configurations is also compared in terms of the quan-
tification of the acoustic power. An estimate of the individual acoustic power of sources
is given by the integration over an area surrounding each source. The results for the last
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(a) single pass (b) two passes

Figure 5.28: Volume velocity maps integrated over the 200-600 Hz frequency band, for:
(a) original array; (b) two passes configuration. The dynamic range is 20 dB.

(a) single pass (b) two passes

Figure 5.29: Volume velocity maps integrated over the 200-600 Hz frequency band, us-
ing the iterative weighted approach. (a) original array; (b) denser array. These results
corresponds to the 2nd iteration and the dynamic range is 20 dB.

iteration given by the iterative weighted approach are reported in Figure 5.30. The same
underestimation as previously at the mid frequency range is observed. In general, the
results for both configurations are similar, except at some particular frequencies in which
the estimate returned by the configuration with two passes is slightly better, namely: low
frequencies for the source 2 and mid frequency range for the source 1.

It has been shown in this section that it is possible to increase the number of measure-
ment positions using a spherical array by means of a single rotation around its axis. One of
the advantages of this experimental procedure is to improve the quality of reconstruction
results at higher frequencies by decreasing the inter-microphone spacing. However, an
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Figure 5.30: Acoustic power as a function of the frequency given by the measured reference
and estimated for two different array configurations. (a) source 1; (b) source 2. These
results correspond to the last iteration given by the iterative weighted approach.

additional difficulty is the requirement to synchronize non-simultaneous measurements,
which by the approach used here, requires a number of fixed references at least equal
to the number of incoherent phenomena. Further research is suggested in order to ob-
tain a technique to synchronize non-simultaneous measurements without the need of fixed
references.

5.6 Noise source localization inside a bus cabin
One of the practical applications of the described approaches concerns interior noise di-
agnostics in vehicles. Very often, acoustical performance receives little attention at early
design stages of a vehicle and acoustic problems appears very late, when design changes
are limited. Noise mapping techniques, such as the one discussed in this thesis, may help
the engineer to understand the source of the acoustic problems, for instance a region of
acoustic weakness or improper sealing.

Our interest in this section is the identification of noise sources inside a bus cabin using
a commercially available dual-sphere microphone array, which was placed at the rear of
the vehicle, near the engine compartment (see Figure 5.31(a)). Several configurations
have been tested and, in what follows, we present the results for the condition in which
the bus is stopped and the engine running at idle. A sketch of the bus illustrating its
main components is shown in Figure 5.31(b). We can observe the diesel engine at the rear
right compartment, an electric motor at the bottom and cooling systems and batteries
at the top. The microphone array consists of a rigid sphere of radius 0.15 m with 24
microphones and an open sphere of radius 0.4 m with 24 microphones. An interior mesh
of the bus is obtained by a meshing system which consists of a laser that points towards
the interior surfaces with a predefined spatial step. The coordinates of the mesh nodes
relative to the center of the array are then obtained. In this particular case, the total

137
Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0066/these.pdf 
© [A. Pereira], [2013], INSA de Lyon, tous droits réservés



number of equivalent sources that represent the interior surfaces is approximately 14600.

(a) (b)

Figure 5.31: (a) Measurement set-up showing the dual-sphere microphone array (courtesy
of MicrodB). (b) Sketch of the bus (courtesy of IVECO France Irisbus).

The complex acoustic pressure holograms are obtained by means of principal spectral
analysis (PSA) or virtual source analysis (VSA) [LPLP05]. Pressure holograms at each
frequency are obtained for each principal component and used to solve for the inverse
problem. The results (e.g. reconstructed source field) are then summed in energy. The
acoustic pressure averaged over the ensemble of microphones is shown in Figure 5.32. In
what follows, we focus on the frequency band from 250 to 550 Hz, in which most of the
spectral energy is concentrated. The proposed iterative weighted approach is then applied
in order to identify those regions which contribute the most to the interior sound field.

Figure 5.33 shows the volume velocity map of identified sources integrated over the
frequency band of 440-490 Hz. The images show a 3D view of the interior surfaces of
the bus. In Figure 5.33(a) we show the result obtained for the rigid sphere only, and
Figure 5.33(b) shows the result for the dual-sphere array. One can see that the main
contribution for this frequency band comes from the rear right side, around the rear
exit door. It can also be noted the improvement in resolution when using the dual-
sphere array configuration. Indeed, at low frequencies (large wavelengths) a larger array
is advantageous.

