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Résumé en francais

Ce manuscrit s’inscrit dans le domaine du calcul intensif (HPC) ol le besoin croissant de perfor-
mance pousse les fabricants de processeurs a y intégrer des mécanismes de plus en plus sophistiqués.
Cette complexité grandissante rend 'utilisation des architectures compliquée. La modélisation des
performances des architectures multi-coeurs permet de remonter des informations aux utilisateurs,
c’est a dire les programmeurs, afin de mieux exploiter le matériel. Cependant, du fait du manque
de documentation et de la complexité des processeurs modernes, cette modélisation est souvent
difficile. L’objectif de ce manuscrit est d’utiliser des mesures de performances de petits fragments
de codes afin de palier le manque d’information sur le matériel. Ces expériences, appelées micro-
benchmarks, permettent de comprendre les performances des architectures modernes sans dépendre
de la disponibilité des documentations techniques.

Le premier chapitre présente ’architecture matérielle des processeurs modernes et, en partic-
ulier, les caractéristiques rendant la modélisation des performances complexe.

Le deuxieme chapitre présente une méthodologie automatique pour mesurer les performances
des instructions arithmétiques. Les informations trouvées par cette méthode sont la base pour des
modeles de calculs permettant de prédire le temps de calcul de fragments de codes arithmétique. Ce
chapitre présent également comment de tels modeéles peuvent étre utilisés pour optimiser 'efficacité
énergétique, en prenant pour exemple le processeur SCC. La derniére partie de ce chapitre motive
le fait de réaliser un modele mémoire prenant en compte la cohérence de cache pour prédire le
temps d’acces au données.

Le troisiéme chapitre présente ’environnement de développement de micro-benchmark utilisé
pour caractériser les hiérarchies mémoires dotées de cohérence de cache. Ce chapitre fait également
une étude comparative des performances mémoire de différentes architectures et I'impact sur les
performances du choix du protocole de cohérence.

Enfin, le quatrieme chapitre présente un modele mémoire permettant la prédiction du temps
d’acces aux données pour des applications réguliéres de type OpenMP. Le modeéle s’appuie sur I’état
des données dans le protocole de cohérence. Cet état évolue au fil de 'exécution du programme en
fonction des acces a la mémoire. Pour chaque transition, une fonction de cofit est associée. Cette
fonction est directement dérivée des résultats des expériences faites dans le troisieme chapitre, et
permet de prédire le temps d’acces a la mémoire. Une preuve de concept de la fiabilité de ce modele
est faite, d’'une part sur les applications d’algebre et d’analyse numérique, d’autre part en utilisant
ce modele pour modéliser les performance des communications MPI en mémoire partagée.
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Introduction

Need for Speed

The need for intensive computation is growing fast as more and more scientific fields rely on
numerical simulation. Simulation is used in many domains in order to reduce production costs. For
instance in the car industry it is cheaper to run crash simulations instead of crashing a real car. It
is used in numerous areas such as aerospace or car industry, meteorology or geology etc.

Simulation has many advantages, among other the price, over real experiments. As, it is ran
by a computer, it allows to record every information needed by scientists. One can easily change
parameters of the experiments and run it again. We can also easily run simulations in condi-
tions where the experiment could not be done. For instance because these conditions cannot be
reproduced easily for a real experiment, or for security.

But all these strengths have also a drawback: simulation needs a lot of computational power.
This means that simulation results can be very long to obtain. To overcome this problem, we need
to build fast computers to shorten computation time. This explains why computer speed is crucial
to science.

Computer Architecture

In order to fulfill this need for computation, hardware has to evolve as fast as the need for
fast computation grows. For a period of time, speeding-up processor clock rate allowed to increase
computer computational power. However, heat and power consumption of processors grow with
the square of the processor frequency. Thus we have reached the limits of processors frequency
with thermal resistance of processors. Central Processing Unit (CPU) designers had to find other
ways to increase processors computational power. More and more architectural features have been
added to computers in order to make them more powerful. Allowing, for instance, CPU to issue
more than one instruction per cycle, this is called instruction parallelism. Another commonly used
mean to increase processor computational power is to allow it to perform the same operation on
several data at the same time, this is data parallelism. But the urge for computational power grows
faster than architecture improvement. In order to keep up with growing needs for computational
power, processor vendors had to go parallel. The area of single processor is now over and even
general purpose computers, workstations and now even cell phones embed multi-core CPUs.



4 Introduction
Hardware models and Software

The ever growing complexity of processors leads to numerous research topics for software opti-
mization. Indeed, software has to be well adapted to the underlying architecture in order to benefit
from all hardware features. Moreover we need to find a way to exploit all the parallelism available
on the hardware. Expressing or finding parallelism in applications can be one tough research theme.
New programming paradigms have been released in order to be able to express as much parallelism
as algorithms have. However one has to be careful when writing software for High Performance
Computing (HPC) since keeping all functional units busy in order to achieve good performance
can be tricky due to dependencies. In order to be able to attain good efficiency on a machine, one
has to know the architecture deep details. This can be a long task as computer architecture are
becoming more and more complex. Moreover as processor vendors release new architectures very
often, learning new architecture capabilities can become a big overhead for programmers.

In order to reduce this overhead, people build hardware models. These models are an ab-
straction of the architecture that helps understanding computer behavior. This also permits better
adaptation of software to the machine. Building architecture models can still be burdensome. Even
if one does not have to rebuild it from scratch for each new coming architecture, understanding
how to use efficiently every new feature can be quite time consuming.

Goals and Contributions

In the race for better performance, computer architectures are becoming more and more com-
plex. Therefore the need for hardware models is crucial to i) tune software to the underling
architecture, i) build tools to better exploit hardware or 4ii) choose an architecture according to
the needs of a given application.

In this dissertation, we aim at describing how to build a hardware model that targets all critical
parts of modern computer architecture. That is the processing unit itself, memory and even power
consumption. We believe that a large part of hardware modeling can be done automatically. This
would relieve people from the tiresome task of doing it by hand.

Our first contribution is a set of performance models for the on-core part of several different
CPUs. This part of an architecture model is called the computational model. The computational
model targeting the Intel SCC chip also includes a power model allowing for power aware perfor-
mance optimization. Our other main contribution is an auto-tuned memory hierarchy model for
general purpose CPUs able to i) predict performance of memory bound computations, i) provide
programmer with programming guidelines to improve software memory behavior.

Dissertation Organization

This dissertation is organized in 4 chapters. The first chapter is dedicated to a state of the art
while the three others present our contributions.

Chapter 1 describes some existing computer architectures, hardware concepts and features. This
is the basis for understanding both the motivations of research in the HPC field and motivations
for our contribution.
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Chapter 2 presents our contribution to help building computational models by automatically

measuring instructions latencies and detecting instruction parallelism. It also presents a power
aware performance model built for the Intel SCC.

Chapter 3 presents how to build benchmarks to model a memory architecture. Especially how
to control the environment for representative and reliable benchmarks. We will also present a
language we developed to ease the process of writing memory hierarchy benchmarks.

Last, Chapter 4 presents how to use benchmarks in order to build a performance model. And
what choices have to be made to model memory. This model is evaluated by predicting the run-time
of real codes running on the real hardware and is also applied to MPI communications.
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Hardware Architecture

)

“Welcome to the machine’
— Pink Floyd

As the need for intensive computation grows fast with the need for simulation, processor vendors
had to find alternatives to increase CPU computational power.

In this chapter we will describe some important hardware features that increase the processor
performance. The chapter is divided into three sections, one focuses on the core architecture itself:
it explains how single processor architectures can be upgraded to deliver better performance. This
section also explains how to optimize code in order to benefit from the hardware features presented.
The second section presents why and how computer architectures are becoming parallel. It also
describes several parallelism paradigms available in general purpose computers or clusters dedicated
to high performance computing. The third section focuses on memory performance. We will present
some features used to increase memory bandwidth as well as how to tune software to make better
use of the memory.

1.1 Core Architecture

The core part of the processor is the one responsible for computation. It is a critical part of
CPU design since it is responsible for executing all the instructions of a program running on the
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machine. In order to execute an instruction, the processor needs to read, decode, execute the
instruction, and eventually write the result back.

1.1.1 Pipeline
The Instruction Pipeline

One way to increase instruction throughput consists in devising the instruction execution into
several stages. This allows a better usage of all functional units of the CPU. Since for a n stage
pipeline, n instructions can be executed in the pipeline at the same time, each instruction being
in a different stage. A pipeline does not reduce time to execute one instruction, but it allows
to issue instructions while still executing others, which increases the instruction throughput. A
common image to illustrate pipeline is to compare it to an assembly line. The classical pipeline is
decomposed into the five following stages. A graphical representation of this pipeline is shown in
Figure 1.1:

Instruction fetch: The stage is responsible of reading the instruction from memory and bringing
it to the processor. In the stage, the instruction fetched for execution is pointed out by the
Program Counter (PC). This stage is therefore also responsible for updating the PC to the
next instruction to be executed.

Instruction decode: This stage is responsible for decoding the instruction, i.e. reading the in-
struction and its operands. The instruction is decomposed into the opcode, the operation to
be executed, and its operands ,e.g., registers or memory.

Execute: In this stage instructions are executed: for instance arithmetic instructions are dis-
patched to the Arithmetic and Logic Unit (ALU).

Memory: In the memory stage access to the main memory are performed.

Write back: The write back stage is responsible for writing the instruction results to the registers.

Instruction | | Instruction

M .
Bt Decode Execute emory Write Back

Instruction execution

Y

Figure 1.1: A classical five stage Pipeline.

Real world processors are composed of many more stages, Intel Core2 pipeline counts 14 stages
while Nehalem has 16 stages. But the trend is toward shorter pipelines: the latest NetBurst micro
architecture called Prescott has up to 31 stages.

While this description of a pipeline is simplified, it shows the basic operation of a pipelined
processor. But even this small example allows us to illustrate several performance issues that
can happen in pipelines. For instance the instruction pipeline is only able to increase hardware
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performance if every stage of the pipeline is kept busy during the computation. This means being
able to issue' one instruction at every cycle. For instance if several consecutive instructions have
data dependences, meaning that some instructions need the result of others to be issued, the pipeline
cannot be fed with one instruction at every cycle. Figure 1.2 shows a pipeline stall, consequence of
data dependency between two instructions in the code. As we can see, if there is a data dependency
between two consecutive instructions, the second instruction cannot be executed before the first
writes its result into registers. On an n stages pipeline, this stalls the pipeline for n — 1 cycles.

IF

ID

EX

MEM

ow,

WB

IF / \Z
A\ ID /

data dependency

Figure 1.2: A Stall in a simple Pipeline without forwarding: the second instruction cannot be
executed before the first one is retired, stalling the pipeline for 4 cycles.

Programs contain instructions controlling its execution flow, .e. jump or conditional branching
instructions. This can also lead to poor performance by stalling the pipeline.

Branch Prediction

In order to overcome stalls, branch prediction and speculative execution were added into proces-
sor pipeline [18, 72, 74]. When a conditional branch instruction is executed, the instruction pipeline
cannot issue another instruction before this instruction is retired?. Indeed, the next instruction to
be executed depends on the result of a condition. And the result of the conditional will only be
available after the end of the execution of the condition.

As conditional jumps are used to implement loops, they are critical to achieve good performance.
The 90/10 law says that programs spend 90% of their time in only 10% of the code. This portion of
the code is therefore critical: this is usually loops. Branch prediction avoid stalling the instruction
pipeline by deciding which way of the branch will be taken before the condition is retired. The
next instruction can therefore be issued without stalling the pipeline. If the branch prediction
was wrong, instructions that were issued when they should not have to be discarded. This is

ssuing an instruction consists in starting its execution by feeding it to the first stage of the pipeline.
2 An instruction is said to be retired when its execution completely over.
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called speculative execution. Mispredictions present the same problems as pipeline stalls since the
instructions executed after the branch will be discarded. Yet if branch prediction is correct this
greatly improves branching performance. The longer the pipeline, the higher misprediction penalty
and pipeline stalls.

Instruction Loop Buffer

As previously said, loop performance is critical. To improve loop efficiency some processors
feature an instruction loop buffer. When the processor enters a loop, decoded instructions goto
this buffer. This allows the bypass of the first stages of the pipeline: within a loop, instructions
are decoded once and for all during the first iteration.

Register Forwarding

In order to reduce the penalty of pipeline stalls due to instruction dependences, a register
forwarding mechanism can be added to the pipeline. This mechanism allows stages of the pipeline
to provide a previous stage with data that has just been computed. This reduces the penalty of
pipeline stalls by allowing the execution of instructions carrying dependence with an instruction
already in the pipeline right after the execution stage instead of waiting for the result to be written
back.

1.1.2 Superscalar processor

To further improve instruction throughput, processors were enhanced with superscalar capabil-
ity. This mechanism is another form of instruction parallelism. It allows processors to issue more
than one instruction per cycle. This processor optimization can lead to great computational power
enhancement if one is able to bring several independent instructions to the processor per cycle.
Indeed a superscalar processor with two pipelines will be able to issue two Instructions Per Cycle
(IPC) leading to a twice higher theoretical peak performance.

To benefit from this feature, software have to present enough instruction parallelism and inde-
pendent instructions. Otherwise the multiple execution ports will not be used. Modern processor
such as the Sandy Bridge micro-architecture have six specialized execution ports. Specialized
execution ports can only execute a subset of all available instructions. On the Sandy Bridge micro-
architecture, three ports are dedicated to arithmetic and logical operations, two for memory reads
and one for memory write. Leading to a maximum of three computations and three memory access
during one clock cycle.

1.1.3 Out-of-Order Execution

We saw that control hazards due to branching instructions can be overcome by an efficient
branch predictor. However pipeline stalls due to data hazards such as instruction dependences
have not been tackled yet. This is the task dedicated to the out-of-order engine. The out-of-order
engine allows the execution of other instructions when an instruction has to wait for its operands
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to be ready. Instructions are therefore not executed in the initial order given by the program.
Out-of-order pipelines also reduce the cache miss penalty by avoiding stalling the pipeline when
miss occurs [73]. We will discuss in more details cache in Section 1.3.3

In order to implement an out-of-order engine, processor pipelines are extended with an instruc-
tion queue, a retire stage®, and a register renaming mechanism to avoid unnecessary dependence.

Instruction Queue

After decoding an instruction is dispatched to one of the execution ports. The instruction will
stay in the queue until all its operand are ready. Therefore instructions will be executed as soon as
its operands are available, even if older instructions are still waiting in the queue for their operands
to be available. Instruction are said to be executed in data order instead of program order.

Figure 1.3 illustrates the execution of the program represented in Table 1.1 on an out-of-order
pipeline. Figure 1.3a represent the pipeline with all four instructions waiting to be executed.

Table 1.1: Example of a Program executed by an Out-Of-Order Engine.

Program:
i9: 1o < 1
11: T — 2
19: T9 < To X T
i3: 13+ 3

Figure 1.3b shows the state of the pipeline after instruction g is retired and instruction instruction
i1 is in the pipeline. In Figure 1.3c we see that instruction i3 is issued before instruction is because
instruction 79 depends on instructions iy and 1. Instruction 3 is thus issued right after 7 is issued.
But 9 has to wait for its operands rg and r; to be ready after ig and i retire.

