
HAL Id: tel-00984938
https://theses.hal.science/tel-00984938

Submitted on 28 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From spanners to multipath spanners
Quentin Godfroy

To cite this version:
Quentin Godfroy. From spanners to multipath spanners. Data Structures and Algorithms [cs.DS].
Université Sciences et Technologies - Bordeaux I, 2012. English. �NNT : �. �tel-00984938�

https://theses.hal.science/tel-00984938
https://hal.archives-ouvertes.fr


THÈSE

PRÉSENTÉE À

L’UNIVERSITÉ BORDEAUX-I

ÉCOLE DOCTORALE MATHÉMATIQUE ET INFORMATIQUE

Par Quentin GODFROY

POUR OBTENIR LE GRADE DE

DOCTEUR

SPÉCIALITÉ : Informatique

Des spanneurs aux spanneurs multichemins
From spanners to multipath spanners

Sous la direction de : Cyril Gavoille

Thèse soutenue le: 29 novembre 2012

Devant la commission d’examen formée de :
M. Prosenjit BOSE, Professeur à l’Université de Carleton (Canada);
M. Victor CHEPOI, Professeur à l’Université d’Aix-Marseille-II;
M. Cyril GAVOILLE, Professeur à l’Université Bordeaux-I;
M. Nicolas HANUSSE, Directeur de Recherche au CNRS;
M. Laurent VIENNOT, Directeur de Recherche à l’INRIA.



2

Résumé Cette thèse traite de l’étude des spanneurs multichemins, comme
extension des spanneurs de graphes classiques.

Un spanneur H d’un graphe G est un sous-graphe couvrant tel que pour
toute paire de sommets du graphe a, b ∈ V (G) la distance dans le spanneur
dH(a, b) n’est pas trop étirée par rapport à la distance dans le graphe d’origine
dG(a, b). Ainsi il existe un facteur d’étirement (α, β) tel que pour tout a, b ∈
V (G), dh(a, b) 6 αdG(a, b) + β.

Motivés par des considérations de routage à plusieurs chemins et après la
remarque que le concept de spanneur peut être étendu à toute métrique « non
décroissante », nous introduisons la notion de spanneur multichemins.

Après une introduction au domaine, nous parlerons des résultats obtenus
concernant d’une part les spanneurs multichemins arêtes disjoints et d’autre
part les spanneurs multichemins sommets disjoints.

Abstract This thesis deals with multipath spanners, as an extension of
classical graph spanners.

A spanner H of a graph G is a spanning subgraph such that for any pair of
vertices a, b ∈ V (G) the distance measured in the spanner dH(a, b) isn’t too much
stretched compared to the distance measured in the original graph dG(a, b). As
such there exists a stretch factor (α, β) such that for all a, b ∈ V (G), dh(a, b) 6

αdG(a, b) + β.
Motivated by multipath routing and after noting that the concept of spanner

can be extended to any “non decreasing” metric, we introduce the notion of
multipath spanner.

After an introduction to the topic, we will show the results obtained. The
first part is devoted to edge-disjoint multipath spanners. The second part id
devoted to vertex-disjoint spanners.
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Chapter 1

Présentation

Ce mémoire traite de l’étude des spanneurs multichemins, comme extension
des spanneurs de graphes classiques.

Un spanneur (« spanner » en anglais) H d’un graphe G est un sous-graphe
couvrant (ie., V(H) = V(G)) tel que pour toute paire de sommets du graphe
a, b ∈ V(G), la distance (mesurée comme la longueur d’un plus court chemin)
dans le spanneur dH(a, b) n’est pas trop étirée par rapport à la distance dans
le graphe d’origine dG(a, b). Ainsi, il existe un facteur d’étirement (« stretch »
en anglais) (α, β) tel que pour tout a, b ∈ V(G), dH(a, b) 6 α · dG(a, b) + β. Un
spanneur tel que β = 0 est dit multiplicatif.

Les spanneurs ont été introduits initialement par Peleg et Schäffer [PS89]
pour les graphes non valués, puis étendus aux graphes valués [ADD+93]. Il
existe une abondante littérature sur les spanneurs dont on peut lire un survol
par Pettie [Pet07].

Motivés par des considérations de routage à plusieurs chemins et après
la remarque que le concept de spanneur peut être étendu à toute métrique
« non décroissante » (c’est à dire que toute suppression d’arêtes ne peut faire
qu’augmenter la distance), nous introduisons la notion de spanneur multiche-
min, défini à l’aide de la métrique multichemin. Après une introduction au
domaine, nous parlons des résultats obtenus sur les spanneurs multichemins
arêtes disjoints dans le Chapitre 3 et les résulats sur les spanneurs multichemins
sommets disjoints Chapitre 4.

Ce mémoire est organisé comme suit, chaque chapitre étant prévu pour être
largement indépendant des chapitres qui le précèdent :

Chapitre 2 : Introduction. Dans cette partie, après une brève introduction aux
concepts nécéssaires de la théorie des graphes, nous rappelons le contexte de la
théorie des spanneurs, ainsi que quelques resultats.

8
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Le routage multichemins étant intrinsèquement lié à la tolérance aux fautes,
nous présentons les spanneurs tolérants aux fautes.

Enfin, nous présentons l’extension proposée dans ce mémoire : les
spanneurs multichemins. Nous commençons par définir la métrique
multichemins à l’aide du concept des p-chemins qui existe sous deux formes,
chemins arêtes disjoints et chemins, puis nous définissons les spanneurs
multichemins s’appuyant sur cette métrique.

Chapitre 3 : Edge-disjoint multipath spanners. Dans ce chapitre, après un
rappel des définitions de la métrique multichemins arêtes disjoints s’appuyant
sur les p-chemins, nous définissons formellement les spanneurs p-multichemins
arêtes disjoints (Définition 3).

Sont ensuite exposés les résultats obtenus pendant la thèse : d’abord
nous constatons (Théorème 1) qu’un algorithme simple et connu utilisant les
spanneurs classiques permet d’obtenir des spanneurs p-multichemins arêtes
disjoints avec un étirement multiplié par p par rapport à l’étirement du
spanneur d’origine. Ensuite, il est montré (Proposition 2) que les bornes
inférieures sur l’étirement se transmettent des spanneurs aux spanneurs
multichemins. Enfin, nous améliorons le premier résultat dans deux cas simples
(Théorèmes 2,3) et ensuite en utilisant les résultats des spanneurs tolérants aux
fautes (Théorème 4).

Chapitre 4 : Vertex-disjoint multipath spanners. Ce chapitre fait suite au
chapitre sur les spanneurs multichemins arêtes disjoints. Il est proposé de s’in-
téresser ici à des p-chemins sommets disjoints. Après une définition formelle
de la métrique multichemins sommets disjoints (Définition 7), et la remarque
(Remarque 1) que cette métrique ne vérifie pas la propriété de l’inégalité
triangulaire, nous introduisons la notion de spanneur multichemins sommets
disjoints (Définition 8).

Sont ensuite exposés les résultats sur les spanneurs multichemins sommets
disjoints obtenus au cours de la thèse. D’abord, nous remarquons que bien
que les spanneurs tolérants aux fautes soient liés aux spanneurs multichemins,
un spanneur tolérant p − 1 fautes peut avoir un étirement non borné pour
la métrique multichemins sommets disjoints (Remarque 2). Ensuite, nous
démontrons que dans certains cas particuliers de spanneurs tolérants aux
fautes, il est possible d’avoir un étirement borné (Théorème 5). Ensuite,
nous montrons qu’en augmentant le nombre de fautes supportées par un
spanneur tolérant aux fautes, il est possible d’améliorer considérablement
l’étirement quand celui-ci est considéré en tant que spanneur multichemins
sommets disjoints (Théorèmes 7,8). Enfin, nous montrons avec le Théorème 10
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qu’un algorithme ad-hoc permet d’obtenir un spanneur multichemins sommets
disjoints avec un étirement additif dont la composante multiplicative est
inférieure à celles obtenues dans les résultats antérieurs.

Chapitre 5 : Conclusions & perspectives. Ce chapitre traite des questions non
abordées au cours de cette thèse, et aborde les orientations futures à donner à la
recherche sur les spanneurs multichemins.



Chapter 1

Presentation

This document is about the study of multipath spanners, as an extention of
classical graph spanners.

A spanner H of a graph G is a spanning subgraph (ie., V(H) = V(G)) such
that for any pair of graph vertices a, b ∈ V(G), the distance (measured as the
length of a shortest path from a to b) measured using edges from H dH(a, b)
isn’t too much stretched compared to the distance in the original graph dG(a, b).
Indeed there exists a stretch factor (α, β) such that for any a, b ∈ V(G), dH(a, b) 6
α · dG(a, b) + β. A spanner such that β = 0 is called a multiplicative spanner.

Spanners were initially introduced by Peleg and Schäffer [PS89] for
unweighted graphs, then extended to weighted graphs in [ADD+93]. Spanners
have been the subject of many publications. A survey was made by Pettie
in [Pet07].

Motivated by multipath routing and after the remark that the concept of
spanner seems relevant for any non-decreasing graph metric—a non decreasing
graph metric is such that any removal of edges will increase the distance for
any pair of vertices—we introduce the notion of multipath spanner. After
an introduction to the topic, we present our results concerning edge-disjoint
multipath spanners in Chapter 3 and the results concerning vertex-disjoint
multipath spanners in Chapter 4.

This document is organized as follows, each chapter being largely
independant of the preceding ones:

Chapter 2: Introduction. In this chapter we first remind the reader to basic
concepts of graph theory needed in the rest of the document, as well as some
results about spanners.

Multipath routing being strongly linked to fault-tolerance, we present some
results about fault-tolerant spanners.

11
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We then present the extension proposed in this thesis: multipath spanners.
To this effect, we first begin by defining the p-multipath metric which relies on
p-paths, then we define multipath spanners using this metric.

Finally, we present the theorems obtained during this thesis. First those
concerning of edge-disjoint spanners, then in those concerning vertex-disjoint
multipath spanners.

Chapter 3: Edge-disjoint multipath spanners. In this chapter, after reminding
the reader to the edge-disjoint multipath graph metric, edge-disjoint p-
multipath spanners are defined i

We then present the results obtained concerning edge-disjoint multipath
spanners: first we note in Theorem 1 that a trivial algorithm using classical
multiplicative spanners from [ADD+93] can yield edge-disjoint p-multipath
spanners with a stretch multiplied by p compared to the original stretch. Then
we show with Proposition 2 that lower bounds on stretch can be translated from
spanners to multipath spanners. Finally the first result is improved. Firstly in
two particular cases with Theorems 2,3 and secondly using results from the
theory of edge-fault-tolerant spanners with Theorem 4.

Chapter 4: Vertex-disjoint multipath spanners. In this chapter it is proposed
to examine vertex-disjoint p-paths instead of edge-disjoint p-paths. After the
definition of the vertex-disjoint multipath graph metric, and the remark that
it does not satisfy the triangle inequality, we introduce the notion of vertex-
disjoint multipath spanner (Definition 8).

Next we present the results obtained on vertex-disjoint multipath spanners.
First we note that although vertex multipath spanners and fault-tolerant
spanners are linked, it is generally false that a vertex fault-tolerant spanner is
a vertex-disjoint multipath spanner (Remark 2). Despite this negative result,
we exhibit a property in Theorem 5 that ensures that (p − 1)-vertex fault-
tolerant spanners are also vertex-disjoint p-multipath spanners with a bounded
stretch. Then we show in Theorems 7 and 8 that by increasing the number of
faults tolerated by a fault-tolerant spanner it is possible to get a vertex-disjoint
multipath spanner with a better stretch. Finally, we show in Theorem 10 that an
ad-hoc algorithm can yield a vertex-disjoint multipath spanner with a stretch
whose multiplicative constant is inferior to those of previous results.

Chapter 5 : Conclusions & perspectives. This chapter is concerned with the
topics left untreated during this thesis, and shows the future works which
should be carried concerning multipath spanners. In particular we raise the
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problem of finding which non-decreasing graph metrics can sustain a spanner
trade-off.



Chapter 2

Introduction

2.1 Topic introduction

This document is about spanners. Spanners are combinatorial objects which
appear in multiple fields of computer science and information theory: graph
theory, computational geometry, networking, computational biology, ditributed
computing etc.. Spanners are graphs and as such belong to the field of graph
theory.

2.1.1 Graphs and distance

An unweighted graph, denoted by G = (V,E) is the association of two sets, V
and E:

• V = V(G) is called the set of vertices. Its size is denoted by n = |V |.

• E = E(G) is called the set of edges. An edge e ∈ E is simply an unordered
pair of vertices e = (u, v); u, v ∈ V . Its size is denoted by m = |E|.

A weighted graph is a graph where each edge e has an associated weight—
generally a non-negative real—denoted by ω(e). This allows to model the cost
of using the edge, when going from one vertex to another. Another frequent
extension are directed graphs, where the edges are now ordered pairs. This
helps to model cases where an edge can only be crossed in one direction. An
undirected graph can generally be modelized as a directed graph by replacing
every undirected edge by two directed edges going in opposite directions, or
simply, by replacing each unordered pair by the two ordered pairs composed of
the two vertices.

Graphs allow to model varied problems. We are specially interested in
network problems. To this end, graph vertices represent units of computations

14
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(i.e., computers) while edges represent communication links between these
computers. This type of model is adapted to the study of large communication
networks like the Internet as well as the study of smaller sensor networks.

A parameter often taken into account when dealing with graph problems
is the distance. The distance between two vertices u, v of G (i.e., u, v ∈ V(G)),
denoted by dG(u, v), is the minimum cost of a path connecting u to v using edges
of G, counting weights.

Many network problems can be modelized with graphs. A first example
is the node synchronization problem. In the context of distributed computing
it is necessary that every unit wakes up at the same moment. To obtain
synchronization, messages are exchanged using the links, from neighbour to
neighbour. It is also useful to limit the number of such links in order to have the
best efficiency, as shown by the work of Peleg and Ullman in [PU89].

Another frequent problem in communication networks is to send a message
from one vertex to another while minimizing the distance the message has
to travel—hence the delay. If one wants to answer without taking too much
memory one solution is to spare some links while guaranteeing that the graph is
still connected. Indeed, if some vertices were at finite distance before removing
links they must still be at finite distance afterwards.

2.1.2 Spanners

Spanners are graph skeletons. A spanner of a graph G = (V,E) is a spanning
subgraph H = (V,E ′), E ′ ⊂ E (i.e., a subgraph such that every vertex from the
original graph belongs to the subgraph) such that the distance in H between
every pair of vertices is controlled. A good spanner H will be such that the
distance measured using its edges isn’t too stretched compared to the original
graph. More precisely, there exists a stretch factor between G and H . It is a
couple of reals (α, β) such that the distance between any pair of vertices u, v
measured in H and denoted by dH(u, v) is no more than α times the distance
measured in G plus β:

dH(a, b) 6 α · dG(a, b) + β

H is then called an (α, β)-spanner of G. When β = 0H is said to be a multiplicative
spanner. In that case the spanner will be simply called an α-spanner. On the
contrary, an additive spanner is a spanner in which α = 1.

Being sparse is one of the prinicpal reasons for which we study spanners.
For a given stretch, the best spanner will be the one with the least number of
edges. Conversely, for a given number of edges, the best spanner will be the
one with the smallest stretch. More precisely, if α′ < α or α = α′ & β′ < β then
the stretch (α′, β′) is considered better than (α, β).
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Among classical results, we can cite the whole family of multiplicative
spanners, obtained by Althöfer et al. in [ADD+93]:

Theorem ([ADD+93]) For any weighted graph G and any strictly positive integer k,
one can build in polynomial time a spanner H of G with at most O(n1+1/k) edges and
of stretch 2k − 1.

Another classical result is the additive (1, 2)-spanner theorem, by Aingworth
et al.:

Theorem ([ACIM99]) For any weighted graph G one can build in polynomial time a
spanner H of G with at most O(n3/2) edges and stretch (1, 2).

The family of additive stretch spanners is much more restricted in the sense
that it is an open question to know whether for every k > 0, a stretch (1, f(k))
spanner exists with O(n1+1/k) edges. However, recently a (1, 6)-spanner was
obtained by Baswana et al. :

Theorem ([BKMP10]) For any unweighted graph G one can build in polynomial time
a spanner H of G with O(n4/3) edges and stretch (1, 6).

Number of edges vs. stretch trade-off. We define the girth of a graph G as the
length of a smallest cycle of G. The trade-off between the number of edges and
the stretch is related to a a conjecture by Erdős:

Conjecture ([Erd64, ES82]) For any integer k > 0 and any integer n, there exists a
graph with n vertices, Ω(n1+1/k) edges and girth at least 2k + 2.

On such a graph G, the removal of any egde e = u− v increases the distance
dG(u, v) from 1 to dG\e(u, v) > 2k+1—because at best the edge belongs to a cycle
of length 2k + 2. See Figure 2.1. This implies that every spanner algorithms
which yields multiplicative spanners with strecth strictly less than 2k + 1 will
not remove any edge from this graph. As a consequence, if Erdős’s conjecture
is true, then a spanner algorithm yielding (α, β)-spanners with α + β 6 2k will
return on some instances spanners with Ω(n1+1/k) edges1.

This conjecture was proved in [Wen91] for k = 1, 2, 3 and 5.

1Ω() is the domination symbol: f(n) = Ω(g(n)) when there exists k such that for any
sufficiently large n, f(n) > k · g(n).
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u v
e

2k+1

1
Figure 2.1: Edge e removal increases the distance dG(u, v) from 1 to 2k + 1.

2.1.3 Spanner extensions

2.1.3.1 Fault tolerant spanners

Graphs used as a model of real networks are naturally set in a dynamic setting:
vertices or edges appear and disappear all the time. In such a context it is
desirable to have spanner algorithms which take into account the dynamic
aspect of the network. One possibility is to compute updates of the spanner
each time a change appears in the network. In that direction Baswana and
Sarkar conducted a study in [BS09] where the authors present a spanner in
which the update time is polylogarithmic and can be calculated in a distributed
manner.

However, for certain topologies it might be desirable to avoid a new
computation each time the graph changes. Indeed, if the graph is a modelisation
of a communication network as the Internet, the links or vertices suffer mostly
from transient faults without impacting the rest of the graph. This kind of
behaviour is observed in transportation networks, where faults are mostly
the results of roadworks or accidents. Overall, major modifications are slow
enough to allow for a complete update. In these conditions, it is more sensible to
consider a structure avoiding a new computation in the case of a small number
of failures.

To this effect, the concept of fault-tolerant spanner for a general graph was
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introduced by Chechik et al. in [CLPR10]:

Definition ([CLPR10]) A vertex (respectively edge) f -fault tolerant (α, β)-spanner
H of a graph G is a spanning subgraph of G such that for every vertex pair a, b and
every fault set F ⊂ V(G) \ {a, b} (respectively F ⊂ E(G)) with |F | 6 f we have:

dH\F (a, b) 6 α · dG\F (a, b) + β

where H \ F stands for the graph (V(H) \ F,E(H)) if F is a vertex set, and for the
graph (V(H),E(H) \ F ) if F is an edge set.

Initially developped in the context of geometric graphs [LNS98, CZ04],
Chechik et al. [CLPR10] extended the notion of fault-tolerant spanner to general
graphs. This article studies both edge fault-tolerant spanners and vertex fault-
tolerant. More specifically the authors construct an f -vertex-fault tolerant (2k−
1)-spanner with O(f 2kf+1 · n1+1/klog1−1/kn) edges. In the edge-fault setting, the
authors obtain an f -edge-fault tolerant (2k−1)-spanner with O(f ·n1+1/k) edges.
If constructions with high probability are allowed, then the works from Dinitz
and Krauthgamer [DK11] improved these results, with a generic procedure
taking any standard multiplicative spanner construction as a parameter and
returning an f fault-tolerant spanner. In particular, when used with the greedy
algorithm the authors obtain f -vertex-fault tolerant spanners with Õ(f 2n1+1/k)
edges2.

