
HAL Id: tel-00984763
https://theses.hal.science/tel-00984763

Submitted on 28 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A model-based approach for extracting business rules
out of legacy information systems

Valerio Cosentino

To cite this version:
Valerio Cosentino. A model-based approach for extracting business rules out of legacy informa-
tion systems. Software Engineering [cs.SE]. Ecole des Mines de Nantes, 2013. English. �NNT :
2013EMNA0138�. �tel-00984763�

https://theses.hal.science/tel-00984763
https://hal.archives-ouvertes.fr


Thèse de Doctorat

Valerio COSENTINO

Mémoire présenté en vue de l’obtention du

grade de Docteur de l’École nationale supérieure des mines de Nantes
sous le label de l’Université de Nantes Angers Le Mans

Discipline : Informatique et applications
Laboratoire : Laboratoire d’informatique de Nantes-Atlantique (LINA)

Soutenue le 18 décembre 2013

École doctorale : 503 (STIM)
Thèse n°: 2013 EMNA0138

A Model-Based Approach for Extracting
Business Rules out of Legacy Information

Systems

JURY

Rapporteurs : M. Marco BRAMBILLA, Maître de conférences, Politecnico di Milano
M. Xavier BLANC, Professeur, Université de Bordeaux 1

Examinateurs : M. Jean-Yves LAFAYE, Professeur, Université de la Rochelle
M. Jean-Claude ROYER, Professeur, École des Mines de Nantes

Invité : M. Philippe BAUQUEL, Directeur de la recherche et du développement Rational, IBM France

Directeur de thèse : M. Jordi CABOT, Maître de conférences, École des Mines de Nantes

Co-directeur de thèse : M. Patrick ALBERT, Directeur de recherche, Center for Advanced Studies IBM France





Acknowledgements

I would like to thank many people (if you want to look for your name, check Fig.

1 :) ). First of all, I would like to express my sincere gratitude to my advisor Jordi

Cabot for the continuous support of my Ph.D study and research. I address a special

thank to IBM for the financial support and in particular to the co-advisor Patrick

Albert to set the basis of this Ph.D, and Philippe Bauquel and Jacques Perronnet to

their help on the research topic. I thank Marco Brambilla, Xavier Blanc and Jean-

Yves Lafaye to accept being part of my jury and Ruth Raventos to follow my work

during these three years.

I thank the team members of AtlanMod, my family, Maria and my friends that

were immensely patience and encouraged me through the good and not so good

moments, helping me to arrive to this point. Finally, I thank my football team

Saint-Joseph de Porterie to let me release the stress that from time to time the Ph.D

has caused to me.

Figure 1: Acknowledgements’ cloud

3





Contents

1 Resumé étendu 9

1.1 Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Description du problème . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 État de l’art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Ingénierie Dirigée par les Modèles . . . . . . . . . . . . . . . . . . 13

1.4.1 Modèles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.2 Transformations . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Règles métier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Règles métier dans la partie comportementale . . . . . . . . 17

1.5.2 Règles métier dans la partie structurelle . . . . . . . . . . . 18

1.6 Un framework BREX dirigé par les modèles . . . . . . . . . . . . . 19

1.6.1 Découverte du modèle . . . . . . . . . . . . . . . . . . . . 21

1.6.2 Identification de termes métier . . . . . . . . . . . . . . . . 21

1.6.3 Identification de règles métier . . . . . . . . . . . . . . . . 22

1.6.4 Représentation des règles métier . . . . . . . . . . . . . . . 25

2 Introduction 29

2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Software comprehension . . . . . . . . . . . . . . . . . . . 33

2.4.2 Business rules . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Model Driven Engineering . . . . . . . . . . . . . . . . . . 42

2.5 Objectives and contributions . . . . . . . . . . . . . . . . . . . . . 46

2.5.1 Generic and modular framework . . . . . . . . . . . . . . . 46

2.5.2 Model-based approach . . . . . . . . . . . . . . . . . . . . 46

2.5.3 Traceability and granularity of the extracted business rules . 47

2.5.4 Solutions for Java, COBOL and relational databases . . . . 47

2.6 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5



6 CONTENTS

3 Model-based framework for business rule extraction 49

3.1 Model discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Business Term Identification . . . . . . . . . . . . . . . . . . . . . 51

3.3 Business Rule Identification . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Control Flow Analyis . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Data Flow Analyis . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Slicing operation . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.4 Database constraint analysis . . . . . . . . . . . . . . . . . 54

3.4 Business Rule Representation . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Vocabulary Extraction . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Business rule extraction for COBOL 57

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 COBOL basic concepts . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Running example . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Rules modeling the application . . . . . . . . . . . . . . . . 61

4.4 Framework description . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Model Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Business Term Identification . . . . . . . . . . . . . . . . . . . . . 63

4.7 Business Rule Identification . . . . . . . . . . . . . . . . . . . . . 64

4.7.1 Control Flow Analysis . . . . . . . . . . . . . . . . . . . . 65

4.7.2 Data Flow Analysis . . . . . . . . . . . . . . . . . . . . . . 66

4.7.3 Rule Discovery . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Business Rule Representation . . . . . . . . . . . . . . . . . . . . . 68

4.8.1 Vocabulary extraction . . . . . . . . . . . . . . . . . . . . 69

4.8.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.11 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Business rule extraction for Java 77

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Java basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Running example . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Rules modeling the application . . . . . . . . . . . . . . . . 79

5.4 Framework description . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Model Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Business Term Identification . . . . . . . . . . . . . . . . . . . . . 83

5.7 Business Rule Identification . . . . . . . . . . . . . . . . . . . . . 84



CONTENTS 7

5.7.1 Rule Discovery . . . . . . . . . . . . . . . . . . . . . . . . 85

5.7.2 Business Rule Model Extraction . . . . . . . . . . . . . . . 87

5.8 Business Rule Representation . . . . . . . . . . . . . . . . . . . . . 89

5.8.1 Vocabulary extraction . . . . . . . . . . . . . . . . . . . . 89

5.8.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.9 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.11 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Business rule extraction for relational databases 97

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 SQL, PL/SQL and OCL basic concepts . . . . . . . . . . . . . . . 98

6.2.1 SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.2 PL/SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.3 OCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3 Running example . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 Rules modeling the application . . . . . . . . . . . . . . . . 102

6.4 Framework description . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Model Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Business Term Identification . . . . . . . . . . . . . . . . . . . . . 105

6.7 Business Rule Identification . . . . . . . . . . . . . . . . . . . . . 106

6.7.1 Declarative constraints to OCL . . . . . . . . . . . . . . . . 106

6.7.2 SQL-to-OCL transformation . . . . . . . . . . . . . . . . . 108

6.7.3 Triggers to OCL . . . . . . . . . . . . . . . . . . . . . . . 112

6.8 Business Rule Representation . . . . . . . . . . . . . . . . . . . . . 115

6.8.1 Vocabulary Extraction . . . . . . . . . . . . . . . . . . . . 115

6.8.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.9 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.10 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Related work 119

7.1 Approaches for the behavioral part . . . . . . . . . . . . . . . . . . 119

7.1.1 Arbitrary languages . . . . . . . . . . . . . . . . . . . . . . 119

7.1.2 Procedural languages . . . . . . . . . . . . . . . . . . . . . 121

7.1.3 Object-oriented languages . . . . . . . . . . . . . . . . . . 126

7.2 Approaches for the structural part . . . . . . . . . . . . . . . . . . 128

7.2.1 Database implementations and conceptual schemas . . . . . 128

7.2.2 Database constraints and business rules . . . . . . . . . . . 133

7.2.3 Stored procedures, triggers and business rules . . . . . . . . 136

7.3 Comparison with our framework . . . . . . . . . . . . . . . . . . . 137



8 CONTENTS

7.3.1 Behavioral part . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3.2 Structural part . . . . . . . . . . . . . . . . . . . . . . . . . 139

8 Conclusion and further research 141

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.2 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.2.1 Business rule extraction for the system presentation part . . 142

8.2.2 Definition of a pivot metamodel . . . . . . . . . . . . . . . 143

8.2.3 Automatic validation of the business rules . . . . . . . . . . 143

8.2.4 Rule-driven system redocumentation . . . . . . . . . . . . . 144



1
Resumé étendu

1.1 Contexte

Durant les dernières décennies, les Systèmes d’Informations ont été largement

employés par les entreprises pour les aider dans leur métier. Ils ont été utilisés pour

manipuler des grandes quantités de données et pour automatiser les politques com-

merciales établies par l’entreprise. Au fil du temps, ces politiques ont été modifiées

et par conséquent la logique métier correspondante, incorporée dans le Système

d’Information, a évolué pour s’adapter à ces changements.

Le monde des affaires d’aujourd’hui est très dynamique, ainsi les organisations

sont obligées de modifier constamment et rapidement leurs politiques commerciales

pour suivre l’évolution du marché. Les nouvelles technologies, comme les Sys-

tèmes de Gestion de Règles Métier ( BRMSs ), permettent de manipuler plus facile-

ment la logique métier, puisque celle-ci est devenue plus indépendante des aspects

techniques du système. D’autre part, les anciens Systèmes d’Information ne sont

pas capables de répondre rapidement à ces nouvelles exigences du marché, car ils

n’ont pas été conçus pour fournir une séparation claire entre la logique métier qu’ils

contiennent et les spécificités techniques du système (e.g., langage de programma-

tion utilisé, architecture, etc.).

Néanmoins, les organisations craignent d’entreprendre un processus de migra-

tion vers de nouvelles technologies en raison du risque et du coût qu’un tel pro-

cessus implique. D’une part, le risque est lié à l’absence d’une vision claire du

système, puisque la documentation concernant la logique métier et le code source

n’est généralement pas à jour. En outre, ces organisations doivent souvent faire

face à une perte de connaissance technique au fil du temps en raison du départ

9



10 CHAPTER 1. RESUMÉ ÉTENDU

des développeurs originaux. Tous ces facteurs ne garantissent pas aux entreprises

d’avoir toute leur logique métier répliquée et fonctionnant dans le nouveau sys-

tème. En particulier, ceci est essentiel pour des entreprises (comme des banques,

des compagnies d’assurcance, etc.) se situant dans des milieux où une défaillance

du système peut comporter des graves conséquences financières et juridiques.

D’autre part le coût concernant la migration des anciens systèmes est en général

prohibitif, car le processus de migration correspondant doit être conçu sur mesure

pour chaque système. Selon une étude du Tactical Strategy Group, le coût pour

rémplacer une seule ligne de code a été estimé à environ vingt-cinq dollars 1.

Plusieurs entreprises de la Technologie de l’Information financent des recherches

pour offrir un processus de migration pour les anciennes applications de leurs clients

vers des infrastructures modernes. Le but de ce processus est d’extraire et de mod-

erniser la logique métier embarquée dans ces vieux systèmes, tout en préservant le

reste de l’infrastructure en place. Malheureusement , cela implique des problèmes

complexes et des défis qui concernent l’identification et l’extraction de la logique

métier dans le code source. Ces défis sont au cœur de cette thèse.

Identification 
IBM Rational Developer for System z

Extraction
IBM Rational Programming Pattern for System z

Validation & Gestion
IBM WebSphere ILOG BRMS

Figure 1.1: Projet de modernisation des systèmes héritées chez IBM

IBM est une des entreprises profondément intéressée par ces défis, puisque

plusieurs de ses clients s’appuient encore sur d’anciens systèmes. L’extraction de

la logique métier est une partie intégrante de l’initiative de modernisation des sys-

tèmes hérités au sein de IBM (fig.1.1). Elle consiste à combler les caractéristiques

de trois produits différents pour identifier, maintenir et gérer les règles métier codées

dans des systèmes d’explotations qui s’appuient sur des technologies anciennes et

nouvelles. En particulier, IBM Rational Developer et IBM Rational Programming

Pattern for System z permettent d’identifier et extraire la logique métier, tandis que

IBM WebSphere ILOG BRMS est axé sur la validation et la gestion de cette logique.

Enfin, ce dernier produit peut être utilisé à son tour pour piloter les redéfinitions des

règles métier au sein des anciens systèmes informatiques. Par conséquent, cette

thèse a été financée par IBM dans le cadre d’un accord avec l’École des Mines de

Nantes. IBM a fourni son expertise, des cas d’étude et des outils.

1. http://www.csis.ul.ie/cobol/course/COBOLIntro.htm



1.2. DESCRIPTION DU PROBLÈME 11

1.2 Description du problème

La logique métier intégrée dans un système est composée de règles de gestion

[1], qui sont des actions ou des procédures qui définissent ou contraintent un aspect

précis du métier. Ces règles représentent les politiques commerciales de l’entreprise

dans le système.

Entreprise

Système
désalignement incompréhension incomplet

Connaissance techniqueRègles métier Developpeursimplémente maîtrise

Connaissance métierPolitques
commerciales

Analystes métierdéfinit maîtrise

Figure 1.2: Problèmes fréquents dans les Systèmes d’Information

Dûes à diverses raisons trouver, comprendre et modifier le code source qui im-

plémente les règles métier au cœur d’un ancient système sont des activités qui con-

somment beaucoup de temps et qui sont source d’erreurs à cause des différentes

raisons (fig. 1.2) .

Tout d’abord, la localisation des politiques commerciales dans un contexte tech-

nique n’est pas evident, car les règles sont définies à travers d’un langage de pro-

grammation qui implemente le système et par conséquent, des connaissances tech-

niques et métier sont nécessaires pour isoler ces règles. Malheureusement , ces

connaissances sont détenues par deux différents types d’experts: les analystes et les

développeurs. Par conséquent, cette séparation provoque souvent des écarts entre

ce que le système implemente et ce que les politiques commerciales définissent.

Une autre source de complexité est liée au fait que les règles métier sont disper-

sées dans le code source. Par conséquent, lors de l’alignement des règles métier aux

politiques commerciales correspondantes, les équipes de développement doivent

être capable de modifier le code sans affecter d’autres règles métier. Cette tâche est

particulièrement complexe pour les grands systèmes à cause de la quantité de lignes

de code à analyser.

Finalement, la connaissance du système est souvent incomplète à cause du dé-

part de développeurs originaux et d’une documentation limitée ne reflètant pas la

mise en œuvre actuelle du système. Par conséquent, au fil du temps des règles

métier dupliquées et des écarts avec les politiques commerciales peuvent apparaître

dans le système.



12 CHAPTER 1. RESUMÉ ÉTENDU

1.3 État de l’art

Le processus pour l’identification de règles métier dans un système informa-

tique est appelé Business Rule Extraction (BREX). Il est utilisé pour donner une

vision spécifique du système par rapport à la logique métier qu’il contient[2]. Le

BREX fait partie du domaine de la compréhension du logiciel[3], qui est le pilier

de plusieurs activités du génie logiciel, tels que la maintenance, l’évolution et la

rétro-ingénierie. Les relations entre ces activités et le BREX sont représentées dans

la Fig.1.3.

Compréhension du Logiciel

Activités de Génie Logiciel

Évolution Maintenance

Rétro-Ingénierie

Extraction des règles métier
(BREX)

Figure 1.3: Relations entre le BREX et les activités du génie logiciel

Le processus BREX peut être appliqué à différentes parties du système. Dans

cette thèse, nous nous concentrons sur l’analyse de la partie comportementale et

structurelle d’un système d’explotation, où la première représente la logique ap-

plicative, tandis que la seconde concerne la gestion des données.

Chacune de ces deux parties nécessite un processus BREX différent. Le pro-

cessus BREX pour la partie comportementale est axé sur des techniques de com-

préhension des programmes. Ces techniques sont appliquées sur le code source et

leur objectif est de découvrir et de représenter les variables et les morceaux de code

source liés au métier. Par conséquent et conformément à ces techniques, un proces-

sus BREX pour la partie comportementale du système est principalement composé

de trois étapes ([2], [4], [5], [6]) qui visent à:

– identifier les variables métier dans le système,

– récupérer les morceaux de code relatives à ces variables,

– représenter les morceaux de code identifiés.

La première étape contient des heuristiques pour faciliter l’identification des

variables métier, la seconde étape est basée sur des techniques d’analyse de pro-

gramme telles que l’analyse de fluxs de données et de contrôle ainsi que des opéra-

tions de découpage du code, tandis que la dernière étape extrait la logique identifiée

dans des formats compréhensibles.



1.4. INGÉNIERIE DIRIGÉE PAR LES MODÈLES 13

D’autre part, le processus BREX pour la partie structurelle du système vise à

récupérer les règles de gestion situées dans les structures de bases de données telles

que tables, procédures stockées et triggers. Ce processus fait partie de la rétro-

ingénierie des bases de données[7] et il est composé par deux étapes qui visent à:

– extraire et représenter les définitions des données dans une représentation de

niveau supérieur,

– extraire les contraintes définies dans une base de données et les appliquées

sur la représentation dérivée précédemment.

La première étape définit les règles pour passer d’un schéma de base de données

au modèle conceptuel correspondant. La deuxième étape consiste à identifier les

contraintes d’intégrité de la base de données et ensuite à les exprimer dans un format

compatible avec le langage utilisé pour définir le modèle conceptuel.

Dans cette thèse, nous présentons des solutions pour extraire et représenter les

règles de gestion pour des systèmes implementés en Java et COBOL, pour la partie

comportementale, et pour des base de données relationnelles pour la partie struc-

turelle. Nous concentrons notre analyse sur Java, COBOL et les bases de données

relationnelles, car la plupart des systèmes qui dépendent de ces technologies sont

encore utilisés dans les entreprises.

Les solutions proposées sont basées sur l’Ingénierie Dirigée par les Modèles

(IDM [8]). Les techiques de l’IDM offrent une représentation homogène et ab-

straite du système en évitant tous problèmes technologiques liés au langage de pro-

grammation utilisé dans le système. En outre , les solutions de l’IDM offrent des

approches génériques et modulaires et enfin, lors de la représentation d’un système

sous forme de modèle, il est possible de s’appuyer sur la pléthore d’outils de l’IDM

disponible sur le marché.

1.4 Ingénierie Dirigée par les Modèles

L’IDM[8] est une discipline du génie logiciel qui considère les modèles comme

des citoyens étant au cœuer des processus d’ingénierie directe et de rétro-ingénierie.

Cette nouvelle façon d’utiliser les modèles s’oppose aux approches précédentes, qui

limitaient les modèles à un rôle passif (par exemple, de documentation) au cours des

activités de génie logiciel.

L’adoption de l’IDM apporte de nombreux avantages à ces activités. En par-

ticulier, l’IDM améliore la maintenabilité et la qualité des systèmes (par exemple

[9]) grâce à l’introduction des modèles et des transformations entre modèles. Les

premiers répresentent un niveau d’abstraction superieur par rapport au code source,

tandis que les derniers permettent d’automatiser des tâches répétitives dans les pro-

cessus de développement logiciels. Dans la suite, nous décrivons les modèles et les



14 CHAPTER 1. RESUMÉ ÉTENDU

transformations.

1.4.1 Modèles

L’hypothèse de base de l’IDM est que les modèles sont la représentation cor-

recte pour gérer tous les artefacts au sein d’un processus de génie logiciel; par

conséquent, les modèles sont considérés comme le concept unificateur dans l’IDM.

Les modèles sont définis selon une architecture à trois niveaux représentée dans la

Fig.1.4. Cette architecture est composée par des modèles, des métamodèles et des

métamétamodèles.

conforme à

Métamétamodèle

Métamodèle

Modèle

conforme à

conforme à

3 Niveau

2 Niveau

1 Niveau

Figure 1.4: Architecture à trois niveaux dans l’IDM

Un modèle est une représentation partielle d’un système. D’autre part, la com-

binaison de différents modèles relatifs au même système peut être utilisée pour pro-

duire une vue globale de ce système. Chacun de ces modèles contient des éléments

qui représentent des artefacts logiciels/concepts dans le monde réel. Ces concepts et

leurs relations sont définis dans le métamodèle, le deuxième niveau de l’architecture

de l’IDM.

Un métamodèle est lié à un modèle en fonction d’un rapport de conformité.

Cette relation est équivalente à une relation programme - grammaire, de telle sorte

que les programmes écrits dans un langage doivent être conformes aux règles gram-

maticales de ce langage ainsi que les modèles définis selon un métamodèle doivent

être conformes aux concepts et relations de ce métamodèle.

Les métamodèles sont exprimés à leur tour en utilisant le métamétamodèle, le

troisième niveau de l’architecture de l’IDM. Similarement à la relation modèle/

métamodèle, une relation de conformité est définie entre le métamodèle et le mé-

tamétamodèle; de telle façon qu’un métamodèle est défini en utilisant des concepts

et des associations mémorisés dans le métamétamodèle. En outre, cette relation

est équivalente à la relation entre la grammaire d’un langage de programmation

donné et un langage pour définir des grammaires (par exemple, l’EBNF, la Forme

de Backus-Naur étendue).

Cette représentation à trois niveaux est connue comme Modelware. Elle est sim-

ilaire au Grammarware, qui représente l’espace technique où un langage est défini



1.4. INGÉNIERIE DIRIGÉE PAR LES MODÈLES 15

selon sa grammaire correspondante. Par conséquent, l’EBNF est conceptuellement

équivalent à un métamétamodèle, la grammaire d’un langage donné est au même

niveau qu’un métamodèle, et une instance d’une grammaire est analogue à un mod-

èle.

Enfin, les modèles, les métamodèles et les métamétamodèles peuvent être im-

plementés selon différents standards. Par exemple , l’Object Management Group

propose un métamétamodèle appelé Meta Object Facility (MOF) et différents mé-

tamodèles (UML: Unified Modeling Language [10], KDM: Knowledge Discovery

Metamodel [11], etc.)

conforme à

Métamodèle source

Modèle source

Métamétamodèle

conforme à

3 Niveau

2 Niveau

1 Niveau

conforme à

Métamodèle cible

Modèle cibleModèle de la
transformation

Métamodèle de la
transformation

conforme à

conforme àconforme à conforme à

reçoit génére

Figure 1.5: Transformation entre modèles

1.4.2 Transformations

La deuxième caractéristique de l’IDM est la manipulation de modèles, générale-

ment mise en œuvre à travers de transformations entre modèles (Fig.1.5). Chaque

transformation peut prendre en entrée un ou plusieurs modèles et générer un ou

plusieurs modèles en sortie. En particulier, une transformation est capable de générer

un modèle cible à partir d’un modèle source en utilisant leurs métamodèles respec-

tifs.

Selon les métamodèles d’entrée et de sortie, deux types différents de transfor-

mations peuvent être définies. Une transformation est appelée endogène, si les mé-

tamodèles source et cible sont identiques. Au contraire, une transformation est

appelée exogène si les métamodèles d’entrée et sortie sont différents.

En outre, les transformations entre modèles peuvent enregistrer des informa-

tions entre les éléments du modèle cible est les éléments correspondants du mod-

èle source (traçabilité de [12]). En particulier, les relations entre ces deux types

d’éléments sont appelées traces. Ces traces peuvent être utilisées pour comprendre

et suivre les rélations entre les artefacts logicielles dans un processus dirigé par les

modèles.

La traçabilité entre modèles peut être modélisée selon la représentation à trois

niveaux de l’IDM[13]. Par conséquent, les informations de traçabilité sont mé-



16 CHAPTER 1. RESUMÉ ÉTENDU

AnyModelElementsourceElements

targetElements

TraceLink

name : String

Figure 1.6: Métamodèle de traçabilité

morisées dans un modèle conforme à un métamodèle comme celui de la Fig. 1.6.

Ce métamodèle est composé d’une classe TraceLink, qui mémorise les liens entre

les éléments source et cible (sourceElements et targetElements) impliqués dans une

règle de transformation. Généralement chaque TraceLink est identifié par un nom,

qui est le nom de la règle de transformation.

Enfin, plusieurs langages de transformation sont disponibles sur le marché. Par

exemple, ATL Transformation language[14], qui a été utilisé dans cette thèse et

Query/View/Transformation[15] qui est le langage standard proposé par l’OMG.

1.5 Règles métier

Une règles de gestion est un concept qui est largement connu et utilisé actuelle-

ment. Plusieurs définitions en existent, puisque les praticiens et les organisations

ont tendance à attribuer à ce concept différentes désignations. Ci-dessous, nous

présentons certaines de ces définitions.

Selon E. Gottesdiener[16], les règles métier sont au cœur des exigences fonc-

tionnelles, elles fournissent la connaissance derrière chaque processus d’entreprise.

Pour I. Baxter et S. Hendryx [17], elles sont définies comme une obligation qui

s’applique aux actions, pratiques et procédures de l’entreprise. Au contraire, le

Business Rules Group [1] décrit une règle métier comme une déclaration qui définit

ou contraint certains aspects de l’entreprise. Elle est destinée à contrôler ou in-

fluencer le comportement de l’entreprise. Enfin, IBM définit les règles de gestion

comme tout ce qui capture et met en œuvre les politiques et pratiques commerciales

d’une entreprise ([18]).

Selon les définitions précédentes, les règles de gestion sont des éléments clés

à la fois pour les entreprises et leurs systèmes d’explotation. D’une part, elles

sont utilisées pour décrire les politiques indépendamment des paradigmes et plates-

formes techniques. D’autre part, elles conduisent le comportement du système et,

lorsqu’elle sont implémentées dans un système, elle se mélangent avec les spéci-

ficités du langage de programmation que le système utilise.

Les règles de gestion sont composées de trois éléments: les termes métier, les

opérateurs et les valeurs [19]. De telles constructions sont représentées dans la

Fig. 1.7. Les termes métier représentent les objets qui font partie, ou sont affectés

par, des règles métier. Les opérateurs permettent de comparer les propriétés ou les



1.5. RÈGLES MÉTIER 17

Règle métier

Termes métier Operateurs Valeurs

Figure 1.7: Elements d’une règle métier

caractéristiques des différents termes métier. Enfin, les valeurs peuvent être des

nombres (ou expressions arithmétiques), du textes ou des termes métier prédéfinis.

Si les achats du client > 5000
alors le status du client = "Or"

Figure 1.8: Exemple d’une règle de gestion

Dans la Fig. 1.8 un exemple de règle de gestion est presentée. La règle définit

qu’un client devient un client d’or dès que ses achats cumulés ont dépassé 5000

dollars. Client, achats, statut et or sont des termes métier, tandis que les opérateurs

sont exprimés par l’opérateur logique supérieure et l’assignation. Enfin, les valeurs

sont représentées par le term or et la valeur numérique 5000.

Les règles de gestion sont classées en quatre catégories[1]:

– Définitions de termes métier. Ces définitions précisent le vocabulaire pour

exprimer des règles de gestion.

– Faits. Ils décrivent les relations entre les termes métier.

– Contraintes. Elles limitent les comportements d’organisation en définissant

ce qui est autorisé et interdit dans les politiques commerciales de l’entreprise.

– Dérivations. Elles définissent la manière dont la connaissance de l’entreprise

(termes et faits) est transformée dans d’autres connaissances.

1.5.1 Règles métier dans la partie comportementale

Cette section donne une définition des règles de gestion au niveau du code

source et comment les quatre catégories décrites précédemment sont mappées dans

un langage de programmation.

Les définitions de règles métier données précédemment ne peuvent pas être util-

isées pour identifier des règles dans du code source, puisque les règles de gestion

exprimées à haut niveau d’abstraction doivent être implementées dans un langage

de programmation. Malheureusement, cette action implique que les règles soient

dispersées dans le code source. Par conséquent, des relations (Fig. 1.9) doivent être

définies entre les quatre catégories décrites précédemment et les structures d’un

langage de programmation.

– Définitions de termes métier. Les définitions des termes métier sont disper-

sées dans le code. La plupart du temps, elle peuvent être récuperées dans des



18 CHAPTER 1. RESUMÉ ÉTENDU

Analyse du code source

Gestionnaires d'exceptions

Affectations

Noms de fonctions et 
de structures de données

Définitions de
termes métier

Faits

Contraintes

Dérivations

Figure 1.9: Catégories de règles métier au niveau du code source

structures de données et des noms de fonctions. Souvent, ces noms doivent

être traités pour extraire les termes métier correspondants (par exemple, un

nom de variable cli doit être transformé dans le terme métier client). En

outre, ces termes peuvent être trouvés aussi bien dans les commentaires écrits

dans le source code que dans la documentation du système.

– Faits. Ils représentent les relations entre les variables définies comme affec-

tations dans le code source. Ces relations peuvent être dérivées en appliquant

des techniques d’analyse de fluxs de données[20].

– Contraintes. Elles sont généralement mises en place en utilisant des gestion-

naires d’exceptions dans le code source.

– Dérivations. Elles sont représentées par des déclarations liées à une variable

donnée (ou groupe de variables) dans le même chemin d’exécution. Par con-

séquent, l’identification des règles de dérivation est une activité complexe,

car elle implique l’analyse du code source. L’identification de dérivations

s’appuie sur les termes métier décourverts précedemment.

1.5.2 Règles métier dans la partie structurelle

Cette section fournit une définition des règles de gestion pour la partie struc-

turelle du système et comment les termes métiers, les faits, les contraintes et les

dérivations sont mappés sur les structures des bases de données .

Dans une base de données, une règle de gestion est représentée par des con-

traintes d’intégrité . Selon [21], ces contraintes sont divisées en trois catégories:

inhérentes, implicites et explicites .

Le contraintes inhérentes concernent les relations entre les tables et leurs colonnes.

Les contraintes implicites concernent les clés primaires et étrangères utilisées re-

spectivement pour identifier un enregistrement dans une table et pour définir des

relations entre les tables de la base de données. Enfin, les contraintes explicites con-

cernent les contraintes définies sur les tables, les colonnes (par exemple , CHECK,

NOT NULL, etc.) ainsi que les assertions, les procédures stockées et les triggers.

Alors que les contraintes inhérentes et implicites précisent les termes et les faits



1.6. UN FRAMEWORK BREX DIRIGÉ PAR LES MODÈLES 19

métier, les contraintes explicites sont les règles de gestion qui définissent les poli-

tiques commerciales de l’entreprise.

Des relations (fig.1.10) sont définies entre les différentes catégories des règles

métier et les contraintes d’intégrité des bases de données. Dans la suite chaque

catégorie est analysée.

Analyse du code de 
procédures stockées et triggers

CHECK, NOT NULL, UNIQUE,
procédures stockées et triggers

Rélations tables-tables et
table-colonnes

Noms de tables, colonnes et vuesDéfinitions de
termes métier

Faits

Contraintes

Dérivations

Figure 1.10: Catégories de règles de gestion dans une base de données

– Définitions de termes métier. Les définitions des termes métier proviennent

des tables et vues contenues dans la base de données. En particulier, les ter-

mes métier sont extraits à partir du nom de tables, vues et colonnes. Puisque

ces noms décrivent souvent des termes d’affaires, ils n’ont pas besoin d’être

traités.

– Faits. Ils sont définis comme les relations entre les tables ainsi que comme

relations intrinsèques entre tables et leurs colonnes.

– Contraintes. Elles sont dérivées à partir des contraintes explicites

– Dérivations. Elles peuvent être extraites en analysant le code source des

procédures stockées et des triggers.

1.6 Un framework BREX dirigé par les modèles

Cette section présente un aperçu de notre processus BREX. Elle décrit les étapes

qui composent ce processus et comment elles sont adaptées pour traiter avec les

parties comportementales et structurelles d’un système d’explotation.

Dans cette thèse, une règle de gestion est définie pour la partie comportemen-

tale du système comme un ensemble de déclarations qui sont relatives à une vari-

able métier dans le même chemin d’exécution. Nous considérons les variables

métier, celles qui sont utilisées dans les opérations mathématiques, les comman-

des d’entrée/sortie, les conditions d’instructions conditionnelles et les déclarations

d’initialisation. Selon notre expérience avec les cas d’études fournis par IBM et

avec certains travaux antérieurs ([2] [4] , [5], [6]), ces heuristiques sont capables

d’identifier des règles métier dispersées dans le code. De toute évidence, ces heuris-

tiques ne sont pas complètes , mais le framework permet d’ajouter des heuristiques

supplémentaires facilément.



20 CHAPTER 1. RESUMÉ ÉTENDU

Au contraire, pour la partie structurelle du système, une règle de gestion est

définie comme une contrainte déclarative dans le schéma d’une base de données

([22], [23]) ou comme la condition qui provoque l’exécution d’un trigger.

Le processus BREX mis en œuvre est réalisé dans un environnement IDM.

Pour ce faire, une opération spécifique est nécessaire pour passer de l’espace tech-

nologique défini par le langage de programmation employé dans le système (Gram-

marware) vers l’espace des modèles (Modelware). Ce dernier espace fournit une

représentation du code en utilisant un modèle[24]. Les règles de gestion sont cal-

culées en analysant ce modèle, qui contient les informations statiques du système.

En particulier, pour la partie comportementale, il représente l’Arbre Syntaxique

Abstrait (AST) du code source avec des liaisons entre les éléments du modèle (par

exemple, les usages d’une variable sont liés à la déclaration de la variable corre-

spondante et vice-versa, les appels d’une méthode sont liées à la déclaration de la

méthode et vice-versa , etc.). Au contraire, pour la partie structurelle du système, le

modèle contient les informations des structures définies dans le schéma de la base

de données (tables, colonnes , vues , triggers, contraintes déclaratives).

Enfin, notre processus BREX se base sur des techniques d’analyse statique ap-

pliquées au modèle dérivé à partir du code source. Par conséquent, pour la partie

comportementale du système , nous sommes en mesure d’exclure de ce modèle le

code qui n’est pas accessible en effectuant une analyse du Graphe de Flux de Con-

trôle (GFC). Au contraire, l’ identification de code inutile ou mort est hors de la

portée de cette thèse.

Représentation
de règles métier

Idéntification
de règles métier

Idéntification de
termes métier

Découverte
du Modèle

modelware

Répresentation sous-forme
de modèle

grammarware

Code source

Figure 1.11: Framework pour l’extraction des règles métier

Dans la Fig.1.11, les étapes du framework qui implemente notre processus BREX

sont présentées. Elles sont respectivement, la découverte du modèle, l’identification

des termes métier, l’identification des règles métier et la représentation des règles

métier. La première étape prend en entrée le code source exprimée dans un lan-

gage de programmation donné et génère un modèle spécifique à la plate-forme cible

(Platform Specific Model, PSM). Ce modèle a une correspondance directe avec le

code, de sorte que dans cette étape il n’y a pas de perte d’information et tous les élé-

ments du code source sont traduits en éléments du modèle. Enfin, le modèle obtenu

est ensuite manipulé dans les étapes suivantes qui composent le framework BREX.

L’identification des termes métier se concentre sur la découverte des variables



1.6. UN FRAMEWORK BREX DIRIGÉ PAR LES MODÈLES 21

métier utilisées dans le système. Ces variables sont ensuite utilisées pour piloter

l’étape d’identification de règles de gestion, où selon la partie du système analysée

(comportementale ou structurelle), différentes heuristiques peuvent être employées.

Enfin, dans la dernière étape qui concerne la représentation de règles métier, les

règles découvertes sont visualisées à l’aide d’artéfacts textuels et graphiques.

La découverte du modèle, l’identification des termes métier, l’identification des

règles métier et la représentation des règles métier sont décrites dans la suite.

1.6.1 Découverte du modèle

La découverte du modèle est utilisée pour présenter l’hétérogénéité d’un sys-

tème informatique comme une représentation homogène et uniforme.

Cette étape est particulièrement utile lors de l’analyse des systèmes qui s’appuient

sur des technologies différentes. Le but ultime de cette étape est d’obtenir un

ou plusieurs modèles du système, puis de travailler directement sur ces modèles.

Chaque modèle répresente un point de vue précis du système, tel que le code source,

les schémas de base de données, etc.

Dans cette thèse, nous nous sommes appuyés sur différents outils de l’IDM

(Fig.1.12) pour générer des modèles à partir de code source Java et COBOL, ainsi

que des implémentations de bases de données relationnelles. En particulier, nous

avons utilisé MoDisco [25] pour Java, IBM COBOL Application Model 2 pour

COBOL, et enfin Xtext [26] pour obtenir un modèle qui était capable de répre-

senter des schémas de base de données et des triggers. De tels modèles ont une

correspondance directe avec le code source, les schémas et les triggers.

Découverte du modèle
Système

Partie comportamentale Partie structurelle

COBOL Application Model

MoDisco Xtext

Figure 1.12: Outils utilisés dans l’étape de découverte du modèle

1.6.2 Identification de termes métier

L’identification de termes métier localise les concepts métier dans le modèle

du système. Puisque les termes métier sont représentés de différentes manières en

2. http://tinyurl.com/IBMCobolApplicationModel



22 CHAPTER 1. RESUMÉ ÉTENDU

fonction de la partie du système analysé (fig. 1.13), nous avons développé plusieurs

heuristiques capables d’identifier ces termes.

Idéntification de termes métier
Système

Partie comportamentale Partie structurelle

Définitions de tables
Définitions de colonnes

Définitions de vues
Variables

Figure 1.13: Éléments utilisés pour l’identification de termes métier

Pour ce qui concerne la partie comportementale du système, pour Java et COBOL,

nous avons concentré notre analyse sur les variables utilisées dans le code afin

d’identifier celles liées à des concepts métier. Les heuristiques mises en œuvre con-

sidérent comme variables métier toutes les variables qui apparaissent dans les opéra-

tions mathématiques, dans les conditions de déclarations conditionnelles, dans les

déclarations d’entrée/sortie et dans les déclarations d’initialisation. Nous sommes

conscients du fait que ces heuristiques ne permettent pas de localiser toutes les

variables métier dans un système. Cependant, d’autres heuristiques peuvent être

facilement branchées à notre framework grâce à la modularité fournies par l’IDM.

Au contraire, par rapport à la partie structurelle du système, pour les bases de

données relationnelles, nous avons concentré notre analyse sur les tables, les vues et

les déclarations de colonnes composant le schéma d’une base de données. Tous ces

éléments sont considerés pértinents, car ils ont souvent une correspondance directe

avec les concepts du métier.

Enfin, les termes métier définis dans les parties comportementales et struc-

turelles du système sont reliés aux source code correspondant à travers de la traça-

bilité offerte par l’IDM.

