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Résumé en français

Contexte

La neuroimagerie fonctionnelle est une discipline relativement récente ayant pour but

la compréhension des mécanismes cérébraux à l’origine de notre comportement, telles

que nos capacités mentales (par exemple le langage, la perception, la conscience) ou

certaines pathologies (la maladie d’Alzheimer ou de Parkinson), grâce à l’utilisation

de techniques d’imagerie non-invasives (c-à-d ne nécessitant pas d’ouvrir le crâne).

Considérant qu’un processus cognitif se réalise à travers l’activation spécifique de

certaines aires cérébrales à des instants donnés, le choix du mode d’imagerie dé-

pend essentiellement de la caractéristique d’intérêt (localisation ou décours tempo-

rel de l’activité) : ainsi par exemple, l’imagerie par résonance magnétique fonction-

nelle (IRMf) mesurant le signal BOLD (de l’anglais Blood-Oxygen-Level Dependent)

— soit les lentes variations du débit sanguin associées à l’activité neuronale — est

la mieux qualifiée pour localiser les aires activées. Inversement, l’électroencéphalo-

graphie (EEG) et la magnétoencéphalographie (MEG) mesurent respectivement les

champs électriques et magnétiques générés par les neurones et sont particulièrement

adaptées pour connaître la dynamique temporelle de l’activité cérébrale (de l’ordre

de la milliseconde).

Quelque soit le choix du mode d’imagerie, la plupart des études adoptent la

même approche en se focalisant sur l’activation du cerveau associée à un évènement

(tel que la présentation d’un stimulus ou la réponse du sujet) durant une tâche

cognitive. C’est par exemple le cas en MEG avec l’analyse des champs évoqués

(ou ERF, d’après l’anglais Event-Related Fields), dont le but est de caractériser la

réponse temporelle des neurones en réponse à une stimulation externe. Le principe

de cette méthode est relativement simple : en répétant le stimulus un grand nombre

de fois et en moyennant le signal à travers tous ces essais, le rapport signal-sur-

bruit augmente et seule la réponse «évoquée» reste intacte. Bien que cette approche

soit efficace pour décrire les évènements neuronaux impliqués dans la tâche avec

une bonne résolution temporelle, elle ne permet pas d’analyser l’activité spontanée

— l’essentiel de l’activité cérébrale — et ce malgré son importance fonctionnelle

[Gusnard 2001, de Pasquale 2010, Sadaghiani 2010]. Le cerveau reste en effet actif

en l’absence de stimuli ou d’actions (tel qu’au repos ou durant le sommeil) et cette

activité joue un rôle crucial par exemple dans le développement et la perception.

Les premières observations de l’activité spontanée ont été obtenues en EEG

par Hans Berger en 1931 et se limitaient à décrire les ondes «alpha», un rythme

cérébral oscillant autour de 10 Hz localisé principalement dans le lobe occipital.

Depuis lors, les signaux mesurés en M/EEG sont traditionnellement décomposés

en bandes oscillatoires (telles que par exemple, l’alpha, le beta ou le gamma dont

les pics de puissance apparaissent à des fréquences différentes sur les spectres de

Fourier) auxquelles on associe divers rôles fonctionnels. Cependant, cette approche
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ne tient pas compte des propriétés que l’on sait arythmiques — ou non-oscillatoires

— de l’activité neuronale [Bullock 2003].

Celle-ci présente en effet des fluctuations très lentes (inférieures approxima-

tivement à 1 Hz) caractérisées par un spectre de puissance diminuant en 1/f

[Novikov 1997, He 2010], signe d’une dynamique temporelle invariante d’échelle —

autrement dit fractale, ou bien encore autosimilaire [Bak 1988]. Le terme «frac-

tale» fait généralement référence à des figures géométriques particulières (cf. Fig.

A) qui restent identiques (soit de manière exacte, soit au sens statistique) quelque

soit l’échelle à laquelle on les observe. De façon similaire, un signal temporel est dit

«fractal» ou «invariant d’échelle» lorsque ses propriétés statistiques restent inchan-

gées après une dilatation de l’axe temporel et une renormalisation appropriée. Deux

implications possibles pour le fonctionnement neuronal sont alors envisageables :

l’encodage de l’information peut être temporellement multiplexée et il peut se faire

suivant différents niveaux de compression.

Figure A : Exemple de fractales. Le triangle de Sierpinski (à gauche) est une

image fractale avec une autosimilarité exacte : le motif est rigoureusement iden-

tique à chaque échelle (indiquée par les cercles oranges). Dans le cas des signaux

temporels fractals (à droite), l’autosimilarité est statistique : chaque version dilatée,

puis renormalisée, possède les mêmes propriétés statistiques que la version d’ori-

gine (dans une certaine gamme d’échelle néanmoins, puisque limitée par la taille et

l’échantillonnage du signal).

En pratique, les propriétés d’invariance d’échelle peuvent être décrites avec plus

ou moins de détails : dans un premier temps, la connaissance d’un unique para-

mètre, appelé autosimilarité, nous permet de choisir correctement le coefficient de

renormalisation en fonction du degré de dilatation de façon à ce que les proprié-



Contexte xv

tés statistiques restent inchangées. Ce paramètre reflète aussi la régularité globale

du signal et l’absence de temps caractéristique pouvant décrire sa dynamique (en

terme de corrélation). Il peut être approximativement approché par l’exposant du

spectre fréquentiel en 1/f . Dans un second temps, une mesure plus fine appelée

multifractalité, prend en compte les fluctuations locales — ou les singularités — à

travers le temps qui ne peuvent être observées via un simple spectre de puissance.

Autrement dit, la présence de multifractalité implique qu’une gamme continue de

valeurs est nécessaire pour décrire la dynamique du signal et que la connaissance

seule du paramètre d’autosimilarité n’est pas suffisante.

Dans la plupart des études de neuroimagerie, les analyses d’invariance d’échelle

étaient non seulement limitées à l’estimation de l’autosimilarité, mais aussi réalisées

avec des outils d’analyse (telle que l’analyse des fluctuations redressées ou en anglais

DFA [Peng 1994, Linkenkaer-Hansen 2001]) manquant significativement de robus-

tesse et de précision en présence de données non-stationnaires et non-gaussiennes

[Veitch 1999]. Une meilleur approche, l’analyse par ondelettes, permet non seulement

de surmonter ces difficultés mais en plus d’estimer conjointement la multifractalité.

Dans cette thèse, nous proposons d’en tirer parti en utilisant la méthode récente du

formalisme multifractal basé sur les coefficients d’ondelettes dominants (WLBMF en

anglais) [Wendt 2007] dont la performance a été démontrée à la fois théoriquement

et en pratique sur des données réelles [Ciuciu 2012].

Néanmoins, une question primordiale se pose : ces propriétés d’invariance

d’échelle importent-elles vis à vis du comportement et du fonctionnement cérébral ?

Plusieurs études expérimentales le suggèrent, en reportant notamment des modu-

lations du spectre en 1/f (c-à-d de l’autosimilarité) en fonction de différents états

cognitifs tels qu’entre du simple repos ou de l’activité liée à l’exécution d’une tâche

[He 2011, Ciuciu 2012], différents stades de sommeil [Weiss 2009, He 2010], différents

niveaux de performance associée à une tâche [Buiatti 2007, Wink 2008], des classes

d’âge [Suckling 2008], les sexes [Jausovec 2010] et les pathologies [Maxim 2005,

Suckling 2008]. Bien que peu d’études soient allés au delà de l’autosimilarité,

toutes (exceptée une portant sur les micro-états en EEG [Van de Ville 2010]) s’ac-

cordent sur l’existence de multifractalité dans l’activité cérébrale [Shimizu 2004,

Popivanov 2005, Ciuciu 2012, Suckling 2008, Wink 2008, Weiss 2009].

L’interprétation reste cependant difficile et de plus amples investigations sont

nécessaires afin de comprendre dans quelle mesure la dynamique fractale est un mar-

queur fonctionnel de l’activité cérébrale. En accord avec une récente étude conduite

en IRMf et montrant que l’apprentissage pouvait modifier l’activité du cerveau au

repos [Lewis 2009], nous nous sommes demandés si, de façon similaire, les proprié-

tés d’invariance d’échelle pouvaient aussi être modulées par l’apprentissage et si oui,

comment celles-ci varieraient au cours de l’entraînement. Dans ce but, nous avons

développé un paradigme d’apprentissage alternant des blocs de repos et d’exercice

visuel et au cours desquels l’activité neuronale des participants serait enregistré en

MEG (cf. Fig. B).

L’apprentissage est un processus cognitif fortement lié à la notion de plasticité,

c-à-d la capacité du cerveau à se modifier à n’importe quel niveau structurel (par
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Figure B : Idée de base et conception du paradigme d’apprentissage. Afin

de mieux comprendre le rôle fonctionnel de la dynamique fractale de l’activité céré-

brale au repos et durant l’exécution d’une tâche, nous avons élaboré un paradigme

dans lequel les participants s’entraîneraient à réaliser une tâche visuelle, interrompu

périodiquement par des périodes de repos. Pendant tout ce temps, l’activité neuro-

nale serait enregistré en MEG et soumis plus tard à une analyse multifractale.

exemple, synaptique, neuronal ou cortical). Historiquement, on pensait que la plas-

ticité ne pouvait avoir lieu que durant une période critique dans l’enfance et qu’elle

disparaissait chez les adultes. Depuis la fin des années 60 cependant, nous savons

que le cerveau reste un système dynamique capable de s’adapter et de changer au

cours d’une vie entière, permettant ainsi le développement, la mémorisation, l’acqui-

sition ou l’amélioration de nouvelles compétences, et même la réparation de zones

cérébrales endommagées. En particulier, la simple répétition d’une tâche visuelle

(comme décrite dans notre paradigme) peut conduire à de l’apprentissage et à une

plasticité spécifique ayant lieu dans les aires visuelles primaires. On appelle cela

l’apprentissage perceptuel [Sasaki 2010]. Néanmoins, ce mécanisme peut être rela-

tivement lent et faible chez les adultes en l’absence d’entraînement efficace. Nous

étions donc confrontés à un premier défi : proposer un entraînement suffisamment

efficace pour induire de la plasticité en un court laps de temps chez tous nos parti-

cipants.

Cela nous a amené à considérer le bénéfice potentiel apporté par l’apprentis-

sage multisensoriel [Shams 2008] : les exemples de plasticité les plus impression-

nants ont en effet été reportés chez les individus privés d’une modalité sensorielle

[Bach-y Rita 2003]. Par exemple, la région corticale impliquée dans le traitement

du mouvement visuel, hMT+, peut être «recyclée» pour le traitement du mouve-

ment audio ou tactile chez les aveugles de naissance [Poirier 2005, Ricciardi 2007].

Plus généralement, des interactions multisensorielles ont été mises en évidence dans

de nombreuses aires corticales et viennent contredire le point de vue classique que

les aires sensorielles sont strictement indépendantes les unes des autres, jusqu’à

remettre en question l’existence d’une spécificité sensorielle. Il a été ainsi sug-

géré, d’après la «théorie supramodale» [Pascual-Leone 2001], que certaines aires

telle que hMT+ puissent présenter une sélectivité fonctionnelle indépendamment

de la modalité sensorielle (audio, visuelle, tactile...) et par conséquent être recy-

clées. Plusieurs questions se posent alors [Bavelier 2010], notamment celle-ci : le

recyclage fonctionnel est-il simplement la conséquence d’une perte sensorielle ayant
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eu lieu très tôt, ou bien est-il soutenu par des aires supramodales pré-existantes

[Bedny 2010, Morrone 2010, Dormal 2011] ?

Sans perdre de vue notre objectif principal (c-à-d comprendre l’impact de l’ap-

prentissage sur l’invariance d’échelle de la dynamique cérébrale), nous nous sommes

aussi intéressés à ce problème en cherchant à savoir si l’apprentissage, dans le cas

d’un exercice de discrimination de cohérence visuelle, pouvait bénéficier d’un traite-

ment supramodal. Dans ce but, de nouveaux stimuli ont été développés et consistent

en des textures acoustiques partageant les statistiques temporelles de nuages de

points visuels (RDK, de l’anglais Random Dot Kinematogram). Trois types d’en-

traînement ont été proposés durant l’enregistrement en MEG pour apprendre à

discriminer la cohérence visuelle des points : un premier groupe de participants s’est

entraîné sans son (V), un autre avec des textures acoustiques congruentes (AV) et un

autre enfin avec un simple bruit audio (AVn). Notre hypothèse de base était qu’une

stimulation audiovisuelle congruente (soit l’entraînement AV) permettrait d’obtenir

un meilleur apprentissage visuel et une plus forte plasticité.

Objectifs

Afin d’accomplir les objectifs principaux de cette thèse, nous devons nous assurer au

préalable que le paradigme d’apprentissage soit suffisamment efficace et bien contrôlé

pour pouvoir combiner les mesures comportementales avec les enregistrements MEG

de chaque participant. Cela fait l’objet de la première partie.

Ce travail contient alors deux objectifs :

• Comprendre les mécanismes neuronaux de l’apprentissage multisensoriel im-

pliqué dans notre expérience au moyen d’analyses ERF classiques réalisées

sur les signaux MEG reconstruits sur la surface corticale (c-à-d dans «l’espace

source»). Plus précisément, nous voulons tester si la plasticité sensorielle peut

être renforcée par un traitement multisensoriel/supramodal déjà présent chez

des individus sains en comparant trois types d’entraînement (V, AV et AVn).

• Examiner plus en détails les propriétés d’invariance d’échelle de l’activité céré-

brale et en comprendre le rôle fonctionnel et ses conséquences sur le comporte-

ment. Plus précisément, nous voulons savoir si la multifractalité et l’autosimi-

larité apportent de manière indépendante de l’information sur le fonctionne-

ment cérébral et les processus impliqués dans l’apprentissage et la plasticité.

Ces deux points sont abordés respectivement dans la deuxième et la troisième partie

de cette thèse.

Organisation et principaux résultats

Partie I — Acquisition des données et psychophysiques
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Chapitre 1 — Paradigme et stimuli

Comment peut-on obtenir un apprentissage efficace en un court laps de temps ?

Pour répondre à cette question, nous proposons de faire un bilan des études

psychophysiques et cognitives dédiées à l’apprentissage perceptuel et multisensoriel.

Nous présentons ensuite le paradigme et les stimuli (cf. Fig. C et D) utilisés dans

nos trois types d’apprentissage : visuel (V), audiovisuel impliquant l’utilisation de

textures acoustiques (AV) ou d’un simple bruit audio (AVn). Dans la suite, nous

ferons systématiquement référence à ce chapitre pour la description du protocole

expérimental et des participants.

Figure C. Stimuli visuels. Le stimulus visuel pouvait être décomposé en trois

phases : une croix de fixation seule (durant 0.6–0.8 s), suivi de l’apparition de deux

nuages de points (RDKs) incohérents rouges et verts. Puis au bout de 0.3–0.6 s, l’un

de ces RDKs devenait cohérent durant 1 s (ici 75% des points rouges partent dans

la même direction). Les participants devaient indiquer la couleur du RDK cohérent

indépendamment de la direction du mouvement.

Chapitre 2 — Psychophysiques

Les entraînements sont-ils bien efficaces d’un point de vue comportemental ?

Ici, nous analysons les mesures comportementales avant et après entraînement en

fonction des trois catégories d’entraînement. Tous les participants se sont améliorés

après seulement 20 min d’entraînement en discriminant plus facilement la cohérence

visuelle et en répondant plus rapidement (Fig. E). Conformément à notre hypothèse,

les individus entraînés en AV ont plus progressé que les autres (via une plus forte

diminution du seuil perceptuel). De plus, l’absence significative de hausse du niveau

de confiance semble indiquer que cet apprentissage se soit fait de manière implicite,

excluant ainsi la possibilité d’une association consciente entre la cohérence des points

visuels et celle des textures acoustiques. Ces premiers résultats semblent valider

l’hypothèse d’un traitement supramodale bénéfique à l’apprentissage dans le cas

AV. Ces données comportementales sont par la suite réutilisées dans les chapitres 5

et 7 afin d’en déduire leurs corrélats neuronaux.
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Figure D. Stimuli audio présentés durant les entraînements AV et AVn.

Les spectrogrammes montrent la fréquence du signal (échelle logarithmique) en fonc-

tion du temps. (a) Exemple de texture acoustique utilisée pour les entraînements

AV. Par analogie avec les RDKs, le niveau de cohérence correspond ici à la pro-

portion de «rampes» ayant la même pente à un instant donné. Ici, la texture est

incohérente durant 0.5 s puis cohérente à 75% pendant la seconde restante. (b)

Bruit acoustique utilisé dans l’entraînement AVn. Ce son est totalement décorrélé

avec les RDKs visuels mais possède la même amplitude, la même durée et le même

domaine fréquentiel qu’une texture acoustique.
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Figure E. Effets des entraînements sur le seuil perceptuel. La performance

moyenne (±1 s.e.m.) est tracée en fonction des niveaux de cohérence visuelle dans

les groupes AV (a), V (b) et AVn (c) avant (PRE, gris clair) et après (POST, gris

foncé) entraînement. Pour simple illustration, les courbes psychométriques sont ap-

proximées par des fonctions de Weibull dans chaque groupe. Le seuil perceptuel est

défini par le niveau de cohérence visuelle d’un RDK correspondant à 75% de bonnes

réponses. Une amélioration se traduit donc par une baisse du seuil (flèche noire).

(d) Seuils de discrimination moyens (+2 s.e.m.) déduis des courbes de Weibull

individuelles avant et après entraînement dans chaque groupe. Le seuil est significa-

tivement plus réduit dans le groupe AV que dans les groupes V et AVn. Le niveau de

signification statistique est indiquée par *, ** et *** correspondant à des p-valeurs

(corrigées avec Bonferroni) inférieures respectivement à 0.05, 0.01 et 0.001.
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Chapitre 3 — La magnétoencéphalographie

Pourquoi et comment peut-on mesurer l’activité neuronale avec la magnétoencépha-

lographie ?

Pour pouvoir interpréter correctement les résultats des analyses ERF et des

analyses fractales, il est crucial de bien comprendre la nature des signaux que nous

utilisons. C’est pourquoi dans ce chapitre, nous présentons les principes neurophysio-

logiques de la MEG (exemple Fig. F) et les procédures classiques de pré-traitement

des données. Nous décrivons ensuite les techniques permettant de résoudre le pro-

blème inverse, c-à-d de reconstruire l’activité corticale à l’origine des signaux obser-

vés dans les capteurs. Dans la dernière section, nous détaillons les paramètres de

l’acquisition MEG, des méthodes de pré-traitement et de reconstruction des sources

qui ont été utilisées aussi bien pour les analyses ERF que les analyses fractales.

Figure F. La magnétoencéphalographie et l’électroencéphalographie. (a)

Installation MEG utilisée actuellement à Neurospin (Neuromag Elekta LTD, Hel-

sinki, Finlande) et bonnet EEG utilisé à l’université de Kyushu (Nexstim, Helsinki,

Finlande). (b) Illustration schématique et idéalisée du champ magnétique et du po-

tentiel électrique produits par une source neuronale tangentielle modélisée par un

dipôle (flèche blanche). (Adapté de [Hämäläinen 1993]).

Partie II — L’analyse ERF standard
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Chapitre 4 — Hypothèses neuronales

Que peut-on raisonnablement observer avec l’analyse ERF?

Dans ce chapitre, nous décrivons tout d’abord les principes de l’analyse ERF

(Fig. G). Puis, nous passons en revue les différents candidats neuronaux pouvant être

potentiellement impliqués au cours de l’entraînement en se basant sur de précédentes

études de neuroimagerie. Pour finir, nous élaborons quelques prédictions/hypothèses

sur les corrélats neuronaux de l’apprentissage pouvant être observés avec l’analyse

ERF.

Figure G. Principes de l’analyse des champs évoqués. Le but de l’analyse

ERF consiste à estimer l’activité évoquée en phase avec l’apparition d’un stimulus

(ou plus généralement un évènement). Elle se base sur l’hypothèse que le signal

est formé par trois composantes : évoquée, induite et aléatoire (c-à-d qui change à

chaque essai). Contrairement à la composante évoquée, celle induite n’est pas calée

en phase avec l’instant d’apparition du stimulus. Ainsi, les composantes induites et

aléatoires sont fortement réduites lorsque le signal est moyenné à travers plusieurs

essais, ne laissant intacte que la composante évoquée.

Chapitre 5 — Analyse ERF des données acquises en MEG

Peut-on expliquer d’un point de vue neuronal les différences comportementales ob-

servées entre les trois groupes d’entraînement avec l’analyse ERF?

Ce chapitre présente les principaux résultats de l’analyse ERF conduite dans

l’espace source en comparant l’activité avant et après apprentissage dans chaque

groupe. Plusieurs mécanismes semblent être à l’origine de la progression des indi-
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vidus : tout d’abord, l’augmentation de la réponse neuronale dans l’aire ventrale

visuelle (ITC) commune aux trois groupes de participants suggère un renforcement

de l’association couleur/mouvement pour des niveaux de cohérence visuelle faci-

lement détectables. Communément aux trois groupes, l’apprentissage semble être

reflété par une plus forte implication du cortex préfrontal ventrolatéral (vlPFC), ce

qui s’expliquerait par une hausse de l’attention. Cependant, l’entraînement AV se

distingue par un gain de sélectivité/plasticité dans l’aire corticale dédiée au traite-

ment du mouvement visuel (hMT+), comme le montre les mesures neurométriques

(Fig. H). De plus, le réseau impliqué dans l’analyse du mouvement visuel est plus

large après un entraînement audiovisuel (AV et AVn) que visuel (V), ce qui sug-

gère l’implication de régions corticales associatives ayant permis la plasticité dans

hMT+, notamment celle d’aires multisensorielles telles que pSTS et mSTS (Fig. I).

Nous interprétons ces résultats dans le contexte de la théorie de l’apprentissage hié-

rarchique inversé (introduite au chapitre 1) en montrant l’existence d’un traitement

supramodal ayant permis d’améliorer le traitement associant couleur et mouvement

et la discrimination de la cohérence visuelle.

Cette étude contribue, à notre connaissance, à montrer pour la première fois en

MEG que l’information acoustique peut altérer de manière sélective les profils de

réponse des aires visuelles chez les individus sains, et approfondir ainsi notre com-

préhension du traitement supramodal et d’une représentation invariante des objets

dans le cortex. De plus, ces résultats peuvent avoir d’importantes implications pra-

tiques dans l’élaboration de protocoles d’entraînement chez les personnes atteintes

d’un handicap sensoriel ou utilisatrices d’appareils de substitution sensorielle.

Partie III — Analyse d’invariance d’échelle

Chapitre 6 — Propriétés d’invariance d’échelle : Définitions et appli-

cations

Pour quelle raison et de quelle manière devrions-nous réaliser des analyses fractales

en MEG?

Dans ce chapitre, nous expliquons tout d’abord le contexte ayant amené à étudier

les propriétés d’invariance d’échelle de l’activité cérébrale (Fig. J). Nous donnons

ensuite le cadre théorique/mathématique dans lequel sont définies l’autosimilarité

et la multifractalité, ainsi que l’état de l’art des méthodes permettant d’estimer

ces quantités. Nous nous attardons plus particulièrement sur la méthode utilisée

au chapitre 7, c-à-d le formalisme multifractal basé sur les coefficients d’ondelettes

dominants (WLBMF).

Chapitre 7 — Analyse de l’invariance d’échelle des données acquises

en MEG

Y a t-il une quelconque information dans l’autosimilarité et la multifractalité des si-

gnaux MEG qui puisse nous permettre de mieux comprendre les processus neuronaux

à l’origine de l’apprentissage et de la plasticité ?



xxiv Résumé en français

Figure H. Réponses évoquées dans hMT+ avant et après entraînement

en fonction de la cohérence visuelle du RDK (A) et fonctions neuro-

métriques (B). (A) La réponse évoquée apparait clairement dans chaque groupe

environ 200 ms après l’apparition de la cohérence (à t=0). Plus la cohérence visuelle

est élevée, plus l’amplitude de la réponse l’est aussi. Initialement, le profil de réponse

est similaire dans les trois groupes. Celui-ci change après entraînement : V et AVn

présentent un comportement similaire, à savoir un étalement de l’amplitude de la

réponse évoquée en fonction de la cohérence. AV ne semble présenter aucun chan-

gement. Cependant, par similitude avec la psychométrie, l’amplitude (ici moyennée

entre 0.2 et 0.5 s) peut être modélisée en fonction de la cohérence par une fonction

de Weibull (courbes neurométriques). (B) En guise d’illustration, les courbes neuro-

métriques estimées au niveau de chaque groupe sont présentées ici. Seul AV présente

une diminution significative du seuil neurométrique. La sensibilité de hMT+ pour

discriminer la cohérence s’est donc essentiellement améliorée dans le groupe AV.
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Figure I. Effets principaux de l’entraînement dans les trois groupes à

travers tous les niveaux de cohérence. Après reconstruction des données MEG

dans l’espace source (MNE-dSPM), les contrastes moyens (±1 s.e.m.) entre avant

et après entraînement ont été calculés pour chaque groupe et dans chaque région

d’intérêt en fusionnant tous les niveaux de cohérence. Les contrastes sont repor-

tés en gris, noir et gris foncé pour les groupes V, AV et AVn respectivement. Les

contrastes significativement non-nuls sont indiqués par des barres grises (V), noires

(AV) ou gris foncées (AVn). Les effets principaux de l’entraînement V indépendam-

ment du niveau de cohérence visuelle peuvent être observés dans ITC entre environ

200 et 400 ms après l’apparition de la cohérence. En AV, ces effets sont bien plus

nombreux et peuvent être vus notamment dans hMT+, ITC, mSTS, V4, pSTS et

le cortex auditif AC. En AVn, seuls ITC, pSTS et AC présentent des changements

significatifs. Les effets du type d’entraînement sont testés avec un test de Fisher :

les zones grisées indiquent la latence à laquelle une différence significative existe

entre les trois groupes. Les étoiles rouges représentent leur niveau de signification

statistique. Quatre régions capturent essentiellement ces différences : le STS median

et postérieur, V4 et AC. Les p-valeurs corrigées inférieures à 0.05, 0.01 et 0.001 sont

indiquées respectivement par les symboles *, ** et ***.
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Figure J. Deux approches complémentaires : étude des oscillations ou

de l’invariance d’échelle. Un signal MEG typique représenté dans le domaine

temporel (au milieu à gauche) et fréquentiel (au milieu à droite) est habituellement

décomposé sous forme d’oscillations (en haut à gauche) identifiées par leurs pics

présents dans le spectre de puissance (en haut à droite) — ici theta (θ), alpha

(α) et beta (β). De façon moins évidente, la puissance spectrale dans les basses

fréquences présente une caractéristique en 1/f , c-à-d une pente linéaire lorsque le

spectre est tracé sur des axes logarithmiques (en bas à droite). Dans le domaine

temporel (en bas à gauche), cela signifie que l’activité arrhytmique est invariante

par échelle, autrement dit qu’elle possède les mêmes propriétés statistiques que sa

version dilatée et renormalisée.
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Ce chapitre est dédié à l’analyse d’invariance d’échelle des données MEG acquises

dans notre expérience. Il contient deux études préliminaires et une étude principale.

Dans un premier temps, nous avons vérifié l’existence de propriétés d’invariance

d’échelle au niveau des capteurs (première étude préliminaire) et dans quelques

aires restreintes sur la surface corticale (seconde étude préliminaire). Ces propriétés

étaient modulées non seulement entre le repos et la tâche, mais aussi entre avant

et après entraînement. Plus important, l’analyse principale montre que l’autosimila-

rité et la multifractalité estimées entièrement sur la surface corticale présentent un

couplage dynamique dans quelques aires tout au long de l’entraînement : tandis que

l’autosimilarité diminue généralement après apprentissage (corrélant parfois avec la

progression comportementale telle que dans V4/ITC gauche et hMT+/pSTS droit),

des aires plus spécifiques (telles que hMT+/pSTS et IPS) présentent aussi une aug-

mentation de la multifractalité (cf. Fig. K). Ces effets opposés sont particulièrement

intéressants car ils n’ont jamais été observés dans d’autres systèmes dynamiques

(tel qu’en turbulence hydrodynamique ou dans le domaine de la finance) et ont lieu

aussi lorsque les participants passent du repos à la tâche. Plus surprenant encore,

la multifractalité de chaque individu converge au cours de l’entraînement vers un

attracteur commun (cf. Fig. L) pouvant refléter la performance asymptotique de

l’apprentissage.

Cette étude montre pour la première fois à notre connaissance que la capacité

d’apprentissage d’un individu peut être prédite par l’indexage multifractal de son

activité cérébrale. Ce résultat est à la fois nouveau et provocant car il offre une

première interprétation neurophysiologique de la multifractalité observée dans le

fonctionnement du cerveau humain. De plus, il remet en question le modèle de criti-

calité auto-organisée souvent employé pour interpréter la présence d’autosimilarité

dans la dynamique cérébrale car celui-là ne permet pas d’expliquer l’origine de la

multifractalité.

Discussion, conclusion et perspectives

Dans cette thèse, nous avons étudié les processus neuronaux de l’apprentissage per-

ceptuel et de la plasticité en analysant de deux manières différentes des données

MEG reconstruites dans l’espace source : d’une part via une analyse ERF classique,

souvent utilisée en neurosciences pour identifier le décours temporel de l’activité

neuronale suite à la présentation d’un stimulus d’intérêt, et d’autre part via une

analyse de l’invariance d’échelle, une approche bien plus originale et inhabituelle

permettant de caractériser l’organisation temporelle de l’activité cérébrale sur plu-

sieurs échelles temporelles ou fréquentielles (limitée ici aux très basses fluctuations

présentant un spectre de puissance de type 1/f).

Comparaison entre l’analyse ERF et l’analyse multifractale

Aussi bien l’analyse ERF que l’analyse multifractale révèle des changements de

l’activité cérébrale entre avant et après entraînement qui peuvent être interprétés
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Figure K. Diminution de l’auto-similarité et augmentation de la multi-

fractalité après entraînement. Cartes corticales de l’autosimilarité (H) et de la

multifractalité (M) moyennes estimées sur les données MEG reconstruites dans l’es-

pace source avant entraînement (colonne de gauche) et cartes des contrastes entre

avant et après entraînement (colonne de droite). (a) L’autosimilarité moyennée sur

tous les individus (groupe V et AV réunis) est comprise entre 0.8 et 1.2 et suit un

gradient occipito-frontal. (b) Seules les aires montrant des changements significatifs

d’autosimilarité après entraînement sont présentées. On observe essentiellement une

diminution de l’autosimilarité dans la région occipito-pariétale. (c) Seules les aires

présentant de la multifractalité de manière significative avant entraînement sont

présentées. (d) Seules les aires montrant des changements significatifs de la multi-

fractalité après entraînement sont présentées. De façon remarquable, seules quelques

aires (notamment en pariétal) présentent une hausse de la multifractalité plus ou

moins contenues dans celles présentant une diminution de l’auto-similarité.
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Figure L. La multifractalité converge vers un attracteur M∞ aussi bien

durant le repos que durant la tâche. (a, b) Dans chaque aire corticale, les

coefficients de corrélation ont été estimés entre la variation moyenne de multifracta-

lité ∆M de chaque individu estimée au cours des 4 blocs d’entraînement durant la

tâche (a) ou le repos (b) et la quantité initiale M moyennée sur ces mêmes blocs.

Le niveau de signification statistique de ces corrélations a été corrigée pour les com-

parasions multiples. Dans les deux conditions (repos ou tâche), nous n’obtenons que

des anticorrélations. (c, d) Chaque régression ainsi obtenue dans une aire corticale

— par exemple ici dans pSTS/hMT+ droit, indiquée par un cercle noir durant le

repos et la tâche — peut être interprétée comme l’espace des phases de M durant

l’entraînement. Plus précisément, la pente négative de la regression indique que M

converge vers une valeur asymptotique M∞ correspondant à ∆M = 0. Plus cette

pente se rapproche de -1, plus cette convergence est rapide. (e, f) Illustrations de

la trajectoire idéalisée de M (espace des phases en haut, décours temporel corres-

pondant en bas) avec deux valeurs initiales Mi et Mi′ convergeant chaque fois vers

M∞ dans le cas où la pente de régression est contenue entre −1 et 0.
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comme de la plasticité fonctionnelle. L’identification avec ces deux approches d’aires

communes telles que hMT+, pSTS, mSTS et ITC se révèle particulièrement inté-

ressante ; l’interprétation neuronale est cependant assez différente. Il faut d’abord

rappeler que ces deux analyses ont été menées sur deux domaines de fréquences

quasi différents : entre 1 et 40 Hz dans le cas des ERFs et entre 0.1 et 1.5 Hz dans

le cas de l’invariance d’échelle. Concernant l’approche classique (c-à-d les ERFs), la

plasticité est essentiellement représentée par une augmentation (voire parfois une

diminution) de l’activité neuronale à des latences particulières, reflétant ainsi une

plus forte sensibilité des neurones (comme dans hMT+) ou un recrutement plus

large d’une population synchronisée de neurones (comme apparemment dans pSTS)

en réponse à un évènement précis. Inversement, un changement des propriétés d’in-

variance d’échelle indique une réorganisation temporelle de l’activité cérébrale sur

une échelle de temps bien plus grande que celle de l’analyse ERF (∼ 1 s), pouvant

englober ainsi plusieurs évènements neuronaux.

Cela constitue en effet une différence importante : grâce à la très bonne résolution

temporelle de la MEG, l’analyse ERF nous permet de «démêler» les mécanismes

neuronaux en sélectionnant un instant particulier (par exemple dans notre étude,

l’activité évoquée par l’apparition d’un mouvement visuel avec un certain niveau de

cohérence). L’analyse d’invariance d’échelle, en revanche, ne nous permet pas de faire

une telle distinction puisqu’elle est effectuée sur la totalité du signal ; cela pourrait

ainsi expliquer pourquoi on observe de la plasticité dans un réseau plus large. Par

exemple, l’activité dans le sulcus infériopariétal (IPS) varie en terme d’invariance

d’échelle (baisse de l’autosimilarité et hausse de la multifractalité) tandis qu’elle

ne présente aucun changement selon l’analyse ERF. Cependant, nous nous sommes

focalisés ici sur les réponses évoquées liées au traitement neuronal du mouvement,

excluant donc d’autres mécanismes tels que l’accumulation d’évidence sensorielle,

la prise de décision, la réponse motrice ou bien le jugement de confiance. Nous

suspectons fortement IPS de montrer de la plasticité dans l’un de ces cas. Nous

pourrions le vérifier par exemple en estimant l’activité évoquée en phase avec la

réponse du sujet. De plus, l’accumulation d’évidence apparaît généralement en ERF

sous forme de variation très lente, qui peut donc avoir été retirée par le filtre passe-

haut utilisé dans notre analyse.

Le gros avantage de l’analyse multifractale est qu’elle peut être appliquée sur

n’importe quel jeu de données MEG, notamment durant le repos et le sommeil. En

réduisant considérablement la dimension des données à deux valeurs (autosimila-

rité et multifractalité) par capteur (ou vertex) dans chaque enregistrement, nous

avons été capables d’examiner la dynamique de l’apprentissage au cours des blocs

expérimentaux successifs. La principale difficulté réside dans le choix de la gamme

d’échelle sur laquelle l’analyse se porte et du paramètre γ qui détermine l’ordre

d’intégration des données. Pour cela, on inspecte en pratique la densité spectrale

de puissance de chaque capteur dans chacun des enregistrements... Ce qui peut de-

venir très fastidieux lorsque le nombre d’acquisitions augmente. Bien que l’analyse

ERF soit théoriquement et conceptuellement plus simple, elle n’est pas pour autant

plus facile à mettre en place : elle nécessite un contrôle temporel très précis des
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évènements (ce qui s’avère extrêmement problématique si leur enregistrement est

défectueux ou si les stimuli sont présentés avec une latence approximative). Bien

que dans les deux cas, nous étions confrontés à la même difficulté, à savoir l’analyse

au niveau des capteurs (due à la complexité de la tâche et l’absence de normalisa-

tion spatiale entre les individus), le choix de la méthode de reconstruction de source

(MNE, dSPM ou sLORETA?) avait bien plus d’impact sur les champs évoqués

que sur les propriétés multifractales extraites des sources corticales. L’analyse d’in-

variance d’échelle est en effet insensible aux transformations linéaires (non-nulles),

telles que la normalisation des estimées MNE par les méthodes dSPM et sLORETA.

Lien avec la hiérarchie oscillatoire

Une perspective intéressante serait d’examiner les propriétés oscillatoires des signaux

MEG, ce que l’on peut considérer comme étant la contrepartie des propriétés d’inva-

riance d’échelle (cf. chapitre 6). En effet, cela nous permettrait non seulement d’inter-

préter plus facilement la dynamique fractale du cerveau (en comparant simplement

les résultats obtenus), mais aussi d’étudier le phénomène d’intégration à large échelle

dans le contexte du traitement multisensoriel et de l’association couleur/mouvement

(soit comment des entrées sensorielles éloignées spatialement peuvent interagir très

tôt avant d’atteindre les aires d’association situées bien après dans le traitement

hiérarchique).

Selon une théorie, les larges réseaux neuronaux interagiraient à travers la syn-

chronisation de phase des rythmes oscillatoires, permettant ainsi l’intégration mul-

tisensorielle [Varela 2001]. Un tel mécanisme a été mis en évidence pour la première

fois dans la bande gamma [Rodriguez 1999, Tallon-Baudry 1999] : une étude en EEG

a montré par exemple que le le niveau de synchronisation gamma entre deux aires

distantes était plus forte lors de la reconnaissance de visages que durant celle de

figures abstraites [Rodriguez 1999]. D’autres études ont aussi montré que cette syn-

chronisation était impliquée dans l’attention visuelle sélective [Talsma 2009]. Elle est

par exemple plus élevée chez le singe lorsque celui-ci, au lieu d’être surpris, s’attend

à voir un stimulus [Fries 2001].

A cela s’ajoute un autre phénomène encore plus intéressant, celui des «fréquences

emboitées» : il existerait en effet un couplage entre l’amplitude des ondes gamma et

la phase des basses fréquences [Buzsáki 2004, Fox 2007]. Cette hiérarchie oscillatoire

est particulièrement pertinente en audiovisuel car elle possède une forte similitude

avec le langage qui nécessite un traitement complexe pour pouvoir être décomposé

[Giraud 2007]. De plus, un signal saillant dans une modalité donnée (par exemple

auditive) pourrait recaler la phase des oscillations lentes dans une autre modalité

(par exemple auditive) [Iurilli 2012], permettant ainsi de moduler l’état d’excitabilité

des neurones [Schroeder 2008] et de permettre, ou non, l’intégration multisensorielle.

La hiérarchie oscillatoire est donc un concept qui a l’avantage d’expliquer les

effets positifs et négatifs des interactions multisensorielles par la prise en compte

des contraintes temporelles. Le principe des fréquences emboîtées est d’une impor-

tance cruciale car il a été montré qu’un phénomène similaire pouvait avoir lieu dans
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l’activité cérébrale arythmique de type 1/f , bien que celui-ci ne puisse pas être

capturé par le paramètre d’autosimilarité. Il serait donc intéressant de tester si la

multifractalité, par contre, peut refléter un tel mécanisme.