2.1.3.2 Non-decreasing graph metrics

Another—independent— way to extend spanners is to remark that the notion
of spanner is oblivious of the specific graph metric. Let δ be a non-decreasing
graph metric, that is a symmetric positive function defined on pairs of vertices
and which has a higher value when computed on a subgraph. More precisely
δ is such that for every graph G, every subgraph H and every pair of vertices
u, v ∈ V(H), δG(u, v) 6 δH(u, v).

We then define spanners on this graph metric:

Definition A subgraph H of a graph G is an (α, β)-spanner of G with respect to the
graph metric δ if:

∀u, v ∈ V(G); δH(u, v) 6 α · δG(u, v) + β

As for standard spanner, we will say that H is an α-spanner of G for the
graph metric δ if it is an (α, 0)-spanner of G for the graph metric δ.

2f(n) = Õ(g(n)) when f(n) = O(g(n) · logk(g(n))) for some k
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2.1.3.3 Size-stretch trade-off

The extensions seen above are a priori applicable to any graph metric. However,
not every graph metric allows for the creation of spanners with good size-
stretch trade-offs.

For instance, in the context of directed graphs Thorup and Zwick show
in [TZ05] that there are no spanners of a general directed graph with o(n2)
edges and constant stretch for the one way distance. The one way distance
between two vertices u and v is defined as the minimum cost of a path going
from u to v using only forward edges. Nevertheless, as shown by Roditty
et al. in [RTZ08] a size-stretch trade-off exists for the round-trip distance,
defined as the sum of a minimum cost of a directed path from u to v, and
a minimum cost directed path from u to v. For instance, they show that
a general directed graph has a (2k + ǫ)-spanner for the roundtrip distance
with O(min{(k2/ǫ)n1+1/klog(nW ), (k/ǫ)2n1+1/k(logn)2−1/k}) edges, where W is
the maximum edge weight. They also show that their scheme allow for compact
roundtrip routing, improving the previous results from Cowen and Wagner
in [CW00].

A natural question raised by these extended spanners is to know for which
graph metrics there exists such a size-stretch trade-off.

In the rest of this document, we are interested in the multipath graph metric,
and in spanners built upon this graph metric. Roughtly speaking, the multipath
graph metric assings to each pair of vertices u, v of G the minimum sum of the
costs of a fixed number of disjoint paths between u and v. We then try to build
spanner according to this graph metric.

2.2 Multipath spanners

2.2.1 Motivation

Our interest in multipath spanners stems from the need of multipath routing
in networks. Using multiple paths between a pair of vertices is an
obvious way to aggregate bandwidth. Additionaly a classical approach to
quickly overcome failures consists in pre-computing fail-over paths which are
disjoint from primary paths [KKKM07, PSA05, NCD01]. Multipath routing
has been extensively studied in ad-hoc networks for load balancing, fault-
tolerance, higher aggregate bandwidth, diversity coding, minimizing energy
consumption (see [MTG03] for a quick overview). Heuristics have been
proposed to provide disjoint routes [NCD01, LG01] in on-demand protocols.
There is a wide variety of optimization requirements when using several paths
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between pairs of nodes. However, using edge-disjoint or vertex-disjoint paths
is a recurrent concern in optimizing routing in networks. Using disjoint paths
is a subject of study in itself [Kle96] and has many problem variants.

Considering only a subset of links is a practical concern in link state routing
in ad-hoc networks [JV09]. This raises the problem of computing spanners
for the multipath graph metric. Additionally, spanners are a key ingredient
in the design of compact routing schemes [PU89, TZ05]. Designing multipath
spanners is thus a first step toward multipath compact routing.

2.2.2 Multipath distance

To define multipath spanners, we define the multipath distance on which they
are built. We define two versions of this multipath distance: the edge-disjoint
multipath distance and the vertex-disjoint multipath distance. This will in turn
define the two types of multipath spanners which are studied in the rest of this
document.

The multipath distance is defined with the help of multipaths—or p-paths—
in the same way the standard graph distance is defined with the help of
paths. A p-path Q from u to v is a subgraph composed of p (different) paths
Q1 . . . Qp going from u to v, a path being simply a subgraph composed of an
uninterrupted chain of edges going from vertex u to vertex v:

Q = Q1 ∪Q2 ∪ · · · ∪Qp

where A∪B in the context of subgraphs means the graph (V(A)∪V(B),E(A)∪
E(B)).

Note that 1-paths are exactly classical paths. We show an example of a 4-path
in Figure 2.2.

An edge-disjoint p-path will additionaly requires that paths of Q are
pairwise edge-disjoint:

∀1 6 i < j 6 p, E(Qi) ∩ E(Qj) = ∅

Note that Figure 2.2 is not a 3-path despite containing 3 edge-disjoint paths.
Indeed it cannot be obtained as an union of three edge-disjoint paths. However
it contains a 3-path, as shown on Figure 2.3.

Similarly, a vertex-disjoint p-path is such that paths composing Q are
pairwise vertex-disjoint except for the two extremities u and v:

∀1 6 i < j 6 p, V(Qi) ∩ V(Qj) = {u, v}

Note that as a consequence of the definition, a vertex-disjoint p-path is also
edge-disjoint.
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u v

Figure 2.2: This subgraph can be obtain as a combination of four paths, and
hence is a 4-path.

u v

Figure 2.3: The 4-path shown in Figure 2.2 contains only three edge-disjoint
paths, but is not in itself a 3-path. Is shown here one of the 3-path contained in
the original 4-path.
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x y x y

x'

y'

e

Figure 2.4: The process into which an edge e = x − y is replaced by a directed
path, ensuring it is crossed only once. For the flow procedure only the edge
x′ → y′ has capacity 1 and weight ω(e). The other are set to 0.

As with any other subgraph, the cost of a p-path will simply be the sum of
its edges’ weights:

ω(Q) =
∑

e∈E(Q)

ω(e)

We then define the two different versions of the p-multipath distance: the
edge-disjoint p-multipath distance and the vertex-disjoint p-multipath distance. They
are defined as the minimum cost of an edge-disjoint (respectively vertex-
disjoint) p-path:

e
d
p
G(u, v) = infQ{ω(Q) : edge-disjoint p-path Q from u to v}

and
v
d
p
G(u, v) = infQ{ω(Q) : vertex-disjoint p-pathQ from u to v}

If there are less than p paths between u and v, then the distance is set to +∞.
The edge-disjoint p-multipath distance e

d
p
G(u, v) between any pair of vertices

u and v is computable in polynomial time: first replace every edge e = x − y
of the graph by the directed path x → x′ → y′ → y → x′ → y′ → x, as shown
on Figure 2.4 and assign null weight and infinite capacity for every edge except
those of the type x′ → y′ for which the capacity must be set to 1 and the weight
to ω(e). Then apply any minimum-cost flow algorithm using u as the source
and v as the sink, stopping the search when reaching p. As the capacities are
integral the search should not exceed p steps. The final distance is the sum
of the weights obtained so far (see the chapter “Minimum Cost Flows”, pages
129–133 of [Law76] for example).

To compute the vertex-disjoint multipath distance v
d
p
G(u, v), one can apply

the same transformation to the graph as shown in Chapter 4: Figure 2.5 shows
the procedure: every undirected edge e = x − y is replaced by two directed
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x y x y x2 y1

x1 y2

Figure 2.5: Process by which an undirected graph is transformed into a suitable
directed graph to compute the vertex-disjoint p-multipath distance v

d
p.

edges going in opposite direction, x → y and x ← y, both of weight ω(e) and
unit capacity. Then every vertex x is split into two, x1 and x2, every inward
edge into x is made to arrive to x1 and every outward edge leaving x is made to
leave x2 instead. Then a supplementary edge of null cost and infinite capacity
is added from x1 to x2. This ensures that edge-disjoint paths in this new graph
are vertex-disjoint in the original graph. We can then apply any minimum cost
maximum flow algorithm to this graph to find p paths between u2 and v1, which
are easily transformed back into the original graph, allowing the total cost to be
computed.

2.2.3 Multipath spanners

As suggested in section 2.1.3.2, we plug the two graph metrics e
d
p and v

d
p into the

definition of spanner to create the two different versions of multipath spanners.
We first define the edge-disjoint multipath spanners:

Definition An edge-disjoint p-multipath (α, β)-spanner H of G is a subgraph such
that ∀u, v ∈ V,

e
d
p
H(u, v) 6 α · edpG(u, v) + β.

Next we define vertex-disjoint multipath spanners:

Definition A vertex-disjoint p-multipath (α, β)-spanner H of G is a subgraph such
that ∀u, v ∈ V,

v
d
p
H(u, v) 6 α · vdpG(u, v) + β.

These two definitions revert to the classical spanners when 1-paths are
considered, that is when p = 1.

In the rest of this document we study the properties of multipath spanners
and show how to build them.
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2.3 Our results

2.3.1 Edge-disjoint multipath spanners

Chapter 3 deals with the study of edge-disjoint multipath spanners. We present
the different results obtained in relationship with edge-disjoint spanners.

We first prove in Theorem 1 that we can use standard multiplicative spanner
algorithms to build for any weighted graph an edge-disjoint p-mutipath p ·(2k−
1)-spanner with O(p · n1+1/k) edges.

We then show in Proposition 2 that a simple argument allows us to translate
known lower bounds on the number of edges of a spanner to multipath
spanners. We then further refine in Section 3.2.3 the proof of the first theorem
to improve the stretch in the special case of 2-paths and using 3-spanners.

Section 3.2.4 shows that we can recycle the ideas from the (1, 2)-spanner
algorithm to create an edge-disjoint 2-multipath (2, 8W )-spanner3 with roughly
the same number of edges. We provide an example to show that the analysis of
our algorithm is tight with respect to the stretch.

Finally, we show in Section 3.2.5 that there exists a relationship between edge
fault-tolerant spanners and egde-disjoint multipath spanners, which allows us
to obtain edge-disjojnt p-multipath spanners with a much better stretch than
what we obtained in Theorem 1 at the cost of an increased number of edges.

2.3.2 Vertex-disjoint multipath spanners

In Chapter 4 we investigate verstex-disjoint spanners. First we note that
the vertex-disjoint p-multipath graph metric—unlinke the edge-disjoint graph
metric—is not a proper graph distance. We then give the definition of vertex-
disjoint p-multipath spanners and present the results obtained about vertex-
disjoint p-multipath spanners.

We first show that although vertex fault-tolerant spanners are related to
vertex-disjoint multipath spanners, there exist fault tolerant spanners with an
unbounded multipath stretch.

In spite of this negative result, we show (Section 4.2.2) that it is possible
to overcome this difficulty provided the fault-tolerant spanners have an
additionnal property. More precisely, we prove that there exist (p − 1)-fault
tolerant spanners which are also p-multipath spanners with a large stretch
independant of the number of edges of the graph. We therefore provide a way
to use existing fault-tolerant spanners algorithms to get p-multipath spanners.

3W is used to note the graph’s maximum edge weight.
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Moreover we show that these spanners can be constructed efficiently by a
distributed algorithm.

While the previous analysis was simple, the obtained stretch is too large to
be of any use. We therefore present in Section 4.2.3 a different analysis. We
show that fault-tolerant spanners tolerating more faults than p can be vertex-
disjoint p-multipath spanners with the same stretch, thereby improving largely
on the stretch from the previous section while paying an increase in the number
of edges.

Finally, we show in Section 4.2.4 that despite the vertex-disjoint multipath
graph metric not being a proper distance and in the case of only 2-paths, we can
design an ad-hoc algorithm inspired by the algorithm from Section 3.2.4 which
can yield vertex-disjoint 2-multipath (2, O(W ))-spanners.



Chapter 3

Edge-disjoint multipath spanners

In this chapter, we consider the case of edge-disjoint multipath spanners, as an
extension of spanners, defined in [PS89] for general graphs.

A spanner H of a graph G is a spanning subgraph such that for any pair of
vertices the distance measured as the length of a shortest path using only edges
of H is no more than some factor α than the distance measured in the original
graph G: dH(u, v) 6 α · dG(u, v).

We note that this definition could be in principle extended to any graph
metric such that the measure of distance between two nodes is larger in every
subgraph. Therefore we introduce edge-disjoint multipath spanners, in the
hopes that they will help to solve the problems related to multipath routing.

To this effect, we introduce the edge-disjoint multipath graph metric
(Section 3.1.1). A multipath spanner will simply be a spanner defined on this
distance.

3.1 Preliminaries

We consider a (possibly weighted) undirected graph G = (V,E) with weight
function ω. Let G → V(G) = V be the function which associates to a graph its
set of vertices, and G → E(G) = E be the function which associates the set of
edges. We set n = |V |.

The cost of any subgraph H of G is the sum of the weights of its edges. It is
denoted by ω(H) =

∑

e∈E(H) ω(e). We set ω(H) = 0 if E(H) = ∅.

3.1.1 Multipath distance

Definition 1 A p-path Q = {Q1, . . . , Qp} from a vertex u to a vertex v is a subgraph
of G composed of p edge-disjoint paths from u to v, i.e., E(Qi) ∩ E(Qj) = ∅, ∀1 6 i <

26
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Figure 3.1: Any cut separating u from w has capacity at least 3

j 6 p.

Definition 2 The p-multipath distance between two vertices u and v, denoted by
e
d
p
G(u, v), is the minimum cost of a p-path from u to v. We set

e
d
p
G(u, v) = ∞ if there

are no p edge-disjoint paths from u to v. The p-multipath distance in a subgraph H is
denoted by

e
d
p
H .

When the graph is omitted it is implied to be G.
In the following, we prove that e

d
p is a metric endowed with the triangle

inequality. This property is essential to our needs to prove the main results of
this chapter.

Proposition 1 e
d
p

is a metric endowed with the triangle inequality.

Proof. e
d
p clearly satisfies e

d
p
(u, v) = 0 if and only if u = v. The symmetry is also

obvious due to the fact that we deal only with undirected graphs. We prove next
the triangle inequality. Let u, v, w be three vertices, A a p-path of cost e

d
p
G(u, v)

between u and v, and B a p-path of cost e
d
p
G(v, w) between v and w. We show

that the subgraph H = (V(A) ∪ V(B),E(A) ∪ E(B)) contains a p-path between
u, w.

Let (U,W ) (U,W ⊂ V(H) be a cut (a cut is simply a partition of vertices)
of capacity t (the capacity of the cut is the number of edges which have an
endpoint in U and the other in W ) which separates u from w, i.e. u ∈ U and
w ∈ W as shown on Figure 3.1. Since the cut separates u from w, v is either in U
or W . Suppose it is in U . The cut effectively separates v from w. Since e

d
p
G(v, w)

is finite we know that there exists at least p paths from v to w in B, and so by the
min-cut max-flow theorem our cut has capacity at least p, hence t > p. The same
is true when v is in W . Since any cut separating u from w has at least capacity p,
we know by the min-cut max-flow theorem that in H there are at least p paths
between u and w. Hence e

d
p
(u, w) 6

e
d
p
(u, v) +

e
d
p
(v, w).

�
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3.1.2 Multipath edge-disjoint spanners

We define an edge-disjoint p-multipath spanner as a spanner for the edge-disjoint
p-multipath distance.

This definition is in effect the transposition of the classical spanner definition
from [PS89] to the new metric.

Definition 3 Let G = (V,E). Then H = (V,E ′ ⊂ E) is an edge-disjoint p-multipath
(α, β)-spanner of G if ∀u, v ∈ V,

e
d
p
H(u, v) 6 α · edpG(u, v) + β.

When β = 0, H is simply called an α-spanner.
This definition is identical to the traditional definition of spanners for p = 1.

3.2 Results

In this part, we prove the following results:

• Theorem 1: every weighted graph admits an edge-disjoint p-multipath
p · (2k − 1)-spanner with O(p · n1+1/k) edges.

• Proposition 2: lower bounds for one-path spanners are also valid for edge-
disjoint p-multipath spanners.

• Theorem 2: every unweighted graph admits an edge-disjoint 2-multipath
3-spanner with O(n3/2) edges.

• Theorem 3: every multi-edge weighted graph with n vertices and largest
edge-weight W has an edge-disjoint 2-multipath (2, 8W )-spanner with
O(n3/2) edges.

• Theorem 4: a O(kp2 · log(W ))-fault tolerant (2k− 1)-spanner of a weighted
graph G is an edge-disjoint p-multipath (2k − 1)-spanner of G.

The first four results were published in coöperation with Cyrille Gavoille
and Laurent Viennot in [GGV10].

Theorem 4 was published in coöperation with Shiri Chechik and
David Peleg in [CGP12].

3.2.1 Edge-disjoint p-multipath p · (2k − 1)-spanner

In this section we show that a simple algorithm can produce a multipath
spanner.
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Theorem 1 For all integers k, p > 1, every multi-edge weighted graph with n vertices
has an edge-disjoint p-multipath p · (2k − 1)-spanner with at most p · n1+1/k edges.

To prove this theorem, we make use of what we call iterative spanners.

Definition 4 A p-iterative s-spanner of G is a subgraph H =
⋃p

i=1 Hi, where Hi is
any 1-multipath s-spanner of G \⋃j<i Hj .

We observe that the union of p such 1-multipath spanners is actually a p-
multipath spanner.
Proof. Let H =

⋃p
i=1 Hi be a p-iterative (2k − 1)-spanner of G, where Hi is a

(2k − 1)-spanner of G with less than n1+1/k edges. Each Hi can be constructed
(cf. [ADD+93]). Hence, H has less than p · n1+1/k edges.

We now prove that H is an edge-disjoint p-multipath p · (2k−1)-spanner. Let
u, v be two vertices of G. If there is no p-path from u to v in G, then e

d
p
G(u, v) =∞.

In particular, e
d
p
H(u, v) 6 p · (2k − 1) · edpG(u, v). So, we assume there exists a p-

path from u to v. Let P be any minimum-cost p-path from u to v in G. We have
ω(P ) =

e
d
p
G(u, v).

For an edge e /∈ H , we denote by Hi(e) the simple path which replaces
the edge e of G in the i-th spanner member of H . Observe that, for each i,
ω(Hi(e)) 6 (2k − 1) · ω(e) because e ∈ G \Hi and Hi has stretch 2k − 1.

Given P and H , we define the subgraph F as follows:

F := (P ∩H) ∪
⋃

e∈E(P\H)

p
⋃

i=1

Hi(e) .

Clearly, F ⊆ H , since each edge e ∈ P is either in H or is replaced by Hi(e)
for some i. Moreover, we have ω(F ) 6 p · (2k − 1) · ω(P ) because:

ω(F ) 6 ω(P ∩H) +
∑

e∈P\H

p
∑

i=1

ω(Hi(e))

6
∑

e∈P∩H

ω(e) +
∑

e∈P\H

p · (2k − 1) · ω(e)

6
∑

e∈P

p · (2k − 1) · ω(e) = p · (2k − 1) · ω(P ) .

Therefore, the stretch of H is at most p · (2k − 1).
We now show that F contains a p-path from u to v, and for that we shall use

the min-cut max-flow theorem. Consider a cut (X,X) with u ∈ X and v ∈ X .
Since P is a p-path from u to v, there is a subset C of the cut of at least p edges
of P which have one endpoint in X and the other in X . Two cases are possible:
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1. Every edge of C belongs to F : the cut has capacity at least p in F .

2. One edge of C does not belong to F : p paths where added in F in
replacement for this edge, so the minimum cut has capacity at least p.

Therefore, the minimum cut in F is at least p. By the min-cut max-flow the-
orem there is p edge-disjoint paths from u to v in F . It follows that F contains a
p-path from u to v. This completes the proof. �

The result of Theorem 1 is a bit disappointing in the sense that the stretch
of the resulting p-multipath spanner is p times the stretch of the underlying
spanner algorithm (p · (2k − 1) versus 2k − 1). More precisely, there is a hope to
show that each individual sub-path of a p-path gets stretched by a factor (2k−1),
hence yielding a global stretch of 2k − 1.