The weighting by the distance from each equivalent source to the array center position,
as described in Section 4.2, was used in both cases in order to correct for the positioning
of the microphone array. As can be seen in Figure 5.31(a) the array is much closer to the
ceiling than other surfaces, which implies that more weight will be given to equivalent
sources on that region when no correction is applied. To illustrate this behavior, we
present in Figure 5.34(a) the results when no correction is applied. It has been verified
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Figure 5.32: Measured acoustic pressure averaged over the ensemble of microphones in
dBA.

(a) rigid sphere only (b) dual-sphere array

Figure 5.33: Volume velocity map integrated over 440-490 Hz corresponding to the bus
interior surfaces with a dynamic range of 12 dB. (a) results using the rigid sphere only.
(b) results using the dual-sphere array (rigid and open sphere). The weighting by the
distance from the equivalent sources to the array center was used for both cases.

that, without correction, the method systematically identifies the main contributing region
on the ceiling, near the microphone array. Hence, this results evidences the importance
of the first weighting strategy in order to correct for the array positioning. The iterative
weighted approach is finally applied to this configuration and the results are reported
in Figure 5.34(b) for the first iteration. It can be noticed an improvement in spatial
resolution as compared to the results in Figure 5.33(b). The results for the frequency
band 390-410 Hz are shown in Figure 5.35. Figure 5.35(a) shows a 3D view of the ceiling
and right-hand side and Figure 5.35(b) shows the rear and the floor parts. It can be seen
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that the main contribution in this frequency band comes from the rear part of the floor.

(a) classic approach (b) 1st iteration

Figure 5.34: Volume velocity map integrated over the 440-490 Hz frequency band with
a dynamic range of 12 dB. (a) results for the classic approach, in which no weighting by
distance is applied. (b) results obtained for the first iteration returned by the iterative
weighted approach.

(a) top view (b) bottom view

Figure 5.35: Volume velocity map integrated over the 390-410 Hz frequency band with
a dynamic range of 12 dB. (a) results for the classic approach, in which no weighting by
distance is applied. (b) results obtained for the first iteration returned by the iterative
weighted approach.
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Conclusions and Further Research

Conclusions

This work has been carried within the framework of inverse acoustic problems for interior
spaces. In this context, the study has been built on the equivalent source method. Its
simplicity, ease of implementation, relatively low computational cost and possibility to
combine noise source localization and quantification are some of its advantages.

Initially, the application of the classic ESM approach to interior problems have been
described and we have shown how to obtain the acoustic quantities that characterize the
reconstructed source field, namely: the radiated acoustic pressure and acoustic power. In
addition, the propagation models relating the equivalent sources to the microphone array
have been discussed, with emphasis on the application with rigid spherical arrays.

Due to the ill-conditioning aspect of the proposed approach, a major part of this thesis
has been dedicated to the aspect of regularization of the acoustic inverse problem. In this
context, we have studied the well-known L-curve method, for which we proposed an ex-
tension to its criterion. The main motivation was to ensure the continuity of the frequency
response which characterizes the reconstructed source field. Yet in the context of regular-
ization, we have studied in detail an approach based on a Bayesian framework. The latter
has provided us natural justification for the use of the well-known technique of Tikhonov
regularization. Furthermore, the Bayesian formalism offers new perspectives on the selec-
tion of a reasonable amount of regularization. Finally, an important contribution of this
work was dedicated to an extensive comparison of parameter choice methods, by means
of both numerical and experimental validations. It has been shown that, the Bayesian
regularization criterion provides a very robust tuning of the regularization parameter for
varied acoustical conditions.
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Given the analysis of the various regularization aspects, we have studied the applica-
tion to noise source identification in closed spaces. At an early stage we were faced to two
main difficulties, the first one related to the positioning of the microphone array inside the
enclosure and the second related to the highly underdetermined aspect of the problem. An
iterative weighted equivalent source method has then been proposed to overcome these
difficulties. The method is basically dependent on two weighting schemes: (1) a first
weighting strategy to take into account the positioning of the microphone array inside
the enclosure; (2) a second weighting strategy which is data dependent and implemented
iteratively.