. iy
(3 .
.2 192
11 Y ’i3
10 ;
¥ “ Y
1
P - .
’ io

(a) Instructions is dispatched to  (b) Instruction ig has been is- (c¢) The processor issues i3. i1
the queue in program order. sued and is now retired. 41 has had time to finish: iy will be is-
been issued and is being exe- sued the next cycle.
cuted: io cannot be issued.

Figure 1.3: An Instruction Queue Example.

3Also known as ROB: Re-Order Buffer.
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Register renaming

The register renaming mechanism is used to avoid false data dependences. False data depen-
dences are due to the name of the registers used (instead of being caused by real data dependences).
If we take a look and the code shown in Table 1.2, instruction i and i3 cannot be executed at the
same time since the variable B is both an operand of instruction 4; and the output of instruction
i2. However we can rename B into By and Bj, the code still computes the same thing but the

Table 1.2: Anti-dependence avoided by register renaming. Anti-dependence is also called Write
after Read (WAR).

Before renaming After renaming
i1: B+ 1 By + 1
i9: A« B+2]|A <« By+2
ig: B+ 2 Bl — 2

instructions i and i3 can be executed at the same cycle since there is no dependence anymore
between the Anti-dependences are called name dependences, if we can rename variables, or in the
case of computer architecture, registers, we can avoid such dependences.

Another kind of name dependence can be avoided through register renaming: it is the output
dependence. An output dependence happens when the same register is used as the result of several
instructions, e.g., in the code shown in Table 1.3 we cannot change the instruction order nor can

Table 1.3: Output-dependency avoided thanks to register renaming. It is also known as Write after
Write (WAW) dependency.

Before renaming After renaming

i1: B+« 1 By + 1
i9: A<+~ B+2|A <+ By+2
i32 B+« X+1 B1 — X +1

we execute any instruction in parallel since B is an operand of instruction is and the output of
instruction i3. However if we rename B into By and Bj, as shown in the right hand side of the
table, we still compute the same thing, but we can now reorder instruction i3 before instruction i
or perform both of them at the same time.

The goal of the register renaming mechanism is to avoid these name dependencies. Only a subset
of all the physical registers of the processor are exposed to the programmer. When an instruction is
executed, the register renaming mechanism chooses one physical register to use among the physical
registers corresponding to the logical register provided by the instruction. Having several physical
registers available for each logical register allows the processor to rename registers in order to avoid
name dependencies.
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Reorder Buffer

The register renaming mechanism used together with out-of-order execution engine avoids un-
necessary stall in the pipeline by keeping the pipeline fed with instructions with satisfied depen-
dencies. However as we saw in Section 1.1.1 dedicated to the instruction pipeline, because of the
speculative execution and branch miss-prediction, the processor might have to discard some instruc-
tions. If instructions are not executed in program order, discarding the instructions speculatively
executed after a branching instruction can become messy. In order to reorder instructions after
they retired, a stage is added to the pipeline. This stage is called ROB for Re Order Buffer.

The ROB is a queue, as soon as an instruction enters the renaming stage, before dispatched
to an instruction queue, an entry is reserved for this instruction in the ROB. Thus entries in the
ROB are in program order. Instructions can only leave the ROB when they are retired and are at
the head of the ROB. Hence instructions leave the ROB in program order, and the CPU is able to
easily decide which instruction to discard when a branch miss-prediction occurs.

1.1.4 Vector Instructions

We saw several mechanisms used to leverage processor performance by increasing instruction
throughput vie instruction parallelism. But processors can even do better: they can use data
parallelism to increase their computational power. Indeed, compute intensive code often expose
data parallelism, 7.e. the same operation is applied to several independent data. Multimedia
applications and linear algebra codes are good examples of compute intensive software. For instance
when computing the sum of two vectors, multiple sums of corresponding elements of the vectors
can be performed at the same time.

For this reason, processors now feature vector registers. A vector register can hold several
values. Instructions operating on it perform the same operation at the same time on every element.
Figure 1.4 illustrates a vector instruction.

a aq a9 as
+ s ag+by | a1 +b1 | ag + by | ag + bs
bo b1 by b3

Figure 1.4: A vector instruction performing 4 additions at the same time on 4 elements of two
distinct vectors.

The MMX, SSE, and AVX extensions are actually vector instructions added to the x86 instruction
set. PowerPC architectures feature AltiVec instruction that are vector instruction too. MMX instruc-
tions operate on 64 bits wide registers, SSE on 128 bits and AVX on 256 bits registers. Depending
on the size of one element, one single instruction can perform up to 32 arithmetic operations at the
same time (e.g., an AVX addition will perform 8 operations on 32 bits wide elements, but only 4 if
the elements of the vector are 64 bits wide).
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1.1.5 Low level Code Optimization

In order to exploit the hardware computational power, software have to be well adapted to the
architecture. Code optimization allows to perform the same computation faster by better tuning the
software to the underlying hardware. The compiler is responsible for producing efficient machine
code from its input in a higher language. For the compiler to produce fast code, a large range of
optimizations are available. These optimizations can be combined to achieve mode efficient code.
Combining optimization methods is also used in other domains where performance matters [55]. But
finding the right set of optimization to apply to a particular program is non-trivial, and numerous
research have be led on this particular topic [1, 18, 33, 82]. The instruction scheduling phase of
compilation is responsible for scheduling machine instructions after the instruction selection phase.
Instruction scheduling assigns an order to instructions in such a way that i) dependencies between
instructions are not broken, i) optimization constraints. These optimization constraints can be
to provide faster code, lower register pressure, etc. In order to provide faster code, instruction
latencies have to be overlapped. Therefore instruction latencies is a key information to provide to
compilers. It is known that, with enough hardware information the optimal instruction scheduling
can be achieved [10, 53, 81].

Therefore, instruction performance is an important information for compiler to produce efficient
code. Information about hardware feature of the CPU can be found in hardware documentation [14].
However execution ports used by instruction, their latencies, throughput and execution port are
harder to find out. Agner Fog provides a large amount of information about instruction perfor-
mance [31]. He discovers this information by running experiments: benchmarks for each instruction
to provide information about instruction performance to the community. Framework dedicated to
benchmark writing can also help retrieving such information [30]. Until now no fully automatic
method is available to get these information. The goal of one of our contributions is to provide
insight to automatically obtain critical information to build hardware model. This will be discussed
in Section 2.2.

Instruction scheduling is usually made at the basic block level of the program. A basic block
is a piece of program where only the first instruction can be the target of a branching instruction:
there is no other entry point into a basic block than the first instruction. A basic block does not
contain any jump or conditional branch expects for the last instruction. In the execution flow of
a program, a basic block is thus always either entirely executed, or not executed at all. Hence
instruction scheduling is limited by the scope of a basic block and they are only a few alternatives
for shifting instructions in small basic blocks. Small loops (with only a few instructions) usually
leads to small basic blocks. In order to provide more search space for the compiler to select a better
instruction scheduling, loop unrolling can be used to transform loops with a small body.

Loop Unrolling

Unrolling a loop consists in executing several loop iterations as a single one with a bigger body.
Table 1.4 shows an example of loop unrolling. We can see on the right hand side of the table
that one single execution of the loop computes the sum of four elements of the array ¢t. The loop
is unrolled by a factor of 4. The machine code corresponding to the unrolled loop will therefore
contain 4 times more instructions than the initial code. This will give more freedom to move
instructions around to avoid stalls due to dependences.
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Table 1.4: Loop Unrolling example. For brevity we omitted the tail code when N is not a multiple
of 4.

Before Loop Unrolling After Loop Unrolling
s = 0;
< = 0: for(i=0; i<N; i=i+4) {
PR s = s + t[il;
for (i=0; 1:N, i_i?%{ s = s + t[i+1];
} s s s s s + t[i+2];
s = s + t[i+3];
}

An other reason why loop unrolling improves software performance is that for each loop iteration
a condition has to be checked. Instruction used to perform this versification are just an overhead:
they are only needed to control the program flow but not for real output computation. As an
n-unrolled loop will perform n times less iterations than the unrolled version, it will reduce the
overhead due to conditionals by a factor of n as well as the number of branch taken.

Loop unrolling is very well handled by compilers since it is a really simple code transformation.
However the hard part of automatic loop unrolling consists in finding the optimal unroll factor
of a loop. Indeed several factor affect loops performance: if the loop is not unrolled enough, the
compiler might not find the best instruction scheduling due to the lack of instruction in the loop
body. But unrolling too much a loop can lead to too big loop body preventing the processor to
use its instruction loop buffer. Automatic methods exist to overcome this issue: for instance auto-
tuning based optimization will solve this problem by generating several loops with different unroll
factors and compare all of their execution. However one has to be careful when using auto-tuning
to select the unroll factor of loops. Since nested loops can be unrolled and jam the combinatorics
of auto-tuned nest loop optimization can become very high.

Loop unrolling helps the compiler to better schedule instructions, but it can also help the com-
piler optimize even further the code: since an unrolled loop will present more arithmetic operations,
the compiler can even try to use vector instructions to perform all of them at once. This is called
code vectorization.

Code Vectorization

Code vectorization is a compiler optimization that tries to replace scalar operations with vector
operations. In the code example shown in Table 1.4, since we perform 4 additions at the same
iteration we can try to vectorize this 4 operations. Yet the 4 add instructions are not independent
since they are all reduced to a single scalar. In order to perform all these adds at once we have to
make these instructions independent. To do this we can split the sum of the array ¢ into 4 partial
sums. This is the code exposed is Table 1.5 After splitting the sum into 4 partial sums, the 4 adds
do not carry dependencies between them anymore. Thus we can use a single vector instruction to
perform all the operation at the same time. As all the 4 arithmetic instructions can be performed
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Table 1.5: Vectorization example.

Before vectorization ‘ After vectorization
sO = 0; s1 = 0;
s = 0; s2 = 0; 83 = 0;
for(i=0; i<N; i=i+4) { for(i=0; i<N; i=i+4) {
s = s + t[i]; sO = s0 + t[i];
s = s + t[i+1]; sl = s1 + t[i+1];
s = s + t[i+2]; s2 = 82 + t[i+2];
s = s + t[i+3]; s3 = s3 + t[i+3];
} }
s = s0 + s1 + s2 + s3;

with one single instruction, we can further unroll the loop to let more space for the compiler to
schedule instructions.

This section ends the description of single core architecture. We saw several hardware features
allowing great performance gains. But single processor machines do not provide enough computa-
tional power to sustain compute intensive numerical simulation, architectures have switched from
single core processors to multi-core processors to increase even further their performance.

1.2 Towards Parallel Architectures

This section briefly describes parallel computer architectures. In a first section we describe
the main motivations for increasing hardware parallelism to achieve better performance. The
next sections present several different levels of parallelism within computer architectures. We
present parallel designs by growing granularity. Starting from parallelism embed on the CPU
itself, with multi-processor and simultaneous multithreading. Then we present parallelism available
outside of the processor itself with accelerators. Eventually we present coarse grain parallelism with
architectures dedicated to HPC such as clusters.

1.2.1 The Energy Wall

When aiming at increasing processor computational power one has two alternatives: either
increasing the processor speed (i.e. frequency) or increasing the number of instructions that it
can execute in one clock cycle. Both these methods have a drawback: they increase CPU power
consumption.

To add new features to the hardware processor vendors have to increase the number of transistors
on the die. Since each new transistor has to be powered, it increases the chip electrical needs.

In the same manner, boosting the processor frequency raises its consumption. But worse with
heightening the frequency: it increases heat dissipation. The heat produced by a processor is
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proportional to its frequency: increasing its frequency by a factor two leads to doubling power
dissipation. And worse: when processor frequency increases, the voltage has to be increased too.
This avoids hardware errors by augmenting the electric signal strength. And the power dissipation
is proportional to the square of the voltage. The power consumption P of a CPU is approximately:
P =c x f x V? where c is a constant, f the frequency and V the voltage of the CPU.

In order to keep the processor cool, we have to set up cooling systems. These systems need a
lot of space since heat transfer depends on the surface. Up to half of the space of many machines
is therefore actually dedicated to cooling.

For these reasons, single processor performance could not be further enhanced. A new way to
improve performance is build computer with several processing units. The following sections will
describe some parallel architectures featuring multiple CPUs.

1.2.2 Multi-Processor

Multi-Processors systems are computers equipped with several identical processors. Processors
are connected by the mean of a bus on the motherboard to the same shared main memory. Each
of these processors can be dedicated to different tasks. This is called SMP for Symmetric Multi
Processor.

Another kind of Multi-Processors systems are CMP for Chip Multi-Processors. On this kind
of hardware systems, processors sharing the same chip also share some resources such as a level
of cache. This is a more complex hardware hierarchy than SMP systems since it can lead to
contention when cores are trying to access the same shared resource. However this can also increase
communication efficiency between cores sharing a level of cache. This can spare some resources
and space on the chip, allowing processors to have more cores.

Figures 1.5 and 1.6 illustrate the concept of SMP and CMP. We can see that CMP systems are
more hierarchical than SMP ones. One has to be careful when writing programs targeting CMP
architecture since communications costs is not the same between two cores located on the same
chip and two distant cores. We should emphasis that things have moved to some private resources

and some shared. For instance on most modern processors some caches are privates and others are
shared.

PO P1 P2 P3
Memory Cache Cache Cache Cache

<
<€

Figure 1.5: A SMP Multi-Processor System: 4 processors connected to their shared memory.
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Memory Cache Cache

Figure 1.6: A CMP: 2 chips, each chip made of 2 cores sharing hardware resources such as a cache
level.

1.2.3 Simultaneous Multithreading

To even further spare hardware resources one can extend feature sharing to lower levels (i.e.
closer to processor). This is the called Simultaneous MultiThreading (SMT): the hardware threads
are processing units located on the same core. But all functional units are not duplicated. Only reg-
isters (both general purpose and special registers) are duplicated. But the pipeline, the Arithmetic
and Logic Unit (ALU), etc are shared.

Hardware threads can execute independent instruction flows, or programs. Therefore it does
not improve hardware peak performance since different threads sharing the same functional units
cannot perform arithmetic operation at the same time. Still it can improve the pipeline utilization
by filling the bubbles inserted into the pipeline by one of the thread with instruction from the other
thread. Simultaneous Multithreading only increases hardware sustainable performance.

Schedulers can be aware of the hardware threads (and in particular that they shared some
functional units) and can therefore better balance the load across the system [11].

1.2.4 Accelerators

In the last section we described several ways to improve general purpose processor performance.
In order to perform more specific tasks, specialized processors can be used. Specialized processors
are called accelerators.

Chips dedicated to one single kind of task can skip all features not compulsory to carry out their
job. This makes room on the die for more functional units dedicated to the task of the accelerator.
Since accelerators are becoming more and more present in the HPC field, which is the area of the
dissertation, we decided to describe some on them that are often seen in published work. However
accelerators architectures are beyond the scope of the contribution of this dissertation since we do
not try to model them.

Graphics Processing Units

Graphics Processing Units (GPU) were initially designed for graphics rendering. Yet GPUs are
very efficient for SIMD computation. Since HPC heavily rely on this kind of computation, GPUs
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are used in many super-computers dedicated to simulation. GPUs are composed of many simple
processors dedicated to arithmetics. GPUs are therefore very efficient for embarrassingly parallel
computation: every processor executes the same instruction, but each of them on different piece
of data. They can embed their own memory (e.g., discrete graphic cards), data can be transferred
to and from the GPU memory through a Peripheral Component Interconnect (PCI) bus. Compute
intensive tasks can be offloaded to the GPU, freeing the CPU from this task, and letting it executing
some other tasks.

