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Abstract

The realization of a functional quantum computer is one of the most ambitious

technologically goals of today’s scientists. Its basic building block is composed of

a two-level quantum system, namely a quantum bit (or qubit). Among the other

existing concepts, spin based devices are very attractive since they benefit from

the steady progress in nanofabrication and allow for the electrical read-out of the

qubit state. In this context, nuclear spin based devices exhibit an additional gain

of coherence time with respect to electron spin bases devices due to their better

isolation from the environment. But weak coupling comes at a price: the detection

and manipulation of individual nuclear spins remain challenging tasks.

Very good experimental conditions were important for the success of this project.

Besides innovative radio frequency filter systems and very low noise amplifiers, I

developed new chip carriers and compact vector magnets with the support of the en-

gineering departments at the institute. Each part was optimized in order to improve

the overall performance of the setup and evaluated in a quantitative manner.

The device itself, a nuclear spin qubit transistor, consisted of a TbPc2 single-molecule

magnet coupled to source, drain, and gate electrodes and enabled us to read-out

electrically the state of a single nuclear spin. Moreover, the process of measuring the

spin did not alter nor demolish its quantum state. Therefore, by sampling the spin

states faster than the characteristic relaxation time, we could record the quantum

trajectory of an isolated nuclear qubit. This experiment shed light on the relaxation

time T1 of the nuclear spin and its dominating relaxation mechanism.

The coherent manipulation of the nuclear spin was performed by means of external

electric fields instead of a magnetic field. This original idea has several advantages.

Besides a tremendous reduction of Joule heating, electric fields allow for fast switch-

ing and spatially confined spin control. However, to couple the spin to an electric

field, an intermediate quantum mechanical process is required. Such a process is

the hyperfine interaction, which, if modified by an electric field, is also referred to

as the hyperfine Stark effect. Using the effect we performed coherent rotations of

the nuclear spin and determined the dephasing time T ∗
2 . Moreover, exploiting the

static hyperfine Stark effect we were able to tune the nuclear qubit in and out of



resonance by means of the gate voltage. This could be used to establish the control

of entanglement between different nuclear qubits.

In summary, we demonstrated the first single-molecule magnet based quantum bit

and thus extended the potential of molecular spintronics beyond classical data stor-

age. The great versatility of magnetic molecules holds a lot of promises for a variety

of future applications and, maybe one day, culminates in a molecular quantum com-

puter.



Résumé

La réalisation d’un ordinateur quantique fonctionnel est l’un des objectifs tech-

nologiques les plus ambitieux pour les scientifiques d’aujourd’hui. Sa brique de base

est composée d’un système quantique à deux niveaux, appelé bit quantique (ou

qubit). Parmi les différents concepts existants, les dispositifs à base de spin sont très

attractifs car ils bénéficient de la progression constante des techniques de nanofab-

rication et permettent la lecture électrique de l’état du qubit. Dans ce contexte,

les dispositifs à base de spins nucléaires offrent un temps de cohérence supérieur à

celui des dispositifs à base de spin électronique en raison de leur meilleure isolation à

l’environnement. Mais ce couplage faible a un prix: la détection et la manipulation

des spins nucléaires individuels restent des tâches difficiles.

De très bonnes conditions expérimentales étaient donc essentielles pour la réussite

de ce projet. Outre des systèmes de filtrage des radiofréquences à très basses tem-

pératures et des amplificateurs à très faible bruit, j’ai développé de nouveaux sup-

ports d’échantillons et des bobines de champ magnétique trois axes compacts avec

l’appui des services techniques de l’Institut Néel. Chaque partie a été optimisée afin

d’améliorer la qualité de l’installation et évaluée de manière quantitative.

Le dispositif lui-même, un qubit réalisé grâce à un transistor de spin nucléaire, est

composé d’un aimant à molécule unique couplé à des électrodes source, drain et grille.

Il nous a permis de réaliser la lecture électrique de l’état d’un spin nucléaire unique,

par un processus de mesure non destructif de son état quantique. Par conséquent,

en sondant les états quantique de spin plus rapidement que le temps de relaxation

caractéristique de celui-ci, nous avons réalisé la mesure de la trajectoire quantique

d’un qubit nucléaire isolé. Cette expérience a mis en lumière le temps de relaxation

T1 du spin nucléaire ainsi que son mécanisme de relaxation dominant.

La manipulation cohérente du spin nucléaire a été réalisée en utilisant des champs

électriques externes au lieu d’un champ magnétique. Cette idée originale a plusieurs

avantages. Outre une réduction considérable du chauffage par effet Joule, les champs

électriques permettent de contrôler et de manipuler le spin unique de façon très

rapide. Cependant, pour coupler le spin à un champ électrique, un processus inter-

médiaire est nécessaire. Un tel procédé est l’interaction hyperfine, qui, si elle est

modifiée par un champ électrique, est également désigné sous le nom d’effet Stark
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hyperfin. En utilisant cet effet, nous avons mis en évidence la manipulation co-

hérente d’un spin nucléaire unique et déterminé le temps de cohérence T ∗
2 . En outre,

l’exploitation de l’effet Stark hyperfin statique nous avons permis de régler le qubit

de spin nucléaire à et hors résonance par l’intermédiaire de la tension de grille. Cela

pourrait être utilisé pour établir le contrôle de l’intrication entre les différents qubits

nucléaires.

En résumé, nous avons démontré pour la première fois la possibilité de réaliser et de

manipuler un bit quantique basé sur un aimant à molécule unique, étendant ainsi

le potentiel de la spintronique moléculaire au delà du stockage de données classique.

De plus, la grande polyvalence des molécules aimants est très prometteuse pour une

variété d’applications futures qui, peut-être un jour, parviendront à la réalisation

d’un ordinateur quantique moléculaire.
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1 | Introduction

1.1. Molecular spintronics

The computer industry developed in the course of the last 60 years from its very in-

fancy to one of the biggest global markets. This tremendous evolution was triggered

by several historical milestones. In 1947, John Bardeen and Walter Brattain pre-

sented the world’s first transistor [1] based on Walter Shockley’s field-effect theory.

Their discovery was soon after rewarded by the Nobel Prize in physics and led to

the development of today’s semiconductor industry.

Another groundbreaking discovery was made in 1977, when Alan Heeger, Hideki

Shirakawa, and Alan MacDiarmid presented the first conducting polymer [2]. Their

work opened the way for organic semiconductors, which stand for cheap and flexible

electronics like organic LEDs, photovoltaic cells, and field-effect transistors. With

still a lot of ongoing fundamental research, some fields already reached maturity.

Especially, organic LEDs became an irreplaceable part of modern televisions in the

last couple of years. The major impact of organic semiconductors was awarded by

Royal Swedish Academy of Sciences with the Nobel Price in chemistry.

On decade later, in 1988, Peter Grünberg and Albert Fert reported an effect, which

they called the giant magneto resistance (GMR) [3, 4]. In contrary to conventional

electronic devices, which use charges as carriers of information, the GMR exploits

the electronic spin degree of freedom. Their discovery led to the development of a

completely new branch of research, which is these days referred to as spintronics.

With the success of data-storage industry, in the last 25 years, devices using the

GMR effect became a part of our everyday live.

The drive for steady innovation led researchers to think about new devices which

unify these great ideas and would, therefore, be even more performing. The famous

article of Datta and Das in 1990 [5] was the first step towards a new age of spintronic

devices. Their proposal described a transistor, which could amplify signals using

spins currents only. However, for this transistor to work, efficient spin-polarization,

injection, and long relaxation times are necessary. Especially, the relaxation time is

usually limited by spin-orbit coupling and the hyperfine interaction.

1



2 1 Introduction

In this regard, organic spintronic devices might be a solution. They are known for

their intrinsically small spin scattering, which allows for long spin relaxation times

(see Fig. 1.1.1). This is because of the tiny spin-orbit interaction in organic materials.

The latter is proportional to Z4, with Z being the atomic number, which makes spin

scattering very weak in carbon based devices.

6T (ref.26)
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Figure 1.1.1.: Spin-relaxation time τs versus spin-diffusion length ls. Organic semicon-
ductors are situated in the upper left corner corresponding to long spin-lifetimes but short
diffusion lengths. The figure was taken from [6], and the used references correspond to the
ones from [6].

In this context, single-molecule magnets (SMMs) are interesting candidates as build-

ing blocks for organic spintronic devices [7, 8]. Each molecule consists of a magnetic

core, which is surrounded by organic ligands. The latter do not only protect the

core from environmental influence but also tailor its magnetic properties. Replacing

or modifying the ligands by means of organic chemistry alters the environmental

coupling and makes selective bonding to specific surfaces possible [9]. Likewise, one

can change the magnetic core, consisting of usually one or a few transition metal or

rare earth ions, to alter the spin system, the spin-orbit coupling, or the hyperfine

interaction of the molecule. Moreover, it is rather straight forward to synthesize

billions of identical copies and embed them in virtually any matrix without changing

their magnetic properties. It is this versatility, which makes them very attractive for

spintronic devices.

The first, and most prominent, single-molecule magnet is the Mn12 acetate, which

was discovered by Lis in 1980 [15]. It consists of 12 manganese atoms, which are sur-

rounded by acetate ligands (see Fig. 1.1.2(a)). Another very famous single-molecule

magnet is the Fe8 [16], consisting of eight iron(III) ions surrounded by a macrocyclic

ligand (see Fig. 1.1.2(b)). Both systems posses a total spin of S = 10 with an Ising

type anisotropy resulting in an energy barrier separating the ms = ±10 ground states

by 63 K for Mn12 acetate [17] and by 25 K for Fe8 [18]. In 1996, researches found the

first evidence of quantum properties in SMM crystals. It was observed that the mag-

netization of the crystal is able to change its orientation via a tunnel process [19, 20].
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Figure 1.1.2.: (a)The Mn12 acetate SMM consists of 8 Mn(III) atoms with S = 2 (orange)
and 4 Mn(IV) with S = 3/2 (green), which are connected via oxygen bonds. The spin of
the twelve Mn atoms adds up to S = 10. Adapted from [10]. (b) The Fe8 SMM, consists
of eight Fe(III), which are interconnected by oxygen atoms (red). Each Fe(III) has spin of
5/2, which adds up to a total spin S = 10. Adapted from [11]. (c) Zeeman diagram of the
Mn12 acetate obtained by exact numerical diagonalization. Important avoided level crossings
are indicated by red dotted lines. (d) Magnetic hysteresis measurements obtained via Hall
bar measurements of a microcrystal of Mn12tBuAc. Adapted from [12]. (e) Quantum
interference measurements obtained with a Fe8 micro crystal. Adapted from [13]. (f) Rabi
oscillations of a Fe4 nano crystal. Adapted from [14].

A few years later, it was discovered that quantum inference during the tunnel pro-

cess is possible [13]. And more recently, the coherent manipulation of the SMM’s

magnetic moment has been achieved for crystalline assemblies of SMMs [21, 22, 14].

The success of single-molecule magnets led to the discovery of a huge variety of new

systems. A property which most of the experiments with SMMs have in common,

is the use of a macroscopic amount of molecules in order to increase the detectable

magnetic signal. However, a complete new type of experiments is possible when the

molecules are measured isolated. Therefore, during the last couple of years, a lot

of effort was put into the construction of ultra sensitive detectors towards single-

molecule sensitivity.
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A promising concept to study isolated SMMs makes use of spin-polarized scanning-

tunneling spectroscopy [23]. Therein, the molecule is deposited on a single crys-

talline metallic surface and studied via the tunnel current through a tiny movable

tip. The advantage of this technique is the combination of transport measurements

with atomic resolution imaging, which makes an explicit identification of the studied

system possible. However, the electrical manipulation by means of a gate voltage is

hard to implement, and consequently, this technique comes along with a tremendous

reduction of the amount of information gained by transport measurements.

Therefore, our group followed two different strategies, both, allowing for the imple-

mentation of a back-gate, which adds an additional degree of freedom to the transport

measurements.

In the first approach, two molecules were deposited onto a carbon nanotube [24, 25].

Due to a strong exchange coupling, the first molecule spin polarizes the current

through the nanotube, whereas the second molecule acts as a detector. The conduc-

tance through the carbon nanotube is larger if the molecules were aligned parallel,

with respect to an antiparallel alignment. This spin valve effect leads to a magneto

resistance change of several hundred percent.

The second method, which was used in this thesis, traps the molecule in between to

metallic electrodes, thus, creating a single-molecule magnet spin-transitor [26, 27].

The tunnel current through the transistor becomes again spin dependent due to the

exchange coupling of the molecule’s magnetic moment with the tunnel current, giving

rise to an all electrical spin read-out.

However, in both techniques, a lack of imaging makes the unambiguous identification

of the SMM very hard. That is why our group focused on terbium double-decker

SMMs. They possess a large hyperfine splitting of molecule’s electronic ground state

levels, which can be used as a fingerprint and makes an unambiguous identification

even without imaging possible. Moreover, the strong hyperfine interaction allows

for the read-out of a single nuclear spin [26]. The latter is well protected from

the environment and, therefore, a promising candidate for quantum information

processing

1.2. Quantum information processing

The construction of a quantum computer is one of the most ambitious goals of to-

day’s scientists. The idea was already born in 1982, when Richard Feynman stated

that certain quantum mechanical effects cannot be simulated efficiently with classical

computers [28]. Three years later, David Deutsch was the first who demonstrated

that quantum computers are outperforming classical computers regarding certain

problems [29], but concrete algorithms to program such a computer remained scarce.
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The beginning of a widespread interest in quantum computation was triggered by

Peter Shor in the mid 90’s (see Fig. 1.2.1). He presented a quantum prime factoriza-

tion algorithm, which exponentially outperformed any classical algorithm [30]. Two

years later, Grover demonstrated that using a quantum computer to find an element

within an unsorted list would gain a polynomial speedup with respect to a classical

computer [31].
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Figure 1.2.1.: Number of citations in Nature and Science whose topic contained quantum
computing. Numbers were taken from Web of Science.

In analogy to the classical bit, the smallest processing unit of a quantum computer

is a quantum bit or qubit. It consists of a two level quantum system, whose states

are usually denoted as |0〉 and |1〉. The difference to a classical bit, which can be

either in 0 or 1, is that the qubit can be in the state |0〉, |1〉, or a superposition of

both. This superposition state is mathematically described as a|0〉 + b|1〉. In order

to visualize a qubit, people often refer to the Bloch sphere (see Fig. 1.2.2). Therein,

the |0〉 state corresponds to the north pole and the |1〉 state to the south pole of the

sphere. In contrary to the classical bit, which is either at the north or the south pole,

the qubit state can be at any point of the sphere, corresponding to a superposition

state.
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Figure 1.2.2.: Bloch sphere representation of a quantum bit. The two levels of a qubit |0〉
and |1〉 are represented by the north pole and the south pole of the sphere and any linear
superposition can be visualized as a point on the surface of the sphere.

The real power of a quantum computer is believed to be in its exponential growth of
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the state space with increasing number of qubits. In contrary to a classical computer,

which is able to address 2n different states with n bits, a quantum computer can

address 2n states with n bits.

Yet, to harness this power a real physical implementation of a quantum computer

is necessary. In order to decide whether or not a quantum mechanical system is

suited for constructing a quantum computer, DiVincenzo formulated the following

five criteria [32].

- Information storage on qubits: the information is encoded on a quantum prop-

erty of a scalable physical system which lives long enough to perform compu-

tations.

- Initial state preparation: the state of the qubit needs to be prepared before each

computation.

- Isolation: the qubit must be protected from decoherence by isolation from the

environment.

- Gate implementation: the manipulation of a quantum state must be performed

with reasonable precision and much faster than the decoherence time T2.

- Read-out: the final state of the qubit must be read-out with a sufficiently high

precision.

One of the most delicate criteria for any quantum mechanical system is the isolation

from the environment.

One of the earliest experiments fulfilling these criteria was performed in the group

of David Wineland [33]. To create a qubit they were using electrically trapped

ions, which were isolated from the environment using a ultra-high vacuum (see

Fig. 1.2.3(a)). In another approach the group of Serge Haroche trapped light in-

side a cavity with an extremely high quality factor (see Fig. 1.2.3(b)). Using the

light matter interaction they could read-out the quantum state of a photon. Both

Wineland and Haroche were awarded the Nobel Prize in physics in 2012.

Yet, both techniques are experimentally very demanding. In order to get an easier

access to a qubit system, researches were looking for solid state qubit systems which

can be made using standard nano-fabrication techniques. A very promising candidate

are Josephson junctions coupled to superconducting resonators [39, 40]. However,

their size of several µm makes them extremely sensitive to external noise.

Another possibility to create qubits follows the proposal of Loss and DiVincenzo [41]

(see Fig. 1.2.3(d)). Therein, the spin of electron inside a quantum dot is used as

a two level quantum system. Since they are much smaller than superconducting

circuits, they couple less strongly to the environment, but at the same time they

are also harder to detect. The first single-shot read-out of an electron spin inside a

quantum dot was reported in 2004 [42]. One year later, Stotz et al. demonstrated
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Figure 1.2.3.: Collection of different qubit types (a) ion traps taken from [34], (b) photons
in a cavity source: Nobel Price Commite, (c) superconducting ciruits taken from [35] , (d)
quantum dots, source: Vitaly Golovach, (e) diamond color centers taken from [36], (f) 31P
impurities in silicon taken from [37] and (g) molecular magnets taken from [38]. Notice
that selections focused on some important qubit families and is not a complete overview of
all existing qubits.

the coherent transport of an electron spin inside a semiconductor [43], and in 2006,

the coherent manipulation of an electron spin in a GaAs quantum dot was presented

by Koppens et al. [44].

Despite their big success, the coupling to the environment is still sufficiently strong to

destroy coherence within several hundred nanoseconds. Alternative concepts propose

the use of nuclear spins as building blocks for quantum computing since they benefit

from inherently longer coherence times compared to electronic spins, because of a

better isolation from the environment. But weak coupling comes at a price: the

detection and manipulation of individual nuclear spins remain challenging tasks.

Despite the difficulties, scientists demonstrated operating nuclear spin qubits using

optical detection of nitrogen vacancy centers [45] (Fig. 1.2.3)(e), or by performing

single-shot electrical measurements in silicon based devices [46] (Fig.1.2.3(f)) and

single-molecule magnet based devices [26, 47, 25] (Fig. 1.2.3(g)).
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Figure 1.2.4.: (a) Energy diagrams of an NV-center. The left graph depicts radiative
(green and red arrows) and non-radiative (grey arrows) transitions between the electronic
ground state and the first excited state. In the center of the graph, the Zeeman diagram
of the ground state triplet and its fine structure splitting were presented. The right graph
shows the hyperfine splitting of each electronic state. Adapted from [45]. (b) Photon-counts
histogram showing two Gausian like peaks. The left peak corresponds to the | − 1n〉 state
and the right peak to the |0n〉 and |+ 1n〉 states. Adapted from [45]. (c) Scanning electron
micrograph of a Si qubit. (d) Pulse signal of a coherent nuclear spin rotation and the
subsequent read-out. (e) Rabi oscillations of a single 31P nuclear spin. (c)-(e) were taken
from [46].

In order to solve the detection problem, the nuclear spin was measured indirectly

through the hyperfine coupling to an electronic spin. Fig. 1.2.4(a) explains this

detection scheme exemplary using a NV defect, a color center in diamond [45]. The

orbital ground state and the first excited state of the NV-center are S = 1 triplet

states. Due to spin-spin interactions both states are split into a lower energy ms = 0

(|0e〉) state and two higher energy ms = ±1 (| ± 1e〉) states. Their separation at

zero magnetic field are 2.87 GHz and 1.43 GHz for the ground state and excited

state respectively. Optical transitions in NV-centers are spin preserving, leading to

∆ms = 0. If the spin is in the ms = 0 (ms = ±1) ground state, it can only be

excited in the ms = 0 (ms = ±1) excited state. The average lifetime of the excited

state is about 10 ns. After this time, a relaxation in the corresponding ground state

takes place under the emission of a photon. If, however, the system was in the

ms = ±1 excited state, a relaxation via a non radiating metastable state into the

ms = 0 ground state is possible, causing a considerably smaller luminescence. The
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|0e〉 and the | ± 1e〉 state are therefore referred to as the bright and the dark state,

respectively. This enables the optical detection of the magnetic resonance (ODMR).

Furthermore, the relaxation process via the metastable state is pumping the system

into the |0e〉 state, which is used to prepare the electronic spin in its initial state.

The transition frequency between |0e〉 → |−1e〉 and |0e〉 → |+1e〉 can be changed by

applying an external magnetic field along the quantization axis of the NV-center (see

middle graph in Fig. 1.2.4(a)). Additionally, the hyperfine coupling to the nitrogen

isotope 14N, with a nuclear spin of I = 1, splits each electronic spin state into three,

resulting in a nuclear spin dependent transition frequency under the influence of any

external magnetic field. The three nuclear spin states will be referred to as | − 1n〉,
|0n〉, | + 1n〉. To detect the nuclear spin, the system is first pumped into the |0e〉
state using a strong laser pulse. Afterward, a microwave pulse of precise duration

and frequency is applied. If the frequency is matched to the |0e〉|−1n〉 → |−1e〉|−1n〉
level spacing, the electronic state will change from the bright into the dark state only

if the nuclear spin was in the | − 1n〉 state (see left graph in Fig. 1.2.4(a)). The read-

out is done by repeating this procedure several times and recording the luminescence

signal. If the nuclear spin was in the |0n〉 or |+ 1n〉 state, the luminescence signal is

larger than for the | − 1n〉 state (see Fig. 1.2.4(b)). Note that the detection of the

nuclear spin state was realized by the read-out of the electronic spin state.

Quite similar to nitrogen color centers in diamond are 31P impurities in silicon.

However, owing to the small band gap of silicon the detection can be done electri-

cally via a coupling to a close by quantum dot [46]. Notice that the nuclear spin

read-out is again performed by exploiting the nuclear spin dependent electron spin

resonance (ESR). Since the magnetic moment of the nuclear spin µN is about 2000

times smaller than the magnetic moment of the electronic spin µB, the manipulation

of the former happens at times scales which are three orders of magnitude longer.

In order to achieve a proper manipulation, large local AC magnetic fields are neces-

sary. The group of Morello realized these fields by on-chip microwave strip lines (see

Fig. 1.2.4(c)). The nuclear spin manipulation happened according to the following

protocol (see Fig. 1.2.4(d)). First, the nuclear spin was prepared in its initial state.

Afterward, a microwave pulse at the nuclear spin transition frequency of duration τp

was applied. Depending on the pulse duration, the nuclear spin can be flipped with

the probability Pn. Plotting Pn versus τp resulted in coherent Rabi oscillations (see

Fig. 1.2.4(e)).

Nevertheless, the time scale of a manipulation remained in the order of 100 µs due

to the tiny magnetic moment of the nuclear spin [46, 48]. Larger local alternating

magnetic fields would increase this frequency, but they are difficult to generate using

state of the art on-chip coils [49] due to the inevitable parasitic crosstalk to the

detector and neighboring spin qubits.

To solve this problem, we propose and demonstrate in this thesis the single nuclear
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spin manipulation by means of an AC electric field. Indeed, it was already suggested

by Kane [50] that the Stark effect of the hyperfine coupling could be used to tune

different 31P nuclear spins in and out of resonance using local DC gate voltages.

He, therefore, established the individual addressability by applying only a global

microwave field.

Our approach can be viewed as the extension of Kane’s proposal to AC gate voltages.

We will demonstrate coherent nuclear qubit manipulations using the hyperfine Stark

effect to transform local electric fields into effective AC magnetic fields in the order

of a few hundred mT and, hence, speeding up the clock speed of a single nuclear spin

operation by two orders of magnitudes. In addition, we show that a local static gate

voltage can shift the resonance frequency by several MHz, allowing for the individual

addressability of several nuclear spin qubits.

1.3. Thesis outline

My thesis was dedicated to study the read-out and manipulation of an isolated

nuclear spin inside a single-molecule magnet. We made use of a three terminal

transistor layout, in which the nuclear spin is electrically detected using a read-out

quantum dot.

In order to give the reader a basic understanding of how the molecular spin-transistor

works, we will recall in chapter two some fundamental transport properties of a

quantum dot. In particular, we will focus on single electron tunneling, co-tunneling,

and the Kondo effect since they are the most important transports characteristics

observed in our devices.

In the third chapter we will concentrate on the magnetic properties of an isolated

TbPc2 single-molecule magnet. A lot of attention is directed to the electronic states

of terbium ion, which are responsible for the observed magnetic properties of the

device and, therefore, of paramount importance for this thesis.

A large part of my work was also devoted to the design and the construction of

the experimental setup and is shown in chapter four. Starting from the dilution

refrigerator I will explain each important part of the experiment which was added

or modified in order to fabricate and measure a molecular spin-transistor.

Chapter five starts with explaining the mode of operation of the single-molecule

magnet spin-transistor based on a simple model. The rest of the chapter details the

conducted experiments in order to substantiate the aforementioned model.

In chapter six we will use the spin-transistor to perform a time-resolved, quantum

non-demolition read-out of the nuclear spin qubit state. We determined the re-

laxation time T1 and the fidelity of the read-out. Furthermore, the experimental
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results are compared with quantum Monte Carlo simulations in order to deduce the

dominating relaxation mechanism.

In chapter seven we propose and present the coherent manipulation of a single nuclear

spin by means of the hyperfine Stark effect. Hence, using an AC electric field we

generated and effective alternating magnetic field in the order of a few hundred

mT. These results represent the first manipulation of a nuclear spin inside a single-

molecule magnet and the first electrical manipulation of an isolated nuclear spin

qubit.
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The first single electron transistor (SET), made of small tunnel junctions, was re-

alized in the Bell Laboratories in 1987 by Fulton and Dolan [51]. Since then, the

fabrication of SETs became more and more sophisticated and allowed for operation

at room temperature [52] or as sensors for electron spin detection [42]. In this thesis,

a single electron transistor will be used to read-out the state of an isolated nuclear

spin and, therefore, a basic knowledge of the transport properties in SETs and its

associated effects such as Coulomb blockade, elastic and inelastic cotunneling, and

the Kondo effect are necessary.

2.1. Equivalent circuit

A single electron transistor consists of a conducting island or quantum dot, which

is tunnel-coupled to the source and drain leads. Due to the small size of the dot

the electronic energy levels En are discretized. In order to observe the characteristic

single electron tunneling through the device, the resistance Rt of the tunnel barriers

should be much higher than the quantum of resistance:

Rt ≫
h

e2
(2.1.1)

where h is the Planck constant and e the elementary charge. This condition ensures

that only one electron at the time is tunneling in or out of the quantum dot. A

simple model to describe the electron transport through the dot was developed by

Korotkov et al. [53], and reviewed by Kouwenhoven [54], and Hanson [55]. Therein,

the quantum dot is coupled via constant source, drain, and gate capacitors (Cs, Cd,

Cg) to the three terminals as shown in Fig. 2.1.1. By applying a voltage to the three

different terminals, the electrostatic potential Ues of the quantum dot is modified as:

Ues =
(CsVs + CdVd + CgVg)

2

2CΣ
(2.1.2)

with CΣ = Cs+Cd+Cg and Vs, Vd, and Vg being the source, drain, and gate voltages,

respectively. Furthermore, due to the Coulomb repulsion, adding an electron to the

13
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Figure 2.1.1.: Equivalent circuit of an SET. The electrostatic behavior of the dot is modeled
by capacitors to the source, drain, and gate terminals.

quantum dot with N electrons (N > 0) will cost an additional energy:

Uc =
Ec

2
=

e2

2CΣ
(2.1.3)

with Ec being the charging energy. Accordingly, to observe single electron tunneling,

temperatures smaller than Ec are required since, otherwise, the tunnel process can

be activate thermally.

Ec ≫ kBT (2.1.4)

Putting all contributions together results in the total energy U of the quantum dot

with N electrons:

U(N) =
(−e(N −N0) + CsVs + CdVd + CgVg)

2

2CΣ
+

N∑

1

En(B) (2.1.5)

where N0 is the offset charge and En(B) the magnetic field dependent single electron

energies. Experimentally, it is more convenient to work with the chemical potential,

defined as the energy difference between two subsequent charge states µdot(N) =

U(N)− U(N − 1). Inserting Eq. 2.1.5 into this expression gives:

µdot(N) =

(

N − 1

2

)

Ec −
Ec

|e| (CsVs + CdVd + CgVg) + EN (B) (2.1.6)

with EN being the energy of the Nth electron in the quantum dot. Notice that

the chemical potential depends linearly on the gate voltage, whereas the total energy

shows a quadratic dependence. Therefore, the energy difference between the chemical

potentials of different charge states remains constant for any applied voltages. The

energy to add an electron to the quantum dot is called addition energy Eadd and is

defined as the difference between to subsequent chemical potentials.

Eadd(N) = µ(N + 1)− µ(N) = Ec +∆E (2.1.7)



2.2 Coulomb blockade 15

with ∆E being the energy spacing between two discrete energy levels.

2.2. Coulomb blockade

The transport through the quantum dot is very sensitive to the alignment of the

chemical potential µ inside the dot with respect to those of the source µs and drain

µd. If we neglect the level broadening and any excited states of the quantum dot

for a moment, then the transport through the SET can be explained with Fig. 2.2.1.

Notice that Vds and Vg are in arbitrary units and Vg = 0 when µdot = µs = µd.

First we want to discuss what happens for zero bias Vds = Vd = Vs = 0. If Vg < 0,

the chemical potential of the dot is larger than the chemical potential of the leads,

and the SET is in its off state (Fig. 2.2.1(d)). Increasing Vg to zero will align the

three chemical potentials. Electrons can tunnel in and out of the dot from both sides

leading to a finite conductance and a charge fluctuation between N and N +1. This

particular working regime is called the charge degeneracy point (Fig. 2.2.1(d)). A

further increase of Vg will push the chemical potential of the dot below the ones of

source and drain, and the SET is again in its off state, but having N + 1 electrons

on the dot. Whenever the charge of the dot is fixed, the SET is in the Coulomb

blockade regime since adding another electron would cost energy to overcome the

electron-electron repulsion.

If we now increase the bias voltage to Vds 6= 0, we shift the chemical potential between

source and drain and open an energy or bias window of µs−µd = eVds, and a current

is observed even for Vg 6= 0.

The red line in Fig. 2.2.1 corresponds to the situation where the chemical potential

of the dot is aligned with µs (Fig. 2.2.1(a),(g)). Crossing this line will turn the SET

on or off, resulting in a conductance ridge along the line. The slope can be calculated

from the equivalent circuit by setting the potential difference between dot and source

to zero and is given by −Cg/(Cg + Cs).

On the other hand, if µdot is aligned with the drain chemical potential, the SET turns

also on or off, resulting in another conductance ridge (blue line in Fig. 2.2.1). Its

slope is of opposite sign and calculated by setting the potential difference between

drain and dot to zero, resulting in Cg/Cd. Therefore, inside the white region the

transistor is turned on, whereas inside the grey region the SET is Coulomb blocked.

2.3. Cotunneling effect

Up to now only transport through energetically allowed states was considered. This

is usually sufficient if the tunnel barrier resistances are larger than 1 MΩ. However,
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Figure 2.2.1.: Schematic of a stability diagram. Inside the grey regions the charge of the
quantum dot is fixed to N (d) or N+1 (e), leading to the Coulomb blockade. Likewise, inside
the white area electrons can tunnel in and out of the quantum dot. If the conductance dI/dV
is measured instead of the current I, only the red and the blue line are visible, corresponding
to a change in I. Along the red line the chemical potential of the quantum dot is aligned
with the source chemical potential, whereas along the blue line it is aligned with the drain
chemical potential.

for smaller tunnel barrier resistances, the time to exchange an electron between the

dot and the leads becomes fast enough to allow for transport through energetically

forbidden states. This is possible due to the Heisenberg uncertainty relation, which

states that a system can violate energy conservation within a very short time τ =

~/E, where E ≈ Ec for quantum dots. Therefore within the time τ an electron can

enter the quantum dot whereas another is tunneling into the leads. Since this process

involves two electrons it is called cotunneling. Note that the entire tunnel process is

considered to be a single quantum event. We distinguish in the following two different

cases of cotunneling events, namely, elastic and inelastic cotunneling [56]. If the

electron entering the quantum dot occupies the same energy level as the outgoing

one, the cotunneling is elastic and requires no additional energy (Fig. 2.3.1(a)).

Experimentally, it can be observed as a conductance background inside the Coulomb

blocked region. If, however, the electron entering the dot occupies an excited state,

separated by ∆E from the chemical potential of the electron leaving the dot, the

transport is inelastic (Fig. 2.3.1(b)). This process requires energy and happens only

at finite bias voltages with e|Vds| > ∆E. The result is a conductance step inside

the Coulomb blocked region. In the case of a very simple quantum dot as shown

in Fig. 2.3.1(c)+(d) the conductance step can be used to determine the Zeeman

splitting due to a magnetic field.
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Figure 2.3.1.: Schematic showing the elastic (a) and inelastic (b) cotunneling process.
(c) Stability diagram for a quantum dot whose ground and excited state are split by the
Zeeman energy. The conductance step inside the Coulomb blocked region (dark grey) occurs
at e|Vds| = ∆EZ and can be used to determine the Zeeman splitting. (d) Energy level
diagram of a quantum dot with zero or one electron. Due to an external magnetic field, the
degeneracy between spin up and down is lifted. The two lowest lying chemical potentials
of the quantum dot correspond to the energy difference of the Zeeman split N = 1 doublet
and the N = 0 singlet.

2.4. Kondo effect

In the 1930’s, de Haas et al. found out that while cooling down a long wire of gold, the

resistance reaches a minimum at around 10 K and increases for further cooling [57].

Later, it was discovered that this effect was correlated to the presence of magnetic

impurities, but a theoretical explanation of this phenomenon was only presented in

the 1960’s, by Jun Kondo [58]. In his model, an antiferromagnetic coupling between

the conduction electrons and the residual magnetic impurities leads to the formation

of a singlet state below a certain temperature TK (Kondo temperature). This can

be thought of a cloud of conduction electrons, screening the magnetic impurity and

therefore augmenting its effective cross section, which causes an increase in resistance.

The same effect can be found in quantum dots. If they are filled with an odd

number of electrons, its total spin S = 1/2, which makes it an artificial magnetic

impurity. If, furthermore, the coupling between the dot and the leads is large enough

(tunnel resistances below 1 MΩ), electrons from the leads try to screen the artificial

impurity by continuously flipping its spin via a tunnel process (Fig. 2.4.1(a),(b)).

This allows for a hybridization between the leads and the quantum dot, resulting

in the appearance of two peaks in the quantum dot’s DOS: one at Fermi level of

the source and one at the Fermi level of the drain (Fig. 2.4.1(c)). The conductance

through the quantum dot can be explained by the convolution of the two peaks.



18 2 Single electron transistor

Since at zero Vds the source and drain Fermi level coincide, the conductance will

have a maximum and drops to zero for higher bias voltages, resulting in a peak, or

Kondo ridge. If the temperature becomes comparable to TK, the antiferromagnetic

coupling between the magnetic impurity and the electrons in the leads is destroyed,

resulting in the suppression of the conductance peak. The temperature dependance

can be fitted by the empirical Goldhaber-Gordon equation [59]

G(T ) = G0

(
T 2

T 2
K

(21/s + 1)

)−s

+Gc (2.4.1)

and results in G(TK) = G0/2. The variable Gc accounts for a conductance offset

caused by elastic cotunneling and s = 0.22.
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Figure 2.4.1.: Kondo transport mechanism with the initial state (a) and the final state
(b). Note that the spin of the quantum dot flipped during the process. (c) The Kondo effect
creates a peak in the density of states, whose width is given by the Kondo temperature. (d)
Experimentally, the Kondo effect is observed as a conductance ridge or Kondo ridge (red
line) inside the Coulomb blockade region of the stability diagram

Another possibility to study the Kondo effect is by applying a magnetic field. For

a classical spin 1/2 in a magnetic field, the Zeeman effect will split the spin up and

down levels by gµBBc. If this splitting becomes larger than the antiferromagnetic

coupling given by 0.5kBTK [60], the Kondo ridge at zero bias is destroyed. However,

applying a positive or negative bias voltage Vds can compensate for the energy gap

when e|Vds| = gµB|B|. This leads to the revival of the Kondo effect and is observed as

two peaks, one at negative and one at positive bias. The separation of the Kondo peak

as a function of the applied magnetic field is schematically displayed in Fig. 2.4.2(a).

Using this model, the critical field can be used to estimate the Kondo temperature

and the strength of the coupling.



2.4 Kondo effect 19

If we add one electron to the quantum dot, the spin is either zero (singlet state)

or one (triplet state). In case of zero spin, no Kondo effect will be observed. If,

however, the triplet state becomes the ground state of the system, the situation

changes. Similar to the spin 1/2 Kondo effect, electrons from the leads try to screen

the artificial magnetic impurity, which now has a spin of 1. Therefore, the screening

requires two conduction channels, one for each electron of the triplet.

In quantum dots, like the ones we used in our experiments, the coupling of different

energy levels to the source and drain terminals is not symmetric in energy, resulting in

two individual Kondo temperatures TK1
and TK2

. Hence, in the temperature window

TK1
< T < TK2

the screening of channel 1 is suppressed, whereas the screening of

channel 2 is still working. This scenario is referred to as the underscreened Kondo

effect. Its signature is such that the critical field needed to quench the conductance

ridge is much smaller than 0.5kBTK [61]. This can be understood by a semi-classical

consideration of the residual spin which was left unscreened. The ferromagnetic

coupling between the two spins, which led to the formation of the triplet ground

state, results in an effective magnetic field created by the unscreened spin at the

site of the screen spin. This field weakens the antiferromagnetic coupling of the

second spin to the electrons in the leads. Hence, already at very small external

magnetic fields, the critical field is reached, leading to a shift of Bc towards zero

(Fig 2.4.2(b)). The magnitude of the shift is proportional to the ferromagnetic

exchange coupling between the two spins but cannot be determined precisely due to

the lack of knowledge of the fully screened Bc. However, it gives an estimate of its

order of magnitude.
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Figure 2.4.2.: Separation of the spin 1/2 (a) and spin 1 (b) Kondo peak as a function
of the applied magnetic field. The critical field of 0.5 T was chosen arbitrarily. The slope
corresponds corresponds to a g factor of 2. (c,d) Experimental data adapted from [61].
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3.1. Structure of TbPc2

The single molecule magnet which was investigated in this thesis is a metal-organic

complex called bisphthalocyaninato terbium(III) ([TbPc2]
−). The magnetic moment

of the molecule arises from a single terbium ion (Tb3+), situated in the center of the

molecule. It is 8-fold coordinate to the nitrogen atoms of the two phthalocyanine (Pc)

ligands, which are stacked below and above the terbium ion resulting an approximate

C4 symmetry in the close environment of the Tb. The ligands are encapsulating the

Tb3+ in order to preserve and tailor its magnetic properties. Its resemblance to

the double-decker airplane of the 1920’s is giving it its colloquial name — terbium

double-decker.