In all the rest of this part, we study how this p ·(2k−1) bound on the number
of edges can be improved.

3.2.2 Lower bounds for edge-disjoint multipath spanners

In this section (taken from [GGV10]), we prove that the stretch s of an edge-
disjoint p-multipath spanner cannot be better than the stretch of a 1-multipath
spanner with the same number of edges.

For all integers p, n and real s > 1, denote by mp(n, s) the largest integer such
that there exists a multi-edge weighted graph with n vertices for which every
edge-disjoint p-multipath spanner of stretch < s requires at least mp(n, s) edges.

The value of mp(n, s) provides a lower bound on the sparsity of edge-disjoint
p-multipath spanners of stretch < s. To illustrate this, consider for instance
p = 1 and s = 3. It is known that m1(n, 3) = Ω(n2), by considering the complete
bipartite graph B = K⌊n/2⌋,⌈n/2⌉. Since all cycles of B have length at least 4, every
proper subgraph H contains two vertices x and y which are neighbors in B but
at distance at least 3 in the spanner. Thus H is an s-spanner with s > 3. In other
words, every s-spanner of B, with s < 3 contains all the edges of B that is Ω(n2)
edges.

Unfortunately, this argument does not transfer to edge-disjoint p-multipath
spanners whenever p > 1. Indeed, with the same graph B, we get e

d
p
B(x, y) =

1 + 3(p − 1). And, if (x, y) is removed from any candidate spanner H , we only
get e

d
p
H(x, y) = 3p. Hence, the stretch for H so proved is only e

d
p
H(x, y)/

e
d
p
G(x, y) =

1 +O(1/p). The argument transfers however if multi-edges are allowed.

Proposition 2 For all integers n, p > 1 and real s > 1, mp(n, s) > m1(n, s).
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In particular, under the Erdős-Simonovits [Erd64, ES82] Conjecture1 which
implies m1(n, 2k + 1) = Ω(n1+1/k) for every integer k > 1 and proved for
k ∈ {1, 2, 3, 5} [Wen91], there is a multi-edge unweighted graph with n vertices
for which every edge-disjoint p-multipath spanner with stretch < 2k + 1 has
Ω(n1+1/k) edges.
Proof. Let G be an n-vertex graph with the minimum number of edges such
that every spanner of stretch < s has at least m1(n, s) edges. Let ω be the weight
function of G. Clearly, G has m1(n, s) edges, since otherwise we could remove
an edge of G. Observe also that any path between two neighbors x, y of G
that does not use the edge (x, y) has length at least s, since otherwise we could
remove it from G. In other words, dG\{(x,y)}(x, y) > s · ω(x, y).

Let Gp be the graph obtained from G by adding, for each edge of G, p − 1
extra multi-edges with same weight. We have G1 = G, and Gp has p ·mp(n, s)
edges. Let H be any p-multipath spanner of Gp with < m1(n, s) edges. There
must exist two vertices x, y adjacent in Gp that are not adjacent in H . We have
e
d
p
Gp
(x, y) = p · ω(x, y), and e

d
p
H(x, y) > p · dG\{(x,y)}(x, y) > p · s · ω(x, y). We

conclude that the p-multipath stretch of H is at least e
d
p
Gp
(x, y)/

e
d
p
H(x, y) > s.

In other words, every edge-disjoint p-multipath spanner H of Gp with stretch
< s has > m1(n, s) edges, proving that mp(n, s) > m1(n, s). �

It remains open to determine whether the same lower bound of 2k−1 on the
stretch applies if one restricts to simple graphs only.

3.2.3 An unweighted edge-disjoint 2-multipath 3-spanner

In this section (taken from [GGV10]), we focus on unweighted edge-disjoint 2-
multipath 3-spanners. The lower bound of Proposition 2 tells us that Θ(n3/2)
is the required size of any edge-disjoint 2-multipath 3-spanner. However, the
p-iterative (2k − 1)-spanner given by Theorem 1 (with p = k = 2) provides
an edge-disjoint 2-multipath spanner of stretch 6 only. In fact a finer analysis
shows that the same construction yields a 2-multipath 3-spanner.

Theorem 2 Every multi-edge unweighted graph with n vertices has an edge-disjoint
2-multipath 3-spanner with less than 2n3/2 edges that can be constructed as a 2-iterative
3-spanner.

Proof. It is obvious from the construction that a 2-iterative 3-spanner contains
less than 2n3/2 edges. In the following we show the stretch property.

Let G be an unweighted multi-edge graph. For any subgraph H of G, we
denote by |H| = |E(H)|. Since G is unweighted, note that |H| is the cost of H ,

1It states that there are n-vertex graphs with Ω(n1+1/k) edges without cycles of length 6 2k.
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i.e., its number of edges. Consider any 2-iterative 3-spanner H constructed from
G, and call H1 and H2 the two spanners constituing H . Let u, v be two vertices,
and P be a minimal 2-path in G which connects u and v. In the following, we
use a decomposition of P in two simple edge-disjoint paths P1 and P2. If they
share a common vertex w, it is called an intersection point. P is said to be simple
if P1 and P2 are in fact vertex-disjoint, i.e., they do not share any intersection
point.

We first show that any minimal 2-path P can be decomposed in a sequence
of simple 2-paths. Let u0 = u, u1, . . . , ut = v denote the intersection points as
they are ordered on the path P1 from u to v.

Lemma 1 The intersection points u0, . . . , ut appear in the same order on P2.

Proof. Suppose they are not in the same order on the two paths. Then there
exists i < j such that uj appears before ui on P2. The sequence on P1 (resp.
P2) looks like : u0, . . . , ui, . . . , uj, . . . , ut (resp. u0, . . . , uj, . . . , ui, . . . , ut). Let P ′

1

and P ′
2 be the paths realized by interleaving P1 and P2 at the crossing point

ui, P ′
1 (resp. P ′

2) having the same prefix as P1 (resp. P2). More precisely,
P ′
1 = P1[u0, uj] ◦ P2[uj, ut] = P1[u0, ui] ◦ P1[ui, uj] ◦ P2[uj, ui] ◦ P2[ui, ut] and

P ′
2 = P2[u0, uj] ◦ P1[uj, ut]. The transformation is shown in Fig. 3.2. The 2-path

(P ′
1, P

′
2) has the same cost as (P1, P2). Since the process introduced an explicit

loop in P ′
1 it can be discarded, resulting in an improvement on the total cost

which we supposed to be minimal. This is a contradiction. �

Figure 3.2: Proof of Lemma 1.

Among all 2-paths (P1, P2) satisfying |P1| + |P2| = d2G(u, v), there is at
least one which contains a maximum number of intersection points. We now
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suppose that P = (P1, P2) is such a 2-path and that u0, . . . , ut now denote the
intersections points of P1 and P2 as they are ordered on both paths.

Define P i
1 (resp. P i

2) as the portion of P1 (resp. P2) from ui−1 to ui. Let P i

denote the 2-path formed by the union of P i
1 and P i

2. Note that by construction
P i is simple. P is indeed the union of P 1, . . . , P t.

We construct a replacement graph F with edges of H according to the rules
bellow. The idea is to replace each edge x−y /∈ H of P with a shortest path from
x to y in H1 or H2, by using rules which guarantee the stretch property while
ensuring the 2-connectivity.

Consider an edge e /∈ H . Let H1(e) (resp. H2(e)) be a shortest path in
H1 (resp. H2) between the end-vertices of e. As H1 is a 3-spanner, we have
|H1(e)| 6 3. As H2 is a 3-spanner of G\H1 and e /∈ H1, we also have |H2(e)| 6 3.

We define a subgraph F i of H by applying the following rules to each 2-path
P i, in the order in which they are presented and for which a schema is shown
in Fig. 3.3:

• R0: If P i
1 or P i

2 is a single edge that belongs to Hj, j ∈ {1, 2}, add it to F i.
Then for each edge e of the other path: if it belongs to H add it to F i, if it
does not add the replacement path H3−j(e) to F i.

• R1: If an edge of P i belongs to H , then add it to F i.

• R2: For all edges not concerned by R0 nor R1 do:

– If e ∈ P i
1 and H1(e) ∩ P i

2 = ∅, then F i = F i ∪H1(e)

– If e ∈ P i
2 and H2(e) ∩ P i

1 = ∅, then F i = F i ∪H2(e)

• R3 (disjointedly from R2):

– If e ∈ P i
1 and H1(e) ∩ P i

2 6= ∅ then F i = F i ∪H1(e) ∪H2(e).

– If e ∈ P i
2 and H2(e) ∩ P i

1 6= ∅ then F i = F i ∪H1(e) ∪H2(e).

F is then the union of all F i, i ∈ {0, . . . , t}.
The following lemmatas (2–5) show that the rules enforce that there is

always:

• a 2-path between u and v

• the stretch is controlled.

Lemma 2 F contains a 2-path from u to v.
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Figure 3.3: The different cases for the rules are shown here for an edge from P i
1.

In blue are shown the edges and paths belonging to H1, and in red those from
H2.

Proof. The proof will show that the capacity of any cut which separates u from
v in F is at least two. By the min-cut max-flow theorem it will imply that F
contains a 2-path.

Suppose there is a cut X ⊂ V such that u ∈ X, v ∈ X . Then there exists i
such that ui−1 ∈ X and ui ∈ X . Let be e1 (resp. e2) an edge in P i

1 (resp. P i
2)

crossing X (i.e., having an extremity in X and the other in X).

Several cases are possible:

• R0 has been applied to e1 or e2: then the other edge has a replacement path
in F i, so the cut is at least two in F .

• R1 was applied to both e1 and e2: then each of these edges belong to F i,
are disjoint, so the cut is at least two in F .

• R2 was applied to both e1 and e2: then each of these edges have a disjoint
replacement path in F i, so the cut is at least two in F .

• R1 was applied to one of {e1, e2}, and R2 to the other: then as one of the
edges is in F i and the other has a replacement path in F i, disjoint from the
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other (if it wasn’t the case, R3 would have been applied) there are at least
two edges from F i crossing X .

• R3 was applied to either e1 or e2: then there are two disjoint replacement
paths for either e1 or e2, which are cut by X , so it is at least two in F .

As the cut is at minimum two in F , by the min-cut max-flow theorem the flow
between u and v is at least two in F . �

Let be |P i| = x0+x1+x2+x3 the number of edges of P i, xj being the number
of edges from P i where rule Rj was applied.

Lemma 3 |F i| 6 3x0 + x1 + 3x2 + 5x3.

Proof.

• For rule R0 it is easy to show that the number of edges added in F does not
exceed 3x0 (one path is a single edge which is added, replacement paths
of length at most 3 are added for the edges of the other path).

• For rule R1, the number of edges added in F is exactly x1, as these edges
are in H .

• For rule R2, the number of edges added is 3x2, because the spanners H1

and H2 have stretch 3.

• For rule R3, there are at most 5 edges added for each application of the
rule because one is already part of F .

�

Lemma 4 x3 6 x1.

Proof. We show that an edge added according to rule R1 can participate in at
most one replacement path of an edge considered under rule R3, thus implying
x3 6 x1. Suppose by contradiction that this is not the case. W.l.o.g. there exists
e1, e

′
1 ∈ P i

1, e2 ∈ P i
2 such that R1 applies to e2, and that R3 applies to e1 and e′1. We

prove that this may happen only in special cases where x3 6 x1 is still satisfied.
Let a, b, c, d be the paths such that a − e2 − b = H1(e1) and c − e2 − d = H1(e

′
1)

with e2 ∈ H1(e) ∩H1(e
′
1). (The paths a, b, c, d have length 0, 1 or 2 since H1 and

H2 are 3-spanners.). There are two possible cases as shown in Fig. 3.4:

1. either a and c are connected together on one endpoint of e2 — and then b
and d are connected to the other end;
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Figure 3.4: Two possible cases.

2. or a and d to one endpoint of e2 and c and b to the other.

Let e be the sub-path of P i
1 which lies in between e1 and e′1.

In Case 1, we first show |e| > 0. Suppose by contradiction that e is empty.
Then a−c (resp. b−d) is a replacement path for e1 (resp. e′1) in H1. As H1(e1) and
H1(e

′
1) are shortest paths, we have |a|+ |c| > |a|+1+ |b| and |b|+ |d| > |c|+1+ |d|,

i.e., |c| > |b| and |b| > |c| which is a contradiction.
Now, we show that each of the paths a, b, c, d is composed of a single edge.

As we are not in the case of rule R0, a and d cannot be both empty. Suppose
w.l.o.g. |a| > 0. |H1(e1)| 6 3 implies |b| 6 1. Indeed, we have |b| = 1 as b cannot
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be empty since there are no intersection point of P1 and P2 in between e1 and e′1.
For the same reason, b cannot be composed of an edge of P2. As a consequence,
d cannot be empty otherwise b would be a shortcut violating the minimality of
the cost of P i. We then similarly show that c is composed of a single edge which
is not in P2. As |c|+1+ |d| 6 3 and |d| > 0, we obtain |d| = 1. Similarly, we have
|a| = 1.

We now prove that a is in P2. If this is not the case, then a − c is a shortcut
that can be substituted to e1 − e in P1. This does not increase the cost of the
2-path and it increases the number of intersection points, a contradiction with
the choice of P . Similarly, d is in P2.

Let us recall what we have obtain so far for Case 1: a and d are edges of P2,
b and c are edges not in P2. P i

2 is thus the path a − e2 − d and P i
1 is e1 − e − e′1.

Note that x1 > 3 since the three edges of P i
2 follow rule R1. We then show that

at most one edge of e may fall under rule R3, yielding x3 6 3 6 x1. Consider an
edge e′′1 of e falling under rule R3. We write e = e′ − e′′1 − e′′ where e′ and e′′ are
sub-paths of e. We can write H1(e

′′
1) = b′− e′2− c′ where b′ and c′ are edges of H1

and where e′2 is either an empty path or an edge. As e′′1 follow rule R3, e′2 must
be an edge of P i

2 (H1(e
′′
1) must have length 3).

First consider the case where e′2 is a. Then, e′ must be empty (e′′1 must be the
first edge after e1). W.l.o.g. b′ is e1 and c′ contains a ∩ e2. We must have |e′′| 6 1.
Otherwise c′− c is a shortcut violating the choice of P . If e′′ is an edge, it cannot
follow rule R3 as c′ − c is a replacement path in H1 with length 2 and H1(e

′′)
cannot have length 3. We thus have x3 6 3 6 x1. The case where e′2 is d can be
treated similarly.

Now consider the case where e′2 is e2. W.l.o.g. b′ contains b∩e2 and c′ contains
c ∩ e2. As b− b′ cannot be a shortcut violating the choice of P , we have |e′| 6 1.
If e′ is an edge, it cannot follow rule R3 as b − b′ is a replacement path in H1

with length 2. Similarly c− c′ cannot be a shortcut violating the choice of P . We
thus have |e′′| 6 1 and if e′′ is an edge, it cannot follow rule R3. We again obtain
x3 6 3 6 x1.

In Case 2, we first prove that a, b, c, d are single edges. b and c cannot be
empty as there are no intersection point in between e1 and e′1. We thus have
|a| 6 1 and |d| 6 1. If a is empty, then d is a shortcut violating the minimality
of the cost of P . We thus have |a| = 1 which implies |b| = 1 as |H1(e1)| 6 3.
Similarly, we have |d| = 1 and |c| = 1. Note that b and c cannot be in P2 as there
are no intersection point in between e1 and e′1.

We show that if we are not in Case 1 again, then we have two edges
following rule R1 contained in at most two replacement paths of edges
following rule R3. As b − c cannot be a shortcut violating the choice of P , we
have |e| 6 1. If e is an edge, it admits b− c as a replacement path in H1. Thus it
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cannot follow rule R3. The path a − d cannot be a shortcut violating the choice
of P . This implies that a or d is in P2. W.l.o.g., suppose that a is in P2 (e1 ∩ a is
indeed ui−1). d cannot be in P2 as e2 is in P i

2. Consider another edge e′′1 falling
under rule R3. H1(e

′′
1) cannot contain a as we would get e′′1 = e which cannot

follow rule R3. If H1(e
′′
1) contains e2, we fall back into Case 1.

Case 2 may occur both at ui−1 and ui. All other edges falling under rule R1
are contained in at most one replacement path of an edge following R3. We thus
have x3 6 x1 in any case.

�

Lemma 5 F has at most 3d2G(u, v) edges.

Proof. As |F i| 6 3x0 + x1 + 3x2 + 5x3 and x3 6 x1,

|F i| 6 3x0 + x1 + 3x2 + 2x3 + 3x3 6 3x0 + 3x1 + 3x2 + 3x3 6 3|P i|

As F is the union of all F i, F has a maximum weight of 3d2G(u, v). �

All these lemmas (1–5) allow us to conclude with Theorem 2. Indeed, for a
pair of original paths in G going from u to v and of length d2G(u, v), we are able
to build a new subgraph F of H . Thanks to Lemma 2 we show that it contains
2 disjoint paths. Lemma 5 bounds its size. So H contains 2 disjoint paths going
from u to v and of size at most 3 · d2G(u, v). �

Theorem 2 improves the stretch bound of Theorem 1 for the case of
unweighted edge-disjoint 2-multipath spanners with O(n3/2) edges.

We know (from the bipartite complete graph Kn/2, n/2) that with O(n3/2)
edges a subgraph cannot have an integer multiplicative stretch less than 3.
Thanks to Proposition 2 we know this translates to 2-multipath spanners.
Therefore Theorem 2 is optimal in the case of 2-paths.

However there exist spanner algorithms (such as the (1, 2)-spanner
algorithm from [ACIM99]) which yield lower multiplicative stretch. The next
section examines how it is possible to obtain a similar result for 2-path spanners.

3.2.4 A 2-multipath (2, 8W )-spanner

So far, only multiplicative multipath spanners have been considered. In this
section, we try to design an algorithm similar to the one used in [ACIM99] to
create additive multipath (1, 2)-spanners. This will allow us to create multipath
spanners with multiplicative stretch less than the multiplicative stretch of 3
obtained so far.
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3.2.4.1 Shortest 2-path spanning trees

To prove the main result of this section we extend the notion of spanning tree.
A p-multipath spanning tree of G is a subgraph T of G with a distinguished

vertex u, called the root of T , such that, for every vertex v of G, T contains a
p-path from u to v. Moreover, T is a p-shortest-path spanning tree if e

d
p
T (u, v) =

e
d
p
G(u, v) for every vertex v. For p = 1, we come back to the standard notions of

spanning tree and shortest-path spanning tree. Observe that T may not exist,
for instance, if G is not 2-edge-connected.

Lemma 6 Every n-vertex 2-edge-connected graph with a given vertex u has a 2-
shortest-path spanning tree rooted at u with at most 2(n − 1) edges constructible in
the time of two Dijkstra’s shortest path calculations.

Proof. We use the construction of [ST84]. Their algorithm builds a structure
which answers the problem of finding pairs of shortest paths from a single
source s to every other vertex. Initially the result in [ST84] is for asymmetric
directed graphs but the authors state in section IV that their algorithm can be
easily extended to work with any directed graph with multiple edges.

To this effect transform the graph G into G′ as follows. Every undirected
edge e = uv is replaced by two directed edges: e1 = u← v and e2 = u→ v.

The algorithm from [ST84] can then be run on G′, using the small
modification from section IV.

The algorithm is in essence two Dijkstra’s shortest-path tree-like computa-
tions. These two calculations build a structure which can answer the 2-distance
from the source s to any other vertex. The two paths are retrieved via a spe-
cific traversal procedure. To get the real paths in G from those of G′, one needs
simply to discard edges used in both directions.