Cell

The Cell processor was initially released by IBM, Sony, and Toshiba for the The PlayStation
3 game console (PS3) [21]. It features a general purpose CPU: a PowerPC processor called the
Power Processor Element (PPE). This PPE is surrounded with between six and eight accelerators,
Synergistic Processing Elements (SPE). The PS3 feature six SPEs while Cell processors released
for HPC platforms feature eight. SPEs feature vector instructions for fast arithmetic processing.
They have a private fast memory and are connected to other SPEs by a ring bus.

Single-chip Cloud Computer

The Single-chip Cloud Computer (SCC) released by Intel is a many core architecture. It fea-
tures 48 cores embed on the same die. These cores are organized on 24 tiles connected through
a 2 dimensional mesh. Cache coherency of the SCC is handled by software. Intel provides an
Application Programming Interface (API) to program the SCC that handles cache coherence auto-
matically. This is an interesting approach since, as we will see later in this dissertation, hardware
managed caches can present some difficulties for performance modeling as well as scalability issues.
The SCC is not designed to be an accelerator, a Linux kernel runs on each of the cores?. It is
more of a distributed platform embed on a chip. Common distributed platforms will be presented
later and focus on large scale. We choose to present the SCC in the section dedicated accelerator
because of the scale of its architecture, that is closer to accelerators than to clusters.

Xeon Phi

Intel recently released a new kind of accelerator: the Xeon Phi. The Xeon Phi processor family
that was released in 2012. This processor implements the idea of integrating many core on the
same chip. This board can be connected to the motherboard via a PCI bus. The Xeon Phi is a
massively parallel chip embedding up to 61 processors with large vector registers and instructions
(512 bits). As for GPUs, compute intensive tasks can be offloaded to the Phi processor.

1.2.5 Clusters

Until now we presented features raising performance of a single computer, either by leveraging
core throughput or by increasing parallelism. In order to run large computations, one single machine

4Yet, a bare-metal mode can be used run software on the cores without a running operating system.
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is usually not enough. To deliver more computational power, computers can be bound together
by networks and perform massively parallel computation. Computers linked together to perform
scientific computation are called clusters.

Most of the top500 [79] machines are actually clusters. Because general purpose machines are
cheap, one can interconnect many of them together to increase the computational capability of a
system. For these system to work properly, each computer has to be able to communicate with the
others. The more nodes® are present in the cluster, the more communications have to be efficient.
Since network is much slower than memory, waiting for data to be transferred between node can
dramatically decrease performance of parallel applications. In order to improve communication effi-
ciency high performance networks such as InfiniBand [39] were developed. Efficient communication
strategies as well as placement are often investigated to improve communications efficacy [30].

1.3 Memory Architecture

We saw several methods to increase computational power of modern architecture. But for the
computation to carry out, it needs data to operate on. As CPUs do not have enough registers to
store all the accessed data inside the processor, they are connected to the memory where data can
be stored when no instructions is using it. Memory is much slower than the processor. Therefore,
accessing it is critical to keep CPUs fed with data to operate on. Since arithmetic instructions usu-
ally have a relatively small latency, with an efficient instruction scheduling, either by the compiler
or thanks to the out-of-order engine, compute intensive programs are usually able to utilize the
pipeline very efficiently. But memory accesses will stall the pipeline even with an efficient instruc-
tion scheduling. A load instruction that brings a piece of data from memory to the processor can
be up to 200 times longer than an arithmetic instruction[59].

This section is dedicated to the memory organization of computer architecture. We will describe
which features were added to existing hardware in order to speed up memory access or to hide mem-
ory latencies. We will first present how software and the operating system access physical memory
in Section 1.3.1. Section 1.3.2 focuses on modern processor memory organization. Section 1.3.3
presents caches, a hardware feature designed to hide memory latency. Finally, Section 1.3.4 presents
a few caches architecture without hardware managed coherency.

Memory hierarchy is a critical part of computer architecture, especially in the context of HPC.
Indeed improving processor performance is useless if memory performance is not increased at the
same time: how fast a processor can compute does not matter if it constantly has to wait for
memory. The memory wall is a concept explaining why memory performance is so critical to
computer performance.

The Memory Wall This concept was formalized in 1995 [36]. It explains why memory perfor-
mance is becoming such critical parameter for performance. Considering a cache hierarchy with a
perfect cache with a t. cycle latency and a RAM memory module with a latency of t,,,, the average
access time to memory is: tgug = p X te + (1 — p) X t;, with p the probability of a cache hit. Also

5In the context of clusters, nodes refer to computers.
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since the cache is often on core ¢, is close to 1 (1 clock cycle). Since memory performance grows
slower than CPU performance, t. and t,, diverge. This means that t4,, grows at the same time.
No matter how fast caches and processors are, the average access time to main memory will grow.

As long as memory performance cannot match the processor performance, accessing memory
will be remain critical to performance. Moreover with the appearance of vector instructions and the
increasing number of core, an increasing pressure is put on the memory. Before going through some
hardware features designed to increase memory performance, we have to explain how programs and
the Operating System (OS) access memory.

1.3.1 Virtual Memory and Translation Lookaside Buffer

When software needs to access memory, instructions have to provide the memory address they
want to access. In modern operating systems, physical memory is virtually divided into separate
address spaces. Fach program — or process — running on the machine has an address space dedicated
by the operating system for storing its data. This allows several interesting features such as memory
protection: a process can only access its own address space separating it from the other programs.
Also virtual memory can virtually extend memory available on the machine: if the machine runs
out of memory (physical memory) the operating system can choose to write physical pages to the
hard drive to free them and allow other processes to use newly available memory pages. Of course
reading and writing memory pages to the disk is slow and should be avoided, yet it allows computers
to work on larger data sets than the physical memory.

When accessing memory, the software provides the CPU with the virtual addresses they want
to access. The processor and the system are then responsible for the translation of the virtual
addresses to the corresponding physical addresses. Figure 1.7 illustrates virtual to physical memory
mapping. The system keeps a page table for each process where it stores the mapping between the
process virtual memory pages and physical memory frames. Since this table is stored in memory,
translating virtual memory would be very inefficient if no hardware would speed this translation.
In order to speed up this translation process, the Translation Lookaside Buffer (TLB) is a very fast
memory location where address mappings are kept after each translation. Since this is a limited
memory, the operating system — or whatever piece of hardware — has to choose what mapping
to store in the TLB. When an address translation is needed and the translation is already in the
TLB the mapping stays in the TLB. If no translation can be found in the TLB the system or the
hardware Memory Management Unit (MMU) has to do the translation by reading the page table.
The translation that has just been performed is stored in the TLB. If the TLB is full, a translation
has to be evicted out of the TLB to make room for the new entry, the Least Recently Used (LRU)
entry is usually selected for eviction.

We briefly saw how the operating system and the hardware collaborate to access memory, we
can now go back to our main concern: optimization, focused on memory performance. We will
describe features that are important for understanding the contribution of this dissertation, but
more details about memory hierarchy can be found in literature [28].
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Figure 1.7: Virtual and Physical memory mapping.

1.3.2 NUMA Architectures

In order to build parallel architectures one has to be able to sustain high memory bandwidth to
avoid stalling processors by waiting for data. The main problem in accessing memory is contention
on the shared bus when several processors or core are reading or writing to memory. Figures 1.5
and 1.6 illustrating multi processor systems show the problem: each processor needing memory
access has to use the same bus as the others. This leads to contention and each processor has only
access to a fraction on the full memory bandwidth of the architecture.

NUMA architectures address this issue by partitioning memory in several chunks called memory
banks. Each bank is directly linked to a subset of processors. A memory bank and its connected
processors is called a NUMA node. NUMA nodes are interconnected through an efficient intercon-
nection bus. Since processors access memory on their own NUMA node faster than memory on
external NUMA nodes, the access to memory is said to be not uniform: memory latency depends
on the memory bank that has to be accessed to fulfill the memory request. This is why these
memory architecture are called NUMA for Non Uniform Memory Access. Figure 1.8 illustrates a
NUMA memory architecture.

When processors access memory on their node, no traffic has to go through the interconnect,
this can reduce the traffic on the interconnect. However poor data placement among memory
banks can lead to contention on the interconnection bus. One has to carefully allocate data on
local memory banks to minimize the traffic outside of the socket.
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Figure 1.8: A NUMA Memory Architecture.

1.3.3 Caches

If one is careful with data allocation, high memory bandwidth can be achieved thanks to NUMA
architecture. Yet this is not enough to reduce instruction latencies due to memory accesses. Fast
memories were added into memory architectures to speed up data access. One fast memory used
in almost all general purpose CPUs are caches. Since the main contribution of this dissertation
focuses on modeling memory hierarchies, the next section will present cache architectures in details.

Caches are very fast memories that can be embedded onto the CPU die. However to keep
caches fast and to limit the cost of CPUs, these memory have to be small, much smaller than the
computers main memory. Therefore the entire data set of software cannot fit in cache, and one has
to wisely choose what to put into the cache to achieve better performance. Also most caches are
completely implemented in hardware, and software has no control over it. Choices made in cache
design are therefore critical: it has to be efficient — or at least avoid degrading program performance
— for all kinds of code. The next section will describe caches architecture and hierarchy.

Cache Architecture

Caches can be seen as a large array. Each line of this array is called a cache line. Cache lines
are usually relatively small (64 bytes on most of x86 architectures). A cache line contains a copy
of a piece of data from main memory, a tag containing information about the address of the data
stored in the cache line, and some flags. When the processor needs to access memory, it first asks
the cache if the address to be read or written is already in the cache. If it is in the cache, then
there is no need to go to memory. The cache provides the CPU with the data it requested, this
is called a Cache hit. But is the cache does not hold the data requested — this is a Cache miss —
main memory has to be accessed to retrieve the piece of data requested.
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Figure 1.9: A cache illustration.

Spacial and Temporal Locality When a program accesses a data it will usually access it again
soon. It is called temporal locality. When a cache miss occurs (i.e. an address not present in the
cache is requested by the processor) the cache chooses a cache line where to store the data, fetches
is from main memory and stores it in the selected cache line. Hence the next time the same data
will be requested it will already be in the cache: this is a cache hit. If the cache is already full it
has to free a line. Usually the LRU cache line is flushed out of the cache. When data is read from
memory it goes into a cache line. Since a cache line is larger than one single element, some other
elements next to the requested one are loaded in the cache as well (the granularity of all transfers to
and from the cache are a cache line). This helps taking advantage of what is called spacial locality.
This concept says that when software access a piece of data it will also access data located close to
it. Therefore when a full cache line is loaded because of the access to a single element of the cache
line, we can expect to soon access the other elements of the cache line. Hence we avoid cache miss
by loading a full cache line instead of a single element.

Cache Associativity In order to keep accesses to the cache fast, we need an efficient way to
check if an address is or is not present in the cache. If every address can go into every line of
the cache, the cache will have to check for every line if the address stored in the line is the one
requested. These caches are said to be fully-associative. But checking whether an address is present
in a full-associative cache is expensive.

Cache designers usually build a hash function based on the address giving the exact cache line
number where the data should be — or go if not yet in the cache. Hence there is only one single
location to check to know if the address requested is in the cache or not. Cache where each address
can go to a single cache line are called direct mapped. But it might happen that a program accesses
many addresses that all go to the same cache line, in this case the cache will not be able to use
all its cache lines and a lot of space would be wasted. This kind of cache misses are called conflict
miss: every address is competing to get into the same cache line flushing the former one that will
have to be fetch from memory again after. In order to avoid this problem one as to choose a good
hash function that will dispatch addresses into all cache line avoiding conflict miss. However such
a hash function cannot be found for all possible programs. A trade-off is to build associative (but
not fully-associative) caches. A n-way associative cache is a cache where every address can go to
n different cache lines. When a checking if an address is in an n-associative cache, there is only n
locations to check. It is slower than for a direct mapped cache but it reduces conflict misses.
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Cache Hierarchy Since smaller caches are fast, small caches are a great way to speed up memory
access in case of many cache hits. But smaller caches mean more cache misses since less data fit in
it. If we choose bigger caches, we can achieve better hit/miss ratio because more data can fit in the
cache, but the cache will be slower. We can get the best of both worlds by building cache hierarchy.
A smaller (thus faster) cache can be connected to a larger one, itself connected to another bigger
one. When reading memory, the processor can check if the address is in the first cache (called L1
cache), if it is, then the access will be fast. For instance the L1 cache of Sandy-Bridge processor
are 32kB wide and the time needed to access it is 1 to 2 CPU cycles. If the address is not in L1, it
will check if the address is in L2 (the second cache, which is larger) etc until the address is found in
a cache level or that all cache levels have been checked. The L2 cache on Sandy-Bridge processors
are 256 kB wide and the latency is 12 cycles. And the L3 is shared among all processor of the same
socket, it is 20 MB wide and its latency is 26 to 31 CPU cycles®. In hierarchical caches when a cache
line is loaded from memory for the first time it goes to the first level of cache. Depending on the
cache design it can also be written in higher cache level or not. A cache level is said to be inclusive
if all data in lower caches are also in this cache. It is said to be exclusive if a data in a cache level is
not present in lower cache levels. And it is said to be non-inclusive otherwise. Cache hierarchies can
be complex: for instance Intel’s Nehalem and Sandy Bridge cache architecture feature a inclusive
L3 cache (it includes all data in L2 and L1 caches) and the L1 and L2 caches are non-inclusive:
data in L1 may or may not be in L2. In these two micro-architectures, the L2 is a victim cache of
the L1. This means that a cache line only goes to L2 when it is flushed out of the L1.

Cache Flags The flags of a cache line contain information about the state of the cache line. We
will see more details about it in a later section dedicated to cache coherence. For now, we will only
keep in mind that these flags tell whether the cache line is clean i.e. the copy in main memory is
the same as the one in the cache, or if the line is dirty: the cache line holds a version of the data
that is different from the one in main memory. This happens when the processor writes data: it
is written into the cache but not in main memory to save memory bandwidth. But the cache line
will have to be written to memory as soon as the cache line is flushed out of the cache. Yet this
still saves memory bandwidth since data can be written several times into the cache before having
to be written back to main memory. This strategy is called write-back, since data are only written
back to memory when needed. In contrast write-through caches write data into the cache and into
main memory as soon as the write occurs.

Section 1.3.1 has presented virtual and physical memory addresses. Also we saw that for caches
to work we need to keep in every cache line the address of the data stored in it. Cache design
has to choose either to put the physical or the virtual address in the cache line information. The
great advantage of tagging cache lines with virtual addresses is that it does not require to wait for
address translation to know if a cache access is a hit or a miss. However when the OS switches
the process being executed on the processor, it has to flush the entire virtually tagged cache. In
order to keep the cache requests fast and avoid flushing the cache after context switch, cache can
be virtually indexed and physically tagged. This means that the cache line (or set) where a virtual
address should go is determined by its virtual address, but the tag in the cache line is the physical
address the virtual address maps to. In this cache design, looking for an address in the cache can be

5The shared L3 cache of the Sandy-Bridge processor is organized slices connected through a ring. Depending on
the location of cache line accessed the latency and the core requesting it, the latency can vary.
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done in parallel with the address translation. But the cache will only decide if it is a hit or a miss
after the virtual to physical address translation. Since the tag holds the physical address, there is
no need to flush the cache after a context switch: if the two process have the same virtual address
mapping to different physical pages, the cache will make the difference between them thanks to the
tag that will be different.