Autres perspectives

Les données acquises dans cette expérience n’ont pas encore été complètement ex-

ploitées et peuvent faire le sujet d’autres analyses. Par exemple, l’intégration multi-

sensorielle peut être étudiée plus en profondeur à l’aide d’analyses standard (ERF,

visualisation temps-fréquence) sur les quatre blocs d’entraînement. Nous pouvons

aussi nous demander si les résultats concernant l’autosimilarité et la multifracta-

lité au cours de l’entraînement sont spécifiques aux fluctuations lentes de l’activité

cérébrale, ou si de semblables observations peuvent être faîtes en portant l’analyse

WLBMF sur d’autres grandeurs telle que l’enveloppe des oscillations (qui présentent

aussi des propriétés d’invariance d’échelle) ou les signaux acquis en IRMf (bien que

la fréquence d’échantillonnage ne permette pas d’estimer la multifractalité aussi bien

qu’en MEG).

Puisque la convergence vers la multifractalité asymptotique n’a été montrée

qu’au niveau du groupe, il serait intéressant de tester cette curieuse propriété de

manière isolée sur chaque individu en augmentant le nombre de blocs d’entraîne-

ment durant l’expérience. Si l’entraînement est suffisamment long et efficace, nous

nous attendons à observer des changements significatifs des propriétés d’invariance

d’échelle au repos. Une contribution méthodologique consisterait aussi à développer

l’analyse WLBMF de manière à sélectionner les moments d’intérêt pour cibler un

mécanisme neuronal particulier.

Enfin, la prochaine étape dans l’étude de la dynamique fractale du cerveau pour-

rait consister à proposer une extension multivariée de l’analyse WLBMF, afin d’es-

timer la connectivité non seulement fractale, mais aussi multifractale. Ces mesures

pourraient être alors comparés avec celles de connectivité standard (telle que la

cohérence, l’index de retard de phase ou la valeur calée sur la phase).
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Context

Functional neuroimaging is a relatively recent discipline that aims to understand

the brain mechanisms at the origin of our behavior, whether mental capacities (e.g.

language, perception, consciousness) or disorders (e.g. Alzheimer’s and Parkinson’s

diseases) by making use of several non-invasive (i.e. that do not require opening

the skull) imaging techniques. Traditionally, a cognitive process is supposed to be

undertaken by one or several specific areas in the brain that activate at particular la-

tencies. Depending on the characteristic of interest (location of areas or time course

of activity), the imaging technique must be judiciously chosen: for instance func-

tional magnetic resonance imaging (fMRI) measuring the so-called blood-oxygen-

level dependent (BOLD) activity, i.e. slow changes of blood flow following neuronal

activation, is best qualified to localize the activated areas. In contrast, electroen-

cephalography (EEG) and magnetoencephalography (MEG) measure respectively

the electric and magnetic fields generated by neuronal activity on the head surface

and are best designed to track the temporal dynamics of neural events (on the order

of milliseconds).

Independently of the chosen imaging modality, most studies adopt the same ap-

proach by focusing on brain activation associated with an event of interest, e.g. the

onset of a stimulus or the participant’s response to a cognitive task. This is for in-

stance the case of the event-related field (ERF) analysis conducted in MEG, whose

purpose is to characterize the time-course of the magnetic brain response modulated

by an event. This method assumes that averaging data from several trials would

reduce the noise while leaving the “evoked” response intact thanks to its invariant

latency and shape. Although this method has been proven successful to describe the

neural events involved in the execution of a task with great time resolution, it over-

looks the major part of brain activity — i.e. spontaneous brain activity — in spite of

its known functional relevance [Gusnard 2001, de Pasquale 2010, Sadaghiani 2010].

The brain is indeed still active in the absence of stimuli or actions (such as during

rest or sleep), and this activity plays a crucial role for instance in brain development

and perception.

The first observations of spontaneous activity in electrophysiology were carried

out by Hans Berger in 1931 using EEG and consisted of a description of the well-

known “alpha” waves, i.e. rhythmic cycles oscillating predominantly around 8–12 Hz

in the occipital lobe. Since then, spontaneous activity in M/EEG is traditionally de-

scribed in terms of neural oscillations and quantified by spectral measures revealing

different frequency peaks readily observable in the power spectrum and associated

with different functional roles (not only alpha, but also beta and gamma oscillatory

activities for instance). This approach, however, does not account for the known

arrhythmic — or non-oscillatory — properties of neural activity [Bullock 2003].
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Indeed, the dynamics of neural activity in the infraslow domain (i.e. very

slow activity below ∼ 1 Hz) are characterized by a 1/f -type power spectrum

[Novikov 1997, He 2010], a hallmark of self-similar — i.e. scale-free or fractal —

temporal dynamics [Bak 1988]. Fractals (Fig. 1) usually refer to particular geomet-

ric figures that remain exactly or statistically (i.e. nearly) the same at every scale —

in other words, they present the same structure no matter how much you zoomed in

or out. Similarly in the domain of temporal signals, “fractal” or “scale-free” means

that the statistical properties of a signal remain unchanged (or covariant) after time

dilation and proper rescaling. Hence, two computational implications for brain func-

tion are that the encoding of information may be temporally multiplexed and that

functional parsimony depends on the level of temporal compression.

Figure 1: Example of fractal objects. The Sierpinski triangle (left) is a fractal

image that illustrates exact self-similarity: the pattern is identical at all scales (indi-

cated by orange circles). A fractal time series (right) is characterized by statistical

self-similarity in a restricted range of scales (since limited by the length and the

sampling of the time series): each dilated and properly rescaled version of the time

series has the same statistical properties as the origin.

In practice, scale-free properties can be described at different levels of detail:

the first one being referred as “self-similarity”, a single parameter that indicates

how the rescaling factor must be chosen as a function of the dilation to make the

statistical properties invariant. It also reflects the global regularity of the signal and

the absence of a characteristic correlation time in temporal dynamics and is coarsely

approximated by the exponent of the 1/f spectrum. As a second level of details,

multifractality reflects the local fluctuations — or singularities — along time that

cannot be measured in the sole power spectrum. In other words, the presence of
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multifractality implies that the self-similarity value is not enough to describe the

temporal dynamics but instead, a continuous spectrum of values is required.

In most neuroimaging studies, scale-free analyses have been not only restricted

to the assessment of self-similarity, but also carried out using analysis tools (e.g. de-

trended fluctuation analysis [Peng 1994, Linkenkaer-Hansen 2001]) that are known

to significantly lack robustness and accuracy in the presence of non-stationary drifts

and in non-Gaussian time series [Veitch 1999]. These issues can be overcome using

a wavelet-based analysis, which in addition allows for the joint estimation of multi-

fractality. In this thesis, we propose to capitalize on one of these methods, namely

the recent wavelet-leader based multifractal formalism (WLBMF) [Wendt 2007] that

has been shown to benefit from excellent theoretical and practical performance on

real data [Ciuciu 2012].

Nonetheless, do these scale-free properties really matter for behavior and

brain functioning? So it is suggested by several experimental studies repor-

ting modulations of the 1/f spectra (i.e. self-similarity) in link with different

cognitive states including task-driven and resting states [He 2011, Ciuciu 2012],

stages of sleep [Weiss 2009, He 2010], task performance [Buiatti 2007, Wink 2008],

ages [Suckling 2008], genders [Jausovec 2010] and pathologies [Maxim 2005,

Suckling 2008]. Although investigations going beyond self-similarity were re-

latively scarce, all of them (excepted one investigating EEG micro-states

[Van de Ville 2010]) reported multifractality in brain activity [Shimizu 2004,

Popivanov 2005, Ciuciu 2012, Suckling 2008, Wink 2008, Weiss 2009]. The inter-

pretation remains however difficult and further investigations are necessary to un-

derstand to what extend scale-free dynamics are functionally relevant. According

to a recent fMRI study showing that learning could modify resting-state brain ac-

tivity [Lewis 2009], we asked if, similarly, scale-free properties could be modulated

by learning and how they would vary in the course of training. To that aim, we de-

veloped a learning paradigm alternating blocks of rest and visual task during which

participants’ brain activity would be recorded using MEG (cf. Fig. 2).

Figure 2: Basic idea and conception of the learning paradigm. In order to

investigate the functional role of scale-free dynamics in rest- and task-related brain

activity, we elaborated a paradigm in which participants would be trained to perform

a visual task periodically interrupted by periods of rest, while being recorded with

MEG. Further details on the paradigm and the nature of the stimuli are given in

chapter 1.
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Learning is a cognitive process that is closely related to the notion of plasticity,

i.e. the capacity of the brain to modify its structural organization at any level (e.g.

synaptic, neuronal or cortical). Historically, plasticity was thought to occur only

during a critical period in childhood and to disappear in adults. Since the end of

the 60’s, we know however that the brain remains a dynamic system that can adapt

and change throughout the entire life span, enabling development, memorization,

new skill acquisition or improvement, and even recovery from brain damages. In-

terestingly, the repetition of a visual task (as described in our paradigm) can lead

to learning and to specific plasticity occurring in the primary visual areas. This

is referred to as perceptual visual learning [Sasaki 2010]. In adults however, the

mechanism can be relatively slow and weak in the absence of efficient training. Our

first challenge consisted thus of proposing a training sufficiently effective to entail

plasticity in a short time and for all participants.

This led us to consider the potential benefits of multisensory learning

[Shams 2008] and cross-modal plasticity. The most impressive examples of plastic-

ity have been indeed reported in sensory-deprived individuals [Bach-y Rita 2003];

for instance the human motion area hMT+ (known to process visual motion)

can be recycled for auditory or tactile processing in congenitally blind people

[Poirier 2005, Ricciardi 2007]. More generally, evidence of multisensory interactions

has been found throughout the cortex and has challenged the view that sensory

systems are strictly independent, in turn questioning the innate specialization of

sensory cortices. According to the “supramodal theory” [Pascual-Leone 2001], it has

been suggested that some cortical areas such as hMT+ are naturally capable of

functional selectivity irrespective of the sensory modality of inputs i.e. of functional

recycling. However, several challenges have been raised [Bavelier 2010]: for instance,

is functional recycling a consequence of early sensory deprivation or is it supported

by pre-existing supramodal areas [Bedny 2010, Morrone 2010, Dormal 2011]?

Without losing sight of our main goal (i.e. to investigate the impact of learning on

scale-free brain dynamics), we also addressed this issue by asking whether learning

to discriminate visual coherence would benefit from supramodal processing. Novel

stimuli were developed consisting of acoustic textures sharing the temporal statistics

of visual random dot kinematograms (RDKs). Three groups of participants were

trained in a difficult visual coherence discrimination task without sounds (V), with

congruent acoustic textures (AV) or with auditory noise (AVn) while being recorded

with magnetoencephalography (MEG). We hypothesized that visual learning and

plasticity would benefit from matched audiovisual stimulation (i.e. AV training).

Objectives

In order to accomplish the main objectives of this thesis, we must ensure beforehand

that the learning paradigm is sufficiently effective and well-controlled to further en-

able us to combine behavioral measures of learning with participants’ brain activity

recorded with MEG. This will be the subject of the first part.
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The main purpose of this work is then twofold:

• To uncover the neural mechanisms of multisensory learning involved in our

paradigm by carrying out standard ERF analyses on source-reconstructed

MEG signals. More precisely, we aim to test if pre-existing multisen-

sory/supramodal computations would enable down-stream sensory plasticity

in healthy individuals by comparing three types of training (V, AV and AVn).

• To provide further knowledge on the functional role of scale-free properties and

its implication for behavior. More precisely, we ask whether multifractality

and self-similarity can bring functionally independent information regarding

the neural processes involved in learning and plasticity.

These two points are tackled respectively in the second and third parts of this thesis.

Organization and contributions

Part I — Data acquisition and psychophysics

Chapter 1 — Paradigm and stimuli

How can we observe effective learning in a short period of training?

To address that question, we make an overview of psychophysical and cognitive

studies dedicated to multisensory and perceptual learning. Next, we present the

paradigm and stimuli involved in three types of training: visual (V), audiovisual

using acoustic textures (AV) or auditory noise (AVn). In the following, we will

systematically refer to this chapter for the description of the experimental design

and the samples of participants.

Chapter 2 — Psychophysics

Are the trainings indeed effective at the behavioral level?

Here, we analyze the behavioral measures in pre- and post-training according to

the three categories of training. All participants improved and as expected, the AV

training was significantly more effective, suggesting that supramodal processing in

AV boosted learning. These behavioral results will be reused in chapters 5 and 7 in

order to derive their neural correlates.

Chapter 3 — Magnetoencephalography

How magnetoencephalography allows us to measure neural activity?

In order to interpret correctly the results of ERF and scale-free analyses, it is

crucial to understand the nature of the analyzed signals. Therefore, we present in

this chapter the neurophysiological basis of MEG and the standard preprocessing

steps. We describe next the techniques used to solve the inverse problem, i.e. to

estimate the underlying neuronal activity resulting in the signals observed at the

sensor level. In the last section, we detail the procedure of the MEG acquisition,
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preprocessing and source reconstruction that were used for both ERF and scale-free

analyses.

Part II — Standard ERF analysis

Chapter 4 — Neural hypothesis

What can we reasonably uncover with the ERF analysis?

In this chapter, we first describe the principles of the ERF analysis. In addition,

we review the neural candidates that can be involved during training on the basis

of previous neuroimaging studies. Finally, we elaborate some predictions regarding

the neural correlates of learning potentially revealed by the ERF analysis.

Chapter 5 — ERF analysis of acquired MEG data

Can we explain the behavioral differences between each training group at the neural

level using standard ERF analysis?

This chapter presents the main results of the ERF analysis conducted in source

space. First, the cortical area dedicated to the analysis of visual motion (hMT+)

solely improved its selectivity/plasticity in the AV group as established by neuro-

metric quantification. Second, the network implicated in the analysis of motion after

AV and AVn training was much larger than in the V group, suggesting the selec-

tive implication of higher cortical regions in the plasticity of hMT+, notably of the

prefrontal cortex (vlPFC) and multisensory regions (pSTS and mSTS). Altogether,

we interpret our results in the context of the reverse hierarchical learning theory

(introduced in chapter 1) by showing the implication of supramodal processing in

optimizing color-motion binding and visual coherence discrimination.

Part III — Scale-free analysis

Chapter 6 — Scale-free properties: Definitions and applications

Why and how should we conduct scale-free analyses in MEG?

In this chapter, we first explain the context that led to investigate the scale-free

properties of brain activity. We further give the theoretical framework in which

self-similarity and multifractality are defined as well as a description of the state-of-

the-art techniques used to assess these quantities. More particularly, we focus on the

method used in chapter 7, namely the wavelet leader based multifractal formalism

(WLBMF).

Chapter 7 — Scale-free analysis of acquired MEG data

Is there any information in self-similarity and multifractality of MEG signals that

can improve our understanding of the neural processes underlying learning and plas-

ticity?

This chapter is dedicated to the scale-free analysis of the MEG data acquired in

our paradigm. It is composed of two preliminary analyses and of a main analysis.
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We first reported scale-free properties at the sensor level (first preliminary study)

and in restricted areas on the cortical surface (second preliminary analysis) that

could be modulated between not only rest and task, but also pre- and post-learning.

More importantly, the main analysis shows that self-similarity and multifractality

assessed over the entire cortex are dynamically coupled in several cortical areas in

the course of training: while self-similarity generally decreases after learning, more

specific areas also present an increase of multifractality. These opposite effects are

also observed when switching from rest to task. More surprising, the individual

amount of multifractality converged during training towards a common attractor

that could be associated with asymptotic performance.
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The establishment of the paradigm is a crucial step as it determines the questions

that can be answered. To investigate the impact of learning on scale-free brain

activity, we must put the odds on our side by optimizing the learning effect in a well-

controlled paradigm. To that end, perceptual learning appeared as an appropriate

choice because of its relative simplicity and the possibility to quantify it easily

using psychophysical analysis methods. Likewise, targeting primary sensory areas

via perceptual learning seems to be a judicious choice since their functional role

remains so far the best understood in the human brain and hence should facilitate

the analysis of neuroimaging and electrophysiological data.

The first section is therefore a non-exhaustive review of this concept. We were

however confronted with an important challenge: how can we make perceptual learn-

ing faster and yet still effective while it usually requires several days? The next

section is an introduction to the concept of multisensory integration and its benefits

for perceptual learning. Based on what we know so far and on the questions that

remain unsolved regarding multisensory learning, we developed a learning paradigm

(presented in the next section) involving novel audiovisual stimuli (presented in the

last section) that were expected to boost learning. To address the specificity of this

particular audiovisual training, we compared it with two others training types: a

visual one and another audiovisual one incorporating unspecific acoustic noise.
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1.1 Perceptual learning

1.1.1 Definition

Perceptual learning consists of an implicit improvement in the perception of a

stimulus and the discrimination of its features after a long and repeated expo-

sure to that stimulus [Gibson 1963]. One of its greatest implications is that pri-

mary sensory areas remain plastic even in the adult brain. This property was

thought indeed to disappear after the critical period, i.e. a short postnatal du-

ration. For instance, the eye of a radiologist can better distinguish the pattern

of a tumor on a X-ray image than an untrained eye [Sowden 2000]. In addition,

research in this field has also been motivated by the possibility to extend our knowl-

edge of the perceptual learning mechanism to more complex ones (e.g. memoriza-

tion, categorization or abstract rules [Freedman 2008]). Therefore, a great body

of literature in this area has emerged, though more dedicated to visual learning

than other sensory modalities, and has been several times reviewed (for instance

[Goldstone 1998, Gilbert 2001, Li 2004, Fahle 2005, Seitz 2005a, Sasaki 2010]).

Perceptual learning usually requires 3 to 10 days of practice in order to be effec-

tive but remarkably, its effects can last up to 1 or 3 years without any supplementary

exercise. More precisely, a very short period of fast learning is first observed and is

immediately followed by a much longer period of slow improvement. The newly ac-

quired skills are then consolidated effortlessly and implicitly during complete cycles

of sleep within 30 hours after training [Stickgold 2000].

One of the main characteristics of perceptual learning lies in its specificity to the

trained feature, i.e. the impossibility to transfer the improvement to another type of

stimulus. In psychophysics, such property is attributed to low-level plasticity (e.g.

primary visual cortex) because each feature is processed early in distinct sensory

fields. For instance, visual learning of features such as Vernier acuity, texture orien-

tation, visual motion and spatial frequency have shown specificity to the stimulus

location, orientation and direction. A very few studies have investigated the audi-

tory perceptual learning, but so far only the spectral frequency and the temporal

order and duration could be improved with perceptual learning and with more or

less specificity [van Wassenhove 2007]. Interestingly, even complex features can also

show some specificity, suggesting plasticity in higher-level areas or simultaneously

in different low-level areas.

Nonetheless, specificity was not always reported in every study, even if the used

stimuli were the same. Understanding the conditions under which a perceptual

training could lead to specific or generalized learning became therefore crucial.

1.1.2 The Reverse Hierarchy Theory (RHT)

The Reverse Hierarchy Theory (RHT) [Ahissar 1997] attempts to reconcile contra-

dictory studies using similar stimuli and reporting sometimes specificity and some-

times generalization of the learning. It is based on the observation that specificity

is more often reported when using difficult tasks than easy tasks.
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According to the RHT, the learning mechanism is organized in “cascade”: a first

modification in high-level areas modulated by attention and associated with easy

conditions allows generalization of the learning. As the task becomes harder, areas

located in lower levels of the hierarchical sensory pathway become recruited and lead

to specialization. This top-down process must be however initialized by a trigger

event called “Eureka effect” which consists of presenting a small set of stimuli in a

very easy condition. This step is essential to enable perceptual learning as it would

guide the prime access to appropriate learning sites. It corresponds typically to the

familiarization block that precedes a learning paradigm. Consistent with the RHT,

a study [Lu 2004] investigating the learning of a visual motion in the absence of

hMT+ activation showed that learning was impossible if the task was too difficult.

The training became however effective with an easier task and led to generalization

of the learning.

The RHT was later linked to the mechanisms of perception [Ahissar 2009]: It is

proposed that immediate perception is first supported by high-level representations

(e.g. a house is first perceived and categorized as a “house” without needs of details).

In this process, features available at lower levels (e.g. shapes, colors or brightness...)

converge toward high-level areas but do not contribute equally to identification, as

only crucial and relevant details are retained. However, if immediate perception is

not sufficient for successful performance (e.g. if the signal-to-noise ratio is too weak

or the stimulus duration too short), further scrutiny becomes necessary to recruit

lower level populations and to access to details.

A important prediction of the RHT concerns the stimulus variability presented

during training: the higher variability, the less likely plasticity will occur in low-

level areas. Indeed, if the stimuli vary too much, the training will not target a

specific low-level population. Conversely, the more similar two stimuli are, the more

necessary the access to low-level populations becomes for their discrimination.

1.1.3 The role of attention

The role of attention in perceptual learning has long been questioned and remains

debated. Although perceptual learning leads to an automatization of the task by re-

leasing the dependence of performance from attentional control, the learning per se

shows strong interaction with attention [Gilbert 2001]. Accounting for the plastic-

ity/stability dilemma (i.e. uncontrolled plasticity results in instability), it has been

proposed that attention plays a key role in selecting the relevant features on which

the learning should be restricted.

However several studies have demonstrated that perceptual learning could

occur even without attention or stimulus awareness. In the very first study

[Watanabe 2001], a subliminal and task-irrelevant visual motion was presented in the

background while subjects were engaged into another task. The repetitive exposure

improved the perception of motion only in the direction of the subliminal stimulus.

This type of learning was named task-irrelevant learning (TIL). In comparison to

classical perceptual learning (i.e. task-driven learning), TIL seems to occur only at
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a very low level and with a shorter duration [Watanabe 2002]. It can even lead to

“misperception” [Seitz 2005b]!

This finding contradicts the RHT because TIL seems to occur without any top-

down processes. A more recent study has even shown that it is possible to induce

plasticity in primary visual cortex specific to a predetermined stimulus that was

never presented [Shibata 2011]. In this experiment, subjects were trained to repro-

duce the same pattern of activity in V1/V2 corresponding to the presentation of an

oriented Gabor patch with the only help of a visual feedback computed by online

measures in fMRI and finally showed an improvement specific to the orientation. An

explanation [Ahissar 2004] would be that TIL reflects another phenomenon named

“adaptation” that is difficult to distinguish from perceptual learning. In this bottom-

up process, the neural response to an invariant stimulus is automatically reduced

after a long exposure in order to increase the system sensitivity to new stimuli.

Nonetheless, attention still plays a role because TIL happens only if the stim-

ulus is weak enough to be undetected. Otherwise, the task-irrelevant stimulus is

eliminated by regions that control attention such as the lateral prefrontal cortex

[Tsushima 2006]. In other words, attention does not select relevant features, it sup-

presses irrelevant ones.

The distinction is then made between attention brought to specific features and

reinforcement signals (such as reward or feedback, punishment, novelty...) that are

more diffuse and reflect a general alerting state [Sasaki 2010, Seitz 2009]. Since all

sensory inputs are boosted during this state, including coincident task-irrelevant

inputs, this can elicit an implicit or statistical learning of subliminal features. Al-

though reward is not essential, it can facilitate learning: for instance, the amount

of cholinergic inputs to the brain (a source of implicit reward stemming from the

nucleus basalis) can modulate the successfulness of learning [Li 2004]. However, the

drawback of using feedback is that it can introduce a decision-making bias, which

is usually unwanted.

1.2 Benefits of multisensory learning

1.2.1 Motivation

An important question is to know how perceptual learning can be made more

efficient and lead to generalization. Because the most substantial cases of neu-

ral plasticity have been observed in sensory-deprived people and consisted of

cross-modal refinements [Proulx 2012], the question raised whether healthy indi-

viduals could also benefit from such multisensory interactions. From the very

numerous studies dedicated to this research field since the last 50 years (see

for instance the following reviews [Bavelier 2002, Bach-y Rita 2003, Shams 2008,

Murray 2009, King 2009, Talsma 2010, Shams 2010, Klemen 2012, Ricciardi 2011,

Voss 2012, van Wassenhove 2012, Proulx 2012]), it came out that perceptual learn-

ing in one sensory modality can be improved by using multisensory stimuli during

training. For instance, pairing a visual coherent motion with a congruent audi-
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tory motion during training can lead afterwards to an improved detection of the

visual motion alone and specifically to the trained direction [Seitz 2006]. Accord-

ing to Shams [Shams 2008], it is intuitively explained by the multisensory nature

of our environment that is mirrored in our brain with a great number of multi-

sensory interactions that can occur at different levels of the sensory processing.

This interpretation challenges the strict independence view of sensory systems (e.g.

[Driver 2000, Ghazanfar 2006]) and further questions the innate specialization of

sensory cortices.

In addition, multisensory learning can sometimes allow the learning transfer from

one modality to another (e.g., the presentation of a visual rhythm can generate the

mental representation of an auditory rhythm [Grahn 2011]) and sometimes not (the

improved discrimination of an auditory duration does not transfer to visual duration

[Proulx 2012]).

It is therefore crucial to understand which type of multisensory interaction can

fully contribute to improve learning and under which conditions it occurs. For

instance, some multisensory illusions result mainly from an attentional modulation

such as the stream-bounce illusion [Shams 2010], which consists of two identical

visual objects moving towards each other. Adding a sound at the exact moment

of the collision bias the perception toward a bouncing motion instead of seeing

objects streaming through. Stochastic resonance [Klemen 2012] can also be at the

origin of multisensory interactions: the addition of an acoustic white noise can

contribute to exceed a detection threshold and consequently to facilitate the audio-

visual speech comprehension [Ross 2007]. The most important interaction is the

multisensory integration (i.e. when all sensory inputs converge at the perceptual

level into a single, coherent and robust perceptual representation). For instance,

the very strong McGurk effect [McGurk 1976] consists of perceiving a sound “da”

while hearing “ba” and simultaneously lip-reading “ga”. Of less degree, the cross-

modal dynamic capture illusion [Alink 2008] consists of two visual and auditory

motions going in opposite directions. In this illusion, the sound is first perceived as

going in the same direction as visual motion, indicating here a visual dominance.

Further analysis in fMRI have shown an increased activity in hMT+ and a decreased

activity in auditory cortex during the illusion, confirming the involvement of early

sensory areas in the multisensory process.

1.2.2 Multisensory integration

Based on the observation that visual learning was facilitated only by using congruent

audiovisual stimuli [Kim 2008], the multisensory integration seems to be the best

candidate to optimize learning. The conditions to obtain multisensory integration

consist of three basic rules that were defined from the observations made in the cat’s

superior colliculus, a well-known multisensory area [Stein 1993]:

• inverse effectiveness : the more difficult the perception of the relevant stimu-

lus, the more likely and stronger the multisensory integration;
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• temporal proximity : stimuli must be close in time;

• spatial proximity : stimuli must be close in space.

Accounting for spatio-temporal brain dynamics has also some consequences on

the last two rules [Murray 2009]: Contrary to the visual cortex which has a spa-

tial retinotopic representation, the auditory cortex encodes spatial information by

varying the response profiles of the same cell ensembles. Therefore, the spatial res-

olutions of auditory and visual stimuli do not project onto the cortex in the same

way, modifying thus the spatial proximity between the stimuli in a physical sense.

For the temporal proximity, the delay between the first response in the auditory

cortex (∼20 ms post auditory stimulus) and the one in the visual cortex (∼50 ms

post visual stimulus) must be accounted.

A principal hallmark of multisensory integration is the superadditivity : the be-

havioral/neural response to multisensory stimuli is greater than the sum of all re-

sponses observed separately in each modality [Meredith 1996]. Taken with the three

previously mentioned rules, this set of properties enables the identification of mul-

tisensory areas that might be involved in the facilitation of perceptual learning.

Whereas learning in one sensory modality is supposed to modify only the asso-

ciated primary area, several mechanisms in multisensory learning are conceivable

[Shams 2008]: multisensory learning can either reinforce the modification in the pri-

mary sensory area or also include multisensory association areas and connections.

In the first case, the activation of another sensory area modulates the activity of the

task-relevant sensory area (a mechanism also known as “subthreshold modulation”

[Klemen 2012]). In the second case, the learning would have altered or created mul-

tisensory areas as well as connections between areas that would be still recruited

after the training. This hypothesis is consistent with the observation that differ-

ences of performance between blind and sighted (resp. deaf and hearing) individuals

are more pronounced when the task is complex such as in peripheral visual accu-

racy (resp. sound localization and recognition), which involves the recruitment of

higher-level association areas [Bavelier 2002].

Multisensory learning is thus effective when using congruent stimuli that respect

the spatio-temporal constraint. However, further considerations can be made about

the choice of stimuli in order to improve the multisensory integration, and hence

learning. Indeed, the evidence for automaticity in multisensory integration has been

scarce [Talsma 2010, Kösem 2012] and raises the issue of what a multisensory feature

would be like. For instance, the arbitrary association between an auditory white

noise (whose intensity level is modulated between left and right loudspeakers) and a

Random Dot kinematogram (RDK) does not significantly improve the perception of

RDK coherence, even if directions are congruent [Alais 2004]. It was suggested that

using other more ecological auditory stimuli would yield better effects. An fMRI

study [von Kriegstein 2006] has shown that using audiovisual stimuli sharing redun-

dant information (e.g. voice and visage) instead of arbitrarily coupled stimuli (e.g.

voice and written names) led to better performance in a recognition task because the
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cross-modal convergence of features could occur earlier in the processing hierarchy.

This finding is consistent with the hypothesis of a supramodal brain organization.

1.2.3 The supramodal brain organization

The hypothesis of a supramodal, metamodal or amodal organization of the brain

[Pascual-Leone 2001] was recently derived from the many observations made in

sensory-deprived individuals using substitution-devices. An example of auditory-

vision substitution device consists of a camera fixed on the head from which the

image’s pixels are converted into pitches (the frequency as a function of the height

and the volume as a function of the brightness). After training, blind individuals

are relatively able to recognize visual forms and localize objects [Bach-y Rita 2003].

The most famous example of tactile-vision substitution is Braille, i.e. reading using

fingertips. Interestingly, sighted individuals who were temporary blindfolded and

who learned Braille during 5 days showed the same pattern of activity in brain vi-

sual areas as congenitally blind subjects when reading Braille [Sadato 1996]. It has

been even suggested that reading may be the first substitution device because it

converts visual information into (mental) auditory information [Bach-y Rita 2003].

In the hypothesis of supramodality, each brain area is associated with the pro-

cessing of a more abstract information regardless of the sensory modality (like the

frequency, the structure of an object or the properties of a motion). If the infor-

mation is mainly contained in one sensory modality, the associated area can appear

specific to that modality. However, should this modality be no more accessible (like

in blind or deaf individuals), the area can still take advantage of the information

remaining in the other modalities. The supramodal representation proposes to rein-

terpret the classic view of visual and auditory areas as spatial and temporal areas

[Pascual-Leone 2001, Proulx 2012].

For instance, the fusiform face area (FFA) and the parahippocampal place area

(PPA) involved in face and place processing respectively, are also activated without

visual stimuli. It could be argued that it is mental imagery, but these areas also

activate in congenitally blind individuals when using tactile stimuli [Proulx 2012].

Another fMRI study [Striem-Amit 2012] showed that the classical distinction be-

tween the visual ventral and dorsal pathways (i.e. “what” and “where” pathways

involved in shape/color and motion/location processing, respectively) also exists in

congenitally blind individuals, suggesting that visual experience is not necessary to

the development of these two paths. Moreover, similar ventral “what” and dorsal

“where” pathways are also observed for the auditory system [Murray 2009] (i.e. asso-

ciated with sound recognition and localization respectively), suggesting hence that

these two pathways can be supramodal.

A particular brain area that appears to be supramodal is the visual motion

area hMT+ [Voss 2012]. Indeed, hMT+ can be recruited by tactile and auditory

[Poirier 2005] motion in blind individuals. The same observation can be made in

sighted participants after blindfolding during five days [Poirier 2006], leading to the

next question of knowing whether hMT+ could respond to auditory motion even
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without previously blindfolding [Saenz 2008, Bedny 2010]. No activation was found

except in sight-recovered subjects. However, by using more complex auditory stimuli

designed with the “sonification” method to replicate the properties of an associated

visual jump in the acoustic domain [Scheef 2009], hMT+ presented a BOLD audi-

tory response. This suggests that hMT+ sensitivity to auditory motion may depend

on the sound properties or on the audiovisual coupling that was presented. By in-

vestigating the role of hMT+ in tactile motion processing in fMRI [Ricciardi 2007],

it was found that hMT+ also activated in sighted participants but in a more re-

stricted area compared to congenitally blind subjects. More precisely, the dorsal

part of hMT+ in sighted individuals was dedicated to the visual motion processing

only, suggesting a specialization of this area due to visual experience.

Yet the hypothesis of supramodality raises the question of whether func-

tional recycling is a consequence of sensory deprivation during a sensitive pe-

riod [Bavelier 2010] or whether it relies on pre-existing supramodal computations

[Bedny 2010, Morrone 2010, Dormal 2011]. In the latter case, an interesting theory

[Ricciardi 2011, Proulx 2012] would be that multisensory learning takes advantage

of the established supramodal representation by reinforcing and amplifying already

present connections, and would appear in this manner as cross-modal plasticity. This

assumption is based on the fact that cross-modal plasticity can often be observed

in a short period of time, too short to make new connections.

It can seem now difficult to make the distinction between a supramodal and a

multisensory area. According to [Voss 2012], a supramodal area performs the same

operation independently of the unisensory modality whereas a multisensory area

is dedicated to integrating inputs coming from different sensory areas to form a

coherent percept.

By taking the RHT and the supramodal representation into account, a new hy-

pothesis can be made to explain the interest of multisensory learning [Proulx 2012]:

by using complex multisensory stimuli with redundant information, higher-order

areas become recruited to sort all the different types of information coming from

primary sensory areas and to redirect them towards appropriate supramodal areas.

In addition, recruiting these higher-order areas would also enable learning general-

ization.

1.3 Paradigm

1.3.1 Procedure

The establishment of the paradigm was based on two motivations: i) To uncover

the functional relevance of scale-free brain dynamics in both ongoing and evoked

activity, ii) To address the issue of supramodal computations in motion processing

and test whether visual perceptual learning can benefit from supramodal audiovisual

training.

Accounting for these two points, the experiment consisted of several consecutive

blocks (Fig. 1.1):
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1. First of all, resting-state activity (eyes open, fixating a black screen) was

recorded in MEG before any experience with the stimuli and the task. The

duration of rest blocks had to be sufficient enough to enable a correct esti-

mation of the scale-free properties but not too long to allow the subject to

maintain its cognitive state and was thus set to 5 minutes.

2. The choice of using red and green mixed RDKs (see section 1.4) in the visual

task necessitated to equalize the luminance of colors perceived by the partic-

ipant. This was carried out by using the heterochromatic flicker photometry

[Lee 1988]: it consists of displaying a static RDK whose color alternates at 15

Hz between red and green, while the participant adjusts the green intensity to

minimize the sensation of flicker.

3. Participants were shortly familiarized with the task and the stimuli by receiv-

ing feedback on 16 very easy trials (i.e. RDK coherence set to 100%) to avoid

confounding effects of perceptual improvement with the simple effect owing to

a better comprehension of the task. This step can also be considered as the

crucial “Eureka” effect of the RHT, necessary to trigger learning thereafter.

4. A pre-training test (∼12 min) evaluated participants’ initial coherence dis-

crimination threshold with levels of RDK coherence set at 15%, 25%, 35%,

45%, 55%, 75% and 95% (196 trials in total, 28 per coherence level). Impor-

tantly, no sounds were provided during this task. Participants were asked to

report as accurately and fast as possible which of the two RDKs was most co-

herent by selecting the “green” or “red” button. Priority was given to accuracy.

The same instructions were given in all subsequent task blocks. Additionally

in this block, participants were asked to rate their confidence on a scale of 1

to 5 after each response. Because this block could be relatively long, a short

break (no more than 30 s) was proposed in the middle of the test (i.e. after

the 98th trial) to allow the participant to rest his eyes.

5. The training consisted of four blocks comprising a recording of resting-state

activity followed by approximately 5 min of task performance. Three types of

training were considered: the visual task could be effectuated with no sound

(V group), with correlated acoustic textures (AV group) or with uncorrelated

acoustic noise (AVn group). In AV and AVn conditions, participants were told

to neglect the sound. The V condition was a control training to verify that

visual learning indeed benefited from audiovisual training. The AVn condi-

tion was a supplementary control to dissociate between mechanisms mediated

by supramodal representations (i.e. AV congruence) and simple attentional

mechanisms. Participants were trained on four coherence levels (112 trials,

28 per each level) that were determined on the basis of their initial perfor-

mance, i.e. corresponding to ±20% and ±10% of their pre-training coherence

discrimination threshold.
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6. Following a last recording of resting-state activity, a post-training test was

again carried out in the same conditions as in pre-training (and crucially with-

out sound) to estimate the participant’s threshold and see whether the latter

decreased (thus reflecting learning) or not.

7. After post-training, a passive MEG localizer was used to localize hMT+. It

consisted of 120 presentations of one red RDK that was incoherent during 0.5 s

and that either became coherent (95% of coherence, 60 trials) or else remained

incoherent (0% of coherence, 60 trials) during 1 s.

Moreover, in all task blocks, inter-stimulus intervals (ISI) spanned 0.6–0.8 s

and participants received no feedback. The color of the most coherent RDK was

counterbalanced and the directions of coherent motion were pseudo-randomized.

Experiments were run in a darkened soundproof magnetic-shielded room (MSR).

Participants were seated in upright position under the MEG dewar facing a pro-

jection screen placed 90 cm away. The refresh rate of the projector was 60 Hz.

Sound pressure level was set at a comfortable level (∼62 dB) for all participants.

Participants were explained the task and stayed in contact at all times with the

experimenter via a microphone and a video camera. Stimuli were designed using

Matlab (R2010a, Mathworks Inc.) with Psychtoolbox-3 [Pelli 1997] on a PC (Win-

dows XP).

It is worth noting that the task duration depended of course on the number of

trials and the trial duration, but also on the participant’s reaction time. Because

the total duration of an MEG acquisition is not allowed to exceed 90 minutes (due

to ethical regulations), the number of blocks composing the training as well as the

number of trials used to assess participants’ performance had to be judiciously cho-

sen to fulfill this constraint while guarantying a successful training and subsequently

a fruitful analysis.

The MEG session was systematically followed by a short MRI session in which

the individual’s brain anatomy as well as two datasets of BOLD-fMRI resting-state

activity (2 x 9 min, eyes closed) were acquired.

1.3.2 Participants

All participants were right-handed, had normal or corrected-to-normal vision and

normal hearing and were aged between 18 and 28 years (mean age in years: 22.1±2.2

s.d.). Participants were randomly split into three groups assigned to a different

training: visual (V, n = 12, 4 females), audiovisual using acoustic textures (AV, n =

12, 6 females) or audiovisual using acoustic noise (AVn, n = 12, 6 females). Before

the experiment, all participants provided a written informed consent in accordance

with the Declaration of Helsinki (2008) and the local Ethics Committee on Human

Research at NeuroSpin (Gif-sur-Yvette, France).
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Figure 1.1: Experimental paradigm. Each individual underwent an MEG ses-

sion alternating rest (in black) and task (in blue) blocks. Prior to any task, a first

MEG recording of resting state (RESTi) was carried out. Next, the equiluminance of

the red and green RDKs was calibrated using Heterochromatic Flicker Photometry.

In addition, we made sure that subjects understood the task and were familiarized

enough with the stimuli by presenting a few easy trials (RDK coherence set to 100%)

that included feedback. In the pre-training block, all participants were presented

with stimuli that were solely visual and ranged from very hard (15%) to very easy

(95%) RDK coherence levels. The pre-training data established the set of coherence

levels for the training session based on the individual’s coherence discrimination

threshold. In the following four training blocks preceded each time by a rest block,

participants were trained with four levels of RDK coherence without feedback. The

training could be visual only (V), audiovisual using acoustic textures (AV) or audio-

visual using acoustic noise (AVn). After a last rest block (RESTf ), the individual’s

coherence discrimination threshold was again tested under visual alone stimulation.