1.6.3 Identification de règles métier

L’identification de règles métier fournit les moyens de localiser les règles de

gestion relatives à un ou plusieurs termes métier. En outre, cette étape est utilisée

pour spécifier une représentation interne des règles de gestion identifiées, et elle

offre un support de traçabilité pour connecter les règles métier découvertes au code

source correspondant.

Cette étape est composée d’opérations capables de faire face aux différents

paradigmes de programmation utilisés dans la partie comportementale et struc-

turelle des systèmes (Fig. 1.14). En particulier, l’identification des règles métier

dans la partie comportementale est basée sur l’analyse de flux de contrôle et de



1.6. UN FRAMEWORK BREX DIRIGÉ PAR LES MODÈLES 23

Idéntification de règles métier
Système

Partie comportamentale Partie structurelle

Analyse de flux de contrôle
Analyse de flux de données

Opération de découpage

Analyse des contraintes 
des bases de données

Figure 1.14: Techniques utilisées pour l’identification des règles métier

données ainsi que sur l’opération de découpage du code. Ces opérations sont ap-

pliquées au modèle qui représente le code source. Le résultat de cette étape est un

modèle qui contient les parties du code qui concernent les règles de gestion identi-

fiées.

D’autre part, l’identification de règles gestion pour la partie structurelle du sys-

tème repose sur l’analyse des contraintes de base de données déclaratives et opéra-

tionnelles.

Toutes les opérations mentionnées ci-dessus sont décrites dans la partie restante

de cette section.

Analyse de flux de contrôle

L’analyse de flux de contrôle est utilisée pour découvrir le graphe de flux de

contrôle (GFC [27]) d’un programme en utilisant des techniques d’analyse statique

du code source. Le GFC contient les informations de tous les chemins qui peu-

vent être traversés par un programme lors de son exécution. Par conséquent, cette

analyse permet d’identifier les morceaux de source code inaccessibles.

Dans un contexte dirigé par les modéles, cette analyse est basée sur la navigation

de l’Arbre Syntaxique Abstrait (AST) incorporé dans le modèle qui représente un

programme donné. L’AST exprime les informations du modèle (par exemple, les

éléments du modèle, les relations , etc) dans une représentation arborescente. Une

telle représentation est exploitée selon la sémantique du langage de programmation

(Java ou COBOL) pour définir les heuristique utilisées pour générer le GFC.

Pour cette étape, le modèle en entrée représente l’application, tandis que le ré-

sultat est le modèle d’entrée enrichi avec les informations du GFC. En particulier,

conformément aux heuristique définies, une liste de successeurs est créée et fixée à

chaque élément du modèle.

Analyse de flux de données

L’analyse de flux de données est utilisée pour mettre en évidence les relations

entre les variables du programme. Elle permet d’identifier les règles métier codés



24 CHAPTER 1. RESUMÉ ÉTENDU

dans un programme. Cette étape consiste à traverser le modèle représentant le GFC

afin de relier les déclarations qui affectent/utiliser les mêmes variables.

En particulier, dans cette thèse, cette étape est utilisée pour créer des relations

entre chaque déclaration qui se réfère à une certaine variable avec la suivante (ou

précédente) déclaration qui fait référence à la même variable. Par conséquent,

chaque élément du modèle mémorise une liste de successeurs (ou prédécesseurs)

qui contiennent la même variable.

Pour cette étape, le modèle en entrée est le GFC du programme, tandis que le

résultat est le même modèle plus les informations concernant le flux de données.

Opération de découpage du code

L’operation de découpage (slicing) est utilisée pour récupérer les parties du code

source liées à une variable donnée (ou plusieurs). Ces parties du code représentent

la règle métier et son contexte. En particulier, une règle métier est composée des

déclarations qui utilisent la variable métier en question, tandis que le contexte com-

prend les conditions qui déclenchent ces déclarations. Ces conditions se retrouvent

dans les possibles chemins d’exécution du programme.

Nous avons mis en place cette étape en nous appuyant sur des techniques de

découpage statique à rebours (backward static slicing) et par bloque amovible (re-

movable block slicing), de sorte que pour une déclaration donnée contenant une

variable métier, l’opération de découpage navigue à partir de cette déclaration à re-

bours jusq’au début du programme 3, en sélectionnant les déclarations qui sont liées

à cette variable. En outre, le découpage par bloc amovible est utilisé pour ignorer

les blocs de code qui n’ont pas de relation avec la variable sélectionnée.

L’analyse statique a été choisie pour deux raisons. Tout d’abord, l’étape de dé-

couverte du modèle génère un “instantané" du système sous forme de modèle, qui

représente les informations statiques du système. Par conséquent, les informations

dynamiques ne sont pas mémorisées dans le modèle découvert. Deuxièmement,

étant donné que le processus de découverte est généralement une activité qui con-

somme beaucoup de temps, le modèle qui représente le code source est généré une

fois seulement. Donc, à notre avis, dans un contexte dirigé par les modèles, des

modèles dynamiques du système d’information ne sont pas appropriés au processus

d’extraction des règles métier.

D’autre part, les techniques de découpage statique à rebours et par bloque amovi-

ble ont été choisies, car elles bénéficient de la représentation arborescente des mod-

èles. En particulier, en utilisant cette représentation, nous sommes en mesure d’ignorer

les éléments du modèle qui ne contiennent pas d’informations métier en utilisant les

3. Notez que le début d’un programme dépend du langage de programmation utilisé, par exem-
ple, en Java, il peut être la méthode main ou une action associée à un bouton, tandis que en COBOL,
il pourrait être la première instruction dans la division des procédures.



1.6. UN FRAMEWORK BREX DIRIGÉ PAR LES MODÈLES 25

relations hiérarchiques entre eux.

Analyse des contraintes des bases de données

L’analyse des contraintes des bases de données se concentre sur l’identification

et l’extraction des contraintes déclaratives et operationnelles dans les définitions des

tables et des triggers. Dans cette thèse, nous représentons ces contraintes en OCL.

Elles s’appuient sur un modèle conceptuel UML dérivé du schéma de la base de

données.

Le processus qui analyse les contraintes déclaratives prend en entrée le modèle

qui représente le schéma de la base de données et produits en sortie des règles

métier exprimées en OCL. Ces règles sont sémantiquement équivalentes qu’aux

clés primaires ainsi que aux contraintes UNIQUE , NOT NULL et CHECK.

D’autre part, l’analyse des contraintes opérationnelles extrait des règles à partir

des triggers. Ces derniers sont analysés par rapport aux gestionnaires d’exceptions

qu’ils contiennent 4. Les déclarations qui gestionnent des exceptions sont générale-

ment utilisées pour coder les violations des politiques commerciales de l’entreprise.

Par conséquent, les conditions qui déclenchent ces exceptions sont censées être liées

aux métier et donc elles sont traduites en règles métier.

Le processus qui analyse les contraintes operationnelles prend en entrée des

modèles qui correspondent aux triggers et produit en sortie les contraintes OCL

correspondantes. Puisque les triggers contiennent souvent des operations SQL, nous

avons defini des traductions entre des éléments du language SQL (projections, joins,

etc.) et les éléments qui composent les contraintes OCL.

1.6.4 Représentation des règles métier

La représentation des règles métier (Fig. 1.15) est la dernière étape de notre

framework. Son objectif est de générer des artefacts compréhensibles qui décrivent

les règles de gestion identifiées. Cette étape est composée de deux opérations:

l’extraction du vocabulaire et la visualisation des règles métier. D’une part, le vo-

cabulaire vise à fournir des verbalisations pour les éléments qui composent les rè-

gles métier (variables, tables de base de données, etc.) et qui ont été localisés dans

l’étape d’identification des termes métier. D’autre part, l’étape de visualisation est

utilisée pour faciliter la compréhension des règles métier trouvées en fournissant

des sorties textuelles et graphiques.

Enfin, au cours de chacune de ces étapes, les informations de traçabilité sont

propagées aux modèles de sortie du framework, de telle sorte que ceux-ci sont reliés

aux modèles qui répresentent le code source.

4. Notez que cette approche peut être appliquée égalment aux procédures stockées



26 CHAPTER 1. RESUMÉ ÉTENDU

Représentation de règles métier
Système

Partie comportamentale Partie structurelle

Visualisation

Extraction du vocabulaire

Figure 1.15: Sous-étapes de la représentation des règles de gestion

Extraction du vocabulaire

L’extraction du vocabulaire est une opération facultative qui vise à fournir des

verbalisations/descriptions des éléments qui composent les règles métier.

Dans la partie comportamentale du système, cette opération est utilisée pour

générer un vocabulaire composé par des paires <nom de variable ou function, de-

scription> . Ce vocabulaire peut éventuellement être modifié par l’utilisateur.

Le vocabulaire pour les programmes Java est généré automatiquement. Il con-

tient une liste de noms de classes, variables et méthodes et leurs descriptions cor-

respondantes. Ces descriptions sont générées en suivant la façon de codage propre

de Java (<getAttribute( ) , " get Attribute" >). D’autre part, le vocabulaire pour les

programmes COBOL se focalise seulement sur les variables métier. Etant donné

que les identificateurs de ces variables sont généralement plus courts par rapport

à ceux codés en Java, une intervention humaine est nécessaire pour compléter les

descriptions correspondantes.

Par rapport à la partie structurelle du système, l’étape d’extraction du vocabu-

laire consiste à générer un modèle qui contient soit les termes métier soit les re-

lations correspondantes qui existent parmi ceux-ci dans la base de données. En

particulier, l’entrée de cette étape est le modèle qui correspond au schéma de la

base de données, tandis que la sortie est un modèle conceptuel défini à l’aide d’

UML.

Visualisation des règles métier

L’étape de visualisation fournit des représentations des règles métier identifiées.

Ces représentations peuvent être soit du texte, pour analyser les règles une à une,

soit des artefacts graphique, pour analyser les relations entre les règles obtenues.

Les sorties de cette étape ont comme but ultime celui d’externaliser le format interne

des règles trouvées, qui a été défini dans l’étape d’identification des règles métier.

Dans la partie comportementale du système, l’étape de visualisation peut utiliser

les informations contenues dans le vocabulaire, s’il a été défini. La représenta-

tion sous forme textuelle est dérivée par des transformations de modèle-à-texte,



1.6. UN FRAMEWORK BREX DIRIGÉ PAR LES MODÈLES 27

où le modèle représente le format interne des règles et le texte est une représenta-

tion basée sur le vocabulaire ou sur le code source. Au contraire, la représentation

graphique est basée sur Portolan [28], un outil de l’IDM, qui fournit une solution

de cartographie dans un contexte dirigé par les modèles. Cet outil vise à combler le

vide qui existe entre les données et leur visualisation graphique.

Au contraire, dans la partie structurelle du système, l’étape de visualisation con-

siste à générer des représentations textuelles sous forme de contraintes OCL, car les

règles identifiées sont exprimées à travers des modèles OCL. Enfin, la représenta-

tion graphique s’appuie sur UML, qui fournit un ensemble de notation graphique

pour créer des modèles visuels.





2
Introduction

2.1 Context

In the past decades, information systems have been largely employed by orga-

nizations to assist their business. They have been used to manipulate large amounts

of data and automate business decisions according to a set of organization policies.

Over time, these policies have been modified and as consequence the business logic

representing such policies and embedded in the systems evolved to fit the changes.

Today’s business world is very dynamic, thus organizations have to tune con-

stantly and quickly their policies to follow the market changes. Newer technologies,

such as Business Rules Management Systems (BRMSs), make possible to manipu-

late the business logic in an easy way, since such a logic is made independent from

the technical/implementation aspects of the system. On the other hand, old (i.e.,

legacy) information systems lack on agility to respond to these new requirements

due to the technologies they rely on, that are not designed to work in such a dynamic

context. In particular, legacy systems do not provide a clear separation between the

business logic and the specificities of the programming language employed.

Nevertheless, organizations are afraid to undertake a migration process to newer

technologies due to the risk and cost such process entails. On the one hand, the

risk is related to the lack of a clear insight of the system, since the documentation

concerning both business policies and source code is generally poor and outdated.

Furthermore, such organizations have often to face a loss of technical/application

knowledge over time due to the departure of original developers. All these factors

do not guarantee the organizations to have all their business logic replicated and

working in the new system. In particular, this is vital in critical areas of business like

29



30 CHAPTER 2. INTRODUCTION

economic infrastructure, banks, insurance companies, etc. where serious financial

and legal consequences can result from a system failure.

On the other hand, the cost of migrating legacy systems is generally prohibitive.

According to Tactical Strategy Group, the cost of replacing a single line of legacy

code has been estimated at approximately twenty-five dollars 1. This cost is mo-

tivated by the fact that since the programs embedded in old systems are generally

tailored to a specific organization, ad-hoc migration processes must be set up.

Many information technology companies are funding research to provide a mi-

gration path for their customer legacy applications into modern infrastructures.

Their ultimate goal is to extract and modernize the embedded business logic, while

preserving the rest of the infrastructure in place. Unfortunately, this entails com-

plexities and challenges that concern the identification and extraction of business

logic in the source code. Such challenges are the focus of this thesis.

Identification 

IBM Rational Developer for System z

Extraction

IBM Rational Programming Pattern for System z

Validation & Management

IBM WebSphere ILOG BRMS

Figure 2.1: IBM system modernization project

IBM is one of the companies that is deeply interested in these challenges, since

many of its customers still rely on legacy systems. Business logic extraction is an

integral part of an IBM system modernization project initiative (Fig. 2.1). It consists

in bridging the features of three different products to identify, maintain and manage

business rules for older and newer technologies. In particular, IBM Rational Devel-

oper and IBM Rational Programming Pattern for System z are dedicated to identify

and extract the business logic, while IBM WebSphere ILOG BRMS is focused on

validating, operationalized and managing such logic. Finally, such validation can be

used in turn to drive the redefinitions of business rules within the legacy system. As

a consequence, this thesis has been funded by IBM in the context of an agreement

with EMN (École des Mines de Nantes). IBM has provided expertise, use cases and

tools.

2.2 Problem description

The business logic embedded in a system is composed by business rules [1], that

are defined as relevant actions or procedures defining or constraining some precise

1. http://www.csis.ul.ie/cobol/course/COBOLIntro.htm



2.2. PROBLEM DESCRIPTION 31

aspect of the business. Such rules represent the implementation of the organization

policies.

Organization

System

Business rules

Business policies

misalignment

Business analysts

Developers

misunderstanding incomplete

Business knowledge

Technical knowledge

define

implement

hold

hold

Figure 2.2: Issues in information systems

Locating, understanding and modifying the source code that implements the

business rules in a legacy system is a challenging, error-prone and time-consuming

task, because of different reasons (Fig. 2.2). In particular, locating business policies

in a technical context is not trivial, since the rules are mixed with the constructs and

aspects proper of the programming language employed. Therefore, technical skills

are needed to isolate these rules.

These are not the only skills required to understand business policies in the

code. In particular, two kinds of knowledge are needed, respectively the business

and the technical knowledge. The former defines what the business rules enforce,

while the latter specifies how such rules are implemented. Unfortunately, in or-

ganizations these kinds of knowledge are held by two different experts, business

analysts/domain experts and developers. As a consequence, this separation often

causes misunderstanding between what the system does and what the business poli-

cies define.

Another source of complexity is related to the position of business logic in the

system. In particular, business rules at code-level are spread within the components

and programs of the system. As a consequence, when aligning the rules to the corre-

sponding business policies, development teams have to be able to identify the exact

change that is required for the business without affecting other processes embedded

in the system. This task is particularly complex for large systems due to the amount

of lines of code to analyse. In addition, the knowledge of the system is often in-

complete due to the departure of original developers and a limited documentation

that does not reflect the current implementation. Therefore, duplicated rules and

growing misalignment between what is defined in the business policies and what is

currently implemented in the system are often introduced over time.

Misunderstood, misaligned and incomplete information slow down the adap-

tation/modification of the system to new requirements settled in the organization

policies and threaten the consistency and coherency of the organization business.



32 CHAPTER 2. INTRODUCTION

2.3 State of the art

The process to mine business rules is called Business Rule Extraction (BREX).

It is used to give a specific understanding of a system with respect to the business an

organization runs [2]. As a consequence, it is part of the software comprehension

domain [3]. Such domain is the pillar of several software engineering activities,

such as maintenance, evolution and reverse engineering of software. The relation-

ships between BREX and these software activities are shown in Fig. 2.3.

Software Comprehension

Software Activities

Evolution Maintenance

Reverse Engineering

Business Rule Extraction

Figure 2.3: Business rule extraction process and software activities

BREX processes can be applied to different parts of the system. In this thesis,

we focus on the analysis of its behavioral and structural part, where the former is

meant to perform calculations and makes logical decisions to transform system’s

inputs into outputs, while the latter concerns the management of the storage and

retrieval of data (i.e., database).

Each part of the system requires a different BREX process, according to the

kinds of operation it deals with (i.e., manipulation and storage/retrieval). The BREX

process for the behavioral part (see Sect. 7.1) is focused on program understanding

and program slicing techniques. Such techniques are applied on the structures of

the programming language implementing the system. Their goal is to discover and

represent the variables and the chunks of source code relevant for the business.

Therefore and according to these techniques, BREX processes for the behavioral

part of the system are mainly composed by three steps ([2], [4], [?], [6]) that aim at:

– identifying in a system the variables that represent business terms,

– retrieving the pieces of code related to these variables,

– representing/storing the identified pieces of code.

The first step contains heuristics to ease the identification of business variables;

the second step is based on program analysis techniques such as control and data

flow anaylsis as well as slicing operations; while the last step extracts the logic

identified to understandable formats. These output formats can be the collection of



2.4. BACKGROUND 33

the chunks of code obtained or higher abstraction level representations not related

with the specificities of the programming language employed.

On the other hand, the BREX process for the structural part (see Sect. 7.2) aims

at retrieving the business rules located in the database structures such as tables,

stored procedures and triggers. It is based on the process concerning the reverse

engineering of databases [7] that consists of:

– extracting and representing the embedded data definitions into a higher level

representation,

– extracting the database constraints.

The first step defines rules to map database schemas to conceptual models, that

are higher level representations with respect to the database structure definitions.

The second step identifies the integrity constraints embedded in database and it

expresses such constraints in a format that fits with the language used to define the

conceptual model.

In this thesis, we present solutions to extract business rules from the behavioral

part of systems implemented in Java and COBOL, and from the structural part of

systems that rely on relational databases. We focus our analysis on Java, COBOL

and relational databases, since most of the systems that rely on these technologies

have been maintained and evolved for long time and the corresponding business

rules might have become outdated over time.

The solutions proposed are based on Model Driven Engineering (MDE [8]).

MDE techniques offer an abstract homogeneous representation of the system, avoid-

ing technological issues with respect to the programming language employed for

that system. In addition, MDE solutions provide generic and modular approaches

adaptable to different languages. Finally, when representing a system as a model

we can benefit from the plethora of MDE tools available on the market.

In the following section, the background of this thesis is introduced.

2.4 Background

We aim at extracting business logic expressed as a set of rules out of legacy sys-

tems using Model Driven Engineering (MDE) and software comprehension tech-

niques. Therefore, business rules, MDE and software comprehension are part of the

background of this thesis.

2.4.1 Software comprehension

Software comprehension is one of the core domain of software engineering. It is

required to maintain, reuse, migrate, reengineer or enhances software systems [29].



34 CHAPTER 2. INTRODUCTION

It is based on finding concepts of the real world and how they are related each other

within the system.

In the following, we discuss software comprehension with respect to the behav-

ioral and structural part of systems.

System behavioral part

Any given source code embeds always a certain logic, that represents the be-

havior shaped by developers for that code. This logic can be expressed in different

ways according to the constructs and specificities offered by the programming lan-

guages available on the market. Despite the differences that exist between these

languages, common elements, that contain useful information to help understand-

ing the code, can be identified among them. We focus on data structures, statements

and functions (in a global meaning).

A data structure is a location used to keep relevant data. It represents a concept

of the real world that a system handles, therefore it is the most important construct

to identify business rules in the code. A data structure is supposed to be identified

by a meaningful name aligned to the information stored in it. References of data

structures are contained in statements as well as they can be input parameters of

functions.

A statement is used to perform operations on data structures (i.e., read, write,

modify) and in addition, depending on its type (e.g., conditional/loop statements),

it can contain other statements. Implicitly, it defines how data structures are related

together.

Finally, functions group statements logically related with respect to a given task.

They are generally defined by a meaningful name/label.

Understanding how concepts of the real world are related together within a sys-

tem is a cognitive process that is performed by developers and it employs much of

their time. In particular, it is a time-consuming activity, since developers have to

navigate the code in order to gather relevant concepts and their relationships ex-

pressed with the specificities of the programming language employed. In our case,

such relevant information is composed by data structures, statements and functions

related to the business logic.

Several studies have been carried out to understand how the source code is anal-

ysed in order to retrieve specific information (e.g., functionalities, processes, busi-

ness logic). In [30], the authors analyse how developers seek, relate and collect

relevant information during maintenance tasks on an unknown program. The au-

thors discover three main phases that developers participating in the study used to

perform. In particular, the first phase focuses on searching hints (e.g., meaningful

data structures or function identifiers, etc.) in the code. In the second phase, such



2.4. BACKGROUND 35

hints are used as starting point to navigate the source code in order to find relevant

information. Finally, the last phase collects and stores the information found in the

previous steps.

The program understanding activities described in [30] can be automated using

program slicing techniques. The use of such techniques to ease program under-

standing activities has been largely studied in the past (e.g., [31], [32]).

Program slicing [33] consists in isolating/collecting, according to a criterion, the

chunks of code that affect directly or indirectly the calculation of a defined variable

(i.e., or set of variables).

The program comprehension steps described in [30] can be mapped to the pro-

gram slicing steps (Fig. 2.4). In particular, the first step in [30] is equivalent to

select a slicing criterion for slicing the program, the second step represents the slic-

ing operation, and finally the last step is equal to collect the sliced chunks of code.

While selecting a slicing criterion is generally a manual or semi-automatic activity,

since it is up to the user to choose an entry point (i.e., statement containing a given

variable to analyse) to slice the program; the other two steps, respectively the slicing

operation and collection step, can be automated.

Program Comprehension

search hints in the code

find relevant source code

collect/store the code 

Program Slicing

collect/store the sliced code

slice the code

select a slicing criterion

Figure 2.4: Program understanding and program slicing

Program slicing can be performed in different ways [34], depending on 1) how

to traverse and 2) how to analyse the program. In the first case, a program can

be traversed, according to its Control Flow Graph (CFG [35]), backwardly or for-

wardly for a given entry point, which is a statement containing a relevant variable

identified by the slicing criterion. In the second case, the analysis of a program can

be performed using different approaches that are generally based on either static or

dynamic analysis.

In particular, static slicing is used to identify statements in the program that

potentially contribute to the computation of a given variable or set of variables,

without focusing on the possible values that a particular variable could hold at run-

time. Such kind of slicing is helpful to gain a general understanding of a program

with respect a specific behavior/functionality. On the other hand, dynamic slicing

[36] generates slices for particular program input and it allows to understand how

the input variable values change during the program execution.



36 CHAPTER 2. INTRODUCTION

A complementary approach to static and dynamic analysis is described in [37],

where the authors introduce the notion of removable blocks, described as the small-

est component of a program that can be removed during the slice computation with-

out violating the syntactical correctness of that program. A block can be dropped if

its removal does not interfere with the flow execution (i.e., either static or dynamic)

concerning the variables related to a given slicing criterion.

System structural part

The concepts of the real world and their relations in the structural part of a

system are represented by means of the database schema. Such schema defines the

organization of data and a set of integrity constraints that ensure the consistency of

the information stored in the database.

A database schema consists of several elements such as tables, table relations,

views, data types, indexes and constraints expressed in operational (i.e., triggers and

stored procedures) and declarative (i.e., table constraints and assertions) ways. In

addition, tables are composed by columns, where each column describes a property

(i.e., name and data type) of a given table.

Tables and columns represent real-world concepts 2 and, as consequence, they

belong to the group of first class citizens in database schemas. In addition, views can

be considered part of such group, since they are derived from tables. On the other

hand, table relations and constraints are used to define how real-world concepts are

related each other.

The identification and extraction of such database schema elements is the fo-

cus of the software comprehension in database. In particular, this is achieved by

database reverse engineering processes that translate tables, columns and their data

types as well as relations and constraints into an equivalent conceptual model (Fig.

6.8).

Database Conceptual model

data types

attributes

classes

derived classes

constraints

associations

data types

columns

tables

views

constraints

relations

Figure 2.5: Database schema to conceptual model

2. Data types defined by the user can represent real-world concepts.



2.4. BACKGROUND 37

The obtained model has a higher abstraction level representation with respect to

the database schema, since it hides the specificities of the database technology. It

is composed by classes, class associations and constraints. In addition, each class

is defined by attributes that have a name and a data type. On the one hand, tables

and views are mapped as classes and derived classes in the conceptual model. Each

column within a table is mapped to the attributes of the class that corresponds to that

table. In addition, since a column is defined according to a given data type allowed

by the database, the corresponding attribute is defined by an equivalent data type.

On the other hand, relations between tables are mapped as associations between

the corresponding classes in the conceptual model, and database constraints are

converted into equivalent constraints applied over the model. In particular, database

constraints are expressed in different ways using Structured Query Language (SQL

[38]) queries, assertions, user type definitions as well as they can embedded in

stored procedures and triggers.

Database constraints can be divided in two groups: declarative and operational

constraints [39]. Declarative constraints are written in SQL and applied on table

and table column declarations in order to avoid duplicated or null values (i.e., pri-

mary key, not null and unique constraints), to define relations between tables (i.e.,

foreign keys) or to limit the value range that can be placed in a column (i.e., check

constraints). On the other hand, operational constraints are defined in assertions,

user type definitions, stored procedures and triggers and they are used to code more

complex constraints with respect to the declarative ones.

Finally, database constraints are mapped to semantic equivalent constraints ap-

plied on the conceptual model [40]. These constraints are defined by constraint

languages like Object Constraint Language (OCL [41]) or Semantics of Business

Vocabulary and Business Rules (SBVR [42]) that are more suitable to express busi-

ness rules at conceptual level.

2.4.2 Business rules

Business rule is a concept that is broadly known and employed nowadays. There

is no a single definition, but several ones, since practitioners and organizations tend

to assign to such concept specific denotations. Below, we report some of those

definitions.

According to E. Gottesdiener [16], business rules are the core of functional re-

quirements, they provide the knowledge behind any and every business structure or

process. For I. Baxter and S. Hendryx [17], they are defined as an obligation that

covers conduct, action, practice, or procedure, or a necessity that is intended as a

definitional criterion. On the contrary, the Business Rules Group [1] describes the

business rule as a statement that defines or constraints some aspect of the business.



38 CHAPTER 2. INTRODUCTION

It is intended to assert business structure or to control or influence the behavior of

the business. Finally, IBM specifies the business rules as anything that captures

and implements business policies and practices [18]. They are expressed using a

formalized vocabulary and a series of if-then statements [19].

In addition to these definitions, it is important to highlight that within an infor-

mation system, business rules can have different connotations depending on whether

the perspective is data, object, procedural or expert system-oriented [16]. In other

words, we can say that business rules are key elements both for companies and

their systems. On the one hand, they are used to depict policies independently from

designing paradigms and technical platforms. On the other hand, they drive the be-

havior of the system and, when implemented in a system, they are mixed with the

specificities of the programming language the system employs.

Business rule

Business terms Operators Values

Figure 2.6: Business rule constructs

Business rules are composed by three constructs: business terms, operators and

values [19]. Such constructs are shown in Fig. 2.6. Business terms represent the ob-

jects that are part of, or are affected by, business rules. Operators allow to compare

the properties or characteristics of different business terms and include arithmetic,

logical, etc. operators. Finally, values can be numbers (or arithmetic expressions),

text values or predefined business terms.

If purchases of customer > 5000

then status of customer = "Gold"

Figure 2.7: Example of a business rule

In Fig. 2.7 an example of business rule is shown. The rule states that a customer

becomes a Gold customer as soon as his cumulative purchases have overtaken 5000

dollars. Customer, purchases, status and Gold are business terms, while the opera-

tors are expressed by the logical operator greater than and the assignation. Finally,

the values are represented by the term Gold and the numeric value 5000.

Several kinds of business rule exist, they are classified in four categories [1]:

– Term definitions. They specify the vocabulary for expressing business rules.

In particular, a business term can be a noun, a phrase or sentence that defines

concepts of the business. For instance, given a shopping system, nouns like

shopping cart, customer, products are business terms for that system.



2.4. BACKGROUND 39

Finally business terms become data structures, database tables, attributes and

columns when implemented in an information system.

– Facts. They describe relationships/associations between business terms and

in particular, they allow business terms to have assigned roles in the business.

For example, the sentence: "each customer has a shopping cart" defines the

relation has between a customer and his shopping cart.

Facts in information systems can be found either both in the behavioral and

structural part. In the behavioral part they are defined at statement-level (i.e.,

assignments), in the definition of data structures as relations between the data

structures and the embedded properties or as relations between data structures

(e.g., inheritance, subtypes, etc.). On the other hand, in the structural part,

they appear as associations/relations between database tables and as relations

table-table columns.

– Constraints or structural rules. They confine the organization behaviors

defining what is allowed and forbidden in the organization business. Expres-

sions such as must, cannot, etc. identify generally constraint rules in business

policies. Examples as "a customer must have a bank account assigned" or

"any customer cannot be younger than 18" represent constraint rules.

Such constraints are generally expressed on the data/class model within the

structural part of a system. In particular, they are defined as integrity con-

structs that protect the consistency of data with respect to the business. Con-

straint rules can be found in the behavioral part as well. They can be imple-

mented as exception handlers in the source code.

– Derivations or behavioral rules. They define how business knowledge (i.e.,

terms and facts) is transformed into other knowledge. Examples as if a cus-

tomer has more than fifty purchases, he is a Silver customer or a purchase bill

is the sum of all product prices selected by the customer represent derivation

rules.

Derivation rules are generally coded in the behavioral part of the system and

they appear as statement containing mathematical operators. However, they

can be found within the system’s structural part implemented as stored pro-

cedures.

Business rules in the behavioral part

This section gives a definition of business rules at code-level and how the four

categories, previously described, are mapped on the constructs of a generic pro-

gramming language (i.e., data structures, statements, functions).

The definitions of business rule previously given cannot be used directly to iden-

tify rules at code-level, since the business rules expressed at high abstraction level



40 CHAPTER 2. INTRODUCTION

must be implemented according to the constructs a programming language offers.

Unfortunately, this implementation causes the rule to be spread into the source code.

At code level, a business rule is defined as a generic function F that takes several

variables as input and returns a variable as output [2]. F is represented by a set of

conditional and related statements that use the variables in input I to calculate the

value of the outcome variable O.

F(I1, I2, I3, ...) = O

Figure 2.8: Business rule at code-level

As an example, we consider a business process of hiring a new worker within

a company. This process is composed by several steps that take into account a set

of characteristics (e.g., technical skills, age, experience, etc.) for each candidate.

The final result of the recruitment process depends on the sum/conjunction of all

these steps. As a consequence, the corresponding business rule can be seen as a

function that takes as input a set of variables that represent the characteristics of a

given candidate and returns a variable that contains the acceptance or rejection for

that candidate.

Business rules at code-level fall under the four categories previously described,

but a mapping (Fig. 2.9) must be defined between such categories and the constructs

of a generic programming language (i.e., data structures, statements and functions).

Analysis of  the source code

Exception handlers

Assignments

Data structure and function namesTerm definitions

Facts

Constraint rules

Derivation rules

Figure 2.9: Business rule categories at code-level

– Term definitions. Definitions of business terms are scattered in the code,

mostly in data structures and function names. Frequently, these names have

to be processed to extract the corresponding business terms (e.g., a variable

name cust must be transformed in the business term customer). In addition,

such business terms can be found as well in comments and system’s docu-

mentation; although the information contained might not be aligned with the

corresponding source code.

– Facts. They can be derived from the analysis of the assignments in the source

code. For example, for a system handling the monthly interest on cars’ loans

we could find a statement that relate the variables corresponding to car’s price

and interest’s rate (i.e., MonthlyInterest = priceCar * interestRate * (1/12)).



2.4. BACKGROUND 41

Finally, facts can be highlighted applying a data-flow analysis [20]. The result

of such analysis is a graph where the nodes are the statements in the program

and the edges define where the variables are declared and modified. Such

edges allow to determine the relations between variables.

– Constraints or structural rules. In the code, they are generally implemented

using exception handlers related to return values of functions. According to

these returning values, they change the normal flow of the code execution if a

specified error condition occurs.

– Derivations or behavioral rules. They are represented by statements dealing

with a given variable (or set of variables) in the same execution path. As a

consequence, the identification of derivation rules is a complex activity, since

it involves the analysis of most of the source code and the related Control

Flow Graph. It relies on the recovery of the business terms (i.e., business

variables) and facts (i.e., relevant statements).

Finally, since the system’s behavioral part performs calculations and makes

logical decision, it is supposed to contain a large number of derivation rules.

Therefore, discovering derivation rules is the most important step in a BREX

process for the behavioral part of the system.

Business rules in the structural part

This section provides a definition of business rules for the structural part of the

system and how business terms, facts, constraints and derivation rules are mapped

on the structures of database implementations.

In a database, a business rule is represented by means of database integrity con-

straints. According to [21], they are divided in three categories, namely inherent,

implicit and explicit. Inherent constraints concern the relations between tables and

the contained columns. Implicit constraints refer to primary and foreign keys used

respectively to identify a record in a table and to define relations between tables.

Finally, explicit constraints involve column and table constraints (e.g., check, not

null, unique, etc.) as well as create assertions, define user types (i.e., create domain

statement), stored procedures and triggers.

While the inherent and implicit constraints specify business terms and facts; the

explicit constraints are the rules that define aspects of the business and therefore,

they are the focus of the BREX process in database.

A mapping (Fig. 2.10) is defined between the different categories of business

rules and the database integrity constraints. In the following this mapping is de-

picted.

– Term definitions. Definitions of business terms are derived from the database

table and view definitions as well as from the columns composing such struc-



42 CHAPTER 2. INTRODUCTION

Analysis-of-

stored-procedure-and-triggers

CHECK,-NOT-NULL,-UNIQUE,

stored-procedures-and-triggers

Table-and-table-columns-relations

Table,-column-and-view-namesTerm-definitions

Facts

Constraint-rules

Derivation-rules

Figure 2.10: Business rule categories in databases

tures. In particular, the business terms are extracted from the name of tables,

views and columns. Since those names often describe directly business terms,

they do not need to be processed to extract the corresponding business term.

– Facts. They are defined as relations between tables as well as intrinsic rela-

tions between tables and their nested columns.

– Constraints or structural rules. They are derived from table and table col-

umn declarations as well as from stored procedures, triggers, user-defined

type definitions and assertions.

In particular, business rules are extracted from CHECK, NOT NULL and

UNIQUE database constraints and from the exception handlers embedded in

stored procedures and triggers. Rules are extracted as well from the values

that a user-defined type can have and assertions 3.

Finally, since databases define the type of data and values that are allowed

or forbidden, the identification of constraints is the most important step in a

BREX process for the structural part of the system.

– Derivations. Derivations rules can be extracted from the code analysis of

stored procedures and triggers; although such database constructs are not of-

ten used to implement derivation rules in database due to different reasons.

In particular, the choice of implementing derivation rules could reduce the

portability of the database (e.g., the database could not be shared among sys-

tems that do not rely on the same derivation rules) or the evolution of the

information system (e.g., the system would be tied to a particular database

vendor dialect). In addition, the database is not suitable to execute derivation

rules with respect to performance that the same logic can have if executed in

the system’s behavioral part.

2.4.3 Model Driven Engineering

MDE [8] is a software engineering discipline that considers models as first-class

citizens for both forward and reverse engineering processes. This different way of

3. Note that the major databases do not support assertions



2.4. BACKGROUND 43

using models is opposed to the previous approaches, that limited models to a passive

role (mostly documentation) during software engineering activities.

Adoption of MDE has the potential to bring many benefits to such activities.

In particular, it improves the maintainability and quality of systems [9] thanks to

its features that consist in a higher abstraction level representation with respect to

the source code and the automation of repetitive activities in software development

processes as much as possible. The former relies on the use of models, while the

latter on model manipulations. In the following, we describe these two features.

The basic assumption of MDE is that models and not the classical programming

code is the right representation level for managing all artifacts within a software

engineering process; therefore, models are considered as the unifying concept in

MDE. Models are defined according to a three-level architecture shown in Fig. 2.11.

Such architecture is composed by model, metamodel and metametamodel.

conformsTo

Metametamodel

Metamodel

Model

conformsTo

conformsTo

Level 3

Level 2

Level 1

Figure 2.11: Three-level architecture in MDE

A model is a partial representation of a system that captures some of its char-

acteristics (e.g., documentation, source code, components, etc.). The combination

of different models related to the same system can be used to derive a global view

of that system. Each of these models represent entities composing software arti-

facts/concepts in the real world. Such concepts and their associations (i.e., seman-

tics) are defined in the second modeling level, called metamodel.

A metamodel is related to a model according to a relation of conformance. Such

relation is equivalent to the program - grammar relation for a given programming

language; such that, programs written in one language must conform to the syntax

rules of that language as well as models defined according to a metamodel must

conform to the rules embedded in that metamodel.

Metamodels are in turn expressed by means of the third modeling level called

metametamodel. Similar to the model/metamodel relationship, a relation of confor-

mance is defined between metamodels and metametamodels; such that a metamodel

is defined using concepts and associations of a given metametamodel. In addition,

this relation is equivalent to the relation between the grammar of a given program-

ming language and a metasyntax/language to define grammars (e.g., EBNF: Ex-

tended Backus-Naur Form [43]).



44 CHAPTER 2. INTRODUCTION

This three-level representation, also known as modelware, is not so different

from the grammarware (i.e., the technical space where a language is defined ac-

cording to a grammar) in terms of basic definition and infrastructure [24]. Such

equivalence is shown in Fig. 2.12. Therefore, the metasyntax is conceptually equiv-

alent to a metametamodel, the syntax of a given language is at the same level of a

metamodel, and a program (i.e., an instance of a grammar) is analogous to a model.