However in such caches if several virtual addresses map to the same physical address, the same
data can be stored in several location of the cache. This is called cache aliasing. In order to keep
memory consistency, explicit cache flushing has to be done when such cases happen. This cache
aliasing problem is avoided in Linux kernel by carefully choosing the virtual address of shared pages:
all the aliased addresses are given to the user so that they all will go to the same set. Therefore
the cache is tagged with the physical address which is the same, even aliases of the same physical
memory will go the same cache line.

Instruction Cache Since programs are stored in memory, reading the instructions can be slow
and lead to poor performance if the processor has to wait for memory to decode the instruction.
In order to avoid memory latencies not only for data access but also when reading instructions,
program code can be in caches. Cache design for instructions can be simpler than for data: we do
not need tags to know if a cache line is dirty or not: the instruction of a program are not supposed
to change after being loaded to memory. Therefore in an instruction cache all caches line are always
clean: we can save the tags bits. In most of the general purpose processors, they are two L1: L1d
for level one cache for data and the L1i the first cache level for instruction. And the other cache
levels are unified: they contain both data and instructions.

Cache Coherence

We saw in Section 1.2.2 that modern architectures feature several cores or processors. On a
parallel processor several processes or threads can access the same data set, these data sets are said
to be shared. Since each processor has a private cache it is important to keep memory consistent
when several execution threads access shared memory. For instance if a data cell is updated by a
thread and then read by another is it important that the latter access provides the CPU with the
correct value for the variable. In order to maintain memory consistency, cache coherence protocols
were added in to cache.

These protocols are a set of rules to be applied when read or write to the cache occur. The next
section will describe some cache coherence protocols. Figure 1.10 illustrates a cache hierarchy with
several cores sharing some caches and with other caches that are private. Each core has its own
level 1 cache, the level 2 caches are shared by pair of cores and the last level of cache is shared by
all 4 cores on the chip.

Cache coherence protocols

In order to maintain coherence, the common solution is to add some bits to the cache line flags.
These bits are used to represent the state of the cache line, i.e. if it is clean or dirty and information
about. A protocol defines the actions to be taken when cache events occur. We will now present
some coherence protocols to illustrate the idea.
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Figure 1.10: A parallel cache hierarchy.

MSI The simplest coherence protocol is the MST protocol. In this protocol cache lines are tagged
with one of the M, S or I tags. The meaning of this tags are:

M for Modified: this means the cache line has a newer version of the data than the memory. Only
one cache can hold this address in the cache.

S for Shared: the line is clean. Several caches can hold the same address, all of them will have the
corresponding cache line S state.

I Invalid: no valid data is stored in the cache line.

The protocol defines actions to be performed on cache events. Cache events can be local read or
write and requests posted on the bus connecting caches. The MSI protocol can be implemented as
a snooping protocol. This means that caches have to monitor traffic on the bus. Figure 1.11 is a
graphical representation of the MSI protocol that can be defined with the following actions:

e When a cache hit happens the cache can satisfy the request itself. If the request is a write
to a shared cache line, an invalidation request is broadcasted on the bus. All other caches
holding the same address will discard their copies, and the cache writing the cache line will
set the cache line state to modified.

e When a read miss occurs th processor checks if the line requested is present in another cache.

— If another cache holds the requested data in a shared state, it will send the cache line
over the bus.

— If another cache holds the data in modified state, the remote cache writes its line back to
memory and either sets the line in shared or invalid state (this depends on the design).
The cache that issued the bus request gets the cache line either from the bus or from
the memory, the state of the cache line is shared.

— If no other cache has the data, it has to be brought into the cache from the main memory.
The cache line will be set in the shared state.

o When a write miss occurs, the cache has to issue a Request For Ownership (RFO) for this
address on the bus. Caches snooping an RFO on the bus will have to invalidate their cache
lines that hold the address. If a cache holds the address in the M state it has to write it back
to memory before invalidating its cache line.



28 Chapter 1. Hardware Architecture

Local Read/Write Local Read

Figure 1.11: The MSI protocol.

MESI One of the weaknesses of the MSI Protocol is that when a single cache holds a cache line
in the S state, it still has to broadcast an invalidation request to write to this cache line. An
optimization would be to avoid this broadcast by knowing that the cache is the only one holding
the given address. The MESI protocol brings this optimization to the MSI Protocol. It was developed
at the University of Illinois [61]. It adds a state called Exclusive (E) which means that the cache
line is clean and is the only copy in the cache hierarchy. It is like the S state of the MSI Protocol
excepts that the cache holding a cache line in the E stats does not have to broadcast an invalidation
before writing to this cache line. When an address is brought to the cache from memory (and not
from another cache) the cache line is set to state E. This is a very useful optimization because
writing to exclusive data happens very often in software. The most common usage is for instance
incrementing a variable.

MESIF Another weakness of the MSI and MESI protocols is that when several caches hold the
same address (therefore in S state) all of them will respond to a bus request asking for this cache
line. This leads to redundant traffic on the bus. The goal of the MESIF Protocol is to avoid this
unnecessary traffic bus by adding the Forward state (F). A cache line in the F state will behave
almost like in the S state. The only difference is that only the cache with the line tagged F will
respond to the requests, not the ones with the S state. This is the protocol used in many Intel
processors such as the Nehalem and Sandy Bridge processors.

MOESI In coherence protocols such as MSI, MESI, and MESIF protocols, a lot of time can be lost
when reading remotely modified cache lines since, in these protocols, modified cache lines have to
write to memory before being read by another cache. Some cache coherence protocols allow sharing
of a dirty data. In the MOESI Protocol the states M, E and I have the same semantics as in the MESI
protocol but the shared state can be dirty. If every cache holding the same cache line are in the S
state, then the data is clean. But if one cache has this line in the O state (which is specialization
of the S state meaning Owned), then the data is dirty. The cache holding the copy tagged O is
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responsible for responding to bus read request in this cache line. Modification to the MESI protocol
to benefits from the O state are the following:

e A cache is responsible for responding to bus read request on cache lines in M and O states.
After a response to such a bus request the state of the cache line is set to O state (unchanged
if it already was in O state).

e Only a cache line tagged O can respond to bus read request, this is one drawback of this
protocol: clean shared cache lines cannot be shared through the bus but have to be fetch
from memory.

e In order to write to a Shared line the cache has to broadcast an invalidation for this cache
line to all other caches. After writing to the cache line it will be in the M state (since all
other copies were invalidated).

o Cache lines in O state are responsible for writing their content back to memory when they
are flushed.

The MOESI Protocol is used in some AMD processors such as Bulldozer architecture.

Firefly Until now we only saw cache coherence protocols with a write-back policy, meaning
update to the memory is only performed when necessary. But some coherence protocols use a
write-through policy meaning that when a data is written to a cache, it also goes to memory. On
the one hand write-back policy allows for easier coherence protocol design since memory is alway
updated with the last write. On the other hand each write on such coherence protocols have to
go to memory which increases memory usage. The Firefly protocol use both write-through and
write-back policy to avoid too much overhead due to using write-through policy on every write. In
the Firefly protocol each cache line can be in one of the following states:

o Valid-Exclusive: this is same meaning as Exclusive in the MESTI protocol. The line is clean
and only the cache holding this cache line has this address in its cache.

o Shared: the cache line is clean and several caches may hold the address contained in the cache
line. This is the same state as S in the MESI protocol.

o Dirty: the cache lines is dirty and is the only copy of the data (same as state M in the MESI
protocol).

The goal of the Firefly model is to avoid as much of cache line invalidation as possible.

e On a load hit, the cache provides the requested data.
e When a load miss occurs, the request for this address is sent over the bus.

— If another cache can respond, it will provide the cache line.
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x The cache providing the cache line has to write the cache line back to memory if it
was dirty (by writing the data to memory it makes it clean).

— If no cache has the requested cache line, it has to be fetched from memory, the cache
line will be set to the Valid-Exclusive state.

¢ On a store hit:

— if the cache line is in Valid-Exclusive state, it is updated and the state goes to Dirty.

— if the cache line is in Dirty state it can be updated and the state of the cache line does
not have to change.

— if the cache line is shared, the cache updates the cache line and also writes the data to
memory (write-through). It also has to broadcast the new value of the cache line on the
bus for others cache to update it. Since the cache made a write-through the memory is
also updated and the data is not dirty.

Dragon The Dragon protocol is similar to the Firefly protocol except that it allows sharing of
dirty cache lines. This avoids the write-through when a store to a shared cache line happens. In
order to achieve this, a state is added to the three states of the Firefly protocol: the shared-dirty
state. Cache lines are set to this state after they are updated by a broadcast on the bus due to a
store hit on a shared cache line (either shared-dirty or shared-clean). This avoids the compulsory
write-through of the Firefly protocol.

Summary We saw that many coherence protocols can be used to maintain memory coherence,
these mechanisms are implemented into the hardware. Most of them involve non scalable com-
munication such as broadcasts. This means that maintaining cache coherence becomes harder and
harder as the number of processors and cores in the system increases. In order to reduce the number
of unnecessary coherence messages, directories can be added into cache hierarchies to keep track
of which caches have a given line [3, 20]. Some say that cache coherence does not present such
a big overhead — especially thanks to directory based coherence mechanisms [54]. More room for
optimization regarding memory access can be achieved by delegating this task to the programmer.
Moreover, since this hardware coherence is all done automatically by the chip, programmers — even
those who are aware of cache coherence performance problems — have a restricted control over
it. Some instructions allow controlling caches. For instance non-temporal instruction can be used
to bypass some cache level, or explicit flush allow programmers to evict a particular cache line.
Architectures without hardware cache coherence were released to provide the programmers with
more control. The Intel’s SCC and the Blue Gene/L chips are examples of such non-coherent cache
architectures [22, 35].

Since legacy codes cannot be easily modified, software developed with the assumption that the
hardware features a hardware coherent cache cannot be ported to architecture featuring software
managed cache. Hardware cache coherence is therefore compulsory for legacy code.
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1.3.4 Non-Coherent Caches

The main problems of hardware maintained cache coherence are that it cannot be adapted to
the application. For instance one might want a coherence protocol for an application and another
one for a different one: this can only be achieved by software coherence. To give an example, a
parallel application with heavy communication would probably benefit from a cache implementing
a broadcasting strategy when writing to shared cache line: the communication would be performed
through the bus connecting caches instead of through main memory. However this same protocol
would lead to high overhead with an application where data produced by a thread are not read by
others.

Also on most applications just a few amount of data are actually shared: only these data need to
be carefully maintained coherent between computing threads. For this purpose hardware coherence
is too costly. Getting rid of hardware cache coherence can help reducing hardware cost. As well as
allowing for larger number of cores on chip.

Maintaining Memory Consistent by Software

In order to maintain cache coherence on caches without hardware coherence the programmer
has to add some instructions into the code to keep memory consistent. These instructions are
responsible for invalidating stale data, or more generally handle the coherence traffic. It would be
a mistake to think that it is deporting a piece of hardware into the software. Since the programmer
knows what to keep coherent and what are the data sets used by every computing threads, it can
reduce coherence traffic to the minimum actually required.

Software cache coherence can be almost transparent to the programmer — and thus enhance its
efficiency — it is handled by a library or inside a compiler. For instance, Intel released the Single-
chip Cloud Computer (SCC) in 2010 [22]. This architecture feature non coherent caches where the
software coherence is ensured by a message passing library, avoiding programmers to get into too
low level details [56].

Scratchpad

Another kind of fast memories can be used to reduce memory latencies: scratchpads. Scratchpad
memories are fast memory modules where processes can store frequently used or critical data. It can
achieve high bandwidth like cache memories, but software has control on what data to put into the
scratchpad, contrary to traditional caches where all accessed data go automatically. Scratchpads
can therefore avoid problems such as cache pollution. Cache pollution means storing into the
cache data that will never be reused, they use cache space but the program never benefits from it.
Another strength of scratchpads is that Direct Memory Access (DMA) engine are usually used to
transfer data between main memory and the local scratchpad, which frees the CPU from this task.
This is comparable to prefetching excepts that once a DMA transfer is initialized the CPU does
not have to execute any extra instruction. While with prefetching special instructions are executed
by the CPU to perform the memory transfer. Also interesting optimizations can be done thanks to
DMA, one can overlap memory transfers with computations or realize prefetching in a very efficient
manner. The Cell processor developed by Sony, Toshiba, and IBM [21] is an example of computer
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architecture using scratchpads called local store. Each SPU has its own private 256kB wide local
store and data can be moved to and from these local stores thanks to DMA engines.

The Cyclops64 project developed by the United States Department of Energy, the U.S. Depart-
ment of Defense, IBM and the University of Delaware is another architecture using scratchpads to
speed up memory access [10].

1.4 Summary

We looked over some architectural features of modern processors allowing for fast and parallel
computations. But challenges await programmers with high performance needs since the more
complex hardware is, the more difficult its efficient use.

Computer architectures in the HPC field trend to more and more parallelism as well as a
growing heterogeneity: several different architectures can have to work together to carry out a
computation. The appearance of GPU in clusters dedicated to intensive scientific computation
is an example among other illustrating heterogeneity. Challenges for programmers are therefore,
being able to produce efficient sequential code, express parallelism to utilize all computing cores
available or even different machines connect via a network.

The contribution of this dissertation is help the understanding of modern hardware architecture
through benchmarking. Modeling the core architecture requires knowing hardware features avail-
able on the processor pipeline (availability of a register forwarding mechanism, of an out of order
execution engine etc), the number of execution ports and the latency of instructions. Hardware in-
formation are usually available in processor documentation, but instruction latency and throughput
are harder to find. We will try to address this issue in Chapter 2.

Chapter 2 will present an automatic method to retrieve critical information to
build hardware models. These hardware models can help automatic code optimiza-
tion or code quality analysis.

Modeling memory hierarchy is even harder since because of some undocumented features —
especially regarding cache coherence — that are included in the memory architectures. Cache
coherence involves lots of automatic message exchanges that are hard to predict. Moreover the
timings — or overhead — of these coherence messages are not documented and are hard to measure
since these mechanisms are transparent to the programmer. Numerous automatic mechanisms
embed in modern memory hierarchies are very efficient for general purpose usage. But less for
fine tuned HPC applications, also taking this mechanisms into account when model hardware
performance is difficult.

Chapter 3 will focus on bringing knowledge about memory architecture to pro-
grammers by mean of micro-benchmarking.
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However we will see that even with a large amount of information about memory architecture,
it is too complex to build a theoretical model that matches the reality precisely. We found an
alternative in order to build memory models, it is to bring benchmark data into the model and

build the model upon the output of benchmarks.

Chapter 4 aims at building a memory model for cache coherent architectures
that is based on benchmarks instead of building a theoretical model based on

hardware parameters.
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Performance Modeling

“The purpose of science is not to analyze or describe but
to make useful models of the world. A model is useful if it
allows us to get use out of it.”