In the last block, an MEG localizer provided an independent means to localize the

Human motion area hMT+. An estimation of the duration is indicated beside each

block.
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1.4 Stimuli

1.4.1 Visual stimuli

In order to investigate the hypothesized supramodal property of the visual motion

area hMT+ (cf. section 1.2.3), we decided to use Random Dot Kinematograms

(RDKs), which are roughly speaking clouds of moving dots. The RDK coherence is

defined as the proportion of dots moving in the same direction: the more coherent

the RDK, the easier is the perception of a global motion (by contrast with the local

motion of each dot). This visual feature is known indeed to be processed by hMT+.

Previous studies in multisensory learning [Seitz 2006, Kim 2008] have also used

RDKs paired with auditory motion but contained from our point of view an im-

portant flaw: the sound was not orthogonal to the task — i.e. the task could be

performed only based on the auditory information, by simply closing eyes. In these

studies, a single RDK was presented consecutively in two sequences (one with and

one without motion) and the participants were asked to indicate in which sequence

the RDK was coherent. Even with eyes closed, participants could find the correct

answer by listening closely the sound emitted in each sequence (stationary vs. spa-

tially moving white noise). In another experiment [Kim 2012], the experimenter

managed to make the sound orthogonal to the task by presenting the same sound in

the two sequences, to the risk of allowing the elaboration of a new strategy: partici-

pants could make their decision based on how congruent visual and auditory stimuli

were within each sequence. As an alternative, we designed a novel task implicating

motion-color binding and coherence discrimination between two intermixed red and

green isoluminant RDKS (Fig. 1.2). In this manner, the sound did not provide any

information on the color and was thus orthogonal to the task.

Figure 1.2: Visual stimuli. A trial consisted of the presentation of a fixation cross

followed by the apparition of two intermixed and incoherent RDKs (red and green

populations). After a delay of 0.3 to 0.6 s, one of the two RDKs became coherent

(here the red one). Participants were asked to report the color of the coherent RDK

irrespective of the motion direction. Inter-stimulus intervals were randomly drawn

from 0.6 to 0.8 s.

To prevent local tracking of dots, a white fixation cross was located at the center
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of a 4°gray disk acting as a mask. RDKs were presented within an annulus of 4°–

15°of visual angle. Dots had a radius of 0.2°. The flow of RDKs was 16.7 dots per

deg2.sec with a speed of 10°/s. During the first 0.3 to 06 s of a trial, both RDKs

were incoherent. The duration of the incoherent phase was pseudo-randomized on

each trial to prevent participants’ expectation of the transition to coherent motion

within a trial, thereby increasing task difficulty. After the incoherent phase, one of

the RDKs became coherent for 1 s. The direction of coherent dots was comprised

in an angle of 45°– 90°around the azimuth. 50% of the trials were upward; the

other 50% were downward coherent motion. At each frame, 5% of all dots were

randomly reassigned to new positions and incoherent dots to a new direction of

motion. Dots going into collision in the next frame were also reassigned a new

direction of motion. It is worth noting that dot motion was rectilinear and not

Brownian, which had for effect to increase the difficulty of the task. A coherent dot

is indeed more conspicuous among incoherent dots following Brownian motion than

moving rectilinearly [Barlow 1997]. Moreover, this type of motion would fit better

the properties of acoustic textures.

1.4.2 Auditory stimuli

The choice of the sound paired with RDKs was motivated according to several crite-

ria: it must be orthogonal to the task, not too obvious to drive participant’s attention

and more important, it must contain redundant information with the RDK’s coher-

ence in an ecological manner. Different “natural” mappings exist between acoustic

and visual properties: for instance, a high pitch was spontaneously associated in a

fast classification task with a small size, an angular shape and an object placed at

top of the visual field [Evans 2010]. The amplitude modulation of a sound can also

be linked to the spatial frequency of a Gabor patch in a consistent and absolute way

[Guzman-Martinez 2012]. Of more interest for us, a variation of pitch can bias the

perception of vertical motion of two superimposed gratings [Maeda 2004]. In this

illusion, an ascending pitch is associated with an upward motion and a descending

pitch with a downward motion.

Based on this last observation, our choice has been made on using acoustic

textures introduced by Overath et al [Overath 2010] that we further developed to

be analogous and congruent to RDKs (Fig. 1.3a).

Each visual dot was designed as if to emit a sound s(t) corresponding to a linear

frequency-modulated ramp whose slope depended on the direction taken by the vi-

sual dot: s(t) = cos(2πeslope.t+log(f0).t) where slope = 2 tan(ϕ). The angle between

the direction of the dot and the azimuth is denoted by ϕ and the initial sound fre-

quency is denoted by f0. For instance, a visual motion direction of 45°corresponded

to a slope of 2 octaves per second in the acoustic space. The maximal slope au-

thorized in acoustic space was set to 16 octaves/s corresponding to visual motion

directions of 82.9°– 90°. Each ramp f0 was attributed according to the initial ver-

tical position of the corresponding visual dot: the lower the position of the dot on

the screen, the lower the f0 in acoustic space. Hence, a visual dot moving upwards
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Figure 1.3: Auditory stimuli presented during AV and AVn training.

Spectrograms are plotted in log(frequency) as a function of time. (a) Sample spec-

trogram depicting an acoustic texture used in AV training. By analogy to a visual

RDK, the level of coherence in an acoustic texture was defined as the number of

frequency ramps sharing the same slope in a given frequency range. Here, the spec-

trogram illustrates an incoherent acoustic texture lasting 0.5 s followed by a 75%

coherent acoustic texture lasting 1 s. (b) Sample spectrogram of an acoustic noise

used in AVn training. This sound is unrelated to the visual RDKs and has the same

amplitude, duration and frequency range as the acoustic texture.
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emitted a sound with an ascending ramp whereas a visual dot moving downwards

had an acoustic ramp with a negative slope. The auditory frequencies were bounded

between 200 and 5000 Hz. Should a ramp cross one of these limits, it “continued”

at the other extreme of this frequency band (toroidal boundary conditions). The

duration of a ramp was identical to the life-time of a visual dot. Importantly, when

visual dots moved coherently, they did not necessarily emit the same sound because

the initial auditory frequencies likely differed. However, the variations of the sounds

(i.e. the slopes of the ramps) were identical. Hence, unbeknownst to participants,

the quantification of visual coherence in RDK matched the proportion of ramps

having the same slope in acoustic space.

To test the specificity of this sound, acoustic textures were replaced by unin-

formative acoustic noise of same duration and same amplitude in the AVn training

(Fig. 1.3b). The emitted sound y(t) was also designed to be confined in the same

frequency range (200–5000 Hz): y(t) = cos(2πerand·(log(fmax)−log(fmin))+log(fmin).t),

where rand denotes the uniformly distributed pseudorandom function whose values

are contained in the interval [0, 1], fmin = 200 Hz and fmax = 5000 Hz.

All auditory stimuli were created with a sampling frequency of 44.1 kHz.
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Psychophysics refer to a discipline in experimental psychology that aims to link

the properties of a physical stimulus and the way we perceive it. Here, the analysis

of behavioral data (i.e. performance, reaction time and confidence rating) is an

important step in order to evaluate the efficiency of the three trainings (V, AV and

AVn) and ultimately to validate our paradigm before going into further analysis of

MEG data.

Results are presented in the first section and consist of comparing pre- and post-

training data within each training group, followed by a complementary analysis of

performance and reaction time in the course of training. As expected, participants

trained in AV conditions significantly outperformed participants trained in V and

AVn although they were unaware of their progress. These results, discussed in the

last section, suggest that AV training could have benefited from the supramodal pro-

cessing of coherence — redundantly present in both acoustic textures and coherent

RDKs.

2.1 Results

2.1.1 Comparison of pre- and post-training

In this section, all results reported here focus on the comparison of the pre- and

post-training tests in which no acoustic information was delivered to participants.



28 Chapter 2. Psychophysics

Hence, we do not address here the issue of multisensory integration per se and

rather report the effect of participants’ training history on the behavioral changes

implicated in a novel visual motion coherence discrimination task.

A mixed-design ANOVA containing the within-subjects factor test (pre- and

post-training) and the between-subjects factor training (V, AV and AVn) was carried

out separately on the perceptual thresholds, the confidence ratings and the Reaction

times (RTs) using the R software (R Core Team 2013). If a main effect of the factor

test was found, a post-hoc analysis using Bonferroni-corrected paired t-tests on each

group was further conducted. Likewise, a main interaction between factors test

and training was further analyzed with a Bonferroni-corrected two-sampled t-test

between each pair of groups.

2.1.1.1 Perceptual threshold

The coherence discrimination threshold was set to 75% of performance (i.e. cor-

rect answers) and quantified by fitting a Weibull function [Wichmann 2001] to each

individual’s psychometric curve using:

Ψ(coh, λ, α, β) = λ− (λ− 0.5e−( coh
α

)β ),

with coh as motion coherence level, Ψ as the fitted psychometric function, and λ, α

and β the parameters determined by the damped Gauss-Newton method (see Fig.

2.1a–c). The initialization parameters required for that method were specified as

follows: λ0 = 1, α0 = 1− 1
e

and β0 = α0 + e.

The analysis of the threshold changes before and after training (Fig. 2.1d) by

using a mixed-design ANOVA indicated that: i) in the pre-training test, all par-

ticipants performed similarly well on the coherence discrimination task and the ob-

served perceptual thresholds did not differ between the three groups (F2,33 = 1.12

, p = 0.34), ii) in all groups, training successfully improved participants’ perfor-

mance (F1,33 = 132, p = 4.5e − 13) and iii) a significant interaction between types

of training and tests was found (F2,33 = 8.3, p = 1.2e−3). More precisely, the post-

hoc analysis confirmed our prediction by showing that the AV group significantly

outperformed the two other groups after training.

2.1.1.2 Reaction time (RT)

RTs were measured following the apparition of the coherent RDK. In this analysis,

only RTs associated with correct responses were kept and sorted as a function of

the level of coherence by taking the corresponding median value (to exclude ex-

treme outliers). As expected, a first observation of pre-training data shows that RT

decreases as the RDK coherence level increases (Fig. 2.2a–c). In addition, RT is

homogeneously reduced after training across all RDK coherence levels.

The analysis of the mean RT changes before and after training averaged over all

coherence levels (Fig. 2.2d) by using a mixed-design ANOVA showed a significant

reduction of mean RTs after training in all groups (F1,33 = 95, p = 3e− 11) without
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Figure 2.1: Threshold changes as a function of training type. Mean per-

formance (±1 s.e.m.) as a function of visual coherence levels in AV (a),V (b) and

AVn (c) groups before (PRE, light grey) and after (POST, dark grey) training. For

illustration, Weibull functions were fitted to the mean psychometric curves in each

group. The mean perceptual threshold corresponds to the mean coherence value

of one RDK population with a correct response rate of 75% (black dashed line).

Perceptual threshold improvements are indicated with black arrows. (d) Mean dis-

crimination thresholds (+2 s.e.m.) obtained from each individual Weibull function

in PRE- and POST-training for each group. Perceptual threshold improvements

were significant in all groups. As can be readily seen after training, the threshold

in the AV group was significantly lower than the one obtained in the V and AVn

groups. Bonferroni-corrected p value inferior to 0.05, 0.01 and 0.001 are indicated

by *, ** and ***, respectively.
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Figure 2.2: RT decreases irrespective of training type. Mean RT (±1 s.e.m.)

as a function of RDK coherence in AV (a),V (b) and AVn (c) groups before (PRE,

light grey) and after (POST, dark grey) training. After training, reaction times

decreased for all coherence levels in all groups. (d) Mean RT (+2 s.e.m.) averaged

over all coherence levels and subjects in each group in PRE and POST training. All

three groups showed a significant decrease in their RT without distinction between

training types. ***: Bonferroni-corrected p value inferior to 0.001.
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any interaction between types of training (F2,33 = 1.5, p = 0.23). No statistical

distinction between groups could be made before and after training (F2,33 = 0.007,

p = 0.99).

We also asked if individual RT reductions were correlated with the correspond-

ing threshold decreases within each group separately. In each case, the computed

Pearson correlation coefficient was not significantly different from 0 (V: ρ = 0.52,

p = 0.08; AV: ρ = −0.27, p = 0.4; AVn: ρ = 0.04, p = 0.9).

2.1.1.3 Confidence rating

Participants were asked to rate their confidence after each trial following their co-

herence discrimination response on a discrete numeric scale ranging from 1 (“not

sure at all”) to 5 (“sure and certain”). The values were first sorted and averaged

over trials as a function of RDK coherence. Among the different measures of per-

formance awareness used in implicit learning (e.g. post-decision wagering, feeling

of warmth, rule awareness on a discrete or continuous scale), confidence rating is

a well-established means to assess conscious knowledge in decision making (e.g.

[Dienes 2008]) and has been recently shown to be sensitive and exhaustive enough

to capture the largest range of consciousness [Wierzchoń 2012]. Here, we can see in

pre-training (Fig. 2.3a–c) that essentially the middle values (2, 3 and 4) were used

by participants. Except for V, the confidence rating does not seem to change much

after training.

By analyzing the mean confidence rating changes before and after training aver-

aged over all coherence levels (Fig. 2.3d) with a mixed-design ANOVA, a significant

increase of confidence rating (F1,33 = 7.2, p = 0.011) was found, without interaction

with training types (F2,33 = 1.35, p = 0.27). However, this effect was attributed

solely to the group V after post-hoc analysis. Moreover, the three groups could not

be statistically distinguished (F2,33 = 0.61, p = 0.55).

We also verified separately within each group if participants’ threshold decreases

were correlated with the individual variations of confidence. In each case, the

computed Pearson correlation coefficient was not significantly different from 0 (V:

ρ = −0.03, p = 0.93; AV: ρ = 0.42, p = 0.17; AVn: ρ = −0.14, p = 0.66).

2.1.2 Complementary analysis during training

We can wonder if the differences observed in post-training between the three groups

already appeared during training. It is worth reminding that here, contrary to

the previous section, the conditions under which the task was performed clearly

differed in each group V, AV and AVn (i.e., without sound, with correlated acoustic

textures or uncorrelated noise, respectively). The direct effects of multisensory

integration are thus questioned. During training, we only measured the performance

(i.e. accuracy) and the RTs corresponding to four levels of coherence set around the

individual’s initial threshold. The number of coherence levels was thus insufficient to

allow the assessment of the perceptual threshold in these blocks. As an alternative,
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Figure 2.3: Weak changes of confidence ratings. Mean confidence rating

(±1 s.e.m.) as a function of RDK coherence in AV (a),V (b) and AVn (c) groups

before (PRE, light grey) and after (POST, dark grey) training. (d) Mean confidence

rating (+2 s.e.m.) averaged over all coherence levels and subjects in each group in

PRE and POST training. Only participants in the V group presented a significant

increase of confidence. *: Bonferroni-corrected p value inferior to 0.05.
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we averaged the performance and RTs over the four levels of coherence and examined

their course over the four training blocks (Fig. 2.4a–b).

Figure 2.4: Performance and RT during V, AV and AVn training. Mean

performance (a) and RTs (b) (±1 s.e.m.) over the four blocks of training in condi-

tion V (light grey triangles), AV (black circles)and AVn (dark grey squares). Con-

trary to RTs, performance changes significantly over blocks. AV training is in average

faster than V, which is in turn slightly faster than AVn. Participants in the AVn

condition seem to be slower than the others, although they appear to reduce the gap

in the end. (c) Mean performance (+2 s.e.m.) averaged over the last three training

blocks in V, AV and AVn. Participants in AV significantly outperform those in AVn.

(d) Mean RT (+2 s.e.m.) averaged over the first three training blocks in V, AV and

AVn. Although RT in the AVn condition appears to be higher, it is not significant.

*: Bonferroni-corrected p value inferior to 0.05.

By carrying out a mixed-design ANOVA with the within-subjects factor training

block (1, 2, 3 and 4) and the between-subjects factor training (V, AV and AVn) sepa-

rately on the performance and the RTs, we found a significant change of performance

over the blocks (F3,99 = 6.74, p = 3.4e− 4) but surprisingly no significant change of

RT (F3,99 = 1.37, p = 0.26). With regards to performance, the three groups seem to

dissociate starting from the second block (see Fig. 2.4a). A F-test was hence carried

out on the mean performance averaged over the three last blocks to test for any

statistical differences between V, AV and AVn (Fig. 2.4c) and was indeed rejected

(F2,33 = 4.85, p = 0.014). A post-hoc analysis (using R software’s Tukey Honestly

Significant Differences) showed indeed a significant difference between the AV and
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AVn conditions (p = 0.012). On the other hand, an F-test carried out on the mean

RTs averaged over the first three sessions (i.e. where AVn appears higher than V and

AV) did not reveal any statistical differences (F2,33 = 1.56, p = 0.23) (Fig. 2.4d).

2.2 Discussion

The main analysis comparing pre- and post-training data clearly demonstrates that

AV training improves visual learning and that these effects cannot be accounted for

simple attentional mechanisms. Otherwise, AVn training should be as effective as

AV training. Participants trained with acoustic textures outperformed the others

only in term of sensitivity (i.e. greater discrimination threshold reduction) but were

not faster or more confident in their responses (actually, only V participants became

significantly more confident).

2.2.1 Supramodal objects and cross-sensory feature matching

As previously reviewed in chapter 1, multisensory information has been shown to

benefit perceptual learning [Shams 2008]. However, the observed perceptual im-

provements are generally small and can require a long training time: with ten days

of training, presenting auditory motion cues has been shown to improve visual di-

rection discrimination [Seitz 2006] and acoustic cues can alter the direction of visual

motion [Freeman 2008, Hidaka 2011].

Here, consistent with the hypothesis that using redundant multisensory informa-

tion should yield greater benefits [Alais 2004], we capitalized on cross-sensory feature

matching namely, the temporal coherence between auditory spectral changes and

visual spatial patterning over time. The temporal coherence of audiovisual informa-

tion is inherent to natural stimuli: in particular, the envelope of auditory speech is

known to correlate with the speaker’s facial gestures ([Grant 2000, Schwartz 2004]

and more generally, auditory pitch and visual spatial frequency undergo automatic

cross-sensory matching [Maeda 2004, Evans 2010]. The comodulation of audiovisual

signals is thus a fundamental attribute of natural scenes that enables the brain to

appropriately bind sensory features belonging to the same physical object, albeit

processed through different sensory processing streams. Hence, by using matched

audiovisual correspondences, we expected rapid cross-sensory mapping allowing for

more efficient learning in the AV group as compared to the control AVn and V groups.

In agreement with this hypothesis, the AV group significantly outperformed the V

and control AVn groups, suggesting that the mere presence of sound is not sufficient

to improve visual coherence discrimination and rather, that the correlated temporal

structure imposed on the audiovisual stimuli during training largely benefited visual

discrimination.
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2.2.2 Speed-accuracy trade-off

As expected, all individuals responded more quickly after training. More surpris-

ing however, this improvement occurred without any distinction between the three

groups, although AV training was more efficient in reducing the discrimination

threshold. This can be first explained by the instructions given to participants

to prioritize accurate responses. By doing so, participants were expected to develop

the same strategy and the same speed-accuracy trade-off [Liu 2012].

In addition, the uncorrelated variation of these two variables might reflect two

different mechanisms that have been learned. For instance, the decrease of RT

could reflect the learning in color-motion binding whereas the decrease in perceptual

thresholds would indicate a better coherence discrimination. A closer inspection of

RTs and performance during training indicates a strong dissociation between these

two variables: participants were indeed already faster in the first block and did not

show any further improvement in the next blocks. Conversely, they became more

accurate only in the next blocks. Even in presence of acoustic textures, AV par-

ticipants were not significantly faster than the others while they performed better.

Conversely, the presence of acoustic noise seemed initially to hinder AVn partici-

pants in responding as fast as the others, although the effect is not significant at

the group-level. This weak effect might be explained by the relatively low value of

the sound pressure level that was set to minimize cross-modal shifts of attention.

2.2.3 Implicit learning

An additional intriguing feature was that unlike V learners, the confidence rating

of the AV and AVn groups did not change after learning. The lack of increased

confidence rating in participants undergoing multisensory training rules out the

possibility of a conscious cross-sensory mapping or a cognitive strategy developed by

participants to accomplish the task and strongly suggests that audiovisual mapping

occurred at an implicit level during training, which is consistent with the notion

of automatic binding in multisensory integration [Talsma 2010] and with the fact

that implicit learning of statistical contingencies can occur across sensory modalities

[Seitz 2007, Mitchel 2011].

A possibility to explain the gain of confidence in V is that the conditions were

the same across test and training blocks (i.e. without sound), contrary to AV and

AVn groups. Hence, the gain of confidence could reflect a greater familiarity with the

task. This hypothesis is consistent with the fact that perceptual improvement did

not correlate with the gain of confidence — even among V participants. To further

test this hypothesis, it would have been necessary to include confidence ratings dur-

ing training (which was impossible for timing reasons) and compare them between

groups. Additionally, the pre- and post-training perceptual thresholds specifically

focused on data collected in visual alone conditions in all three groups, thereby allevi-

ating the possibility of divided attentional effects during task performance. Another

explanation would be to account for inter-individual differences in confidence rating



36 Chapter 2. Psychophysics

irrespective of learning [Song 2011].

2.2.4 Unresolved questions

Last but not least, it is quite remarkable that all participants improved in this

visual motion discrimination task within only 20 minutes of training. As previously

mentioned, this novel task was complex enough to involve different mechanisms

that could be potentially learned (i.e. color-motion binding and RDK coherence

discrimination). Because the visual task’s novelty mainly consists of labeling the

color of the coherent RDK, we suspected this mechanism to require little time to

be learned. The specificity of such learning could have been verified for instance by

testing participants with a new pair of colored RDKs (e.g. orange and magenta) or

with RDKs of different shapes (e.g. squares and triangles) but same color.

Instead, we predicted that the improvements in coherence discrimination thresh-

olds observed in all groups would be reflected by functional plasticity in early sensory

areas involved in global motion processing such as the human motion area hMT+.

This hypothesis can be verified only by overcoming the limitations of psychophysics,

that is by analyzing the MEG data.
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As we were interested in tracking non-invasively the dynamics of cortical activity

during perceptual learning, magnetoencephalography appeared as the best qualified

technique thanks to its high time resolution. In addition, by collecting a great

amount of data, it would enable us to accurately assess scale-free properties of time

series such as multifractality.

In the first section, we review the physiological origins of the signal measured by

MEG. We further present the instrumentation and the different preprocessing meth-

ods that are generally required to remove unwanted interference from the signal of

interest. In the next section, we review the different methods of source reconstruc-

tion that can be used to localize the neural sources of the MEG signals. This step

can be particularly crucial in group studies as it accounts for the individual’s brain

anatomy. For further details, the reader can refer to [Gramfort 2009a, Hansen 2010].

In the last section, we detail the procedure of the MEG acquisition, preprocessing

and source reconstruction that was used for both ERF and scale-free analysis.
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3.1 Basics of magnetoencephalography

The first human EEG recordings were carried out by the German physiologist and

psychiatrist Hans Berger in 1929. About 40 years later, the first successful MEG ac-

quisition was done at the Massachusetts Institute of Technology by David Cohen on

healthy and epileptic subjects. MEG and EEG are closely related, as they measure

respectively the magnetic and electrical activity of a same neuronal population in

the brain, with a 1 ms time resolution. They are also completely non-invasive: not

only they do not require opening the skull, but they also do not expose individuals

to x-rays, radioactive tracers or to strong magnetic fields. These two technolo-

gies differ however in size and cost (Fig. 3.1a): EEG is relatively cheap (about ten

thousand dollars) and easy to manipulate whereas MEG is more expensive (sev-

eral millions of dollars) and bulky. For this reason, EEG is still more widely used

than MEG, particularly for clinical applications (e.g. epilepsy, language disorder)

[Hughes 1994, Hämäläinen 1993]. As it can be seen on Fig. 3.1b, the information

brought by MEG and EEG from a same source activity in the brain is orthogonal

and complementary [Hämäläinen 1993]. However, MEG offers better spatial res-

olution (up to some millimeters in the best conditions). In addition, the electric

currents measured by EEG on the scalp is strongly attenuated as it must penetrate

resistant layers of different electric conductivities such as meninges, cerebrospinal

fluid, dura mater, bones of the skull, galea, and skin.

The electromagnetic activity measured by MEG and EEG comes essentially from

the cortical surface which contains approximately 1010 neurons. Neurons consist

of a cell body (named soma), several dendrites and an axon along which action

potentials propagate. When action potentials reach a synapse, they trigger the

release of neurotransmitters, which in turn activate the opening of selective ion

channels in the dendritic membrane of the post-synaptic cell. This generates a post-

synaptic potential and thereby an ionic current in the dendrite due to the chemical

concentration gradients. The sole activation of one neuron is not enough to be

measured by EEG or MEG: only the synchronized activation of tens of thousands

of neurons can be detected. Because the duration of an action potential is too short

(∼ 1 ms) to allow synchronization, post-synaptic potentials (which last several tens

of millisecond) are likely the main contributors to the measured electromagnetic

field. In addition, the currents associated with action potentials in the axons flow

in opposite directions, nullifying the corresponding magnetic field.

Another condition for post-synaptic potentials to sum up is that they must have

the same direction. Contrary to stellate neurons whose dendrites are oriented in

all directions, pyramidal neurons have a thick and relatively long dendrite (called

apical dendrite) orthogonal to the cortical surface and are thus well designed to gen-

erate post-synaptic potentials in the same direction. Moreover, the primary current

in dendrites also alters the distribution of free charges in the surrounding tissue,

generating passive ohmic currents named volume currents. In certain configura-

tions (e.g. for a radial source in a spherical conductor), the external field resulting

from the primary and volume currents cancels out [Hämäläinen 1993]. Hence, MEG
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Figure 3.1: Magnetoencephalography versus electroencephalography. (a)

Current MEG equipment used at Neurospin (Neuromag Elekta LTD, Helsinki, Fin-

land) and EEG equipment used at Kyushu university (Nexstim, Helsinki, Fin-

land). (b) Schematic illustration of idealized magnetic-field and electric-potential

patterns produced by a tangential dipole source (white arrow). (Adapted from

[Hämäläinen 1993]).
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Figure 3.2: The brain magnetic field arises in the dendrites. The magnetic

and electrical fields ~B and ~E and the current dipole ~Q are plotted in green, yellow

and orange respectively. The magnetic field measured outside the head results from

the synchronized summation of tens of thousands of post-synaptic potentials for two

reasons: 1) the temporal summation is more likely to be effectuated in the dendrites

thanks to the long duration of post-synaptic potentials (several tens of milliseconds)

2) The magnetic field generated by action potentials is strongly attenuated as electric

charges flow in both directions. (Adapted from Elekta’s MEG overview).
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reflects essentially the activity coming from the fissures of the cortex, i.e. sulci (see

Fig. 3.3).

Figure 3.3: Effect of the pyramidal cell orientation. The resulting external

magnetic field (in green) is the sum of all magnetic fields generated by the tangential

current dipoles (in orange) that are situated in the pyramidal cells of a cortical

sulcus. Sources at the top of a gyrus produce radial fields that are not detectable

by MEG. (from Elekta’s MEG overview).

With a cortical sheet of approximately 4 mm of thickness and 2500 cm2 of surface

[Hämäläinen 1993], the density of pyramidal neurons should theoretically allow 1

mm2 of activation to be detectable [Hansen 2010]. It appears however that the min-

imal detectable activity spreads over an area of about 100 mm2 [Gramfort 2009a].

3.2 Instrumentation and preprocessing

3.2.1 The MEG equipment

The late development of MEG with regards to EEG originates from the challenging

difficulty in measuring extremely weak magnetic fields (i.e. below 1 pT) such as the

one emitted by the brain. This became only possible with the introduction of a suf-

ficiently sensitive sensor named SQUID (for Superconducting Quantum Interference

Device) in the late 1960s by James Zimmerman. The SQUID can be roughly de-

scribed by a ring immersed in liquid helium at a very low temperature (T< −269 C°)

in order to be maintained in a superconducting state. In that condition, any current

circulating in the loop continues infinitely without Joule effect losses. Conversely in

presence of a static magnetic field, a shielding current appears on the surface and

gives rise to an opposite magnetic field of same amplitude that prevents the gener-

ation of an internal current. In addition, two thin layers of electric insulators (also
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named Josephson junctions) are inserted in the ring and perturb the electron flow

(that still cross the insulators by tunnel effect). This interference yields an indirect

measure of the superficial current, and hence of the external magnetic field.

In MEG devices, SQUIDs are rather small (less than 1 mm of diameter)

and necessitate sensor coils to collect the magnetic flux from a much larger area

[Hansen 2010]. The simplest sensors are magnetometers (Fig. 3.4a) and consist of

a single pick-up coil made of superconducting material that measure the magnetic

field component along the direction perpendicular to the surface of the coil. An-

other type of sensors less sensitive to external disturbances are the gradiometers

that measure the spatial gradient of the magnetic field by deducting the current

flowing through a second compensation coil. In this manner, they are insensitive to

homogeneous magnetic field coming from distant sources and more effective in mea-

suring the inhomogeneous field produced by nearby sources, such as neural currents

in the brain. The two coils of a gradiometer can either be placed along the same

radial axis (axial gradiometers, Fig. 3.4c) or side-by-side in the same plane (planar

gradiometers, Fig. 3.4b). The planar gradiometers are advantageously more com-

pact (allowing a greater number of sensors) and are more sensitive to sources located

right beneath them (whereas axial gradiometers better capture sources located at

their periphery).

Figure 3.4: Types of sensor coils. (a) Magnetometer . (b) Planar gradiome-

ter. (c) Axial gradiometer. A magnetometer consists of a single pick-up coil which

makes it sensitive to homogeneous magnetic field produced by distant sources. Pla-

nar and axial gradiometers possess two coils wound in opposite directions, making

them sensitive only to the local inhomogeneous field. As readily observed, a planar

gradiometer is much more compact than an axial one. (from [Hämäläinen 1993]).

Magnetometers and gradiometers are then assembled into a sensor array to per-

mit simultaneous measures of brain magnetic field at diverse locations of the head.

They are contained in a helmet named Dewar (after the inventor James Dewar) that

prevents heat transfer between the helium and the outside (i.e. about 300 C°of dif-

ference!). This is indeed critical, given that the distance between the subject’s scalp
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and the coil sensors must be minimized to yield the better signal-to-noise ratio.

Not only MEG signals are very weak and difficult to detect, but they are also

drowned out by the environmental noise: fluctuations in the earth’s magnetic field,

movements of vehicles or elevators, waves emitted by radio and television... One

of the most important means to protect MEG signals is the use of a magnetically

shielded room (MSR). Its walls are made of ferromagnetic layers that considerably

reduce the field strength within the room, yielding an attenuation of approximately

60 dB above 100 Hz and 20 dB below 0.1 Hz [Hansen 2010]. It can be combined

with another shielding technique based on eddy currents flowing through aluminium,

that allows to increase the shielding factor at high frequencies (40 dB above 100 Hz)

[Hansen 2010]. This passive system can be enhanced by active compensation: the

external field is measured by magnetometers and is counterbalanced by an opposite

field generated by coils installed around the room. In addition, the residual noise

inside the MSR can be measured by reference sensors situated some centimeters

away from the subject’s head and subsequently subtracted.

3.2.2 Preprocessing methods

After MEG acquisition and prior to preprocessing, the very first step is to meticu-

lously inspect raw data in order to detect and exclude bad channels that can be “flat”,

full of “jumps” or that present “crazy” behaviors. Although this can be very tiring

and time-consuming, it should not be neglected: automatic correction provided by

the following preprocessing methods often fails in such cases.

Signal-space separation (SSS). Instead of using reference channels, external

interference can be removed offline with the SSS method [Taulu 2004], which also

has the advantage to reduce sensor and movement artifacts. By exploiting the

physics of magnetic fields and the geometry of the sensor array, SSS attributes the

origin of the signal to two subspaces — either inside or outside a sphere centered

on the head. Only the contribution from the sphere is conserved as it contains the

signal of interest emitted by neural sources. More precisely, it exploits the Maxell’s

equations (see equation (3.1) in the next section) and the fact that sensors are

contained in a source-free volume, implicating that the magnetic field ~B derives

from a potential Φ:
~rot ~B = ~0 ⇒ ~B = − ~gradΦ

The signal space containing neural sources is then delimited by a sphere of which

parameters (center and radius) are set as a function of the device configuration and

the position of the head. Φ is thus expressed in spherical coordinates. In addition,

the non-divergence of ~B yields :

∆Φ = div( ~gradΦ) = 0

This is the Laplace’s equation and its general solution Φ(r, θ, ϕ) in spherical

coordinates is a linear combination of elementary spherical harmonic functions
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Υl,m(θ, ϕ)1:

Φ(r, θ, ϕ) =
∞
∑

l=0

l
∑

m=−l

(Al,mr−1−l +Bl,mrl)Υl,m(θ, ϕ)

These functions form an orthogonal infinite basis on which Φ can be decomposed.

However, the limited number of sensors imposes to truncate the series of harmonic

functions describing Φ. In the SSS framework, the first term containing the scale

factor r−l−1 represents the signal subspace as its divergence at the origin reflects the

presence of sources close to the center of the sphere. Conversely, the interference

subspace is represented by the second term scaled by a factor rl diverging at infinity

for distant sources. Data are thus expressed in the spherical harmonic space as a

sum of these two subspaces, and subsequently reconstructed using only the term

associated with the signal space.

This method is mainly effective in removing interference from distant sources

but less when it comes from nearby sources. This can be partly remedied by ex-

tending SSS to the temporal dimension [Taulu 2009]. Close sources are essentially

physiological noise such as the electrical activity of the heart and muscular contrac-

tions (Fig. 3.5) which generate artifacts 10 to 100 times higher than the signal of

interest. More important, the ionic currents of the eyes dramatically perturb the

signal at any saccades or blinks. Also in presence of moving magnetic particles,

the signal becomes completely unreadable. This is why individuals undergoing an

fMRI acquisition have to wait at least 24 hours before participating to an MEG

acquisition.

Signal-space projection (SSP). In practice, SSP [Uusitalo 1997] is used in com-

bination with principal component analysis (PCA) to remove cardiac and ocular ar-

tifacts. Similarly to SSS, the approach consists of projecting data into two subspaces

(signal vs. noise) but using this time statistical properties. It exploits the fact that

external interference and neural sources generate a different spatial pattern across

sensors. The first step is to select data segments locked on the apparition of an

artifact: for instance by using an electrocardiogram (ECG) or an electrooculogram

(EOG) to detect cardiac and ocular artifacts respectively. PCA is then applied

on the averaged (better SNR) or concatenated (better statistical power) data seg-

ments and transforms them into a set of linearly uncorrelated components via a

spatial filter. After selecting the artifact components (usually the ones of greatest

variance), data are projected on the orthogonal sub-space that assumed to corre-

spond to the signal. By doing so, the rank of data is reduced by the number of

artifact components and the signal topography is slightly altered. Consequently in

case of source reconstruction, the projection matrix must be preserved and applied

again during the computation of the forward operator to ensure unbiased estimation

[Gramfort 2013].

1The spherical harmonics have the following form in the real domain:

Υl,m(θ, ϕ) = Pm
l cos θ cosmϕ, where Pm

l is an associated Legendre function.
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Figure 3.5: Normal vs. artifactual signals on representative MEG chan-

nels (planar gradiometer pairs). Top rows show typical raw MEG traces from

a resting subject (note the regular cardiac artifact on the lowest sensors), whereas

the lower traces display typical biological artifacts and a breathing-induced signal

from a magnetic particle on the chest of the subject. (from [Hansen 2010]).
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SSP can also be employed alternatively with the independent component analy-

sis (ICA)[Herault 1986]. Similarly to PCA, this blind source separation method is a

spatial filter that extracts statistically independent components from the data. This

approach is particularly well adapted if the artifacts occur independently from neu-

ral activity and if they are non-Gaussian. It requires however a certain expertise to

recognize the artifact components given that all components are normalized (unitary

variance and zero mean). Different algorithms exist such as the JADE [Comon 1994],

Infomax [Bell 1995] or the most commonly used fastICA [Hyvärinen 2000] algo-

rithms but are beyond the scope of this chapter.

3.3 Source reconstruction

Because MEG measures the magnetic field generated by neurons outside of the head,

it does not directly inform on the localization of brain activations. For that pur-

pose, it requires modeling the head and the mechanism that gives rise to an external

magnetic field from a given configuration of sources: this is called the forward prob-

lem and has been reviewed for instance by [Hämäläinen 1993, Mosher 1999]. Once

the model has been established, the procedure can be inverted and the sources at

the origin of the MEG measurements can be estimated: this is called the inverse

problem (see for instance reviews of [Baillet 2001, Darvas 2004].

3.3.1 The forward problem

The physical mechanism relating the magnetic field ~B and the electric field ~E to the

sources’ charge density ρ and current density ~J are given by the Maxwell’s equations:



















div ~E = ρ
ε

~rot ~E = −∂ ~B
∂t

div ~B = 0

~rot ~B = µ( ~J + ε∂
~E

∂t
)

(3.1)

where ε is the electrical permittivity of the medium and µ is the magnetic perme-

ability.

These equations can be simplified under certain assumptions. Firstly, the per-

meability of head tissues is the same as in free space (µ = µ0). Secondly, the time

derivatives can be neglected because the frequencies of the brain magnetic field

rarely exceeds 100 Hz [Hämäläinen 1993]: this is the quasi-static approximation.

As a consequence of the Maxwell’s equations, electric and magnetic components

are decoupled and propagation times are insignificant. This also implies that the

electric field derives from a potential V :

~rot ~E = ~0 ⇒ ~E = − ~gradV (3.2)

As described in section 3.1, the current density ~J measured by MEG is the sum

of a primary current flow ~Jp passing through the dendrites of activated neurons and
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a passive volume current flow ~Jv propagating in the medium by conductivity. The

latter can be expressed by Ohm’s law: ~Jv = σ ~E, where σ denotes the electrical

conductivity of the medium. Combining this relation with the previous one (3.2)

and injecting them in the equation (3.1) under quasi-static approximation yields:

~rot ~B = µ( ~Jp − σ ~gradV )

⇒ ~div ~Jp = ~div(σ ~gradV )
(3.3)

In the forward problem, the current density ~Jp is known and V is the unknown

variable. Once V is known by solving this equation, ~B can be computed from the

Bio-Savart law:

~B(~r) =
µ0

4π

∫

R3

( ~Jp − σ ~gradV ) ∧ ~r − ~r′

‖~r − ~r′‖3 d~r
′ (3.4)

In order to solve the forward problem, we need [Gramfort 2013]:

• a model of elementary source.

• an approximation of electromagnetic properties of the head.

• the position and the orientation of the sensors as well as the geometry of the

pick-up coils.

With regards to the first point, the linearity of the Maxwell’s equations implies

indeed that once the solution for an elementary source is known, the fields generated

by much more complex sources can be easily obtained by superposition. Because the

distance between neural sources and the sensors is relatively high enough (several

cm) compared to the thickness of the cortical sheet (∼4 mm), the primary current
~Jp is usually approximated by a current dipole ~Q at position ~rQ with the following

relation: ~Jp(~r) = ~Q δ(~r − ~rQ), where δ denotes the Dirac delta function. As a

consequence, the magnetic field depends linearly on the amplitude of the dipole

‖ ~Q‖,while it depends non-linearly on its orientation ~ΘQ =
~Q

‖ ~Q‖ and its location ~rQ

[Baillet 2001]. Hence the forward problem can be reformulated as the determination

of the leadfields, i.e. the forward operator that allows to compute the output of a

sensor induced by a unit current dipole.