The structure consists of a shortest path tree rooted in s (called T in the ar-
ticle) and on every vertex u another designated edge u − p(u) distinct from the
one from T . As the two edges are sufficient to build the two paths, it means that
a 2-shortest path tree can be built using at most 2 · |V(G)| for any graph G. �

The bound of 2(n − 1) is tight because of the graph K2,n−2. More generally,
the number of edges in any p-multipath spanning tree must be, in the worst-
case, at least p(n − p), for every p 6 n/2. Indeed, every p-multipath spanning
tree T must be p-edge-connected2, and the graph Kp,n−p is minimal for the p-
edge-connectivity. Therefore, T contains all the edges of Kp,n−p, and there are
p(n − p) edges. Obviously, there are p-multipath spanning tree with less than

2By Proposition 1, there are two edge-disjoint paths between any two vertices of the p-
multipath tree, through its root.
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p(n − p) edges. Typically a subdivision of K2,p with n vertices has p-multipath
spanning tree rooted at a degree-p vertex with a total of n+ p− 2 edges.

3.2.4.2 A stretch-(2,8W) spanner

Theorem 3 Every multi-edge weighted graph with n vertices and largest edge-weight
W has an edge-disjoint 2-multipath (2, 8W )-spanner with at most Φn3/2 + n edges,
where Φ ≈ 1.618 is the golden ratio.

Proof. Let denote by Bp
H(u, r) =

{

v ∈ V(H) :
e
d
p
H(u, v) 6 r

}

the edge-disjoint
p-multipath ball of radius r in H centred at u, and denote by Np

H(u, r) the
neighbors of u in H that are in Bp

H(u, r). Note that for p > 2, some neighbor v of
u might not be in Bp

H(u, r) for every r <∞: for instance if u and v are not in the
same 2-edge-connected component. We denote by SPTp

H(u) a p-shortest-path
tree rooted at u spanning the 2-edge-connected component of H containing u,
and having at most 2(|E(H)|− 1) edges. According to Lemma 6, such p-shortest
path tree can be constructed in polynomial time.

Let G be a multi-edge weighted graph with n vertices and largest edge-
weight W . We denote by ω its edge-weight function. The 2-multipath spanner
H of G is constructed thanks to the following algorithm (see Algorithm 1).

1. For each edge e of G: if there are in G two other edges between the
endpoints of e with weight at most ω(e), then G := G \ {e}

2. H := (V(G),∅) and W := max {ω(e) : e ∈ E(G)}

3. While there exists u ∈ V(G) such that |N2
G(u, 4W )| > (

√
5− 1)

√
n :

(a) H := H ∪ SPT2
G(u)

(b) G := G \N2
G(u, 4W )

(c) W := max {ω(e) : e ∈ E(G)}

4. H := H ∪G

Algorithm 1: An edge-disjoint 2-multipath (2, 8W )-spanner algorithm.

Size. Denote by G3 and H3 respectively the graphs G and H obtained after
running the while-loop. Let b be the number of while-loops performed by the
algorithm, and let a =

√
5 − 1. Observe that a2 + 2a = 4. From Lemma 6, the

2-shortest-path tree SPT2
G(u) has at most 2(n − 1) edges. Hence, the size of H3

is at most
|E(H3)| < 2b · n .
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The number of vertices of G3 is at most n − ab
√
n, since at each loop, at

least a
√
n vertices are removed from G. Let G1

3 be the graph induced by all
the edges (u, v) of G3 such that v ∈ N2

G3
(u, 4W1), where W1 is the maximum

weight of an edge of the graph obtained after running Instruction 1. Let G2
3 be

the graph induced by the edges of G3 \G1
3. The degree of each vertex u of G1

3 is
|N2

G3
(u, 4W1)| − 1 which is < ⌈a√n ⌉ − 1 6 a

√
n because of the while-condition.

Therefore, the size of G1
3 is at most

|E(G1
3)| 6

1

2

∑

u∈V(G3)

a
√
n <

1

2

(

n− ab
√
n
)

· a
√
n <

a

2
· n3/2 − a2b

2
· n .

Let S3 be the graph obtained from G2
3 where each multi-edge is replaced by a

single unweighted edge. More formally, vertices u and v are adjacent in S3 if and
only if there is at least one edge between u and v in G2

3. From Instruction 1, there
are at most two edges between two adjacent vertices, so |E(G2

3)| 6 2|E(S3)|.
Let us show that S3 has no cycle of length 6 4. Consider any edge (u, v) of

S3. Observe that by the definition of G1
3 and G2

3, v /∈ N2
G2

3

(u, 4W3) where W3 is
the maximum weight of an edge of G3. Assume there is a path cycle of length
at most 4 in S3 going through (u, v). Then in G2

3 there is a 2-path from u to v of
cost at most 4W3. Contradiction: v /∈ N2

G2
3

(u, 4W3) implies d2
G2

3

(u, v) > 4W3.
It has been proved in [AHL02] that every simple η-vertex µ-edge graph

without cycle of length 6 2k, must verify the Moore bound:

η > 1 + δ

k−1
∑

i=0

(δ − 1)i > (δ − 1)k

where δ = 2µ/η is the average degree of the graph. This implies that µ <
1
2
(η1+1/k + η).

By definition, S3 is simple. It follows, for k = 2 and η 6 n − ab
√
n, that the

size of G2
3 is at most (twice the one of S3):

|E(G2
3)| 6

(

n− ab
√
n
)3/2

+ n− ab
√
n < (n− ab

√
n)
√
n+ n = n3/2 + (1− ab) · n .

Overall, the total number of edges of the final spanner H is bounded by:

|E(H)| 6 |E(H3)|+ |E(G1
3)|+ |E(G2

3)|

<
(

1 +
a

2

)

· n3/2 +

(

2b− a2b

2
+ 1− ab

)

· n

=
(

1 +
a

2

)

· n3/2 + n =
1 +
√
5

2
· n3/2 + n = Φn3/2 + n

because 2b − a2b/2 + 1 − ab = b/2 · (4 − a2 − 2a) + 1 = 1. (Recall that, by the
choice of a, a2 + 2a = 4.)
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Stretch. Let G0 be the input graph G, before applying the algorithm. We first
observe that we can restrict our attention to the stretch analysis of G1 (instead
of G0), the graph obtained after applying Instruction 1.

Indeed, let H be an edge-disjoint 2-multipath spanner for G1. Consider two
vertices u, v of H , and let A be a minimum-cost 2-path between u and v in H .
Since A is composed of two edge-disjoint paths and is of minimum cost in H , A
traverses (at most) two edges with same end vertices. Among all pairs of egdes
from G0 these two edges have the smallest weight. Therefore these (possibly)
two edges exist in both G0 and G1. Hence the 2-multipath stretch of H in G0 or
in G1 is the same.

From the above observation, it suffices to prove that H is a 2-multipath
(2, 8W1)-spanner of G1, where W1 6 W0 is the maximum weight of an edge
of G1.

Let x, y be any two vertices of G1, and A be a minimum-cost 2-path between
x and y in G1. Hence ω(A) = d2G1

(x, y). If all the edges of A are in H , then
d2H(x, y) = d2G1

(x, y) = d, and the stretch is (1, 0). So, assume that A 6⊂ H . Let
u be the first vertex selected in the while-loop such that N2

G(u, 4W ) intersects
A, so that Instruction 3(b) removes at least one edge of A. Let G,H be the
graphs at the time u is selected, but before running Instruction 3(a) and 3(b).
Let v ∈ N2

G(u, 4W ) ∩ A, and B a minimum-cost 2-path from u to v in G. By
definition of N2

G(u, 4W ), d2G(u, v) = ω(B) 6 4W . Let T = SPT2
G(u).

An important observation is that u, x, y are in the same 2-edge-connected
component of G. This comes from the fact that every 2-path is a 2-edge-
connected subgraph3. So, A and B are 2-edge-connected, and A ∪ B as well,
since A intersects B (in v). Hence T reaches both x and y.

Using the triangle inequality (Proposition 1) in H , we have d2H(x, y) 6

d2H(u, x)+d2H(u, y). By construction of H and T , d2H(u, x) = d2T (u, x) = d2G(u, x) 6
ω(A ∪ B) 6 ω(A) + ω(B) since T reaches both x and y. Thus, d2H(u, x) 6

ω(A) + 4W1. Similarly, d2H(u, y) 6 ω(A) + 4W1. Therefore, d2H(x, y) 6 2d + 8W1.
The subgraph H is an edge-disjoint 2-multipath (2, 8W1)-spanner, completing
the proof. �

Theorem 3 shows that it’s possible to build spanners with an additive
component and a small multiplicative constant, thereby improving the stretch
from Theorem 1. Still there is room for improvement. Figure3.5 does not
tell anything about the possibility of building spanners with an even smaller
multiplicative constant. It only says that the approach devised in algorithm 1
will not yield better spanners than stated in Theorem 3.

All these improvements results (Theorem 2 and Theorem 3) over Theorem 1

3This observation becomes wrong whenever p-paths with p > 2 are considered.
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Figure 3.5: A weighted graph G with d2G(x, y) = d showing that the stretch
analysis in the proof of Theorem 3 is tight. The 2-shortest-path tree rooted
at u spans all the edges but (x, y). We have d2T (u, x) = d2T (u, y) = d + 4, and
d2T (x, y) = 2d+ 8− 2ε.

leave open the question of having better stretches than those of Theorem 1 for
p-multipath spanners wtih p > 2. The next section answers this question.

3.2.5 From edge-fault tolerant spanners to multipath spanners

In this section, we observe that the simple analysis of section 3.2.1 can be
improved: we show that f -edge-fault tolerant (2k − 1)-spanners can be used
as edge-disjoint p-multipath (2k − 1)-spanners, provided that the number of
faults f is much greater than p (polynomial in p, k and logarithmic with respect
to the maximal edge weight W ). This results in the removal of the factor p in
the stretch compared to the one obtained in Theorem 1.

Fault-tolerant spanners were introduced for general graphs in [CLPR10],
and were defined as follows:

Definition 5 ([CLPR10]) H is an edge f -fault tolerant α-spanner of G if for every
F ⊂ E(G) such that |F | 6 f , the graph H ′ defined as the graph H minus the edges of
F is an α-spanner of the graph G minus the same set of edges F .

The authors of [CLPR10] show that iterative spanners (see Definition 4) are
edge-fault-tolerant spanners.

In the following, we show that by adjusting the number of faults (to a
number larger than p), one can obtain an edge-disjoint p-multipath (2k − 1)-
spanner:
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Theorem 4 Given a weighted graph G with maximal edge weight W and minimal
edge weight 1, integers k, p, one can efficiently construct an edge-disjoint p-multipath

(2k − 1)-spanner with O(k · p2 · log(W ) · n1+ 1

k ) edges.

In the following, we use the notion of s-bypass. An s-bypass for an edge
e = uv is a path of length at most s going from u to v, avoiding the edge e. A set
of s-bypasses B for an edge e will be called an edge-disjoint set of s-bypasses if
every path of B is a bypass and is edge-disjoint from all other paths of B. Such
a set B will be called a set of E-bypasses.

For a path P and vertices a, v ∈ P , we will denote P ′ = P [a, b] its sub-path
P ′ going from vertex a to vertex b.

To prove Theorem 4 we first concentrate on the unweighted case.

3.2.5.1 Unweighted graphs

The idea of the proof presented below is as follows: for a pair of vertices x, y,
consider a p-path of minimum cost between x and y, called S = {Q1 ∪ · · · ∪Qp}
in the rest of the proof. For an edge e = uv belonging to some Qi of the
multipath, we consider all possible single paths of length at most s that bypass
this edge. Lemma 7 shows that only a small number of these bypasses will
intersect with other edges situated on the other paths composing the original
multipath between x and y.

As the statement of Lemma 7 is completely generic, it also applies to any
subgraph. If we have a subgraph which guarantees enough bypasses for some
edge of the original multipath between x and y, we know by Lemma 7 that there
will be one which is disjoint from the edges of other paths of S .

We next note that an iterative spanner H provides a bypass in every sub-
spanner if the edge e does not appear in E(H).

We then divide the iterative spanner into pools, one for each path Qi. If each
pool is sufficiently large (according to Lemma 7), then for each edge missing in
the spanner H we will find a bypass in one of the i-th pool’s sub-spanner which
does not intersect with other edges from Qj, j 6= i, and by construction of the
spanner this bypass won’t intersect with a bypass from another pool.

Lemma 7 Consider two vertices x and y and let S = {Q1, . . . , Qp} be a p-edge-disjoint
multipath of G going from x to y of minimal cost. Consider an edge e = uv ∈ Qi for
some 1 6 i 6 p. Then in G there are at most 2sp + 2p edge-disjoint s-bypasses of the
edge e that intersect with other edges from other paths Qj, j 6= i.

Proof. The proof is done by contradiction.
Suppose that there are more than 2sp + 2p edge-disjoint bypasses of length

at most s between u and v that intersect with edges from paths of S other than
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Figure 3.6: Definition of Mj , e
j
h and ejl . M is the reunion of all Mj

Qi. Let B be the set of all these bypasses that intersect with edges from the other
paths from S . Let J be the set of indices 1 6 j 6 p, j 6= i such that there is
a bypass from B which intersects with an edge of Qj : E(Qj) ∩ E(B) 6= ∅. On
each path Qj , call ejh = (uj

h, v
j
h) and ejl = (uj

l , v
j
l ) the uppermost (closest from x)

edge and lowermost (closest from y) edge belonging to both Qj and a path from
B. For each path Qj , let Mj = Qj[u

j
h, v

j
l ] be its sub-path from uj

h to vjl ,and let
M =

⋃

j∈J Mj . This naming convention is shown on Fig. 3.6.
We show that it is possible to replace the set of edges of M with a set of edges

E ′ such that the resulting graph contains p edge disjoint paths from x to y and
its cost is less than ω(S) and thus derive a contradiction to the optimality of S .

We now explain how to gradually build the set of edges E ′. Roughly
speaking, the set of edges E ′ is the union of some prefixes and suffixes of the
paths Mj together with some edge-disjoint bypasses from B.

Let pj be the prefix of Mj , and sj the suffix of Mj . Initially these are set to
the uppermost edge (pj = ejh) and lowermost edge (sj = ejl ). The construction
process will gradually add edges to these prefixes and suffixes.

Furthermore, let tip(pj) (resp., tip(sj)) be the edge in E(pj) ∩ E(B) (resp.,
E(sj) ∩ E(B)) closest to y on Qj (resp., to x on Qj).

Let B′ ⊂ B be the subset of edge-disjoint bypasses in which the tips appear.
We examine next this subset as well as the set of tips. Let X be the set of prefixes
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and suffixes, namely, X =
⋃

j∈J {pj, sj}. The set B′ is the set of edge disjoint
bypasses containing one of the edges {tip(pj), tip(sj) | j ∈ J}. For an edge
e ∈ E(B′), let B(e) be the bypass B ∈ B′ such that e ∈ E(B). Note that there
is exactly one such bypass since the bypasses are disjoint. We say that a path
P ∈ X is clean if the sub-path B(tip(e))[tip(P ), u] does not contain other edges
from E(X)4. In other words, the path P is clean when the part of the bypass
going from tip(P ) to u does not encounter a tip from another path. For a bypass
B ∈ B′, let Pclean(B) be the path P ∈ X such that tip(P ) ∈ E(B) and P is clean;
note that there is exactly one such path.

We say that a prefix pj ∈ X (resp., suffix sj) is complete if pj ◦ sj = Mj . We
apply the following process until all paths in X are clean. Choose an unclean
incomplete path and add edges to it until it becomes clean. By adding an edge
to a prefix pj (resp., suffix sj) we mean adding the edge on Mj adjacent to tip(pj)
(resp., tip(sj)) closest to y (resp., to x).

Note that it could happen that during this process some clean path becomes
unclean. Note also that bypasses are only added to B′ (but never removed).
Namely, B′(t1) ⊆ B′(t2) for t1 6 t2, where B′(t) is the set B′ in the t’th step of this
process. To see this, note that the process does not add edges to Pclean(B) for any
B ∈ B′. Thus in any stage of this process, B contains tip(P ) for P = Pclean(B).
Hence, by definition, B ∈ B′. Notice that the path Pclean(B) itself may change
(since the process might add an edge to another path and this edge could belong
to the path from tip(P ) to u).

We claim that B′ contains at most 2p bypasses. This follows directly from the
fact that each bypass B ∈ B′ contains a different path Pclean(B) and that there
are 2p paths in X .

We now show that it possible to substitute the paths in M with “cheaper”
paths and thus derive a contradiction to the optimality of S . For every
incomplete prefix pj ∈ X , let p′j be the clean sub-path B(pj)[tip(pj), u]. Similarly,
let s′j be the clean sub-path B(sj)[u, tip(sj)]. For every index j ∈ J , if pj is
complete then set Q′

j = Qj , otherwise set Q′
j = Qj[x, u

j
h]◦pj ◦p′j ◦s′j ◦sj ◦Qj[v

j
l , y].

Let D′ =
⋃

j∈J E(p
′
j ◦ s′j) and D =

⋃

j 6=i E(Mj) \ (E(pj) ∪ E(sj)). Let
S ′ = {Q′

1, . . . , Q
′
p}. Note that |E(S ′)| = |E(S)| + |D′| − |D|. It is not hard to

verify that the paths Q′
j are disjoint and each of them leads from x to y. More-

over, M intersects with at least 2sp + 2p + 1 edge-disjoint bypasses, and the set
E(pj)∪E(sj) intersects with at most 2p edge-disjoint bypasses, thus |D| > 2sp+1.
In addition, |D′| 6 2sp. We get that |D| > |D′| and thus ω(S ′) < ω(S), contra-
diction. �

We now show that edge fault tolerant spanners constructed with iterative

4Note that tip(P ) is always defined for P ∈ X .
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spanners (see definition 4) (proof of fault-tolerance in [CLPR10]) are also edge
multipath spanners with the same stretch, by fixing the right number of faults.

We summarize in the following lemma the properties a fault tolerant
algorithm needs to fulfill in order to be a multipath spanner by our proof.

Lemma 8 ([CLPR10]) For any weighted graph G = (V,E), integers k, q > 1, one
can construct in polynomial time a collection of edge disjoint subgraphs {H1, . . . , Hq}
with the following properties. Let H be the union of the subgraphs {H1, . . . , Hq}.

(1) The number of edges in H is at most O(q · n1+ 1

k ).

(2) For every edge e = (u, v) ∈ E, either e ∈ E(H) or each Hi contains a path from u
to v of length at most s = 2k − 1.

Lemma 9 Given an unweighted graph G, integers p, k > 1, one can efficiently

construct a p-multipath (2k − 1)-spanner with O
(

kp2 · n1+ 1

k

)

edges.

Proof. Let s = 2k − 1. Construct the collection of subgraphs
{H1, . . . , H2sp2+2p2+p} of Lemma 8 with parameters s and q = 2sp2 + 2p2 + p. Let
H be the union of all subgraphs {H1, . . . , H2sp2+2p2+p}. Consider two vertices x
and y and let S = {Q1, . . . , Qp} be the set of p edge-disjoint paths from x to y
in G of minimal cost (i.e. ω(S) =

e
d
p
(x, y)). We now show how to find a set of

edge-disjoint paths S ′ = {Q′
1, . . . , Q

′
p} from x to y such that E(S ′) ⊆ E(H) and

ω(Q′
i) 6 s ·ω(Qi). Let Ti = {Hj | (2sp+2p+1) · (i−1)+1 6 j 6 (2sp+2p+1) · i}

for 1 6 i 6 p. Note that E(Ti) contains 2sp + 2p + 1 edge-disjoint paths from
u to v for every edge (u, v) /∈ E(H). Moreover, the sets E(Ti) are disjoint for
1 6 i 6 p.