(b)(a)

Figure 3.1.1.: Side view (a) and top view (b) of the TbPc2. The pink atom in the center
of the complex is the Tb3+ ion, which is 8-fold coordinated to the nitrogen atoms (blue) of
the two phthalocyanine ligands resulting in a local approximate C4 symmetry.

3.2. Electronic configuration of Tb3+

Naturally attained 159Tb is one of the 22 elements with only one natural abundant

isotope. With an atomic number of 65, it is situated within the lanthanide series in

21
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the periodic system of elements (see Fig. 3.2.1). Its name arises from the Swedish

town Ytterby, where it was first discovered in 1843.
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Figure 3.2.1.: Periodic table of elements. The element 159Tb belongs to the lanthanide
series and possesses only one stable isotope.

The electronic structure of Tb is [Xe]4f96s2. The 4f shell, which is not completely

filled, is responsible for its paramagnetism. It is located inside the 6s, 5s, and 5p shell

and therefore well protected from the environment. Like most of the lanthanides, Tb

releases three electrons to form chemical bonds. These three electrons consist of two

6s electrons, which are on the outer most shell and therefore easy to remove, and

one 4f electron. 4f electrons are most of the time inside the 5s and 5p shell, but they

cannot come very close to the core neither, resulting in a smaller ionization energy

than for 5s and 5p electrons. Thus, the electronic structure of the Tb3+ is [Xe]4f8.

The energetic position of the different orbits and levels of the terbium ion is af-

fected by several interactions, namely, the electron-electron interaction Hee, the spin-

orbit coupling Hso, the ligand field potential Hlf , the exchange interaction Hex, the

hyperfine-coupling Hhf , and the magnetic field HZ. An overview of the magnitude

of these energetic effects on the 4f electrons is given in Tab. 3.1.

In the following we want to briefly discuss the different interactions starting with the

Zeeman effect.

3.3. Zeeman effect

From classical mechanics it is known that a magnetic moment µ exposed to an

external magnetic field B will change its potential energy by Epot = −µB. The
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interaction energy equivalent

electron-electron interaction Hee ≈ 104 cm−1

spin-orbit coupling Hso ≈ 103 cm−1

ligand-field potential Hlf ≈ 102 cm−1

exchange interaction Hex < 1 cm−1

hyperfine interaction Hhf ≈ 10−1 cm−1

magnetic field HZ at 1T ≈ 0.5 cm−1

Table 3.1.: Energy scale of different effects acting on 4f electrons. Taken from [62, 63]

.

quantum mechanical equivalent is called the Zeeman effect. To calculate the Zeeman

energy we write down the Zeeman Hamiltonian:

HZ = gµBJB (3.3.1)

where g is the Landée factor, µB = e~/2me the Bohr magneton, and J = L + S

the total angular momentum of the system. For a more general derivation of this

formula see Appendix A.1 and A.2. In the case of a free electron with J = S and

B = (0, 0, Bz), the Zeeman Hamiltonian becomes:

HZ = gµBSzBz (3.3.2)

with Sz being the Pauli matrix. Diagonalizing this Hamiltonian at different magnetic

fields results in Fig. 3.3.1, which is referred to as the Zeeman diagram. It shows that

the spin degeneracy if lifted at B 6= 0.

3.4. Electron-electron interaction

As we have seen in Tab. 3.1, the electron-electron interaction is the strongest of all

interactions and is mainly responsible for the orbital energies and the shell filling.

The latter is well explained by the famous Hund’s rules:

1. Hund’s rule: The electrons within a shell are arranged such that their total spin

S is maximized.
∑
si → max. This can be understood in terms of Coulomb

repulsion. Electrons with the same spin have to be in different orbitals due

to the Pauli principle. Since they are in different orbitals, they are in average

further apart from each other, resulting in a reduced Coulomb repulsion.
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Figure 3.3.1.: Zeeman diagram of a free electron.

2. Hund’s rule: For a given spin, the electrons are arranged within the shell such

that their total angular momentum L is maximized.
∑

li → max. This Hund’s

rule also origins from the Coulomb repulsion. Electrons with similar angular

momentum are revolving more synchronous and avoiding each other therefore

more effectively.

3. Hund’s rule: For less than half-filled sub-shells the total angular momentum J =

|L−S|, whereas for more than half filled sub-shells the total angular momentum

J = |L+ S|. This rules arises from minimizing the spin-orbit coupling energy

and cannot be explained easily with hand-waving arguments.

In order to fill up the 4f shell of Tb3+ we start with rule number one by putting

seven electrons with spin up in the seven different orbitals and therefore maximize

the spin S. The last electron is put in the ml = 3 state according to the second rule.

This already results in the final shell filling with a total spin S = 7× 1

2
− 1

2
= 3 and

an angular momentum L = 3+ 2+ 1+ 0− 1− 2− 3 + 3 = 3 as shown in Fig. 3.4.1.
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Figure 3.4.1.: Electronic structure of the Tb3+ 4f shell. L =
∑

i m
i
l = 3 and S =

∑

i m
i
s = 3

3.5. Spin-orbit interaction

The spin-orbit interaction is the coupling of the electron’s spin s with its orbital

momentum l. In the semi-classical picture the electron’s orbital motion creates a

magnetic moment µl = −µB

�
l. Furthermore, since the famous Stern-Gerlach experi-

ment from 1921, it is known that electrons possess a magnetic moment µs generated
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by its inherent spin s. Due to dipole interactions, the formerly independent mo-

menta are connected, resulting in the total momentum j = l+s. The energy change

resulting from this interaction is ∆E = −µsBl ∝ ls. Applying the correspondence

principle leads to the spin-orbit Hamiltonian Hso = ξ ls, where ξ is the one-electron

spin-orbit coupling parameter. A more exact derivation of the spin-orbit interaction

is given in Appendix A.4 for the interested reader.

Since Tb3+ has eight electrons in the 4f shell we have to consider more than just

one spin and orbital momentum. If, however, the coupling between different orbital

momenta Hli−lj = aijlilj and the different spins Hsi−sj = bijsisj is large compared to

the spin-orbit coupling Hlisi , the momenta itself couple first to a total spin S =
∑

i si

and a total orbital momentum L =
∑

i li, before coupling to the total momentum

J = L+ S, and the spin-orbit Hamiltonian modifies to:

Hso = λ(r) LS (3.5.1)

Minimizing this energy for the Tb3+ leads to the third Hund’s rule with a ground

state of J = L + S = 6, which is 2J + 1 = 13 times degenerate. All possible

combinations are displayed in Fig. 3.5.1. In the following paragraph we will see

how the spin-orbit interaction can be computed within the framework of first order

perturbation theory.
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Figure 3.5.1.: Due to the spin-orbit coupling, the total spin S, with its 2S + 1 states,
is coupling to the total orbital momentum L, with its 2L + 1 states, resulting in a total
momentum J = L+ S with (2S + 1)(2L+ 1) states.

Without spin-orbit coupling all spins would couple to the total spin S and all orbital

momenta would combine to L, leading to (2L+1)×(2S+1) degenerate states. Since

the spin-orbit contribution to the electron energy is small with respect to the electron-
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electron interaction, first-order degenerate perturbation theory can be applied. We

perform our calculations using the L and S along with their projections mL and

mS as good quantum numbers to describe our unperturbed states. To calculate the

energy correction to first order for N degenerate states, we have to write the spin-

orbit Hamiltonian in this basis as a N ×N matrix and perform an exact numerical

diagonalization. We assume that Ψ
(0)
u,v is the unperturbed electron wave function

and u, v = [0..(2L + 1) × (2S + 1)]. Applying the product ansatz splits the wave

function into a radial, angular and spin-dependent part: Ψ
(0)
u,v = |R〉|mL〉|mS〉. Since

the operators L and S are not acting on the radial part we can write the Hamiltonian

as:

Hso = ζ LS (3.5.2)

LS = LxSx + LySy + LzSz (3.5.3)

where ζ = 〈R|λ(r)|R′〉 is the one-electron spin-orbit coupling constant. In order to

expand this equation into a matrix, we make use of the following transformation:

Lx =
1

2
(L+ + L−); Ly =

1

2i
(L+ − L−) (3.5.4)

Sx =
1

2
(S+ + S−); Sy =

1

2i
(S+ − S−) (3.5.5)

with

L±|m′
L〉 =

√

L(L+ 1)−mL(mL ± 1)|m′
L ± 1〉 (3.5.6)

S±|m′
S〉 =

√

S(S + 1)−mS(mS ± 1)|m′
S ± 1〉 (3.5.7)

Inserting Eq. 3.5.4 and 3.5.5 into Eq. 3.5.2 results in the final spin-orbit Hamiltonian:

Hso = ζ

[

LzSz +
1

2
(L+S− + L−S+)

]

(3.5.8)

What is left is the definition of the operators Li and Si, with i being z, +, or −.

Each of them is defined as a generalized Pauli matrix σN of order N , with N being

(2L + 1) or (2S + 1) respectively (see Appendix A.3). To expand the dimension of

these operators to a (2L+1)×(2S+1) Hilbert space we apply the Kronecker product

⊗. It is not commutative, and the order of the multiplication needs to be preserved.

The operators Li and Si are therefore:

Li = σ2L+1
i ⊗ I

2S+1

Si = I
2L+1 ⊗ σ2S+1

i

with I
M being the identity matrix of order M . Setting ζ = −336 K and diagonalizing

the Hamiltonian results in the eigenvalues as shown in Fig. 3.5.2. The calculated
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eigenvalues and the experimentally obtained ones fit very well except for J = 6,

where higher order perturbation theory is necessary. Nevertheless, a large energy

splitting between the new ground state J = 6 and the new first excited state J = 5

of 2900 K [64, 65] is observed, making it possible to simplify the calculation of the

magnetic properties by considering the 13 ground states only.
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Figure 3.5.2.: This graph is obtained by calculating the eigenvalues of Eq. 3.5.8 and ζ =
−336K. The simulated values were shifted vertically to coincident with the values taken
from [64]. As depicted the spin-orbit coupling lifts the degeneracy of the 49 states resulting
in seven different multiplets with J = 6 as a new ground state.

As shown in Tab. 3.2 the large splitting between the ground state and the first excited

state is a general property of rare earth ions and increases with the atomic number.

ion Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+

elec. conf. 4f8 4f9 4f10 4f11 4f12 4f13

GS 7F6
6H 15

2

5I8
4I 15

2

3H6
2F 7

2

ES 7F5
6H 13

5

5I7
4I 13

2

3H5 (1) 2F 5

2

∆E (K) 2900 4300 7300 9400 11900(1) 14400

Table 3.2.: Energy splitting between the ground state (GS) |J〉 and excited state (ES)
|J − 1〉 multiplets for pure LS coupling [63, 66]. (1) For Tm3+ 3H4 lies below 3H5 [63].

3.6. Ligand-field interaction

The ligand-field theory describes the electrostatic interaction between the coordina-

tion center of a complex and its ligands, leading to a modification of the electronic

states of the former. Since the 4f shell of the lanthanides is situated inside the 5s and
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5p shell, it is to a large part protected from its surrounding environment. However,

the effect on the energy levels is still in the order of a few hundred Kelvin and acts

as a perturbation on the spin-orbit coupling. We will start our considerations with

a brief introduction into the ligand-field theory and apply this formalism to the ter-

bium double-decker in the following. The electrostatic potential Vlf created by the

ligand can be expressed in a very general way:

Vlf(r) =

ˆ

ρ(r′)

4πǫ0|r − r′|d
3R (3.6.1)

where r is the position of the electron and ρ(r′) the charge density of the ligands.

Since symmetry plays a very important role in this theory, we will express 1/|r− r′|
in terms of spherical harmonics:

1

|r − r′| =
∞∑

k=0

4π

2k + 1

rk

Rk+1

k∑

q=−k

Y q
k (Θ,Φ)Y

q
k (θ, φ) (3.6.2)

where Y q
k (Θ,Φ) describes the position of the ligands, and Y q

k (θ, φ) describes the

position of the electron. Therefore the ligand-field potential becomes:

Vlf(r) =
∞∑

k=0

k∑

q=−k

rk
4π

2k + 1
Y q
k (θ, φ)

︸ ︷︷ ︸

Cq

k

ˆ

ρ(r′)

4πǫ0Rk+1
Y q
k (Θ,Φ)d

3R

︸ ︷︷ ︸

Aq

k

(3.6.3)

The term Cq
k is the so-called Racah tensor and depends only on the ligand position.

The last term Aq
k is the geometrical coordination factor, which is a constant that

can be determined experimentally. As Vlf can be treated as a perturbation to the

spin-orbit ground-state multiplet, J remains a good quantum number, and the wave

function Ψ can be written as Ψ = |J,mJ〉. It is very convenient to replace the op-

erator Cq
k by the Stevens operators Oq

k, which are linear combinations of the total

angular momentum operators and simplify the calculation in this basis [67]. Addi-

tional factors uk (Stevens factors) account for the proper transformation [68]. The

symmetry of the Oq
k is identical to the spherical harmonics Y q

k , where k − q is the

number of nodes in the polar direction and q the number of nodes in the azimuthal

direction with −k ≤ q ≤ k. The matrices for q = 0 have only diagonal elements,

whereas for q 6= 0 off-diagonal elements occur, introducing a coupling between dif-

ferent states. The term O0
0 has spherical symmetry and gives rise to a constant

potential, which can be omitted. Furthermore, due to time reversal symmetry, all

odd values of k vanish since they involve Jz to odd powers. It is sufficient to carry

out the summation up to k ≤ 2J [7], with higher order terms being usually smaller
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than lower order terms. The ligand-field Hamiltonian Hlf is therefore:

Hlf =

∞∑

k=0

k∑

q=−k

Aq
k〈rk〉ukO

q
k(Jx, Jy.Jz) (3.6.4)

The matrix elements Oq
k of the Stevens operators are tabulated in [63] and Ap-

pendix B, and the terms Aq
k〈 and rk〉 can be determined experimentally using ab-

sorption spectra.

Now we turn to the Hamiltonian for TbPc2. Time reversal symmetry tells us that at

zero magnetic field mJ and −mJ are degenerate. Therefore, only even k values are

allowed. Due to the decreasing weight of terms with higher order, we can limit the

allowed k values to 2, 4, and 6. Furthermore, due to the local approximate C4 sym-

metry of TbPc2 the only remaining q values are q = 0, 4. With these considerations

the final Hamiltonian of the TbPc2 becomes [69]

Hlf = 〈r2〉u2 A0
2O

0
2 + 〈r4〉u4

(
A0

4O
0
4 +A4

4O
4
4

)
+ 〈r6〉u6

(
A0

6O
0
6 +A4

6O
4
6

)
(3.6.5)

with

(a)

u2 u4 u6

− 1
99

2
16335 − 1

891891

(b)

A0
2

〈
r2
〉

A0
4

〈
r4
〉

A4
4

〈
r4
〉

A0
6

〈
r6
〉

A4
6

〈
r6
〉

595.7 K -328.1 K 14.4 K 47.5 K 0 K

Table 3.3.: (a) The Stevens factors [68] and (b) the ligand-field parameters [70] for
TbPc2.

The terms O0
k, contain the operator Jz up to the power of k and are introducing a

strong uni-axial anisotropy in z-direction. As a result, the degeneracy between |J,mj〉
and |J,mj±1〉 is lifted, whereas due to the even powers of Jz the |J,mj〉 and |J,−mj〉
states remains degenerate. An exact numerical diagonalization of Hlf + gJµBJzBz

at different magnetic fields results in Fig. 3.6.1(a). The ligand field induces an en-

ergy gap of a few hundred Kelvin between the ground state |6,±6〉 and the first

excited state |6,±5〉. Therefore, already at liquid nitrogen temperatures, the mag-

netic properties of this complex are almost exclusively determined by the new ground

state doublet mJ = ±6. At room temperature the ground state population is still at

69%. If we would replace the terbium ion by another rare earth ion like Dy3+, Ho3+,

Er3+, Tm3+, or Yb3+, this splitting would decrease as shown in Fig. 3.6.2 [71]. The

terms O4
4 and O4

6 occur due to the slight misalignment between the two phthalocya-

nine ligands, which are not exactly rotated by 45 degrees. Note that for an angle of
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Figure 3.6.1.: Zeeman diagram of the TbPc2. (a) The ligand field splits the ground
state (red) and first excited state (blue) by around 600 K, leaving only two spin degrees of
freedom at low temperature, which makes the molecule an ideal two level quantum system.
Higher order excited states are |6, 0〉 (black), |6,±1〉 (green), |6,±2〉 (orange), |6,±3〉 (grey)
and |6,±4〉 (purple). (b) Additional terms in the ligand field Hamiltonian (A4

4, A
4
6) lift the

degeneracy of the ground state doublet by ∆ ≃ 1 µK and introduce an avoided level crossing
in the Zeeman diagram.

45 degrees the system would have a higher symmetry namely D4d, resulting in the

suppression of these two terms. Since the misalignment is only a few degrees, the ge-

ometrical coordination factor A4
6 is still too tiny to be measured and can be omitted.

The term O4
4 contains the operators J4

+ and J4
−, which are mixing the ground state

doublet and lift their degeneracy by ∆ ≃ 1 µK (see Fig. 3.6.1(b)). This so-called

avoided level crossing gives rise to zero field tunneling of the magnetization, which

will be explained in Section 3.8.1.

Ln= Tb Dy Ho Er Tm Yb
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Figure 3.6.2.: Crystal field splitting of the bis-phthalocyaninato complex with different
rare earth atoms as coordination centers (adapted from [71]).
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3.7. Hyperfine interaction

The nucleus of the terbium ion has, besides its electrical charge, also an inherent

angular moment I = 3/2, resulting in an additional magnetic dipole moment:

µI = gIµNI (3.7.1)

with gI = 1.354 [72] and µN the nuclear magneton. Similar to the spin-orbit interac-

tion, this magnetic moment interacts via dipole coupling with the magnetic moment

µJ created by total angular momentum J . The Hamiltonian accounting for this

interaction is formulated as:

Hdip = A IJ (3.7.2)

IJ = IzJz +
1

2
(I+J− + I−J+) (3.7.3)

with A being the hyperfine constant. To obtain Eq. 3.7.3 we use the same transfor-

mation as in Eq. 3.5.4.

In addition, the nuclear spin possesses an electric quadrupole moment which makes

it sensitive to electric field inhomogeneities, such as produced by the electrons in the

4f orbitals. The Hamiltonian which accounts for this interaction can be written as:

Hquad = P (IJ)2 (3.7.4)

(IJ)2 = (IzJz +
1

2
(I+J− + I−J+))

2 (3.7.5)

with P being the hyperfine quadrupole constant. The hyperfine Hamiltonian is

now simply the sum of the magnetic dipole interaction and the electric quadrupole

contribution.

Hhf = A IJ + P (IJ)2 (3.7.6)

For the terbium ion the two parameters A and P are given in Tab. 3.4.

A P

24.9 mK 0.4 mK

Table 3.4.: Hyperfine constant A and the quadrupole parameter P for the terbium ion
according to Ishikawa et al. [70].

By diagonalizing the full Hamiltonian

H = Hlf +Hhf +HZ (3.7.7)

at different magnetic fields and plotting the eight lowest lying eigenvalues, we obtain
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Figure 3.7.1.: (a) Zeeman diagram of the TbPc2. The colored rectangles indicate avoided
level crossing between two states of opposite electronic spin and identical nuclear spin. (b)
Energy spacing between the different nuclear spin states.(c) Magnification of the avoided
level crossing between |6, 3

2
〉 and | − 6, 3

2
〉.

Fig. 3.7.1(a). Due to the hyperfine interaction each electronic ground state is split

in to four. The lines with a positive (negative) slope correspond to the electronic

spin |+6〉 (|−6〉) and lines with the same color (blue, green, red, black) to the same

nuclear spin state (|+3/2〉, |+1/2〉, |−1/2〉, |−3/2〉). The splittings of the electronic

levels are unequal due to the quadrupole contribution of the hyperfine interaction

and calculated as 2.(5) GHz, 3.(1) GHz and 3.(7) GHz as depicted in Fig. 3.7.1(b).

Moreover, the anticrossing, which was formerly at B = 0 T, is now split into four

anticrossings, one for each nuclear spin state (colored rectangles in Fig. 3.7.1(a)).

The energy gap at each anticrossing remains about 1 µK (Fig. 3.7.1(c)).

3.8. Magnetization reversal

Changing the external magnetic field parallel to the easy axis of the TbPc2 allows

for the reversal of the molecule’s magnetic moment. Hence, when sweeping the

magnetic field periodically between positive and negative values we can measure a

hysteresis loop as depicted in Fig. 3.8.1(a). Is shows that the magnetization reverses

in a step-like shape at small magnetic fields, followed by a continuous reversal at

larger magnetic fields. The hysteresis shape can be understood by considering two

completely different reversal mechanisms: a direct relaxation, dominating at larger

magnetic fields; and the quantum tunneling of magnetization, dominating at small

magnetic fields.
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Figure 3.8.1.: (a) Normalized hysteresis loop of a single TbPc2 single molecule magnet
obtained by integration of 1000 field sweeps. Adapted from [26]. (b) Zeeman diagram
calculated by diagonalizing Eq. 3.7.7. The steps in the hysteresis loop of (a) coincide with the
avoided level crossings and are caused by the quantum tunneling of magnetization (QTM).
The remaining magnetization reversal of (a) can be explained by direct transitions (DT)
from the excited state into the ground state involving the creation of a phonon.

3.8.1. Quantum tunneling of magnetization

The quantum tunneling of magnetization (QTM) is a tunnel transition between two

different spin states |S,ms〉 and |S,m′
s〉. It requires a finite overlap of the two wave-

functions, which is caused by off-diagonal terms in the Hamiltonian. Since these

terms are usually small compared to the diagonal terms, the overlap is negligible

except for those longitudinal magnetic fields, where the diagonal terms in the Hamil-

tonian start to vanish. The consequence is the formation of an avoided energy level

crossing at those magnetic fields (see Fig. 3.8.2). When sweeping the longitudinal

magnetic field over this anticrossing (see Fig. 3.8.2) the spin can tunnel from the

|S,ms〉 into |S,m′
s〉 state with the probability P given by the Landau-Zener for-

mula [73, 74]:

Pm,m′ = 1− exp
(

− π∆m,m′

2~gµB|m−m′|µ0dH||/dt

)

(3.8.1)

Formula 3.8.1 states that the transition probability increases exponentially with the

level splitting ∆ and decreases exponentially with the sweep-rate µ0dH||/dt of the

longitudinal magnetic field.

As described in section 3.7 the TbPc2 possesses four of these avoided level crossings.

This results in four distinct steps at small magnetic field in Fig. 3.8.1(a), which can
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Figure 3.8.2.: Avoided level crossing between the two states |S,ms〉 and |S,m′
s〉, which

leads to the quantum tunneling of magnetization. While sweeping the parallel field over
the anticrossing the probability P to tunnel from one state into the other is given by the
Landau-Zener formula (Eq. 3.8.1).

be used as a fingerprint to identify the single-molecule magnet, as it was shown by

Vincent et al. [75].

3.8.2. Direct transtions

In addition to the QTM, the magnetic moment of the molecule can reverse in a direct

transition. This is an inelastic process and involves the creation and/or annihilation

of phonons to account for the energy and momentum conservation. Therefore, this

process is often referred to as phonon assisted or spin-lattice relaxation.
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Figure 3.8.3.: Phonon assisted relaxation. (a) Direct relaxation into the ground state
under the emission of a phonon with energy ~ω. (b) The two phonon Orbach process
involves the absorption of a phonon of energy ~ω1, exciting the molecule into the state |e〉,
and a subsequent emission of another phonon of energy ~ω2, relaxing the molecule into its
ground state. (c) The two phonon Raman process is similar to the Orbach process, however,
the excited state |e〉 is a virtual state.

Depending on the temperature we can distinguish between three types of relaxation

processes. At low temperature the spin of an SMM is most likely reversed in a di-

rect relaxation process under the emission of one phonon to the thermal bath (see

Fig. 3.8.3(a)). This process becomes more likely at higher magnetic fields and scales

with (µ0H)3. Increasing the temperature allows for a two phonon relaxation pro-
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cess. Therein, the molecule is excited into the state |e〉 while absorbing a phonon

of energy ~ω1 and subsequently relaxes into the ground state via the emission of a

phonon of energy ~ω2. Depending on whether the excited state is a real or virtual

state, we distinguish between the Orbach process (see Fig. 3.8.3(b)) or the Raman

process (see Fig. 3.8.3(a)). The Orbach process shows an exponential temperature

dependence 1
τ ∝ exp(∆/kBT ), whereas the Raman process has a polynomial tem-

perature dependence 1
τ ∝ (kBT )

7, with τ being the relaxation time, ∆ = ~ω2 − ~ω1,

and T the temperature.
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4.1. Overview setup

During my thesis, my work was dedicated to the study of single-molecule magnet

based transistors in order to perform a coherent quantum manipulation and a non-

destructive read-out of a single nuclear spin. Towards this goal, I designed an ex-

perimental setup to perform ultra low noise electrical measurements at very low

temperature (40 mK), under the influence of fast sweeping 3D magnetic fields and

RF electromagnetic fields. An overview of the entire setup is presented in Fig. 4.1.1.

In interaction with the different technical supports of the Néel Institut, I fabricated

and tested the different parts of the setup, which were designed to fulfill the diverse

experimental constraints of this experiment.

The molecular spin transistor is a three terminal device, consisting of a single-

molecule magnet (TbPc2), which is electrically coupled to source, drain, and gate

electrodes. In order cool down the device to very low temperatures, it was mounted

onto the cold finger of a dilution refrigerator whose base temperature is about 40

mK.

The transistor was microbonded on a specially designed chip carrier consisting of a

50 Ω broadband waveguide and 24 DC strip lines. To avoid 4 K radiation, this chip

carrier was encapsulated in a fixed radiation shield anchorage to the mixing chamber.

A large sweep-rate, three-dimensional vector magnet, surrounding the chip carrier,

was developed to control and read-out the anisotropic electronic moment carried by

the single molecular magnet. Electrical connections of the spin transistor to the

outside world were established via low temperature pi-filters (1 MHz to 1 GHz) and

home-made Eccosorb filters (from 1 GHz). Subsequently, at room temperature, the

signal can be amplified by two different current-voltage converters. One was dedi-

cated to the electromigration procedure, while the other one was designed for very

sensitive low current measurements. They were directly connected to the cryostat

to minimize the electro-magnetic and electro-mechanic noise pick up. Additionally,

we used room temperature low pass filters and voltage dividers on the bias and gate

voltages wires to reduce the noise which was send to the sample. All this room
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converter (ADwin). The latter drives also the 3D magnetic field and triggers the

microwave pulse generator, which guarantees a synchronized operation of all devices.

The ADwin is connected over Ethernet with a standard PC, which interfaces the unit

using a home-made software called NanoQt.

A picture of the entire setup is shown in Fig. 4.1.2, whereas a more detailed descrip-

tion of all experimental parts is given in the following sections.

Figure 4.1.2.: (a) Picture of the experimental setup. The computer (f) controls the mi-
crowave source (g) and the ADwin real time data acquisition unit (c). The latter, in turn,
operates the signal transducer (d) and the power supplies of the vector magnet, which are
situated in the basement (e) via a remote terminal (b). The three LEDs in (b) indicate if
the coils are operating. In case of a quench, the corresponding power supply is shut down
automatically, and the LEDs will turn off. Further details of the individual parts of the
experiment are explained in the text.
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4.2. Dilution refrigerator

To explore of the quantum world of a molecular spin transistor a low temperature

environment is required, which makes the use of dilution refrigerators (DR) indis-

pensable. Among many different concepts, we chose to work with an inverted DR,

which combines a fast cool down (about 3 hours) with a spacious low temperature

stage. The basic working principle of this DR will be explained in the following

paragraphs.

The schematic in Fig. 4.2.1 shows that cryostat consists of six different thermal

stages, each encapsulated by another with higher temperature. Vacuum isolates one

level from another so that each stage functions as a radiation shields for the next

inner lying. To cool down the cryostat, two independent cooling circuits operate

simultaneously.

The secondary open cycle cooling circuit replaces the liquid 4He bath of conventional

cryostats (green circuit in Fig. 4.2.1). It operate with liquid 4He, which is injected

from a Dewar underneath the DR into the so called 4 K box. Since the Dewar is

slightly over pressured, a sufficiently large 4He circulation is established to guarantee

a steady state operation. An additional pump inside the circuit is only needed during

the cool down from room temperature, since high cooling power and hence high flow

rates are necessary. The liquid helium inside the 4 K box is used to cool the 4 K

stage, whereas the vapor created by the boiling liquid 4He is ejected into a spiral

counter-flow heat-exchanger. While leaving the cryostat, it gradually cools down the

primary cooling circuit as well as the 20 K and the 100 K stages.

The primary cooling circuit is a closed cycle cooling circuit, containing a mixture of
3He and 4He. It is subdivided into a fast and slow injection (blue and red circuit in

Fig. 4.2.1), both entering the DR via the counter-flow heat exchanger. Due to the

cooling power extracted from the secondary circuit, the gas is gradually cooled down

to 4.2 K. Afterward ,the fast injection is directly thermalized onto the 1 K stage and

leaves the cryostat via the mixing chamber, the discrete exchangers, and the still. It

has a larger cross section than the slow injection and is used to precool the colder

parts of the cryostat to 4.2 K during the cool down from room temperature.

The slow injection on the other hand is responsible for the condensation of the

mixture followed by the steady state operation. In order to condense the mixture,

an external compressor pressurizes the gas to 4 bar before injecting it into the spiral

heat exchanger of the cryostat. Leaving the latter at a temperature of 4.2 K, it passes

a second heat exchanger, which is terminated by a flow impedance. The resulting

pressure gradient leads to a Joule-Thomson expansion and lowers the temperature of

the gas by ≈2 K before entering the still. After having passed the latter, the mixture

traverses a set of continuous and discrete heat exchangers before being injected into

the mixing chamber.
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Figure 4.2.1.: Schematic of an inverted dilution refrigerator. The secondary cooling circuit
(green) is precooling the primary circuit consisting of the normal injection (red) and rapid
injection (blue). The latter is only used during the cool down from room temperature.
During the steady state operation, 3He is injected via the normal injection into the 3He rich
phase of mixing chamber and extracted from the diluted phase (violet).
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Figure 4.2.2.: (center) Picture of the fully wired dilution refrigerator. (a-c) Current leads
for the superconducting vector magnet consisting of copper (a), high temperature supercon-
ducting (b), and low temperature superconducting cables (c). (d) Cold stage showing the
DC and microwave connectors. The sample holder (not shown) is situated in the center of
the cold stage. (e-g) Important parts of the primary and secondary cooling circuit showing
the still (e), the 4 K box (f), and the spiral counter flow heat exchanger (g).

External pumps are decreasing the pressure inside the mixing chamber below 0.1 mbar,

allowing for another adiabatic expansion, which results in the condensation of the

mixture. The cold gas evaporating from the liquid is being pumped out through the

numerous heat-exchangers cooling down the incoming mixture. Hence, more and

more gas condenses, gradually filling up every part from the mixing chamber to the
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still with liquid. At a temperature of around 800 mK, a phase separation into a

lighter 3He rich phase and heavier 3He dilute phase is taking place inside the mixing

chamber. The exact ration of 3He/4He in each phase depends on temperature and

is shown in Fig.4.2.3.

Figure 4.2.3.: Phase diagram of liquid 3He and 4He mixtures at saturated vapour pressure
taken from [76]. Below the critical temperature of 867 mK, the mixture separates into two
phases, a 3He rich and a 3He diluted phase.

The diluted phase expands from the bottom of the mixing chamber to the still. It

contains mainly super-fluid 4He, which can be viewed as inert and noninteracting

with the 3He. Nevertheless, the vapor inside the still contains, despite the high

concentration of 4He, 97% of 3He due to its low boiling point. By pumping on the

still and re-injecting the gas in the 3He rich phase, a 3He circulation is established. In

order to maintain the equilibrium concentration, 3He from the rich phase is pushed

into the diluted phase. This is an endothermic process, providing the cooling power

to cool down to mK temperatures. This process can also be viewed as an evaporation

of liquid 3He from the rich into the diluted phase since the 4He, which requires heat

and continues even to the lowest temperatures since the concentration of 3He in the

diluted phase remains finite. The base temperature of the cryostat is only determined

by residual heat leaks and remains usually above 10 mK for most of the DRs. A

picture of the fully mounted dilution refrigerator is shown in Fig. 4.2.2.

4.3. 3D vector magnet

The observation and manipulation of a single-molecule magnet (SMM), which is

the centerpiece of a molecular spin transistor, demands external magnetic fields in

arbitrary directions. A way to create such three dimensional fields comprises three

coils mounted perpendicular to each other like the axes of a coordinate system.

The orientation and magnitude of the magnetic field is controlled by adjusting the
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current through each coil so that the resulting field is simply the vector sum of three

respective fields.

Conventional state of the art 3D vector magnets consist of a cylindrical coil sur-

rounded by two Helmholtz coils. They are capable of creating a magnetic field of 1

T with the Helmholtz coils and around 2 T with the cylindrical coils. However, their

size is typically in the order of 200x200x200 mm. Despite the fact that they are not

fitting inside our cryostat, they have a very high inductance making it impossible to

reach high sweep rates. Furthermore, their huge heat capacity would be severely re-

tarding every cool down. Therefore, we aimed to build very small 3D vector magnets

with approximately the same magnetic field specifications. The fabrication process

was supported by Yves Deschanels from the Institute Néel.

The cryogenic environment of the DR allows for the use of superconducting wires,

which are creating much higher fields than conventional copper wires. Among the

several available types, we chose a multifilament NbTi superconducting wire embed-

ded in a CuNi matrix. The multifilament layout diminishes flux jumps and reduces

the total amount of vortices, leading to higher stability and smaller remanence. The

NbTi superconducting core is known to be less fragile than the Nb3Sn core, which

was important during the fabrication process. The CuNi matrix was chosen because

of smaller Eddy-currents compared to a pure Cu matrix, hence, allowing for higher

sweep rates.

Since the DR operates in vacuum, the maximum current per coil was fixed to 20 A

for field pulses and 10 A for steady state operation as safety precautions. Looking up

the different specifications of available SC wires, we found the low current SC wire

from SUPERCON Inc. with an outer diameter of 152 µm and 18 NbTi filaments as

most suited for our purpose.

A first design study was then carried out to optimize the central-cylindrical coil, also

referred to as the z-coil, using the COMSOL Multiphysics software. The field at

the sample, situated inside the z-coil, should be around 1 T at 10 A in order to be

comparable with commercial state of the art electromagnets. The inner diameter of

the coil was set to 6 mm, thus, being still large enough to insert the chip carrier with

the sample later on. Given the current, the wire diameter, and an ideality factor of

coil of 98%, the parameters remaining for optimization were the coil length L and the

width W of the accumulated layers. The calculated magnetic field in the parameter

space of L and W is displayed in Fig. 4.3.1. In order to maximize the field of the

other two coils, W must be as small as possible. As shown in Fig. 4.3.1 the optimal

dimensions were found to be W = 2 mm and L = 25 mm.

With the above mentioned dimensions of the z-coil (W = 2 mm and L = 25 mm),

we calculated the spacial magnetic field distribution. The result of this simulation

(Fig. 4.3.2) shows an almost uniform field distribution within a radius of 3 mm
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Figure 4.3.1.: Magnitude of the magnetic field in the center of the z-coil as a function of
the coil length L and the accumulated width W of the wire layers. The black dashed line is
the isofield line of 1 T. In order to reach 1 T at 10 A the minimum width needs to be 2 mm
resulting in a length of 25 mm.

around the center, which is about the size of our sample.

Figure 4.3.2.: Cross section of spacial magnetic field distribution of the z-coil at y = 0. A
homogeneous field of about 1 T can be found in a radius of 3 mm around the center of the
coil. Note the rotation symmetry of the field distribution around the z-axis.

Having set the dimensions of the z-coil, we started the design-study of the x and

y split-pair magnets. Their separation of 10 mm is given by the outer diameter of

the z-coil. In order to reach fields of around 1 T at 10 A, with a coil separation of

10 mm, we developed a new design concept. In a first approach, we replaced the

standard cylindrical Helmholtz coils by conically shaped coils, thus, increasing the

volume share at equal dimensions. Fixing the smaller diameter of the cone to 10

mm, we end up with two variable parameters, namely, the inner diameter D and

the coil thickness L. In order to find the optimal parameters, a second design study

was carried out. The calculated magnetic field in the parameter space of D and L is

shown in Fig. 4.3.3.
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Figure 4.3.3.: Magnitude of the magnetic field in the center of the two conically shaped
split coils as a function of the inner diameter D and the thickness L. The black dashed line
is the isofield line of 1 T. The red line correspond to the maximum field at the inner wall of
the coils. In order to reduce that maximum field, we set the dimensions to D = 8 mm and
L = 10 mm.

For engineering reasons the conical shape needed to be approximated by a step like

shape. In the first iteration, we introduced only one step in each coil. The position

of this step was subsequently optimized, by keeping the above mentioned thickness

and inner diameter, in order to obtain 1 T at 10 A in the center of the vector magnet.

The final result of the shape and magnetic field magnitude for the x and y coil is

shown in Fig. 4.3.4(a) and Fig. 4.3.4(b) respectively. Notice that the highest field of

the split coils is in the center of the inner wall and is much higher than the field at

the center of the vector magnet.

Figure 4.3.4.: Cross section of the magnetic field distribution of the x-coil (a) and y-coil
(b) at z = 0. The contour of the respective coil is shown in white, whereas the contours
of the other two coils are drawn as a grey dotted line. The generated field in the center of
the vector magnet is about 1 T at 10 A for each coil and the maximal field is around 2.7
T. Note that the field distribution of the x- and y-coil has an axial symmetry around the x-
and y-axis respectively

A picture of the fully mounted vector magnet is shown in Fig. 4.3.5. The first tests

were carried out in liquid helium. We measured the maximum magnetic field as well
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as the maximum sweep rate, the coils could resist before quenching. The results are

shown in Tab. 4.1.

x-coil y-coil z-coil

Imax 15 A 14 A 18 A

B @ 10 A 0.9 T 0.8 T 1.1 T

(dB/dt)max ≈ 1 T/s ≈ 1 T/s > 10 T/s

Table 4.1.: Benchmarks of the three different coils, which were immersed in liquid
helium.