Metametamodel

Metamodel

Model

Level 3

Level 2

Level 1

Metasyntax 

Syntax 

Program

GrammarwareModelware

conformsTo

conformsTo

conformsTo conformsTo

conformsTo

conformsTo

equivalentTo

equivalentTo

equivalentTo

Figure 2.12: Modelware and grammarware

Finally, models, metamodels and metametamodels may be implemented accord-

ing to different standards. For instance, the Object Management Group (OMG) pro-

poses a standard metametamodel called Meta Object Facility (MOF) and different

standard metamodels (UML: Unified Modeling Language [10], KDM: Knowledge

Discovery Metamodel [11], etc.).

The second feature of MDE is represented by model transformations (shown in

Fig.2.13) that, taking one or more models as input, generate one or more models

as output according to mappings defined over the input and output metamodels. In

particular, given a source model, the related source metamodel and a target meta-

model; a model transformation is able to generate the target model that conforms to

the target metamodel.

conformsTo

Source metamodel

Source model

Metametamodel

conformsTo

Level 3

Level 2

Level 1

conformsTo

Target metamodel

Target model
Transformation

model

Transformation

metamodel

conformsTo

conformsToconformsTo conformsTo

receives generates

Figure 2.13: Model transformation

Depending on the input and output metamodels two different kinds of transfor-



2.4. BACKGROUND 45

mation exist. If the source and target metamodels are identical, the transformation

is called endogenous; while if the metamodels are different the transformation is

called exogenous.

Furthermore, model transformations are aligned to the three-level architecture

in MDE, therefore they are represented as models. A model transformation con-

forms to its corresponding metamodel, that contains the means to specify mappings

between model elements. In turn, such metamodel is defined according to the se-

mantics of the metametamodel. Since a model transformation is itself a model,

a model transformation can take as input one or more model transformations and

producing other model transformation as output. Such kind of transformations are

called Higher Order Transformation (HOT [44]).

In addition, model transformations record information about how a target model

element is related to the corresponding source element that originated it (i.e., trace-

ability [12]). The relation between source and target elements is called trace and it is

useful to understand and track software artifacts within an MDE process (composed

by a single transformation or a transformation chain). A trace can be represented

by either a simple link to a given model element or a more complex encodings (e.g.,

identifiers, etc.).

Traceability can be modeled according to the MDE three-level representation

[13]. Therefore, traceability information is stored within a model that conforms to

a metamodel 4. This metamodel, shown in Fig. 2.14, is composed by a class (i.e.,

TraceLink), that owns the links of the source and target elements (i.e., sourceEle-

ments and targetElements) involved in a given mapping (i.e., transformation rule).

Such Tracelink is identified by a name, that is the name of the transformation rule

originating it.

AnyModelElementsourceElements

targetElements

TraceLink

name : String

Figure 2.14: Traceability metamodel

Finally, several transformation languages are available on the market. For in-

stance, ATL Transformation language [14] that is currently one of the most used

transformation languages and Query/View/Transformation [15] that is the standard

language proposed by OMG.

4. Note that the traceability information can be part of other metamodels



46 CHAPTER 2. INTRODUCTION

2.5 Objectives and contributions

We aim at providing a reverse engineering process for extracting business rules

embedded within information systems. The main goal is the software comprehen-

sion of legacy systems to ease the corresponding modernization and maintenance

activities. These activities are a key (economical) area in software engineering.

MDE with its methods and techniques are able to overcome misunderstandings

between business analysts and developers, misalignments between business policies

and rules as well as the incomplete documentation (both for business and technical

knowledge) of information systems. Such new technology is mature enough to

provide a complete comprehension of systems with respect to the business, ensuring

in this way their correct evolution.

In the following we present the main contributions of this thesis.

2.5.1 Generic and modular framework

We have defined a conceptual framework that is applicable to different program-

ming languages. In particular, we have identified the common steps that compose a

BREX process. In addition, relying on MDE, we have designed our framework in

a modular way. Therefore, each step is independent and it is related with the other

steps only by its input and output models. As a consequence, the framework is suit-

able for different typologies of user, since the BREX process can be stopped at any

moment and the user can select the level of output (technical or business-oriented)

that best fits his needs.

2.5.2 Model-based approach

In this thesis, the problem of extracting business rule from information systems

is studied as an instance of MDE. In particular, MDE performs an effective job with

respect to the analysis of programming languages and reverse engineering processes

such as BREXs.

The proposed BREX process is based on the use of MDE techniques. The

higher-level abstractions used in MDE facilitate the building of effective and reusable

reverse engineering solutions able to provide genericity, reusability, extensibility

and evolution capabilities for legacy systems based on a clear decoupling of the

represented information (as models) and the different steps of the reverse engineer-

ing process. Finally, the business rules identified from such systems are represented

and manipulated using appropriate languages, to facilitate its comprehension.



2.5. OBJECTIVES AND CONTRIBUTIONS 47

2.5.3 Traceability and granularity of the extracted business rules

Previous methodologies implemented traceability with intrusive solutions (for

instance by code instrumentation [45]) or they did not highlight the importance

of connecting the extracted rules with the corresponding chunks of source code in-

volved. This is crucial when providing a smooth migration path from older to newer

technologies, such that the business rules can be extracted and modified within the

system, that is preserved in place.

Using MDE, our BREX process takes as input a detailed representation of the

code (a model) and not the source code, that is left unmodified. The mapping be-

tween this new input and the source code is guaranteed by MDE. Traceability is

implemented on this higher abstraction input relating the latter with the different

artifacts generated during the reverse engineering process. So in a non-intrusive

way, we know exactly which input elements (i.e., from where we can retrieve the

corresponding part of source code) participate to the identified rules.

In addition, in the previous works the granularity of the extracted business rules

is not considered or not well emphasized. A business rule, at code level, represents

a set of related statements with respect to a given variable. These statements are part

of the same execution path. The granularity of an obtained rule is used to separate in

the execution path the statements that contain a given business variable from those

ones that define the context (i.e., a set of conditional statements) for that rule.

2.5.4 Solutions for Java, COBOL and relational databases

We have designed BREX processes for the behavioral part of systems employing

Java and COBOL, as well as for the structural part specified as a relational database.

Such technologies have been chosen since they have largely used for at least twenty

years 5. As a consequence, systems based on Java, COBOL or relational database

are old enough to motivate a BREX analysis on them.

With respect to the system’s behavioral part, we are able to extract derivation

rules and business terms from Java and COBOL languages. On the other hand,

the types of business rules extracted from the system’s structural part are business

terms and rule constraints. The former are derived from the tables and views of

the database schema; while the latter are obtained from the database constraints

embedded in table definitions and triggers.

5. Java has been released in 1995, COBOL 1959 and relational database in 1970



48 CHAPTER 2. INTRODUCTION

2.6 Thesis structure

This thesis is structured as follows. Chapter 3 describes our BREX concep-

tual framework. Chapter 4, Chapter 5 and Chapter 6 depict its implementation for

COBOL-based and Java-based systems as well as for relational databases. Chap-

ter 7 discusses the related work with regard to our proposed framework. Finally,

Chapter 8 presents the conclusion and further work.

The publications related to this thesis are listed at page 139.



3
Model-based framework for business

rule extraction

This Chapter presents an overview of our BREX process. It describes the steps

that compose such process and how they are adapted for dealing with the behavioral

and structural parts of the system.

Our BREX process aims at identifying and extracting the business rules en-

forced in a system. In this thesis, a business rule is defined for the behavioral part

of the system as a set of statements in the same execution path related to the same

(business) variable(s). In particular, a business variable is a variable that carries a

business meaning. We consider business variables, the variables used within math-

ematical operations, input/output commands, conditions of conditional statements

and initialisation statements. According to our experience on the IBM use cases

and to some previous works ([2] [4], [?], [6]), these heuristics are able to identify

business rules buried in the code. Clearly, such heuristics are not complete, but the

framework allows to add additional heuristics. On the contrary, for the structural

part of the system, a business rule is a declarative constraint in the database schema

([22], [23]) or the condition that causes a trigger to be executed.

The BREX process implemented is performed in a MDE environment, hence

a specific operation is needed to pass from the grammarware technological space

defined by the programming language implementing the system to the modelware

space, that provides a model representation of the code [24] (see Sect. 2.4.3). The

business rules are derived by analysing this derived model representation. Such a

model contains the static information of the system. In particular, for the behavioral

part, it represents the abstract syntax tree of the source code with bindings between

49



50CHAPTER 3. MODEL-BASED FRAMEWORK FOR BUSINESS RULE EXTRACTION

named model elements (e.g., usages of variables are linked to the corresponding

variable declaration and vice-versa, method invocations are linked to the method

declaration and vice-versa, etc.). On the contrary, for the structural part of the

system, the model representation contains the structural information of the database

schema analysed (tables, columns, views, triggers, declarative constraints).

Finally, our BREX process is based on static analysis techniques applied to the

model derived from the source code. As a consequence, for the behavioral part of

the system, we are able to exclude from this model no-reachable code by performing

a control flow graph analysis. On the contrary the identification of useless or dead

code is out of the scope of this thesis.

Business Rule

Representation
Business Rule

Identification

Business Term

Identification

Model

Discovery

modelware

Model Representation

grammarware

Source Code

Figure 3.1: Business rule extraction framework

In Fig. 3.1, the steps that compose the framework implementing the BREX

process are shown. They are respectively, Model Discovery, Business Term Iden-

tification, Business Rule Identification and Business Rule Representation. Model

Discovery takes as input the source code expressed in a given programming lan-

guage and generates a Platform Specific Model (PSM) that has a one-to-one corre-

spondence with the code, so that there is no information loss and all the code source

elements are represented as part of the model. Finally, the obtained model is then

manipulated in the next steps composing the BREX process.

Business Term Identification focuses on discovering the business terms embed-

ded in the system that are then used to drive the Business Rule Identification step.

Depending on the system’s part analysed (i.e., behavioral or structural) different

heuristics are defined for such steps. Finally, the Business Rule Representation step

is in charge of visualizing the identified rules by means of textual and graphical

artifacts.

Model Discovery, Business Term Identification, Business Rule Identification

and Business Rule Representation are described in the remaining part of this Chap-

ter.

3.1 Model discovery

Model Discovery is used to present the heterogeneity embedded in a system

by means of uniform and homogeneous representations (i.e., models). This is spe-

cially worthwhile when analysing systems that rely on different technologies. The



3.2. BUSINESS TERM IDENTIFICATION 51

ultimate goal of the Model Discovery step is to derive one or several models from

a given system, depending on the needed viewpoints, and then to work directly on

these models. Each model conforms to a given metamodel expressing the chosen

viewpoint such as source code, database schemas, etc.

In this thesis, we have relied on different model discovery tools (Fig. 3.2) to gen-

erate models from Java and COBOL source code as well as from relation database

implementations. In particular, we have used MoDisco [25] for Java, IBM COBOL

Application Model 1 for COBOL, and finally Xtext [?] to derive a model-based rep-

resentation from database schemas and triggers.

Such models have a one-to-one correspondence with the source code. In partic-

ular, they represent the full Abstract Syntax Tree (AST [46]) of the code and contain

the resolution of the bindings between identifiers (e.g., a variable definition with the

corresponding usages of that variable, etc.) in the code.

Model Discovery

System

Behavioral part Structural part

COBOL Application Model

MoDisco
Xtext

Figure 3.2: Model Discovery

3.2 Business Term Identification

Business Term Identification locates the business/domain concepts within the

model of the system. Since the business terms are represented in different ways

depending on the system’s part analysed (Fig. 3.3), we have developed several

heuristics able to identify such terms.

Business Term Identification

System

Behavioral part Structural part

Table definitions

Column definitions

View declarations

Variables

Figure 3.3: Business Term Identification

1. http://tinyurl.com/IBMCobolApplicationModel



52CHAPTER 3. MODEL-BASED FRAMEWORK FOR BUSINESS RULE EXTRACTION

Concerning the behavioral part of the system, for Java and COBOL source code,

we have focused our analysis on the variables used in the code in order to identify

those ones related to business-relevant concepts. The heuristics implemented dis-

cover variables that appear together with mathematical operations, in conditions of

conditional statements, in input/output statements and in initialisation statements.

We are aware of the fact that such heuristics are not complete to locate all variables

hinting at business terms due to the complexity that a system can have. However,

other heuristics can be easily plugged to our framework thanks to the modularity

provided by MDE.

On the contrary, with respect to the structural part of the system, for relational

databases, we have focused our analysis on tables, views and column declarations

composing the database schema, since such structures have often a one-to-one cor-

respondence with business terms.

Finally, the business terms identified in the behavioral and structural parts of the

system are connected to the corresponding code structures using MDE traceability

(see Sect. 2.4.3).

3.3 Business Rule Identification

Business Rule Identification provides the means to identify the business rules

related to one or several business terms. In addition, it is used to specify an internal

representation of the business rules identified, and it offers traceability support to

connect the discovered business rule to the corresponding source code.

Business Rule Identification

System

Behavioral part Structural part

Control flow analysis

Data flow analysis

Slicing operation

Database constraint analysis

Figure 3.4: Business Rule Identification

This step is composed by specific operations able to deal with the different

paradigms employed in the behavioral and structural part of systems (Fig. 3.4).

In particular, Business Rule Identification for the behavioral part is based on con-

trol and data flow analysis as well as the slicing operation. Such operations are

implemented on the model representing the source code. The output of this step is a

model that contains the information about the part of the code composing the rules

for one or more variables.



3.3. BUSINESS RULE IDENTIFICATION 53

On the other hand, the Business Rule Identification for the system structural part

relies on the analysis of declarative and operational database constraints.

All aforementioned operations are described in the remaining part of this sec-

tion.

3.3.1 Control Flow Analyis

Control flow analysis is used to discover the Control Flow Graph (CFG [27]) of

a program using static code analysis techniques. Such CFG contains the information

of all paths that might be traversed through a program during its execution. As a

consequence, this analysis is able to identify no reachable code in the source code.

In a MDE context, this analysis is based on navigating the AST embedded

within the model that represents a given program. In particular, the AST expresses

the model information (e.g., model elements, relations, etc.) in a tree-like represen-

tation. Such representation is exploited according to the semantics of the program-

ming language (i.e., Java or COBOL) to define heuristics, that are used to generate

the CFG.

The input of the control flow analysis is the model that represents the applica-

tion/program, while the output is the input model enriched with the CFG informa-

tion. In particular, according to the heuristics defined, for each model element, a list

of successor elements is created and attached to that element.

3.3.2 Data Flow Analyis

Data flow analysis is used to highlight relations between variables and it allows

to identify business facts within a program. This steps consists in traversing the

model that represents the CFG in order to connect the statements that affect/use the

same variables.

In particular, in this thesis data flow analysis is used to create relations between

each statement that refers to a certain variable with the next (i.e., or previous) state-

ment that refers to the same variable. Therefore, each model element that represents

a statement, stores a list of successors (i.e., or/and predecessor) that deal with the

same variable.

The input of this step is the CFG model of the program; while the output is the

same input plus the information concerning the data flow.

3.3.3 Slicing operation

The slicing operation is used to collect the parts of the source code related to

a given business variable. These parts of code represent the business rule and its

corresponding context. In particular, the former is composed by statements that



54CHAPTER 3. MODEL-BASED FRAMEWORK FOR BUSINESS RULE EXTRACTION

use the business variable, while the latter includes the conditions that trigger such

statements. These conditions are found in the possible execution paths within the

code.

We have implemented the slicing operation relying on the backward static slic-

ing as well as on the removable block slicing (Sect. 2.4.1); so that for a given

statement containing a relevant variable (i.e., entry point), the slicing operation nav-

igates from that statement backward to the beginning of the program 2, selecting the

statements that are related to that variable. In addition, the removable block slicing

is used to discard the blocks of code that do not have relations with the selected

variable.

The static analysis has been chosen for two reasons. First, the model discovery

step generates for a given software artifact (e.g., simple source code files, multi-file

programs, applications, etc.) a "snapshot" (i.e., model) representing the correspond-

ing static information; therefore dynamic information are not stored in the discov-

ered model. Second, since the discovery process is generally a time-consuming

activity, the model that represents the source code is generated only once. As a

consequence, in our opinion, the generation of models that simulate the dynamic

behavior of information systems is not suitable for business rule extraction analy-

sis.

On the other hand, the backward and removable block slicings have been chosen

since they both benefit of the tree-structured representation of models. In particular,

using such representation, we are able to skip the model elements that do not contain

relevant information using their containment/hierarchical relations.

3.3.4 Database constraint analysis

Database constraint analysis focuses on identifying and extracting the constraints

in databases. Such constraints are expressed in table definitions and triggers. In this

thesis, we represent such constraints by means of OCL. They rely on a UML con-

ceptual model derived from the database schema.

The analysis of declarative constraints extracts rules from database table def-

initions. It takes as input the model-based representation of the database schema

and returns OCL semantic equivalent constraints for PRIMARY KEYs as well as

UNIQUE, NOT NULL and CHECK SQL constructs.

On the other hand, the analysis of operational constraints extracts rules from

triggers. They are analysed with respect to the exception handlers they embed 3,

since such constructs are generally used to code violations of business policies.

2. Note that the beginning of a program depends on the programming language employed, for
instance, in Java it can be the main method or an action attached to a button; while in COBOL it
could be the first statement in the procedure division.

3. Note that this approach can be applied to stored procedures



3.4. BUSINESS RULE REPRESENTATION 55

Therefore the conditions that trigger exceptions are supposed to be business rele-

vant and they are translated into business rules. This operation takes as input the

models that correspond to the database triggers and returns the corresponding OCL

constraints. Since triggers often embed SQL queries executed over the database, the

extraction of such OCL constraints relies on mappings between SQL to OCL (Sect.

6.7.2), that concern SQL projections, joins, functions, group by and having clauses.

3.4 Business Rule Representation

Business Rule Representation, shown in Fig. 3.5, is the last step of our frame-

work. Its goal is to generate comprehensible artifacts that describe the identified

business rules. It is composed by two operations: Vocabulary Extraction and Vi-

sualization of rules. On the one hand, the Vocabulary Extraction step is used to

provide verbalizations of the business-relevant structures (e.g., variables, database

tables, columns, etc.) embedded in the system and identified in the Business Term

Identification step. On the other hand, the Visualization step is used to ease the

comprehension of the rules by providing either textual or graphical artifacts.

Finally, during each of such steps, traceability information are propagated to

the new output models (i.e., vocabulary, text, graph), such that the latter contain

information that relates the output model elements to the source code.

Business Rule Representation

System

Behavioral part Structural part

Visualization

Vocabulary Extraction

Figure 3.5: Business Rule Representation

3.4.1 Vocabulary Extraction

Vocabulary Extraction is an optional operation that aims at providing verbal-

izations/descriptions for the constructs of the programming language composing a

business rules.

In the behavioral part of a system, such operation is used to generate a vocab-

ulary made of pairs <variable/function name, description>, that can be optionally

tuned by the user.

The vocabulary for Java programs is automatically generated. It contains a list

of tuples composed by class, variable and method names and the corresponding de-



56CHAPTER 3. MODEL-BASED FRAMEWORK FOR BUSINESS RULE EXTRACTION

fault verbalizations that are based on the common way to assign names in Java (i.e.,

<getAttribute(), "get Attribute" >). On the other hand, the vocabulary concerning

COBOL programs maps only variables over business terms. Since the identifiers of

such variables are generally shorter with respect to the Java ones, human interven-

tion is needed to complete the corresponding meanings.

On the other hand, in the system structural part, the Vocabulary Extraction step

is based on deriving the business terms together with their corresponding relations

embedded in the database implementation. In particular, the input of this step is the

model that corresponds to the database schema (i.e., table declarations and views);

while the output is a conceptual model defined by means of UML.

3.4.2 Visualization

Visualization provides external representations of the business rules identified.

They can be represented by either text artifacts to focus on single rule behaviors

or graph artifacts to analyse the relations among the obtained rules. Both text and

graph representations externalize the internal format of the rules identified in the

Business Rule Identification step.

In the behavioral part of the system, the Visualization step can use the infor-

mation contained in the business vocabulary, if defined. The text representation is

derived by model-to-text transformations, where the model represents the internal

format of the rules and the text is the corresponding code-based or vocabulary-based

representation. On the contrary, the graph representation is based on Portolan [28],

a Model-Driven prototype tool, that provides facilities for designing and imple-

menting cartography solutions in a MDE context, bridging the gap between a given

(data) domain and the visualization world.

On the contrary, in the system structural part, the Visualization step is not

merged with the business vocabulary since the semantic gap between the business

terms in the conceptual model and the tables, columns and views in the database im-

plementation is most of the time null. In addition, the text representation is aligned

with the OCL format, since the identified rules are expressed by means of OCL

models. Finally, the graph representation relies on UML, that provides a set of

graphic notation techniques to create visual models.



4
Business rule extraction for COBOL

4.1 Motivation

COBOL [47] (COmmon Business Oriented Language) is a programming lan-

guage that was popular some decades ago and nowadays it is mainly used to main-

tain existing systems. It is one of the most important and old legacy languages, since

at the time it was created, it offered scalability, robustness, performance and math-

ematical accuracy. According to different surveys, COBOL is still used in large

corporation companies and government organizations (i.e., banks, insurance com-

panies, etc.) and plays a critical role in the business world. In particular, according

to Microfocus 1, there are 200 billion lines of COBOL code in existence, that repre-

sents the 75 per cent of the world’s actively used code. In addition, 70-75 per cent

of the business and transaction systems (e.g., credit card, airline, hospital, payroll

systems) around the world run on COBOL; while 90 per cent of global financial

transactions are processed in such language 2.

On the other hand, only one million of COBOL programmers are estimated

in the world. In addition, according to a recent Computerworld survey 3 run over

357 Information Technology professionals, 50 per cent of the respondents say the

average age of their COBOL staff is 45 or older and 22 per cent say the age is 55 or

older. This entails that in the next years, most of these developers will be retired.

Therefore, since on the one side there are many legacy COBOL systems that

embed some critical business logic which must be preserved and maintained; and on

1. http://www.microfocus.com/aboutmicrofocus/pressroom/releases/pr20090528819202.asp
2. http://www.marblecomputer.com/cobol-Industry-Stats.html
3. http://www.computerworld.com/s/article/9227263/The_Cobol_Brain_Drain

57



58 CHAPTER 4. BUSINESS RULE EXTRACTION FOR COBOL

the other side, the corresponding business knowledge (i.e., handled by developers)

is being lost over time due to developer retirements; a business logic extraction

process is needed to recover the business information from such COBOL systems.

In the following, we present the basic concepts for COBOL and finally we de-

scribe the Business Rule Extraction process for such systems.

4.2 COBOL basic concepts

COBOL is a procedural language that structures programs as a collection of

global variables and data structures accessed and modified using procedures. A

procedure is composed by sections, paragraphs, sentences and statements. A section

contains paragraphs, a paragraph sentences and a sentence statements.

Special commands on paragraphs, sentences and statements can be used to alter

the sequential control flow of a COBOL program. Such commands are respectively

PERFORM, GO TO and NEXT SENTENCE. Iterations on the code are achieved

using the PERFORM command, that transfers control to one or more statements

and returns control to the next statement after the execution of such statements is

completed. In addition, if the statements are contained in sequential paragraphs,

PERFORM is extended with the word THRU to indicate the first and last executed

paragraphs.

On the contrary, GO TO statements are used to transfer control from one para-

graph to another; while NEXT SENTENCE phrases allow assigning control to the

first statement of the sentence following that command.

In a COBOL program, procedures and the related sections, paragraphs, sen-

tences and statements are nested within a logical container called Procedure Divi-

sion. Other 3 divisions exist in a COBOL program: Identification Division, En-

vironment Division and Data Division. They are used respectively to identify the

program, to describe the input-output data sources used by the program and to de-

clare the data structures of the program.

In particular, we focus on the Data Division, where two types of data structure

can be defined: Data Item (i.e. or Elementary Item) and Group Item. The first

are simple variables that specify different primitive types of data; on the other hand

Group Items contain subordinate items (i.e., Data or Group Items) and they are used

to represent complex data structures. In addition, both Data and Group Items are

identified by a label.

The primitive types in COBOL are specified in PICTURE (i.e., PIC) clauses,

that are used to describe a data in the program. They are defined according to 5 code

characters (i.e., 9, V, S, X and A), that are repeated to define the size (i.e., number

of bytes) of a given data item. 9, V and S deal with numeric representations; they



4.3. RUNNING EXAMPLE 59

specify respectively a numeric value, the decimal point and the sign of the numeric

value. On the other hand, X and A represent in turn alphanumeric and alphabetic

(i.e., A-Z, space) values. These primitive types are specified in Data Items, that can

be used to composed Group Items.

Finally, both Data and Group Items are defined in combination with a level

number, that represent the data hierarchy. In particular, 01-49 are reserved for

Group or Elementary Items; 66 for Renames clause, that allows regrouping Data

Items in a Group Item; 77 for indipendent Data Items; and finally 88 for condition

names, where each of them represents a value of a given conditional variable.

The concepts presented above give a small overview of COBOL and they are

needed to understand the following Sections.

4.3 Running example

In order to illustrate our framework, a small COBOL program will be used as a

running example. 4 The program allows a customer to buy products in a shop, if the

shop is open. The shop offers several products, which are represented by an unit

price and the available quantity. They can be bought if the customer has enough

money and enough room in his bag to put the products in.

The data structures of the program are shown in Fig. 4.1. The shop is repre-

sented as a group item (i.e., set of variables), that define its property (i.e., open/closed

variable OP) and the unit price and quantity for the products it sells (i.e., vegetables,

meat, bread, milk, fruit). The other data structure (i.e., MONEY, REST, BAG, MAX-

CAP, NEED) are data items that represent the customer information. In particular,

MONEY and REST are respectively the money owned by the customer (i.e., the ini-

tial value is set to 50) and the money left after buying products; BAG and MAX-CAP

are the maximum capacity of the bag and the number of the current products inside;

and finally NEED defines if a product is needed or not.

XXXXXXXXXXXX

XXXXXXXXXX

XXXXXX

XXXXXXXXX

XXXXXXXXX

01XSHOP.

10XOP

10XQT-VEG PICTUREX99.

PICTUREX9.

10XQT-MEATX

10XQT-BREAD

10XQT-MILK

10XQT-FRUIT

10XPR-VEG

10XPR-MEAT

10XPR-BREAD

10XPR-MILK

10XPR-FRUIT

PICTUREX99.

PICTUREX99.

PICTUREX99.

PICTUREX99.

PICTUREX9.

PICTUREX9.

PICTUREX9.

PICTUREX9.

PICTUREX9

PICTUREX99,XVALUEX50.77XXMONEY

77XXREST PICTUREX99.

77XXBAG PICTUREX9.

77XXMAX-CAP PICTUREX99,XVALUEX10.

77XXRAND PICTUREX9.

77XXNEED PICTUREX9.

Figure 4.1: Data structures of the running example

4. The source code, source model and the different output for each
step of our framework concerning the running example can be found at
http://docatlanmod.emn.fr/BrexCobolExample/intro.html



60 CHAPTER 4. BUSINESS RULE EXTRACTION FOR COBOL

The structure of the program is shown in Fig. 4.2. In particular, the program

starts with an initialization paragraph (i.e., INIT). If the shop is open, the products

with their corresponding quantities and prices are initialized (i.e., INIT-PRD). Then,

the list of products is scanned by means of five paragraphs: BUY-VEG, BUY-MEAT,

BUY-BREAD, BUY-MILK and BUY-FRUIT. For each of these products, ISNEEDED

checks whether that product is needed by the customer or not. If it is, the customer

can buy it on condition that he has enough money and room in his bag. On the

contrary, the program ends printing the information concerning the money left and

the number of products bought.

Finally, if the list of the products is entirely browsed, but still enough money

and room in the bag are available, a new iteration of that list can be performed.

if

BUY-BREAD

INIT

CHECK

BUY-MEAT

INIT-PRD

BUY-VEG

BUY-MILK

PRINT

BUY-FRUIT

ISNEEDED

shopmismopen

ISNEEDED

enoughmmoneymandmroomif

ISNEEDED

ISNEEDED

enoughmmoneymandmroomif

enoughmmoneymandmroomif

ISNEEDED

enoughmmoneymandmroomif

enoughmmoneymandmroomif

Figure 4.2: Program structure of the running example

The logic embedded in each of the paragraph representing the action of buying

a given product follows the same principle. In Fig. 4.3, the logic coded in BUY-

FRUIT and its related paragraphs are shown. The variable NEED is calculated in

the paragraph ISNEEDED (for the purposes of the simulation, the variable is just

assigned a random value). If the product is needed, there are still units available

(QT-FRUIT variable), the customer has still some money and enough space in the

bag, the product is added to the bag and both customer’s money and product’s quan-

tity are updated. If one of the previous conditions is not true, paragraphs CHECK or

PRINT are executed triggering the end of program or, depending on the remaining

money and the room left in the bag, a new iteration for buying products.



4.4. FRAMEWORK DESCRIPTION 61

BUY-FRUIT.

PERFORM)ISNEEDED)THRU)ISNEEDED-FN.))))))

IF)NEED)=)1)AND)QT-FRUIT)>)0

))))IF)MONEY)>)PR-FRUIT)AND)BAG)<)MAX-CAP

))))))))ADD)1)TO)BAG

))))))))COMPUTE)MONEY)=)MONEY)-)PR-FRUIT

))))))))SUBTRACT)1)FROM)QT-FRUIT

)))))ELSE

))))))))GO)TO)PRINT

ELSE

))))GO)TO)CHECK.

BUY-FRUIT-FN.)EXIT.

a

b

ISNEEDED.

)))COMPUTE)NEED)=)FUNCTION)RANDOM)(1))*)2.

ISNEEDED-FN.EXIT.

)

CHECK.

IF)MONEY)<=)0)OR)BAG)>=)MAX-CAP

))))GO)TO)PRINT

ELSE

))))GO)TO)BUY-VEG.

CHECK-FN.)EXIT.

PRINT.

MOVE)MONEY)TO)REST.

DISPLAY)2REST:2)MONEY.

DISPLAY)2NB)OF)PRODUCTS:2)BAG.)))

FIN.

Figure 4.3: BUY-FRUIT and its related paragraphs

4.3.1 Rules modeling the application

Despite the simplicity of the running example proposed, it contains different

business rules. A manual inspection of the source code allows to identify many of

them:

– If the shop is open, then the customer can buy products

– If a product P is needed and available and if the client has enough money and

room in his bag, then the customer buys P

– If a product is bought, its quantity is subtracted by one

– If a product is bought, its price is decreased from the money of the client

– If a product is bought, it is added to the bag

In the next sections, we will show how to identify and extract those rules from

the source code.

4.4 Framework description

The framework (Fig. 4.4) for extracting business rule from COBOL systems is

instantiated according to the definition given in Chap. 3. Hence, it is composed by

four steps: Model Discovery, Business Term Identification, Business Rule Identifi-

cation and Business Rule Representation.

Business Rule

Representation
Business Rule

Identification

Business Term

Identification

COBOL 

Model Discovery

modelware

Model Representation

grammarware

COBOL Code

Figure 4.4: COBOL Business Rule Extraction framework

The Model Discovery generates a one-to-one model representation of the input

source code. Such model is then manipulated in the next framework’s steps to

extract the business rules.



62 CHAPTER 4. BUSINESS RULE EXTRACTION FOR COBOL

In particular, Business Term Identification identifies in the code the variables

representing business terms/concepts. Business Rule Identification locates business

rules using code slicing techniques [33] on the variables found in the previous step.

Finally, the Business Rule Representation step visualizes the extracted rules.

Additionally, our framework provides rule traceability, meaning that the frame-

work ties the source code elements to the elements composing the business rules.

This helps users navigating back and forth between the rules and the input code.

Traceability is implemented by explicitly linking in each phase transition the input

model (or code) elements with the corresponding output model elements generated

by the model transformations executed in that phase.

Next sections explain Model Discovery, Business Term Identification, Business

Rule Identification and Business Rule Representation steps in detail.

4.5 Model Discovery

Model Discovery generates a model representation of the source code. It relies

on the facilities of Rational Developer for System z 5 that provides several devel-

opment tools for creating, deploying and maintaining applications on IBM z/OS

operating systems. Such applications can be implemented in COBOL, PL/I, C++,

assembler and Java. In particular, within Rational Developer for System z, IBM

COBOL Application Model API 6 is able to represent the COBOL source code as

a model, since such API is based on a COBOL metamodel that contains a corre-

sponding class for each element in the source code.

A simplified version of the COBOL metamodel is shown in Fig. 4.5. A Pro-

gramSourceFile is composed by a list of programs. Each Program contains an

identification, environment, data and procedure division. For the sake of compre-

hension, we detail only the last two ones, represented by DataDivision and Pro-

cedureDivision classes. The former is defined by FileSection, LinkageSection, Lo-

calStorageSection and WorkingStorageSection. In particular, the latter is composed

by a list of TopLevelVariables (i.e., Level01Item, Level77Item), where each of them

contains a DataItem that can be GroupDataItem, TableDataItem, etc. On the other

hand, the ProcedureDivision is composed by sections, a Section by paragraphs, a

Paragraph by sentences and finally a Sentence by statements (i.e., Stmt class). Each

Stmt according to its type can represent different statements such as MOVE, GO TO,

PERFORM, EXIT, etc.

5. http://www-03.ibm.com/software/products/us/en/developerforsystemz
6. http://tinyurl.com/IBMCobolApplicationModel



4.6. BUSINESS TERM IDENTIFICATION 63

ProgramSourceFile

IdentificationDivision EnvironmentDivision

DataDivision

Program

ProcedureDivision

Section Paragraph

Sentence

Stmt

programs 0..*

identificationDivision environmentDivision

dataDivision procedureDivision

1

0..*sections

paragraphs

0..*

0..*sentences

0..*statements

GoToStmtMoveStmt ExitStmt PerformStmt ...Stmt

FileSection

WorkingStorageSection

LinkageSection

LocalStorageSection

TopLevelVariable

DataItem

fileSection

linkageSection

localStorageSection

workingStorageSection

topLevelVariables 0..*

Level01Item
dataItem 1

GroupDataItem TableDataItem

Level77Item

...DataItem

Figure 4.5: COBOL metamodel excerpt

4.6 Business Term Identification

The Business Term Identification step reduces the number of variables to anal-

yse by filtering out those that are not business relevant. It takes as input the COBOL

model and returns the “business” variables.

This step can be manual or automatic. In the first case, the user navigates the

code and directly marks the variables to analyse. In the second case, an heuristic-

based strategy identifies such variables based on the kind of statements in which

they appear (and their role in them).

First, the statements are divided in several groups according to the COBOL

command they contain. The groups are: conditional, computation, in-out, end,

move, goto, perform and call. In particular, conditional regroups the different kinds

of if-statements that exist in COBOL (i.e., if-then, if-then-goto, if-then-else, if-then-

else-goto, if-next-else-goto, etc.). Computation contains the statements that model

mathematical operations (i.e., COMPUTE, ADD, SUBTRACT, etc.). In-out group

collects the statements used to prompt or get information from input sources (i.e.,

DISPLAY, ACCEPT). End includes commands used to end a program (i.e., STOP

RUN, GO BACK, etc.). The remaining groups are composed by only one kind of

statements, that is represented by the name of the group.

Secondly, after grouping the statements, for each of them, the variables in it

are collected in four categories. Condition variables are variables in if statement

conditions (e.g. NEED and QT-FRUIT at line a in Fig. 4.3); index variables are in-

dexes of array structures; source variables and target variables are respectively the

variables affecting and being affected in a statement (e.g. target variable: MONEY,



64 CHAPTER 4. BUSINESS RULE EXTRACTION FOR COBOL

source variables: MONEY and PR-FRUIT at line b in Fig. 4.3).

Based on this classification, we have proposed two complementary heuristics,

that state respectively that all target variables in computation statements or all the

variables that appear in in-out statements are strong candidates to be classified as

business variables.

Note that an hybrid approach is also envisagable where an automatic step returns

a set of candidate variables and then the user filters some of them.

Computation

PR-FRUIT, PR-BREAD, QT-VEG, QT-MILK, BAG,

QT-BREAD, PR-VEG, NEED, MONEY, PR-MEAT,

QT-MEAT,PR-MILK,QT-FRUIT

In-out MONEY, BAG

PR-FRUIT, PR-BREAD, QT-VEG, QT-MILK, BAG,

QT-BREAD, PR-VEG, NEED, MONEY, PR-MEAT,

QT-MEAT, PR-MILK, QT-FRUIT, MAX-CAP, OP

Conditional

Figure 4.6: Business term identification step for the running example

Figure 4.6 shows the result of the heuristics previously described concerning the

running example. All target variables in computation statements are depicted on the

upper row; while on the center and on the bottom the variables respectively in in-out

and conditional statements are listed.

4.7 Business Rule Identification

Business Rule Identification (Fig. 4.7) is composed by three sub-steps. Control

Flow Analysis, Rule Discovery and Data Flow Analysis.

The global inputs are the model generated from a COBOL program and one or

more variables identified in the previous step 7. The output is a Control Flow Graph

enriched with the information about the statements composing the business rules

for the given input variable(s).

COBOLRmodel EnrichedRControl

FlowRGraph

BusinessRVariable(s)

ControlRFlow

Analysis

DataRFlow

Analysis

ControlRFlowRGraph

Rule

Discovery

Figure 4.7: Business rule identification step

7. For the sake of comprehension, we describe the process assuming a single variable as input



4.7. BUSINESS RULE IDENTIFICATION 65

4.7.1 Control Flow Analysis

This step generates a CFG model from a given COBOL model. The CFG model

is derived from the original COBOL model enriched with information concerning

the possible execution flows of the program (while the original model keeps only

information about the syntactic order of the statements in the code).