The path Q′
i is constructed as follows. For every edge e ∈ E(Qi) ∩ E(H) add

e to Q′
i. For every edge e = (u, v) ∈ E(Qi) \ E(H), consider the set Bi with the

maximum number of E-bypasses from u to v in Ti. By Lemma 7, there are at
most 2sp+2p E-bypasses in Bi that intersect with E(S)\E(Qi). Since Bi contains
at least 2sp+2p+1 E-bypasses, at least one E-bypass B(e) ∈ Bi does not intersect
with E(S) \ E(Qi). Add B(e) to Q′

i instead of e.
We claim that

(1) the paths Q′
i for 1 6 i 6 p are edge-disjoint, and

(2) ω(S ′) 6 s · ω(S).

To see claim (1), consider an edge e = (u, v) such that e ∈ E(Q′
i) for some

1 6 i 6 p. We consider two cases. The first case is when e ∈ E(Qi). Note
that e does not appear in any E(Qj) for i 6= j, since the paths in S are disjoint.
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Moreover, e does not appear in any B(e′) for e′ ∈ E(Qj) for some j 6= i. To
see this, recall that B(e′) does not intersect with E(S) \ E(Qj). The second case
is when e ∈ B(ẽ) for some ẽ ∈ E(Qi). The E-bypass B(ẽ) does not intersect
with E(S) \ E(Qi). Moreover, the E-bypass B(ẽ) does not intersect with any
B(e′) for e′ ∈ E(Qj) for some j 6= i. To see this, recall that E(B(ẽ)) ⊆ E(Ti),
E(B(e′)) ⊆ E(Tj), and E(Ti) ∩ E(Tj) = ∅. It follows that the paths Q′

i are edge-
disjoint for 1 6 i 6 p.

To see claim (2), note that for every edge e ∈ E(Qi), either e itself or an alter-
native path of length s is added to E(Q′

i). We get that ω(Q′
i) 6 s · ω(Qi). Claim

(2) follows. �

3.2.5.2 Weighted Graphs

We now present the modifications to Lemma 9 needed for weighted graphs.
Assume the minimal edge weight is 1 and let W be the maximal edge weight.
Proof of Theorem 4. We now describe the algorithm for constructing an edge-
disjoint p-multipath s-spanner. Initially, set H = (V,∅). Consider the graphs
Gi = (V,Ei) such that Ei = {e ∈ E | 2i−1 < ω(e) 6 2i} for every 0 6 i 6

⌈log2 W ⌉. Construct the collection of subgraphs Fi = {H1, . . . , H4sp2+2p2+p} of
Lemma 8 for parameters s and q = 4sp2 +2p2 + p on the graph Gi. Add E(Fi) to
H .

We claim that H is an edge-disjoint p-multipath s-spanner. The analysis is
very similar to the unweighted case. We now outline the slight changes.

Here we call a set of paths B a set of E-bypasses of two nodes u and v that are
connected by an edge if the paths in B are edge-disjoint paths between u and v
of length at most s · ω(u, v) each.

Consider two vertices x and y and let S = {Q1, . . . , Qp} be a set of p edge-
disjoint paths from x to y in G of minimal cost (I.e., ω(S) = e

d
p
G(x, y)). Consider

an edge e = (u, v) ∈ Qi for some 1 < i 6 p. Let i be the index such that
2i−1 6 ω(e) 6 2i. In Lemma 7 we prove that the graph (V,E(Fi)) contains at
most 4sp+ 4p E-bypasses B from u to v. Note that since the weight of the edges
in the E-bypasses B could be half the weight ω(e), we double the factor of sp2

in the number of E-bypasses. The rest of the proof of Lemma 7 is similar to the
unweighted case.

The proof of Theorem 9 is also similar to the unweighted case, where for each
edge e = (u, v) ∈ Qj for some 1 6 j 6 p such that e /∈ E(H), we pick an E-bypass
from Fi that does not intersect E(S) \ E(Qj), for i such that 2i−1 < ω(e) 6 2i.

We thus conclude with Theorem 4. �
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Theorem 4 is the final improvement over Theorem 1. This is the only general
improvement of this chapter. The other theorems deal with particular cases.

One such direction is the search of lower bounds for multipath spanners. To
this effect, we first remark in section 3.2.2 that lower bounds from multipath
spanners can be transposed as-it-is to multipath spanners (provided multiple
edges are allowed). Then with theorems 2 and 3 we explore the lower bounds
of 2-multipath spanners with O(n3/2) edges. Theorem 2 answers the question
for unweighted graphs and multiplicative stretch while Theorem 3 tries to go
below the multiplicative bound in the stretch by paying an additional additive
factor to the stretch.

Theorem 4 answers a different question: provided we allow some stretch,
what can we say about the number of edges? We show in effect that while it is
possible to build edge-disjoint p-multipath spanners of stretch (2k−1) for every
k, we can do so only while paying an extra factor in the number of edges (of the
form k · p2log(W )) compared to one-path spanners of the same stretch. The
theorem’s proof has an additional interest in that it relates multipath spanners
to fault-tolerant spanners described in [CLPR10].



Chapter 4

Vertex-disjoint multipath spanners

In the previous chapter, we studied edge-disjoint multipath spanners. Despite
having edge-disjoint multipaths helps multipath routing tasks, they remain
sensitive to node failures or when nodes have bounded total bandwidth.
This calls for examination of vertex-disjoint multipath spanners. To this effect,
we introduce in section 4.1.1 the notion of vertex-disjoint p-multipath graph
metric, and try to devise p-vertex-disjoint multipath spanners algorithms in
the following sections. The major difference between edge-disjoint multipath
spanners and vertex-disjoint multipath spanners is that the so-called vertex-
disjoint multipath graph metric doesn’t satisfy the triangle inequality (as
observed in Remark 1). As a consequence, the adaptation of standard spanner
algorithms is much more difficult.

4.1 Preliminaries

We still consider here a (possibly weighted) undirected graph G = (V,E)
with weight function ω and maximum weight W . For any subgraph H =
(V ′, E ′), V ′ ⊂ V,E ′ ⊂ E of G we also define V(H) = V ′ as the set of vertices
of H and E(H) = E ′ as the set of edges of H .

4.1.1 Multipath graph metric

To build vertex-disjoint p-multipath spanners, we first need to define the graph
metric which they use. This graph metric uses vertex-disjoint p-multipaths.
What present next the definition of vertex disjoint p-multipaths.

Definition 6 A vertex-disjoint p-path (or multipath) Q = {Q1, . . . , Qi, . . . , Qp}
between two vertices a and b is a subgraph composed of p pairwise internally (that
is except a and b) vertex disjoint paths: for any i 6= j,V(Qi) ∩ V(Qj) = {a, b}.

50
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Note that in the case of 2-paths, Q is simply an elementary cycle betwee, a
and b.

In the rest of this chapter, p-paths are considered vertex disjoint unless noted.

Definition 7 The p-multipath graph metric denoted by
v
d
p
H(u, v) in a subgraph H is

defined as the minimum cost of a p-multipath between u and v, using only edges of H .
Furthermore, we set

v
d
p
H(u, v) =∞ if there are strictly less than p vertex disjoint paths

between u and v.

As in Part 3, when the graph is omitted it is supposed to be G.

Remark 1 For p > 2,
v
d
p

is not a distance.

Proof. Indeed, v
d
p does not satisfy the triangle inequality. For instance, take

p = 2 and consider three vertices u, v, w such that v
d
p
(u, v) and v

d
p
(v, w) are finite.

If v is an articulation point, there won’t be an elementary cycle between u
and w, and so v

d
p
(u, w) =∞. See fig. 4.1 for an example. �

Figure 4.1: v
d
2
(u, v) and v

d
2
(v, w) are finite whereas v

d
p
(u, w) =∞.

All the difficulties to adapt classical spanner algorithms stem from this
absence of triangle inequality. Indeed, the analysis of such algorithms often
revolve around decomposing a path PG into smaller subpaths PG

1, . . . , PG
k, then

by bounding each replacement path PH
i in the spanner H . If the metric is not

endowed with the triangle inequality this approach becomes useless.

4.1.2 Vertex-disjoint multipath spanners

Despite that the graph metric v
d
p doesn’t have the triangle inequality, the notion

of spanner is still relevant. We therefore define a vertex disjoint p-multipath
spanner as follows:

Definition 8 G = (V,E). H = (V,E ′ ⊂ E) is a vertex disjoint p-multipath (α, β)-
spanner of G if

v
d
p
H(u, v) 6 α · vdpG(u, v) + β for all u, v ∈ V .

When β = 0, H is simply called an α-spanner.
In the rest of this chapter, we will omit the wording “vertex disjoint” from

p-multipath vertex disjoint spanner for simplicity. As in the edge-disjoint case,
this definition meets the traditional definition of spanners for p = 1.
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4.2 Results

In the rest of this chapter, we prove the following results:

• Remark 2: we note that fault tolerant spanners can have an arbitrary large
stretch for the v

d
p graph metric.

• Theorem 5: fault-tolerant spanners with an additionnal property are also
vertex-disjoint multipath spanners with a bounded stretch.

• Theorem 8 : p-multipath spanners can be built from fault-tolerant
spanners provided the number of tolerated faults is polynomial in p. In
the case of unweighted graphs, Theorem 7 gives a better stretch.

• Theorem 10: any weighted graph admits a 2-path (2, O(W ))-spanner with
O(n3/2) edges, where W is the maximum edge-weight. The construction
relies on an ad-hoc algorithm that takes at most O(n4) steps.

Remark 2, Theorem 5 and Theorem 10 were published in coöperation with
Cyril Gavoille and Laurent Viennot in [GGV11].

Theorem 7 was published in coöperation with Shiri Chechik and
David Peleg in [CGP12].

4.2.1 A first remark concerning fault-tolerant spanners

The first question which arises when describing multipath spanners is whether
the notion of multipath spanner is related to the notion of fault-tolerant spanner,
as defined for general graphs in [CLPR10]:

Definition 9 [CLPR10] A subgraph H of a graph G is a f -vertex-fault-tolerant s-
spanner when for any subset of vertices F ⊂ V(G), |F | 6 f , ∀u, v ∈ dH\F (u, v) 6

s · dG\F (u, v).

At first glance, f -fault tolerant spanners seem related to (f + 1)-multipath
spanners. Indeed by the Menger theorem two vertices linked by f + 1 paths in
the graph will also be linked by f + 1 paths in the fault-tolerant spanner of the
graph. However we have the following remark:

Remark 2 In the context of weighted graphs, there are 1-fault tolerant s-spanners with
arbitrary large stretch for the 2-multipath distance.



CHAPTER 4. VERTEX-DISJOINT MULTIPATH SPANNERS 53

s

u v

1

s/n

Figure 4.2: H is a 1-fault-tolerant 2s-spanner, but of stretch at least n when
considered as a 2-multipath spanner for the v

d
2 graph metric.

Indeed, take figure 4.2. It presents a weighted graph G composed of a cycle
of n + 1 vertices plus n − 1 extra edges. H will be G \ {uv}. The edge uv has
weight 1, non cycle edges have weight s and cycle edges have weight s/n so
that dH(u, v) = s. Removing any vertex z /∈ {u, v} implies dG\{z}(u, v) = 1
and dH\{z}(u, v) = 2s(1 − 1/n). For any other pair of vertices, x, y, we have
dH\{z}(x, y)/dG\{z} < 2s. Thus H is a 1-fault tolerant 2 · s-spanner. However
v
d
2
H(u, v)/

v
d
2
G(u, v) > sn/s which implies that H is a 2-multipath spanner with

stretch at least n.
Note that this result holds only for weighted graphs.

4.2.2 From fault-tolerant spanners to multipath spanners

Despite the negative previous result, we can still use fault-tolerant spanners to
get results on multipath spanners, provided they have additional properties.

In fact, the problem with Remark 2 is that the fault-tolerant spanner does
not guarantee that the number of edges composing a path replacing a missing
edge is bounded. Provided we have this condition, some results are possible.

In this section, we aim to prove the following result:

Theorem 5 Let G be a weighted graph with n vertices, and p, k be integral parameters

> 1. Then, G has a vertex-disjoint p-multipath kp · O(1 + p/k)2k−1-spanner of
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size O(kp2−1/kn1+1/k log2−1/k n) that can be constructed with high probability by a
randomized distributed algorithm in O(k) rounds.

Theorem 5 is proved by combining several constructions presented now.

4.2.2.1 Spanners with few hops

The problem with figure 4.2 is that the replacement path for the edge uv has too
many hops (or too many edges with a low weight). To avoid this problem and
towards proof of Theorem 5, we introduce the concept of bounded hop spanner.

Definition 10 An s-spanner H of a weighted graph G is b-hop if for every edge uv of
G, there is a path in H between u and v composed of at most b edges and of cost at most
s · ω(uv) (where ω(uv) denotes the cost of edge uv). An s-hop spanner is simply an
s-hop s-spanner.

If G is unweighted (or the edge-cost weights are uniform), the concepts of
s-hop spanner and s-spanner coincide.

Note that the spanners produced by the greedy1 algorithm [ADD+93] are
not necessarily s-hop.

However, we have:

Proposition 3 For each integer k > 1, every weighted graph with n vertices has a
(2k − 1)-hop spanner with less than n1+1/k edges.

Proof. Consider a weighted graph G with edge-cost function ω. We construct
the desired spanner H of G thanks to the following algorithm which can be
seen as the dual of the classical greedy algorithm, till a variant of Kruskal’s
algorithm:

(1) Initialize H with V(H) := V(G) and E(H) := ∅;
(2) Visit all the edges of G in non-decreasing order of their weights, and add

the edge uv to H only if every path between u and v in H has more than
2k − 1 edges.

Consider an edge uv of G. If uv is not in H then there must exist a path P in
H from u to v such that P has at most 2k−1 edges. We have dH(u, v) 6 ω(P ). Let
e be an edge of P with maximum weight. We can bound ω(P ) 6 (2k − 1) · ω(e).
Since e has been considered before the edge uv (because e participates in the
path P ), ω(e) 6 ω(uv). It follows that ω(P ) 6 (2k − 1) · ω(uv), and thus

1For each edge uv in non-decreasing order of their weights, add it to the spanner if dH(u, v) >
s · dG(u, v).
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dH(u, v) 6 (2k − 1) · ω(uv). Obviously, if uv belongs to H , then dH(u, v) =
ω(uv) 6 (2k − 1) · ω(uv) as well. Therefore, H is a (2k − 1)-hop spanner.

The fact that H is sparse comes from the fact that there is no cycle of length
6 2k in H : whenever an edge is added to H , any path linking its endpoints has
more than 2k − 1 edges, i.e., at least 2k.

We observe that H is simple even if G is not. It has been proved in [AHL02]
that every simple n-vertex m-edge graph where every cycle is of length at least
2k + 1 (i.e., of girth at least 2k + 1), must verify the Moore bound:

n > 1 + d

k−1
∑

i=0

(d− 1)i > (d− 1)k

where d = 2m/n is the average degree of the graph. This implies that m <
1
2
(n1+1/k + n) < n1+1/k.

Therefore, H is a (2k − 1)-hop spanner with at most n1+1/k edges. �

4.2.2.2 Distributed bounded hop spanners

We now show how to build bounded hop spanners in a distributed manner.
There are distributed constructions that provide s-hop spanners, at the cost

of a small (poly-logarithmic in n) increase of the size of the spanner compared
to Proposition 3.

If we restrict our attention to deterministic algorithms, [DGPV08] provides
for unweighted graphs a (2k − 1)-hop spanner of size O(kn1+1/k). It runs in
3k − 2 rounds without any prior knowledge on the graph, and optimally in k
rounds if n is available at each vertex.

Proposition 4 There is a distributed randomized algorithm that, for every weighted
graph G with n vertices, computes with high probability a (2k − 1)-hop spanner of
O(kn1+1/k log1−1/k n) edges in O(k) rounds.

Proof. The algorithm is a distributed version of the spanner algorithm used
in [CLPR10], which is based on the sampling technique of [TZ05]. We make the
observation that this algorithm can run in O(k) rounds. Let us briefly recall the
construction of [CLPR10, p. 3415].

To each vertex x of G is associated a tree rooted at x spanning the cluster of
x, a particular subset of vertices denoted by C(x). The construction of C(x) is a
refinement over the one given in [TZ05]. The main difference is that the clusters’
depth is no more than k edges. The spanner is composed of the union of all
such cluster spanning trees. The total number of edges is O(kn1+1/k log1−1/k n).
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It is proved in [CLPR10] that for every edge uv of G, there is a cluster C(x)
containing u and v. The path of the tree from x to one of the end-point has at
most k−1 edges and cost 6 (k−1) ·ω(uv), and the path from x to the other end-
point has at most k edges and cost 6 k · ω(uv). This is therefore a (2k − 1)-hop
spanner.

The random sampling of [TZ05] can be done without any round of com-
munications, each vertex randomly selects a level independently of the other
vertices. Once the sampling is performed, the clusters and the trees can be con-
structed in O(k) rounds as their depth is at most k. �

4.2.2.3 Fault tolerant spanners

In this section we show how to use known results concerning fault tolerant
spanners (mainly [DK11]) in order to build bounded hop fault tolerant
spanners. The algorithm of [DK11] for constructing fault tolerant spanners
is randomized and generic. It takes as an input a weighted graph G with n
vertices, a parameter r > 0, and any algorithm A computing an s-spanner with
m(ν) edges for any ν-vertex subgraph of G. With high probability, it constructs
for G an r-fault tolerant s-spanner of size O(r3 · m(2n/r) · log n). It works as
follows:
Set H := ∅, and repeat independently O(r3 log n) times:

(1) Compute a set S of vertices obtained by selecting each vertex with
probability 1− 1/(r + 1);

(2) H := H ∪A(G \ S).

Then, they show that for every fault set F ⊂ V(G) of size at most r, and
every edge uv, there exists with high probability a set S computed as in Step (1)
for which u, v /∈ S and F ⊆ S. As a consequence, routine A(G \ S) provides a
path between u and v in G \ S (and thus also in G \ F ) of cost 6 s · ω(uv). If
uv lies on a shortest path of G \ F , then this cost is 6 s · dG\F (u, v). From their
construction, we have:

Proposition 5 If A is a distributed algorithm constructing an s-hop spanner in t
rounds, then algorithm [DK11] provides a randomized distributed algorithm that in
t rounds constructs with high probability an s-hop r-fault tolerant spanner of size
O(r3 ·m(2n/r) · log n).

Proof. The resulting spanner H is s-hop since either the edge uv of G is also in
H , or a path between u and v approximating ω(uv) exists in some s-hop spanner
given by algorithm A. This path has no more than s edges and cost 6 s · ω(uv).
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Observe that the algorithm [DK11] consists of running in parallel q =
O(r3 log n) times independent runs of algorithm A on different subgraphs of
G, each one using t rounds. Round i of all these q runs can be done into a single
round of communication, so that the total number of rounds is bounded by t,
not by q.

More precisely, each vertex first selects a q-bit vector, each bit set with
probability 1− 1/(r + 1), its jth bit indicating whether it participates to the jth
run of A. Then, q instances of algorithm A are run in parallel simultaneously by
all the vertices, and whenever the algorithms perform their ith communication
round, a single message concatenating the q messages is sent. Upon reception,
a vertex expands the q messages and run the jth instance of algorithm A only if
the jth bit of its vector is set.

The number of rounds is no more than t. �

4.2.2.4 From fault tolerant to multipath spanner

We now present the main result of this section:

Theorem 6 Let H be a s-hop (p − 1)-fault tolerant spanner of a weighted graph G.
Then, H is also a p-multipath ϕ(s, p)-spanner of G where ϕ(s, p) = sp · O(1 + p/s)s

and ϕ(3, p) = 9p.

The idea of the proof is as follows: for an edge e of the graph not in the
spanner, consider the replacement path in the spanner for this edge. The fault-
tolerant property states that for any set of faults of size less than p − 1 there is
still a path of length at most s · ω(e). Grow recursively the set of paths by doing
every possible fault set on the paths. Lemma 10 bounds the size of the set of
paths obtained by this manner. Then Theorem 6 extends the result to any pair
of vertices instead of one linked by an edge.