Each coil was able to produce a field of 1 T when operated alone, however, the x and

y coil generated this field only at 11 A and 12.5 A respectively. When operating all

three coils simultaneously, the maximum field was limited to 0.9 T due the mutual

interaction.

In the vacuum environment of the dilution refrigerator, the maximum field is reduced

by ≈20% and the maximum sweep speed by a factor of 5. This is caused by the

slightly higher temperature of 4.4 K instead of 4.2 K and less efficient thermalization

of the coils. In liquid helium, any generated heat is directly mediated to the liquid

helium bath, whereas in the vacuum environment of the DR, the heat has to diffuse

to the copper thermalization of the coils, which creates a bottleneck in the thermal

transport.

Figure 4.3.5.: Picture of the fully mounted vector magnet.
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4.4. Current leads

The current leads are the electrical link between the superconducting vector magnet

and the room temperature connections outside the cryostat. To guarantee a stable

operation, an equilibrium between the wire material, the diameter, and the length

had to be found. Ideally, the material should be a very good electrical conductor

but a very bad thermal conductor.

For the low temperature part of the cryostat, i.e. at temperatures below 77 K, high

temperature superconductors (HTS) were used as current leads. Since superconduc-

tors are both perfect electrical conductors and very poor thermal conductors, they

represent the material of choice. The HTS we used in the cryostat consisted of silver

coated YBaCuO straps with a Tc of 90 K. The cross section of the straps was chosen

to sustain 40 A at 77 K, thus, leaving a safety coefficient of two. The silver coating

was needed to achieve a homogeneous temperature of the HTS along the strap. The

drawback of these kind of superconductors is their fragility. Therefore, we termi-

nated the HTS straps with low temperature superconductors of the NbTi type. This

simplifies the soldering and unsoldering of the current leads from the vector magnet,

which was necessary every time the sample is changed.

The high temperature part of the current leads was made of copper wires. Since

the resistivity and thermal conductivity of copper varies with temperature, a design

study was carried out to determine the optimal geometry. Yet, a too large diameter

results in a thermal shortcut between stages of different temperatures, whereas a too

small diameter could destroy the leads due to Joule heating. The same considerations

can be made for the wire length L, since the heat conduction is proportional to 1/L.

Therefore, a very short wire will transmit a lot of heat into the dilution fridge,

whereas a very long cable might not be able to remove the energy produced by Joule

heating and the wire possibly melts.

To work out this optimization problem, the one dimensional heat equation was solved

with the experimental boundary conditions. It is a inhomogeneous partial differential

equation and given as [77]:

dT

dt
− 1

cρ

d

dx

(

κ (T )
dT

dx

)

=
q̇

cρ
(4.4.1)

dT )

dt
− 1

cρ

dκ (T )

dx

dT

dx
− κT

cρ

d2T

d2x
=

q̇

cρ
(4.4.2)

where κ is the thermal conductivity, c the specific heat capacity, ρ the density, T

the temperature, and q̇ the heating power per unit volume. The effect of the black

body radiation was neglected since it is much smaller than the other parts of the

equation within the temperature range of the experiment. The term on the right

hand side is the source term and corresponds to the energy injected into the system.
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This energy is partly used to heat the wire (that is where the dT
dt comes from) and

is partly transported away, which gives rise to the κ
cρ

d2T
dx2 term. For a metal wire the

power q̇ due to Joule heating is given by:

q̇ =
U · I
A · L =

I2R

A · L =
I2

A2

1

σ(T )
(4.4.3)

where I is the applied current, A is the cross section area, L the length of the wire,

and σ the electrical conductivity of the metal.

The electrical conductivity σ(T ) of copper in the temperature range of 50 K to 300 K

can be modeled as [78]:

1

σ(T )
= −3.204 · 10−9 + 6.855 · 10−11 T [Ωm] (4.4.4)

Another important parameter is the thermal conductivity κ(T ) of copper. In the

range from 100 K to 300 K it can be fitted by [79]:

κ(T ) = 886− 7.462 · T + 0.045 · T 2 − 1.2331 · 10−4 · T 3 + 1.267 · 10−7 · T 4 (4.4.5)

and from 50K to 100K by [79]:

κ(T ) = 7051− 277.4T + 4.69T 2 − 0.0368T 3 + 1.106 · 10−4T 4 (4.4.6)

Since the electrical and thermal conductivity of copper increases for decreasing tem-

perature, the diameter of the leads needs to be decreased to minimize heat leaks.

For practical reasons the diameter reduction is done at two temperatures: 200 K and

100 K. Using Eq. 4.4.2 in combination with Eqs. 4.4.3- 4.4.6, the optimal parameters

for the wire length L and the diameter D at the different temperature ranges were

calculated. The optimization parameters were such that the created heat leak should

be less than 1.7 W, which corresponds to ≈ 10% of the cooling power of the primary

circuit at a 4He flow rate of 3.6 l/min; and that the temperature increase during a

steady state operation at 10 A remains smaller than 10%. The results for the three

different temperature regions are tabulated in Tab. 4.2.

L (cm) A (mm2)

300 - 200 K 30 1.5

200 - 100 K 25 0.75

< 100 K 25 0.5

Table 4.2.: Results of the numerical optimization of the heat equation for the optimal
wire length L and the optimal wire diameter D in the different temperature regions.

The values given in Tab. 4.2 do not include the size of the thermalizations, which

were chosen to be 20 cm at 200 K, 12 cm at 100K, and 16 cm at 50 K. They were

realized by gluing copper litz wires onto the current leads with a mixture of araldite
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and silver powder.

In order to operate the vector magnet, six of these current leads (two for each coil)

were fabricated. After having them installed together with the HTS, we tested the

ensemble at 10 A per lead. During the test, the temperature of the outermost stage

in the cryostat increased by about 50 K, whereas the temperature-increase of the

20 K stage was already below 1 K, so that the stable operation of the dilution fridge

was guaranteed.

4.5. Sample holder

The sample holder is the link between the sample and the cryostat. It consists

of two parts, an exchangeable chip carrier and a fixed radiation shield, which is

in direct contact with the mixing chamber of the cryostat. It is needed to block

the 4 K radiation of the vector magnet and keeps the sample at mK temperatures.

The sample holder was designed to have an independent vacuum, which protects

the sample when heating up the cryostat to room temperature. A picture of the

radiation shield is shown in Fig. 4.5.1.

Figure 4.5.1.: Radiation shield with a independent vacuum, a feed through of 24 measure-
ment lines and one mircowave line.

The chip carrier was designed to have 24 DC strip lines and one 50 Ω matched

broadband waveguide. It is connected via a 36 Pin PCI Express connector to the

radiation shield, which, when it is closed, encapsulates the chip carrier. The chip

carrier itself is made out of six copper/insulator layers, which are shown in Fig. 4.5.2.

The three top most layers contain the 24 DC strip lines, layer four, five, and six are

used for the 50 Ω matched waveguide. The DC lines are soldered to two 12 pin

Cannon connectors and the waveguide to a SMA terminated microcoax. Despite the

50 Ω matching the transmission s12 measured from the SMA connector to the end
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of the waveguide on the top layer is around -40 dBm (see Fig. 4.5.3). A large part

of the attenuation is probably coming from reflections at the PCI Express interface.

Insertion losses of the microcoax are about 10.5 dBm/meter at 1 GHz and have only

a minor influence.

Figure 4.5.2.: (1-6) Layout of the chip carrier consisting of six indipendent layers. The top
three layers contain the 24 DC strip lines and three bottom layers 50 Ω matched waveguide.
(7) Picture of the sample holder.
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Figure 4.5.3.: Microwave transmission s12 measured from the SMA connector to the end
of the waveguide using an Agilent E8362C vector network analyzer.

4.6. Filter

Most experiments exploring the quantum nature of matter are sensitive to external

noise sources, which, if not properly attenuated, decrease the coherence time of a

quantum state drastically. In general, there are three main noise source interfering

with the experiment.

The first one is the noise generated by electro-magnetic radiation. It is produced by
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any wireless communication system and is in the order of a few Hz to a few GHz, e.g.

Wifi, mobile phones, television, GPS, etc., or by improperly shielded power sources

like any switching power supply or transformer.

The second noise source is the Johnson-Nyquist thermal noise, which is the electrical

equivalent of Planck’s blackbody radiation. The noise power in Watts is given by

P = kBT∆f , where kB is the Boltzmann constant, T the temperature and ∆f the

frequency bandwidth. The magnitude of the noise is shown in Fig. 4.6.1.
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)
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Figure 4.6.1.: Power of the Johnson-Nyquist noise as a function of the bandwidth at 300
K (black), 4 K (red) and 100 mK (blue). Notice that 0 dBm corresponds to 1 mW.

The third noise source is vibrational noise, produced mainly by rotating parts, e.g.

pumps. It is in the order of a few Hz to a few hundred Hz and can be minimized by

vibrational low pass filters like a heavy stone ore metal plate and by reducing the

amount of connectors from the sample to the amplifier.

4.6.1. Low frequency filters

To protect the experimental setup from electromagnetic radiation, every incoming

and outgoing wire was shielded. Additionally, we tested low-pass filters, which can

be mounted at the 4 K stage to further attenuate the remaining electromagnetic

noise. They should have a negligible series resistance in order to be compatible with

the electromigration (see section 4.9.2). For this reason, we were looking for suitable

pi-filters, consisting of two capacitors and one inductor. Their cut-off frequency

f0 should be around 1 MHz at cryogenic temperatures in order to have enough

bandwidth for the electromigration technique. Since they will be mounted inside the

cryostat, their size should of course be as small as possible. For testing purposes,

we ordered several pi-filters with about equal size and cut-off frequency. The room

temperature transfer function s12 is shown in Fig. 4.6.2. Their cut-off frequency is

about 500 kHz with an initial attenuation of 20 dB/decade, which is increasing to
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40 dB/decade at around 5 MHz. The kink in s12 is due to asymmetrical capacitors.

In order to test their cryogenic compatibility, we performed ten temperature cycles

from 300 K to 77 K by repeatedly immersing them in liquid nitrogen. The final

transfer function s12 after the tenth cycle at 77 K is shown in Fig. 4.6.3.

All devices show a shift of f0 to higher frequencies at 77 K. This is due to a decreas-

ing susceptibility ǫr of the dielectric with temperature. Only pi-filters from EMI

Inc. with the X7R dielectric showed an acceptable temperature stability and were

therefore selected for our setup.

 

s 12
 (d

B)

−80

−60

−40

−20

0

Frequency (Hz)
105 106 107 108 109 1010

EMI T4P103D
EMI T4P502D
Tusonix 4101-008
Tusonix 4261-001
Tusonix 4701-001

Figure 4.6.2.: Transfer function s12 at 300 K for several pi-filter measured with an Agilent
E8362C vector network analyzer.
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Figure 4.6.3.: Transfer function s12 at 77 K for several pi-filter measured with an Agilent
E8362C vector network analyzer.



54 4 Experimental Details

4.6.2. High frequency filters

The attenuation of noise frequencies above 1 GHz requires a different type of filter

since discrete filters like an LC-circuit become transparent due to parasitic effects [80]

(see Fig. 4.6.2 and 4.6.3). Over the last decades, a diversity of solutions has been

proposed. The most common high frequency filters are fine-grain metal powder

filters [81, 82, 83, 84], whose attenuation is based on skin-effect damping. Those filters

are often bulky but have a very high performance. Moreover, thin coaxial cables, like

mircocoax [85] or Thermocoax [86] have been tested. They are less space consuming

but their attenuation is also smaller. A different approach involves lithographically

fabricated meander lines, which work as distributed LRC filters [87, 88, 89]. Very

recently, wires surrounded by Eccosorb, which is a microwave absorbing material,

were testes under cryogenic conditions [81]. A nice summary of different filter types

is given in [90].
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Figure 4.6.4.: Comparison of the attenuation of different filters. The Eccosorb filters were
made out of Eccosorb-coated wires enclosed in a CuNi tube with 1.5 mm in diameter.

In order to be space-efficient, we could use either the Thermocoax or Eccosorb fil-

ters. To compare the two filter techniques, we fabricated different measurement lines,

which were terminated by SMA connectors on both sides. Their attenuation was de-

termined with the Agilent E8362C vector network analyzer. The results can be seen

in Fig. 4.6.4. While at lower frequencies (≈10 MHz) the attenuation is almost simi-

lar, the Eccosorb coated lines reach -70 dB attenuation already at around 600 MHz,

the Thermocoax, however, only at around 2 GHz. As a comparison we measured also

a 1 m long line without Eccosorb, which showed as expected the worst performance

(see Fig. 4.6.4). Based on these results, we chose Eccosorb coated wires as high

frequency attenuators. The final filter was made out of 24 superconducting wires

made out of NbTi filaments embedded in a constantan matrix. They were coated
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with Eccosorb, and enclosed in a CuNi tube of 1.5 mm external diameter. The first

meter of the tube is gradually thermalized from 300 K down to 40 mK, while the

rest is thermalized to the 40 mK stage to attenuate all thermal noise sources. To be

more space efficient, the very low temperature part of the filter was rolled up in a

counterwind cylindrical coil. We chose the superconducting wires in order to keep

the series resistance low, which is of paramount importance for the electromigration

technique (see chapter 4.9.2). The constantan matrix and the CuNi tube are needed

to keep the heat leak from 300 K to 40 mK small. The attenuation of the final filter

is shown in Fig. 4.6.4 (blue curve).

4.7. Signal transducer

In section 4.6, it was already pointed out that major noise sources at room tempera-

ture are electromagnetic radiation and vibrations. They couple to the experimental

setup via ground loops, weak shielding or bad connectors. A way to curtail these

problems is to use short cables and avoid connectors wherever it is possible. There-

fore, we wanted to unify the commonly used switch box, amplifier, voltage divider,

and low pass filters in one signal transducer. The development was done in close

collaboration with Daniel Lepoittevin from the Néel Institute.

The signal transducer was designed to be compatible with the standard dilution fridge

interface (12 pin Jaeger connector) and the batches of electromigration junctions,

which have all a common source and gate, respectively (see section 4.9.2). Due to

the geometry of the 12 pin Jaeger connector, we ended up with 10 selectable signal

injections lines (drains), one signal output line (source), and one gate. Every line can

be grounded directly or via a 100 kΩ resistor. This prevents large discharge currents

during the installation of the chip carrier in the cryostat, which are caused by a

potential difference between the junctions and the dilution fridge. The drain and

gate line have additional voltage dividers in order to increase the resolution of the

data acquisition unit (see section 4.8). In addition, an offset of ±2.5 V or ±5 V can

be superimposed to the divided gate signal in order to shift the measuring range by

keeping the resolution constant. To avoid sharp transitions between different offsets,

a low pass filter with a time constant of 1 s is added to the summing amplifier.

Furthermore, all inputs are equipped with a low pass filters to reject the incoming

noise. Thereby the drain inputs have a cutoff frequency of 500 Hz and the gate input

a cutoff frequency of 200 Hz. The higher value of the drain inputs was needed in

order to transmit the lock-in signal, which can is modulated up to a few hundred

Hz. In the following a more technical description to the signal transducer is given.

The signal transducer contains two built-in IV converters. The OPA129U (box 2

Fig. 4.7.1) is an ultra low input bias current amplifier. It has a current input bias of

only 30 fA and is used for our actual measurements. It provides four selectable gains
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Figure 4.7.1.: Circuit diagram of the IV converter. Box (I) contains the fast current voltage
converter with a bandwidth of 1 MHz and an amplification of 103. This IV converter is used
for the electromigration only. Box (2) shows the ultra low noise IV converter with 4 selectable
gains used for the electrical transport measurements. The offset of the IV converter in (2)
is adjusted by the circuit embedded in (3).

(R40-R43), which are 106 - 109. Parallel to R40-R43 are the capacitors C57-C60,

which on the one hand prevent the amplifier from self-oscillation and on the other

hand determine its bandwidth.

To adjust the offset of the OPA129U the circuit in box 3 Fig. 4.7.1 is added. It

consists of a very stable current source (Ref200AU), which yields a current of ±100

µA with a precision of 0.25% for input voltages from 2.5-40 V. In the following, this

current is transformed into a voltage via the resistors R48-R50 and amplified to give

an offset compensation in the range of -30 mV to +30 mV. Moreover, it should be

noticed that the input of the OPA129U is directly soldered to source line in order to

minimize the electro-mechanical noise.

The fast feed back loop of the electromigration requires an amplifier with a large

bandwidth. Therefore, a second IV converter (LT1028CS8) is mounted inside the

signal transducer (box 1 Fig. 4.7.1). Its internal bandwidth is 75 MHz and its current

input bias is 30 nA. Due to this large value, it must be disconnected during sensitive

measurements since otherwise a huge part of the signal would be lost because of

the input-leak current. Its gain is fixed to 103, which is the optimum range for the

electromigration.
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Figure 4.7.2.: Schematic of the gate circuit. Circuit diagram of the gate circuit. The input
gate voltage is divided using the circuit in box 3. Subsequently an optional offset of 0 V,
±2.5 V or ±5 V is generated using the circuit in box 1 and added to the divided signal
using the summing amplifier in box 5. The circuit in 2 and 4 are used to match the output
impedances of 3 and 1 to 5.

The switches to select the different drain terminals have 3 positions, ground, 100 kΩ

via ground, and floating. The first two positions are used when connecting the sample

to the cryostat, whereas the latter is used during the experiment. The polarizing

resistor of the drain voltage divider was chosen to be only a fraction of the sample

resistance. To reject the input noise, an additional 500 Hz low pass filter was add to

the drain input.

The gate-circuit divides the input voltage coming from the voltage source by up to

90 (box 3 Fig. 4.7.2). Afterward, an optional offset of ±2.5 V or ±5 V is added

to the divided signal using the summing amplifier (box 5 Fig. 4.7.2). The offset is

created using the two voltage references in box 1 Fig. 4.7.2. The circuits in box 2

and 4 are unity gain buffer amplifiers, which transform the impedance of circuits 3

and 1 to almost zero Ω. Finally, the signal goes through a 30 Hz low pass filter (box

6 Fig. 4.7.2) in order to reject the low frequency noise. Fig. 4.7.3 shows the final

version of the signal transducer.

In order to analyze the performance of the high gain IV converter inside the signal

transducer we were measuring its noise level with a Stanford SR760 FFT spectrum

analyzer. To benchmark the results we did also measurements on the isolated IV

converter and a commercial low noise IV converter Femto DLPCA-200. Therefore,

we were able to verify the crosstalk to the surrounding electronics inside the signal
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Figure 4.7.3.: Picture of the signal transducer.

transducer as well as the overall performance.

A scheme of the experimental setup for measuring the input and output noise is

shown in Fig. 4.7.4 (a) and (b), respectively. Since the current noise of the inputs is

very small, an additional amplifier had to be used.

First, we disconnected the amplifier of Fig. 4.7.4 (a) in order to acquire the back-

ground signal of the setup (see green curve in Fig. 4.7.4(c)). It was found to be 50 fA

above the theoretical value of 128 fA (
√

4kBT/R), which is most likely due to addi-

tional noise of the second amplifier. Afterward, the three different IV converters were

connected to analyze their input noise. The blue, red, and black curve in Fig. 4.7.4

correspond to the isolated IV converter, the IV converter of the signal transducer,

and the Femto DLPCA-200, respectively. The noise level of the home-made IV con-

verter shifted to 340 fA at 170 Hz, which is a 260 fA above the background. Since the

blue and the red curve are almost identical, we can exclude any crosstalk between

different parts of the signal transducer with the input IV converter. If, however, the

Femto DLPCA-200 is connected to the spectrum analyzer we monitor noise level of

around 900 fA at 170 Hz, which is 720 fA above the background and therefore more

than twice the value of the OPA129U.

In Fig. 4.7.4(d) the noise levels measured at the outputs of the amplifiers are depicted.

The frequency was varied from 0 to 100+kHz, the resistor is again 1 MΩ and the

gain was fixed to 109 V/A. At frequencies below 100 Hz, the voltage noise is almost

identical for all three IV converters. The different cutoff frequencies of the two I-V

converters origin from a bandwidth of 100 Hz for the OPA129U and 1 kHz for the

Femto at the same gain. Hence, about one order of magnitude less high frequency

noise is collected but the lock-in frequency is limited values below 100 Hz at this gain.

The peak in the red curve at around 26 kHz results from a parasitic LRC oscillator
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Figure 4.7.4.: (a) Setup for measuring the spectral input noise. The resistance R was
chosen to be 1 MΩ. (b) Setup for measuring the spectral output noise with R = 1 MΩ.
(c) Spectral input noise measurements for three different amplifiers versus frequency f . (d)
Spectral output noise of three different amplifies versus frequency f . (e) Spectral output
noise versus the amplifier gain. (f) Spectral output noise versus the input resistance for
three different gains.

inside the signal transducer. Since this peak remains below the Femto noise level its

influence is considered as negligible.

In Fig. 4.7.4(e) we compared the output noise of the Femto DLPCA-200 with the

IV converter of the signal transducer for different gains at a frequency of 20 Hz and

with a resistor of 1 MΩ. At this frequency, the two curves are almost identical and

about 1.6 times higher than the theoretical value (SV = G ·
√

4kBT/R).

In Fig. 4.7.4(f) the output noise of the IV signal transducer was measured for different

gains and resistances. The good agreement between the obtained data and the

theoretical values shows the small value of extra noise added to the signal.
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4.8. Real-time data acquisition

The experimental setup required the control and read-out of multiple signals simul-

taneously. In a straight forward realization one could use several devices, linked one

to another by a common ground. This, however, induces ground loops, which would

be a major source of noise. Therefore, our motivation was to combine all tasks in one

automation unit like a computer. However, in conventional computers the operating

system is assigning priorities to different tasks. Thus, a task with low priority can be

executed with a delay of several milliseconds. Additionally, the execution of a task

with high priority is not guaranteed. Hence, the simultaneous control of different

experimental parameters cannot happen in a synchronized way with precisions below

several milliseconds.

Figure 4.8.1.: Picture of the ADwin automat showing the front panel with an 18 an 14 bit
analog input card an a 16 bit analog output card.

For this reason, we were using an ADwin system instead of a standard PC (Fig. 4.8.1).

It combines analog and digital inputs and outputs with a dedicated real-time proces-

sor and real-time operation system. It has a 16 bit output card with an integrated

D/A converter. Its voltage range is ±10 V resulting in a step size of 20V/216 =

305 µV. The input card, in contrary, has a resolution of 18 bit and an A/D converter

with readout voltages ranging from -10 V and +10 V at a resolution of 20V/218 =

75 µV. An additional 14 bit input card with a clock frequency of 50 MHz was added

to perform the electromigration using a fast feedback loop. All cards are controlled

by a 300 MHz digital signal processor (DSP), which performs tasks with a precision

of 3 ns. The response time in the feedback loop of the electromigration is 1.5 µs due

to the execution of several lines of code.

The ADwin is linked to a standard PC via an Ethernet connection and can be

programmed using NanoQt (see Fig. 4.8.2). This is a home-made software, which

was developed in our group by E. Bonet, C. Thirion and R. Picquerel. Its user
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Figure 4.8.2.: Schematic representation of the different execution levels during the data
acquisition. The user programmed Script is transcribed into different lines of C++ and
ADBasic, the latter being the native language of the ADwin system. Those lines are send
to the ADwin DSP who carries out the instructions at a frequency of 300 MHz.

interface is based on the JavaScript language and allows for the execution of user

defined scripts.

4.9. Sample fabrication

The device, which was studied in thesis, is a molecular spin-transistor. It consists of

a single-molecule magnet, which is connected to source, drain, and gate terminals.

The size of the molecule and therefore the characteristic dimension of the device

was about one nanometer. Since the smallest dimensions, which can be created

by electron beam lithography, are around 10 nm, other fabrication techniques were

necessary.

Today, there are only a few techniques available to reliably connect a single molecule

to metallic electrodes, such as a scanning tunneling microscopy [23], mechanical break

junctions [91], and electromigrated break junctions [92]. Among those techniques,

electromigration is the only one which can also implement an efficient gate to control

the chemical potential of the molecule and therefore enables us to adjust the working

point of the transistor.

The first step towards a molecular spin-transistor is the fabrication of a Nanowire

with a well define weak point. Using electromigration in the next step enables us

to craft a nanometer sized gap at the predefined breaking point of the nanowire.

In the last step, we trap a molecule inside the nanogap to complete the transistor

fabrication. In the following a more detailed explanation of the three fabrication

steps is given.

4.9.1. Nanowire fabrication

The nano fabrication of our devices was done using the clean room facilities of the

Néel Institute. In order to reduce the number of external connections per transistor,

a layout with 12 nanowires sharing a common source and gate was developed. An
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optical image of the layout is depicted in Fig. 4.9.1(a). In Fig. 4.9.1(b) we can

clearly see the 12 nanowires with their source in the middle of the image and the

U-shaped gate underneath. It was already shown by [93] that back-gated single-

molecule transistors show a very good gate response and are most compatible with

the electromigration technique.

Figure 4.9.1.: (a) Layout of an array of 12 transistors sharing a common source and gate
terminal. (b) Scanning electron microscope image showing the back gate (grey) as well
as the common source and the different drain terminals. (c) Zoom showing the nanowire
obtained by shadow mask evaporation.

The first step in the device fabrication was the deposition of the back gate (grey elec-

trode in Fig. 4.9.1(b)). In consists of a 20 nm thick gold layer, which was deposited

onto a Si/SiO2 wafer and a 3 nm Ti sticking layer using deep ultra violet optical

lithography and metal evaporation. During this process, the contact pads as well as

the U-shaped electrode were fabricated. To insulate the gate from the source and

drain terminals, a 8 nm thick HfO2 layer with a dielectric constant of ≈17 was de-

posited onto the gate by using atomic layer deposition. The thin oxide layer resulted

also in the different color of the gate with respect to source and drain. Subsequently,

we deposited the source and drain contact pads using ultra violet optical lithography

and Ti/Au metal deposition. The most important part for the electromigration is

the deposition of a nanowire with a predetermined breaking point. This step was

done using electron beam lithography and shadow mask evaporation under different

angles. A scanning electron microscope image of the constriction in the nanowire is

shown in Fig. 4.9.1(c). It has thickness of only 10 nm at the weakest point, whereas

the nanowire itself is 80 nm thick. A schematic cross section of the nanowire and

the predetermined breaking point is shown in Fig. 4.9.2.
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Figure 4.9.2.: Cross section of the nanowire and the predetermined breaking point. The
titanium sticking layers under the gold electrodes are not shown.

4.9.2. Electromigration

In order to create a nanogap between the source and drain terminal, we made use of

the electromigration technique at mK temperatures. The phenomenon of electromi-

gration is known since a long time. Especially in the 1960’s, it gained a lot of interest

since it was found to be a reason for failure of micro-electronic devices [94, 95]. The

phenomenon can be paraphrased as the diffusion of metal ions under the exposure of

large electric fields. The force applied to the each metal ion can be written as [96]:

F = Z ∗ eE, (4.9.1)

where Z* is the effective charge of the ion during the electromigration and can be

decomposed into:

Z∗ = Zel + Zwind, (4.9.2)

where Zel can be seen as the nominal charge of the ion and Zwind the momentum

exchange effect between electrons and the ion, commonly also referred to as the

electron wind [96]. In metals, only the latter contribution is responsible for the

diffusion of the ion and not the electric field. Therefore, the diffusion happens in the

direction of the electric current.

Our electromigration procedure is combination of the method of Park [92] and Stra-

chan [97]. In order to limit the Joule heating during the electromigration, we polarize

the break junction with a voltage instead of a current. The increasing resistance,

which is expected during the migration of the metal, thus, leads to a power reduction

(U2/R) instead of a power increase (I2R).

Furthermore, it was shown that a large series resistance leads to an increase of power

dissipation during the electromigration [98, 99, 100], which results in larger gaps or

even the complete destruction of the device. As already pointed out in section 4.6.2,

we were using superconducting wires inside the cryostat to reduce the total series
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resistance (120 Ω, measured from one connector outside the cryostat to another).

Moreover, we made us of the ADwin system to establish a fast feedback loop. It

continuously reads-out the resistance of the wire and turns off the polarizing voltage

within 10 µs. Since the typical time constant of the electromigration is in the order of

100 µs [101], we are able to control the size of the nanogap formation on the atomic

level.

The conductance-voltage characteristic recorded during the electromigration typi-

cally looks like Fig. 4.9.3(a). It shows a first decrease of the conductance due to

Joule heating of the metal. The subsequent increase of the conductance is caused by

a rearrangement of the metallic grain boundaries, which enlarge the average grain

size and therefore reduced the scattering at the grain boundaries. The following

sharp drop in the conductance curve is caused by the migration of the gold ions,

leading to the formation of a nm sized gap. During the last seconds of the electromi-

gration, we are often able to see quantized conductance steps, which arise from the

current transport through the last remaining gold atoms.
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Figure 4.9.3.: (a) Conductance of the break junction during the electromigration. (b)
Zoom into the grey shaded region of (a) showing quantized conductance steps.

A scanning electron microscope image of an electromigrated junction is presented in

Fig. 4.9.4. It shows the predefined breaking point of the nanowire and a nanometer

sized gap.

Figure 4.9.4.: Scanning electron microscope image of an electromigrated break junction.
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4.9.3. Fabrication of a molecular spin transistor

Applying the procedures of sections 4.9.1 and 4.9.2 allows us to create a three ter-

minal device with source, drain, and gate electrodes. In order to complete the fab-

rication of a molecular transistor, a single molecule needs to be trapped inside the

nanogap, which was formerly created by electromigration.

In the first step, we cleaned the nanowires from organic residues using acetone and

isopropanol, followed by an exposure to oxygen plasma for 2 minutes. Subsequently,

we dissolved 3 mg of TbPc2 crystals into 5 g dichlormethane and sonicated the

solution at low power for one hour. This ensures that the remaining TbPc2 clusters

are completely dissolved. Afterward, some droplets of the solution were deposited

on the nanowire chip and blow dried with nitrogen.

In the next step, we glued the chip on the sample holder and established the electrical

connections to the chip by microbonding aluminum wires. Subsequently, the sample

was mounted inside a dilution refrigerator and cooled down to mK temperatures.

Once the sample was cold, we started the electromigration to craft a nanometer gap

into the nanowire. The heat created during this process enables the molecules to

diffuse on the surface and therefore be trapped inside the gap. As a first indication

if the fabrication procedure was successful, we measured the zero bias conductance

through the device as a function of the gate voltage. If a nanometer size object was

trapped inside the nanogap, it will create a quantum dot resulting in one or more

Coulomb peaks (see chapter 2). Yet, this is not a proof that we actually trapped

a single TbPc2 molecule. Especially when using electromigration, there are many

ways of creating a quantum dot. For example a gold nanoparticle or some organic

residue, which was not completely removed during the cleaning procedure, would

result in to the same transport signature when trapped inside the nanogap. In order

to eliminate any doubt if the nanoparticle is a single TbPc2 or not, we studied

the magnetic properties of our device. As it will be shown chapter 5, the TbPc2

has a very unique magnetic signature, which can be used as a fingerprint of the

molecule. In case we did not trap any or too many nanoparticles, we heated up the

cryostat above 150 K and cooled it down again. This enables the surface diffusion of

the molecules due to thermal activation and a subsequent retrapping at a different

place. This procedure of warming up and cooling down was repeated up to ten times

before changing the sample.
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transistor

One of the major motivations to study single molecule magnets (SMMs) is to design

ultra dense data storage devices, where each bit of information is stored on the

magnetization of a single molecule. However, due to the tiny magnetic moment of

an SMM (few µB) and a size in the order of a nanometer, it is impossible to study

isolated SMMs with standard magnetometers like a micro-squid.

Therefore, we were using a completely new type of detection device — a single-

molecule magnet spin-transistor. It was fabricated using electromigration of a nanowire

at mK temperatures (see section 4.9). In this way, a nanometer sized gap was crafted

between two very clean gold terminals, in which we trapped a single TbPc2 molecule

magnet. An artistic view of the device is shown in Fig. 5.1.1. By studying the elec-

tronic transport through the device as a function of the external magnetic field, we

are able to read-out the electronic spin state of an isolated single-molecule magnet

and the nuclear spin state of a single terbium ion. The latter will be briefly discussed

at the end of this chapter and in more detail in chapters 6 and 7. This chapter will

mainly focus on operation of the spin-transistor and how it can be exploited to study

the electronic spin of a single-molecule magnet. The terminology "spin" when it is

used alone will always refer to the electronic spin.

5.1. Mode of operation

The first working molecular spin-transistor was fabricated 2012 in our group [26]

and is referred to as sample A. Later on, I fabricated two other devices, which

will be referred to as sample B and C. In order to explain the working principle of

the molecular spin-transistor, we will schematically subdivide the device into three

quantum systems, namely, a nuclear spin qubit, an electronic spin, and a read-out

quantum dot (Fig. 5.1.1(b)).

(I) The nuclear spin qubit emerges from the atomic core of Tb3+ ion. It possesses

a nuclear spin of I = 3/2 resulting in four different qubit states. Due the hyperfine

67
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Figure 5.1.1.: (a) Artist view of the single-molecule magnet spin-transistor. The ligands of
the TbPc2 are tunnel coupled to the source and drain thus creating a quantum dot, which
can be controlled by a back gate (not shown) underneath. In the center of the molecule is
a Tb3+ ion possessing an electronic spin (orange) and a nuclear spin (green). (b) Simplified
coupling scheme of the spin-transistor. It consists of three quantum systems: a nuclear spin
qubit, an electronic spin and a read-out quantum dot. The nuclear spin is coupled with the
electronic spin via the hyperfine interaction. This quantum mechanical link can be used to
map the nuclear spin state onto the electronic spin, which amplifies the magnetic signal by
≈ 103. Furthermore, the electronic spin is exchange coupled to the read-out quantum dot,
which establishes the detection of the electronic spin and therefore nuclear spin qubit.

interaction and the nuclear quadrupole moment, the degeneracy of the four levels is

lifted, resulting into four unequally spaced levels (for further details see section 3.7).

(II) The electronic spin arises from the terbium’s 4f electrons. The intrinsic spin-

orbit coupling and a strong ligand-field results in an electronic ground state doublet

of mJ = ±6 and an easy axis of magnetization perpendicular to the ligand plane.

This means that the electronic spin can be regarded as a two level system with its

eigenstates | ↑〉 and | ↓〉. The degeneracy of the doublet is lifted by the hyperfine

coupling to the nuclear qubit and splits each state into four levels, which are separated

by approximately 2.5 GHz, 3.1 GHz and 3.7 GHz [70]. For further details we refer

to sections 3.5 - 3.7.

(III) The read-out quantum dot is created by the phthalocyanine (Pc) ligands.

Their delocalized π-electron system is tunnel-coupled to the source and drain termi-

nals, thus creating a conductive island. Furthermore, a finite overlap of the π-electron

system with the terbium’s 4f wave functions gives rise to an exchange coupling be-

tween the read-out dot and the electronic spin.

Using this device we were able to read-out the electronic spin state of the TbPc2.

Due to the exchange coupling between the read-out dot and the electronic spin, a

slight modification in the read-out dot’s chemical potential is created depending on

whether the electronic spin points parallel or antiparallel to the external field. Since

the position of the chemical potential with respect to the source and drain Fermi

levels determines the conductance through the device, the two electronic spin states

can be assigned to two different conductance values. Therefore, an electronic spin
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transition from | ↑〉 → | ↓〉 or | ↓〉 → | ↑〉 results in a conductance jump.

Furthermore, we can use the device to perform a single-shot read-out of the nuclear

spin-qubit state. In contrary to the electronic spin detection, this is a two stage

process, which takes advantage of the coupling between all three quantum systems.

In the first stage, the nuclear qubit state is mapped onto the electronic spin using

the hyperfine interaction. As already pointed in chapter 3, the ligand field mixes the

two electronic ground states, resulting in an anticrossing of ∆E ≃ 1 µK close to zero

magnetic field. Sweeping the magnetic field slowly enough over such an anticrossing

gives rise to the quantum tunneling of magnetization (QTM), which reverses the

electronic spin according to the Landau-Zener probability. Due to the hyperfine

interaction we get four instead of one anticrossing, which makes the magnetic field

position of the QTM transition nuclear spin dependent(see Fig. 5.7.1(a)). In the

second stage, we read-out the position of the QTM event through a jump in the

read-out dot’s conductance and establish in this way the detection of the nuclear

spin-qubit state.

In the following sections, we will show step by step which experiments were conducted

and what conclusions were drawn in order to derive to model explained above.

5.2. Read-out quantum dot

The first experiments we performed after the electromigration of the nanowire were

low-temperature electronic transport measurements. Those were used to check whether

a nanometer object was trapped inside the nanogap. If so, we expected the object

to behave as a quantum dot coupled to the source and drain terminals, which would

result in the typical single-electron tunneling (SET) characteristics (see chapter 2).

To check for the SET behavior we measured the conductance through the transistor

as a function of the source-drain voltage Vds and the gate voltage Vg. This way, a two

dimensional map (stability diagram) like in Fig. 5.2.1(a) is obtained, where regions

with high conductance are colored in red and the regions of low conductance are

colored in blue. This stability diagram originated from device B. Fig. 5.2.1(a) shows

only one charge degeneracy point (CDP) within a wide gate voltage window. This

is an indication of a relatively large charging energy, thus, the read-out dot must be

very small. This is consistent with the claim that the quantum dot is created by the

Pc ligands, but does not yet prove our model.

Furthermore, we observed a faint Kondo ridge to the left of the CDP, which indicated

an odd number of electrons on the quantum dot and good coupling of the molecule

to the source and drain terminals. The occurrence of a Kondo peak was observed

in all three devices, indicating that a good coupling to the electrodes is probably a

requirement for a functional molecular spin-transistor. The stability diagrams of the
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other two samples are shown in Fig. 5.2.1(b) and (c) for samples A and C respectively.

They were measured for a smaller Vds window in order to protect the devices from

damage.