The main difficulty to solve the equation (3.3) resides in modeling the distribu-

tion of the conductivity σ of the head. The simplest solution is to model the head

with several homogeneous concentric spheres of different conductivities representing

for instance the brain, the meninges and the skull. In that case, the equation can be

solved analytically by using the spherical harmonic functions (cf. the SSS method).

Moreover, the spherical geometry makes the total magnetic field independent of

the conductivity. This model is however not very realistic and can be improved by

using other anatomical imaging modalities such as computed tomography (CT) or

anatomical magnetic resonance imaging (aMRI). This is necessary when using EEG

because the conductivity greatly influences the distribution of the electric field.
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Because of the geometrical complexity of the head structures revealed by imaging

modalities, the equation (3.3) must be solved numerically with techniques such

as the finite difference methods (FDM), the finite element methods (FEM) and

the boundary element methods (BEM) [Gramfort 2009a]. With FDM, the spatial

derivatives are approximated by finite differences with a constant step on a cubic

grid. This can however lead to a “staircase” effect if the surface is too complex. FEM

is a more elaborated technique that can work with any surface by using unstructured

grids (such as triangles in 2D or tetrahedrons in 3D). It consists of approximating

the solution of the equation 3.3 by its weak form at a properly chosen discretization

level. BEM is employed when an homogeneous conductivity is attributed to each

part of the head (e.g. σ = 0.3 S/m for the brain and the scalp and σ = 0.006 S/m for

the skull with the MNE software [Gramfort 2013]). The equations 3.3 and 3.4 are

then transformed into integral equations on each domain of constant conductivity

while σ = 0 outside. By tessellating each domain with n sub-triangles of constant

electric potential, we obtain a linear system of n equations to solve. It is worth

noting that the electrical conductivity is in reality anisotropic: it is indeed 10 times

greater in the direction of the fibers of the white matter than in the transverse

directions. Therefore, the model could be improved by including tissue anisotropy

information brought by diffusion MRI [Haueisen 2002].

Finally, the estimation of the output bk of the kth MEG sensor caused by a an

elementary current dipole ~Q is approximated by the weighted current sum:

bk =

Nk
∑

p=1

wk,p
~B(~rk,p, ~Q).~nk,p (3.5)

where ~rk,p describes the Nk locations within the pick-up coil loop with an attributed

scalar weight wk,p and the corresponding unit vector ~nk,p normal to the plane of the

loop. The weights wk,p take into account the geometry of the coils and are usually

given by the MEG manufacturer. The position and orientation of the MEG sensors

relatively to the head is given by small head-position indicator (HPI) coils attached

to the head surface. Prior to the MEG acquisition, they are digitized in a coordinate

frame defined by fiducial landmarks (i.e. the left and right preauricular points and

the nasion). This is indeed necessary because contrary to the EEG cap, the MEG

helmet is not fixed on the subject’s head, allowing for movements (especially for

small heads).

When using anatomical MRI recordings, a co-registration procedure is necessary

to translate the MEG device coordinate system into the MRI device coordinate

system. This is done by identifying manually the landmarks used during the MEG

digitization on the MRI image. In this manner, a common head coordinate system

is defined for both modalities. The identification of the landmarks can be more

accurate by using artificial fiducial markers made of hydrogel component that appear

as a bright ring on the MRI scan.
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3.3.2 The inverse problem

The inverse problem consists of determining the neural sources at the origin of the

measurements. This is possible once the forward operator has been obtained for all

elementary source locations and orientations composing the so-called source space.

In practice, the source space is defined by a grid of M nodes (using FDM, FEM or

BEM methods) on which each node i = 1..M is represented by one dipole oriented

normally to the cortical surface or three dipoles with orthogonal orientations in the

more general framework. By denoting ~m the N ×1 signal vector measured in sensor

space, ~s the (unknown) 3M×1 dipole amplitude vector defined in source space (here

without orientation constraint), G the N × 3M forward (or gain) matrix and ~ε the

N × 1 vector of measurement errors, we obtain the following equation to be solved :

~m = G~s+ ~ε (3.6)

In practice, M ≫ N . However, even if the number of sources did not exceed the

number of sensors, the inverse problem would be still ill-posed. The only knowledge

of the electromagnetic field outside of a conductor is indeed insufficient to determine

the distribution of the primary current flowing through the conductor. In other

words, the solution to such problem is not unique. For instance the absence of an

external magnetic field can be misinterpreted as an absence of current sources even

though there is a radial dipole in a spherically symmetric conductor that turns out

to be magnetically silent.

An additional information on the source distribution is thus required to make

the solution unique. Therefore, all source reconstruction methods are based on a

priori assumptions of which the diversity explains the abundant literature on that

subject (2000 articles referenced in PubMed in 2008!) [Hansen 2010]. Depending

on the underlying assumptions (e.g. the number of sources), these methods can

be classified into two categories — namely either as discrete or distributed source

approaches.

3.3.2.1 Discrete source approaches

Dipole and multidipole fitting methods are the most representative methods of dis-

crete source approaches which assume that the measured data have been produced

by a fixed number K of discrete sources, i.e. equivalent current dipoles (ECD). While

the number of the dipoles is supposed to be constant, their amplitude si = ‖~qi‖2
(and optionally their position ~ri and orientation ~Θi) can vary over time. Parametric

dipole fitting algorithms consist of setting either all dipoles at once or one dipole af-

ter another. In the first case, a data fit cost function such as the Frobenius ℓ2-norm2

of the residual is minimized:

min
i=1..K

‖~m−
K
∑

i=1

~gi(~ri, ~Θi)si‖2F

2Frobenius ℓ2-norm: ‖A‖2F = TrAAT =
∑m

i=1

∑n
j=1

|aij |
2, where A is a m × n matrix, Tr

denotes the matrix trace and AT is the conjugate transpose of A
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where ~gi denotes the forward field produced by the ith dipole that depends on the

position and the orientation of the dipole.

The optimization is conducted first on the non-linear parameters ~ri and ~Θi and

then on the linear parameters si and can be carried out with a large set of mini-

mization methods ranging from Levenberg-Marquardt and Nelder-Meade downhill

simplex searches to global optimization schemes [Baillet 2001].

This method is mainly limited by the number of dipoles the user has to fix a

priori: as soon as the number of dipoles increases, the chance to be trapped in local

minima increases because of the nonconvexity of the cost function [Baillet 2001].

Furthermore, a large number of dipoles can result in overfitting the data, regardless

of the quality. According to [Hämäläinen 1993], the dipoles must be sufficiently

distant in space (> 4cm) and time. Therefore, this approach is mainly adapted

for simple stimuli activating isolated primary areas (such as an auditory beep or a

visual flash) but is completely powerless to estimate sources in resting-state activity.

In practice, the proposed solution should be also obvious in sensor space.

3.3.2.2 Distributed source approaches

In these approaches, the current magnitude ~s of all dipoles covering the source

space is estimated, without a priori on the number of sources. Hence, sources

are not strictly said a set of focal sources but are rather distributed over the entire

source space. Two main approaches exist, namely beamforming and minimum-norm

estimates (MNE) approaches. They differ in the way of estimating the elements of

~s: in the former, they are estimated separately at each grid location whereas in the

latter, they are estimated all at once.

Beamforming. These methods, also referred as “scanning methods”, were first

introduced in the radar and sonar community in the 70’s to increase the sensitivity of

radar arrays to signals originating from a source of interest. Beamforming has been

later applied to MEG and EEG in the late 90’s [Van Veen 1997] (see for instance

the review on beamforming by [Hillebrand 2005]). A beamformer is basically a set

of spatial filters W = {w1,w2, ...,wM}, defined on a grid of M nodes over the

entire brain volume (or surface). Considering the triplet of dipoles with orthogonal

orientations on the ith node of the grid, the output of the beamformer is the 3× 1

vector ~y formed as the product of the 3 × N spatial filtering matrix wT
i with the

N × 1 measurement vector ~m, i.e. ~y = wT
i ~m. The weighting coefficients of the

filter are supposed to be chosen in such a manner that the activity coming from the

dipoles on that node is selectively enhanced while interferences from sources at all

other locations are suppressed.

The estimation of this filter is based on the hypothesis that sources are all

uncorrelated. For instance, the linearly constrained minimum variance (LCMV)

[Van Veen 1997] method makes use of the data covariance matrix C to constrain

the gain at the targeted location while minimizing the energy coming from elsewhere.

Under the hypothesis of uncorrelated sources, this constrained optimization problem
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is solved with the method of Lagrange multipliers and the solution is given by:

wT
i = (gT

i C−1gi)
−1gT

i C−1

where gi denotes the forward field produced by the triplet of dipoles located on the

ith node. As it can be seen, a major requirement in this method is that the covariance

matrix is accurately estimated and invertible. This becomes an important issue

for source analysis of event-related fields (ERFs), since the covariance matrix can

become rank-deficient: notably if the number of time samples in the selected epoch

is not sufficient (compared to the number of sensors) or if the number of averaged

trials is remarkably high enough to cancel out the (background) signal in sensors

that do not contain any evoked activity.

In practice, the covariance matrices can be regularized by using truncated eigen-

values or Tikhonov regularization. Beamformers are hence usually more used for

the analysis of raw continuous data, such as in resting-state studies.

Minimum norm estimates (MNE). The basic idea of MNE [Hämäläinen 1994]

is to choose among the infinity of solutions to equation (3.6) the simplest one, i.e.

of minimal norm (traditionally the ℓ2-norm). In that case, all other solutions derive

from it by adding any source current “invisible” to the sensors (i.e. orthogonal to

the leadfields). In other words, MNE consists of solving a constrained optimization

problem, which is usually formulated with the Lagrangian formalism:

min
~s

‖~m− G~s‖2F + λ‖~s‖2F , λ > 0 (3.7)

The parameter λ controls the “trade-off” between the fidelity to measurements and

noise sensitivity. It balances the reconstruction error and the regularity of the

solution. The advantage of using the ℓ2-norm is that the solution to equation (3.7)

can be easily obtained via a simple matrix multiplication:

~s = (GTG + λI)−1GT ~m

= GT (GGT + λI)−1 ~m
(3.8)

where I is the identity matrix. In practice, computing the estimate based on the

first equality turns out to be difficult because of the size of the matrix (GTG+ λI)

to be inverted (approximately 10000 × 10000!)due to the great number of dipoles

covering the space source. On the other hand, the second equality (derived using

the Woodbury matrix identity) allows to compute and to inverse a relatively small

matrix (about 300× 300) depending on the number of sensors.

In this first approach, the noise originating from the sources is not taken in

consideration and the sensor noise is represented by a unique parameter λ that is

set arbitrarily. In the Bayesian framework, these two types of noise are modeled

by Gaussian variables of which the spatial covariance matrices are denoted by R

and C for respectively the sources and the sensors. The optimal solution ~s is then

obtained by estimating the maximum a posteriori (MAP) and is finally given by

[Hämäläinen 1994]:

~s = RGT (GRGT + C)−1 ~m (3.9)



52 Chapter 3. Magnetoencephalography

We observe that the standard MNE corresponds to the case where R = I and

C = λI.

Alternatively, it has been proposed to replace the ℓ2-norm by the ℓ1-norm in

order to make the spatial distribution of currents more parsimonious. This was

done however to the detriment of good temporal properties brought by the ℓ2-

norm which smoothed current time courses (avoiding “jumps” or discontinuities),

making the estimates physiologically plausible. A solution is to use conjointly the

two norms (refered as the mixed ℓ12-norm [Gramfort 2009b, Gramfort 2011]) by first

applying the ℓ2-norm along the time axis and then the ℓ1-norm along the spatial

axis. Recently, the computation time of these methods has considerably improved

[Gramfort 2012].

The main default of minimum norm solutions is that they are biased towards

the superficial sources (i.e. close to the sensors). The weighted minimum norm

(WMN) method was proposed to cope with this problem by normalizing the source

covariance matrix: instead of minimizing ‖~s‖, WMN tries to minimize W~s‖, where

W is an invertible and diagonal weighting matrix. Each weigthing coefficient wii on

the diagonal is set according to the amplitude of the corresponding forward operator

~gi by the following relation: wii = ‖~gi‖γF , where γ > 0 is a parameter to set manually.

Another way to attenuate the bias towards the superficial sources is to em-

ploy noise-normalized methods such as the dynamic Statistical Parametric Map-

ping (dSPM) and sLORETA. In addition, they quantify the statistical significance

of the reconstructed current estimates while reducing the spread of the sources

[Hauk 2011]. It is noteworthy that these methods do not modify the shape of the

current estimate time courses given by MNE. dSPM [Dale 2000] tries to account for

the reconstruction incertitude due to measurement errors by normalizing the esti-

mates on each vertex with the noise sensitivity (i.e. the standard deviation of the

estimate obtained when reconstructing from sensor noise). If the dipole orientation is

fixed, the dSPM estimates follow a Student’s law that tend to a normal distribution

when the number of samples used to estimate the noise covariance is large (e.g. when

using empty-room acquired data). In the sLORETA method [Pascual-Marqui 2002],

the variability coming from the sources is also taken into account, in such a way that

the location error is null in the absence of noise. In practice, the source covariance

is not observed and, without any learning procedure, is fixed a priori (usually set to

the identity matrix). Under real experimental conditions, the results observed with

these two methods do not differ greatly though [Hauk 2011].

3.4 Data acquisition during the learning paradigm

Since the ERF and scale-free analyses have been carried out on the same data set,

the description of the data acquisition, preprocessing and source reconstruction is

quasi-identical. They are thus presented in this section.
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3.4.1 MEG data acquisition

Brain magnetic fields were recorded in a magnetically shielded room using a 306

MEG system (Neuromag Elekta LTD, Helsinki). MEG recordings were sampled

at 2000 Hz and band-pass filtered between 0.03–600 Hz. Four head position coils

(HPI) measured participants’ head position before each block; three fiducial mark-

ers (nasion and pre-auricular points) were used for digitization and anatomical MRI

(aMRI) immediately following MEG acquisition. Electrooculograms (EOG, horizon-

tal and vertical eye movements) and electrocardiogram (ECG) were simultaneously

recorded. Prior to the session, 5 minutes of empty room recordings were acquired

for the computation of the noise covariance matrix.

3.4.2 Anatomical MRI acquisition and segmentation

The T1 weighted aMRI was recorded using a 3-T Siemens Trio MRI scanner. Pa-

rameters of the sequence were: voxel size: 1.0 x 1.0 x 1.1 mm; acquisition time: 466s;

repetition time TR = 2300ms; and echo time TE= 2.98 ms. Cortical reconstruction

and volumetric segmentation of participants’ T1 weighted aMRI was performed with

FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). This includes: motion correction,

average of multiple volumetric T1 weighted images, removal of non-brain tissue, au-

tomated Talairach transformation, intensity normalization, tessellation of the gray

matter white matter boundary, automated topology correction, and surface defor-

mation following intensity gradients [Dale 1999, Fischl 2000]. Once cortical models

were complete, deformable procedures could be performed including surface inflation

[Fischl 1999a] and registration to a spherical atlas [Fischl 1999b]. These procedures

were used with MNE [Gramfort 2013] to morph individuals’ current source estimates

onto the FreeSurfer average brain for group analysis.

3.4.3 MEG data preprocessing

Raw bad channels were first detected after visual inspection of all data sets. Signal

Space Separation (SSS) was then carried out using MaxFilter to remove external

interferences and noisy sensors [Taulu 2006]. Ocular and cardiac artifacts were re-

moved by creating signal space projections (SSP) based on average-locked responses

to the QRS heart complex recorded with ECG and to the blinks recorded with EOG.

About 2 to 3 components were projected out of the raw data.

In the case of ERF analyses only, raw data were next band-pass filtered between

1–40 Hz and down-sampled to 250 Hz.

3.4.4 Co-registration and source reconstruction

The co-registration of MEG data with the individual’s aMRI was carried out by

realigning the digitized fiducial points with the multimodal markers visible in MRI

slices. We used a two-step procedure to insure reliable co-registration: using MRI-

LAB (Neuromag-Elekta LTD, Helsinki), fiducials were aligned manually with the
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multimodal markers on the MRI slice. An iterative procedure realigned all digitized

points (about 30 more supplementary points distributed on the scalp of the subject

were digitized) with the scalp of the participant with the MEG coordinates using

the mne_analyze tools within MNE [Gramfort 2013].

Individual forward solutions for all source locations located on the cortical sheet

were next computed using a 3layers boundary element model [Hämäläinen 1989,

Mosher 1999] constrained by the individual’s anatomical MRI. Cortical surfaces

were extracted with FreeSurfer and decimated to about 5120 vertices per hemi-

sphere with 4.9 mm spacing. The gain, noise and source covariance matrices were

used to calculate the depth-weighted (parameter γ = 0.8) minimum-norm inverse

operator. The inverse operator was applied using a loose orientation constraint on

individuals’ brain data [Lin 2006] by setting the transverse component of the source

covariance matrix to 0.4.

The reconstructed estimates differed here between ERF and scale-free analyses:

• For the ERF analysis, the estimates were noise-normalized using dSPM

[Dale 2000] and their orientation were pooled by taking the norm, resulting

hence in manipulating only positive values.

• For the scale-free analysis, only the radial components of the minimum-norm

estimators were kept, since taking the norm is a non-linear transformation

that would modify the scale-free properties (see Chapter 7).

For both analyses, the reconstructed MNE/dSPM estimates time series were in-

terpolated onto the FreeSurfer average brain for group analysis [Fischl 1999b] and

common referencing.
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The previous chapter was dedicated to the basic principles of MEG and the

methods usually employed (preprocessing, source reconstruction) to yield ready-to-

analyse data. Our next concern is now to comprehend the cortical mechanisms

underlying the perceptual improvements reported in chapter 2 that can be revealed

using standard approaches such as the event-related field (ERF) analysis.

In this chapter, we introduce first the basics of this analysis and its implicit as-

sumptions. Since the task in our paradigm is of relatively high complexity (involving

color-motion binding and multisensory processing), a necessary review of all neural

sites potentially involved during training is proposed in the next section according to

the existing literature. Finally, we elaborate some predictions regarding the neural

correlates of learning based on the reverse hierarchy theory (RHT) and under the

hypothesis of a supramodal processing.

4.1 Basics of the event-related field (ERF) analysis

4.1.1 Principle

One of the most standard approaches in M/EEG studies is the analysis of evoked

responses, i.e. neural activation phase-locked to a particular event such as the onset

(or offset) of a stimulus. They are essentially characterized by their latencies (since

they occur at the same time from trial to trial) and by their amplitudes (since
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they are supposed to have the same shape). In practice, they are detected within

the second following (or sometimes preceding) the stimulus onset or the subject’s

response. The underlying hypothesis of ERF analyses is that evoked activity is

embedded in random activity (e.g. ongoing brain activity and sensor noise) that

makes its detection on a single-trial basis very difficult. In terms of signal processing,

the signal sk(t) recorded at the kth trial is supposed to be the sum of a trial-invariant

signal of interest e(t) and a zero-mean Gaussian noise nk(t) uncorrelated across trials

and not time-locked to the event. Consequently, the signal-to-noise ratio (SNR) can

be improved by averaging several tens or hundreds of epochs locked on the same

event:
sk(t) = e(t) + nk(t) trial k

↓ ↓ ↓
ŝ(t) ≈ e(t) + 0 average over N trials.

By doing so, the noise amplitude is reduced by a factor equal to
√
N . As pre-

viously said, this method implicitly assumes the noise to be zero-mean, which is

in practice assured by high-pass filtering the continuous raw signal (since evoked

activity is relatively sparse with respect to the entire recording). In other words, it

necessitates to remove the 1/f behavior observed in the infraslow activity (cf. chap-

ter 6). In addition, averaging over epochs also results in smoothing the signal and

these effects are thus similar to those of a low-pass filter. If we assume indeed that

evoked responses are slightly shifted by a small time jitter across trials, the corre-

sponding phase jitter increases dramatically for high frequencies (and thus reduces

the constructive summation of averaging). This is why MEG signals are usually

band-pass filtered (between for instance 1–40 Hz) and subsequently down-sampled.

Importantly, we should emphasize that evoked activity is not the only form of

activity produced by (or at least related to) a task or a stimulus: the so-called

induced activity also refers to systematical effects occurring across trials but not

strictly phase-locked to the event and hence vanishes through averaging (cf. Fig.

4.1). Whereas evoked activity is said to reflect mainly bottom-up driving pro-

cesses, induced activity is often associated with top-down modulation. The latter

component is usually observed by plotting the mean spectrogram (time-frequency

representation assessed with the short Fourier transform) or scalogram (time-scale

representation using continuous wavelets) averaged over all trials (since square val-

ues do not cancel out) and after subtraction of the power of the average (i.e. the

evoked component).

4.1.2 Response profile and comparison with BOLD fMRI signals

The early salient evoked responses are usually transient (i.e. of short duration) and

more stable in time than longer-latency responses, which often jitter across trials and

increase in duration. As a result, they appear in the average as sustained responses

that progressively fade in. Contrary to fMRI BOLD responses that often persist

throughout the entire presentation of a stimulus, ERFs reflect more the sudden

changes (i.e. onset or offset) of a stimulus (Fig 4.2). This is why slowly increasing
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Figure 4.1: Basics of the event-related field analysis. The ERF analysis

consists of focusing on the evoked activity phase-locked to the apparition of an

event. It assumes that the signal is the sum of three components: an evoked, an

induced and a random component (that changes at every trial). Contrary to the

evoked component, the induced response is not phase-locked to the timing of the

event. As a result, both the induced and the noise components are considerably

reduced when averaging the signal across trials, leading to the emergence of the

evoked component.
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sustained evoked activity is sometimes interpreted as a neural marker of evidence

accumulation.

Figure 4.2: Comparison between BOLD and MEG evoked responses.

Schematic responses to stimuli of 0.2 s, 2 s and 15 s in duration. A lagged prominent

BOLD response is obtained only with stimulation persisting for several seconds. In

contrast, MEG evoked responses are elicited by stimulus onsets and offsets indepen-

dently of stimulus duration. A relatively weak sustained response can be possibly

observed. Due to the sluggishness of the BOLD signal, it is sufficient to sample it to

1 Hz (illustrated here by the dots, for a repetition time TR = 1 s). The MEG onset

responses typically last for less than a second and change orders of magnitude more

rapidly than BOLD, thus necessitating sampling rates above 300 Hz approximately.

Adapted from [Hansen 2010].

Thanks to the great temporal resolution of MEG (cf. chapter 3), the evoked re-

sponse can be tracked with good temporal accuracy. Because of this high sensitivity,

ERF analysis can easily suffer from negligence in the preparation of stimuli and task

controls. For instance, a slight jitter in the timing of a sound delivered to the subject

might considerably modify the early auditory response unless it is accounted in the

definition of the epoch. Conversely, it is often necessary to inject a random (but

known) jitter in the timing of events to avoid the apparition of a temporal trend in

the signal reflecting the expectation of the subject as well as a peak in the power

spectrum corresponding to the frequency of the stimulus presentation.

In contrast, fRMI experiments are less sensitive to the timing issue. fMRI signal

reflects changes in the oxygen consumption following 5–10 s after neural activation

via the slow haemodynamic function, yielding a relatively low time resolution. In

addition, the sampling rate is limited by the acquisition process (at best one whole-

head fMRI image every second). The measured neural activity is thus very slow

and undersampled (Fig. 4.2). Consequently, the experimental design in fMRI differs

greatly from the one used for ERF analysis in MEG (and EEG). In an event-related
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design with jittered stimulus timing, the shape of the response can be approxi-

mately recovered by combining several trials sampled at different times. However,

in the most commonly used block design, the fMRI signal is cumulated over rapidly

successive identical trials to increase the SNR and consequently loses the temporal

information. The cognitive process of interest is then usually identified by contrast-

ing two conditions, assuming that irrelevant events such as e.g. manual responses

cancel out. MEG studies do not easily accommodate with this kind of approach if

the undesirable events have different dynamics.

In conclusion, ERF analyses require perfectly well controlled designs in order

to extract exactly the wanted information that do not correspond to the optimal

designs conducted in fMRI. As a general rule, the designs used in psychophysical

studies are usually well adapted to EEG and MEG studies.

4.2 Neural mechanisms possibly involved in training

In this section, we present the potential neural candidates activated during the

three types of training that can possibly undergo plasticity in post-training. Recent

electrophysiological and neuroimaging studies using similar stimuli are thus reviewed

to help us to establish our hypothesis.

4.2.1 Discrimination of visual motion coherence

4.2.1.1 The human motion area hMT+

Converging evidence of an area located in the human extrastriate cortex and ac-

tivated by visual motion has now been well established across electrophysiological

and neuroimaging studies. By analogy with the primate middle temporal (MT) and

medial superior temporal (MST) areas that showed sensitivity to motion directions

and greater responses to global coherent motion, their human homologs form the

so-called hMT+/V5 complex (hereafter simply denoted by hMT+). hMT+ can be

functionally localized using PET [Watson 1993] and fMRI [Tootell 1995] in response

to global and even illusory motion [Zeki 1993] and is usually found in both hemi-

spheres with however a great spatial variability across individuals (e.g. a variation

of 27 mm in the left hemisphere reported by [Watson 1993]).

The hMT+ response profile was characterized in several EEG and MEG studies

as a function of several parameters such as speed, direction, dot density, stimulus ec-

centricity and coherence [Lam 2000, Maruyama 2002, Nakamura 2003, Aspell 2005,

Händel 2007, Becker 2008]. They all reported peak latencies ranging around 150–

300 ms (depending on the above-mentioned parameters) and usually followed by

sustained activity (often interpreted as accumulation of evidence). For instance,

the latency and the amplitude of the response were shown to be sensitive to mo-

tion speed (the faster the motion, the earlier and the greater the response) and to

dot density independently on the nature of the motion (incoherent vs. coherent)

[Maruyama 2002]. In another study, the latency of the response to a coherent RDK
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could be modulated by the speed of an incoherent RDK presented just before the

transition [Lam 2000]. Importantly, the response amplitude has the particularity

to increase as a function of coherence [Nakamura 2003, Aspell 2005] provided that

the dot density is large enough [Händel 2007]. Spectral analysis revealed two com-

ponents correlating positively and negatively with motion coherence in hMT+: the

first (positive) one was found in the very low frequencies (around 3 Hz) and re-

flected evoked activity whereas the other one oscillated in the alpha domain and

corresponded to induced activity [Händel 2007].

These observations are consistent with the neuronal properties of MT and MST

reported in monkey studies that have shown that neurons in these areas had a large

receptive field and were selectively sensitive to motion speed and direction. The

perception of global motion was initially thought to be the result of the integration

of all activated neurons; yet it would not explain why on the one hand, activity in

hMT+ increased as a function of motion coherence and on the other hand, hMT+

also responded to incoherent random motion. This could be explained by the exis-

tence of two types of neurons responsive either to “local” (e.g. a single moving dot)

or to “global” (e.g. a group of coherent dots) motion [Aspell 2005]. Neurons of the

former category are more numerous but with the emergence of a global coherent mo-

tion, their activity decreases while that of neurons of the latter category increases.

Therefore, if the employed stimulus recruits enough “global” neurons to compen-

sate and exceed the loss of activity from “local” neurons (notably depending on the

stimulus size, i.e. a large eccentricity), the activation of hMT+ should increase as a

function of coherence. This is why the effect of coherence on the amplitude of the

response in hMT+ crucially depended on the stimulus size and the dot density used

in studies [Aspell 2005, Becker 2008].

4.2.1.2 Other areas involved in motion perception

Although hMT+ is the main area known to process visual motion in the human

brain, several studies report the existence of other brain regions involved in motion

perception, depending on the nature of the motion.

For instance, “second-order” motions refer to stimuli that are not based on con-

trasts of luminance between background and foreground (by opposition to first-order

motion) but on other features such as isoluminant colors (known as opposed mo-

tion). In a monkey study, contrarily to expectations, no activation was observed in

MT and MST during the presentation of these stimuli although monkeys reported

correctly the direction of the motion [Ilg 2004]. An fMRI study revealed that the

posterior superior temporal sulcus (pSTS) was in fact the area recruited to the pro-

cessing of these stimuli [Noguchi 2005]. In the same line, patients with lesions in

pSTS and in the frontal eye field (FEF) were almost incapable of perceiving com-

plex movements of humans and animals (known as “biological motion”) but had less

difficulty to detect a simple motion as that of RDKs [Saygin 2007].

A great body of evidence converges towards the notion of a hierarchical process-

ing of motion whose complexity increases along the dorsal pathway (i.e. starting
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from the occipital visual cortex, traveling through the parietal lobe and terminating

in the prefrontal area). For instance, the evoked response to a change of motion

direction observed by fMRI and MEG [Ahlfors 1999] appeared first in hMT+ and

was consecutively observed in V3A, V1/V2 and finally in pSTS and FEF where re-

sponses were more sustained. This propagation was simultaneously observed along

the lateral (via hMT+) and medial (via V6) dorsal path [Pitzalis 2013]. The initial

activation detected in the primary visual cortex V1 was attributed to the first step

of local motion processing [Movshon 1996]. Depending on the nature of the task

and the motion complexity, higher-order areas along the dorsal pathway can be re-

cruited: for instance, in a visual motion categorization task, the lateral intraparietal

(LIP) cortex and the ventrolateral prefrontal cortex (vlPFC) showed successively in a

bottom-up fashion category selectivity modulated by attention [Swaminathan 2012].

These areas (as well as FEF) were also shown to be involved in perceptual decisions

and decision making following the accumulation of sensory evidence represented in

hMT+ [Heekeren 2008].

In our experimental paradigm, the task did not only consist of discriminating mo-

tion coherence, but also labeling the correct color to the coherent RDK. We can thus

sensibly expect several areas to be recruited in the mechanism of motion-color bind-

ing, including of course hMT+ for the perception of colored motion [Thiele 2001].

4.2.2 Color-motion binding

A widely accepted hypothesis in neural processing of vision is the existence of two

distinct streams [Ungerleider 1982] originating both from the occipital cortex and

separating into two directions: one towards the parietal lobe (dorsal stream) and

one towards the temporal lobe (ventral stream). The visual dorsal stream is not

only involved in motion processing (as previously mentioned) but more generally in

extracting visual objects’ spatial features (“where?”) and in the guidance of actions

(“how?”). Conversely, the visual ventral stream is associated with object recogni-

tion (“what?”) such as color and shapes and processes more complex objects (e.g.

faces and houses) as one proceeds from posterior to anterior temporal lobe. These

two streams slightly differ also by the nature of the thalamic inputs they receive

[Ungerleider 1994]: the dorsal stream predominantly receives its inputs from mag-

nocellular layers (large cells sensitive to low spatial and high temporal frequencies)

whereas the ventral stream receives comparably as many inputs from magnocellular

layers as ones from parvocellular layers (small cells sensitive to high spatial and low

temporal frequencies). Interestingly, a similar description for the auditory system

exists and consists of two auditory ventral and dorsal streams originating from the

anterior and posterior auditory cortex [Rauschecker 2000].

The binding problem arises from the following statement: since different (al-

though partly overlapping) networks are responsible for extracting color, shape and

motion information, how do they converge towards a unified and coherent percept?

A first idea was that spatially segregated features could be processed simultaneously

and bound through synchronization; this hypothesis was however rejected by several
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psychophysical studies showing that color and shape changes were processed before

motion changes [Zeki 1997, Moutoussis 1997, Viviani 2001] and later confirmed by

an MEG study that found about 100 ms of difference between the early responses

evoked by color and the later responses evoked by motion changes [Amano 2006].

Alternatively, a network larger than those involved in the processing of single fea-

tures may be engaged to undertake the binding mechanism. For instance, a colored

motion grouping task showed BOLD activation in two contiguous yet segregated

areas of the intraparietal cortex, depending on the criterion (color or motion) upon

which participants recognized the stimuli [Zeki 2013]. The crucial role of the lateral

prefrontal cortex observed in numerous categorization tasks can also be linked to the

mechanism of binding. Since vlPFC is a major site of convergence between ventral

and dorsal streams, it was suggested to be a sort of “supervisor” [Freedman 2008]

that would extract the representation of a (potentially abstract) object from the

collected information processed by other areas such as the inferior temporal cor-

tex (ITC) and LIP. In contrast to vlPFC which is able to learn new categorization

rules, ITC had the particularity to present only automatic (i.e. non-arbitrary) cat-

egorization based on the physical properties of stimuli. vlPFC is also associated

with selective attention of color embedded in motion [Sakagami 2001, Hamker 2005]

and has been also suggested to be in competition with FEF for the control and

modulation of V4 and ITC [Hamker 2005].

4.2.3 Perception of acoustic textures

During training, acoustic textures or simply acoustic noise were delivered to AV

and AVn participants respectively (cf. section 1.4). Auditory information is known

to be processed by the auditory cortex, located bilaterally in the superior part

of the temporal cortex (more precisely the primary area in the Heschl’s gyrus and

surrounding associated areas in the belt, e.g. planum temporale). Sound is processed

in primary area according to a tonotopic organization that spatially separates high

and low frequencies, similarly to the properties of the cochlea.

Acoustic textures are complex auditory objects defined both by their “bound-

aries” (sudden changes of coherence, i.e. time-frequency statistical properties ) and

their intrinsic characteristic (coherence itself). Perception of these two properties

are referred to as “segregating” and “representation” respectively. Overath and col-

leagues showed in a recent fMRI study [Overath 2010] that segregating was first pro-

cessed in primary auditory and association cortices while representation of acoustic

textures was perceived afterward in higher-order association areas. Interestingly,

the haemodynamic response in pSTS increased as a function of the difference of

coherence between two consecutive textures.

In another fMRI study using similar auditory stimuli also necessitating integra-

tion over time and frequency to be discriminated from background incoherent noise

[Teki 2011], bilateral intraparietal sulci (IPS) and pSTS showed an increased acti-

vation as a function of duration and coherence, possibly reflecting accumulation of

evidence.
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In our experiment however, the acoustic textures were always accompanying the

presentation of the colored RDKs, potentially (and hopefully) leading to audiovisual

(AV) integration and/or participating to supramodal processing. The analysis on

these data (i.e. to address the question of multisensory integration per se) has not

been conducted yet but will be followed up in the future.

4.2.4 Multisensory processing

Multisensory integration can be seen as a more general concept of feature binding (cf.

section 4.2.2) this time across sensory modalities. Although the putative existence

of multisensory areas is commonly accepted, their definition and the method to iden-

tify them is still debated [Klemen 2012]. Before going further, we should insist once

again on the difference between multisensory and supramodal areas (cf. chapter 1):

supramodal areas are dedicated to the processing of an abstract property that can be

contained in any type of stimuli and thus always effectuate the same operation inde-

pendently of the sensory modality; multisensory areas receive signals of different sen-

sory modalities to integrate them and to form a coherent percept [Voss 2012]. There-

fore, the identification of supramodal or multisensory areas by means of functional

neuroimaging requires different approaches [Klemen 2012, Beauchamp 2004b].

Multisensory areas are usually identified in healthy individuals on the base of

several criteria. A first approach would be to consider only areas showing exclu-

sively activation to multimodal stimuli (hence not responsive to stimuli within a

single modality); this method is however too restrictive and usually fails to exhibit

areas with such properties. The standard way to identify multisensory areas is to

select first those presenting an interaction between sensory modalities known as “su-

peradditivity”, i.e. when the response to a multimodal stimulus is superior to the sum

of the responses observed for each isolated sensory modality. The contrary effect (i.e.

when the inequality is in the other direction) known as “subadditivity” is less specific

to multisensory integration since it fails for instance to disentangle multisensory sites

from supramodal areas or from areas that are equally active in all conditions (e.g.

such as the motor cortex during the subject’s motor response) [Beauchamp 2004b].

A second criterion is to observe inverse effectiveness, i.e. a positive correlation be-

tween the superadditivity effect and the difficulty to perceive the stimulus. Finally,

multisensory areas are supposed to be located in such a manner that signals arriv-

ing from different modalities approximately coincide (spatio-temporal proximity).

In the case of AV integration, such area would be located for instance between the

auditory and visual cortices.

According to these criteria, mSTS and more particularly pSTS appear to be

a major site of AV integration as reported in numerous studies [Benevento 1977,

Bruce 1981, Beauchamp 2004a, Beauchamp 2004b, Lewis 2010, Klemen 2012]. For

instance, pSTS is involved in the learning of arbitrary AV paired-associations

[Tanabe 2005], the integration of AV features required for object categorization

[Werner 2010], AV synchrony judgment [Lewis 2010, Powers 2012] and discrimina-

tion of AV motion direction [von Saldern 2013]. These findings are also supported
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by the anatomic description of pSTS showing that this area receives both inputs

from the auditory and visual cortices [Howard 1996]. There are thus at least two

reasons to see pSTS implicated in our task: not only it is a multisensory area, but

it is also implicated in motion processing (cf. section 4.2.1.2).

In addition, the role of the lateral prefrontal cortex in multisensory process-

ing has been recently questioned since anatomical tracing has revealed that audi-

tory and visual “where” and “what” pathways converged to the dorsal and ventral

parts of this area [Romanski 2007, Ungerleider 1982, Klemen 2012]. In particular

vlPFC was shown to be implicated in the representation of complex audiovisual

objects [Romanski 2004, Romanski 2012] combining for instance faces and voices

[Romanski 2007]. vlPFC is thus an area of particular interest since it is located at

the junction of all streams, both relevant for color-motion binding and multisensory

integration (see Fig. 4.3).

Since several studies have shown that hMT+ responded more to congruent than

incongruent AV motion [Lewis 2010, Scheef 2009], it has been suggested that hMT+

was also multisensory [Klemen 2012]. Such observation can also be interpreted with

supramodality: the more auditory and visual motion share redundant information,

the more AV motion is congruent and the more hMT+ is activated. This inter-

pretation is also supported by the fact that, contrary to mSTS and pSTS that

seem to be involved in any audiovisual processing, hMT+ shows a specific sensi-

tivity to motion coherence. The identification of supramodal areas remains how-

ever a challenge: for instance, we could select any area responding to more than

one isolated sensory modality, yet to the risk of selecting other co-activating ar-

eas not directly involved in sensory processing. Another practical issue consists of

distinguishing two “mixed” neuronal populations that respond each to a different

sensory modality [Klemen 2012]: if the spatial resolution is too weak, the same area

seems to be activated for both modalities and can be erroneously interpreted as a

supramodal area. This could be for instance the case of the middle superior tem-

poral sulcus (mSTS) whose “patchy organization” made of multisensory, visual and

auditory selective neurons could only be revealed by using high-resolution parallel

fMRI [Beauchamp 2004a]. So far, the most convincing way to identify (potential)

supramodal areas has been done by comparing brain activities of sensory-impaired

individuals with healthy ones (cf. section 1.2.3). Consistent with the hypothesis of

supramodality, responses to auditory and tactile motion in congenitally and tempo-

rary blind people was observed in hMT+ [Poirier 2005, Poirier 2006].

4.3 Plausible neural correlates of learning

According to [Gilbert 2001], the effects or perceptual learning at the neural level can

take several forms depending on the mechanism encoding the information, among

which:

• A larger population of neurons can be recruited in response to the trained

stimulus. The underlying hypothesis is that neurons can respond to several
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Figure 4.3: Areas potentially recruited during training. In our task, both

dorsal (blue arrows) and ventral (orange arrows) visual processing pathways are

likely involved: the former to discriminate visual motion coherence and the latter

to process color. These two streams converge in the lateral prefrontal cortex re-

spectively in the dorsal (dlPFC) and ventral (vlPFC) parts, where the last stage of

motion-color binding can possibly occur. Interestingly, this area is also the site of

convergence of auditory dorsal (green arrows) and ventral (yellow arrows) streams,

suggesting a possible multisensory interaction occurring during AV and AVn train-

ings. Our main hypothesis is that the coherence of acoustic textures can facilitate

visual motion coherence processing thanks to the supramodal properties of hMT+.