To prove Theorem 6, we need the following intermediate result, assuming
that H and G satisfy the statement of Theorem 6.

Lemma 10 Let uv be an edge of G of weight ω(uv) that is not in H . Then, H
contains a p-multipath connecting u to v of cost at most ϕ(s, p) ·ω(uv) where ϕ(s, p) =
sp ·O(1 + p/s)s and ϕ(3, p) = 9p.

Proof. From Menger’s Theorem, the number of pairwise vertex-disjoint paths
between two non-adjacent vertices x and y equals the minimum number of
vertices whose removal disconnects x and y.

By definition of H , H \ F contains a path PF of at most s edges between u
and v for each set F of at most p−1 vertices (excluding u and v). This is because
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u and v are always connected in G \ F , precisely by a single edge path of cost
ω(uv). Consider PH the subgraph of H composed of the union of all such PF

paths (so from u to v in H \F – see Fig. 4.3 for an example with p = 2 and s = 5).
Vertices u and v are non-adjacent in PH . Thus by Menger’s Theorem, PH has

to contain a p-multipath between u and v. Ideally, we would like to show that
this multipath has low cost. Unfortunately, Menger’s Theorem cannot help us
in this task.

Let κs(u, v) be the minimum number of vertices in PH whose deletion
destroys all paths of at most s edges between u and v, and let µs(u, v) denote the
maximum number of internally vertex-disjoint paths of at most s edges between
u and v. Obviously, κs(u, v) > µs(u, v), and equality holds by Menger’s Theorem
if s = n−1. Equality does not hold in general as presented in Fig. 4.3. However,
equality holds if s is the minimum number of edges of a path between u and v,
and for s = 2, 3, 4 (cf. [LNLP78]).

u v

Figure 4.3: A subgraph PH constructed by adding paths between u and v with at
most s = 5 edges and with p = 2. Removing any vertex leaves a path of at most 5
edges, so κ5(u, v) > 1. However, there aren’t two vertex-disjoint paths from u to
v of at most 5 edges, so κ5(u, v) > µ5(u, v). Observe that µ6(u, v) = κ5(u, v) = 2.

Since not every path of at most s edges between u and v is destroyed after
removing p− 1 vertices in PH , we have that κs(u, v) > p. Let us bound the total
number of edges in a p-multipath Q of minimum size between u and v in PH .
Let r be the least number such that µr(u, v) > p subject to κs(u, v) > p. The total
number of edges in Q is therefore no more than pr.

By construction of PH , each edge of PH comes from a path in H \ F of cost
ω(PF ) 6 s · dG\F (u, v) 6 s · ω(uv). In particular, each edge of Q has weight at
most s · ω(uv). Therefore, the cost of Q is ω(Q) 6 prs · ω(uv).

It has been proved in [PT93] that r can be upper bounded by a function
r(s, p) <

(

p+s−2
s−2

)

+
(

p+s−3
s−2

)

= O(1 + p/s)s for integers s, p, and r(3, p) = 3 since
as seen earlier κ3(u, v) = µ3(u, v). It follows that H contains a p-multipath Q
between u and v of cost ω(Q) 6 sp ·O(1 + p/s)s · ω(uv) as claimed. �
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Proof of Theorem 6. Let x, y be any two vertices of a graph G with edge-cost
function ω. We want to show ωp

H(x, y) 6 ϕ(s, p) · ωp
G(x, y). If ωp

G(x, y) = ∞,
then we are done. So, assume that ωp

G(x, y) = ω(PG) for some minimum cost
p-multipath PG between x and y in G. Note that ω(PG) =

∑

uv∈E(PG) ω(uv).
We construct a subgraph PH between x and y in H by adding: (1) all the

edges of PG that are in H ; and (2) for each edge uv of PG that is not in H , the
p-multipath Quv connecting u and v in H as defined by Lemma 10.

The cost of PH is therefore:

ω(PH) =
∑

uv∈E(PH)

ω(uv)

=





∑

uv∈E(PG)∩E(H)

ω(uv)



+





∑

uv∈E(PG)\E(H)

ω(Quv)





By Lemma 10, ω(Quv) 6 ϕ(s, p) · ω(uv). It follows that:

ω(PH) 6 ϕ(s, p) ·
∑

uv∈E(PG)

ω(uv) = ϕ(s, p) · ω(PG) = ϕ(s, p) · ωp
G(x, y)

as ϕ(s, p) > 1 and by definition of PG.
Clearly, all edges of PH are in H . Let us show now that PH contains a p-

multipath between x and y. We first assume x and y are non-adjacent in PH . By
Menger’s Theorem applied between x and y in PH since the removal of every
set of at most p − 1 vertices in PH does not disconnect x and y, then PH has to
contain a p-multipath between x and y.

Let S be any set of less than p − 1 faults in G. Since PG is a p-multipath, PG

contains at least one path between x and y avoiding S. Let’s call this path Q.
For each edge uv of Q not in H , Quv is a p-multipath, so it contains one path
avoiding S. Note that Quv may intersect Qwz for different edges uv and wz of
Q. If it is the case, then there is a path in Quv ∪Qwz from u to z (avoiding v and
w), assuming that u, v, w, z are encountered in this order when traversing Q.
Overall there must be a path connecting x to y and avoiding S in the subgraph
(Q ∩ H) ∪ ⋃

uv∈Q\H Quv. By Menger’s Theorem, PH contains a p-multipath
between x and y.

If x and y are adjacent in PH , then we can subdivide the edge xy into the
edges xz and zy by adding a new vertex z. Denote by P ′

H this new subgraph.
Clearly, if P ′

H contains a p-multipath between x and y, then PH too: a path using
vertex z in P ′

H necessarily uses the edges xz and zy. Now, P ′
H contains a p-

multipath by Menger’s Theorem applied between x and y that are non-adjacent
in P ′

H .
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We have therefore constructed a p-multipath between x and y in H of cost
at most ω(PH) 6 ϕ(s, p) · ωp

G(x, y). It follows that ωp
H(x, y) 6 ϕ(s, p) · ωp

G(x, y) as
claimed. �

Theorem 5 is proved by applying Theorem 6 to the construction of
Proposition 5, which is based on the distributed construction of s-hop spanners
given by Proposition 4. Observe that the number of edges of the spanner is
bounded by O(kp3 ·m(2n/p) · log n) = O(kp2−1/kn1+1/k log2−1/k n).

4.2.3 More faults lead to better stretch

In the previous section, we obtained through combinatorial means a result
linking p − 1 fault tolerant spanners to vertex-disjoint p-multipath spanners.
However the stretch was not satisfactory (from a p− 1 fault tolerant spanner of
stretch s to a p multipath spanner of stretch sp ·O(1 + p/s)s).

In Section 3.2.5, we showed that an edge-fault tolerant spanner tolerating
more faults than p− 1 was also a edge-disjoint p-multipath spanner of the same
stretch. In this section, we do a similar remark and show that by increasing the
number of faults allowed by a vertex fault tolerant spanner we can have a vertex
disjoint multipath spanner of the same stretch, thereby improving the result of
Theorem 5. Namely, we show next that every vertex fault-tolerant s-spanner
is a vertex multipath spanner with the same stretch, provided the number of
faults is larger than the number of paths required.

Note that it is unclear how to generalize the analysis from Section 3.2.5 to
vertex disjoint multipath spanners. To see this, recall that in Section 3.2.5 we
considered an edge-disjoint p-path of minimal cost S = {Q1∪· · ·∪Qp} from x to
y in G. We claim that every edge e ∈ E(Qi) does not contain too many bypasses
that intersect with the other paths of S . To prove this claim, we show that it is
possible to substitute sub-paths of each Qj , j 6= i by a cheaper edge-disjoint-
bypasses of the edge e = (u, v) in the case that there are too many intersecting
bypasses.

Suppose now that we want to translate this proof to vertex-disjoint
multipaths. We now consider a vertex-disjoint p-path S ′ of minimal cost
between x and y. For every edge missing in the spanner, if we want to prove
that it does not have too many bypasses intersecting with the other Qj , we try
to substitute sub-paths of each Qj with some bypass of the edge e = (u, v). The
problem is that all these edge-disjoint bypasses are edge-disjoint but not vertex-
disjoint. Specifically, all these bypasses contain the nodes u and v. Therefore,
it is unclear how to use these bypasses to substitute multiple sub-paths and
stay with vertex disjoint paths. We thus present a different analysis for vertex
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disjoint multipath spanners at the price of slightly increasing the size of the
spanner. Moreover, our analysis for vertex disjoint multipath spanners works
only for unweighted graphs. We later show a simple construction for weighted
vertex-disjoint p-multipath spanners with stretch sp (instead of s).

In this section we establish the following two theorems:

Theorem 7 Given an unweighted graph G with n vertices, integer k and integer p,
one can efficiently construct a vertex-disjoint p-multipath (2k− 1)-spanner for G with

O
(

φ(k, p) · n1+ 1

k log n
)

edges, where φ(k, p) = (2k − 1)6αp2α + ((2k − 1) · p)4α and

α = 1− 1
2k

.

Theorem 8 Given a weighted graph G with n vertices, odd integer s and integer p,
one can efficiently construct a vertex-disjoint p-multipath (s · p)-spanner for G with

O
(

φ′(p, k) · n1+ 1

k log n
)

edges, where φ′(p, k) = (p · (2k − 1))2−
1

k .

The proof is a bit similar to the one of section 3.2.5. The idea of the proof
is as follows. We start with any pair of nodes x, y, separated by an optimal (in
terms of v

d
p) p-path in G, called S = {Q1 ∪ · · · ∪ Qp} in the rest. We consider

an r-fault tolerant spanner H of G, for some large r. We take interest in the
edges of this path which are not in the spanner. Contrary to the case of edge-
fault tolerant spanners, absence of an edge (of G) in H does not guarantee the
fact that there will be r vertex-disjoint paths in H . We determine the correct
relationship between r and q the number of paths in Lemma 11. For an edge
(belonging to some Qi) missing in the spanner, Lemma 12 tells that there is only
a small portion of the q bypasses that intersect with the other paths Qj . Finally,
lemmas 13 and 14 explain how to choose a bypass for each missing edge so that
it does not intersect with other bypasses, with the help of Menger’s theorem
and a proof similar to the proof of Lemma 12.

A subgraph H is q-vertex-resilient with stretch s if for every edge e = (x, y) ∈
E(G), either e ∈ E(H) or H has at least q internal2 vertex-disjoint s-paths
between x and y. For a path P between two nodes x and y and a vertex
v ∈ V(P ), let index(v, P ) be the distance (number of hops) between x and v
in P . Two paths are said to intersect if they have at least one common vertex.
A set of paths B is called a set of V-bypasses (as shortname for vertex-disjoint
bypasses) of u and v if the paths in B are internal vertex-disjoint paths of length
at most s between u and v. The next lemma shows that every vertex fault-
tolerant s-spanner H has “many” V-bypasses between u and v for every edge
e = (u, v) in E(G) \ E(H).

2that is except x and y
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Lemma 11 Every r-fault tolerant s-spanner is ⌊r/(s − 1)⌋-vertex-resilient with
stretch s.

Proof. Consider an r-fault tolerant s-spanner H . Consider an edge e = (u, v) ∈
E(G) \E(H). We need to show that H contains ⌊r/(s− 1)⌋ V-bypasses. Assume
by contradiction that H contains only k V-bypasses between u and v such that
k < ⌊r/(s − 1)⌋. Let B be the set of these k V-bypasses. Note that V(B) \ {u, v}
contains at most (s− 1) · k < r vertices. Fix the set of vertices F = V(B) \ {u, v}
to be faulty. Since the subgraph H is an r-fault tolerant s-spanner, by definition
H \ F contains an s-path between u and v. Therefore H contains more than k
V-bypasses between u and v, contradiction. �

Throughout, we consider a graph G. Consider two vertices x and y and let
S = {Q1,∪ · · · ∪, Qp} be a p vertex-disjoint multipath from x to y in G of minimal
cost (i.e. whose cost is equal to v

d
p
(x, y). Consider an edge e = (u, v) in one of the

paths of S . The next lemma shows that G does not contain “many” V-bypasses,
namely, internal vertex disjoint paths of length at most s between u and v, that
intersect with the other paths of S .

Lemma 12 Consider two vertices x and y and let S = {Q1,∪ · · · ∪, Qp} be a vertex-
disjoint p-path from x to y in G of minimal cost. Consider an edge e = (u, v) ∈
E(Qi)\E(H) for some 1 6 i 6 p. There are at most 2sp(p− 1)+2p(p− 1) V-bypasses
between u and v that intersect with V(S) \ V(Qi).

Proof. Assume by contradiction that there are more than 2sp(p− 1) + 2p(p− 1)
such V-bypasses that intersect V(S) \ V(Qi). By the Pigeonhole principle, there
exists a path Qj for some j 6= i such that at least 2sp+2p+1 of these V-bypasses
intersect with Qj . Let B be the set of all these V-bypasses that intersect Qj .
For every V-bypass A ∈ B, let top(A) be the earliest vertex of A on Qj , i.e.,
the vertex in V(A) ∩ V(Qj) with minimal index(top(A), Qj), and let bottom(A)
be the last vertex of A on Qj , i.e., the vertex in V(A) ∩ V(Qj) with maximal
index(top(A), Qj).

Let Bh be the set of p V-bypasses A ∈ B with minimal index(top(A), Qj) and
let Bl be the set of p V-bypasses A ∈ B with maximal index(bottom(A), Qj). Let
Ah ∈ Bh be the V-bypass with maximal index(top(Ah), Qj) and let qh = top(Ah).
Let Al ∈ Bl be the V-bypass with minimal index(bottom(Al), Qj) and let
ql = bottom(Al). Let M = Qj[qh, ql] (i.e., the sub-path of Qj from qh to ql).
See Figure 4.4 for illustration.

We claim that:

(1) the subgraph H ′(V,S ′) for S ′ = (E(S) \ E(M)) ∪ E(Bh) ∪ E(Bl) contains p
vertex-disjoint paths from x to y;
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M

QjQi

u

v

x

y

Figure 4.4: Illustration of the sets Bh, Bl (p = 2) and the path M .

(2) ω(S ′) 6 ω(S).
To prove claim (1) we use Menger’s theorem. We show that there is no set

F of p − 1 vertices such that x and y are disconnected in S ′ \ F . Consider a set
F of at most p − 1 vertices. If F fails to intersect a path Qr ∈ S , for some r 6= j,
then clearly x and y are connected in S ′ \ F . So suppose the set F disconnects
every path Qr ∈ S , for r 6= j, hence F contains exactly one vertex from each
path Qr ∈ S for every r 6= j. In particular, F contains only one vertex of Qi.
Therefore, one of u or v is not in F . Assume without loss of generality that
u /∈ F . Note that both sets Bh and Bl contain p V-bypasses. Since F contains at
most p − 1 vertices, there must be a V-bypass Bh ∈ Bh and a V-bypass Bl ∈ Bl
whose internal vertices are not in F . Let x1 = top(Bh) and y1 = bottom(Bl).
Note that the sub-paths Qj[x, x1] and Qj[y1, y] do not contain any vertex from
F , as F ∩ V(Qj) = ∅. Moreover, the V-bypasses Bh and Bl contain sub-paths
Bh[x1, u] and Bl[u, y1] that do not intersect F . Concatenating all these paths
together, we get a path Qj[x, x1] ◦ Bh[x1, u] ◦ Bl[u, y1] ◦ Qj[y1, y] from x to y. We
thus conclude that H ′ contains p vertex-disjoint paths from x to y, establishing
(1). Next, we show claim (2). Recall that B contains at least 2sp + 2p + 1 V-
bypasses intersecting Qj . Moreover, each of the sub-paths Qj[x, qh] and Qj[ql, y]
intersect with exactly p V-bypasses from B. We get that the remaining part of Qj ,
namely, the path M = Qj[qh, ql], intersects with at least 2sp+2p+1−2p = 2sp+1
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V-bypasses from B. Thus, the length of M is at least 2sp + 1. In contrast, the
number of edges in the edge collection E(Bh) ∪ E(Bl) that replaced M in S is at
most 2ps. Hence, ω(S ′) < ω(S).

Finally parts (1) and (2) of the claim imply a contradiction to the optimality
of S . The lemma follows. �

Let f = (4s+ 2)(p− 1)s+ 1 + 2sp(p− 1) + 2p(p− 1).

Lemma 13 Every f -vertex-resilient subgraph H is a p-vertex disjoint multipath
spanner.

Proof. Consider two vertices x and y and let S = {Q1, . . . , Qp} be the p
vertex-disjoint multipath from x to y in G of minimal cost. Consider an edge
e = (u, v) ∈ E(Qi) such that e /∈ E(H) for some 1 6 i 6 p. By definition of
H , H contains f V-bypasses between u to v. By Lemma 12, there are at most
2sp(p− 1) + 2p(p− 1) V-bypasses between u to v that intersect V(S) \V(Qi). We
thus get that there exists a set Bypasses(e) of at least f −2sp(p−1)−2p(p−1) V-
bypasses between u to v in H , that do not intersect V(S) \V(Qi). We now show
how to select for each edge e ∈ Qi for some i a V-bypass Be ∈ Bypasses(e), such
that Be is vertex disjoint with any Be′ for any e′ ∈ Qj such that e′ /∈ H and j 6= i.

Consider an edge e = (u, v) ∈ Qi such that e /∈ E(H). Let Ee be the set of
edges e′ such that e′ ∈ E(Qj) \ E(H) and V(B) ∩ V(B′) 6= ∅ for some j 6= i,
B ∈ Bypasses(e) and B′ ∈ Bypasses(e′). Towards proving Lemma 13, we first
prove the next auxiliary lemma.

Lemma 14 For every edge e ∈ E(S)\E(H), the set Ee contains at most (4s+2)(p−1)
edges.

Proof. Assume, towards contradiction, that |Ee| > (4s + 2)(p − 1) + 1. By the
Pigeonhole principle, there is a path Qj (for j 6= i) such that |E(Qj) ∩ Ee| >
4s + 2. Let eh = (uh, vh) be the edge in E(Qj) ∩ Ee closest to x in Qj , and let
el = (ul, vl) be the edge in E(Qj)∩Ee closest to y in Qj . Let h1, h2 ∈ Bypasses(e),
h3 ∈ Bypasses(eh) and h4 ∈ Bypasses(el) such that h1 and h3 intersect and h2

and h4 intersect (it could be that h1 = h2). Let M be the sub-path Qj[vh, vl].
We now claim that:

(1) the subgraph H ′′(V,S ′′) for S ′′ = E(S)\E(M)∪E(h1)∪E(h2)∪E(h3)∪E(h4)
contains p vertex disjoint paths from x to y;

(2) ω(S ′′) < ω(S).