— Edward de Bono

Through the two last chapters we presented the state of the art of HPC field and identified
several research challenges we chose to focus on. The next three chapters will now focus on the
contribution of this dissertation.

The last chapter presented how HPC applications are developed and optimized. We saw that
hardware modeling gives insight to the programmer about the hardware and therefore helps match-
ing software to the underlying hardware. Also, precise hardware models allow automatic code
optimization if they can be brought to tools such as compilers, runtime systems, or libraries.

Since new computer architectures are released at a high frequency to fulfill the growing need for
computational power, hardware models have to be update very frequently too. The issues encoun-
tered when modeling hardware are mostly: i) getting enough information about the architecture
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and 7i) understanding how each hardware component interacts with each other. Since hardware is
becoming more and more complex, hardware modeling is becoming a real challenge.

The contributions of this chapter are: a methodology to automatically measure instruction
performance: latency, throughput and execution ports, this is described in details in Section 2.2.
A performance model of the SCC architecture allowing power performance optimization, described
in Section 2.3. And a study of the important parameters to be taken into account when trying to
model cache coherent memory hierarchies, in Section 2.5.

2.1 Propostion

The difficulty to deeply understand modern hardware leads to building performance models to
abstract the complexity of computer architectures to better utilize it. The contribution presented
in this chapter aims at providing tools and methods to get information about hardware in order to
ease building hardware models.

We choose to divide hardware models into two different parts: on-core and un-core model. We
choose this classification because software are often also divided into 2 categories: compute-bound
or memory-bound. Compute-bound software execution time depends on the speed on computation
while memory performance is only marginal. On the contrary, memory performance is critical
for memory-bound software. The on-core model section is related to features located on the core
itself: the ALU, the instruction pipeline, etc. These models are important for understanding and
optimizing performance of compute-bound software. The un-core part is related to features outside
of the core: mainly memory and caches. Although level 1 and 2 caches are often physically on the
core, we choose to include the modeling of the full memory hierarchy (i.e. all levels of cache and
main memory) in the un-core model. Un-core models are used to predict or optimize memory-bound
software.

We try to respond to the lack of architecture knowledge by presenting automatic methods to
retrieve important data about hardware. This chapter is divided into on-core and un-core hardware
modeling methodologies.

The on-core method aims at presenting opportunities to automatically retrieve instruction la-
tencies and execution ports to build computational models. Section 2.5 presents the first steps
towards memory modeling: it shows that several undocumented information about hardware can
be discovered through experimentation. We also presents the essential parameters needed to build
memory hierarchy models and what factors are influencing memory performance.

2.2  On-core Modeling: Computational Model

We saw that it is important to know the latency of instructions as well as the execution port
each instruction can be executed on. This enables scheduling instructions for increasing the pipeline
utilization or to give feedback to programmer about which optimizations to use to speedup soft-
ware performance. By knowing the latency of each instruction of the instruction set of a given
architecture, we are able to know the time elapsed between when instruction issue and it is retired.
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This allows predicting the pipeline utilization and time needed for a given block of instructions to
be executed.

But instruction latencies are not documented on many general purpose processors. Since the
trend is to have architectures with more and more instructions, bringing all instruction latencies
to a model can be a tedious task. To move towards automatic hardware modeling, we are going to
see how the information can be found automatically.

2.2.1 Related Work

In order to perform the instruction performance measurement presented in this section, we
used the benchmarking framework that will be presented more thoroughly in Section 3.3.2. The
basic idea of this framework is to allow users to write their own benchmark function. User defined
benchmark function can then be called from the framework that handles the time measurement,
and repeats the experience several time to achieve best performance. The only user input needed
is, the code to benchmark and the number of instruction in the code'. In this chapter we will
therefore mainly focus on generating the correct code to measure a particular performance metric.

Other existing tools are designed to perform low level hardware benchmarks. MicroTools is
a framework that fits exactly our needs because because it allows user to write their own bench-
marks [I1]. It handled register renaming at source code level as well as loop unrolling in order
to select the best code version. However at the time we did this work it was not yet released
as an open source software. Therefore we could not use it to carry out our work. LIKWID is a
performance-oriented toolbox [30]. One of the tools embed in this project is called likwid-bench
that eases micro-benchmark writing. It allows prototyping benchmarks by passing several options
to the likwid-bench tool. Several benchmarks are provided out of the box. User can also extend the
framework by writing their own functions. A strength of LIKWID is that user can define function
with a meta language translated into assembly. This meta-language allow easier kernel writing
because it avoids to the user the task to manipulate and manage registers. We could have used
this framework to perform our analysis, however we had already developed framework allowing this
prior to the work described in this section. Therefore we choose to use our own framework. The
kind of benchmarks we needed to build for the study in Chapter 3 and Chapter 4 could not be
handled with LIKWID. But we will elaborate on these reasons in Chapter 3.

Agner releases performance numbers of every new released architecture [31]. He provides the
community with a great number of performance data of a wide range of architectures. In the
work presented in this section, before the actual numbers we are interested in the methodology.
We want to show how critical performance parameters can be automatically retrieved by mean of
micro-benchmarks. This is why we will fist present our methodology and then we will evaluate the
result we had by comparing them with Agner’s data.

The work presented in this section was lead with Mathieu Audat and James Tombi A Mba,
two students doing an internship under our supervision. The results of instruction performance
measurement made with our methodology and framework were used to build the MAQAO [9] static
performance model for the Xeon Phi processor.

1The user can also provide the number of bytes of memory accessed during the benchmark. This is used to measure
memory performance, but this will be the subject of Chapters 3 and 4.
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2.2.2 A methodology to measure Latency, Throughput, and to detect Execution
Port assignations

Instruction latency is the time elapsed between an instruction is issued and it is retired. For
a memory instruction, it cannot be predicted in processors featuring cache hierarchy or NUMA
architectures: the latency depends on the location of the memory data accessed. But memory
performance will be covered later, for now we only focus on latency of arithmetic and branching
instructions.

Measuring x86 Instruction Latencies Instruction latency is the number of cycles it needs to
be executed completely. In order to measure it, we have to measure the number of CPU cycles
needed to execute a large number of them and divide the time found by the number of instruction
executed. However when running this experiment on a pipelined processor, several instructions can
be executed at the same time (see Section 1.1.1). This would lead to undervaluing the latency of
instruction. To avoid this error, we try to cheat the pipeline by filling it with instructions depending
on other. This will force the processor to execute only one instruction at the same time. Yet register
forwarding (see register forwarding in Section 1.1.1 on page 10) in the pipeline can still happen,
but avoiding it is much harder. However this not a big issue. Indeed, we need the real time elapsed
between the execution of two instructions depending on each other to predict the run-time a given
code. Since in real code the register forwarding will be used, it is not a problem if it also happens
in the measurement of instruction latency.

Instruction Syntax The syntax for operand is a comma separated list of the type of the
operands. Immediate value are represented with imm, SSE registers are represented with xmm and
general purpose registers with r64. We can see the syntax of several x86 instruction in Listing 2.1.
For instance, on the first line, we see that instruction ADD took two operands: the first one can be
either an immediate value or a general purpose register and the second operand is a general purpose
register. In order measure the instruction latency of x86 code we need an instruction listing as well
as the instruction syntax.

addpd Xmm, Xmm
add imm/r64, r64
insertps imm, xmm, =xXmm

Listing 2.1: Instruction Syntax examples: the ADDPD instruc-
tion takes two SSE registers as argument. The ADD instruc-
tion can take either an immediate value or a 64 bit register as
as first operand and a 64 bi. register as a second argument.

The syntax of an instruction represents: the instruction name (ADDPD in the example in Listing 2.1),
and its operands (two SSE registers in example in Listing 2.1). As we can see in Table 2.2, operands
can be, immediate values (represented with the imm symbol), SSE registers (represented with xmm),
general purpose registers (r64 for 64 bit registers, r32 for 32 bit registers, etc). Since we only
target non memory instruction, we do not need to represent memory reference syntax.



2.2 On-core Modeling: Computational Model 39

From a list if instruction with their syntax, as depicted as in Listing 2.1, we can automatically
generate several code patterns:

1. A code pattern with instruction dependency between every instruction and its predecessor
(an example can be seen in Listing 2.2). This code will allow us to measure the instruction
latency.

2. We can also automatically generate a code with no dependency that will allow us to measure
the maximal instruction throughput (an example can be seen in Listing 2.4).

The code generated to measure the latency of the ADDPD instruction is shown in Listing 2.2.
This code is the body of the loop used to perform the measurement.

ADDPD XMMO , XMMO
ADDPD XMMO , XMMO
ADDPD XMMO , XMMO
ADDPD XMMO, XMMO
ADDPD XMMO, XMMO
ADDPD XMMO , XMMO
ADDPD XMMO , XMMO
ADDPD XMMO , XMMO

Listing 2.2: x86 code used to measure ADDPD
instruction latency.

We can see in Listing 2.2 that every ADDPD instruction depends on the previous one: only a single
instruction can be issued at each cycle. The previous instruction has to retire before a new one can
be issued. This code is put into the body of a loop and the loop is run several times. Since the
loop is unrolled (i.e. ADDPD instruction is replicated 8 times in the loop body), the overhead of the
loop condition and branching is small. In order to further decrease this overhead, we can unroll the
loop by a higher factor. But unrolling the loop too much might end up lowering performance by
exceeding the capacity of the instruction loop buffer (see section named Instruction Loop Buffer in
Section 1.1.1, on page 10). We observed this effect for instance on the throughput measurement of
the ADD instruction. With a loop unrolled by a factor of 64 we obtained a throughput of 0.33 while
with an unroll of 1024 we recorded a throughput of only 0.5 instruction issued per cycle.

Table 2.1 shows the influence of the unroll factor on loop performance. We can see that, even
with a low unrolling factor the performance of the loop are close to peak performance: a latency
of three cycles. Only when the loop is unrolled by a factor of one — i.e. not unrolled — the loop
performance decrease. This observation comes from the efficiency of the branch predictor and the
speculative execution of the pipeline.

As long as we have a listing of the instructions we need to measure and their syntax we can
automatically generate x86 code to measure instruction performance. The only problems are with
instruction referencing memory and branching instruction. Instruction referencing memory will be
coverer in Section 2.5. Measuring the latency of branching instruction is still important to predict
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Table 2.1: Influence of the Loop Unroll factor on Loop Performance.

Unroll factor Latency

1 4.01
2 3.01
4 3.01
8 3.01

the loop performance. Since branching instructions affect the instruction flow, we have to be careful
to avoid leaving the benchmark loop before the measurement is over. In order to do this we can
build a code pattern that goes through branching instruction one after another. This code pattern
is shown in Listing 2.3.

asm ( "i0: JMP il;
il: JMP i2;
i2: JMP i3;
i3: JMP i4;
i4: JMP ib;
i5: JMP i6;
i6: JMP i7;
i7: JMP i8;")

i8: if (n>N) goto end;

Listing 2.3: Code pattern used to measure
branching instruction latency.

Checking conditional branches can be done the same way, by using a conditional instruction to set
the condition register to true and by going though a code code full of conditional branch that will
all be taken.

2.2.3 Detecting Instruction Parallelism

On super-scalar processors, several instruction ports can execute the same instruction. For
instance, on the Sandy-Bridge micro-architecture, three ports are dedicated to arithmetics. This
allows several instructions of the same type to be issued and executed at the same time. To build
a full computational model we need to know the number and the kind of instructions the CPU
can issue within the same cycle. For this purpose, the throughput is an important metric. The
throughput is the average number of cycles elapsed between two instructions can be issued. By
measuring the throughput of instructions, we can deduce the number of execution ports dedicated
to a given instruction. For instance if the throughput of an instruction is 0.33 cycle, this means
that 3 instructions of this kind can be issued at the same cycle. Thus we can conclude that the
processor has at least 3 ports that can be used to execute this instruction.



2.2 On-core Modeling: Computational Model 41
Instruction Throughput

To measure the maximal instruction throughput, we have to produce a code pattern that allow
as much instructions as possible to be filled in the pipeline at the same time. Unlike when measuring
latency we have to remove as much dependence as we can. In order to measure the throughput of
the ADDPD instruction we can use the code shown in Listing 2.4.

MOV $1, R8D

MOV $1, R9D

MOV $1, R10D
MOV $1, R11D
MOV $1, R12D
MOV $1, R13D
MOV $1, R14D
MOV $1, R15D

Listing 2.4: Code pattern used to measure in-
struction throughput.

This way no instruction depends on the other and the maximal instruction throughput can be
achieved.

Code Generator Overview The algorithm used to generate the code dedicated to latency
measurement aims at producing code with a dependency between every consecutive instructions.
In order to achieve this, the register written by an instruction has to be read by the next instruction
to be generated. We have two register allocator that can be used to build such a decency chain. The
first always returns the same register when a register name is to be generated. The other register
allocator generates a new register name for each new instruction to be written, saves this name to use
it as the source of the next instruction, and use the new allocated register as the destination register
of the instruction. The algorithm used to generate code for latency measurement is described in
Listing 2.5.

reg_list_sse = [xmmO, xmml, xmm2, .., xmml5];
reg_idx_sse = 0;
reg_list_r64 = [rax, rbx, rcx, .., r8d, ...];

reg_idx_r64 = O0;
reg_list = [reg_list_sse, reg_list_avx, reg_list_r64, ...];

alloc_reg(reg_type) {
i = reg_idx(reg_type);
reg = reg_list[reg_type]l[*il;
*i = (xi + 1)%sizeof(reg_list[reg_typel);
return reg,;

}

write_latency_code(instruction_syntax) {
first_reg = 0;
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for (i=0; i<loop_unroll; i++) {
write(instruction_syntax.instr);
for (0=0; o<instruction_syntax.noperands; o++) {

op = instruction_syntax.operandl[o];
if (is_reg_operand (op)) {
if (! first_reg || is_dest_operand(op)) {

reg = alloc_reg(op.reg_type);
first_reg=reg;

}
if (is_dest_operand(op) && i == loop_unroll-1) { // last
write(first_reg); // instruction in the loop body:
// write to the first register
// allocated to forward
// the decency chain to
// the next loop iteration
}
else {
write(reg);
}

}
else if (is_imm_operand (op)) {
write_immediate_value ();

}

else {

}

Listing 2.5: Code generator pseudo-code.

For the register allocator to always generate the same register when building the decency chain, we
have to provide a list of registers containing the single register we want to use.

Note: we have to outline that, for instructions having a single register in their operands, no
matter how many registers we provide to the code generator, just a single one will be used.

Code Generator for Throughput measures Only minor changes have to be made to generate
code able to measure instruction throughput rather than latency. To measure throughput we need
a code with no dependency, but name dependencies. These dependencies that will be removed by
the register renaming mechanism. In order to avoid instruction dependencies, we allocate a new
register for every register operand.

Porting the code generator to other architectures Porting this code generator to other
architectures is easy since the algorithms used are generic. The changes to be done are to provide
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to the register allocator with the information it needs about the hardware: the register lists and
types.

Table 2.2 presents some of the result we obtained on several instructions. The second column
specifies the operand of the instruction. This is especially important for instruction that can take
several operands. For instance the MOVAPS instruction we measured is a copy from one SSE register
to another because is takes two registers as operand. But the same instruction can also take a
memory location and a register as parameter in this case it would be a memory access. Columns
three and four compare the instruction throughput we found with our method and the throughput
provided in Agner’s document. Columns five and six show the latency measured with our method
and Agner’s data.