Figure 5.2.1.: Stability diagram of the read-out quantum dot for sample B (a), sample A
(b) and sample C (c). They were measured by sweeping source-drain voltage Vds at different
gate voltages Vg while monitoring the conductance. They all show single-electron tunneling
and a large Coulomb blockade effect, which was expected from electronic transport through
a single molecule, tunnel-coupled to source and drain electrodes. Furthermore, a Kondo peak
was observed for all devices, indicating a good coupling to the source and drain terminals.
Note that the exotic appearance of the Kondo peak in (c) will be discussed in more detail
in section 5.4.

5.3. Magneto-conductance and anisotropy

A first test to verify if the quantum dot, presented in the previous section, was

coupled to the magnetic moment of the TbPc2 molecule, is to study the conductance

through the device as a function of the magnetic field. Since the magnetic moment

of the terbium double-decker can be reversed with an external magnetic field, we

expected to see a feature of this magnetization reversal in the electronic transport.

To perform the magneto-conductance measurement, we fixed Vds at zero Volt and Vg

at a value close to the charge degeneracy point. That is where we expected the largest

sensitivity to a magnetization reversal, as a slight variation of the quantum dot’s

chemical potential results in a strong modification of the conductance. Afterward,

we swept the external magnetic field from negative to positive values (trace) and

back again (retrace) while recording the conductance through the quantum dot.
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Figure 5.3.1.: (a) Trace (blue) and retrace (red) magneto-conductance signal of sample B as
a function of H||. The conductance jumps correspond to the reversal of the electronic spin
carried by the TbPc2 SMM. (b) Two dimensional magneto-conductance signal of sample
B as a function of the external field recorded with an angular resolution of 0.5◦. The
magnetization reversal is shown as a sharp color change. The applied field to reverse the
magnetization is smallest along H|| and augments gradually with increasing angle. At an
angle of 90◦ the magnetic field is applied in the hard plane and the magnetic moment cannot
be reversed anymore.

As shown in Fig. 5.3.1(a), by sweeping the magnetic field back and forth, we observed

jumps in the read-out dot’s conductance. Moreover, the magneto-conductance sig-

nal was hysteretic, which is the signature of an anisotropic magnetic object. Every

time this object reversed its magnetization the chemical potential of the read-out

dot changed between two distinct values, giving rise to jumps in the conductance.

The amplitude of the jump was about 3 % of the total conductance value and ap-

proximately the same for all three devices.

In order to find more proofs that those conductance jumps originated from the spin

reversal of the TbPc2 SMM, we investigated the angular dependence of those jumps.

In chapter 3 we pointed out that an isolated TbPc2 molecule possesses a strong mag-

netic anisotropy, with an easy axis of magnetization perpendicular to the phthalocya-

nine plane. It was shown by spin resolved DFT calculations that this anisotropy is

preserved even when the molecule is brought to contact with a metallic surface [102]

and should therefore also be conserved in our spin-transistor configuration.

As it was shown in Fig. 5.3.1(a) the conductance through the read-out dot depends

on the orientation of the electronic spin. While at negative H|| the spin ground state

is | ↑〉 and the excited state is | ↓〉, the Zeeman effect will inverse the energies of

the two states at positive magnetic field. Therefore the observed conductance jump

during the trace sweep at B ≈ 0.2 T in Fig. 5.3.1(a) corresponds to the transition

| ↑〉 → | ↓〉 and the jump during the retrace sweep at B ≈ −0.2 T to the transition

| ↓〉 → | ↑〉.

We repeated the hysteresis measurement under different angles of the magnetic field,
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and thus scanned the magneto-conductance signal within a plane in the three dimen-

sional vector space. Between two subsequent sweeps, the vector of the magnetic field

was rotated by 0.5◦. Notice that the specific orientation of the plane was chosen prior

to the experiment in order to include the easy axis of magnetization. Subtracting

the retrace signal from the trace signal at each angle resulted in Fig. 5.3.1(b). The

sharp color change from white to red/blue indicates the spin reversal. By looking at

the angular dependence of the reversal it is evident that it becomes harder to flip the

spin, as we turn the magnetic field from H|| towards H⊥ since only the projection of

the magnetic field onto H|| is relevant. This behavior is a direct consequence of the

molecule’s magnetic anisotropy and therefore a strong evidence that the magnetic

object is a TbPc2 SMM.

The easy axis of magnetization is parallel to H||, whereas the direction along H⊥ is

called hard axis. It lies within the hard plane, which is aligned parallel to the Pc

ligands. Therefore, we can deduce the orientation of the molecule with respect to

the experiment from Fig. 5.3.1(b).

5.4. Exchange Coupling

In the previous section we stated that the origin of the magneto-conductance signal

was due to a coupling between the read-out quantum dot and the molecule’s elec-

tronic spin. In this section we are going to determine the strength of the coupling

and discuss the possible origins.

Figure 5.4.1.: (a) The conductance of sample B, at the left side of the charge degeneracy
point, is measured as a function of the source-drain voltage Vds and the external magnetic
field Bz. It shows the linear evolution of the Kondo peak with respect to the magnetic
field. The extrapolation of the linear slops shows an intersection at ±200 mT, which can be
used to estimate the magnitude of the coupling between the read-out dot and the electronic
spin. (b) Conductance measurement of sample C showing a linear decrease of the Kondo
splitting with increasing magnetic field amplitude Bz. This feature is a signature of an
antiferromagnetic coupling of the terbium’s electronic spin to the read-out quantum dot.

To estimate the magnitude of the coupling we investigated the evolution of the Kondo

peak of Fig. 5.2.1(a) (sample B) as a function of the bias voltage Vds and the applied
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magnetic field Bz. Fig. 5.4.1(a) shows that the Kondo peak is splitting linearly at a

rate of 223 µV/T with augmenting B, which is expected for a spin 1/2 and a g-factor

close to two.

By extrapolating the linear slopes at positive magnetic fields to negative fields, we

found an intersection at approximately −210 mT, which is equal to a negative crit-

ical field Bc (see section 2.4). This is in contrast to the classical spin 1/2 Kondo

effect, where the Bc is always positive and linked to the Kondo temperature TK via:

2gµBBc = kBTK. In order to explain this finding, we used the analog to the under-

screened spin 1 Kondo effect (see section 2.4), where the antiferromagnetic coupling

between the screened spin 1/2 and the electrons in the terminals is weakened by a

ferromagnetic coupling to the unscreened spin 1/2, which decreases the critical field

from finite values to almost zero Tesla [61]. In our device the negative Bc can be

interpreted as a ferromagnetic coupling between the read-out dot and the terbium’s

electronic spin. Due to the larger magnetic moment of 9µB, the antiferromagnetic

coupling to the leads is already destroyed at zero bias. To model the magnetic field

behavior, we modified the above mentioned formula to [26]:

2gµBBc = kBTK + a gµBJz (5.4.1)

where a is a negative for ferromagnetic coupling. From Fig. 5.4.1(a) we obtained

the full width at half maximum of the Kondo peak at B = 0 T of 56 µV. Using

the expression eV = kBTK, we get an estimated Kondo temperature to 650 mK. By

inserting the Kondo temperature and Bc = −210 mT into Eq. 5.4.1 we extracted a

coupling constant of a = −200 mT, indicating a strong ferromagnetic coupling.

The same experiments were performed on sample C (Fig. 5.4.1(b)) and sample A.

Also in these two samples a splitting of the Kondo peak at zero magnetic field was

observed. In contrary to sample A and B, sample C shows an antiferromagnetic

coupling to the quantum dot since the splitting decreases for increasing Bz (see

Fig. 5.4.1(b)). This behavior was modeled using a positive a in Eq. 5.4.1. Moreover,

it demonstrated that the sign of the coupling constant a must be very sensitive to

local deformations of the molecule, which are different from sample to sample. The

coupling strengths of samples A, and C were extracted following the same procedure

as explained above. Tab. 5.1 summarizes the three different values.

sample A B C

a -300 mT -200 mT +1.66 T

Table 5.1.: Summary of the extracted coupling strengths of the electronic spin to the
read-out quantum dot.

The modulus of the coupling is very large in all three samples, which makes the

exchange interaction the most likely candidate. It has been demonstrated that it can

attain values up to 7 T for a nitrogen atom inside a C60 [103] and it was presented
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that the TbPc2 molecule shows an antiferromagnetic super-exchange coupling when

deposited on a ferromagnetic surface [104].

Moreover, by considering the magnetic moment of the terbium (9µB) and the average

distance between the terbium ion and the electron on the phthalocyanine (0.7 nm),

we can estimate the dipole-dipole interaction to be about 50 mT, which is smaller

than the measured interaction and not sufficient to explain the coupling strength.

Yet, the exchange coupling is only possible if the read-out quantum dot and the

terbium ion are geometrically very close to each other. This supports the assumption

that the read-out quantum dot is created by the phthalocyanine ligands. Note that

adding one electron to the read-out dot will not affect the charge state of the Tb ion,

since this would require an oxidation or reduction of the terbium. It was shown by

Zhu et al. [105] that up to the fifth reduction and second oxidation of the molecule,

electrons are only added to the organic ligands of the double-decker, leaving the

charge state and therefore the magnetic properties of the terbium ion untouched.

5.5. 2D magneto-conductance of the read-out dot

After having quantified the strength of the coupling between the read-out quantum

dot and the electronic spin, we now investigate the magneto-conductance signal along

two different directions. Using sample A, we measured the conductance through the

read-out dot as a function of the magnetic field H⊥ perpendicular to the easy axis

of the TbPc2 at four different parallel fields H|| and vice versa (Fig. 5.5.1).

In order to assign the electronic spin state to a certain conductance value, we fitted

the data to the empirical formula

g(B||, Bt) = −α|Bt − βB|| ± γ/2|+ g0 (5.5.1)

with α = 1.38 × 10−7 S/T, β = −1.8, γ = 0.25 T and g0 = 1.307 × 10−6 S. The

fit to the spin-up conductance is depicted in blue, whereas the fit to the spin-down

conductance was colored in red in Fig. 5.5.1. We observed that the difference between

the two conductance values is constant over a large range in magnetic field but goes

to zero at a particular combination of H|| and H⊥. To get a better visualization

of this effect we simulated the two dimensional conductance map using Eq. 5.5.1

and the parameters extracted from the fits (see Fig. 5.5.2(a)). In the red area,

the conductance was larger when the spin pointed up, whereas in the blue area,

the conductance was larger when the spin pointed down. A remarkable feature is,

however, the white stripe, indicating that the two conductance values were equal.

To get a deeper understanding of the origin of the magneto-conductance signal we

used a semi-classical model to describe the read-out dot’s chemical potential. We



5.5 2D magneto-conductance of the read-out dot 75

Figure 5.5.1.: Magneto-conductance signal of sample A as a function of the transverse
field B⊥ at four different parallel fields B|| (a-d) and vice versa (e-f). The red curve is an
empirical fit to the spin-down conductance and the blue curve to the spin-up conductance.

Figure 5.5.2.: (a) Fitted difference between the spin-down and spin-up conductance as
function of the magnetic field parallel (||) and transverse (⊥) to the easy axis of the TbPc2.
(b) Zeeman energy difference of the read-out quantum dot with respect to the electronic spin
up or down state, calculated using Eq. 5.5.3 and a = 200 mT. The qualitative agreement
of the two plots shows that the magneto-conductance signal can be explained by a change
of the read-out dot’s Zeeman splitting ∆EZ with respect to the electronic spin state of the
terbium ion.

assumed that the read-out quantum dot possesses a spin S, which is exchange coupled

to the electronic spin J through aSJ . The Hamiltonian of the read-out dot exposed

to an external magnetic field Bext is given by:

H = gµBSBext + aSJ = gµBS

(

Bext +
aJ

gµB

)

(5.5.2)

with g the g-factor of the quantum dot and µB the Bohr magneton. In the semi-
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classical approach J is no longer an operator but a vector with Jz = ±6~ and

max(Jx) = max(Jy) =
√
7~. A magnetization reversal of the electronic spin was

modeled by changing Jx → −Jx, Jy → −Jy, Jz → −Jz. Like in the experiment the

external magnetic field was simulated to be in the y-z plane with B = (0, Bt, B||).

The Hamiltonian of the quantum dot is now written as:

H = gµB

[

Sy

(

B⊥ ±
aJy
gµB

)

+ Sz

(

B|| ±
aJz
gµB

)]

(5.5.3)

with Sy and Sz being the appropriate spin matrices for the spin S and the ± sign

indicating the two different spin directions | ↑〉 and | ↓〉. Assuming S = 1/2 we

can diagonalize the Hamiltonian for each electronic spin direction individually and

calculate the difference of the Zeeman splittings ∆EZ(| ↑〉)−∆EZ(| ↓〉). Doing this

at different B|| and B⊥ resulted in Fig. 5.5.2(b). The two plots in Fig. 5.5.2 show a

good qualitative agreement, especially the white region of zero sensitivity as well as

the angle with respect to B|| is very well reproduced. It shows that the origin of the

magneto-conductance signal can be explained by a shift of the quantum dot’s Zeeman

splitting depending on whether the electronic spin points parallel or antiparallel to

the external field.

5.6. Electronic spin relaxation

After having explained the coupling of the read-out quantum dot to the electronic

spin, we now focus on the electronic spin only. In this section we investigate the

relaxation behavior of the electronic spin at large magnetic fields.

From Fig. 5.3.1 we can already see that the spin relaxation at large magnetic fields

is not exactly determined by the projection on H||, which origins from the stochastic

nature of the inelastic spin reversal. It requires an energy exchange with the thermal

bath and the creation of a phonon.

In the case of an isolated terbium double-decker the energy exchange is mediated

by the ligand field. In order to quantify this effect, we will use a model taken from

Abragam and Bleaney [63].

Therein, we assume a two-level spin-system whose energies are separated by ~ω and

which is in contact with a phonon bath of temperature T . Then, the transition rates

between state |1〉 and |2〉 are given by the Einstein coefficients of absorption and

emission:

w1→2 = Bρph, (5.6.1)

w2→1 = A+Bρph = Bρphexp

(
~ω

kBT

)

(5.6.2)
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where ρph is the phonon density, B the coefficient of stimulated emission or absorption

and A the coefficient of spontaneous emission. If the spin-system is out of thermal

equilibrium, it will return to it in a characteristic time τ :

1

τ
= w1→2 + w2→1 (5.6.3)

which under substitution of Eqs. 5.6.1 and 5.6.2 results in:

1

τ
= Bρph

[

exp

(
~ω

kBT

)

+ 1

]

(5.6.4)

The phonon density of a three dimensional crystal is given as:

ρph =
3

2π2
ω2

v2
︸ ︷︷ ︸

density of states

~ω

exp
(

~ω
kBT

)

− 1
︸ ︷︷ ︸

average phonon energy

(5.6.5)

Hence, inserting this expression into Eq. 5.6.4 gives:

1

τ
=

3~ω3

2π2v3
B coth

(
~ω

2kBT

)

(5.6.6)

The lattice vibrations couple not directly to the terbium ion, instead they modulate

the ligand field. To take this indirect interaction into account we develop the ligand

field in powers of strain [106]:

V = V (0) + ǫV (1) + ǫ2V (2) + ... (5.6.7)

where the first term on the right is just a static term and the second and third

term correspond to first and second order corrections respectively. Applying Fermi’s

golden rule:

wi→j =
2π

~2

∣
∣
∣〈i|H(1) |j〉

∣
∣
∣

2
f(ω) (5.6.8)

where H(1) is the first order perturbation Hamiltonian and f(ω) the normalized

line-shape function. Inserting 2ρv2ǫ2 = ρphdω and integrating over all frequencies

results in wi→j = 2π
~2

ρph
2ρv2

. When we compare this expression with Eq. 5.6.1, we get

B = π
2π~ρv2

∣
∣V (1)

∣
∣
2
, with ρ being the density of the material. Hence, using Eq. 5.6.6

we get:
1

τ
=

3

2π~ρv5

∣
∣
∣V (1)

∣
∣
∣

2
ω3 coth

(
~ω

2kBT

)

(5.6.9)

In the case of TbPc2, the energy difference between the two spin states is ~ω =

gµB∆mjµ0H||. Furthermore, if ~ω ≫ 2kBT the hyperbolic cotangent is close to
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unity and the characteristic relaxation times is proportional to (µ0H||)
3:

1

τ
∝ α(µ0H||)

3 (5.6.10)
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Figure 5.6.1.: (a) The solid lines represent the relaxation probability Pdirect as a function
of the waiting time t at different magnetic fields H0, which are indicated in the legend. The
dashed lines are a fit to Pdirect = 1−exp(t/τ). (b) Characteristic relaxation time τ extracted
from the fits of (a) as a function of H0.

In order to verify if this model is correct within the limit of an isolated molecule,

we performed the following experiment. We prepared the spin in its ground state

by applying a large negative magnetic field of µ0H|| = −600 mT. Afterward, we

initialized the spin in its excited state by sweeping the magnetic field at 50 mT/s

to +µ0H0, which was ranging from 200 mT to 400 mT. If a magnetization reversal

occurred before reaching +µ0H0, the initialization was repeated. If, however, the

spin was properly initialized in its excited stated, we recorded the time necessary

to relax back into its ground state. We repeated this procedure 100 times at each

H0 and plotted the waiting times in a normalized histogram. Integrating the latter

led to the extraction of the relaxation probability Pdirect as a function of the waiting

time t (see Fig. 5.6.1(a)). Subsequently each curve was fitted to the function Pdirect =

1− exp(t/τ) in order to obtain the characteristic relaxation time τ at each H0. By

plotting every τ as a function of (µ0H0)
−3, a straight line can be fit to the data.

This experiment is another evidence that the observed conductance jumps were in-

deed due to the relaxation of the electronic spin. Furthermore, the single electronic-

spin quantum-system is coupled to the ligand field, which makes it behave as a

classical two level system.
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5.7. Quantum tunneling of magnetization

In the previous section, the relaxation of the magnetic moment of a single TbPc2

due to a direct transition was discussed. However, the quantum nature of single

molecule magnets allows for a second type of spin reversal, which is called quantum

tunneling of magnetization (QTM). It was first discovered by Friedman and Thomas

in 1996 [19, 20] as they measured the hysteresis loop of a Mn12 SMM. Henceforward,

it has been extensively studied by different groups on clusters or arrays of single

molecule magnets [107, 108]. Nevertheless, measuring the phenomenon on an single

molecule level is quite exclusive and was first presented in 2013 using a TbPc2 spin

valve coupled to a carbon nanotube [47].

Before explaining the experiment, we want to recall the Zeeman diagram of the TbPc2

electronic ground state doublet (see Fig. 5.7.1(a)). It shows that each electronic

state was split into four levels due to the hyperfine coupling. All lines with the

same slope correspond to the same electronic spin state and all lines with the same

color correspond to the same nuclear qubit state. Our main focus is directed on the

avoided level crossings, highlighted by colored rectangles. They were induced due

to off-diagonal terms in the ligand field Hamiltonian and mix the electronic spin-up

| ↑〉 and spin-down | ↓〉 state (see section 3.6). However, the horizontal separation

of the anticrossings is determined by the hyperfine coupling between the terbium’s

electronic and nuclear spin.

By applying an external magnetic field parallel to the easy axis of the molecule, we

move along the lines of the Zeeman diagram. Every time we pass by one of those

anticrossings, the molecule’s electronic spin is able to reverse due to a process which

is referred to as the quantum tunneling of magnetization (QTM). The probability of

the reversal PLZ is given by the Landau-Zener (LZ) formula [73, 74] :

PLZ = 1− exp
[

− π∆2

2~gJ∆mJµ0dH||/dt

]

. (5.7.1)

Since this process is only allowed in the close vicinity of the anticrossing, the elec-

tronic spin can tunnel only at four distinct magnetic fields (see Fig. 5.7.1). Therefore,

the detection of the four QTM transitions would be the final evidence that the mag-

netic object, which is coupled to the quantum dot, is without a doubt a single TbPc2

SMM.

In order to find experimental evidence of this process, we biased the spin-transistor

at Vds = 0 and set Vg to a value in the vicinity of the charge degeneracy point.

Afterward, the external magnetic field was swept from -60 mT to 60 mT and back

while measuring the conductance through the quantum dot. The recorded magneto-

conductance signal of four selected sweeps is depicted in Fig. 5.7.1(b). It shows

conductance jumps at four different magnetic fields with an amplitude of 3 % of the
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Figure 5.7.1.: (a) Zeeman diagram of the TbPc2 molecular magnet, focusing on the isolated
electronic spin ground state doublet mJ = ±6, as a function of the external magnetic field
H|| parallel to the easy-axis of magnetization. Both electronic spin states | ↑〉 and | ↓〉 are
split into four energy levels due to a strong hyperfine interaction with the Tb nuclear spin.
The ligand field induces off-diagonal terms in the spin Hamiltonian leading to avoided level
crossings (colored rectangles and inset), where quantum tunneling of magnetization (QTM)
is allowed. Note that for each QTM event the nuclear spin is preserved. Therefore, the
positions in magnetic field H||, where the electronic spin reversal happens, yields the nuclear
spin states | − 3/2〉, | − 1/2〉, | + 1/2〉 or | + 3/2〉. (b) Magneto-conductance measurement
of the read-out quantum dot. The electronic spin reversal results in a conductance jump
of about 3% of the signal. (c) Histogram of all recorded conductance jumps measures on
sample C. Is shows four nonoverlapping peaks originating from the QTM transitions at the
avoided level crossings. They are used as a fingerprint to identify the TbPc2 single molecule
magnet and establish the read-out of a single nuclear spin since they link the magnetic field
of the conductance jump to each nuclear qubit state. (d) Histogram similar to (c) measured
on sample A.

total conductance. The change from one conductance value to another originated

from the electronic spin reversal. To demonstrate that these reversals were caused by

a QTM transition, we recorded the magneto-conductance signal for several thousand

sweeps. For each electronic spin reversal, we determined the magnetic field of the

resulting conductance jump. By plotting the positions of all detected jumps in a

histogram we obtained Fig. 5.7.1(c) and (d) for samples A and C respectively. More

details on the data analysis are given in section 6.1. We observed four nonoverlapping

peaks, whose maxima coincide with the magnetic field of the four anticrossings, which

is a direct evidence that the magnetic object coupled to the read-out quantum dot

is a single terbium double-decker SMM. Moreover, the experiment establishes the
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electronic detection of the nuclear spin qubit since the position of each conductance

jump becomes nuclear spin dependent.

In the following we present the tunnel probability PQTM as a function of the sweep

rate dH||/dt using sample A and C. Focusing on the QTM probability averaged by

the four anticrossings, we swept the magnetic field back and forth from -60 mT to

+60 mT. Moreover, by limiting the magnetic field amplitude to 60 mT we could also

suppress direct transitions whose characteristic time was extrapolated to 53 minutes

at this field using Fig. 5.6.1(b). For each measurement, we checked for a conductance

jump indicating the QTM of the spin. By repeating this protocol 100 and 1000 times

for each sweep rate and counting the amount of the detected QTM transitions, we

were able to extract the tunnel probability PQTM as function of dH||/dt for samples

A and C, respectively (see Fig. 5.7.2).
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Figure 5.7.2.: Probability of observing a quantum tunneling of magnetization PQTM of a
single spin as a function of the magnetic field sweep rate µ0dH/dt for sample A (a) and C (b).
The experimental results (red dots) were fitted to the function PQTM = 1−Aexp(B/dH||/dt).

The results show an exponential increase of the tunnel probability with decreasing

sweep rate. Fitting the data to the function P = 1−Aexp(B/dH||/dt) enabled us to

extract a tunnel splitting of ∆ = 0.34 µK for sample A and ∆ = 0.8 µK for sample

C. Both values are close to the value of 1 µK determined by Ishikawa et al. [70].

However, there is a striking deviation from Eq. 5.7.1, the tunnel probability PQTM

appears to converge to 50% at high sweep rates for both samples. This implies that

there must be a second process, different from the QTM, causing a reversal.

In order to learn more about the additional transition, we determined the correlation

between subsequent measurements. Since the tunnel process is a random event, its

correlation will vanish leaving only the additional transition for the analysis. To

calculate the autocorrelation function Cn we applied the following algorithm. A

spin reversal in measurement i was saved as xi = 1 and no spin reversal resulted in
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xi = −1. Subsequently the autocorrelation function was determined as

Cn =

∑N−n
i=0 (xi − x̄)(xi+n − x)

√
∑N−n

i=0 (xi − x̄)2
√
∑N

i=n(xi − x̄)2
(5.7.2)

with N being the total number of measurements and x mean value. Fig. 5.7.3 shows

the result of this calculation up to n = 1000. In order to be truly random, the corre-

lation function must be below the 2/
√
N limit (red-dotted line), which corresponds

to the 95% fidelity of a random event. Since this is true, apart from some exceptions,

we concluded that the additional reversal process is a random event as well and has

no magnetic origin.
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Figure 5.7.3.: The autocorrelation function Cn between QTM events, which were separated
by n measurement (black line) and the 95% fidelity threshold indicating the randomness of
the autocorrelation function (red dotted line). Since Cn is most of the time below the
threshold we could reason that QTM transitions happened at random, as expected from a
quantum tunneling process.

In the following we studied the number of transitions as a function of the source-drain

offset voltage in order to analyze if additional spin reversals might be activated by

the tunnel current. Therefore, we swept the magnetic field back and forth between

-60 mT to 60 mT at 50 mT/s while gradually increasing the source-drain voltage.

Every spin reversal recorded during this measurement is marked as a black point in

Fig. 5.7.4(a). It illustrates that the four peaks, corresponding to the four different

nuclear spin states, were broadened with increasing bias voltage, and the appearance

of additional noise in between the peaks was observed. Increasing the offset above

350 µV led to total loss of the signal. Dividing Fig. 5.7.4(a) into ten intervals of

40 µV (corresponding to 800 measurements), and integrating the number of reversals

in each interval, yielded Fig. 5.7.4(b). It shows a continuous increase of spin reversals

with augmenting bias, which demonstrates the activation of the spin reversal due to

the tunnel current. We suppose that the mechanism is similar to the one presented

by Heinrich et. al [109], where tunnel electrons having an energy larger than the
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Figure 5.7.4.: (a)Electronic spin reversal as a function of the magnetic field H|| and the off-
set bias voltage Vds. (b) Integrated number of spin reversals of (a) for intervals of 800 sweeps.
The steady increase of reversals with augmenting Vds demonstrated the an activation of the
reversal due to the tunnel current and is assumed to be the reason of the offset of the QTM
probability. (c) Difference between a histogram of 1000 measurements taken at 300 µV offset
and zero offset. The perceptibility of the four peaks shows that the activation probability is
inverse proportional to the level splitting between up and down and therefore larges in the
vicinity of the anticrossing.

Zeeman splitting of a manganese atom are able to flip its spin. The difference in our

case, is that the 4f electrons of the Tb are not directly exposed to the tunnel current

as it is the case of the 3d electrons in the manganese. Therefore, we belief that the

effect is less pronounced and thus less efficient.

To find out more about the activation probability, we subtracted a histogram of

1000 measurements at 300 µV offset from a histogram acquired at zero offset (see

Fig. 5.7.4(c)). The result still exhibits four peaks, albeit broadened, which suggests

that the activated spin reversal had a higher probability in the vicinity of the four

avoided level crossings and therefore at smaller energy gaps.

Using this results, we can explain the convergence of the QTM probability to 50%.

In order to obtain a decent signal to noise ratio, lock-in amplitudes of 250 µV were

necessary. From Fig. 5.7.4(a) we see that those amplitudes are already sufficient to

activate the spin reversal around the avoided level crossing. This, in turn, would

lead to additional transitions at each avoided level crossing, which resemble QTM

events. A definite answer, however, requires theoretical modeling and is left as a
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future project.

5.8. Summary

In this chapter we were able to show that an single TbPc2 molecular magnet was

trapped in between two gold contacts, allowing for the electronic read-out of the

molecule’s spin via a quantum dot. A close investigation of the coupling between

the spin and the read-out quantum dot suggested that the latter was created by the

organic ligands of the molecule. We presented a schematic model, which was able to

describe the mode of operation of a single-molecule magnet spin-transistor, i.e., the

read-out of the electronic spin. Furthermore, we presented a study of the electronic

spin relaxation at large magnetic fields (B > 200 mT) and could extract a field

dependent relaxation time τ(B||) = 0.7(µ0H||)
−3 T3s. In the end, we investigated

the quantum tunneling of magnetization of the electronic spin. From the experiments

we extracted a tunnel splitting of 0.34 µK and 0.8 µK for samples A and C, which was

in the same order of magnitude as the theoretical values given by Ishikawa et al. [70].

Moreover, we were able to identify the four individual QTM transitions, which is the

strongest evidence that nano-object under investigation was as single TbPc2 SMM.

In the next chapter we will use those transitions to perform a time-resolved read-out

of the nuclear qubit state.
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The detection and manipulation of nuclear spins has become an important multi-

disciplinary tool in science, reaching from analytic chemistry, molecular biology, to

medical imaging and are some of the reasons for a steady drive towards new nuclear

spin based technologies. In this context, recent breakthroughs in addressing isolated

nuclear spins opened up a new path towards nuclear spin based quantum informa-

tion processing [110, 45, 26, 46]. Indeed, the tiny magnetic moment of a nuclear

spin is well protected from the environment, which makes it an interesting candidate

for storage of quantum information [50, 111]. On this account, we are going to in-

vestigate an isolated nuclear spin using a single-molecule magnet spin-transistor in

regard to its read-out fidelity and lifetime, which are important figures of merits for

quantum information storage and retrieval.

6.1. Signal Analysis

The experimental results in this chapter were obtained via electrical transport mea-

surements through a three terminal single-molecule magnet spin-transistor and by

using two different samples to demonstrate the reproducibility of the data. The spin-

transistors were placed into a dilution refrigerator with a base temperature of 150

mK for sample A and 40 mK for sample C. Each device was surrounded by a home-

made three-dimensional vector magnet and biased at Vds = 0 V. The gate voltage

Vg was adjusted in order to shift the chemical potential of the read-out dot slightly

above or below the source-drain Fermi level, resulting in the highest sensitivity of

the device.

From section 5.1, we know that the conductance of the read-out dot at given Vds

and Vg depends on the direction of the electronic spin. By sweeping the external

magnetic field parallel to the easy axis of the TbPc2, we induced reversals of the

terbium’s electronic spin at the four avoided level crossings due to a quantum tun-

neling of magnetization (QTM). These reversal result in jumps of the read-out dot’s

conductance. Since the magnetic field of the QTM transition is nuclear spin depen-

dent, each conductance jump can be assigned to the nuclear spin qubit state. In the

85



86 6 Nuclear spin dynamics - T1

following, we will describe the data treatment in order to automatize the read-out

process and explain in detail how we measured the lifetime T1 of a single nuclear

spin.
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Figure 6.1.1.: (a) Raw data showing four measurements with a spin reversal (blue, green,
red, and black curve) and one measurement without a spin reversal (purple curve). The
conductance jump was induced by a shift of the read-out dot’s chemical potential due to
the exchange coupling to the electronic spin. (b) Filtered signal of (a), which is similar
to a smoothed first derivative. Data including a reversal are transformed into peaks whose
maxima indicate the respective jump position, whereas sweeps without a reversal are strongly
suppressed. (c) Histogram of the maximum amplitudes of all filtered sweeps. Measurements
without a spin reversal (left peak) can be separated from measurements containing a reversal
(right peak) by a threshold (yellow rectangle). (d) Histogram of the jump positions of 75000
measurement whose filtered maxima were within the yellow rectangle of (c). The four peaks
originate from conductance jumps in the vicinity of the four anticrossings and allow for the
unambiguous attribution of each detected conductance jump to a nuclear spin qubit state.
The plot was generated using sample C, notice that sample A shows identical characteristics
(compare Fig. 6.4.4(a)).

Fig. 6.1.1(a) displays the raw data of five different measurements, including four

sweeps where the electronic spin reversed due to a QTM transition and one sweep

without a reversal. The conductance jump was evoked by a shift of the read-out

dot’s chemical potential due to the exchange coupling to the terbium’s electronic

spin (see chapter 5).

In order to read-out the nuclear spin state, we had to analyze if, and where a con-

ductance jump occurred during the magnetic field sweep. Therefore, the raw data

were passed through a filter, which computed the first derivative with an adjustable
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smoothing over N data points. The output of the filtered signals from Fig. 6.1.1(a)

are displayed in Fig. 6.1.1(b). The signal, which did not show a jump, is strongly

suppressed by the filter. However, the sweeps, which contained a conductance jump,

are transformed into peaks, whose maxima indicated at which magnetic field the

jumps occurred.

To obtain a good statistical average, we measured the conductance signal of 75000

magnetic field sweeps. Plotting the maximum amplitudes of all filtered data in a

histogram gave rise to Fig. 6.1.1(c). It shows that the jump amplitudes are divided

into two distinct peaks, separated by more than two orders of magnitude. The left

peak, corresponding to small amplitudes, originates from all measurements without

a reversal; whereas the right peak, corresponding to large amplitudes, finds its origin

in sweeps including a spin reversal. To sort out the measurements with spin reversals

from the rest of the data we defined a threshold indicated by the yellow rectangle. If

the maximum amplitude of the filtered signal lied within this rectangle, the sweep was

considered to contain a QTM transition and the position of the jump was stored in an

array. Subtracting the inductive field delay of the coils from the jump positions and

plotting them into a histogram results in Fig. 6.1.1(d). It shows that the conductance

jumps happened almost exclusively in the vicinity of the four avoided level crossings,

corresponding to the four nuclear spin states. Hence, we can unambiguously assign a

nuclear qubit state to each detected jump. The width of the four peaks is determined

by the lock-in time constant and the electronic noise of the setup, which leads to

a broadening much larger than the intrinsic linewidth. The error induced by our

nuclear spin read-out procedure is mainly due to inelastic electronic spin reversals

(grey data point in Fig. 6.1.1), which were misinterpreted as QTM events and is

estimated to be less than 5% for sample A and less than 4% for sample C.

6.2. Relaxation time T1 and read-out fidelity F

After being able to read out the state of an isolated nuclear spin qubit, we are going

now one step further by recording the real-time trajectory of an isolated nuclear spin.

Using sample A, we present measurements, obtained by sweeping the magnetic field

up and down between ±60 mT at 48 mT/s (2.5 s per sweep), while recording the

conductance through the read-out quantum dot (see Fig. 6.2.1(a)). As explained in

section 6.1, we can assign each conductance jump to a certain nuclear spin qubit

state and, due to the fixed frequency of the magnetic field ramp, to a certain time

(see Fig. 6.2.1(b)).

By sweeping the magnetic field faster than the relaxation time, we obtained a real-

time image of the nuclear spin trajectory. The first 2000 s of this trajectory are shown

in Fig. 6.2.2. The grey dots illustrate the position of the recorded conductance jumps.

If the jump occurred within a window of ±7 mT around the avoided level crossing
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Figure 6.2.1.: Protocol to measure the nuclear spin trajectory. (a) The magnetic field B||

is swept up and down between ±60 mT at a constant rate of 48 mT/s, corresponding to
2.5 s per sweep. (b) Each detected conductance jump can therefore be assigned to a certain
nuclear spin state at a certain time t.

(indicated by colored bars), it was assigned to the corresponding nuclear spin state.

If, however, a jump was recorded outside this window, the measurement was rejected.

The black line shows the assigned time evolution of the nuclear spin state.
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Figure 6.2.2.: First 2000 s of the nuclear spin trajectory measured using sample A. The
grey dots illustrate the recorded conductance jump. If the jump was found inside a window
of ± 7 mT (colored stripes) around one of four peaks of Fig. 6.1.1(d) it was assigned to the
corresponding nuclear spin state, otherwise the measurement was rejected. Using this data
analysis results in the single nuclear spin trajectory, shown as a black line.

Fig. 6.2.3(a) shows a magnified region of the nuclear spin trajectory including 170 s

of data. In order to access the nuclear spin relaxation time T1, we performed a bit by

bit post-processing of this data. Therefore, we extracted the different dwell times,

i.e. the time the nuclear spin remained in a certain state before going into another
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state. Plotting these dwell times for each nuclear spin state in separate renormalized

histograms yielded the black data points of Fig. 6.2.3(b)-(e).
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Figure 6.2.3.: (a) Zoom of the nuclear spin trajectory (black curve), which was obtained
from the detected conductance jumps (grey dots). Every time the nuclear spin qubit changes
over to a new state, we determined the dwell time in this state (black numbers). (b-e)
Plotting the dwell times for each nuclear spin state in separate histograms led to the black
data points. A further fitting to the exponential function y = exp(−t/T1) (red dotted line)
yielded the relaxations times T1 for each nuclear spin qubit state of sample A. (f-i) The
relaxation times T1 for sample C are obtained analog to sample A.

A further fitting to an exponential function y = exp(−t/T1) gave the nuclear spin

dependent relaxation times T1 ≃ 13 s for mI = ±1/2 and T1 ≃ 25 s for mI = ±3/2 for

sample A. The perfect exponential decay indicated that no memory effect is present

in the system. Furthermore, the obtained lifetimes were an order of magnitude larger

than the measurement interval, which denotes that the same quantum state could

be measured multiple times without being destroyed by the measurement process.

Such a detection scheme is referred to as a quantum nondemolition (QND) read-out.

Instead of demolishing the quantum system, it will only project the system onto one

of its eigenstates [112]. Notice that superposition states will be destroyed by this

projection.

Usually the Hamiltonian of the entire system can be written as H = H0 + HM +

HI, with H0 being the Hamiltonian of the quantum system under study, HM the
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Hamiltonian of measurement system and HI the interaction Hamiltonian between the

two systems. In order to perform a real QND measurement, it has been shown that

the commutator between the measured variable q and the interaction Hamiltonian

must be zero: [q,HI] = 0 [112, 113]. In our experiment the measurement variable is

Iz and the interaction is described by the hyperfine Hamiltonian Hhf = AIJ . The

latter possesses terms of A/2(I+J− + I−J+), which do not commute with Iz. This

can be seen as a deviation of the ideal QND measurement. However, the Hamiltonian

A/2(I+J−+I−J+), accounting for flip-flop processes of the nuclear and the electronic

spin represents only a weak perturbation, as it would cause additional tunnel events

at all crossings in Fig. 5.7.1(a), not marked by colored rectangles. Since Fig. 5.7.1(c)

shows only four peaks, it demonstrates that the perturbation is negligible and the

deviation from an ideal QND measurement must be small. An important point to

notice is that performing a QND measurement is equivalent to initialize the nuclear

spin in the measured state.