We show claim (1) by using Menger’s theorem to establish that S ′′ contains
p vertex-disjoint paths from x to y. Consider a set F of at most p− 1 vertices. If
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F fails to intersect a path Qr ∈ S , for some r 6= j, then clearly x and y are con-
nected in S ′′ \F . So suppose the set F disconnects every path Qr ∈ S , for r 6= j,
hence F contains exactly one vertex from each path Qr ∈ S for every r 6= j.
Note that all vertices in h3 and h4 are not in F as h3 and h4 are disjoint from
all Qr for r 6= j and we assume that F contains only nodes from Qr for some
r 6= j. Since F contains exactly one vertex in Qi then one of u and v are not in
F , assume w.l.o.g. that u /∈ F . Let r3 be a vertex in h3 ∩ h1 and let r4 be a vertex
in h4 ∩ h2. Note that the subgraph (E(Qj) \ E(M)) ∪ E(h3) contains a path from
x to r3 that does not intersect F . Similarly, the subgraph (E(Qj) \E(M))∪E(h4)
contains a path from r4 to y that does not intersect F . The cycle h1 ∪ {(u, v)}
contains at most one vertex in F and thus there is a path from r3 to u that does
not contain vertices from F . Similarly, h1 ∪ {(u, v)} contains a path from r4 to
u that does not contain vertices from F . Concatenating all these paths together
we get a path from x to y. Claim (1) follows. Next, we show claim (2) and thus
derive a contradiction to the optimality of S . The path Qj contains at least 4s+3
edges from Ee and since the path M contains all these edges except (eh and el),
the length of M is at least 4s + 1. In contrast, the number of edges in the edge
set E(h1) ∪ E(h2) ∪ E(h3) ∪ E(h4) that replaced M in S is at most 4s. We thus
get that ω(S ′′) < ω(S). This implies a contradiction to the optimality of S . The
lemma follows. �

Consider the edges e ∈ E(S) \ E(H) one by one. For each edge e ∈ E(Qi) \
E(H), choose a V-bypass Be that does not intersect with any Be′ for an edge e′

that was already considered by this process and such that e′ ∈ E(Qr) \ E(H) for
some r 6= i. We claim that this process never gets stuck, namely, each time we
consider an edge e ∈ E(Qi) \E(H), there is at least one V-bypass in Bypasses(e)
that does not intersect with the other V-bypasses selected so far. Let Ẽe ⊆ Ee

be the set of edges that were considered before e by this process. Note that
|Ẽe| 6 (4s+ 2)(p− 1) by Lemma 14. Moreover, note that each path Be′ for some
e′ ∈ Ẽe intersects with at most s V-bypasses in Bypasses(e). Since there are more
than (4s+2)(p− 1)s V-bypasses in Bypasses(e), at least one of these V-bypasses
does not intersect with any of Be′ for e′ ∈ Ẽe. For each path Qr ∈ S for 1 6 r 6 p,
construct a path Q̃r as follows. For every edge e ∈ E(Qr), if e ∈ E(H) then add
e to Q̃r, otherwise add Be to Q̃r. It is not hard to verify that V(Qi) ∩ V(Qj) = ∅

for any i 6= j and that each Qr is a path from x to y such that ω(Q̃r) 6 s · ω(Qr).
The lemma follows. �

The following theorem was shown by Dinitz and Krauthgamer in [DK11]
(see also section 4.2.2.3).

Theorem 9 [DK11] For every graph G = (V,E), odd integer s and integer r, one can
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construct in polynomial time with high probability an r-vertex fault-tolerant s-spanner

with O
(

r2−
2

s+1n1+ 2

s+1 log n
)

edges.

Combining Theorem 9, Lemma 11 and Lemma 13, we get Theorem 7.

For weighted graphs, we need the following supplementary lemma:

Lemma 15 Every p-vertex-vertex-resilient subgraph H with stretch s is a p-vertex
multipath (s · p)-spanner.

Proof. To see this, consider two vertices x and y and let S = {Q1, . . . , Qp} be the
set of p vertex-disjoint paths from x to y in G of minimal cost. We now show
how to construct a subgraph H ′(V,S ′) such that:

(1) H ′ contains p vertex-disjoint paths from x to y;

(2) ω(S ′) 6 s · ω(S).

Initially, set S ′ = ∅. For every edge e = (u, v) ∈ E(Qr), if e ∈ E(H) then add
e to S ′, otherwise add to S ′ a set B(e) of V -bypasses such that |B(e)| = p and
E(B(e)) ⊆ E(H). Note that such a set B(e) exists since H is p-vertex-resilient
with stretch s.

To prove claim (1) we use Menger’s theorem. We show that there is no set
F of p − 1 vertices such that x and y are disconnected in S ′ \ F . Consider a set
F of at most p − 1 vertices. Note that, for every edge e ∈ (E(Qr) \ E(H)), there
exists a V -bypass B(e) ∈ B(e) that is internal vertex disjoint from F . To see this,
recall that B(e) contains p V -bypasses. In addition, there exists at least one path
Qr ∈ S such that V(Qr) ∩ F = ∅ for some 1 6 r 6 p. Construct the path Q′

r

as follows. For every edge e = (u, v) ∈ E(Qr), if e ∈ E(H) then add e to Q′
r,

otherwise add the alternative path B(e) to Q′
r. It is not hard to verify that Q′

r

goes from x to y, E(Q′
r) ⊆ E(H), and V(Q′

r) ∩ F = ∅. Claim (1) follows.
To see claim (2), note that for every edge e ∈ E(S), either e itself or an alter-

native path of length s is added to E(S ′). We get that ω(S ′) 6 s · ω(S). �

We note that Lemma 11 is also true, provided the spanner built is s-hop,
as described in Section 4.2.2, especially Proposition 5. This in turn satisfies the
property that every edge e is either included in the spanner H or H contains an
alternative path connecting the end-vertices of e of length at most s · ω(e) and
with at most s hops.

Combining with Theorem 9, this allows us to conclude Theorem 8.
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4.2.4 Towards an additive bi-path spanner

So far, none of the constructions presented earlier can yield less than stretch
3 spanners. Indeed, if we take the approach of Section 4.2.2, the best we can
do with 2-paths and multiplicative spanners is ϕ(3, 2) = 18 by Theorem 5
and Theorem 6. Likewise, if we take the approach of Section 4.2.3, the best
multiplicative stretch obtained will be the one of the underlying multiplicative
fault-tolerant spanner, which is at least 3.

In this section, we describe an ad-hoc algorithm to construct a multipath
spanner with a multiplicative stretch less than 3, with 2 paths, and aim to prove
the following result:

Theorem 10 Every weighted graph with n vertices and maximum edge weight W
has a vertex-disjoint 2-multipath (2, O(W ))-spanner of size O(n3/2) that can be
constructed in O(n4) time.

While the earlier constructions were based on derivation from fault-tolerant
spanners, we use here a much more direct approach derived from classical
spanner constructions. Furthermore, the spanners constructed are essentially
additive.

As the 2-multipath distance v
d
2
(u, v) between u and v is essentially the

shortest elementary cycle between u and v, we will focus on cycles in this
section.

4.2.4.1 Construction

Classical spanner constructions make extensive use of balls, neighborhoods and
trees. These structures are however unsuitable for the v

d
2 graph metric. For

instance, if we define a ball of center u and radius r as the subgraph induced
on all vertices v with v

d
2
(u, v) 6 r, two vertices of the ball could be in different

bi-connected components. We redefine next these structures.
Consider a weighted graph G and with an edge uv that is not a cut-edge3. Let

G[uv] denote the bi-connected component of G containing uv, and let c2H(uv, w)
be the minimum cost of a cycle in subgraph H passing through the edge uv and
vertex w, if it exists and∞ otherwise.

We define a 2-path spanning tree of root uv as a minimal subgraph T of G
such that every vertex w of G[uv] belongs to a cycle of T containing uv. Such
definition is motivated by the following important property (see Property 1 in
paragraph 4.2.4.3): for all vertices a, b in G[uv] \ {u, v}, v

d
2
G(a, b) 6 c2T (uv, a) +

c2T (uv, b). This can be seen as a variant of the triangle inequality.

3A cut-edge is an edge that does not belong to a cycle.
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If c2T (uv, w) = c2G(uv, w) for every vertex w of G[uv] then T is called
a shortest 2-path spanning tree. An important point, proved in Lemma 16 in
paragraph 4.2.4.2, is that such T always exists and contains O(ν) edges, ν being
the number of vertices of G[uv].

In the following we denote by B2
G(uv, r) =

{

w :
v
d
2
G(uv, w) 6 r

}

and
BG(u, r) = {w : dG(u, w) 6 r} the 2-ball (resp. 1-ball) of G centered at edge uv
(at vertex u) and of radius r. We denote by NG(u) the set of neighbors of u in G.
We denote by BFS(u, r) any shortest path spanning tree of root u and of depth r
(not counting the edge weights). Finally, we denote by SPST2

G(uv) any shortest
2-path spanning tree of root uv in G[uv].

The spanner H is constructed by Algorithm 2 for any weighted graph G
having n vertices and maximum edge weight W . Essentially, the main loop of
the algorithm selects an edge uv from the current graph lying at the center of
a dense bi-component, adds to the spanner H a shortest 2-path spanning tree
rooted at uv, and then destroys the neighborhood of uv.

F := G, H := (∅,∅);
while ∃uv ∈ E(G), |B2

G(uv, 4W ) ∩ (NG(u) ∪NG(v))| >
√
n do

H := H ∪ SPST2
F (uv) ∪ BFSG(u, 2) ∪ BFSG(v, 2);

G := G \ (B2
G(uv, 4W ) ∩ (NG(u) ∪NG(v)))

H := H ∪G
Algorithm 2: Construction of H .

4.2.4.2 Size analysis

The proof of the spanner’s size is done in two steps, thanks to the two next
lemmas.

First, Lemma 16 shows that the while loop does not add too many edges: a
shortest 2-path spanning tree with linear size always exists: it is built upon the
algorithm of Suurballe-Tarjan [ST84] for finding shortest pairs of edge-disjoint
paths in weighted digraphs.

Lemma 16 For every weighted graph G and for every non cut-edge uv of G, there is
a shortest 2-path spanning tree of root uv having O(ν) edges where ν is the number of
vertices of G[uv]. It can be computed in time O(n2) where n is the number of vertices
of G.

Proof. In the following, we call X = G[uv]. SPST2
X(uv) will therefore be equal

to SPST2
G(uv).

Let ν = |V(X)| and µ = |E(X)|. We first show that we can reduce our
problem to the problem of finding a one-to-all pair of edge-disjoint paths in a
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x y x y x2 y1

x1 y2

Figure 4.5: Process by which X is transformed into X ′.

directed graph. In other words, let P be a procedure which yields a 2-(edge-
disjoint)-tree rooted in a single vertex w in a directed graph X ′. We show that
we can derive P ′ yielding SPST2

X(uv) from P .
First, remark that the problem of finding SPST2

X(uv) is equivalent to finding
the same structure but rooted in a single vertex w where the edge uv is replaced
by uw,wv, and the weights of each edge uw and wv being equal to half of ω(uv).

We construct X ′ as follows: each undirected edge is replaced by two edges
going in opposite direction and of the same weight. Then each vertex a is
replaced by two vertices a1 and a2 where every incoming edge arrives at a1
and every leaving edge leaves from a2. An edge going from a1 to a2 is finally
added. Fig. 4.5 shows what happens to edges of X .

Note that ν ′ = |V(X ′)| = 2 · (ν + 1) and µ′ = |E(X ′)| = 2 · (µ+ 1) + ν + 1.
The procedure P ′ proceeds as follows:

1. uv is replaced by uw,wv.

2. X ′ is constructed.

3. P is called on X ′, with the root vertex being w2.

4. Every edge of type x2 → y1 present in the result of P causes the addition
of the edge xy to the result of P ′.

Two edge-disjoint paths in X ′ are vertex-disjoint in X . Indeed, as they
cannot both use an edge of the type x1 → x2 they cannot share x1 or x2 (except
at the extremities) because the only way to leave (resp. arrive) from x1 (resp. to
x2) is to use the edge x1 → x2. So if we have two edge-disjoint paths in X ′ going
from w2 to some x1, the reduction back to X will yield two disjoint paths from
w to x, and then from the edge uv to x.

We use the same procedure P from Suurballe and Tarjan in [ST84] as in
in section 3.2.4. While not directly constructing the 2-(directed-edge-disjoint)-
tree rooted in a single vertex w it can be extracted from their algorithm. This
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procedure yields a structure with at most 2(ν ′ − 1) edges. See the proof of
Lemma 6 for a more extensive discussion.

Therefore the number of edges yielded by procedureP ′ is at most 4·ν, which
is O(ν). �

Secondly, Lemma 17 shows that the graph G remaining after the while loop
has only O(n3/2) edges. For that, G is considered as an unweighted graph (edge
weights are set to one) and we apply Lemma 17 with k = 2. The result we
present is actually more general and interesting in its own right. Indeed, it
gives an alternative proof of the well-known fact that graphs with no cycles of
length 6 2k have O(n1+1/k) edges since B2

G(uv, 2k) = ∅ in that case.

Lemma 17 Let G be an unweighted graph with n vertices, and k > 1 be an integer.
If for every edge uv of G, |B2

G(uv, 2k) ∩ NG(u)| 6 n1/k, then G has at most 2 · n1+1/k

edges.

Proof. Consider Algorithm 3 applied to graph G. When the procedure
terminates, all the vertices and edges of the graph have been removed. In the
following, we count the number of edges removed by each step of the while
loop, which in turn allows us to bound the totql number of edges of G.

for i := k − 1 to 0 do
while ∃u, |BG(u, i)| > ni/k do

G := G \BG(u, i)

Algorithm 3: Remove 1-balls.

Let Xi denote the set of vertices u whose 1-ball BG(u, i) is removed during
iteration i of the for loop. Let m(u) be the number of edges deleted when
removing BG(u, i). Note that as

∑

i

∑

u∈Xi
|BG(u, i)| = n (the procedure

removed all the vertices), and that
∑

i |Xi| · ni/k 6 n because each 1-ball is larger
than ni/k.

At each step, we argue that

m(u) 6 (n1/k + 1) · |BG(u, i)|+ |NG(u, i+ 1)|

where NG(u, i+ 1) is the set of vertices at exactly i+ 1 hops from u.
To this effect, let’s consider a shortest path tree T rooted in u and spanning

BG(u, i).
The number of edges in T is bounded by |BG(u, i + 1)|, which can be

decomposed in |BG(u, i)|+ |NG(u, i+ 1)|.
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We can also bound the total number of non-tree edges as follows: for any
x ∈ BG(u, i), let’s consider B2

G(xy, 2k) ∩ NG(x), where y is the parent of x in T .
We know that the number of vertices in this 2-ball is less than n1/k because it is
a property of G. But |B2

G(xy, 2k) ∩NG(x)| is also at least the number of non-tree
edges attached to x: for an edge xz /∈ T , the paths from z towards the root u and
from x towards the root until they reach a common vertex are of length at most
the radius of BG(u, i), which is i 6 k, and so there is a cycle of length at most 2k
using the edges xz and xy. So the total number of non-tree edges is bounded by
n1/k · |BG(u, i)|.

The termination of the while loop during iteration i+ 1 implies

|BG(u, i+ 1)| < n
i+1

k

or equivalently:
|NG(u, i+ 1)| < n

i+1

k − |BG(u, i)|.
Therefore we have

m(u) < n1/k|BG(u, i)|+ n
1+i
k .

And so

m(G) =
∑

u∈∪iXi

m(u) < n1/k
∑

i

∑

u∈Xi

|BG(u, i)|+
∑

i

|Xi| · n
i+1

k

and as
∑

i |Xi| · ni/k 6 n, we have

|E(G)| 6 2 · n1+1/k .

�

Combining these two lemmas we have:

Lemma 18 Algorithm 2 creates a spanner of size O(n3/2) in time O(n4).

Proof. Each step of the while loop adds O(n) edges from Lemma 16, and as it
removes at least

√
n vertices from the graph this can continue at most

√
n times.

In total the while loop adds O(n3/2) edges to H .
After the while loop, the graph G is left with every B2

G(uv, 4W ) ∩ (NG(u) ∪
NG(v)) smaller than

√
n. If we change all edges weights to 1, it is obvious

that every B2
G(uv, 4) ∩ (NG(u) ∪ NG(v)) is also smaller than

√
n. Then as

B2
G(uv, 4) ∩ NG(u) is always smaller than B2

G(uv, 4) ∩ (NG(u) ∪ NG(v)), we can
apply Lemma 17 for k = 2, and therefore bound the number of edges added in
the last step of Algorithm 2.

The total number of edges of H is O(n3/2).
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The costly steps of the algorithm are the search of suitable edges uv and the
cost of construction of SPST2.

The search of suitable edges is bounded by the number of edges as an edge e
which is not suitable can be discarded for the next search: removing edges from
the graph cannot improve B2

G(e, 4W ). Then for starting from one extremity of
each edge a breadth first search of depth 3 must be computed, keeping only the
vertices whose path in the search encounters the other extremity. The cost of the
search is bounded by the number of edges of G. So in the end the search costs
at most O(n4) steps.

The cost of building a SPST2 is bounded by the running time of [ST84],
which at worst costs O(n2) (the reduction is essentially in O(m + n)). Since
the loop is executed at most

√
n times, the total cost is O(n7/2).

So the total running time is O(n4). �

4.2.4.3 Stretch analysis

The proof for the stretch is done as follows: we consider a, b two vertices such
that v

d
2
F (a, b) = ℓ is finite (if it is infinite there is nothing to prove). We need

to prove that the spanner construction is such that at the end, v
d
2
H(a, b) 6

2ℓ + O(W ) . To this effect, we define PF = P 1
F ∪ P 2

F as a cycle composed of
two disjoint paths (P 1

F and P 2
F ) going from a to b such that its weight sums to

v
d
2
F (a, b).
Proving the stretch amounts to show that there exists a cycle PH = P 1

H ∪ P 2
H

joining a and b in the final H , with cost at most 2ℓ + O(W ) . Observe that if the
cycle PF has all its edges in H then one candidate for PH is PF and we are done.
If not, then there is at least one 2-ball whose deletion provokes actual deletion
of edges from PF (those are edges of PF missing in the final H).

In the following, let uv be the root edge of the first 2-ball whose removal
deletes edges from PF (that is they are not added in H neither during the while
loop nor the last step of the algorithm). Let Gi be the graph G just before the
removal of B2

G(uv, 4W ) ∩ (NG(u) ∪NG(v)) , and Gi+1 the one just after.
The rest of the discussion happens in the graph Gi otherwise noted.
The proof runs as follows: we first show in Lemma 19 that any endpoint of

a deleted edge (of PF ) belongs to an elementary cycle comprising the edge uv
and of cost at most 6W . We then show in Lemma 20 that we can construct cycles
using a and/or b passing through the edge uv, effectively bounding c2H(uv, a)
and c2H(uv, b) due to the addition of the shortest 2-path spanning tree rooted at
uv. Finally Lemma 21 shows that the union of a cycle passing through uv and a
and another one passing through uv and b contains an elementary cycle joining
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Figure 4.6: Proof of Lemma 19: a cycle of 6 hops exists between w and uv in Gi

a to b, its cost being at most the sums of the costs of the two original cycles.

Lemma 19 Let e = wt be an edge of (E(Gi) \ E(Gi+1)) \ E(H). Then in Gi both w
and t are connected to uv by a cycle of cost at most 6W .

Proof. Since e is absent from both Gi+1 and H , then at least one of its endpoints
is in the vicinity of u or v in Gi. Without loss of generality we can consider t be
a neighbour of u in Gi. Then w is at most two hops from uv in Gi.

We can first eliminate the case where w is a direct neighbor of v, as there is
an obvious cycle of 4 hops: w → t→ u→ v → w .

Consider now the BFS tree rooted at u that is added to H . As w is at most
two hops from u, there is a path u → x → w in this tree (x is defined as the
intermediate vertex of this path and may not exist). As e was removed, it means
that x is distinct from t. Furthermore, t was removed because it belonged to the
neighbourhood B2

G(uv, 4W ) of some edge uv, so there is an elementary cycle of
at most 4 hops passing through t and the edge uv.

Now we distinguish two cases as illustrated in Fig. 4.6.
If x is distinct (which is especially true when it does not exist) from an

intermediate vertex between v and t in the cycle, then we can extract an
elementary cycle of at most 6 hops passing through uv and w : w → x → u →
v →→ t → w. If x is the same as an intermediate vertex between v and t, then
the cycle is w → t→ u→ v → x→ w. Hence we uncovered a cycle of length at
most 6W containing both the edges e and uv.

�

We now show that we can use this lemma to exhibit cycles going from a to
uv and from b to uv.