IPS: spatial attention site, hMT+: supramodal motion sensitive area, ITC: object

sensitive area, STS: multisensory and second-order motion sensitive area and FEF:

spatial attention and eye-movement control. Adapted from [Klemen 2012].
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stimuli and that the probability of detection is encoded by the number of

neurons responding coherently to the stimulus.

• The size of the neuronal population activated by the trained stimulus is re-

duced in order to decorrelate neuron spiking activities. This implies that

optimal conditions of stimulus detection are reflected by a better tuning of

neurons, i.e. by increasing their specificity to a given type of stimuli and

making them as different as possible.

• The size of the recruited neuronal population does not change; they act how-

ever more in synchrony with each other, yielding hence a greater response. In

that case, the information would be essentially encoded in time.

Contrary to the second scenario, the first one is consistent with the Hebbian rule,

i.e. a reinforcement of synaptic connections following the joint activation of pre-

and post-synaptic cells. Other scenarios are indubitably possible — for instance a

recent study [Gu 2011] reported a global decrease of the inter-neuron noise (hence

a increase of the SNR) in the dorsal MST of a trained monkey without however

refined tuning of neurons.

Independently of this, learning can also be reflected by a change of the cor-

tical locus responding to the trained stimulus, the apparition of a larger network

and top-down influences. As previously reviewed in section 4.2, a great list of

areas implicated during training can potentially present plasticity. According to

previous M/EEG studies investigating auditory [van Wassenhove 2007] and visual

[Hamamé 2011] perceptual learning, we can expect to observe an increase of the ERF

amplitudes at earlier latencies with respect to the trained stimuli. Here, we mainly

expect hMT+ to present selective plasticity after having benefited from supramodal

processing of coherence in AV training. We do not exclude yet the possibility that

perceptual decision might also be at the origin of the behavioral improvement of our

participants (cf. chapter 2), which would be conceivably observed in the intrapari-

etal sulcus [Sasaki 2010].

Assuming that plasticity occurred in hMT+ through the mechanism described

by the RHT (cf. section 1.1.2), it would have been mediated by higher-order areas

such as vlPFC. Moreover in the case of AV training, we can sensibly expect that

greater plasticity in hMT+ would have been possibly relayed by the recruitment of

multisensory areas (e.g. mSTS, pSTS) — as suggested by the cross-modal plasticity

observed in deaf people [Sadato 2005]. We can also wonder if these areas would

be still activated after training, i.e. in the absence of acoustic textures during the

execution of the visual task only.
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In the previous chapter, we presented the basis of event-related field (ERF) anal-

ysis in MEG and the plausible neural correlates of learning that we expect to see

in our paradigm. As previously reviewed in chapter 1, multisensory interactions

are ubiquitous in cortex and recent work suggests that sensory cortices may be

supramodal (i.e. unspecific to the sensory modality of inputs). Here, we tested this

hypothesis by asking whether learning to discriminate visual coherence would bene-

fit from supramodal processing. Consistent with this hypothesis, the psychophysical

results presented in chapter 2 show that participants trained with congruent acous-

tic textures (AV) significantly outperformed participants trained without sound (V)
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or with auditory noise (AVn, control group) although they were unaware of their

progress. We now investigated the associated neurophysiological correlates by con-

trasting the MEG source-reconstructed evoked responses to motion coherence before

and after training.

In the first section, we detail materials and methods among which the selection

of epochs and regions of interest (ROIs) and the statistics. Results are presented

in the next section: common to all, vlPFC showed surprising selectivity to the

learned coherence levels whereas selectivity in visual motion area hMT+ was only

seen for the AV group. Additionally, activity in multisensory cortices (mSTS, pSTS)

correlated with post-training performances solely for the AV group. Altogether, the

latencies of these effects suggest feedback from vlPFC to hMT+ possibly mediated

by temporal cortices in AV and AVn groups. In the next section, results are discussed

and interpreted in the context of the Reverse Hierarchy Theory (RHT) of learning

in which supramodal processing optimizes visual perceptual learning by capitalizing

on sensory-invariant representations — here, global coherence levels across sensory

modalities. Conclusions are drawn in the last section.

5.1 Materials and methods

The paradigm, the stimuli and the sample of participants (N = 3×12) are described

in section 1.3. The parameters of the MEG data acquisition and preprocessing as

well as the source reconstruction method (i.e. noise-normalized dSPM-MNE) are

detailed in section 3.4. Here, we explain the computation of ERFs, the selection of

regions of interest (ROIs) and the statistical analyses used for this study.

5.1.1 Definition of events and regions of interest (ROIs)

5.1.1.1 Selection of events

For the main ERF analysis, data were epoched from −200 ms (baseline) to +1000 ms

around the onset of coherent RDK and baseline-corrected. Epochs were averaged for

each individual according to the conditions of interest, namely: across all coherence

levels (196 trials) or for each coherence level (28 trials). Trials corrupted by muscle

or movement artifacts (less than 10% of all trials) were rejected by visual inspection

using Fieldtrip (http://www.ru.nl/fcdonders/fieldtrip).

Additionally, epochs were averaged according to each individual’s pre- and post-

training thresholds into three categories: “hard ” (coherence levels below the POST-

training threshold), “ learned ” (coherence levels between the PRE- and the POST-

training thresholds) and “easy” (coherence levels above the PRE-training threshold).

Evoked responses were smoothed with a Savitzky-Golay filter [Savitzky 1964]

consisting of fitting a 2nd order polynomial to each sliding window of 35 samples.

This procedure is approximately equivalent to the application of a low-pass filter

of 3 dB cutoff frequency set to 37.5 Hz [Schafer 2011] without reduction of peak

amplitudes.
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5.1.1.2 Functional localizer for hMT+ and selection criteria for the ROIs

One major prediction in this study was that the perceptual improvements in coher-

ence discrimination thresholds would be commensurate with post-training activity

in hMT+ which is known to be responsive to global and translational motion pro-

cessing (cf. chapter 4). Hence, after source reconstruction, hMT+ was localized on a

per individual basis by contrasting the current source estimate obtained to the pre-

sentation of 95% coherent motion against the incoherent (0%) portion of the hMT+

localizer. Specifically, the evoked response fields (ERFs) elicited by the transition

to full coherence in the visual display (i.e. going from 0% to 95% coherence) were

contrasted with the ERFs elicited at the same latency but in the absence of tran-

sition (i.e. 0% of coherence). A first inspection of the ERF contrast averaged over

all individuals in sensor space (Fig. 5.1a, upper and middle panel) showed a main

evoked response spanning ∼ 100 to ∼ 300 ms post-transition onset. The evoked

response was source reconstructed using MNE-dSPM (cf. section 3.4); the extent of

the area hMT+ in source space was determined by thresholding the average source

estimate amplitudes over 100–300 ms above the 90th percentile of all dSPM values

covering the entire cortex (Fig. 5.1a, lower panel).

Figure 5.1b reports additional regions of interest (ROI) or labels which were

identified at the group-level by source reconstruction of the grand average evoked

field response to the presentation of incoherent visual RDKs which combined data

from all three training groups (V, AV and AVn) in the pre- and in the post-training

sessions. The most responsive areas (selected by thresholding to the 90th percentile

of all dSPM values) were manually labeled using the Freesurfer neuroanatomical

parcellation. The obtained ROIs comprised: bilateral primary and secondary vi-

sual cortices (V1 and V2, respectively), precuneus, visual area V4, hMT+, Inferior

Temporal Cortex (ITC), Auditory Cortex (AC), posterior Superior Temporal Sulcus

(pSTS), Inferior Parietal Sulcus (IPS), frontal eye-field (FEF) and the right middle

Superior Temporal Sulcus (mSTS). The time courses reported in a label were com-

puted by averaging dSPM estimate time courses over all vertices within the label.

It is worth noting that dSPM values are here only positive and hence do not cancel

out after averaging. Sample grand average times courses over all coherence levels

in these ROIs are provided for pre- and post-training in Fig. A.1 and Fig. A.2 (see

appendix A).

5.1.2 Statistics

The effect of training was tested using the POST minus PRE contrasts across all co-

herence levels separately for each ROI using F-tests combined with non-parametric

permutation tests [Maris 2007] that provide corrected p-values for multiple com-

parisons. For each signed permutation (N = 20000), time clusters were defined

on the basis of temporal adjacency by regrouping samples whose F-statistic was

larger than 3.3 (i.e. p-value inferior to 0.05 for an F-test with 2 × 33 degrees of

freedom). Cluster-level statistics were then calculated by taking the sum of the
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Figure 5.1: MNE (dSPM) source reconstruction and regions of interest

(ROIS). (a) Evoked Response Fields (ERF) in sensor space (planar gradiometers)

obtained in response to the presentation of the hMT+ localizer. Here, we report the

evoked component obtained by subtracting the ERF obtained for fully incoherent

motion (0%) from the ERF obtained for a 95% coherent motion. These data were

collected during the localizer block and pulled across all individuals (i.e. all three

training groups: V, AV, and Avn for a total of n=36 participants).The time course of

all gradiometers (Global Field Power) is provided in the top graph; the topography of

the differential evoked component averaged over 100 to 300 ms post-coherence onset

is provided for the norm of the gradiometers in the middle graph; the corresponding

current source estimates using MNE-dSPM illustrate the mean localization of hMT+

obtained with this MEG localizer. (b) ERF in sensor space (planar gradiometers)

obtained in response to the presentation of incoherent visual RDKs. PRE and POST

training data were pulled together across all three training groups (n=36) in order to

define the regions of interest. The time course of the ERFs obtained at the onset of all

visual stimuli is depicted in the top graph for all gradiometers (Global Field Power).

A distinct evoked component can be seen spanning 100 to 250 ms. The topography of

the ERF is provided in the middle graph for the norm of gradiometers averaged over

100 to 300 ms post-incoherence onset. The corresponding current source estimates

using MNE-dSPM are provided in the bottom graph. The extent of a given label or

region of interest (ROI) in source space was defined by thresholding the estimates at

the 90th percentile of all dSPM values. FEF: frontal-eye-field. IPS: Inferior Parietal

Sulcus. pSTS: posterior Superior Temporal Sulcus. AC: auditory cortex. mSTS:

middle Superior Temporal Sulcus. ITC: Inferior Temporal Cortex.
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F-values within the cluster. Only temporal clusters with corrected p-values ≤ 0.05

are reported. The significance of the contrasts were also tested in each group using

non-parametric pairwise two-tailed permutation tests with the cluster threshold set

to 2.2 (i.e. p-value inferior to 0.05 for a two-sided t-test with 11 degrees of freedom).

All correlation tests were assessed with Pearson correlation coefficients ρ un-

der the null hypothesis H0: ρ = 0 and with the alternative H1: ρ 6= 0 using a

Student t-test on the statistic t = ρ
√
n−2√
1−ρ2

, where n is the number of samples. Out-

liers were automatically detected and rejected by using a leave-one-out approach

[Weisberg 2005] consisting of estimating the distribution N(m,σ) of residuals based

on (n − 1) observations (each observation is left out one after another). Extreme

residuals (i.e. above and below m± kσ, where k = 2.5 is considered to be a reason-

able choice [Rousseeuw 1987]) are identified and the corresponding observations set

as outliers.

5.2 Results

5.2.1 hMT+ selective plasticity in AV group

According to previous reports [Ahlfors 1999, Lam 2000, Maruyama 2002,

Nakamura 2003, Aspell 2005, Amano 2006, Händel 2007, Mercier 2009], the

amplitude of the evoked response originating from hMT+ increases with the

coherence level of RDK stimuli irrespective of participants’ performance. As a

first approach, we thus classified trials as a function of the physical coherence of

the visual stimuli (i.e. 7 coherence levels ranging from 15% to 95%) separately in

pre- and post-training and for each training group. After source reconstruction,

a similar pattern of response in hMT+ could be seen in all three groups starting

from ∼ 200 ms and extending to 500ms post-stimulus onset (Fig. 5.2a).

One hypothesis on the origin of perceptual improvements observed in the three

training groups was that the selectivity of the hMT+ response to the presentation of

coherent RDK would increase after training. When contrasting the average hMT+

response profiles in pre- and post-training (Fig. 5.2a), the spread of the hMT+

response amplitudes indeed seemed much larger in the V and AVn groups in post-

training; however, and surprisingly, the AV group did not appear to show such

changes. In fact, a linear regression of the amplitude of the hMT+ estimate as

a function of the coherence level of the stimuli clearly showed that the AV group

— contrarily to the V and AVn groups — showed no significant differences in pre-

vs. post-training (Fig. 5.2b, beta values). At first glance, this result would suggest

that the superior perceptual improvements observed in the AV group could not be

accounted for on the basis of hMT+ plasticity.

However, using a similar approach to psychometric characterization, hMT+ sen-

sitivity to motion coherence can be characterized for each individual by a neuromet-

ric function [Britten 1992, Gold 2010] from which a threshold can be derived. One

advantage of neurometric thresholds is that they are comparable to psychometric

functions pending on the experimental conditions [Britten 1992]. Hence, to better
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Figure 5.2: Cortical response in hMT+ as a function of visual RDK

coherence levels. (a) Time course of current source estimates (dSPM amplitudes)

in bilateral hMT+ for the different training groups (V: top graph, AV: middle graph

and AVn: bottom graph) as a function of RDK coherence levels (cf. legend for color

scheme). Data obtained in the PRE and POST training blocks are reported in the

left and right panels, respectively. A prominent evoked response peaking at ∼ 200 ms

post-coherence onset can readily be seen in all groups and for all coherence levels.

Additionally, the higher the visual coherence, the higher the amplitude of the cortical

response. While the profile of responses was similar across the three groups before

training, a distinct response pattern was found after training. Specifically, the V and

AVn showed an increased spread of the response amplitudes as a function of visual

coherence levels whereas the AV group did not show such spread. (b) Mean beta

values (±1 s.e.m.) obtained from a linear regression between the dSPM values in

hMT+ and the 7 coherence levels at each sample point for each individual in groups

V, AV and AVn (top, middle and bottom row, respectively), before (PRE, grey)

and after (POST, black) training. Shaded areas highlight the latencies of significant

changes of beta provided by a pairwise cluster permutation algorithm. Consistent

with the increased spread of amplitudes, the beta values significantly increased in

V (around 250–400 ms) and in AVn (around 320–500 ms) after training; no changes

were observed in AV suggesting that changes in neural activity in hMT+ for the

group AV cannot account for the group’s perceptual improvements.
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understand the selectivity of the response profile in hMT+, we selected the 200–

500 ms time period post-coherence onset and fitted a Weibull function Y to the

averaged source estimate amplitudes as a function of stimulus coherence levels on a

per individual basis, in pre- and post-training separately:

Y (coh,M,m,α, β) = M − (M −m)e−(
coh
α )

β

,

with coh as motion coherence level and M , m, α and β the parameters determined

by the damped Gauss-Newton method. Each fit allowed deriving a neurometric

threshold defined as the stimulus coherence level corresponding to half the amplitude

of the sigmoid curve (see Fig. 5.3 panel a for examples of individual fits and panel

b for the group data).

Using this procedure, the only significant decrease in neurometric threshold was

observed in the AV group (t11 = −2.34, p = 0.039; Fig. 5.3b). This approach

suggested a particular neural strategy in hMT+ response selectivity pending on

participants’ training history, namely: in the V and AVn group, larger selectivity

can be seen at the extreme coherent levels, whereas in the AV group, better se-

lectivity is seen in those levels of coherence close to perceptual threshold. Interest-

ingly, although no correlation could be found between neurometric and psychometric

thresholds when separately considering the pre- and post-training data, the correla-

tion between the changes in perceptual and neurometric thresholds was significant

in each separate group and across all individual irrespective of their training history

(Fig. 5.4).

Altogether, these results strongly suggest that the hMT+ response to a given

RDK coherence level significantly changed as a function of an individual’s training

history; nevertheless, and surprisingly, the hMT+ sensitivity to RDK coherence

discrimination appeared to have only improved in the AV trained group but not in

others.

5.2.2 Classification of coherence levels as a function of the
individual improvement

In order to narrow down the specific effects of training in hMT+ response, we further

classified data according to each individual’s perceptual improvement. Specifically,

participants underwent individualized training; they were not trained hence on the

same set of coherence levels during the training blocks but rather on a selected

set based on an individual’s initial discrimination threshold measured in the pre-

training block. Hence, participants were not trained on the same set of coherence

levels albeit all were tested on the same 7 coherence levels in pre- and post-training

blocks.

On the basis of this, we classified the 7 RDK coherence levels into three sets

solely based on their learned discriminability — i.e. irrespective of the physical RDK

coherence levels — in order to sort data in the pre- and post-training blocks. The

three categories were “hard ”, “easy” and “ learned ”. The “hard ” category consisted of

all stimuli that remained below an individual’s perceptual threshold after training
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Figure 5.3: Neurometric function in hMT+. The amplitude of the current

source estimates (dSPM) in hMT+ were averaged between 200 and 500 ms post-

coherence onset as a function of the seven coherence levels in V (top), AV (middle)

and AVn (bottom). This quantification was performed for the PRE (grey) and the

POST (black) training data. Each individual’s brain response in hMT+ was quan-

tified for each coherence levels. To obtain an individual’s neurometric function, the

amplitudes of the current source estimates in hMT+ were plotted as a function of

visual RDK coherence level. Each individual’s neurometric function thus allowed

deriving a neurometric threshold via Weibull fits (i.e. the level of coherence corre-

sponding to half the amplitude of the sigmoid curve). (a) Examples of individual

neurometric curves for three participants belonging to the V, the AV and the AVn

groups (top, middle and bottom rows, respectively). (b) Averaged fits along with

the mean individuals’ data. The neurometric thresholds obtained in PRE and POST

were compared by carrying out a two-tailed paired t-test. Using this method, we

show that neither V or AVn showed a significant change in threshold (V: t11 = −0.2,

p = 0.84; AVn: t11 = −0.36, p = 0.72) whereas AV showed a significant decrease

of threshold (t11 = −2.34, p = 0.039). This suggests that the neural response

to a given coherence level, hence the neural selectivity in hMT+, has significantly

changed according to the type of training provided to the participants. Specifically,

the sensitivity to coherence discrimination in hMT+ only improved in the AV group.
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Figure 5.4: Changes in visual coherence discrimination thresholds as a

function of changes in neurometric thresholds before and after training.

Differences in individuals’ perceptual thresholds before and after training (POST-

PRE) are reported as a function of the individuals’ variation in neurometric thresh-

olds on per training group basis (V: top left; AV: top right; AVn: bottom left; all

groups: bottom right). In all three training groups, individuals’ improvements in

coherence discrimination thresholds were significantly correlated with the observed

changes in neurometric thresholds derived from source estimate activity in bilat-

eral hMT+. Specifically, correlations were the highest in the V and AV groups (V:

r = 0.71, p = 0.014; AV: r = 0.75, p = 8.3e − 3, respectively) but also in the AVn

group (r= 0.56, p= 0.05). When grouping all individuals, a significant correlation

was preserved (bottom right, r = 0.61, p = 1.1e− 4) . ‘x’ denote statistical outliers.
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(i.e. RDK coherence levels that never benefited from training and did not become

perceptually discriminable for a given participant). Conversely, the “easy” category

corresponded to those stimuli that were already above the individual’s discrimination

threshold before training. Most importantly, the “ learned ” category consisted of

all RDK coherence levels that became discriminable (i.e. from below to above an

individual’s discrimination threshold after training). We then hypothesized that

plasticity should be precisely reflected by a change of neural activity elicited by the

“ learned ” category and not others.

5.2.2.1 Selective training in hMT+ only seen in AV group

Hence, on the basis of these three perceptual categories, we first examined the mean

variations (POST - PRE) of the responses in hMT+ averaged over 200 to 500 ms

(Fig. 5.5) in order to compare them with the previous results. Significant differences

were found between the three groups in the “ learned ” (F2,33 = 5.4, p = 0.0091) and

“hard ” (F2,33 = 4.8, p = 0.015) categories. Specifically, the V and AVn groups

shared a similar pattern of responses across the three categories: opposite varia-

tions in “hard ” and “easy” categories were observed only in V and AVn groups,

consistent with the observed spread of hMT+ responses as a function of the RDK

coherence levels (Fig. 5.2). To the contrary and consistent with the shifts in neuro-

metric thresholds (Fig. 5.3b), the AV group presented a significant response profile

to the “ learned ” category (t11 = 3.23, pcor = 2.4e − 2, bilateral paired t-test with

Bonferroni correction).

This result was confirmed by a finer analysis of the entire time course differences

in hMT+ (Fig. 5.6, first column) when carrying out a pairwise cluster permuta-

tion algorithm (cf. Table 5.1): AV was indeed the only group to show a signifi-

cant response increase for the “ learned ” coherence levels spanning 160–390 ms post-

coherence onset. Hence, with this analysis, we consistently observe that only those

individuals with a history of AV training showed a significant change in hMT+

activity that directly relates to the observed perceptual improvements and those

stimuli that underwent a significant change in perceptual discriminability.

5.2.2.2 Extended selectivity to other ROIs

Considering that hMT+ did not always present selective changes to the “ learned ”

coherence levels notably in the V and the AVn groups, we then asked whether other

cortical areas could significantly contribute to the obtained perceptual improve-

ments. To that aim, neural responses in the observed regions of interest (ROIs, Fig.

5.1) were quantified and contrasted in pre- and post-training as a function of the

same perceptual categories (Fig. 5.6).

As previously done for hMT+, contrasts of post- minus pre-training were sepa-

rately tested for each group and each category by using a pairwise cluster permuta-

tion algorithm. For clarity, only those ROIs and time courses presenting significant

differences are reported in Fig. 5.6 and a summary of significant cluster values and
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Figure 5.5: Functional selectivity in hMT+ for AV training. Coherence lev-

els were formally classified into three groups according to participants’ perceptual

improvements (see main text): “hard ” (blue), “ learned ”(purple) and “easy” (red).

Post- minus pre-training mean dSPM contrasts (±1 s.e.m.) in hMT+ averaged over

a period of 200 to 500 ms post-coherence onset for each training group V, AV and

AVn are shown as a function of these relative coherence levels. Two different pat-

terns clearly emerge: while V and AVn present opposite variations in the extreme

categories (“hard ” and “easy”), AV is characterized by a greater response in the

“ learned ” category. Accordingly, significant differences between groups were found

for the learned (F2,33 = 5, 4, p = 0.0091) and hard (F2,33 = 4.8, p = 0.015) coher-

ence levels. A post-hoc analysis (Bonferroni) showed that differences for “ learned ”

coherence levels were significant in the AV group (t11 = 3.23, pcor = 2.4e−2) and dif-

ferences for the “hard ” coherence levels were significant in the V group (t11 = −3.73,

pcor = 9.9e − 3). ‘*’: corrected p values inferior to 0.05, ‘**’: corrected p values

inferior to 0.01.
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Figure 5.6: Functional selectivity in regions of interest (ROIs) after V,

AV and AVn training. Coherence levels were formally classified into three groups

according to participants’ perceptual improvements (see main text): “hard ” (blue),

“ learned ”(purple) and “easy” (red). Post- minus pre-training mean dSPM contrasts

(±1 s.e.m.) are reported for all three groups (V: top; AVn: middle; AV: bottom).

In hMT+, all categories are reported while in other ROIs only categories with

significant differences are shown for better clarity. Strikingly, only AV presented a

significant difference in hMT+ observed as an increase of amplitude for the “ learned ”

coherence levels. When considering all other ROIs defined in Fig. 5.1, only AV

presented significant time clusters for the “ learned ” coherence levels in right mSTS

while all groups presented significant increases in response to the “easy” category

in ITC. The analysis was extended to bilateral ventro-lateral PreFrontal Cortex

(vlPFC) which remarkably revealed significant time clusters for all three groups but

solely for the “ learned ” coherence levels. Significant clusters were determined using

a pairwise cluster permutation algorithm and are indicated below curves with bars.

‘*’: corrected p values inferior to 0.05, ‘**’: corrected p values inferior to 0.01.



5.2. Results 81

latencies is also provided in Table 5.1. First, and common to all three groups, a

significant response increase in post-training was observed in ITC but solely for the

“easy” category; different latencies were however noticeable in each group (Fig. 5.6,

second column): the response in the V group spanned ∼ 250 to 410 ms, ∼ 330 to

480 ms in the AV and ∼ 380 to 610 ms in the AVn group. This pattern suggests

that color-motion binding in this task may have equally improved in all participants

irrespective of training when the coherence discrimination was easiest.

No significant differences were otherwise seen for any other perceptual cat-

egories in these ROIs. As no other significant changes for the “ learned ” cat-

egory were seen in all ROIs to account for V and AVn perceptual improve-

ments, we added a selection criterion for our analysis. Specifically, several

lines of research have shown that the lateral prefrontal cortex is a major site

of convergence for the dorsal and ventral visual [Ungerleider 1982] and auditory

[Rauschecker 2000] streams but also an important site of multisensory convergence

[Romanski 2004, Romanski 2007, Romanski 2012]. We thus extended our analysis to

bilateral vlPFC and the ROI was delimited based on the Freesurfer neuroanatomical

parcellation. Strikingly, significant time clusters were found in this region specifi-

cally for the “ learned ” category and for all three groups (Fig. 5.6, third column).

Two significant clusters were seen in V spanning ∼ 260 to 390 ms and 550 to 680 ms;

one surprisingly early significant cluster was seen in AV spanning ∼ 190 to 390 ms

and one significant cluster in AVn spanning ∼ 350 to 510 ms. In addition, the

AV group (Fig. 5.6, fourth column) was the only group which presented a signifi-

cant response increase in both the learned and the easy category in right mSTS at

late latencies (∼ 770 to 930 ms) but also, and crucially, significant changes for the

“ learned ” category at the same latencies as in hMT+ (i.e. ∼ 200 to ∼ 400 ms).

Altogether, these results strongly suggest that the boost in sensitivity observed

in hMT+ may not result from local plasticity but from the engagement of a larger

network in the computations of color-motion binding and coherence discrimination

including prefrontal regions.

5.2.3 A larger network distinctively dissociate the three training
groups

We now ask whether a non-selective training effect can be observed irrespective of

the RDK coherence levels across all three groups, thereby reflecting an overall effect

of improvements in the task. Similar to previous analyses, the evoked responses

elicited by the presentation of all RDK coherence levels were grand-averaged, source

reconstructed and averaged within each ROI as defined in Fig. 5.1.

The time courses in pre- and post-training data are illustrated in Figures A.1

and A.2 (see appendix A), respectively. With the exception of visual area V4, no

significant differences were observed between the three groups before training (Fig.

A.1). In post-training, the time courses across the three groups significantly differed

only in right mSTS (Fig. A.2). The source amplitudes in the different ROIs were
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ROI V AV AVn

LEARNED category

160 : 390 ms,
hMT+ n.s.

p = 0.0059
n.s.

mSTS n.s.

180 : 360 ms,

n.s.
p = 0.0088

770 : 880 ms,

p = 0.019

260 : 390 ms, 190 : 390 ms, 350 : 510 ms,

p = 0.0019 p = 0.0044 p = 0.0098

550 : 680 ms,
vlPFC

p = 0.0054

EASY category

250 : 410 ms, 330 : 480 ms, 380 : 610 ms,
ITC

p = 0.0064 p = 0.0054 p = 0.0029

mSTS n.s.
770 : 930 ms,

n.s.
p = 0.0068

Table 5.1: Summary of significant clusters observed in Figure 5.6. Laten-

cies and corrected p values are provided for each ROIs (rows) and for each training

group (columns).

then contrasted between the pre- and post-training blocks and tested with a cluster

permutation algorithm in each group (Fig. 5.7).

First, all three groups presented a main effect of training in ITC corresponding

to positive clusters at increasing latencies, namely in V: 260 to 500 ms; in AV: 300

to 540 ms and in AVn: 500 to 630 ms. Second, no additional effects were found

for the V group. Third in the AV group, a large network was observed revealing

significant post-training responses increase in hMT+ (130 to 290 ms post-coherence

onset), in right mSTS with two temporal clusters (250 to 440 ms and 600 to 900 ms)

post-coherence onset, in V4 (160 to 400 ms), in pSTS (320 to 560 ms) and in AC

(210 to 340 ms). Fourth and interestingly, pSTS and AC presented opposite effects

for AVn, with decrease activity in post-training for latencies of 120 to 320 ms in

pSTS and of 60 to 280 ms in AC.

In order to directly contrast the three training groups, a F-test was combined

with a cluster permutation algorithm: the earliest effect was observed in AC starting

at 80 ms post-coherence onset (and lasting 260 ms), rapidly followed by a long

sustained differentiation in pSTS spanning 120 to 520 ms and in V4 between 160

and 400 ms. A late main effect was observed in the right mSTS at the latencies

spanning 680 to 880 ms. All latencies and p values of significant clusters in Fig. 5.7

are provided in Table 5.2.

To better comprehend the role of mSTS and pSTS, the post- minus pre- con-

trasts of source estimate amplitudes were plotted as a function of post- minus pre-
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Figure 5.7: Main effects of training in all three groups across all coherence

levels. Post- minus pre-training contrasts of mean current source estimates (dSPM,

±1 s.e.m.) across all RDK coherence levels and for each region of interests (see Fig.

5.1). Differential time series are reported in light grey for V, in black for AV and in

dark grey for AVn. The effect of training in a given group was tested with a two-tailed

paired t-test combined with a cluster permutation algorithm: significant differences

are indicated with light grey bars (V), black bars (AV) and dark grey bars (AVn).

In V, main effects of training irrespective of coherence levels can be seen in ITC

from ∼ 200 to 400 ms post-coherence onset. In AV, main effects are seen in several

regions including hMT+, ITC, mSTS, V4, pSTS and AC. In AVn, main effects are

seen in ITC, pSTS, and AC. In order to test the main effects of training type (V,

AV or AVn) irrespective of coherence levels, a F-test was performed in combination

with a cluster permutation algorithm for all ROIs. The shaded areas highlight the

latencies of significant differences between the training groups; red stars indicate

the corresponding degree of significance. As can be seen, four main regions capture

the main differences across the three training groups, namely: middle and posterior

STS, V4 and AC. * corrected p values inferior to 0.05; ** corrected p values inferior

to 0.01 ; *** corrected p value inferior to 0.001.
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pre- vs. post-training — all coherence levels

t-tests F-tests

ROI V AV AVn V, AV, AVn

130 : 290 ms,
hMT+ n.s.

p = 0.0044
n.s. n.s.

mSTS n.s.

250 : 440 ms,

n.s.

680 : 880 ms,

p = 0.0083 p = 0.0055

600 : 900 ms,

p = 0.0015

320 : 560 ms, 120 : 320 ms, 120 : 520 ms,
pSTS n.s.

p = 0.016 p = 0.0078 p = 0.0007

V4 n.s.
160 : 400 ms,

n.s.
150 : 420 ms,

p = 0.0068 p = 0.00095

260 : 500 ms, 300 : 540 ms, 500 : 630 ms,
ITC

p = 0.007 p = 0.0049 p = 0.029
n.s.

AC n.s.
210 : 340 ms, 60 : 280 ms, 80 : 340 ms,

p = 0.0088 p = 0.0049 p = 0.00075

Table 5.2: Summary of significant clusters observed in Figure 5.7. Laten-

cies and corrected p values are provided for each ROIs (rows) and for each training

group (columns).

performance separately for each group (Fig. 5.8). A significant correlation was ob-

served in both ROIs but again, solely for the AV group. This result suggests that

while mSTS and pSTS are not selective to the RDK coherence levels, these regions

play a significant role in the task improvements observed in the AV group but not

in the other groups.

5.2.4 Summary and working hypothesis

Altogether, our results highlight the distinct contribution of different cortical areas

either selective to the RDK coherence levels or to the type of training history of par-

ticipants in the different groups. A summary and working hypothesis is provided in

Figure 9 on the functional role of the ROIs contribution to perceptual improvements

observed in the three groups of participants.

5.3 Discussion

In this study, we asked whether learning to discriminate visual coherent motion

would rapidly benefit from hearing matched acoustic features. To this end, three

groups of participants underwent training with visual (V), correlated (AV) or ar-

bitrary (AVn) audiovisual pairings while being recorded with MEG. As previously

shown in chapter 2, all three groups showed a significant decrease of their visual co-

herence discrimination thresholds after a short training; however, participants in the
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Figure 5.8: Main effects of training in bilateral pSTS and right mSTS are

uniquely observed in the AV group. Mean dSPM contrasts in bilateral pSTS

(left column) and right mSTS (right column) as a function of individuals’ mean

performance increases over all coherence levels in V (top), AV (middle) and AVn

(bottom). dSPM contrasts were computed by collapsing all RDK coherence levels

and averaged over the time windows corresponding to significant differences in AV

(i.e. over 320–560 ms in pSTS and 250–440 ms in mSTS) as reported in Table 5.2.

Significant positive correlations between overall performance and source estimate

amplitude were observed solely in the AV group specifically in pSTS and in mSTS.

‘x’: automatically detected outliers.
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Figure 5.9: A working hypothesis for supramodal processing and reverse

hierarchy plasticity. (a) Synthetic illustration of ROIs showing significant post-

training changes in neural responses after training in the V, AV and AVn groups.

Significant changes in hMT+, V4, ITC and vlPFC were common to all three groups

whereas pSTS, mSTS, and AC were specific to the multisensory AV and AVn groups.

The network observed in post-multisensory training thus implicated more regions

than in visual training. Strikingly, the pattern of activation in the control AVn group

and in the AV group was notably reversed in several regions including pSTS, AC,

mSTS and V4: this suggests selective modulations of these cortical regions based

on the stimuli presented during training. (b) A basic hypothesis for the functional

network implicated in visual learning in the V group. (c) Working hypothesis for

the functional network implicated in the AV and the AVn groups. The distinctive

pattern of cortical activity that significantly dissociated the three training groups

was a significant increase and decrease of activity in AV and AVn, respectively for the

pSTS, mSTS, AC and V4, suggesting direct functional connectivity in these regions.

No significant change of activity was observed in V in these regions. Common to all

three training groups, hMT+ and vlPFC showed discriminable cortical responses

as a function of the learned coherence levels. Additionally, all three groups showed

an increased activity in ITC only for the easy coherence levels. In hMT+, the

increase spread of neural response was shared by V and the control AVn, whereas

selective activity was seen solely for the AV group. Altogether , our results suggest

a regulation of hMT+ activity by upstream computations notably in the AV and

AVn groups.
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AV group significantly outperformed participants in the V and AVn groups. Intrigu-

ingly, V participants were the only ones showing a significant increase in confidence

rating.

Here we found that all three groups showed common dynamic activation pat-

terns in two distinct cortical regions (ITC and vlPFC): a comparable post-training

increase of neural activity in the ventral visual stream (ITC) suggested that color-

motion binding consistently improved when coherence discrimination was easily

achieved. Additionally, all three groups showed increased neural response in vlPFC

specifically for the learned coherence levels, suggesting a strong and selective im-

plication of prefrontal cortex in learning. Conversely, distinct patterns of activity

distinguished the three groups of participants: the multisensory trained groups (AV

and AVn) showed an opposite pattern of post-training activity in a network com-

prising pSTS, mSTS, and AC (cf. Fig. 5.9). This suggests that multisensory training

fundamentally altered the network implicated in the analysis of visual coherent mo-

tion stimuli and that a uni- vs. a multi-sensory training can selectively shape the

activity of the implicated network. Third, and crucially, AV participants were the

only group showing a post-training gain of selectivity in hMT+ as captured by a

significant shift in the neurometric threshold.

Altogether, we interpret our results as evidence for supramodal processing

elicited by the presentation of coherent audiovisual features. Our results sug-

gest that supramodal processing during training allowed the fine-tuning of down-

stream selectivity in visual cortices, consistent with the reverse hierarchy hypothesis

[Ahissar 2004, Proulx 2012]. If this hypothesis is correct, multisensory training can

open new empirical venues for the understanding of top-down plasticity in per-

ceptual learning and greatly speed up the use of sensory-substitution devices in

sensory-impaired population.

5.3.1 Supramodal object representation in vlPFC?

As previously mentioned in chapter 1, the audiovisual stimuli used during training

were specifically designed to mimic the correspondences of auditory and visual at-

tributes predicted from natural communication stimuli such as speech and monkey

vocalizations although we arguably avoided possible overt semantic categorizations

(face, speech). These audiovisual features rely on the correlated temporal structur-

ing of acoustic and visual information and focused on the spectrotemporal attributes

of the signals requiring color-motion binding for overt response (“red (green) RDK is

most coherent”). Hence, during training, the matching between visual and acoustic

features would likely be comparable to the one taking place in the context of natural

stimuli.

In her recent review, Chan [Chan 2013] contrasts the evidence in favor of a do-

main general vs. a domain specific contribution of vlPFC and suggests that vlPFC

primarily represents object-feature information. In our study, a possible interpreta-

tion for the selective activation to the learned coherence levels observed in vlPFC

(Fig. 5.6), irrespective of training groups, may be the increased representational
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salience of supramodal coherence, namely the combined (auditory and/or visual)

features enabling the neural representation of a “coherent object” irrespective of its

color or direction of motion — hence, supramodal coherence. In the context of

learning, the enhanced activation may be relevant by virtue of binding across visual

and/or auditory streams specifically for those levels of coherence newly recognized.

vlPFC is a known site of convergence for the dorsal and visual streams of both

auditory and visual systems and a major site of convergence for the representation

of multisensory information [Romanski 2007, Romanski 2012]. Interestingly, vlPFC

has also been implicated in the representation of communication signals in monkey

recordings [Sugihara 2006] suggesting that this region is particularly well-suited for

the computations of natural and matched cross-sensory stimuli such as the ones

utilized here. These results are further consistent with several neuroimaging studies

showing the implication of vlPFC for semantic retrieval and response selection in

the context of multisensory processing [Werner 2010].

5.3.2 Functional selectivity of hMT+ : psycho- and neurometric
thresholds

Although previous studies have reported activation in hMT+ to the presentation

of auditory stimuli [Poirier 2005, Poirier 2006] and matched audiovisual motion

[Alink 2008, Scheef 2009, von Saldern 2013], the evidence for auditory motion pro-

cessing in this region is scarce. From a neurophysiological standpoint, it has been

shown that the presentation of visual and audiovisual motion elicits the same neu-

ral response in motion area MT [Ilg 2004] but so far no significant response to

the presentation of auditory motion alone was observed in this region. Hence,

and by far, the most convincing evidence for the capabilities of hMT+ to com-

pute motion processing supramodally — i.e. irrespective of the sensory modal-

ity of inputs — comes from studies of sensory-impaired and blind populations

[Morrone 2010, Voss 2012, Ricciardi 2013] in which functional recycling can readily

be observed for the benefit of other sensory modalities (cf. chapter 1).

One study [Bedny 2010] has notably suggested the existence of a sensitive pe-

riod around 2 years of age for the acquisition of visual functional selectivity in this

region. Additionally, the lack of exposure to visual information was shown to pre-

vent visual selectivity in this region although hMT+ in late blind populations can

be functionally recycled to the benefit of auditory motion processing. In this con-

text, we asked whether a short-training capitalizing on cross-sensory matching could

benefit plasticity in this region. In particular, comprehensive reviews have recently

suggested that hMT+ could benefit from top-down processing as a major means to

achieve supramodal selectivity [Morrone 2010, Proulx 2012].

One crucial result of our study is that in healthy individuals, selectivity in hMT+

can significantly benefit from correlated audiovisual sensory inputs during training.