The read-out fidelities F are obtained by calculating the probability to stay in a

certain nuclear spin qubit state during the time necessary to measure it. Due to

the QTM probability of 51.5%, two subsequent measurements were separated by

≈ 5 s in average resulting in fidelities of F (mI = ±3/2) ≈ exp(−5 s/25.2 s) ≈ 82%

and F (mI = ±1/2) ≈ exp(−5 s/13.2 s) ≈ 69% for sample A. By repeating this

measurement on sample C (see Fig. 6.2.3(f-i)), we obtained values of T1 ≈ 17 s for

mI = ±1/2 and T1 ≈ 34 s for mI = ±3/2, which are comparable to sample A and

shows the high reproducibility of the experiment and the excellent isolation of the

nuclear spin in molecular spin-transistor devices, which is promising for future device

architectures.

Due to a new vector magnet (see section 4.3), which was designed for larger sweep

rates (> 200 mT/s), the measurement interval for the experiments with sample C

could be reduced to 1.2 s. Given the rather identical QTM probability of 52% for

sample C, two subsequent measurements are separated by 2.31 s in average, leading

to fidelities of F (mI = ±3/2) ≈ exp(−2.31 s/34 s) ≈ 93% and F (mI = ±1/2) ≈
exp(−2.3 s/17 s) ≈ 87%. These values are comparable to fidelities given by Robledo

et al. [114] who measured a single nuclear spin of a nitrogen vacancy center.

The limitation of our read-out fidelity comes from the currently rather slow detection

rate of 0.5 measurements per second with respect to experiments on other nuclear

spin qubits, which make use of the much faster electron spin resonance (ESR). Since

the magnetic field cannot be stabilized at one of the anticrossing in the Zeeman

diagram, |+6〉 and | − 6〉 remains the only available basis and therefore flipping the

electronic spin of the TbPc2 involves a ∆mJ = 12. This makes the ESR process highly

improbable for this system. Nevertheless, we tried to flip the electronic spin sending

microwaves with the transition frequency mI = −1/2←→ mI = 1/2, while sweeping

the magnetic field around 0 mT. However, the expected additional transition at
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B = 0 T was not observed so far. Another possibly to perform the ESR measurements

is to use the transition mJ = 6 → mJ = 5. Unfortunately, the transition frequency

of around 12 THz is hard to access, and our coaxial cables are not suited to guide

such high frequencies.

A mid term solution would be to design special vector magnets consisting of two

types of coils: larger vector magnets similar to the ones presented in chapter 4,

to generate the static magnetic field and very small coils, used to generate high

frequency magnetic field ramps. In this way the detection rate could be speed up

by a factor of 10 to 100. The long term approach, however, is to find SMMs having

a strong hyperfine coupling and allowing for electronic spin transitions ∆mJ = ±1.
In an easily accessible frequency range [2 GHz → 10 GHz], these SMMs would be

perfect candidates for ESR detection implementation. The resulting speed up in

measurement time by 2 orders of magnitude could lead to fidelities close to 1.

6.3. Quantum Monte Carlo simulations

In order to perform a more quantitative analysis of the nuclear spin lifetime and

the involved relaxation process we wanted to make use of computational techniques.

However, to do a proper quantum mechanical simulation we needed to include the

coupling of the nuclear spin to a thermal bath, which requires methods that go be-

yond the usual solution of the Schrödinger equation. There are currently two widely

used approaches to simulate such quantum trajectories. In the usual approach the

master equation is written for a reduced density matrix ρA [115]. It computes the

ensemble average of the time evolution of ρA. An equivalent approach is the so-called

Monte Carlo wavefunction method [116, 117, 118], which calculates the stochastic

evolution of the atomic wavefunction using a quantum Monte Carlo (QMC) algo-

rithm. It can be shown that the ensemble average of the master equation is analogue

to the time average of the QMC technique. However, the latter could be adapted

more easily to our experimental conditions and was therefore our method of choice.

The following algorithm was developed in cooperation with Markus Holzmann from

the LPMCC in Grenoble.

6.3.1. Algorithm

In the following we are briefly discussing the Monte Carlo wavefunction algorithm.

Notice that the complete QMC code is shown in appendix C.

Suppose the wave function of the isolated system |Ψ〉 is entirely described by the

Hamiltonian H0, and all the influence of the environment on the time evolution of
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the system can be described in terms of a non-Hermitian operator H1:

H1 = −
i~

2

∑

m

C†
mCm (6.3.1)

where Cm(C†
m) is an arbitrary relaxation (excitation) operator. In the following, we

assume that the environment can be modeled as a bosonic bath. Furthermore, we

allow only transitions of the nuclear spin, which obey |∆m| = 1, as expected from

the nuclear spin transition. Thus, we get only two contributions in the Hamiltonian

H1, namely:

Ci,j
1 =

√

Γi,j(1 + n(ωi,j , T )) δi,j+1 (6.3.2)

which accounts for relaxations between the state i and j, and

Ci,j
2 =

√

Γi,j(n(ωi,j , T )) δi+1,j (6.3.3)

which accounts for excitations between the state i and j in terms of their energy

differences ωi,j and relaxation rates Γi,j . Notice, both are symmetric in i, j and

ωi,j = |ωi − ωj |. Both, C1 and C2 have the dimension 1/
√
time. The function

n(∆ω, T ) =
(

1 + exp(~∆ω
kBT

)
)−1

is the Bose-Einstein distribution, which takes the

density of the bosonic bath into account; and (Γ0,1, Γ1,2, andΓ2,3) are the state

dependent transition rates, with 0, 1, 2 and 3 being the ground state, first, second,

and third excited state. The effective Hamiltonian is the sum of H0 and H1

H = H0 −
i~

2

2∑

m=1

C†
mCm (6.3.4)

Notice that H1 is non-Hermitian, since its eigenvalues are imaginary. To obtain the

nuclear spin trajectory, we have to calculate the time evolution of the wavefunction,

which is done in the following three steps.

Step I

In the first step we calculate the wavefunction after a small time step δt. Therefore,

we make use of the classical Schrödinger equation.

dΨ̃

δt
= − i

~
(H0 +H1)Ψ

Ψ̃(t+ δt) = exp

(

− i
~
H1δt

)

exp

(

− i
~
H0δt

)

Ψ(t)
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Here, we have neglected an error of δt2, in which case H0 and H1 are not com-

muting. Furthermore, we chose δt in a way that
∣
∣ i
~
H1δt

∣
∣ ≪ 1. Thus, the term

exp(− i
~
H1δt) can be written in a first order Taylor series expansion exp(− i

~
H1δt) ≈

1 − i
~
H1δt. Since we are only interested in the amplitude of the wavefunction, the

term exp
(
− i

~
H0δt

)
will be neglected in the following. It adds only a phase term to

the wavefunction and can be reintroduced at any point in the calculation if necessary.

Hence, the amplitude of the wavefunction after a time step δt is:

Ψ̃(t+ δt) =

(

1− i

~
H1δt

)

Ψ(t) (6.3.5)

Step II

In the second step we calculate the transition probability from one state to another.

As mentioned before the Hamiltonian H1 is non-Hermetian and therefore the wave-

function is not normalized. Up to an error of δt2 we can write:

〈Ψ̃(t+ δt)|Ψ̃(t+ δt)〉 = 〈Ψ(t)|1− i

~
δt(H1 +H†) +O(δt2)|Ψ(t)〉

= 1− δp (6.3.6)

with

δp =
i

~
δt 〈Ψ(t)|

(

H1 −H†
1

)

|Ψ(t)〉 (6.3.7)

Since Eq. 6.3.6 is only a first order approximation, we have to adjust δt to assure

that δp≪ 1. Moreover the term δp can be written as the sum of the relaxation and

excitation probability: δp = δprel + δpexc, because we have only allowed those two

transitions in our model, where

δprel = δt 〈Ψ(t)|
(

C†
1C1

)

|Ψ(t)〉

δpexc = δt 〈Ψ(t)|
(

C†
2C2

)

|Ψ(t)〉

Step III

In the third step we will account for the random evolution of the wavefunction, which

will introduce the nonreversibility of a transition. At this point the wavefunction is

at a bifurcation point and could evolve in three different directions:

1 the systems stays in the same state and nothing happens,

2 a relaxation in an energetically lower state occurs,

3 the systems is excited in an energetically higher state.

In order to decide which of three events is happening, we draw and uniformly dis-

tributed pseudo-random number ǫ = [0, 1]. If ǫ > δp, no quantum jump occurs and
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we will renormalize the wavefunction:

Ψ(t+ δt) =
Ψ̃(δt)√
1− δp (6.3.8)

If however ǫ < δp, the system undergoes a quantum jump. If furthermore ǫ < δprel,

we are relaxing the system according to:

Ψ(t+ δt) =
C1Ψ̃(t)
√

δprel/δt
(6.3.9)

On the other hand if ǫ > prel, we excite the system using the following expression:

Ψ(t+ δt) =
C2Ψ̃(t)
√

δpexc/δt
(6.3.10)

The denominator in Eqs. 6.3.9 and 6.3.10 accounts for the normalization of the

wavefunction.

6.3.2. Including the experimental boundaries

In order to simulate the experimentally obtained nuclear spin trajectory of Fig. 6.2.2

using the algorithm of section 6.3, we had to introduce some slight modifications.

The read-out of the nuclear spin happens due to a QTM event only once per mea-

surement cycle and therefore at finite time steps tmeasure. Furthermore, sweeping the

magnetic field back and forth to measure these QTM events implicates that each

nuclear spin qubit state is probed at a different time during the sweep. Moreover,

the QTM transition of the electronic spin occurred with a probability of 51.5%, and,

as a consequence, reversed the order of the ground and excited states of the qubit.

Δt1

tmeasure

Δt2 Δt3 Δt4 Δt5
? ? ? ?

...
δt δt δt δt δt δt δt δt

Figure 6.3.1.: In order to include the experimental boundaries into our simulations, the
computation cycles of duration δt were grouped into intervals of ∆ti, where the sum of all
∆ti corresponds to the time needed to sweep the magnetic field during the trace or retrace
measurement. At the end of each interval ∆ti, corresponding to a certain magnetic field,
we checked if the nuclear spin was in the appropriate state to allow for a QTM transition.
If so, the QTM event was accepted with the probability PQTM, leading to the storage of the
nuclear spin state and an inversion of the ground state and the excited states.

To simulate this experimental conditions appropriately, the computation cycles of

duration δt were grouped into five time intervals ∆ti as shown in Fig. 6.3.1, with
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∑

i∆ti = tmeasure and tmeasure being the time needed for one magnetic field sweep.

The individual ∆ti were chosen in a way, that at the end of each interval, the magnetic

field would have been at one of the four anticrossings corresponding to mI = −3/2,
−1/2, 1/2, or 3/2 respectively. Hence, we checked every ∆ti if the nuclear spin

qubit was in the appropriate state to allow for a QTM transition (question marks

in Fig. 6.3.1). If so, we drew a second random number ǫ2 = [0, 1] to simulate the

probabilistic nature of the transition. An ǫ2 which was smaller than the QTM prob-

ability PQTM, was interpreted as a QTM event. However, an ǫ2 that was larger than

PQTM, resulted in no QTM transition. Moreover, every time the QTM happened,

we saved the nuclear spin state and reversed the nuclear qubit ground stated and

its excited states, just like in the experiment. Once we finished the simulation of

interval 5, corresponding to the end of a field sweep, we computed the time intervals

in reversed order (5, 4, 3, 2, 1), which is equivalent to sweeping back the magnetic

field to its initial value.

6.4. Comparison experiment - simulation

6.4.1. Relaxation mechanism

In the following, the computational results obtained with the algorithm of section 6.3

are compared with experimental data from sample A, in order to extract further

information about the underlying physics of the relaxation process. The parameters

used to perform the simulation are listed in Tab. 6.1. The temperature T , which

corresponds to the electron temperature of sample A, the measurement period of

2.5 s, and the QTM probability of 51.5% were taken as fixed parameters. Only the

transition rates Γ01, Γ12 and Γ23 were varied in order to obtain the best fit to the

experimental data shown in Fig. 6.4.1(a)-(d).

tmeasure δt PQTM T Γ01 Γ12 Γ23

2.5 s 2.5
60 s 51.5% 150 mK 1/41 s−1 1/82 s−1 1/90.2 s−1

Table 6.1.: Input parameters for the quantum Monte Carlo algorithm introduced in
section 6.3.

Computing the trajectory for 224 Monte Carlo time steps and following the procedure

of section 6.2 to extract the lifetime T1 gave rise to the data displayed in Fig. 6.4.1(e)-

(f).

The first striking feature, which can be extracted from this comparison, is that the

difference in T1 between the ±3/2 states and the ±1/2 states is nicely reproduced

by simulation. An explanation for this observation can be given by looking at the

Hamiltonian H1 (Eq. 6.3.1), containing the relaxation and excitation operators C1
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Figure 6.4.1.: (a)-(d) Experimental data for sample A taken from Fig. 6.2.3. (e)-(f) Com-
puted data points using the parameters of Tab. 6.1 and the algorithm of section 6.3. The
red dotted line in each subplot is a fit to an exponential function y = exp(−t/T1), yielding
the relaxation time T1 for each nuclear spin state.

and C2. If the nuclear spin is in the | ± 1/2〉 state, the two operators C1 and C2

contribute to the relaxation and excitation process. If, however, the nuclear spin is in

the | ± 3/2〉 state, one of the operators becomes zero, no matter what the electronic

spin state is, resulting in a smaller transition rate and therefore a larger T1. A more

descriptive explanation can be given by considering the number of transition paths.

If the nuclear spin is in the ground or most excited state (mI = ±3/2), there is

only one way to change its state - excitation or relaxation, whereas if the nuclear

spin is in an intermediate state (mI = ±1/2) it has two escape paths - excitation

and relaxation. Since the lifetime is roughly inversely proportional to the number of

transition paths, if the rates for each part were equal, the T1’s show a difference of

approximately two. The exact ratio depends of course on the temperature and the

individual transition rates.

In the next step we wanted to reveal the dominant relaxation mechanism, which

could be caused by spin-lattice interactions and nuclear spin diffusion. The latter

mechanism was found to be very weak in bulk terbium [119] and can, hence, be

neglected for rather isolated and nonaligned SMMs. Concerning the spin-lattice

relaxation mechanism, we examined closer the Γi,j ’s derived by fitting the results

of QMC simulations to experimental data. Depending on its proportionality to the

nuclear level spacing ωi,j we can distinguish between three types of mechanisms.

1 The Korringa process, in which conduction electrons polarize the inner lying s-

electrons. Since these couple with the nuclear spins via contact interaction,

an energy exchange over this interaction chain is established, leading to Γi,j ∝
|〈i|Ix|j〉|2 [120] .

2 The Weger process, which suggests that the spin-lattice relaxation is dominated
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by the intra-ionic hyperfine interaction and the conduction electron exchange

interaction [121]. It is a two-stage process, where the energy of the nucleus is

transmitted to the conduction electrons via the creation and annihilation of a

Stoner excitation. This process is similar to the Korringa process but results

in Γi,j ∝ |〈i|Ix|j〉|2ω2
i,j .

3 The magneto-elastic process, which leads to a deformation of the molecule due to

a nuclear spin relaxation, yields → Γi,j ∝ |〈i|Ix|j〉|2ω4
i,j [122].

The term |〈i|Ix|j〉|2 arises from the fact, that only rotations of the spin perpendicular

to the z-directions are responsible for longitudinal transitions [123]. A comparison

between the Γi,j ’s and the different mechanisms is shown in (Fig. 6.4.2a). The almost

perfect agreement with the Weger process suggests that the dominant relaxation

process is caused by the conduction electrons. Since they are exchange coupled to

the Tb electronic spin which in turn is hyperfine coupled to the nuclear spin, an

energy and momentum exchange via Stoner excitations could be possible.
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Figure 6.4.2.: (a) The transition rates Γi,j , derived by fitting the results of QMC simula-
tions to experimental data, exhibit a quadratic dependence on the nuclear spin level spacing
ωi,j . This behavior is expected from a Weger relaxation process, in which the nuclear spin
is coupled via virtual spin waves to conduction electrons. (b) The decrease of lifetime with
increasing current is probably due to an increase of electrons tunneling through the read-out
dot in addition to an increase of temperature.

This implies that by controlling the amount of available conduction electrons per

unit time the relaxation rates Γi,j can be changed. Hence, an electrically control of

T1 by means of the bias and gate voltages is possible. To verify this conclusion, we

measured the relaxation time T1 of mI = ±3/2 as a function of the tunnel current

through the quantum dot. The result in Fig. 6.4.2(b) shows a decrease of the lifetime

by a factor of three while increasing the current by 100%. This finding could be

interesting to speed up the initialization of the nuclear spin in its ground state prior

to a quantum operation by inducing a fast relaxation to the ground state through a

series of current pulses.

Another experiment which shows the coupling of the nuclear spin to the electrons was

carried out by measuring the nuclear spin temperature as a function of the applied
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bias voltage. Since we are dealing with a single nuclear spin, the physical quantity

temperature has only a meaning if we are speaking of time averages.

The read-out fidelity of the nuclear spin state is rapidly decreasing for increasing

bias voltages as shown in Fig. 5.7.4(a). Therefore we developed the protocol shown

in Fig. 6.4.3(a) in order to measure the nuclear spin at bias voltages beyond 300 µV .

In a first step, the source-drain voltage Vds was rapidly increased from 0 V to values of

1 and 2 mV, at which we waited for 6 s. The tunnel current through the quantum dot

at 1 mV was about 1 nA. Extrapolating Fig. 6.4.2 to 1 nA results in a T1 of 1.49 s,

which was four times smaller than the waiting time and therefore long enough to

thermalize the nuclear spin. During this time, the magnetic field was at -60 mT,

leading to ground state of mI = −3/2 (see Fig. 6.4.3(b)).

Afterward, Vds was decreased to 0 V in order to probe the nuclear spin state by

sweeping the magnetic field to +60 mT and back while checking for a QTM transition.

Repeating this procedure 6000 times for 0, 1, and2 mV led to the black histograms

of Fig. 6.4.3(c-e), showing the four peaks corresponding to the four nuclear spin

states. Integrating each peak over a window of ±7 mT around the maximum and

normalizing the outcome led to the nuclear spin population, which was subsequently

fitted the to Boltzmann distribution (red dotted line in Fig. 6.4.3(c-e)). From the

fitting parameters, we obtained the time average nuclear spin temperature.

As shown in Fig. 6.4.3(f), the temperature is increasing monotonically with augment-

ing Vds, which demonstrates the coupling of the nuclear spin to the electronic bath.

During the experiment the temperature of the cryostat was stable at 150 mK, sug-

gesting that the increase of the time average nuclear spin temperature is caused by an

energy exchange with the electrons tunneling through the read-out quantum dot. A

deeper analysis, however, is quite difficult since the local Joule heating of the device

is unknown. More insights to this topic might be provided by Clemens Winkelmann

et al., working at the Néel institute. They started a three year project, dedicated

to investigate the heat conduction through a single molecule inside a breakjunction

using local thermometers.

6.4.2. Dynamical equilibrium

Measuring the nuclear spin trajectory by sweeping the magnetic field up and down

leads to an inversion of the nuclear qubit ground state and the excited states at

every QTM transition. Since this inversion period is smaller than T1, the time-

average population of the nuclear spin converges to a dynamical equilibrium, which

is far from the thermal Boltzmann distribution. Plotting the data obtained from

nuclear spin trajectory in a histogram, and integrating over each of the four peaks,

reveals the average population within this dynamical equilibrium (see Fig. 6.4.4(a)).

It shows that the probability for being in each state is not 25%, but slightly larger
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Figure 6.4.3.: (a) Protocol to measure the time average nuclear spin temperature. The
source-drain voltage Vds is rapidly increased to a finite value, at which we thermalized the
nuclear spin. Afterward, Vds is brought by to zero in order to probe the nuclear spin state
by sweeping the magnetic field from -60 mT to 60 mT and back. (b) Zeeman diagram of
the nuclear spin. During the waiting period in (a) the external magnetic field is at -60 mT,
making mI = −3/2 the ground state of the nuclear qubit. (c-e) Histogram of 6000 sweeps
at 0 mV (c), 1 mV (d) and 2 mV (e) Vds offset. The grey bars show the time average
population of the nuclear spin and were obtained by integrating each peak over a window
of ±7 mT around its maximum. Fitting the population to a Boltzmann distribution (red
dotted curve) allowed for the extraction of the time average nuclear spin temperature T . (f)
Fitted temperatures of (c-e) versus the applied source-drain voltage Vds.

for mI = ±1/2 compared to mI = ±3/2. The time-average population obtained by

the QMC simulations shows the same feature (see Fig. 6.4.4(b)), which allows for an

explanation within the framework of the QMC model.

We found that the shape of the time-average population, in the case where the

measurement time tmeasure is smaller than T1, is mainly governed by the individual

transition rates Γi,j . As shown in Tab. 6.1, Γ0,1 is much smaller than Γ2,3, which

causes a faster transition from the most excited state into the second excited state

than from the first excited state into the ground state. Due to this asymmetry, and

the periodic inversion of the ground state and the excited states, we are actively

pumping the population into mI = ±1/2 states. Notice that for equal Γi,j ’s the
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Figure 6.4.4.: (a) Histogram of the data obtain during the measurement of the nuclear spin
trajectory of sample A. The grey bars correspond to the integral over each peak, revealing
the time-average population of each nuclear spin. (b) Time-average population simulated
using the parameters of Tab. 6.1 and the algorithm of section 6.3. The higher probability
of mI = ±1/2 with respect to mI = ±3/2 comes from the difference in the transition rates
Γ0,1 and Γ2,3, and the periodical inversion of the ground state and the most excited states
due to a QTM transition. For more details see text.

time-average population would be 25% for each state.

6.4.3. Selection rules

During the analysis of the nuclear spin trajectory, we observed transitions with

∆mI �= ±1. In order to clarify if this effect arose from a finite time resolution,

i.e. multiple ∆mI = ±1 transitions between two subsequent measurements or ad-

ditional transition paths, allowing for ∆mI �= ±1, we compared experimental and

simulated data. By counting the number of transitions corresponding to ∆m = 0,

±1, ±2 and ±3 and normalizing them with respect to the total amount of transi-

tions, we obtained the red histogram in Fig. 6.4.5. Repeating this protocol for the

simulated nuclear spin trajectory gave rise to the grey histogram.
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Figure 6.4.5.: Histogram of all transitions observed in the experiment (red) and simulation
(grey). Transitions with ∆mI �= ±1 correspond to multiple transitions of ∆mI = ±1, which
were not resolved due to the finite time resolution.
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The good agreement with the experimental data supports our assumption that the

nuclear spin can only perform quantum jumps, which change its quantum number

by one since the computational model allowed only for such transitions. All higher

orders of ∆mI are therefore multiple transitions of ∆mI = ±1, which were not

resolved due to the finite time resolution.

6.5. Summary

In this chapter we presented the dynamical evolution of the nuclear spin. Making use

of the single-molecule magnet spin-transistor as a detection device, we recorded the

real-time nuclear spin qubit trajectory over many days. Using a post treatment of

the experimental data, we could extract the relaxation time T1 for each nuclear spin

state individually. Repeating this measurement on a second sample confirmed that

the lifetime T1 was in the order of a few tens of seconds, showing that the nuclear spin

is well protected in the our devices. In order to perform a more sophisticated analysis

of the experimental data, we developed a quantum Monte-Carlo code to numerically

retrace the nuclear spin evolution. Fitting the simulation to the experimental data

led to the extraction of the otherwise hardly accessible state dependent relaxation

rates of the nuclear spin. These were found to depend strongly on type of relaxation,

which enabled us to identify that the nuclear spin relaxation is dominated by an

energy exchange with the electrons tunneling through the read-out quantum dot.

An experimental confirmation of this conclusion was found in the tunabilty of the

nuclear spin lifetime T1 with respect to the tunnel-current. Additional evidence of the

coupling between the nuclear spin and the tunnel electrons could be found through an

increase of the nuclear spin temperature with augmenting tunnel current. Moreover,

the experiments shed light on the read-out fidelities of the nuclear qubit, which were

better than 69% and 87% for sample A and C respectively, and are important figures

of merit toward single-molecule magnet based quantum bits.
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Nuclear spin qubits are interesting candidates for quantum information storage due

to their intrinsically long coherence times. In the last chapter, we investigated the

relaxation time T1 of a single nuclear spin and the read-out fidelity. Thus, having

demonstrated four out of five DiVincenzo criteria, we turn now to the coherent

manipulation of the nuclear qubit, which will complete the list.

To perform such a manipulation on a nuclear spin, large resonant AC magnetic fields

are necessary. To be able to address spins individually, those AC fields are usually

generated by driving large currents through nearby microcoils [49]. Yet, in order to

reduce the parasitic cross talk to the read-out quantum dot and the Joule heating

of the device, the maximum amplitude of the magnetic field is limited and rarely

exceeds a few mT [46].

To avoid those problems, especially the Joule heating, a manipulation by means

of an electric field is advantageous, in particular for scalable device architectures.

Since the electric field is unable to rotate the nuclear spin directly, an intermedi-

ate quantum mechanical interaction is necessary, which transforms the electric field

into an effective magnetic field. Such interactions are for example the spin-orbit

coupling [124, 125], the g-factor modulation [126], or the hyperfine interaction [127].

In this chapter we will show how the latter can be used to perform coherent rotations

of the nuclear spin, which are up to two orders of magnitude faster than state of the

art micro-coil approaches.

7.1. Introduction

7.1.1. Rabi oscillations

Any two level spin qubit system is characterized by its two spin orientations | ↑〉 and

| ↓〉. To visualize such a system, people make use of the Bloch sphere representation.

Therein, the qubit state is symbolized as a Bloch vector, pointing from the origin of

the sphere towards its surface. Moreover, the two eigenstates | ↑〉 and | ↓〉 correspond

to the north and south pole of the sphere and any linear superposition a| ↑〉+ b| ↓〉

103
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is depicted as a point on the sphere’s surface. To complete the picture, any coherent

manipulation of the qubit can be illustrated as a rotation of the Bloch vector around

the sphere.
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Figure 7.1.1.: Bloch sphere representation of a two level spin qubit system. The north
and south pole of the sphere correspond to the two eigenstates | ↑〉 and | ↓〉, whereas the
qubit state is indicated as a vector, which can be at any point on the surface. A coherent
manipulation of the qubit is shown as a rotation of the vector on the sphere. Note that the
trajectory of the rotation was chosen arbitrary and has no further meaning.

In order to manipulate the two level spin qubit, we first have to lift its degeneracy.

This can be done by applying a static magnetic field Bz along the z-axis. The

Hamiltonian accounting for this effect is the Zeeman Hamiltonian (see section 3.3):

HZ = �ωzσz (7.1.1)

with �ωz = gµBz being the separation between the ground state and the first excited

state and σz the Pauli spin operator, which performs a quantum mechanical operation

that can be thought of a precession of the spin around the z-axis.

Now, the actual manipulation of the spin qubit requires an AC magnetic field in

x- or y-direction. Without loss of generality, we assume that the magnetic field of

magnitude 2B1 is applied along the x-axis. Decomposing the term into two counter-

rotating parts as shown in Fig. 7.1.2 will simplify the calculation.

x y

z

BR

BL
!

¡!

Figure 7.1.2.: Decomposition of the AC magnetic field B = 2B1cos(ωt)ex into two counter-
rotating parts.
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BR = B1 (cos(ωt)ex + sin(ωt)ey) (7.1.2)

BL = B1 (cos(ωt)ex − sin(ωt)ey) (7.1.3)

Furthermore, we assume BR will rotate in sense with the nuclear spin precession and

BL in the opposite sense. In the frame work of the rotating wave approximation,

one can show that near the resonance (ω ≃ ωz), the counter-rotating part can be

neglected [128] and the time dependent part becomes:

HAC = �Ω (cos(ωt)σx + sin(ωt)σy) (7.1.4)

with �Ω = gµB1 and σx and σy are the Pauli spin matrices, accounting for rotations

around x and y. The qubit Hamiltonian H, including both contributions HZ+HAC,

is given as:

H = �ωzσz + �Ω (σxcos(ωt) + σysin(ωt)) (7.1.5)

To simplify the equation the following equality is applied [128]:

σxcos(ωt) + σysin(ωt) = e−iωtσzσxe
iωtσz (7.1.6)

resulting in:

H = �ωzσz + �Ωe−iωtσzσxe
iωtσz (7.1.7)

In order to eliminate the phase factors e±iωtσz , we perform a unitary transformation of

U = exp(iωtσz). Physically, this can be understood as switching from the laboratory

frame to the frame rotating around the z-axis with the frequency ω. To write the

Hamiltonian in its usual way, we introduce ∆ = ωz −ω, being the detuning between

the MW frequency and the qubit level spacing.

H =
�∆

2
σz +

�Ω

2
σx (7.1.8)
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Figure 7.1.3.: The trajectory of a spin qubit, initialized in the | ↑〉 state (grey arrow) at
t = 0, was computed in the laboratory frame (a) and the rotating frame (b), while being
exposed to an AC magnetic field in x-direction at resonance frequency (∆ = 0).
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To visualize the enormous advantage of the rotating frame approximation, we cal-

culated the evolution of the qubit wavefunction exposed to an AC magnetic field

in x-direction in the laboratory frame (see Fig. 7.1.3(a)) and in the rotating frame

(see Fig. 7.1.3(b)). We assumed that the qubit was at t = 0 in the | ↑〉 state (grey

vector). To compute the trajectory on the Bloch sphere, we used the Qutip [129, 130]

master equation solver. Therein, the wavefunction |Ψ〉 = a| ↑〉++b| ↓〉 is calculated

at different times steps, in which the expectation values σx, σy, and σz were evalu-

ated. The Python code using the Qutip library to generate Fig. 7.1.3 is presented in

appendix D.

Note that in the rotating frame, the magnetic field in z-direction is proportional to

∆ and therefore zero at the resonance frequency, whereas it is Bz in the laboratory

frame. The big advantage of the rotating frame is that all fields are static, which

allows for an easy superposition of the different components. Hence, at ∆ �= 0, the

Bloch vector rotates around a vector of angle θ = arctan(Ω/∆) with respect to the

z-axis (see Fig. 7.1.4), and the frequency of the precession is simply given by:

ΩR =
√

∆2 +Ω2 (7.1.9)

with ΩR being the Rabi frequency.
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Figure 7.1.4.: (a) Spin precession around an effective magnetic field in the rotating frame.
(b) The precession frequency ΩR is given by ΩR =

√
∆2 +Ω2.

To actually measure the precession trajectory on the Bloch sphere, as presented in

Fig. 7.1.5 (a), MW pulses with different duration τ are applied (see Fig. 7.1.5 (b)).

Before each pulse, the qubit is initialized in the | ↑〉 state. The following pulse is

rotating the spin with the frequency ΩR around an axis given by Ω and ∆. After

the duration τ , the expectation value of σz of the qubit is measured. By plotting

the expectation value versus the pulse duration τ , we obtain Rabi oscillations as

shown in Fig. 7.1.5(c). The amplitude and the frequency of the oscillations strongly

depends on the detuning and power of the MW. Note that the largest amplitude is

found at the resonance.
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Figure 7.1.5.: (a) Trajectory of the Bloch vector in the rotating frame at different detunings
∆ = 0 (black curve), ∆ = 0.5Ω (blue curve), ∆ = Ω (red curve), and ∆ = 2Ω (blue curve).
The spin was initialized in the ground state (grey vector) and exposed to pulses with different
duration τ (b). The expectation value 〈σ〉z was evaluated at the different pulse durations
and different detunings resulting in the Rabi oscillations (c) whose amplitude is largest at
the resonance frequency (∆ = 0).

Moreover, the Rabi frequency at ∆ = 0 is ΩR = gµB1/�. For an electronic spin µ

is the Bohr magneton, however, for the nuclear spin µ = µN, the nuclear magneton,

which is 2000 times smaller than µB. Hence, to manipulate a nuclear spin with the

same speed as an electron spin, three orders of magnitude larger magnetic fields

are necessary. The usual approach to generate AC magnetic makes use of on-chip

microcoils, which are in the vicinity of the qubit. Yet, the parasitic cross talk to the

quantum dot and the Joule heating of the entire sample limit the magnetic fields to

a few mT [46]. To circumvent these problems, a manipulation could be performed

by means of an electric field. Especially the Joule heating is tremendously reduced,

which is of major importance for scalable device architectures. Since the electric

field is not able to rotate the spin directly, an intermediate quantum mechanical

interaction is necessary to transform the electric field into an effective magnetic

field. Such interactions are for example the spin-orbit coupling [124, 125], the g-

factor modulation [126], or the hyperfine interaction [127]. In order to manipulate a

nuclear spin, the latter seems the most suited and will therefore be in the focus of

the next chapter.

7.1.2. Hyperfine Stark effect

The origin of the hyperfine coupling is exlained as a dipolar coupling between the

nuclear magnetic moment µI, and the orbital magnetic moment µL and spin magnetic

moment µS of the electron respectively. Notice, there exsists a second, although

smaller contribution, which origins from the nonzero probability density of s-electrons

at the core. It is referred to as the Fermi contact interaction and only relevant for
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s-shell electrons.

The Hamiltonian describing the hyperfine interaction is formulated as:

Hhf = AIJ (7.1.10)

with A being the hyperfine constant, I nuclear spin, and J the electronic angular

momentum. From the nuclear spin’s point of view, Eq. 7.1.10 can be rewritten as an

effective Zeeman Hamiltonian:

Hhf = gNµNIBeff(A, J) (7.1.11)

with Beff(A, J) being the effective magnetic field operator. The terms I+J−+ I−J+,

which account for electron-nuclear spin-flip transitions, can be neglected since mJ =

±5 levels are separated by 600 K. Therefore Beff(A, J) can be associated with an

ordinary magnetic field at the center of the nucleus.

In order to create an effective AC magnetic field, Beff(A, J) needs to be modulated

periodically. If this modulation is done by means of an electric field, we referred to it

as the hyperfine Stark effect. In analogy to the ordinary Stark effect, which describes

the modification of the electronic levels under an external electric field, the hyperfine

Stark effect deals with the shift of the nuclear energy levels.

One of the first experimental evidence of this effect was given by Haun et al. [131].

They investigated the shift of the hyperfine transition |F = 4,mF = 0〉 ←→ |F =

3,mF = 0〉 for the 133Cs ground state (see Fig. 7.1.6). In their measurements they

observed a quadratic dependence of the level splitting on the electric field. Since the

level shift remains small compared to the hyperfine splitting, an explanation of this

behavior can be given by first order perturbation theory. If e is the electric charge

of the electron, E the electric field, and r component of the vector connecting the

nucleus and the electron along E , the perturbation is given by erE . Since this is a

odd-parity term and the atomic 133Cs ground states are of well defined parity, all

first order perturbation terms are zero. The first nonzero elements occur in second

order of perturbation and contain (erE)2, which gives rise to the quadratic Stark

shift.

In 1998, Kane applied the idea of the hyperfine Stark effect on 31P nuclear spin

qubits in silicon. He suggested that by using local gates at each qubit, the different

nuclear spins can be tuned in and out of resonance independently [50]. This way, he

established the individual addressability of nuclear spin qubits unsing only a global

microwave field.

To show the feasibility of Kane’s idea, Rahman et al. evaluated the hyperfine Stark

shift of a 31P impurity near the silicon interface withing the framework of the tight

binding theory [132]. Since the interface breaks the symmetry around impurity,
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Figure 7.1.6.: Shift of the F = 4,mF = 0 ←→ F = 3,mF = 0 transition frequency of the
133Cs ground state as a function of the square of the applied voltage.

the wavefunctions of the 31P are modified, resulting in states with mixed parity.

Therefore, the first order perturbation terms are nonzero, giving rise to a change

of the hyperfine splitting which is linear in E . In their model, this modification is

expressed as a change of the hyperfine constant ∆A/A0, which was found to be up

to ≈ 10−3 at electric fields of 1 MV/m (see Fig. 7.1.7).
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Figure 7.1.7.: Electric field response of the hyperfine constant at different distances between
the impurity and the silicon interface. Adapted from [132].

Now we turn to the TbPc2 SMM. From section 3.7 we know that the hyperfine

constant of the Tb3+ inside the molecule is A = 24.9 mK [70]. Using Eqs. 7.1.10

and 7.1.12 we obtain an effective magnetic field at the nucleus of:

Beff(A, J) =
AJ

gNµN
= 313 T (7.1.12)

which is two orders of magnitude larger than the usual laboratory fields. Assuming

we could periodically modify the hyperfine constant A by 1/1000, we would be able

to generate AC magnetic field of ±313 mT. Since the orientation of the quantization

axis of the molecule with respect to the electric field is not well determined, the
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effective magnetic field will have components in the x- and z-direction. However,

in terms of oscillating fields only the component in x-direction is able to rotate the

nuclear spin, whereas the z-component induces additional decoherence. Moreover, we

can predict a linear response to an external magnetic field, since the phthalocyanine

ligands break the inversion symmetry of the Tb3+, analog to the 31P impurities at

the interface. Therefore the first, instead of the second harmonic, of the oscillating

electric field must be matched to the nuclear transition frequency.

In the following sections we will demonstrate how we used the hyperfine Stark effect

to perform a coherent manipulation of a nuclear spin. Additionally, we will compare

the experimental results to a more profound theoretical model.

7.2. Coherent nuclear spin rotations

In this section we are presenting the first experimental evidence of a coherent single

nuclear spin manipulation by means of an electric field. As pointed out in the previ-

ous sections, the hyperfine Stark effect is used as a mediating quantum mechanical

process to transform an oscillating electric field into an AC magnetic field. This

procedure can be viewed as the AC extension of Kane’s proposal form 1998, and

will allow for the generation of large amplitude local magnetic fields without the

inconvenience of using large AC currents through close by microcoils.

In order to simplify the problem, we will focus on the nuclear spin subspace containing

only the | + 3/2〉 and | + 1/2〉 qubit states. By assigning the | + 3/2〉 and | + 1/2〉
states the Bloch vectors pointing to the north and south pole of the Bloch sphere

respectively, we can use the theory that was presented in section 7.1.1 to explain the

quantum manipulation. However, in this subspace the operator Ix becomes
√
3σx,

Iy becomes
√
3σy, and Iz becomes σz, with σx,y,z being the corresponding Pauli spin

1/2 matrices. Note that the other two nuclear spin subspaces would have worked as

well.