Var

name:vEString1

DataFlow

Sentence
beginLine:vEInt1

endLine:vEInt1

Paragraph

beginLine:vEInt1

endLine:vEInt1

name:vEString1

Model

Trace
link:vEObject1

Statement
beginLine:vEInt1

endLine:vEInt1

indexVariable:vEString0..*

conditionVariable:vEString
0..*

targetVariable:vEString0..*

sourceVariable:vEString
0..*

codeView:vEString0..*

tag:vEString
0..*

vocView:vEString
0..*

Context

contextID:vEString1

ContextFragment

position:vEInt1

RuleFragment

position:vEInt1

Rule
ruleID:vEString1

varName:vEString1

trace trace
1

11
1

1 paragraph

1..*1..*

1 sentence trace1
1

sentences

0..* paragraphs

0..*

0..*isRelated

1..*contextFragments
0..*

/next

statements0..*

usages

0..*

dataFlows

0..*

0..*
dnext

1var

ruleFragments
1

1..*

0..*

rules

1

Figure 4.8: Data flow metamodel (left) control flow metamodel (center) and busi-
ness rule entities (right)

The CFG model conforms to the metamodel shown on the left of Fig. 4.8. The

entity Model stores Paragraphs, Sentences and Statements composing the program.

They are all linked to the entity Trace, that is used to support the MDE traceability

in the framework (i.e. the attribute link stores the references to the corresponding

COBOL model entities).

The key element that stores the relationships between the statements is the asso-

ciation next. It indicates all possible statements to be executed next after a statement

X (which one will be next may change on each execution depending on the run-time

conditions, so this association collects all possible alternatives). From this next as-

sociation we derive all the other next-like associations to facilitate the analysis in

the following steps in the framework.

The rules to compute the next statements of a statement stat are listed in Tab.

4.1. The first six rules are related to the type of stat; while the following two concern

its position. The last rule is applied to all statements not included in the previous

rules.

The information concerning the variables referenced in statements are stored in



66 CHAPTER 4. BUSINESS RULE EXTRACTION FOR COBOL

Current Stat Next
Type: PERFORM-THRU first statement of PERFORM-

THRU
Type: GO-TO first statement of the GO-TO para-

graph
Type: EXIT PROGRAM, STOP RUN,
GO BACK

none

Type: IF-THEN-ELSE first statements in THEN and ELSE
branches

Type: NEXT SENTENCE first statement of the following sen-
tence

Type: IF-THEN first statements in THEN and after
IF stat.

Position: last stat in THEN branch first statement after IF
Position: last stat in PERFORM-THRU statement after PERFORM-THRU

Position: - Type: - following statement

Table 4.1: Rules to calculate the next statement

the attributes conditionVariable, indexVariable, sourceVariable and targetVariable;

while the type of the statement is stored in the attribute tag (for the sake of sim-

plicity, these concepts are directly represented as Strings instead of appearing as

separate classes in Fig. 4.8). Other attributes store the position of the statement

(begin and end lines) and the Sentence and Paragraph containing it for traceability

purposes.

The remaining entities in the metamodel (i.e., DataFlow, Var, Rule, RuleFrag-

ment, Context and ContextFragment) are discussed in the Data Flow Analysis and

Rule Discovery steps.

4.7.2 Data Flow Analysis

This step is used to find relations between (i.e., business-relevant) variables.

The information collected can be used to run a further Rule Discovery step on a

new set of related variables. Data Flow Analysis is an optional operation that takes

as input the model that represents the CFG of the application and returns the same

model enriched with the data flow information concerning the variables within that

application.

The elements that stores the information related to the data flow are collected in

the DataFlow and Var entities of the CFG metamodel (i.e., on the left in Fig. 4.8).

For each variable v within a statement stat, a DataFlow is created and it is linked

to stat by the reference dataflows.

A DataFlow is defined respectively by a reference to the variable v it contains

(i.e., var) and by a list (i.e. dnext) of statements. These are the first statements that



4.7. BUSINESS RULE IDENTIFICATION 67

follow stat in the CFG (according to the rules defined in Tab. 4.1) and that contain

the same variable.

Finally the entity Var represents the variable v and it contains the name of that

variable and a list of statements (i.e., usages) that collect the statements where v is

used.

4.7.3 Rule Discovery

Rule discovery relies on program slicing techniques to recover the business rules

associated to one or more variables.

A rule represents a possible execution path in the program relevant to a business

variable. It includes one or more statements modifying/accessing such variable.

According to the possible execution paths, several rules may exist for the same

variable. Each rule represents an independent execution path in the code, that is no

fully-contained in other ones.

A rule is composed by rule fragments, that are selected statements in the code.

A rule fragment can be either a statement S where the input variable is referenced

or a conditional statement that contains in one of its branches S. Optionally, a rule

fragment may be associated to contexts. A context contains the remaining condi-

tions in the control flow that trigger that rule fragment. Thus, a context is composed

by context fragments, that are the conditions of conditional statements.

Rule Discovery locates the business rules related to a business variable in the

program. The inputs of this step are the CFG model and a variable. The output

is the CFG enriched with information about the business rules related to that vari-

able. It is divided into two steps: Rule Fragment Identification and Rule Context

Identification.

Rule Fragment Identification

This process is composed by three phases. Initially, the statements containing

the business variable passed as input are located in the CFG. In the second phase,

the execution paths including these statements are calculated (i.e., during this cal-

culation, only the statements identified in the first step are added to the execution

paths). For each of these execution paths a Rule (Fig. 4.8) is created. It is defined by

an identifier RuleID and the name of the variable passed as input (VariableName).

In the last phase, the conditional statements that include the statements identified

in the first step are added to the corresponding paths. Finally, all these statements

are stored as RuleFragments (Fig. 4.8) and their locations in the execution path are

saved in the attribute Position.

In Fig. 4.9, the identification of the rule fragments concerning the variable BAG

is shown. For the sake of comprehension, we focus only on the execution path



68 CHAPTER 4. BUSINESS RULE EXTRACTION FOR COBOL

INIT.

   IF OP = 1

       DISPLAY "SHOP IS OPEN"

       PERFORM INIT-PRD THRU INIT-PRD-FN

       GO TO INIT-FN

   ELSE

       DISPLAY "SHOP IS CLOSED"

       GO TO INIT.

INIT-FN.EXIT.

BUY-VEG.

PERFORM ISNEEDED THRU ISNEED-FN.

IF NEED = 1 AND QT-VEG > 0

    IF MONEY > PR-VEG AND BAG < MAX-CAP

        ADD 1 TO BAG

    ...

    ELSE ...

Figure 4.9: example of Rule Fragment Identification

containing the statement in the paragraph BUY-VEG. The selection of the statement

ADD 1 TO BAG is the result of the two first steps of the Rule Fragment Identification

process. In the third step, the conditional statements that include this statement (i.e.,

IF NEED = 1 AND QT-VEG > 0 and IF MONEY > PR-VEG AND BAG < MAX-

CAP) are added to the rule.

Rule Context Identification

The process to identify the contexts that are related to each RuleFragment of a

Rule is composed by two phases. Firstly, for each Rule, the corresponding Rule-

Fragments are retrieved from the CFG. Later, each RuleFragment is used as back-

wards starting point to discover the ordered sets of control flow condition that might

have been crossed in the program, without passing by other RuleFragments of the

same Rule. Each set of if-conditions represents a Context (Fig. 4.8) and it is defined

by an identifier ContextID. Any condition in a Context set is a ContextFragment

(Fig. 4.8) and its location inside the context is stored in the attribute Position.

In Fig. 4.10, the paragraph BUY-VEG follows the paragraph INIT, which is the

first in the program. The RuleFragment, in the box on the right, contains the rule

fragments concerning the variable BAG. On the left column, the box contains the

Contex, that is composed by one ContextFragment (i.e., IF OP = 1), since only this

if-condition is crossed to reach the RuleFragment.

4.8 Business Rule Representation

Business Rule Representation (Fig. 4.11) is the last step of the framework.

Its goal is to generate comprehensible textual and graphical representations of the

discovered business rules and their orchestration (i.e. connections and precedences

among the rules).



4.8. BUSINESS RULE REPRESENTATION 69

INIT.

   IF OP = 1

       DISPLAY "SHOP IS OPEN"

       PERFORM INIT-PRD THRU INIT-PRD-FN

       GO TO INIT-FN

   ELSE

       DISPLAY "SHOP IS CLOSED"

       GO TO INIT.

INIT-FN.EXIT.

BUY-VEG.

PERFORM ISNEEDED THRU ISNEED-FN.

IF NEED = 1 AND QT-VEG > 0

    IF MONEY > PR-VEG AND BAG < MAX-CAP

        ADD 1 TO BAG

    ...

    ELSE ...

Figure 4.10: example of Rule Contex Identification

Vocabulary

Extraction

EnrichedRControl

FlowRGraph

ApplicationRVocabulary

txt

CodeRView

graph

txt

VocRView

COBOLRmodel

Visualization

RuleROrchestration

Figure 4.11: Business Rule Representation step

This step is composed by two operations: Vocabulary Extraction and Visualiza-

tion.

4.8.1 Vocabulary extraction

Vocabulary extraction is an optional step simply aimed at providing the set of

labels for each variable (in natural language) defined by the user. Figure 4.12 shows

a vocabulary excerpt for the running example. This can be a manual operation or an

assisted one.

<vocabulary:Model-...>

...

<entries-key=UOPU-value=UOPENU-/>

<entries-key=UQT-MEATU-value=UQUANTITY-MEATU-/>

<entries-key=UPR-MEATU-value=UPRICE-MEATU-/>

<entries-key=UMAX-CAPU-value=UMAXIMUM-CAPACITYU-/>

...

</vocabulary:Model>

Figure 4.12: Running example vocabulary

The vocabulary model conforms to the metamodel presented in Fig. 4.13. The

root element of this metamodel is the entity Model that contains a list of programs.



70 CHAPTER 4. BUSINESS RULE EXTRACTION FOR COBOL

A Program is defined by a name and a label containing its description. It can have

zero or more Entries, which store the name of the variable and its description in the

attributes key and value.

Model
Program

name : EString
label: EString

Entry

key : EString
value : EString

programs entries

0..* 0..*

Figure 4.13: Vocabulary metamodel

4.8.2 Visualization

This step provides artifacts that ease the comprehension of the business rules and

their relations. Its inputs are the COBOL model, the corresponding CFG containing

the business rule information and optionally the vocabulary of the application. The

outputs are text-based and graph-based representations of the gathered rules accord-

ing to the information contained in the CFG model (Fig. 4.8). This step is divided

into two sub-steps: Textual Visualization and Graphical Visualization.

Textual Visualization

All the Rules in the CFG are collected to generate the textual representations.

The RuleFragments composing a Rule are retrieved and ordered (thanks to the Po-

sition attribute) according to their relative positions in the corresponding execution

path. For each RuleFragment, the related entity in the COBOL model is retrieved

and a code textual representation is calculated from it. If the vocabulary has been

defined, also a vocabulary-based representation of the RuleFragment is created. In

this case, the textual representation is calculated mixing the hard-coded translations

of the COBOL commands with the descriptions of the variables in the vocabulary.

Finally these textual representations are stored back in the CFG (i.e. attributes

codeView and vocView of the Statement class that is the super-classes of the cor-

responding RuleFragment) and the rules are saved in textual files. Each file will

contain separately all the rules discovered for a given variable. The same process is

done for the textual representations of Contexts and ContextFragments.

The example in Fig. 4.14, shows the rule PR-MEAT/PRICE MEAT for technical

and business users, and due to space limitations only the ContextFragments of the

first RuleFragment.

Graphical Visualization

Relationships between the rules are better displayed by means of a graph-based

representation. Orchestration is achieved connecting together the rules that share at



4.8. BUSINESS RULE REPRESENTATION 71

VocGView

ContextGFragment:

Context 1: IF OPEN = 1 THEN

Context 0: PRICE MEAT = ...

Rule:

PRICE MEAT = ...

IF NEED EQUAL-TO 1 AND

    QUANTITY MEAT GREATER-THAN 0 THEN

GGGGIF MONEY GREATER-THAN PRICE MEAT AND

        BAG LESS-THAN MAXIMUM CAPACITY THEN

          MONEY = MONEY - PRICE MEAT 

Rule:

COMPUTE PR-MEAT = ...

IF NEED = 1 ANDG

    QT-MEAT > 0 THEN

GGGGIF MONEY > PR-MEAT AND

        BAG < MAX-CAP THEN

          COMPUTE MONEY = MONEY - PR-MEAT   

ContextGFragment:

Context 1: IF OP = 1 THEN

Context 0: COMPUTE PR-MEAT = ...

CodeGView

Figure 4.14: Example of textual outputs for the rule PR-MEAT/PRICE MEAT

least a RuleFragment/Statement that includes mathematical operations (i.e. ADD,

. . . ).

In Fig. 4.15 the three rules concerning the variables PR-MEAT (in the box on the

right), PR-BREAD (in the box on the left) and MONEY (at the center) are shown.

In this example, the BREX process locates only one rule for each variable. The

rules concerning the variables PR-BREAD and PR-MEAT are connected to the rule

related to the variable MONEY, since they share with it a RuleFragment. The rule

MONEY is not shown entirely due to space limitations.

IF MONEY > PR-BREAD AND

BAG < MAX-CAP THEN

IF NEED = 1 AND QT-BREAD > 0 THEN

IF NEED = 1 AND QT-MEAT > 0 THEN

IF MONEY > PR-MEAT AND

 BAG < MAX-CAP THEN

IF MONEY > PR-MEAT AND

    BAG < MAX-CAP THEN

IF MONEY > PR-BREAD AND

 BAG < MAX-CAP THEN

COMPUTE PR-BREAD = ...

IF NEED = 1 AND

QT-BREAD > 0 THEN

DISPLAY "REST:" MONEY

COMPUTE MONEY = MONEY - PR-MEAT

IF NEED = 1 AND

QT-MEAT > 0 THEN

COMPUTE PR-MEAT = ...

COMPUTE MONEY = MONEY - PR-VEG

Figure 4.15: Orchestration of the rules PR-MEAT, PR-BREAD and MONEY



72 CHAPTER 4. BUSINESS RULE EXTRACTION FOR COBOL

4.9 Optimization

COBOL systems are often composed by several programs. They are used to

perform specific manipulations on the data that can be related or not to business

rules. As a consequence, in order to quickly understand the impact of a program

with respect to a given business variable, we have provided the framework with an

additional graph-based representation for the identified business rules.

The proposed graph-based representation consists of a graph composed of nodes

and edges that are respectively the paragraphs in a program and connections be-

tween paragraphs. Each node has a label that corresponds to the name of the para-

graph and it is colored if it contains at least a RuleFragment or RuleContext.

On the other hand, the connections in the graph are derived from the analysis

of the CFG (Fig. 4.8) of the program. In particular, for each statement stat and

its container paragraph par, all next statements of stat not contained in par are

selected and the corresponding paragraphs are collected. The pairs composed by

each of such paragraphs and par represent edges in the graph.

In Fig. 4.16, the paragraph graph-based representation for the running exam-

ple concerning the variable PR-VEG is shown. The involved paragraph are INIT,

INIT-PRD and BUY-VEG that contain respectively the context of the rule, the rule

fragment concerning the variable initialization and finally, the other rule fragments.

Figure 4.16: Graph-based paragraph representation for the variable PR-VEG

4.10 Evaluation

In order to evaluate the accuracy of our method we have performed two eval-

uations. The first evaluation has been focused on checking that the business rules

returned at the end of the extraction process for the running example coincide with

the ones that we discovered by manual inspection. For the running example, we



4.10. EVALUATION 73

were able to generate both graphical and textual representations of all the identified

rules, facilitating this way the comprehension of the application.

The second evaluation has been conducted on a use case provided by IBM.

The evaluation has concerned the analysis of an IBM RPP COBOL application

managing flight and pilots containing 14 programs and 130 variables in around

6500 lines of code.

We asked four internal IBM COBOL experts to analyse the business rules gen-

erated by our framework and assess whether the rules were meaningful (i.e. they

were actual business rules) and understandable. They had access to the original

COBOL code and were given two hours to perform the evaluation. For the sake of

simplicity, instead of generating all rules for the system, we focused on the rules

related to a small subset of business variables previously identified.

At the end of evaluation, they all agreed the framework was able to generate

the complete set of rules for the input variables and considered the result useful

to understand the COBOL code. The only concern was that the rules were not

completely “clean” meaning that some of them still included technical statements

(e.g read access file operations).

The IBM experiment has allowed us to improve the quality of the output arti-

facts generated by the framework. In particular, at the beginning of the experiment,

the experts were looking for the programs that were more business relevant. Unfor-

tunately, this search was time-consuming, due to the number of programs to check.

Hence, we have added to the Business Rule Representation step an additional graph-

based representation for the rules (Sect. 4.9). Such representation allows the user

to have a quick understanding regarding the business-relevance of a given program,

since the program is seen as a graph composed by paragraphs and their connections,

where each paragraph that includes a business-relevant statement is colored.



74 CHAPTER 4. BUSINESS RULE EXTRACTION FOR COBOL

4.11 Prototype

The framework 8 has been implemented to work with both generic and IBM-

specific contexts.

Figure 4.17: Example of graph-based representation of rules

IBM tools have been used throughout the framework. Model Discovery phase

relies on COBOL Application Model of IBM Rational Developer 9 (RDZ). Business

Term Identification uses the functionalities provided by IBM Rational Programming

Patterns 10 (RPP). RPP is strongly designed on MDE principles, which eases the in-

tegration with the framework. RPP allows to attach to any data structure (programs,

variables, . . . ) a label containing a short explanation and provides an interface that

facilitates the navigation of all the data structures composing a COBOL system. In

this way, it is possible to collect automatically those labels as part of the reverse en-

gineering process and associate them to the corresponding entity. This vocabulary

can then be used to improve the visualization of the extracted rules.

Other auxiliary tools are Portolan 11, the ATL Transformation Language (ATL)

[14] and Xtext [?]. Portolan is a Model-Driven Cartography tool, used to represent

graphically the extracted rules and to emphasize their orchestration (Fig. 4.15). In

Fig. 4.17, a Portolan graph-based representation is shown. It contains the state-

ments composing the rules PR-MEAT (i.e., price meat) and QT-MEAT (i.e., quan-

tity meat). In addition, Portolan allows to find all possible paths from a source

statement (COMPUTE QT_MEAT = 1̈0ïn the figure) to a target statement (SUB-

TRACT 1̈F̈ROM QT_MEAT). On the contrary, ATL is used to implement all model

8. A demonstration of the tool is available at http://docatlanmod.emn.fr/BrexCobolExample/intro.html
9. http://publib.boulder.ibm.com/infocenter/ieduasst/rtnv1r0/

index.jsp

10. http://publib.boulder.ibm.com/infocenter/rppzhelp/v8r0/index.
jsp

11. http://code.google.com/a/eclipselabs.org/p/portolan/

http://publib.boulder.ibm.com/infocenter/ieduasst/rtnv1r0/index.jsp
http://publib.boulder.ibm.com/infocenter/ieduasst/rtnv1r0/index.jsp
http://publib.boulder.ibm.com/infocenter/rppzhelp/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/rppzhelp/v8r0/index.jsp


4.11. PROTOTYPE 75

manipulation operations required by the three steps of the method; and finally Xtext

is used for the text-based representation of the rules (Fig. 4.18) . All these tools are

open source source.

Figure 4.18: Example of text-based representation of a rule

MDE has facilitated the interoperability among the different tools employed in

the framework. The framework is packaged and distributed to its users as an Eclipse

plug-in.





5
Business rule extraction for Java

5.1 Motivation

Java [48] is a popular programming language used by billions of devices 1. It

was created almost two decades ago and since then many organizations have imple-

mented their systems with such technology. Since these systems have been evolved

and modified over time and the corresponding documentation is often out-of-date,

most of these companies consider their systems as legacies. As a consequence, we

believe that a business rule extraction process is needed to ease the comprehension

of Java information systems.

In the following, we introduce the basic concepts for Java and finally we de-

scribe the business rule extraction process for Java systems.

5.2 Java basic concepts

Java is a concurrent, class-based, object-oriented language that has been de-

signed for general purpose application development. According to [49], the basic

notion of object-oriented programming is the one of object. An object is a program-

ming unit that associates data with operations. In particular, these operations can be

employed to use or affect such data. These operations are called methods, while the

data they affect are the instance variables.

Java structures programs as a collections of files (i.e., extension .java) that may

be organized in packages. They are identified by respectively a name and a unique

1. http://www.java.com/en/about/

77



78 CHAPTER 5. BUSINESS RULE EXTRACTION FOR JAVA

namespace.

A Java file can contain classes and interfaces. A class is the representation of

a type in the system/a concept in the real world. It is the common definition from

where objects (i.e., instances of that class) are created. Finally, a class is composed

by attributes (i.e., the properties/variables that a class has) and methods (i.e., the

operations/functions that can be executed on that class). On the other hand, an

interface is an abstract type, that contains method signatures.

Java allows to define hierarchical relations between classes and interfaces; in

particular, a class derived from another class is called subclass; while the class from

where the subclass depends is called superclass. In addition, a subclass inherits the

methods (i.e., default behavior) from the corresponding superclass. Finally, a class

can implement an interface, but it must define all method signatures of that interface.

The concepts presented above will be used in the next section to explain the

business rule extraction for Java-based systems.

5.3 Running example

In order to illustrate our framework, we will use as running example a Java ap-

plication that belongs to the simulation software category and that contains several

business rules 2.

The application simulates the behavior of animals and humans in a meadow,

where each actor, animal or human, can act and move according to its nature. Two

different functionalities are implemented in this application. The former represents

the business logic and in particular describes how predator-prey interactions affect

population sizes. The latter is used to store statistical information about the actors

participating in the simulation.

A schema of the application classes and their relationships is shown in Fig. 5.1.

The application is composed by 2 packages and 16 classes. The presentation and

the domain layers are clearly separated.

The presentation layer is composed by GUI, Simulator, SimulatorView, Ani-

matedView and FieldView. The class GUI shows the graphical interface of the ap-

plication. Simulator simulates the predator-prey game and it stores information

for statistical analysis. SimulatorView, AnimatedView and FieldView represent the

graphical views of the application.

The remaining classes represent the application layer. The ground is represented

by three classes: Field, Location and Grass. In particular, Field is a rectangular

grid of field positions, where each position is modeled as a Location identified by

Cartesian coordinates; while Grass models the grass on the field.

2. The source code of the running example can be found at
http://docatlanmod.emn.fr/BrexJavaExample/



5.3. RUNNING EXAMPLE 79

The participants of the simulation are represented by Actors. An Actor is an

interface that contains methods to modify the actor’s location and to perform the

actor’s behavior.

Human and Animal implement Actor, they both are abstract classes. In particu-

lar, the former is extended by the class Hunter, that represents hunters and stores the

related current position in the field; while the latter is extended by the classes Bird,

Fox and Rabbit. In addition, the class Animal stores the actual age, the location

in the field and the food level of animals. It contains also properties that represent

respectively if an animal is alive, its maximum age as well as its breeding age, its

breeding likelihood and finally, the maximum number of births that an animal can

have. All such properties are particularized for each of the subclasses that extend

Animal.

Finally the class Counter provides a counter for each participant in the simula-

tion.

AnimatedView

SimulatorView

GUI

Location

Counter

Simulator

Grass

Animal

Hunter

Rabbit

Bird

Fox

Human

Field

FieldStats

FieldView Actor

1 1

1

11

1

1 1

simulator

grassField

updatedField

actors

view

fieldView

stats

counters

actors

location location

0..* 0..*

0..*<<interface>>

Figure 5.1: Class diagram of the running example

5.3.1 Rules modeling the application

A manual inspection of the source code of these classes reveals the existence of

several business rules.

Rules modeling hunter behaviors are:

– Hunters never die

– Hunters hunt animals



80 CHAPTER 5. BUSINESS RULE EXTRACTION FOR JAVA

Rules modeling bird and rabbit behaviors are:

– Rabbits/Birds can die by being eaten by foxes, hunted by hunters, because of

starvation, old age or overcrowding

– Rabbits/Birds can breed when they reach their breeding age

– Rabbits/Birds eat grass

Rules modeling the fox behaviors are:

– Foxes can die by being eaten by hunters, because of starvation, old age or

overcrowding

– Foxes can breed when they reach their breeding age

– Foxes eat rabbits or birds

In the next sections, we will show how to identify and extract those rules from

the source code.

5.4 Framework description

The framework (Fig. 5.2) for extracting business rules from Java-based systems

is an instantiation of the conceptual framework presented in Chap. 3. Therefore,

it is composed by Model Discovery, Business Term Identification, Business Rule

Identification and Business Rule Representation.

Business Rule

Representation
Business Rule

Identification

Business Term

Identification

Java

Model Discovery

modelware

Model Representation

grammarware

Java Code

Figure 5.2: Java Business Rule Extraction framework

Model Discovery takes as input the source code of a Java application and gener-

ates a model-based representation of the code. Such representation has a one-to-one

correspondence with the code, hence no information is lost when passing from the

grammarware to the modelware.

The model obtained from the Model Discovery is used in the next steps of the

framework. In particular, Business Term Identification identifies the variables that

hint at business terms/concepts in this model. Business Rule Identification locates

the business rules related to the variables discovered in the previous step using slic-

ing techniques [33]. Finally, Business Rule Representation provides artifacts for

representing the business rules identified.

The proposed framework provides traceability between the extracted business

rules and the source code elements by means of MDE traceability. In particular,

for each model transformation (Sect. 2.4.3) in the framework, traceability links are

created between the corresponding input and output model elements.



5.5. MODEL DISCOVERY 81

In the following, Model Discovery, Business Term Identification, Business Rule

Identification and Business Rule Representation are described in detail.

5.5 Model Discovery

Model Discovery generates a model from the Java source code composing the

application. It is based on the facilities of MoDisco 3, an extensible model-based

framework under Eclipse 4 to support and ease software modernization processes.

In particular, we rely respectively on the MoDisco Java metamodel 5 to rep-

resent the source code, and on its Java discoverer to instantiate this metamodel

based on the source code of a given Java application. Such discoverer relies on the

Eclipse project Java Development Tools (JDT 6) to navigate the AST of the Java

source code. The obtained Java model contains the full AST of the Java applica-

tion (e.g., each statement such as attribute definition, method invocation or loop are

represented), and it stores links between model elements (e.g., bindings between a

method invocation and the declaration of the corresponding method, the usage of a

class and its declaration, etc.).

The MoDisco Java metamodel 7 mirrors the structure of the Java language, as

defined in the Java Development Kit (JDK) 5. It is composed by 126 classes and

each of them except for the root one (Model) represents a Java source code con-

struct. The instances of such code constructs are the AST nodes in the AST. In

addition, since many Java constructs are named (e.g., methods, types, variables,

packages, etc.), the corresponding classes in the metamodel inherit from the class

NamedElement, that stores the name of each of these constructs. Apart from this,

such class is also in charge of indicating if a NamedElement is part of the current

Java application or not (e.g., element from an external library of from the JDK).

As a consequence, the external elements are tagged as proxy by using a dedicated

attribute (i.e., proxy) in the NamedElement class.

In Fig.5.3 the model representation of the class Thread is shown. It is composed

by two NamedElements, respectively one class and one method declaration. Since

the class Thread and the method sleep are part of the JDK, the attribute proxy of

such elements are initialized to true.

3. http://www.eclipse.org/MoDisco/
4. http://www.eclipse.org/
5. the Java metamodel can be downloaded at http://tinyurl.com/sourcejavametamodel
6. http://www.eclipse.org/jdt/overview.php
7. http://tinyurl.com/JavaModiscoMetamodel



82 CHAPTER 5. BUSINESS RULE EXTRACTION FOR JAVA

<ownedElementsbxsi:type=gjava:ClassDeclarationgbname=gThreadgbproxy=gtruegb...>

bbb<bodyDeclarationsbxsi:type=gjava:MethodDeclarationgbname=gsleepgbproxy=gtruegb...>

bbbbbb<parametersbname=garg0gbproxy=gtrueg>

bbbbbbbbb<typebtype=g//@orphanTypes.1g/>

bbbbbb</parameters>

bbb</bodyDeclarations>

bbb<superInterfacesbtype=g//@ownedElements.3/@ownedPackages.3/@ownedElements.10g/>

</ownedElements>

int Runnable

Figure 5.3: Excerpt of a JDK model element

A simplified version of the Java metamodel is shown in Fig. 5.4. The root class

is Model, that contains a list of packages. A Package contains in turn Abstract-

TypeDeclarations that can be InterfaceDeclarations or ClassDeclarations. Each

AbsractTypeDeclaration is composed by bodyDeclarations. A BodyDeclaration

is a FieldDeclaration or a MethodDeclaration, in particular the former is a sub-

class of AbstractVariablesContainer, that contains VariableDeclarationFragments

used to store the references of the variables in the code (i.e., usagesInVariableAc-

cess); while the latter has a body (i.e, Block) that includes a list of statements

(e.g., ForStatements, ExpressionStatements, ReturnStatements, VariableDeclara-

tionStatements, etc.). Each Statement, depending on its type, can contain one or

more expressions such as SingleVariableAccesses, MethodInvocations, PostfixEx-

pressions, InfixExpressions, Assignments, Literals, etc. In addition, each Expression

can contain other expressions.

Model

Package

AbstractTypeDeclaration

ClassDeclarationInterfaceDeclaration

BodyDeclaration

FieldDeclarationMethodDeclaration

Block

Statement

Expression

usagesInVariableAccess

MethodInvocation PostfixExpression SingleVariableAccessAssignmentInfixExpressionLiteral ...

VariableDeclarationFragmentownedElements 0..*

ownedElements 0..*

0..*

bodyDeclarations

0..*fragments

body

statements 0..*

0..*

expression(s) 1..*

expression(s)

0..*

ExpressionStatement

ForStatement

ReturnStatement

...Statement

VariableDeclarationStatement

AbstractVariablesContainer

Figure 5.4: MoDisco Java metamodel excerpt



5.6. BUSINESS TERM IDENTIFICATION 83

5.6 Business Term Identification

Business Term Identification is used to reduce the number of variables to analyse

by filtering out those variables that do not represent business concepts. It takes as

input the Java model and returns the variables hinting at business concepts.

This step has been implemented to work in a manual or automatic way. In

particular, the user can select the variable to analyse, or he can rely on a set of

heuristics we have defined. Such heuristics are based on the identification of vari-

ables appearing in conditions of conditional statements, input and output statements

(e.g., Scanner, BufferedReader, System.out, etc.) as well as in expressions that em-

ploy literals (i.e., boolean, string, number) or mathematical operations. In addition,

these heuristics can filter the discovered variables according to the imports declared

in the container classes. In particular, this is useful for excluding variables defined

in classes containing graphical imports (e.g., javax.swing.* , java.awt.*, etc.). Such

variables are generally not related to the business, since they are used to define

graphical objects.

As described in the Java metamodel (Fig. 5.4), different types of expression

exist. Our heuristics focus on locating infix, postfix, prefix and literal expressions

(Fig. 5.5) that contain mathematical operations.

setAgenPgetAgencPDP1Pc;

foodLevelww;

this3grassP=PgrassPbPGRASS_GROW_PERCENTAGE;

ageP=P0;

methodInvocation

assignment

variableDeclaration

postfix expressions in

infix expressions in

literal expressions in

assignment

statement

intPnextRowP=ProwPDPrand3nextIntn3cPwP1;

example

wwfoodLevel;

prefix expressions in

statement

Figure 5.5: Business Term Identification

An infix expression can be embedded in method invocations, assignments or

variable declarations (i.e., FieldDeclarations or VariableDeclarationStatements in

Fig. 5.4). In particular, if a method invocation is a getter or setter, or it contains

getters or setters, the variables accessed or modified are considered business rel-

evant. On the other hand, for assignments and variable declarations, the variables

that appear on the left and right hand sides of the assignment are considered relevant

for the business, only if they are not used as indexes in loop conditions. Finally, in

case, getter or setter methods are employed on the right hand side, the correspond-

ing variables are retrieved from such methods.

Postfix and prefix expressions contain implicit mathematical operations applied

on one variable. Since the variables within such expressions are often used as index



84 CHAPTER 5. BUSINESS RULE EXTRACTION FOR JAVA

in loop statements and they do not hint at business terms, the heuristics implemented

aim at identifying all variables appearing in postfix and prefix expressions not used

as indexes. In particular, these heuristics check that a variable used in a condition

of for, do-while and while statements is not used in a postfix or prefix expression

within that loop statement.

Finally, all variables in assignments that contain on the right hand side a literal

(e.g., boolean, string, number) are considered relevant for the business, since they

represent variable initializations.

Infix

Animal.age,SAnimal.alive,SAnimal.births,Counter.count,

Animal.births,SBird.grassNew,SGrass.grass,

Field.nextRow,SRabbit.grassNew,SField.nextCol,S...S

Postfix Animal.foodLevel

Animal.maxLitterSize,SSimulator.grassNumber,

Animal.breedingAge,SAnimal.breedingProbability,S...
Literal

Figure 5.6: Business Term Identification step for the running example

Figure 5.6 shows the result of the heuristics previously described concerning

the running example. An excerpt of the variables in infix expressions are depicted

on the upper row; while on the center and on the bottom rows, an excerpt of the

variables in postfix and literal expressions are listed. Each variable in the figure

appears together with its container class.

5.7 Business Rule Identification

Business Rule Identification, shown in Fig. 5.7, locates business rules in the

code. It consists of two operations: Rule Discovery and Business Rule Model Ex-

traction. This step takes as input the Java model and one or more variables 8 and it

produces a model that contains the business rules related to such variable(s).

Business variable(s)

Java model

Rule

Discovery

Business rule-annotated

Java model

Business Rule

Model Extraction

business rule model

Figure 5.7: Business Rule Identification step

8. For the sake of comprehension, we describe the process for a single variable



5.7. BUSINESS RULE IDENTIFICATION 85

5.7.1 Rule Discovery

Rule Discovery is used to identify and annotate the source code model ele-

ments (i.e., variable declarations, methods and statements) that compose the busi-

ness rules. It is based on the static backward block slicing, according to the motiva-

tions presented in Sect. 3.3.3.

The input of this step is the Java model and a variable; whereas the output is the

same Java model enriched with annotations on all statements, variable declarations

and methods relevant for that variable. In particular, each annotation embeds infor-

mation concerning a unique identifier as well as the granularity index and the type

of relation with the variable analysed.

The identifier is composed by the name of the variable plus the rule number. In

particular, this number is a value between zero and the number of references of the

variable (i.e., usagesInVariableAccess in Fig.5.4) plus the number of invocations of

the method that contains that variable. The name of the variable is used to identify

statements used by two or more rules related to different variables. On the other

hand the rule number identifies different rules related to the same variable.

On the contrary, the granularity index is the position of a method containing one

of the statements relevant to the analysed variable in a possible execution path. In

particular, such execution path is composed by the ordered set of methods crossed

in a given program from an entry execution point (i.e., method main, etc.) to the

statement that actually modifies the sliced variable. This ordered set of methods is

defined as granularity set.

Finally, the Rule Discovery is applied on statements, variable declarations and

methods. For each of them, we define different types of annotation (Fig. 5.8).

Statement

Variable Declaration

Method

Type Annotations

rule, context

sliced-variable, related-variable

related, reachable

Figure 5.8: Business rule annotations

– Statement. It can be annotated as rule or context. In particular, all statements

that allow passing from a method in the granularity set to another one in the

same set are annotated as rule. On the contrary, a statement is marked as

context if it is a conditional or loop statement that contains a rule statement,

a context statement or a variable declaration statement marked as related-

variable.

– Variable declaration. Two types of relations are defined for variable decla-

rations: sliced-variable or related-variable. The former represents variable



86 CHAPTER 5. BUSINESS RULE EXTRACTION FOR JAVA

declarations that contain the variable analysed. The latter represents variable

declarations that contain references used inside context or rule statements.

– Method. It can be annotated as related or reachable. The former represents

methods containing a rule statement. The latter defines methods having one

of their invocations in either a rule or context statement or in another reach-

able method.

The generated annotations can be visualized by the user if desired. In particular,

using MoDisco the annotated model can be transformed back into a Java application

where all generated annotations will appear as comments.

The process to identify a business rule is composed by four phases, that are

depicted below.

– The first phase locates the variable declaration of the selected variable. For

each of its references (SingleAccessVariables in Fig. 5.4) the container state-

ment is retrieved and it is annotated as rule with granularity zero.

– In the second phase, all methods invocations and references of other vari-

ables in the rule statement are respectively used to annotate the corresponding

method declarations as reachable and the corresponding variable declarations

as related-variable. In addition, in case the rule statement is contained within

conditional or loop statements, such statements are marked as context.

This process is also applied to the method invocations, variable references,

conditional and loop statements concerning the context statements.

– In the third phase, for each method annotated as reachable, all method in-

vocations in it are collected and the corresponding method declarations are

annotated as reachable. This step is repeated until no more reachable method

declarations are found.

– In the fourth phase, the method containing the rule statement is annotated as

related with a granularity index equal to the one of the rule statement; then

its method invocations are retrieved. For each method invocation, the con-

tainer statement is located and it is annotated as rule with granularity index

increased by one. The phase two, three and four are repeated until the method

that has triggered the execution of the program is found.

An example of slicing is shown in Fig. 5.9. It concerns the running example

previously described (Sect. 5.3).

Line 9 contains the rule statement of the slicing variable foodLevel for the granu-

larity zero. The if condition at line 7 is annotated as context since it contains the rule

statement. The statement at line 6 is annotated as related-variable since the declared

variable is used inside the context statement at line 7. The conditional statement at

line 5 is annotated as context since it contains both context and related-variable

statements. The statement at lines 4-1 follow the same logic already described.