By means of neurometric characterization of MEG signals in hMT+, we showed that

during a short training, neural plasticity in this cortical region was only achieved

in the AV group and not in the V and AVn groups. Hence, the direct compari-
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son of perceptual discrimination and neurometric thresholds suggest that although

all three groups performed better after training, only the AV group showed a sig-

nificant change in neurometric threshold and thus conservatively displayed percep-

tual learning and plasticity [Goldstone 1998, Gilbert 2001, Fahle 2005, Seitz 2005a].

This observation is particularly relevant in complementing a recent discussion on the

interpretation of psychometric thresholds in perceptual learning studies [Gold 2013].

Additional analyses conducted on the datasets obtained during training will shed

light on the specific contribution of auditory information during audiovisual process-

ing and the integrative mechanisms leading to the differentiation of the network in

the multisensory trained groups. The changes in neurometric thresholds observed in

hMT+ are particularly puzzling in light of recent lack of evidence for neurometric

threshold or slope changes after training in this region [Gold 2010]. Below, we ex-

tend our discussion on the selective network dynamics that was shown to dissociate

the three training groups and elaborate a working hypothesis on the implication of

supramodal processing for the top-down fine tuning of motion coherence processing

in hMT+.

5.3.3 Reverse hierarchy and supramodal processing

A more extended network of regions was seen in multisensory trained participants

notably implicating pSTS, mSTS, and AC. Crucially, while activation increased in

these regions in the AV group, activation decreased in these regions in the control

AVn group. These areas showed no changes in the V group. This pattern of results

shows that after training, identical visual stimuli are processed differently pend-

ing participants’ training history even if the implication of vlPFC, ITC and V4 is

preserved in all cases.

First, mSTS is characterized by a patchy organization of multisensory, auditory

and visual selective neurons [Beauchamp 2004a] and has systematically been im-

plicated in the analysis of multisensory timing with possible feedback to sensory

cortices [Noesselt 2007]. In post-training data, pSTS and mSTS correlated with

participants’ improved coherence discrimination threshold in the AV group: one

possible interpretation is that during training, mSTS processed coherent AV motion

and transferred selectivity to hMT+ post-training. The modulation of hMT+ by

mSTS could either enhance the salience of visual coherent motion during training

[Lewis 2010] or facilitate the extraction of task-relevant features for visual process-

ing [Sasaki 2010]. Consistent with this interpretation, no mSTS activity was seen

in the V group and decreased activity was seen in the AVn group.

Crucially then, the functional role of mSTS in post-training tests was preserved

even in the absence of multisensory inputs: this suggests that plasticity implicating

both uni- and multi-sensory neural populations found in mSTS occurred during

AV and AVn training. However, the limited spatial resolution of MEG cannot

disentangle the possible contribution of different neural populations in this region

during or after training.
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Second, pSTS has also been classically implicated in multisensory integration

(cf. chapter 4) and has recently been shown to mediate the temporal narrowing of

audiovisual integration [Powers 2012]. Specifically, changes of effective connectivity

between pSTS and downstream sensory regions have been reported after repeated

presentations of temporally coincident audiovisual stimuli [Powers 2012]. pSTS is

thus largely implicated in the temporal association of multisensory information but

is also associated with the analysis of second-order visual motion [Noguchi 2005] and

biological motion [Saygin 2007]. Considering that post-training response patterns

in pSTS were opposite in AV and AVn, this region may play a switch role that

selectively enables the communication of mSTS with the ventral visual stream (V

and AV, AVn groups, respectively). It is here crucial to note that the differences

solely illustrate participants’ training history and not the mere presence or absence

of AV stimulation.

In sum, we suggest that AV training favored supramodal computations of co-

herence in multisensory regions during training (mSTS) which remained engaged

even in the absence of multisensory stimulation for the benefit of visual processing

(hMT+) via pSTS (Fig. 5.9). Previous studies have reported activation of hMT+

to the presentation of auditory [Poirier 2005] and matched audiovisual motion

[Alink 2008, Scheef 2009]; we thus extend these findings by showing a selective tun-

ing of hMT+ response to the presentation of coherent visual motion after AV train-

ing. In light of recent connectivity measures implicating pSTS [Powers 2012], our

results provide the first evidence for supramodal processing enabling reverse hierar-

chy of learning onto visual-specific areas [Ahissar 2004, Morrone 2010, Proulx 2012].

This scheme is consistent with the view that higher cortices may generalize learn-

ing and fine-tune downstream selectivity notably when considering the selectivity of

vlPFC in all three groups [Ahissar 1997, Ahissar 2004].

5.4 Conclusions

These results suggest that the temporal structure of multisensory features can pro-

foundly affect the analysis of sensory information and de facto implicate multisensory

regions.

Importantly, our results suggest that the spatiotemporal coincidence principle

[Stein 1993] is not only fundamental for supramodal processing but also critical in

shaping up downstream neural selectivity of sensory areas. As such, the use of

sensory features that naturally map across sensory modalities provide a first step

towards understanding the representation of multisensory invariance or supramodal

objects in the brain.

Practical implications of this research are foreseeable for the optimization of sen-

sory substitution devices making use of natural cross-sensory mapping in audition,

somatosensation and vision [Bach-y Rita 2003, Amedi 2007].
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In the previous chapter, we analyzed the change of event-related fields further to

perceptual learning. As previously said, the ERF analysis attempts to answer the

question of when (and optionally where) the neural response evoked by a stimulus

(or more generally any observable event) occurs, assuming implicitly the existence

of a characteristic time scale.

When carrying out scale-free analyses, the aim is however quite different: the

question is not about when, but rather how neural activity is temporally organized

across all time scales. In this chapter, we first review the context and motivations

of conducting scale-free analyses in neuroimaging. We present next the theoretical

definition as well as an intuitive interpretation of the two main parameters estimated

in scale-free analyses, namely self-similarity and multifractality. Finally, we describe

the Wavelet Leader Based Multifractal formalism (WLBMF) used to estimate these

parameters.

6.1 Context

The main drawback of ERF analysis is that it completely fails in characterizing

brain activity in the absence of events, such as during rest or sleep. A growing body
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of evidence shows indeed that spontaneous (or ongoing) brain activity plays a major

role in cognitive functions, as reviewed in [Sadaghiani 2010, Papo 2013].

6.1.1 The role of brain spontaneous activity

Spontaneous activity refers to the modulation of measured brain signals that can-

not be attributed to any explicit events, such as resting-state activity. Most studies

using neuroimaging or electrophysiological recordings focused on task-related brain

activity, considering rest as a sort of passive baseline function. However, since the

discovery of a default mode network (DMN) whose activity systematically increased

at rest and decreased during task [Raichle 2001], spontaneous activity gained im-

portance for the understanding of brain function [Gusnard 2001] and became an

intensive research topic in neuroscience and brain neuroimaging. In addition, it was

argued that 95% of the energy spent by the brain is dedicated to maintaining spon-

taneous brain activity [Fox 2007]. This led to the analysis of resting-state networks

(RSNs) revealed by BOLD functional connectivity in the low frequency range of

approximately 0.01–0.1 Hz by using mainly methods such as (model-driven) seed-

based correlation analysis (SCA) and (data-driven) spatial independent component

analysis (ICA) [Cole 2010]. For instance, it was shown that the dorsal (DAN) and

ventral attention networks (involved respectively in endogenous and exogenous con-

trol of attention) were constantly present in brain activity, even in the absence of

stimuli [Fox 2006]. Another study showed variations of the functional connectivity

between visual and frontal areas in resting-state following a visual task according to

the stimuli used (faces or complex scenes) [Stevens 2010].

However, the relative stability of RSNs across cognitive states (task, sleep, anes-

thesia...) and their similarity with anatomical networks can be taken as an argument

to claim that RSNs are nothing else than physiological markers of anatomical con-

nections or neurovascular dynamics. This is contradicted by several studies showing

evidence of a correlation between inter-individual differences of performance and

the corresponding degree of functional connectivity [Martin 2012]. For instance,

the covariance structure of spontaneous activity at rest was modified after visual

perceptual learning in networks implicated in the task (i.e. the DAN, DMN and

visual area) accordingly to the individual behavioral improvements [Lewis 2009].

Similar results were reported using other paradigms: e.g. the detection of auditory

stimuli predicted by the level of activity in the DAN, DMN and the auditory cortex

[Sadaghiani 2009], memory consolidation reflected by an increase of the connectivity

between the hippocampus and the lateral occipital complex [Tambini 2010], the per-

formance of a memory task predicted by the degree of negative correlation between

the DMN and the working memory network [Sala-Llonch 2012], the performance of

a visual discrimination task predicted by the functional connectivity between visual

and prefrontal cortices [Baldassarre 2012] and four weeks of motor skill learning

accompanied by a stronger connectivity within the motor network [Ma 2011]. At

the individual level, spontaneous prestimulus activity could also predict the visual

motion discrimination on a trial-to-trial basis [Sapir 2005, Hesselmann 2008].
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A solution to disentangle the vascular and neural mechanisms underlying the

BOLD RSNs can consist of using EEG and MEG to investigate their electrophysi-

ological correlates.

6.1.2 Oscillatory vs. non-oscillatory approaches

M/EEG data are classically decomposed into distinct oscillatory bands according to

conspicuous peaks observable in their power spectrum (see Fig. 6.1). They were

given names such as δ (1–3 Hz), θ (4–8 Hz), α (8–12 Hz), β (12–30 Hz) and

γ (> 40 Hz) and appeared to be involved in different cognitive mechanisms (e.g.

slow-wave sleep for δ, memorization for θ, weariness for α, concentration for β and

conscious perception for γ). Contrary to ERF/ERP analysis, this approach has the

advantage to allow the characterization of electrophysiological data acquired at rest

or sleep.

Although the frequencies of these oscillatory bands are much higher than the

maximal frequency observable with BOLD fMRI (due to a relatively low sampling

frequency), their power (or amplitude) fluctuates approximately at the same rhythm

as the slow large-scale BOLD RSNs, allowing direct comparisons between these two

modalities. For instance, simultaneous measures of fMRI and EEG in resting-state

showed positive and negative correlations between the BOLD signal of areas associ-

ated with attentional processing and EEG β and α power respectively [Laufs 2003].

More generally, evidence of a correlation between several BOLD RSNs and EEG

power variations were found in all oscillatory bands with specific couplings (e.g.

the ventro-medial prefrontal cortex with γ power and the visual cortex with δ and

θ powers) [Mantini 2007]. Later, DMN and DAN were estimated by carrying out

SCA on the time-dependent MEG power and were similar to the networks revealed

by fMRI in the range of θ, α and β bands (with the difference that MEG RSNs were

less stable and varied more across different cognitive states) [de Pasquale 2010].

In line with the “segregationist” view on ongoing activity (i.e. the associ-

ation of a frequency band and a spatial organization to a given functional

role) [Sadaghiani 2010], several studies analyzed the connectivity of spontaneous

M/EEG signals in each oscillatory band [Siegel 2012]. They reported a great va-

riety of networks [Liu 2010] modulated by several factors such as body weight

[Babiloni 2011], genders [Jausovec 2010] or Alzheimer’s disease [Stam 2006]. Re-

cent findings show however that these oscillatory bands are not functionally inde-

pendent but are rather well organized via phase-amplitude cross-frequency cou-

plings, leading to the notion of an oscillatory hierarchy or nested frequencies

[Buzsáki 2004, Lakatos 2005, Gireesh 2008, He 2010, Miller 2010]. More precisely,

the phase of very slow fluctuations seems to drive the amplitude of higher frequency

oscillations [Monto 2008].

It can be asked then whether the oscillatory approach is not too simplistic as it

completely overlooks the major part of neural activity that fluctuates very slowly

(<∼ 1 Hz) in an arrhythmic manner [Bullock 2003, Freeman 2009]. Interestingly,

the temporal dynamics of this infraslow activity (also named slow cortical potential)
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measured with electrocorticography (ECoG) correlate with those of spontaneous

BOLD fluctuations [He 2008, He 2009]. Both of them are characterized by a power-

law (or 1/f -type) power spectrum Γ(f) ∼ C|f |−β [Novikov 1997, Bullmore 2004,

He 2010] that indicates self-similar (i.e. scale-free or fractal) temporal dynamics

[Keshner 1982] according to the following property:

Γ(f2)

Γ(f1)
∼ Γ(

f2
f1

), ∀f1, f2.

As it can be seen on Fig. 6.1, the 1/f characteristic of the infraslow activity

appears as a linear slope in the log-scale power spectrum. In the time domain, it

means that M/EEG signals filtered in the very low frequencies cannot be statistically

differentiated from their rescaled dilated version (in limited scale ranges depending

on the extent of the 1/f — here less than 1 Hz). This can be intuitively explained

by the fact that a dilation in the time domain corresponds to a contraction in the

frequency domain.

Figure 6.1: Oscillations vs. scale invariance. A typical MEG signal in time and

frequency domains (middle left and right) is usually decomposed into oscillations

(top left) whose peaks are prominent on the power spectrum (top right) — here

theta (θ), alpha (α) and beta (β). Less conspicuous however, the power in the

infraslow domain presents a 1/f characteristic that corresponds to a linear slope

on the log-scale power spectrum (bottom right). As it can be seen in time domain

(bottom left), it means that this arrhythmic activity is scale invariant, i.e. it shares

the same statistical properties with its rescaled dilated version.
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This property is actually very ubiquitous in dynamic systems (fully developed

turbulence, internet traffic, earthquakes, stock market exchange, ...) [He 2010].

In the context of brain imaging, fractal dynamics were initially attributed to

the intrinsic 1/f electronic device noise and was systematically removed by

high-pass filtering or normalization of M/EEG data. This assumption became

however less certain as a growing body of evidence showed variations of this

property as a function of different cognitive states including rest- versus task-

related activity [He 2011, Ciuciu 2012], stages of sleep [Leistedt 2007, Weiss 2009,

He 2010], task performance [Buiatti 2007, Wink 2008, Monto 2008], awareness

[Tagliazucchi 2013], ages [Suckling 2008, Smit 2011] or genders [Jausovec 2010,

Ahmadi 2013] and pathologies (Alzheimer’s diseases [Maxim 2005, Montez 2009,

Gomez 2009], epilepsy [Kannathal 2005, Serletis 2012], alcoholism [Kannathal 2005]

and anxiety [Tolkunov 2010]), suggesting plausible neurophysiological origins.

It is worth noting that the amplitude fluctuations within each oscillatory

band also present self-similar properties [Linkenkaer-Hansen 2001, Stam 2004,

Hardstone 2012] and have been recently correlated to the power law observed

in behavior [Palva 2013]. Another scaling behavior was found in the EEG mi-

crostates (fluctuating at ∼ 10 Hz) and correlated with the dynamics of fMRI RSNs

[Van de Ville 2010]. There are hence different scaling behaviors that all appear

functionally relevant but the link between them is still unclear. Nevertheless, global

scale-free activity appears to provide a functionally relevant description of brain

organization across different temporal and anatomical scales [Werner 2008].

6.1.3 The origin of the neural 1/f

The arrhythmic infraslow activity comes from long-lasting excitatory post-synaptic

potentials in superficial layers that spread over a large spatial extent, explaining the

observation of long-range brain networks [He 2009].

The origin of its 1/f -type spectrum remains however controversial

[Buzsaki 2012]. For instance, scale-free properties are often associated with the con-

cept of self-organized criticality [Bak 1987, Linkenkaer-Hansen 2001, Werner 2008,

Chialvo 2010], a general model introduced in physics that generates spatial self-

similarity coupled with temporal 1/f “noise” [Bak 1988]. A system with such dy-

namic is trapped into a state of highest susceptibility, where any single perturbation

(at the level of a neuron for the brain) has a very small (yet non-null) chance to

propagate through non-linear interactions towards larger scales (i.e. populations of

neurons) and finally modify the entire system state. This phenomenon has been

observed through neuronal avalanches [Beggs 2003, Plenz 2007, Petermann 2009,

Klaus 2011] of which size and lifetime followed both an inverse power law. On a

larger scale, both the topological properties and the temporal dynamics of RSNs

extracted from resting-state fMRI time series present scale-free properties. More-

over, self-organized criticality has been replicated in neuronal models assuming dy-

namical synapses [Levina 2007] or taking into account brain plasticity and adap-

tation [de Arcangelis 2006, Drew 2006, de Arcangelis 2010]. Another neural net-
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work model proposed by [Poil 2012] was also able to generate scale-free dynamics

of avalanches and oscillations similar to the human alpha waves. In the graph the-

ory, self-organized criticality was associated with the small-world topology of brain

networks [Bassett 2006, Bullmore 2009] and its low metabolic cost [Bullmore 2012].

In strong opposition to this view, other studies have shown that scaling

in local field potentials do not originate from spike avalanches [Dehghani 2012,

Baranauskas 2012] and rather suggested that the 1/f noise results from the fre-

quency filtering of extra-cellular currents (i.e. ionic diffusion) [Bédard 2009]. By

far, there is no compelling evidence of a dependency between the scale-invariance

observed in time dynamics and the power-law cluster size distribution observed in

the topology of brain networks.

These two explanations do not take however in consideration the multifractality

observed in some neuroimaging studies, another scale-free property of brain temporal

dynamics (see section 6.3). A more general model of self-organized criticality would

be hence necessary [Aschwanden 2013].

6.2 Self-similarity

6.2.1 Definition

Scale-free essentially implies that the statistical properties of a signal X(t),t>0 re-

main unchanged after time dilation and proper rescaling. With the specific self-

similar modeling of scale-free dynamics, the proper rescaling is assumed to depend

on a single parameter H > 0 (often referred to self-similarity parameter, and some-

times as the Hurst exponent):

X(t)
d
= a−HX(at), ∀a > 0, ∀t > 0 (6.1)

where
d
= stands for equality in distribution. The equation (6.1) can be reformulated

in terms of statistical moments of X(t) and by setting a = 1
t
:

E|X(t)|q = |t|qHE|X(1)|q, ∀t > 0, ∀q : E|X(t)|q < +∞. (6.2)

Equation (6.2) means that each (finite) statistical moment varies with the num-

ber of samples according to a power law whose exponent is linearly related to

the qth order. Another consequence is that self-similar processes are necessar-

ily non-stationary, which complicates their analysis. However, their increments

Y (n) = X(n + 1) − X(n),n≥0 remain stationary: the most simple and represen-

tative one is the fractional Brownian motion (fBm), whose increment process cor-

responds to a stationary fractional Gaussian noise (fGn). In that case, the Hurst

exponent H characterizes both processes and is strictly comprised between 0 and

1. H is associated with the notion of self-similarity for an fBm and with the notion

of long or short range dependence for an fGN. The latter notion comes from the

auto-covariance function of the fGn (correctly defined since it is stationary) which
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decreases as a power law for large lag τ :

ρY (τ) = EY (n+ τ)Y (n) ∼ τ−γ , τ → +∞, γ ∈ [0, 2]. (6.3)

The equation (6.3) means that it is not possible to define a characteristic time-

scale τ0 beyond which correlations cancel out (contrary to the usual and traditional

modeling of exponential decreases). The parameters H and γ are linearly related

by the relation H = 1− γ/2 and quantify the correlation decrease: while H = 1/2

indicates the absence of correlation (i.e. similar to a white Gaussian noise), H < 1/2

betrays negative correlation and H > 1/2 marks long range positive correlation

also called long memory (i.e. what happens now will still have some influence long

time after). Since the concepts of self-similarity and long-range dependence are

closely related, both terms are equivalently used in practice and are often referred

as “scaling”.

Furthermore, the equation (6.3) can be reformulated in the frequency domain

via Fourier transformation, yielding the following property of the power spectral

density ΓY (f) of an fGn process:

ΓY (f) ∼ f−β , f → 0, where β = 1− γ = 2H − 1. (6.4)

The fGn and fBm are thus characterized by a 1/f -type power spectrum whose

exponent β ranges between −1 and 1 for an fGn and between 1 and 3 for a fBm

(since it is the cumulated sum of an fGn). For more details on these two processes,

the reader can refer to [Samorodnitsky 1994].

The self-similarity paradigm often amounts to modeling time series in a dichoto-

mous manner either as fGn or as fBm. This point of view is however not necessary.

The fGn and fBm processes can be considered as the outputs of a fractional integra-

tion (of parameter H − 1
2 and H + 1

2 respectively) of a white (i.e. delta-correlated)

Gaussian process. The sole parameter H governs the entire covariance structure

and thus, with Gaussianity, completely defines fGn and fBm. With no more need of

distinction between fGn and fBm, their classical definition implying two distinctive

Hurst exponents with 0 < H < 1 can be theoretically extended to a single H ≥ 1

(with the recourse of the notions of generalized processes and tempered distribu-

tions [Samorodnitsky 1994]), while preserving the original intuition: the larger H,

the more long term the covariance is and thus the more structured the process is.

This is in line with the intuitive approach that self-similarity reflects the global reg-

ularity of a signal: as H increases (from 0.2 to 1.8), the signal becomes smoother

(see Fig. 6.2).

6.2.2 Estimation methods

In practice, the electrophysiological signal is essentially modeled as either an fGn or

an fBm (cf. the review [Eke 2002]). Several methods have been developed to assess

the Hurst exponent H directly or via other fractal measures such as the 1/f slope

β or the fractal dimension D, in either time or frequency domains.
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Figure 6.2: Example of a signal with increasing self-similarity. Time courses

of a same signal for different values of H (extended definition allowing H ≥ 1).

They were synthesized by using the circulant embedded method [Dietrich 1997]

with the same seed generator and normalized to unit variance. H starts at 0.2 (i.e.

short memory fGn) and ends at 1.8 (i.e. long memory fBm). Note that H = 0.5

corresponds to a white Gaussian noise and H = 1.5 corresponds to Brownian motion.

Importantly, as H increases, the signal becomes smoother.
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Estimation of the β slope in power spectrum. One of the most simple meth-

ods is to use standard spectrum estimation such as the windowed-averaged Welch’s

periodogram ΓWelch(f) of a signal X:

ΓWelch(f) =
1
n

∑n
k=1 Γ̂X(f, k),

with Γ̂X(f, k) = |
∑tk−tk−1

p=1 w(p)X(tk−1 + p)e−2πfp|2,
(6.5)

where w(p) is a window function (such as Hamming’s window) and the set {tk}k=0..n

defines the boundaries of n (possibly overlapped) segments into which the original

signal is split up. The exponent β is then estimated by fitting a regression line on the

log-scale periodogram in the appropriate scaling range (i.e. in the frequency range

of the power law). The performance of this method is however very weak since it

assumes the signal to be stationary and it does not assess directly H. In addition,

it has been shown that the high-frequency part of the spectrum often deviates from

a pure 1/fβ [Eke 2002].

This method is still very useful to identify the presence of scaling in data and

the frequency (or scale) range where this property holds and has been applied

in some neuroimaging [Novikov 1997, Tolkunov 2010] and cognitive [Gilden 1995,

Clayton 1997] studies.

Autocorrelation Analysis. The autocorrelation function c(τ) of an fGn as a

function of lag τ is given by:

c(τ) =
1

2
(|τ + 1|2H − 2|τ |2H + |τ − 1|2H).

Note that for an fBm, the definition must be extended to a time-dependent function

c(t, τ) since that process is non-stationary. H can be then estimated by fitting this

theoretical function to the estimated autocorrelation of the signal X(k):

ĉ(k) =
1

N−k−1

∑N
i=k+1(X(i)− µ̂)(X(i− k)− µ̂)

1
N−1

∑N
i=1(X(i)− µ̂)2

, with µ̂ =
1

N

N
∑

i=1

X(i),

where N is the number of data samples. In practice, the autocorrelation analysis

does not use all the lags for estimating H but only the first ones since the values are

very close to zero for longer lags, making the estimation less statistically reliable.

This is a major inconvenience for the estimation of H, which is usually done in a

very low frequency range.

Detrended Fluctuation Analysis (DFA). Introduced by Peng and col-

leagues in 1994 [Peng 1994] to study the long-range correlation in DNA se-

quences, DFA has become one of the most popular methods to assess self-

similarity in physiological data and more particularly in brain signals (see

for instance [Linkenkaer-Hansen 2001, Goldberger 2002, Buiatti 2007, Monto 2008,
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Montez 2009, He 2011, Palva 2013, Tagliazucchi 2013] and the review dedicated to

it [Hardstone 2012]).

This analysis exploits the relation (6.2) at the 2nd order of the statistical moment

indicating that the fluctuations of the signal (i.e. the standard deviation) should

follow a power law as a function of the number of samples. Before calculating the

standard deviation at a given scale, the linear trend is removed in order to make the

analysis less sensitive to false correlation induced by trends persisting over longer

time-scales.

In practice, the signal X(k) is first summed (Y (k) =
∑k

i=1X(k)) and next

split into K consecutive segments (generally with 50% overlap) of equal size L.

On the ith segment, the linear trend Y trend
i (k) is removed using a least-square fit

and the variance σ2
L,i of the detrended data segment is estimated. The fluctuation

function 〈F (L)〉 is then defined as the root mean square of the mean variance over

all identically L-sized detrended data segments and follows a power law:

〈F (L)〉2 = 1

K

K
∑

i=1

σ2
L,i ∼ Lα.

After estimating this quantity for different sizes L (generally spaced on a log-

arithmic scale), the DFA exponent α is derived from the linear regression when

plotting log〈F (L)〉 versus logL. In its extended definition, the Hurst exponent H

can be simply assimilated to the DFA exponent α. Otherwise, the signal is modeled

by a fGn for 0 < α < 1 (and H = α) and by a fBm for 1 < α < 2 (and H = α− 1).

This method is essentially used in M/EEG to characterize the amplitude fluc-

tuations of neuronal oscillations: after band-pass filtering the data in a frequency

band of interest, DFA is usually applied to the amplitude envelope extracted with

the Hilbert transform.

Coarse Graining Spectra Analysis (CGSA). This method aims to estimate

the spectral exponent β in the power spectrum by separating first the fractal and

oscillatory components. The basic idea is to exploit the equation (6.1) in the spectral

domain: since a fractal signal X is equal in distribution with its version a−hXa (i.e.

dilated by a factor a and rescaled by a−H), their cross-power spectrum a−HSXXa

should be identical to the power spectrum SXX of the original signal. In contrast, if

the signal only contains harmonics, the cross-power spectrum would be considerably

reduced and close to 0.

A convenient way to compute the power spectrum of the fractal part of the

signal without prior estimation of the Hurst exponent H consists of computing the

quantity:

P (f) =
√

SXXaSXX1/a
.

The β slope (and consequently H) is then derived from this power spectrum.
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6.3 Multifractality

All the series analysis tools presented in the previous section are known to signifi-

cantly lack robustness in disentangling true scaling phenomena from non-stationary

drifts or in accurately estimating H when drifts are superimposed to actual scale-

free properties. In addition, their statistical estimation performance significantly

decreases when analyzed data are non Gaussian [Veitch 1999]. The non-Gaussianity

has another important consequence: the scale-free temporal dynamics in data may

exhibit a more complex behavior than self-similarity, namely multifractality.

6.3.1 Definition

Multifractality can be read as a model for scale-free temporal dynamics that encom-

passes and enriches strict self-similarity, in so far as it enables to account for local

fluctuations — or singularities — along time that cannot be measured in the sole

power spectrum. The relation (6.2) is reformulated in a more general manner:

E|X(t)|q = |t|ζ(q)E|X(1)|q, ∀t > 0, ∀q : E|X(t)|q < +∞, (6.6)

where ζ(q) is called the scaling function (see Fig. 6.3). In the absence of multi-

fractality, this function is linear (ζ(q) = qH, see equation (6.2)) and hence fully

characterized by a unique parameter H. This is why there is neither interest nor

benefit to analyze data at statistical order other than 2. This also implies that

Gaussian processes cannot be multifractal.

In presence of multifractality however, the function ζ(q) is no more linear but

concave and its complete description requires the use of all (finite) statistical orders

(including negative and fractional orders). The characterization of the process is

hence represented by a whole collection of parameters.

Figure 6.3: Scaling function with or without multifractality. In the ab-

sence of multifractality (i.e. for monofractal processes), the scaling function ζ(q)

(in orange) varies linearly with the statistical moment q and proportionally to the

Hurst exponent H. The knowledge of H is thus sufficient to know ζ(q). However,

in presence of multifractality (black curve), the function ζ(q) is no more linear and

must be estimated for each statistical moment.
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These parameters are related to the fluctuations along time of the local regularity

of a signal X(t) measured by the so-called Hölder exponents h(t). They are defined

as the largest positive exponents α such that the local variations of X(t) around t0
can be compared to a local power law behavior:

|X(t)−X(t0)| ≤ |t− t0|α.

the Hölder exponents are particularly interesting to study and quantify singularities,

i.e. local points that do not allow taking a derivative. Intuitively, they give a much

finer account of the local regularity of a function than the usual notions of continuity

and differentiability.

Since describing the collection of Hölder exponents h as a function h(t) over time

would result in tracing a completely meaningless and discontinuous curve, is is often

given in the form of a multifractal spectrum (Fig. 6.4) that can be interpreted as a

sort of histogram. More precisely, the multifractal spectrum maps to each value h

the Hausdorff dimension D(h) reflecting the space-filling degree of the set of points

on the real line where the Hölder exponent equals h. In other words, singularities

associated with the exponent h are almost everywhere in the signal if D(h) = 1 and

are rarer if D(h) < 1. It comes that the Hölder exponent with the largest Hausdorff

dimension (i.e. corresponding to the maximum of the multifractal spectrum) is the

most common singularity strength and can be approximated to the Hurst exponent

H of the entire series. The width of this spectrum can be associated with a measure

of the amount of multifractality (hereafter referred to as M).

In practice, the multifractal spectrum D(h) and the the scaling function ζ(q)

are related by:

D(h) = min
q 6=0

(1 + qh− ζ(q)). (6.7)

This operation is called the Legendre transform and is bijective thanks to the concav-

ity of ζ(q). This relation allows to interpret the typical concave shape of multifractal

spectra in terms of statistical moments q [Aschwanden 2013]: the left leg describes

the fewer, larger amplitude events, which correspond to large positive q, whereas the

right leg reflects the more common, smaller, singularities described by large negative

q.

An intuitive interpretation linking the notions of self-similarity and multifrac-

tality is illustrated in Fig. 6.4. It consists of considering multifractality as local

fluctuations over time around the global 1/f slope associated with the Hurst expo-

nent. Imagine you can estimate the power spectrum at each time point perfectly.

Self-similarity would correspond to the global 1/f slope averaged over all time points

while multifractality would coarsely reflect its variance. These fluctuations are how-

ever not random but present a structured pattern over time that appears on the

multifractal spectrum (their Hausdorff dimension would be null otherwise).

The most commonly used models generating multifractal dynamics belong to

the family of multiplicative cascade processes, among which the multifractal random

walk (MRW). This non-Gaussian process with stationary increments is defined as
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Figure 6.4: Multifractal spectra with or without local fluctuations. Mul-

tifractal spectra reveal the distribution of Hölder exponents h (abscissa) in the

signal by indicating their associated Hausdorff dimension D(h) (ordinate). In the

absence of multifractality (left), the multifractal spectrum shows a single Hölder

exponent H named Hurst exponent. Local fluctuations over time around this expo-

nent changes the spectrum into a concave curve (right) whose broadness corresponds

to the amount of multifractality M .

the fractional integration (of parameter H− 1
2) of the product of a white (i.e., delta-

correlated) Gaussian noise with the exponential of another independent process

whose covariance is controlled in amplitude by M and decreases logarithmically

slowly [Bacry 2001]. The multifractal framework can thus be read as an extension

of fGn to an MRW. Parameter H keeps the intuitive interpretation of global and

overall dependence and structure for the process, while the added parameter M

permits to induce departure from Gaussianity and local fluctuations in time of the

regularity of the signal (cf. Fig. 6.5).

6.3.2 Estimation methods

The following methods presented here were all applied in the field of medical signal

analysis (see for instance the review of [Lopes 2009]) and can all be used to assess

not only self-similarity, but also multifractality. The parameter M is usually defined

as the full width at half maximum of the estimated multifractal spectrum.

Box-counting. The box-counting method is generally used to compute the fractal

dimension D of a spatial object but it can be applied to a time series by considering

it as a two-dimensional picture. It consists of covering a binary image by a series of

grids of decreasing size r (the boxes) and to attribute a normal measure Mi(r) to

each box indexed by i.

If only self-similarity is to be assessed, the measure is simply a binary value (1 if

the signal is contained in the box, 0 otherwise). In that case, the so-called capacity
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Figure 6.5: Example of a signal with increasing multifractality. Time

courses of a same multifractal random walk (MRW) [Bacry 2001] with constant

self-similarity parameter H = 0.5 and different values of M . They were synthesized

with the same seed generator and normalized to unit variance. Initially, the signal

corresponds to a white Gaussian noise (M = 0). Multifractality appears as local

fluctuations over time that induce departure from Gaussianity and that cannot be

observed in the power spectrum. Note that M values usually range around 0.01–0.02

in real-world data. Extreme values such as M ≫ 0.1 would likely be the results of

non-stationary artifacts in electrophysiological data.
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dimension Dc is given by:

Dc = − lim
r→0

log(
∑

iMi(r))

log(r)
.

The Hurst exponent is then given by H = 2−Dc. This method was used for instance

on consecutive EEG data segments to localize epileptic seizures in time as a function

of a time-varying piecewise H [Accardo 1997].

The extended analysis to multifractality requires a more detailed measure such

as the proportion of pixels contained in each box in order to assess the generalized

fractal dimension D(q) from which the multifractal spectrum can be further derived

[Chhabra 1989]:

D(q) = − 1

1− q
lim
r→0

log(
∑

i |Mi(r)|q)
log(r)

, and D(1) = − lim
r→0

∑

iMi(r) log(Mi(r))

log(r)
.

It is worth noting that the capacity dimension corresponds to the generalized fractal

dimension for q = 0. This method is however very sensitive to the grid position,

especially for negative values of q. A first solution can be to relocate randomly the

grid at each iteration of box size r.

Multifractal Detrended Fluctuation Analysis (MDFA). This method

[Kantelhardt 2002] is an extended version of DFA and is identical in the first steps to

the procedure described in section 6.2.2. This time, the fluctuation function Fq(L)

is calculated for different orders q:

Fq(L)
q =

1

M

M
∑

i=1

σq
L,i.

It can be seen that standard DFA is obtained for q = 2. MDFA consists of ana-

lyzing the scaling behavior at each order q by linearly regressing logFq(L) versus

logL under the assumption that Fq(L) ∼ Lζ(q). While the MDFA yields similar

performance than WLBMF (see next section) and WTMM [Kantelhardt 2002] on

numerical simulations, they can give very different results on real-world data; MDFA

seems indeed more adapted to detect the fractality of an fBm [Figliola 2010].

Wavelet Transform Modulus Maxima (WTMM). This method

is one of the most used to assess multifractality in physiological signals

[Ivanov 1999, Goldberger 2002, Shimizu 2004, Wink 2008, Suckling 2008,

Popivanov 2006, Serletis 2012]. It relies on the continuous wavelet transform

by using the second derivative of the Gaussian function as mother wavelet (see

appendix B for more details on wavelets). After computing the continuous wavelet

coefficients CX(a, t) of the time series X(t) at times t and scales a, a “skeleton” of

L maxima lines along scales is extracted. This is done by connecting each local

maximum of |CX(a, t)| at scale a to the temporally closest maxima at scales a− 1.

The greatest value |Csup(k)| encountered along the kth maxima line is subsequently
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collected and the following partition function Z(a, q) of order q at scale a is then

calculated:

Z(a, q) =

L
∑

k=1

|Csup(k)|q ∼ aζ(q)−1.

The multifractal spectrum can then be obtained from the Legendre transform of

ζ(q). The relatively high computation cost of this method (due to the computation

of continuous wavelets and maxima lines) usually constraints its use to the analysis of

1D signals only, which is not the case for the WLBMF (that uses discrete wavelets).

6.4 The Wavelet-Leader Based Multifractal Formalism

(WLBMF)

The wavelet-leader based multifractal formalism (WLBMF) [Wendt 2007] has been

recently shown to provide practitioners with a fast, theoretically efficient and

practically robust framework for multifractality assessment in real-world data

and has been recently used in neuroimaging studies to assess multifractality

[Ciuciu 2008, Van de Ville 2010, Ciuciu 2012].

Let X(t) be a time series and NΨ the number of vanishing moments of the

Daubechies mother wavelet Ψ0(t) (cf. Appendix B). By analogy with the 2nd order

power spectrum defined in the frequency domain, the so-called structure functions

of the qth statistical order (including negative and fractional orders) at the scale j

are defined as:

SX(j, q) =
1

nj

nj
∑

k=1

|dX(j, k)|q, (6.8)

where nj is the number of discrete wavelet coefficients dX(j, k) available at scale

j. It has been shown [Jaffard 2006] that such estimators reproduce accurately the

scale-free properties of X:

SX(j, q) ≈ Fq2
jζ(q), (6.9)

where Fq is a strictly positive constant dependent of q. The estimation of the struc-

ture functions leads hence to the knowledge of ζ(q) and further to the multifractal

spectrum D(h) through a Legendre transform. The concave shape of ζ(q) enables

us to write its polynomial expansion around its maximum:

ζ(q) =

∞
∑

p=1

cp(
qp

p!
). (6.10)

The coefficients cp are called log-cumulants. A meaningful interpretation of these

log-cumulants can be found from the expansion of the multifractal spectrum D(h)

derived from equations (6.10) and (6.7):

D(h) = 1 +
c2
2!

(

h− c1
c2

)2

+
−c3
3!

(

h− c1
c2

)3

+
−c4 +

3c2
3

c2

4!

(

h− c1
c2

)4

+ ... (6.11)
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The four first log-cumulants give then a relevant approximation on the concave

shape of D(h). Firstly, the coefficient c1 characterizes the location of its maxi-

mum and can be thus assimilated to the Hurst exponent H that measures self-

similarity in monofractal processes (cf. Fig. 6.4). Though not rigorously exact,

this correspondence sufficiently holds for the analysis of most real-world data

[Wendt 2007, Ciuciu 2008]. Secondly, the coefficient c2 corresponds to the width

of the spectrum (i.e. the curvature of ζ(q)) and captures hence multifractality (for

monofractals c2 = 0). Because c2 is by definition negative, we can set M = −c2 to

manipulate only positive values. Thirdly, the degree of symmetry of the curve (i.e.

skewness) is indicated by c3 and reflects the degree of inhomogeneity between rarer

large amplitude (q > 0) and more common, small amplitude, singularities (q < 0).

Finally, the expression c4 − 3c2
3

c2
gives information on the flatness of the curve (i.e.

similarly to kurtosis). In practice, the expansion is often truncated to the second

order yielding only c1 and c2 (hence H and M).

The coefficients cp are related to the cumulants CX(j, p) of order p of the variable

ln |dX(j, .)| by the following relation:

CX(j, p) = c0,p + cp ln 2
j .

Therefore, cp can be estimated by means of linear regressions in ln 2j versus CX(j, p),

where the estimates ĈX(j, p) are obtained from standard cumulant estimators

[Kendall 1977]:

ĈX(j, p) = m̂j,p−
p−1
∑

n=1

(

p− 1

n− 1

)

ĈX(j, n)m̂j,n−k, with m̂j,p =
1

nj

nj
∑

k=1

ln |dX(j, k)|p.

Last but not least, this method can be considerably improved by replacing the

discrete wavelet coefficients dX(j, k) by the so-called wavelet leaders LX(j, k), de-

fined as the local suprema of discrete wavelet coefficients within a local neighborhood

and over all finer scales (Fig. 6.6):

LX(j, k) = sup
j′≤j

k′∈λj′

|dX(j′, k′)|, where λj′ = ⌊(k−2)2j−j′+1, (k+1)2j−j′⌋. (6.12)

It has been indeed demonstrated that multifractal attributes are correctly es-

timated using wavelet leaders rather than wavelet coefficients [Wendt 2007]. In

addition, WLBMF is complemented by a non-parametric time-scale bootstrap pro-

cedure that enables the construction of confidence intervals and hypothesis tests

(such as c2 < 0 or M > 0 for testing the presence of multifractality ).

