Read-out and coherent manipulation of an isolated nuclear spin using a single molecule magnet spin transistor - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2014

Read-out and coherent manipulation of an isolated nuclear spin using a single molecule magnet spin transistor

Lecture et manipulation cohérente d'un spin nucléaire isolé en utilisant un transistor à molécule aimant unique

Stefan Thiele
  • Fonction : Auteur

Résumé

The realization of a functional quantum computer is one of the most ambitious technologically goals of today's scientists. Its basic building block is composed of a two-level quantum system, namely a quantum bit (or qubit). Among the other existing concepts, spin based devices are very attractive since they benefit from the steady progress in nanofabrication and allow for the electrical read-out of the qubit state. In this context, nuclear spin based devices exhibit an additional gain of coherence time with respect to electron spin bases devices due to their better isolation from the environment. But weak coupling comes at a price: the detection and manipulation of individual nuclear spins remain challenging tasks. Very good experimental conditions were important for the success of this project. Besides innovative radio frequency filter systems and very low noise amplifiers, I developed new chip carriers and compact vector magnets with the support of the engineering departments at the institute. Each part was optimized in order to improve the overall performance of the setup and evaluated in a quantitative manner. The device itself, a nuclear spin qubit transistor, consisted of a TbPc₂ single-molecule magnet coupled to source, drain, and gate electrodes and enabled us to read-out electrically the state of a single nuclear spin. Moreover, the process of measuring the spin did not alter nor demolish its quantum state. Therefore, by sampling the spin states faster than the characteristic relaxation time, we could record the quantum trajectory of an isolated nuclear qubit. This experiment shed light on the relaxation time T₁ of the nuclear spin and its dominating relaxation mechanism. The coherent manipulation of the nuclear spin was performed by means of external electric fields instead of a magnetic field. This original idea has several advantages. Besides a tremendous reduction of Joule heating, electric fields allow for fast switching and spatially confined spin control. However, to couple the spin to an electric field, an intermediate quantum mechanical process is required. Such a process is the hyperfine interaction, which, if modified by an electric field, is also referred to as the hyperfine Stark effect. Using the effect we performed coherent rotations of the nuclear spin and determined the dephasing time T*₂. Moreover, exploiting the static hyperfine Stark effect we were able to tune the nuclear qubit in and out of resonance by means of the gate voltage. This could be used to establish the control of entanglement between different nuclear qubits. In summary, we demonstrated the first single-molecule magnet based quantum bit and thus extended the potential of molecular spintronics beyond classical data storage. The great versatility of magnetic molecules holds a lot of promises for a variety of future applications and, maybe one day, culminates in a molecular quantum computer.
La réalisation d'un ordinateur quantique fonctionnel est l'un des objectifs technologiques les plus ambitieux pour les scientifiques d'aujourd'hui. Sa brique de base est composée d'un système quantique à deux niveaux, appelé bit quantique (ou qubit). Parmi les différents concepts existants, les dispositifs à base de spin sont très attractifs car ils bénéficient de la progression constante des techniques de nanofabrication et permettent la lecture électrique de l'état du qubit. Dans ce contexte, les dispositifs à base de spins nucléaires offrent un temps de cohérence supérieur à celui des dispositifs à base de spin électronique en raison de leur meilleure isolation à l'environnement. Mais ce couplage faible a un prix: la détection et la manipulation des spins nucléaires individuels restent des tâches difficiles. De très bonnes conditions expérimentales étaient donc essentielles pour la réussite de ce projet. Outre des systèmes de filtrage des radiofréquences à très basses températures et des amplificateurs à très faible bruit, j'ai développé de nouveaux supports d'échantillons et des bobines de champ magnétique trois axes compacts avec l'appui des services techniques de l'Institut Néel. Chaque partie a été optimisée afin d'améliorer la qualité de l'installation et évaluée de manière quantitative. Le dispositif lui-même, un qubit réalisé grâce à un transistor de spin nucléaire, est composé d'un aimant à molécule unique couplé à des électrodes source, drain et grille. Il nous a permis de réaliser la lecture électrique de l'état d'un spin nucléaire unique, par un processus de mesure non destructif de son état quantique. Par conséquent, en sondant les états quantique de spin plus rapidement que le temps de relaxation caractéristique de celui-ci, nous avons réalisé la mesure de la trajectoire quantique d'un qubit nucléaire isolé. Cette expérience a mis en lumière le temps de relaxation T₁ du spin nucléaire ainsi que son mécanisme de relaxation dominant. La manipulation cohérente du spin nucléaire a été réalisée en utilisant des champs électriques externes au lieu d'un champ magnétique. Cette idée originale a plusieurs avantages. Outre une réduction considérable du chauffage par effet Joule, les champs électriques permettent de contrôler et de manipuler le spin unique de façon très rapide. Cependant, pour coupler le spin à un champ électrique, un processus intermédiaire est nécessaire. Un tel procédé est l'interaction hyperfine, qui, si elle est modifiée par un champ électrique, est également désigné sous le nom d'effet Stark hyperfin. En utilisant cet effet, nous avons mis en évidence la manipulation cohérente d'un spin nucléaire unique et déterminé le temps de cohérence T*₂. En outre, l'exploitation de l'effet Stark hyperfin statique nous avons permis de régler le qubit de spin nucléaire à et hors résonance par l'intermédiaire de la tension de grille. Cela pourrait être utilisé pour établir le contrôle de l'intrication entre les différents qubits nucléaires. En résumé, nous avons démontré pour la première fois la possibilité de réaliser et de manipuler un bit quantique basé sur un aimant à molécule unique, étendant ainsi le potentiel de la spintronique moléculaire au delà du stockage de données classique. De plus, la grande polyvalence des molécules aimants est très prometteuse pour une variété d'applications futures qui, peut-être un jour, parviendront à la réalisation d'un ordinateur quantique moléculaire.
Fichier principal
Vignette du fichier
38243_THIELE_2014_archivage.pdf (22.58 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-00984973 , version 1 (29-04-2014)
tel-00984973 , version 2 (07-07-2017)

Identifiants

  • HAL Id : tel-00984973 , version 2

Citer

Stefan Thiele. Read-out and coherent manipulation of an isolated nuclear spin using a single molecule magnet spin transistor. Quantum Physics [quant-ph]. Université de Grenoble, 2014. English. ⟨NNT : 2014GRENY003⟩. ⟨tel-00984973v2⟩

Collections

UGA CNRS NEEL STAR
546 Consultations
1640 Téléchargements

Partager

Gmail Facebook X LinkedIn More