The method findFood is marked as related since it contains a rule statement. It is



5.7. BUSINESS RULE IDENTIFICATION 87

//Related:Rule_foodLevfel_12_Granularity_7

public static void>main1String[]>args2>{

//Rule_foodLevel_12_Granularity_7

new>GUI12V
}

public void>act>1Field>currentField5

>>>>>>>>>>>>>>>>>>>>>>>>>>>Field>updateField5

                           ListEActor>>newActors2>{
incrementAge12V

incrementHunger12V
777

//Context:Rule_foodLevel_12_Granularity_1

if>1isAlive122>{

//Rule_foodLevel_12_Granularity_1

Location>newLocation>+>

>>>>>>>>>>>>findFood1currentField5>getLocation122V

//Related:Rule_foodLevel_12_Granularity_1

777

>>>>//RELATED-VARIABLE:Rule_foodLevel_12_Granularity_0
j7

h7

N7

x7

B7

b7

D7

R7

_7

IteratorELocation>>adjacentLocations>+>

>>>>>>>>>>field7adjacentLocations1location2V
//Context:Rule_foodLevel_12_Granularity_0
while>1adjacentLocations7hasNext122>{

//Rule_foodLevel_12_Granularity_0

Location>where>+>adjacentLocations7hasNext12V

Actor>actor>+>field7getActorAt1where2V

if 1actor>instanceof>Bird2>{

Bird>bird>+>1Bird2actorV

if>1bird7isAlive122>{

bird7setDead12V

foodLevel>+>BIRD_FOOD_VALUEV
777

//RELATED-VARIABLE:Rule_foodLevel_12_Granularity_0

//RELATED-VARIABLE:Rule_foodLevel_12_Granularity_0

//Context:Rule_foodLevel_12_Granularity_0

//RELATED-VARIABLE:Rule_foodLevel_12_Granularity_0

public>Location>findFood1Field>filed5>Location>location2>{

class>Fox class>Fox

class>Simulator

class>GUI

//Related:Rule_foodLevel_12_Granularity_0

//Related:Rule_foodLevfel_12_Granularity_2

public void>simulateOneStep12>{

step44V
newActors7clear12V

//RELATED-VARIABLE:Rule_foodLevel...

Actor>actor>+>it7next12V

//Rule_foodLevel_12_Granularity_2

actor7act1field5>updateField5>newActors2V

//Context:Rule_foodLevel_12_Granularity_2
for>1IteratorEActor>>it>+>actors7iterator12V>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>it7hasNext12V2>{

777

//Context:Rule_foodLevel_12_Granularity_0

777

Figure 5.9: Example of Rule Discovery for the variable foodLevel

invoked by the method act, that has granularity index equal to 1, since it is one step

far from the method that modifies the variable foodLevel. In turn, the method act is

invoked in simulateOneStep, that contains elements with granularity index equal to

2. The same logic is applied until Rule Discovery finds the method that triggers the

execution (method main in this case).

5.7.2 Business Rule Model Extraction

The goal of the Business Rule Model Extraction step is to provide an internal

representation of the business rule identified by extracting from the Java model only

those entities that have been annotated in the Rule Discovery step. The input of this

transformation is the annotated Java model, while the output is a model that contains

all business rules discovered. Such model represents the internal format of the rules.

The output model conforms to the metamodel shown in Fig. 5.10. The root

of such metamodel is the class Model that collects rules. Each Rule represents a

method that contain a rule statement. It is identified by the name of the sliced vari-

able (var), its rule number (number) and the granularity index (granularity). In

addition, a Rule is connected to the precedent and following rules by the references

next and prev. Finally, a Rule has one RuleStatement and one RelatedMethod. In

addition, it can have zero or more ContextStatements, ReachableMethods and Re-

latedVariables.

Finally, RuleStatements, ContextStatements, ReachableMethods, RelatedVari-

ables and RelatedMethods are subclasses of Trace. Such class is used to keep the



88 CHAPTER 5. BUSINESS RULE EXTRACTION FOR JAVA

Trace

next0..*

0..*

Rule

var: EString1

number: EInt1

granularity: EInt1

prev
0..*

Model

rules0..*

RelatedMethod

relatedMethod
1

RuleStatementContextStatement

rulestatement

1

contextstatement

RelatedVariable ReachableMethod

0..*
relatedVariables

0..*
reachableMethods

Figure 5.10: Business rule metamodel

links between the Java model elements and the internal representation of the identi-

fied rules (rule traceability).

The mappings to convert the identified business rules in the annotated Java

model to the Business Rule model are defined between the classes of the two corre-

sponding metamodels. Such mappings are shown in Fig. 5.11.

Java metaclasses Business Rule metaclasses 

PostfixExpression

VariableDeclarationStatement

withRinitializationRexpression

ClassInstanceCreation

Assignment

MethodInvocation

ReachableMethod

RelatedMethod

RelatedVariable

ContextStatement

RuleStatement

Rule

Model

ExpressionRstatement

MethodDeclaration

AbstractVariableContainer

ForStatement

WhileStatement

IfStatement

EnhancedForStatement

Annotations

Model

context

reachable

related

related-variable

rule

Figure 5.11: Java-2-Business Rule Model mapping rules

The class Model of the Java metamodel (Fig. 5.4) is mapped to the equivalent

class of the Business Rule metamodel. Each statement annotated as rule is used

to generate a Rule in the target model, where the name of the variable, the number



5.8. BUSINESS RULE REPRESENTATION 89

and the granularity of the rule are derived from the annotation. In addition, each

rule statement is mapped to a RuleStatement in the Business Rule model. Such

a statement is an instance of a sub-set of either the VariableDeclarationStatement

or ExpressionStatement class in the Java metamodel. In particular, a rule statement

can be either a VariableDeclarationStatement with an initialization expression or an

ExpressionStatement that contains a MethodInvocation, Assignment, ClassInstance-

Creation or PostfixExpression.

Each variable annotated as related-variable in the Java model is mapped to a

RelatedVariable in the Business Rule model. Since a related-variable can be an

attribute of a given class, a variable declared within a method or a variable passed as

argument of a method; a mapping is defined between the AbstractVariableContainer

class (that regroups the aforementioned types of variables) and the RelatedVariable

class.

The methods in the Java model annotated as related or reachable are respec-

tively mapped to RelatedMethods and ReachableMethods in the target model. There-

fore, two mappings are defined between the class MethodDeclaration in the Java

metamodel to the classes RelatedMethods and ReachableMethods in the Business

Rule metamodel.

Finally, the statements annotated as context in the Java model are mapped to

ContextStatements in the target model. Such statements are instances of all Java

model classes statements that embed logic conditions like ForStatements, Enhanced-

ForStatements, WhileStatements, IfConditions, etc.

5.8 Business Rule Representation

Business Rule Representation, shown in Fig. 5.12, provides understandable

textual and graphical representations that describe the discovered business rules.

This step is composed by two sub-steps: Vocabulary Extraction and Visualiza-

tion. The former is an optional step, and it provides default verbalizations for vari-

ables, methods and classes related to the business. On the other hand, Visualization

provides textual and graph artifacts concerning the identified business rules.

5.8.1 Vocabulary extraction

Vocabulary Extraction is an optional operation and it is used to extract the vo-

cabulary of the application. It can be a manual or assisted operation, in particular in

the first case, the user defines verbalizations for variable, method and class declara-

tions; while in the second case, default verbalizations are provided for all variable,

method and class declarations in the source code. Such default verbalizations con-

sist in splitting the names of classes, variables and methods according to the com-



90 CHAPTER 5. BUSINESS RULE EXTRACTION FOR JAVA

Vocabulary

Extraction

Business Rule model

Application Vocabulary

txt

Code View

graph

txt

Voc View

Java model

Visualization

Rule Orchestration

Figure 5.12: Business Rule Representation step

mon way to define them in Java. Therefore, the names of static or final method and

variable are defined according to this mapping: ABC_DEF ->ABC DEF; while for

the other cases we provide this fallback mapping: abcDef ->abc Def. Figure 5.13

shows an excerpt of default verbalizations for the running example.

<vocabulary:ModelO...>

...

<entriesOtype:VariableOname=PGRASS_GROW_PERCENTAGEP

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlabel=PgrassOgrowOpercentagePOclass=PGrassPOpackage=PSimulatorP/>

<entriesOtype:MethodOname=PsetGrassPOlabel=PsetOGrassPOclass=PGrassPOpackage=PSimulatorP/>

<entriesOtype:MethodOname=PGrassPOlabel=PcreateOgrassPOclass=PGrassPOpackage=PSimulatorP/>

...

</vocabulary:Model>

Figure 5.13: Running example vocabulary

The vocabulary model conforms to the metamodel presented in Fig. 5.14. The

root element of this metamodel is the entity Model, that contains a list of entries. An

Entry is defined by the attributes class, package and label, where the first two locate

the position of the source code element and the latter contains the corresponding

verbalization. An Entry is the super-class of Variable, Method and Class entities. A

Variable is defined by its name and, if defined within a method, by the name of the

container method. Finally, Methods and Classes are identified only by their names.

Model
Entry

entries

0..*

Class

name : EString

Method

name : EString

Variable

name : EString

method: EString

class: EString

package: EString

label: EString

Figure 5.14: Vocabulary metamodel



5.8. BUSINESS RULE REPRESENTATION 91

5.8.2 Visualization

The visualization step provides comprehensible artifacts for the identified busi-

ness rules and their relations. Its inputs are the Java model, the Business Rule model

and optionally the Vocabulary model if defined. The output are text and graph arti-

facts that represent the external representation of the identified business rules.

Visualization is composed by two steps that respectively generate text and graph

for the extracted rules. They are described in the following.

Textual Visualization

All Rules in the Business Rule model are collected and ordered according to

the variable(s) they are related to. Initially, for each Rule, the RelatedMethod is

retrieved and the contained RuleStatement and ContextStatement(s) are located in

the code and ordered thanks to the traceability links kept by the class Trace in the

Business Rule metamodel (Fig. 5.10). Optionally, the same process can be ap-

plied to RelatedVariables and ReachableMethods, if the user wants to have a more

complete understanding of the rule. Finally, code-based representations are cal-

culated for RuleStatements, ContextStatements, RelatedVariables, RelatedMethods

and ReachableMethods. In addition, if the application vocabulary has been defined,

vocabulary-based representations are calculated as well.

Rulexvar:xalive,xnumber:x1,xgranularity:x0

Relatedmethod: Animal.setDead

RuleStatement: alivex=xfalse

Rulexvar:xalive,xnumber:x1,xgranularity:x2

RelatedMethod:xBird.act

RuleStatement:xincrementAge()

Rulexvar:xalive,xnumber:x1,xgranularity:x1

RelatedMethod: Animal.incrementAge

ContextStatement:xifx(getAge()x>xmaxAge)

RuleStatement: setDead()

RelatedVariable:xintxmaxAgex=x10

ReachableMethod: Animal.getAge()

Rulexvar:xalive,xnumber:x1,xgranularity:x0

Relatedmethod: AnimalxsetxDead

RuleStatement: alivexofxAnimalx=xfalse

Rulexvar:xalive,xnumber:x1,xgranularity:x2

RelatedMethod: Birdxact

RuleStatement:xAnimalxincrementxAge

Rulexvar:xalive,xnumber:x1,xgranularity:x1

RelatedMethod: AnimalxincrementxAge

ContextStatement: ifxAnimalxgetxAgex> maxxAgexofxAnimal then

RuleStatement: AnimalxsetxDead

RelatedVariable:xmaxxAgexofxAnimalx=x10

ReachableMethod: AnimalxgetxAge

codeView vocView

Figure 5.15: Example of textual outputs for the rule alive

Code and vocabulary-based representations are obtained mixing hard-coded trans-

lations of the Java constructs with either the identifiers of variables, methods and

classes that appear in the rules, or with the corresponding descriptions defined in

the application vocabulary. In particular, concerning RuleStatements, ContextState-

ments and RelatedVariables, all variable, method and class identifiers in them are

translated; on the other hand, with respect to RelatedMethods and ReachableMeth-

ods only their names are translated.



92 CHAPTER 5. BUSINESS RULE EXTRACTION FOR JAVA

In Fig. 5.15 a code and vocabulary-based representations concerning a rule

related to the variable alive are shown. In particular, it represents one of the possible

causes of death for birds (old age). Each box in the figure represents a method within

a possible execution path (i.e., granularity set) relevant for the variable alive. The

granularity index is used to order such methods.

Graphical Visualization

Graphical Visualization is used to transform the Business Rule model into a

graph in order to highlight relations (i.e., orchestration) between different rules.

Such relations are defined on RuleStatements shared between different rules.

The relations between the rules concerning the different causes of death (hunted

by fox or hunter as well as because of starvation, old age or overcrowding) for a

bird are shown in Fig.5.16.

Rulehvar:halive,hnumber:h4,hgranularity:h1

RelatedMethod: Fox.findFood

ContextStatement:hifhBbird.isAliveBww

RuleStatement:hbird.setDeadBw

Fox

Rulehvar:halive,hnumber:h5,hgranularity:h1

RelatedMethod:hHunter.huntAnimal

ContextStatement:hifhanimal.isAliveBw

RuleStatement:hanimal.setDeadBw

Hunter

Rulehvar:halive,hnumber:h3,hgranularity:h1

RelatedMethod:hAnimal.incrementHunger

ContextStatement:hifhBfoodLevelh<=h0w

RuleStatement:hsetDeadBw

Starvation

Rulehvar:halive,hnumber:h1,hgranularity:h1

RelatedMethod: Animal.incrementAge

ContextStatement:hifhBgetAgeh<=h0w

RuleStatement:hsetDeadBw

Old age

Rulehvar:halive,hnumber:h2,hgranularity:h1

RelatedMethod:hBird.act

ContextStatement:hifhBnewLocationh==hnullw

RuleStatement:hsetDeadBw

Overcrowding

Rulehvar:halive,hnumber:h1-5,hgranularity:h0

RelatedMethod: Animal.setDead

RuleStatement: aliveh=hfalse

Rulehvar:halive,hnumber:h1,hgranularity:h2

RelatedMethod: Bird.act

RuleStatement: incrementHungerBw

Rulehvar:halive,hnumber:h1,hgranularity:h2

RelatedMethod:hBird.act

RuleStatement:hincrementAgeBw

Figure 5.16: Orchestration of the rules for the variable alive

5.9 Optimization

The BREX process is generally a time-consuming activity, since the source code

must be traversed in order to recover the embedded business rules. This is specially

true when dealing with systems composed by millions of lines of code. As a conse-

quence, in order to optimize the BREX process for large systems, the source code

to analyse should be reduced.

In Java applications, the source code is wrapped in statements, that are in turn

organized in packages, classes and methods. In particular, a method is a collection

of statements that are grouped together to perform an operation. Such operation can

be related or not to the business.



5.9. OPTIMIZATION 93

Therefore, in order to improve the efficiency of our BREX process, we have pro-

vided the framework with an additional slicing operation performed at the method-

level. Such operation is executed before the Rule Discovery step (Sect. 5.7.1) and

aims at reducing the size of the input model when dealing with large systems. In

particular, given one or more variables to analyse, such slicing finds recursively the

methods relevant for these variables. All these methods are kept in the reduced Java

model and they will be annotated as related or reachable during the Rule Discov-

ery, while the other ones are discarded. Finally, such model is passed to the Rule

Discovery step.

Figure 5.17: Excerpt of the slicing for methods

In Fig. 5.17, an excerpt of the slicing for methods is shown. The rule drops from

the Java model all AbstractMethodDeclarations that are not proxies 9 and not in the

set calculated by the ATL helper getAllMethods. Such helper calculates recursively

(getInsideInvokeStarting, getInsideInvokeRec) the methods related to the selected

9. A proxy method in the Java model is a method that is part of a predefined Java package



94 CHAPTER 5. BUSINESS RULE EXTRACTION FOR JAVA

variables.

5.10 Evaluation

In order to validate our method we have performed two evaluations. The first

evaluation has been focused on checking that the business rules returned at the end

of the extraction process for the running example coincide with the ones that we

discovered by manual inspection. For the running example, we were able to gener-

ate both graphical and textual representations of all the identified rules, facilitating

this way the comprehension of the application.

The second evaluation has been based on testing our framework on a larger case

study provided by IBM. Given the large model representing the case study, a special

environment has been set to perform the business rule extraction process.

Our framework has been applied on IBM Rational Programming Patterns (RPP),

that is an integrated environment under Eclipse for developing and maintaining

COBOL Pacbase 10 applications. In addition, since RPP is designed on MDE prin-

ciples, we have been able to benefit from such environment.

RPP embeds a metamodel of the system. Therefore, since a metamodel contains

relevant concepts with respect to the domain; we have defined a new heuristic for the

Business Term Identification step. Such heuristic extracts the attributes in the RPP

metamodel entities and retrieves the corresponding variables in the RPP system.

With the new heuristic, we have been able to recover 476 variables, that have been

used to drive the remaining steps of the business rule extraction process.

Finally, we have been able to easily integrate this new heuristics within our

extraction process thanks to the modularity of our framework.

The IBM case study has allowed us to analyse the efficiency of our framework.

In particular, the Rule Discovery step (Sect. 5.7.1) has been optimized to cope with

large systems. In particular, we have added an operation (Sect. 5.9) that removes

from the Java model the methods not related to the business variable(s) analysed.

5.11 Prototype

A prototype 11 has been developed in collaboration with IBM, that has provided

a use case to validate the framework. The framework integrates different tools of

the MDE ecosystem. In addition, MDE has facilitated the interoperability among

such tools.

Model Discovery relies on the Java discovery provided by MoDisco 12, that is

10. http://www-01.ibm.com/software/awdtools/vapacbase/
11. The source code of the prototype is available at http://docatlanmod.emn.fr/BrexJava/
12. http://www.eclipse.org/MoDisco/



5.11. PROTOTYPE 95

Figure 5.18: Excerpt of source code with business rule annotations

a generic and extensible framework dedicate to reverse engineering process in a

model-driven context. In particular, MoDisco has been used to generate a low-

level model-representation of the source code that composes the Java application.

Such model has a one-to-one correspondence with the Java syntax, therefore no

information is loss during the Model Discovery step. In addition, MoDisco has been

used to regenerate the source code from the Java model enriched with business rule

annotations (Fig. 5.18). Such annotations are represented as line comments in the

obtained source code.

Figure 5.19: Excerpt of graph-based representation of rules

On the other hand, Business Term Identification, Business Rule Identification

and Business Rule Representation rely on the ATL Transformation Language (ATL)



96 CHAPTER 5. BUSINESS RULE EXTRACTION FOR JAVA

[14]. It has been used to implement model manipulation operations required by the

three aforementioned steps.

Another tool used in our framework is Portolan 13, that applies model-driven

techniques on cartography processes bridging the gap between model-driven and

visualization tools. In particular, it has been used to represent graphically the ex-

tracted rules, easing in this way their understanding (Fig. 5.19).

Finally, our framework has been deployed as an Eclipse plug-in and imple-

mented on top of the Eclipse EMF modeling framework. In particular, EMF has

been used to define metamodels and access the corresponding models.

13. http://code.google.com/a/eclipselabs.org/p/portolan/



6
Business rule extraction for

relational databases

6.1 Motivation

Relational databases have been playing a key role in most organizations for the

past 40 years. They store relevant information according to a schema that defines

their internal data structures and relations. The integrity of this information is en-

sured by constraints applied on the database schema. Such constraints represent

part of the business logic of the organization.

Although databases are generally the most stable part of a system and they do

not evolve as fast as the rest of the system does; extracting the embedded busi-

ness rules can bring different benefits. For instance, they can be used to discovery

possible inconsistencies with respect to the logic embedded in other system com-

ponents or they can ease the migration towards different database implementations

overcoming the variations that each SQL vendor language has with the standard.

Different database languages can be defined to embed business rules in database.

Without loss of genericity, we particularize our solution for Oracle SQL and PL/SQL

in order to derive rules from declarative and operational constraints (Sect. 3.3.4).

The obtained rules are expressed in OCL and defined on the conceptual model that

represents the database implementation. Such model is expressed in UML.

In the following, we introduce the basic concepts for SQL and PL/SQL as well

as OCL. Finally, we describe the business rule extraction process applied to Rela-

tional Databases Management Systems (RDBMSs).

97



98CHAPTER 6. BUSINESS RULE EXTRACTION FOR RELATIONAL DATABASES

6.2 SQL, PL/SQL and OCL basic concepts

This section introduces SQL, PL/SQL and OCL. In particular, it focuses on the

constructs that can be used to express business rules at database and model-level.

6.2.1 SQL

SQL (Structured Query Language [38]) is a standard programming language

designed for accessing and modifying data and data structures in RDBMSs. In

particular, data are manipulated using SELECT, UPDATE, DELETE and INSERT

queries/statements; while the corresponding data structures are created using CRE-

ATE TABLE, CREATE VIEW and CREATE DB and modified using DROP, AL-

TER statements.

The integrity constraints in SQL can be defined in table and column declara-

tions. Such declaratives constraints are used to specify the columns that identify a

given table (i.e., PRIMARY KEY) or references to other column tables (i.e., FOR-

EIGN KEY). In addition, other constraints can be defined on the value that a column

can take (i.e., UNIQUE, NOT NULL, CHECK).

Finally, these constraints can be specified within CREATE TABLE statements

when the table is created or inside ALTER TABLE statements when the table is

modified.

6.2.2 PL/SQL

PL/SQL is an extension language for SQL that has been created for supple-

menting SQL with the common programming-language features (e.g., variable def-

initions, conditional statements, loop statements, etc.). It is used to define stored

procedures.

A stored procedure in PL/SQL, depicted in Fig. 6.1, consists of three sections:

an optional declaration section, an execution section and finally an optional excep-

tion handling section.

DECLARE

        variable and constant declarations

BEGIN

        ...        

        statements

        ...

EXCEPTION

        exception handlers

END 

Figure 6.1: PL/SQL block structure

The declaration section is identified by the keyword DECLARE and it is used



6.2. SQL, PL/SQL AND OCL BASIC CONCEPTS 99

to define either variables or constants used in the PL/SQL code. The execution

section is wrapped between the keywords BEGIN and END and contains PL/SQL

statements, that may rely on SQL queries. The exception handling section deals

with run-time errors thrown by the execution section. It is defined by the keyword

EXCEPTION.

A particular procedure in PL/SQL is called trigger. In the following we describe

the basic structures for triggers in PL/SQL in Oracle.

Triggers

A trigger [50] is a procedure that is stored in the database and it is implicitly

fired when a given event happens. It embeds procedural code expressed in PL/SQL.

In Oracle, such procedure (Fig. 6.2) is created using the clause CREATE TRIGGER.

Optionally, the clause OR REPLACE can be used to drop a Trigger with the same

name (i.e., if it is already been defined) and create a new Trigger.

CREATE TRIGGER

REPLACEORo BEFORE

AFTER

INSTEAD OF

Schema .

trigger triggeringoevent

WHEN (oconditiono)

triggeredoaction

Figure 6.2: A trigger structure in Oracle

A trigger is composed by at least two parts: the triggering event and the triggered

action. The triggering event is an SQL statement (i.e. INSERT, UPDATE, etc.),

database or user event that causes a trigger to fire. A triggered action is a PL/SQL

[51] block that contains procedural code and possibly SQL statements to be run

when the triggering event occur.

An additional element that can be part of a trigger is the restriction condition

(i.e. WHEN clause in the figure). It is used to specify a boolean expression related

to the event clause and it must be true in order to fire the trigger.

Finally, triggers can be executed instead of, before or after performing the trig-

gering event.

6.2.3 OCL

OCL is used to express constraints at model-level that cannot be defined using

the visual formalisms provided by UML. In particular, it offers predefined mecha-

nisms for retrieving the values of the attributes of an object, for navigating through

a set of related objects, for iterating through collection of objects (e.g., by means of

the forAll, exist and select iterators) and so forth.

As part of the language, a standard library including a predefined set of types and

a list of predefined operations that can be applied on those types is also provided.

The types can be primitive (i.e., Integer, Real, Boolean and String) or collection



100CHAPTER 6. BUSINESS RULE EXTRACTION FOR RELATIONAL DATABASES

types (i.e., Set, Bag, OrderedSet and Sequence). Some examples of operations

provided for those types are depicted in Table 6.1.

Name Description
allInstances() returns a Set containing all currently existing in-

stances of the type self

asSet() returns a Set containing all elements of self

product(c2 : Collection(T2)) returns a Set of Tuples representing the Carte-
sian product of self with c2

forAll(it | body) returns a Boolean value stating whether body
evaluates to true for all elements of the source
collection

exists(it | body) returns a Boolean value stating whether body
evaluates to true for at least one element of the
source collection

collect(it | body) returns a collection of elements which results
in applying body to each element of the source
collection

select(it | body) returns the subset of the source collection for
which body evaluates to true

iterate(it; var_acc = init_exp

| body)

returns the value of the accumulator variable
once the last iteration has been performed

Table 6.1: Predefined OCL operations

All these operations as well as the mechanisms previously described can be used

in the definition of OCL constraints/invariants (Fig. 6.3) and derivation rules.

An OCL constraint is always defined by a context and a body. They respectively

contain the type whereon the constraint is applied (i.e., ContextualClass) and the

OCL expression that defines the behavior of the constraint. In addition, the body of

a constraint is always a boolean expression that must be satisfied by all instances of

the context type. Finally, in order to refer to the contextual instance inside an OCL

expression, the reserved word self is used.

context ContextualClass

inv: OCL boolean expression

Figure 6.3: example of an OCL invariant

A derivation rule, shown in Fig. 6.4, constrains the value of a derived element

[52]. They are defined by a context, a body and a return type. The context contains

the derived type; the body is composed by a query expression defined over the

classes of the model; and finally the return type is the type of the instances obtained

by the query expression.



6.3. RUNNING EXAMPLE 101

context derivedType : return type

derive: OCL query expression 

Figure 6.4: example of an OCL derivation rule

6.3 Running example

In order to illustrate our framework 1, we have created a small human resources

sample database (shown in Fig. 6.5), composed by three tables, a view and a trigger.

CREATE=TABLE=Departmentx.

xxxxxxdepartment_idxxxxxxxxINTEGER=PRIMARY=KEY>

xxxxxxdepartment_namexxVARCHAR.3I<xNOT=NULL>

xxxxxxmanager_idxxxxxxxINTEGER=UNIQUE=NOT=NULL>

======CONSTRAINTxdept_mgr_fkxFOREIGN=KEYx.manager_id<

======REFERENCESxEmployee.employee_id<

<;

CREATE=TABLE=Jobx.

xxxxxxjob_idxxxxxxxxxxxINTEGER=PRIMARY=KEY>

xxxxxxjob_titlexxxxxxxxVARCHAR.35<xNOT=NULL>

xxxxxxmin_salaryxxxNUMBER.6<>

xxxxxxmax_salaryxxNUMBER.6<

<;

CREATE=TABLE=Employee=(

xxxxxxemployee_idxxxxxxxINTEGER=PRIMARY=KEY>

xxxxxxfirst_namexxxxxxxxxxxVARCHAR2(2I)>

xxxxxxlast_namexxxxxxxxxxxVARCHAR2(25)=NOT=NULL>

xxxxxxsalaryxxxxxxxxxxxxxxxxxxNUMBER(8>2)=CHECK=(salaryx>xI)>x

xxxxxxdepartment_idxxxxxINTEGER=NOT=NULL>

xxxxxxjob_idxxxxxxxxxxxxxxxxxxINTEGER=NOT=NULL>x

======CONSTRAINTxemp_job_fkxFOREIGN=KEYx.job_id<xxxxxx

======REFERENCESxJob.job_id<>

======CONSTRAINTxemp_dept_fkxFOREIGN=KEYx.department_id<xxxxxx

======REFERENCESxDepartment.department_id<xxx

<x;

CREATE=OR=REPLACE=TRIGGERxSalary_check

BEFORE=INSERT=ONxEmployee

FOR=EACH=ROW

DECLARE

xxxMinsalxxxxxxxxxxxxxxxxNUMBER;

xxxMaxsalxxxxxxxxxxxxxxxNUMBER;

BEGIN

SELECTxmin_salary>xmax_salaryxINTOxMinsal>xMaxsal

FROMxJob

WHERExjob_idx=x:NEW'job_id;

IFx.:NEW'salaryx<xMinsalxORx:NEW'salaryx>xMaxsal<xTHEN

======RAISE_APPLICATION_ERROR.-2I3II>x=Salaryxoutxofxrange=<;

END=IF;

END;

CREATE=VIEWxEmployeeInDepartmentxAS=

SELECTxfirst_name>xlast_name>xdepartment_name

FROMxEmployeexexJOINxDepartmentxd

ONxe'department_idx=xd'department_id;xxxxxx

Figure 6.5: Human resource database sample

The database schema contains the tables of Employees, Departments and Jobs.

An Employee is defined by a unique employee ID and has a first name, last name and

salary. An Employee has one Job and belongs to one Department. A Job is depicted

by an unique job ID and the title describing that job as well as the corresponding

maximum and minimum salary for that job. Finally, a Department is described by

an unique department ID, its name and the manager (i.e., an employee) leading it.

In addition, the view EmployeesInDepartment is defined on the tables Employee

and Department. In particular, it returns the name of employees and the correspond-

ing department names where they are assigned.

Finally, the trigger is fired when a new employee is inserted in the database.

It checks that an employee’s salary is in the range defined by the minimum and

maximum salary for the job he has been hired. In case the salary is outside this

range, an exception is raised by the trigger.

1. The input and output of our framework for the running example can be found at
http://docatlanmod.emn.fr/BrexDBExample/



102CHAPTER 6. BUSINESS RULE EXTRACTION FOR RELATIONAL DATABASES

6.3.1 Rules modeling the application

Different business rules can be extracted out of this small human resources sam-

ple database. They concern respectively the integrity constraints specified within the

table definitions and in the trigger. A manual inspection of such constrains reveals

that:

– the last name of a employee cannot be null

– the salary of a employee must be greater than zero

– a new employee cannot have a salary greater than the maximum salary defined

for a given job

– each employee must be assigned to a department

– each employee has to have a job

– a department must have a name

– a department has to have a manager

– a job must have a name

In the following, we describe how to extract the equivalent OCL invariants from

the integrity constraints embedded in the database.

6.4 Framework description

The framework (Fig. 6.6) for extracting business rules from database imple-

mentations is an instantiation of the conceptual framework presented in Chap. 3.

Hence, it is composed by four steps respectively Model Discovery, Business Term

Identification, Business Rule Identification and Business Rule Representation.

Business Rule

Representation
Business Rule

Identification

Business Term

Identification

Database

Model Discovery

modelware

Model Representation

grammarware

Database

implementation

Figure 6.6: Database Business Rule Extraction framework

Model Discovery transforms the database in a model-based representation. This

step is achieved by using Xtext [?], an open-source framework to develop program-

ming and domain-specific languages. In particular, Xtext is used to define a parser

for SQL and PL/SQL in order to generate from the database schema and triggers an

equivalent model-based representation. Such representation has a one-to-one corre-

spondence with the database implementation and as a consequence no information

is lost between the grammarware and modelware.

Business Term Identification focuses on gathering business concepts and their

relations from the structural elements of the database schema. Such concepts are

expressed in UML. This step is composed by two operations, the first one creates



6.5. MODEL DISCOVERY 103

the classes and associations corresponding to the database tables and their relations;

while the second one extends the obtained model by adding a set of derived classes

to represent the database views.

Business Rule Identification analyses the database integrity constraints and ex-

tracts equivalent OCL invariants that complete the UML model. Sub-steps of this

method cover the declarative constraints (CHECK, UNIQUE,...) and the analysis

of triggers 2 since, beyond other applications, triggers can also be used to enforce

complex integrity constraints.

Key elements in the Business Rule Identification step are the SQL-to-OCL and

PL/SQL-to-OCL transformations. In particular, they are used to map SQL and

PL/SQL constructs to OCL. Finally, since triggers often merge SQL and procedural

code, SQL-to-OCL is included in PL/SQL-to-OCL.

Business Rule Representation provides text and graph representations of the

identified rules. The formats of such representations are implicitly defined in the

previous two steps of the framework. In particular, the Business Term Identification

represents the identified concepts within a UML model, that is based on graphic

notation techniques to create visual representations. On the other hand, the Business

Rule Identification step presents the identified database constraints in OCL, that is

a textual language.

In the following sections Model Discovery, Business Term Identification, Busi-

ness Rule Identification and Business Rule Representation are described in detail.

6.5 Model Discovery

Model Discovery extracts the model that represents the schema and triggers

within the database. It is based on the facilities provided by Xtext 3, a model-based

framework under Eclipse 4 that supports and eases the creation of domain-specific

and programming languages. In particular, for each of such languages Xtext gener-

ates automatically the parser, the type-safe abstract syntax tree (AST), the serializer

and code formatter, the scoping framework and the linking, compiler checks, static

analysis (i.e., validation), the interpreter and the metamodel that represents the lan-

guage.

A simplified version of the metamodel that represents the grammar to parse SQL

and PL/SQL source code is shown in Fig.6.7. The root element is the class Model

that contains a list of AbstractDeclarations. An AbstractDeclaration is defined by

a name and it can be a table, view or trigger declaration.

2. The SQL standard also includes a CREATE ASSERTION statement to specify complex con-
straints but none of the major database vendors support it

3. http://www.eclipse.org/Xtext/
4. http://www.eclipse.org/



104CHAPTER 6. BUSINESS RULE EXTRACTION FOR RELATIONAL DATABASES

TableDeclaration

elements0..*

TableConstraintDeclarationColumnTableDeclaration

primaryKeyN:NEBoolean
uniqueN:NEBoolean

UniqueConstraint

PrimaryKeyConstraint

CheckConstraint

ForeignKeyConstraint

DataType

1 dataType

CharType NumberType ... ColumnRef

1

value

TableRef1

value

ViewDeclarationTriggerDeclaration

TimeEvent

EventClause

WhenCondition

PLSQLBlock

columns

0..*

1table

Model

creates

0..*AbstractDeclaration

1..* tables

1..*

columns

time

event

when

block

1

1..*

1

notNullN:NEBoolean

NotNullConstraint
check

nameN:NEString

TableElement

nameN:NEString

SQLBlockblock

1

Figure 6.7: SQL and PL/SQL metamodel

A TableDeclaration is composed by a list of TableElements, that are respec-

tively column table and constraint table declarations. A ColumnTableDeclaration

is used to define a column and optionally a constraint such as unique, check, not

null, primary key or foreign key on it. In addition, each column declaration is re-

lated to a data type allowed by the database. It can be CharType, NumberType, etc.

On the contrary, TableConstraintDeclarations are used to define constraints that

are not declared together with the column table declarations. CheckConstraints in-

clude expressions composed by literals, operators and references to the columns

involved (ColumnRef class in the metamodel); NotNullConstraints, UniqueCon-

straints andPrimaryKeyConstraints contain only column references; finally For-

eignKeyConstraints contain both references to columns and tables (TableRef class

in the metamodel). They allow to retrieve the corresponding ColumnTableDeclara-

tions and TableDeclarations.

A ViewDeclaration is composed by an SQLBlock, that includes SQL statements

as well as TableRefs and ColumnRefs of the tables and columns contained in the

statements.

Finally, a TriggerDeclaration is defined by a TimeEvent, an EventClause, a

PLSQLBlock and optionally a WhereCondition. In particular, a TimeEvent defines

if a trigger must be activated before, after or instead of a given database event. Such

event is represented by the class EventClause and it can be an insert, update, delete

SQL statement. On the contrary, the WhereCondition entity contains a boolean ex-

pression that must be true in order to execute the PL/SQL code within trigger. Such



6.6. BUSINESS TERM IDENTIFICATION 105

code is contained in the PLSQLBlock entity.

6.6 Business Term Identification

Business Term Identification translates tables and views into an equivalent set

of classes and associations in a UML class diagram.

As typically done in existing approaches, each table generates a class (or an

association class) in the conceptual schema and table columns (except for foreign

keys) are mapped into attributes of the corresponding class. Foreign keys are used

to create associations between the classes, while the corresponding cardinalities can

be calculated by performing SQL queries on the data stored in the database [53].

The type of the attributes depends on the type of the columns. Character data

types (CHAR(n), VARCHAR2(n), etc.) are transformed to String types. Num-

ber and date-time data types (Integer, Float, Date, etc.) are transformed into their

equivalent UML types: Integer, Real and Date. The Number(precision, scale) is

transformed into an Integer data type when precision is zero and into a Real type

otherwise. In addition, other Oracle data types can be represented by defining new

data types in the UML model.

CREATEtTABLE6Department61

666666department_id66666666INTEGERtPRIMARYtKEY,

666666department_name66VARCHAR(30)tNOTtNULL,

666666manager_id6666666INTEGERtUNIQUEtNOTtNULL,

ttttttCONSTRAINT6dept_mgr_fk

ttttttFOREIGNtKEYt1manager_id.

ttttttREFERENCES6Employee1employee_id.

.;

CREATEtTABLE6Job61

666666job_id6666666666tINTEGERtPRIMARYtKEY,

666666job_title66666666VARCHAR135.6NOTtNULL,

666666min_salary666NUMBER16.,

666666max_salary66NUMBER16.

.;

CREATEtTABLE6Employee61

666666employee_id6666666INTEGERtPRIMARYtKEY,

666666first_name66666666666VARCHAR2(20),

666666last_name66666666666VARCHAR2(25)tNOTtNULL,

666666salary666666666666666666NUMBER(8,2)tCHECK61salary6>60.,6

666666department_id66666INTEGERtNOTtNULL,

666666job_id666666666666666666INTEGERtNOTtNULL,6

ttttttCONSTRAINT6emp_job_fk

ttttttFOREIGNtKEY61job_id.666666

ttttttREFERENCES6Job1job_id.,

ttttttCONSTRAINT6emp_dept_fk

ttttttFOREIGNtKEY61department_id.666666

ttttttREFERENCES6Department1department_id.666

.6;

Department

department_id6:6Integer

department_name6:6String

job_id6:6Integer

job_title6:6String

min_salary6:6Integer6

max_salary6:6Integer

Job

Employee

employee_id6:6Integer

first_name6:6String

last_name6:6String

salary6:6Real

1 dept_mgr_fk

0..1 emp_dept_fk

0..*

1

emp_job_fk1

0..*

Figure 6.8: Database schema to conceptual schema

Figure 6.8 shows the translation from the database presented in Sect. 6.3 and the

corresponding conceptual schema. Tables Employee, Job and Department are trans-

lated into the equivalent UML classes. An Employee in the UML model is defined

by the attributes employee ID, first name, last name and salary. These attributes

are derived from columns where no foreign key constraint is defined. The foreign

keys are translated into UML associations; therefore an Employee has one Job (i.e.,

emp_job_fk) and belongs to one Department (i.e., emp_dept_fk). Accordingly to

the previous mappings, a Department is described by an unique department_id, its



106CHAPTER 6. BUSINESS RULE EXTRACTION FOR RELATIONAL DATABASES

name and the manager leading it (i.e., dept_mgr_fk). Finally, a Job is depicted by

an unique job_id, by its title and the corresponding maximum and minimum salaries

for that job.