The proposed method was then tested by extensive numerical simulations and it was
shown that undesirable effects related to the array positioning were eliminated by the
first weighting strategy. In addition, it was shown that only the iterative weighted ESM
was able to provide reasonable quantification results for the underlying problem. In
particular, we have shown that the solution obtained by classical ESM, when applied to
highly underdetermined systems, was not realistic. The identified sources presented a
hyper directivity towards the direction in which the array was placed. Consequently, the
estimates of the radiated acoustic power largely underestimated the reference acoustic
power.

Afterwards, we have studied the sensitivity of the approach with respect to non-
anechoic conditions and to the distribution of equivalent sources. The first study has
shown us that the method is disturbed by reverberation paths, in the sense that reflections
are identified as “real” sources. Indeed, this is the price to pay for the simplifications in the
model, namely the consideration of free-field propagation between equivalent sources and
receivers. However, we have shown that for a mildly reverberant scenario, the proposed
approach is still able to provide relatively good results in terms of source localization.
In terms of source quantification, it was shown that the estimates of the acoustic power
were disturbed by interferences between direct and reverberant paths. These interferences
particularly appeared at frequencies multiple of the propagation distance between direct
and reverberant path. Finally, we have illustrated the application of an approach based
on the causality analysis of identified sources. It was shown that this approach can be
used as a post-processing tool in order to identify those “hot spots” corresponding to
direct or reverberant paths.

The last part of this thesis was dedicated to experimental validations and a practical
application of the method. A rigid spherical array with 31 microphones has been built
for the experimental tests. Both weighting strategies have been validated by means of
academic experiments. In particular, we have noticed a limit of the proposed approach in
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terms of acoustic power quantification when the radiation pattern of real sources differs
considerably from an omni-directional behavior. The limitation is not directly related to
the radiation pattern itself, but it rather depends on the position of the array relative to
the radiation pattern. This is because the recording of acoustic pressure is made with
the array at a single position within the room. Consequently, if the array is placed on
the direction of a directivity null of the real source, little energy will be perceived by the
microphones and thus the global acoustic power is underestimated.

An experimental technique based on multi-pass measurements with a spherical array
has also been reported. The approach is based on sequential acquisition by rotating the
spherical array a given angle around its axis. Intended to stationary conditions, this
approach allows to decrease the inter-microphone spacing used to sample the acoustic
pressure and thus increase the high frequency limit of the array.

Finally, as a practical application, the approach was tested for noise source identifi-
cation inside a bus at driving conditions. The aim was to locate the potential acoustical
weakness which contributes to the overall noise level inside the bus. This application
allowed us to show the advantages of the proposed approach, namely the correction for
the array positioning and the improvement of spatial resolution and dynamic range.

Suggestions for further research
As we have seen, the application of acoustic imaging techniques to source identification in-
side closed spaces poses several difficulties. In this context, an iterative weighted approach
has been proposed to overcome some of these difficulties. Reasonable quantification of
the acoustic power was only possible using the iterative solution. It was shown that this
is related to the highly underdetermined aspect of the problem that we seek to solve. In
particular, the identified sources provided a good reconstruction of the acoustic pressure
measured on the sphere but an incorrect reconstruction outside this region. In other
words, the identified sources concentrated all their radiated energy towards the micro-
phone array. In view of the above considerations, it would be of relevance to somehow
impose an a priori requirement for the reconstruction to be acceptable not only on the
measurement surface but elsewhere within the enclosure.

In order to overcome the difficulties related to the highly underdetermined aspect of
the problem, techniques which impose an a priori of sparsity to regularize the problem
might be appropriate, such as the work carried out by A. Peillot [Pei12] and N. Chu et
al. [CPMD11,CMDP13]. Since in the formulation used throughout this thesis the number
of real sources is largely inferior than the number of equivalent or candidate sources, we
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can assume that the source field is sparse on the reconstruction space. In terms of the
mathematical formulation, instead of minimizing the l2 norm (i.e. the energy) of the
source field, the new problem would consist in minimizing its l1 norm. Unlike the l2 norm
minimization, there is no closed form solution for the l1 minimization problem, and thus
one has to resort to more sophisticated and complex algorithms. In case the equivalent
source basis cannot be assumed as a sparse, it would be necessary to find a basis which
sparsely represents the source field.