7.2.1. Frequency calibration

The coherent manipulation of the nuclear spin qubit requires the knowledge of the

exact level spacing between the |+3/2〉 and |+1/2〉 states. This frequency depends

of course on the electrostatic environment due to the hyperfine stark effect. A first

indication of the approximate position of the resonance frequency could be found

in the work of Hutchison and Ishikawa [133, 70] who gave values of 2.3 GHz and

2.5 GHz.

In conventional NMR experiments, the nuclear spins start to absorb a notable amount

of microwave power at the resonance frequency, which can be detected by a change
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of the reflection or transmission of the microwave signal. In case of a single nuclear

spin, this signal is much to small to be detected. Therefore, we developed our own

protocol, which is sensitive to an increase of the relaxation rate if the two nuclear

spin transition is in resonance to the frequency of the applied AC electric field.
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Figure 7.2.1.: (a) Measurement protocol to find the resonance frequency. To initialize
the nuclear spin, the magnetic field µ0H|| is swept from negative to positive values (purple
curve), while checking for QTM transition. Subsequently, we kept H|| constant (black curve)
and applied a microwave (MW) pulse of 1 ms. In the end, the final state is probed by
sweeping back H|| to negative values (orange curve). One measurement cycle has a duration
of 3 s and is therefore much faster than T1. (b) If the microwave was in resonance with
the two lowest nuclear qubit levels, a transitions between mI = +3/2 ←→ mI = +1/2
could be induced at positive H||. (c) Schematic showing the construction of a 2D matrix
to visualize the transitions. In the shown example the nuclear spin was initialized in the
| + 1/2〉 state (vertical line) and probed in the same state (horizontal line) giving to an
element on the diagonal line. (d) Full 2D matrix. The elements on the diagonal, having
only one color, correspond to measurements, where the nuclear spin state was not change
between the initialization an the probe sweep. If the microwave was in resonance with the
mI = +3/2 ←→ mI = +1/2 transition, increased offdiagonal will appear, as indicated by
blue-green rectangles. The other offdiagonals will also appear due to relaxation processes
but with much less intensity.

The schematic of the protocol is shown in Fig. 7.2.1(a). First, the nuclear spin

was initialized by sweeping the magnetic field µ0H|| from negative to positive values
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(purple curve) while checking for a QTM transition at one of the 4 avoided level

crossings (see colored rectangles (b)). Subsequently, we applied a MW pulse of

duration τ = 1 ms. The final state is then detected by sweeping back the external

magnetic field in a time scale faster than the measured relaxation times of both

nuclear spin states. The entire sequence is rejected when the initial or final state

was not detected due to a missing QTM transition. A full cycle had a duration of

3 s and was therefore much faster than T1 so that thermal relaxation processes were

observed only every 6 to 11 measurements, depending on the nuclear spin state.

The MW was pulsed because of less heating of the device with respect to a continuous

irradiation. However, the pulse width should be larger than the dephasing time T ∗
2 ,

which was expected to be smaller than 1 ms, in order to avoid accidental full coherent

rotations in the Bloch sphere, which preserve the nuclear spin state. If the MW

frequency was in resonance with the two lowest nuclear qubit levels at positive H||, a

transition between mI = +3/2 ←→ mI = +1/2 could be induced (see Fig. 7.2.1(b))

resulting in an increased relaxation rate of the two states.

To visualize the relaxation rate, we constructed a two-dimensional matrix as follows.

The detected nuclear spin state during the initialization determined the column of

the matrix, whereas the probed nuclear spin stated determined the row. An example

is given in Fig. 7.2.1(c), where the nuclear spin was initialized (vertical line) and

probed (horizontal line) in the |1/2〉 state, giving rise to an element on the diagonal

of the matrix. Notice that the diagonal is going from the lower left to the upper

right corner.
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Figure 7.2.2.: Matrix similar to Fig. 7.2.1 for 400 sweeps when the microwave frequency
was off resonance (a) and on resonance (b) with the mI = 3/2 ←→ mI = 1/2 transition.

By repeating this procedure several hundred times, we gathered enough data points

to plot the 2D matrix (see Fig. 7.2.1(d)). Since the relaxation time is much longer

than the measurement cycle, most elements are on the diagonal of the matrix. If,

however, the MW was in resonance with the mI = 3/2 ←→ mI = 1/2 transition,

increased offdiagonal elements will appear, as indicated by blue-green rectangles.

Other off-diagonal elements were also observed due to thermal relaxation processes
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but with much less intensity. Scanning the frequency, in steps of 2 MHz, from 2.3

GHz to 2.5 GHz led to the results presented in Fig. 7.2.2(a). When the microwave

frequency hit the resonance of the nuclear qubit transition at 2.45 GHz, we obtained

a matrix as shown in Fig. 7.2.2(b), in which off-diagonal elements for the expected

transition are clearly observed.
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Figure 7.2.3.: Matrix similar to Fig. 7.2.1 for 1000 measurement at two different powers,
off-resonant to the nuclear qubit transition.

If, however, the microwave power was chosen too large or the pulse width was set

too long, the device suffered from heating of the nuclear spin states, resulting in

additional off-diagonal elements. In contrary to the resonant condition, the thermal

heating affected all four nuclear spin states and can easily be distinguished (see Fig.

7.2.3).

7.2.2. Rabi oscillations

After having found the resonance frequency between the two lowest lying nuclear

qubits, we started performing measurements for a fixed frequency as a function

of the MW pulse duration τ . To initialize the nuclear spin qubit in its | + 3/2〉
ground state, the external magnetic field is swept back and forth between -75 mT

to 75 mT at 100 mT/s (see Fig. 7.2.4(a) until a QTM transition is measured at

-38 mT, which is the signature of the | + 3/2〉 qubit state (Fig. 5.7.1(a)). Using a

Rhode & Schwarz SMA100A signal generator, a MW pulse of duration τ is then

applied while keeping the external field constant (Fig. 7.2.4(a)). The resulting state

is detected by sweeping back the external magnetic field in a time scale faster than

the measured relaxation times of both nuclear spin states. The sequence was rejected

when the final state was not detected due to a missing QTM transition. In order

to get a sufficient approximation of the nuclear spin qubit expectation value, the

procedure was repeated 100 times for each pulse duration, resulting in coherent Rabi

oscillations, as presented in Fig. 7.2.4(b) and (c) for two different microwave powers.

The visibility of the measurements presented in Fig. 7.2.4(b) and (c) is ∼ 50%.
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Figure 7.2.4.: Rabi oscillations of a single nuclear spin qubit. (a) Time dependent
external magnetic field H|| and pulse sequence generated to observe Rabi oscillations between
the two lower states of the nuclear spin qubit having a resonant frequency ν0. The nuclear
spin is first initialized by detecting a conductance jump while sweeping up H|| (init sequence).
A subsequent MW pulse of frequency ν0 and duration τ is applied, modifying periodically the
hyperfine constant A. It induces an effective oscillating magnetic field resulting in coherent
manipulation of the two lower states of the nuclear spin qubit. Finally, H|| is swept down to
probe the final state of the nuclear spin qubit. (b) Rabi oscillations obtained by repeating
the above sequence 800 times for each τ , for two different MW powers, PMW = 1 mW and
PMW = 1.58 mW for the red and violet measurements.

From Eq. 7.1.9 we see that the Rabi frequency is proportional to the amplitude of the

effective magnetic field for zero detuning ∆. Assuming that increasing the microwave

power will increase the effective magnetic field, we should observe a monotonic in-

crease of the Rabi frequency with the microwave power. To investigate this behavior

we measured the frequency of the Rabi oscillation ΩR at different injection powers

P (see Fig. 7.2.5). The result shows a linear dependence of ΩR with
√
P above 2

mW of injection power. For smaller powers, however, we found a deviation from the

this linear curve. One reason could be a nonlinearity in the hyperfine Stark effect

or a slight gate voltage drift during the 5 days needed to perform this experiment.

Indeed, we will see in the following that the Rabi frequency is extremely sensitive to

modifications of the gate voltage because of the Stark effect.

7.3. Experimental discussion of the hyperfine Stark effect

7.3.1. DC gate voltage induced hyperfine Stark effect

We now present and discuss the study of the visibility of the Rabi oscillations

as a function of the applied MW frequency at three different gate voltage values

(Fig. 7.3.1(a)). As expected from theory (compare Fig. 7.1.5), the visibility of the



7.3 Experimental discussion of the hyperfine Stark effect 115

0.0 0.5 1.0 1.5 2.0 2.5 3.0p
P (

p
mW )

0

1

2

3

4

5

6

­
R
=2
¼
(M
H
z)
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Figure 7.3.1.: Stark shift of the hyperfine coupling. a, Rabi oscillations visibility
measured at different MW frequencies for three different gate voltages Vg. The resonance
shift of the nuclear spin qubit frequency ν0 is caused by a modification of the hyperfine
coupling A due to Vg induced Stark shift. b, Rabi frequencies ΩR corresponding to the visi-
bility of a. The continuous lines are fit to the experimental points following the theoretical
expression of the Rabi frequency dependence (see main text). The magnitude of the effective
magnetic field induced by the oscillating hyperfine constant A due to Stark shift reaches a
few hundreds of mT, resulting in Rabi frequencies up to several MHz.

Rabi oscillations was largest at the resonant frequency ν0 and decreases for increasing
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detuning ∆ = |ν − ν0|. However, a clear dependence of the nuclear qubit resonance

frequency on the gate voltage is also observed in Fig. 7.3.1(a). This effect can be

attributed to the static HF Stark shift, due to the additional electric field induced

by the gate voltage, which shows our ability to tune the HF constant A between the

electronic spin and the nuclear spin qubit. Notice that only the z-component of the

effective magnetic field will modify the level splitting. Applying a gate voltage offset

of 10 mV and 16 mV resulted in a shift of ∆ν0 =1.72 MHz and 7.03 MHz respec-

tively. Converting this frequency shift into a change of the hyperfine constante gives

∆A/A = 5.6 × 10−4 for ∆Vg = 10 mV and ∆A/A = 2.3 × 10−3 for ∆Vg = 16 mV.

(see inset Fig. 7.3.1). Those values can be compared with calculations presented in

section 7.4. There we estimate an order of magnitude of ∆A/A = 10−3 for an electric

field of 1 mV/nm. The conversion of the back gate voltage into an electric field can

be done using the simple formula E = V/d, a gate oxide thickness of 7 nm, and the

screening factor of 0.2 (which is a typical value for devices created by electromigra-

tion). Doing so, we obtain ∆A/A = 2.9× 10−4 for ∆Vg = 10 mV and 4.6× 10−4 for

∆Vg = 16 mV. Those values are smaller but in the same order of magnitude as the

experimental values and therefore within the error bar of the theoretical model.

But most importantly, these results show our ability to control the resonance fre-

quency of a single nuclear spin qubit by means of an electric field only.

7.3.2. AC induced hyperfine Stark effect

We turn now to the estimation of the effective AC magnetic field. To do so, the

Rabi frequency ΩR was measured for the three different gate voltage as a function

of the detuning ∆ (Fig. 7.3.1(b)). The horizontal evolution of the minimum of the

Rabi oscillations as a function of the MW frequency is induced by the DC Stark

shift as explain in section 7.3.1. By further fitting the measurements to the function

ΩR/2π =
√

(∆/2π)2 + (
√
3gNµNBx/h)2, with gN being the nuclear g-factor (≈1.354

for Tb [72]), µN the nuclear magneton, we can extract the effective magnetic field in

the x-direction Bx. Astonishingly, the data of Fig. 7.3.1 gives values of Bx = 62 mT,

98 mT and 183 mT for Vg = 2.205 V, 2.215 V and 2.221 V, which are up two orders

of magnitude higher than magnetic fields created by on-chip micro-coils. In order

exclude that those magnetic fields where produced by currents in the vicinity of the

spin we were considering the following cases.

(I) The magnetic field could have been generated by the magnetic field component

emitted by the microwave antenna itself. Assuming a minimal distance of 10 µm

between the antenna and the sample leads to a current of 10 A in order to generate

200 mT using the formula I = 2πrB/µ0. From measurements with a vector network

analyzer we know that the insertion loss of the antenna is 35.5 dBm at 2.45 GHz.

Considering a microwave power of 0 dBm and an impedance of 50 Ω the current can
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be estimated to 75 µA, which is 105 times smaller than the required current to obtain

200 mT. Moreover, the aluminum bonding wire has an approximate fuse current of

300 mA.

(II) The magnetic field could have been created by the tunnel current through the

molecule. This time we can assume a distance of 0.5 nm between the electronic spin

and the tunnel current. Using the formula I = 2πrB/µ0 as a rough estimate, results

in a required tunnel current of 500 µA. However, the current through the molecule

is in the order of 1 nA, which is 5 × 105 times smaller. Even the maximal current

through a single molecule, which can be as large as 100 nA, is not sufficient to explain

such high magnetic fields.

(III) The magnetic field could have been created by the hyperfine Stark effect, which

describes the influence of the electric field on the hyperfine interaction. The hyperfine

interaction can be seen as an interaction with an effective magnetic field, which is

generated by the electronic spin at the center of the nucleus. Manipulating the

interaction constant A by means of an oscillating electric field results in an alternating

magnetic field. In order to achieve a magnitude of 200 mT at 0 dBm, the relative

variation of the hyperfine constant ∆A/A should be in the order of the ratio of the

corresponding Rabi oscillation to the hyperfine splitting which is 1 MHz/ 2.45 GHz

≈ 10−3 which would require electric field fluctuations in the order of 1 mV/nm.

Figure 7.3.2.: (a) Conductance through the read-out dot as a function of the source-
drain voltage Vds and the applied microwave power P . (b) Evolution of the full width half
maximum (FWHM) of the dip in (a) as a function of the microwave power P .

The first step towards a verification of the third possibility was to quantify the

amplitude of the pulsed oscillating electric field, used to perform the Rabi oscillations.

To do so, the full width at half maximum (FWHM) of the dip at the right side of

the charge degeneracy point of sample C (Vg = 2.2 V in Fig. 5.2.1) was measured

as a function of the applied microwave power (see Fig. 7.3.2(a)). The observed dip

is a signature created by a transition from the inelastic cotunneling between the

singlet/triplet state to elastic cotunneling through the singlet state only. In a first
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approximation, the amplitude of the induced AC voltage is directly proportional to

the broadening of the dip. Since the microwave power had to be applied continuously,

we could measure only up to a injection power of -20 dBm in order to avoid any

damage of the sample. Fig. 7.3.2(a) shows the evolution of the FWHM from -40 dBm

to -20 dBm and an extrapolation up to 0 dBm. From this measurement we see that

the induced voltage drop across the molecule is about 2 mV at 0 dBm. Given the size

of the molecule to be 1 nm, the generated electric field is estimated to be 2 mV/nm.

We will use this value in Eq. 7.4.16 to estimate a relative change of the hyperfine

constant to ∆A/A = 2 × 10−3. This value is in the same order of magnitude than

the required value of the consideration given above.

This result emphasized the possibility to use the hyperfine Stark effect to manipulate

a single nuclear spin by means of an electric field only. The estimated effective

magnetic field in the order of 200 mT and about two orders of magnitude higher

than the fields generated by on-chip micro-coils, which leads to an increase of the

clock-speed of the coherent manipulation.

7.4. Theoretical discussion of the hyperfine Stark effect

The model presented in this section was elaborated in cooperation with Rafik Ballou

from the Néel institute and is aimed to give an order of magnitude explanation of the

experimental data in section 7.3.2. To keep the derivation as intuitive as possible,

rather complicated algebraic calculation were cut out, and only the result will be

given.

To determine the magnitude of the hyperfine Stark effect, we used to the following

strategy. Starting from the isolated terbium ion, we consider the effect of the ligand

field as a perturbation on the electronic configurations. Subsequently, the Stark effect

is treated as perturbation on the ligand field ground states. In this way, we derive

an expression which connects the mixing of the ground state wavefunctions with

the electric field. Afterward, we will evaluate hyperfine interaction with the mixed

ground states within first order perturbation theory. Thus, we are able obtain an

expression correlating the electric field E with the change of the hyperfine constant

A.

The isolated Tb3+ ion possesses a ground state configuration of 4f8 and an excited

state configuration of 4f75d1 (see Fig. 7.4.1(a)). The latter arises from an excitation of

one 4f electron into the 5d orbital and is about 5.5 eV higher in energy . Moreover,

the lowest energy states of each configuration (states having S = max and L =

max) are split into levels of different J due to the spin-orbit interaction (compare

Fig. 3.5.2). To distinguish these states from each other, we will use the spectroscopy

nomenclature 2S+1XJ , with S =
∑

i si, L =
∑

i li, J = |L − S|...L + S, and X =
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Figure 7.4.1.: (a) Illustration of the isolated Tb3+ electronic ground state configurations
4f8, containing the states Ψi〉, and the first excited configuration 4f75d1, composed of the
states Φν . (b) Under the influence of a symmetry breaking ligand field V odd

ligand, the ground
state and excited state configurations are mixed along with their parities. (c) If an addi-
tional electric field, described by the operator VE , is applied, states within ground state
configuration are being mixed.

S, P,D, F for L = 0, 1, 2, 3. For the Tb3+ the two lowest energy multiplets are 7F6

and 7F5, which correspond to states with S = 3, L = 3, and J = 6 or J = 5

respectively.

At this point, we want to recall that the parity P of the wavefunction is defined as

P = (−1)
∑

i li with li = 0, 1, 2, 3, · · · for s, p, d, f, · · · electrons. Thus, P = (−1)8∗3 =
1 for all the states of the ground configuration 4f8 of the Tb3+ free ion, whereas

P = (−1)7∗3+2 = −1 for all the states of its first excited configuration 4f75d1.

If the isolated terbium ion is placed into the electrostatic environment of the molecule,

all electronic levels are modified by the ligand field operator V odd
ligand. Since the

molecule lacks an inversion symmetry, the operator contains contributions of odd

parity, which is able to mix the states |Ψi〉 of the ground configuration 4f8 with

states |Φν〉 of the excited configuration 4f75d1 of opposite parity. In first order per-

turbation theory, the modified ground state multiplets |Ψ′
i〉 are calculated as:

|Ψ′
i〉 = |Ψi〉+

∑

ν

〈Φν |V odd
ligand|Ψi〉

Ei − Eν
|Φν〉 = |Ψi〉+

∑

ν

αν
i |Φν〉 (7.4.1)

where Ei − Eν is the energy difference between the states |Φν〉 of the 4f75d1 con-

figuration and the state |Ψi〉 of the 4f8 ground configuration. Note that without

parity breaking, the ligand field operator would have been of even parity and the

term 〈Φν |Vligand|Ψi〉 = 0.
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If, furthermore, an external electric field E is applied, the lowest energy levels of the

ground state configuration 4f8 (all terms beginning with 7F ) are themselves mixed

due to the Stark interaction VE = −dE . In first order of perturbation, the in this

way altered wavefunctions |Ψ′
iE〉 are determined as:

|Ψ′
iE〉 = |Ψ′

i〉+
∑

j

〈Ψ′
j |VE |Ψ′

i〉
E′

i − E′
j

|Ψ′
j〉 = |Ψ′

i〉+
∑

j

βji |Ψ′
j〉

= |Ψi〉+
∑

ν

αν
i |Φν〉+

∑

j

βji |Ψj〉+
∑

j

βji
∑

ν

αν
j |Φν〉 (7.4.2)

At this point we have successfully established the correlation of the electric field E
with the mixing of the ground state wavefunctions. All what remains is evaluation

of the hyperfine splitting using the perturbed ground states |Ψ′
iE〉. To do so, we

have to determine the expression of the hyperfine Hamiltonian first. Generally, the

hyperfine interaction can be considered as a change of the potential energy of the

nuclear magnetic moment µI, exposed to the magnetic field Belec, which is created

by the ensemble of the electrons in the 4f shell. Therefore, the hyperfine Hamiltonian

can be written as:

Hhf = −µIBelec (7.4.3)

The magnetic field operator Belec consists of two independent contributions, an or-

bital contribution Borbit coming from the motion of the electrons around the core,

and a spin contribution Bspin resulting from the magnetic dipole field of the elec-

tron’s spin. Since the probability density of 4f electrons is zero at the core, there

is no contact interaction. To cut down the problem, we are going to consider the

orbital contribution first. The magnetic field Bi, created by a moving electron i at

velocity vi and distance ri of the atomic core, is given by the law of Biot-Savart:

Bi =
µ0
4π
evi ×

ri

r3i
(7.4.4)

Since evi×ri = −2 e
2mri×mvi = −2µBli and thus the orbital contribution becomes:

Borbit = −
µ0
4π

2µB
∑

i

li

r3i
(7.4.5)

Now we turn to the spin contribution Bspin. We assume that the spin is localized on

each electron, so that the magnetic field seen by the nucleus is just the sum of the

magnetic field created by each magnetic moment µi
s at the distance ri.

Bspin = −µ0
4π

∑

i

µi
s

r3i
− 3ri(µ

i
sri)

r5i
(7.4.6)

Substituting µi
s = −2µBsi and µI = gNµNI, we obtain following hyperfine Hamilto-



7.4 Theoretical discussion of the hyperfine Stark effect 121

nian

Hhf = −µI (Borbit +Bspin) (7.4.7)

= a
∑

i

(N i/r
3
i ) · I (7.4.8)

where a = µ0

4π2gNµNµB is a constant, I is the nuclear spin and N i = li − si +

3ri(si · ri)/r2i is the operator accounting for the interaction with the ith electron

having the spin si and the angular momentum li at a distance ri. On the quantum

states from which the electronic degrees of freedom can be factored out into a state

|Ψ0〉, the electronic part of the hyperfine interaction is given as 〈Ψ0|N |Ψ0〉〈1/r3〉,
where N =

∑

iN i and where the radial integral 〈1/r3〉 is a constant within the

same electronic configuration. In the absence of any parity breaking interaction the

electronic state |Ψ0〉 has a well defined parity P . We recall that P = (−1)
∑

i li with

li = 0, 1, 2, 3, · · · for s, p, d, f, · · · electrons. Thus, P = 1 for all the states of the

ground configuration 4f8 of the Tb3+ free ion, whereas P = −1 for all the states

of its first excited configuration 4f75d1. It is also crucial to recall that the matrix

elements of an operator O of even (resp. odd) parity, i.e. invariant (resp. reversed)

under the space inversion, are non zero solely between states with the same (resp.

opposite) parity. The position vector r is reversed by space inversion whereas the

orbital l and spin s moment operators are invariant, which implies that the dipole

electric moment operator d is of odd parity but that the operator N is of even

parity. It is a matter of standard use of the Racah algebra [134] to compute the

matrix element of the spherical components Nq (q = −1, 0, 1) of the operator N

between any two states of an electron shell. Within the Russel-Saunders coupling

scheme and by making use of the Wigner-Eckart theorem one computes

〈4f8ξSLJM |Nq|4f8ξ′S′L′J ′M ′〉 = (−1)J−M

(

J 1 J ′

−M q M ′

)

×

× (4f8ξSLJ‖L− (10)
1

2

∑

i

(s(1)C(2))
(1)
i ‖4f8ξ′S′L′J ′)

(7.4.9)

with

(· · · ‖L‖ · · · ) = δ(ξ, ξ′)δ(S, S′)δ(L,L′)×

× (−1)S+L+J+1([J ][J ′])
1

2 (L(L+ 1)(2L+ 1))
1

2

{

S L J

1 J ′ L′

}
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and

(· · · ‖
∑

i

(s(1)C(2))
(1)
i ‖ · · · ) = ([J ][1][J ′])

1

2 ([1][2])−
1

2







S S′ 1

L L′ 2

J J ′ 1







(s‖s‖s)(l‖C(2)‖l)×

× (4f8ξSL‖W (12)‖4f8ξ′S′L′)

where [x] = 2x+1, δ(X,X ′) = 1 if and only if X = X ′ and = 0 otherwise, (:::), {:::}
and {.........} stand for the 3j, 6j and 9j symbols, and the reduced matrix elements of the

tensor operator W (12) are tabulated [135] or can be computed by making use of the

coefficients of fractional parentages [134].

We shall now consider that the electronic wavefunction is exposed to the ligand field

and an external electric field E resulting in the Stark interaction VE = −d · E.

Since the molecule lacks an inversion symmetry the electrostatic interactions with

the ligand field contains contributions of odd parity V odd
ligand, which mixes the states

|Ψi〉 of the ground configuration 4f8 with states |Φν〉 of the excited configuration

4f75d1 of opposite parity. In first order perturbation theory the new wavefunction

|Ψ′
i〉 is approximated as

|Ψ′
i〉 = |Ψi〉+

∑

ν

〈Φν |V odd
ligand|Ψi〉

Ei − Eν
|Φν〉 = |Ψi〉+

∑

ν

αν
i |Φν〉, (7.4.10)

where Ei−Eν is the energy difference between the states |Φν〉 of the 4f75d1 configu-

ration and the state |Ψi〉 of the 4f8 ground configuration. Owing to this admixture,

the states of the ground configuration 4f8 are themselves mixed under an applied

electric field as

|Ψ′
iE〉 = |Ψ′

i〉+
∑

j

〈Ψ′
j |VE|Ψ′

i〉
E′

i − E′
j

|Ψ′
j〉 = |Ψ′

i〉+
∑

j

βji |Ψ′
j〉

= |Ψi〉+
∑

ν

αν
i |Φν〉+

∑

j

βji |Ψj〉+
∑

j

βji
∑

ν

αν
j |Φν〉, (7.4.11)

now to first order in perturbation in VE with respect to V odd
ligand. The influence of the

Stark effect on the hyperfine coupling can be evaluated by calculating the matrix

element of the operator N on the perturbed state |Ψ′
0E〉 = |Ψ′

0〉 +
∑

j β
j
0|Ψ′

j〉 =
|Ψ0〉+

∑

ν α
ν
0 |Φν〉+

∑

j β
j
0|Ψj〉+

∑

j β
j
0

∑

ν α
ν
j |Φν〉:

〈Ψ′
0E |N |Ψ′

0E〉 = 〈Ψ0|N |Ψ0〉+
∑

j 6=0

(βj0〈Ψ0|N |Ψj〉+ βj0
⋆〈Ψj |N |Ψ0〉) + · · · , (7.4.12)

where contributions involving products of the coefficients αν
i and βji are ignored as

being negligible. It is emphasized that
∑

ν α
ν
0〈Ψ0|

∑

i(N i/r
3
i )|Φν〉+ complex conju-

gate = 0, because |Ψ0〉 and |Φν〉 are of opposite parity and
∑

i(N i/r
3
i ) is of even
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parity. Assuming that E′
0 −E′

j ≈ E0 −Ej and E0 −Eν ≈ ∆E4f8→4f75d1 then using

the closure relation
∑

ν |Φν〉〈Φν | = 1, the coefficient βj0 can be approximated as

βj0 =
〈Ψ′

j |VE|Ψ′
0〉

E′
0 − E′

j

=
{〈Ψj |+

∑

τ 〈Φτ |
〈Ψj |V

odd
ligand

|Φτ 〉

E0−Eτ
}VE{|Ψ0〉+

∑

ν

〈Φν |V odd
ligand

|Ψ0〉

E0−Eν
|Φν〉}

E′
0 − E′

j

≈ 2
〈Ψj |VEV odd

ligand|Ψ0〉
(E0 − Ej)∆E4f8→4f75d1

, (7.4.13)

The change in the hyperfine interaction may finally be written as

〈Ψ′
0E |AJ · I|Ψ′

0E〉 = (1 +∆A/A)〈Ψ0|AJ · I|Ψ0〉 (7.4.14)

with

∆A/A ≈ 4
∑

j

〈Ψj |VEV odd
ligand|Ψ0〉

(E0 − Ej)∆E4f8→4f75d1

〈Ψ0|N |Ψj〉
〈Ψ0|N |Ψ0〉

(7.4.15)

In general the crystal field experienced by the excited configuration 4f75d1 is about

ten times larger [136] than the one experienced by the electrons of the ground con-

figuration 4f8. It is then reasonable to expect that the effect of V odd
ligand amounts to

around 1 − 2 eV in energy. On the other hand, given the size of the electronic or-

bits, which is within the range 0.1-0.2 nm, and the expression of the dipole operator

d = −er, the strength of VE under an electric field E measured in mV/nm is es-

timated in eV to (1 − 2) · 10−4 E. The excited configuration (4f75d1) is separated

from the ground configuration (4f8) by about ∆E4f8→4f75d1 = 5.5 eV. The quantity

4〈Ψj |VEV odd
ligand|Ψ0〉/∆E4f8→4f75d1 thus is estimated to (1.8 ± 1.1)10−4 (eV) E with

E given in mV/nm. If furthermore, we consider only the states of the ground mul-

tiplet 7F6 and those of the first excited 7F5 multiplet then only two excited states

are mixed by the electric field with the ground state, with E0 − Ej=1 ≈ −0.06 eV

and 〈Ψ0|N |Ψj=1〉/〈Ψ0|N |Ψ0〉 = −1/
√
6 for the first and E0−Ej=2 ≈ −0.3 eV and,

making use of the equation 7.4.9, 〈Ψ0|N |Ψj=2〉/〈Ψ0|N |Ψ0〉 = −0.41576 for the sec-

ond. With all these numbers we may reasonably expect a change in the hyperfine

constant in the order of
∆A

A
≈ 10−3 E(mV/nm) (7.4.16)

The result is in the same order of magnitude than the experimental value and shows

that the observed nuclear spin response to the electric field is explainable by the

hyperfine Stark effect.
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7.5. Dephasing time T
∗
2

7.5.1. Introduction

In this section, we are going to present measurements of the dephasing time T ∗
2 of the

nuclear spin qubit. The dephasing time is equal to the duration over which the time

average coherence of the quantum superposition is preserved. But before turning to

the discussion of the experimental results, a brief review about the dephasing of an

effective spin 1/2 and the experimental access to this quantity is given. To do so, we

will follow the common approach by starting from the time evolution of the 2 × 2

density matrix ρ:

i~
dρ

dt
= [H, ρ] = Hρ− ρH =

~

2

[(

∆ Ω

Ωe−iφ −∆

)

ρ− ρ
(

∆ Ω

Ωe−iφ −∆

)]

(7.5.1)

where H is the Hamiltonian described in Eq. 7.1.8. Expanding this matrix equation

and substituting

〈σx〉 = (ρ21 + ρ12) (7.5.2)

〈σy〉 = i (ρ21 − ρ12) (7.5.3)

〈σz〉 = ρ22 − ρ11 (7.5.4)

we get the equations of motion in the rotation frame:

〈σx〉 = ∆〈σy〉 (7.5.5)

〈σy〉 = −∆〈σx〉+Ω〈σz〉 (7.5.6)

〈σz〉 = −Ω〈σy〉 (7.5.7)

These equations describe the motion of the spin exposed to an alternating field,

however, the effects of relaxation and decoherence are still missing. In 1946, Felix

Bloch extended this set of equations by empirical terms to allow for the relaxation to

equilibrium. He assumed that the relaxations along the z-axis and in the x−y plane

happen at different rates, which are designated as 1/T1 and 1/T2 for the z-axis and

the x− y plane respectively. Including these terms results in the Bloch equations:

〈σx〉 = −∆〈σy〉 −
〈σx〉
T2

(7.5.8)

〈σy〉 = ∆〈σx〉+Ω〈σz〉 −
〈σy〉
T2

(7.5.9)

〈σz〉 = −Ω〈σy〉 −
〈σz〉
T1

(7.5.10)
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In case of no alternating field Ω = 0 one can show that the solution to these equations

is:

〈σx〉 = 〈σx〉t=0 cos(∆t)e
−t/T2 (7.5.11)

〈σy〉 = 〈σy〉t=0 sin(∆t)e
−t/T2 (7.5.12)

〈σz〉 = 〈σz〉t=0 (1− e−t/T1) (7.5.13)

Eqs. 7.5.11- 7.5.13 describe the precession of a spin 1/2 with the detuning ∆ around

the z-axis. This precession is damped at a rate 1/T2 in the x − y-plane and with

the rate 1/T1 along the z-axis. To measure the relaxation in the x − y-plane (free

induction decay) a series of operations is performed. First, the spin is prepared

along the +z-axis in the Bloch sphere at t = 0. Subsequently, we turn the spin into

the equatorial plane using a MW pulse and thus create a superposition between the

two spin states. The duration of this pulse was adjusted to perform a 90◦ rotation

around the x-axis, which is why this type of pulse is referred to as a (π/2) pulse

(Fig. 7.5.1(a)). Afterward, we are waiting for the time τ , leading to the precession

of the spin according to Eqs. 7.5.11- 7.5.12 around the z-axis at the frequency ∆.

Notice that 〈σz〉 remains zero and only 〈σx〉 and 〈σy〉 are changing. Then a second

π/2 pulse is rotating the spin back onto the z-axis. This operation transforms the

former value of 〈σy〉 to 〈σz〉, which is measured subsequently. Repeating this pulse

sequence (Fig. 7.5.1(b)) for different values of τ and measuring the resulting value

of 〈σz〉 leads to oscillations with a period of 1/∆ — the so called Ramsey fringes

(Fig. 7.5.1(c)). In the case of a single spin, many measurements are averaged to

obtain the expectation value 〈σz〉. Due to the changing environmental influence

in each measurement, the spin performs rotations with slightly different angles at

a given time τ between the two π/2 pulses. This dephasing mechanism between

subsequent measurements leads to a decay faster than the decoherence time. The

envelope of the oscillation is modeled by the function exp(−t/T ∗
2 ), where T ∗

2 is the

dephasing time.

7.5.2. Experimental results

From the previous section we know that the oscillation frequency of the Ramsey

fringes is equal to the detuning ∆/2π. Therefore, in order to adjust the oscillation

period, the precise position of the resonance frequency ν0 had first to be obtained.

This was done by measuring the visibility of the Rabi oscillations as function of the

frequency at a microwave power of 0 dBm (see Fig. 7.5.2(a)). By fitting a Lorentzian

to the obtained data points, we found the maximum at 2449 MHz for Vg = 2.205 V.

Afterward, we detuned the microwave source by 100 kHz in order to see Ramsey

fringes with an oscillation period of 10 µs. In the next step we measured a full

Rabi oscillation at ν = 2448.9 MHz to determine the duration of the π/2 pulse (see
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Figure 7.5.1.: (a) Bloch sphere trajectory of the spin wavefunction during the experiment.
The Ramsey fringes are measured by applying a sequence of two MW pulses (b) to a spin,
which was initially oriented along the z-axis. The first MW pulse rotates the vector by 90◦

into the x− y-plane, which is equivalent to a superposition of the two spin states. Waiting
for a time τ , causes a damped precession of the Bloch vector with the frequency 2π/∆ and
at the rate T ∗

2 . The second MW pulse rotates the spin again by 90◦ around the x-axis,
thus, mapping 〈σy〉 on 〈σz〉. (c) Repeating this sequence for different τ and measuring the
resulting expectation value 〈σz〉 leads to oscillations decaying with e−t/T∗

2 .

Fig. 7.5.2(b)). By fitting the Rabi oscillation to a sine function, the duration of the

π/2 pulse can be obtained and was ≃284 ns.
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Figure 7.5.2.: (a) To calibrate the detuning, we measured the visibility of the Rabi oscil-
lations as a function of the frequency at 0 dBm microwave power. The maximum of the
visibility corresponds to zero detuning and was found at 2449 MHz. (b) In order to obtain
Rabi oscillations with a period of 10 µs, we detuned the microwave source by 100 kHz to
2448.9 MHz and recorded a full period of a Rabi oscillation. Fitting the data to a sine
function gave rise to a π/2 pulse length of 284 ns.

Having calibrated the π/2 pulse at the microwave frequency of 2448.9 MHz, we

measured the Ramsey fringes following the sequence presented in Fig. 7.5.3(a). First

the nuclear spin qubit was initialized by sweeping the magnetic field back and forth

until the nuclear spin was in the |+3/2〉 state. Subsequently, two π/2 MW pulses were
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Figure 7.5.3.: (a) Time dependent external magnetic field H|| and pulse sequence gener-
ated to measure the Ramsey fringes. Initialization and probe of the nuclear spin qubit are
performed using the identical protocol explained in Fig. 3a. The MW sequence consists
of two π/2 pulses, with an increasing inter-pulse delay τ . (b) Ramsey interference fringes
obtained by repeating the procedure of (a) 800 times. Vg = 2.205 V, corresponding to a
Rabi frequency ΩR = 1.136 MHz and a resonant frequency ν0 = 2.449 Mhz of the nuclear
spin qubit. The measured coherence time T ∗

2 ≈ 64 µs.

generated with the inter-pulse delay τ . At last, the final state was probed sweeping

the magnetic field back to its initial value, while checking for a QTM transition.

If no QTM event was observed, the measurement was rejected. To obtain a good

approximation of the expectation value this procedure was repeated 100 times for

each inter-pulse delay τ , resulting in the Ramsey fringes as shown in Fig. 7.5.3(b).

The measurements exhibit an exponentially decaying cosine function. By fitting the

data to y = cos((∆/2π)t)exp(−t/T ∗
2 ), we extracted a dephasing time T ∗

2 ≈ 64 µs.

Detailed studies suggest that the mayor contribution to the dephasing was caused

by charge noise of the oxide and bit noise of the digital to analog converter at the

gate terminal.The amplitude of the latter is estimated to be ±1 bit resulting in

gate voltage fluctuations of ∆Vg(bit noise) = ±153 µV → Fig. 7.3.1 → ±26.2 kHz

→ gNµNBeff/h → ±2.6 mT. Now we turn to the estimation of the noise generated by

charges trapped in the gate oxide. If charges are trapped far away from the molecule

those fluctuations are small, their frequency, however, is larger due to the multitude

of available trapping sites. From our measurements we extracted that within the time

scale of averaging over 1 data point we observed an effective gate voltage fluctuation

of ∆Vg(bit noise) = ±500 µV → Fig. 7.3.1 → ±85.9 kHz → gNµNBeff/h → ±8.6 mT.

Moreover, a charge can be trapped in the close vicinity of the molecule, leading to

a gate voltage shift so large that nuclear spin is completely shifted out of resonance.

Since the available sites in the close vicinity of the molecular are very few, this event

happens in average every 1 to 2 days. Those events will not necessarily increase

the decoherence since the changes are so drastic that we recalibrate the resonance
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frequency every time they occurred. However, they make the measurement of a

complete series of Rabi and Ramsey oscillations, which took about 4 days, extremely

difficult and time consuming.

In future devices we wil make use of more stabe gate oxides and well stabilized

DA converters, which should increase the dephasing time by at least 2 orders of

magnitude.