Besides this basic process, the Business Term Identification step also creates an

additional class for each database view. In this case, the UML class is derived and

has as attributes the names and corresponding types of the columns that are selected

in the view definition. The derivation rule for the class is created by translating the

SELECT query as described in the next section.

contextOEmployeeInDepartment::allInstances :

Set(Tuple(first_name : String, last_name : String, department_name : String))

derive:O<SQL-to-OCL mapping>

/EmployeeInDepartment

first_name : String

last_name : String

department_name : String

CREATEOVIEW EmployeeInDepartment ASO

SELECT first_name, last_name, department_name

FROM Employee e JOIN Department d

ON e.department_id = d.department_id;      

Figure 6.9: Mapping of database views

In Fig. 6.9, the mapping of a view is depicted. The view represents the pro-

jection of Employees (first and last names) per Department, that is identified by

its name. The columns in the SELECT clause (i.e., first_name, last_name and de-

partment_name) become the attributes of the derived class; while their types (i.e.,

String in this case) are derived by mapping the built-in data type VARCHAR2 used

to define those columns.

6.7 Business Rule Identification

Business Rule Identification aims at discovering the rules embedded in the database

implementation. In particular, this step analyses the declarative constraints in table

declarations and the operational constraints in triggers. In addition, since triggers

often merge SQL statatements, SQL-to-OCL mappings are needed to derive OCL-

equivalent constraints from the constraints coded within a trigger.

In the following, the extraction of declarative and operational constraints as well

as the mapping between SQL and OCL are depicted.

6.7.1 Declarative constraints to OCL

This step covers the declarative integrity constraints specified within the table

creation statement. The context for all these constraints is the class representing the

table in the UML model.

Figure 6.10 shows the patterns used to generate the OCL constraints correspond-

ing to the PRIMARY KEY, UNIQUE, NOT NULL and CHECK constraints 5.

5. Note that due to the high expressiveness of the OCL language, different OCL expressions can



6.7. BUSINESS RULE IDENTIFICATION 107

contextLclasstable_name

classtable_name.allInstances,x

L->forAll,ittable_nameL|Littable_nameL<>Lselfaimplies

LLLLittable_name.attrcol_BL<>Lself.attrcol_BLoraittable_name.attrcol_CL<>Lself.attrcol_Cx

inv:

inv:Lnotaself.attrcol_C.oclIsUndefined,x

inv:Lself.attrcol_DL<SQL-to-OCLLmapping>x

col_ALLLLLLLLLLLpDataTypepLPRIMARYaKEY,

col_BLLLLLLLLLLLpDataTypep,L

col_CLLLLLLLLLLLpDataTypepLNOTaNULL,

col_DLLLLLLLLLLLpDataTypepLCHECKL,col_DLoperatorLexprx,

CREATEaTABLELtable_nameL,

classtable_name.allInstances,x

L->forAll,ittable_nameL|Littable_nameL<>Lselfaimplies

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLittable_name.attrcol_AL<>Lself.attrcol_Ax

inv:Lnotaself.attrcol_A.oclIsUndefined,xLand

CONSTRAINTL<constr_name>LUNIQUEa,col_B,Lcol_Cx

Figure 6.10: Declarative constraints mapping

The name of the table (i.e., table_name) and columns (i.e., col_A) are mapped

respectively to the corresponding UML entity (i.e., classtable_name) and attributes (i.e.,

attrcol_A). In addition, the name of the table in lowercase is used as name of the

iterator within the corresponding operations.

The PRIMARY KEY constraint specifies one or more columns that uniquely

identifies each record in a table. Implicitly, these columns cannot contain null val-

ues. This constraint is translated into an OCL invariant such that no attributes,

corresponding to the columns in the PRIMARY KEY, have undefined values and for

all the pairs of different instances of the class that corresponds to the table where

this check is defined, no duplicate values on the PRIMARY KEY attributes exist.

UNIQUE follows the same definition of the precedent constraint, but it allows

null values for the columns composing it. It is translated into an OCL invariant

such that for all the pairs of different instances of the class that corresponds to the

table where the UNIQUE constraint is contained, no duplicate values exist on the

attributes of the class corresponding to the columns where this constraint is applied.

The NOT NULL and CHECK constraints respectively forbid a column to have

null values and limit the value range that can be stored within a column. The first

constraint is mapped on an OCL invariant such that the attribute of a given class,

related to the column where the NOT NULL constraint is used, is not undefined.

The CHECK constraint is translated into an OCL invariant such that the conditions

in this constraint are applied on the corresponding attributes of a given class in the

model.

Additionally, OCL constraints are generated to enforce String attributes in the

UML model respect the size constraints of the column definitions (constraints for

CHAR(n) and VARCHAR2(n) mappings are depicted in Fig. 6.11).

In Fig. 6.12, the OCL invariants extracted out of the table Job are shown. The

PRIMARY KEY on the column job_id is translated into an OCL constraint such

that the attribute job_id of the class Job cannot be null and for all the pairs of dif-

ferent instances of that class, no duplicate values of job_id exist. The NOT NULL

constraint on the column job_title is mapped into an OCL invariant that forbids the

represent the same semantic constraint so other equivalent alternatives are also possible



108CHAPTER 6. BUSINESS RULE EXTRACTION FOR RELATIONAL DATABASES

CREATE TABLE table_name (

      

      
col_A    CHAR(n),

col_B    VARCHAR2(m)

);

inv: self.attrcol_A.size() <= n

inv: self.attrcol_B.size() <= m

context  classtable_name

Figure 6.11: Mapping of built-in data types constraints

attribute job_title to have null values.

CREATEmTABLEmJobm(

yyyyyyjob_idyyyyyyyyyyyINTEGERyPRIMARYmKEY|

yyyyyyjob_titleyyyyyyyyVARCHARc35fyNOTmNULL|

yyyyyymin_salaryyyyNUMBERc6f|

yyyyyymax_salaryyyNUMBERc6f

f;

contextyJob

inv:mnotmself.job_id.oclIsUndefinedcfyand

yyyyyyyJob.allInstancescf<>forAllcjoby|yjoby<>yselfmimpliesyjob.job_idy<>yself.job_idfyyy

contextyJob

inv:mnotmself.job_title.oclIsUndefinedcf

Figure 6.12: Example of declarative constraints mapping

6.7.2 SQL-to-OCL transformation

This section describes the mapping between SQL SELECT statements and the

equivalent OCL expressions. In particular we describe the mappings for SQL pro-

jections, joins, functions, group by and having clauses. These mappings are needed

to create the derivation rules for views as described above and to be able to ex-

tract constraints implemented as part of trigger definitions as explained in the next

subsection.

In the following, we present the list of mappings.

Projection.

A SQL projection is composed by a SELECT, a FROM and, optionally, a WHERE

clause. The mapping of generic projection is shown in Fig. 6.13.

SELECT DISTINCT;col_select

classtable_name.allInstances()

->select(iteratortable_name;|;iteratortable_name.attrcol_where;<Boolean;expr>);

->collect(iteratortable_name;|

              Tuple{col_nameselect;=;iteratortable_name.attrcol_select})

->asSet()

FROM;table

WHERE;col_where;<Boolean;expr>;
4

3

2

1

Figure 6.13: Projection mapping

1. The mapping starts by translating the FROM clause. This is done by se-

lecting all instances (i.e., method allInstances()) of the class in the CS that

corresponds to table in the FROM.

2. The WHERE clause, if defined, is translated into an OCL select iterator. The

condition in the select iterator is created by translating the conditions in the



6.7. BUSINESS RULE IDENTIFICATION 109

WHERE clause. The mapping is basically a direct mapping once the refer-

ences to the column names in the WHERE are replaced by the corresponding

attribute or association ends names. SQL functions are translated into their

OCL counterparts (if existing, otherwise new OCL operations must be previ-

ously defined, e.g. see [54]).

3. The SELECT clause is translated into an OCL collect iterator that creates a

collection of objects according to the structure defined in the Tuple definition.

Each field in the Tuple corresponds to a column in the SELECT clause. Fields

are initialized with the value of the corresponding attributes.

4. Finally, the DISTINCT clause might be used in conjunction with a SELECT

statement to return only the different (i.e., distinct) values in a given table.

This clause is mapped adding the operation asSet() after the OCL mapping of

the SELECT clause.

SELECT  first_name, last_name

Employee.allInstances()

->select(employee | employee.salary > 5000) 

->collect(employee |

              Tuple{first_name = employee.first_name,

                         last_name = employee.last_name})

FROM Employee

WHERE salary > 5000;

Figure 6.14: Example of a projection mapping

In Fig. 6.14, an example of projection mapping is shown. The FROM clause

containing the table Employee is translated into an OCL operation Employee.allInstances()

that retrieves all the instances of the UML class Employee. Later, a select opera-

tion that represents the WHERE clause is applied on those instances, such that the

instances of Employee with a salary greater than 5000 are selected. Finally, the

SELECT clause is mapped into a collect, such that for each remaining instance of

Employee, its attributes first_name and last_name are collected into a tuple.

Join.

In SQL, the JOIN operation combines the values of two or more tables. Our

transformation covers both inner and outer joins

– Inner joins.

The inner join is by far the most common case of joining tables. Giving two

tables a and b and according to the join conditions, it returns the intersection

of the two tables. The mapping of a generic inner join is shown in Fig. 6.15.

1. Firstly, we perform the Cartesian product of the population of all tables

by retrieving all the instances of the corresponding classes in the CS and

applying on them the cartesian product (named product in OCL).



110CHAPTER 6. BUSINESS RULE EXTRACTION FOR RELATIONAL DATABASES

ONfaliasA.colAJoinf=faliasB.colBJoin

SELECTfcolAselect,fcolBselect

FROMftableAfaliasA

JOINftableBfaliasB

WHEREfcond_wheref

classtableA_name.allInstances()->product(classtableB_name.allInstances())

->select(iteratorproductf|fiteratorproduct.first.colAJoinf=fiteratorproduct.second)

->select(iteratorproductf|fiteratorproduct.cond_where)ff

->collect(iteratorproductf|fTuple{colA_nameselectf=fiteratorproduct.first.colAselect,

colB_nameselectf=fiteratorproduct.second.colBselect})

Figure 6.15: Inner Join mapping pattern

2. The join conditions are mapped to the body of a select operation, that

iterates over the tuples of the Cartesian product (i.e., iteratorproduct), se-

lecting those that satisfy the conditions. First and second are used to

identify the classes in the Cartesian product (i.e., classtableA_name and

classtableB_name). Note that colA is compared with second (and not sec-

ond.colB) since in the pattern we assume that colA is the name of the

role of the association linking the two classes (i.e. the type of colA in

the CS is classtableB_name).

3. In case the WHERE clause is defined (i.e., Implicit Join or other con-

ditions), a new select operation is created following the procedure de-

scribed in the previous pattern.

4. If not all columns are selected, the collect operation is used as described

in the previous pattern.

ONke.department_idk=kd.department_id

SELECT employee_id,kdepartment_namek

FROMkEmployeeke

JOINkDepartmentkd

WHERE e.salaryk>k5000k

Employee.allInstances()->product(Department.allInstances())

->select(itk|kit.first.emp_dept_fkk=kit.second)

->select(itk|kit.first.salaryk>k5000)kk

->collect(itk|kTuple{employee_idk=kit.first.employee_id,
kdepartment_namek=kit.second.department_name})

Figure 6.16: Example of explicit inner join mapping

In Fig. 6.16, an example of join mapping is shown. As first step, the Carte-

sian product is calculated between the instances of Employee and Depart-

ment. From this set we select tuples where the value of department column of

the employee (first.emp_dept_fk) is equals to the value of the second attribute

(i.e., an instance of the class Department). Here, first refers to an employee

instance since Employee is the first class referenced in the creation of the

Cartesian product. Later, the WHERE clause is mapped into a select opera-

tion, that selects the employees that earn more than 5000. Finally, selected

elements are projected using the collect operation to return a set of tuple ele-

ments with only two fields, the employee_id and the department_name.



6.7. BUSINESS RULE IDENTIFICATION 111

– Outer joins.

The other type of join is the Outer Join that returns the same result of the

Inner Join plus the rows from one/both tables that do not match any row from

the other table. This Join is divided into Left, Right and Full that respectively

return all the rows from the left, right or both tables, even if no matches in

the right, left or in one of the tables exists. The OCL mapping of Outer Joins

consists in a union operation between the OCL expression derived from the

Inner Join plus the instances of the class that represents the table where the

outer clause is applied. These instances are collected using the operation

allInstances() and only those that have an undefined value on the attributes

corresponding to the join columns are selected.

LEFT OUTER JOIN|tableB|aliasB

ON|aliasA.colAJoin|=|aliasB.colBJoin

||||||||||||||||||||||||||||||||||||||||||||||||||||||
FROM|tableA|aliasA

SELECT|colAselect,|colBselect
let|left_outer_join|:|Sequence(Tuple(colA_nameselect|:|colA_typeselect,

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||colB_nameselect|:|colB_typeselect))|=

classtableA.allInstances()->select(iteratortableA_name|||

|||||||||||||||||||||||||||||||||||||||||||||||||||iteratortableA_name.colAJoin.oclIsUndefined())

|||||||||||||||||||||||||||||||||->collect(it|||Tuple{colA_nameselect|=|iteratortableA_name,

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||colB_nameselect|=|null})|in

join->union(left_outer_join)

let|join|:|Sequence(Tuple(colA_nameselect|:|colA_typeselect,

|||||||||||||||||||||||||||||||||||||||||||colB_nameselect|:|colB_typeselect))|=|...|in

Figure 6.17: Left outer join mapping

In Fig.6.17, a generic example of Left Outer Join is presented. The result

of the Inner Join is stored in the variable join initialized in the first Let ex-

pression. The Left Outer Join is defined by the variable left_outer_join. Its

type is the same of the variable join; while its initialization is composed by

a sub-set of instances of the class that represent the left table (i.e., table A).

The instances in this sub-set have a null value on the attribute colAJoin, that

represents the column whereon the join is performed. Finally, the result of

the Left Outer Join is depicted by the union of the two variables join and

left_outer_join.

Group By, Having and Aggregate Functions.

The GROUP BY clause is used to group the result-set of a given SELECT state-

ment. Groups can be filtered by means of the HAVING clause. In Fig. 6.18, a

generic mapping of GROUP BY and HAVING clauses is shown.

1. We first translate the SQL FROM, JOIN and WHERE clauses according to

the previous mapping patterns. The result is used to initialize the sel variable.

2. The tuples in sel are then processed to create the grouped result set group

mapping the GROUP BY clause. In short, group is created by iterating on the

sel tuples and collecting together those tuples with an identical value on the

attributes corresponding to the columns in the GROUP BY clause.



112CHAPTER 6. BUSINESS RULE EXTRACTION FOR RELATIONAL DATABASES

letqsel:qSequenceFTupleFcolA_nameq:qcolA_type4qcolB_nameq:qcolB_type11q=

qqqqqqqqqqqclasstable_name.allInstancesF1->collectFiteratortable_nameq|q

                                                           Tuple{colA_nameq=qiterator table_name.attrcolA_name4

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqcolB_nameq=qiterator table_name.attrcolB_name}1->asSequenceF1qin

letqgroupq:qSetFTupleFcolA_nameq:qcolA_type1q=q

qqqqqqqqqqqqqqqqqqqqqsel->collectFiteratorselq|qTuple{colA_nameq=qiteratorsel.colA_name}1->asSetF1qin

group->collectFgq|qTuple{colA_nameq=qg.colA_name4

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqcolB_nameq=qsel->selectFiteratorselq|qiteratorsel.colA_nameq=qg.colA_name1

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq->collectFiteratorselq|qiteratorsel.colB_name1.functionF1q}1q

->selectFgq|qg.colB_nameq<Booleanqexpr>1;q

SELECTqcolA4qfunctionFcolB1

FROMqtable

GROUP BYqcolA

HAVINGqFunctionFcolB1q<Booleanqexpr>

1

2

3
4

Figure 6.18: Mapping of group by and having clauses

3. If an aggregate function is applied on one of the columns in the SELECT

clause, an equivalent OCL operation (see [54] for more on aggregate func-

tions in OCL) is added at the end of the GROUP BY clause mapping.

4. Finally, if the HAVING clause has been defined, it is translated into a final se-

lect operation, where the body of the select expression is created by mapping

the HAVING conditions.

SELECTfdepartment_id,fSUM(salary)

FROMfEmployeefe,fDepartmentfd

WHEREfe.department_idf=fd.department_id

HAVING,SUM(salary)f>f5000

GROUP,BYfe.department_id

letfself:fSequence(Tuple(department_idf:fInteger,,salaryf:fReal))f=

Employee.allInstances()->product(Department.allInstances())

->select(itf|fit.first.emp_dept_fkf=fit.second)

f->collect(itf|fTuple{department_idf=fit.second.department_id,

ffffffffffffffffffffffffffffffsalaryf=fit.first.salary})->asSequence()fin

letfgroupf:fSet(Tuple(department_idf:fInteger))f=f

ffffffffffffffffffffsel->collect(itf|fTuple{department_idf=fit.department_id})->asSet()fin

group->collect(gf|fTuple{department_idf=fg.department_id,

ffffffffffffffffffffffffffffffffffffsalaryf=fsel->select(itf|fit.department_idf=fg.department_id)

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff->collect(itf|fit.salary)->sum()f})ffffffffffffffffffffffff

f

->select(gf|fg.salaryf>f5000)

Figure 6.19: Example of a group by and having clauses mapping

In Fig. 6.19, the mapping of a GROUP BY, HAVING and SUM query is shown.

To begin with, the projection of department’s id and employee’s salaries derived

from the Cartesian product of all the Employee and Department instances is stored

in the sequence sel. Then, for each department_id the sequence of salaries in sel

such that the department_id is equal is collected. The OCL operation sum is applied

on the result to get the sum of salaries per department. Finally, the HAVING clause

is mapped into a select operation that selects the departments with a sum of salaries

greater than 5000.

6.7.3 Triggers to OCL

A second source of integrity constraints are triggers (Sect. 6.2.2) that can be

in charge of enforcing complex constraints that go beyond the expressiveness of

declarative integrity constraints.

To distinguish triggers enforcing business rule from other kinds of triggers (e.g.,

devoted to log actions) we use the following heuristic: all triggers that embed in

their triggered action section a PL/SQL statement raising an user-defined exception

are classified as constraint-enforcing-triggers.



6.7. BUSINESS RULE IDENTIFICATION 113

For each of such triggers, an OCL invariant is generated. The context of the

invariant is the UML class that corresponds to the table where the trigger is defined.

On the contrary, the body of the invariant is composed by the trigger restriction con-

dition, if defined, and the output of the PL/SQL-to-OCL transformation described

below.

PL/SQL-to-OCL Transformation

The PL/SQL-to-OCL transformation is used to extract OCL constraints out of

PL/SQL procedures (Sect. 6.2.2), that in our case it is part of the trigger definition.

The OCL constraints are extracted from the conditional statements that raise user-

defined exceptions in the execution section.

PL/SQL allows defining user exceptions in two ways. One is to override an

already-defined exception. In this case, the exception must be declared in the dec-

laration section and raised explicitly in the execution section using the statement

RAISE. The other way concerns the statement RAISE_APPLICATION_ERROR,

that raises an user-defined exception used to communicate an application-specific

error back to the user. Both kinds of exceptions are generally business relevant,

since they represent a violation of the company’s business and not a technology

issue. Since these exceptions are raised explicitly, they are generally nested in con-

ditional statements that check if the business constraints are violated or not.

For each exception, the conditions triggering the exception are located and

mapped to an equivalent OCL expression. Note that these conditions may include

variables calculated from previous SQL queries in the trigger execution section. If

that case, those SQL expressions are also processed according to the SQL-to-OCL

mappings described earlier.

CREATEmTRIGGERhtrigger_namehBEFORE

UPDATEmONmtable_name

WHENh(table_name.colAh<Booleanhexpr>)

END;

BEGIN

RAISE_APPLICATION_ERROR(<errorhnumber>,h"message")

ENDmIF;

IFh(:NEW.colBh<Booleanhexpr>)hTHEN

contexthClasstable_namehhhh

mself.attrcolAh<Booleanhexpr>hhimplies

notm(self.attrcolBh<Booleanhexpr>)

inv:

...

...

DECLARE

variablehandhconstanthdeclarations

EXCEPTION

exceptionhhandles

Figure 6.20: Mapping of a user exception in a trigger

In Fig. 6.20, a generic mapping from a user-defined exception in a trigger is

shown. The name of the table to be updated (i.e., or inserted) is translated into the

context class of the OCL invariant. The invariant’s body is composed by the trans-

lations of the WHEN clause and the condition of the if-statement. Such condition



114CHAPTER 6. BUSINESS RULE EXTRACTION FOR RELATIONAL DATABASES

is negated since the constraint must enforce that the situation that would trigger the

exception does not happen. Note that only when the tuple would satisfy the WHEN

clause the second part of the expression is enforced.

letyMinsaly:yIntegery=yJob2allInstancesh;R>selecthjoby|yjoby=yself2emp_job_fk;

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyR>collecthjoby|yTuple{min_salaryy=yjob2min_salary};

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyR>asSequenceh;R>firsth;2min_salaryyin

letyMaxsaly:yIntegery=yJob2allInstancesh;R>selecthjoby|yjoby=yself2emp_job_fk;

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyR>collecthjoby|yTuple{max_salaryy=yjob2max_salary}

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyR>asSequenceh;R>firsth;2max_salaryyin

notyhself2salaryy<yMinsalyorWself2salaryy>yMaxsal;

contextyEmployeeyinv:

CREATEWORWREPLACEWTRIGGERySalary_check

BEFOREWINSERTWONyEmployee

FORWEACHWROW

DECLARE

yyyMinsalyyyyyyyyyyyyyyyyNUMBER;

yyyMaxsalyyyyyyyyyyyyyyyNUMBER;

BEGIN

SELECTymin_salaryOymax_salaryyINTOyMinsalOyMaxsal

FROMyJob

WHEREyjob_idy=y:NEW2job_id;

IFyh:NEW2salaryy<yMinsalyORy:NEW2salaryy>yMaxsal;yTHEN

WWWWWWRAISE_APPLICATION_ERRORhR23333OyESalaryyoutyofyrangeE;;

ENDWIF;

END;

Figure 6.21: Example of a user exception mapping

In Fig. 6.21, the mapping of the Salary_check trigger is shown. This trigger

raises an exception when a new employee has assigned a salary for a job that is not

in the acceptable salary range for that job. The minimum and maximum salaries

are stored in the table Job (Fig.6.8). They are retrieved using two variables (i.e.,

Minsal and Maxsal) by means of a SELECT INTO clause. The mapping of this

clause extends the mapping for SQL projections seen before (Sect. 6.7.2). The

only difference is that each variable is mapped to an OCL let expression, where

the OCL variable takes the name and the type of the SQL variable defined in the

DECLARE section of the trigger. Variable values are initialized with the result of

the normal SQL-to-OCL mapping for the SQL query expression. Since in PL/SQL,

SELECT INTO statements can only return one single row, the first elements of

both projections are returned using the OCL operation first(). Finally, the values

of the two variables are compared according to a boolean expression that maps the

negation of the PL/SQL if-statement condition.

Refining OCL constraints

Strictly speaking, constraints enforced by a trigger should be linked to the event

that may fire the trigger. For instance, the Salary constraint extracted in Fig. 6.21

should be checked only when inserting new employees in the database. In partic-

ular, such constraint should no be applied when performing other manipulations

(i.e., updating, deleting) on employees. Therefore, according to the concept of

creation-time constraints [55]; when extracting constraints from triggers, the stereo-

type mechanism provided by UML is used to annotate each constraint with infor-

mation of the events that apply to it.

Only when a set of equivalent constraints applied to all the manipulation events

for a given table is found; such constraints can be merged in a unique standard OCL

invariant. Note that, a complete procedure to identify semantically-equivalent con-

straints in order to create a single one and to analyze which events can violate the



6.8. BUSINESS RULE REPRESENTATION 115

constraint in order to guess if the set of triggers is sufficient to ensure that the gen-

erated constraint should always hold is out of the scope of the proposed business

rule extraction process. Such complete procedure should rely on [56] for the detec-

tion of redundant constraints and [57] for the derivation of relevant events for each

constraint.

6.8 Business Rule Representation

Business Rule Representation is the last step of the framework. Its goal is to

generated comprehensible textual and graphical artifacts for the identified business

rules. It consists in two steps: Vocabulary Extraction and Visualization of the rules.

6.8.1 Vocabulary Extraction

The vocabulary is contained in the UML model extracted from the database

implementation. Therefore, no operation must be performed to collect the business

terms composing the vocabulary. Nevertheless, the UML model could be edited to

improve the default class names copied from the database.

6.8.2 Visualization

Textual and graphical visualizations are employed to present the rules identi-

fied. Since UML and OCL already define a concrete syntax, this step relies on

two straightforward operations to represent the UML and OCL model generated in

graph-based and textual-based representations.

Textual Visualization

The rules embedded in the OCL model can be easily represented in a textual

format, since OCL has both an abstract and concrete syntax. In particular, its ab-

stract syntax is defined by using metamodeling, while its textual concrete syntax is

defined by using the Extended Backus-Naur Form (EBNF) syntax.

context Employee inv:

not (self.last_name.oclIsUndefined());

context Employee inv:

not (self.employee_id.oclIsUndefined())

and

Employee.allInstances()->forAll(employee | employee <> self implies

                                                                          employee.employee_id <> self.employee_id);

context Employee inv:

self.salary > 0;

Figure 6.22: Excerpt of the OCL constraints extracted



116CHAPTER 6. BUSINESS RULE EXTRACTION FOR RELATIONAL DATABASES

In Fig. 6.22, an excerpt of the OCL invariants extracted from the database im-

plementation is shown. Such invariants concern the class Employee (Fig. 6.8) and

they state that the name of the employee cannot be null, his identifier must be unique

and not null, and finally his salary must be greater than zero.

Textual-based representations of the OCL rules can be derived by using avail-

able tools on the market (e.g., Dresden OCL toolkit 6) or implementing a model-to-

text transformation (Fig.6.23) that translates the model element into text.

helper contextdOCL:BagTypeddef :dextractd: Stringd=

ddddd'Bag';d

helper context OCL:SequenceTypeddef :dextractd: Stringd=

ddddd'Sequence('d+dself.elementType.extractd+d')';d

helper contextdOCL:OrderedSetTypeddef : extract : Stringd=

ddddd'OrderedSet('d+dself.elementType.extractd+d')';

helper contextdOCL:SequenceTypeddef :dextractd:dStringd=

ddddd'Set('d+dself.elementType.extractd+d')';

Figure 6.23: Excerpt of the OCL model-to-text transformation

In Fig. 6.23, an excerpt of the OCL model-to-text transformation written in ATL

is shown. The four helpers provide possible verbalization for the types BagType,

SequenceType, OrderedSetType and Sequence.

Graphical Visualization

The UML model together with the OCL constraints can be used to have a global

overview of how and where such constraints are applied on the model. Such repre-

sentation is a UML standard class diagram, where the OCL invariants are displayed

as note attachments connected by a dashed line to the corresponding class.

In Fig. 6.24, an excerpt of the UML/OCL model extracted from the database

sample (Fig. 6.5) is shown. It contains the classes derived from the view and ta-

ble declarations and some of the OCL invariants embedded in the declarative con-

straints and in the trigger.

The UML/OCL model can be visualized using different free and proprietary

tools available on the market. For instance, ArgoUML 7 and Papyrus 8 are one of

the most known open source UML modeling tools; while, IBM Rational Software

Modeler 9 and Enterprise Architect 10 are well-known as commercial ones.

6. http://www.dresden-ocl.org/index.php/DresdenOCL:Documentation
7. http://argouml.tigris.org/
8. http://www.papyrusuml.org
9. http://www.ibm.com/developerworks/rational/tutorials/r-rsmvisual/

10. http://www.sparxsystems.com/



6.9. EVALUATION 117

Department

department_id=:=Integer

department_name=:=String

job_id=:=Integer

job_title=:=String

min_salary=:=Integer=

max_salary=:=Integer

JobEmployee

employee_id=:=Integer

first_name=:=String

last_name=:=String

salary=:=Real

1

dept_mgr_fk

0..1

emp_dept_fk

0..<1

emp_job_fk

10..<

context=Employee=inv:

let=Maxsal=:=Integer===Job.allInstances()->select,job=|=job===self.emp_job_fk}

==================================================================->collect,job=|=Tuple{max_salary===job.max_salaryD=min_salary===job.min_salary}}

======================================================================->asSequence()->first().max_salary=in

let=Minsal=:=Integer===Job.allInstances()->select,job=|=job===self.emp_job_fk}

=================================================================->collect,job=|=Tuple{max_salary===job.max_salaryD=min_salary===job.min_salary}}

======================================================================->asSequence()->first().min_salary=in

not=,self.salary=<=Minsal=ordself.salary=>=Maxsal};

context=Department=inv:

not=,self.department_name.oclIsUndefined()};

context=Department=inv:

not=,self.dept_mgr_fk.oclIsUndefined()};

...

context=Job=inv:

not=,self.job_id.oclIsUndefined()}

and

Job.allInstances()->forAll,job=|=job=<>=self

dddddddddddddddddddddddddddddddddimplies=job.job_id=<>dself.job_id};

context=Job=inv:

not=,self.job_title.oclIsUndefined()};

...

Figure 6.24: Excerpt of the UML/OCL model

6.9 Evaluation

In order to evaluate the accuracy of our method we have checked that the rules

obtained using the extraction process coincide with the ones that we discovered by

a manual inspection of the code. For the running example, we were able to identify

and extract all the business rule embedded in the database schema.

6.10 Prototype

A prototype tool, available at 11, has been created as a proof of concept to vali-

date the feasability of the proposed approach.

The prototype (Fig. 6.25) takes as input a database export file with the details of

the database schema (tables, triggers, views,...). A first module parses this file and

populates a low-level database model used to represent all the schema information

of the database in the form of a model. Note that the obtained model has one-to-one

correspondence with the database schema, hence no information is lost. This pre-

liminary step is required to be able to reuse model-based techniques (which expect

models as input) in the next phases of the method.

The database model is then processed as we have presented in this paper to

extract the final UML/OCL conceptual schema. Finally, the OCL constraints are

represented in a textual format.

The prototype embeds different model-based components available in the Eclipse

platform. The parsing of the database export file is implemented with Xtext [?], that

given the definition of the grammar of a language, it is able to generate the equiv-

11. http://docatlanmod.emn.fr/IntegrityConstraints2OCL/intro.html



118CHAPTER 6. BUSINESS RULE EXTRACTION FOR RELATIONAL DATABASES

alent metamodel and the parser to process text files conforming to that grammar.

Given that, we have created the grammar to parse database triggers by extending an

Xtext grammar defined for the Oracle PL/SQL language 12.

On the contrary, the Business Term and Business Identification steps as well

as the textual representation of the extracted OCL constraints rely on ATL. In par-

ticular, the former are implemented by means of model-to-model transformations,

while the latter is based on a model-to-text transformation.

Figure 6.25: A screenshot of the prototype

12. http://sourceforge.net/p/plsql-xtext/home/Home/



7
Related work

This section presents relevant works concerning the extraction of business rules

from legacy systems. These reverse engineering works are divided according to

the part of the system (i.e., behavioral or structural) and programming languages

whereon they are applied.

7.1 Approaches for the behavioral part

The discovery of business rules from the system’s behavioral part is a research

domain that has been explored extensively. We classify the existing approaches

according to the type of the programming language targeted. In particular, we dis-

cuss previous works concerning approaches valid for arbitrary languages as well as,

procedural and object-oriented languages.

7.1.1 Arbitrary languages

This section contains works that present generic approaches for extracting busi-

ness rules. In particular, they provide definitions and common steps for identifying

business rules in the source code, while no implementation details are given.

In [58], the authors describe a formal approach for business rule extraction.

It is based on the mathematical assertion that programs are composed by language

structures, that can be used to define extractable business rule functions. The authors

present two rule extraction functions, one identifies the program structures that are

part of business rules; while the other one locates the program structures that are

119



120 CHAPTER 7. RELATED WORK

not part of business rules. In the following, these two rule extraction functions are

depicted.

Let E be the set of all elements (variables, types, etc . . . ) of a language, and S

be the set of all allowed language structures (statements, functions, etc . . . ) than

can be formed from these elements. The set of all rules R that can be formed in that

language can be defined as:

R = {x|x ∈ S ∧ f(x,E, S)} (7.1)

where the function f is an extractable rule definition function that specifies the prop-

erties that a rule must have in terms of the language elements and structures.

According to the definition of S, a program P can be defined as a set of valid

structures such that:

P = {y|y ∈ S} (7.2)

Therefore, the set of all extractable rules Re, contained in a program P can be defined

as:

Re = {z|z ∈ P ∧ z ∈ R} (7.3)

On the other hand, all the structures in a program P that are not rules can be defined

as the difference between the two sets P and Re:

P −Re = {z|z ∈ P ∧ z /∈ R} (7.4)

In [17] the authors describe a generic approach that contains the common opera-

tions to extract business rules. These operations consist in analysing the source code

in order to identify the business vocabulary and rules and translating such obtained

artifacts into a higher abstraction representation. In particular, two ways are pro-

posed to extract the business vocabulary. The former relies on the analysis of clues

in the code contained in data definitions, comments, variable and function names;

while the latter is based on manual annotations on the code based on the analysts’

understanding. On the other hand, the business rules can be extracted relying on the

information flows and computational procedures embedded in the application. In

particular, business rules can be derived applying static or dynamic analysis on the

code (Sect. 2.4.1). In addition, the authors propose that the extracted vocabulary

and rules should be connected to the corresponding source code (i.e., traceability

between business rules and code). Finally, the rules identified are represented in a

no code-like format relying on the business vocabulary. In particular, the authors de-

scribe an Entity-Relationship extraction process to better understand the rules with

respect to the data model of the system.

In [59], a model-based approach to extract business rules and the architecture



7.1. APPROACHES FOR THE BEHAVIORAL PART 121

of the corresponding tool prototype are presented. The process embedded in the

tool is composed by two steps: preparation and derivation. On the one hand, the

preparation step aims at extracting an initial model from different resources of the

software system (i.e., configuration files, data definitions, etc.). On the other hand,

the derivation step focuses respectively on discovering business terms and rules. In

particular, the former are identified by performing analysis of the structural elements

of the software system’s GUI; while the latter are based on program slicing. Finally,

the discovered set of rules is approved/analysed by the system analysts and then

stored as an internal model. Such model is claimed to be further adapted to Decision

Tables [60] or Semantics of Business Vocabulary and Business Rules (SBVR) [42]

representations.

[58], [17] and [59] have been used to drive the definition of our model-based

conceptual framework. In particular, [58] and [17] have been useful to understand

which source code elements lead to business rules; in addition [17] has been con-

sidered as well with respect to the steps and features that a BREX process should

provide (e.g., vocabulary extraction, traceability, etc.). Finally, [59] has been impor-

tant to understand how a BREX process can be moved to the modeling environment.

7.1.2 Procedural languages

Many previous works have applied BREX approaches on legacy systems mostly

written in procedural languages (COBOL above all). Each of such approaches has

combined different techniques to identify the business rules in the code. In partic-

ular, they have proposed heuristics to discover variables with business-meaning, to

select a slicing criteria to analyse the code as well as multiple representations for

the discovered rules.

In [4] the authors propose a business rule extraction approach for COBOL sys-

tems. They define define a set of extraction criteria such that:

1. The business rules extracted should reflect the true state of the software

2. The business rules should be expressed using different representation to fit

the needs of different users (e.g., programmers, manager, etc.)

3. The extraction process should be able to discover domain concepts and the

business vocabulary

4. The extraction process should be interactive in order to provide the user with

the specific information he needs

5. The business rules extracted should be linked to the corresponding part of the

code in order to ease the maintenance of the system

The proposed approach consists of four steps: the identification of domain vari-

ables; the slicing criterion identification (e.g., backward slicing for an output vari-



122 CHAPTER 7. RELATED WORK

able and forward slicing for an input variable); the program slicing operation con-

cerning those variables identified in the first step and the criterion selected in the

second step; and finally the presentation of the identified business rules. In particu-

lar, the domain variable identification step is composed by two heuristics. The first

heuristic selects all input and output variables as domain variables, since the system

can be viewed as a black box that maps inputs variables to outputs variables. On

the other hand, the second heuristic considers as business variables the input and

output variables of each procedure. On the contrary, three heuristics are provided

for the slicing criterion identification to drive the slicing operation. In particular,

the first heuristic considers the input and output statements of a program good can-

didates for starting a business rule extraction process. They are respectively used to

perform forward and backward slicing operations. The second heuristic focuses on

the part of the source code that represent dispatch centers 1 of the program. Such

dispatches are good candidates to be starting points for forward slicing operations.

On the contrary, the third heuristics considers end points of procedures good can-

didates to be starting points for backward slicing operations. Finally, the identified

rules are presented in the last step of the framework by means of three different

formats: code, formulæand input-output views. The code view presents business

rules as code fragments; the formulae view shows the business rules as formulæ,

where a formula consists in three parts: left-hand-side, right-hand-side and condi-

tions. Finally, the input-output dependence view provides a way to trace data-flows

with respect to input and output variables together.

[2] depicts a method to extract business rules out of COBOL source code. It

focuses on identifying the rules in the code and presenting them with a code-like

representation. The process is composed by three steps. In particular, in the first

step, the user selects a variable (i.e., data item) from the list of all output variables

declared in a particular program or in a set of programs. In the second step, the

references to the variable previously selected are retrieved automatically. In partic-

ular, the author divides such references in three categories: usage, conditional and

assignment. An usage reference is a statement where the selected variable is used

to create or alter another variable. A conditional reference is a statement where the

state of the variable is queried or compared. An assignment reference is a statement

where the variable is created or altered and for this reason it is considered as the

key to identify business rules. The last step of the process consists in capturing the

conditions that trigger the assignments. A separate decision tree of the program

is created and relying on the line numbers of the assignments, the relationships

between the assignments and the conditions in the decision tree are established.

Finally, the extracted rules are presented using a code-like representation.

[61] presents a business rule extraction method applied on an industrial use case.