From the vertices belonging to both B2
Gi
(uv, 6W ) and PF we choose the

ones which are the closest to a and b (we know that at least two of them exist
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Figure 4.7: Proof of Lemma 21: the two cases for the simple paths.

because one edge was removed from PF during step i of the loop). There are
at maximum four of them (a1, a2, b1, b2), one for each sub-path P i

F and each
extremity {a, b}. Note that each extremity is connected to the root edge by an
elementary cycle of cost at most 6W . Two cases are possible (the placement of
the vertices can be seen on Fig. 4.7, although the paths on it are from the proof
of Lemma 21):

Case 1: There are only two extremities (then they belong to the same sub-path)
and their cycles which connect them to uv do not intersect the second sub-
path (w.l.o.g we can suppose it is a1 and b1).

Case 2: There are more than two extremities: either some edges of the second
path were removed or one of the cycles going from one of the extremities
a1 or b1 to uv intersects the second path.

We show next that we can bound c2H(uv, a) and c2H(uv, b) with the help of
the cycles connecting the endpoints and the path PG. This is done with the two
next lemmas.

Lemma 20 For any two vertices w and t joined to the same edge uv by elementary
cycles there is a simple path of cost at most the sum of the cycles’ costs and passing
through the edge uv.

Proof. We show there is a simple path going from w to t passing through uv.
Let us call Q1 the elementary cycle joining w to uv and Q2 the one joining t to uv.
If going along the path Q1 from w towards one of the endpoints of uv we do not
encounter Q2, then the path from w to t is composed of the part of Q1, then the
edge uv, then the part of Q2 which reaches t without passing through uv. If it is
not possible, then there are intersection points between Q1 and Q2. Let i be the
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Figure 4.8: The two cases for Q1 and Q2. The big dots represent the paths’
unused portions.

closest intersection point from w. The path we are looking for is therefore w → i
using Q1 then i→ uv → t using the part of Q2 which uses the edge uv (the other
part would take us directly to a2 without using uv). This path is simple because
Q2 is an elementary cycle and it cannot cross Q1 before i because of the way i is
chosen. The two cases are shown on figure 4.8.

�

Lemma 21 Let a, b be two vertices of a graph G such that an elementary cycle of cost
v
d
2
G(a, b) has common vertices with some B2

G(uv, 6W ). Then c2G(uv, a) and c2G(uv, b)

are bounded by
v
d
2
G(a, b) + 12W .

Proof. The lemma is independent of the graph, but for clarity it will be proved
using the graph Gi and PF .

Recall that we distinguished two cases depending on whether B2
Gi
(uv, 6W )

intersects only one path of PF (either P 1
F or P 2

F ) or both. Fig. 4.7 illustrates the
proof of the two cases.

Lemma 20 allows us to solve the first case : since there are no intersections
on the second path (b → a), the cycle a → a1 → uv → b1 → b → a is simple.
So there is a cycle in Gi joining uv, a and b of cost at most 12W +

v
d
2
Gi
(a, b). So

c2Gi
(uv, a) is bounded by 12W +

v
d
2
Gi
(a, b) and so is c2Gi

(uv, b).
In the second case there are three or four extremities: a1, b1, a2, and b2, with

possibly a2 and b2 being the same vertex. We then apply Lemma 20 twice: once
for a1 and a2 and another time for b1 and b2. That creates a simple cycle from a
to uv passing via a1 and a2 and another one from b to uv passing via b1 and b2.
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These cycles are simple because the vertices were chosen to be the closest from
a or b. Note that a2 and b2 can be the same. So

c2Gi
(uv, a) 6 ω(a→ a1) + 12W + ω(a2 → a) 6

v
d
2
(a, b) + 12W

where a→ a1 reprenents the arc between a and a1. The situation is the same for
b.

�

Property 1 Let uv be a non cut-edge of G and T be any 2-path spanning tree rooted at

uv. Then, for all vertices a, b in G[uv] \ {u, v}, v
d
2
G(a, b) 6 c2T (uv, a) + c2T (uv, b)−

ω(uv).

Proof. In T there is a cycle joining a to uv of cost c2T (uv, a), and another one
joining b to uv of cost c2T (uv, b). Consider the subgraph P containing only the
edges from these two cycles. The cost of P is ω(P ) 6 c2T (uv, a) + c2T (uv, b) −
ω(uv) as edge uv is counted twice. It remains to show that P contains an
elementary cycle between a and b. Note that since a /∈ {u, v}, a has in P two
vertex-disjoint paths leaving a and excluding edge uv: one is going to u and one
to v. Similarly for vertex b.

Without loss of generality we can assume that a and b are not adjacent in P .
Otherwise we can subdivide the edge ab to obtain a new subgraph P ′. Clearly, if
P ′ contains an elementary cycle between a and b, then P too. Consider that one
vertex z, outside a and b, is removed in P . From the remark above, in P \ {z},
there must exists a path leaving a and joining some vertex wa ∈ {u, v} \ {z} and
one path leaving b and joining some vertex wb ∈ {u, v} \ {z}. If wa = wb, then a
and b are connected in P \ {z}. If wa 6= wb, then edge uv belongs to P \ {z} since
in this case z /∈ {u, v}, and thus a path connected a to b in P \ {z}. By Menger’s
Theorem, P contains a 2-multipath between a and b. �

Lemma 22 H is a 2-multipath (2, 24W )-spanner.

Proof. If F contains a path of cost v
d
2
(a, b) with every edge in H , then there

is nothing to prove. If there is some removed edge, then we can identify the
iteration i which removed the first edge, and we can associate the graph Gi

just before the deletion performed in the second step of the loop (so PF is still
intact in Gi). By virtue of Lemma 19 we can identify some root-edge uv and we
know that there are some vertices of PF linked to uv by an elementary cycle of
length at most 6W . Lemma 21 can then be applied, and so in Gi, c2Gi

(uv, a) and
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c2Gi
(uv, b) are both bounded by v

d
2
Gi
(a, b) + 12W . As the iteration’s first step is

to build a shortest 2-path spanning tree rooted in uv we know that in H

c2H(uv, a) 6 c2Gi
(uv, a) 6

v
d
2
Gi
(a, b) + 12W

and the same for b. Property 1 can then be used in the 2-path spanning tree, to
bound v

d
2
H(a, b):

v
d
2
H(a, b) 6 c2H(uv, a) + c2H(uv, b) 6 2 · vd2Gi

(a, b) + 24W

Finally, as in Gi PF still exists completely, we have that v
d
2
Gi
(a, b) =

v
d
2
F (a, b), so

v
d
2
H(a, b) 6 2 · vd2F (a, b) + 24W

�



Chapter 5

Conclusion & perspectives

5.1 Review of the results

In this thesis, motivated by multipath routing considerations, we have
introduced multipath spanners.

Spanners are a fundamental object linked to compact routing. Knowing that
multipath routing is a requirement for many protocols, and after remarking that
the theory of spanners could in theory be extended to any non decreasing graph
metric, we considered vertex-disjoint and edge-disjoint multipath spanners.

The multipath metric comes into two versions, the edge-disjoint p-multipath
graph metric e

d
p—which fulfills the distance axioms, in particular the triangle

inequality—and the vertex-disjoint p-multipath graph metric v
d
p—which does

not satisfy the triangle inequality. In this thesis we have studied these two types
of multipath spanners which were consecutive to these two graph metrics.

5.1.1 Edge-disjoint multipath spanners

As edge-disjoint multipath spanners are built on a graph metric which is a
proper distance, we studied these at first.

The first result we obtained was to note in Theorem 1 that a simple argument
could be used to obtain p-multipath spanners for any p using 2k − 1-stretch
classical spanners as building blocks, resulting in edge-disjoint p-multipath
p · (2k − 1)-spanners with O(p · n1+1/k) edges, for any positive integers p, k.
Unfortunately, although the number of edges is satisfactory—a mere p times
the number of edges of a classical multiplicative spanner—the stretch is also
multiplied by p compared to the stretch of the underlying spanners. Naively
one could think that each path of a p-path would be stretched by the classical
spanner’s stretch factor, hence obtaining a p-multipath spanner of the same

78
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stretch. This called for further examination.
We then showed in Proposition 2 that given a certain number of edges, an

edge-disjoint p-multipath spanner cannot have a better stretch than an optimal
1-path spanner. In this light there seems to be a room for improvement from
Theorem 1.

In this direction, we proved in Section 3.2.3 that in a very restricted
setting—unweighted graph, 2-paths and stretch-3 underlying spanners—we
could conduct a finer analysis and bring the stretch of Theorem 1 from 6 down
to only 3, with the same number of edges.

To further improve the stretch, we showed in Section 3.2.4 that in the case of
2 paths we could reduce the multiplicative part of the stretch down to 2, while
paying some additive factor. To this effect, we built in polynomial time an edge
2-multipath (2, 8W )-spanner with O(n3/2) edges, W being the maximum edge
weight.

Finally we show in Section 3.2.5 that the fault-tolerant spanners devised by
Peleg et al. in [CLPR10] for general graphs are related to multipath spanners.
We noted that their algorithm for building p edge-fault-tolerant spanners is
exactly the same as our building algorithm for p-multipath spanners. This
leads to think that the two types of spanners are related. Indeed, we showed
that for an edge f -fault-tolerant spanner to be considered as an edge-disjoint p-
multipath spanner of the same stretch it required f to be a polynomial factor of
p. More precisely, we show that a kp2log(W )-edge-fault-tolerant 2k − 1-spanner
is also an edge-disjoint p-multipath (2k−1)-spanner. When using the algorithm
of [CLPR10] for building f -edge-fault-tolerant spanners and using (2k − 1)-
spanners as a basis, the resulting spanner has O(kp2log(W )n1+1/k) edges.

This result shows a better stretch—(2k − 1)—compared to Section 3.2.1—
p · (2k − 1)—but with many more edges, thus making these two results
incomparable.

5.1.2 Vertex-disjoint multipath spanners

After studying edge-disjoint spanners, we took interest in vertex-disojoint
spanners. As noted by Remark 1, v

d
p is not a proper distance function—for

lack of triangle inequality. This complicates the design of new algorithms or
adaptations of algorithms from classical spanner constructions to get vertex-
disjoint multipath spanners. Therefore we studied these multipath spanners by
examining their connection with fault-tolerant spanners.

In this direction, the first thing which we noted in Remark 2 was that a
general weighted fault-tolerant spanner can have an arbitrary large stretch—
linear in the number of vertices. However, we exhibit an additional property
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which a fault-tolerant spanner can have in order to bound the multipath stretch:
bounded hop spanners are such that a replacement path for an edge mustn’t
be composed of too many edges. When fault-tolerant spanners have this
property we showed in Theorem 5 that it is possible to bound their stretch when
considered as multipath spanners, albeit with some very large stretch. More
precisely, we showed that we can get a vertex-disjoint p-multipath kp · O(1 +

p/k)2k−1-spanner with O(kp2−1/kn1+1/klog2−1/kn) edges with the use of p − 1-
fault-tolerant spanners from the works of Dinitz and Krauthgamer in [DK11].

In order to reduce this large stretch, we tried an idea similar to the one of
Section 3.2.5: in order to decrease the multipath stretch down to the stretch of
the multipath spanner, we were able to show in Section 4.2.3 that fault-tolerant
(2k − 1)-spanners accepting a much larger number of faults than p—O(s3p +
s2p2)—were in effect vertex-disjoint p-multipath spanners of the same stretch.

However this comes with a larger number of edges—O
(

φ′(p, k) · n1+ 1

k log n
)

edges, where φ′(p, k) = (p · (2k − 1))2−
1

k —compared to what we obtained in
Section 4.2.2.

In another direction, we tried to build spanners with the smallest possible
multiplicative stretch. Therefore in Section 4.2.4 we showed how to build
a vertex-disjoint 2-multipath spanner of stretch (2, O(W ))—W being the
maximum edge-weight—and with O(n3/2) edges. The algorithm itself being an
adaptation of the (1, 2) stretch classical spanner construction. This algorithm
needed some adaptation to the concept of balls in order to overcome the
difficulty of losing the triangle inequality on which spanner algorithms
implicitely rely on.

5.2 Perspectives

5.2.1 Improvements

Additive spanners. For each type of multipath spanners we managed
to obtain spanners with an additive stretch in the case of 2 paths—see
Sections 3.2.4 and 4.2.4. However we didn’t obtain multipath spanners with
less edges—say with an adaptation of the works of Baswana et al. in [BKMP10]
where they obtain a (1, 6)-spanner with O(n4/3) edges—or with more paths.
This calls for further research in this direction. For instance, is it possible to
obtain vertex or edge p-multipath spanners with stretch (α,O(W )) with o(n3/2)
edges and α < 2, for p > 1 ?
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Geometric multispanners. The present work was designed for general
graphs. However spanners have been studied in some other contexts such
as geometric graphs, where spanners are considered on complete graphs
embedded in the euclidian plane. See [NS07] as an introduction to the topic.

We define the multipath distance in the same fashion as for general graphs.
The original graph is seen as a complete weighted graph, and p-paths are simply
collections of p vertex or edge disjoint paths between two vertices. A multipath
spanner will be a spanning subgraph of this complete graph.

It’s clear that our previous analysis for general graphs still apply. However
we beleive that there exist size-stretch tradeoffs of much better quality—less
edges for the same stretch, or a smaller stretch for less edges—than for general
graphs for this multipath graph metric, as this is the case for p = 1 with
Delaunay triangulations (cf. [Xia11]). For instance, can we have a constant
stretch p-multipath spanner with O(n) edges with p > 1 ?

Multipath routing. Another direction which was not examined at all in this
thesis is the problem of multipath compact routing. Given a general graph, is
there a way to transmit a certain number of packets in parallel while minimizing
the treatment time and routing table size on each node ? The works of Suurballe
and Tarjan in [ST84] where they build a one-to-all two-path structure may
provide a starting point for computing distributed bi-path routing tables.

5.2.2 Non-decreasing graph metrics

In this thesis, we introduced two new possible extensions of spanners using
non-decreasing graph metrics. In Chapter 3 we studied edge-disjoint multipath
spanners which relied upon the edge-disjoint multipath graph metric. In
Chapter 4 we studied vertex-disjoint multipath spanners built upon the vertex-
disjoint multipath graph metric. In the two cases we showed that there existed
a so-called size-stretch trade-off between the number of edges and the stretch.

We know that other non-decreasing graph metrics provide a size-stretch
trade-off—besides the standard graph distance. For instance, in directed graphs
the roundtrip distance provides such a trade-off, as shown by the works of
Roditty et al. in [RTZ08]. In the same time they show that the one-way distance
does not support such a trade-off. Note that this graph metric is not symmetric.

Moreover it is relatively to contruct graph metrics which do not sustain the
trade-off, but nevertheless satisfy all the three axioms of distances—triangle
inequality, symmetricity, d(x, y) = 0 iff x = y. For instance, define the graph
metric δ as follows:
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δ(u, v) =







0 if u = v
1 if deg(u) > n/2 and deg(v) > n/2
+∞ in every other case

It is easy to check that this metric verifies the three axioms and is non-
increasing.

On a complete bipartite graph the removal of one edge makes the distance
between its two extremities go from 1 to +∞. So there doesn’t exist a trade-off
between the number of edges and the stretch, despite δ being a proper distance.

This calls for an examination of criterias a given graph metric shall meet
in order to sustain a size-stretch trade-off. This could be the subject of further
works.
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[ES82] Paul Erdős and Miklos Simonovits. Compactness results in
extremal graph theory. Combinatorica, 2(3):275–288, 1982.

[GGV10] Cyril Gavoille, Quentin Godfroy, and Laurent Viennot. Multipath
spanners. In 17th International Colloquium on Structural Information
& Communication Complexity (SIROCCO), volume 6058 of Lecture
Notes in Computer Science, pages 211–223. Springer, June 2010.

[GGV11] Cyril Gavoille, Quentin Godfroy, and Laurent Viennot. Node-
disjoint multipath spanners and their relationship with fault-
tolerant spanners. In 15th International Conference on Principles of
Distributed Systems (OPODIS), volume 7109 of Lecture Notes in
Computer Science, pages 143–158. Springer, December 2011.

[JV09] Philippe Jacquet and Laurent Viennot. Remote spanners: what
to know beyond neighbors. In 23rd IEEE International Parallel &
Distributed Processing Symposium (IPDPS). IEEE Computer Society
Press, May 2009.

[KKKM07] Nate Kushman, Srikanth Kandula, Dina Katabi, and Bruce M.
Maggs. R-bgp: Staying connected in a connected world. In 4th
Symposium on Networked Systems Design and Implementation (NSDI),
2007.

[Kle96] J.M. Kleinberg. Approximation algorithms for disjoint paths problems.
PhD thesis, Massachusetts Institute of Technology, 1996.



BIBLIOGRAPHY iii

[Law76] Eugene L. Lawler. Combinatorial Optimization: Networks and
Matroids. Holt, Rinehart and Winston, July 1976.

[LG01] S.J. Lee and M. Gerla. Split multipath routing with maximally
disjoint paths in ad hoc networks. In IEEE International Conference
on Communications (ICC), volume 10, pages 3201–3205, 2001.

[LNLP78] László Lovász, V. Neumann-Lara, and Michael D. Plummer.
Mengerian theorems for paths of bounded length. Periodica
Mathematica Hungarica, 9(4):269–276, 1978.

[LNS98] Christos Levcopoulos, Giri Narasimhan, and Michiel Smid. Effi-
cient algorithms for constructing fault-tolerant geometric spanners.
In 30th Annual ACM Symposium on Theory of Computing (STOC),
pages 186–195. ACM Press, May 1998.

[MTG03] Stephen Mueller, Rose P. Tsang, and Dipak Ghosal. Multipath
routing in mobile ad hoc networks: Issues and challenges. In
Performance Tools and Applications to Networked Systems, Revised
Tutorial Lectures [from MASCOTS 2003], pages 209–234, 2003.

[NCD01] Asis Nasipuri, Robert Castañeda, and Samir Ranjan Das. Perfor-
mance of multipath routing for on-demand protocols in mobile ad
hoc networks. Mobile Networks and Applications, 6(4):339–349, 2001.

[NS07] Giri Narasimhan and Michiel Smid. Geometric Spanner Networks.
Cambridge University Press, 2007.

[Pet07] Seth Pettie. Low distortion spanners. In 34th International Colloquium
on Automata, Languages and Programming (ICALP), volume 4596 of
Lecture Notes in Computer Science, pages 78–89. Springer, July
2007.

[PS89] David Peleg and Alejandro A. Schäffer. Graph spanners. J. of Graph
Theory, 13(1):99–116, 1989.

[PSA05] P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to RSVP-
TE for LSP Tunnels. RFC 4090 (Proposed Standard), 2005.

[PT93] László Pyber and Zsolt Tuza. Menger-type theorems with
restrictions on path lengths. Discrete Mathematics, 120(1-3):161–174,
September 1993.

[PU89] David Peleg and Jeffrey D. Ullman. An optimal synchornizer for
the hypercube. SIAM J. on Computing, 18(4):740–747, 1989.



BIBLIOGRAPHY iv

[RTZ08] Liam Roditty, Mikkel Thorup, and Uri Zwick. Roundtrip spanners
and roundtrip routing in directed graphs. ACM Transactions on
Algorithms, 3(4):Article 29, June 2008.

[ST84] J. W. Suurballe and Robert Endre Tarjan. A quick method for finding
shortest pairs of disjoint paths. Networks, 14(2):325–336, 1984.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles.
Journal of the ACM, 52(1):1–24, January 2005.

[Wen91] Rephael Wenger. Extremal graphs with no C4’s, C6’s, or C10’s.
Journal of Combinatorial Theory, Series B, 52(1):113–116, 1991.

[Xia11] Ge Xia. Improved upper bound on the stretch factor of delaunay
triangulations. In 27th Annual ACM Symposium on Computational
Geometry (SoCG), pages 264–273. ACM-SIAM, June 2011.