7.5.3. Outlook

In order to enhance the dephasing time T ∗
2 , the coupling to the environment must

be attenuated. This can be achieve by actively controlling the time evolution of

the spin precession. This so called dynamical decoupling relies on a series of MW

pulses, which is periodically turning the spin [137]. One can show that environmental

interactions, which happen on a time scale longer than the pulse series, are canceled

out. The most common of these pulse sequences to dynamically decouple the spin

from the environment was presented by Hahn [138] and involves as series of three

pulses as shown in Fig. 7.5.4(b). To visualize the experiment, we make again use of

the Bloch sphere representation (see Fig. 7.5.4(a)). The first step, prior to the pulse

sequence, is the initialization of the spin. In this example we will use the vector

pointing along the +z direction as initial state (grey vector in Fig. 7.5.4(b)). By

applying a π/2 pulse, the Bloch vector will be rotated by 90◦ around the x-axis,

thus creating a linear superposition state (blue curve). This state is left to a free

evolution during the time τ and decoheres at a rate of T2. After a waiting time τ ,

the vector has rotated by an angle φ in the equatorial plane, which is different every

time we perform the experiment due to the fluctuations of the magnetic field along

z. The second MW pulse (red) rotates the vector by an angle of 180◦ around x. This

operation compensates any difference in φ, since vectors which were delayed, due to

a slightly smaller magnetic field in z direction (dark red arrow), are now in advance.

Followed by a second free precession of duration τ , the Bloch vector will arrive at −y
no matter what the local magnetic field was, as long as it remained constant on the

time scale of the pulse series. Hence, all magnetic field fluctuations, which were much

slower than the pulse sequence, are eliminated. Finally, the vector is rotated by 90◦

around x, which brings it back to its original position. Yet, the size of the vector

is reduced due to decoherence within the x − y plane, resulting in an exponentially

decaying spin echo signal (see Fig. 7.5.4(c). However, the characteristic time of the

decay is the decoherence time T2, which is much longer than T ∗
2 and can theoretically

be extended to its fundamental limit T2 ≤ 2T1.

The measurement protocol will be similar to the Ramsey experiment, but with an

altered pulse sequence. We expect to eliminate the rather slow gate voltage fluctua-

tions, which were transformed into magnetic field fluctuations by the hyperfine Stark
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Figure 7.5.4.: (a) Trajectory of the Bloch vector in the Hahn spin echo experiment, in
which a sequence of three MW pulses (b) is applied to a spin, initially aligned along the
+z-axis. First, the vector is rotated by 90◦ into the equatorial plane using a π/2 pulse,
thus, creating a linear superposition of the two spin states. Afterward, the vector performs
a free precession around z for an interval τ , while being damped at the rate e−t/T2 . During
this time, magnetic field fluctuations along z result in slightly different precession angles
from one measurement to another. A second MW pulse rotates the spin by an angle 180◦

around x, hence, ending up again in the x-y plane. Due to this operation, vectors which
were formerly retarded to to a slightly smaller magnetic field are now in advance. Thus,
after waiting for the same period τ , the vector will be aligned along the −y-axis. Finally,
we project it back to the z-axis using a second π/2 pulse. (c) Repeating this sequence for
different τ leads to an exponentially decaying spin echo signal of e−t/T2 .

effect and, hence, we should observe a T2, which is much larger than T ∗
2 . However,

the experimental realization of this experiment has not been performed yet, and

could not be presented in my manuscript.

7.6. Summary

In this chapter, we presented the first quantum manipulation of a single nuclear spin

qubit in a single-molecular magnet. To overcome the technical problem of generating

high magnetic field amplitudes, we proposed and demonstrated the possibility to

use the Stark shift of the hyperfine coupling to not only tune the level splitting

of our nuclear spin qubit, but also to generate a large effective AC magnetic field

at the nucleus. Using local AC electric fields, we performed electrical quantum

manipulations of a single nuclear spin qubit at MHz frequencies with a coherence

time T ∗
2 ≃ 64 µs. These results open the way to a fast coherent manipulation of a

nuclear spin qubit as well as the opportunity to control the entanglement between

different single nuclear spin qubits by tuning their resonance frequency using AC and

DC gate voltages, by means of the Stark shift of the hyperfine coupling. Since this

was only possible due to the unique electrostatic environment of a single molecule
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magnet, these results will hopefully make molecular based qubits serious candidates

for quantum information processing.



8 | Conclusion and outlook

In this thesis I developed an entire experimental setup to measure and manipulate

quantum properties of single molecule magnets. Equipped with a new dilution re-

frigerator to meet the needs of ultra sensitive mesoscopic experiments, I designed

and constructed innovative equipments such as miniaturized three dimensional vec-

tor magnets, capable of generating static magnetic fields in the order of a Tesla and

allowing for sweep-rates larger than one Tesla per second 1. Furthermore, I optimized

the noise-filtering system and the signal amplifiers in order to suppress as much as

possible the electronic noise pick-up.

After a thorough testing and approving of every part in the measurement chain, I

turned to the fabrication of a single-molecule magnet spin-transistor, being probably

one of the smallest devices presented in the field of organic spintronics. However,

its tiny size of only 1 nm and the technological limitations of state of the art nano-

fabrication made it extremely challenging to build such a device. Despite this difficult

conditions, I was able to perform experiments on three different samples, which

demonstrated the feasibility and reproducibility of those cutting edge devices, even

though the yield was rather small.

The extreme sensitivity of the molecular spin transistor, opened a path to access

pristine quantum properties of an isolated single-molecule magnet, such as read-out

of its quantized magnetic moment and the detection of the quantum tunneling of

magnetization.

But most important, we were able to detect the four different quantum states of an

isolated 159Tb nuclear spin. By reading out the nuclear spin states much faster than

the relaxation time T1, we were able to measure the nuclear spin trajectory, revealing

quantum jumps between the four different nuclear qubit states at a timescale of

seconds. Finally, a post-treatment and statistical averaging of this data yielded the

relaxation times T1 of a few tens of seconds, which were resolved for each nuclear

spin state individually.

However, the underlying physics, leading to the relaxation of the nuclear spin, re-

mained hidden in the statistical average. In order to extract this very information, we

1The maximum sweep-rate was tested in liquid helium.

131



132 8 Conclusion and outlook

developed a quantum Monte-Carlo code taking the specific experimental conditions

into account. By fitting the statistical average of the simulations to the experimen-

tal data, we could deduce that the mechanism, dominating the relaxation process,

was established over a coupling between the nuclear spin to the electrons tunneling

through the read-out quantum dot. Using this knowledge, we could demonstrate that

the experimental relaxation times could be modified just by changing the amount of

tunnel electrons per unit time.

After having thoroughly investigated the quantum properties of an isolated nuclear

spin using a passive read-out only, we wanted to take our experiments to the next

level by actively manipulating the nuclear spin in a coherent manner. To overcome

the technical problem of generating high magnetic field amplitudes, we proposed and

demonstrated the possibility to exploit the Stark shift of the hyperfine coupling to

accomplish this task. Not only could we tune the level splitting of our nuclear spin

qubit, but also the generation of large effective AC magnetic fields at the nucleus

was possible. In this way we performed the first electrical manipulation of a single

nuclear spin. In combination with the tunability of the resonance frequency by means

of a local gate voltage, the addressability of individual nuclear spins in the spirit of

Kane’s proposal [50] becomes possible.

During my thesis I could demonstrate that single-molecule magnets are potential

candidates for quantum bits as defined by DiVincenzo [32] (see chapter 1 for further

explanation):

- Information storage on qubits: I could show that information could be stored on

the single nuclear spin of an isolated TbPc2 SMM (chapter 6).

- Initial state preparation: the initial state preparation is up to now rather pas-

sive, however, due to the quantum nondestructive nature of the measurement

scheme, the initial state can be prepared by the measurement itself.

- Isolation: since we used a nuclear spin qubit, isolation is one of its intrinsic prop-

erties. I could show in chapter 7 that the dephasing time T ∗
2 of our nuclear

spin qubit is about 64 µs.

- Gate implementation: due to a very large effective magnetic field, created by the

hyperfine Stark effect, a coherent manipulation of the nuclear spin could be

performed within 300 ns, which was 200 times faster than the coherence time

T2.

- Read-out: I demonstrated in chapter 6 that the read-out of the nuclear spin qubit

state was performed with fidelities better than 87% (sample C). Note that

this is no intrinsic limitation of the system and will be improved in future

experiments.

However, to be competitive with existing qubit systems, the read-out of the nuclear

spin state needs to be speed up by at least three orders of magnitude. To achieve
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this acceleration of the read-out cycle, a different detection scheme is necessary. On

of the most established methods in nuclear spin based qubits takes advantage of the

nuclear spin resolved electron spin resonance (ESR) as a read-out tool. As already

pointed out in chapter 7, this technique seems to be incompatible TbPc2 SMMs due

to the spin ground state of mJ = ±6 and an excited state separation of about 12.5

THz.

However, different kinds of single-molecule magnets with ESR compatible properties

could be thought of. Such a molecule is for example the Co(Me6tren)Cl SMM (see

Fig. 8.0.1). It is one of the first mononuclear single-molecule magnets based on tran-

sition metal ion. Those molecules are chemically more stable than their polynuclear

counterparts, which allows the manipulation and study of its magnetic properties on

the single molecule level. It has an Ising type spin ground state of S = ±3/2, which

makes a ESR transition more likely. Furthermore, 59Co is among the 22 existing

elements having only one natural isotopic abundance, which is of major importance

for its use as a nuclear spin qubit. First, preliminary measurements show, that the

hyperfine interaction of the Co2+ ion is comparable to the Tb3+, as the steps in

the hysteresis curve coming from the hyperfine coupling are well distinguished (see

Fig. 8.0.1(b)). However, its compatibility to the molecular spin-transistor design and

the ESR transition between the S = ±3/2 ground states still needs to be proven.

Figure 8.0.1.: (a) Structure of the Co(Me6tren)Cl SMM. (b) Hysteresis loop of a diluted
Co(Me6tren)Cl crystal obtained with a microsquid. Steps in the hysteresis indicate the
nuclear spin resolved quantum tunneling of magnetization.

Another important point, which has not been shown yet, is the scalability of our

qubits. In contrary to common top-down approaches, like coupling different qubits in

a cavity, we want to exploit the potential of organic chemistry in designing molecules

including more than one qubit. Starting from the mononuclear terbium double-

decker SMM (see Fig. 8.0.2(a), a two qubit system could be made by using a triple-

decker SMM with two terbium ions (see Fig. 8.0.2(b)). The coupling between the

terbium ions is established via the exchange interaction, mediated using an unbound

electron of the phthalocyanine ligands. In the single-molecule spin-transistor layout
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the electron can be easily removed or added by means of the gate voltage. Thus, the

coupling between the terbium ions can be switched on or off, allowing for the control

of entanglement.

Figure 8.0.2.: (a) Structure of the TbPc2 SMM. (b) Structure of the Tb2Pc3 SMM.

The results presented in this thesis, extent the potential of molecular spintronics

beyond classical data storage. We demonstrated the first experimental evidence of

a coherent nuclear spin manipulation inside a single-molecule magnet, and therefore

build the foundation for the first molecular quantum bits. Their great versatility

holds a lot of promises for a variety of future applications and, maybe one day, a

molecular quantum computer.
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A.1. Charged particle in a magnetic field

If an atom is exposed to an external magnetic field it will experience an interaction

which can be quantified by the following Hamiltonian.

H =
Z∑

i=1

1

2me
(pi + eA(ri))

2 + V (ri), (A.1.1)

where p is the momentum operator, (−e) the charge of an electron and A the vector

potential. To simplify the calculation, the Coulomb gauge divA = 0 can be used,

which makes the operators p and A commute. Moreover, the vector potential is

chosen to be A = 1
2 (B × r). Inserting this into Eq. A.1.1 and expanding the

canonical momentum gives:

H =

Z∑

i=1

p2
i

2me
+

e

2me
pi (B × ri) +

e2

2me

(
B × ri

2

)2

+ V (ri) (A.1.2)

Applying the rules for triple products: pi (B × ri) = B (ri × pi), and inserting the

electron orbital angular momentum li = ri × pi we get:

H =

Z∑

i=1

p2
i

2me
+ V (ri) +

e

2me
B

Z∑

i=1

Li +

Z∑

i=1

e2B2

8me
r2i sin

2(θi) (A.1.3)

Substituting
∑Z

i=1
p2

i

2me
+ V (ri) with the Hamiltonian in absence of a magnetic field

H0,
e~
2me

with the Bohr magneton µB and
∑Z

i=1 li with total orbital momentum L,

gives rise to final Hamiltonian:

H = H0 + µB
L

~
B

︸ ︷︷ ︸

Hpara

+
Z∑

i=1

e2B2

8me
r2i sin

2(θi)

︸ ︷︷ ︸

Hdia>0

(A.1.4)
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This Hamiltonian is divided into three parts. The first one, H0, describes the atom

without a magnetic field. In the second term is a scalar product of L and B, which

will align two vectors anti-parallel in order to minimize the energy and is responsible

for the paramagnetism. The last part of the equation is always positive and therefore

increasing the energy of the atom. It describes the diamagnetic response to an

applied field. If we put some numbers into the equation, e.g. |L| /~ =
√
2, |B| = 1T,

r2i = 0.3nm, we get Hpara ≈ 100 µeV and Hdia ≈ 1 neV. Thus, the diamagnetism

is much smaller than the paramagnetism and is only of significance in systems with

closed or half filled shells. The total magnetic moment µ is calculated by taking the

first derivative of the Hamilton operator with respect to the magnetic field. Using

Eq. A.1.4 results in:

µ =
∂H

∂B
= µB

L

~
︸ ︷︷ ︸

µL

+

Z∑

i=1

e2B

4me
r2i sin

2(θi)

︸ ︷︷ ︸

µind

The last term arises only for finite B, and describes the induced magnetic moment.

The first term, however, is present also at zero magnetic field and represents a per-

manent magnetic moment due to the orbital motion:

µL = µB
L

~
(A.1.5)

where L is the total orbital angular momentum with its quantum number L. Its

modulus is obtained by:

|L| = ~

√

L(L+ 1) (A.1.6)

and its projection on the z axis is given as:

Lz = ~mL (A.1.7)

with mL being the magnetic orbital quantum number ranging from −L to L, and

having therefore 2L+ 1 possible values.

A.2. Electron spin

When Stern and Gerlach did their famous experiment in 1922, they discovered that

electrons posses an internal permanent magnetic moment, which is independent of

its orbital motion and takes only two quantized values. In analogy to the orbital

angular momentum L it is assumed that an additional intrinsic angular momentum
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S, which is called spin, gives rise to this permanent magnetic moment. Similar to

Eqs. A.1.5-A.1.7 we define a magnetic moment:

µS = gSµB
S

~
(A.2.1)

where g is the Landée factor and S is the total spin with its quantum number S.

The modulus of S is calculated as:

|S| = ~

√

S(S + 1) (A.2.2)

and its projection on the z-axis is given by:

Sz = ~mS (A.2.3)

In contrary to the orbital angular momentum, the magnetic moment is increased by

the Landée factor and S can take half integer values.

The Hamiltonian of a charge particle with spin S modifies to:

H = H0 + µB
L+ gSS

~
B

︸ ︷︷ ︸

Hpara

+

Z∑

i=1

e2B2

8me
r2i sin

2(θi)

︸ ︷︷ ︸

Hdia>0

(A.2.4)

A.3. Spin matrices

Let us first consider a system with only two spin values: s = 1/2 and mS = −1/2,+1/2.

This is a very simple case, but helps understanding more difficult spin system. When

calculating energy levels of spin 1/2 systems it is convenient to work with the matrix

representation, where the wave function Ψ is a vector with the spin up and down

amplitude and the operator S is a vector of two by two matrices ((2S+1)×(2S+1)):

S =
~

2
σ (A.3.1)

where σ are the so-called Pauli matrices:

σx =

(

0 1

1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0

0 −1

)

Often, instead of σx and σy, their linear combinations σ+ = (σx + iσy) and σ− =

σx − iσy are used since they are more adapted to the spin up and spin down basis.
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σ+ =

(

0 1

0 0

)

, σ− =

(

0 0

1 0

)

(A.3.2)

In this representation the Zeeman energy is calculated by diagonalizing the following

Hamiltonian:

HZeeman =
1

2
µBgS

[

Bx

(

0 1

1 0

)

+By

(

0 −i
i 0

)

+Bz

(

1 0

0 −1

)]

Analogue to the spin 1/2 system those matrices can be calculated for spin systems

of order N , where σz is a (2N + 1)× (2N + 1) matrix with only diagonal elements.

σz(N) =







−N 0
. . .

0 N







(A.3.3)

The matrices σx(N) and σy(N) are obtained via σ+(N) and σ−(N):

σ±(N) =
√

N(N + 1)−mN(mN ± 1) δi±1,j (A.3.4)

A.4. Dirac equation and spin-orbit coupling

The origin of spin and therefore spin-orbit interaction lies in the relativistic nature

of electrons. Relativity theory teaches us that the energy of an electron is calculated

by: E =
√

c2p2 +m2
ec

4, where c is the speed of light, me the free electron mass and

p the relativistic, classical momentum: p =
(
1− v2/c2

)−1/2
mev. Due to its non-

linearity it is not so easy to translate this equation using the correspondence principle

of quantum mechanics into an operator. The only way to solve this problem is to

linearize the above equation. It can be shown, that this is only possible by rewriting

the standard representation of the Schrödinger equation in the matrix representation.

The idea is to find a matrix which multiplied by itself, gives the energy eigenvalues

squared. The solution to this problem was found by Paul Dirac in 1928 and has the

following form:

HD =









mec
2 0 cpz c(px − ipy)

0 mec
2 c(px − ipy) −cpz

cpz c(px − ipy) −mec
2 0

c(px − ipy) −cpz 0 −mec
2











A.4 Dirac equation and spin-orbit coupling 139

which multiplied by itself gives:

H2
D =









c2p2 +m2
ec

4 0 0 0

0 c2p2 +m2
ec

4 0 0

0 0 c2p2 +m2
ec

4 0

0 0 0 c2p2 +m2
ec

4









The energy eigenvalues of the Dirac Hamiltonian are:

E = ±
√

c2p2 +m2
ec

4

Where each eigenvalue is twice degenerate. The positive energies are describing

electrons, whereas the negative energies are for positrons. The time independent

Dirac equation is then:









mec
2 0 cpz c(px − ipy)

0 mec
2 c(px − ipy) −cpz

cpz c(px − ipy) −mec
2 0

c(px − ipy) −cpz 0 −mec
2

















Ψ↑
e

Ψ↓
e

χ↑
p

χ↓
p









= E









Ψ↑
e

Ψ↓
e

χ↑
p

χ↓
p









where Ψ↑
e ,Ψ

↓
e is the up-spin or down spin electron wave function and χ↑

p,χ
↓
p is the up-

spin or down-spin positron wave function, respectively. To describe an relativistic

electron in an electro-magnetic field the following substitutions are usually made:

p → p + eA and E = E + eφ. Where A and φ are the magnetic vector potential

and the electric scalar potential, respectively. In the following we want combine the

up-spin and down-spin component to get smaller expressions. It can be shown easily

that: cpσ = c(pxσx + pyσy + pzσz) =

(

cpz c(px − ipy)
c(px − ipy) −cpz

)

. Thus we get:

(

mec
2 c(p+ eA)σ

c(p+ eA)σ −mec
2

)(

Ψ

φ

)

= (E + eφ)

(

Ψ

φ

)

This is a coupled equation of Ψ and φ. Expanding this matrix equation results in:

(
E −mec

2 + eφ
)
|Ψ > = c(p+ eA)σ|χ > (A.4.1)

(
E +mec

2 + eφ
)
|χ > = c(p+ eA)σ|Ψ > (A.4.2)

We can therefore express |χ > in terms of |Ψ >:

|χ > =
c

(E +mec2 + eφ)
(p+ eA)σ|Ψ >
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Until now everything is exact. To simplify this equation we use the Taylor series

expansion.

|χ > ≈ 1

2mec

(

1− E −mec
2 + eφ

2mec2

)

(p+ eA)σ|Ψ >

Substituting this result into into Eq. A.4.1 gives:

(
E −mec

2 + eφ
)
|Ψ〉 ≈

1

2me
(p+ eA)σ

(

1− E −mec
2 + eφ

2mec2

)

(p+ eA)σ|Ψ〉

=

[

[(p+ eA)σ]2

2me

(

1− E −mec
2

2mec2

)

− e

4m2
ec

2
(p+ eA)σ (φ) (p+ eA)σ

]

|Ψ〉

We used the fact that the operator (p + eA)σ is not acting on E −mec
2. Now we

want to expand the second term. To do so we recall that the momentum operator

p = −i~∇ and that pφ = φp− i~∇φ. Inserting this into the above equation gives:

(p+ eA)σ (φ) (p+ eA)σ = φ [(p+ eA)σ]2 − i~ [(∇φ)σ] [(p+ eA)σ]

using the equation: (Xσ) (Y σ) = XY + iσ (X × Y ) we end up with:

−i~ (∇φ)σ [(p+ eA)σ] = −i~ (∇φ) (p+ eA) + ~σ [(∇φ)× (p+ eA)]

(
E −mec

2 + eφ
)
|Ψ > =








[(p+ eA)σ]2

2me

(

1− E −mec
2 + eφ

2mec2

)

︸ ︷︷ ︸

Pauli equation + relativistic correction







|Ψ〉

+








e

4m2
ec

2
∇φ (p+ eA)

︸ ︷︷ ︸

Darwin−term

− ~e

4m2
ec

2
σ [∇φ× (p+ eA)]

︸ ︷︷ ︸

spin−orbit−term







|ψ〉

We are now concentrating only on the last term, since it is the most interesting for

our purposes.

By changing to the spherical coordinate system:

∇φ =
1

r

dφ

dr
r



A.4 Dirac equation and spin-orbit coupling 141

resulting in:

~e

4m2
ec

2
σ [∇φ× (p+ eA)] =

~e

4m2
ec

2
σ

[
1

r

dφ

dr
r × (p+ eA)

]

Since p + eA is the canonical momentum the expression r × (p+ eA) gives us the

orbital momentum l. The term 1
r
dφ
dr is just a scalar and can be combined with

the pre-factor to the spin-orbit coupling constant ξ = ~e
4m2

e c
2

(
1
r
dφ
dr

)

. Since σ is the

operator for the spin s we result in the final one electron spin-orbit Hamiltonian:

Hso = ξ ls

If we are now considering systems with more than one electron, there are two possibil-

ity of how the spin-orbit coupling effects the orbital energies. The first and for us less

interesting case is a system where the spin-orbit coupling is larger than the electron-

electron interaction. There each electrons spin si couples with its orbit li to form an

total momentum ji = li + si. The coupling energy is than given by Hli,si = ciilisi.

In the second case the electron-electron interaction, or in other words the coupling

between different orbital momenta Hlilj = aijlilj and spins Hsisj = bijsisj is larger

than the spin-orbit coupling. Now the different orbital momenta couple to a total

orbital momentum L =
∑

i li and the different spins couple to a total spin S =
∑

i si

before coupling the the total momentum J = L+S. The spin-orbit coupling energy

is than given by: Hso = λ LS. With this knowledge we can also try to understand

the 3. Hunds rule. Therefore we are relating the one electron spin-orbit coupling

constant ξ with λ:

Hso = ξ
∑

i

li
∑

i

si = λLS

Therefore

λ =
ξ
∑

i lili

LS

for less than half filled shells si is always 1
2 and can be put in from of the sum. Thus

λ becomes positive for less than half filled shells and the ground state is J = |L−S|.

λ =
1
2ξ
∑

iLi

LS
=

ξ

2S
> 0

For more than half filled shells si has values of +1
2 and −1

2 and the sum is split in

two:

λ =

1
2ξ

0
︷ ︸︸ ︷

half
∑

i

Li

LS
−

1
2ξ

L
︷ ︸︸ ︷
n∑

half

Li

LS
= − ξ

2S
< 0
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Now λ becomes negative and J = L + S is the new ground state, since it has the

smallest energy.



B | Stevens operators

O0
2 = 3J2

z − J(J + 1)

O0
4 = 35J4

z − 30J(J + 1)J2
z + 25J2

z − 6J(J + 1) + 3J2(J + 1)2

O4
4 =

1

2
(J4

+ + J4
−)

O0
6 = 231J6

z − 315J(J + 1)J4
z + 735J4

z + 105J2(J + 1)2J2
z − 525J(J + 1)J2

z +

+294J2
z − 5J3(J + 1)3 + 40J2(J + 1)2 − 60J(J + 1)

O4
6 =

1

4

[
(11J2

z − J(J + 1)− 38)(J4
+ + J4

−) + (J4
+ + J4

−)(11J
2
z − J(J + 1)− 38)

]

where Jz, J+ and J− are the generalized Pauli operators of order N .
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C | Quantum Monte Carlo code

The following python code is based on a quantum Monte Carlo algorithm and was

used to simulate the nuclear spin trajectory.

from py l ab import ∗

from s c i p y . op t im i z e . minpack import c u r v e_ f i t

import p i c k l e

class QMC:

def __init__( self ,T,Gamma, dt , de l ta_t , p_LZ ) :

self . P s i 0 = a r r a y ( [ 0 , 0 , 0 , 1 ] ) # i n i t i a l s t a t e

self . H0 = a r r a y ( [ 0 . 0 , 1 2 1 . 0 , 2 7 0 . 0 , 4 4 8 . 0 ] ) # in mK

self . dt = dt # QMC time s t ep

self . d e l t a_t = de l t a_t # measurement i n t e r v a l

self .Gam= Gamma

self .T = T

self . p_LZ = p_LZ

self . d_omega = d i f f ( self . H0)

self .n_T = a r r a y ( [ 1 . / ( exp ( ( self . d_omega [ 0 ] ) /T)−1) ,

1 . / ( exp ( ( self . d_omega [ 1 ] ) /T)−1) ,

1 . / ( exp ( ( self . d_omega [ 2 ] ) /T)−1)])

self . s c l = a r r a y ( [ 1 . 0 , 2 . 0 , 2 . 2 ] )

self . C1C1 = self .Gam∗ a r r a y ( [ 0 ,

self . s c l [0 ]∗(1+ self .n_T[ 0 ] ) ,

self . s c l [1 ]∗(1+ self .n_T[ 1 ] ) ,

self . s c l [2 ]∗(1+ self .n_T [ 2 ] ) ] )

self . C2C2 = self .Gam∗ a r r a y ( [ self . s c l [ 0 ] ∗ self .n_T[ 0 ] ,

self . s c l [ 1 ] ∗ self .n_T[ 1 ] ,

self . s c l [ 2 ] ∗ self .n_T[ 2 ] ,

0 ] )

self . H1 = ones (4)−0.5∗ dt ∗( self . C1C1+self . C2C2)
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self . r e s = [ ]

self . data = [ ]

self . m i s s = [ ]

self . e r r = 0

def run( self , s t e p s =2∗∗22 , t r_r t=True ) :

r e s = [ ] #data a r e s t o r e d e v e r y quantum jump

data = [ ] #data a r e s t o r e d i n d i s c r e t e t ime i n t e r v a l s

miss = [ ]

P s i = self . P s i 0 #i n i t i a l s t a t e

t = 0 #l i f e t i m e o f the c u r r e n t s t a t e

r e v = 1 #−1: e−s p i n down

#+1: e−s p i n up

t ime = 0 #d i s c r e t e t ime

#number o f c y c l e s f o r each de l t a_t

N = i n t ( de l t a_t / self . dt )

#cy c l e i s d ev i d ed i n t o 5 s e c t i o n s

t1 = 1 .0∗N/5 .0

t_arr = round ( t1 )∗ ones (10)

#s e c t i o n number ing

i t v = a r r a y ( [ 4 , 0 , 1 , 2 , 3 , 4 , 3 , 2 , 1 , 0 ] )

#i t v [ 0 ] c u r r e n t s e c t i o n

LZ_event = t_arr [ 0 ]

#Monte Ca r l o Loop

for i i in range ( s t e p s ) :

# s t a t u s r e p o r t

i f ( i i%i n t ( s t e p s /100)==0):

print s t r ( i n t ( 1 . ∗ i i / s t e p s ∗100))+ ’% completed ’

# i n c r e a s e l i f e t i m e o f the c u r r e n t s t a t e

t = t + self . dt

#Thermal c o n t r i b u t i o n

#−−> evo l v e the popu l a t i o n c o n t i n o u s l y

Ps i1 = self . H1∗ Ps i

dp_re l = dot ( Ps i1 , self . C1C1∗ Ps i1 )∗ self . dt

dp_exc = dot ( Ps i1 , self . C2C2∗ Ps i1 )∗ self . dt

dp = dp_re l +dp_exc

eps = rand ( )
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#eps > dp : # noth i ng happens

i f eps < dp : # quantum jump

#s t o r e p opu l a t i o n and l i f e t i m e e v e r y quantum

#jump f o r t e s t i n g

r e s . append ( Ps i [ : : − r e v ] ∗ t )

t = 0 #r e s e t l i f e t i m e a f t e r quantum jump

i f eps < dp_re l : # r e l a x a t i o n

Ps i = a r r a y ( [ P s i [ 1 ] , P s i [ 2 ] , P s i [ 3 ] , 0 ] )

else : #e x c i t a t i o n

Ps i = a r r a y ( [ 0 , P s i [ 0 ] , P s i [ 1 ] , P s i [ 2 ] ] )

#Landau Zener c o n t r i b u t i o n

#eve r y s e c t i o n : p o s s i b l e Landau−Zener t r a n s i t i o n

# i f LZT −−> i n v e r s e and s t o r e p opu l a t i o n

#Am I at the a n t i c r o s s i n g ?

i f ( ( i i == LZ_event ) and ( t r_r t == True ) ) :

#cy c l e through a n t i c r o s s i n g s

i t v = i t v [ [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 ] ]

t_ar r = t_arr [ [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 ] ]

# se t coun t e r to next a n t i c r o s s i n g

LZ_event += t_arr [ 0 ]

#Am I not at the bo rde r ?

i f i t v [ 0 ] < 4 :

#i s n u c l e a r s p i n i n the r i g h t s t a t e ?

i f ( P s i [ : : − r e v ] [ i t v [ 0 ] ]==1) :

eps_LZ = rand ( )

# i f rand < Landau−Zener p r o b a b i l i t y

# −−>QTM

# −−> i n v e r s e p opu l a t i o n

# −−> s t o r e n u c l e a r s p i n s t a t e

i f ( eps_LZ < self . p_LZ ) :

# f l i p e−s p i n

r e v = r e v ∗ −1

# i n v e r s e n−s p i n p opu l a t i o n

Ps i = Ps i [ : : −1 ]

# dete rm ine n−s p i n

mj = 1.5− i t v [ 0 ]

#s t o r e data

data . append ( [ t ime , mj ] )

e l i f ( eps_LZ > self . p_LZ ) :

mj = 1.5− i t v [ 0 ]

mi s s . append ( [ t ime , mj ] )
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e l i f ( t r_r t == Fa l s e ) :

mj = nonzero ( Ps i ==1)[0] [0 ]−1.5 # Ps i [0 ]=1 −−> mj=−3/2

data . append ( [ t ime , mj∗ r e v ] )

#i n c r e a s e t ime at the bo rde r

else : t ime += de l ta_t

self . r e s = a r r a y ( r e s )

self . data = a r r a y ( data )

self . m i s s = a r r a y ( mis s )

def Pop( self , s ave=Fa l s e ) :

"""

p l o t h i s tog ram o f the t ime ave rage popu l a t i o n

"""

f = p l t . f i g u r e ( )

ax = f . add_subplot (111)

ax . s e t_y l a b e l ( ’ pop t o t a l ’ ) ;

ax . s e t _ t i t l e ( ’T = ’+s t r ( self .T)+ ’ mK’ ) ;

p0 = s i z e ( nonzero ( self . data [ : ,1 ]== 1 . 5 ) )

p1 = s i z e ( nonzero ( self . data [ : ,1 ]== 0 . 5 ) )

p2 = s i z e ( nonzero ( self . data [ : ,1 ]== −0.5))

p3 = s i z e ( nonzero ( self . data [ : ,1 ]== −1.5))

norm = 1 . ∗ ( p0+p1+p2+p3 )

ax . bar ( [ −1 . 5 , −0 . 5 , 0 . 5 , 1 . 5 ] , a r r a y ( [ p0 , p1 , p2 , p3 ] ) / norm ,

width =0.4 , a l i g n=’ c e n t e r ’ , a l pha =1,

c o l o r =[ ’ g r ey ’ , ’ b l u e ’ , ’ g r een ’ , ’ r ed ’ ] )

ax . s e t_x t i c k s ( ( −1 .5 , −0 .5 , 0 . 5 , 1 . 5 ) )

#ax . i n v e r t_ x a x i s ( )

ax . s e t _ x t i c k l a b e l s ( ( r ’ $ |+\ f r a c {3}{2}\ r a ng l e $ ’ ,

r ’ $ |+\ f r a c {1}{2}\ r a ng l e $ ’ ,

r ’ $|−\ f r a c {1}{2}\ r a ng l e $ ’ ,

r ’ $|−\ f r a c {3}{2}\ r a ng l e $ ’ ) )

f . t i g h t_ l a y ou t ( )

i f save == True :

f . s a v e f i g ( ’ Histogram . png ’ , dp i =300)

f . s a v e f i g ( ’ Histogram . pdf ’ )

def DeltaMI( self , s ave=Fa l s e ) :

temp = [ ]

for i i in range ( s i z e ( self . data [ : , 0 ] ) − 1 ) :

temp . append ( [ self . data [ i i +1,1]− self . data [ i i , 1 ] ] )

f 1 = p l t . f i g u r e ( )
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ax1 = f1 . add_subplot (111)

self . dmi = a r r a y ( temp )

ax1 . h i s t ( self . dmi , b i n s =(−3 ,−2 ,−1 ,0 ,1.0 ,2 ,3) ,

a l i g n=’ l e f t ’ , rw i d th =0.5 , normed=True , c o l o r=’ r ’ )

ax1 . s e t_x l a b e l ( r ’ $\ De l ta m_{\ mathsf { I }}$ ’ )

ax1 . s e t_y l a b e l ( ’ p r o b a b i l i t y ’ )

ax1 . se t_x l im ((−3 ,3))

i f save == True :

f 1 . s a v e f i g ( ’ delta_m . png ’ , dp i =300)

f1 . s a v e f i g ( ’ delta_m . pdf ’ )

def Lifetime ( self , xmax , save = Fa l s e ) :

"""

e x t r a c t T1

"""

de l t a_t = self . d e l t a_t

temp1 = [ ]

temp2 = [ ]

temp3 = [ ]

temp4 = [ ]

tau = 0

for i i in range ( s i z e ( self . data [ : , 0 ] ) − 1 ) :

i f ( self . data [ i i , 1 ] == self . data [ i i +1 ,1 ] ) :

tau += self . data [ i i +1,0]− self . data [ i i , 0 ]

else :

i f ( self . data [ i i , 1 ] == +1.5) : temp1 . append ( tau )

i f ( self . data [ i i , 1 ] == +0.5) : temp2 . append ( tau )

i f ( self . data [ i i , 1 ] == −0.5) : temp3 . append ( tau )

i f ( self . data [ i i , 1 ] == −1.5) : temp4 . append ( tau )

tau = 0

temp = [ temp1 , temp2 , temp3 , temp4 ]

e xp_f i t = lambda t , tau , a : a∗ exp(− t / tau )

t ime = l i n s p a c e (0 ,120 ,100)

f 1 = p l t . f i g u r e ( f i g s i z e =(12 ,8))

for i in range ( 4 ) :

ax = f1 . add_subplot (2 , 2 , i +1)

ax . s e t_y s c a l e ( ’ l o g ’ )

ax . se t_y l im (0 . 0 05 , 1 )

ax . s e t_y t i c k s ( ( 0 . 0 1 , 0 . 1 , 1 ) )
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ax . s e t_x l a b e l ( r ’ $t \ (\ mathsf { s }) $ ’ )

ax . s e t_y l a b e l ( r ’ $\ l a n g l e m_{\ mathsf { I }} \ = \ $ ’

+s t r (1.5− i )+ r "$\ r a n g l e $" ) ;

ax . se t_x l im ( ( 0 , xmax ) ) ;

ax . s e t_x t i c k s ( (0 , 20 , 40 , 60 , 80 , 100 , 120 ) )

#c r e a t e Histogramm of l i f e t i m e d i s t r i b u t i o n

H1 = h i s tog ram ( a r r a y ( temp [ i ] ) ,

b i n s=l i n s p a c e ( de l ta_t , 120 ,

i n t (120/ de l t a_t ) ) )

#ex t r a c t a l l nonzero e l ement s #

l f t = ( r e shape ( conca t ena t e ( (H1 [ 1 ] [ nonzero (H1 [ 0 ] != 0 ) ] ,

H1 [ 0 ] [ nonzero (H1 [ 0 ] ! = 0 ) ] ) ) ,

( s i z e (H1 [ 1 ] [ nonzero (H1 [ 0 ] != 0 ) ] ) , 2 ) , o r d e r=’F ’ ) )

params , cov = cu r v e_ f i t ( exp_f i t , l f t [ : , 0 ] ,

l f t [ : , 1 ] , [ 1 0 , 1 0 0 ] )

f i t = exp(− t ime /params [ 0 ] )

#no rma l i z e

l f t [ : , 1 ] = l f t [ : , 1 ] / params [ 1 ]

ax . s c a t t e r ( l f t [ : , 0 ] , l f t [ : , 1 ] , c=’ k ’ )

ax . p l o t ( t ime , f i t , ’ r−− ’ , l i n e w i d t h =3)

ax . t e x t ( 0 . 6 , 0 . 8 , r ’ $\ tau$ ’+’ = ’

+s t r ( round ( params [0 ]∗100)/100)+ ’ s ’ ,

f o n t s i z e=’ x− l a r g e ’ , t r an s f o rm=ax . t r an sAxe s )

f 1 . t i g h t_ l a y ou t ( )

i f save == True :

f 1 . s a v e f i g ( ’ l i f e t i m e . png ’ , dp i =300 , fo rmat=’ png ’ )

f 1 . s a v e f i g ( ’ l i f e t i m e . pdf ’ , dp i =300 , fo rmat=’ pdf ’ )

def Write( self , o u t f i l e ) :

"""

save s imu l a t e d data

"""

f = open ( o u t f i l e , "w+b" )

p i c k l e . dump( self . data , f )

f . c l o s e ( )

i f __name__ == ’__main__ ’ :