1. A dispatch center delegates input data of different types to the corresponding processing units



7.1. APPROACHES FOR THE BEHAVIORAL PART 123

The proposed extraction process is divided into four step. The first step consists

in restructuring in an automated way the procedural code to facilitate the slicing.

In particular, such code is reformatted splitting the lines with more than one in-

struction; indenting the nested code and the input/output operations and moving the

database accesses in a separate data access section. In addition, some no-standard

statements (ALTER, NEXT, etc.) are replaced with standard ones; the periods at the

end of conditional statements are replaced with END-IF constructs and finally GO

TO branches are replaced using PERFORM commands. The second step consists in

slicing the source code according to a slicing criterion (i.e. identification of logical

entry points) selected by the user. As a result, depending on such slicing criterion,

several partial programs from the same original program are created. Each of such

partial programs is related to a specific business rule. In the third step, all partial

programs extracted from the original source are submitted to an automated docu-

mentation process. This process is in charge of generating a set of views for each

partial program derived in the previous step. These views provide different kinds

of information concerning the program structures involved in a particular business

rule. In particular, each business rule is related to the corresponding sections and

paragraphs as well as the external interfaces (e.g., input/output operations, interac-

tions with monitors, database accesses), program logic (e.g., conditional statements,

PERFORM, loops, case selections, GO TO branches), data flow and data structures.

Finally, the fourth and final step aims at integrating these disjointed views into a sin-

gle unified business rule documentation.

In [?] and [62], the authors propose a method that extracts business rules from

COBOL legacy code. Such method is composed by three steps, that respectively

identify business variables, discover the business rules in the code and represent

them in different formats. In particular, the variable identification is based on lo-

cating the variables that appear in calculation statements. The business rule iden-

tification consists in retrieving the statements that contain these variables and their

container conditions, if defined. Finally, the business rule representation for [?] and

[62] produces different kinds of artifacts. The business rule representation in [?]

is used to generate graph and textual outputs. The former shows how the rules are

related in the program; the latter relies on clues in the code to translated technical

terms to non-technical terms. In [62], the business rule representation is based on

heuristics to relate the system documentation to the discovered business rules in

order to provide a more abstract representation of such rules.

In [63] and [64] the authors depict a method for identifying and extracting busi-

ness rules from legacy COBOL systems by means of data identification and pro-

gram slicing. The extracted business rule are used to create CORBA (i.e., Common

Object Request Broker Architecture [65]) components in order to reuse them across

different applications. The proposed method is composed by four steps. The first



124 CHAPTER 7. RELATED WORK

step consists in identifying relevant business variables according to a slicing cri-

terion. This is made by classifying the code into three categories: user interface

(i.e. ACCEPT or DISPLAY statements), business logic (i.e., a possible list of small

pieces of code regarding to a data item in different locations) and data access (i.e.,

I/O statement such as READ, WRITE, OPEN, CLOSE, etc.). The second step con-

sists in selecting an entry point for the slicing operation. This entry point is selected

among the statements containing one of the business variables identified in the pre-

vious step. In the third step control flow, control dependence, and data dependence

graphs are used to identify relevant program slices. Such slices are then grouped

according to the business rule they contain. Finally, in the fourth step, each business

rules is converted into a CORBA component.

In [66], the authors propose a framework to support the comprehension of busi-

ness rules extracted from legacy systems. In particular, they focus on those business

rules called constraints (see Sect. 2.4.2). The assumption in this work is that a set

of constraints is extracted from a legacy system by an extraction technique and then

converted from a specific formalism (e.g., the programming language they have

been derived, etc.) into a generic one called Business Rule Language (BRL). Such

BRL is defined to map four types of constraints:

– Constraints used to construct the domain structures, such that only particular

values can be assigned to a structures.

– Constraints that restrict the maximum or minimum number of instances for a

given structure.

– Constraints specifying a relationship between two or more structures (e.g.,

inheritance).

– Constraints defining cardinalities between two or more structure.

The proposed framework is composed by two levels, that respectively define

the internal and external format of business rules. On the one hand, the internal

format (i.e., representation level of the framework) expresses the rules using the

BRL. On the other hand, the external format (i.e., the presentation level) offers

different ways to express the semantics of business rules for different typologies

of users. In addition, the separation between the representation and presentation

level makes the proposed framework extensible; since when a new external format

is required, a simple mapping is created between the BRL and the new external

format.

In [67], the authors present a manual approach to extract business logic from

source code. In particular, they focus on gathering rules that check that important

business conditions have not been violated. The heuristics proposed are based on

analysing the code that handle error conditions, relying on the assumption that if an

error condition occurs within a program, the conditions that led to it could poten-

tially be describing a business rule violation.



7.1. APPROACHES FOR THE BEHAVIORAL PART 125

[68] focuses on recovering the business knowledge out of COBOL legacy sys-

tems. The discovery of business rules is mentioned as a possible application of

the approach though the process to identify and visualize them is not discussed.

The authors present a framework to extract knowledge out of legacy applications.

The corresponding extraction process is composed by three steps: model discov-

ery, extraction and interpretation. Model discovery is based on defining a Domain

Specific Language (DSL) to parse COBOL programs and generating a rough model

representation of such programs. The authors note that, since each COBOL vendor

implements its specific dialect, a DSL must be generated for each of them. In the

second step, this rough model (i.e., technology-dependent model) is translated into

a technology-free KDM (Knowledge Domain Metamodel [11]) model by means of

model transformations. Finally, in the interpretation step, the obtained model is

further transformed into models describing the application to reformat in an object-

oriented way. In particular, this step can be performed in two non-exclusive ways

called essential reverse engineering and modernization. The former is an one-to-

one mapping between the original code and its model, but in this case the resulting

model is poor in terms of semantics. The second manner consists in a incremental

software engineers intervention to introduce semantic tags in the code.

Our framework provides some additional benefits with respect to the works pre-

viously presented. In particular, [4] does not provide a representation of the identi-

fied rules for business users. In particular, no graphical visualization or vocabulary-

based representations are presented. On the contrary, our framework includes both

textual and graphical representations for technical and business users. [2] and [61]

do not provide heuristics concerning the variable/term identification step. In addi-

tion, in both works the application vocabulary is not extracted and as a consequence

the business rule presentation steps express the identified rules using only code-like

representations (e.g., interfaces, program logic, source code representing the rules,

etc.). Our work goes beyond, since we provide heuristics for the variable identifica-

tion step and a higher abstraction level representation of the extracted rules based on

the application vocabulary. [?] and [62] focus on the identification of single "busi-

ness statements" (calculations on relevant variables) within the COBOL code. The

statements modifying the same variable are not treated together to discover com-

plete business rules. In our framework, according to the possible execution paths

in the program we arrange the statements containing a given variable in order to

find complete rules. [63] and [64] do not provide a business rule representation step

since the identified business rules are wrapped as loosely coupled components (i.e.,

web services). [66] focuses on presenting the identified business rules by means

of several representations in order to make them suitable to different users. On

the contrary, the business term and rule identification steps are not treated. [67]

limitates the rule discovery to the rules coded in exception handlers. In addition,



126 CHAPTER 7. RELATED WORK

they propose a manual method that cannot scale when coping with large and com-

plex systems. [68] focuses on recovering the business knowledge out of procedural

legacy systems. Discovery of business rules is mentioned as a possible application

of the approach though the process to identify and visualize them is not discussed.

Finally, in all these previous works traceability between the rules extracted and the

source code is missing or lacks on clarifying how it is implemented (i.e., [?] and

[62]). In our framework, the rule traceability is represented by trace links embed-

ded in the models generated during the BREX process. The correctness of such

links is guarantee by MDE.

7.1.3 Object-oriented languages

Several BREX approaches have been employed on object-oriented languages.

However, even if such works share the same techniques and solutions that have been

used for procedural languages, the corresponding heuristics to extract business rules

have be reimplemented due to the huge difference between procedural and object-

oriented languages.

[6] presents a business rule extraction framework for C/C++ large legacy sys-

tems based on static program slicing. This work is an extension of [4] and it empha-

sizes some specific difficulties to extract business rules from large legacy systems,

compared with normal sized ones. In particular, when dealing with large systems,

the normal textual slice representation does not provide much guidance in the under-

standing due to the large number of domain and synonym variables across the sys-

tem modules. Therefore, presenting and understanding rules extracted from large

systems with common business rule extraction techniques can be a time-consuming

and complex task. The proposed framework is composed by five steps: program

slicing, variable identification, data analysis, business rule presentation and busi-

ness rule validation. The first step consists in slicing the program at call-graph

level. The system is represented by a set of modules and call relations between

modules. A module is included in the call-graph slice if at least one statement of

this module is in the program slice. In this way only a sub-set of the modules that

compose the system is considered. Such sub-set should be small enough to under-

stand the embedded rules. The second step, described as a stand-alone operation in

[69], is related to the identification of domain variables. In particular, the authors

propose two categories of variables, respectively pure domain and derived domain

variables. The former are composed by variables that can be directly mapped to

objects in the application domain; while the latter represent variables dependent on

domain variables. In particular, input and output system variables are often selected

as domain variables; while the derived domain variables are variables used to store

partial computations on the pure domain variables. In addition, in order to reduce



7.1. APPROACHES FOR THE BEHAVIORAL PART 127

the number of domain variables to analyse, a module-based variable classification

is proposed. It consists in identifying for each domain variable, its synonyms across

the system modules. The third step of the framework is based on data analysis to

identify the business items (i.e., set of business rules) actually implemented in the

slice. For each business item and relying on the information concerning the syn-

onym variables, the corresponding business rules are then extracted and collected.

The fourth step of the framework (i.e., the presentation step) collects the rules in

a business rule repository according to an internal representation format and then

present them to the users by means of different external formats to suit their spe-

cific needs. Finally, the last step of the framework, the validation step, consists in a

manual process up to the business experts to validate the business rules extracted.

In [70], a variation of the solution proposed in [6] is presented. The framework

extracts from a large C/C++ system prime business rules, that are defined as rules

that hold relevant meaning with respect to the whole system or a given procedure.

The framework is composed by four steps: prime program slicing, prime domain

variable identification, data analysis and business rule validation. Each step of this

framework follows the heuristics proposed in [6] except for the domain variable

identification step, where an heuristic to locate prime domain variable is presented.

In particular, for each domain variable P, the number of variables that may be modi-

fied by P (i.e., MOD) and the number of variables that may be used by P (i.e., USE)

are considered. These two parameters are used to measure the influence/importance

of P over all the domain variables that are in the same module of P.

In [71], a model-driven approach for extracting business rules from an enterprise

resource planning (ERP [72]) system is shown. The extraction process is composed

by three steps: evaluation cost, knowledge extraction and business logic abstraction.

The first step consists in a preliminary phase used to determine the scope and the

cost of modernizing the system. In this step the architecture, the related components

and dependencies are analysed to define the strategy for extracting the business

knowledge embedded in the system. The knowledge extraction step is based on

representing the system information by means of KDM models. These models are

representations of the documentation, database schema and source code. Finally,

the business logic abstraction step aims at deriving the business logic embedded in

the extracted KDM models. This is achieved by firstly building a CFG of the system,

where data flow analysis is applied to locate the business processing logic; and then

constructing a code-level CFG that discovers the program’s structures related to the

rules.

In [45] the author presents a method to extract decision tables (i.e., that can be

seen as way to express business rules [73]) from Java programs in order to give to

maintenance engineers a better understanding of the control flow of a given pro-

gram. The proposed approach relies on the code instrumentation process, that con-



128 CHAPTER 7. RELATED WORK

sists in inserting additional statements into a program for the purpose of gather-

ing information about its dynamic behavior[74]. In particular, the instrumentation

of Java programs is achieved by analysing the byte and source code. In the byte

code analysis a call graph is built in order to extract information about polymorphic

method calls that represent implicit control flow in Java programs. On the contrary,

in the source code analysis, all the decision-making statements such as conditional

and switch-case statements as well as looping statements (i.e., while, do-while and

for statements) are instrumented to record the program path during the execution

of the instrumented version of the application. Finally, when the program has been

instrumented, its execution allows to extract the control flow information related

to decision-making statements, which can then be used to construct the decision

tables.

Our framework goes beyond the works previously described. In particular, in

[6] and [70], the business rule representations do not rely on the application vocab-

ulary and as consequence, they are difficult to be understood by business analysts.

On the contrary, in [71], the business rule representation includes source code-based

artifacts and more abstract representations such as graphs and vocabulary-based ver-

balizations. Despite this, such representations are not discussed in detail. [6], [70]

and [71] do not implement rule traceability and the extracted rules are not separated

from their context. [45] implements rule traceability, but it employs code instru-

mentation techniques. Such operation is intrusive, since the code must be modified

to recover the dynamic behavior information. In our framework, rule traceability

operates at model-level; as a consequence, the source code is kept in place.

7.2 Approaches for the structural part

The discovery of business rules in databases has been largely studied as part

of the database reverse engineering process [7]. We separate the previous works

according to the main steps of the aforementioned process.

Therefore, we discuss solutions concerning the extraction of conceptual schemas

from database implementations and the mappings between database integrity con-

straints and business rules languages, notably OCL and SBVR.

7.2.1 Database implementations and conceptual schemas

Many reverse engineering works have been focused on extracting conceptual

representations (i.e., ER/UML models) out of relation database schemas. In the

following we describe the solutions proposed in [75], [7], [76], [77], [78], [79],

[80], [81], [82], [83] and [84].



7.2. APPROACHES FOR THE STRUCTURAL PART 129

In [75] the author presents the common steps of a reverse engineering process

for relational databases. The process is divided as follow:

1. Identification of the database schema with its tables and their corresponding

relations.

2. Discovery of the domain semantics such relationships’ cardinalities between

tables and database integrity constraints.

3. Representation of the extracted schema and semantics in a conceptual model

that ease the comprehension of the extracted information.

In [7] the authors propose a method that integrates the common steps of a re-

verse engineering process and program analysis techniques. The proposed approach

is composed by two main-steps: data structure extraction and data structure concep-

tualisation. In the first step, the database structure is recovered from the physical

schema, programs and the data stored in the database. This step is divided in three

sub-steps: database text analysis, program analysis, data analysis and schema inte-

gration. In the text analyses, the logical schema, that contains the explicit constructs

and constraints, is extracted from the data structure declarations (e.g., table decla-

rations, etc.) defined in the database. In the program analysis, the application pro-

grams and the related procedural parts are analysed to detect implicit data structures

and integrity constraints. In the data analysis, data structures and properties are dis-

covered from the data stored in the database by means of data patterns. Finally,

the schema integration merges the schemas obtained from the previous steps and

returns a rough logical schema including both the implicit and explicit structures

as well as the related constraints. The second step of the proposed method is the

data structure conceptualisation. It consists in refining the logical schema obtained

in the previous step and extracting from it an equivalent conceptual interpretation.

In particular, the conceptual schema is derived by removing or transforming the

non-conceptual structures and redundancies in the rough logical schema.

[76] presents a method for extracting a conceptual schema from a relational

database. The method consists in analysing data manipulation statements in the

code of a software system that relies on a relational database. The proposed pro-

cess is composed by two main steps: the generation of a connection diagram and

the derivation of a ERC+ diagram (an ER model extension) from the connection

diagram. In the first step, semantically related attributes are identified by analysing

the join clauses in the data manipulation statements of the application. Such at-

tributes are then represented as relation schemes. These schemes are used to create

an incomplete version of a connection diagram, that is later enriched with further

information. In particular, such information concern the object types of the relation

schemes identified and the corresponding relations between them (i.e. anchors). In

the second step, this connection diagram is transformed into an ERC+ diagram by



130 CHAPTER 7. RELATED WORK

means of a set of translation rules: node, link and refinement rules. Node rules

analyse the object types and anchors in order to identify entity, relationship and de-

pendent types in the ERC+ diagram. Link rules are used to identify properties and

dependencies relations within the attributes composing an anchor. Finally refine-

ment rules combine the information given by the previous rules and derive the final

translation.

In [77] the authors depicts a process to extract business knowledge from an

system considering the information contained in its relational database and legacy

source code. The reverse engineering process is composed by two parts: schema

extraction and semantic analysis that respectively extract the database schema and

enrich it with information retrieved from the application code. These two parts are

achieved by an eight-step process. In the first step an abstract syntax tree is gener-

ated from the application code in order to perform a semantic analysis. In particu-

lar, this analysis consists in associating the program variables to a column of a table

within the database. The second step aims at extracting attribute and relation names

from the legacy source. Such information can be retrieved in two different ways

either by querying the database or analysing the application code. The former is a

manual operation, while the latter is depicted as semi-automatic. In particular, the

code analysis aims at finding possible primary key candidates using predefined rule

patterns, that identify SQL queries in the code. If a primary key is not found, the

reduced set of candidate keys is returned and a manual selection can be made. The

third step performs a code analysis based on program slicing and pattern matching

as well as data dependency and control flow graphs. These operations aim at enrich-

ing the dictionary extracted in the previous step and at identifying business rules not

explicitly stored in the database. The fourth step identifies inclusion dependencies

constraints (e.g., class/subclass relationships). Such constraints are derived for each

pair of relations and attribute combinations (i.e., discovered in the second step) by

running SQL queries and checking the number of tuples returned. The fifth step

identifies the different types of relations. Such relations are classified into four cat-

egories: strong, regular, weak or specific, according to the primary key information

extracted in the second step and inclusion dependencies in the fourth step. In partic-

ular, a strong entity-relation is defined by a primary key composed by attributes that

are not primary keys of other entities. A weak entity-relation contains properties

that are primary key attributes in other entities. Finally, regular relations represent

relationship composed by entities in the database schema; while specific relations

contain at least an entity that is no longer part of the schema (e.g., deleted as part of

the normal schema evolution process). In the sixth and seventh step the attributes

and the entities are classified. In the former the attributes of extracted entities are

classified as primary, foreign, dangling keys or non-keys; while in the latter, the

entities are classified as strong or weak, according to the strong and weak entity



7.2. APPROACHES FOR THE STRUCTURAL PART 131

relations discovered in the fifth step. Finally, in the eighth step the cardinalities

of the relations of the extracted schema are determined according to the inclusion

dependencies and the different types of relations identified.

In [78], the authors propose a process for extracting conceptual models out of

a database schema. The process only relies on the information contained in the

database. Initially, a tentative class is created from each table and the class at-

tributes are derived from the columns composing the corresponding table. Then,

progressively, the rough conceptual model obtained is refined according to the in-

formation discovered about primary keys and foreign key groups. In addition, the

latter are used to derive both generalizations and associations among the classes

in the model. Finally, transformations on the classes and associations discovered

are applied in order to optimize the conceptual model. For instance, these trans-

formations can concern changing, where possible, one-to-one associations to class

attributes; or inserting intermediate classes in a generalization hierarchy to recog-

nize common semantics, attributes and associations.

In [79] a reverse engineering method is presented to convert database schemas

in UML models expressed in XMI (XML Metadata Interchange) format. The map-

pings are defined on tables, attributes and relations embedded in the database schema.

The conversion process analyses the SQL CREATE statements and derives for each

table, the corresponding UML class. In addition, a further analysis on table columns

and foreign keys completes the obtained UML classes. For each table column ac-

cording to its name and data type, a property in the corresponding UML class is

derived. Moreover, each property that corresponds to a primary key in the database

schema, is annotated with a primary key stereotype. Finally, foreign keys are

mapped to properties as well and they are used to create association between the

UML classes. In [80], an opposite method to [79] is presented. The authors de-

scribe how to generated relational schemas from UML models. The method relies

on mappings between the XMI format and SQL.

[81] presents a method able to map a relational schema to an object-oriented

schema. The method is composed by two main steps: object classes and relation-

ships identification. In the first step, the object classes are identified from Second

and Third Normal Form relations [85]. While in the second step, three kinds of

relationship between classes are discovered: association, inheritance and aggrega-

tion. In particular, associations can be identified according to two cases. The former

consists of primary keys composed by foreign keys. The corresponding classes are

named association-classes and they are considered both associations and classes at

the same time. The latter aims at creating an association between classes that are

not association-classes according to the primary and foreign key information. Three

kinds of inheritance relationship are discovered. The first case concerns tables that

have the same primary key, such that in the relation schema one relation for the



132 CHAPTER 7. RELATED WORK

super class and one relation for each subclass exist. The second case identifies

inheritances embedded in a single class relation; while the third case refers to rela-

tions that contain repeated attributes of the superclass. Finally, the identification of

aggregation relationships is based on analysing primary and foreign keys.

In [82], a method to convert data and schemas of relational databases to the cor-

responding equivalent in the object-oriented technology is proposed. The method

is composed by three steps that include schema translation, unload and reload data

from the source relational database to the target object-oriented database. The first

step aims at identifying functional and inclusion dependency constraints and class

objects as well as association attributes and inheritance. A functional dependency is

defined on pairs of attributes X, Y; such that the value of X must be associated with

precisely on value of Y. On the other hand, an inclusion dependency is defined if the

set of values appearing in the attribute X are a subset of the set of values appearing

in the attribute Y. The class objects are derived from relation, such that for each rela-

tion a class object is created and for each attribute in the relation, the corresponding

attribute in the class is created. The foreign keys are used to determine the associ-

ation attributes of the conceptual model. In particular, one-to-many and one-to-one

relationships are represented by a containment hierarchy and a variable that points

to the other class composing the relationship. On the other hand, many-to-many

relationships are composed by two association attributes (i.e., represented by a con-

tainment hierarchy and a variable) in the class object, that respectively point to the

other classes composing the relationships. Finally, the inheritance is derived from

isa relationships. Such relationship is applied to two classes called respectively su-

perclass and subclass and it is defined only if the primary key of the relation that

corresponds to the subclass is a subset of the primary key of the relation that corre-

sponds to the superclass. The second step of the method transforms relations’ tuples

into insert statements and add them to a sequential file. In a second phase, for each

foreign key, its referred parent relation’s tuple is translated into an update statement

and unloaded into another file. Finally, for each subclass relation, its referred super-

class relation’s tuple is converted into an updated statement and finally loaded into

a third file. The third step consists in reloading the sequential files generated into

an object-oriented database. As prerequisite of this step, a conceptual model has to

be derived from the relational database from which the sequential files have been

calculated. The files are loaded in order as they have been generated in step two.

[83] introduces a methodology for transforming relational schemas into object-

oriented ones according to ODMG-93 standard, that defines the core aspects of

an object-oriented schema. In this way, the schema conversions can be made in

a system-independent way by using the ODMG model as target. The proposed

approach is a three-step process based on extracting the relation schema from a

database application and then transforming the obtained schema into ODMG struc-



7.2. APPROACHES FOR THE STRUCTURAL PART 133

tures. Finally a refining step is performed to obtain a conceptual schema aligned

with the object-oriented principles.

[84] presents a solution to express relational database views as derived classes in

conceptual models. In particular, the author shows how the expressiveness of OCL

can be used to represent the relational algebra embedded in database views (i.e.,

restricting his analysis to views without aggregates and grouping constructions).

The proposed approach is divided in three steps. Firstly, a database class is defined

as the root class of the conceptual model. Then, for each view, a derived class

in OCL is built. In particular, the derived class is created using sets, tuples and

equivalent OCL constructs able to express the Cartesian product operation in SQL.

In addition, each input of the Cartesian product in OCL takes as input a base class

in the conceptual model that represents a table in the database schema. In the last

step, the context and the return type of the derived class are determined, such that

the former is the database class defined in the first step, while the latter depends on

the conversion of the column data types composing the view.

7.2.2 Database constraints and business rules

This section describes works that bridge integrity constraints embedded in the

database schema (i.e., expressed in SQL) to business rules languages. In particu-

lar, we separate two kinds of approach with respect to the business rule language

employed, such that we discuss mappings respectively for SQL and OCL, and SQL

and SBVR.

SQL and OCL

In [40], the authors analyse the OCL language to investigate imprecise or am-

biguous definitions. In addition, they provide a comparison between OCL and a

language for specification of queries and integrity constraints in EER models (i.e.,

ERR calculus). ERR calculus and OCL share the same purpose. In particular, they

are intended to specify declarative constraints in order to restrict the possible sys-

tem states to desired ones. In addition, they both allow to query the current state of

a system. Despite this, these languages rely on a different notation, on the one hand

OCL directly allows to navigate through a class model in a path expression-like

style, that improves the readability for small expressions. On the other hand, the

logic-based EER calculus formulations rely on the SQL-like query notation, that

results more user-friendly when dealing with large expressions.

In [86], the authors discuss the expressive power of OCL. In particular, they

focus on the OCL mapping proposed for the operations of the relational calculus.

These operations are respectively union, set difference, intersection, Cartesian prod-

uct, quotient, projection, selection, join and natural join [87]. Union, difference, in-



134 CHAPTER 7. RELATED WORK

tersection are primitive operations in OCL; while projections and selections can be

emulated using respectively collect and select operations. On the contrary, Cartesian

products, joins and natural joins are not directly expressible in OCL. Nevertheless,

the Cartesian product can be mapped in OCL as an union operation between two

sets of instances, that correspond to the tuples contained in two database tables. On

the other hand, join and natural join operations can be represented using the OCL

mapping previously proposed for Cartesian products and selections.

In [88], the authors analyse OCL as a query language for querying UML mod-

els. In particular, they propose definitions for a new data type called tuple and two

operations named product and project. Such operations are defined respectively

on collection and tuple types. The tuple type is defined in a very similar way to

the OCL collection types (i.e., Set, Sequence and Bag) and the authors show how

such instances can be defined as part of an OCL expression. The product operation

is defined as a Cartesian product between two or more sets of instances. Finally,

the project operation is defined to extract specific elements from the target tuple

whereon is applied.

In [23], the authors propose a method to extract the conceptual schema from

a database system, translating as well the related built-in data type and declarative

constraints to their equivalent in the UML/OCL conceptual schema. The mapping

between the built-in data types in the database and the predefined set of data types

permitted in the UML language are provided for Char(n), Varchar2(n), Integer,

Float, Date and Number(precision, scale). In particular, the Char(n) type is trans-

formed into a String type with an additional OCL constraint over all attributes of

that type stating that the length of their String value must be exactly n. The Var-

char2(n) type is transformed into a String type with an additional constraint verify-

ing that the maximum length of the String value is n. Integer, Float, Date types are

transformed into their equivalents UML Integer, Real and Date types. Finally, the

Number(precision, scale) is transformed into an Integer data type when precision

is zero and into a Real type otherwise. The mapping between the declarative con-

straints and OCL invariants are provided respectively for NOT NULL, UNIQUE

and PRIMARY KEY constraints as well as for CHECK constraints. A NOT NULL

constraint is represented as a minimum 1-multiplicity in the corresponding attribute

or association of the class in the conceptual schema. UNIQUE and PRIMARY

KEY constraints are represented as an OCL invariants. The context is the class that

corresponds to the table in the database schema; while the body of the invariant is

C::allInstances()->isUnique(attr) where attr is the attribute marked as UNIQUE or

PRIMARY KEY in the table. In case these declarative constraints involve more than

one attribute, the body of the invariant is defined as C::allInstances()->forAll(x,y |

x<>y implies (x.att1<>y.att1 or . . . or x.attn<>y.attn where attr1 . . . attrn are the set

of attributes restricted by the constraint. Finally, the CHECK constraints are con-



7.2. APPROACHES FOR THE STRUCTURAL PART 135

verted to OCL invariants with an equivalent expression in the body.

[21] shows how OCL, UML and SQL can be used in modeling database con-

straints and discuss their advantages and limitations. In particular, the authors

present patterns for mapping OCL invariants to SQL code. Simple OCL invari-

ants can be mapped to SQL table constraints, such that the name of the table to

create is the context of the invariant, the current row is the contextual instance self

in OCL and the body of the invariant is translated as a CHECK constraint in the

table declaration. Nevertheless, since referring to the current row in nested queries

can be a problem, this solution cannot be applied to more complex OCL expres-

sions. On the contrary, a mapping that works for complex expressions consists in

transforming the OCL invariant in a forAll operation, that is then mapped to an SQL

predicate and nested in the EXIST predicate of a standalone constraint (e.g., asser-

tion). This obtained constraint is satisfied if no tuple that corresponds to an object

invalidating the OCL invariant is found. However, this mapping works only with

single OCL expressions that return a boolean value as result type. Since an OCL

expression can be composed by different subexpressions, other OCL mappings are

presented for expressions concerning basic, model and collection types. The values

and mostly of the operations (e.g., unary, multiplicative, additive, etc.) of the basic

OCL types (i.e., Real, Integer, String, Boolean) have a direct SQL counterpart. If

the return type of the OCL subexpression is Boolean, the aforementioned mapping

is used; otherwise the subexpressions are translated into equivalent SQL predicates.

The OCL model type mappings are divided with respect to classes and attributes,

navigations and operations. A class is mapped to a table and an object of that class

to a row of that table, so that each object identifier corresponds to a unique value of

the primary key. On the contrary, attributes are mapped in a straightforward way ac-

cording to this translation pattern: <class_table>.<attribute> -> table.<attribute>.

Navigations are expressed by queries with nested sub-queries. The corresponding

mapping depends on the kind of association and how it is represented in the database

schema. Finally OCL operations can be mapped as static methods in Java called by

SQL statements. The OCL collection types concern mappings for complex predi-

cates, basic values and queries. They respectively cover all OCL collection oper-

ations that result in boolean values (e.g., includes, excludes, forAll, etc.), in basic

values (e.g., Real, Integer, String) and in a collections again (e.g., asSet, asBag,

select, reject, etc.).

[89] presents a method to translate and back-translate OCL expressions into

SQL queries. The proposed algorithm to map OCL to SQL consists in three steps.

Initially the table and the alias table names are derived from the input OCL ex-

pression, then JOINs, SELECT and WHERE clauses are calculated from the OCL

operations; and finally the extracted information are merged to an SQL query tem-

plate. On the other hand, the algorithm for translating SQL to OCL is composed by



136 CHAPTER 7. RELATED WORK

two steps, such that firstly the classes are retrieved from the FROM clause and the

OCL operations are derived from both SELECT and WHERE clauses. Finally, the

extracted information are merged with a OCL query template.

In [90], the authors present mappings to express constraints on binary relation-

ships within UML/OCL in SQL views. Mappings are provided for 1-1, 1-n, m-n

relationships. In addition, a further mapping is provided for relationships having

either the minimal multiplicity greater than one or the maximal multiplicity other

than *. Finally, the obtained views are used to retrieve the records violating the

constraints on the multiplicities.

SQL and SBVR

[22] presents an approach for extracting structural business rules, expressed in

SBVR, from legacy databases. The business rule extraction process is performed in

three steps. Firstly, the business concepts are extracted from the database; then con-

nections (i.e., fact types) between the concepts previously discovered are identified

by means of verb phrases; finally, the business rules are extracted by enriching the

fact types with quantifiers, modal and logical keywords. In addition, the extracted

business rules are connected to the tables, columns and comments composing the

database application. The business concepts are extracted from tables and table

columns, since they often represent business relevant information. Furthermore,

each table column is also used to identify a fact type due to its relationship with the

table that belongs to. The connections between business concepts are discovered

by analysing foreign key constraints. The name of the corresponding fact types in

SBVR is derived from the table/column comments the constraints reference. Fi-

nally the structural business rules are derived from SQL CHECKS and NOT NULL

constraints coded in the table declarations of the database schema.

7.2.3 Stored procedures, triggers and business rules

In [91], the author describes an approach for extracting business rules from

PL/SQL [51] code in order to allow a better management and a drastic reduction

of traditional code. The process is composed by seven steps. In the first step the

code is analysed in order to collect conditions and actions; while in the second step

the information extracted in the first step are entered in decision tables. In the third

step, a verification is performed for tabular correctness and completeness and in the

fourth step, a decision tree is generated from the decision table. In the fifth step, the

decision tree is analysed and compared with the code; while in the sixth step, busi-

ness rules are generated from the decision tree and manually optimized. In addition,

they are stored in a business rules repository. Finally, in the last step the source code

is replaced by calling the extracted business rules from the repository.



7.3. COMPARISON WITH OUR FRAMEWORK 137

In [92] the authors propose an approach to generate SQL views from business

rules expressed as OCL invariants adapting the patterns presented in [21]. The re-

sult of a view evaluation is a set of tuples from the constrained table that represent

the objects violating the invariants. In addition, the generated views can be used by

triggers, that evaluate the constraints after each critical data manipulation operation.

In this way, when any constraint violation is found, the trigger should rollback the

current transaction and send an appropriate error message to the application. The

view can be later evaluated in three ways: application driven view evaluation, as-

sertion replacement and Event-Condition-Action trigger template. In the first case

the evaluation is done by using Java and JDBC to access to the database. In the

remaining cases two trigger templates are created, such that the former raises an

application error if the evaluation fails; while the latter is prepared to the treatment

of faulty data.

In [93], the authors provide a mapping between OCL and SQL. In particular,

they focus on representing participation constraints into OCL and Trigger-based

constraints. A participation constraint represents generally conditions on links be-

tween objects of a class or objects of two or more others classes. Two kinds of

participation constraint are studied, those defined on classical binary associations

and those defined on generalization/specialization links (inheritance links). Partici-

pation constraints on binary associations control the link of objects of the same class

to objects of different classes. Several kinds of participation constraints are identi-

fied in binary associations: inclusion, simultaneity, exclusion, totality and xor. The

inclusion is used when a given object A participating in a relation R1 must partici-

pate in a relation R2; the simultaneity is used when a given object A must participate

in both R1 and R2 associations; the exclusion is used when the object A participates

either in R1 or R2 or in none of them; the totality is used when all A-objects must

participate in R1 or R2 or both at the same time. Finally, the xor is used when

all A-objects must participate in only one association between R1 and R2. On the

other hand, participation constraints on generalization/specialization links are di-

vided into disjoint and complete constraints. A disjoint constraint specifies whether

two objects of different specializations may be related to the same object of the gen-

eralization. A complete constraint specifies whether objects of the specifications are

related to all generalization-objects.

7.3 Comparison with our framework

This section compares the previous works with our BREX framework for the

behavioral and structural parts of systems.



138 CHAPTER 7. RELATED WORK

7.3.1 Behavioral part

The discovery of business rules from legacy source code is a research domain

that has been explored extensively (see Sect.7.1). Nevertheless, our framework

brings some contributions to such domain. We discuss the previous works with

respect to different criteria that are described below:

– Granularity. It separates the statements that compose a business rule accord-

ing to the information they contain. In particular, such information can be

directly related to the business variable or contained in the rest of the execu-

tion path where the rule has been discovered.

– Orchestration. It allows to understand the dependency between the extracted

rules (i.e., how the rules are connected each other).

– Internal-external representation. It provides a two-level representation of the

business rules. Such representation makes possible to generate different out-

put as well as to add new external formats for the same business rules

– Vocabulary-based representation. It is used to provide a more abstract verbal-

ization of the rules avoiding the specificities of the programming language.

– Traceability. It allows to relate the extracted rules back to the source code.

In [4], only the criteria concerning the internal-external representation and the

orchestration are satisfied. In particular, the statements composing a rule are not

separated with respect to the context and no traceability is kept between the ex-

tracted rules and the source code. Although an internal-external representation of

the rules is implemented and several output artifacts are defined to express the rules;

none of them allows to produce a verbalization based on the application vocabulary.

Finally, the rule orchestration criteria is achieved by merging the obtained program

slices with the data flow concerning the variables in such program slices.

In [2] and [61], the internal-external representation criteria is met. In particu-

lar, the original program is split in partial programs according to the business rules

identified. Each partial program (i.e., internal representation) is used to generate

five views (i.e., external representations) that highlight certain features of that par-

tial program (e.g. data structures, program logic, etc.). In addition, the proposed

frameworks does not provide heuristics concerning the variable identification step.

In [?] and [62], all criteria expect the granularity of the extracted rules and the

vocabulary-based representation are met. The authors focus on the identification

of single “business statements” (calculations on relevant variables) and the corre-

sponding container conditions (if defined). They do not extract from the execution

path that contains a rule, the set of conditions that trigger that rule. In addition, they

do not provide a vocabulary-based representation of the extracted rules. Neverthe-

less, they bridge the identified rules to the documentation of the system. Finally,

although the authors claim that rule traceability has been implemented, no explana-



7.3. COMPARISON WITH OUR FRAMEWORK 139

tion is provided.

[63] and [64] do not meet any of the defined criteria. In addition, they do not

provide a business rule representation step, since the identified rules are migrated to

CORBA components.

[66] meets the criteria concerning the internal-external representation of the ex-

tracted rules and the vocabulary-based representation. In particular, the former is

achieved by defining a business rule language; while the latter is based on a do-

main knowledge database that allows to translate low-level variable names to more

comprehensible domain concepts.

In [67] no criteria is met. In addition, the proposed approach is depicted as a

manual rule extraction process. This entails that such approach would hardly scale

on a large legacy system.

[68] focuses on recovering the business knowledge out of legacy systems. Dis-

covery of business rules is mentioned as a possible application of the approach

though the process to identify and visualize them is not discussed. Nevertheless,

the internal-external representation criteria is met. In particular, the source code is

transformed into KDM models that are then used as internal representation of the

system.

In [6] and [70], the criteria related to the internal-external representation as well

as the orchestration of rules are met. The former relies on the work in [66], while

the latter is achieved by a slicing performed on the call-graph of the application.

In particular, since the obtained slices contain a set of programs that are in turn

analysed for extracting business rules; it is possible to determine the position of such

rules in the call graph of the application. These positions can be used to orchestrate

the discovered rules.

[71] the internal-external representation and vocabulary-based criterias are met.

The former is represented by a set of KDM models derived from the AST of the

application. Such models are then used as internal representation of the identified

business rules. The latter is achieved by discovering business terms while generat-

ing the KDM models.

[45] meets the traceability criteria. Nevertheless, the traceability is achieved

relying on an intrusive approach based on the byte-code instrumentation of the ap-

plication.

7.3.2 Structural part

The BREX process from the system structural part is compared with the pre-

vious works on database reverse engineering that are focused on extracting a con-

ceptual model from the database schema and mapping the constraints expressed at

database-level and their equivalent in the conceptual model.