Table 2.2: Comparison of Instruction Performance measured with our method and Agner’s data
on the Sandy-Bridge Architecture.

Throughput Latency

Instruction Operand Our Agner Our Agner
ADD imm/r64, r64 0.34 0.33 1.00 1

MOV imm/r64, 64 0.34 0.33 1.00 1
INSERTPS imm, xmm, xmm 1.01 1 1.02 1
SHUFPS/D imm, xmm, xmm 1.01 1 1.02 1
ADDPS/D xmm, xmm  1.02 1 3.00 3
ANDPS/D xmm, xmm  1.01 1 1.02 1
MOVAPS xmm, xmm 1.01 1 1.02 1
ORPS/D xmm, xmm  1.01 1 1.02 1
MAXPS/D xmm, xmm  1.02 1 3.00 3
MINPS/D xmm, xmm  1.02 1 3.00 3
HSUBPS/D xmm, xmm  2.01 2 5.00 5
MOVQ xmm, xmm (.34 0.33 1.00 1
MOVSS/D xmm, xmm 1.01 1 1.02 1
MULPS/D xmm, xmm  1.02 1 5.00 5
PADDB/W/D/Q xmm, xmm  0.51 0.5 1.01 1
PAND xmm, xmm  0.34 0.33 1.00 1

The results presented in Table 2.2 were run on an Intel Xeon E5-2650 CPU running at 2.00 GHz.
In order to achieve reproducible and stable results we fixed the processor frequency by disabling
frequency scaling and Turbo Boost. The benchmarks were written in inline assembly code and
compiled with Intel ICC compiler version 13.0.1. The code was run on Linux kernel version 3.2.0-3.
We use the RDTSC instruction to access the time stamp counter to perform high resolution time
measurement. The loops measuring the instruction latency and throughput are unrolled by a 64
factor and are executed 1024 times. We unrolled the loops by a large factor to minimize the
overhead due to the loop end condition checking and induction variable update: a sub instruction
and a conditional branch jnz. The framework we used automatically runs the benchmarks 10 times
and reports the performance of the best measurement.
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We can see from Table 2.2 that our measurements are very close the performance reported by
Agner: the difference is at most 3%.

Impact of Register on Performance Table 2.3 presents the throughput we measured for
several code version of the benchmark measuring the throughput of the ADDPD instruction. The
code measuring throughput is made of independent instructions. Therefore they operate of different
registers, as it was shown in Listing 2.4. But we can choose to build code version with more or less
registers, Listing 2.4, show a code version with eight different registers. But Listing 2.6 shows the
same code pattern only using 4 registers, still with an eight-unrolled loop.

ADDPD XMMO , XMMO
ADDPD XMM1, XMM1
ADDPD XMM2, XMM2
ADDPD XMM3, XMM3
ADDPD XMMO , XMMO
ADDPD XMM1, XMM1
ADDPD XMM2, XMM2
ADDPD XMM3, XMM3

Listing 2.6: Code pattern used to measure in-
struction throughput with only four registers.

The performance summarized in Table 2.3 presents the performance of such code version with a
number of registers varying between one and eight. The code version with a single register used is
code used to measure the instruction latency since there is a dependence between every instruction
of the code. It is not surprising to find that the performance of this code corresponds to the latency
of the ADDPD instruction. If we use two registers, the pipeline is able to issue two ADDPD instructions
per cycle. Then stalls for three cycles waiting the dependence to be resolved. After the three cycles
two instructions retire and two new can be issued. This leads two instruction executed every three
cycles, this explains the throughput of about 1.5. When we use three registers, the processor should
be able to issue three instructions per cycle, wait for three cycles to resolve the dependences and
issue again three new instructions. However, as we can see this is not true since the throughput
measured for this code version is 1.13. We think that this comes from small delays sometimes
happening in the front-end of the pipeline. These delays can sometime avoid delay an instruction
issue preventing the throughput to be exactly 1. If we increase further the number of registers used
in the code, we release the stress on the instruction issue because four instruction can be executed
every 3 cycles. Therefore even if one among them is delayed, another can take the spot. This
explains the throughput of about 1 observed when using from four to eight registers.

Instruction Execution Port

The last critical information for predicting accurately code performance is to know what in-
struction can be executed at the same time as others, i.e. which instructions use the same execution
port as others. To check whether two instructions use the same execution port, we can build a



2.2 On-core Modeling: Computational Model 45
Table 2.3: Comparison of several code versions of the ADDPD benchmark.

Throughput

3.01
1.51
1.13
1.02
1.02
1.02
1.02
1.02

Registers

O J O UL i W N

Table 2.4: Comparison of execution time of two code versions to deduce if two instructions share
an execution port.

With mowv instruction only utilizing one
execution port.

With mov instruction using all available
execution ports.

MOV R8D, R9D; // port O MOV R8D, R9D; // port O
FADD EAX; // port 1 MOV R10D, R11D; // port 1
MOV R10D, R11D; // port 5 MOV R12D, R13D; // port 5
FADD EBX; // port 1 FADD EAX; // port 1
MOV R12D, R13D; // port O MOV R8D, R9D; // port O
FADD ECX; // port 1 MOV R10D, R11D; // port 5
MOV R14D, R15D; // port 5 MOV R12D, R13D; // port O
FADD EDX; // port 1 FADD EBX; // port 1

benchmark that interleaves the two kinds of instructions. If the execution time of the kernel with
the two kinds of instruction is the maximum of the run time of the kernel with only one kind
of instruction, this means that the instruction be issued at the same time and are executed by
different execution ports. However if the run time of the interleaved kernel is the sum of the run
time of the kernels with a single instruction kind, then the instructions were issued one after the
other and we can deduce that they use the same execution port. When an instruction can be issued
on several execution port, it is important to fill all execution ports with independent instructions.
For instance on Sandy Bridge micro-architecture, the mov instruction can be used to copy the
content of a register to another register. This instruction can be executed by ports 0, 1 and 5.
And the fadd instruction performing a floating point addition can only be executed in the port 1.
Table 2.4 illustrates what would happen if not all execution ports were used and how it would lead
to mistakes.

On the left hand side of Table 2.4 it would take 4 cycles to issue the 4 mov and the 4 fadd
instructions. If there were only the 4 mov instructions, it would take 2 cycles to issue. And with
only the 4 fadd, it would take 4 cycles. Since executing the full block of 8 instructions takes the
same time as the maximum of executing the different instructions separately we deduce that mov
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and fadd instruction do not share any execution port. But if we look at the right hand side of
Table 2.4, issuing the 8 instructions takes 3 cycles while issuing only the mov instruction would
take 2 cycles, and issuing only the fadd would also take 2 cycles. Since interleaving these instruction
is slower than executing them separately, we can deduce that these instructions share an execution
port. We can also understand that they do not share all execution port (otherwise the interleaved
code would take 4 CPU cycles to issue the 8 instructions).

In order to know the exact number of execution ports shared by two instructions, we can
generate all interleaved code versions with a number of instruction of each kind from 1 to the
number of execution port it uses. For instance, with the example shown in Table 2.4, we can build
a code with only 2 movs and 1 fadd. This code would run in 2 cycles: and we can deduce that
these instructions share less than 2 execution ports.

The code generator used to generate interleaved code to test is a couple of instruction share
an execution port is simple: we concatenate the code used to measure the throughput of the two
instructions into the same loop body.

However, with the short period of time of the internship we did not had time to build a full
automatic framework to retrieve instruction latency and execution port shared by every instruction
pair. Yet we presented a method that can be automated to get these information from real hardware.
We ran several measurements on real processors to check if this method is able to retrieve value
found in literature. We showed that we were able to measure instruction latency and throughput
with a good precision since the difference between our measurements and data found in literature
is at most 3%.

2.3 Case Study: Power Aware Performance Prediction on the

SCC

The work presented in this section was presented in depth in paper [A1]. It is a good example
of combining several models into a larger one able to model the behavior of several pieces of a real
hardware. In this work we built a computational model, a memory model and a power consumption
model that, combined all together are able to predict the runtime of regular code and the power
consumption of the underlying SCC chip in order to let end users optimize either runtime of the
application or power efficiency depending on their own needs.

As power is becoming one of the biggest challenge in high performance computing, we have
created a performance model on the Single-chip Cloud Computer in order to predict both power
consumption and runtime of regular codes. This model takes into account the frequency at which
the cores of the SCC chip operate. Thus we can predict the execution time and power needed to
run the code for each available frequency. This allows to choose the best frequency to optimize
several metrics such as power efficiency or minimizing power consumption, based on the needs of
the application. Our model only needs some characteristics of the code. These parameters can
be found through static code analysis. We validated our model by showing that it can predict
performance and find the optimal frequency divisor to optimize energy efficiency on several dense
linear algebra codes.
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2.3.1 Related Work

Power efficiency is a hot topic in the HPC community and has been the subject of numerous
studies, and the Green500 List is released twice a year. Studies carried out at Carnegie Mellon
University in collaboration with Intel [25] have already shown that the SCC is an interesting
platform for power efficiency. Philipp Gschwandtner et al. also performed an analysis of power
efficiency of the Single-chip Cloud computer in [67]. However, this work focuses on benchmarking,
while our contribution aims at predicting performance according to a theoretical proposed model.

Performance prediction in the context of frequency and voltage scaling has also been actively
investigated [24, 50, 70], and the model usually divides the execution time into memory (or bus, or
off-chip) [37, 52], instruction and core instruction, as we did in this paper.

2.3.2 The SCC Architecture

Before going into the details of our models of the SCC chip we will briefly describe the key
feature of the SCC architecture. By key features, we mean what is important to understand about
this particular hardware to be able to understand our models. More details about the SCC chip
can be found in [55].

The Intel Single-chip Cloud Computer (SCC) is a good example of possible next generation
hardware with easy way to control power consumption. It provides a software API to control core
voltage and core frequency. This opens promising opportunities to optimize power consumption
and to explore new trade-offs between power and performance.

The SCC chip feature 24 dual core tiles. This tiles are connected through a 2 dimensional mesh.
An overview of the chip organization is presented in figure 2.1.

Figure 2.1: Overview of the SCC chip Architecture. The Chip is organized in 24 dual core tiles
connected through a two dimensional mesh. L1 and L2 caches are private and embed on the tile.

The SCC chip feature a novel memory organization. Several memory level are available: a
shared off-chip DRAM memory module that can be addressed by all core of the chip. Private of-
chip DRAM: chunks of memory that are only addressable by a core. Each core on the die feature
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a private 16 kB level 1 cache and a private 256 kB level 2 cache. Also and this is the very novel
feature of the SCC chip a shared on-chip SRAM module called the Message Passing Buffer (MPB)
can be addressed by all cores. The MPB can be accessed by every core of the chip but is distributed
across all cores: cores access memory addresses held in the MPB module of its own chip faster than
others. The MPB module is used to perform fast inter-core communication. Figure 2.2 illustrates
the memory organization of the SCC chip as seen from the programmer point of view.

Shared off-chip DRAM (variable size)

[l ©n-chip memory
D Off-chip memory

Figure 2.2: The Memory organization of the SCC.

2.3.3 Performance Model

In this section we provide a performance model in order to predict the impact of core frequency
scaling on the execution time of several basic linear algebra kernels on the SCC chip. As we focus on
dense linear algebra, we only need little data to predict a given code performance. The considered
datasets being too large to fit in cache, we need the execution time of one iteration of the innermost
loop of the kernel and the memory latency.

The performance model is divided in two parts: memory model and computational model.
Although our work on actual memory models will be presented later in this chapter (see Section 2.5),
a full performance model of the SCC chip is still required to evaluate code performance. Since SCC
caches are not coherent the memory model is simplified.

Memory model

To build the memory model, we assume that the application can exploit perfectly data reuse
and therefore we assume that each data is accessed only once. We do not take the number of cache
accesses into account in the prediction of the overall memory access time because they are not
actual memory accesses since the request does not have to go all the way to DRAM. Moreover the
cache is not coherent. Therefore there is no overhead due to the cache coherence protocol.
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According to Intel documentation, on the SCC, a memory access takes 40 core cycles + 4xnx
2 mesh cycles + 46 memory cycles (DDR3 latency) where n is the number of jumps between the
requesting core and the memory controller [78]. In our case, we are only running sequential code,
therefore we are assuming that the memory access time is 40 x ¢ + 46 x m cycles, where ¢ is the
number of core cycles and m the number of memory cycles. Accessing memory takes 40 core cycles
plus 46 memory cycles.

Frequency scaling only affects core frequency, the memory frequency is a constant (in our case
800 MHz). Therefore, changing frequency mostly impacts the code performance if it is computation
bound. The core frequency and the memory frequency are bound by the formula:

f_div x core__freq
2

mem__freq =

2 __ core__freq
Therefore a memory cycle lasts f_div — mem_freq

perform one DDR3 RAM access is:

core cycles. Thus, the number of core cycles to

core__freq core__freq

40 + 46 x =40+ 46 x

mem__freq 800

As we can see from the formula dividing the core frequency by 8 (from 800 MHz to 100 MHz)
will only reduce the memory performance by 46%.

As the P54C core used in the SCC supports two pending memory requests, we can assume that

accessing x elements will take (40 + 46 x %Ogreq) core cycles.

Computational model

In order to predict the number of cycles needed to perform the computation itself we need the
latency of each instruction. Agner Fog measured the latency of each x86 and x87 instruction [31].
We used his work to predict the number of cycles to perform one iteration of the innermost loops
of each studied kernel (several BLAS kernels). But, as we saw in Section 2.2, we could also use the
data collected with our computational model. The computational model is very simple, as most
of the instructions use the same execution port, there is almost no instruction parallelism. We
use such a tool to measure the execution time of one iteration of the innermost loop. As most of
the execution time of the codes we consider is spent in inner loops, this performance estimation is
expected to be rather accurate.

From this computational model the impact of frequency scaling on the computation perfor-
mance is straightforward. The number of cycles to perform the computation is not affected by the
frequency. Thus, reducing the core frequency by a factor of x will multiply the running time by .

Power model

We use a simple power model to estimate the power saved by reducing the core frequency.
Table 2.5 shows the voltage used by the tile for each frequency, these data are provided by the SCC
Programmer’s guide [78].
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Table 2.5: Relation between voltage and frequency in the SCC chip.

Freq divisor Tile freq (MHz) Voltage (volts)

2 800 1.1
3 933 0.8
4 400 0.7
5 320 0.6
6 266 0.6
7 228 0.6
8 200 0.6
9 178 0.6
10 160 0.6
11 145 0.6
12 133 0.6
13 123 0.6
14 114 0.6
15 106 0.6
16 100 0.6

The power consumption model used in this paper is the general model: P = CV?2f where C is
a constant, V the voltage and f the frequency of the core. As shown in Table 2.5 the voltage is
a function of the frequency, thus, we can express the power consumption as a function of the core
frequency only.

We choose not to introduce a power model for the memory for two reasons: first we have no
software control on the memory frequency at runtime. We can change the memory frequency by
re-initializing the SCC platform but not at runtime. Thus, the memory energy consumption is
constant and we have no control over it. It is irrelevant to try to model the memory consumption.
The other reason is that until now we used models that can be transposed to other architectures.
As the memory architecture of the SCC is very different from more general purpose architectures,
its energy model would not fit for those architectures. Therefore, instead of complicating the model,
it was decided to maintain a simplified form, which is relatively as precise as the full model and
can be easily transposed to other architectures.