On the other hand, the issue related to the frequency dependent directivity pattern
of real sources seems more difficult to answer. A possible solution would be to use a
similar approach such as the one presented by Castellini [CS10], in which measurements
are carried out at several positions within the room. This would ensure that the array
perceives enough energy radiated by the source. A refraining difficulty, however, would
be the synchronization of non-simultaneous measurements. Indeed, the possibility to syn-
chronize measurements without the need of as many references as incoherent phenomena
is another perspective for further research.
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A
Glossary

A.1 List of Acronyms

BEM Boundary Element Method
DOF Degrees of Freedom
DPC Discrete Picard Condition
ESM Equivalent Source Method
FEM Finite Element Method
GCV Generalized Cross-Validation
HELS Helmholtz equation least-squares
hNAH Hybrid Near-field Acoustical Holography
iBEM inverse Boundary Element Method
iPTF inverse Patch Transfer Function
ISM Image Source Method
MAP maximum a posteriori
NAH Near-field Acoustical Holography
NCP Normalized Cumulative Periodgram
NSR Noise-to-Signal Ratio
pdf probability density function

SHB Spherical Harmonics Beamforming
SNR Signal-to-Noise Ratio

SONAH Statistically optimized near-field acoustic holography
SVD Singular Value Decomposition

TSVD Truncated Singular Value Decomposition
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A.2 Notations

x scalar quantity
x vector quantity
X matrix quantity

A.3 Operators

∣x∣ absolute value of x
∥ ⋅ ∥ l2 norm of a vector
x ⋅ y dot product between two vectors
x × y cross product between two vectors
x∗ conjugate of vector x
xT transpose of vector x
xH conjugate transpose of vector x
X conjugate of matrix X

E{⋅} expected value
R{⋅} real part of a complex number

A.4 Symbols and Variables

j imaginary unit (j =
√
−1)

c speed of sound
λ wavelength
ω angular frequency in rad/s
k wave number
ρ density of the fluid
NC complex Normal distribution
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A.5 Special functions

jl(⋅) spherical Bessel function of order l

h
(2)
l (⋅) spherical Hankel function of second kind and order l

j′l(⋅) first derivative of the spherical Bessel function

h
′(2)
l (⋅) first derivative of the spherical Hankel function of second kind

Y m
l (⋅) spherical harmonics of order l and degree m

Pl(⋅) Legendre polynomial of order l
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B
Spherical radial functions

In this appendix we present the spherical radial functions employed throughout this the-
sis. As we have seen, any spherical radial function is the solution to the spherical Bessel
equation. However, the choice of appropriate solutions for a given problem is made in
order to satisfy certain conditions as r → 0 or r →∞. The spherical Bessel function jl(kr)
is the only solution which is regular at kr = 0, therefore it is appropriate to describe
interior boundary value problems. The solution for pure exterior problems must be se-
lected in order to satisfy the Sommerfeld radiation condition, which for a time-harmonic
dependence of ejwt, is given by [GD05]:

lim
r→∞

r (∂p(r)
∂r

+ jp(r)) = 0. (B.1)

The only solution which satisfies this condition is the spherical Hankel function of the
second kind h

(2)
l (kr), thus justifying the set of solutions used in equation (2.33).
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Figure B.1: Spherical radial functions: (left) spherical Bessel function jl(kr); (right)
spherical Bessel function of the second kind or spherical Neumann function yl(kr). Notice
that these are real-valued functions and they represent standing wave type solutions of
the Helmholtz equation. Notice also the singularity of the spherical Neumann function
when kr approaches 0.
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Figure B.2: Magnitude of the spherical Hankel functions ∣h(1∣2)l (kr)∣. Notice that higher-
order components decay quickly with increasing kr. These functions represent traveling
wave type solutions of the Helmholtz equation.
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C
Derivation of source field estimate

C.1 Derivation of ĉ estimate

The aim of this Section is to detail the algebraic manipulations necessary to obtain the
estimate of the source field ĉ. Our goal is to provide an equivalent expression for the
following estimate:

ĉ = (HHΩ−1
n H + η2Ω−1

c )−1HHΩ−1
n p. (C.1)

As previously stated we will make use of the following matrix inversion lemma:

(A +BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. (C.2)

Applying equation (C.2) to the term in brackets from equation (C.1) and with the
following corresponding matrices