Gam = 1./41 # 1/ s

T = 150.0 # tempe ra tu r e i n mK



Quantum Monte Carlo code 151

de l t a_t = 2 .5 # s

dt = de l t a_t /60 # s

P_LZ = 0.515 # Landau−Zener p r o b a b i l i t y

s im = QMC(T,Gam, dt , de l ta_t ,P_LZ)

sim .run(2∗∗24)

sim .Pop( True )

sim .DeltaMI( True )

sim . Lifetime (120 , True )

#sim . Wri te (" sim_data . f i l e ")
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The following python program was used to simulate the trajectory of the Bloch

vector.

from qu t i p import ∗

from py l ab import ∗

from numpy import r e a l

from mp l_too l k i t s . mplot3d import Axes3D

import mp l_too l k i t s . mplot3d . axes3d as p3

def run ( ) :

#

# problem paramete r s :

#

d e l t a = 0 ∗ 2 ∗ p i # qub i t sigma_x c o e f f i c i e n t

omega = 1 .0 ∗ 2 ∗ p i # qub i t sigma_z c o e f f i c i e n t

A = 0.25 ∗ 2 ∗ p i # d r i v i n g amp l i t ude

w = 1.0 ∗ 2 ∗ p i # d r i v i n g f r e qu en c y

gamma1 = 0 .0 # r e l a x a t i o n r a t e

n_th = 0 .0 # ave rage number o f e x c i t a t i o n s

p s i 0 = b a s i s (2 , 0) # i n i t i a l s t a t e

#

# Hami l ton i an

#

sx = sigmax ( ) ; sy = sigmay ( ) ; s z = s igmaz ( ) ;

sm = de s t r o y ( 2 ) ;

H0 = − ( d e l t a + omega ) / 2 .0 ∗ sz

H1 = − A ∗ sx

#

# de f i n e the time−dependence o f the Hami l ton i an

#

a r g s = { ’w ’ : w}

Ht = [H0 , [H1 , ’ s i n (w∗ t ) ’ ] ]
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#

# c o l l a p s e o p e r a t o r s

#

c_op_l i s t = [ ]

r a t e = gamma1 ∗ (1 + n_th )

i f r a t e > 0 . 0 :

c_op_l i s t . append ( s q r t ( r a t e ) ∗ sm) # r e l a x a t i o n

r a t e = gamma1 ∗ n_th

i f r a t e > 0 . 0 :

c_op_l i s t . append ( s q r t ( r a t e ) ∗ sm . dag ( ) ) # e x c i t a t i o n

#

# evo l v e and system s u b j e c t to the time−dependent h am i l t o n i a n

#

t l i s t = l i n s p a c e (0 , 0 .70 ∗ p i / A, 100)

output1x = meso lve (Ht , p s i 0 , t l i s t , c_op_l ist , [ sx ] , a r g s )

output1y = meso lve (Ht , p s i 0 , t l i s t , c_op_l ist , [ sy ] , a r g s )

output1z = meso lve (Ht , p s i 0 , t l i s t , c_op_l ist , [ s z ] , a r g s )

#

# A l t e r n a t i v e : w r i t e the Hami l ton i an i n a r o t a t i n g frame ,

# and n e g l e c t the h igh f r e qu en c y component (RWA) so tha t

# the r e s u l t i n g Hami l ton i an i s t ime−i ndependen t .

#

H_rwa = − d e l t a / 2 .0 ∗ sz − A ∗ sx / 2

output2x = meso lve (H_rwa , p s i 0 , t l i s t , c_op_l ist , [ sx ] )

output2y = meso lve (H_rwa , p s i 0 , t l i s t , c_op_l ist , [ sy ] )

output2z = meso lve (H_rwa , p s i 0 , t l i s t , c_op_l ist , [ s z ] )

#

# Plo t the s o l u t i o n

#

f i g = f i g u r e ( f i g s i z e =(14 ,7))

r e c1 = [ 0 , 0 , 0 . 5 , 1 ] ; r e c2 = [ 0 . 5 , 0 , 0 . 5 , 1 ]

r e c3 = [ 0 . , 0 . 9 , 1 , 0 . 1 ]

ax = Axes3D ( f i g , rec1 , azim=−60, e l e v =30)

ax2 = Axes3D ( f i g , rec2 , azim=−60, e l e v =30)

ax3 = f i g . add_axes ( r e c3 )

ax3 . a x i s ( " o f f " )

ax3 . t e x t ( 0 . 0 5 , 0 , r "$ (\ s f {a }) $" , f o n t s i z e =35)

ax3 . t e x t ( 0 . 5 5 , 0 , r "$ (\ s f {b}) $" , f o n t s i z e =35)

b1 = Bloch ( f i g , ax )
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b1 . add_text ( 0 , 0 , 1 . 2 , " ( a ) " ,100)

b1 . f o n t_s i z e = 35 ; b1 . z l a b e l = [ r ’ $z$ ’ , ’ ’ ]

b1 . x l p o s = [ 1 . 3 , − 1 . 3 ] ; b1 . y l p o s = [1 . 2 , −1 . 2 ]

b1 . z l p o s = [1 . 2 , −1 . 2 ]

b1 . v e c t o r_co l o r = ( [ 0 . 5 , 0 . 5 , 0 . 5 ] , [ 0 , 0 , 0 ] )

b1 . vecto r_mutat ion = 20

b1 . add_vectors ( [ 0 , 0 , 1 ] )

b1 . add_vectors ( [ r e a l ( output1x . e xpec t [ 0 ] ) [ − 1 ] ,

r e a l ( output1y . e xpec t [ 0 ] ) [ − 1 ] ,

r e a l ( output1z . e xpec t [ 0 ] ) [ − 1 ] ] )

b1 . po i n t_co l o r = ( " b l u e " )

b1 . add_points ( [ r e a l ( output1x . e xpec t [ 0 ] ) ,

r e a l ( output1y . e xpec t [ 0 ] ) ,

r e a l ( output1z . e xpec t [ 0 ] ) ] )

b1 . draw ( )

b2 = Bloch ( f i g , ax2 )

b2 . f o n t_s i z e = 35

b2 . z l a b e l = [ r ’ $z$ ’ , ’ ’ ] ; b2 . x l p o s = [ 1 . 3 , − 1 . 3 ] ;

b2 . y l p o s = [ 1 . 2 , − 1 . 2 ] ; b2 . z l p o s = [ 1 . 2 , − 1 . 2 ] ;

b2 . v e c t o r_co l o r = ( [ 0 . 5 , 0 . 5 , 0 . 5 ] , [ 0 , 0 , 0 ] )

b2 . vecto r_mutat ion = 20

b2 . add_vectors ( [ 0 , 0 , 1 ] )

b2 . add_vectors ( [ r e a l ( output2x . e xpec t [ 0 ] ) [ − 1 ] ,

r e a l ( output2y . e xpec t [ 0 ] ) [ − 1 ] ,

r e a l ( output2z . e xpec t [ 0 ] ) [ − 1 ] ] )

b2 . po i n t_co l o r = ( " b l u e " )

b2 . add_points ( [ r e a l ( output2x . e xpec t [ 0 ] ) ,

r e a l ( output2y . e xpec t [ 0 ] ) ,

r e a l ( output2z . e xpec t [ 0 ] ) ] )

b2 . draw ( )

return output1x

i f __name__ == ’__main__ ’ :

out = run( )





Bibliography

[1] J. Bardeen and W. Brattain, The Transistor, A Semi-Conductor Triode. Phys-

ical Review 74, 230–231 (1948). 1.1

[2] C. Chiang, C. Fincher, Y. Park, A. Heeger, H. Shirakawa, E. Louis, S. Gau

and A. MacDiarmid, Electrical Conductivity in Doped Polyacetylene. Physical

Review Letters 39, 1098–1101 (1977). 1.1

[3] J. Barnaś, A. Fuss, R. Camley, P. Grünberg and W. Zinn, Novel magnetoresis-

tance effect in layered magnetic structures: Theory and experiment. Physical

Review B 42, 8110–8120 (1990). 1.1

[4] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau and F. Petroff, Giant

Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Re-

view Letters 61, 2472–2475 (1988). 1.1

[5] S. Datta and B. Das, Electronic analog of the electro-optic modulator. Applied

Physics Letters 56, 665 (1990). 1.1

[6] G. Szulczewski, S. Sanvito and M. Coey, A spin of their own. Nature materials

8, 693–5 (2009). 1.1.1

[7] D. Gatteschi, R. Sessoli and J. Villain, Molecular Nanomagnets. Oxford Uni-

versity Press, USA (2006), ISBN 0198567537. 1.1, 3.6

[8] L. Bogani and W. Wernsdorfer, Molecular spintronics using single-molecule

magnets. Nature materials 7, 179–86 (2008). 1.1

[9] S. Klyatskaya, J. R. G. Mascarós, L. Bogani, F. Hennrich, M. Kappes,

W. Wernsdorfer and M. Ruben, Anchoring of rare-earth-based single-molecule

magnets on single-walled carbon nanotubes. Journal of the American Chemical

Society 131, 15143–51 (2009). 1.1

[10] R. Sessoli, H. L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folt-

ing, D. Gatteschi, G. Christou and D. N. Hendrickson, High-spin molecules:

[Mn12O12(O2CR)16(H2O)4]. Journal of the American Chemical Society 115,

1804–1816 (1993). 1.1.2

[11] W. Wernsdorfer, Molecular nanomagnets: towards molecular spintronics. In-

ternational Journal of Nanotechnology 7, 497 (2010). 1.1.2

157



158 Bibliography

[12] W. Wernsdorfer, M. Murugesu and G. Christou, Resonant Tunneling in Truly

Axial Symmetry Mn12 Single-Molecule Magnets: Sharp Crossover between

Thermally Assisted and Pure Quantum Tunneling. Physical Review Letters

96, 057208 (2006). 1.1.2

[13] W. Wernsdorfer, Quantum Phase Interference and Parity Effects in Magnetic

Molecular Clusters. Science 284, 133–135 (1999). 1.1.2, 1.1

[14] C. Schlegel, J. van Slageren, M. Manoli, E. K. Brechin and M. Dressel, Di-

rect Observation of Quantum Coherence in Single-Molecule Magnets. Physical

Review Letters 101, 147203 (2008). 1.1.2, 1.1

[15] T. Lis, Preparation, structure, and magnetic properties of a dodecanuclear

mixed-valence manganese carboxylate. Acta Crystallographica Section B Struc-

tural Crystallography and Crystal Chemistry 36, 2042–2046 (1980). 1.1

[16] K. Weighardt, K. Pohl, I. Jibril and G. Huttner, Hydrolysis Prod-

ucts of the Monomeric Amine Complex(C6H15N3)FeCl3: The Struc-

ture of the Octameric Iron(III) Cation of {[(C6H15N3)6Fe8(µ3-O)2(µ2-

OH)12]Br7(H2O)}BrÂů8H2O. Angewandte Chemie International Edition in

English 23, 77–78 (1984). 1.1

[17] A. Caneschi, D. Gatteschi, R. Sessoli, A. L. Barra, L. C. Brunel

and M. Guillot, Alternating current susceptibility, high field magnetiza-

tion, and millimeter band EPR evidence for a ground S = 10 state in

[Mn12O12(Ch3COO)16(H2O)4].2CH3COOH.4H2O. Journal of the American

Chemical Society 113, 5873–5874 (1991). 1.1

[18] A.-L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz and R. Sessoli,

Superparamagnetic-like behavior in an octanuclear iron cluster. Europhysics

Letters (EPL) 35, 133–138 (1996). 1.1

[19] J. R. Friedman, M. P. Sarachik and R. Ziolo, Macroscopic Measurement of

Resonant Magnetization Tunneling in High-Spin Molecules. Physical Review

Letters 76, 3830–3833 (1996). 1.1, 5.7

[20] L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli and B. Barbara,

Macroscopic quantum tunnelling of magnetization in a single crystal of nano-

magnets. Nature 383, 145–147 (1996). 1.1, 5.7

[21] S. Bertaina, S. Gambarelli, a. Tkachuk, I. N. Kurkin, B. Malkin, a. Stepanov

and B. Barbara, Rare-earth solid-state qubits. Nature nanotechnology 2, 39–42

(2007). 1.1

[22] A. Ardavan, O. Rival, J. Morton, S. Blundell, A. Tyryshkin, G. Timco and

R. Winpenny, Will Spin-Relaxation Times in Molecular Magnets Permit Quan-

tum Information Processing? Physical Review Letters 98, 1–4 (2007). 1.1



Bibliography 159

[23] J. Schwöbel, Y. Fu, J. Brede, A. Dilullo, G. Hoffmann, S. Klyatskaya, M. Ruben

and R. Wiesendanger, Real-space observation of spin-split molecular orbitals of

adsorbed single-molecule magnets. Nature communications 3, 953 (2012). 1.1,

4.9

[24] M. Urdampilleta, S. Klyatskaya, J.-P. Cleuziou, M. Ruben and W. Wernsdor-

fer, Supramolecular spin valves. Nature materials 10, 502–6 (2011). 1.1

[25] M. Ganzhorn, S. Klyatskaya, M. Ruben and W. Wernsdorfer, Strong spin-

phonon coupling between a single-molecule magnet and a carbon nanotube na-

noelectromechanical system. Nature nanotechnology 8, 165–169 (2013). 1.1,

1.2

[26] R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer and F. Balestro, Elec-

tronic read-out of a single nuclear spin using a molecular spin transistor. Nature

488, 357–360 (2012). 1.1, 1.2, 3.8.1, 5.1, 5.4, 6

[27] E. Burzurí, a. S. Zyazin, a. Cornia and H. S. J. van der Zant, Direct Observation

of Magnetic Anisotropy in an Individual Fe4 Single-Molecule Magnet. Physical

Review Letters 109, 147203 (2012). 1.1

[28] R. P. Feynman, Simulating physics with computers. International Journal of

Theoretical Physics 21, 467–488 (1982). 1.2

[29] D. Deutsch, Quantum Theory, the Church-Turing Principle and the Univer-

sal Quantum Computer. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences 400, 97–117 (1985). 1.2

[30] P. Shor, Algorithms for quantum computation: discrete logarithms and fac-

toring. In Proceedings 35th Annual Symposium on Foundations of Computer

Science, 26, 124–134, IEEE Comput. Soc. Press (1994), ISBN 0-8186-6580-7.

1.2

[31] L. K. Grover, A fast quantum mechanical algorithm for database search. In Pro-

ceedings of the twenty-eighth annual ACM symposium on Theory of computing

- STOC ’96, 212–219, ACM Press, New York, New York, USA (1996), ISBN

0897917855. 1.2

[32] D. P. DiVincenzo, Topics in Quantum Computers, NATO Advanced Study

Institute, Series E: Applied Sciences, 345 (1996). 1.2, 8

[33] D. Wineland, R. Drullinger and F. Walls, Radiation-Pressure Cooling of Bound

Resonant Absorbers. Physical Review Letters 40, 1639–1642 (1978). 1.2

[34] R. Blatt and D. Wineland, Entangled states of trapped atomic ions. Nature

453, 1008–15 (2008). 1.2.3

[35] J. Clarke and F. K. Wilhelm, Superconducting quantum bits. Nature 453, 1031–

42 (2008). 1.2.3



160 Bibliography

[36] S. C. Benjamin and J. M. Smith, Driving a Hard Bargain with Diamond Qubits.

Physics 4, 78 (2011). 1.2.3

[37] A. Morello, Quantum information: Atoms and circuits unite in silicon. Nature

nanotechnology 8, 233–4 (2013). 1.2.3

[38] S. Thiele, R. Vincent, M. Holzmann, S. Klyatskaya, M. Ruben, F. Balestro and

W. Wernsdorfer, Electrical Readout of Individual Nuclear Spin Trajectories in a

Single-Molecule Magnet Spin Transistor. Physical Review Letters 111, 037203

(2013). 1.2.3

[39] L. Dicarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta,

L. Frunzio, S. M. Girvin, M. H. Devoret and R. J. Schoelkopf, Preparation and

measurement of three-qubit entanglement in a superconducting circuit. Nature

467, 574–8 (2010). 1.2

[40] M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D.

O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto,

A. N. Cleland and J. M. Martinis, Generation of three-qubit entangled states

using superconducting phase qubits. Nature 467, 570–3 (2010). 1.2

[41] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots. Phys-

ical Review A 57, 120–126 (1998). 1.2

[42] J. M. Elzerman, R. Hanson, L. H. Willems Van Beveren, B. Witkamp, L. M. K.

Vandersypen and L. P. Kouwenhoven, Single-shot read-out of an individual

electron spin in a quantum dot. Nature 430, 431–5 (2004). 1.2, 2

[43] J. a. H. Stotz, R. Hey, P. V. Santos and K. H. Ploog, Coherent spin transport

through dynamic quantum dots. Nature materials 4, 585–8 (2005). 1.2

[44] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack,

T. Meunier, L. P. Kouwenhoven and L. M. K. Vandersypen, Driven coherent

oscillations of a single electron spin in a quantum dot. Nature 442, 766–71

(2006). 1.2

[45] P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P. R. Hemmer,

J. Wrachtrup and F. Jelezko, Single-shot readout of a single nuclear spin. Sci-

ence 329, 542–4 (2010). 1.2, 1.2.4, 6

[46] J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. L. Morton, F. Zwanen-

burg, D. N. Jamieson, A. S. Dzurak and A. Morello, High-fidelity readout and

control of a nuclear spin qubit in silicon. Nature 496, 334–8 (2013). 1.2, 1.2.4,

6, 7, 7.1.1

[47] M. Urdampilleta, S. Klyatskaya, M. Ruben and W. Wernsdorfer, Landau-Zener

tunneling of a single Tb3+ magnetic moment allowing the electronic read-out

of a nuclear spin. Physical Review B 87, 195412 (2013). 1.2, 5.7



Bibliography 161

[48] W. Pfaff, T. H. Taminiau, L. Robledo, H. Bernien, M. Markham, D. J.

Twitchen and R. Hanson, Demonstration of entanglement-by-measurement of

solid-state qubits. Nature Physics 9, 29–33 (2012). 1.2

[49] T. Obata, M. Pioro-Ladrière, T. Kubo, K. Yoshida, Y. Tokura and S. Tarucha,

Microwave band on-chip coil technique for single electron spin resonance in a

quantum dot. Review of Scientific Instruments 78, 104704 (2007). 1.2, 7

[50] B. E. Kane, A silicon-based nuclear spin quantum computer. Nature 393, 133–

137 (1998). 1.2, 6, 7.1.2, 8

[51] T. Fulton and G. Dolan, Observation of single-electron charging effects in small

tunnel junctions. Physical Review Letters 59, 109–112 (1987). 2

[52] K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. J. Vartanian and J. S. Harris,

Room temperature operation of a single electron transistor made by the scanning

tunneling microscope nanooxidation process for the TiOx/Ti system. Applied

Physics Letters 68, 34 (1996). 2

[53] A. Korotkov, D. Averin and K. Likharev, Single-electron charging of the quan-

tum wells and dots. Physica B: Condensed Matter 165-166, 927–928 (1990).

2.1

[54] L. P. Kouwenhoven, C. M. Marcus, P. L. Mceuen, S. Tarucha and M. Robert,

Electron transport in quantum dots. Kluwer, Proceedings of the NATO Ad-

vanced Study Institute (1997), ISBN 140207459X. 2.1

[55] R. Hanson, J. R. Petta, S. Tarucha and L. M. K. Vandersypen, Spins in few-

electron quantum dots. Reviews of Modern Physics 79, 1217–1265 (2007). 2.1

[56] M. Pustilnik and L. Glazman, Kondo effect in quantum dots. Journal of

Physics: Condensed Matter 16, R513–R537 (2004). 2.3

[57] W. de Haas, J. de Boer and G. van dën Berg, The electrical resistance of gold,

copper and lead at low temperatures. Physica 1, 1115–1124 (1934). 2.4

[58] J. Kondo, Resistance Minimum in Dilute Magnetic Alloys. Progress of Theo-

retical Physics 32, 37–49 (1964). 2.4

[59] D. Goldhaber-Gordon, J. Göres, M. Kastner, H. Shtrikman, D. Mahalu and

U. Meirav, From the Kondo Regime to the Mixed-Valence Regime in a Single-

Electron Transistor. Physical Review Letters 81, 5225–5228 (1998). 2.4

[60] T. A. Costi, Kondo Effect in a Magnetic Field and the Magnetoresistivity of

Kondo Alloys. Physical Review Letters 85, 1504–1507 (2000). 2.4

[61] N. Roch, S. Florens, T. A. Costi, W. Wernsdorfer and F. Balestro, Observation

of the Underscreened Kondo Effect in a Molecular Transistor. Physical Review

Letters 103, 197202 (2009). 2.4, 2.4.2, 5.4



162 Bibliography

[62] H. Lueken, Course of lectures on magnetism of lanthanide ions under varying

ligand and magnetic fields. Institute of Inorganic Chemistry, RWTH Aachen

(2008). 3.1

[63] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition

Ions (Oxford Classic Texts in the Physical Sciences). Oxford University Press,

USA (2012), ISBN 0199651523. 3.1, 3.2, 3.6, 5.6

[64] G. S. Ofelt, Structure of the f6 Configuration with Application to Rare-Earth

Ions. The Journal of Chemical Physics 38, 2171 (1963). 3.5, 3.5.2

[65] K. S. Thomas, S. Singh and G. H. Dieke, Energy Levels of Tb3+ in LaCl3 and

Other Chlorides. The Journal of Chemical Physics 38, 2180 (1963). 3.5

[66] K. Binnemans, R. Van Deun, C. Görller-Walrand and J. Adam, Spectroscopic

properties of trivalent lanthanide ions in fluorophosphate glasses. Journal of

Non-Crystalline Solids 238, 11–29 (1998). 3.2

[67] D. Smith and J. H. M. Thornley, The use of ‘operator equivalents’. Proceedings

of the Physical Society 89, 779–781 (1966). 3.6

[68] K. W. H. Stevens, Matrix Elements and Operator Equivalents Connected with

the Magnetic Properties of Rare Earth Ions. Proceedings of the Physical Soci-

ety. Section A 65, 209–215 (1952). 3.6, 3.3

[69] C. Gröller-Walrand and K. Binnemans, Handbook on the Physics and

Chemistry of Rare Earths. Elsevier Amsterdam, 23 edition (1996), ISBN

9780444825070. 3.6

[70] N. Ishikawa, M. Sugita and W. Wernsdorfer, Quantum tunneling of magnetiza-

tion in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and

bis(phthalocyaninato)dysprosium anions. Angewandte Chemie (International

ed. in English) 44, 2931–5 (2005). 3.3, 3.4, 5.1, 5.7, 5.8, 7.1.2, 7.2.1

[71] N. Ishikawa, M. Sugita, T. Okubo, N. Tanaka, T. Iino and Y. Kaizu, Determi-

nation of ligand-field parameters and f-electronic structures of double-decker

bis(phthalocyaninato)lanthanide complexes. Inorganic chemistry 42, 2440–6

(2003). 3.6, 3.6.2

[72] J. M. Baker, J. R. Chadwick, G. Garton and J. P. Hurrell, E.p.r. and Endor

of TbFormula in Thoria. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences 286, 352–365 (1965). 3.7, 7.3.2

[73] L. Landau, Zur Theorie der Energieubertragung. II. Physics of the Soviet Union

2, 46 – 51 (1932). 3.8.1, 5.7

[74] C. Zener, Non-Adiabatic Crossing of Energy Levels. Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences 137, 696–702

(1932). 3.8.1, 5.7



Bibliography 163

[75] R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer and F. Balestro, Elec-

tronic read-out of a single nuclear spin using a molecular spin transistor. Na-

ture 488, 357–60 (2012). 3.8.1

[76] F. Pobell and J. Brooks, Matter and Methods at Low Temperatures, Springer-

Verlag, Heidelberg, 45 2nd editio edition (1992), ISBN 10 3-540-46356-9. 4.2.3

[77] W. Demtröder, Experimentalphysik 1: Mechanik und Wärme (Springer-

Lehrbuch) (German Edition). Springer (2005), ISBN 354026034X. 4.4

[78] C. Boulder and V. J. Johnson, A compendium of the properties of materials at

low temperatures: (Phase 1- ). Wright Air Development Division, Air Research

and Development Command, U.S. Air Force (1961). 4.4

[79] C. Y. Ho, R. W. Powell and P. E. Liley, Thermal Conductivity of the Elements,

American Institute of Physics 1 (1974). 4.4, 4.4

[80] M. M. Freund, T. Hirao, V. Hristov, S. Chegwidden, T. Matsumoto and A. E.

Lange, Compact low-pass electrical filters for cryogenic detectors. Review of

Scientific Instruments 66, 2638 (1995). 4.6.2

[81] S. Mandal, T. Bautze, R. Blinder, T. Meunier, L. Saminadayar and C. Bäuerle,

Efficient radio frequency filters for space constrained cryogenic setups. Review

of Scientific Instruments 82, 024704 (2011). 4.6.2

[82] A. Lukashenko and A. V. Ustinov, Improved powder filters for qubit measure-

ments. Review of Scientific Instruments 79, 014701 (2008). 4.6.2

[83] F. P. Milliken, J. R. Rozen, G. a. Keefe and R. H. Koch, 50âĂĽΩ Characteristic

Impedance Low-Pass Metal Powder Filters. Review of Scientific Instruments

78, 024701 (2007). 4.6.2

[84] J. Martinis, M. Devoret and J. Clarke, Experimental tests for the quantum

behavior of a macroscopic degree of freedom: The phase difference across a

Josephson junction. Physical Review B 35, 4682–4698 (1987). 4.6.2

[85] D. C. Glattli, P. Jacques, A. Kumar, P. Pari and L. Saminadayar, A noise

detection scheme with 10 mK noise temperature resolution for semiconductor

single electron tunneling devices. Journal of Applied Physics 81, 7350 (1997).

4.6.2

[86] A. B. Zorin, The thermocoax cable as the microwave frequency filter for single

electron circuits. Review of Scientific Instruments 66, 4296 (1995). 4.6.2

[87] D. Vion, P. F. Orfila, P. Joyez, D. Esteve and M. H. Devoret, Miniature elec-

trical filters for single electron devices. Journal of Applied Physics 77, 2519

(1995). 4.6.2

[88] H. Courtois, O. Buisson, J. Chaussy and B. Pannetier, Miniature low-

temperature high-frequency filters for single electronics. Review of Scientific

Instruments 66, 3465 (1995). 4.6.2



164 Bibliography

[89] H. le Sueur and P. Joyez, Microfabricated electromagnetic filters for millikelvin

experiments. Review of Scientific Instruments 77, 115102 (2006). 4.6.2

[90] K. Bladh, D. Gunnarsson, E. Hürfeld, S. Devi, C. Kristoffersson, B. Smalander,

S. Pehrson, T. Claeson, P. Delsing and M. Taslakov, Comparison of cryogenic

filters for use in single electronics experiments. Review of Scientific Instruments

74, 1323 (2003). 4.6.2

[91] M. A. Reed, Conductance of a Molecular Junction. Science 278, 252–254

(1997). 4.9

[92] H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park and P. L. McEuen, Fabrication

of metallic electrodes with nanometer separation by electromigration. Applied

Physics Letters 75, 301 (1999). 4.9, 4.9.2

[93] H. Park, J. Park, A. K. Lim, E. H. Anderson, A. P. Alivisatos and P. L.

McEuen, Nanomechanical oscillations in a single-C60 transistor. Nature 407,

57–60 (2000). 4.9.1

[94] I. A. Blech, Direct Transmission Electron Microscope Observation of Electro-

transport in Aluminum Thin Films. Applied Physics Letters 11, 263 (1967).

4.9.2

[95] J. R. Black, Electromigration failure modes in aluminum metallization for semi-

conductor devices. Proceedings of the IEEE 57, 1587–1594 (1969). 4.9.2

[96] K. Tu, Electromigration in stressed thin films. Physical Review B 45, 1409–1413

(1992). 4.9.2, 4.9.2

[97] D. R. Strachan, D. E. Smith, D. E. Johnston, T. H. Park, M. J. Therien,

D. A. Bonnell and A. T. Johnson, Controlled fabrication of nanogaps in ambi-

ent environment for molecular electronics. Applied Physics Letters 86, 043109

(2005). 4.9.2

[98] H. S. J. van der Zant, Y. Kervennic, M. Poot, K. O’Neill, Z. de Groot, J. M.

Thijssen, H. B. Heersche, N. Stuhr-Hansen, T. Bjø rnholm, D. Vanmaekel-

bergh, C. A. van Walree and L. W. Jenneskens, Molecular three-terminal de-

vices: fabrication and measurements. Faraday Discussions 131, 347 (2006).

4.9.2

[99] M. L. Trouwborst, S. J. van der Molen and B. J. van Wees, The role of Joule

heating in the formation of nanogaps by electromigration. Journal of Applied

Physics 99, 114316 (2006). 4.9.2

[100] T. Taychatanapat, K. I. Bolotin, F. Kuemmeth and D. C. Ralph, Imaging

electromigration during the formation of break junctions. Nano Letters 7, 652–

6 (2007). 4.9.2



Bibliography 165

[101] K. O’Neill, E. A. Osorio and H. S. J. van der Zant, Self-breaking in planar

few-atom Au constrictions for nanometer-spaced electrodes. Applied Physics

Letters 90, 133109 (2007). 4.9.2

[102] L. Vitali, S. Fabris, A. M. Conte, S. Brink, M. Ruben, S. Baroni and K. Kern,

Electronic structure of surface-supported bis(phthalocyaninato) terbium(III)

single molecular magnets. Nano Letters 8, 3364–8 (2008). 5.3

[103] N. Roch, R. Vincent, F. Elste, W. Harneit, W. Wernsdorfer, C. Timm and

F. Balestro, Cotunneling through a magnetic single-molecule transistor based

on N@C_{60}. Physical Review B 83, 081407 (2011). 5.4

[104] A. Lodi Rizzini, C. Krull, T. Balashov, J. J. Kavich, A. Mugarza, P. S.

Miedema, P. K. Thakur, V. Sessi, S. Klyatskaya, M. Ruben, S. Stepanow

and P. Gambardella, Coupling Single Molecule Magnets to Ferromagnetic Sub-

strates. Physical Review Letters 107, 177205 (2011). 5.4

[105] P. Zhu, F. Lu, N. Pan, D. Arnold, S. Zhang and J. Jiang, Comparative Elec-

trochemical Study of Unsubstituted and Substituted Bis(phthalocyaninato) Rare

Earth(III) Complexes. European Journal of Inorganic Chemistry 2004, 510–

517 (2004). 5.4

[106] R. Orbach, Spin-Lattice Relaxation in Rare-Earth Salts. Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences 264, 458–

484 (1961). 5.6

[107] M. Soler, W. Wernsdorfer, K. Folting, M. Pink and G. Christou, Single-

molecule magnets: a large Mn30 molecular nanomagnet exhibiting quantum

tunneling of magnetization. Journal of the American Chemical Society 126,

2156–65 (2004). 5.7

[108] M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E. Otero, C. Sciancalepore,

A. M. Talarico, M.-A. Arrio, A. Cornia, D. Gatteschi and R. Sessoli, Magnetic

memory of a single-molecule quantum magnet wired to a gold surface. Nature

materials 8, 194–7 (2009). 5.7

[109] a. J. Heinrich, J. a. Gupta, C. P. Lutz and D. M. Eigler, Single-atom spin-flip

spectroscopy. Science 306, 466–9 (2004). 5.7

[110] M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S.

Zibrov, P. R. Hemmer and M. D. Lukin, Quantum register based on individual

electronic and nuclear spin qubits in diamond. Science 316, 1312–6 (2007). 6

[111] P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett,

F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I.

Cirac and M. D. Lukin, Room-temperature quantum bit memory exceeding one

second. Science 336, 1283–6 (2012). 6



166 Bibliography

[112] V. Braginsky and F. Khalili, Quantum nondemolition measurements: the route

from toys to tools. Reviews of Modern Physics 68, 1–11 (1996). 6.2

[113] V. B. Braginsky, Y. I. Vorontsov and K. S. Thorne, Quantum nondemolition

measurements. Science 209, 547–57 (1980). 6.2

[114] L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade and

R. Hanson, High-fidelity projective read-out of a solid-state spin quantum reg-

ister. Nature 477, 574–8 (2011). 6.2

[115] C. Cohen-Tannoudji, Frontiers in laser spectroscopy. Les Houches Summer

School Proceedings (1975). 6.3

[116] J. Dalibard, Y. Castin and K. Mølmer, Wave-function approach to dissipative

processes in quantum optics. Physical Review Letters 68, 580–583 (1992). 6.3

[117] K. Mølmer, Y. Castin and J. Dalibard, Monte Carlo wave-function method in

quantum optics. Journal of the Optical Society of America B 10, 524 (1993).

6.3

[118] K. Mølmer and Y. Castin, Monte Carlo wavefunctions in quantum optics.

Quantum and Semiclassical Optics: Journal of the European Optical Society

Part B 8, 49–72 (1996). 6.3

[119] N. Sano and J. Itoh, Nuclear Magnetic Resonance and Relaxation of 159 Tb

in Ferromagnetic Terbium Metal. Journal of the Physical Society of Japan 32,

95–103 (1972). 6.4.1

[120] J. Korringa, Nuclear magnetic relaxation and resonnance line shift in metals.

Physica 16, 601–610 (1950). 6.4.1

[121] M. Weger, Longitudinal Nuclear Magnetic Relaxation in Ferromagnetic Iron,

Cobalt, and Nickel. Physical Review 128, 1505–1511 (1962). 6.4.1

[122] N. Sano, S.-I. Kobayashi and J. Itoh, Nuclear Magnetic Resonance and Re-

laxation of Dy 163 in Ferromagnetic Dysprosium Metal at Low Temperature.

Progress of Theoretical Physics Supplement 46, 84–112 (1970). 6.4.1

[123] M. McCausland and I. Mackenzie, Nuclear magnetic resonance in rare earth

metals. Advances in Physics 28, 305–456 (1979). 6.4.1

[124] K. C. Nowack, F. H. L. Koppens, Y. V. Nazarov and L. M. K. Vandersypen,

Coherent control of a single electron spin with electric fields. Science 318, 1430–

3 (2007). 7, 7.1.1

[125] L. Meier, G. Salis, I. Shorubalko, E. Gini, S. Schön and K. Ensslin, Measure-

ment of Rashba and Dresselhaus spinâĂŞorbit magnetic fields. Nature Physics

3, 650–654 (2007). 7, 7.1.1



Bibliography 167

[126] Y. Kato, R. C. Myers, D. C. Driscoll, a. C. Gossard, J. Levy and D. D.

Awschalom, Gigahertz electron spin manipulation using voltage-controlled g-

tensor modulation. Science 299, 1201–4 (2003). 7, 7.1.1

[127] E. Laird, C. Barthel, E. Rashba, C. Marcus, M. Hanson and a. Gossard,

Hyperfine-Mediated Gate-Driven Electron Spin Resonance. Physical Review

Letters 99, 246601 (2007). 7, 7.1.1

[128] C. P. Slichter, Principles of magnetic resonance. Springer-Verlag, Berlin (1978),

ISBN 0387084762. 7.1.1, 7.1.1

[129] J. Johansson, P. Nation and F. Nori, QuTiP: An open-source Python framework

for the dynamics of open quantum systems. Computer Physics Communications

183, 1760–1772 (2012). 7.1.1

[130] J. R. Johansson, P. D. Nation and F. Nori, QuTiP 2: A Python framework for

the dynamics of open quantum systems. Computational Physics Communica-

tions 184, 1234 (2013). 7.1.1

[131] R. Haun and J. Zacharias, Stark Effect on Cesium-133 Hyperfine Structure.

Physical Review 107, 107–109 (1957). 7.1.2

[132] R. Rahman, C. Wellard, F. Bradbury, M. Prada, J. Cole, G. Klimeck and

L. Hollenberg, High Precision Quantum Control of Single Donor Spins in Sil-

icon. Physical Review Letters 99, 036403 (2007). 7.1.2, 7.1.7

[133] C. Hutchison and E. Wong, Paramagnetic Resonance in Rare Earth Trichlo-

rides. The Journal of Chemical Physics 29, 754 (1958). 7.2.1

[134] B. Judd, Operator Techniques in Atomic Spectroscopy. McGraw-Hill Book

Compny, Inc. (1963). 7.4, 7.4

[135] J. A. Tuszynski, Spherical Tensor Operators: Tables of Matrix Elements and

Symmetries. World Scientific (1990), ISBN 9810202830. 7.4

[136] R. M. Macfarlane, Optical Stark spectroscopy of solids. Journal of Luminescence

125, 156–174 (2007). 7.4

[137] L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quan-

tum systems. Physical Review A 58, 2733–2744 (1998). 7.5.3

[138] E. Hahn, Spin Echoes. Physical Review 80, 580–594 (1950). 7.5.3


	Introduction
	Molecular spintronics
	Quantum information processing
	Thesis outline

	Single electron transistor
	Equivalent circuit
	Coulomb blockade
	Cotunneling effect
	Kondo effect

	Magnetic properties of TbPc2
	Structure of TbPc2
	Electronic configuration of Tb3+
	Electron-electron interaction
	Magnetization reversal
	Direct transtions


	Experimental Details
	Overview setup
	Dilution refrigerator
	3D vector magnet
	Current leads
	Sample holder
	Filter
	Low frequency filters

	Signal transducer
	Sample fabrication
	Electromigration


	Single-molecule magnet spin-transistor
	Mode of operation
	Read-out quantum dot
	2D magneto-conductance of the read-out dot
	Electronic spin relaxation
	Quantum tunneling of magnetization
	Summary

	Nuclear spin dynamics - T1
	Signal Analysis
	Relaxation time T1 and read-out fidelity F
	Quantum Monte Carlo simulations
	Algorithm
	Including the experimental boundaries

	Comparison experiment - simulation
	Relaxation mechanism
	Dynamical equilibrium

	Summary

	Nuclear spin dynamics - T2
	Introduction
	Rabi oscillations

	Coherent nuclear spin rotations
	Frequency calibration

	Experimental discussion of the hyperfine Stark effect
	AC induced hyperfine Stark effect

	Theoretical discussion of the hyperfine Stark effect
	Dephasing time T*2
	Introduction
	Experimental results
	Outlook


	Conclusion and outlook
	Spin
	Charged particle in a magnetic field
	Electron spin
	Spin matrices
	Dirac equation and spin-orbit coupling

	Stevens operators
	Quantum Monte Carlo code
	Qutip code