140 CHAPTER 7. RELATED WORK

Criteria [4] [2]
[61]

[?]
[62]

[63]
[64]

[66] [67] [68] [6]
[70]

[71] [45]

Granularity
Orchestration x x x
Internal-external
representation

x x x x x x x

Vocabulary-based
representation

x x

Traceability x x

Table 7.1: Related work comparision

The extraction of conceptual models out of database implementations has been

the focus of several previous researches (see Sect. 7.2.1). Nevertheless, such works

do not cover the constraints beyond primary and foreign keys also included in the

schema.

On the contrary, other reverse engineering approaches center their attention on

such constraints (see Sect. 7.2.2). Some of the earlier works show how business

rule/constraint languages like OCL can be used to express the relational calculus

([40], [86], [88]); while others present mappings between database languages and

business rule languages.

In particular, most of these previous works provide translations respectively

from OCL to SQL ([21], [89], [90]) and from OCL to PL/SQL ([92], [93]) to repre-

sent business rules expressed at model-level by means of database constraints. On

the other hand, only few works ([23], [22], [91]) define mappings from database

languages to business rule languages. Nevertheless, none of them focuses on the

analysis of business rules/constraints enforced enforced by means of triggers.



8
Conclusion and further research

8.1 Conclusion

Organizations rely on the logic embedded in their information systems for all

their daily operations. This logic implements the business rules in place in the

organization, which must be continuously adapted in response to market changes.

Unfortunately, these business rules are not usually implemented as a single and

easily identifiable component in the underlying system.

In order to recover the business rules embedded within a system, we have relied

on MDE, that has shown the maturity of software modeling paradigm to be applied

on the analysis of programming languages and BREX processes. In particular, we

have defined a model-based reverse engineering framework that offers modularity

with respect to the business rule extraction process and genericity with respect to the

programming language that implements the system. In addition, the business rules

obtained can be analysed at different level of detail (i.e., source code, vocabulary-

based and graph-based artifacts) and they can be easily related to the corresponding

source code elements (i.e., traceability).

This conceptual framework has been implemented for the behavioral and struc-

tural part of systems. In particular, COBOL and Java have been analysed for the be-

havioral part. The source code has been sliced to extract the relevant statements with

respect to a given business variable (i.e., terms), identified by means of heuristics

related to the programming language employed for the system. These statements

have been stored in a model-based internal representation and then externalized by

means of visualization techniques (i.e., text and graphs) to fulfill the needs of dif-

ferent users (i.e., business analysts, developers).

141



142 CHAPTER 8. CONCLUSION AND FURTHER RESEARCH

In addition, evaluations concerning the implementations of the BREX frame-

work have been performed on two IBM use cases. The return of experience has

been positive and the lessons learned have helped us to improve such implementa-

tions and point out further researches.

With respect to the structural part of the system, we have focused our analysis

on relational databases. In particular, a UML conceptual model has been derived

from a database implementation to identify the business terms, and the database

integrity constraints coded in table definitions and triggers have been analysed to

extract rules expressed as OCL invariants. Finally, a prototype has been created as

a proof of concept to validate the feasibility of our BREX framework for databases.

8.2 Further research

In this section we present four possible lines of future research. The first one

pretends to extend our BREX process to the part of the system that concerns the

presentation of information; the second envisages the possibility to define a com-

mon/pivot business rule metamodel to represent the identified rules expressed by

different programming languages (e.g., COBOL, Java, etc.), the third one consists

in adding an automatic validation step for the business rules extracted in order to

discover inconsistencies within the system and finally, the last future research con-

cerns the system redocumentation according to the extracted business rules.

In the following, we discuss the four future research lines proposed.

8.2.1 Business rule extraction for the system presentation part

We have applied our framework to the behavioral and structural part of systems,

discovering in this way the embedded derivation and constraint rules. We believe

that to complete our BREX process in an information system, the analysis of the

logic enforced as part of the system presentation part is needed.

Such part aims at integrating user interactions with the system. It consists of

visual objects (i.e. screens, web pages, report, forms, etc.) used to collect user input

and to display output information. In particular, we are interested in analysing the

part of the source code used to enter data (e.g., forms in Java, screens in COBOL),

since generally they embed checks on the data entered. Therefore, these controls

can be analysed to complete the business constraints retrieved from the structural

part of the system.

In addition, visual objects are related to input/output system variables, that can

hint at relevant business concepts. Hence, these variables can improve the heuristics

defined in the Business Term Identification step and consequently the result of our

framework.



8.2. FURTHER RESEARCH 143

8.2.2 Definition of a pivot metamodel

Our conceptual framework has been applied to different programming languages,

namely COBOL, Java and SQL-PL/SQL. Although the steps of the conceptual

framework are generic, the business rules extracted from such languages are stored

in models that conform to different metamodels. As a consequence, in order to au-

tomatically unify the business rules discovered in the different parts of the system,

further manipulations are needed to overcome these heterogeneous model-based

representations.

The use of a pivot metamodel can come in handy when analysing together the

behavioral and structural part of the system or when dealing with a part of the sys-

tem (i.e., behavioral, structural) that merges different programming languages. This

is specially true for legacy systems that have been evolved over time, where the be-

havioral part contains some functionalities implemented in newer technologies as

Java and other ones in older technologies as COBOL. In addition, the definition of a

common metamodel would simplify the integration of an automatic validation step

in the framework.

The trade-off of using such a pivot metamodel has been evaluated at the be-

ginning of this thesis when designing the conceptual framework. In particular, on

the one hand, the pivot metamodel makes easy to export, merge and automatically

check the rules extracted from different programming languages since they are rep-

resented by a unified format. On the other hand, such unified representation entails

the loss of the specificities proper of any programming language, hence the rules

are complete, but less detailed.

8.2.3 Automatic validation of the business rules

Our conceptual framework does not include an automatic validation for the

business rules extracted. Currently, the rules are validated by the business an-

alysts/developers. Unfortunately, this activity is generally error-prone and time-

consuming, since the number of discovered rules can be huge and the analyst/developer

might not have a clear knowledge of the system.

Therefore, we would like to implement an automatic validation step that looks

for inconsistencies and duplicated rules. We believe that this step can be imple-

mented in two ways. On the one hand, if all extracted rules were expressed in OCL

and applied on a UML model representing the whole system, the use of Constraint

Satisfaction Problem techniques and the related works in MDE (e.g., [56]) could

help to implement this new step. On the other hand, the extracted rules could be

transformed in a suitable format to make them run in a Business Rule Management

System (BRMS); since the facilities provided by such systems often include special



144 CHAPTER 8. CONCLUSION AND FURTHER RESEARCH

environment to test and validate the rules 1.

8.2.4 Rule-driven system redocumentation

The documentation related to source code of legacy systems is often poor and

not aligned with the current implementations of such systems. Hence, without (or

with wrong) hints from the comments, understanding the source code turns into a

complex maintenance task. In order to ease such understanding, we believe that

the information contained in the extracted business rules can help to redocument

the source code. In particular, such information can be used to generate comments

on the statements composing the rules and to derive further information about the

business processes embedded in a given system.

In addition, relying on model-driven techniques, we can perform this redocu-

mentation in a non-intrusive way, since the comments can be added to the model,

that can be later used to regenerate the corresponding system/programs.

1. http://tinyurl.com/IBMDecisionManagerRuleVal



Bibliography

[1] Hay, D., Healy, K.A., Hall, J.: Defining Business Rules – What Are They

Really? 11, 16, 17, 30, 37, 38

[2] Sneed, H.M., Erdös, K.: Extracting Business Rules from Source Code. In:

Fourth Workshop on Program Comprehension. (1996) 240–247 12, 19, 32,

40, 49, 122, 125, 138, 140

[3] Rugaber, S.: Program comprehension. Encyclopedia of Computer Science

and Technology 35(20) (1995) 341–368 12, 32

[4] Huang, H., Tsai, W., Bhattacharya, S., Chen, X., Wang, Y., Sun, J.: Business

Rule Extraction from Legacy Code. In: Computer Software and Applications

Conference. (1996) 162–167 12, 19, 32, 49, 121, 125, 126, 138, 140

[5] Putrycz, E., Kark, A.W.: Recovering Business Rules from Legacy Source

Code for System Modernization. In: Advances in Rule Interchange and Ap-

plications. (2007) 107–118 12, 19

[6] Wang, X., Sun, J., Yang, X., He, Z., Maddineni, S.: Business Rules Extraction

from Large Legacy Systems. In: European Conference on Software Mainte-

nance and Reengineering. (2004) 249–254 12, 19, 32, 49, 126, 127, 128, 139,

140

[7] Henrard, J., Englebert, V., Hick, J.M., Roland, D., Hainaut, J.L.: Program

Understanding in Databases Reverse Engineering. In: Database and Expert

Systems Applications. (1998) 70–79 13, 33, 128, 129

[8] Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering

in Practice. Synthesis Lectures on Software Engineering 1(1) (2012) 1–182

13, 33, 42

[9] Mohagheghi, P., Fernandez, M.A., Martell, J.A., Fritzsche, M., Gilani, W.:

MDE adoption in industry: challenges and success criteria. In: Models in

Software Engineering. (2009) 54–59 13, 43

[10] Booch, G., Jacobson, I., Rumbaugh, J.: OMG unified modeling language

specification. Object Management Group (2000) 1034 15, 44

145



146 BIBLIOGRAPHY

[11] Pérez-Castillo, R., De Guzman, I.G.R., Piattini, M.: Knowledge Discovery

Metamodel-ISO/IEC 19506: A standard to modernize legacy systems. Com-

puter Standards & Interfaces 33(6) (2011) 519–532 15, 44, 125

[12] Galvão I., Goknil, A.: Survey of Traceability Approaches in Model-Driven

Engineering. In: Enterprise Distributed Object Computing Conference. (2007)

313–326 15, 45

[13] Jouault, F.: Loosely Coupled Traceability for ATL. In: European Conference

on Model Driven Architecture workshop on traceability. (2005) 29–37 15, 45

[14] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation

tool. Science of Computer Programming 72(1-2) (2008) 31–39 16, 45, 74, 96

[15] OMG: OMG, MOF and Specification, QVT Final Adopted (2007) 16, 45

[16] Gottesdiener, E.: Capturing business rules. Software Development Magazine

7(12) (1999) 16, 37, 38

[17] Baxter I., H.S.: A Standards-Based Approach to Extracting Business

Rules. http://www.semdesigns.com/Company/Publications/

ExtractingBusinessRules.pdf 16, 37, 120, 121

[18] IBM: WebSphere Integration Developer: Business rule. http://

tinyurl.com/BusinessRuleDefForIBM 16, 38

[19] IBM: WebSphere ILOG Rules: What are business rules. http://

tinyurl.com/BusinessRuleForIBM 16, 38

[20] Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: principles, tech-

niques, & tools. (2007) 18, 41

[21] Demuth, B., Hußmann, H.: Using UML/OCL Constraints for Relational

Database Design. In: The Unified Modeling Language. (1999) 598–613 18,

41, 135, 137, 140

[22] Chaparro, O., Aponte, J., Ortega, F., Marcus, A.: Towards the Automatic

Extraction of Structural Business Rules from Legacy Databases. In: Working

Conference on Reverse Engineering. (2012) 479–488 20, 49, 136, 140

[23] Cabot, J., Gómez, C., Planas, E., Rodríguez, M.E.: Reverse Engineer-

ing of OO constructs in Object-Relational Database Schemas. Jornadas de

IngenierÃa del Software y Bases de Datos (2008) 20, 49, 134, 140

[24] Bézivin, J., Kurtev, I.: Model-based Technology Integration with the Techni-

cal Space Concept. In: Metainformatics Symposium. (2005) 20, 44, 49

[25] Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a generic and

extensible framework for model driven reverse engineering. In: IEEE/ACM

international conference on Automated software engineering. (2010) 173–174

21, 51

http://www.semdesigns.com/Company/Publications/ExtractingBusinessRules.pdf
http://www.semdesigns.com/Company/Publications/ExtractingBusinessRules.pdf
http://tinyurl.com/BusinessRuleDefForIBM
http://tinyurl.com/BusinessRuleDefForIBM
http://tinyurl.com/BusinessRuleForIBM
http://tinyurl.com/BusinessRuleForIBM


BIBLIOGRAPHY 147

[26] Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the

quick and dirty way. In: ACM international conference companion on Object

oriented programming systems languages and applications companion. (2010)

307–309 21

[27] Allen, F.E.: Control flow analysis. SIGPLAN Not. 5(7) (1970) 1–19 23, 53

[28] Mahe, V., Martinez Perez, S., Doux, G., Brunelière, H., Cabot, J.: POR-

TOLAN: a Model-Driven Cartography Framework. Technical report (2011)

27, 56

[29] O’Brien, M.P.: Software comprehension: a review & research direction. De-

partment of Computer Science & Information Systems University of Limerick,

Ireland, Technical Report (2003) 33

[30] Ko, A.J., Myers, B.A., Coblenz, M.J., Aung, H.H.: An exploratory study of

how developers seek, relate, and collect relevant information during software

maintenance tasks. IEEE Transactions on Software Engineering 32(12) (2006)

971–987 34, 35

[31] Korel, B., Rilling, J.: Program slicing in understanding of large programs. In:

International Workshop on Program Comprehension. (1998) 145–152 35

[32] De Lucia, A.: Program slicing: Methods and applications. In: Source Code

Analysis and Manipulation. (2001) 142–149 35

[33] Weiser, M.: Program slicing. In: International Conference on Software Engi-

neering. (1981) 439–449 35, 62, 80

[34] Tip, F.: A Survey of Program Slicing Techniques. Journal of programming

languages 3(3) (1995) 121–189 35

[35] Allen, F.E.: Control flow analysis. In: ACM Sigplan Notices. (1970) 1–19 35

[36] Korel, B., Laski, J.: Dynamic program slicing. Information Processing Letters

29(3) (1988) 155–163 35

[37] Korel, B., Yalamanchili, S.: Forward Computation of Dynamic Program

Slices. In: ACM SIGSOFT international symposium on Software testing and

analysis. (1994) 66–79 36

[38] Eisenberg, A., Melton, J., Kulkarni, K.G., Michels, J.E., Zemke, F.: SQL:

2003 has been published. SIGMOD Record 33(1) (2004) 119–126 37, 98

[39] Widom, J., Ceri, S.: Active Database Systems: Tiggers and Rules for Ad-

vanced Database Processing. (1996) 37

[40] Gogolla, M., Richters, M.: On constraints and queries in UML. In: The

Unified Modeling Language. (1998) 109–121 37, 133, 140

[41] Warmer, J., Kleppe, A.: The object constraint language: getting your models

ready for MDA. (2003) 37



148 BIBLIOGRAPHY

[42] Chapin, D., Baisley, D., Hall, H.: Semantics of business vocabulary & busi-

ness rules (SBVR). Hawke et al (2005) 37, 121

[43] Scowen, R.S.: Extended BNF-a generic base standard. Technical report

(1998) 43

[44] Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-

order model transformations. In: Model Driven Architecture-Foundations and

Applications. (2009) 18–33 45

[45] Felix Lösch, J.L., Schmidberger, R.: Instrumentation of Java Program Code

for Control Flow Analysis (2004) 47, 127, 128, 139, 140

[46] Jones, J.: Abstract syntax tree implementation idioms. Pattern Languages of

Program Design (2003) 51

[47] Murach, M., Prince, A., Menendez, R.: Murach’s Mainframe COBOL. (2004)

57

[48] Eckel, B., Allison, C.: Thinking in JAVA. (2003) 77

[49] Castagna, G.: Object-oriented programming. (1996) 77

[50] Oracle: Coding Triggers. http://docs.oracle.com/cd/B19306_

01/appdev.102/b14251/adfns_triggers.html 99

[51] Nanda, A., Feuerstein, S.: Oracle PL/SQL for DBAs. (2009) 99, 136

[52] Cabot, J., Gogolla, M.: Object Constraint Language (OCL): A definitive

guide. In: Formal Methods for Model-Driven Engineering. (2012) 58–90 100

[53] Yeh, D., Li, Y., Chu, W.C.: Extracting entity-relationship diagram from a

table-based legacy database. Journal of Systems and Software 81(5) (2008)

764–771 105

[54] Cabot, J., Mazón, J.N., Pardillo, J., Trujillo, J.: Specifying aggregation func-

tions in multidimensional models with OCL. In: International Conference on

Conceptual Modeling. (2010) 419–432 109, 112

[55] Olivé, A.: Integrity Constraints Definition in Object-Oriented Conceptual

Modeling Languages. In: International Conference on Conceptual Modeling.

(2003) 349–362 114

[56] González, C.A., Buttner, F., Clarisó, R., Cabot, J.: Emftocsp: A tool for the

lightweight verification of emf models. In: Software Engineering: Rigorous

and Agile Approaches. (2012) 44–50 115, 143

[57] Cabot, J., Olivé, A., Teniente, E.: Representing Temporal Information in

UML. In: The Unified Modeling Language. (2003) 44–59 115

[58] Ramsey, F.V., Alpigini, J.J.: A simple mathematically based framework for

rule extraction from an arbitrary programming language. In: International

Computer Software and Applications Conference. (2002) 763–770 119, 121

http://docs.oracle.com/cd/B19306_01/appdev.102/b14251/adfns_triggers.html
http://docs.oracle.com/cd/B19306_01/appdev.102/b14251/adfns_triggers.html


BIBLIOGRAPHY 149

[59] Vasilecas, O., Normantas, K.: Deriving business rules from the models of

existing information systems. In: International Conference on Computer Sys-

tems and Technologies. (2011) 95–100 120, 121

[60] Kohavi, R.: The power of decision tables. In: European Conference on Ma-

chine Learning. (1995) 174–189 121

[61] Sneed, H.M.: Extracting Business Logic from Existing COBOL Programs as

a Basis for Redevelopment. In: International Workshop on Program Compre-

hension. (2001) 167–175 122, 125, 138, 140

[62] Putrycz, E., Kark, A.W.: Connecting legacy code, business rules and docu-

mentation. In: Rule Representation, Interchange and Reasoning on the Web.

(2008) 17–30 123, 125, 126, 138, 140

[63] Chiang, C.C.: Extracting business rules from legacy systems into reusable

components. In: International Conference on Systems, Man and Cybernetics.

(2006) 350–355 123, 125, 139, 140

[64] Chia-Chu Chiang, Bayrak, C.: Legacy Software Modernization. In: IEEE In-

ternational Conference on Systems, Man and Cybernetics. (2006) 1304–1309

123, 125, 139, 140

[65] Pope, A.L.: The CORBA reference guide: understanding the common object

request broker architecture. (1998) 123

[66] Fu, G., Shao, J., Embury, S.M., Gray, W.A., Liu, X.: A Framework for Busi-

ness Rule Presentation. In: Database and Expert Systems Applications. (2001)

922– 124, 125, 139, 140

[67] Earls, A.B., Embury, S.M., Turner, N.H.: A method for the manual extrac-

tion of business rules from legacy source code. BT Technology Journal 20(4)

(2002) 127–145 124, 125, 139, 140

[68] Barbier, F., Deltombe, G., O., P., Youbi, K.: Model Driven Reverse Engineer-

ing: Increasing Legacy Technology Independence. In: Second India Work-

shop on Reverse Engineering. (2011) 125, 126, 139, 140

[69] Wang, X., Sun, J., Yang, X., He, Z., Maddineni, S.: Application of

information-flow relations algorithm on extracting business rules from legacy

code. In: Intelligent Control and Automation. (2004) 3055–3058 126

[70] Wang, C., Zhou, Y., Chen, J.: Extracting Prime Business Rules from large

legacy system. In: Canadian Conference on Computer Science & Software

Engineering. (2008) 19–23 127, 128, 139, 140

[71] Normantas, K., Vasilecas, O.: Business Rules Discovery from Existing Soft-

ware Systems. International Journal of Scientific & Engineering Research 3

(2012) 127, 128, 139, 140



150 BIBLIOGRAPHY

[72] Sumner, M.: Enterprise Resource Planning. (2007) 127

[73] Vanthienen, J.: Ruling the business: about business rules and decision tables.

New Directions in Software Engineering (2001) 103–120 127

[74] Huang, J.: Program instrumentation and software testing. Computer 11(4)

(1978) 25–32 128

[75] Chiang, R.H.L., Barron, T.M., Storey, V.C.: Reverse Engineering of Rela-

tional Databases: Extraction of an EER Model from a Relational Database.

Data & Knowledge Engineering 12(2) (1994) 107–142 128, 129

[76] Andersson, M.: Extracting an entity relationship schema from a relational

database through reverse engineering. In: International Conference on Con-

ceptual Modeling. (1994) 403–419 128, 129

[77] Paradauskas, B., L.A.: Business Knowledge extraction from Legacy Informa-

tion Systems. Journal of Information Technology and Control 35(3) (2006)

214–221 128, 130

[78] Premerlani, W.J., Blaha, M.R.: An approach for reverse engineering of re-

lational databases. In: Working Conference on Reverse Engineering. (1993)

151–160 128, 131

[79] Alalfi, M.H., Cordy, J.R., Dean, T.R.: SQL2XMI: Reverse engineering of

UML-ER diagrams from relational database schemas. In: Working Confer-

ence on Reverse Engineering. (2008) 187–191 128, 131

[80] Chung, S., Hartford, E.: Bridging the Gap between Data Models and Imple-

mentations: XMI2SQL. In: International Conference on Internet and Web

Applications and Services. (2006) 201 128, 131

[81] Ramanathan, S., Hodges, J.: Extraction of object-oriented structures from

existing relational databases. ACM Sigmod Record 26(1) (1997) 59–64 128,

131

[82] Fong, J.: Converting relational to object-oriented databases. ACM SIGMOD

Record 26(1) (1997) 53–58 128, 132

[83] Fahrner, C., Vossen, G.: Transforming relational database schemas into

object-oriented schemas according to ODMG-93. Deductive and Object-

Oriented Databases (1995) 429–446 128, 132

[84] Balsters, H.: Modelling database views with derived classes in the UML/OCL-

framework. In: The Unified Modeling Language. (2003) 295–309 128, 133

[85] Codd, E.F.: Further normalization of the data base relational model. Data base

systems (1972) 33–64 131

[86] Mandel, L., Cengarle, M.V.: On the expressive power of OCL. In: Formal

Methods. (1999) 854–874 133, 140



BIBLIOGRAPHY 151

[87] Codd, E.F.: Relational completeness of data base sublanguages. (1972) 133

[88] Akehurst, D.H., Bordbar, B.: On querying UML data models with OCL. In:

The Unified Modeling Language. (2001) 91–103 134, 140

[89] Siripornpanit, N., Leckcharoen, S.: An Adaptive Algorithms Translating and

Back-Translating of Object Constraint Language into Structure Query Lan-

guage. In: International Conference on Information and Multimedia Technol-

ogy. (2009) 149–151 135, 140

[90] Rybola, Z., Richta, K.: Transformation of Special Multiplicity Constraints -

Comparison of Possible Realizations. In: Federated Conference on Computer

Science and Information Systems. (2012) 1357–1364 136, 140

[91] Rabben, M.: Extracting Business Rules from PL/SQL-Code. http:

//www.semantec.de/en/pdf/Extracting%20Business%

20Rules.pdf 136, 140

[92] Demuth, B., Hußmann, H., Loecher, S.: OCL as a Specification Language

for Business Rules in Database Applications. In: The Unified Modeling Lan-

guage. (2001) 104–117 137, 140

[93] Berrabah, D., Boufarès, F.: Constraints Checking in UML Class Diagrams:

SQL vs OCL. In: Database and Expert Systems Applications. (2007) 593–602

137, 140

http://www.semantec.de/en/pdf/Extracting%20Business%20Rules.pdf
http://www.semantec.de/en/pdf/Extracting%20Business%20Rules.pdf
http://www.semantec.de/en/pdf/Extracting%20Business%20Rules.pdf




List of Tables

4.1 Rules to calculate the next statement . . . . . . . . . . . . . . . . . 66

6.1 Predefined OCL operations . . . . . . . . . . . . . . . . . . . . . . 100

7.1 Related work comparision . . . . . . . . . . . . . . . . . . . . . . 140

153





List of Figures

1 Acknowledgements’ cloud . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Projet de modernisation des systèmes héritées chez IBM . . . . . . 10

1.2 Problèmes fréquents dans les Systèmes d’Information . . . . . . . . 11

1.3 Relations entre le BREX et les activités du génie logiciel . . . . . . 12

1.4 Architecture à trois niveaux dans l’IDM . . . . . . . . . . . . . . . 14

1.5 Transformation entre modèles . . . . . . . . . . . . . . . . . . . . 15

1.6 Métamodèle de traçabilité . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Elements d’une règle métier . . . . . . . . . . . . . . . . . . . . . 17

1.8 Exemple d’une règle de gestion . . . . . . . . . . . . . . . . . . . . 17

1.9 Catégories de règles métier au niveau du code source . . . . . . . . 18

1.10 Catégories de règles de gestion dans une base de données . . . . . . 19

1.11 Framework pour l’extraction des règles métier . . . . . . . . . . . . 20

1.12 Outils utilisés dans l’étape de découverte du modèle . . . . . . . . . 21

1.13 Éléments utilisés pour l’identification de termes métier . . . . . . . 22

1.14 Techniques utilisées pour l’identification des règles métier . . . . . 23

1.15 Sous-étapes de la représentation des règles de gestion . . . . . . . . 26

2.1 IBM system modernization project . . . . . . . . . . . . . . . . . . 30

2.2 Issues in information systems . . . . . . . . . . . . . . . . . . . . . 31

2.3 Business rule extraction process and software activities . . . . . . . 32

2.4 Program understanding and program slicing . . . . . . . . . . . . . 35

2.5 Database schema to conceptual model . . . . . . . . . . . . . . . . 36

2.6 Business rule constructs . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Example of a business rule . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Business rule at code-level . . . . . . . . . . . . . . . . . . . . . . 40

2.9 Business rule categories at code-level . . . . . . . . . . . . . . . . 40

2.10 Business rule categories in databases . . . . . . . . . . . . . . . . . 42

2.11 Three-level architecture in MDE . . . . . . . . . . . . . . . . . . . 43

2.12 Modelware and grammarware . . . . . . . . . . . . . . . . . . . . 44

2.13 Model transformation . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.14 Traceability metamodel . . . . . . . . . . . . . . . . . . . . . . . . 45

155



156 LIST OF FIGURES

3.1 Business rule extraction framework . . . . . . . . . . . . . . . . . . 50

3.2 Model Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Business Term Identification . . . . . . . . . . . . . . . . . . . . . 51

3.4 Business Rule Identification . . . . . . . . . . . . . . . . . . . . . 52

3.5 Business Rule Representation . . . . . . . . . . . . . . . . . . . . . 55

4.1 Data structures of the running example . . . . . . . . . . . . . . . . 59

4.2 Program structure of the running example . . . . . . . . . . . . . . 60

4.3 BUY-FRUIT and its related paragraphs . . . . . . . . . . . . . . . . 61

4.4 COBOL Business Rule Extraction framework . . . . . . . . . . . . 61

4.5 COBOL metamodel excerpt . . . . . . . . . . . . . . . . . . . . . 63

4.6 Business term identification step for the running example . . . . . . 64

4.7 Business rule identification step . . . . . . . . . . . . . . . . . . . 64

4.8 Data flow metamodel (left) control flow metamodel (center) and

business rule entities (right) . . . . . . . . . . . . . . . . . . . . . . 65

4.9 example of Rule Fragment Identification . . . . . . . . . . . . . . . 68

4.10 example of Rule Contex Identification . . . . . . . . . . . . . . . . 69

4.11 Business Rule Representation step . . . . . . . . . . . . . . . . . . 69

4.12 Running example vocabulary . . . . . . . . . . . . . . . . . . . . . 69

4.13 Vocabulary metamodel . . . . . . . . . . . . . . . . . . . . . . . . 70

4.14 Example of textual outputs for the rule PR-MEAT/PRICE MEAT . . 71

4.15 Orchestration of the rules PR-MEAT, PR-BREAD and MONEY . . . 71

4.16 Graph-based paragraph representation for the variable PR-VEG . . 72

4.17 Example of graph-based representation of rules . . . . . . . . . . . 74

4.18 Example of text-based representation of a rule . . . . . . . . . . . . 75

5.1 Class diagram of the running example . . . . . . . . . . . . . . . . 79

5.2 Java Business Rule Extraction framework . . . . . . . . . . . . . . 80

5.3 Excerpt of a JDK model element . . . . . . . . . . . . . . . . . . . 82

5.4 MoDisco Java metamodel excerpt . . . . . . . . . . . . . . . . . . 82

5.5 Business Term Identification . . . . . . . . . . . . . . . . . . . . . 83

5.6 Business Term Identification step for the running example . . . . . 84

5.7 Business Rule Identification step . . . . . . . . . . . . . . . . . . . 84

5.8 Business rule annotations . . . . . . . . . . . . . . . . . . . . . . . 85

5.9 Example of Rule Discovery for the variable foodLevel . . . . . . . 87

5.10 Business rule metamodel . . . . . . . . . . . . . . . . . . . . . . . 88

5.11 Java-2-Business Rule Model mapping rules . . . . . . . . . . . . . 88

5.12 Business Rule Representation step . . . . . . . . . . . . . . . . . . 90

5.13 Running example vocabulary . . . . . . . . . . . . . . . . . . . . . 90

5.14 Vocabulary metamodel . . . . . . . . . . . . . . . . . . . . . . . . 90

5.15 Example of textual outputs for the rule alive . . . . . . . . . . . . . 91



LIST OF FIGURES 157

5.16 Orchestration of the rules for the variable alive . . . . . . . . . . . 92

5.17 Excerpt of the slicing for methods . . . . . . . . . . . . . . . . . . 93

5.18 Excerpt of source code with business rule annotations . . . . . . . . 95

5.19 Excerpt of graph-based representation of rules . . . . . . . . . . . . 95

6.1 PL/SQL block structure . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 A trigger structure in Oracle . . . . . . . . . . . . . . . . . . . . . 99

6.3 example of an OCL invariant . . . . . . . . . . . . . . . . . . . . . 100

6.4 example of an OCL derivation rule . . . . . . . . . . . . . . . . . . 101

6.5 Human resource database sample . . . . . . . . . . . . . . . . . . . 101

6.6 Database Business Rule Extraction framework . . . . . . . . . . . . 102

6.7 SQL and PL/SQL metamodel . . . . . . . . . . . . . . . . . . . . . 104

6.8 Database schema to conceptual schema . . . . . . . . . . . . . . . 105

6.9 Mapping of database views . . . . . . . . . . . . . . . . . . . . . . 106

6.10 Declarative constraints mapping . . . . . . . . . . . . . . . . . . . 107

6.11 Mapping of built-in data types constraints . . . . . . . . . . . . . . 108

6.12 Example of declarative constraints mapping . . . . . . . . . . . . . 108

6.13 Projection mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.14 Example of a projection mapping . . . . . . . . . . . . . . . . . . . 109

6.15 Inner Join mapping pattern . . . . . . . . . . . . . . . . . . . . . . 110

6.16 Example of explicit inner join mapping . . . . . . . . . . . . . . . 110

6.17 Left outer join mapping . . . . . . . . . . . . . . . . . . . . . . . . 111

6.18 Mapping of group by and having clauses . . . . . . . . . . . . . . . 112

6.19 Example of a group by and having clauses mapping . . . . . . . . . 112

6.20 Mapping of a user exception in a trigger . . . . . . . . . . . . . . . 113

6.21 Example of a user exception mapping . . . . . . . . . . . . . . . . 114

6.22 Excerpt of the OCL constraints extracted . . . . . . . . . . . . . . . 115

6.23 Excerpt of the OCL model-to-text transformation . . . . . . . . . . 116

6.24 Excerpt of the UML/OCL model . . . . . . . . . . . . . . . . . . . 117

6.25 A screenshot of the prototype . . . . . . . . . . . . . . . . . . . . . 118





List of Publications

[1] Cosentino, V., Cabot, J., Albert, P., Bauquel, P., Perronnet, J.: A Model Driven

Reverse Engineering Framework for Extracting Business Rules Out of a Java

Application. In: Rules on the Web: Research and Applications. (2012) 17–31

[2] Cosentino, V., Bauquel, P., Perronnet, J., Albert, P., Cabot, J.: Un Framework

dirigé par les modèles pour l’extraction de règles métier à partir d’applications

COBOL. In: Conférence en IngénieriE du Logiciel. (2013)

[3] Cosentino, V., Cabot, J., Albert, P., Bauquel, P., Perronnet, J.: Extracting Busi-

ness Rules from COBOL: A Model-Based Framework. In: Working Confer-

ence on Reverse Engineering. (2013, to appear)

[4] Cosentino, V., Cabot, J., Albert, P., Bauquel, P., Perronnet, J.: Extracting Busi-

ness Rules from COBOL: A Model-Based Tool. In: Working Conference on

Reverse Engineering. (2013, to appear)

[5] Cosentino, V., Martínez, S.: Extracting UML/OCL Integrity Constraints and

Derived Types from Relational Databases. In: Workshop on OCL and Textual

Modelling. (2013, to appear)

159







Thèse de Doctorat

Valerio COSENTINO

Une Approche dirigée par les Modéles pour l’Extraction de Règles Métier à
partir des Systèmes d’Informations hérités

A Model-Based Approach for Extracting Business Rules out of Legacy
Information Systems

Résumé
Le monde des affaires d’aujourd’hui est très
dynamique, donc les organisations doivent rapidement
adapter leurs politiques commerciales afin de suivre
les évolutions du marché. Ces ajustements doivent
être propagés à la logique métier présente dans les
systèmes d’informations des organisations, qui sont
souvent des applications héritées non conçues pour
représenter et opérationnaliser la logique métier
indépendamment des aspects techniques du langage
de programmation utilisé. Par conséquent, la logique
métier integrée au sein du système doit être identifiée
et comprise avant d’être modifiée. Malheureusement,
ces activités ralentissent la mise à jour du système
vers de nouvelles exigences établies dans les
politiques de l’organisation et menacent la cohérence
des activités commerciales de celle-ci.
Afin de simplifier ces activités, nous offrons une
approche basée sur les modèles pour extraire et
représenter la logique métier, exprimée comme un
ensemble de règles de gestion, à partir des parties
comportementales et structurelles des systèmes
d’information. Nous mettons en œuvre cette approche
pour les systèmes écrits en Java et COBOL ainsi que
pour les systèmes de gestion de bases de données
relationnelles. L’approche proposée est basée sur
l’Ingénierie Dirigée par les Modèles, qui fournit une
solution générique et modulaire adaptable à
différentes langages en offrant une représentation
abstraite et homogène du système.

Abstract
Today’s business world is very dynamic and
organizations have to quickly adjust their internal
policies to follow the market changes. Such
adjustments must be propagated to the business
logic embedded in the organization’s information
systems, that are often legacy applications not
designed to represent and operationalize the
business logic independently from the technical
aspects of the programming language employed.
Consequently, the business logic buried in the
system must be discovered and understood
before being modified. Unfortunately, such
activities slow down the modification of the
system to new requirements settled in the
organization policies and threaten the
consistency and coherency of the organization
business.
In order to simplify these activities, we provide a
model-based approach to extract and represent
the business logic, expressed as a set of
business rules, from the behavioral and structural
parts of information systems. We implement such
approach for Java, COBOL and relational
database management systems. The proposed
approach is based on Model Driven Engineering,
that provides a generic and modular solution
adaptable to different languages by offering an
abstract and homogeneous representation of the
system.

Mots clés
Ingénierie Dirigée par les Modèles, Extraction
des Règles Métiers, Rétro-ingénierie.

Key Words
Model Driven Engineering, Business Rules
Extraction, Reverse Engineering.

L’UNIVERSITÉ NANTES ANGERS LE MANS


	Resumé étendu
	Contexte
	Description du problème
	État de l'art
	Ingénierie Dirigée par les Modèles
	Modèles
	Transformations

	Règles métier
	Règles métier dans la partie comportementale
	Règles métier dans la partie structurelle

	Un framework BREX dirigé par les modèles
	Découverte du modèle
	Identification de termes métier
	Identification de règles métier
	Représentation des règles métier


	Introduction
	Context
	Problem description
	State of the art
	Background
	Software comprehension
	Business rules
	Model Driven Engineering

	Objectives and contributions
	Generic and modular framework
	Model-based approach
	Traceability and granularity of the extracted business rules
	Solutions for Java, COBOL and relational databases

	Thesis structure

	Model-based framework for business rule extraction
	Model discovery
	Business Term Identification
	Business Rule Identification
	Control Flow Analyis
	Data Flow Analyis
	Slicing operation
	Database constraint analysis

	Business Rule Representation
	Vocabulary Extraction
	Visualization


	Business rule extraction for COBOL
	Motivation
	COBOL basic concepts
	Running example
	Rules modeling the application

	Framework description
	Model Discovery
	Business Term Identification
	Business Rule Identification
	Control Flow Analysis
	Data Flow Analysis
	Rule Discovery

	Business Rule Representation
	Vocabulary extraction
	Visualization

	Optimization
	Evaluation
	Prototype

	Business rule extraction for Java
	Motivation
	Java basic concepts
	Running example
	Rules modeling the application

	Framework description
	Model Discovery
	Business Term Identification
	Business Rule Identification
	Rule Discovery
	Business Rule Model Extraction

	Business Rule Representation
	Vocabulary extraction
	Visualization

	Optimization
	Evaluation
	Prototype

	Business rule extraction for relational databases
	Motivation
	SQL, PL/SQL and OCL basic concepts
	SQL
	PL/SQL
	OCL

	Running example
	Rules modeling the application

	Framework description
	Model Discovery
	Business Term Identification
	Business Rule Identification
	Declarative constraints to OCL
	SQL-to-OCL transformation
	Triggers to OCL

	Business Rule Representation
	Vocabulary Extraction
	Visualization

	Evaluation
	Prototype

	Related work
	Approaches for the behavioral part
	Arbitrary languages
	Procedural languages
	Object-oriented languages

	Approaches for the structural part
	Database implementations and conceptual schemas
	Database constraints and business rules
	Stored procedures, triggers and business rules

	Comparison with our framework
	Behavioral part
	Structural part


	Conclusion and further research
	Conclusion
	Further research
	Business rule extraction for the system presentation part
	Definition of a pivot metamodel
	Automatic validation of the business rules
	Rule-driven system redocumentation