Overall model

In this section we describe how to use both the memory and computational models to predict
the performance of a given code.

As the P54C core can execute instructions while some memory requests are pending, we assume
that the execution time will be the maximum between the computation time and the memory access
time:

model( f., size) = MAX <cyclescomp(size), cyclesmen(fe, size))
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with f. the core frequency.

With this runtime prediction, we estimate how a code execution is affected by changing the
core frequency. Taking the decision to reduce the core frequency in order to save energy can be
done with a static code analysis.

As show in the description of the SCC memory model (on page 48) in Section 2.3.3 the memory
access performance is almost not affected by reducing core frequency, while reducing core frequency
increases the computation time. From this observation we see that reducing core frequency for
memory bound codes is highly beneficial for power consumption because it will almost not affect
performance while reducing energy consumption. However, reducing core frequency for compute
bound code will directly impact performance.

2.3.4 Model evaluation

In this section we compare our model with the real runtime of several regular codes in order to
check its validity. We used three computation kernels, one BLAS-1: the dotproduct, one BLAS-2:
the matrix-vector product, and one BLAS-3 kernel: the matrix-matrix product.

First let us describe how we applied our model to these three kernels: In the following formulas,
faiv denotes the core frequency divisor (as shown in Table 2.5) and power(fq;,) the power used by
the core when running at the frequency corresponding to fg;, (see Table 2.5). An important point
is that we used large data sets that do not fit in cache. Thus, the kernel actually gets data from
DRAM and not from caches. However, the matrix-matrix multiplication is tiled in order to benefit
from data reuse in cache.

Dotproduct Multiplication

For the dotproduct kernel, the memory access time in cycles is:

2
cyclesmem (faiv, Size) = size X (40 + 46 x >
div

And the computation time in cycles is given by:

bod
cyclescomp(size) = size x ( oy ),

unroll

where body is the execution time (in cycles) of the innermost loop body and unroll the unroll factor
of the innermost loop. In the case shown on Figure 2.3, body = 36, and unroll = 4. Then the
power efficiency is:
flop(size)
model( fqiv,size)
freq

poweref( faiv, size) =

)

x power(faiv)
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with power(fq,) = freq(faiv)? x voltage(fa,), with flop(size) = 2 x size, the number of floating

point operations of the kernel, model( f4;,) the number of cycles predicted by our model, and freq
the actual core frequency (%). In the case shown on Figure 2.3,

model( fgiv, size) = MAX <cyclesmem(fdw, size), cyclescomp(size)>
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Figure 2.3: Vector dotproduct model: sequential dotproduct on two vectors of 22! double elements
(16MB).

Figure 2.3a shows that the number of cycles for both the memory model and obtained through
benchmark decreases when frequency decreases. The reason is that frequency scaling only affects
core frequency. For memory bound codes such as dotproduct, reducing the core frequency reduces
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the time spent in waiting for memory requests. However, the code is not executing faster, as shown
in Figure 2.3b.
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Figure 2.4: Matrix-vector multiplication model: sequential code on a 512 by 1024 elements matrix.

Similarly the model for the matrix-vector product is:

) 2
cyclesmenm(faiv, Siz€) = 52€ o (10 +46 x —
2 div
body
l ize) = size x | 22U
cyclescomp(size) = size pp——

With size = 512x 1024 elements, body = 64 cycles, and unroll = 4 for the case shown on Figure 2.4.
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flop
W x power( faiv)

powereyf( faiv, Size) =

In this case, again, the memory access time is more important than the time for the computation,
thus, the runtime is given by the memory access time (ie. model(fgiv) = cycleSmem (faiv))

Figure 2.4a shows that the number of cycles for both the memory model and obtained through
benchmarks decreases when frequency decreases. The reason is the same as for the dotproduct:
frequency scaling only affects the core frequency. Since this code is memory bound, with slower
core frequency the processor spends less time waiting for memory. However the execution time in
second is not affected.

Matrix-matrix product

The model for the matrix-matrix multiplication is:

size

2
cyclesmem (fdiv, size) =3 X —— x | 40 + 46 X
2 fdiv

_ 3 body
CyClescomp<SZZ€) = stzez x (unroll)

flop
W x power( fgiv)

poweres ¢ ( faiv, size) =

With matriz_size = 160 x 160 elements (each matrix is 160 x 160 elements big), body = 43
cycles, and unroll = 1 for the case shown on Figure 2.5. Since this is a BLAS-3 kernel the
computation time is — as expected — bigger than accessing memory. And:

model(fdw) = CyClescomp(fdi’U)

2.3.5 Power efficiency optimization

Our objective in this section is to show that the performance model we presented is able to help
selecting the frequency scaling providing optimal power efficiency. Then the higher performance
version is chosen among the most power efficient versions.

We can see that the dot and matrix-vector products are memory bound while the matrix-matrix
product is compute bound. Power efficiency is measured through the ratio of GFlops/W. The best
frequency optimizing power efficiency of those two kind of code are different. For the case of memory
bound codes, the core frequency can be reduced by a large divisor as performance is limited by
memory bandwidth which is not very sensitive to core frequency. On the contrary, for computation
bound codes, the performance in GFlops decreases linearly with the frequency.
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Figure 2.5: Matrix-matrix multiplication model: sequential code with two matrices of 160 by 160
elements.

Figures 2.3c, 2.4c and 2.5¢ represent power efficiency in GFlops/W for respectively dot, matrix-
vector and matrix-matrix products. They show that our performance model is similar to the
measured performance (from which we deducted power efficiency). Power efficiency for matrix-
matrix product is optimal from a frequency divisor of 5, to 16. Among those scalings, the best
performance is obtained for the scaling of 5 according to Figure 2.5a. For the Dotproduct 2.3c,
codes are more energy efficient using a frequency scaling of 5, and their efficiency increases slowly
as frequency is reduced. According to our performance model, around 25% of GFlops/W is gained
from a frequency divisor of 5 to a frequency divisor of 16, and for this change, the time to execute
the kernel has been multiplied by a factor 2.33 (according to our model). In reality, these factors
measured are higher than those predicted by the model, but the frequency values for optimal energy
efficiency, or some trade-off between efficiency and performance are the same. Note that for divisor
lower than 5, energy efficiency changes more dramatically since the voltage also changes.
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We choose to show how to optimize energy efficiency, but as our model predicts both running
time and power consumption for each frequency, it is easy to build any other metric depending on
power and runtime and optimize it. Indeed using this model allows to compute the metric to opti-
mize for each frequency divisor and then to choose the one that fits the best the requirement. Even
with a very simple model as we presented, we can predict the running time of simple computational
kernels within an error of 38% in the worst case.

Our energy efficiency model is interesting because it shows exactly the same inflection points as
the curve of the actual execution. This point allows us to predict what is the best core frequency
in order to optimize the power efficiency of the target kernel.

It is also interesting to see that even with a longer running time all the kernels (even matrix
multiplication which is compute bound) benefits from frequency reduction. This is due to the fact
that ¢) the run time of such kernels is proportional to the frequency; i) the power consumption is
also proportional to the frequency. So the energy efficiency does not depend on the core frequency.
But the 3 first steps of frequency reduction also reduce the voltage, which has an huge impact on
power consumption.

2.3.6 Summary

We described a method to predict performance of some linear algebra codes on the Single-chip
Cloud Computing architecture. This model can predict the runtime of a given code for all available
frequency divisor and using the known relationship between frequency scaling and voltage, it can
also predict power efficiency. Based on this prediction we can choose the frequency that best suits
our needs: depending on the urgency of getting a result we can chose to save or not some energy.

Our contribution is slightly different from usual approach as we do not use any runtime in-
formation to predict the impact of frequency and/or voltage scaling on performance. As we use
static code analysis to predict performance of a kernel, this could be done at compile time it and
does not increase the complexity of runtime system. Static Performance prediction has also been
used in the context of auto-tuning. Yotov et al. [$8] have shown that performance models, even
when using cache hierarchy, could be used to select the version of code with higher performance.
Besides, In [8], the authors have shown that a performance model, using measured performance of
small kernels, is accurate enough to generate high performance library codes, competing with hand-
tune library codes. This demonstrates that performance models can be used in order to compare
different versions, at least for regular codes (such as linear algebra codes).

Our proposition is only a first step toward a full model of the SCC ship since it only handles
sequential regular code. Still, we showed that bringing power consideration into a performance
model can help reduce power consumption through chip frequency and voltage control.

2.4 Summary about On-core Modeling

The 2 last sections described how to model the on-core part of processors. We described a general
methodology able to automatically measure instruction performance. We applied this model to the
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several x86 micro-architecture and retrieved measurements close to those that can be found in
literature. We difference of our approach compared to related work such as Agner’s instruction
listing [31] is that our methodology is detailed and we also provide discussion and analysis of code
performance depending of parameters such as loop unrolling, and register usage. Also we developed
a methodology to detect execution port sharing while Agner only provides raw information about
instruction performance.

We used these information to model the Intel SCC architecture. This model was used provide
information for power efficient optimization on the SCC. Also instruction performance measured
with our methodology and tools were integrated into the static performance model of MAQAO [9]
for the Intel Xeon Phi processor.

Yet a fully automatic tool to find instruction execution port sharing as to be developed. While
we described the method and tried it on small cases, we did not implement is yet in our benchmark-
ing framework. Supporting more architecture, i.e. other instruction set architecture (ISA) would
also make our method and framework more generic and enlarge its use. The general approach
to target other ISA would not change, only the code generator, the list of instruction syntax and
architecture representation in the code generator have to be updated to match a new hardware.

2.5 Un-Core Model: Memory

In order to model the entire hardware architecture, the on-core part is not sufficient. Espe-
cially since memory performance is becoming more and more critical to computer performance (cf.
paragraph about the memory wall on page 20 in Section 1.3). This section is dedicated to memory
hierarchy performance modeling.

2.5.1 Memory Hierarchy Parameters Needed to build a Memory Model

In order to build a memory model able to reflect behavior of multi-core system, we have to
investigate cache parameters affecting performance of cache hierarchy. Also we have to keep in
mind that we want our model to be effort-free for users — such as compiler, performance tuning, or
library developers. We will therefore investigate the availability of each these parameters or how
they can be automatically discovered. Different critical parts of a memory model are studied in
the following sections.

Capacity Model The capacity model of a cache hierarchy aims at predicting why and when
capacity misses occurs. In order to build such a model it is crucial to know the size of each cache
level. As well as the replacement policy used to flush lines out if the cache is full. Knowing the
size of each cache level helps predict when the cache is full. When the cache is full and software
accesses memory references not in the cache it frees a line for the new reference to get into the cache.
Knowing the replacement policy used by the cache allows tracking which cache line are evicted of
the cache (leading to cache capacity misses when later referenced). As well as the replacement
policy, one needs to know where a cache lines goes when it is flushed out of a cache level. For
instance cache hierarchies often feature victim caches. Memory references are only stored in victim
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caches when they are evicted of a lower cache level (unlike in regular caches where data is stored
after a cache miss).

The size of each cache level is easy to get since it is documented by processor vendors and
available at run time thanks to tools abstracting the hardware architecture [13]. The replacement
policy is harder to get, especially in the case where lines are stored when removed from one cache
level. It also seems that newer cache architectures feature several cache replacement policies and
are able to select the best one depending on metrics recorded at run-time such as the hit/miss
ratio [16, 69].

Cache Associativity Conflict misses can be predicted and/or detected by embedding cache
associativity and the hash function into cache models. The hash function of a cache is a function of
the address requested that gives the line — or more precisely the set — where an address should be
stored in the cache. If one knows the cache line where each accessed address goes, one can simulate
memory accesses of a program and predict where each address is stored to detect conflict misses.

The cache associativity of each cache level is well documented by processor vendors. But
the hash function is not. However cache simulators often use a formula that seems reasonable
and performs well [71, 83]. This formula specifies that the line is selected depending on the bits

M:(M + N — 1) of the address to be stored in the cache. Where the cache line is 2" bytes wide

and 2N — number of (':a'chg l'znes
cache assiciativity

Cache associativity can be retrieved thanks to run-time measurement. Given a k-associative
cache of n lines: repeating accesses to a memory segment of size (n + 1) X cache line size leads to
n — k hits and k4 1 misses. Indeed the n first accesses load n lines in the cache, the last access will
evict a line from one set. If we assume the least recently used line is flushed out, the oldest cache
line from the set where line n + 1 should go is evicted. This means that all memory accesses going
to the set where (n + 1) line goes are misses: we do have k + 1 cache misses on this benchmark.

way 0 index 0 || addr O way 0 index 0 || addr 8 way 0 index 0 || addr 8
index 1 || addr 1 index 1 || addr 1 index 1 || addr O
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cesses, the cache is full. first line of the cache (since it was  cessed again, it flushes addr 1
the LRU line of the set). from the first set.

Figure 2.6: Illustration of a benchmark to measure cache associativity.
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Performance of each Memory Level Also to be able to predict real hardware behavior, the

model has to reflect the performance of each cache level, i.e. the access latency and the available
bandwidth.

These parameters of the cache hierarchy are highlighted by processor vendors. And they can
be easily verified thanks to benchmarks [57, 76, 81].

In order to reflect performance of a parallel software, modeling raw performance of each cache
level is not enough: contention has to be taken into account. Indeed when several threads access
shared memory resources, they have to share the available bandwidth. This is called contention and
can be the root of low performance. Cache contention can have several sources, contention on the
cache itself: computing threads compete for cache space to store their data, leading to a virtually
reduced cache size. This kind of contention is already well modeled [37]. But contention can also
happen on the memory bus. Some research were lead by Ajmone Marsan et al. to understand the
impact of bus contention [1]. However prediction of the impact of contention on modern computer
architecture is still unclear and performance prediction of parallel applications with bus contention
is still an open challenge. Yet some studies of Andersson et al. show that predicting an upper
bound of performance degradation due to contention can be achieved [5].

The prediction of bus contention is the first hint leading us to think that building a full analytical
model of memory modern CPU memory hierarchy is such a complicated problem that we want to
use other methods in order to keep the model simple.

2.5.2 Cache Coherence Impact on Memory Performance

Most of the parameters and models described until now can be found either in the manufacturer’s
documentation, published work or even discovered by experience (except for bus contention). But
the biggest deal is modeling cache coherence. Indeed the access cost to a cache line not only
depends on the cache level accessed but also on the state of the cache line [38]. Depending on
the hardware mechanisms involved in maintaining cache coherence, the performance of memory
accesses can vary widely. Figure 2.7 illustrates this by presenting the write bandwidth available for
several cache states (see Section 1.3.3) of data. As we can see, cache coherence has a big impact
on memory performance and can not be ignored in memory modeling.

But the issue with cache coherence is that an important part of the protocol implemented in
hardware is undocumented. Especially we are not aware of the coherence messages transferred
on every cache event. For instance the performance gap between loading a dirty or a clean?
cache line from a remote cache on Figure 2.8, can have several reasons depending on choice in the
implementation of the cache coherence protocol:

e the dirty cache line is written to memory and then fetched from memory to the cache re-
questing it.

e or the cache line can be put on the bus for the requesting cache at the same time as the line
is written to main memory.