A = η2Ω−1
c , B = HH , C = Ω−1

n , D = H,

yields

ĉ = {η−2Ωc − η−2ΩcHH(Ωn + η−2HΩcHH)−1η−2HΩc}HHΩ−1
n p

= η−2ΩcHH(Ωn + η−2HΩcHH)−1 {(Ωn + η−2HΩcHH)Ω−1
n − η−2HΩcHHΩ−1

n }p

= η−2ΩcHH(Ωn + η−2HΩcHH)−1p,

where in the second equality the term in curly brackets simplified to identity. Introducing
the constant η−2 into the term in brackets in the last equality, gives us

ĉ = ΩcHH (HΩcHH + η2Ωn)
−1 p, (C.3)
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which is the same expression as given in equation (3.18).
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D
Proofs of some propositions

D.1 Proof of Proposition 1

The goal is to compute integral

[p∣α2, β2] = ∫ [p∣c, β2][c∣α2]dc = ∫ NC(Hc, β2Ωn)NC(0, α2Ωc)dc. (D.1)

A direct calculation based on expanding the product of the Gaussians and “completing the
square” is fastidious, although not difficult. A more direct proof proceeds as follows. Let
us first suppose that (K −M) extra measurements are taken (while keeping the number
of coefficients ck’s constant), thus producing the extended vectors pa ∈ CK , na ∈ CK , and
matrices Ωn,a ∈ CK×K and Ha ∈ CK×K , where Ha is supposed of full-rank. Solving for this
new problem requires computing the integral

∫ [pa∣c, β2][c∣α2]dc = ∫ [na = pa −Hac∣β2][Hac∣α2]d(Hac)

= ∫ [pa∣Hac, β2][Hac∣α2]d(Hac)
(D.2)

wherein [na = pa −Hac∣β2] stands for the pdf of na evaluated at pa −Hac and the change
of variable c↦Hac was used. From first principles of probability calculus, integral (D.2)
is recognized as the pdf of the sum of two random variables, i.e. pa = Hac+na, with pdf’s
[Hac∣α2] = NC(0, α2HaΩcHH

a ) and [na∣β2] = NC(0, β2Ωn,a), respectively. The sum of two
independent Gaussian random variables is again a Gaussian [Pre05], with mean equal to
the sum of their individual means and similarly for its covariance. Therefore,

[pa∣α2, β2] = NC(0, α2HaΩcHH
a + β2Ωn,a). (D.3)

The last point is to marginalize the above pdf over the (K −M) extra measurements. As
well-known for Gaussian distributions, this is simply NC(0, α2HΩcHH + β2Ωn) [Pre05].
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Next, expression (3.23b) is easily obtained using the singular value decomposition given
in equation (3.19).

D.2 Proof of Proposition 2
The integral to be evaluated is

[η2∣p] = ∫ [η2, α2∣p]dα2 = ∫ [α2, β2∣p] ∣dβ
2

dη2 ∣
²
α2

dα2

∝ ∫ [p∣α2, β2][α2, β2]α2dα2

∝ ∫ NC(0, α2(HΩcHH + η2Ωn))α2dα2 (D.4)

where it was assumed that [α2, β2]∝ 1 as discussed in section 3.4.1.2. Now, using equation
(3.23b) we have,

[η2∣p] ∝ 1
η2∏M

k=1(s2
k + η2) ∫

∞

0

exp (−Mα̂2/α2)
α2(M−1) dα2 (D.5)

with α̂2 as given in equation (3.29). The integral in the above equation is

Γ(M − 2)(Mα̂2)−(M−2), M > 1,

thus proving equation (3.32). Notice that quantities not depending explicitly on η2 have
been factored out in (3.32).

D.3 Proof of Proposition 3
Let us expand JMAP(η2) in Eq. (3.34) into a second order Taylor series about η̂2

MAP:

JMAP(η2) = JMAP(η̂2
MAP)+

∣η2 − η̂2
MAP∣2

2 (
d2JMAP(η̂2

MAP)
(dη2)2 )

η2=η̂2
MAP

+O (∣η2 − η̂2
MAP∣3) (D.6)

where dJMAP(η2)/dη2∣η2=η̂2
MAP

= 0 (by definition of η̂2
MAP) has been used and O means “on

the order of”. Therefore,

[η2∣p]∝ exp (−JMAP(η2)) ≈ exp(−
∣η2 − η̂2

MAP∣2

2
d2JMAP(η̂2

MAP)
(dη2)2 ) , (D.7)

which proves Proposition 3.
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