An important prerequisite for multifractal analysis is to identify the range of

scales (or frequencies) over which the linear fits will be carried out. This can be

done by a first inspection on the log-scaled power spectrum or equivalently a wavelet-

based spectrum (called log-scale diagram) to verify the presence of a power law. The

quality of the linear regression can be further supported by the bootstrap confidence

intervals.
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Figure 6.6: Definition of wavelet leaders. The wavelet leader LX(j, k) at scale

j and position k on a dyadic grid is defined as the largest wavelet coefficient LX(j, k)

within a local time neighborhood and at all finer scales (gray shaded area).

The number of vanishing moments NΨ is also an issue: on the one hand, it should

be theoretically large enough to stabilize the estimates of the function structures

ζ(q) of negative order (q < 0) while on the other hand, a too large value of NΨ can

degrade the accuracy of the estimation due to larger border effects [Wendt 2009a]. A

reasonable solution is to choose the smallest NΨ > hmax (where hmax is the maximal

Hölder exponent present in the multifractal spectrum) such that the multifractal

estimates do not vary much if NΨ increases.

Another important point is that this analysis is only adapted for bounded func-

tions, i.e. with positive minimal regularity. In other words, the minimal Hölder

exponent hmin with a non-null Hausdorff dimension in the multifractal spectrum

must be strictly positive. A solution is to integrate the data at an order γ suffi-

ciently high (i.e. γ > hmin) to make hmin positive. In practice for MEG data, hmin

was sometimes comprised between −1 and 0. The signals were hence systematically

integrated once.
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In the previous chapter, we presented the context and motivations of conducting

scale-free analyses in neuroimaging as well as the methods to estimate the param-

eters of self-similarity (denoted by H) and multifractality (denoted by M) in time
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series. As previously said, the multifractal properties of MEG infraslow activity

during rest and task have been scarcely addressed. By analyzing the data acquired

during the learning paradigm (cf. chapter 1) with the wavelet-leader based multi-

fractal formalism (WLBMF), we asked whether multifractality and self-similarity

can bring functionally independent information regarding the neural processes im-

plicated in learning and plasticity.

For all these analyses, WLBMF was always carried out on the integrated time

series using a Daubechies mother wavelet with 3 vanishing moments and within a

restricted scale range (j = 9–14 in the first study and j =10–14 in the next ones,

corresponding respectively to f ≈ 0.1–3 Hz and f ≈ 0.1–1.5 Hz). Moreover, only

data from the V and AV groups were used here for the main reasons that i) AVn

data were acquired much later as a control group for the ERF analysis 2) although

increasing the statistical power, they would also reduce the effect of learning since

it was the less effective training. Nonetheless, we briefly propose a comparison of

the three trainings in the section discussion of the main analysis.

The first section presents two preliminary studies. In the first one, we verified

that MEG signals in sensor space possess indeed scale-free properties and asked

if differences could be already observed between rest- and task-related activities.

At the sensor level, they were statistically significant only by taking the norm of

gradiometers, a property slightly deviating from behavior of standard fGn and fBm

processes. In the second preliminary study, we investigated the scale-free properties

of source-reconstructed MEG signals restricted to some regions of interest (ROIs)

revealed by the ERF analysis (cf. chapter 5). We observed a modulation of these

properties before and after learning that differed between AV and V training.

The second section is dedicated to the main study, in which we assessed the

scale-free properties of MEG signals in the course of training after reconstruction

over the entire cortex. Contrasting brain activity before and after learning showed

intertwined modulations of self-similarity and multifractality in distinct cortical re-

gions that were implicated in the task. Crucially, each individual’s multifractality

parameter converged towards an attractor value that was common to all individuals

suggesting the existence of an asymptotic behavioral performance for all. In other

words, this study shows that the distance of an individual’s multifractality to the

common attractor value predicts an individual’s learning ability.

7.1 Preliminary analyses

7.1.1 Analysis in sensor space

The aim of this preliminary analysis was to investigate the presence of scaling

in MEG data at the sensor level by using standard spectral estimators and the

WLBMF (see section 6.4 for more details). In addition, we asked if the scale-free

attributes would also vary between two cognitive states, namely rest (R) and passive

viewing of visual motion (VM).
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To that aim, we analyzed the data recorded during the hMT+ localizer (i.e.

VM) and during the first block of rest (i.e. Resti, here denoted by R) without

distinction between the 24 participants in V and AV groups (cf. section 1.3). For

more information on the acquisition of the MEG data, the reader is referred to

chapter 3, section 3.4.

Although no significant difference could be found when analyzing direction-

specific gradio- or magneto-meters, statistical differences are exhibited when an-

alyzing the norm of gradiometers. The surprising changes induced by the norm

were better explained by modeling the MEG signals with multifractal random walks

(MRW) than fractional Gaussian noise (fGn) and fractional Brownian motion (fBm).

7.1.1.1 Power law spectrum on MEG recordings

For each subject, each session and each sensor, we computed Welch’s power spectrum

estimate derived in Eq. (6.5). A representative spectrum computed by averaging all

latitudinal gradiometers (grad1) is shown in Fig. 7.1 in black and dark blue lines for

the R and VM sessions, respectively. The presence of scaling or 1/f behaviour clearly

appears as a linear slope in this log–log plot over the (0.1–3 Hz) frequency range.

In addition, this 1/f power spectral density is clearly different from that measured

during the empty recording (light blue line in Fig. 7.1), thus ruling out the hypothesis

that the 1/f is simply driven by the electronic device noise. Interestingly, the

power of acquisition noise is upper bounded by that measured during brain activity

recordings. Finally, α- and β-band oscillations emerge during the presentation of

visual motion stimuli and even more during the rest, while they do not appear in

the empty recording.

As a comparison with the previous method, we also estimated the structure

functions Sd(j, q) for q = 2 only (cf. section 6.4). Structure functions at this 2nd

statistical order are indeed equivalent to the power spectrum while estimated using

discrete wavelets. On a dyadic grid, frequencies f and scales j are related one

another by f = 3
4
fs
2j

, where fs is the sampling frequency. The resulting wavelet-

based spectrum also named log-scale diagram (log2 S
d(j, 2) vs. log2 2

j = j) averaged

over all latitudinal gradiometers is shown in Fig. 7.1 where green, red and yellow

lines represent respectively the R, VM and empty recordings. In contrast to Welch’s

periodogram ΓWelch(f), the Sd(j, 2) estimates are less sensitive to oscillation peaks.

Discrete wavelets are thus more appropriate to analyse the 1/f behaviour in low

frequencies. In addition, since the estimation was carried out by using the whole

data length, we also verified its stability by conducing separately the same analysis

on each half of the signal: the results were very similar.

This preliminary result confirmed the presence of scaling in the data, which can-

not be attributed to the sensor noise. It also shows the advantage of using discrete

wavelets for analyzing the 1/f spectrum. Although spectral analysis provides re-

stricted information on the scale invariance properties, it allows us to determine the

scale range on which the WLBMF analysis should be applied. In the following, we
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analyse the multifractal properties in the scale range [jm, jM ] = [9, 14] (i.e. in the

frequency range 0.1–3 Hz), since the log-scale diagram is linear in this part.

Figure 7.1: Log–log plot of spectrum estimates averaged across all lat-

itudinal planar gradiometers. Welch’s periodograms are plotted in black (R),

dark blue (VM) and light blue (Empty). Wavelet-based estimates are plotted in

green (R), red (VM) and yellow (Empty). Scaling can be observed in the scale

range of j ∈ [9, 14], i.e. between 0.1 and 3 Hz.

7.1.1.2 WLBMF analysis on all sensors

Self-similarity H and multifractality M were estimated by using the WLBMF

method (see section 6.4) for each subject on the integrated time series (i.e. the

cumulative sum) measured in each sensor and for each channel type: magnetome-

ters (mag) and gradiometers along the latitudinal (grad1) and longitudinal (grad2)

directions (hence in total 3×102 sensors). The same procedure was used to estimate

H and M at rest (R) and during passive viewing of visual motion (VM). The mean

values averaged over all subjects are plotted for all sensor types in Fig. 7.2.

In both sessions, all sensors exhibit large self-similarity (H > 0.75), with sys-

tematically higher values in the frontal regions (meaning more self-similar) than

in the occipito-parietal ones. This observation is consistent with previous studies

conducted in EEG and MEG sensors [Weiss 2009, Dehghani 2010]. A one-sided t-

test was carried out in each sensor and each session to localize regions and sensor

types exhibiting long memory (null hypothesis H0: H ≤ 0.75 versus H1: H > 0.75)

and was rejected everywhere even after Bonferroni correction (pcorr ≤ 10−6). It is

also worth noting that H > 1 in certain sensors, which violates the validity of fBm

model.
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Figure 7.2: Mean self-similarity distribution over sensors at the group-

level. All sensors show significant long memory (H > 0.75), with greater values in

the frontal area. No significant differences appear however between the two blocks

R and VM. Grad1, Grad2: orthogonal planar gradiometers; Mag: magnetometers.

In the same manner, Fig. 7.3 shows the topographies of the mean estimates of

multifractality M averaged over all subjects. Multifractality (M > 0) is observed on

the gradiometers located in the occipito-parietal regions. It is however not significant

at the group-level when performing a one-sided t-test in each sensor (null hypothesis

H0: M ≤ 0 versus H1: M > 0): due to a large between-subject variability, H0

was not rejected after Bonferroni correction (puncorr ≈ 10−2) for a False Positive

Rate (FPR) of 5%.

Figure 7.3: Mean multifractality distribution over sensors at the group-

level. Contrary to self-similarity, multifractality is restricted to some sensors that

vary with individuals. As a result, no specific sensors could be identified to present

significant multifractality at the group-level. In addition, no significant differences

appear between the two blocks R and VM. Grad1, Grad2: orthogonal planar gra-

diometers; Mag: magnetometers.
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Paired t-tests were also computed to compare the R and VM blocks, where the

null assumption consists of assuming the same mean values of H and M in each

sensor between the two blocks. The null hypotheses H0: HR = HVM and H0:

MR = MVM were rejected in none of the sensors, indicating that no significant

difference can be exhibited between ongoing and task-related activity. However,

in several MEG studies, the signal of interest is usually considered as a non-linear

combination of both types of gradiometers, namely the ℓ2-norm of gradiometers.

Therefore, we decided to analyse the norm of gradiometers too.

7.1.1.3 WLBMF analysis on the norm of gradiometers

As each pair of gradiometers is orthogonal, their norm is simply defined by ‖ ~grad‖ =
√

grad2
1 + grad2

2. As already done, we estimated the self-similarity and multifrac-

tality parameters for the 102 pairs of gradiometers ‖ ~grad‖ and then computed their

mean values averaged over individuals in R and VM blocks separately.

A very noticeable result (Fig. 7.4, left) is the global reduction of self-similarity

shown by the decrease of H in both sessions (compared to Fig. 7.2). Nonetheless, the

self-similarity remains large enough to be statistically significant everywhere (H >

0.5). We then compared the two sessions by computing the contrast ∆H = HR −
HVM in each sensor and for all individuals (see the mean contrast in Fig. 7.4, middle)

and testing the statistical significance of this difference using a paired t-test (null

hypothesis H0 in each sensor: HR = HVM ). As shown in Fig. 7.4 (right), significant

differences (pcorr < 10−2) emerge in the occipital area where ∆H > 0. This finding

is consistent with the literature dealing with the task-induced modulation of scale-

free properties [He 2011, Ciuciu 2012] observed in fMRI.

Figure 7.4: Self-similarity distribution computed with the norm of gra-

diometers. Left : Mean self-similarity averaged over all participants during rest (R)

and passive viewing of a visual motion (VM). Middle: Mean difference between the

R and VM blocks. Right : Uncorrected p-values resulting from the between-session

paired t-test.

The multifractal behaviour of the norm ‖ ~grad‖ measured through the values of M

is emphasized in Fig. 7.5. As it can be seen, the amount of multifractality increases

by taking the norm (when comparing with Fig. 7.3). In addition, multifractality is



7.1. Preliminary analyses 117

more pronounced in the block R than in the block VM in the occipito-parietal area

(∆M = MR − MVM > 0 in Fig. 7.5, middle). More precisely, this area seems to

correspond to the region targeted by the hMT+ localizer (cf. Fig. 5.1a). The sta-

tistical paired t-test performed in each sensor with H0: MR = MVM was significant

in this area but not enough to survive to Bonferroni correction for FPR=5%.

Figure 7.5: Multifractality distribution computed with the norm of gra-

diometers. Left : Mean multifractality averaged over all participants during rest

(R) and passive viewing of a visual motion (VM). Middle: Mean difference between

the R and VM blocks. Right : Uncorrected p-values resulting from the between-

session paired t-test.

7.1.1.4 Simulation with multifractal random walks (MRW)

To understand the impact of the ℓ2-norm on the multifractal properties, we consid-

ered a simplified problem where grad1 = grad2, meaning that ‖ ~grad‖ ∝
√

grad2
1 =

|grad1|. Hence, our simulation amounts to estimating the multifractal properties of

a MRW process X after taking the absolute value |X| and to see whether it would

reflect the behavior observed in our data. We synthesized 200 MRW processes

[Bacry 2001] with different values of multifractality (MX ∈ {0, 0.005, 0.01, 0.05})
and self-similarity (HX equally spaced from 0 to 1.25). In the case MX = 0, the

MRW process is equivalent to a fGn if 0 < HX < 1 and a fBm for HX > 1.

Given that the proportion of sign changes psign in X is the only parameter that

induces regularity changes in |X| (i.e. no addition of irregularity if X is always

positive or negative), psign was expected to be the main cause of these observations.

Importantly, Fig. 7.6a shows that psign is related to the Hurst exponent HX in the

case of a fGn and a MRW (if HX < 1) and that it is independent of MX . This can

be intuitively explained by the fact that these processes are zero-mean and that HX

reflects the degree of fluctuations around their average. It is also noteworthy that

MEG signals are approximately zero-mean too due to the online high-pass filtering

(> 0.03 Hz).

We can hence manipulate the proportion of sign changes by modifying the value

of HX . According to [Helgason 2011], the theoretical behavior of H|X| as a function

of HX is known for a fGn: it depends on the Hermite rank of the function x −→
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Figure 7.6: How does the norm impact the scale-free properties of a

signal X. 200 MRW processes were several times synthesized with different values

of multifractality MX . The case MX = 0 corresponds to a fGn for HX < 1 and

a fBm for H > 1. Scale-free properties of MEG data (grad1 and |grad1|) are also

plotted in black. (a) The proportion of sign changes psign decreases with the self-

similarity parameter HX of a MRW independently of multifractality MX . As soon

as HX > 1, psign remains at a very low level. (b) Variation of the Hurst exponent

H|X| as a function of HX for different amounts of multifractality. The fGn (in blue,

HX < 1) shows a decrease of self-similarity accordingly to the theoretical prediction

(see main text), while injecting multifractality raises the floor value of H|X|. In

the case HX > 1, applying the norm on X does not modify its Hurst exponent if

MX = 0 (i.e. H|X| = HX for an fBm). MRW processes (with MX > 0) also present

a linear variation which slightly differs however as H|X| < HX and which is closer to

experimental MEG data (as it can be seen on the zoomed graph). (c) Difference of

multifractality M|X| −MX as a function of HX . Contrary to MRW processes with

MX > 0, the norm does not induce multifractality or estimation bias on a fGn and

a fBm.
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|x|, defined as the index of the first non-zero coefficient of its Hermite polynomial

expansion 1. Here, the Hermite rank is equal to 2, and H|X| is given by:

H|X| =

{

2HX − 1, HX ≥ 0.75

0.5, otherwise
. (7.1)

In the case of a fBm, the Hurst exponent remains theoretically unchanged (H|X| =
HX) since |X| ≈ X. In agreement with the theory, we observed indeed the expected

behavior of H|X| in the absence of multifractality (Fig. 7.6b, blue curve). In the

case of a MRW with MX > 0, the theoretical results are unknown. The simulations

show that the behavior is close to a fGn and also depends of MX (Fig. 7.6b). In

addition, we overlapped on the same graph (black curve) the values estimated in

the latitudinal gradiometers (grad1 and |grad1|) and averaged over all subjects. A

closer inspection shows that long memory in MEG data decreases even more than

what is predicted by our models.

Fig. 7.6c illustrates the change of multifractality M|X|−MX as a function of HX

for our different models as well as for MEG data. As it can be seen, taking the norm

does not modify the estimation of multifractality for fBm and fGn processes (i.e. the

processes remain monofractal). In the case of MRW processes, we observe a slight

reduction of multifractality if HX < 1 and conversely a more important increase of

multifractality if HX > 1. This pattern seems to reflect more the behavior of MEG

data.

Therefore, the apparent contrast in the occipital area when analyzing the norm

of gradiometers can be explained by the number of sign changes in the gradiometers

(or by their phase) and the initial presence of multifractality. Because gradiometers

measure the spatial derivative of the magnetic fields in two orthogonal directions, a

change of sign suggests a change of source orientation or even perhaps of the source

itself. Moreover, these simulations confirm that MEG signals are better modeled by

MRW than by fGn or fBm.

7.1.1.5 Discussion and conclusion

We have demonstrated the presence of long memory in MEG data over all sensors.

A small amount of multifractality was observed on the gradiometers in the occipital

and parietal scalp regions. Interestingly, only the norm of gradiometers exhibits a

modulation of the multifractal properties between ongoing and task-related activity.

Additionally, this modulation was very localized to an area probably sensitive to the

nature of the stimuli (as assessed by the ERF analysis, cf. chapter 5). It would be

very interesting to change the sensory context (e.g. auditory stimuli only) in order

1Hermite polynomials Hm(x) of order m are defined by Hm(x) = (−1)mex
2/2 dm

dxm
e−x2/2,m ≥ 0.

For instance, H0(x) = 1, H1(x) = x, H2(x) = x2−1... They form an orthogonal basis of the Hilbert

space L2(R, e−x2/2dx), which means that any real square-integrable function f(x) can be expanded

in Hermite polynomials as f(x) =
∑∞

m=0
cmHm(x). Let 〈f, g〉 =

∫
+∞

−∞
f(x)g(x)e−x2/2dx be the

inner-product, the coefficients cm are then obtained as follows: cm = 〈f,Hm〉
〈Hm,Hm〉

. In the case of

f(x) = |x|, the first two coefficients c0 and c1 are null since f(x) is an even function.
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to check whether the modulation moves to the expected auditory regions, further

confirming the specificity of our results.

The norm of gradiometers seems to capture more information. This is largely

due to the nonlinear nature of the norm and the number of sign changes in the zero-

mean gradiometer signals. The contrast between R and VM in the occipital area

can be interpreted as a higher rate of source orientation changes in hMT+ during

the presentation of RDK. Importantly, we propose that this result should extend to

a more general concept: in any imaging modalities (e.g. fMRI), the knowledge of

any nonlinear transformation in the generative model of the data can be crucial to

correctly interpret its multifractal properties.

The statistical analysis in sensor space at the group-level is limited by the absence

of spatial normalization across the individuals: not only their brain anatomy is

different, but also their head position inside the Dewar. This is particularly relevant

regarding the individual sparse distribution of multifractality over sensors. This led

us hence to carry out further analysis in the source space. Another factor that might

explain the weak difference between rest- and task-related activities at the sensor

level is that the subject was not truly engaged in the task but only performs as

passive viewing of visual motion.

7.1.2 Analysis in source space

After having investigated the modulation of scale-free properties between ongoing

and evoked activities in sensor space, we now asked whether refined modulations

of scale-free properties could be observed after visual learning in rest- and task-

related activities for two types of training: V and AV. Based on recent findings

reporting that spontaneous activity at rest is modified by learning [Lewis 2009], we

hypothesized that V and AV groups should present different changes in self-similarity

H and multifractality M . The psychophysical results show indeed that AV training

is more efficient than V (cf. chapter 2). Crucially, specific functional plasticity in

hMT+ was only induced by the AV learning, confirming the effectiveness of the AV

training (cf. chapter 5).

7.1.2.1 Source reconstruction procedure

According to the ERF analysis, the neural network involved in training is too com-

plex to analyze data in sensor space (besides the issue of group-level analysis).

The continuous signals acquired during the learning paradigm were hence source-

reconstructed by estimating their minimum-norm estimates (see section 3.4). As a

consequence of the previous analysis conducted in sensor space, we paid particular

attention to avoid any non-linear transformation that would modify the scale-free

properties, such as taking the norm of source dipoles. Therefore, we only kept their

radial components (note that this is also the recommended procedure to carry out

time-frequency analysis in the source space).
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Since the number of samples is extremely large (approximately 600.000 samples

per recording block), as well as the number of vertices covering the cortical mesh

for source-reconstruction (10242 vertices per hemisphere), we limited this prelimi-

nary analysis to five regions of interest (ROIs) identified for each individual in the

ERF study (cf. chapter 5): 1) the hMT+ complex involved in visual motion pro-

cessing, 2) the visual area V4 involved in color processing, 3) the inferotemporal

cortex (ITC) involved in object recognition, 4) the middle superior temporal sul-

cus (mSTS) and 5) the posterior superior temporal sulcus (pSTS), that are both

involved in multisensory processing.

In the main analysis, the scale-free properties are estimated over the whole cortex

decomposed into 138 labels provided by the cortical parcellation of Freesurfer. In

both cases, time series reconstructed at vertices belonging to the same label were

regrouped and averaged into a unique time series. In this procedure, time series’

signs were flipped according to vertices’ anatomical orientation in such a way that

signed activations would not cancel out after averaging (which is the standard label

averaging procedure used by the MNE software). We verified that the WLBMF

estimates did not dramatically differ between 1) first averaging (sign-flipped) signals

over vertices of a same label and computing WLBMF estimates and 2) computing

first WLBMF estimates in all vertices and averaging over each label (see Fig. 7.7).

We rejected the second option as it was computationally intensive and not realistic

(more than 10000 vertices for only 306 sensors).

7.1.2.2 Difference between V and AV in self-similarity

For each ROI and for each subject, we estimated the self-similarity H of the recon-

structed MEG signal during the rest and the execution of the task before and after

training (i.e. blocks RESTi, RESTf , pre- and post-training TESTs, cf. Fig.1.1).

We verified that the spectral properties of the signals did not dramatically change

before and after source reconstruction by visually inspecting the Welch’s peri-

odograms. The scaling range common to all spectra was defined over the scale

range j = [10, 14] (i.e. over the frequency range f = [0.1, 1.5]Hz).

The mean differences ∆H = HPOST−HPRE after AV (left) and V (right) training

in each ROI are shown in Fig. 7.8a. A one-tailed one-sample t-test was carried out

in each ROI to assess the statistical significance of the difference. Non-significant

differences (pcorr > 0.05, Bonferroni corrected) are indicated with grey colors and

group-level standard deviations are indicated with bars. Significant decreases of self-

similarity are reported after both trainings in hMT+, and are specifically observed in

ITC and mSTS for AV and in V4 and pSTS for V. Importantly, the scale-free prop-

erties of the task-related activity evolved globally in the same direction irrespective

of the training type.

However, if we look at the mean differences of self-similarity in brain signals

recorded at rest before and after training, we observe significant decreases only for

the AV group in hMT+ as shown in Fig. 7.8.b. In contrast to evoked activity, the

training type is better distinguished in the resting state activity (i.e. ongoing fluc-



122 Chapter 7. Scale-free analysis of acquired MEG data

Figure 7.7: Impact of averaging sign-flipped signals over all vertices in one

label on scale-free properties. (a) For all participants, raw signals measured

in TASKi (cf. paradigm in section 1.3) were reconstructed in all vertices of the

same label colored in red (right pSTS / hMT+). Amounts of self-similarity H and

multifractality M were estimated in all vertices and averaged to be compared with

the values of H and M when estimated directly from averaging sign-flipped signals

over the label. (b) H boxplot showing the distribution of individual H values

estimated on the mean signal (left) and averaged over all H values in each vertex

(right). No statistical differences were observed (two-tailed paired t-test, t23 = −1.2,

p = 0.26). (c) M boxplot showing the distribution of individual M values estimated

on the mean signal (left) and averaged over all M values in each vertex (right). No

statistical differences were observed (two-tailed paired t-test, t23 = −0.47, p = 0.64).

The median is reported in black; the average in red. Boxes contain values between

the first and the third quartiles. Whiskers extend to the 5th and 95th percentiles.
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Figure 7.8: Changes of self-similarity following V and AV training. In each

group, the contrast ∆H has been measured from the source reconstructed MEG

signals measured during pre- and post-training tests (a) and during the first and

last blocks of rest (b). ROIs presenting no significant differences after Bonferroni

correction are colored in grey. * and ** indicate a corrected p-value inferior to 0.05

and 0.01 respectively.
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tuations) in which only AV trained participants present a decrease of self-similarity

in cortical areas involved in plasticity.

7.1.2.3 Difference between V and AV in multifractality

Fig. 7.9 shows the mean differences of multifractality ∆M between pre- and post-

training in evoked (panel a) and ongoing (panel b) activity. Again, a one-tailed

one-sample t-test was carried out in each ROI and Bonferroni corrected to assess

the statistical significance of the difference. We only found significant increases of

multifractality in the V group in V4, suggesting a modulation of the multifractal

properties during evoked activity with the training type. Moreover, no significant

mean differences of multifractality at rest could be found, as reported in panel b.

Figure 7.9: Changes of multifractality following V and AV training. In

each group, the contrast ∆M has been measured from the source reconstructed MEG

signals measured during pre- and post-training tests (a) and during the first and

last blocks of rest (b). ROIs presenting no significant differences after Bonferroni

correction are colored in grey. *: corrected p-value inferior to 0.05.

7.1.2.4 Discussion and conclusion

In this preliminary study, we analyzed for the first time the scale-free properties

of brain infraslow activity measured by MEG and reconstructed on the cortical

surface. In this manner, we could identify the neural sources for each individual

and overcome the classic issue of spatial normalization across the participants that

arises in sensor space.

This analysis exhibits modulations of self-similarity and multifractality entailed

by perceptual learning. More precisely, our results show a reduction of self-similarity
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in task-related activity that occurs after both trainings, without clear distinction

between the natures of the learning process. It might be interpreted as an increase of

the neural excitability [He 2011, Maxim 2005] that would allow the participants to

respond more quickly after the stimulus onset. Indeed, all participants’ reaction time

after training considerably decreased irrespective of the training type (cf. chapter 2).

Alternatively, these changes can also be attributed to a highest level of attentional

focus.

Moreover, we observed an additional reduction of self-similarity in spontaneous

activity of hMT+ after AV training only. Given that AV training was not only the

most effective training but also the only one to induce specific plasticity in hMT+,

these changes in self-similarity in resting-state activity might reflect functional plas-

ticity. This is consistent with other studies in fMRI showing that learning sculpts

resting-state activity [Lewis 2009].

No explanation has been given yet concerning the sporadic presence of multi-

fractality in brain signals. Here, we observed an increase of multifractality during

the task only after V training. These fluctuations of scale-free properties might re-

flect transient changes induced by an unachieved training that would disappear as

soon as the asymptot is reached (i.e. like in AV learning). They might also reflect an

attentional modulation that could indicate the absence of a true perceptual learning.

The interpretation and the significance of these results is however limited by

the small number of areas considered here: 1) we cannot affirm their specificity

and 2) contradictory results can be found in other areas. To overcome this issue,

we must thus analyze the whole cortex. In addition, we have not exploited yet

all the MEG recordings acquired during the learning paradigm. They might bring

supplementary information for the comprehension of the mechanism relating the

modulations of self-similarity and multifractality to perceptual learning.

7.2 Main analysis

Based on the preliminary analyses, we know that MEG signals are characterized by

long memory and multifractality in the infraslow domain that can be modulated not

only between rest and task but also by perceptual learning. Several questions remain

however, among which: whether these modulations are specific to areas involved in

the task, whether multifractality and self-similarity interact during learning and

plasticity and how these properties are related to the individual behaviors.

To address these questions, we computed the WLBMF estimates of self-similarity

H and multifractality M of MEG source-reconstructed signals in all blocks of rest,

test and training (cf. learning paradigm in section 1.3) over the whole cortex by

using the Freesurfer parcellation (138 labels, see section 7.1.2.1 for more details).

We found specific interplays between self-similarity and multifractality in dis-

tinct cortical regions that correlated with individual learning. Most astonishing, all

individuals’ multifractality parameters in these regions converged towards a single
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attractor value: the distance between an individual’s and the attractor’s multifrac-

tality parameter predicts the individual’s learning.

7.2.1 Results

In this study, we used the data of 24 participants (V and AV groups) without any

distinction between the training categories. This was first motivated by the need

to increase the statistical power of the analysis conducted over the whole cortex as

well as to reduce the complexity of the paradigm by addressing the question of the

impact of visual learning on scale-free properties only (i.e. without regards to the

role of multisensory integration).

For illustration purposes and common referencing, results are shown on the

FreeSurfer average brain [Fischl 1999b].

7.2.1.1 Self-similarity and multifractality over the cortical surface

Similarly to preliminary analyses, MEG power spectra were first randomly inspected

for different MEG sensors and for all individuals and sessions. All inspected spectra

showed a 1/f behavior over frequencies ranging in f = 0.1–1.5 Hz, which corre-

sponds to scales ranging in j = 10–14. The same procedure was carried out on

source reconstructed data and replicated for different individuals and cortical re-

gions. Representative power spectra averaged over all individuals and cortical la-

bels during the first experimental blocks (Resti and pre-training TEST) are shown

in Fig. 7.10. Coherent with Fig. 7.1 drawn in sensor space, a modulation between

rest and task can also be observed in both the 1/f domain and the prominent peak

of alpha (8–12 Hz).

Subsequently, the WLBMF analysis was carried out on source-reconstructed

MEG data over the entire cortical surface, for all individuals and all experimental

blocks. We first assessed how self-similarity (H) and multifractality (M) were orga-

nized during rest and task before any training had taken place. To insure that the

effects would not be attributable to reconstruction-induced artifacts, we compared

the same quantifications estimated in sensor space on a representative participant

(see Fig. 7.11). WLBMF estimates in sensor and source spaces shared the same

range of values and had similar distributions.

At the group-level, a self-similarity topography was consistently observed across

all participants in the shape of an occipito-frontal gradient (Fig. 7.12a). During pre-

training, the measured parameter H was significantly greater than 0.5 (which would

correspond to white noise) and ranged from 0.8 to 1.2. The presence of multifrac-

tality (i.e. M > 0) was then tested over the whole cortical surface: only occipital,

temporal and inferior frontal regions showed a significant amount of multifractality

during pre-training (Fig. 7.12c).

At rest, self-similarity and multifractality showed a very similar topography (fig-

ure not shown) and were correlated across individuals during rest and task. Specifi-
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Figure 7.10: Power spectra of reconstructed MEG cortical currents. Mean

Welch’speriodograms during the first block of rest (RESTi, in black) and the pre-

training TEST (gray) averaged over all participants and labels (±1 s.e.m) are plotted

in logarithmic coordinates. The 1/f spectrum indicates the presence of scaling

in the range j = 10–14 corresponding to the frequency range f = 0.092–1.5 Hz.

Multifractal analysis was thus conservatively performed in this restricted scale range.

Figure 7.11: Self-similarity and multifractality topographies of a repre-

sentative individual in sensor space and source space during pre-training.

(a) H topography in the three sensor types (left) and on the cortical surface with

MNE reconstruction (right). (b) M topography in the three sensor types (left) and

on the cortical surface with MNE reconstruction (right). Only positive M -values

are shown. The ranges of H and M values in sensor and source space are very

similar, as well as their distribution (H occipito-frontal gradient, multifractality

in parietal and temporal regions). Grad1, Grad2: orthogonal planar gradiometers;

Mag: magnetometers.
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Figure 7.12: Decrease of self-similarity and increase of multifractality

after training. Cortical maps of self-similarity (H) and multifractality (M) of

source-reconstructed MEG data averaged over all subjects during pre-training test

(left column) and maps of post- minus pre-training contrasts of these scale-free

properties (right column). (a) Average self-similarity ranges from 0.8 to 1.2 and

followed an occipito-frontal gradient increase. (b) Only labels showing significant

differences of self-similarity (i.e. ∆H 6= 0, p < 0.05 after FDR correction) between

pre- and post-training are displayed. Training mainly induced a decrease of self-

similarity in the occipito-parietal regions thereby intensifying the initial H gradient.

(c) Only labels showing significant multifractality (i.e. M > 0, p < 0.05 after

FDR correction) before training are displayed. (d) Only labels showing significant

differences of multifractality (i.e. ∆M 6= 0, p < 0.05 after FDR correction) between

pre- and post-training are shown. Remarkably, training increased multifractality in

some of the same areas presenting a decrease in self-similarity. However, the latter

observation was confined to parietal regions.
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cally, self-similarity was systematically larger at rest than during task whereas mul-

tifractality was systematically smaller at rest than during task (Fig. 7.13).

Figure 7.13: Modulation of scale-free properties between rest and task.

(a) In all labels, the mean self-similarity H averaged over all rest blocks was corre-

lated with mean self-similarity averaged over all task blocks for all individuals (ρ 6= 0,

p < 0.05 all labels survived after FDR correction). The scatterplot is averaged over

all significant labels and shows that i) if an individual has higher self-similarity at

rest than another individual, he also has higher self-similarity during the task and

ii) self-similarity at rest is greater than during the task. (b) Only labels presenting

a significant correlation between the mean amount of multifractality M averaged

over all rest blocks and the mean M over all task blocks for all individuals (ρ 6= 0,

p < 0.05 after FDR correction) are shown. The scatterplot is averaged over all sig-

nificant labels and shows that i) if an individual presents more multifractality at rest

than another individual, he also presents more multifractality during the task and

ii) multifractality during the task is greater than at rest. Automatically detected

outliers are indicated by ‘x’.

Second, we investigated whether training induced changes in self-similarity and

multifractality during rest and task. A first crucial observation showed that the

range of frequencies (or scales) over which scale-free properties is present was not

significantly modified during task. Additionally, significant decreases of H between

pre- and post-training TESTs were mainly found in the occipito-parietal region;



130 Chapter 7. Scale-free analysis of acquired MEG data

this decrease of self-similarity thus accentuated the occipito-frontal gradient initially

observed (Fig. 7.12b). Even more remarkably, a significant increase of multifractality

in post-training was found approximately in the same cortical regions, yet in a much

more specific fashion (Fig. 7.12d). No significant changes were obtained between the

first and last rest blocks (RESTi and RESTf , respectively).

7.2.1.2 Decreased self-similarity correlates with learning

To investigate whether these variations were functionally relevant, the decreases of

self-similarity between pre- and post-training TESTs were correlated with hit rates

and confidence ratings on a per individual basis. Three specific cortical regions

showed significant correlations (Fig. 7.14a): in the left V4/inferior temporal cor-

tex, H decreases positively correlated with increased hit rates (Fig. 7.14c); in the

right posterior superior temporal cortex (pSTC) and human motion area (hMT+),

decreases in H positively correlated with increased confidence ratings (Fig. 7.14d).

A similar analysis this time carried out on resting-state data (RESTf −RESTi)

showed that in the middle superior temporal cortex (mSTC, Fig. 7.14a) H varia-

tions were negatively correlated with increased hit rates (Fig. 7.14b). The observed

increases in multifractality did not correlate significantly with any behavioral index.

The decrease in H observed in the occipito-parietal regions after training was

accompanied by an intensification of the occipito-frontal H gradient. We thus tested

whether perceptual improvements could be attributed to this intensification: com-

puting the correlation coefficients between gradient changes and task improvements

(hit rate and confidence rating) lead to no significant effects. Similarly, we in-

vestigated whether H per se was correlated with performance but no significant

correlations were found between H and individual performances measured in pre-

and post-training TESTs.

7.2.1.3 Changes of self-similarity and multifractality are anticorrelated

Although the reported increase of multifractality did not correlate with behavioral

improvements, its specific location partially coincided with cortical regions showing

a decrease in self-similarity: this suggested a plausible coupling between these two

properties. We thus proceeded with testing separately ongoing and task-related

activity: specifically, we asked whether the average consecutive changes of self-

similarity and multifractality during the four training blocks (task or rest) were

correlated across all individuals.

To that aim, the individual mean variations of self-similarity and multifractality

over four consecutive blocks (of only task or rest) during training were computed

using a linear parametric contrast in each label and for each individual:

〈∆M.,l,s〉 =
−3M1,l,s −M2,l,s +M3,l,s + 3M4,l,s

6
,

where Mb,l,s is the amount of multifractality estimated in the block b, label l of

subject s. This method is equivalent to computing the average of all combina-
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Figure 7.14: Behavioral correlates of self-similarity changes induced by

training measured at rest and during task. (a) Cortical labels presenting

a significant correlation (ρ 6= 0, p < 0.05 after FDR correction) between H and

behavioral measures (hit rate and confidence ratings) in the pre- vs. post-training

task or rest. Distinct cortical regions were negatively correlated with changes in

H: (1) left V4/inferior temporal cortex (ITC), (2) right posterior superior temporal

cortex (pSTC) and Human motion area (hMT+) and (3) right middle superior

temporal cortex (mSTC). (b) Hit rate differences for all individuals as a function

of variations of H in RESTf vs. RESTi in right mSTC. (c) Hit rate differences

for all individuals as a function of variations of H in pre- vs. post-training in left

V4/ITC. (d) Confidence ratings as a function of H in left pSTC/hMT+ in pre- vs.

post-training. Automatically detected outliers are indicated by ‘x’.
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tions {Mq,l,s − Mp,l,s}q>p and has a better signal-to-noise ratio than the classical

mean as simply averaging differences would be only sensitive to first and last val-

ues: 1
3

∑3
b=1(Mb+1,l,s −Mb,l,s) =

M4,l,s−M1,l,s

3 . The mean variation of self-similarity

〈∆H.,l,s〉 was computed in the same manner.

As hypothesized, we found several regions in which changes in self-similarity and

multifractality were anticorrelated (though more during task, Fig. 7.15b than rest,

Fig. 7.15a). These results were consistent with Fig. 7.12b–d and with the opposite

variations of H and M observed when switching from rest to task. In this dynamic

coupling, the last question was thus which of the self-similarity or multifractality

property dynamically drove the other.

Figure 7.15: Self-similarity and multifractality variations are anticorre-

lated during rest and task. Only labels presenting a significant correlation

(ρ 6= 0, p < 0.05 after FDR correction) between the variation of H and the corre-

sponding variation of M measured in blocks of rest (a) and task (b) during training

are displayed. The corresponding scatterplots averaged over all significant labels at

rest (c) and during the task (d) are shown on the right side. Automatically detected

outliers are indicated by ‘x’.
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7.2.1.4 Individuals’ multifractalities converge towards an attractor

during training

To disentangle the dynamics of self-similarity and multifractality, we asked whether

a rule common to all individuals could predict independently the value of H or M

based on previous values. To this end, we tested if the value of M in each block

during training (task or rest) was correlated across individuals with the subsequent

change in M (∆M). To make this analysis more robust, the initial M and the

corresponding ∆M were first averaged over the four training blocks as previously

described in section 7.2.1.3, where the corresponding initial value estimated in the

block b, label l for subject s is:

〈M.,l,s =
3M1,l,s + 2M2,l,s +M3,l,s

6
.

The same analysis was carried out independently for H.

Whereas no significant correlation was found between H and ∆H, many cortical

regions presented significant anti-correlations between M and ∆M during rest (Fig.