2Modified cache lines are dirty: the value they hold is not consistent with main memory. Exclusive and shared
cache lines are clean: the value they hold is the same as main memory.
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Figure 2.7: Write Bandwidth measured on a Xeon X5650 Processor (Nehalem micro-architecture)
depending on the data size. Depending on the state of data in the cache, write performance can
be affected by a factor up to 2.

We presented an early version of this work in [C'1] to illustrate how cache coherence can affect
memory and code performance.

2.5.3 Bringing Coherence into a Memory Model

In order to build an analytical model taking into account cache coherence issues highlighted in
the previous section, we tried to add some extra parameters to the model. These parameters are
supposed to indicate the bandwidth used by each kind of coherence messages. In order to keep the
model abstracted enough to be applied to several cache architectures, we choose a general enough
coherence protocol that will capture the behavior of more specialized ones that are implemented in
real hardware. We choose the MESI protocol (cf. Section 1.3.3) because general purpose processors
built by Intel and AMD use protocols based on this particular protocol. The coherence messages
involved in this protocol are:

Write Back
This coherence message is responsible for writing a cache line back to main memory. It is
triggered when a cache reads an address stored in another cache in a dirty state.

RFO
The Request For Ownership is a broadcast on the bus asking caches holding a particular
cache line to put it on the bus and to invalidate this line after. It is caused by write misses.

Invalidation
This coherence message asks remote caches to invalidate lines holding a particular address.
This event is triggered when a write hits the cache in a shared line.
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Figure 2.8: Read miss Bandwidth measured on a Xeon X5650 Processor (Nehalem micro-
architecture) depending on the data size and state of data in the caches.

Real Bandwidth and Effective Bandwidth

Our idea to build a coherence aware analytical model is to compute — by means of benchmarks
— the overhead of coherence messages. This overhead can be included in the time prediction to
access memory. However, we found that when predicting even simple access patterns such as
copies, the overhead of coherence is overlapped with other memory access. It seems that some
coherence messages can be performed in parallel with some memory access, but not all kinds of
them. We believe that these differences come from the path used by coherence messages: if both
coherence messages and memory accesses use the same physical path (e.g., the bus connecting
private caches together) they cannot be performed in parallel, but when coherence and memory
access use different path (e.g., coherence uses interconnect bus and memory access uses the memory
channel) they can be performed in parallel. However to build such a model we need to know the
choice made by hardware designers about the coherence protocol: and this model would not be
portable on different architectures, which is one of the hard specification of our model.

Figures 2.9 and 2.10 illustrate the issues we encountered. We can see on Figure 2.9 that the
cost of an RFO message does not only depend on the level of cache involved but also on the state of
the cache line requested. The bandwidth plotted in Figure 2.9 represents the bandwidth used by
coherence messages, in this case the RF0. This bandwidth is the subtraction of the bandwidth of
a store hit on exclusive cache lines and the bandwidth of a store miss on cache lines in one of the
modified, exclusive, and shared states. This represents the bandwidth used by caches to maintain
coherence. Since the cost of an RFO depends is different when the cache lines accessed are dirty, we
deduced that it is combined with a write back: on a store miss on modified cache line, the cache
line might be written back to memory before being modified by the new request. But, as shown on
Figure 2.10, the cost of a write back is higher then the cost of the RF0. The performance of write
back messages was computed as the subtraction of the bandwidth of a load hit and the performance
of a load miss on modified cache lines.

To keep our model as generic as possible we choose another method to build the memory
model. Instead we built a memory model based on benchmarks. This idea is already used to
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Figure 2.9: Cost of an RFO message depending on the state of the cache line involved.

model memory access cost in NUMA architecture [63] but — to our knowledge — had not yet
been investigated for modeling cache performance. Benchmarks are designed to hide hardware
complexity and mechanisms hard to understand or model. This also keeps the model generic since
the same set of benchmarks can be run on several architectures and be used as the basic blocks for
predicting memory access performance.

2.6 Conclusion

The contributions presented in this chapter are two-fold. We showed in a first section, how to
automatically retrieve instruction performance. We also provided a method to detect instruction
sharing execution ports in super-scalar pipeline. With a careful benchmarking methodology all the
parameters required to build an analytical model of the on-core can be found by experience.

In a second part we presented how to use such performance data to build a power aware perfor-
mance model on the SCC chip. This model allows performance and power consumption prediction
for power aware performance optimization. It was presented in a paper called Performance model-
ing for power consumption reduction on SCC and was accepted at the 4** Many-core Applications
Research Community (MARC) Symposium.

In a third section, we investigated how to model cache coherent memory hierarchies. We
presented the few experiments advocating the use of benchmarks directly in a memory model rather
than building a full analytical model for the memory. We analyzed the parameters that have to be
taken into account for a fine modeling of cache hierarchies. By hiding memory hierarchy complexity
in benchmarks and by using the output of these benchmarks as building blocks for the model we
can build a generic memory model for cache-coherent memory architectures. We will describe our
benchmark based memory model in Chapter 4. Understanding benchmark design and methodology
helps apprehending our memory model. We will therefore first present our benchmarking framework
in Chapter 3.
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Designing Benchmarks for
Memory Hierarchies

“It seems perfection is attained not when there is nothing
more to add, but when there is nothing more to remove.”
— Antoine de Saint-Exupéry

This chapter is dedicated to presenting a framework we developed to benchmark memory hier-
archies of modern processors. Since we build a memory model upon the output of the benchmarks,
they have strong requirements.

Section 3.1 will present problem of building benchmarks for memory hierarchies, especially what
are the critical components of memory architecture that needs to be benchmarked. It also present
the requirements of benchmarks in general and in the context of modeling. Section 3.2 presents
the framework we developed and several implementation details about how to achieve close to peak
memory performance. Section 3.3 presents our framework with an emphasis on the language we
developed to ease benchmark writing and how to automatically generate benchmarks for a protocol
given its automaton. This automatic generation of benchmarks can handle coherence protocols
based on automaton, i.e. MESI like protocols or firefly. And Section 3.4 illustrates some possible
usages of the output of our benchmarks.
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3.1 Problem Formulation

This section introduces the methodology we use to benchmark memory hierarchies. Since
benchmarking requires usage of a framework, we will also collect the requirements on the tool to
be used to lead this study. We will also compare these requirements with existing tools and justify
our technical decisions.

3.1.1 Requirements of Benchmarks due to Cache Coherence

Chapter 2 showed us that cache coherence has to be taken into account when build a memory
model for cache coherent architectures. In this section, we are going to investigate the specific
requirements of benchmark tools to perform correct memory experience with regards of cache
coherence.

Setting Buffers in a Given State Since we aim at building a memory model taking cache
coherence into account we need of being able to control the state, with regards to coherence protocol,
of memory chunks involved in the benchmark. We can control the state of memory, i.e. of the
cache lines, by running memory operation prior to the start the performance measurement. We
need the framework to be able to only measure subset of the full benchmark. This way we can
write a prologue responsible for setting cache lines of the system in a particular state. After what
we can start the real experiment and record its performance.

Parallel Benchmarks Memory architectures are parallel, e.g., several hardware threads have
private caches and several software threads can access memory at the same time. Therefore, we
have to be able to build parallel benchmarks. Also the location of data is important and has
an impact on cache performance. To be able to reproduce every placement in the benchmarking
tool-chain to chose, has to provide process placement capability. This means that for a particular
parallel benchmark we need to be able to bind software threads or precess to hardware cores in
different manner. This will allow us to investigate the impact of process placement on performance.

3.1.2 Building Reliable Benchmarks

We aim at building an accurate memory model upon this benchmark tool-chain, therefore we
need accurate and reliable runtime measurements. To ensure this property we need to perform
statistic collection on different runs of the benchmark. This is not a hard requirement of the
tool-chain because it can be done by done by ourselves. But this feature would be a plus.

We should say here that, for reliability matters, selecting one performance measurement among
a set of measures is a choice to make with particular care. If performance of several runs are
recorded, reporting statistics like average run time, standard deviation etc is important. But to
bring this information into a model, it is easier to select a single value. In the methodology we
developed, we chose to only select the best measured performance. We choose to report only the best
performance because, when modeling hardware, people are usually interested in peak performance
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of the machine. Moreover the best performance measurement is an actual measurement. It can
be easier to explain than the average — which is not a really observed performance — and can be a
value that can never actually be observed.

A benchmark with performance exhibiting a high standard deviation should not be used as a
reliable metric to model an architecture. Instead understanding what affects so much performance
should be understood to better control the hardware and/or the test to find another way to capture
a part of the architecture behavior.

A lack of stability in a benchmark often comes from system level issue. For instance Intel proces-
sors have a Turbo Boost feature that allows CPU to increase their frequency under sequential loads.
Also, to save energy, most operating systems can change the frequency of processors depending on
run time activity, this is called frequency scaling and can lead to performance difference between
different runs. Since the goal of modeling hardware is to understand and reproduce its behavior,
reproducibility of the benchmarks is a major concern. That is why we pay so much attention to
keeping the standard deviation of our benchmark output low. If a benchmark leads to non-stable
results, i.e. have a high standard deviation, we do not use it to model the architecture. We do not
use benchmarks with a standard deviation higher than 10% of the average value. Indeed, with such
results we would not be able to choose the correct data among the list: they would be too scattered.
A high standard deviation can betray either a uncontrolled experiment environment (e.g., Turbo
Boost still enabled), or a parameter that can vary from a run to the other. It can be the case if
thread synchronization has net been handled to make the benchmark reproducible.

An Extensible and Lasting Framework We did not know the number and the list of bench-
marks needed to model a memory architecture prior to building the model itself. Therefore we need
a framework easily extensible, where adding more benchmarks can be done easily and quickly.

We need a stable benchmarking framework so that it can be used to build a wide range of
hardware tests depending on the need of users. Since our approach relies on benchmarks to abstract
hardware complexity and ease memory modeling, we do not want having to rewrite benchmarks
every time an new architecture is released or when trying to model a new architecture.

3.2 Framework and Technical Choices

With the requirements highlighted in the previous section, we investigated the existing bench-
marking frameworks available.

3.2.1 Related Work

LIKWID is a framework designed for rapid benchmarking [30]. It fits the need for an extensible
framework as well as precise performance recording. In order to characterize performance features,
a number of iteration can be specified on the command line to run the benchmark several time. For
instance, Listing 3.1 shows how to measure the bandwidth of the L1 cache of a processor (assuming
L1 cache is larger than 20 kB).
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./likwid-bench -t load -g 1 -w S1:20kB:1 -i 100

Listing 3.1: LIKWID usage example: Measuring L1 cache bandwidth by running the load bench-
mark 100 times. With 1 thread pined on socket 1 reading a 20 kB buffer.

However synchronization cannot be handled: every run of a benchmark consists in a call to
a function. For this reason we cannot use LIKWID to set memory in a particular state before
performing time measurement.

The STREAM benchmark targets memory [57]. But, like LIKWID, synchronization and bench-
mark preliminary cannot be handled with STREAM. Moreover the STREAM benchmark is not
easily extensible since and code modification have to be made for every change we need to make
in the benchmark set. For our purpose, a careful handling of synchronization is important. As ex-
plained in Section 3.1.1, we need to be able to set buffers in cache in a controlled state to measure
the impact of cache coherence on memory performance. This cannot be done with tools such as
LIKWID or STREAM and this tools are therefore not suitable to our needs.

The BenchIT benchmarking framework allows measuring a wide range of performance met-
rics [19]. But the exact data we need are not in the default kernel released with BenchIT. BenchIT
can be extended by adding more benchmark kernels into the tool-chain but adding such kernel is
very verbose. Both the kernel and thread synchronization have to be handled with standard library
calls.

MicroCreator, part of the MicroPerf Tools, allows designing of low level benchmarks [11]. It
takes as an input an XML file describing the benchmark kernel to be generated. It can produce a
large number of kernels with a relatively small description. For instance, for the input description
shown in Listing 3.2, MicroCreator generates 512 kernels (all the combination of 8 load or store).

<instruction>
<operation>movapd</operation>
<memory >
<register>
<name >rl1</name >
</register>
<offset>0</offset>
</memory >
<register>
<phyName >%xmm</phyName >
<min>0</min>
<max >8</max >
</register>
<swap_after_unroll/>
</instruction>

<unrolling>
<min>1</min>
<max >8</max>
<progress >1</progress>
</unrolling>

Listing 3.2: MicroCreator kernel description.
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Using this tool to generate the kernels for our framework is an promising opportunity. By adding
calls to threading libraries in the prologue and epilogue, synchronization and thread spawning can
be achieved. But it was not released as an open source software at the time we developed out
framework, therefore we could not use it.

To our knowledge there is no existing software specifically dedicated to performance measure-
ment of cache coherence. Yet, tools such as P-Ray focus on memory hierarchies and how to detect
hardware specification through benchmarking [29]. While this approach is quite close to ours, they
do not take cache coherence into account. While our approach is manly focused on cache coherence.

We will present our framework into mode details in the next section.

3.2.2 Framework Overview

The framework we developed is made out of a language, a compiler and a library. We will go
into more details about it in Section 3.3. In this section we are going to show how we fulfilled each
of the requirements presented in Section 3.1.

Setting Buffers in a Given State We decided to add a keyword in the language to specify
what part of the benchmark has to be measured and what is the preamble. Benchmark written
with our language can call benchmarking functions. The call to specific memory function in the
preamble can help controlling the state of memory prior to performance measurement.

Parallel Benchmarks In order to build parallel benchmarks with our framework, the code
generated by our compiler is parallelized with the OpenMP runtime. Also, the language features
parallel construction: for each function call, the thread in charge to run the function is specified.
The binding between hardware and software threads is delegated to the OpenMP runtime. Binding
OpenMP threads can be done thanks to environment variables.

Reliability For reliability purpose our framework automatically runs several time every bench-
mark. For instance, for every execution of a benchmarks the performance of every single run is
recorded. The performance of each of these runs are reported into a csv file with statistics such as
average and standard deviation. Since this a spreadsheet format every statistic that are relevant
for the end user can be automatically computed. The best performance recorded is also saved in a
separated file for a quick overview of the performance of the benchmark.

Extensible Framework Building an extensible framework was the main goal we pursued. This
was the primary reason why we designed a framework based on a language. Indeed, this helps
user writing new benchmarks to understand a particular behavior. A compiler is used to generate
the machine code corresponding to the benchmark written by the user. We also provide a library
embedding functions often used in benchmarks. We developed several benchmarking functions to
help users achieve peak memory performance. These functions are a variety of load and store
operations. The different memory access patterns performed by these functions are:
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sequential access: every byte of memory within the range given by user are accessed.

stride access: the stride is given by the user: only some bytes separated by the stride parameter
are accessed.

a specialization of the stride access: where the stride is chosen to be exactly the size of the
cache line. This is useful to measure the latency of a cache level because every access are
made to a different cache line.

The user can add benchmarking functions to the library in order to extend the memory access pat-
tern or operation the tool chain is able to perform. For instance we could add functions performing
non temporal memory operations in order to see the impact of bypassing caches. User defined
functions can be called from the benchmark description just like standard functions.

3.2.3 Achieving Peak Memory Performance

Peak memory performance needs to be reached in order to give valuable feedback to benchmarks
users