7.16a) and task (Fig. 7.16b). An example of such anti-correlation during rest (Fig.

7.16c) and task (Fig. 7.16d) is shown for the right pSTC/hMT+.

These observations can fruitfully be interpreted as phase space diagrams, from

which four possible trajectories of M can be deduced depending on the value taken

by the slope of the linear model relating ∆M to M (see Fig. 7.17).

These trajectories allow us to define a critical value M∞ corresponding to

∆M = 0, which plays the role of a repeller in two cases (M moves away from

M∞ either monotonically or by oscillating) and the role of an attractor in the other

two (M converges towards M∞ monotonically or by oscillating). Additionally, the

value of the slope quantifies the average speed of convergence or divergence across

participants. In this analysis, as the slope always ranged between −1 and 0, all

cortical regions were associated with attractors M∞ (case c in Fig. 7.17).

The behavior of M converging towards M∞ can be observed when plotting the

time course of the multifractal cortical topography averaged over all participants

during the four training blocks (Fig. 7.18): indeed, the multifractal topography con-

verges towards the asymptotic topography both at rest and during task. Consistent

with our previous findings showing greater multifractality during task than rest (cf.

Fig. 7.15), the attractors M∞ turned out to be greater during task than rest. Fi-

nally, a speed of convergence can be derived from the slope a obtained via the linear

regression by computing the quantity 1− |a+ 1|.

7.2.1.5 The multifractal attractor reflects asymptotic behavioral

performance

From these observations, we hypothesized that the asymptotic amount of multi-

fractality M∞ would correspond to the maximal level of performance that can be

reached by participants. In other words, we predicted that the closer to the attractor
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Figure 7.16: Multifractality converges towards an attractor M∞ during

rest and task. For each cortical label, Pearson correlation coefficients were com-

puted between an individual’s ∆M averaged over the four consecutive rest (a) or

task (b) blocks and the initial average M . Correlations were corrected for multiple

comparisons (ρ 6= 0, p < 0.05 after FDR correction). In both conditions, labels

only showed anti-correlations. Each scatterplot observed in a cortical label — here,

exemplified by the black circle corresponding to right pSTC/hMT+ at rest (c) and

during task (d) — can be interpreted as the phase space diagram of M during

training. Interestingly, the slope of the linear regression (here equal to −0.74 in c,

and −0.59 in d) indicates that M converges towards an asymptotic attractor M∞
corresponding to ∆M = 0. The closer the slope is to −1, the faster the convergence.
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Figure 7.17: Four dynamic trajectories of M as a function of the slope a

defined in the linear regression ∆M = aM+b. Phase space diagrams are shown

in the top row; corresponding time courses over blocks are provided in the bottom

row. (a, b) M∞ is a repeller. If a > 0, depending on the initial value Mi < M∞
or Mi′ > M∞, M will move away from M∞ monotonically (a). If a < −2, M

becomes more and more distant from M∞ by oscillating around this value (b). (c,

d) M∞ is an attractor. If −1 ≤ a < 0, depending on the initial value Mi < M∞ or

Mi′ > M∞, M converges towards M∞ in a ascending or descending manner (c). If

−2 < a ≤ −1, M converges towards M∞ by oscillating around this value (d).
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Figure 7.18: Cortical maps of multifractality converge towards an attrac-

tor map during training. (a, b) Time course of mean cortical maps averaged

over all individuals in each task (a) and rest (b) block. In the course of training,

maps become more and more similar to the asymptotic maps of M∞ assessed in

task- (c) and rest- (d) related activity. (e, f) In each label where M converges

towards M∞, the speed of convergence has been defined as the quantity 1− |a+1|,
where a is drawn from the linear regression ∆M = aM + b. The speed of conver-

gence is maximal at 1, and a negative value would indicate a divergent behavior (see

Fig. 7.17). The maps of speed of convergence differ between task (e) and rest (f).
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M∞ an individual’s M was in post-training, the better the individual’s performance

would be (hit rate).

We tested this hypothesis by computing the correlation coefficients in post-

training between each individual’s hit rate and the absolute difference M − M∞
in all cortical labels. Significant negative correlations were found in three cortical

regions (Fig 7.19A): the left human motion area (hMT+), the right intraparietal

sulcus (IPS) and the right anterior superior temporal cortex (aSTC). Interestingly,

an asymptotic hit rate could be extrapolated from the fitted straight line in the

averaged scatterplot (Fig. 7.19b) for M −M∞ = 0 which corresponded to a hit rate

of ∼ 90%.

Figure 7.19: The closer the individual’s multifractality to the group-

level attractor M∞, the better the individual’s performance. (a) In each

cortical label, the distance to the multifractal attractor was defined as the absolute

difference between the individual amount of multifractality and the attractor M∞.

Labels presenting a significant correlation (ρ 6= 0, p < 0.05 after FDR correction)

between the individual hit rate and this measure in post-training are displayed.

Three cortical regions emerged and presented an anti-correlation: left human motion

area (hMT+), right intraparietal sulcus (IPS) and right anterior superior temporal

sulcus (aSTS). (b) Corresponding scatterplot averaged across all significant labels.

Automatically detected outliers are indicated by ‘x’.

Because multifractality also converged during rest blocks, we wondered whether

this negative correlation could be observed when replacing the quantity M − M∞
measured in post-training TEST by that measured in RESTf . Although some cor-

tical regions consistent with those observed during task (Fig. 7.20a, c) presented

significant anti-correlations, none survived the FDR correction for multiple compar-

isons. A similar analysis carried on with confidence ratings did not survive FDR

corrections (Fig. 7.20b, d).
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Figure 7.20: Other behavioral correlates of the individual distance to the

multifractal attractor in the last block of rest and task. In each panel, the

left figure shows labels in which the individual hit rate (a, c) or confidence rating (b,

d) is correlated with the distance to the multifractal attractor measured in the last

rest block (a, b) or in post-training test (c, d) (ρ 6= 0, p < 0.05 without correction

for multiple comparisons). Remarkably, labels are relatively consistent between rest

and task blocks, as well as between behavioral measures. Scatterplots averaged

over all significant labels show strong anti-correlations in all cases. Automatically

detected outliers are indicated by ‘x’.
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7.2.2 Discussion and conclusions

7.2.2.1 Discussion

In this study, we showed that scale-free properties of Human brain activity are

modulated by learning. Specifically, cortical regions implicated in visual perceptual

learning [Sasaki 2010] such as the dorsal path (hMT+, IPS, pSTC) for visual mo-

tion discrimination [Noguchi 2005] and the ventral path (V4, ITC, STC) for color

categorization [Roe 2012] presented a decrease in self-similarity strongly associated

with perceptual improvement (cf. ERF analyses in chapter 5). At first sight, this

observation contradicts previous studies [Palva 2013] showing that neural scaling

exponents measured with DFA (equivalent to H, cf. section 6.2.2) reflect behavioral

scaling laws [Gilden 1995, Kello 2010, Proekt 2012]. However, these exponents were

estimated from the amplitude envelope of narrow-band oscillations whereas, here, H

was directly measured from MEG raw data (in the frequency range of 0.1–1.5 Hz).

This suggests two different neural mechanisms that can be captured differently and

that are not a priori incompatible.

Our results are consistent with the hypothesis that a decrease in self-similarity is

commensurate with an increase in neural excitability [Maxim 2005, He 2011]. Such

interpretation is primarily based on the contrast between neural activity at rest

and during task [Ciuciu 2012, He 2011] with higher self-similarity observed at rest.

Indeed, a decrease in H during task implies a decrease in the overall temporal cor-

relation of the signal or, equivalently, richer temporal dynamics with more energy in

higher frequencies. The occipito-frontal H-gradient ascent observed both in sensor

(cf. preliminary analyses in section 7.1.1) and source space replicates previous stud-

ies [Weiss 2009, Dehghani 2010] and supports the fact that low-level sensory areas

(associated with lower H values) process incoming information whereas frontal areas

maintain memory, focused attention and executive control (higher H values). Alter-

natively, this could reflect a higher refresh rate in low sensory areas that decreases

along the hierarchical pathway by integrating information towards frontal areas.

Conversely, some participants exhibited increased self-similarity in frontal re-

gions (though not significantly so at the group-level) thereby accentuating the

observed gradient. Because this increase did not correlate with task improve-

ment, it might be attributed to changes in attention or cognitive strategies that

are unrelated to perceptual learning per se. Surprisingly, and in contrast to

other studies [Lewis 2009, Stevens 2010, Tambini 2010, Ma 2011, Baldassarre 2012,

Sala-Llonch 2012], no significant changes in resting-state activity was captured by

self-similarity or multifractality after training. However, the anti-correlation in right

mSTC at rest between variations of self-similarity and hit rate shows that only great

improvements are followed by a reduction of H at rest. Therefore, we would expect

significant decreases of self-similarity for longer and more efficient training (here,

only 20 minutes without feedback). Changes of self-similarity in resting-state activ-

ity might thus index efficient and long-term learning, as suggested by our previous

analysis comparing V and AV trainings (cf. section 7.1.2).

The role of neural multifractality has hardly been addressed in the litera-
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ture and with the notable exception of one study investigating EEG micro-states

[Van de Ville 2010], studies converge in showing an endogenous origin of multifrac-

tality [Popivanov 2005, Popivanov 2006] that is specific to functional brain networks

[Shimizu 2004, Ciuciu 2012]. The evidence for a dynamic coupling between self-

similarity and multifractality with opposite effects (consistent with a previous study

[Weiss 2009]) encourages future research to consider both characterizations when

investigating scale-free dynamics in neural systems. Crucially, the value of H by

itself was not indicative of within-group performance, namely the individual with

the lowest H was not necessarily the best performer; however, the extent to which

H decreases correlated with task improvement across all participants did. Taken

together, these results suggest that self-similarity is more sensitive to an individual’s

history. This could explain inter-individual variability but also the significant differ-

ences found between young and old individuals [Suckling 2008] and between healthy

individuals and Alzheimer patients [Maxim 2005]. Conversely, M appears to inform

on an individual’s performance in an absolute reference frame: the participant with

the closest M to the attractor M∞ was also the best performer. As such, multifrac-

tality appears to be more task-specific, less sensitive to inter-individual variability

and more related to instantaneous processing. As a result, M can monitor the vari-

ations of H. This coupling does not hold actually in all cortical regions and may

change over time depending on the nature of the task and the cognitive network

implicated in the task.

A major finding is the convergence of multifractality towards an attractor ob-

served during training in both rest and task. The large number of cortical regions

involved in this convergence suggests a global mechanism directly or indirectly driven

by the training whose “signature” would be the cortical topography of multifractal

attractors (cf. Fig. 7.18c–d). However, only the attractors of specific particular re-

gions (namely, left hMT+, right IPS and aSTC) can be directly related to training

as they reflected the asymptotic performance. The implication of a high or low

value of the attractor thus remains unclear: for instance, would a higher value of

M∞ in left hMT+ indicate a better asymptotic performance? Would it be at the

expense of higher brain energy consumption [Laughlin 1998, He 2011]? Another in-

teresting property that could be exploited is the speed of convergence towards the

multifractal attractor: if we assume that the speed of convergence indicates how

rapidly participants can reach the asymptotic performance, this index provides a

new means to investigate neural correlates of learning.

7.2.2.2 Perspectives

In order to further understand the signification of this phenomenon of convergence,

it would be interesting to compare the different maps of asymptotic multifractality

and their speed of convergence for different types of training. Considering once

again our three groups V, AV and AVn, we can see different patterns as illustrated

in Fig. 7.21.

We can first notice that AV presents the highest speed of convergence across
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cortical areas (mean speed averaged over all labels in AV: 0.86, in V: 0.25 and

in AVn: 0.21) which might be thus a biomarker of the training efficiency (since

AV>V>AVn in term of performance) as previously suggested. If we also look at

the asymptotic maps of multifractality, we can readily see that they differ with

the training type. This strongly suggests that M∞ values are more specific to the

training than the task per se. Consequently, we can first wonder if there exists an

optimal value Mtask of multifractality reflecting the best performance achievable for

a given task. If so, M∞ would be a powerful indicator of the asymptotic performance

reachable by a given training: the closer M∞ to Mtask, the more efficient the training

is. This also raises the question whether there can be “bad” attractors associated

with “bad” tiresome trainings for instance. An interesting challenge would hence

consist of assessing the value of Mtask. In a first approach, it can be approximated

by the M∞ values obtained for the training yielding the best behavioral performance

(thus here AV). Finally, it appears that areas converge systematically more quickly

towards low than high M∞. A relevant biomarker of learning might be therefore

obtained by combining both information given by |M∞ − Mtask| and the speed of

convergence.

In this study, the asymptotic attractor M∞ is by construction common to all

individuals. In other words, our method is an “all or none” approach that tests for

(necessarily common) attractors among individuals. Given the number of training

blocks in our paradigm, we could not assess M∞ for each individual and verify if

they were indeed common (there would be only 3 points in our linear fit). To that

aim, it would be hence very instructive to develop another paradigm with more

training blocks (by replacing for instance the rest blocks by task). Note however

that statistically testing for the equality between individual M∞ values would not

be an easy task.

One can be also interested in analyzing the scale-free properties of the amplitude

of oscillatory bands [Linkenkaer-Hansen 2001] and seeing how they are related to

the infraslow activity and the neural process implicated in learning. In addition,

a first WLBMF analysis of the amplitude envelope in the α band (obtained after

band-pass filtering between 8 and 12 Hz and applying the Hilbert transform) in one

sensor and for one individual clearly reveals multifractality (Fig. 7.22).

Future work can also be dedicated to improving the WLBMF method by bet-

ter adapting it to the inherent constraints of the analysis of electrophysiological

data. Indeed, MEG can be easily corrupted by physiological and electronic arti-

facts. Crucially, the presence of sudden “jumps” in the data can dramatically bias

the estimation (often resulting in aberrant extreme values of multifractality). This

issue is usually easily overcome in standard MEG analysis by rejecting the data

segment containing the artifact and concatenating the rest of the data. In scale-

free analysis however, this solution is not possible as it would modify the temporal

structure of the data. So far, we corrected as much as possible “bad channels” con-

taining jumps by using the SSS method (cf. section 3.2.2). In the case where all

channels were corrupted at the same time, the only solution was to ignore the left

or right part of the signal (depending on how many samples would be left). For-
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Figure 7.21: Maps of convergence speed and asymptotic multifractality

as a function of training. The speed of convergence (top) was defined as the

quantity 1 − |a + 1| where a comes from the linear regression ∆M = aM + b

carried out in each label and each training group V (left), AV (middle) and AVn

(right). The closer this value to 1, the faster multifractality converges towards its

attractor M∞ at the group level. It can be readily seen that AV training drives

more quickly several areas towards their asymptotic amount of multifractality than

V and AVn trainings. These maps can be jointly read with their correspondent

M∞ maps (bottom). Interestingly, it appears that most of areas converging rapidly

are associated with a low M∞ and conversely, areas attracted towards large M∞
converge slowly.
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Figure 7.22: WLBMF analysis of the alpha amplitude envelope of a MEG

signal. (a) The envelope (in red) is obtained by computing the Hilbert transform

of a signal filtered between 8 and 12 Hz in a magnetometer. (b) The Welch’s peri-

odogram in logarithmic scales shows a 1/f behavior in the scale range j = 10–14 cor-

responding to f = 0.1–1.5 Hz). (c) Corresponding multifractal spectrum estimated

with WLBMF. The width of the spectrum reflects the existence of multifractality

in the alpha envelope.

tunately, this situation occurred very rarely. Therefore, a possible implementation

would consist of selecting the wavelet coefficients corrupted by artifacts and to ig-

nore them in the computation of the structure functions. Conversely, this would

also allow the selection of events of interest in the same way that we select epochs in

ERF analyses (under the condition that the epoch is long enough to have access to

very large scales). By doing so, we might be able to disentangle the different neural

mechanisms involved during task that are (unfortunately) encompassed in our scale-

free analysis (e.g. perceptual processing, decision, motor response, introspection or

awareness).

Last but not least, our study focused here only on univariate analysis of MEG

signals. It would be thus very interesting to investigate the fractal connectivity

[Achard 2008], i.e. the scale-free cross-temporal dynamics, between different corti-

cal areas. In short, it consists of estimating the 1/f behavior of the cross-spectrum

between two time series, i.e. the relative contribution of all frequencies (in the scaling

range) to their cross-correlation. This can be simply done with the efficient wavelet

fractal connectivity [Wendt 2009b]. A recent study (under review) in fMRI using

this estimator reports indeed scale-free connectivity between networks and interest-

ing behaviors [Ciuciu rev]: similarly to ours observations in univariate analysis, a

reduction of the bivariate Hurst exponent H was also observed when switching from

rest to task. Intriguingly, participants presenting a weak modulation between rest

and task were the ones that showed the best performance in a visual detection task

(measured in terms of reaction time).





Conclusion

In this thesis, we have investigated the neural processes of perceptual learning

and plasticity by analyzing source-reconstructed MEG data with two different ap-

proaches: the standard ERF analysis, a method commonly used in neurosciences

to temporally track the neural activity associated with the onset of events, and

the scale-free analysis, a very unusual and original approach that characterizes the

temporal organization of brain activity over several scales of time or frequency (re-

stricted here in the infraslow domain exhibiting a 1/f -type power spectrum).

Summary

Our first contribution consisted of elaborating a learning paradigm that would be

sufficiently effective to rapidly observe performance improvement of all participants.

Assuming that an appropriately designed multisensory training would allow us to

achieve this goal, we developed novel audiovisual stimuli consisting of acoustic tex-

tures paired with the coherence of visual colored RDKs. More specifically, we hy-

pothesized that supramodal processing (i.e. of both acoustic and visual coherence)

during training would allow greater plasticity in areas such as hMT+ and hence en-

tail greater behavioral improvements. This is why we tested three types of training:

visual only (V), audiovisual using acoustic textures (AV), or random noise (AVn).

The psychophysical analyses have shown that all participants significantly im-

proved after 20 minutes of training by reducing their visual coherence discrimination

thresholds and their reaction times. Consistent with our hypothesis, perceptual

thresholds were significantly better reduced after AV training. In addition, the

absence of significant increases in confidence rating in AV seems to indicate that

learning occurred implicitly, ruling out the possibility of a conscious cross-sensory

mapping. Our first objective, i.e. to ensure an effective training, appears thus to be

fulfilled. The question of plasticity was further addressed by carrying out the ERF

analysis.

The ERF study has allowed us to overcome the limitations of psychophysics

and to better understand the neural correlates of learning by comparing pre- and

post-training brain activity reconstructed on the cortical surface. First, it appears

that several mechanisms may underlie the improvements observed at the behavioral

level: the increased neural response in the ventral visual stream (ITC) observed in

the three groups suggests an enhancement of color-motion binding when coherence

discrimination was easily achieved. Another common characteristic is the strong

and selective implication of the prefrontal cortex (possibly reflecting the role of

attention in learning), as suggested by the increased activity reported in vlPFC

specifically to the learned coherence levels. Compared to V training, AV and AVn

trainings altered in an opposite manner a larger network implicated in the analysis of

visual motion and comprising multisensory areas such as pSTS and mSTS. Crucially,
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selective plasticity in hMT+ (as captured by the shift of neurometric thresholds)

was solely observed in the AV group. Consistent with the supramodal hypothesis

and the reverse hierarchical theory (RHT), these findings suggest that pre-existing

multisensory/supramodal computations elicited during AV training have enabled

down-stream sensory plasticity, i.e. from vlPFC to hMT+.

To the best of our knowledge, this study provides the first MEG evidence that

acoustic information can selectively alter the response profiles of visual cortices in

healthy Humans thereby providing a stepping stone for the understanding of repre-

sentational invariance and supramodal object processing in the cortex. Importantly,

these results may have substantial practical implications in the elaboration of train-

ing protocols for sensory-impaired populations and users of sensory-substitution

devices.

In parallel with the ERF analysis, we have assessed the scale-free properties

of source-reconstructed MEG data acquired in every experimental block (rest and

task) in V and AV participants by using the robust and accurate WLBMF method.

Not only we reported the presence of self-similarity and multifractality in MEG

data (both at the sensor and source levels), but we also found a modulation of

these properties between rest and task and between pre- and post-training activity.

More precisely, the training induced in task-related activity an increase of multi-

fractality in some confined areas (such as hMT+/pSTS and IPS) and conversely a

more extended decrease of self-similarity that correlated with learning in cortical

regions implicated in the task (left V4/ITC and right hMT+/pSTS). This opposite

coupling between self-similarity and multifractality is of particular interest since it

also occurs between rest and task and it has never been reported in other dynamic

systems (such as in hydrodynamic turbulence or in finance time series). In other

words, infraslow brain activity can be strongly autocorrelated (such as during rest or

before learning); should its dynamics become more complex (i.e. more multifractal),

the temporal compression of information may increase in turn (such as during task

and after learning), resulting in lower global autocorrelation. Most astonishing, the

degree of multifractality observed for each individual converged during training to-

wards an asymptotic value in numerous cortical areas; crucially, only the attractors

of some specific areas such as hMT+ reflected asymptotic performance.

To the best of our knowledge, this study provides the first evidence that an in-

dividual’s learning ability can be predicted by the multifractal indexing of his/her

brain activity. This finding is novel and provocative as it offers a first neurophysio-

logical interpretation of multifractality observed in Human brain activity. In addi-

tion, it brings into question the model of self-organized criticality usually proposed

to interpret the presence of self-similarity in brain dynamics as it fails in explaining

the origin of multifractality.
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ERF vs. scale-free analyses

Both ERF and scale-free analyses reveal changes in the pattern of activity between

pre- and post-training that can be interpreted as functional plasticity. Interestingly,

common areas such as hMT+, pSTS, mSTS and ITC have been consistently exhib-

ited with these two approaches; yet the neural interpretation is quite different. It

is first worth reminding that the frequency range of analysis overlaps only slightly

between ERF (1–40 Hz) and scale-free (0.1–1.5 Hz) analyses. In the case of ERF

analysis, plasticity is mainly represented by an increase (or sometimes decrease) of

brain activity at given latencies, reflecting thus either a finer tuning/sensitivity of

neurons (as in hMT+) or the recruitment of a larger synchronized population of

neurons (as possibly in pSTS) in response to a precise event. Conversely, a change

of scale-free properties indicates a temporal reorganization of brain activity at a

time scale greater than that of ERF analysis (∼ 1 s) that encompasses thus several

neural events.

This is indeed a crucial difference: thanks to the great time resolution of MEG,

ERF analysis allows us to disentangle neural mechanisms by selecting a particu-

lar moment (e.g. in our study, the activity evoked by the onset of visual motion

at a certain level of coherence). Scale-free analysis, as conducted here, does not

make such distinction since it is carried out on the whole time series; this might

explain why it exhibits a larger network associated with plasticity. For instance,

IPS does not present any plasticity with the ERF analysis whereas it shows both

decreased self-similarity and increased multifractality. However, the computation of

the evoked responses was restricted to the neural processing of motion, excluding

other mechanisms such as accumulation of sensory evidence, decision mechanisms,

motor responses or self-confidence rating. We strongly expect IPS to show plasticity

in one of these cases; this could be verified for instance by computing the evoked

activity phase-locked to the participant’s responses. In addition, accumulation of

evidence is generally reflected by very slow drifts that might be filtered out with

the current band-pass filter used for the ERF analysis (it might be hence worth

reconsidering the lower cutoff frequency).

A major advantage of scale-free analysis is that it can be applied on any MEG

data set, notably during rest or sleep. By considerably reducing the dimension

of data to two values (i.e. self-similarity and multifractality) per sensor/vertex in

each run, we were able to examine the dynamics of learning across the successive

experimental blocks. The main difficulty of this analysis is to correctly chose the

scale range of analysis and the parameter γ that determines the order to which data

are integrated. This is done in practice by a meticulous inspection of the power

spectra for each run, each sensor and each individual... As the amount of data

increases, this becomes however a challenging issue. Although the ERF analysis is

theoretically and conceptually more simple, it is not easier to carry out: it strongly

depends indeed on the choice of the baseline and of the filtering and requires a very

precise control of times of events (which becomes an issue if the trigger channels are

defective, or if the stimuli are presented with an uncontrollable jitter/lag). Although



148 Conclusion

we were confronted to the same difficulty for both methods regarding the analysis at

the sensor level (due to the complexity of the task and the absence of normalization

across individuals), the choice of the source reconstruction method (MNE, dSPM

or sLORETA?) had more impact on the reconstructed ERFs than on the scale-free

properties extracted from cortical sources. Indeed, scale-free analysis is insensitive

to any (non-null) linear transformation such as the normalization of MNE estimates

by the dSPM and sLORETA methods.

Link with the oscillatory hierarchy

As a future work, we can examine the oscillatory properties of MEG signals, an

approach that can be seen as the complement of the scale-free analysis (cf. sec-

tion 6.1.2). This is of particular interest here since it would allow us not only to

deepen our understanding of scale-free brain dynamics and to facilitate our inter-

pretation by comparing the results with what we have obtained so far, but also to

address the question of the large-scale integration in the context of multisensory

and color/motion binding (i.e. how sensory inputs spatially segregated can interact

at early levels before reaching higher-order associative areas).

An attractive theory based indeed on the oscillatory approach proposes that

the large-scale neural networks interact by phase synchronization, enabling mul-

tisensory integration [Varela 2001]. Such mechanism was first evidenced in the

gamma band [Rodriguez 1999, Tallon-Baudry 1999]. In a EEG study comparing

the gamma synchronization in two conditions (faces vs. nonsense figures recogni-

tion), the presentation of faces induced a long-range gamma synchronization that

considerably decreased before the motor response [Rodriguez 1999]. Other studies

have shown that gamma synchronization was involved in the selective visual at-

tention [Talsma 2009]. For instance, the gamma synchronization was higher for an

attended stimulus than for a distractor in monkeys [Fries 2001]. The perception

of the bouncing-streaming motion illusion could also be predicted by an increased

gamma synchronization within a large-scale centro-temporal network measured with

EEG [Hipp 2011]. Moreover, gamma activity is principally present during wakeful-

ness and in brain areas processing the modality on which attention is focused, while

disrupted gamma synchronization has been reported in dysfunctional states (such

as Parkinson, schizophrenia and epilepsy) [Varela 2001].

Interestingly, the existence of a coupling between gamma amplitude and

lower frequency phase led to the concept of nested frequencies [Buzsáki 2004,

Fox 2007]. This oscillatory hierarchy is particularly of interest in audiovisual speech

[van Wassenhove 2012] because a similar “nesting” exists in language that necessi-

tates a complex processing to chunk each element of speech [Giraud 2007].

Added to this, it appears that the phase of a slow oscillation in a given modal-

ity can be reset by a salient input of another modality. Taken together, these two

properties have a crucial impact on multisensory integration because one modal-

ity can interfere in advance with another to adjust the time of excitability with
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the incoming input. For instance, the phase of ongoing neural oscillations in the

auditory cortex of macaques was reset by somatosensory inputs to make the ar-

rival of auditory inputs coincide with either the high-excitability phase (amplifying

then the neuronal responses) or the low-excitability phase (reducing the neuronal

response) [Lakatos 2008]. Likewise, oscillations in the visual cortex were shown to

be reset by inhibitory inputs coming from direct connections with the auditory cor-

tex [Iurilli 2012]. In the opposite direction, the visual inputs arriving (faster than

sound) during an audiovisual conversation can modulate the spontaneous activity

in the auditory cortex to make its high-excitability state coincide with the auditory

input [Schroeder 2008].

The oscillatory hierarchy is therefore a very appealing concept that has the con-

venience to explain both positive and negative effects of multisensory interactions

by accounting for temporal constraints. Crucially, the phenomenon of nested fre-

quencies has been shown to occur also in the 1/f -type arrhythmic brain activity

[He 2010] but could not be captured by the sole self-similarity parameter. It would

be thus interesting to test in turn if multifractality reflects such mechanism.

Other perspectives

The data acquired in this experiment have not been fully exploited yet and can be

subject to other analyses. For instance, the question of multisensory integration

can be more specifically addressed by carrying out standard ERF or time-frequency

analyses on the four blocks of training. We can also wonder if the results regard-

ing self-similarity and multifractality in the course of training are only specific to

infraslow activity or if similar behaviors can also be reported when carrying out

the WLBMF analysis on the amplitude envelopes of oscillatory bands. In the same

idea, we can also ask if similar findings can be obtained in fMRI (although the sam-

pling frequency does not allow the assessment of multifractality as accurately and

robustly as with MEG data). A prediction regarding the data acquired during the

resting-state fMRI session following the MEG experiment (not analyzed yet) would

be that the two groups V and AV are distinguishable on the basis of their amount

of multifractality (since the attractors are different between the two trainings).

Since the convergence towards asymptotic values of multifractality has been evi-

denced only at the group level, it would be interesting to test this intriguing property

for each isolated individual by increasing the number of training blocks in the ex-

periment. If the training is sufficiently long and effective, we also expect significant

changes of scale-free properties even at rest. An interesting methodological contri-

bution would be to allow the WLBMF analysis to select epochs of interest (long

enough though) in order to separate the different neural mechanisms involved in the

task. If we suppose for instance that multifractality somehow reflects the number

of neural processes occurring at the same time and same location, this should result

in reducing the amount of multifractality.

Finally, the natural next step in further investigating scale-free brain dynamics
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would consist of proposing a multivariate extension of the WLBMF approach, in

order to assess not only fractal but also multifractal connectivity. In parallel to

that, it would be relevant to carry out standard analyses of connectivity with several

metrics (e.g. coherence, phase-locking value, phase lag index) in order to compare

the two approaches on MEG data.
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Appendix A

ERF analysis:

Supplementary figures

Figure A.1: Grand average source estimates in pre-training. Mean dSPM

estimates (±1 s.e.m.) in pre-training across all RDK coherence levels were computed

and extracted from each region of interests (see Fig. 5.1). Time series are separately

reported for V (light grey), AV (black) and AVn (dark grey) training groups. To

test the existence of group differences before training, a F-test contrasting the am-

plitude of the source estimates in V, AV and AVn groups was combined with a

cluster permutation algorithm for all ROIs. Shaded areas highlight the latencies

of significant differences between groups and red stars indicate the corresponding

degree of significance. Significant differences were only found in V4. * corrected p

values inferior to 0.05.
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Figure A.2: Grand average source estimates in post-training. Mean dSPM

estimates (±1 s.e.m.) in post-training across all RDK coherence levels were com-

puted and extracted from each region of interests (see Fig. 5.1). Time series are

reported for V (light grey), AV (black) and AVn (dark gray) training groups. To

test the existence of differences between groups after training, a F-test between the

amplitude of the source estimates in V, AV and AVn groups was combined with

a cluster permutation algorithm for all ROIs. Shaded areas highlight the latencies

of significant differences between groups and red stars indicate the corresponding

degree of significance. Significant differences were found only in right mSTS. **

corrected p values inferior to 0.01.



Appendix B

The wavelet transform

It has been shown that the wavelet-based analysis of self-similarity displays bet-

ter performance both in terms of estimation performance and of robustness against

drifts and non-stationarities [Veitch 1999, Bullmore 2004]. Also, the wavelet frame-

work is convenient as it naturally extends to the analysis of models other than

self-similarity, such as multifractal processes.

The basic idea of the wavelet transform is to decompose a signal X(t) in the

time-scale plane by projecting the signal on time-shifted and dilated versions of an

elementary function Ψ0(t) named mother wavelet that verifies:
∫

R

Ψ0(t)dt = 0 and

∫

R

|Ψ0(t)|2dt = 1.

Ψ0 is characterized by its number of vanishing moments NΨ ≥ 1 defined as the

largest integer such that:
{ ∫

R
Ψ0(t)t

ndt = 0, ∀n = 0..NΨ − 1
∫

R
Ψ0(t)t

NΨdt 6= 0.

This means that the mother wavelet and its derivatives up to order NΨ decay ex-

ponentially in the time domain. Basically, the greater the number of vanishing

moments NΨ, the more sensitive the wavelet is to high frequencies. According to

the Heisenberg’s uncertainty principle, resolution in scale and time domain cannot

be simultaneously optimal: wavelets with larger NΨ are defined indeed on larger

supports. Hence, the choice of the mother wavelet (see Fig. B.1 for some examples)

depends on the type of analysis that is to be performed — e.g. wavelets with small

(resp. large) NΨ are more adapted to analyze low (resp. high) frequencies.

Let Ψa,u(t) a version of Ψ0(t) dilated to scale a and translated to position t:

Ψa,t(u) =
1√
a
Ψ0(

u− t

a
).

The continuous wavelet coefficients CX(a, t) are given by:

CX(a, t) = 〈X|Ψa,t〉 =
∫

R

X(u)Ψa,t(u)du.

Discrete wavelet coefficients are defined on a dyadic grid (scale a = 2j and time

t = k2j , cf. Fig. B.2) such that the family of wavelets {Ψj,k} forms an orthonormal

basis in L2(R). The normalized discrete wavelet coefficients dX(a, t) are then given

by:

dX(a, t) = 2−
j
2 〈X|Ψj,k〉 =

∫

R

X(u)2−jΨ0(2
−jt− k)dt.
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The advantage of using wavelet coefficients is that they reproduce exactly the scaling

properties of X(t) while being more easy to analyze: not only they are stationary,

but they are also less correlated (i.e. less long-range dependent) than X(t) if the

number of vanishing moments NΨ is sufficiently high. This statement is particularly

true for self-similar processes with stationary increments (if NΨ ≥ H + 1
2). Wavelet

coefficients do not procure however satisfactory results for a complete multifractal

analysis: their values are indeed very close to zero, making the computation of

negative moments (q < 0) extremely unstable. This can be corrected using WTMM

or WLBMF (cf. chapter 6).

Figure B.1: Examples of common wavelets. Two continuous (a–b) and one

discrete (c) mother wavelets are illustrated in time (top) and frequency (bottom)

domain. (a) real-valued Morlet wavelet. (b) Mexican Hat, i.e. the negative normal-

ized second derivative of a Gaussian function. (c) Daubechies mother wavelet with

NΨ = 4. Note in this example that the number of vanishing moments is larger for

the Morlet wavelet (as indicated by the number of oscillations); this is also reflected

by the faster decay of its Fourier transform in low frequencies.

Figure B.2: Continuous vs. discrete wavelets. The scalogram, i.e. the time-

scale representation of a time series can be computed by using either continuous

(left) or discrete (right) wavelets. Discrete coefficients are computed on a dyadic

grid: a = 2j and t = k2j .
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ERF and scale-free analyses of source-reconstructed MEG brain signals

during a multisensory learning paradigm

Abstract: The analysis of Human brain activity in magnetoencephalography

(MEG) can be generally conducted in two ways: either by focusing on the aver-

age response evoked by a stimulus repeated over time, more commonly known as an

“event-related field” (ERF), or by decomposing the signal into functionally relevant

oscillatory or frequency bands (such as alpha, beta or gamma). However, the ma-

jor part of brain activity is arrhythmic and these approaches fail in describing its

complexity, particularly in resting-state. As an alternative, the analysis of the 1/f -

type power spectrum observed in the very low frequencies, a hallmark of scale-free

dynamics, can overcome these issues. Yet it remains unclear whether this scale-free

property is functionally relevant and whether its fluctuations matter for behavior.

To address this question, our first concern was to establish a visual learning paradigm

that would entail functional plasticity during an MEG session. In order to optimize

the training effects, we developed new audiovisual (AV) stimuli (an acoustic tex-

ture paired with a colored visual motion) that induced multisensory integration and

indeed improved learning compared to visual training solely (V) or accompanied

with acoustic noise (AVn). This led us to investigate the neural correlates of these

three types of training using first a classical method such as the ERF analysis. After

source reconstruction on each individual cortical surface using MNE-dSPM, the net-

work involved in the task was identified at the group-level. The selective plasticity

observed in the human motion area (hMT+) correlated across all individuals with

the behavioral improvement and was supported by a larger network in AV compris-

ing multisensory areas. On the basis of these findings, we further explored the links

between the behavior and scale-free properties of these same source-reconstructed

MEG signals. Although most studies restricted their analysis to the global measure

of self-similarity (i.e. long-range fluctuations), we also considered local fluctuations

(i.e. multifractality) by using the Wavelet Leader Based Multifractal Formalism

(WLBMF). We found intertwined modulations of self-similarity and multifractality

in the same cortical regions as those revealed by the ERF analysis. Most astonish-

ing, the degree of multifractality observed in each individual converged during the

training towards a single attractor that reflected the asymptotic behavioral perfor-

mance in hMT+. Finally, these findings and their associated methodological issues

are compared with the ones that came out from the ERF analysis.

Keywords: MEG, multisensory, audiovisual, colored motion, learning, plasticity,

resting-state, infraslow activity, power law, scale invariance, multifractality,

WLBMF



Analyses des champs évoqués et de l’invariance d’échelle des signaux

cérébraux acquis en magnétoencéphalographie durant un paradigme

d’apprentissage multisensoriel et reconstruits sur la surface corticale

Résumé : Il existe deux façons d’analyser l’activité cérébrale acquise en magné-

toencéphalographie (MEG) : soit en moyennant les réponses suscitées par la répé-

tition d’un stimulus afin d’observer le « champ évoqué » ; soit en décomposant le

signal en bandes oscillatoires (tel que l’alpha, le beta ou le gamma), chacune étant

associée à différents rôles fonctionnels. Ces méthodes ne prennent cependant pas

compte de la complexité de l’activité cérébrale dont l’essentiel est arythmique, no-

tamment au repos. Pour pallier à cela, une autre approche consiste à analyser le

spectre de puissance en 1/f observable dans les très basses fréquences, une carac-

téristique des systèmes dont la dynamique est invariante d’échelle. Pour savoir si

cette propriété joue un quelconque rôle dans le fonctionnement cérébral et si elle a

des conséquences sur le comportement, nous avons établit un paradigme d’appren-

tissage visuel permettant d’observer de la plasticité fonctionnelle au cours d’une

session MEG. Pour avoir un entraînement optimal, nous avons développé de nou-

veaux stimuli audiovisuels (AV) (une texture acoustique associée à un nuage de

points colorés en mouvement) permettant une intégration multisensorielle et de ce

fait un meilleur apprentissage que celui apporté par un entraînement visuel seul (V)

ou accompagné d’un bruit acoustique (AVn). Nous avons ensuite étudié les corré-

lats neuronaux de ces trois types d’apprentissage par l’analyse classique des champs

évoqués. Une fois l’activité reconstruite sur la surface corticale de chaque individu

à l’aide de MNE-dSPM, nous avons identifié le réseau impliqué dans la tâche au

sein de chaque groupe. En particulier, la plasticité sélective observée dans l’aire

hMT+ associée au traitement du mouvement visuel corrélait avec les progressions

comportementales des individus et était soutenue en AV par un plus vaste réseau

comprenant notamment des aires multisensorielles. Parallèlement, nous avons ex-

ploré les liens reliant le comportement et les propriétés d’invariance d’échelle de ces

mêmes signaux MEG reconstruits sur le cortex. Tandis que la plupart des études se

limitent à analyser l’auto-similarité (une caractéristique globale synonyme de longue

mémoire), nous avons aussi considéré les fluctuations locales (c-à-d la multifracta-

lité) au moyen de l’analyse WLBMF. Nous avons trouvé des modulations couplées

de l’auto-similarité et de la multifractalité dans des régions similaires à celles révé-

lées par l’analyse des champs évoqués. Plus surprenant, Le degré de multifractalité

relevé dans chaque individu convergeait durant l’entraînement vers un même attrac-

teur reflétant la performance comportementale asymptotique.

Mots-clés : MEG, multisensoriel, audiovisuel, mouvement coloré, apprentissage,

plasticité, repos, activité basse-fréquence, loi de puissance, invariance d’échelles,

multifractalité, WLBMF
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